

LIBRARY : Univ́ersity of California. Class

272

Digitized by the Internet Archive in 2007 with funding from Microsoft Corporation

SURVEYOR'S HAND BOOK

BY
T. U. TAYLOR
C. E. University of Virginia, M. C. E., Corneli University; Professor of Civil Engineering in the University of Texas; Member American Society of Civil Engineers.

> CHICAGO AND NEW YORK

THE MYRON C. CLARK PUBLISHING CO.

. N NERAL

Copyright 1908
By
The Myron C. Clark Publishing Co.

DEDICATION

TO GEORGE W. BRACKENRIDGE SAN ANTONIO, TEXAS.

A Civil Engineer and Patriot Who for a Quarter of a Century Has Been an Active and Useful Friend of Higher Education in Texas.

PREFACE.

It has been my object to prepare a book for the use of the surveyor in the field, of convenient size and scope, and one that contains all the essentials for ordinary surveying. It is too much to hope that there are no errors in these pages, in theory or example. The preliminary proof has been examined by twelve experienced surveyors and I am indebted to them for many valuable suggestions.

I am under lasting obligations to my colleagues, R. A. Thompson, Expert Engincer of the Texas Railway Commission; Edward C. H. Bantel, Adjunct-Professor of Civil Enginecring; and Stanley P. Finch, Instructor in Civil Engineering of the University of Texas. In addition to this assistance I have been aided by valuable suggestions from F. Lavis and Halbert P. Gillette, and from the following leading surveyors and engineers of Texas: C. F. H. von Blücher, Gustav Schleicher, B. F. Love, and W. D. Twichell.

The thanks of the author are hereby expressed to W. \& L. E. Gurley, Keuffel \& Esser, Eugene Dietzgen Co., and A. Wissler for many illustrations of instruments.

The traverse table has been omitted, as the ordinary ones are useless for angles not multiples of quarter degrees, and the large ones are books in themselves. As lands become more valuable, the transit survey is demanded where angles are read to the nearest minute, and for such surveys the small traverse tables are of no avail.

Tables I, II, III and IV are taken by permission from Henck's "Field Book," while Table V is from Searles' "Field Engineering." T. U. TAYLOR.

Austin, Texas, September 1, 1908.

CONTENTS.

CHAPTER I. CHAIN SURVEYING:

Page

1. Gunter's Chain 1
2. Engineer's Chain 2
3. Vara Chain 3
4. Steel Tapes 3
5. Standardized Tapes 4
6. Metallic Tapes 5
7. Pins 5
8. Range Poles 6
9. Plımb-bob 6
10. Chaining 7
11. Chaining Over Hills or Across Valleys 9
12. Chain Survey 9
13. Chain Problems 10
14. Correction for Temperature 13
15. Stretch of Tape Due to Pull 13
16. Correction for Sag 14
17. Erroneous Lengths 15
18. Erroneous Areas 16
19. Linear Units 17
20. Units of Land Measure 18
21. Area of a Triangle 19
22. The 57.3 Rule 20
23. Applications of the 57.3 Rule 20
24. Pacing Survey 21
25. Location of Houses 23
26. Survey of Farm by Chain or Pace 23
CHAPTER II.
COMPASS SURVEYING.
27. The Bearing of a Line 25
28. Azimuth 25
29. The Compass 25
30. Reading the Bearing 27
31. How to Use the Compass 27
32. The Vernier 28
Page
33. Declination of the Needle 29
34. Compass Vernier 30
35. To Set Off Declination 31
36. Changes in Declination 31
37. Result of Changes 32
38. Old Lines 33
39. Magnetic Bearing 33
40. To Find the Declination for Any Special Farm 34
41. Local Attraction 3.5
42. Witnessing a Line or Corner 3.)
43. Typical Field Notes 36
44. Compass Adjustments 36
CHAPTER III.
TRANSIT SURVEYING.
45. The Transit 38
46. Compass Attachment 40
47. Vertical Circle 40
48. Shifting Center 41
49. The Reticule 41
50. Setting Up the Transit 41
51. Motions 42
52. Use of the Transit 42
53. The Transit as a Compass 43
54. Transit Surveying 43
55. Transit Vernier 43
56. Example 44
57. Reference Lines 44
58. Repeating Method 45
59. To Adjust the Plate Levels 46
60. Line of Sight Adjustment 46
61. Peg Adjustment 48
62. Location of Meridian by Polaris 48
63. Circumpolar Stars 51
64. Location of Meridian 52
65. PZS Triangle 52
66. Formulas 53
67. Observation on Sun 54
68. Refraction 55
69. Solar Attachment 55
70. Meridian Without Calculation 57
71. Example 58
72. Example 59
CONTENTS.
CHAPTER IV.
CALCULATION OF AREAS.
Page
73. Latitude and Departure of a Course 61
74. Traverse Tables 62
75. Example 63
76. Error of Closure 63
77. Balancing a Survey 64
78. The Double Meridian Distance 66
79. Area of a Farm 67
80. Area Table 68
81. Courses of No Latitude or Departure 72
82. Example 73
83. Area by Co-ordinates 75
84. Traversing 76
85. Example 76
86. Approximate Traversing 77
87. Irregular Boundaries 78
88. Discrepancies 79
CHAPTER V.
DIVISION OF LAND.
89. Division of Triangle 81
90. Division Line Through Internal Point 82
91. Division of Quadrilateral 83
92. General Solution. 84
93. Case I 85
94. Case II 86
95. Case III 87
96. Case IV 89
97. Example 89
98. Dividing Land 90
99. Example 90
100. Example 92
CHAPTER Vi. LEVELING.
101. The Y Level 96
102. The Telescope 96
103. Setting Up the Instrument 100
104. Rods 100
105. Theory of Leveling 102
106. Bench Marks 104ix
Page
107. Profiles 106
108. Crosswire Adjustment 106
109. Bubble-Tube Adjustment 106
110. Adjustment of Wyes 107
111. The Radius of the Bubble-Tube 107
112. Curvature of Earth 109
113. Vertical Curves 110
114. Curve in Sag 111
115. Vertical Circular Curves 112
CHAPTER VII.
TOPOGRAPHIC SURVEY.
116. Topographic Survey 114
117. Topographic Methods 114
118. Stadia Formulas 115
119. Wire Interval 116
120. Inclined Sights 117
121. Stadia Rod 118
122. Field Work 119
123. Reduction Methods $12 \cdot$
124. Colby's Slide Rule 123
125. Usual Approximations 124
126. Topography by Hand Level. 126
CHAPTER VIII.
RAILROAD SURVEYING.
127. Railroad Surveying 129
128. Degree Formula 129
129. General Formula 129
130. To Lay Out Curve 130
131. Obstacles 132
132. Location by Offsets 132
133. Middle Ordinate 133
134. Approximate Formulas 133
135. Reduction Tables 134
136. Metric Curves 135
137. Preliminary Survey 136
138. Location Survey 136
139. Field Book 138
140. Transit Party 140
141. Stakes 141
142. Hubs 141
143. Hand-Level 142
Page
144. Slope Stakes in Excavation 144
145. Slope Stakes in Embankment 147
146. Berms 149
CHAPTER IX.
EARTHWORK.
147. Prismoidal Formula 151
148. Railroad Excavation 152
149. Level Sections 153
150. Two-Level Sections 153
151. Three-Level Sections 154
152. Irregular Sections 154
153. Rules 155
154. Side Hill Cuts 156
155. Average End Areas 157
156. Error of Average-End Area Formula 158
157. Examples 159
158. Preliminary Estimates 160
159. Earthwork Note-Book 161
160. Special Case 163
161. Borrow Pits 164
162. End of Fill. 166
163. Overhaul 166
164. Shrinkage 167
CHAPTER X.
CITY SURVEYING.
165. The City Engineer 171
166. Objects of Survey 171
167. Monuments 17
168. Additions 173
169. Kinds of Monuments 173
170. Location of Monuments 175
171. Tapes 175
172. Transit 176
173. Datum 178
174. General Maps 179
175. Water-Pipe Map 179
176. City Blocks 180
177. Rectangular Blocks 180
178. Rectangular Lots 181
179. Irregular Blocks and Lots 182
180. Private Notes 183
Page
181. Prescriptive Rights 184
182. Cross-Section of Streets 184
183. City Engineering Records 185
184. Field Note-Books 186
185. Detail Maps 187
186. Orders, Bids, Etc 189
CHAPTER XI.
PLOTTING AND LETTERING.
187. Plots 190
188. Protractor Method 190
189. Latitude and Departure Method 191
190. The Tangent Method 191
191. The Sine Method 191
192. Co-ordinate Method 192
193. Correcting the Plot 194
194. Lettering 194
CHAPTER XII. GOVERNMENT SURVEYING.
195. Radii of Parallels 196
196. Angular Convergence of Meridians 196
197. Linear Convergence 197
198. Off-Sets 198
199. Running Parallels 198
200. Tangent Method 199)
201. Secant Method 199
202. Intermediate Off-Sets 199
203. Example 200
204. Reference Meridians and Standard Parallels 200
205. Ranges 202
206. Townships 202
207. Dividing Up a Township 203
CHAPTER XIII. TRIGONOMETRIC FORMLCLAS.
208. Formulas for Right Triangle 208
209. Solutions for Right Triangle 208
210. Oblique Triangle 209
211. Right Spherical Triangle 210
212. Oblique Spherical Triangle 210

CHAPTER XIV. TABLES.

Page
Table I. Logarithms of Numbers 211Table II. Logarithmic Sines, Cosines, Tangents andCotangents227
Table III. Natural Sines and Cosines 275
Table IV Natural Tangents and Cotangents 285
Table V. Cubic yards per 100 feet for slopes $1 / 4: 1$,
$1 / 2: 1,1: 1,11 / 2: 1,2: 1,3: 1$ 299

CHAPTER I.

CHAIN SURVEYING.

1. Gunter's Chain.-This chain was invented in 1620 by Edmund Gunter, an English surveyor, and is now in use in a majority of the older states of America. Previous to its invention, chains of irregular lengths had been in use, but there was no uniform system, and as soon as Gunter's chain was invented it was generally adopted.

This chain is 66 ft . or 792 ins. in length, and is divided into 100 equal parts, called links, each link being 7.92 ins. long. Eighty of these chains make one mile. Also, we know

1 acre $=4,840$ sq. yds. $=43,560$ sq. ft.
1 sq. chain $=66 \times 66=4,356$ sq. ft.

$$
1 \text { acre }=\frac{43,560}{4,356} \text { sq. chains, }=10 \text { sq chains. }
$$

Distances are measured in full chains and decimals. If the distance between two points is 9 full lengths and 83 links, we call the length 9.83 chains, as each link is one-hundredth part of a chain. Each link is composed of three parts-a long wire with looped ends and two rings. These rings can be left open or sclldered (brazed). If left open they soon become oval and elongated in the direction of the chain, and the chain thus becomes lengthened. It is therefore best to have all joints brazed, as this makes the ring connections more stable and less liable to stretch. Figure 1 is an illustration of one form of Gunter's chain and the two rings at each joint can be seen in the upper right-hand part of the figure. At each end of the chain there are two brass handles, the measuring length of the chain being from back to back of the handles. These loop handles are attached to the chain by nuts that are intended to be adjustable. When fixed in one position, it is important that they remain stationary till adjusted by the surveyor. The wearing surfaces make it necessary to remove links and this renders the chain in-
accurate for fractional parts of a chain. There are in all about 600 wearing surfaces and if each surface is worn one-hundredth part of an inch, the chain will be lengthened 6 ins. and this would produce an error of 1 per cent in the calculation of areas.

The tenth link from the end is marked by a one-point brass tag, the twentieth by a two-point ta£, the thirtieth by a threepoint, the fortieth by a four-point, and the fiftieth by a round tag, it being the middle of the chain. At the center there is generally a snap link for disconnecting the chain, so that a half-chain can

Fig. 1.
be used for steep hills and rough country. The chain is folded by commencing at the middle and folding two links at each time in the form of a warped surface, making when completed a shape something like an hour-glass. In unfolding the chain, take both handles in one hand and with the other throw the chain from you. With a little practice this can be done so that it will stretch its full half-length when thrown and the whole chain can then be opened out.
2. Engineer's Chain.-This chain is made similar to Gunter's chain, is 100 ft . in length from back to back of the handles,
and is tagged every 10 ft . Each link is 1 ft . long and it consists of one long wire and two or three rings whose joints are brazed. This chain is now rarely used in railroad or city surveying where great accuracy is required. The steel tape has almost wholly superseded it where accurate work is desired.
3. Vara Chain.-The vara chain is 20 varas long, and each vara is divided into five equal parts. Each vara is marked by a tag with its distance from one end stamped, and the tags are numbered from 1 to 19 . The chain is thus divided into 100 equal parts, each part being one-fifth of a vara or one onehundredth of 20 varas, and is, therefore, 0.2 of a vara. It is necessary to remember this, for in the Gunter and engineer chains the chain itself is the unit of length. If the distance between two points is five full lengths, 16 varas and 2 links, then

Fig. 2.
the distance is 116.4 varas. In Texas a vara is $331 / 3$ ins. long by law.
4. Steel Tapes.-For precise measurements the steel tape (Fig. 2) is used. It varies in length from 3 ft . to $1,000 \mathrm{ft}$., and is made of the best steel reasonably flexible. The tape has the advantage of having no wearing surfaces, and is easily folded or looped up like a rope. The width of the tape varies from $3 / 16$ to $1 / 2$ in., the thickness being about $1 / 64$ in It is marked every 5 ft . from one end and numbered on brass and copper plates bent around the tape from 5 to 95 ft ., and every foot is marked by a brass rivet, and each foct from the end is divided into tenths of a foot. The even 5 -ft. marks are usually made on a brass plate or sleeve, and the even $10-\mathrm{ft}$. marks are made on a copper sleeve. In order to assist in identifying the even $10-\mathrm{ft}$.
marks when the figures have become so worn that they are illegible, rivets are driven through the plate close to the sleeve, one at the 10 and $90-\mathrm{ft}$. marks, two at the 20 and $80-\mathrm{ft}$. marks, three at the 30 and $70-\mathrm{ft}$. marks, and four at the 40 and $60-\mathrm{ft}$. marks. The rivets are always driven between the sleeve and the $50-\mathrm{ft}$. mark, so that, by noticing the position of the rivets, it is casy to distinguish the proper point. The $50-\mathrm{ft}$. mark is marked by two rivets. one on each side of the sleeve.

One of the best fcrms of steel tapes for railroad or city engineers and surveyors is about $1 / 4 \mathrm{in}$. wide and has the numbers for the different foot-marks stamped on solder which adheres to the tape. This form of tape has the advantage of not having a shoulder or projection to catch against the reel when the tape is being wound up or run out, or to catch on stones or other rough objects while in use.

Fig. 3.
5. Standardized Tapes.-For accurate base line measurements a steel tape from 100 to 300 ft . long is used (Fig. 3). Such tapes should be standardized; that is, the absolute length between the marked points under a certain pull at a known temperature should be determined. This is generally done in this country by the United States Coast and Geodetic Survey (Washington, D. C.) for a nominal price. If it is necessary to use any tape unsupported, its correct length when hanging free may be found by direct comparison. Lay the tape on a smooth straight support, give it the proper pull and mark the end points; then, holding one of the ends directly over one of the marks just made, give it a known pull. Drop a plumb line from the other end of the tape and notice the amount by which it differs from the second mark. In this way the correct length of the unsupported tape under any given pull may be determined.
6. Metallic Tapes.-The most serviceable tape for ordinary or common use is the metallic tape (Fig. 4), which is a cloth tape manufactured witin :ery fine brass wires interwoven into it. This tape is generally $5 / 8 \mathrm{in}$. wide, and is made in lengths of 25 , 50 and 100 ft . It is conveniently inclosed in a leather case, and when it is rolled up it can easily be carried in the pocket. For light and irregular work it is much more convenient than the larger steel tapes. It is largely used in building construction, cross-section work, and in railroad engineering, and in many places where its lightness, compactness, and flexibility commend it. It can not be used where accuracy is very im-

Fig. 4.
portant, for it stretches considerably under pull, but after a short period of use it will be found to have become permanently stretched.
7. Pins.-Surveying pins are used to keep tally of the number of chains measured. They are made of pieces of round steel wire $3 / 16 \mathrm{in}$. in diameter and about 16 ins . long. One end is pointed and the other is bent to form a ring or handle about 2 ins. in diameter, Fig. 5. Eleven such pins form a set, and they are carried on a key ring, about 6 ins. in diameter, made of the same sized wire. Each pin usually has a small piece
of red flannel tied to its handle so as to make it more easy to be found when used in the field. In railroad chaining stakes are generally used instead of pins and these stakes are driven at every full station (every 100 ft .) and at intermediate points between the stations. For a description of stakes see the chapter on Railroad Surveying.
8. Range Poles.-Range poles are rods of steel, or wooden rods shod in steel, varying from 6 to 10 ft . in length. Aiter-

Fig. 5. nate foot lengths of the rod are painted red and white to make it more readily distinguishable against any background. They are used by the rear chainman to keep in a straight line when chaining. If the sun is shining and long sights are taken, the bright part of the range pole is seen as the other fart is in shadow. To avoid this, a range pole with a flat face is used with the central longitudinal line clearly defined and alternate foot-lengths on each side of this line painted black or red.
9. Plumb-Bob.-In chaining over rough or inclined ground it is often necessary to raise one end of the chain or tape to bring it to a horizontal. To locate a point on the ground directly under such elevated points or ends of chain, a plumb-bob will have to be used. The usual form of a plumb-bob is shown in Fig. 6, (a) and (b), which consists of a conical shaped body rounded into a neck and head in the upper part. The bottom or apex of the cone is usually tipped with a steel point, while the cap-screw at upper end has a hole through its center for the insertion of the cord by which it is suspended. In the ordinary form (a) the cap screw is taken off, the cord is inserted, and a knot tied in the cord to prevent its slipping through the capscrew when the bob is suspended. Fig. 6 (b) is a special form
of plumb-bob which is provided with a spool on the inside by which the cord can be wound up and carried inside the bob instead of being wrapped around the outside as in the ordinary form. This winding is done by turning the cap-screw at the top.
10. Chaining.-A line is measured or chained by two men, called the rear and head chainman. They should start with eleven pins, the rear chainman taking one pin and holding his end of the chain or tape over the intial point, and lines or ranges the head chainman in with the distant flag. The head

Fig. 6.
chainman sticks a pin at this point and advances to another station, the rear chainman following to the station just left by him. The rear chainman places his end of the chain or tape over this station, and again ranges in the head chainman. The rear chainman must be careful to collect all pins, and when the head chainman calls "Out" he must drop his end of the chain and go to the head chainman, and should hand him 10 pins. The head chainman should count the pins, and if there are not 10 pins the line
should be chained over. The number of "Outs" is recorded by each chainman. If we are using the surveyor's chain, and have three "outs," and the head chainman has measured 3 chains and 23 links on the new out, the length of the line is 33.23 chains. The head chainman always starts on a new out with 10 pins, and the head chainman or the rear chainman should never have more than 10 pins in his hand while measuring. The initial point and the end of each out should be carefully marked so that if a mistake is made in a long line the chammen can return to the last out, and not have to go back to the beginning of the line. The methods of keeping track of the "outs" vary with different surveyors. In chaining long lines, a string tied in the button hole of the coat or shirt, with segments of unequal length, can be used by tying a knot in the long segment for an ordinary "out," and one in the short segment for every ten "outs." Another method is to have the chainmen make tally marks in a note book.

In chaining up a hill which is too steep for one lengtll to be brought horizontal, the head chainman stretches the chain to its full length, and then returns and takes a point on the chain sufficiently near the rear chainman to pull that part horizontal. He marks the point on the ground under the selected point- with his pumb-bob, or places the point on the chain immediately on the ground, the rear chainman drops his end of the chain and takes up the point selected by the head chainman and raises it as high as he can over the point as tested by his plumb-bob. The head chainman in the meantime selects another point on the ground in advance and marks that on the ground as before. This process is repeated until the length of the chain is exhausted. This is called "breaking the chain." In "breaking the chain" it is well to take sections of the chain that are multiples of ten.

In measuring down a hill, the process is reversed, so that the rear chainman holds his end on the ground or near it, and the head chainman holds his point over his head as high as he can.

The chain or tape should always be held level, because the horizontal distance between the two fixed points is constant, notwithstanding the fact that changes may be made on the surface of the ground. In the early days surveyors paid no attention to
holding their chain level, and there has resulted, in consequence many discrepancies in their surveys, and much litigation. All good surveyors are now very careful in observing this rule. In using the tape in rough countries or thick underbrush, it is a good plan where great accuracy is demanded to attach the handle of the tape by a short loop of strong cord to allow twisting of the tape without breaking.
11. Chaining Over Hills or Across Val-leys.-When it is impossible to see one station from the initial station on account of an intervening hill or high timber, a series of range poles is used and a random line marked out so that at least three points can be seen from one station.

Given the two points A and B (Fig. 7), to set the range poles in line $A B$. We start out from A and, guessing at the line, set enough range poles in a random line $A D$ so that at least two can be scen from B. Then the man at B will have the flag pole at 3 set over in the line $B-2$ to the point 4 , the man at 4 will have the flag 2 set over in the line $4-1$ at 5 , the man at 5 will have the flag 1 set over in the line $5-A$. Then again flag 4 will be set over to some point nearer $A B$, in line between B and 5 , etc. This process is repeated until all the range poles are in the line $A-B$. In the preliminary ranging in the men themselves can

Fig. 7. act as range poles. Only one man is absolutcly necessary if he has plenty of range poles, but two can do it with reasonable efficiency.
12. Chain Survey.-When the area of a farm is wanted, or if it is desired to construct a map of same, it may be divided by stations into a system of triangles. All the sides are then measured carefully and a. map of the triangulation system can then be made to scale. The buildings and other topographical features, such as roads, fences, etc., can be tied in by measuring
from the nearest stations and a sufficient number of points on the building, and map can be completed to scale.

In a recent survey (Fig. 8) the following measurements were made:

$A B=240$	$D E=204$	$E C=340$
$B C=160$	$E A=180$	
$C D=272$	$E B=300$	

In case it were impossible to measure

Fig. 8. the line $E B$, the area may still be found by a chain survey if use is made of two auxiliary lines $A F$ and $B F$, the point F being in $A E$ produced. By means of these auxiliary lines the triangle $B . A F$ may be calculated and hence the angle $B A E$ becomes known. From this angle and the sides $A B$ and $A E$ the length of $B E$ can be calculated and the area found as before.

Problem 1.-Make a map of the chain survey $A B C D E$ to a scale of 1 in . $=50$ units.
13. Chain Problems.-(a) To erect a perpendicular to a line at any point:

We know that if the sides of a triangle are 3,4 and 5 , or any multiple of these, the triangle will be right. This is apparent, as the sum of the squares of 3 and 4 equals the square of 5 . If, in the triangle $A K B$, Fig. 9, the sides are 18,24 and 30 , it will be a right triangle.

The rear chainman holds his end of the chain at B in the line $B K$ so that the distance $B K$ is equal to 18 links; he also holds the end of the seventy-second link at the same point; the head chainman passes the chain around a pin at K, which has been firmly driven or pushed

Fig. 9.
into the ground, then takes hold of the forty-second link and stretches the chain, so that all parts are taut. A pin is then driven at A, which determines the perpendicular $A K$.

In reality there are a great number of ways in which the problem can be solved, for if

$$
\begin{aligned}
& 2 n=\text { first side } \\
& n^{2}-1=\text { second side } \\
& n^{2}+1=\text { third side }
\end{aligned}
$$

the triangle is a right triangle, as $(2 n)^{2}+\left(n^{2}-1\right)^{2}=4 n^{2}+n^{4}-$ $2 n^{2}+1=n^{4}+2 n^{2}+1=\left(n^{2}+1\right)^{2}$.

Therefore, we can make n equal to any number greater than unity. The following are some of the numbers actually used:

Fig. 10.
(b) Another easy method of erecting a perpendicular to the line $A K$ at the poind K (Fig 10) is to let one of the chainmen hold the end of the chain at K, while a second chainman holds the other end of the chain at any point on $A K$ so that the chain will be slack. The middle point of the chain is then carried away from the line $A K$ until it occupies the position $A E K$. If the end of the chain at K is now swung around until it reaches a point C in the same straight line as A and E, the line $C K$ will be the perpendicular to $A K$ at K.
(c) To find the distance across a marsh, river or pond by use of the chain:

Suppose a line that we are chaining reaches a point A, Fig. 11, and a river intervenes wider than the length of one chain, and we wish to find the distance $A B$. At the point A by the former method we measure the distance to K on the perpendicular $A K$, and at the ponit K set off the right angle $B K C$, and mark where $K C$ produced crosses our original line. Measure AC.

Fig. 11.

Fig. 12.

In the right triangle $B K C$

$$
\begin{aligned}
A K^{2} & =B A \times A C \\
B A & =\frac{A K^{2}}{A C}
\end{aligned}
$$

Caution.- $A K$ should be taken at least one-half of $A B$, otherwise $A C$ will be so short that a slight error in measuring will produce a large error in the result.
(d) Similar Triangles: To find the distance $A B$, Fig. 12, erect a perpendicular to $A B$ at B with a chain and prolong it to some point C; measure $B C$ and set a flag pole at D in the line $D C$. Erect a perpendicular, $D E$, to $B D$ and have the flagman move along this perpendicular until he is in the line $A C E$.

Set the flag pole firmly in the ground and measure $D C$ and $D E$.

$$
\begin{aligned}
& A B: D E:: B C: D C \\
& A B=\frac{D E \times B C}{D C}
\end{aligned}
$$

14. Correction for Temperature.-Steel tapes are standardized by the Coast Survey by comparison with known standards at Washington, and each standardized tape is marked somewhat as follows: "Length 100 feet at temperature $62^{\circ} \mathrm{F}$., pull 12 pounds horizontal."

The average coefficient of linear expansion is 0.0000065 for each degree Fahrenheit, and each unit length.

Let $L=$ Length of tape.
$C=$ Coefficient of tape.
$T=$ Rise in temperature.
Then the increased length of the tape $=L C T$.
Total length of tape $=L+L C T=L(1+C T)$.
Examples. A $300-\mathrm{ft}$. tape was standardized at $62^{\circ} \mathrm{F}$., pull 12 lbs . A base line was measured when the temperature of the tape was $102^{\circ} \mathrm{F}$., find the length of the tape.

Increase $=L C T$.

$$
=.0000065 \times 300 \times 40=.078
$$

Total length $=300+.078=300.078 \mathrm{ft}$.
15. Stretch of Tape Due to Pull.-It is necessary to subject all tapes to what is called a standardized pull for their true lengths. If it takes a $12-\mathrm{lb}$. pull to make a tape 100 ft . long, any pull greater than this will stretch the tape, and has to be allowed for.

Let $P=$ pull in pounds.
$A=$ cross-section in square inches.
Then the pull per unit area $=\frac{P}{A}=$ unit stress.
If $S=$ total stretch
$L=$ length of tape
Unit stretch $=\frac{S}{L}$

In ordinary pulls the unit stretch varies directly as the unit pull.

Therefore, $\frac{\text { Unit pull }}{\text { Unit stretch }}=\frac{P L}{A S}=$ Constant.
This is Hook's law, which was published in the form " $u t$ tensio sic vis." The unit pull divided by the unit stress is constant within the elastic limit and is called "the coefficient of elasticity," and is generaly represented by the letter E. For steel $E=30,000,000 \mathrm{lbs}$.

Example: A bar $11 / 2^{\prime \prime} \times 3 / 4 " \times 20^{\prime}$ long was subjected to a pull of $18,000 \mathrm{lbs}$. and produced a stretch of $1 / 8 \mathrm{in}$. Find E.

Area $=9 / 8$ sq. in.

$$
\text { Unit pull }=\frac{18000}{9 / 8}=16,000 \mathrm{lb} .
$$

Unit stretch $=\frac{1 / 8}{240}=\frac{1}{1920}$
$E=16000$ divided by $1 / 1920=16000 \times 1920=30,720,000$.
Example: If a $100-\mathrm{ft}$. tape was standardized at a pull of 12 lbs., and has a cross-section of . 00371 sq. in., find how much it will be stretched by a pull of 26 lbs . if $E=30,000,000$. The stretch over the standard length will be due to the extra pull of 14 lbs .

$$
\begin{aligned}
& S=\text { total stretch in feet. } \\
& \text { Unit stretch }=\frac{S}{100} \\
& \text { Unit pull }=\frac{14}{.00371} \\
& E=30,000,000=\frac{1400}{.00371 S} \\
& S=\frac{1400^{\prime}}{30,000,000 \times .00371}=0.0125^{\prime}
\end{aligned}
$$

16. Correction for Sag.-The foregoing corrections for pull and temperature assume that the tape is horizontal, but int field measurements it is never horizontal, although the two ends may be in the same horizontal plane. The tape hangs in a curve, which is practically a parabola, with which a circular
curve can coincide almost exactly. The effect is to shorten the chain.

$$
\begin{aligned}
\text { If } d & =\text { sag } \\
L & =\text { length of tape or chain }
\end{aligned}
$$

$$
\text { The correction for sag }=\frac{8 d^{2}}{3 L}
$$

Example: A 100 -ft. tape, standardized at $62^{\circ} \mathrm{F}$. and 12 lbs . pull was used to measure a line when the temperature was $92^{\circ} \mathrm{F}$., pull 25 lbs . and sag 0.5 ft . Find the correct lengtl of the tape if the cross-section is 0.003 sq. in.

Correction for temperature $=.000005 \times 100 \times 30=0.0195$ Correction for sag $=8 / 300 \times 0.25=0.0067$
Correction for pull $=\frac{13 \times 100 \times 1,000}{3 \times 30,000,000}=0.1444$
Length of tape $=300+0195-.0067+.1444=300.1572$
Problem 2.-A 100-ft. tape, cross-section $1 / 300$ sq. in., was standardized at $62^{\circ} \mathrm{F}$. and pull 12 lbs . Find the length for a temperature of $96^{\circ} \mathrm{F}$., pull 28 lbs . and a sag of 0.5 ft .

Problem 3.-A standardized tape is 100 ft . long between marks at $61^{\circ} \mathrm{F}$., and a pull of 11 lbs . Find the length when temperature is $97^{\circ} \mathrm{F}$., 20 lbs . pull, and a sag of 0.70 ft ., if crosssection is $1 / 300$ sq. in.
17. Erroneous Lengths.-Chains become changed by the breaking of links, the loss of handles, and the wearing of the 600 rubbing surfaces. In the use of the chain two points on the ground, 66 ft . or 100 ft . apart, should be marked, and the chain should be compared with this at frequent intervals. The outer edge of one of the handles is placed over the zero and the $100-\mathrm{ft}$. mark is marked by a file if the chain is too long. If distances are measured by chains that are too long, we can find the true lengths of the lines by calculation without measurement. If the length of the chain used is $100+a$, and in the measurement we called it 100 ft ., then the length of the line as measured will be too short.

If the extra length of the chain is due to wear or stretch throughout the length, the true length of a line that has been
measured with a tape of erroneous length may be found by multiplying the true length of the tape by the number of times it was applied to the ground in measuring the line. After a line 9.864 chains in length had been measured it was found that the chain was really 100.25 ft . long, find the true length of the line. The chain was applied to the line 9.864 times, consequently its true length must be $9.864 \times 100.2^{5}=988.866 \mathrm{ft}$.

However, it might happen that one link of an engineer's chain had been broken and tąken out, thus making the chain 99 ft . long. Suppose an engineer's chain was used in measuring a line the length of which was recorded as 628 ft ., and it was then discovered that 1 link was out of the $10-\mathrm{ft}$. section next to the head chainman. What is the true length of the line? Six full lengths were measured $=6 \times 99=594 \mathrm{ft}$. If the 28 ft . was measured with the end of the chain next to the rear chainman the true length of the line was 622 ft ., but if the 28 ft . was measured with the part of the chain that contained the unknown missing link, then the true length of the line was 621 ft .

Let $a=$ assumed length of chain,
$t=$ true length of chain,
$M=$ measured length of line as measured with chain of erroncous length,
$T=$ true length of line,
$n=$ number of chain lengths in M (whole or fractional.)
Then, $M=n a$

$$
T=n t
$$

$$
\begin{equation*}
T=M \frac{t}{a} \tag{1}
\end{equation*}
$$

18. Erroneous Areas.-If a farm is surveyed with a chain of erroneous length and the area is calculated by use of the erroncous data, we can find the area without rechaining.

Let $C=$ calculated area of farm,
$X=$ true area of farm,
$a=$ assumed length of chain,
$t=$ true length of chain,
Then, $n a=$ measured length of side of farm, $n t=$ true length of same farm.

Now, similar polygons are to each other as the square of their homolgous sides.

$$
\begin{align*}
& \therefore X: C:(n t)^{2}:(n a)^{2} \\
& \text { or } X=C\left(\frac{t}{a}\right)^{2} \ldots \ldots \tag{2}
\end{align*}
$$

It is well to observe that in the re-calculations for correct length of a line or for correct area of a farm the assumed length always appears as denominator of correction ratio. This assumed length is usually an even number, and is generally $20,66,100$, etc.

Example: A line was measured with a chain that was supposed to be 100 ft . long; the length of the line as measured was 986.4 ft . In testing the chain immediately afterwards it was found to be 100.25 ft . long. Assuming that the stretch was proportional throughout, find the length of the line.

Correct length of line $=986.4 \times \frac{100.25}{100}=988.866$
Problem 4.-The assumed length of a chain is 100 ft ., the calculated area 99.01 acres. The true length of the chain was found after the calculation to be 99 ft .6 ins . Find the true area.

Problem 5.-A chain used to measure a field was 100 ft .2 ins. in length, and it was assumed in measuring the farm to be 100 ft . long. If the calculated area, based on the erroneons length of chain, was 11.72 acres, find the true area.

Problem 6.-A farm was surveyed with Gunter's chain and the area was calculated to be 39.6 acres. The chain was tested immediately after the survey was made, and it was found to be 4 ins. too long. Find the true area of the farm.

Problem 7.-If the calculated area was $1331 / 3$ acres and the vara chain was used in chaining which, after the survey, was found to be $31 / 3$ ins. short, find the true area.
19. Linear Units.-The yard is the primary unit of length in the English measure. The standard yard is the distance between two points at a certain temperature on a bar of platinum kept in London in the office of the Chancellor of Exchequer of Great Britain. A copy of this is kept in Washington, D. C.

An inch is one-thirty-sixth part of a yard, and a foot is onethird part of a yard, or 12 ins.

To convert feet to varas multiply by 0.36 .
To convert yards to varas multiply by 1.08 .
To convert Gunter's chains to varas multily by 23.76.
To convert poles to varas multiply by 5.94 .
To convert meters to varas multily by 1.1811 .
20. Units of Land Measure.-

One acre $=4840$ square yards.
$=43560$ square feet,
$=10$ square chains.
$=160$ square poles.
$=5645.376$ square varas,
$=4046.87$ square meters.
One vara $=331 / 3$ inches.
Oné yard $=36$ inches.
One foot $=.36$ vara.
One square vara $=1111.1$ square inches $=\frac{10,000}{9}$ square ins.
One square yard $=1296$ square inches.
A Spanish league was defined as a square, 5,000 varas on a side.

One league $=25,000,000$ square varas.
$=4428.203$ acres.
One labor $=$ a square of 1000 varas,
$=1,000,000$ square varas,
$=177.128$ acres,
$=1 / 25$ of a league.
One linear mile $=1900.8$. varas.
One meter $=39.37$ inches.
One linear mile $=1609.35$ meters.
A labor was assigned by the Mexican government to settlers for the purposes of agriculture, hence the name; while a leaguc was assigned for grazing purposes. In this way a league and labor became associated.
21. Area of a Triangle.-By geometry we know that the area of a triangle $=1 / 2(p \times c)=K$, where p represents the al. titude $C D$ and c the base of any triangle.

Fig. 13.
In the right triangle $A D C^{-} p^{2}=b^{2}-x^{2}$.
In the right triangle $B D C, p^{2}=a^{2}-(c-x)^{2}$.

$$
\begin{aligned}
& b^{2}-x^{2}=a^{2}-a^{2}+2 c x-x^{2} \\
& x=\frac{b^{2}+c^{2}-a^{2}}{2 c}
\end{aligned}
$$

But $p^{2}=b^{2}-\frac{\left(b^{2}+c^{2}-a^{2}\right)^{2}}{4 c^{2}}$
$4 c^{2} p^{2}=4 b^{2} c^{2}-\left(b^{2}+c^{2}-a^{2}\right)^{2}$

$$
=\left(2 b c+b^{2}+c^{2}-a^{2}\right)\left(2 b c+a^{2}-b^{2}-c^{2}\right)
$$

$$
=\left[(b+c)^{2}-a^{2}\right) \times\left(a^{2}-(b-c)^{2}\right] \div 4 c^{2}
$$

$$
=(b+c+a)(b+c-a)(a-b+c)(a+b-c)
$$

$$
\text { Let } 2 s=(a+b+c)
$$

$$
\text { Then }(b+c-a)=2 s-2 a=2(s-a)
$$

$$
\begin{aligned}
& p^{2}=\frac{4 s(s-a)(s-b)(s-c)}{c^{2}} \\
& p=\frac{2 \sqrt{s(s-a)(s-b)(s-c)}}{c}
\end{aligned}
$$

Therefore $\frac{1}{2}(p c)=K=\sqrt{\bar{s}(s-a)(s-b)(s-c)} \ldots \ldots \ldots \ldots$. (3)
Problem 8.-Calculate the areas of triangles $A B E, B E C$, and $E D C$ in Fig. 8.

Problem 9.-If the sides of a triangle are 520,560 , and 600 varas, find the area in acres.

$$
\begin{aligned}
& (a-b+c)=2 s-2 b=2(s-b) \\
& (a+b-c)=2 s-2 c=2(s-c)
\end{aligned}
$$

Problem 10.-If the sides of a triangle are 13,20 and 21 chains (66 ft .), find the area in acres.

Problem i1.-If $a=750$ varas, $b=650$ varas, $c=200$ varas, find area in acres.

Problem 12.-If $a=50$ poles. $b=41$ poles, $c=39$ poles, find area in acres.

Problem 13.-If $a=300$ poles, $b=240$ poles, $c=180$ poles, find area in acres.

Problem 14.-If $a=280$ poles, $b=224$ poles, $c=168$ poles, find area in acres.
22. The 57.3 Rule.-Let $E O A$ (Fig. 14) be a triangle where the angle x is less than 6°, and the two arms $O A$ and $O E$ practically equal. If with O as a center and $O A$ as a raditus we describe a circle passing through E we have:

Fig. 14.
$X^{\circ}: 360^{\circ}:: y: 2 \pi r$
where $y=A E$
Then $X^{\circ}=\frac{360}{2 \pi} \times \frac{y}{r}=\frac{57.3 y}{r}$
That is, the small angle in degrees times the long side is equal to the short side times 57.3 .

Problem 15.-A straight roadway $1,320 \mathrm{ft}$. long has a rise of 21 ft . above the horizontal through the low end. Find its angle of elevation.
23. Applications of the 57.3 Rule.-If the angle $A O E$ Fig. 14, equals one-tenth of 57.3°, then we have

$$
5^{\circ} .73 A O B=\frac{57^{\circ} .3 \text { offset }}{\text { Distance }} \quad \therefore \text { Distance }=10 \times \text { offset. }
$$

That is, when the small angle is $5^{\circ} .73$ or $5^{\circ} 44^{\prime}$, the distance is ten times the small side or offset.

If the angle $E O A$ is equal to $0^{\circ} .573$, that is, $34^{\prime} .38$, the long side is one hundred times the offset. Hence $O A=100 \times A E$.

This is generally expressed by saying that the distance is 100 times the offset. This principle is used in finding the approximate area of a boundary. The angle that $O A$ makes with some reference line is measured, and the distance $O A$ is found by making the angle equal to 34.38 minutes. The assistant at A attaches one end of a tape or chain to the point A and then takes $A E$ at right angles to $A O$ and is sighted in the line $O E$ by the distant transitman. When he is located, he reads on the tape the distance $A E$ and records it in his note book. The distance from A to the instrument man is 100 times this distance $A E$.

Problem 16.-Make a drawing of the following area to a scale of 1 in . equals 100 ft ., and find the area in acres, by dividing the boundary into triangles.

Point	Angle.	Offset.
A		8.50 fect
B	45°	10.00
C	75°	9.40
D	90°	9.60
E	120°	8.60
F	150°	7.20
G	180°	6.00

24. Pacing Survey.-A rough approximate idea of the area of a farm can be obtained by a pacing survey. With a little practice a man can train himself to step off a yard at each stride and in this way a fair approximation can be made to the area of a small farm or parcel of land. In a farm, $A B C D F$, Fig. 15, let $A B 350$ yds.; $B C 400$ yds.; CD 90 yds.; DE 266.3 yds.; EF 250 yds.; FA 281.8 yds. Now the area of the farm can be found by dividing the field into triangles or by locating the points, $C D E$, etc., by offsets from some reference line, $A B$. If the land is divided into triangles we pace the distance $B D 410$ yds., $B E 300$ and $A E$ 211. This divides the land into four triangles, $B C D$, $B D E . B E A$ and $A E F$. The arca can be calculated by the use of formula (3).

If it is desired to locate the corners by offsets, we adopt some
reference line from which to take offsets. This reference line need not be a side of the farm, but can be some line assumed for convenience. However, in the case of Fig. 15, we shall assume $A B$ as the reference line. As $A B C$ is a right angle, the distance $B C 400$ yds., will locate C, and as angle $B C D$ is also right, the distance, $C D 90$ yds., will determine the point D. L.et $D G$ be a perpendicular from D on line $A B$. If a perpendicular be dropped from E on $A B$ cutting $A B$ at H, where $B H=240$ and $H E=180$, the point E is determined. The point F is similarly located where perpendicular, $M F 250$ and $B M 480$. The areas of the trapezoids,

Fig. 15. $B C D G, G D E H, H E F M$, and that of the triangle, $A M F$, can be found to be respectively $36,000,43,500,51,600$, and 16,250 square yards and the area of $A B C D E F 114,850$ sq. yds .

Instead of trying to regulate the stride to 1 yd., some prefer to take the usual stride used in walking, counting the number of steps it takes to cover 100 ft . and then estimate the distance. Thus if it takes 40 steps for 100 ft . and there are 114 steps in the length of the line, the number of feet is found by multiplying 114 by 100 and dividing by 40 . In this case the line would be about 280 ft ., or 93 yds.
25. Location of Houses.-These can be located by range lines, regular offscts, or by intersections.

Range Lincs.-Let $M N$, Fig. 16, be the base line or line nearest any given corner of the house, $F D C E$. Have a range pole set at A in line $M N$ and in range with $C D$, the side of the building; and another set at B in line $M N$ and in range with $C E$, another side of the house. Pace the distances from A and B to end of base line $M N$. On the map locate $A B$ on line $M N$ and with $A B$ as a diameter draw a circle. With B as a center and a
radius $B C$; cut circle at C. Join $B C$ and $A C$ and produce $B C$ in $E C$ and $A C$ in $C D$. Lay off $\mathcal{C E}$ and $C D$ to scale and locate the rest of the building.

Rectangular Offsets.-Let $C H$ and EK, Fig. 16. be the perpendiculars from corners of house on base line $M N$. Pace $E K$,

$C H$, and $K H$ to end of base line $M N$. The house can thus be located on the map.

By Intersection.-Let $M N$, Fig. 17, Le base line and A and B two points in this line. Pace distances $A B, B C, B E, A E, C D$, $E C$, and the distance from A or B to end of base line. To locate house on map, locate A and B on map and with A as center and

Fig. 18. $A E$ as radius draw arc and with B as center and $B E$ as radius draw arc cutting first arc at E. This locates E. Then with E as center and $C E$ as radius, draw an arc and with B as center and $B C$ as radius draw arc cutting the other arc at C. Draw $C D$ perpendicular to $E C$ and lay off $C D$ to scale, and through D and E draw $D F$ and $E F$ parallel to $C E$ and $C D$ respectively.
26. Survey of Farm by Chain or Pace. - The exact area of a farm $A B C D E F$, Fig. 18, can be found by use of the chain or tape, or an approximate estimate of the area can be found by pacing the sides and diagonals. In Fig. 18 the following lengths of sides were found: $A B=170$ yds., $B C=492$ yds., $C D=296$ yds., $D E=272$ yds., $E F=286$ yds., $F A=260$ ycis.

The configuration of the ground was such that the farm could be divided into triangles by runniag diagonals from the corner A. These diagonals, $A C, A D$, and $A E$, were found to be 488,436 , and 322 yds., respectively. The area of $A B C$ was found by formula-(3) to be 41,000 sq. yds. ; that of $A C D, 63,760$; that of $A D E, 43,680$; and that of $A E F, 35,376$, making a total area of the whole farm of 183,816 sq. $\mathbf{y d s} .=37.98$ acres.

To check the foregoing calculation a point P was taken on a knoll near the center of the farm and the following distances were paced: $P A=196, P B=312, P C=350, P D=240, P E$ $=206, P F=337$. The areas calculated by formula (3) are $P A B=14,873, P B C=54,577, P C D=34,538, P D E=23,546$, $P E F=33,504, P F A=25,422$, or a total of $184,460 \mathrm{sq} . \mathrm{yds} .=$ 38.1 acres. If the distances are all carefully chained instead of paced the two methods should check within one-tenth of an acre.

CHAPTER II.

COMPASS SURVEYING.

27. The Bearing of a Line.-The acute angle that a line makes with the meridian is called its true bearing. If the acute angle is made with that part of the meridian to the north of us it is called north, and if in addition it cuts to the right it is called North X° East, where X equals the acute angle. If the acute angle is made with that part of the meridian to the south of us and cuts to the right it is called $S X^{\circ} \mathrm{W}$. In Fig. 19 the bearing of $A B$ is $N 32^{\circ} \mathrm{E}$; that of $A D, N 54^{\circ} \mathrm{W}$; that of $E F, S 61^{\circ} \mathrm{W}$, while that of $E G$ is $S 27^{\circ} E$.
28. Azimuth.-The azimuth of a line is the angle made with the true meridian, and is measured from the south around by the west, north, and east to the so:th again. If the bearing of a line is $S 39^{\circ} \mathrm{W}$, the azimuth is 39° : if the bearing is $N 39^{\circ} \mathrm{W}$, the azimuth is 141°; if the bearing is $N 39^{\circ} \mathrm{E}$, the azimuth is 219°, and if the bearing is S $39^{\circ} \mathrm{E}$, the azimuth is 321°. In some states it is the practice to define "bearing" as the acute angle made by a line with the magnetic meridian (that is, with the needle in

Fig. 19. its mean position).
29. The Compass.-The essential parts of a surveyor's compass (Fig. 20) are a magnetic needle, a graduated horizontal circle, and a line of sights. These conditions can be fulfilled very crudely or elaborately. It is also convenient to have a declination arc attached to the compass on which we can set off the declination of the needle. A magnetic needle when poised freely will not point towards the North Pole, but will dip towards the north an amount of x degrees. To make it horizontal in the compass it is mounted on an agate pivot and the South end is weighted by having an adjustable brass wire at that end. The
accuracy of the compass depends largely upon the activity of the needle, which depends upon the intensity of the magnetic force, which must be kept alive. The pivot upon which the needle is
mounted is in the center of a graduated circle which is generally raised to the level of the ends of the needle and is graduated on a silver plate. Inside the compass box we find the letters E, S, W, and N. If the compass has no declination arcs the zeros are in the line of sights as determined by the slots in the standards or uprights. The graduated circle is mounted on a brass plate which has extended arms, to which the uprights are attached by means of \cdot mill-head screws. If the arms are not extended the uprights are attached to the graduated circle and fold down over the face when not in use. To set off the declination accurately, each compass should be provided with a declination arc with a vernier attached.

For the purpose of leveling, the compass is provided with two bubble tubes whose axes are at right angles to each other. It is leveled by a

Fig. 20.
ball and socket joint which affords easy and quick methods of setting up. It can be mounted on a Jacob's
staff or a tripod, but in most cases county surveyors use the Jacob's staff on account of its ease of transportation. The ball and socket joint is mounted on the Jacob's staff, which has a sharp conical iron shoe. In setting up, the staff is driven into the ground two or three times to get a firm footing so that there will be no vibration. The compass is then set on the staff-leveled-and it is now ready for use. When moving from station to station the compass should always be removed from the staff and carried under the arm, with the needle screwed reasonably tight. In setting up always loosen the ball and socket joint and have the compass almost level and along the line of sights before tightening. If the tripod is used the compass can be taken off in moving from one station to another or it can be left on as with the transit. The tripod gives much more accurate work than the Jacob's staff because you can locate the points more accurately, and it gives a much more stable support.
30. Reading the Bearing.-To read the bearing of a line, set up the instrument over any point on the line, turn the compass so that the arrow in the compass box points in the direction in which you are running the line, and read the north end of the needle. The north end of the needle will lie between two letters, one of which will be N or S, while the other will be E or W. If it lies between N and W, the bearing is northwest; if between S and W, the bearing is southwest, etc. In sighting always place the eye at, the end of the compass box marked S.
31. How to Use the Compass.-Set up the tripod with the legs wide apart and firmly pressed into the ground. Place the compass on the brass spindle and then fasten the sights by means of the thumb screws provided for that purpose. This spindle is connected with the head of the tripod by a ball and socket joint, which gives it a limited range of motion. A groove about $1 / 8 \mathrm{in}$. wide and about the same depth is cut in the spindle, which engages a pin piercing the socket of the compass body which fits over the spindle and prevents the compass from falling off the tripod. Take hold of the compass with both hands and level it by means of the motion available in the ball-andsocket joint. When both bubbles are in the center of their run-
that is, in the center of the tube-the instrument is level. Do not lower the needle until the compass has been leveled. The compass may now be pointed in any direction by turning it on the spindle axis. In moving the instrument to another point, raise the needle by means of the screw controlling it, remove the compass from the tripod by pulling in the small pin in the socket mentioned above, at the same time lifting the compass from the tripod. Carry the compass under one arm and the tripod in the other hand, or on the other shoulder. If a Jacob

Fig. 21. staff is used instead of the tripod, the brass spindle connected to the ball-and-socket joint is connected with the staff by a tight fitting joint. When the compass is placed in its box to be stored away the needle should be left free.

During some seasons of the year the compass will be affected by a charge of electricity due to atmospheric conditions. When this is the case one end of the needle will often adhere to the glass plate. If the glass is touched with a damp substance it will relicve this condition and release the needle.
32. The Vernier.-The vernier is an auxiliary scale, either straight or circular, designed to read to a certain given part of the finest division on the limb. Thus in the New York rod (Fig. 21) the smallest division that can be read from the rod itself is one one-hundredth of a foot, but the vernier cuts this part into ten parts, so that we can read to one one-thousandth of a foot. In the ordinary transit the finest division is a half degree, but with the aid of the vernier we can read to minutes. If $A B$ is the limb and $C D$ is the vernier scale, let a equal the length of each part of the limb, and b equal the length of each part on the vernier, and n equal the number of parts on the vernier, then $(n-1)$ will be the number of parts on the limb, so arranged
that n parts on the vernier is equal to $n-1$ parts on the limb, consequently $n b=a(n-1)$.

If the lowest mark on the vernier agrees with a mark on the limb, then the highest point on the vernier will agree with a mark on the limb, also the second mark on the vernier will not agree by an amount of $a-b$. If the vernier is moved a distance $a-b$, then mark No. 1 on the vernier will agree with a mark on the limb; if moved twice this distance, then mark No. 2 will agree with a mark on the limb; if moved three times this distance, then No. 3 will agree with a mark on the limb. If mark No. 3 on the vernier agrees with a mark on the limb, it means that the zero at the vernier is $3(a-b)$ from above the nearest point on the limb.

> But

$$
\begin{aligned}
& b n=a(n-1) \\
& b=\frac{a(n-1)}{n}
\end{aligned}
$$

$$
a-b=a-\frac{a(n-1)}{n}==\frac{a}{n}
$$

$a-b$ is always one nth of the finest space on the limb and it is called the fineness of reading.

If $n=10$ parts and $a=1 / 100$ of a foot, then the vernier reads to $1 / 1,000$ of a foot.

If $n=30$ and $a=30^{\prime}$ then the vernier reads to minutes. This is the case in the ordinary transit; $a=30^{\prime}$ or $1 / 2^{\circ}$ and $n=30$, and we can read to minutes.
33. Declination of the Needle.-The magnetic needle at any point when mounted on a pivot and weighted at one end so that it will rest in a horizontal position will make an angle with the true meridian. This angle is called the declination or variation of the needle. In Texas the magnetic meridian cuts to the right of the true meridian passing through a point, and, therefore, the declination is said to be east. In Austin the magnetic meridian makes an angle at the present date of about 8° with the true meridian, or the declination of the needle is said to be 8° east.

The line of zero declination (called the agonic line) now passes near Charleston, S. C. ; Asheville, N. C. ; Knoxville, Tenn.;

Lima, Ohio; Battle Creek, Mich.; and passes through the remote corner of northeastern Indiana. All sections east of the line have west declinations, while all sections west of this agonic line have east declinations.

The United States Coast and Geodetic Survey determines the magnetic declination at various points in each State at stated intervals; and by this means not only is the declination accurately determined, but its rate of change can be determined by a comparison of the declination for different dates. These results are placed on a map (called the Isogonic Chart) by the Coast Survey. This chart is issued at least every ten years and is of great use to surveyors, as it gives the declination for all parts of the United States with reasonable accuracy. It can be obtained by addressing a letter to the Coast and Geodetic Survey, Washington, D. C.

VERNIER

LIMB
Fig. 22.
34. Compass Vernier.-One form of compass vernier is shown in Fig. 22. This is the usual form of the vernier on the surveyor's compass. The vernier is divided into 30 equal parts anc these 30 parts cover 29 parts on the "limb" or graduated circle. The smallest division on the limb is one-half degree or 30 minutes and as the vernier can read to one-thirtieth of the smallest division on the limb, we can read to one-thirtieth of 30 minutes, or to 1 minute.

We further notice that the vernier-zero is nearer the 5th division of the limb, and we find that the 5th division of the vernier to the left of the vernier-zero is opposite or coincides with a division on the limb. Hence the reading for the frac-
tional part is five minutes, which corresponds to this 5th division of the vernier that is opposite a divison of the limb. The whole reading should be $2^{\circ} 30^{\prime}$ plus 5^{\prime} or $2^{\circ} 35^{\prime}$.

If the zero of the vernier is, as in Fig. 22, nearer the last divi ion between the two zeros than it is to the division beyond the vernier-zero, the fractional part is read on the left half of the vernier. There are 15 divisions in this left half.and if the fractional reading is between zero and 15 , one division of the left half of the vernier will coincide with one division on the limb, and the number of this division on the vernier is the fractional reading. Thus if the 5 th division on the vernier agrees, as in Fig. 22, with a division on the limb, the reading is 5^{\prime}; if the 9 th agrees, the fractional reading is 9^{\prime}, etc. However, if the vernier reading is greater than $\mathbf{1 5}^{\prime}$, this reading is obtained from the upper part of that half of the vernier that covers a section of the limb reading.
35. To Set Off Declination.-This will be illustrated by an example. Suppose that the declination of the needle is $8^{\circ} 1 \breve{v}^{\circ}$ east. This means that if the needle was allowed to swing freely it would come to rest in a line not pointing to the true nortin, but in a line that makes $8^{\circ} 15^{\prime}$ on the east side of the true meridian, or in a line whose bearing is $N .8^{\circ} 15^{\prime} \mathrm{E}$. To set off the declination, level the instrument, lower the needle and allow it to come to rest. Turn the compass until the line of sight. through the slots in the standards, coincides. in direction with the needle. Clamp the instrument in this position. Since the neeriln when at rest points $\mathrm{N} .8^{\circ} 15^{\prime} \mathrm{E}$., the line of sight must now be N. $8^{\circ} 15^{\prime}$ E., or make an angle of $8^{\circ} 15^{\prime}$ with the truc meridian. Then with the instrument clamped, and without disturbing the line of sight, tụrn the graduated circle in the compass box by means of the milled-head screw until the needle reads N. $8^{\circ} 15^{\prime} \mathrm{E}$. The vernier scale that marks the cleclination arc should now read $8^{\circ} 15^{\prime}$. The final and accurate test is the vernier are where all declinations should be set off.
36. Changes in Declination.-The declination of all points west of the agonic line has been decreasing, while that to the east of the agonic line has been increasing. In Texas the
declination has been decreasing at the rate of about three minutes per year since the time of the first recorded land patents. This steady annual change goes through a large series of years and probably goes through a cycle.

In addition to the annual change there is a daily change. In Texas the needle at about $6 \mathrm{p} . \mathrm{m}$. is in its normal position; at 8 a. m . the north end of the needle swings to the east about two to three minutes, and about $1 \mathrm{p} . \mathrm{m}$. it swings about the same amount to the west of the normal position.
37. Result of Changes.-An old survey was run in 1864 with the correct declination of 10° at the time the survey was made, and a surveyor in 1904, not knowing the present correct

Fig. 23. . declination (which is 8°), sets his compass on the old declination. The bearing of line was N. 42° E.; that is, the line made 42° to the right of the true meridian and 32° with the magnetic meridian. When the correct declination was set off in the compass and the ends of the needle were brought to the zero marks on the graduated circle under the glass top, the line of sights pointed along the true meridian. But since the original survey was made the declination has decreased to 8° and the magnetic meridian has turned 2° to the left of its position in 1864. Now if the surveyor of 1904 had set off the declination of 8° on the declination arc and brought thie ends of the needle to agree with the zero marks of the graduated circle, the line of sights would have pointed along the true meridian. But instead he set off a declination of 10°, and when he made the ends of the needle agree with the zero marks the line of sights marked out was 2° to the left of the trie meridian. Now if $A B$, Fig. 23, were the original line that made 42° with the true meridian $A N$, and $A M$ were the position of the magnetic meridian, the magnetic meridian of 1904 will occupy the position $A M^{\prime}$, two degrees to
the left of $A M$. The surveyor set off 10° on the declination which made the line of sights point to a position $A N^{\prime}$, which he assumed to be the true meridian, and from this he set off the bearing 42°. As the angle $N A B$ is 42°, then the 42° measured from $A N^{\prime}$ will fall to the left of $A B$ in some position $A B^{\prime}$. In all cases in that section west of the agonic line, where the surveyor uses a declination greater than the correct declination, he, in effect, turns the assumed true meridian from which he locates bearings to the left, and all lines thus run will fall to the left of the old lines, if said old lines were surveyed with the correct declination.
34. Old Lines.-In surveying old lands the great object is to ascertain a declination which, used with the bearings as obtained from the field notes, will retrace the old lines. This is the prime object. It may be the correct declination for the time and place, and it may not. If two points A and B can be found on any side of the tract, set the compass at one of these points A, run a random line $A C$ with an assumed declination and the bearing of the line a distance $A C$ equal to the distance $A B$. Measure the distance $B C$, multiply it by 57.3 and divide the product by the length of the line $A B$. The result is the crror in degrees in the assumed declination. If the declination is corrected by this error the old bearings will trace out the lines as formerly marked.
39. Magnetic Bearing.-In some of the older States the bearing of a line is defined as the angle it makes with the magnetic meridian. The restilt of this is in all of the States west of the agonic line where the declination has been decreasing for years that the northeast and southwest bearings will be increased over the old bearings by an amount equal to the change in declination, while the northwest and southeast bearings will be decreased by the change in declination since the old line was surveyed. In the country east of the agonic line the reverse of the above is true.

Problem 17.-If the bearing of a line with reference to the magnetic merdian in the States west of the agonic line were N . $72^{\circ} 18^{\prime}$ E., declination $8^{\circ} 45^{\prime}$ east at the time of the old survey,
find its magnetic bearing at the time when its declination was 7° ' 4 ' east. Find the declination if the magnetic bearing of the line were $\mathrm{S} .36^{\circ} 21^{\prime} \mathrm{E}$.

Problem 18.-The magnetic bearing of a line in a State east of the agonic line was, when the original grant was surveyed in 1806 , S. 68° E., with a declination of 25^{\prime} west. Find the magnetic bearing in 1896 when the declination had increased to $2^{\circ} 05^{\prime}$. Find the magnetic bearing if the true bearing was S. $29^{\circ} 42^{\prime} \mathrm{W}$.

Problem 19.-Find the magnetic bearing in the following:

	True	Declin-	Masnetic
	Bearing.	ation.	Bearing.
A.	N $26^{\circ} 54^{\prime}$	$7^{\circ} 54^{\prime} \mathrm{E}$	
B	N $74^{\circ} 12^{\prime} \mathrm{W}$	$7^{\circ} 54^{\prime} \mathrm{E}$	
C	N $33^{\circ}{ }^{2} 8^{\prime}$ W	$7{ }^{\circ} 54^{\prime} \mathrm{E}$	
D	S $26^{\circ} 36^{\prime} \mathrm{E}$	$7^{\circ} 54^{\prime} \mathrm{E}$	
E.	N $2^{\circ} 14^{\prime} \mathrm{E}$	$8^{\circ} 17^{\prime} \mathrm{E}$	
F.	S $87^{\circ} 14^{\prime} \mathrm{E}$	$8^{\circ} 17^{\prime} \mathrm{E}$	
G	N $5^{\circ} 29^{\prime} \mathrm{W}$	$8^{\circ} 17^{\prime} \mathrm{E}$	
H.	N $88^{\circ} 22^{\prime} \mathrm{W}$	$8^{\circ} 17^{\prime} \mathrm{E}$	

Problem 20.-Find the true bearing for the following courses:

	Miagnetic Bearing.	Declin= ation.	True Bearing.
A.	N $3^{\circ} 14^{\prime} \mathrm{W}$	$2^{\circ} 8^{\prime} \mathrm{E}$	
B	$\mathrm{S} 5^{\circ} 18^{\prime} \mathrm{W}$	$6^{\circ} 12^{\prime} \mathrm{E}$	
C.	N $8^{\circ} 16^{\prime} \mathrm{W}$	$3^{\circ} 16^{\prime} \mathrm{W}$	
D	S $74^{\circ} 26^{\prime} \mathrm{W}$	$3^{\circ} 18^{\prime} \mathrm{W}$	
E.	N $17^{\circ} 23^{\prime} \mathrm{W}$	$3^{\circ} 12^{\prime} \mathrm{E}$	
F	S $74^{\circ} 26^{\prime} \mathrm{W}$	$4^{\circ} 02^{\prime} \mathrm{W}$	
G	N $17^{\circ} 23^{\prime} \mathrm{W}$	$5^{\circ} 43^{\prime} \mathrm{E}$	
H	N $9^{\circ} 25^{\prime \prime} \mathrm{E}$	$8^{\circ} 55^{\prime} \mathrm{E}$	

40. To Find the Declination for Any Special Farm.-To resurvey an old farm or tract of land obtain the field notes from the county clerk's' office or from the deeds or grants. These papers should give the declination used in the original survey. This former declination (whether right or wrong) can not be used in a subsequent survey, and it is the surveyor's first duty to ascertain the proper declination to use in his own survey. If he can find one side of the tract marked by corners or trees, he can use these as a basis. If two corners at the end of a line can be found, all he has to do is to set off a declination on the declina-
tion arc that will cause the compass when set on the line with the true bearing, to coincide with the line as defined by the trees or corners. However, if the corners can not be seen from each other, the surveyor must select a declination that he thinks will be correct. With this declination he runs a random line with the old bearing the full lengih of the line, and marks the end of the random line. If the end of the random line does not agree with the corner, he measures the distance between the end of the random line and the true corner. This distance, multiplied by 57.3 , and the product divided by the length of the line, will give the correction to be applied to the assumed declination.
41. Local Attracti:n.-It often happens that ore in the ground, a wire fence, or a railroad track, etc., will pull the needle out of the magnetic meridian. When this is discovered, the only thing to do is to retrace o:ur steps to some point outside the limits of the attraction, set off the correct bearing and locate some point aliead. Then transfer to it, leaving a rear flagman; set up at the point located, and sight on the rear flagman, and then prolong the line by locating the head flagman, transfer and backsicht, thus locating another point. This method will not apply when the whole line is within the field of attraction. We then have recourse to the transit and locate the line by internal angles. If the whole farm were within the field of attraction, it would all have to be surveyed with the transit by measuring internal angles.
42. Witnessing a Line or Corner.-All corners should have witness trees or some natural object to establish the corner, even though the stake disappears, thus: Begin at a stake from which a pecan tree 10 ins. in diameter marked " K " bears S. 32° E. 84 varas. To find the corner all we have to do is to find the witness trec, set the compass at it on the reverse bearing and chain off the distance. As a check it is well to have the witness line at the corncr intersect at a large angle. The line is witnessed or marked by ine trees. Ail trees that can be reached with the arm either way by a man standing on the line should be marked with three hacks on the side next to the line, but these hacks should not cut into the flesh of the tree. It is often the case that
the line passes through a tree; such trees are marked on both sides with a hack, blaze, hack. These trees are called "fore and aft" trees. If trees are scattered some surveyors hack trees that are more than three feet from the line.
43. Typical Field Notes.-(From Deed Book 185, p. 235, Travis County, Texas.) Beçinning at a stake, a corner to H. P. Sims and R. D. Rone, from which a hackberry marked " X " bears N. $61^{\circ} 30^{\prime} \mathrm{W} .10$ varas; thence N. $3^{\circ} \mathrm{W} .216$ varas to a stone; thence N. $16^{\circ} \mathrm{W} .255 .6$ varas to a stone from which a live oak marked " A " bears N. $87^{\circ} \mathrm{W} .31$ varas; thence S. $28^{\circ} 30^{\prime}$ W. 263.5 varas to a stone on side of hill; thence $\mathrm{S} .5^{\circ} 16^{\prime} \mathrm{W}$. 205.6 varas to a stone, from which a pecan 12 ins. in diameter marked T bears S. $63^{\circ} \mathrm{W} .18$ varas; thence S. $85^{\circ} 15^{\prime} \mathrm{E} .227 .3$ varas to the beginning, containing - acres more or less.
44. Compass Adjustments.-There are in all six adjustments of the compass that should be made.

First. The axis of revolution should be perpendicular to the plane of the plate. This is done by the maker and if the adjustment becomes deranged, the instrument should be sent to the maker or some instrument house that has facilities for making such repairs or adjustments.

Second. The plane of the plate bubbles should be parallel to the plane of the plate. If the first adjustment has been made, level the compass and then turn it through 180°. If the bubble remains in the center of its run, no adjustment is necessary. However, if the bubble does not stay in the middle of its run after the compass has been turned 180°, correct half the apparent error by the screws at the end of the bubble tube. Repeat the operation till the bubble remains in the middle of its run when the compass is turned 180°.

Third. If the needle is bent, its ends will not always read the same, but if the pivot is in the center, the difference of the readings of the ends will be constant. To straighten the needle, set one end at zero and read the other end. This reading will indicate the way the needle must be bent. Repeated trials will be necessary before the needle can be made straight.

If the difference of the readings is not constant, it shows that the pivot is also bent. Read the ends of the needle in any position and then turn the needle by hand till the north end is in the position formerly occupied by the south end. Read the south end of the needle and note the difference of this reading and the first reading of the north end. The needle can then be bent till the north end when swinging free will bisect the space between the first reading of the north end and the second reading of the south end.

Fourth. If the pivot is bent out of its central position, the ends of the needle will not have the same readings, and the difference of the readings will be variable. After the needle is straightened, turn the compass till the difference of the end readings is the greatest. Remove the needle and bend the pivot towards the middle of the larger arc that was between the ends. Repeat till the difference of the end readings is zero.

Fifth. The plane of the sights can be made normal to the place of bubble tubes by leveling the compass and by sighting on some plumb line. If the slot-sight does not agree with the plumb line, the base of sight must be filed till a plumb line can be seen throughout the sights.

Sixth. . The diameter through the zero graduations should be made to coincide with the line of sights. This is an adjustment that is always made by reputable makers and the surveyor is rarely called upon to test his compass for this. A very fine wire stretched through the sights and over the compass box will indicate clearly whether the line of sight agrees with the zero lines.

Bibliography.-"Davies' Surveying." By the late Charles Davies. This book has for several decades been one of the standards for the school and camp. and its full discussion of the usual problems of land surveying, together with the traverse and trigonometric tables, makes it a valuable assistant to the surveyor or a guide for the student. In addition to Davies', the works of the late J. B. Johnson, Wm. G. Raymond, Breed and Hosmer, etc., which are described at the end of the chapter on Transit Surveying, contain valuable data and suggestions for the compass surveyor.

CHAPTER III.

TRANSIT SURVEYING.

45. The Transit.-The essential parts of a transit (Fig. 24) are, mathematically, a line of sight and a graduated horizontal circle for reading horizontal angles. Mechanically, the essential parts are the telescope, the horizontal axis, the circular plates, the spindle, leveling head, tripod, and plumb-bob. The line of sight is determined and defined by the telescope mounted on the horizontal axis, the graduated circle by a horizontal circular plate upon which the degrees and fractions of degrees are marked. The telescope is rigidly attached at right angles to two horizontai arms whose axes are in the same straight line, and whose outer ends rest in the standards. These standards consist of two diverging legs rigidly attached to the horizontal plate. Two small levels at right angles to each other are attached to the horizontal plate, and by means of these the plates can be brought to an absolute horizontal. Two verniers (l^{\prime} and l^{\prime}), Fig. 25, are attached to the plate with their zeros 180° apart and are provided with a glass cover for protection. These verniers are turned so as to fit the outer graduated circle called the limb. By pulling out the small clip S the whole upper part including the $\operatorname{limb} B$ can be taken off the head. The upper part of the transit, including telescope, plate, l:orizontal axis, standards, and verniers, is called the alidade and is supported on a spindle and can be turned on a vertical axis normal to the vernier plate. However, the limb B and alidade can be clamped tight together by a clamp $D F$ operated by the milled-head screw, which is seen in the faint outline on the right of Fig. 25. When clamped the alidade and limb B can be turned around the interior spindle H by unclamping the lower clamp screw (not shown in Fig. 2.5 but which can be seen in Fig. 24). The transit is provided with a level head as in the Y-level, which has four leveling screws for bringing the limb B into a horizontal plane. The tripod is generally made of light, tough. straight grained wood, the upper ends of the legs being connected by

pin-joints to the leveling head, while the lower ends are shod with metal shoes. The plumb-bob is one of the mechanical essentials of the transit as the instrmment cannot be set over a point below withont it.
46. Compass Attachment.-Attached to and supported by the upper horizontal plate is a complete compass box, including graduated circle, needle, pivot, a declination arc inside the box and under the needle. The declination can be set off

Fig. 25.
and the bearings read as in the compass, and the telescope simply helps to make the line of sight more exact. However, it has the disadvantage of having its line of sight confined to a single line, which a leaf, blade of grass, etc., can interrupt, while in the compass the line of sight is confined to a vertical plane passing through the slots and a slight interruption to the line of sight can be obviated by moving the eye.
47. Vertical Circle.-For the purpose of reading angles of elevation a vertical circle is now generally attached to the
end of the horizontal axis and is provided with a tangent screw and a vernier reading to minutes. It is not an essential part of the transit. To bring the line of sight to a horizontal a bubble tube is attached to the telescope whose axis is made parallel to the line of sight of the telescope.
48. Shifting Center.-The modern transits are furnished with a shifting center. The lower part of the spindle to which the loop P is attached works in a ball and socket joint which is extended into circular, brim-like plate under the plate on which the leveling screws rest. If these are loosened so that the upper part of the transit can be moved, the point P can be moved a short distance in any direction. This is called the shifting center.
49. The Reticule. - The line of sight in the telescope is defined by two cross-wires at right angles to each other, cemented into depressions in a metal ring, Fig. 26. This ring is inside the telescope and is controlled and operated by four capstan screws which can be seen in the view of the telescope of the level or transit. The whole arrangement is called the reticule and it is susceptible to slight motions for the purpose of adjusting

Fig. 26. the line of sight of the telescope. The reticule is moved by loosening one capstan screw and by tightening the opposite one.
50. Setting Up the Transit.-Set up the tripod with the legs widely apart and firmly pressed into the ground; take the transit out of the box by taking hold of the limb and lifting the entire weight with one hand, simply using the other as a guide Never grasp the transit by the telescope to lift it out, as such lifting springs the horizontal axis and otherwise injures the bearings. Set the transit on the tripod, turn it till the threads catch, revolve the telescope vertically and take hold of two legs of the tripod and straighten it up until all
the legs are together, and then place the tripod across the shoulder and carry it to the place where the observations are to be made. When it is desired to set the tripod over a point, place the legs wide apart, and move them so that the plumbbob will be practically over the point. Level up the instrument, and if the plumb-bob is not over the point loosen the leveling screws until the center can be shifted, then move the center until plumb-bob comes over the point below and relevel. If there is not sufficient play in the shifting center to move the plumb-bob over the point the tripod will have to be moved in the direction necessary; then proceed as before.
51. Motions.-If the lower clamp screw be clamped, and the upper loosened, the alidade can be turned on the vertical axis, and it will be noticed that the vernier plate moves with the alidade, and that the limb or graduated circle is stationary. This movement is called the upper motion. If the upper clamp screw be tightened and the lower one loosened, that part of the instrument above the leveling head can be turned around one of the spindles. This movement is called the lower motion.
52. Use of the Transit.-After the transit has been set up over a point, make the zero of the vernier agree with the zero of the limb. Unclamp the upper motion and bring the two zeros as near together as possible; then clamp the upper motion and bring the zeros into exact coincidence by means of the tangent screw controlling the upper clamp. After the zeros have been brought together, loosen the lower motion clamp, take hold of the limb with both hands and turn the telescope till it points towards the object on which we wish to observe. The telescope can be broight approximately into the required direction by sighting over the telescope at the object and turning the instrument until the telcscope points towards the point. The cross-wires are brought into the field of view by turning the screw that operates the eye-picce. The large milledhead screw on side of the telescope is then turned till the observed object is seen distinctly and clearly through the telescope. The tangent screws can then be turned till the vertical wire bisects the object.
53. The Transit as a Compass.-If it is desired to tuse the transit as a compass in regular surveying work, or to use the needle as a check on other work, the milled-head screw shown on the outside of the left leg of the front standard in Fig. 24 is loosened, and the milled-head screw that controls the declination arc, seen between the rear standards, is turned until the proper declination is set off by the vernier inside the compass box. These screws are then clamped and the transit will then read angles with the true meridian. The needle is turned loose by means of the milled-head screw shown above the plate on the right of Fig. 24.
54. Transit Surveying.-If the transit is not used as a compass, we must read the azimuth of each course or line instead of the bearing. As this azimuth is read from the south

LIMB
Fig. 27.
point around by the west, north and east, and on to the sonth again, we can have with a transit reading to minutes, an azimuth of $359^{\circ} 59^{\prime}$, which could be a bearing of $\mathrm{S} .0^{\circ} 01^{\prime} \mathrm{E}$. These azimuths are read with reference to the true meridian and it is necessary to locate this very accurately if the absolitte azimuth is desired. However, if it is only an accurate expression for the area of the farm, a meridian can be assumed for the first course, and then carried around the farm by locating this meridian from each course.
55. Transit Vernier.-The transit vernier is a double vernier (Fig. 27) and has 30 divisions on each side of its zero. Each half of the vernier covers 29 parts or divisions on the limb: The smallest division on the limb is a half-degree, or thirty minutes, and hence the vernier can read to one-thirtieth of a half degree or to one minute. The angle may be meas-
ured from the right or left, and the one we use depends upon the special problem under consideration. If read from the right we see that the zero of the vernier is between $5^{\circ} 30^{\circ}$ and $6^{\circ} 00^{\circ}$. The reading is $5^{\circ} 30^{\prime}$ plus the vernier reading. As the reading of the transit is from the right, use the left half of the vernier. On examination, we find that the 14th division of the vernier agrees with a division mark on the limb. The vernier reading is therefore 14 '. The whole angle reading is. therefore $5^{\circ} 44^{\prime}$.

If the angle is to be read from the left, use the vernier on the right. The zero of the vernier lies between 354° and 3.54° 30^{\prime}. The 16 th division of the vernier on the right agrees with a division on the limb and the vernier reading is therefore 16^{\prime}, and the whole angle reading is $354^{\circ} 16^{\prime}$.
56. Example.-If a farm is surveyed with the transit, the field notes would be as follows:

It will be observed that the shape and dimensions of the farm would not have been changed in the slightest if the first course $A B$ had been taken at 202° instead of $203^{\circ} 30^{\prime}$. It simply would have amounted to a turning of all meridians in a clockwise direction and the azimuths would have been as follows: $202^{\circ}, 246^{\circ} 30^{\prime}, 5^{\circ} 17^{\prime}, 82^{\circ} 45^{\prime}$. Then, if it is desired to obtain the area accurately, we can assume a meridian, and it is not necessary that this be the true meridian, but when this meridian is once assumed, the azimuth of all the courses must be with reference to it.
57. Reference Lines.-The line to which the azimuth is referred can be assumed in any desired direction, and one of the sides is often taken as this refercnce line if only the area is required. Thus, in the example, if $A B$ is assumed as the reference line, the azimuths with respect to this iine are 180°, $224^{\circ} 30^{\circ}, 340^{\circ} 17^{\prime}, 60^{\circ} 45^{\prime}$. In calculating the area the bear-
ing can be taken with respect to the reference line. If $A B$ were our reference line, the field notes would be as follows:

Course.	Bearing.	Distance.	
$A B \ldots \ldots \ldots \ldots \ldots$	North		255.72 varas
$B C \ldots \ldots \ldots \ldots \ldots$	N $44^{\circ} 30^{\prime}$	E	182.10 varas
$C D \ldots \ldots \ldots \ldots \ldots$	S $19^{\circ} 43^{\prime}$	E	329.42 varas
$D A \ldots \ldots \ldots \ldots \ldots \ldots$	N $60^{\circ} 45^{\prime}$	W	249.92 varas

Problem 21.-In a farm $A B C D E, A B=19.90$ chains, $B C=$ 9.03 chains, $C D=9.77$ chains, $D E=5.67$ chains, $E . A=13.24$ chains; $A=89^{\circ} 12^{\prime}, B=73^{\circ} 37^{\prime}, C=139^{\circ} 08^{\prime}, D=163^{\circ} 40^{\prime}, E$ $=74^{\circ} 24^{\prime}$.

If the azimuth of $A B=180^{\circ}$, find $t^{\text {the }}$ azimuth and the bearings of the other lines.
58. Repeating Method.-It is often desired to find the angle more accurately than it can be read by a single reading of the verniers. If we have a transit reading by vernier to one minute, we can find any angle $A B C$ to any desired fineness by the repeating, method. Thus, if the one transit verniers read to one minute, we can find the angle to ten seconds by repeating the observation six times. The process is as follows:

Telescope normal:

1. Set transit on point B, level up and set cross-wires on point A and read both verniers.
2. Unclamp upper motion and deflect to C, clamp upper motion and read both verniers.
3. Unclamp lower motion, deflect to A and clamp.
4. Unclamp upper motion and deflect to C and clamp.
5. Unclamp lower motion, deflect to A, and set thereon.
6. Unclamp upper motion, deflect to C, set cross-wires thereon and read the angle as given by both verniers. This result is three times the angle $A B C$, etc., etc., etc.

The process can be carried on till there have been five, ten, or twenty deflections by upper motion from A to C, thus. measuring the angle five, ten, or twenty times. Both verniers should be read in every case and the average taken. Usually the angle is read a given number of times, as above, with the telescope normal beginning right (or left) station A, and then
read the same number of times with the telescope reversed, beginning on the left (or right) station C.
Example.
Vernier A.
Vernier B. $31^{\circ} 49^{\prime}$ $31^{\circ} 4 y^{\prime}$
$95^{\circ} 07^{\prime}$ $95^{\circ} 07^{\prime}$
$158^{\circ} 31^{\prime}$
$158^{\circ} 32^{\prime}$
The average of the five readings gives $158^{\circ} 31^{\prime} 30^{\prime \prime}$, or an angle of $31^{\circ} 42^{\prime} 18^{\prime \prime}$.
59. To Adjust the Plate Levels.-The axis of the plate levels should be at right angles to the vertical axis or the axis of revolution. Set the transit up on the tripod, level it by the plate levels as near as possible, bring one of the level tubes parallel to a pair of leveling screws, and bring the center of the bubble exactly to the center of its run. Then turn the alidade 180° on its vertical axis, and if the bubble remains in the center of its tube, it is in adjustment. If not, lower the high end of the tube or raise the low end by means of the small capstan screws at the end of the tube a sufficient amount to correct half of the displacement of the bubble. Correct the remainder by means of the leveling screws and repeat as a check on your work. Usually it takes several trials to make this adjustment.
60. Line of Sight Adjustment.-To make the line of sight perpendicular to the horizontal axis, set up the instrument on some plane nearly level, bring the plate bubbles to the center of their run, and locate a point about 100 to 200 ft . from the instrument; "turn the instrument on its horizontal axis and locate another point the same distance from the instrument, but in an opposite direction; revolve the alidade and bring the vertical wire in coincidence with the point first located; then turn the telescope on its horizontal axis and locate another point near the second point located in the intersection of the crosswires. If this point last located coincides with the second point located, the line of sights is perpendicular to the horizontal axis. If it is not, correct one-fourth of the displacement and mark this point, and proceed as before.

Let $A B$, Fig. 28, be the position of the horizontal axis when the point 1 is located, and let the line of sights make an angle
of $10 x=a$ with the perpendicular $x y$ to the axis. Revolve the telescope on the horizontal axis and locate the point 2 . Now the angle $102=180^{\circ}-2 a$. Turn the alidade around the vertical axis till the line of sights intersect 1 . As 02 has been turned through the angle 102 or $180^{\circ}-2 a, A B$ has been turned through the same angle and occipies the position $A^{\prime} B^{\prime}$, where $A O^{\prime} A=$ $180^{\circ}-2 a$, or $A^{\prime} O B=2 a$. The perpendicular has moved to the position of $x^{\prime} y^{\prime}$ where $x O x^{\prime}=180^{\circ}-2 a$ or $x^{\prime} O y=2 a$. Let

Fig. 28.
telescope point to 1 , then revolve it on its horizontal axis and locate a point 3 in the line of sights near 2 . The angle $103=180^{\circ}-2 a$. Therefore, the angle $203=4 a$; hence, all we lave to do is to bring the line of sights into coincidence with $x^{\prime} y^{\prime}$. Divide the angle 203 into four parts and make $30 x^{\prime}=a$, one-fourth of the angle 302 . We can do this by setting a point x^{\prime} at one-fourth of the distance from 3 to 2 , and as 02 and 03 are several hundred times $2-3$, this is as accurately as we can measure the angle $30 x^{\prime}$ eqtial to one-fourth of 203 . Now, keep the axis clamped in the position $A^{\prime} B^{\prime}$, and move the vertical wire by capstan screws till it coincides with the point x^{\prime}. Repeat whole work until it checks.
61. Peg Adjustment.- The axis of the bubble tube may be made parallel to the line of sights by the peg adjustment. Drive two pegs or stakes in the ground about 200 ft . apart, whose difference of level is less than 4 ft . Set the transit near peg A, level the instrument, and turn the telescope so that the eye end is over the peg, while the bubble is in the center of its run; measure the height of the center of the eye-piece above the peg and call this distance h. Have an assistant hold the rod on top of peg B and measure from where the line of sights cuts the rod to the top of peg B and call this r. Transfer the transit to peg B and set up as before, measuring the height of the

Fig. 29. center of the eye-piece from the top of peg B and call this distance h^{\prime}. Have the rod placed on top of peg A and measure the distance from the line of sights to the top of peg A. and call this distance r^{\prime}.
In Fig. 29, $A K, C D$ and $F G$ are the horizontal lines as determined by the bubble tube. Suppose the line of sights CE cuts below the horizontal line an amount of $D E=e$; when the transit is transferred to B it will again cut below when the telescope is sighted to A an amount $H G=e$.

Let $A C=h . B E=r, B F=h^{\prime}, A H=r^{\prime}$. Then the true•difference of level of A and $B=B K=B D-A C=r+c-h$.

Also $B K=B F-A G=h^{\prime}-\left(r^{\prime}+e\right)$
Therefore $r+e-h=h^{\prime}-r^{\prime}-e$
Therefore $c=1 / 2\left[\left(h+h^{\prime}\right)-\left(r+r^{\prime}\right)\right]$.
Rule: The double error is equal to the sum of the instrument heights minus the sum of the rod heights.
62. Location of Meridian by Polaris.-Table I gives the times when Polaris and the mean sun are on the meridian together. For 1907 the "epoch" is 14.1 This means that the mean sun and Polaris are on the meridian together April 14, onetenth of a day after the beginning of April 14-that is, 2.4 hours after the beginning of April 14. This would make the
"epoch" occur on April 14 at $2: 24$ A. M. For 1909 the "epoch" is 13.8, or April 13, 7:12 P. M. The "epoch," then, is the time or date when Polaris and the mean sun are on a meridian at the same time.

Table I-Epochs equal date in April when Mean Sun and Polaris are on a Meridian together:
Year. Epoch. Year. Epoch. Year. Epoch. Year. Epoch. Year. Epoch. $\begin{array}{llllllllll}1907 & 14.1 & 1912 & 13.9 & 1917 & 14.6 & 1922 & 15.3 & 1927 & 15.9\end{array}$ $\begin{array}{lllllllllll}1908 & 13.5 & 1913 & 14.2 & 1918 & 15.0 & 1923 & 15.6 & 1928 & 15.3\end{array}$ $\begin{array}{llllllllll}1909 & 13.8 & 1914 & 14.6 & \text { '1919 } & 15.3 & 1924 & 15.0 & 1929 & 15.6\end{array}$ $\begin{array}{llllllllll}1910 & 14.2 & 1915 & 14.9 & 1920 & 14.7 & 1925 & 15.3 & 1930 & 15.9\end{array}$ $\begin{array}{llllllllll}1911 & 14.5 & 1916 & 14.3 & 1921 & 15.0 & 1926 & 15.6 & 1931 & 16.2\end{array}$

If Polaris and the mean sun are on a meridian together, the mean sun will reach the meridian 4 minutes later than Polaris on next day.

The hour angle of the star will be more than that of the sun by 3.94 multiplied by the number of days after the epoch.

Example: Find the position of the star (t) in its orbit at 9 P. M. May 6, 1907. The "epoch" for 1907 is on April 14 at $2: 24$ A. M. The number of days from $2: 24$ A. M., April 14, to 9 P. M., May 6, is 22.775. Hence Polaris will be $22.775 \times$ $3.94=89.73 \mathrm{~min}$. ahead of the sun. At 9 P . M. the sun is 9 hrs. past the meridian of the observer, hence Polaris will be 9 hrs. plus 89.73 min . or 10 hrs .29 .73 min . past the meridian. By using this time (t) in Table II we can find the angle Polaris makes at that time with the true meridian.

Table II. $-t=$ local mean time +3.94 (date-epoch). Hours.

t	Angle, a.	Lat. cor,,b.	t
0	0^{\prime}	-74^{\prime}	24
1	25^{\prime}	-72^{\prime}	23
2	49^{\prime}	-64^{\prime}	22
3	69^{\prime}	-52^{\prime}	21
4	84^{\prime}	-37^{\prime}	20
5	93^{\prime}	-19^{\prime}	19
6	96^{\prime}	0	18
7	89^{\prime}	$+19^{\prime}$	17
8	82^{\prime}	$+36^{\prime}$	16
9	67^{\prime}	$+51^{\prime}$	15
10	47^{\prime}	$+63^{\prime}$	14
11	24^{\prime}	$+70^{\prime}$	13
12	0^{\prime}	$+72^{\prime}$	12

Table III.-Azimuth Coefficients.

	Coefficients $=K$			
Lat.	1900.	1910.	1920.	1930.
200°	$.8 *$.78	.75	.72
30°	.88	.85	.81	.77
40°	1.00	.96	.92	.87
50°	1.10	1.14	1.09	1.04

Table IV.-Lat. correction Coefficient.

Year.	Cocfficient, Q.
1900	1.00
1910	.96
1920	.92
1930	$.8 \%$

Example: Find the angle that Polaris makes with the true meridian at 9 P . M. May $6,190 \overline{6}$, in latitude 30 . The time interval from epoch to date was. 23.75 days and the increase in time was 1 hr . and 29.76 mins. The value of t was found to be 10 hrs . and 29.73 mins . or 10.50 hrs . (which is near enough for our purposes). Looking in Table II under t for 1.I.) hours we find that we have to interpolate between $4 \sigma^{\prime}$ and $\triangleq 1$ ', hence the angle is 35.5 . This must be multiplied by the azimuth coefficients. For 1900 , lat. 30 , the coefficient, Table IL1, is 0.88 , and for 1900 it is 0.85 . For one year the decrease is 0.003 , and for seven years it is 0.021 . The coefficient is therefore 0.86 . The angle or azimuth with the north meridian $=35.5 \times .86=30.6^{\prime}$ west. The observed altitude of the star was $29^{\circ} 8^{\prime}$. The latitude coefficient for 1907 lies between 1.00 and 0.96 and an interpolation gives . 97.2 . From Table II, lat. cor. (b) is 66.5'. Hence the correction for the altitude will $=.97 .2 \times 66.5=\left(64.64^{\prime}\right.$. The latitude $=29^{\circ} 8^{\prime}+64.64^{\prime}=30^{\circ} 12.64^{\prime}$.

Problem 2.2.-Find the angle that Polaris makes with the true meridian 9 P . M. June 12, 1907, in latitude of 33°. Answer $=20^{\prime}$ east.

Problem 23.-Given latitude of place $=36^{\circ}$, find the angle Polaris makes with meridian on November 6, 1909, 10 P. M. Answer $=9^{\prime} .2$ east.

Problem 24.-An observation was made on Polaris at $9: 30$ P. M. July 22, 1908 , in latitude 30°. Find the angle made with the meridian. Answer $=11^{\prime}$ east.
63. Circumpolar Stars.-A meridian can be located with sufficient accuracy for ordinary surveying by observations on the North Star (known as Polaris), which is about one and onefifth degrees from the true North Pole, and if we would observe it for a whole day it would appear to describe a circle about the North Pole in a direction contrary to the motion of the hands of a clock, $i . c$., contra-clockwise. On account of the invisibility of the true North Pole this motion can be best observed by selecting some star in the Dipper. If we could note exactly when one of the stars of the Dipper is directly above Polaris and could follow its motion throughout the balance of the night, the next day and part of the next night, we would observe that the star would again reach a point directly above Polaris four minutes earlier than it did on the preceding day. If we observed it directly above Polaris at 10 P. M. on one night, the next night it would be at the same position at 56 mins. after 9 o'clock. Thus, each of these stars gains four

NOILENIWTHY צבMOT

UPPER CULMINATION Fig. 30. mimutes each day (exactly, 3.945 minutes). In one year it would gain 24 hours and would, therefore, make one more revolution than the earth makes on its axis. All stars that make an apparent complete revolution about the North Pole are called circumpolar stars, and any of them could be used for the location of a meridian when the selected star is directly above or below Polaris.

There are two groups of stars (called constellations) situated opposite to each other with respect to Polaris and the North Pole that afford favorable opportunity for the location of the meridian by surveyors. These constellations are those of the Great Bear (the Dipper) and of Cassiopeia (the Chair). By a glance at the outlines of these constellations, Fig. 30, it will be seen that the dotted lines outline the shape of a dipper and chair, respectively, hence the names. It must be remembered that Polaris is always opposite the Dipper with respect to the pole, and that it is on the same side as the Chair.

When a star is directly above the pole it

Fig. 31. is said to be at its upper culmination, and when directly below, at its lower culmination. When at the eastern point of its orbit, it is said to be at its castern elongation, and when at its western point, at its western clongation.
64. Location of Meridian.-A line passing through the second star (Zeta) in the handle of the Dipper and the third in the back of the Chair (Delta Cassiopeia) passes through Polaris and the North Pole. When Zeta of the Dipper or Delta Cassiopeia is directly above or below Polaris, Polaris is on the meridian, and is at its upper or lower culmination. If the Dipper is above, Polaris is below the pole, and rice versa. But when the star is at either culmination, its horizontal motion is more rapid than at any other point in its path, and a slight error in time affects the result. When the star is at either elongation, the direction of its motion is vertical, and a slight error in time does not have such decided influence on the azinuth.
65. PZS Triangle.-The North Pole (P), the Zenith (Z) and the Sun (S) form a spherical triangle $P Z S$, Fig. 31, where if
$l=$ latitude of observer
$t=$ hour angle
$a=$ azimuth of sun
$d=$ declination of sun
$h=$ altitude of sun.
We have:

$$
\begin{aligned}
P Z & =\text { co-latitude }=90-l ; \\
P S & =\text { co-declination }=90-d ; \\
Z S & =\text { co-altitude }=s 0-h ; \\
Z P S & =\text { hour angle of sun }=t \\
S Z M & =\text { azimuth } 360-a
\end{aligned}
$$

66. Formulas.-The usual problem is to locate a meridian at a certain place whose latitude and longitude are known. Drop a perpendicular from S on the meridian $P Z$ of the observer, cutting it at M, and let $M E=N$ where $E Q$ is the celestial equator, or earth's equator extended to the heavens.

Now, $Z E=$ latitude $=l$. $\therefore Z M=1-N$.
By the application of Napier's Tangent Law, we have, in the right triangle $P S M$:

$$
\begin{align*}
\cos t & =\tan P M \cot P S \\
\cos t & =\tan (90-N) \cot (90 \cdot-d) \\
& =\cot N \tan d \\
\therefore \tan N & =\frac{\tan d}{\cos t} \ldots \ldots \ldots \ldots \ldots \ldots \tag{5}
\end{align*}
$$

In the right triangle, $S Z M$

$$
\sin Z M=\tan M S \cot a \text { or } \tan M S=\sin Z M \text { tan } a .
$$

In the right triangle $M P S$,

$$
\sin P M=\tan M S \cot t \text { or } \tan M S=\sin P M \tan t
$$

Equating the two values of $\tan M S$, we get:

$$
\begin{aligned}
& \tan a \sin Z M=\sin P M \text { tan } t \\
& \tan a=\frac{\sin P M \tan t}{\sin Z M}
\end{aligned}
$$

But

$$
\begin{align*}
P M & =90-N, \quad Z M=l-N \\
\therefore \tan a & =\frac{\cos N \tan t}{\sin (l-N)} \cdots \ldots \ldots \tag{6}
\end{align*}
$$

67. Observation on Sun.-The best time of day to make an observation for azimuth on the sun is from 8 to 10 A . M. and from 3 to $5 \mathrm{P} . \mathrm{M}$. Before an observation is made it is necessary to have mean local time and if a chronometer is not available, two watches should be set to agree with Western Union time. Thirty minttes before the observation is to be made the transit should be set over the station, the verniers should be brought to zero, and the transit be pointed to some definite terrestrial point, as a church spire. The transit should then be turned by upper motion to point approximately at the sun, and as soon as the sun comes into the field of view of the telescope, the observer' should clamp the upper motion and call "angle," when two men read the angles as given by the two opposite verniers. At the signal "angle" the timekecpers, of which there should be at least two. get ready to observe the time. As the disc of the sun approaches the vertical wire, the observer calls, "Get ready," and just as the edge of the sun's disc coincides with the vertical wire he calls "time" and immediately moves the vertical wire by aid of the tangent screw till the opposite edge of the sun's disc coincides with vertical wire, when he calls "time" again. The time interval between the two calls of "time" should not be over six seconds. The timekecpers have noted both the hours, minutes and seconds at each call of "time," and the angle readers read both angles and record same. The data taken in the field therefore consist of reading the spire-station-sun angle for both discs of sum, and the times corresponding to these. The average of each is taken as the angle and time of the sun's center The local mean time is reduced to apparent time, and this to degrees, which gives the hour angle.

The declination of the sun1 is found for the given time and N is found from Formula 5 , and the substitution of values of N, t and l in Formula 6 will give the angle a.

The second method of finding the angle a consists in measuring the altitude of the sum at the time of observation. To do this, the dise of the sun is brought to tangency with the vertical wire and on its left, so that the lower edge of disc
coincides with the horizontal wire. If we regard the cross-wires as axes, the sun would be in the second quadrant and tangent to both axes at the first observation. In this position we record time, the spire-station-sun angle, and the vertical angle. The disc is then brought into the fourth quadrant, so that it touches the two axes, when the same data are observed as beforc. The average of these is taken as the spire-station-sun angle, the angle of elevation, and the time of observation. Then the angle is corrected for refraction and this gives us the complement of $Z S$ of the triangle $P Z S$. The three sides of the triangle $P Z S$ are thus known whence the angle $P Z S$ can be calculated.

$$
\text { Let } s=\frac{1}{2}(P Z+Z S+P S)
$$

Then $\sin \frac{1}{2} P Z S=\sqrt{\begin{array}{c}\sin (s-P Z) \\ \sin (s-Z S) \\ \sin P Z \\ \sin Z S\end{array}}$

68. Refraction.-The effect of refraction is to raise all bodies and make them appear higher than their true positions. Thus the sun can be seen wholly above the horizon, when in reality no part of it is above. If R represents the amount of refraction in seconds of arc and h is the altitude of the sun, we have:

$$
R=58^{\prime \prime} \tan h
$$

Table V.-Table of Refractions:
Elevation. Refraction. Elevation. Refraction. Elevation. Refraction.

\%	$9^{\prime} 52^{\prime \prime}$	16	$3^{\prime} 20^{\prime \prime}$	35	$1^{\prime} 23^{\prime \prime}$
10°	$5^{\prime} 19$ "	17	$3^{\prime} 08^{\prime \prime}$	40	$1^{\prime} 09^{\prime \prime}$
11°	$4^{\prime} 51$ "'	18	$2^{\prime} 58^{\prime \prime}$	45	$0^{\prime} 58^{\prime \prime}$
12°	$4^{\prime} 28^{\prime \prime}$	19	$2^{\prime} 48^{\prime \prime}$	50	$0^{\prime} 49^{\prime \prime}$
13°	$4^{\prime} 07^{\prime \prime}$	29	$2^{\prime} 39^{\prime \prime}$	60	$0^{\prime} 34^{\prime \prime}$
14°	$3^{\prime} 50^{\prime \prime}$	25	2^{\prime} 04"	70	0^{\prime} 21' ${ }^{\prime \prime}$
15°	$3^{\prime} 34^{\prime \prime}$	30	$1^{\prime} 41^{\prime \prime}$	80	$0^{\prime} 10^{\prime \prime}$

69. Solar Attachment.-There are various forms of solar attachments, but we shail here describe only two. Fig. 32 shows a diagonal prism, which "consists of a prism attached to the cap of the eye-piece, by which the object is presented to the eye when placed at right angles to the telescope. When the telescope is directed to the sun the slide or darkener containing the colored glass is moved over the opening. The cirular plate with which the prism is connected is made to turn in the cap, so that when it is substituted for the ordinary cap of the eye-piece the opening of the prism can be easily adjusted
to the position of the eye. Observations can be taken with the prism up to an angle of 60° of elevation."

The other form of solar attachment consists of a second telescope, generally smaller in size, attached to the regular telescope of the transit. The second telescope is provided with colored glass to enable the observer to see the sun with distinctness and definition. Fig. 33 illustrates a common form of this solar attachment which is provided with telescope level and tangent screws for horizontal and vertical motions. The line of sight of the solar telescope can be made parallel to that of the transit by bringing both bubble tubes to the middle of their run, while the telescopes are pointed at a vertical line some 200 ft . away. This line should be marked on a white sheet of paper tacked to the side of a house

Fig. 32. on the same level practically with the telescopes. Draw two heavy horizontal lines on this sheet of paper at a distance apart equal to the distance between the axes of the telescopes. .Bring the cross wires of the transit telescope on the lower of these lines, and if the lines of sights are parallel the line of sight of the solar telescope will intersect the upper horizontal line. If it does not, adjust its reticule till the line of sight as defined by the cross-wires- intersect the upper line. Check till nerfect agreement is secured. An error of $1-16 \mathrm{in}$. in the distance between the axes in' 200 ft . would produce an error in the parallel alignment of the lines of sight of only $5^{\prime \prime}$. A longer base would reduce the error. If the base is 507 ft . and the error in distance between axes is $1-30 \mathrm{in}$., the lines of sight will make an angle of $1^{\prime \prime}$.

To eliminate light errors in latitude and as a check on the work, observations can be taken in the forenoon and afternoon at about the same time from the meridian passage of the sun. In each set of observations the transit is set on a terrestrial mark, the altitude of the sun, the angle mark-station-sun, and the times are taken and recorded. The angle
$P Z S$ is calculated and the azimuth of the line from station to mark can be found by addition or subtraction.
70. Meridian Without Calculation.-If the meridian is to be located directly by observation, some solar attachment like that of Fig. 33 is necessary. To locate a meridian by this method we proceed as follows:

1. Make the usual five adjustments for the transit, three for the ordinary transit and two for the solar attachment.
2. Bring the line of sight of solar telescope into the vertical plane of the line of sight of the transit telescope.
3. If declination of . sun is south (north) depress (elevate) the transit telescope an amount equal to the declination corrected for refraction, then bring the solar telescope to a hori-

Fig. 33. zontal position by means $\cap f$ its bubble tube. The lines of sights of the telescope will now include an angle equal to the corrected declination.
4. Elevate the transit-telescope till the vertical arc reads the co-latitude of the place.
5. Revolve both telescopes on their vertical axes till the image of the sun is bisected by the vertical wire of the solar telescope. When this bisection is secured the line of sight of the transit telescope will be in the plane of the meridian and will locate it.
71. Example:-On Aprii 15th, 1907, the following observations were made on the sun at the magnetic station, Austin, Texas (latitude $30^{\circ} 1 \overline{7}^{\prime}$, longitude $97^{\circ} 44^{\prime} 02^{\prime \prime}$) :

Disc of Sun. W. U. Time. Mark, Station, Sun-Angle.
Right.
9h. 59 m .57 s.
$75^{\circ} \quad 8^{\prime}$
Left
10h. 0m. 03s.
$75^{\circ} \quad 40^{\prime}$
Average. 10h. 0m. 0s.
$75^{\circ}-24^{\prime}$
W . U. Time $(90$ meridian $)=10 \mathrm{~h} 0 \mathrm{~m} 0 \mathrm{~s}$
Correction $=\quad 30 \quad 56$
Local Mean Timc $=\quad 9 \mathrm{~h} 29 \mathrm{~m} 04 \mathrm{~s}$
Time from Greenwich mean noon to Austin.
Mean noon $=6 \mathrm{~h} 30 \mathrm{~m} 56 \mathrm{~s}$.
Time interval from Greenwich noon to obs. $=4 \mathrm{~h}$.
Declination at Greenwich mean noon $=9^{\circ} 27^{\prime} \dot{z}^{\prime \prime} .90 \mathrm{~N}$.
Hourly increase $=53^{\prime \prime} \cdot 96$.
Total increase $=3^{\prime} 35^{\prime \prime \prime} .84$.
Declination at time of observation $=9^{\circ} 30^{\prime} 38^{\prime \prime} . \mathrm{R}^{\prime}$,
Equation of time at Greenwich, mean noon $=0 \mathrm{~m} 17.1 \%$,
Hourly decrease $=0.626$ s.
Total decrease $=0.504 \mathrm{~s}$.
E. T. at time of obs. $=0 \mathrm{~m} 14.65 \mathrm{~s}$.

Apparent time of obs. $=9 \mathrm{~h} 28 \mathrm{~m} 49.35 \mathrm{~s}=9.4803 \% \mathrm{~h}$.
$t=$ hour angle $S P Z=2.51960^{\circ} \mathrm{h}=37^{\circ} 47^{\prime} 40^{\prime \prime}$.
$\operatorname{Tan} N=\frac{\tan d}{\cos t}$
Log tan $d=9.224108$
$\log \cos t=9.897745$
$\log \tan N=\overline{9.326363}$

$$
N=11^{\circ} 58^{\prime} 12^{\prime \prime}
$$

$$
l-N=18^{\circ} 18^{\prime} 48^{\prime \prime}
$$

$$
\begin{gathered}
\tan a=\frac{\cos N \tan t}{\sin (l-N)} \\
\quad \log \cos N=9.990453 \\
\log \tan t=9.889594 \\
\text { co-log sin }(l-N)=.502775
\end{gathered}
$$

$$
\log _{\tan } a=10.38 \cdot 282
$$

$a=67^{\circ} \cdot 30^{\prime} 8^{\prime \prime}$
Azimuth of sun $=292^{\circ} 29^{\prime} 52^{\prime \prime}$
Azimuth of mark $=75^{\circ} 24^{\prime}-67^{\circ} 30^{\prime} 8^{\prime \prime}$

$$
=7^{\circ} 53^{\prime} 52^{\prime \prime}
$$

72. Example:-The following data were taken at a stathon where latitude $=29^{\circ} 8^{\prime} .1$ and longitude $=90^{\circ} 23^{\prime} \mathrm{W}$.
No. Sun. Alt. of Sun. Mrk, Sta., Sun. W. U. Timé $\quad=90 \mathrm{M}$.

Declination of sun at Greenwich, mean noon $=$ Om. 19.3s.
Hourly increase $=58^{\prime \prime} .4$.
Time interval from G. noon to Observation $=2 h 56.8 \mathrm{~m}$.
Total increase in Declination $=2^{\prime} .9$.
Declination at time of Observation $=2^{\circ} 16^{\prime} .2 \mathrm{~s}$.
Observed altitude of $\operatorname{Sin}=32^{\circ} 24^{\prime} .38$.
Correction for refraction and paraliax $=-1^{\prime} .3$.
True altitude of $\operatorname{Sun}=32^{\circ} 23^{\prime} .1$.
In the $P Z S$ triangle we have,

$$
\begin{aligned}
& P Z=60^{\circ} 51^{\prime} 54^{\prime \prime}=\text { co-lat. } \\
& P S=92^{\circ} 17^{\prime} 12^{\prime \prime}=\text { co-dec } \\
& Z S=57^{\circ} 36^{\prime} 54^{\prime \prime}=\text { co-alt }
\end{aligned}
$$

$\therefore 2 s=210^{\circ} 46^{\prime} 00^{\prime \prime}$.

$$
s=105^{\circ} 23^{\prime}
$$

$s-\operatorname{codcc} .=13^{\circ} 5^{\prime} 48^{\prime \prime}$

$$
\left(\operatorname{Cos} \frac{1}{2} P Z S\right)^{2}=\frac{\sin s \quad \sin (s-\operatorname{codec})}{\sin \text { co-alt } \sin \text { co-lat }}
$$

$$
\log \sin s=9.984155
$$

Lở $\sin (s$-codec $)=9.355249$
cologsin co-lat $=0.073417$
colog \sin co-lat $=0.058749$

$$
\begin{aligned}
2 \log \cos \frac{1}{2} P Z S & =19.471570 \\
\log \cos \frac{1}{2} P Z S & =9.735785 . \\
\cdot \frac{1}{2} P Z S & =57^{\circ} \\
1^{\prime} & 40^{\prime \prime} \\
P Z S & =114^{\circ} 3^{\prime} \quad 20^{\prime \prime}
\end{aligned}
$$

Azimuth of sun at time of obs. $=294^{\circ} \quad 3^{\prime} \quad 20^{\prime \prime}$
Angle Mk-Sta-Sun $=, 4^{\circ} 48^{\prime} 33^{\prime \prime}$
Azimuth of Mark $=298^{\circ} 51^{\prime} 53^{\prime \prime}$
Bibliography.-"Theory and Practice of Surveying." By J. B. Johnson. This is one of the best, most practical, and comprehensive books upon higher surveying. It includes a discussion of the engineering instruments in their use in ordinary and higher surveying, leveling, topographic, hydrographic, railroad, and earthwork surveying.
"The Principles and Practice of Surveying" By Breed and Hosmer. 526 pages. This is a rather full treatment on the use, care, and adjustments of instruments, land surveying, traverse lines, meridians and latitude, city surveying, mine surveying, plotting, specimen note books and computations.
"Plane Surveying." By Wm. G. Raymond. 485 pages. This is a full discussion of the construction and use of the engineering field instruments, methods of land, city, hydrographic, etc., surveying, and an ample treatment of the slide rule (an unusual feature of a work on surveying), and an excellent set of tables.
"Surveying Manual." By W. D. Pence and Milo S. Ketchum. 252 pages. This is one of the most valuable hand-books or field mannals now in print. While it is modest in size, it covers in a satisfactory way the usual problems confronting the surveyor and engineer. A distinguishing feature is the sample pages of note books executed in freehand lettering.

CHAPTER IV. CALCULATION OF AREAS.

73. Latitude and Departure of a Course.-Given a course $A B$, Fig. 34, and a meridian through one end of the course, and a perpendicular $B 2$ from the other end upon the meridian. Then $A-2$ is called the latitude of the course, and $2-B$ the departure. The latitude of $B C$ is $B-6$ or $3-2$. All the latitudes that go north are called plus and all those that go south are called minus. Thus in the figure the latitudes of $A B$ and $D A$ are plus, while those of $B C$ and $C D$ are minus. The sum of the plus latitudes

$$
A 2+A 4=2-4
$$

The sum of the minus latitudes

$$
B 6+5 D=2-4 .
$$

The algebraic sum of all the latitudes is equal to zero.

All east departures are plus and all west departures are minus. Thus the departure of $A B$ and $B C$ are plus, while the departures of $C D$ and $D A$ are minus. The sum of the plus departures $2 B+6 C=$ $3 C$, while the sum of the minus or west departures $5 C+D 4=C 3$.

Fig. 34. The algebraic sum of all the departures is equal to zero.

In the triangle $A 2 B$, let the length $A B=1$, and the angle $B A 2$ $=B$ (called the "bearing").
But $A 2=A B$ cosine $B A 2$, that is, Latitude $=$ length \times cosine of bearing.

$$
\begin{equation*}
\therefore L=l \text { cosine } B . \tag{7}
\end{equation*}
$$

Also, $B 2=A B \times$ sine of. $B A 2$, that is,
Departure $=$ length \times sine of bearing.
$\because D=b \sin a$

Squaring 7 and 8 , and adding, we get,
$L^{2}+D^{2}=l^{2}\left(\operatorname{Cos}^{2} B+\operatorname{Sin}^{2} B\right)$.
But $\operatorname{Sin}^{2} B+\operatorname{Cos}^{2} B=1$,

$$
\begin{equation*}
L^{2}+D^{2}=l^{2} \quad . \quad l=\sqrt{L^{2}+D^{2}} \tag{9}
\end{equation*}
$$

Dividing 8 by 7 , we get,
Tangent $B=\frac{\text { Departure }}{\text { Latitude }}$
Example:-The field notes of a farm are given in the following table:

Course.	Bearing.	Distance.
$A B$	N $27^{\circ} 37^{\prime} \mathrm{E}$	48.6 chains
$B C$	S67 ${ }^{\circ} 14^{\prime} \mathrm{E}$	69.4 chains
CD.	S38 ${ }^{\circ} 28^{\prime} \mathrm{W}$	52.6 chains
$D A$.	N65 ${ }^{\circ} 15^{\prime} \mathrm{W}$	5j. 0 chains

To find the latitudes and the departures it is convenient to proceed by finding the natural sines and cosines of all the bearings, and arranging them under the latitudes and departures as follows:

Latitudes.
Cosine. Distance. Latitudes. $\begin{array}{lll}.88674 & 48.6 & 43.10\end{array}$
$.38698 \quad 65.4-25.31$
$.78297 \quad 52.6 \quad-41.18$.41866 jẽ. 0 . 23.03

Departures.

The latitudes are found by multiplying the cosine by the distance, and the departures by multiplying the sine by the distance.
74. Traverse Tables.-To facilitate calculation in the office, tables have been prepared by which the latitude and departure can be obtained without arithmetical calculation. Thus for any angle under 45° and for all distances from 1 to 100 the latitude and departures are calculated and tabulated. Thus fos an angle of 10° we find:
$\operatorname{Sin} 10^{\circ}=.17365$
$\operatorname{Cos} 10^{\circ}=.98481$
Then for any distance x we have
Departure $=.17385 x$;
Latitude $=.98481$ \%

Now, if we give to x values from 1 to 10 , the following results :
10 Deg. 11 Deg. 12 Deg.

Dist.	Lat.	Dep.	Lat.	Dep.	Lat.	Dep.
1	. 9818	. 17	. 98	. 19	. 98	. 21
2	1.97	. 35	1.96	. 38	1.96	. 42
3	2.95	. 52	2.94	. 57	2.93	. 62
4	3.94	. 69	3.93	76	3.91	83
5	4.92	. 87	4.91	. 95	4.89	1.04
6	5.91	1.04	5.89	1.14	5.87	1.25
7	6.89	1.22	6.87	1.34	6.85	1.46
8	7.88	1.39	7.8.5	1.53	7.83	1.66
9	8.86	156	8.83	1.72	8.80	1.87
10	9.85	1.74	9.82	1.91	9.78	2.08

In the same way the latitudes and departures can be calculated for all distance desired and for angles as minute as space will allow. Some works on surveying have traverse tables for all distances from 1 up to 100 and for all angles 15^{\prime} apart from zero to 90°.
75. Example:-If the distance is 56.8 chains and the bearing is $\mathrm{N} .10^{\circ}$ E. we divide up the number into 50,6 , and .8 and find the latitude and departure of each separately and add the results. We look for the latitude and departure of 5 and multiply the result by 10 to get the lat. and dep. for 50 . If bearing is 10°, we have for 5 chains,

Lat. $=4,92$
Dep. $=.87$
Hence, we have,

For 50, lat. $=4.92$	10. $=49.20$
" 6, lat. $=5.91$	5.91
" .8, lat. $=.788$	79
Lat. for 56.8 chains	= 55.90
Dep. for $50=.87$	10............. . $=8.70$
$6=$	1.04
. $8=$	

Total dep. for 56.8 chains $=9.88$
As an exercise, find the latitude and departure for bearing of 12° and a distance of 37.48 chains.
76. Error of Closure.-In surveying parties the surveyor is usually the only skilled man in the party. The chainmen are
usually picked up in the locality and are not supposed to be trained in this work. It is assumed in balancing the survey that the errors are due to the chaining and that the surveyor reads the bearings correctly. If in balancing the error is greater than 1 in 500 the farm should be resurveyed. The error in latitude or departure is the amount that the algebraic sum of the latitudes or departures lacks of being zero. The error of closure is found by squaring the error in latitude and the error in departure and taking the square root of their sum and dividing this result by the perimeter of the farm. This is simply dividing the distance you miss the beginning corner by the length of the perimeter of the farm.

Find the latitudes and departures for the following courses:
Course. Bearing. Distance, Latitudes. Departures.

$A B$	$\mathrm{~N} 23^{\circ} 30^{\prime} \mathrm{E}$	255.72	234.49	101.96
$B C$	$\mathrm{~N} 68^{\circ} \mathrm{E}$	182.1	68.22	168.84
$C D$	$\mathrm{~S} 3^{\circ} 47^{\prime} \mathrm{W}$	329.42	-328.67	-21.74
$D A$	$\mathrm{~N} 84^{\circ} 15^{\prime} \mathrm{W}$	249.92	25.04	-248.66

Thus in the example the error in latitude is -.92 and the error in departure is +.40 , that is, we went norih $3 \cdot 27.75$ and south +328.67 , which leaves us +.92 south of A. We went east 270.80 and west 270.40 , which leaves us +.40 west of A at some point A^{\prime}.

But $A A^{\prime}=\sqrt{(.92)^{2}+(.40)^{2}}$.
And the error of closure $=\frac{\sqrt{(.92)^{2}+(.40)^{2}}}{1017.16}=\frac{1}{1014}$
77. Balancing a Survey.-Theoretically the algebraic sum of the latitudes is equal to zero, and the same is true of the departures. But in actual survey work these sums never are equal to zero, owing to unavoidable errors. These errors must be distributed in proportion to the length of the courses. We see that the error in departure is .40 , which must be distributed among the courses in proportion to their lengths.

The total distance around the farm (the perimeter) is 1017.16 varas, and the total error in departures is .40 and tha
for latitudes is .92 . The error of any course is to the total error as the length of any course is to the perimeter.

If the compass was used in making the survey this rule for balancing should be followed even if some of the courses are due north-south, or due east-west. The compass cannot define the angle accurately and there is as much probability of error in angle in a due north course as there is in a course whose bearing is $\mathrm{N} .26^{\circ} \mathrm{E}$. Again, in some of the older states the magnetic bearings are read and a course that is north at the present time could make one degree with the magnetic meridian twenty years hence. If the practice of distributing the errors in departure (or latitude) among those courses that have departure be followed in the calculation of the first survey, the above method would have to be followed in the last survey. Thus the same surveyor would get different results for the area of the farm. The usual rule should be followed in all cases for a compass survey.

Therefore, the error for any course $=$

$\frac{\text { total error }}{\text { perimeter }} \times$ length of course.

Corrections for Latitude of
$A B=\frac{.92}{1017.16} \times 255.72=.23$
$B C=\frac{.92}{1017.16} \times 182.1=.16$
$C D=\frac{.92}{1017.16} \times 320.42=.30$
$D A=\frac{.92}{1017.16} \times 249.92=.23$
Total for Latitude $=.92$

Corrections for Departure of

$$
A B=\frac{.40}{1017.16} \times 255.72=.10
$$

$$
B C=\frac{.40}{1017.16} \times 181.1=.07
$$

$$
C D=\frac{.40}{1017.16} \times 329.42=.13
$$

$$
D A=\frac{.40}{1017.16} \times 249.92=.10
$$

Total for Departure $=.40$

These are arranged in the following table:

Course	Corrections.		Cor. Lat.	Cor. Dep.
$A B \ldots$.	Lat.	Dep.	234.72	101.86
$B C \ldots \ldots$.23	.10	68.38	168.77
$C D \ldots \ldots$.30	.07	-21.87	
$D A \ldots .$.	.23	.13	-328.37	-248.76

The sum of the uncorrected plus latitudes is $32 \overline{7} .75$, and that of the minus latitudes is 328.67 ; all the plus latitudes must ${ }^{\circ}$ be increased by their corrections, and the minus must be decreased by their corrections. If these corrections are applied properly we will get the numbers in the column "Cor. Lat.," which means corrected latitudes. The sum of the plus departures is 270.80 and the sum of the minus departures is 270.40 ; the sum of the plus departures is greater by .40 ; therefore the minus departures must be increased and the plits departures decreased. The column headed "Cor. Dep." gives the corrected departures.
78. The Double Meridian Distance. - The reference meridian generally passes through

Fig: 35. the most westerly corner of the land. The perpendicular from the mid point of the course upon this meridian is called the meridian distance. The meridian distance of $M N$, Fig. 35 , is $x y$ where x is the midpoint of $M N$. But if $M 3, N 4$ and $O 5$ are perpendicular to the meridian, $M 3+N 4=2 x y$, or double the meridian distance, and is called the $D . M . D$. That is, the $D M D$ of any course is equal to the sum of the two perpendiculars from its ends upon the reference meridian.

The $D M D$ of $N O=N 4+O 5$

$$
\begin{aligned}
& =N 4+O 7+N 6+M 3 \\
& =(N 4+M 3)+N 6+O 6
\end{aligned}
$$

That is, the $D M D$ of any course is equal to the $D M D$ of the preceding course, plus the departure of the preceding course plus the departure of the course itself. The DMD's of the first and last courses are always equal to their own departures.

A sketch of the farm whose latitudes and departures were balanced in Art. 77 shows that A is the most westerly corner, and it will be convenient to take our reference meridian through
this corner. Then the Double Meridian Distance of $A B=$ Departure of $A B=101.86$.

The $D . M$. D. of $B C=101.86+10186+168.71=372.49$.
The $D . M$. D. of $C D=372.49+168.77-21.87=51$ §. 39 .
The $D . M$. D. of $D A=519.39-21.87-248.76=248.76$.
The last result proves the correctness of our arithmetical work, as the $D M D$ of the last course should equal the dcparture of that course.

If the course $A B$ does not happen to be in the first line of the table of notes, the DMD's can be calculated with reference to the most westerly corner without rearranging the table.
79. Area of a Farm.-If we drop perpendiculars from the ends of the courses upon the meridian $N S$, Fig. 36, we form trapezoids, or triangles. If we survey around the farm clockwise, all the areas determined by the courses and perpendiculars that have plus latitudes will be outside the farm, while those that have minus latitudes will include part of the farm and part of the area between the farm and the reference meridian. The algebraic sum of the "minus areas" and "plus areas" is equal to the area of the farm.

Fig. 36.

The double area of $A B 2=A 2 \times B 2=$ Lat. $\times D M D$.
Double area $2 B C 3=2 \times(B 2+C 3)=L a t . \times D M D$.
Double area $3 C D 4=34 \times(C 3+D 4)=L a t . \times D M D$.
Double area $4 D E 5=54(D 4+E 5)=L a t . \times D M D$.
Double area $5 E A=5 A(5 E)=$ Lat. $\times D M D$.
The areas of $2 B 3 C$ and $3 C D 4$ have minus latitudes (2 3 and 3 4) and these areas are therefore called "minus areas," and they not only include the whole farm but also the areas between the farm and the reference meridian. The areas $A B 2,4 D E \tilde{0}$, and $5 E A$ have plus latitudes, and are called "plus areas." If
we add the "plus areas" to the "minus areas," there is left the area of the farm, $A B C D E$.

Fig. 37.
80. Area Table.-Placing the D M D's in the table and multiplying each by its corresponding latitude, we find the areas as given in the following table. Dividing the area in square yards by 4840 gives the area in acres:

Course.	Bearıng.	Dist,	Lat.	Corrections.		
				Dep.	Lat.	Dep
$A B$	N 2330 E	255.72	234.49	101.96	23	. 10
$B C$	N 68 E	182.1	68.22	168.84	16	. 07
$C D$	S 347 W	329.42	-328.67	-21.74	. 30	. 13
DA	N 8415 W	249.92	25.04	-248.66	. 23	. 10

Cor. Lat.	Cor. Dep. D. M. D.	
$23+72$	101.86	-101.86
68.38	168.77	37.49
-328.37	-21.87	519.39
25.27	-248.76	248.76

Plus Areas. 23,905.5792 28,479.0662	Minus Areas.
	160,55..0943
6,286.5652	
55,671.2106	$\begin{array}{r} 170,552.0943 \\ 55,671.5652 \end{array}$

Double area $=114,880.8837$
\therefore Area $=57,440.44195$ sq. yds. $=23.7357$ acres.
The standard form of calculation of errors and areas is shown in Fig. 37.

Problem 25.-William James Farm.
Course.
AB
Bearing.

BC
S21 ${ }^{\circ} \mathrm{E}$
CD
S78 $8^{\circ} \mathrm{W}$
DA.
$\mathrm{N} 16^{\circ} \mathrm{W}$
Area $=35.01575$ acres
Problem 26.-Cambria Farm.

Course. $A B \ldots \ldots \ldots \ldots \ldots \ldots \ldots$. S 41 E
$B C \ldots \ldots \ldots \ldots \ldots \ldots \ldots . \mathrm{N} 99 \mathrm{~W}$
$C D \ldots \ldots \ldots \ldots \ldots \ldots \ldots . . \mathrm{N} 3130 \mathrm{E}$

Area $=39.357$ acres.
Problem 27.-Oran Farm.
Course.
AB
Bearing.
N5 ${ }^{\circ} 16^{\prime} \mathrm{E}$
BC......................... ${ }^{2} 28^{\circ} 30^{\prime} \mathrm{W}$
CD
S16 ${ }^{\circ}$ E
DE......................... $\mathrm{S}^{\circ}{ }^{\circ} 15^{\prime} \mathrm{E}$
EA
$\mathrm{N} 84^{\circ} 15 \mathrm{~W}$

Distance.
19.73 chains 15.85 chains 19.53 chains 21.51 chains

Distance.
100 poles
41 poles
99 poles
90 poles

Distance.
2056 varas
263.5 varas
255.6 varas
210.6 varas
227.7 varas

Area $=11.958$ acres.
Problem 28.-Diego Blanco Farm.
Course.
AB
Bearing.
BC
$\mathrm{N}^{2} 6^{\circ} \mathrm{E}$
CD........................ $559^{\circ} 30^{\prime} \mathrm{W}$

DA........................N17 ${ }^{\circ} 10^{\circ} \mathrm{W}$
Area - 3.97879 ačres.

Problem 29.-Bowie Blanca Farm.

Course.	Bearing.	Distance.
$A B$.	N56 ${ }^{\circ} \mathrm{E}$	540.0 feet
	S16 ${ }^{\circ} \mathrm{E}$	356.0 feet
CD	S59 $50^{\circ} \mathrm{W}$	224.0 feet
DA.	N17 ${ }^{\circ} 10^{\prime} \mathrm{W}$	321.2 feet
- Area		
Probl	Farm.	
Course.	Bearing.	Distance.
$A B$	N33 ${ }^{\circ} \mathrm{E}$	14 chains
	S67 ${ }^{\circ} \mathrm{E}$	18 chains
CD	S38 $8^{\circ} 40^{\circ} \mathrm{W}$	19 chains
DA.	N48 ${ }^{\circ} \mathrm{W}$	16 chains

Area $=27.5937$ acres.
Problem 31.-Leon Brooks Farm.
Course. Bearing.

BC
S17 ${ }^{\circ} 10^{\prime} \mathrm{E}$
CD
S56 ${ }^{\circ} 30^{\prime}$ E
DA.
N85015'W
Area $=2.80$ acres
Problem 32.-Francis Estell Farm.

Course.	Bearing
	$\mathrm{SiO}^{\circ} 1{ }^{\circ} \mathrm{E}$ E
	S56 ${ }^{\circ} \mathrm{W}$

Area $=\ldots \ldots$ acres.
Pkoblem 33.-Juan Viego Farm.

Course.	Bearing.
	N59 ${ }^{\circ} 30^{\circ} \mathrm{E}$
BC	$N 78^{\circ} \mathrm{E}$
CD	S
	N56 $6^{\circ} 30^{\prime} \mathrm{W}$

Area $=\ldots \ldots$. acres.
Problem 34.-John Bruce Farm.

Course. Bearing.
AB
$\mathrm{N} 87^{\circ} \mathrm{E}$
BC
CD
S59 ${ }^{\circ} 17^{\prime} \mathrm{W}$
S $84^{\circ} 45^{\prime} \mathrm{W}$
DA
N16 ${ }^{\circ} \mathrm{W}$

Distance.
750.0 feet
300.0 feet
356.8 feet
540.0 feet

Distance.
7.94 chains
4.88 chains
10.77 chains
8.74 chains

Distance.
376.0 varas
260.0 varas
117.3 varas
128.4 varas

Problem 40.

Course.	Bearing.	Distance.
$A B$	N3 ${ }^{\circ} 53^{\prime} \mathrm{E}$	7.70 chains
$B C$	S $82{ }^{\circ} 8^{\prime} \mathrm{E}$	39.05 chains
CD.	S $83{ }^{\circ} 42^{\prime} \mathrm{E}$	14.39 chains
DE	S. $56^{\circ} 9^{\prime} \mathrm{W}$	14.26 chains
EA.	N $80^{\circ} 3^{\prime} \mathrm{W}$	42.30 chains

Area $=40.604$ acres.
Problem 41.

Course.	Bearing.	Distance.
$A B$.	N $60{ }^{\circ} 05^{\prime} \mathrm{E}$	19.90 chains
$B C$	S13 $32{ }^{\prime} \mathrm{W}$	9.03 chains
$C D$.	$\mathrm{S} 27^{\circ} 20^{\prime} \mathrm{W}$	9.77 chains
DE	S43 ${ }^{\circ} 40^{\prime} \mathrm{W}$	5.67 chains
EA.	N30 ${ }^{\circ} 43^{\prime} \mathrm{W}$	13.24 chains

Arca $=16.3432$ acres.
81. Courses of No Latitude or Departure. -If a survey is made with the transit, the sum of the interior angles of the polygon should equal two right angles taken as many times as the polygon has sides less two. The error should not amount to more than three minutes, unless the number of sides is large. In a transit survey there can be very little error in the angular measurements and all errors in latitude and departure are largely due to errors in chaining. If a transit line is due north it is presumed that it is in the true meridian and therefore has no departure. Similarly if the course is due east it has no latitude, and if the angles check within three minutes (3^{\prime}), the errors must be distributed on the assumption that they were due io the chaining. The practice is to distribute the errors in latitude (departure) among those courses that have latitude or departure. Thus no north-south course would receive a correction for departure as its original departure and also its balanced departure is zero. Similarly a due east-west course receives no correction for latitude. Hence if a course is north (east) its length is omitted in the perimeter of the field in calculating the errors in departure (latitude). The following rules are used in balancing:

Rule No. 1.-Distribute all errors in latitude (departure) in proportion to the length of the courses. If any course is north
(east) its lenglh is omitted from the perimeter of the field. Error in latitude (departure) for any course is to the whole error in latitude (departure) as each course is to the corrected perimeter.

Rule No. 2.-The error in latitude (departure) in any course is to the whole error in latitude as the latitude of the course is to the sum of all the latitudes.

The transit is rapidly becoming the surveyor's instrument, as there is greater demand for accuracy with the advanced price of land. The needle is inaccurate at best and when we consider the effect of barbed wire fences, telephone and telegraph wires, local attraction and other similar influences that render the needle unstable, its efficiency as an instrument of precision is rendered doubtful in the extreme.

Rule No. 2 is by far the most logical in transit surveys and should be used in balancing, and it has the advantage that it is automatic in that it finds no error in departure for north-south courses or in latitude for east-west courses.
82. Example:-In the following survey the errors were distributed in proportion to the length of those courses that have latitude or departure:

If the errors are distributed in proportion to the latitudes and departures, the result is as follows:

Correc-

tions. Cor. Cor.
Lat. Dep. Lat. Dep. D. M. D

Problem 42.

Course.	Bearing.
$A B$	N36 ${ }^{\circ} 9^{\prime} \mathrm{E}$
$B C$	East
CD	South
$D A$.	N59 ${ }^{\circ} 2^{\prime} \mathrm{W}$

Distance. 20.0 chains
8.0 chains
28.0 chains
23.3 chains

Area $=34.3779$ acres .
Problem 43.

Course.	Bearing.
$A B$	N39 ${ }^{\circ} 30^{\prime} \mathrm{E}$
$B C$. East
$C D$	South
	N $61{ }^{\circ} \mathrm{W}$

Distance.
10 chains
11 chains
17 chains
20 chains

Area $=19.158$ acres.
Problem 44.-Find the area of the following: Beginning at a stake in road 762.5 feet west from Chisholm's southwest corner; thence N. $0^{\circ} 30^{\prime}$ E. 661 feet; thence up branch S. 81 W. 117 feet, S. 22 W. 124 feet, S. 8 W. 87, S. $70^{\circ} 30^{\prime}$ W. 162 feet, then S. $27^{\circ} 30^{\prime}$ W. 153 , S. $31^{\circ} 30^{\prime}$ E. 62 feet, S. 34° W. 94 fert, E. 304 feet, S. 5° W. 129 feet to middle of said road; thence E. along said road 116 feet to beginning.

Problem 45.

Course.	Bearing.
$A B \ldots \ldots \ldots \ldots \ldots \ldots \ldots$ N39	Distance.
$A^{\circ} \mathrm{E}$	20
$B C \ldots \ldots \ldots \ldots \ldots \ldots \ldots$ East	8
$C D \ldots \ldots \ldots \ldots \ldots \ldots \ldots$ South	28
$D A \ldots \ldots \ldots \ldots \ldots \ldots \ldots$. N $60^{\circ} \mathrm{W}$	23

83. Area by Co-ordinates.-If the co-ordinates of each corner of the farm are given with reference to two axes $O X$ and $O Y$, we can find the area by dropping perpendiculars from each corner on either axis, as OX, Fig. 38.

Fig. 38.
Let $O a, O b, O c$ and $O d=x_{\mathrm{a}}, x_{\mathrm{b}}, x_{\mathrm{c}}$ and x_{d}, repectively; and $A a, B b, C c$ and $D d=y_{\mathrm{a}}, y_{\mathrm{b}}, y_{\mathrm{c}}$ and y_{d}.

Now area $a A B b=a b \frac{(A a+B c)}{2}$

$$
\begin{aligned}
& \text { area } b B C c=b c \frac{(B b+C c)}{2} \\
& \text { area } c C D d=c d \frac{(C c+D d)}{2} \\
& \text { area } d D A a=d a \frac{(D d+A a)}{2}
\end{aligned}
$$

area of farm $=a A B b+b B C c-c C D d-d D A a=\left(x_{\mathrm{b}}-x_{\mathrm{a}}\right)$
$\frac{\left(y_{\mathrm{a}}+y_{\mathrm{b}}\right)}{2}+\left(x_{\mathrm{c}}-x_{\mathrm{b}}\right) \frac{\left(y_{\mathrm{b}}+y_{\mathrm{c}}\right)}{2}-\left(x_{\mathrm{c}}-x_{\mathrm{d}}\right) \frac{\left(y_{\mathrm{c}}+y_{\mathrm{d}}\right)}{2}-\left(x_{\mathrm{d}}-x_{\mathrm{a}}\right) \frac{\left(y_{\mathrm{d}}+y_{\mathrm{a}}\right)}{2}$
\therefore Double area $=x_{\mathrm{a}}\left(y_{\mathrm{d}}-y_{\mathrm{b}}\right)+x_{\mathrm{b}}\left(y_{\mathrm{a}}-y_{\mathrm{c}}\right)+x_{\mathrm{c}}\left(y_{\mathrm{b}}-y_{\mathrm{d}}\right)+$ $x_{\mathrm{d}}\left(y_{\mathrm{c}}-y_{\mathrm{a}}\right)$.

Similarly
Double area $=y_{\mathrm{a}}\left(x_{\mathrm{d}}-x_{\mathrm{b}}\right)+y_{\mathrm{b}}\left(x_{\mathrm{a}}-x_{\mathrm{c}}\right)+y_{\mathrm{c}}\left(x_{\mathrm{b}}-x_{\mathrm{d}}\right)+$ $y_{\mathrm{d}}\left(x_{\mathrm{c}}-x_{\mathrm{a}}\right)$.

This can be crysiallized into the following rule: To find the double area, multiply each abscissa (ordinate) by the difference of the adjacent ordinates (abscissas) taken in order.

Example.-Find the area of the farm whose co-ordinates are $(2,6),(6,10),(12,8),(4,2)$. Diff. of

X.	Y.	X 's.
2	6	2
6	10	10
12	8	-2
4	2	-10

Area.
-10

- 20
76.0

Problem 46.-Find the area

Fig. 39. by both methods of the farm whose co-ordinates are $(2,4)$, $(4.8),(12,12),(16,4)$, (10,0). Answer 96.

Problem 47.-Find area of polygon whose co-ordinates are $(0,0),(0,12),(10,9),(18,14)$. $(22,13),(9,0)$.
84. Traversing.-When it is desired to find the bearing and distance of one point from another, a survey is :un from the initial point to the final, making as many straight courses as desired. The latitudes and departures of these courses are calculated, and the closing course is a lost course whose bearing and length are desired and can be found by formulas 8 and 9 .
85. Example.-F ind the bearing and length of $A D$ in the following:
Course. Bearing. Distance Latitude. Departure.

$A B$	$\mathrm{~N} 31{ }^{\circ} \mathrm{E}$	20 chains	17.14	10.30
$B C$	$\mathrm{~N} 33^{\circ} \mathrm{E}$	24 chains	20.13	13.07
$C D$	$\mathrm{~N} 36^{\circ} \mathrm{E}$	26 chains	21.03	15.28
$D A$	$\ldots . \ldots$	\ldots.	$\ldots .$.	$\ldots .$.

The tangent of the bearing $=\frac{38.65}{58.30}=.66295$.
Therefore the bearing $=\mathrm{N} 33^{\circ} 32^{\prime} \mathrm{E}$

$$
\text { Length }=\sqrt{(58.20)^{2}+(38.65)^{2}}=69.86 .
$$

86. Approximate Traversing.-Where the bearings of the different courses of a traverse do not differ by more than 6° the bearing can be found by an application of the 57.3 rule. Let $A B C D$, Fig. 39, be a traverse, and let the bearings be as in the preceding example. Take a reference line and let a, b, and c be the angles that $A B, B C$, and $C D$ make with this line $A G$.

$$
\begin{aligned}
& 1 B=\frac{a l_{1}}{57.3} \\
& 2 C=\frac{b i_{2}}{57.3} \\
& 3 D=\frac{c l_{3}}{57.3}
\end{aligned}
$$

Let $x=$ angle that $A D$ makes with reference line $A G$.

$$
D G=\frac{x}{57.3} \times A D
$$

But $A D=A B+B C+C D$, nearly

$$
\begin{aligned}
& =1_{1}+1_{2}+1_{3} \\
& \frac{x}{57.3}\left(1_{1}+1_{2}+1_{3}\right)=\frac{a l_{1}+b l_{2}+c l_{3}}{57.3} \\
& x=\frac{a l_{1}+b l_{2}+c l_{3}}{1_{1}+1_{2}+1_{3}} \\
& D G=\frac{a l_{1}+b l_{2}+c l_{3}}{57.3}
\end{aligned}
$$

If $B=$ bearing of the reference line and we add $B\left(1_{1}+1_{2}+1_{8}\right)$ to each side, we get:
$B\left(1_{1}+1_{2}+1_{3}\right)+x\left(1_{1}+1_{2}+1_{3}\right)=a l_{1}+b l_{2}+c l_{3}+B l_{1}+B l_{2}+B l_{3}$
$(B+X)=\frac{1_{1}(B+a)+1_{2}(B+b)+1_{8}(B+c)}{1_{1}+1_{2}+1_{3}}$
That is, multiplying each bearing by its length, and dividing the sum of the results by the sum of the lengths of the courses gives the bearing required.

Let $a=32^{\circ}, b=33^{\circ}, c=36^{\circ}, A B=20, B C=24, C D=26$, find bearing of $A D$.

$$
(B+X)=\frac{31 \times 20+33 \times 24+36 \times 26}{70}=33^{\circ} .54=33^{\circ} 32^{\prime} .4
$$

Problem 48.-Find the approximate bearing of $A D$ from the following notes:

Course. Bearing.	Distance.
$A B \ldots \ldots \ldots \ldots \ldots \ldots$. S28E	20 chains
$B C \ldots \ldots \ldots \ldots \ldots \ldots \ldots$. S32E	18 chains
$C D \ldots \ldots \ldots \ldots \ldots \ldots .$. S30E	22 chains

DA

Fig. 40.
87. Irregular Boundaries. -It often happens that a creek or river is the boundary of a tract of land and the land follows the meanders of the river. Thus the field notes of a certain farm, Fig. 40, are as follows:

Beginning at a pecan tree marked X on Stone Creek, thence N. $36^{\circ} 9^{\prime}$ E. to a stone in the prairie 29 chains; thence E. 8 chains to a cottonwood marked H on the west bank of Mill Creek; thence with the meanders of Mill Creek to the junction of Stone Creek; thence up Stone Creek to the beginning.

The following offsets were taken:

$C D$			D. 4		
Dist.	Offset.	Area.	Dist.	Offset.	Area.
00 chains	00. chains	. 00 acres	00. chains	00. chains	. 00 acres
4 chains	2.0 chains	. 4 acres	5. chains	2.3 chains	. 575 acres
7 chains	2.5 chains	. 675 acres	9. chains	2.5 chains	. 960 acres
9 chaing	2.2 chains	. 47 acres	14. chains	2.1 chains	1.15 acres
12 chains	1.0 chains	. 48 acres	17. chains	1.8 chains	. 32 acres
15 chains	1.4 chains	. 36 acres	19. chains	1.4 chains	. 07 acres
20 chains	1.8 chains	. 80 acres	20. chains	. 0 chains	. 05 acres
24 chains	2.0 chains	. 76 acres	21. chains	1.0 chains	. 09 acres
26 chains	1.7 chains	. 37 acres	22. chains	. 8 chains	. 09 acres
28 chains	0.0 chains	. 17 acres	23.3 chains	. 0 chains	. 052 acres
4.485 acres					3.852 acres

Area of farm $A B C D$
Area of offsets from C to D
Area of offsets from D to A
$=34.3779$ acres
$=4.1250$ acres
$=3.852$ acres

Total area of farm with offsets $=42.7149$ acres
The land lines run up to the bank if the stream is navigable.
Problem 49.-The following offsets were taken where R and L refer to right and left of the line being surveyed. Find the total area of farm if bounded by straight sides $A B$ and $B C$ and the meanders of the streams to which offsets were taken from points along $C D$ and $D A$.

Length along $C D$	Offsets	Length along 0	0
0	0.	0	Offsets
3	.6 R	3	0
5	.8 R	5	.4 L
7	.3 R	7	.6 L
8	0.0	10	.8 L
9	.3 L	12	.4 L
11	.5 L	14	0.0
13	16	.5 R	
15	0.0	18	.4 R
17		20	0.0

88. Discrepancies.-It often happens that a survey is found where little care was exercised in the original survey when the grant or patent was taken up. If there are errors in the field motes of the original grant and there are no natural objects to which reference was made, it is very difficult, if not impossible, to re-establish the old lines. But if natural objects were referred to in the original field notes, and these objects can be found and identified, the re-establishment of the old survey is possible and, sometimes, comparatively easy. Corners are often defined or witnessed by natural objects, while the distances in the field notes do not agree with such witness objects. In such cases the natural objects control and the corners must be located as called for by the natural object irrespective of the length of the lines in the notes. If a line begins at a well known tree and runs with a certain bearing to the middle of a certain
stream, and thence with the meanders of the same, etc., the line must go to the center of the stream, although the distance of the line may fall short or exceed that called for in the recorded field notes.

Problem 50.-The area was calculated to be 39.354 acres. Find the area of the farm if the line $D A$ was a random line from which offsets were taken to a small creek on the left of $D A$, and completely outside the farm as given in problem 26. The following are the field notes for the offsets taken along $D A$:
Dist. from D
Offsets to left
00
16 8
28 12
40 6
$48 \quad 12$
68 4
90
0

Area $=3.55$ acres. If this area is added to the area of problem 26 we get for the whole area 42.907 acres, which is the area of the farm shown in the plot in Fig. 105.

CHAPTER V. DIVISION OF LAND.

89. Division of Triangle.-There are two cases which generally occur in practice. The first is to draw a line parallel to one side of a triangle to cut off a certain fraction of the whole area, or to divide the triangle into two parts whose areas shall have a certain ratio, while the second is to draw a line from one of the vertices of the triangle to divide it in a given ratio.

First Case: Given the triangle $A B C$, Fig. 41, the length of whose sides is known. The area of the triangle can be found from Formula 3. It is required to draw a line $P Q$ parallel to $B C$, so that

Fig. 41.

Fig. 42.

$$
A P Q: A B C:: m: n
$$

Let $A P=x$, and $A Q=y$. Then, $A P Q: A B C:: A P^{2}: A B^{2}, \therefore A P Q: A B C:: x^{2}: c^{2}$.

$$
\therefore x^{2}: c^{2}:: m: n . \quad \therefore \quad x=c \sqrt{\frac{m}{n}}
$$

$$
\text { In same way, } \quad y=0 \sqrt{\frac{m}{n}}
$$

Example: Given $a=300, b=240, c=180$. Find a line $P Q$ that will cut off $4 / 9$ of the triangle $A B C . \quad x=240 \sqrt{4 / 9}=$ $240 \times 2 / 3=160 . \quad y=180 \times 2 / 3=120$.

Second Case: Given the triangle $A B C$, Fig. 42, to draw a line $A K$, so that $A K$ will cut off the triangle $A K B$ equal to m / n of the triangle $A B C$. The triangles $A B K$ and $A B C$ have the same altitude, and are therefore to each other as their bases. Hence,

$$
\begin{array}{lc}
A B K: A B C:: m: n . & \text { But } A B K: A B C:: B K: B C \\
\therefore B K: B C: m: n . & B K=B C \times m / n
\end{array}
$$

Example: Find $B K$ in the foregoing example when $B A K$ is three-fifths of the triangle $A B C . B K=3 / 5 \times 300=180$.

Problem 51.-Given $a=340, b=2 i 2, c=204$. Find the area of $A B C$ and $A P$ and $A Q$ when $P Q$ is parallel to $B C$ and the triangle $A P Q$ is two-thirds of $A B C$.
90. Division Line Through Internal Point.-It may be possible that it is desired that the dividing line shall pass through some point inside the triangle and divide the triangle in a cer-

Fig. 43.
tain ratio. Let P be the internal point in the triangle $A B C$, Fig. 43 , and let it be required to pass a line, $H P Q$, through P that will make the triangle $A H Q$ have the ratio of m to n to the triangle $A B C$. The point P is known, and the perpendiculars $P D$ and $P E$ are known, or can be calculated. Let the area of the triangle $A B C$ be represented by K, and $P D=p, P E=q$, $A Q=x$, and $A H=y$. We have,

Area $A P Q=1 / 2 P D \times A Q=1 / 2 p x$
Area $A P H=1 / 2 P E \times A H=1 / 2 q y$.
Area $A P Q+$ area $A P H=$ area $A H Q=$
$1 / 2(p x+q y)=m / n K$
Also, we have,
Area $A H Q=1 / 2 A Q \times A H \sin . A=1 / 2 x y \sin . A$.
Area $A B C=A B \times A C \sin . A=1 / 2 b c \sin . A$.

But Area $A H Q=m / n$ area $A B C$
$\therefore \frac{1}{2}$ xy $\sin . A=\frac{m}{2 n}$ bc $\sin A$

$$
\begin{equation*}
\therefore x y=m / n b c . \tag{13}
\end{equation*}
$$

Thus we have two equations in x and y, and these can be found and laid off on the sides $A B$ and $A C$.

Example: Given $A B=420, A C=400, B C=260, P D=100$, $P E=60$. Find $x(A Q)$ and $y(A H)$, when triangle $A H Q$ is four-tenths of $A B C$.

By calculation we find area $A B C=50,400$.
Then we have,

$$
\begin{aligned}
& 50 x+30 y=4 / 1050,400=20,160 \\
& x y=4 / 10 \times 420 \times 400=67,200
\end{aligned}
$$

Solving for x and y, we get,

$$
x=219.57 \text { or } 183.63 ;
$$

$$
y=306.05 \text { or } 365.75 \text {. }
$$

Fig. 44.
Problem 51.-In the triangle, find x and y if the line $H Q$ is to pass through P and bisect the triangle $A B C$. Answer, $x=366.47, y=229.21$.
91. Division of Quadrilateral.-Given a quadrilateral $A B C D$, Fig. 44. Required to find a line $H Q$ through an internal point P that will make $A D H Q$ equal to m / n of $A B C D$. Let $S=$ area of $A D H Q$ and $K=$ area $A B C D$. The point P is located by perpendiculars, $P E$ and $P F$, on two sides of the quadrilateral. Produce two opposite sides $A B$ and $C D$ to intersect in some point O. Let $P F=p, P E=q$. The sides and angles of the quadrilateral $A B C D$ are known, and from these the sides
and area of $O A D$ can be calculated. Adding area of $O A D$ to $A D H Q$ will give the required area of $O H Q$, and addling the area of $O A D$ to the area of $A B C D$ will give the area of $O B C$. Find the ratio of $O H Q$ to $O B C$. The problem is then reduced to that of finding a line through P, dividing the triangle $O B C$ into the ratio of m to n. The solution comes under the case of dividing a triangle by a line through an internal point. After the areas of $A O D, O B C$ and $O H Q$ are found we have, where, $O A=a, O D=b, P E=q, P F=p, A Q=x, D H=y$,
$1 / 2 p(a+x)+1 / 2 q(b+y)=$ area $O H Q$,
$(a+x)(b+y)=m / n O B \times O C$.
From these two equations, the values of x and y can be calculated. In the same way we can find the line passing through an internal point in a pentagonal field, dividing the field in a certain ratio.

Problem 52.-If $A B=300, B C=192, C D=144, A D=180$, $D B=240, P E=96$ and $P F=60$, find the values of $x(=A Q)$ and $y(=D H)$ when the area $A D H Q$ is seven-twelfths of $A B C D$.
92. General Solution.-There are many problems in land dividing that can be solved by special methods, and there are often short operations that can be applied at once. In the majority of cases the line of division is not required to pass through an internal point. Where some certain point is given as the point of beginning of the division line, this point is generally at a corner of the field or on one side at a given distance from a corner. In such cases it is desired to find the bearing and length of the dividing line, and this problem is treated in a gencral way in the following articles. However, no attempt is made to solve problems of division in regard to the regular geometrical figures, as such solutions are rather simple and offer no difficulties to the student.

We have seen that the sum of the northings and the sum of the southings for a complete survey must each equal zero. Thus, we have two conditions to fulfill and mathematically this gives us two equations. If we let l_{1}, l_{2}, l_{s}, etc., represent the
lengths, and B_{1}, B_{2}, B_{3}, etc., represent the bearings of the different courses, we must have:

$$
\begin{align*}
& l_{1} \operatorname{Cos} B_{1}+l_{2} \operatorname{Cos} B_{2}+l_{3} \operatorname{Cos} B_{3} \text { etc. }=0 . \tag{14}\\
& l_{1} \operatorname{Sin} B_{1}+l_{2} \operatorname{Sin} B_{2}+l_{3} \operatorname{Sin} B_{3} \text { etc }=0 . \tag{15}
\end{align*}
$$

Theoretically, if we know all the parts except two we can find these two unknown parts from equations 14 and 15 . The lost or unknown parts can be:

Case I. Bearing and length of one course.
Case II. Length of two courses.
Case III. Length of one course and bearing of another.
Case IV. Bearing of two courses.
93. Case I.-If the bearing and length of one course is unknown, the latitudes and departures of the known courses are first found. The algebraic sum of these must be the. latitudes and departure of the unknown course with the signs changed.

If we let L and D be the latitude and departure of the unknown course, respectively, then the length of the course

$$
=\sqrt{L^{2}+D^{2}}
$$

And the tangent of the bearing $=\frac{D}{L}$
Example: Find the lost parts in the following:
Course.

Bearing.	Dist.
N $62^{\circ} 7^{\prime} \mathrm{E}$	9.24
$\mathrm{~S} 36^{\circ} 5^{\prime} \mathrm{E}$	7.62
$\left.\mathrm{~S} 45^{2} 9^{\prime} 9^{\prime} \mathrm{W}\right)$	(10.10)
N $31^{\circ}{ }^{\circ} 28^{\prime} \mathrm{W}$	10.46
$L=4.32+8.92-6.16=7.08$	
$D=8.17+4.49-5.46=7.20$	

Length $C D=\sqrt{(7.08)^{2}+(7.20)^{2}}=10.10$
Tangent bearing $=\frac{7.20}{7.08}=1.1070$
\therefore Bearing $=\mathrm{S} 45^{\circ} 29^{\prime} \mathrm{W}$
Problem 54.-Find the lost parts in the following:

Course.
$A B$.
Bearing.
N $46^{\circ} 22^{\prime} \mathrm{E}$
$B C$.
CD
S42 ${ }^{\circ} \mathrm{W}$
DA
$\mathrm{N} 29^{\circ} \mathrm{W}$

Distance.
38 chains
42 chains
54 chains
94. Case II.-If two lengths are unknown we first find the latitudes and departures of the known courses.

Let x and y be the unknown lengths and M and N be the bearings of these courses, respectively. Then from equations 14 and 15 we have:

$$
\begin{aligned}
& x \operatorname{Cos} M+y \operatorname{Cos} N+L=0 \\
& x \operatorname{Sin} M+1 \operatorname{Sin} N+D=0
\end{aligned}
$$

Multiply the first equation by $\operatorname{Sin} N$ and the second by $\operatorname{Cos} N$ and we have:

$$
\begin{aligned}
& x \operatorname{Cos} M \operatorname{Sin} N+y \operatorname{Cos} N \operatorname{Sin} N+L \operatorname{Sin} N=0 \\
& x \operatorname{Sin} M \operatorname{Cos} N+y \operatorname{Cos} N \operatorname{Sin} N+D \operatorname{Cos} N=0
\end{aligned}
$$

Subtracting and transposing, we get:

$$
\begin{aligned}
& x(\operatorname{Sin} M \operatorname{Cos} N-\operatorname{Cos} M \operatorname{Sin} N)=L \operatorname{Sin} N-D \operatorname{Cos} N \\
& x \operatorname{Sin}(M-N)=L \operatorname{Sin} N-D \operatorname{Cos} N
\end{aligned}
$$

$$
x=\frac{L \operatorname{Sin} N-D \operatorname{Cos} N}{\operatorname{Sin}(M-N)}
$$

Example.-Find the lost parts in the following survey:

Course.	Bearing.	Dist.	Lat.	Dept.
$A B \ldots$	$N 47^{\circ} 2^{\prime} \mathrm{E}$	31.30	21.33	22.90
$B C \ldots$	$\mathrm{~S} 57^{\circ} 4^{\prime} \mathrm{E}$	21.10	-11.47	17.71
$C D \ldots$	$\mathrm{~S} 60^{\circ} \mathrm{W}$	x	$-x \operatorname{Cos} 60^{\circ}$	$-\mathrm{x} \operatorname{Sin} 60^{\circ}$
$D A \ldots$	$\mathrm{~N} 40^{\circ} \mathrm{W}$	y	$y \operatorname{Cos} 40^{\circ}$	$-\mathrm{y} \operatorname{Sin} 40^{\circ}$

From formulas (14) and (15), we get,

$$
\begin{aligned}
& -x \operatorname{Cos} 60^{\circ}+y \operatorname{Cos} 40+9.86=0 \\
& -x \operatorname{Sin} 60-y \operatorname{Sin} 40+40.61=0
\end{aligned}
$$

Multiplying the first equation by $\operatorname{Sin} 40^{\circ}$ and the second by $\operatorname{Cos} 40^{\circ}$ we have :
$-x \operatorname{Cos} 60^{\circ} \operatorname{Sin} 40^{\circ}+y \operatorname{Sin} 40^{\circ} \operatorname{Cos} 40^{\circ}+9.86 \operatorname{Sin} 40^{\circ}=0$
$-x \operatorname{Sin} 60^{\circ} \operatorname{Cos} 40^{\circ}-y \operatorname{Sin} 40^{\circ} \operatorname{Cos} 40^{\circ}+40.61 \operatorname{Cos} 40^{\circ}=0$
Transposing and changing signs we have:
$x \operatorname{Cos} 60 \operatorname{Sin} 40^{\circ}-y \operatorname{Sin} 40^{\circ} \operatorname{Cos} 40^{\circ}=9.86 \operatorname{Sin} 40$
$x \operatorname{Sin} 60^{\circ} \operatorname{Cos} 40^{\circ}+y \operatorname{Sin} 40^{\circ} \operatorname{Cos} 40^{\circ}=40.61 \operatorname{Cos} 40$
Adding:
$x\left(\operatorname{Sin} 60^{\circ} \operatorname{Cos} 40^{\circ}+\operatorname{Cos} 60^{\circ} \operatorname{Sin} 40^{\circ}\right)=40.61 \operatorname{Cos} 40^{\circ}+9.86 \operatorname{Sin} 40$ $x \operatorname{Sin} 100^{\circ}=40.61 \operatorname{Cos} 40^{\circ}+9.86 \operatorname{Sin} 40^{\circ}$

$$
x=\frac{40.61 \operatorname{Cos} 40^{\circ}+9.86 \operatorname{Sin} 40^{\circ}}{\operatorname{Sin} 100^{\circ}}
$$

$$
x=\frac{4061 \times .76604+9.86 \times .64279}{.98481}=38.024
$$

If we multiply the first equation by $\operatorname{Sin} 60^{\circ}$ and the second by $\operatorname{Cos} 60^{\circ}$ we get:
$x \operatorname{Cos} 60^{\circ} \operatorname{Sin} 60^{\circ}-y \operatorname{Sin} 60^{\circ} \operatorname{Cos} 40^{\circ}=9.86 \operatorname{Sin} 60^{\circ}$ $x \operatorname{Cos} 60^{\circ} \operatorname{Sin} 60^{\circ}+y \operatorname{Cos} 60^{\circ} \operatorname{Sin} 40^{\circ}=40.61 \operatorname{Cos} 60^{\circ}$
Subtracting and changing the signs we have:
$y\left(\operatorname{Sin} 60^{\circ} \operatorname{Cos} 40^{\circ}+\operatorname{Cos} 60^{\circ} \operatorname{Sin} 40^{\circ}\right)=40.61 \operatorname{Cos} 60^{\circ}-9.86 \operatorname{Sin} 60^{\circ}$ $y \operatorname{Sin} 100^{\circ}=40.61 \operatorname{Cos} 60^{\circ}-9.86 \operatorname{Sin} 60^{\circ}$

$$
\begin{gathered}
y=\frac{40.61 \operatorname{Cos} 60^{\circ}-9.86 \operatorname{Sin} 60^{\circ}}{\operatorname{Sin} 100^{\circ}} \\
y=\frac{40.61 \times .5--9.86 \times .86603}{.98481}=11.94 .733
\end{gathered}
$$

Problem 5 j.$-F i n d ~ t h e ~ l o s t ~ p a r t s . ~$

Bearing. N5 ${ }^{\circ} \mathrm{E}$ S $17^{\circ} \mathrm{E}$ S56 ${ }^{\circ}$ E $\mathrm{N} 85^{\circ} \mathrm{W}$

Distance.
8.68
x
y
9.58

$$
x=4.687, y=8.937
$$

95. Case III.-The length of one course and the bearing of another lost.

Find the unknown parts in the following example:

Course. Bearing. Distance $A B$ $C D$ $D E$ EA
$\therefore 36^{\circ} \mathrm{E}$
X°
S $20^{\circ} \mathrm{E}$
$\mathrm{S} 75^{\circ} \mathrm{W}$ $\mathrm{N} 30^{\circ} \mathrm{W}$

12 chains
8 chains
11 chains
y chains
10 chains

Latitude.
9.708
$-8 \operatorname{Cos} \mathrm{X}^{\circ}$
-10.337
$-y \operatorname{Cos} 75^{\circ}$ 8.660

Departure.
7.054
$8 \operatorname{Sin} \mathrm{X}^{\circ}$
3.762
$-y \sin 75^{\circ}$
-5.000

In all cases it is better to make a graphical solution in order to find the direction letters of the bearing. Lay off $A B$. Fig. 45, N. 36° E., equal to 12 chains to some scale; and E.A S. 30° E. 10 chains. C will be somewhere on the circumference of a circle whose center is B and whose radius is 8 chains, while D. will be somewhere on $E D$, Were $E D$ is drawn with

Fig. 45.
a bearing of $\mathrm{N} .75^{\circ} \mathrm{E}$. Through B draw $B D^{\prime} \mathrm{S} .20^{\circ}$ E., and lay off $C^{\prime} D^{\prime}$ from D^{\prime} equal and parallel to $C D$. Through C^{\prime} draw $C C^{\prime}$ parallel to $E D$ and cutting the circle at C and $C^{\prime \prime}$ and through C and $C^{\prime \prime}$ draw $C D$ and $C^{\prime \prime} D^{\prime \prime}$ parallel to $B D^{\prime}$. There are two solutions, $A B C D E$ being one and $A B C^{\prime \prime} D^{\prime \prime} E$ being the other. From the figure we see that the bearing of $B C$ is southeast, and that of $B C^{\prime \prime}$. is southwest. Filling out the table for the southeast bearing and adding the latitude and departures, we get:

$$
\begin{aligned}
& 8 \operatorname{Cos} X^{\circ}+y \operatorname{Cos} 75^{\circ}=+8.031 \\
& 8 \operatorname{Sin} X^{\circ}-y \operatorname{Sin} 75^{\circ}=-5.816
\end{aligned}
$$

Multiplying the first equation by $\operatorname{Sin} 75^{\circ}$ and the second by $\operatorname{Cos} 75^{\circ}$, we have:
$8 \operatorname{Cos} X^{\circ} \operatorname{Sin} 75^{\circ}+y \operatorname{Cos} 75^{\circ} \operatorname{Sin} 75^{\circ}=8.131 \operatorname{Sin} 75^{\circ}$
$8 \operatorname{Sin} X^{\circ} \operatorname{Cos} 75^{\circ}-y \operatorname{Cos} 75^{\circ} \operatorname{Sin} 75^{\circ}=-5.816 \operatorname{Cos} 75^{\circ}$
Adding, we have:

$$
\begin{gathered}
8\left(\operatorname{Sin} X^{\circ} \operatorname{Cos} 75^{\circ}+\operatorname{Cos} X^{\circ} \operatorname{Sin} 75^{\circ}\right)= \\
8.031 \operatorname{Sin} 75^{\circ}-5.816 \operatorname{Cos} 75^{\circ}
\end{gathered}
$$

$\operatorname{Sin}\left(X^{\circ}+75^{\circ}\right)=\frac{8.031 \operatorname{Sin} 75^{\circ}-5.816 \cos 75^{\circ}}{8}=.78151$

$$
\begin{aligned}
& X^{\circ}+75^{\circ}=128^{\circ} 36^{\prime} \text { or } 51^{\circ} 24^{\prime} \\
& X^{\circ}=53^{\circ} 36^{\prime} \text { or } 23^{\circ} 36^{\prime}
\end{aligned}
$$

To eliminate X°, we have :

$$
\begin{aligned}
& \operatorname{Cos} X^{\circ}=\frac{8.031-y \operatorname{Cos} 75^{\circ}}{8} \\
& \operatorname{Sin} X^{\circ}=\frac{y \operatorname{Sin} 75^{\circ}-5.816}{8}
\end{aligned}
$$

Squaring and adding, we have:
$64=98.322817-y\left(16.062 \operatorname{Cos} 75^{\circ}+11.632 \operatorname{Sin} 75^{\circ}\right)+y^{2}$
$\therefore y^{2}-y\left(11.632 \operatorname{Sin} 75^{\circ}+16.062 \operatorname{Cos} 75^{\circ}\right)=-34.322817$
$y^{2}-15.342864 y=-34.322817$.
Completing the square, we have:

$$
y=12.685, \text { or } 2.705
$$

Problem 55.-Find the bearing X and the distance y in the preceding examples, when the course $B C$ bears southwest.

Answer. Bearing, $23^{\circ} 36$. Length, 2.704.
96. Case IV.-Two bearings unknown.

Let X and Y be the unknown bearings, a and b the lengths of these courses, and L and D be the latitude difference and the departure difference of these courses, respectively; then

$$
\begin{aligned}
& \text { a } \cos X^{\circ}+b \cos Y^{\circ}=L \\
& \text { a } \sin X^{\circ}+b \sin Y^{\circ}=D
\end{aligned}
$$

Then $\operatorname{Cos} Y^{\circ}=\frac{L-a \operatorname{Cos} X^{\circ}}{b}$ and $\operatorname{Sin} Y^{\circ}=\frac{D-a \operatorname{Sin} X}{b}$
Squaring and adding, we have:

$$
\begin{gathered}
\operatorname{Sin}^{2} Y^{\circ}+\operatorname{Cos}^{2} Y^{\circ}=\frac{\left(L-a \operatorname{Cos} X^{\circ}\right)^{2}}{b^{2}}+\frac{\left(D-a \operatorname{Sin} X^{\circ}\right)^{2}}{b^{2}} \\
\text { Let } 2 T=a^{2}+L^{2}+D^{2}-b^{2} \\
\text { But } \operatorname{Cos}^{2} X=1-\operatorname{Sin}^{2} X \\
\text { Therefore } 1-\operatorname{Sin}^{2} X=\left(\frac{T-a D \operatorname{Sin} X}{a L}\right)^{2}
\end{gathered}
$$

Then $a^{2} L^{2}-T^{2}=a^{2}\left(L^{2}+D^{2}\right) \operatorname{Sin}^{2} X-2 a D T \operatorname{Sin} X$
From this quadratic in $\operatorname{Sin} X$ two values of $\operatorname{Sin} X$ will be found and there will be two solutions possible.
97. Example.-Find the unknown parts in the following example:

Course.	Bearing.	Distance.	Latitude.	Departure.
$A B$.	N24 ${ }^{\circ} \mathrm{E}$	26 chains	23.752	10.575
	$\mathrm{Sx}^{\circ} \mathrm{E}$	28 chains	-28 Cos X	$28 \operatorname{Sin} \mathrm{X}$
CD.	S $38{ }^{\circ} \mathrm{E}$	24 chains	-18.912	14.776
$D E$.	$\mathrm{Sy}^{\circ} \mathrm{W}$	36 chains	$-36 \mathrm{Cos} \mathrm{Y}$	-36 Sin Y
EA.	N $44^{\circ} \mathrm{W}$	18 chains	12.948	-12.504

To find the direction letters draw $A B$, Fig. 46, N. 24° E., and $E A$ S. 44° E., move $C D$ from its true position to some position $C^{\prime} D^{\prime}$ parallel and equal to itself where C^{\prime}. coincides with B. C has been moved 28 chains, because the length of $B C$ is 28 chains. Now, D is 28 chains from D^{\prime}, but D is also 36 chains from E, hence with D^{\prime} as a center and a radius of 28 chains describe an arc, and with E as a center and 36 chains as a radius describe an arc cutting the first arc at D. Draw $D C \mathrm{~N}$. 38° W. 24 chains. Draw $B C$ and $D E$. Thus, we see that $B C$ bears southeast and that $D E$ bears southwest. Putting the di-
rection letters in the table and filling out the latitude and departure columns, we have for our equations:

$$
\begin{aligned}
& 28 \operatorname{Cos} X+36 \operatorname{Cos} Y=17.788 \\
& 28 \operatorname{Sin} X-36 \operatorname{Sin} Y=-12.847
\end{aligned}
$$

$$
\begin{aligned}
& \text { Then } \operatorname{Cos} Y=\frac{4.447-7 \operatorname{Cos} X}{9} \text { and } \operatorname{Sin} Y=\frac{3.212+7 \operatorname{Sin} X}{9} \\
& 81=30.092753-62.258 \operatorname{Cos} X+44.968 \operatorname{Sin} X+49 \\
& 4.447 \operatorname{Cos} X=3.212 \operatorname{Sin} X-.136232 \\
& \operatorname{Cos} X=.72228 \operatorname{Sin} X-.030635 \\
& 1-\operatorname{Sin}^{2} X=.009285+.04425409 \operatorname{Sin} X+.5216884 \operatorname{Sin}^{2} X \\
& \operatorname{Sin}^{2} X+.02908 \operatorname{Sin} X=.65655 \\
& \operatorname{Sin} X=82498 \\
& X=50^{\circ} 35^{\prime} 11^{\prime \prime}
\end{aligned}
$$

Problem 56.-Find the lost parts.

Course.
AB.
BC
CD
DE.. . . $\mathrm{S} 38^{\circ} \mathrm{W}$
EA.

Fig. 46.

Bearing.
$\mathrm{N} 31^{\circ} \mathrm{E}$ $\mathrm{N} 62^{\circ} \mathrm{E}$
S. $38^{\circ} \mathrm{W}$
98. Dividing Land.-It often becomes necessary to divide farms among the different owners. A certain number of acres is sold from one part of a farm, and it becomes necessary to know the boundaries of the part cut off from the original survey. The partition is generally made in two ways, either by
a line starting at a certain point cutting off the required number of acres, or by a line that has a certain bearing. The following examples will serve to illustrate the methods.
99. Example.-Find the bearing and length of a line $A P$ that will cut off 40 acres from the farm $A B C D$, as given below in Fig. 47.

				115.		
Course. $A B . .$.	Bearing.	Distance. 31.0 chains	Lat. 21.13	Dep. 2. 6.6	Lat.	Dep.
BC.....	S $577^{\circ} 4^{\prime} \mathrm{E}$	21.0 chains	-11.42	17.63	. 08	. 02
CD....	$\mathrm{S} 28^{\circ} 42^{\prime} \mathrm{W}$	40.0 chains	-3.99	-19.21	. 16	. 04
DA.....	$\mathrm{N} 40^{\circ} 27^{\prime} \mathrm{W}$	32.7 chains	24.88	- 21.22	. 13	. 03
			$\begin{aligned} & -46.51 \\ & +46.01 \end{aligned}$	$\begin{array}{r} -40.43 \\ 40.31 \end{array}$		
			- . 50	- . 12		
Corrected	Corrected			rea.		
Latitude.	Departure.	D. M. D.	+			
- 21.26	22.71	22.71	482.8146			
- 11.34	17.65	63.07		715.2		
- 34.93	-19.17	61.55		2149.		
25.01	-21.19	21.19	529.9619			
			1012.7765	2865.		
				1012.7		
			Double ar Are	$\begin{aligned} & \mathrm{a}=1852 . \\ & \mathrm{a}=92 . \end{aligned}$	$\begin{aligned} & 788 \mathrm{sq} \\ & 1894 \mathrm{a} \end{aligned}$. ch. cres.

Join the starting point A of division with the corner C nearest the final end of the required course. Find the area of the part thus cut off as follows:

Conrse.	Cor. Lat.	Cor. Dep.	D. M. D.	Area
$A B$. 21.26	22.71	22.71	482.8146
$B C$	-11.34	17.65	63.07	-715.2138
$C A$	-9.92	- 40.36	40.36	-400.4712

Area $=31.64352$ acres.
As the area of the triangle $A B C$ is only 31.64 acres, the line $A P$ that makes area $A B C P$ equal to 40 acres must cut the side $C D$. hence P lies on side $C D$.

Length $C A=\sqrt{(9.92)^{2}+(40.36)^{2}}=41.561$
Tan. bearing of $C A=\frac{40.36}{9.92}=4.06855$
\therefore Bearing of $C A=76^{\circ} 11^{\prime} 28^{\prime \prime}$
Angle $A C P=47^{\circ} 29^{\prime} 28^{\prime \prime}$
Now area $A C P=400-316.4352=83.5648$ sq. chains.
But area $A \cdot C P=1 / 2 C A, C P \sin . A C P$
$\therefore C P=\frac{2 \text { area } A C P}{C A \sin . A C P}=\frac{1671296}{41.561 \times .73717}=5.455$ chains

The latitude and departure of $C P$ bear the same ratio to the corrected latitude and departure of $C D$ that the length $C P$ does to $C D$.

$$
\therefore \text { Lat. } C P=4.788^{\circ} \text { Dcp. CP }=2.60^{\circ}
$$

To find the length and bearing of $P A$, complete the table of $A B C P$.

Course.	Latitude.	Departure.	D. M. D.	Area.
$A B \ldots \ldots \ldots \ldots$	21.26	22.71	22.71	482.8146
$B C \ldots \ldots \ldots \ldots$	-11.34	17.6.	63.07	-715.2138
$C P \ldots \ldots \ldots \ldots$	-4.785	-2.62	78.10	-374.408 .7
$P A \ldots \ldots \ldots \ldots \ldots$	-5.135	-37.74	37.74	-193.7949

Double area $=800.6026$ square chains.
Area $A B C P=40.03$ acres.
Problem 57.-In the example in Article 99, find the bearing and length of a line $A P$ that will cut off an area $A B P$ equal to nine acres.

Problem 58.-Find the bearing and iength of a line $D K$ in the preceding problem that will make area $A D K$ equal to six acres.
100. Example.-Find the length of a line that bears N. 52° E. and cuts off 51 acres on the northwest side of the farm $A B C D$ above.

Draw a line $C P$, Fig. 47, through C that bears N. 52° E., and find the length $C P$ and $A P$.

Applying equations (14) and (15) we get:

$$
\begin{align*}
& x \cos 40^{\circ} 27^{\prime}-y \cos .52=-9.92 \tag{A}\\
& x \sin .40^{\circ} 27^{\prime}+y \sin .52=10.36 \tag{B}
\end{align*}
$$

Eliminating y

$$
x=\frac{40.36 \cos .52-9.92 \sin .52}{\sin .92^{\circ} 27^{\prime}}=17.046
$$

Similarly,

$$
y=\frac{40.36 \cos .40^{\circ} 27^{\prime}+9.92 \sin .40^{\circ} 27^{\prime}}{\sin .92^{\circ} 27^{\prime}}=37.193
$$

Find the area of $A B C P$, as follows:

Course.	Latitude.	Departure.	D. M. D.	Area.
$A B \ldots \ldots \ldots \ldots$.	21.26	22.71	2271	482.8146
$B C \ldots \ldots \ldots \ldots \ldots$	-11.34	17.6 .5	63.07	-715.2138
$C P \ldots \ldots \ldots \ldots \ldots$	-22.89	-29.30	51.42	-1177.0038
$P A \ldots \ldots \ldots \ldots \ldots$	+12.97	-11.06	11.06	143.4482

Area $A B C P=63.29724$ acres.

Fig. 47.
The line $C P$ cuts off 12.29724 acres in excess. Let the line $M N$, parallel to $C P$, cut off the required area. Hence the area $M N C P$ is 122.9724 square chains. From C and P drop perpendiculars on $M N$, cutting it at K and H.

Angle $M P H=2^{〔} 27^{\prime}$; angle $N C K=19^{\circ} 4^{\prime}$
Let $z=$ altitude of trapezoid $M N C P=P H=C K$
Now,

$$
M N \dot{C} P=H K C P-N C K+M P H
$$

$$
122.9724=37.193 z-\frac{z^{2}}{2} \tan .19^{\circ} 4^{\prime}+\frac{z^{2}}{2} \tan .2^{\circ} 27^{\prime}
$$

$$
\frac{z^{2}}{2}\left(\tan .19^{\circ} 4^{\prime}-\tan .2^{\circ} 27^{\prime}\right)-37.193 z=-122.9724
$$

$.15305 z^{2}-37.193 z=-122.972 x$
$z^{2}-243.012 z=-803.48$
$\therefore z=3.353$ chains
$N C=3.353 \div \cos .19^{\circ} 4^{\prime}=3.548$
$P M=3.353 \div \cos .2^{\circ} 27^{\prime}=3.356$
$N K=3.353 \tan .19^{\circ} 4^{\prime}=1.16$.
$M H=3.353$ tan. $2^{\circ}{ }^{\circ} 7^{\prime}=.14$
The field notes of the 51 acres will read as follows:

Course.
AB
Bearing.
$\mathrm{N} 47^{\circ} 2^{\prime} \mathrm{E}$
$\mathrm{S} 57^{\circ} 4^{\prime} \mathrm{E}$
NM
MA

S52 ${ }^{\circ} \mathrm{W}$
$\mathrm{N} 40^{\circ} 27^{\prime} \mathrm{W}$

Distance. 31.0 chains 17.452 chains 36.173 chains 13.690 chains

Problem 57.-Find the bearing and length of a line that starts from mid-point of $C D$ and bisects farm, Fig. 47.
'Problem 58.-Find bearing and length of a line that starts on $A D 15$ chains from A and cuts off 50 acres from west side of farm, Fig. 47.

Problem 59.-In the example of Fig. 47 find the bearing and length of a line that starts at a point H on $A B 15$ chains from D and bisects farm.

Problem 60.-Find bearing and length of a line $D P$ in example of Fig. 47 that cuts off 3 acres on left of dividing line.

Problem 61.-Find the length of line $P Q$ that bears $\mathrm{N} 45^{\circ} \mathrm{W}$. and bisects farm in example of Art. 100.

Bibliography.-The works of the late J. B. Johnson and the late Charles Davies, which have already been described, have sections that deal with the problems of land dividing.
"Plane Surveying," by Daniel Carhart, gives not only a treatment of the land division, but also of the theory and use of instruments and methods of surveying, calculation, earthwork, etc., tables "A Treatise on Surveying," Part I, by the late W.

DIVISION OF LAND. 9.5

M. Gillespie, restricts its discussion to land surveying and direct leveling, and under the subject of land division it gives a great number of problems for the division of land, illustrated by figures and examples.

CHAPTER VI.

LEVELING.

101. The Y Level.-The essential parts of a Y level, Fig. 48 , are the bubble tube and the line of sight. The latter is determined by the telescope and should be parallel to the axis of the bubble tube. The telescope rests in two Y-shaped supports called V^{5} 's or Wyes, which are attached to a horizontal bar. The lower part of the wye is formed into a threaded bolt that passes through a hole in the end of the horizontal bar. Two capstan nuts are attached to each wye, one above and one below the bar. By turning these capstan screws the wye can be raised or lowered at pleasure. Small, hard, steel pins, about $1-16 \mathrm{in}$. in diameter, are used for operating the capstan screws. The horizontal bar is attached by a screwjoint to a vertical axis turned in the form oi a frustrum of a cone. The telescope with the wyes, horizontal bar, and socket can be removed from the level-head. The level-head consists of a horizontal brass plate enlarged into a ball and socket joint in the center and into a rim with screw threads on the circumference; the former is to provide an adjusting motion for the leveling screws, and the latter for attachments to the tripod head. Above the brass plate, which is attached to the tripod, is another plate provided with four vertical, .cylindrical screws. into which the four leveling screws rest in small seats with ball and socket joints, and are operated by milled-head screws. A longitudinal cross-section of the level and telescope is shown in Fig. 49.
102. The Telescope.-The telescope, Fig. 49, consists of an eye-piece, an objective. and a tube to hold them in place. The eye-piece is a very small microscope of a very short length, one end of which is very near the cross wires. In the erecting telescope it consists of four lenses: the eye lens, the field lens, the amplifying lens, and the image lens, arranged in order from the eye. The objective consists of a special tube sliding in the

main barrel of the telescope with a double lens in the outer end. The objective is held true to its place by two collars inside the main tube. The lens has a long focal length and draws the image to the plane of the cross wires. If this lens were a double convex lens it would neither bring the rays to an exact focus nor make them colorless. Hold a double conrex lens so that its central plane is perpendicular to the rays of the sun and hold a sheet of paper back of the lens and move it to and fro to find the focurs. If the paper is held between the focus and the lens the edge of the bright circle will be colored red. Move the ${ }^{\circ}$ paper beyond the focus and we find the edge colored blue. In any lens all parallel rays of sunlight, having equal wave lengths, are brought to a focus at a fixed distance behind the lens, called the focal length, or the principal focal distance.

If the lens in the end of the objective were single, the rays of sunlight would not be brought to a focus, but the object would be.fringed with colors; that is, the single lens makes the rays planatic (wandering) and chromatic (colored). To make the rays aplanatic and achromatic the object glass is made of two lenses, Fig. 50 , a double consex and a plano-concave: the former of crown glass and the latter of flint glass. The refractive indices of these kinds of glass supplement each otiser and the rays are brought to a focus and are colorless.

The eye-piece is moved by means of milled-head screws attached to a rack and pinion movement, or by a spiral slot into which a pin works. In the first case the eye-piece is moved by the milled-head screws until the cross wires come into view: in the latter case the eye-piece itself is moved backward and forward in the telescope by turning it. The cross wires are attached to a brass ring. called the reticule, which is controlled by small capstan screws outside the telescope.

The tripod is a three-legged support connected to a plate to which the level-head is screwed when the instrument is in use. The legs are made of hard, straight-grained wood, and shod with hard, steel conical shoes.

103. Setting $U p$ the Instrument.-Set the tripod with legs well spraddled, and then place the level on the tripod, screwing the level-head into the tripod cap. Bring the telescope parallel to two opposite leveling screws; turn the screws both out or both in, making the left thumb move in the direction that the bubble is to shift. After the bubble reaches the center of its turn, turn the telescope over the other pair of. opposite screws and repeat the left-thumb process. Repeat and check both on second leveling.
104. Rods.-Leveling rods uscd by engineers are divided into feet, tenths of a foot, and hundredths of a foot, and have a vernier attachment, which enables the rod to be read to the thousandth part of a foot.

The Philadelphia rod, Fig. 51 , is usually $71 / 2 \mathrm{ft}$. long, and is made in two pieces, which may be effectively extended to a length of 12 ft . This rod has the foot division lines marked by red figures; the even tenths of a foot are marked by black figures ; and each alternate hundredth of a foot is painted black half way across the rod on a white background. This enables the rod to be read to the nearest hundredth of a foot from a distance through the telescope by the levelman. When the rod is extended, a continuous graduation to 12 ft . is visible. This rod is provided with a target, a circular piece of metal about 4 ins. in diameter, alternate graduations of which are painted red and white. The target slides along the rod, and its exact distance from the end of the rod may be read by means of a hole in the center. A vernier attached to the target cnables the rodman to read to the thousandth part of a foot. This rod is intended for quick work and hard service. It should be made of the best wood, brass trimmings and varnished to resist water.

The New York rod, Fig. 52, is similar to the Philadelphia rod, but it is lighter and much more care is taken in its graduation. The rod can not be read directly from the instrument. It is intended for precise leveling.

Fig. 53.

Figure 53 shows a form of self-reading rod that can be used when it is desired to read the rod directly from the instrument. Its graduations are similar to those of the Philadelphia rod, but it is somewhat lighter. The Philadelphia rod can be used as a self-reading rod and it is often convenient to use it as such.
105. Theory of Leveling.-When an engineer's level has been set up, and the bubble brought to the center of the bubbletube, the line of sights is horizontal. The elevation of this horizontal line can be found by noticing how much it strikes above some point whose elevation is known, and adding this distance to the known elevation of the reference point or datum. Having determined the elevation of the horizontal line, the

Fig. 54.
elevation of any other point may be easily found by noticing now much the horizontal line is above the point in question, and subtracting this amount from the elevation of the line of sights. The term "height of instrument" is given to the elevation of the horizontal line of sights.

Suppose the elevation of some point A, Fig. 54, has been determined and is 100 ft . above some plane known as the datum plane, the elevation of which is called zero. It is desired to find the elevation of some point P. Set the instrument at B and get the rod reading $A D$, which is 8.46 ft . Adding 8.46 ft . to 100 ft . gives 108.46 ft . as the height of the horizontal line of sights, so we say that the height of the instrument (H. I.) is 108.46 ft . Sight next on point C and read the distance $C K$
on the rod, which.is $2.0 . \mathrm{ft}$.; subtracting this from the H . I., 108.46 ft ., gives us 106.41 ft ., the elevation of the point C. The elevation of the point C having been found, the point C may be used to find the elevation of another point in the same way that the elevation of the point A was used to find C. Thus, set the instrument at E and read the rod on C and let $C M=6.58$ ft . Then the new H. I. $=106.41+6.58=112.99$.

It often happens that the line of sights strikes the ground in front of a regular station as at G. If this occurs, hold the rod on some intermediate point as F, and take a rod reading. It is necessary in such cases to select a point that is firm and hard. A smooth stone, firmly imbedded in the soil, makes an excellent point for such purposes. Suppose the rod reading on such a turning point was $N F=1.29$. The elevation of $F=$ $112.99-1.29=111.70$. Then set the instrument at some point H, level up, and take the rod reading again on F (back sight), where $L F=11.42$. The height of instrument (H. I.) $=111.70+11.42$ $=123.12$. The rod reading $G R$ on the regular station $G=6.48$ and the elevation is 116.64 , while the rod reading $P Q$ on point P i.s 3.32 and the elevation of P is 119.80 .

It will be well to bear in mind that a back sight is a rod reading taken on a point whose elevation is known, and that a fore sight is a rod reading taken on a point whose elevation is unknown. Always add the back sights to the elevation of the point to get the height of instrument ; and subtract fore sights from the height of instrument to get the elevation of the point on which the fore sight was taken. The H. I. is always in the line above the fore sight, and the H. I. will not be changed till the instrument is moved to a new position.

The starting point A, the elevation of which has been previously determined, is called the Bench Mark, abbreviated B. M. Intermediate points, such as C and F, are called Turning Points, T. P. Whenever possible rounded stones, solidly imbedded in the earth and almost covered, are the best T. P.'s.

The following is a convenient arrangement of column headings for level notes:

Station.	B. S.	H. I.	F. S.	El.	Remarks.
0	8.46	108.46	$\ldots .$.	100.00	
1	6.58	119.99	2.0.	106.41	
+80	11.42	123.12	1.29	111.70	
2	\ldots.	$\cdots .$.	6.48	116.64	-
3	\ldots	$\ldots .$.	3.32	119.80	

Figure 55 illustrates a typical level notebook.
Problem 62.-Fill out the column-for H. T. and El. in the table below:

Sta.	B. S.	H. I.	F. S.	E1.
26	3.26			76.42
27		7.42	. . .
28	1.08	11.84
29	...		5.21	
30			9.68	
+72	1.24	11.94	
31	4.46	
32			8.92	
33	.		11.52	

Problem 63.-If there is a B . S. on station 2^{-}of 3.22 , fill out a table for the remaining H. I.'s and El.'s.
106. Bench Marks.-The relative elevation of any number of points near each other or widely separated may be found by comparing their heights above the datum plane. The datum most extensively used is mean sea level and its elevation is said to be zero. A bench mark is a point, the elevation of which has been carefully and accurately measured, marked and checked, and which may be used as a starting point for any leveling that may be contemplated in its immediate vicinity. The best form of bench mark is a copper bolt firmly imbedded in masonry, which is not likely to settle. The United States Geodetic Survey has established a great many such bench marks throughout the country. The elevation of each of these should be carefully marked either on the head of the bolt or on a copper plate attached to the masonry. In running a line of levels across country excellent and lasting bench marks can be made by chopping away a portion of a large root of a large tree until the part remaining is in the form of a low, broadbased pyramid, and then driving a nail or spike into the vertex.

Station	B.S.	H.I	F.S	Elev
B.M.	8.43	170.48		162.05
T.PO+OO			1.83	168.65
$0+50$			1.05	169.43
$T . P$	9.35	179.83	0.00	170.48
$1+00$			10.00	169.83
$1+50$			4.30	175.53
$2+00$			1.50	178.33
$2+42$			0.55	17.9 .28
$3+00$			3.90	175.93
$4+00$			6.40	173.43
$5+00$			6.45	173.38
$T . P$	4.23	17782	6.24	173.59
$B M$			2.76	175.06
$6+00$			4.75	173.07
$7+00$			4.60	173.22
$8+00$			4.65	173.17
$9+00$			4.27	173.55
$10+00$			3.10	174.72

107. Profiles.-A profile is a drawing that shows the rise and fall of the ground on which the line was surveyed. The surveyed line may be straight, curved, or broken.

To make a profile elevations of points on the line at short regular intervals must be found, as well as the points where there is a sudden change in the surface.

Profiles are usually drawn to a horizontal scale of $1^{\prime \prime}=400^{\prime}$, and a vertical scale of $1^{\prime \prime}=20^{\circ}$. Paper properly divided into squares by horizontal and vertical lines can be purchased by the roll or sheet.
108.-Crosswire Adjustment.-To make the intersection of the cross wires intersect in the axis of the telescope or the line of collimation, set up the instrument, level, and bring the cross wires into view by turning the telescope to clear sky. Focus the objective on some wall, and then have an assistant mark a spot on the wall at the intersection of the cross wires with a soft pencil; loosen the clips or loops that control the telescope, note that it still points to the spot on the wall, then turn the telescope in the wyes with the right hand until the bubble tube is on top. If the cross wires still intersect on the spot the instrument is in adjustment; if it intersects above or below, loosen the small capstan screws that control the wire ring and turn them so that the cross wire will be moved back one-half of the displacement. Bring it back to the spot by the leveling screws, and check by repeating the process.

To correct the vertical wires turn the telescope so that the bubble is to the right or left of the instrument and in the same horizontal plane, and bring the cross wires on the spot by the leveling screws, then turn the telescope on its horizontal axis 180°, and if there is any displacement correct one-half by the capstan screws that control the vertical wire and the other half by the leveling screws. Check by repeating the process.
109. Bubble-Tube Adjustment.-To make the axis of the bubble tube parallel to the line of collimation, loosen the clips and level accurately, then take the telescope in the hand and turn it end for end in the wyes. If the bubble remains
in the center of the tube it is in adjustment, but if it does not, raise or lower one end of the bubble tube by means of the small capstan screws to correct one-half of the displacement. The rest is corrected by the leveling screws. Repeat until it checks.

Level accurately, revolve the telescope slowly in the wyes and watch the bubble. If it has a tendency to move towards one of the ends, the bubble tube will have to be moved horizontally by the small horizontal capstan screws at one end of the tube. In some instruments the screws at one end of the bubble tube are to raise it vertically, while the screws at the other end move it horizontally.
110.-Adjustment of Wyes.-To make the axis of the bubble tube and the line of collimation perpendicular to the vertical axis, level accurately over a pair of screws and then turn the telescope 180°. If there is any displacement of the bubble raise or lower the wyes by the capstan screws at the end of the horizontal bar and correct one-half of the
displacement. Repeat the process until it checks. As a general check, repeat all the adjustments.
111.-The Radius of the Bubble-Tube.-Let TB, Fig.. 56 , the tangent to the interior of the bubble tube cut the rod at B, distant d from the level, say, 100 ft . or over, turn the leveling screws until the bubble travels a space $s=n$ divisions to some point E. The tangent at E intersects the rod at some point C; take the difference in the readings of B and C, which gives us $B C(r)$ in feet, measure the distance s the bubble travels, $T E$, in inches and reduce to feet. The two tangents $T B$ and $E C$ are perpendicular to the radii consequently.

Angle $T O E=$ Angle $B K C=\boldsymbol{\theta}$

As the angle θ in the sectors is very small we have

$$
T O: T E:: K B: B C
$$

or

$$
R: s:: d: r
$$

$$
\begin{equation*}
R=\frac{d s}{r} \tag{16}
\end{equation*}
$$

Where $R=T O$, the radius of the bubble tube.
Now, $K B$ is not exactly equal to $T B$, but when $T B$ is 100 ft ., $K B$ will be something like 99 ft .11 ins., so they are practically equal.

To find the angular value of one space on the bubble tube. note how many spaces n the bubble travels in the first operation. In $T O E$ we have

$$
\Theta=\frac{57.3 \times s}{R}
$$

By division

$$
\frac{\theta}{n}=\frac{57.3 \times s}{n} \frac{s}{R}
$$

After finding one angular division of the bubble tube, or better the angle subtended between two special marks, we can use the level for measuring distances across swamps, rivers, etc. Thus, bring the end of the bubble to one of the end marks and locate the flag on the level, and have the rod read, shift the bubble until the end reaches the other mark and read the rod again, take the difference in the rod readings and call this r, the angular division of the shift is O; then in the triangle $B K C$ we have

$$
\begin{equation*}
K B=\frac{57.3 \times r}{\theta} . \tag{17}
\end{equation*}
$$

Flg. 57.

Problem 64.-An 18-in. Gurley level gave the following results: Distance (d) $=100 \mathrm{ft}$., rod reading $(r)=0.07 \mathrm{l} \mathrm{ft}$., shift of bubble $=0.7$ in., corresponding to seven divisions on the bubble tube scale. Find radius of bubble tube and the angle subtended by one division of the scale.

Problem 65.-If one angular division of the bubble tube scale subtends an angle
of $21^{\prime \prime}$ at center of bubble tube circle, find the distance when difference of rod readings was 1.28 ft ., when the bubble was shifted five divisions.
112. Curvature of Earth.-Let AB, Fig. 57, be a horizontal line of sight, $A C R$ the surface of the earth. Let distance $A B=D, B C=c$ and radius of earth r.

In right triangle $O A B$,

$$
\begin{aligned}
& \overline{O B^{2}}=\overline{O A}^{2}+\overline{A B^{2}} \\
& (r+c)^{2}=r^{2}+D^{2} \\
& 2 c r=D^{2}-c^{2}
\end{aligned}
$$

Now the term c^{2} is very small in comparison with D^{2} and can be omitted without sensible error.

$$
\therefore c=\frac{D^{2}}{2 r}, \text { nearl } y
$$

If we wish the correction in feet while D is in miles, we get

$$
\begin{equation*}
c=\frac{5280 \times 5280 D^{2}}{2 \times 3926 \times 5280}=.66 D^{2}=\frac{2}{3} D^{2} \tag{18}
\end{equation*}
$$

If $D=1$ mile, $c=2 / 3$ of 1 ft . $=8$ ins.
If $D=2$ miles, $c=32$ ins.
If $D=3$ miles, $c=72$ ins.
Effect of Refraction.-Refraction has a tendency to make all bodies near the horizon appear higher than their natural positions. Thus if in Fig. 57 the level is at A, the line of sight will be the curved line $A K$, the radius of which is about seven times the radius of the earth. In formula for curvature, r becomes $7 r$.

$$
\therefore B K=\frac{D^{2}}{2(7 r)}=\frac{D^{2}}{14 r}
$$

If c is in feet while D is in miles,

$$
\begin{equation*}
B K=\frac{D^{2} \times 5280 \times 5280}{14 \times 3926 \times 5280}=\frac{2 D^{2}}{21} \tag{19}
\end{equation*}
$$

If $D=1 \mathrm{mile}, B D=2 / 21 \mathrm{ft}$. $=1.14 \mathrm{ins}$.
If $D=1 / 4$ mile, $B K=0.07 \mathrm{in}$.
If $D=3.25$ miles, $B K=1 \mathrm{ft}$., i. e., under ordinary conditions of atmosphere all points $3 \frac{1}{4}$ miles from the observer appear 1 ft . higher than their natural positions.
113.-Vertical Curves.-If two grades meet at a summit B, Fig. 58, it becomes necessary to round off this summit by uniting the two grades by a curve tangent to each. The simplest vertical curve that can be adopted for this purpose is a common parabola that touches the grade lines at A and C where the horizontal distance $A K=K E$, and $A M=M C$. Hence $B M$ is a diameter of the parabola of which $B A$ and $B C$ are tangents. Then

Fig. 58.

$$
\begin{aligned}
& P Q: B V=\overline{A T}^{2}:{\overline{A K^{2}}}^{2} \quad \therefore P Q=B V \times \frac{\overline{A T}^{2}}{\overline{A K}^{2}} \\
& P Q: D C=\overline{A T}^{2}: \overline{A E}^{2} \quad \therefore P Q=D C \times \frac{\overline{A T}^{2}}{\overline{A E}^{2}}
\end{aligned}
$$

Let $g=$ grade of $A B$, rise per station, $g^{\prime}=$ grade of $B C$, fall per station, and $n=$ number of stations in $A B$ and $B C$. Now $B K=n g$.

Draw $B F$ parallel to horizontal line $A E$

$$
\therefore B K=F E=D F=n g .
$$

But $F C=n g^{\prime}, \therefore D C=D F+F C=n g+n g^{\prime}=n\left(n+g^{\prime}\right)$.

$$
\text { But } P Q=D C \times \frac{\overline{A T}^{2}}{\overline{A E}^{2}}
$$

Now, $A E=\Omega n$, and if $A T$ one station $=1$

$$
P Q=n\left(g+g^{\prime}\right) \frac{1}{4 n^{2}}=\frac{\left(g+g^{\prime}\right)}{4 n}
$$

$P Q$ is the change of grade for the first station. Let this change $=a$

$$
\begin{equation*}
\therefore a=\frac{g+g^{\prime}}{4 n} \tag{21}
\end{equation*}
$$

Change for 2 nd station $=\frac{4\left(g+g^{\prime}\right)}{4 n}$
Change for 3 rd station $=\frac{9\left(g+g^{\prime}\right)}{4 n}$

Example: Given $g=1.0, g^{\prime}=0.8, n=3$, elevation of $B=$ 76.8^{\prime}, find the elevation of different points on the curve.

$$
a=\frac{1}{4 \times 3}(1.0+.8)=\frac{1.8}{12}=.15
$$

Elevation of R, P, and A are 75.8, 74.8, 73.8 respectively, and the decrease in grade (or elevation) to bring road-bed to curve at points P, and R, and B are $.15,4 \times .15,9 \times .15$ or .15 , .60 , 1.35.

Hence the elevations of points on the curve are 73.8 (74.8-$.15),(75.8-.60)(76.8-1.35)$ or $73.8,74.65,75.20,75.45$.

Original Change of Grade on

Station.	Grade.	Grade.	Curve.
$A=56$	73.8	.00	73.80
57	74.8	.15	74.65
58	75.8	.60	75.20
$B=59$	76.8	1.35	75.45
60	76.0	.60	75.40
61	75.2	.15	75.05
$C=62$	74.4	.00	74.40

Fig. 59.
Problem 66.-If two grades at a summit are 1.4 and -1.0 and elevation of summit is 94.6 , find elevation of points on curve if $n=3$.
114. Curve in Sag.-If the curve occurs at a sag the same formulas will apply in finding the change for each station, but we must remember that the tangents are below the curve and that all elevations must be increased instead of diminished. Thus in Fig. 59, if grade of $A B=-.7$, and of $B C=.5$, elevation of $B=54.8$, and $n=3$, we have

$$
a=\frac{g+g^{\prime}}{4 n}=\frac{.7+.5}{4 \times 3}=.10
$$

Then we have the results as follows:

Station.	Original Grade.	Change of Grade.	Grade on Curve.
$A=2.23$	56.9	.00	56.9
23	56.2	.10	56.3
24	55.5	.40	55.9
$B=25$	54.8	.90	55.7
26	55.3	.40	55.7
27	55.8	.10	559
$C=28$	56.3	.00	56.3

115. Vertical Circular Curves.-If two tangents $A B$ and $B L$ meet at summit B, Fig. 60, a circular curve can be used to unite the two grades. Let O be the center of circular curve. Now $g=$ grade of $A B$ or the amount of rise of $A B$ per station, or 100 ft . If the distance is measured in stations, g is the tangent of the angle the first line, $A B$, makes with the horizontal. In the rt-triangle $A O B$, angle $A O B$ equals half of grade angle $D B L$. $A B=O A \tan A O B \therefore T=R \tan 1 / 2 D B L$, where $A B=$ T, and $O A=R$.

Fig. 60.

The angle $D B L$ is very small, usually less than 4°. \therefore we can write:

$$
\begin{array}{r}
\quad \text { Tan } A O B=\tan \frac{1}{2} D B L=\frac{1}{2}\left(g+g^{\prime}\right) \\
\because T=R \frac{\left(g+g^{\prime}\right)}{2} \quad \therefore R=\frac{2 T}{g+g^{\prime}}
\end{array}
$$

By geometry, $\overline{A P}^{2}=P Q(2 R+P Q)=2 R \times P Q+\overline{P Q}^{2}$
Now $\overline{P Q}^{2}$ is so small in comparison with $2 R \times P Q$ that it can be omitted. $\therefore \overline{A P}^{2}=2 R \times P Q$ or $P Q=\frac{\overline{A P}^{2}}{2 R}=\frac{\overline{A P}^{2}\left(g+g^{\prime}\right)}{4 T}$

$$
\begin{gathered}
\text { But } P Q=a \text {, and } A P=y \\
\text { Now } T=A B=n \text {, number of stations in } A B \\
\therefore a=\frac{\left(g+g^{\prime}\right)}{4 n} \times y^{2}
\end{gathered}
$$

The last formula is the same one we found for parabolic curve. The curve is really so flat that it can be regarded as a circle or parabola without error.

CHAPTER VII. TOPOGRAPHIC SURVEY.

116. Topographic Survey.-A compass or transic survey will locate points with reference to each other in a horizontal plane. In other words such surveys show the geographic location of points with respect to each other, but they do not show how such points are situated in elevation with respect to each other. A topographic survey will give not only the relative position of points with respect to their geographic positions, but will also give their elevation vertically. A glance at the map will show the positions of the different objects in the geographic relations, but certain other data must be placed on these maps to indicate the configuration of the terrain.

Fig. 61.
117.-Topographic Methods.-There are four general methods of making a topographic survey: (1) By transit and level; (2) by stadia; (3) by plane table; (4) by hand level. The first method is costly, laborious, and slow. With the exercise of care, however, it is the most accurate method. but its cost and the labor required render its use almost prohibitive except for small tracts. The third method is coarse but rapid, and for large areas is by far the most practicable. It is sufficiently accurate for geologic purposes, and a survey by this method is a valuable adjunct to a more detailed survey by cither of the other methods. It is useless to discuss here the methods of making a topographic survey by the transit and level, as the use of these instruments is fully discussed in the chapters de-
voted to their consideration. We shall in this chapter consider the stadia method only.
118. Stadia Formulas.-Thè two stadia wires are placed in the reticule of the telescope of the transit above and below the horizontal cross-wire and parallel thereto. If these wires be represented by A and B in Fig. 61, and lines be drawn from A and B through the optical center O of the objective, these lines will cut the stadia rod at A^{\prime} and B^{\prime}. The lines $A A^{\prime}$ and $B B^{\prime}$ are called secondary axes. If we let i represent $A B$ and r represent $A^{\prime} B^{\prime}$, then from the similar triangles, $O A B$ and $O A^{\prime} B^{\prime}$, we have, $i: r:: f: d$.

But by the law of lenses,

$$
\begin{equation*}
\frac{1}{f}+\frac{1}{d}=\frac{1}{F} \tag{22}
\end{equation*}
$$

where F is the "principal focal distance." If parallel rays of light impinge on a lens they will te brought to a focus at some point V, which is called the "Principal Focus" of the lens, and the distance $O V$ is called the principal focal distance. This distance can be found for any given lens by holding the lens so that the central plane of the lens will be perpendicular to the sun's rays. The rays of sunlight will be brought to a focus, which can be found by moving a white sheet of paper parallel to the central plane of the lens. If the sheet of paper is beyond the focus from the lens the circular disc of light will be fringed with blue, while if between the focus and lens it will be fringed with red or yellow. When the sheet of paper is at the focus the rays of light will be concentrated into a very small circular disc of intense light. To find F for the object glass of the telescope, point the telescope to the clear sky and focus on the cross-wires, and then measure from reticule to center of object glass.

From the first of the above equations, we have,

$$
\frac{1}{f}=\frac{r}{v d}
$$

and from the second, .

$$
\frac{1}{f}=\frac{d-F}{F d}
$$

Equating and reducing, we get,

$$
\mathrm{d}=\frac{F}{i} r+F
$$

Now the "principal focal distance," F, is fixed for any lens and i (the distance between the stadia wires on the reticule) can be so adjusted that the ratio of F to i will be made any value desired. From the last equation we have,

$$
d-\bar{F}=\frac{F}{\imath} \times r
$$

But $(d-F)$ is the distance from the "principal focus" V to the stadia rod, and as $F \div i$ is constant, we see that, in reality the distance from the principal focus to the stadia rod varies dircctly as the intercept r on the stadia rod.

If we wish to obtain the distance D from the center of in strument to the rod, we have,

$$
\begin{equation*}
D=d+c=\frac{F}{i} r+F+c \tag{23}
\end{equation*}
$$

where c is the horizontal distance from center of objective to plumb-bob.

In the majority of transits the distance $F+c$ varies fron .80 to 1.25 and 1.00 can be assumed as a fair average withou sensible error.
119. Wire Interval.-To fix the stadia wires in a transit we must first find F, and then decide on some distance from the rod to the principal focus, say 400 ft . After this has been done we focus on the rod, then measure the principal focal distanct from the lens of the objective, which establishes the principa focus in the line of sight, and from this distance we measure the 400 ft . and set up the rod exactly at the end of this 400 ft Or we can measure from objective to the rod 400 ft . plus the principal focal distance. We now adjust the stadia wires so tha while one of them (the lower) reads 2.00 the upper will reac 6.00 , the difference being 4.00 . Then,

$$
400=\frac{F}{i} 4 . \quad \frac{F}{i}=100
$$

If the wires are fixed, find F, c, D and r for a given reading. then

$$
i=F r \div(D-F-c) .
$$

120.-Inclined Sights.-If the line of sights $O C$ is inclined to the hôrizon at an angle v, as in Fig. 62, we shall for the purpose of mapping have to find the horizontal distance $O E$ and the vertical distance $C E$. The rod $A B$ is always held vertically. The lines of sight as determined by the stadia wires are $O A$ and $O B$. Draw $A^{\prime} B^{\prime}$-perpendicular to $O C$, the line of sight as determined by the cross-wires, and let $A^{\prime} B^{\prime}=r^{\prime}$. The angle $B C B^{\prime}=v$ and the angles at A^{\prime} and B^{\prime} differ so slightly from a right angle that for all practical purposes we can assume them equal to 90 .

Fig. 62.

$$
\therefore B^{\prime} C=B C \text { cos. } v .
$$

$$
2 B^{\prime} C=2 B C \text { cos. } v .
$$

$$
\text { or } r^{\prime}=r \cos : v
$$

$$
\begin{aligned}
& \text { But } O C=\frac{F}{i} r^{\prime}+F+c \\
& =\frac{F}{i} r \operatorname{cos.v}+(F+c)
\end{aligned}
$$

Then $D=O E=O C \cos . v=\frac{F}{i} r \cos .^{2} v+(F+c) \cos v$.

$$
H=C E=O C \sin . v=\frac{F}{i} r \sin . v \cos . v+(F+c) \sin . v
$$

$$
\begin{gathered}
\quad=\frac{F}{2 \imath} r \sin .2 v+(F+c) \sin . v \\
\operatorname{Let} \frac{F}{i} r=K \\
\therefore D=K \cos .^{2} v+(F+c) \cos \cdot v \\
H=1 / 2 K \sin \cdot 2 v+(F+c) \sin . v
\end{gathered}
$$

Now the last terms in the formulas for D and H are insignificant in comparison with the first term and unless refined accuracy is required these terms can be omitted.

If $F+c=1.00$, and if $F \div i=100, r=5.40$, and $v=6^{\circ} 25^{\prime}$, we have, $D=540 \times .9875+(1 \times .993 i)=534.24$.

$$
H=1 / 2 \times 540 \times .222+(1 \times .1118)=60.05 .
$$

If the last terms are omitted we have $D=533.25$ and $H=59.94$, the errors being 1 in $i 38$ and 1 in 537 respectively. For ordinary maps one-fiftieth of an inch is about as fine as we can indicate on the drawing paper. Thus, if we adopt a scale of 1 in . equals 10 ft ., or one-tenth of an inch to the foot, the distance (D) above will be represented by a line 53.4 ins. But if we adopt a scale of 1 in . equal to 100 ft ., which is the usual scale in railway topography, we would have. $D=5.34$ ins. and the error committed by the omission of the last term in the formula for distance would be one hundredth part of an inch.
121. Stadia Rod.-The essentials of a good stadia rod are that it should be clearly, accurately and distinctly graduated and that the graduations should be sufficiently clear to be read to the extreme limits of its longest range. There are many special rods on the market, each possessing special merits in the opinion of the designer, but the Philadelphia rod can be used while the marks are new and clear cut. Fig. 6:3 shows one form of stadia rod that is extensively used. It is 3.5 ins. wide, $3 / 4 \mathrm{in}$. thick in the body where the graduations are placed, and $7 / 8 \mathrm{in}$. thick on the edges. The rod is made of straight grained wood, is 12 ft . long over all and is hinged in the middle so that it can be folded for convenient transport. The raised flanges ($1 / 4 \times 1 / 16 \mathrm{in}$.) afford excellent and effective protection to the
graduations. The foot marks are indicated in red figures, 1.25 to 0.75 in., while the tenths are indicated by black figures, 0.75 in . high by 0.5 in . width. The space is divided in alternate black and white strips one-hundredth of a foot in width. Each red figure is opposite a black strip 2.5 ins. long, and the figure refers to the top edge of the strip and indicates its distance from the bottom of the rod. In the same way each black figure is opposite a black strip of same width but only 1.2.) in. in length, the black figures indicating the distance in length of a foot of the top of its strip from the top of the strip through the red figure below. The space between the black figures (the top through the black lines) is divided into ten equal spaces alternately painted black, while the white background forms another strip of the same width. If the wire reads between the red 3 and 4 , between the black 6 and 7 , and is at the top of the third black strip, the reading is 3.66. It is well to remember that the top of the short black strips (about $3 / 4 \mathrm{in}$. long) indicate even hundredths, i. e., .02, .04, .06, ctc., while the bottom of the black strip indicates the odd hundredths. These remarks apply (except as to lengths of the black strips) to the Philadelphia rod, which for distances under 600 ft . forms an excellent stadia rod.
122. Field Work. - When it is desired to make a topographic survey of a certain district by the stadia method, certain basc lines or lines of reference are adopted as a lasis to tic into. If the district has been surveyed by triangulation, the triangulation stations form the points from which the survey procceds. The transit is set up over one of these triangulation stations and sighted to another station of the triangulation survey. The azimuth of this line has been previously determined and the transit can be adjusted by upper

Fig. 63.
motion so that the zeros of the verniers point north and south. When the transit has been set and adjusted so that the zeros will mark out the true meridian, the instrument man can send his rod man to certain strategic points in the terrain. The distance, azimuth and angle of elevation must be read and recorded.

To obtain the distance the lowest stadia wire is brought preferably on some even foot-mark, as the 1 or 2 , and the upper wire is then read 7.42. The difference is 5.42 and the distance by stadia 542 ft . To obtain the angle of elevation, the middle crosswire must be brought on the mark on the rod that indicates the

Fig. 64.
height of the center of the horizontal axis of the telescope. It is necessary for the transit man at every set up to take the height of the telescope above the surface under the plumb-bob. The azimuth is read from the south by west, north, east and on to south again.

The primary triangulation stations are indicated by the symbol Δ, while the stadia stations are marked $[\underset{-}{\dot{-}}]$ with a number following to define it, as $[\underset{\sim}{\square}] 3,[\underset{\sim}{-}] 7$, etc. If there has been no triangulation survey the topographic survey proceeds from the same local point to which the stadia stations are connected or
"tied in." Other points are variously described in the "object" column as "house," "tree," "cor. fence." If a reading is taken simply for a contour point it is marked C. P.

Smith, Instrument.
Henry, Recorder. Fox, Rod.
Oct. 14, 1907.
At $[\because] 1$ Ht. of Inst. $=5^{\prime} .1 \quad$ Elevation $=500^{\prime} .00$
Object. Azimuth. Distance. Vert. Angle. Diff. of El. El.

At $[-] 2 \mathrm{Ht}$. of Inst. $=4^{\prime} .8$ Mean $=41^{\prime} .52$
$\underset{\text { " }}{\stackrel{\bullet}{\bullet}]}$

1.	. $387^{\circ} 17^{\prime}$	401	-5-59'	-41'.58	
	. 229 12'	96	-3-54'	$-6{ }^{\prime} .5$	535.0
	. $244^{\circ} 30^{\prime}$	171	-4-32'	$-13^{\prime} .5$	528.0
	$.252^{\circ} 30^{\prime}$	264	-3-50'	$-17^{\prime} .6$	523.9
	$.266^{\circ}{ }^{(10} 0^{\prime}$	445	-2-56	-29'.7	$518^{\prime} .8$
	. $269^{\circ} 38{ }^{\prime}$	280	-\%-22'	$-26^{\prime} .1$	515.4
	$.297^{\circ} \cdot 18^{\prime}$	78	-8-58 ${ }^{\prime}$	-129	529.5
	$18^{\circ} \cdot 5^{\prime}$	150	-6-30'	$-16^{\prime} .9$	$524^{\prime} .6$
	. 316°. 15^{\prime}	250	-6-29'	$-27^{\prime} .6$	513.9
	. $3566^{\circ} \cdot 10^{\prime}$	331	-5-18	$-30^{\prime} .5$	$511^{\prime} .0$
-	3 Ht. of Inst. $=5^{\prime} .0$	Mean	$23^{\prime} .69$		69
1 $66^{\circ} 51^{\prime}$	755	$-1-49^{\prime}$	$-23^{\prime} .93$	
	. $66^{\circ} 30^{\prime}$	227	$-1-44^{\prime}$	$-6^{\prime} .9$	$516^{\prime} .8$
	. $26^{\circ} 47^{\prime}$	250	-0-38	-2'.8	520.9
	. $00^{\circ} 35^{\prime}$	294	-1- 8^{\prime}	$-5^{\prime} .8$	517.9
	. $97^{\circ} \cdot 8^{\prime}$	250	-3-22'	-14'.6	509.1
	. $133^{\circ} .20^{\prime}$	163	-3-42'	$-10^{\prime} .5$	513.2
	$.162^{\circ} 40^{\prime}$	175	-1-26 ${ }^{\prime}$	$-4^{\prime} .4$	$519^{\prime} .3$
	. $117^{\circ} 5^{\prime}$	331	1-30	8.8	532'. 4

123. Reduction Methods.-The formula for finding the elevation of a point above the instrument,

$$
H=\text { inclined distance } \times \sin . v
$$

When v is less than 6°, we can find H readily by the application of the 57.3 rule. But to save time several labor-saving devices have been invented. Two of these make use of the principle of

Fig. 65.
the slide rule, Colby's. Slide Rule, which can be obtained from the leading dealers in drawing supplies and mathematical instruments, and Cox's "Stadia Computer," manufactured by W. \& L. E. Gurley, Troy, N. Y. This "Stadia Computer," Fig. 65, is simply a circular slide rule about 15 ins. in effective length. It consists of a mounted card board, $61 / 4 \times 61 / 4$ ins., upon which scale
is laid off the logarithm of numbers from 1 to 1,000 on the circumference of a circle 5 ins. in diameter. Mounted on this scale is a circular disc concentric with the 5 -in. circle on the limb, on which is laid off the logarithm of the sines of angles from 3^{\prime} up to 45°. To find the difference of elevation for any distance and angle of elevation, turn the moving dise till the zero of the disc is opposite the required distance. Hold the disc in this position and opposite the given angle of the disc read the number on the limb. This is the required difference in height. The horizontal distance is read opposite the angle in the space marked "Hor. Distance."

Example: Given distance $=480$, angle of elevation $=5^{\circ} 10^{\prime}$, find the difference of elevation. Turn the disc till the zero is opposite 480 on the limb and then opposite $5^{\circ} 10^{\prime}$ on the disc read 43 ft . The whole computer can be carried in the coat pocket and its convenient size makes it a very effective calculator. No correction for horizontal distance is necessary for this angle of elevation.
124. Colby's Slide Rule.-Colby's Slide Rule as shown in Fig. , 66 consists of a base piece of trapezoidal cross section on which is laid off the logarithm of the numbers representing the distance read by the stadia, and a sliding runner on which is laid off the angles of elevation to $18^{\circ} 30^{\prime}$. On the sliding runner is a mark labeled "same unit index," which can be seen on the right on the runner above the space between the numbers 3 and 4. To find the vertical distance between

Fig. 66. the instrument and rod, set the mark under "same unit index" to agree with the distance read by the stadia, and then opposite the angle of elevation on the slide read the vertical distance on the \log scale below.

Example: Given distance 600 and angle of elevation $3^{\circ} 10^{\prime}$, to find the difference of elevation. Set index on slide opposite 600 on \log scale, and opposite $3^{\circ} 10^{\prime}$ on the slide, read 33.1 on \log scale, which is the difference of elevation.
125. Usual Approximations.-The cosine of all angles less than 18° is greater than 0.9 .5 and we may assume $F+c=1$ and $(F+c) \cos v=.95$. Now, if the horizontal distances are to be read to the nearest tenth of a foot, we can assume $(F+c)$ $\cos v=1$. The following approximations may be made:
(1) If the last term $=1$ and $D=K$, in the formula, $D=K \cos ^{2}{ }^{2} v+(F+c) \cos . v$, we have

$$
D=K \cos { }^{2}{ }^{2},+1
$$

or $K=K \cos ^{2} v+1$

$$
\operatorname{Cos}^{2} v=1-\frac{1}{K}
$$

Now if $K=200$,

$$
200=200 \cos ^{2} v+1 \therefore v=4^{\circ} 04^{\prime}
$$

If $K=700, v=2^{\circ} 10^{\prime}$
Thus, if the angle of elevation is $2^{\circ} 10^{\prime}$ and the inclined distance 700 , we can omit the last term and make the horizontal distance equal to the inclined. The two approximations or assumptions balance each other. Check:

$$
\begin{aligned}
D & =700^{\circ} \cos ^{2} 2^{\circ} 10^{\prime}+\cos 2^{\circ} 10^{\prime} \\
& =700 \times .9986+.9993 \\
& =699.02+.9993=700.02
\end{aligned}
$$

For an agle of elevation of $2^{\circ} 10^{\circ}$ and a distance of less than 700 (say, 500) we have

$$
D=500 \times .9986+.9993=500.3
$$

For all distances less than 700 and a given angle of $2^{\circ} 10^{\circ}$ the horizontal distance D will be greater than K, but the error is less than 1 foot. For all distances above 700 the horizontal distance (D) is less than K, but the error is less than one foot when K is les than $1,400^{\prime}$. The following table gives the values of v for certain distances when $D=K$:

K	Angle v	K	Angle v
100	$5^{\circ} 44^{\prime}$	700	$2^{\circ} 10^{\prime}$
200	$4^{\circ} 04^{\prime}$	890	$2^{\circ} 02^{\prime}$
300	$3^{\circ} 20^{\prime}$	900	$1^{\circ} 55^{\prime}$
400	$2^{\circ} 52^{\prime}$	1,010	$1^{\circ} 49^{\prime}$
500	$2^{\circ} 34^{\prime}$	1,100	$1^{\circ} 44^{\prime}$
600	$2^{\circ} 20^{\prime}$	1,200	$1^{\circ} 40^{\prime}$

(2) When D is 1^{\prime} less than K, i. e., for error of 1 ft . when the last term $=1^{\prime}$. we have.

$$
\begin{gathered}
\quad D=K-1 \\
D=K \cos .^{2} v+1 \\
\text { or } K-1=K \cos ^{2} v+1 \\
\therefore \cos ^{2} v=1-\frac{2}{K}
\end{gathered}
$$

Solving for the different values of K, we can fill out the following table:

K	Angle v	K	Angle v
100	$8^{\circ} 08^{\prime}$	700	$-3^{\circ} 04^{\prime}$
200	$5^{\circ} 44^{\prime}$	800	$2^{\circ} 52^{\prime}$
300	$4^{\circ} 41^{\prime}$	900	$2^{\circ} 42^{\prime}$
400	$4^{\circ} 03^{\prime}$	1,000	$2^{\circ} 34^{\prime}$
500	$3^{\circ} 38^{\prime}$	1,100	$2^{\circ} 2^{\prime}$
600	$3^{\circ} 20^{\prime}$	1,200	$2^{\circ} 20^{\prime}$

For any angle given in table and distance less than the corresponding value of K, the error in D will be less than 1 ft .
(3) When last term $=1^{\prime}$ and there is a total error of 1 per cent in horizontal distance, we have $D=.99 \mathrm{~K}$,

$$
D=K \cos .^{2} v+1
$$

$$
\text { or } .99 K=K \cos .^{2} v+1 \quad \cdot \quad \cos .^{2} v=.99-\frac{1}{K}
$$

This formula gives the following:

K	Angle v	K	Angle v
100	$8^{\circ} 08^{\prime}$	700	$6^{\circ} 08^{\prime}$
200	$7^{\circ} 02^{\prime}$	800	$6^{\circ} 05^{\prime}$
300	$6^{\circ} 38^{\prime}$	900	$6^{\circ} 03^{\prime}$
400	$6^{\circ} 25^{\prime}$	1,000	$6^{\circ} 01^{\prime}$
500	$6^{\circ} 17^{\prime}$	1,100	$6^{\circ} 00^{\prime}$
690	$6^{\circ} 12^{\prime}$	1,200	$5^{\circ} 59^{\prime}$

To find D from table, subtract 1 per cent.

Example: If $K=800$, we get $D=800-8=792$.
(4) If the last term be omitted and there is an error of 1 per cent, i. e., if there is a total error of 1 per cent minus 1 ft ., or if $D=.99 K+1$, we get,

$$
\begin{aligned}
\mathrm{D} & =K \cos ^{2} v+1 \\
\text { But } D & =.99 K+1 \\
.99 K+1 & =K \cos .^{2} v+1 \\
\therefore \cos ^{2} v & =.99 \therefore v=5^{\circ} 44^{\prime}
\end{aligned}
$$

That is, if the angle of elevation be $5^{\circ} 44^{\prime}$, the horizontal distance (D) will be less than the inclined (K) by 1 per cent of K less 1^{\prime} or

$$
\begin{aligned}
\therefore \text { Error } & =\frac{K}{100}-1 \\
D & =K-\text { Error. }
\end{aligned}
$$

(Fig. 67.
126. Topography by HandLevel. -The hand level can be used economically to obtain the data for a topographic map of any small area. A base line should be adopted from which the survey proceeds, and lines perpendicular to this base line should be drawn at known intervals. Thus, if in Fig. 67, $A B C D$ represents a section of area, adopt a base line $P Q$ and at points P. $1,2,3$, and Q locate lines normal to $P Q$. These lines should be marked out by stakes so they can be easily followed. In order to leave all elevations positive, assume some datum below the lowest point and refer the elevations of all points to this datum. Begin at some point as P and find the elevation of points along this line. The notes should be kept so the height of any point will appear as the numerator of a faction, while its distance out from base. line will appear as the denominator. The height of the eye should first be determined and rod readings should be taken at a sufficient number of points to determine the configuration of the landscape. The
bench mark should be located somewhere below the point C, and from this the levelman makes his observation on the rod held on some point in line $D C$. The difference of the rod reading and height of eye will give the elevation of the point of rod above the observer. Thus, if
$h=$ height of eye of observer,
$r=\operatorname{rod}$ reading, then,
$h-r=$ elevation of rodman above observer.
If $h-r$ is negative, the rodman is below the observer.
The following notes were taken on a hand-level survey of a rectangular area:

Line	Left of PQ			Base Line		Right of $P Q$			
DC. .	$\frac{33}{200}$		$\frac{28}{100}$	$\frac{24}{0}$	$\frac{19}{100}$	$\frac{20}{150}$	$\frac{15}{200}$	$\frac{11}{250}$	$\frac{14}{300}$
1	$\frac{34}{200}$	$\frac{29}{100}$	$\frac{25}{50}$	$\frac{23}{0}$	$\frac{18}{100}$	$\frac{15}{150}$	$\frac{14}{200}$	$\frac{16}{250}$	$\frac{20}{300}$
	35	29	26	24	22	21	22	23	25
2	$\overline{200}$	100	$\overline{50}$	0	100	150	200	250	$\overline{300}$
	36	31	27	26	25	26	27	28	30
3	$\underline{200}$	100	$\overline{50}$	0	100	150	200	250	$\overline{300}$
	37	33	31	$\underline{29}$	30	31	32	33	3.5
Q. .	$\overline{200}$	$\overline{100}$	$\overline{50}$	$\overline{0}$	$\overline{100}$	150	$\overline{200}$	$\overline{250}$	$\overline{300}$

Bibliography.-"A Manual of Topographic Methods," by Henry Gannett. This work is published by the United States Geological Survey and its title indicates its scope, as it deals only with the theory of topography, but gives also the illustrated methods as practiced by the engineers of the Survey, the most expert topographers in the world.
"Topographic Surveying," by Herbert M. Wilson, 910 pages. Fitly illustrated, having 18 engraved colored plates, 181 halftone plates and many smaller figures. In addition to the excellent illustrations of the best executed topography, the field instruments and other equipments for feld parties are described and the methods explained.
"Elevation and Stadia Tables," by Arthur P. Davis. These tables are for use-in reducing inclined sights to the horizontal and for finding the difference of elevation of observer and points.

CHAPTER VIII.
 RAILROAD SURVEYING.

127. Railroad Surveying.-By railroad surveying is meant the use of transit and level in selecting and locating the center lines of the track. The location of the straight sections of the track is a matter easily accomplished,' but it becomes necessary to unite two straight sections of track that intersect at a definite angle. That a train may pass gently from one straight line to another, making an angle with the first, the two must be connected with each other by an intermediate curve to which each straight line is tangent. On account of the ease of location circular curves are universally used to connect two straight sections of track whose directions are not the same. These straight portions may be joined by a curve of either great or small radius, depending upon the character of the ground. The magnitude of the curve is defined by the size of the angle that a $100-\mathrm{ft}$. chord subtends at the center of the circle. This, in a 4° curve the $100 \cdot \mathrm{ft}$. chord subtends an angle of 4° at the center of the circle. In

Fig. 68. a 3° curve, 3° at the center, etc.
128. Degree Formula.-In Fig. 68 let $A E B$ be a circular arc with O as center, and let $A B=100 \mathrm{ft}$. and angle $A O B=D$. Then, if $O C$ is perpendicular to $A B$,

$$
\begin{align*}
A C=C B= & 50 \mathrm{ft} . \text { and } A O C=B O C=\frac{1}{2} D \\
\text { Now, } & \quad \operatorname{Sin} . A O C=\frac{A C}{A O} \\
& \quad \cdot \operatorname{Sin} \cdot \frac{1}{2} D=\frac{50}{R} \cdots \cdots \cdots \cdots \tag{24}
\end{align*}
$$

129. General Formula.-In any curve $A K B$, Fig. 69, let $A B=$ chord $c ; A P=$ tangent $T, A O=$ radius $R, F K=\operatorname{mid}$. ordinate $M, P K=$ External $E, I=$ angle of intersection $G P B=$ $A O B$.

In the right triangle $A O P$
Tan. $A O P=\frac{A P}{A O}$
\therefore Tan. $\frac{1}{2} I=\frac{T}{R}$
$\therefore T=R$ Tan. $\frac{1}{2} I$.
In rt. triangle $A F O$,

$$
\begin{align*}
\sin . A O F & =\frac{A F}{A O} \\
\therefore \sin \cdot \frac{1}{2} I & =\frac{c}{2 R} \\
\therefore c & =2 R \text { sin. } \frac{1}{2} \mathrm{I} . \tag{26}
\end{align*}
$$

In rt. triangle $A F K$,

$$
\begin{align*}
\text { Tan. } F A K & =\frac{F K}{A F} \\
\therefore \text { Tan. } \frac{1}{4} I & =\frac{M}{\frac{1}{2} c} \\
\therefore M & =\frac{1}{2} c \text { tan. } \frac{1}{4} \mathrm{I} . \tag{27}
\end{align*}
$$

In the triangle $A K P$,

$$
\begin{aligned}
\frac{P K}{\sin . P A K} & =\frac{A P}{\sin \cdot P K A} \\
\therefore P K & =A P \frac{\sin . P A K}{\sin . P K A} \\
\therefore E & =T \frac{\sin \cdot \frac{1}{4} I}{\cos \cdot \frac{1}{4} I}=T \text { tün. } \frac{1}{4} 工(28)
\end{aligned}
$$

If I is known and it is desired to pass a curve through some point on the bisector $P O$, we measure the distance $P K=E$, and from formula (28) calculate T. Then find R from (25) and D from (24).
130. To Lay Out Curve.-Let $Q A$, Fig. 70, be a straight. line or tangent from which a curve turns off at A. The point A where the curve begins is called the "Point of Curve" or P. C., while the point B, where we pass from the curve to the new tangent is called the "Point of Tangent," or P. T. To lay out curve, set up the transit over the station at A, level up
and back sight on a tack point in tangent line $A Q$. Revolve the telescope and turn off the angle of deflection, which is half the degree of curve. The rear chainman holds end of the chain (the zero of chain or tape) on the tack point at A, and the head chainman swings his end of the chain around until the transitman catches the flag pole in field of view. The flag pole is brought accurately to coincide with the line of sight and when the head chainman has the chain or tape straight, a peg is driven at the point l, which is a point on the curve. The chainmen now advance until the rear chainman reaches point 1 , the transitman, in the meantime, having set the deflection angle again. The rear chainman holds the end of chain or tape on

Fig. 70.
point 1, while the head chainman is ranged in the iine of sight A. . When the chain is straight and the flag pole is in the line of sight, a peg is driven at this point 2 . In the same way the other full station points on the curve are located.

Example.-Given $D=2^{\circ} 30^{\prime}$ and $I=15^{\circ} 54^{\prime}$

$$
\text { Now, } \mathrm{R}=\frac{50}{\sin \cdot \frac{1}{2} D}=\frac{50}{\sin .1^{\circ} 15^{\prime}}=2292^{\prime} .0
$$

Length of curve $=\frac{15^{\prime} 54^{\prime} \times 100}{2^{5} 30^{\prime}}=636$ feet.
The total angle to deflect will be $1 / 2 I$ or $7^{\circ} 57^{\prime}$. The angle of deflection is $1^{\circ} 15^{\prime}$ and there will be six full deflections of $1^{\circ} 15^{\prime}$ each, making $7^{\circ} 30^{\prime}$, and a partial deflection of 27^{\prime}, corresponding to a chord of 36 ft . The usual curve is so flat that
the angle of deflection for fractions of 100 ft . is proportional to the length of chord. Thus, if the deflection angle for 100 ft . is $1^{\circ} 15^{\prime}$, then the deflection for 36 ft . should be $.36 \times 1^{\circ} 15^{\prime}=$ $2^{\prime}{ }^{\prime}$, which checks the result found by subtraction.
131. Obstacles.-It often happens that some object will interfere with our line of sight and we cannot locate all the stations from the P. C. Suppose that there were a house or some other obstruction interfering with the line of sight from the P. C. to station 5 . In this case the transit must be transferred to station 4, where it is set up, leveled and a back sight taken on the rear flag at A, the P. C. Now, if $G 4$ is a tangent

Fig. 71. to the curve at 4 , the angle $G 4 A=G A 4$. Hence, if we turn the telescope through an angle equai to the angle $G A 4$, the amount deflected from the tangent $A P$, the line of sight will define the tangent $4 G$. Set the transit at 4 . level up, bring the verniers to zero, reverse the telescope and set on A. Plunge the telescope and set the vernier to read $6^{\circ} 15^{\prime}$, and the line of sight wiil define the line 45 . This is more fully explained and exemplified in Article 139.
132. Location by Offsets.-Let $A B C$, Fig. 71. be a circular curve when $A B=B C=C$, and where $O A=O B$ $=R$. Through B draw $B E$ parallel to $O A$ to cut the tangent $A E$ at E. Draw $O K$ perpendicular to $A B$. Then the triangles $O A K$ and $A B E$ are similar.

$$
\therefore E B: A B=A K: A O .
$$

Now, $E B$ is called the offset from the tangent to curve or simply tangent offset.

Let $E B=d$

$$
\begin{align*}
\therefore d: C & =\frac{1}{2} C: R \\
d & =\frac{C^{2}}{2 R} \cdots . \tag{29}
\end{align*}
$$

If $A B=C=100$,

$$
d=\frac{5000}{R}
$$

Let $C F$ be drawn parallel to $O B$, to cut chord $A B$ produced at F, and let $B G$ be the tangent at B, cutting $C F$ at G. Then triangle $B C G=B G F$.

$$
\begin{aligned}
& \text { But } B C G=A B E . \quad \therefore C G=B E, \\
& \text { But } \quad C F=2 \times C G=2 \times B E=\mathbf{2} d .
\end{aligned}
$$

$$
\begin{gathered}
\therefore \text { chord offset } C F=\frac{C^{2}}{R} \\
\text { If } C=100 \\
\text { chord offset }=\frac{10,000}{R}
\end{gathered}
$$

The formula for the chord offset may be written

$$
\begin{equation*}
d=\frac{C^{2}}{R}=\frac{10,000}{5730} D=1.75 D \tag{30}
\end{equation*}
$$

Thus, for a 1° curve the chord offset is 1.75 , and that for any other curve can be found by multiplying 1.75 by the degree of the curvé.
133. Middle Ordinate.-In Fig. 69 we have by Geometry, $K F(2 R-K F)=A F \times F B$.

$$
\begin{gathered}
\therefore M(2 R-M)=\frac{1}{2} C \times \frac{1}{2} C=\frac{C^{2}}{4} \\
\therefore 2 R M-M^{2}=\frac{C^{2}}{4}
\end{gathered}
$$

Now M^{2} is small in comparison with R, and in all practical cases can be omitted.

$$
\begin{align*}
\therefore 2 R M & =\frac{C^{2}}{4} \\
\therefore M & =\frac{C^{2}}{8 R} . \tag{31}
\end{align*}
$$

134. Approximate Formulas.-We have established the formula,

$$
\sin \cdot \frac{1}{2} D=\frac{50}{R}
$$

Now if D is no larger than 8° we can substitute the circular measure of the angle for its sine, that is

$$
\begin{gathered}
\sin \frac{1}{2} D=\frac{1}{2} \frac{D^{\circ}}{57.2965} \\
\therefore \frac{D}{2 \times 57.2965}=\frac{50}{R} \\
\therefore D=\frac{5729.65}{R}
\end{gathered}
$$

This is usually written,

$$
\begin{align*}
D & =\frac{5730}{K} \\
\therefore R & =\frac{5730}{D}- \tag{32}
\end{align*}
$$

Now if $D=1, R=5730 \mathrm{ft}$. We have the general formula,

$$
\begin{gathered}
T=R \tan \cdot \frac{1}{2} I=\frac{5730}{D} \tan \cdot \frac{1}{2} I \\
C=2 R \sin \cdot \frac{1}{2} I=2 \frac{5730}{D} \sin \cdot \frac{1}{2} I
\end{gathered}
$$

Let I remain fixed and T_{1} and C_{1} be the tangent and chord for 1 -degree curve. Then,

$$
\begin{aligned}
T_{1} & =5730 \tan . \frac{1}{2} I \\
C_{1} & =2 \times 5730 \sin . \frac{1}{2} I \\
\therefore T & =\frac{T_{1}}{D} \\
C & =\frac{C_{1}}{D}
\end{aligned}
$$

Again, we have,

$$
\begin{aligned}
& M=\frac{1}{2} C \tan \cdot \frac{1}{4} I=\frac{5730}{D} \tan \cdot \frac{1}{4} I \sin \cdot \frac{1}{2} I \\
& E=T \tan \cdot \frac{1}{4} I=\frac{5730}{D} \tan \cdot \frac{1}{2} I \tan \cdot \frac{1}{4} I
\end{aligned}
$$

For a 1° curve these become,

$$
\begin{aligned}
M_{1} & =5730 \tan \cdot \frac{1}{4} I \sin \cdot \frac{1}{2} I \\
E_{1} & =5730 \tan \cdot \frac{1}{2} I \tan \cdot \frac{1}{4} I \\
M & =\frac{M_{1}}{D}, \quad E=\frac{E_{1}}{D}
\end{aligned}
$$

Then for all curves for•a fixed I, we have,

$$
D \times T=T_{1}=\mathrm{a} \text { constant }
$$

$$
D \times C=C_{1}=a \text { constant }
$$

$$
D \times M=M_{1}=\mathrm{a} \text { constant }
$$

$$
D \times E=E_{1}=\text { a constant. }
$$

135. Reduction Tables.- The value of the tangent T_{1}, the long chord C_{1}, the mid-ordinate M_{1}, and the external E_{1} have been calculated for a 1-degree curve, corresponding to
value of I from 0 to 117°, for intervals of two minutes. To nbtain the values of T, C, M, or E, it is only necessary to look for these for a 1 -degree curve for the proper I, and then to divide by the value of D.

Example: Find T, C, M, and E, for a 4° curve when $I=21^{\circ}$. For a 1-degree curve, we get

$$
\begin{aligned}
T_{1} & =1062.0, C_{1}=2088.5, M_{1}=95.95, E_{1}=97.58 \\
\therefore T & =1 / 4 \times 1062=265.50 \\
C & =1 / 4 \times 2088.5=522.125 \\
M & =1 / 4 \times 95.95=23.988 \\
E & =1 / 4 \times 97.58=24.395
\end{aligned}
$$

136. Metric Curves.-In Mexico and the South American countries a chain or tape of 20 meters is used instead of the $100-\mathrm{ft}$. tape that is used in the United States. The degree of the curve is the angle at the center of the circle subtended by a chord of 20 meters. Thus, in Fig. i: if $A B=20$ meters, and $A O B=D^{\circ}$, the number of degrees in the

Fig. 72. angle D gives tl こ degree of curve.

$$
\begin{aligned}
& \operatorname{Sin} . A O K=\frac{A K}{O A} \\
& \operatorname{Sin} \frac{1}{2} D=\frac{10}{R}
\end{aligned}
$$

If $D=$ one degree, we have,

$$
\begin{array}{rr}
\operatorname{Sin} 30^{\prime}=\frac{10}{R} . & \text { But sine } 30^{\prime}=\frac{1}{2 \times 57.3} \\
\therefore & \frac{1}{114.6}=\frac{10}{R} .
\end{array} \quad \therefore R=1146 \text { meters. }
$$

Now, the radius of a 1 -degree curve for the foot system (prevailing in the United States) is $5730 \mathrm{ft}=5 \times 1146$.

In the same way all the functions of a 1 -degree metric curve are one-fifth of the corresponding finctions of a 1 -degree curve of the foot system. Thus, if $I=12^{\circ}: T=602.2^{\prime}, E=31.56^{\prime}, C=$ 1197.9', for a 1 -degree foot curve. Then $T=120.4$ meters, E $=6.3$ meters, $C=239.6$ meters, which were obtained by dividing the former values of T, E and C for the foot curve by 5 .

Again, if we have $I=14^{\circ} 30^{\prime}$, and wish to find T, E, and C for a 3° metric curve, we can find T, E, and C from the usual tables for the foot curve and divide the results by five times the degree of curvature for the metric system. Thus, for $I=14^{\circ} 30^{\circ}$ we have for a 1-degree curve $T=728.87, E=$ 46.18, $C=1446.2$. Then for a metric curve of 3° we divide these values of T, E and $L . C$. by $3 \times 5=15$, as follows:

$$
\begin{aligned}
& T=\frac{1}{15}(728.87)=48.59 \text { meters } \\
& E=\frac{1}{15}(46.18)=3.08 \text { meters } \\
& C=\frac{1}{15}(1446.2)=96.41 \text { meters. }
\end{aligned}
$$

137. Preliminary Survey.-The first instrumental survey on a projected railway line is called the preliminary survey and consists in running a traverse line, staking the line out by means of pegs or stakes, which are driven at the hundred-foot marks, or "stations," as they are called, or at fractional parts thereof. When the survey is finished these stakes mark out a polygonal traverse or survey. There may be two or more preliminary surveys between the same termini, and a comparison of these as to cost of construction, revenue to be derived from probable traffic, and operating expenses will decide the most advantageous route. Fig. 73 is a double page illustration of the form of notes used in the field in preliminary survey.
138. Location Survey.-When one of the preliminary surveys or routes has been adopted, the center line of the proposed track is then located. The different tangents must be connected by curves and the whole line must be surveyed by transit, running in the curves and driving new stakes or changing the position of the old ones. As the curve is shorter than the sum of the two tangents, the first P. T. will be less in distance from the beginning, that is, all stakes after the first P. C. will be moved forward. Those on the tangents (from P. C. to P. I. and from P. I. to P. T.) will be moved over to the curve and all those on the part of tangent from the P. T. to the next P. C. ahead will be moved forward so that the number of each stake will give its distance from the beginning as measured along the proposed center of track. Thus, if the angle of intersection $I=16^{\circ} 00^{\prime}$ and we unite the two tangents by a 4° curve, the
value of $T_{1}=805.2$, and for a 4° curve $T=201.3$. Now, if the distance from the beginning to P. I. was 3346 ft ., i. e., the P. I. was at station $33+46$, the P. C. will be located at (3346-201.3)

3144.7 , that is, at station $31+44.7$. The P. T. will be located an equal distance from the P. I. or at 3547.3 , according to the preliminary survey. Now, length of curve $=16 \div 4=400 \mathrm{ft}$.

Then, according to the location survey, the P. T. will be located at $3144.7+400=3544.7$, or 2.6 ft . nearer the beginning by the curve route than by the P. I. route. Station 36 was 52.7 ft . from this P. T. according to the preliminary survey, but by the location chaining, the point, instead of being $3,600 \mathrm{ft}$. from the beginning, will be at 3597.4 ft ., and hence the station stake 36 will be taken up and moved forward 2.6 feet, so that it will really be 3600 ft . from the beginning.

Problem 67.-The P. I. in the preliminary was 2614 ft . and $I=24^{\circ}$. Find the positions of the P. C. and P. T. for a 3° curve.

Problem 68.-The second P. I. in the previous problem was 9654 ft . Find the position of P. C. in the location survey for a 3° curve if $I=18^{\circ}$.
139. Field Book.-It is important that the note book or field book should be neat and accurate and should show all the necessary data for the location of a curve and how it is connected to the tangent points, where it begins and where it ends. The supreme test of note taking and note keeping is that ANY engineer can understand fully and accurately exactly what the data mean. Fig. 74 is an illustration of both pages (left and right) of a location survey notebook where a curve has been run in to connect two intersecting tangents. The angle of intersection of the tangents $I=12^{\circ} 54^{\prime}$, and the tangents are united by a $2^{\circ} 30^{\prime}$. The length of tangent for a 1 -degree curve for $I=12^{\circ} 54^{\prime}$ is 647.8 and for a $2^{\circ} 30^{\prime}$ curve the length of tangent $=647.8 \div 2.5=259.1$. This length of tangent can be calculated from the following formula:

$$
T=R \tan \frac{1}{2} I=\frac{50 \tan \frac{1}{2} 1}{\operatorname{Sin} \frac{1}{2} D}=\frac{50 \tan 6^{\circ} 27^{\prime}}{\operatorname{Sin} 1^{\circ} 15^{\prime}}=259.1 .
$$

The curve is to begin at station $64+13.3$ and the transit is set up at this point (the P. C.), the verniers brought to zero, and a back sight taken on the last hub. The next station in advance of the P. C. to locate is 65 , which is $(6500-6413.3)$ 86.7 ft . from the P. C. For a full 100 ft . the deflection is half the degree of curve or $1^{\circ} 15^{\prime}$, and for 86.7 it is $86.7 \div 100$ of

74.
 Fig.

$1^{\circ} 15^{\prime}$. Hence the deflection $=.867 \times 75^{\prime}=1^{\circ} \quad 05^{\prime}$, and this should be recorded opposite the station 65 that it locates. For the full stations $66,67,68$ and 69 the record in the "index" column should be $2^{\circ} 20^{\prime}, 3^{\circ} 35^{\prime}, 4^{\circ} 50^{\prime}$ and $6^{\circ} 05^{\prime}$, respectively, which are obtained by adding $1^{\circ} 15^{\prime}$ to the record of the last full station in the index column. Now, the length of the curve $=100 \times 12^{\circ} 54^{\prime} \div 2^{\circ} 30^{\prime}=516 \mathrm{ft}$. Adding this 516 to the $64+$ 13.3 (the station number of the P. C.), we get $69+29.3$, which is the station number for the P . T. The deflection angle for the $29.3=.293 \times 75^{\prime}=22^{\prime}$, which is added to the index of the last full station, $6^{\circ} 05^{\prime}$, gives an index of $6^{\circ} 27^{\prime}$. Now, the reading of $6^{\circ} 27^{\prime}$ on the P. T. should be half of I, that is, if we double the index for the P . T., we should get the value of I, or $2\left(6^{\circ} 27^{\prime}\right)=12^{\circ} 54^{\prime}$, which affords an easy and effective check.

It may happen that in running the curve the transit has to be moved from the P. C. to some station as 67 , the index of which is $3^{\circ} 35^{\prime}$. Now, after setting up the transit over 67 , we can back sight on ANY station, provided we set the vernier to read the index of the station sighted at. Thus, if we backsight on 65 , with telescope reversed, the vernier must read $1^{\circ} 05^{\prime}$ (on the correct side of the vernier). Then to locate station 68 , all we have to do is to revolve the telescope and set the vernier at $4^{\circ} 50^{\circ}$, the index of the station sighted at, and have the stake driven at this point. However, if we should set up the instrument at 67 and backsight on $64+13.3$ (P. C.) with telescope reversed, we must set the vernier at $0^{\circ} 00^{\prime}$, the index of the P. C., and then to locate 68 we again make the vernier read $4^{\circ} 50^{\prime}$, the index of the station sighted at. Thus, wherever we set up the transit on the curve, the back sight on any station must read the index opposite the station sighted at, and to locate any other station ahead, revolve the telescope and set the vernier to read the index for that station.
140. Transit Party.-The transit party in the field should consist of transitman, rear chainman, head chainman, rear flagman, stakeman. and axmen. The transitman has charge of the party and should provide himself with the transit, tripod, plumb-bob, reading glass, notebook and pencil.

The rear chainman should have charge of chain or tape and be responsible for it. The head chainman should provide and take care of the flag or range pole. The stakeman provides bag of stakes, keel for marking same, ax or hatchet for driving stakes, and tacks for hub-points. The rear flagman has the silent duty of remaining ever in readiness to be called upon to give a sight at a signal or call from the transit man, and the axmen should have good $4.5-\mathrm{lb}$. axes to clear the way. It is poor economy to be restricted in the number of men that are to do the clearing.
141. Stakes. -The stakeman should provide a sufficient number of stakes for each day's supply at least. The stakes

Stake (a)

Stake (b)

HUB
Fig. 75. vary in size (Fig. 75), but sawed stakes are 2×1 ins. by 18 ins. in length, while "hubs" should be 2×2 ins. by 18 ins. in length. The flat shaped stake is used to facilitate marking, as the broad surface offers sufficient space for the number of station and the letter indicating the line to be written or printed on the stake. The figures or letters are printed with keel (red chalk), which can be secured from dealers in drawing supplies or from local hardware dealers.
142. Hubs.-At every angle point or transit station a "hub" is located. This consists of a stake (Fig. 76), 2x2 ins., driven flush with the surface of the ground. A tack is driven in the top of the hub, where the range pole or flag rested in the line of sight. After the tack is driven partly in the hub it should be checked by the transitman so that any error in location can be corrected before it is driven too far to be withdrawn. After it has been checked, it is driven flush with the surface of the hub. About 1 ft . to the left of the hub a "guard" stake is driven with the number of the station marked on it. This guard stake is inclined towards the hub and is left project-
ing from the ground several inches, as shown in Fig. 76. The number of the station of the hub should be marked on the guard with a good system of letters. These figures should be printed with red keel, and in no case should they be written with a rough figure or letter. With care and a little practice the stakesman can soon learn how to mark these in a standard and systematic way,

Fig. 76.
143. Hand-Level.-This instrument, Fig. 77, is about 6 ins. long and has a level tube or vial on top. Across one half of the clear glass at object end a horizontal line is drawn. The image of the bubble tube can be seen on half of the glass at object end of tube, as it is reflected by a prism. The ends of the tube are closed with plane glass and a semi-circular convex lens at end of eye-piece or eye-tube magnifies level bubble and

Fig. 77.
the cross wire. The cross wire is fastened to a framework under the level tube and adjusted to its place by the screw shown on end of level case.

To use the level, hold it with the hands so that the eye-end is next the eye, then move it until it is approximately horizontal. The image of the bubble can then be seen on half of the object-end glass. When the bubble appears on the horizontal
mark or wire, the line of sight is horizontal. To use the handlevel it is necessary to know the height of your eye. Sight through the hand-level and bring the bubble on the horizontal wire and note the point on the ground indicated by the line of sight. Unless unusual refinement is necessary in taking topography, the hand-level will subserve all necessary requirements and it is an economical, efficient and expeditious instrument for this purpose. In railroad surveying the line of survey affords a base line from which all transverse measurements can be made. "The topographer determines the height of his eye when standing in his usual attitude and then taking a position on the line of survey, $A B C D$ (Fig. 78), he selects a direction at right angles to the line of survey. Bringing the level to its horizontal position and noting where the line of sight strikes the earth at point 1, he paces the distance from line to point (48 ft ., say). At point 1 he notes that the next line of sight strikes ground at point 3, etc. This process is continued until the territory 200 ft . on each side of the line is covered. If the height of the eye is 5.2 ft ., then each point of intersection of horizontal line of sight with ground is 5.2 ft . higher than the position of the observer. The elevation of the observer's position is 'known, or can be ascertained from the levelman's notes, and hence the elevation of each point located can be determined by adding or subtracting height of eye.

On the lower side of the line it is well to have a rodman provided with a rod, graduated to half-feet, at least 12 ft . in length. If it is desired to have all contour points, the uniform height of eye above or below the adjacent points in any one normal line, the topographer can have his rodman walk away from the base line in a normal direction till the rod reads double
the eye height. If other points are located, the rod is read by the hand level and the reading recorded. The topographer advances to the rodman's position and sends him on further out to locate other points. If no rodman is used the topographer can pace the distance in the normal direction to some point which he guesses is about the eye-height below his position. If the line of sight from his point strikes below the surface in the normal line, he must go toward the base line till the line of sight strikes the point on the base line. The distance from the base line is found by subtracting or adding the distance between the final location and the assumed point to the distance from base line to assumed point. With a little practice a topographer will soon be able to select a point within a foot or so of the correct point.
144. Slope Stakes in Excavation.-In excavation in earthwork the cross section is defined by the roadbed $A B$, Fig. 79, and the side slopes $A E$ and $B C$. The amount of slope of $B C$ is determined by the ratio of $B G$ to $C G$, and is designated by $s . \therefore s$ $=B G \div C G=\tan . B C G . \quad \therefore B G=s . C G=s h_{1}$, where $h_{1_{1}}$ $=$ height of point C above roadbed $A B=C G$, and $h_{2}=E F$ height of E above roadbed $A B$.

Fig. 79.
$2 b=A B$ width of roadbed.
Now
$B G=s h_{1}$,
$K G=b+s h_{1}$
$K F=b+s h_{2}$
\therefore Distance out of stake point $C=$ half width of roadbed plus slope times height of point above roadbed.

The center cut $D K=c$ is already known before any attempt is made to set the slope stakes. The level is set up in some
convenient position and a rod reading taken on the station at D. Let 1234 represent the horizontal line of sight,

$$
\begin{aligned}
m & =D 1=\text { rod readjng on station } \mathrm{D}, \\
\therefore H & =D K+D 1=c+m
\end{aligned}
$$

Now, to locate the slope stake at C at a horizontal distance d from D, try some point as P and find the rod reading $P 2=r$.

Then $2 Q-P 2=H-r$.
Now, $H-r$ is the "surface height" of the trial point above roadbed $A B$.

Calculated distance out $d_{\mathrm{c}}=b+s(H-r)$. But
Measured distance out $d_{\mathrm{m}}=b+s Q T$.
Hence, we see that when the trial point is too near the center the measured distance out is less than the calculated distance out. Try some point S.

$$
\begin{aligned}
& d_{\mathrm{m}}=\text { measured distance out }=b+s U X \\
& d_{\mathrm{c}}=\text { calculated distance out }=b+s U S
\end{aligned}
$$

\therefore The measured distance out is greater than the calculated distance out when the trial point is too far out, and vice versa.

Hence, if

$$
\begin{aligned}
& d_{\mathrm{m}}>d_{\mathrm{c}}, \text { come in } \\
& d_{\mathrm{m}}<d_{\mathrm{c}}, \text { go further out. }
\end{aligned}
$$

Rule: If the measured distance out to the trial point is greater than the calculated distance out, come in, and vice versa.

Slope-Stakes in Level Sections.-If $D T$, the surface of the ground, is horizontal, then $D K=T Q$. In this case the point T will be the stake point.

Its distance out, $K Q=K B+B Q=b+s T Q=b+s D K$ $=b+s c$.

Thus, in level sections the distance out is found by multiplying the center cut by the slope and adding the half width of roadbed.

Example: If center cut $=14.6$ and slope $s=3: 2$ and width of roadbed $=18$ feet, then

$$
\text { Distance out }=9+\frac{3}{2} 14.6=30.9
$$

Field Methods.-In the field, if the ground is inclined, the usual practice is first to find the distance out on the assumption that the ground is level. This simply serves as a guide and useful help. If the ground slopes, the distance out on the upper side of the center of roadway is always greater than the distance out in a level section, if the ground slopes uniformly. While on the lower side the distance out of the slope stake is less than the level d. o.

Example. Given $s^{\prime}=\frac{3}{2} ; 2 b=18 ; c=14$. The level was set up and the rod reading on the center was 7.2 . For a level section, the distance out $=9+\frac{3}{2} \times 14=30$. On the upper side the trial point was selected at 32 ft . from the center where the rodreading was 0.4 ft .

$$
\begin{gathered}
H=14+7.2=21.2 \\
H-r=21.2-5.4=15.8
\end{gathered}
$$

Calculated d. o. $=9+\frac{3}{2} \times 15.8=32.7$
Now, the calculated d. o. is greater than the true, hence the trial point is too near center. Try a point 34 ft . out when rod reads 5.0.

$$
H-r=21.2-5.0=16.2
$$

Calculated d. $0 .=8+\frac{3}{2} \times 16.2=32.3 \mathrm{ft}$.
The calculated d. o. is less than true d. o.
The second trial point is too far out. Try point 33, where rod reads 5.2.

$$
H-r=21.2-5.2=16.0
$$

Calculated d. o. $=9+\frac{3}{2} \times 16=33.0$
This location is correct.
On the lower side the distance out must be less than 30 , the d. o. for a level section. Try a point 29 ft . out, where rod reads $r=8.4$.

$$
H-r=21.2-8.4=12.8
$$

Calculated d. o. $=9+\frac{3}{2} \times 12.8=28.2$
Hence, the trial point was too far out. Try a point at 28.4 , where rod reading $=8.3$.

$$
H-r=21.2-8.3=12.9
$$

Calculated d. $\boldsymbol{o} .=9+\frac{3}{2} \times 12.9=28.35$
The location is sufficiently accurate.
Problem 69. Center cut $=16.6,2 b=18^{\prime}, s=3 \div 2$.
Rod reading on center $=6.2$. A trial point was taken at 35 , where a rod reading was 5.0 . Is the trial point too far out or in? Answer:

If the trial point was at 39.0 and the rod reading was 4.9 , is it too far out or in? Answer:

If the point was 36 and the rod reading 4.8 , how is it? Answer:

Problem 70.-In the following table:
$c=$ center cut,
$m=$ rod reading on center,
$d_{\mathrm{m}}=$ true distance out of trial point,
$r=$ rod reading on trial point,
$\dot{d}_{\mathrm{c}}=$ calculated distance out.
Find the results as to accuracy of location point.

Number	c	m	s	b	$d_{\text {m }}$	r	$d_{\text {c }}$	Result
A	.12.8	6.6	3/2	9	30.2	5.2	.	
B	.12.8	6.6	3/2	9	32.0	4.8	..	
C	.12.8	6.6	3/2	9	30.6	5.0		
1)	.12.8	6.6	3/2	9	26.0	7.6		
E	.12.8	6.6	3/2	9	27.0	8.0		
F	. 12.8	6.6	3/2	9	26.4	7.8	.	
G	8.6	5.4	1/1	9	18.0	6.4	\cdots	
H	8.6	5.4	1/1	9	19.5	4.0		
I .	. 8.6	5.4	1/1	9	17.0	4.2	\cdots	
	86	5.4	1/1	9	18.9	4.1	\ldots	
K	.11.4	4.8	$2 / 1$	9	35.6	3.6	.	
L	.11.4	4.8	$2 / 1$	9	33.8	3.8	\cdots	

145. Slope Stakes in Embankment.-In embankments the road bed $A B$ is usually for single track roads 14 ft . wide and the slope varies from $1: 1$ to $2: 1$. However, on levees the slope is as flat as $5: 1$.

The roadbed is $A B$, Fig. 80, and the side slopes $B C$ and $A E$. Slope stakes must be set at the foot of the slopes at E and C. The center fill $K D=c$ is known and it is required to locate these slope stakes. The level is set up. $1,2,4,3$ is the horizontal line of sight, the rod reading (m) on the center is $D 1$. The height of instrument (H. I.) above roadbed $A B$ is $K I$.

Now, $B G=s \times C G$ and $A B=2 b, D I=m$

$$
H . I .=K I=m-\mathrm{c}
$$

Distance out $=K G=K B+B G=b+s . C G=\dot{b}+s h$
The rod reading (r) on C is $4 C$,
But $4 C=4 G+G C$
$\therefore r=H . I .+h$
or $h=r-H I=r-m+c$
Distance out $=b+s(r-m+c)$
Suppose we try a point P that is too close to the center.
Rod reading $(r)=P 2=r$

Fig. 80.
$d_{\mathrm{c}}=$ calculated distance out $=b+s(r-m+c)=b+s . P Q$.
But $d_{\mathrm{m}}=$ true distance out $=K Q=K B+B Q=b+s Q T$.
Thus d_{c} is greater than d_{m}.
Hence the calculated distance out is too great and the trial point is too near the center.

Try a point S where rod reading $=3 S$.

$$
d_{\mathrm{c}}=b+s(r-m+c)=b+s . U S
$$

$$
\text { But } d_{\mathrm{m}}=K U=b+s . U X
$$

$\therefore d_{\mathrm{c}}$ is less than d_{m}.

Hence the calculated distance out is less than the true distance out, or the trial point is too far out. Thus we see that the same rule applies to fills that applies to cuts.

In deep fills the line of sight 1243 may be below $A B$ and the height of instrument (H.I.) will be negative. In this case
H. $I .=c-m$

Distance out $=b+s(c-m+r)$
Example.-Given $2 b=14: s=3 / 2$; center fill $=14.8 \mathrm{ft}$.; rod reading on center $=5.4$. If the ground is level the distance out $=7+3 / 2(14.8)=29.2 \mathrm{ft}$. On the lower side the distance out will be greater than this, while it will be less on upper side.

Try a point 31 out where the rod reading $=7.20$.

$$
d_{\mathrm{c}}=7+\frac{3}{2}(14.8-5.4+7.2)=31.9
$$

:. Point was too far out.
Try a point 32 ft . out where $r=7.3$.
$d=7+3 / 2(14.8-5.4+7.3)=32.05$.
The location is sufficiently accurate for practical or ordinary requirements.

Problem 71. -In the following table determine the results of the trials, i. e., whether trial point is too far, too near, or correct:

Number	c	m	s	b	$d_{\text {m }}$	r	$d_{\text {c }}$ Results
A	17.8	5.2	3/2	7	36	7.4	
B	.17.8	5.2	3/2	7	27.2	7.5	\therefore.
C	. 17.8	5.2	3/2	7	38	7.6	
D	.14.4	4.8	1/1	7	22.0	5.6	.
E	.14.4	4.8	1/1	7	20.5	5.5	
F	.14.4	4.8	1/1	7	20.7	5.	
G	9.2	4.6	2/1	7	23.0	3.4	

146. Berms.-It is often necessary to excavate the earth near the foot of the slope of the embankment to secure enough dirt to make the embankment. When such is the case it is necessary to leave a strip of unbroken original surface at least 4 ft . in width between the borrow pit and the foot of slope to afford a break for earth that washes down or off the slope. Thus in Fig. 80 $F E$ is the berm, a strip of undisturbed natural earth, between the embankment $C B A E$ and the borrow pit $N F$.

In cuts it is often of the utmost importance to have an undisturbed natural surface on each side of the cut. To do this it
is necessary to prevent the deposition of any excavated material within 6 ft . of the edge of the side slope. If the loose earth is piled near the edge of the slope, heavy rains will wash it down the slope into the cut.

Bibliography.-"Railroad Location Surveys and Estimates," by F. Lavis. Published by the Myron, C. Clark Publishing Co. This book is a complete epitome of actual field engineering and includes a history of the preliminary survey from the organization of the party to the completion of the line. No better description can be applied to this work than to say that its theme is to tell and show "how to do things." In many respects it covers a territory heretofore not traversed, and is replete with valuable suggestions gained by experience as a field engineer.
"Field Manual for Railroad Engineers." By James C. Nagle. Published by John Wiley \& Sons, 403 pp . One of the leading field books of the country, containing full directions, suggestions, tables for the solution of the usual problems met with in field operations in preliminary and location surveys. A full set of tables of trigonometric functions, of a 1° curve, transition curve, coordinates, squares and cube roots.
"Railroad Curves and Earthwork." By C. Frank Allen. Published by Spon \& Chamberlain. 490 pp. Contains discussion of the usual railroad curves including the transition curve, rather full treatment of slope stakes and earthwork problems, with diagrams to facilitate the calculation for earth work; field and office tables.
"The Field Engineer." By W. F. Shunk. Published by D. Van Nostrand Company. 339 pp . This work treats of the problems of preliminary and location surveys, many illustrative examples, the essentials of slope stake setting, and the usual tables necessary for an engineer in the field.
"Field Engineering." By Wm. H. Searles. This has been for years one of the standard manuals for field and office engineers, and it covers the problems of railway surveying, location and construction. The book is filly illustrated and has many valuable tables to shorten the labor of calculation.

CHAPTER IX.

EARTHWORK.
147. Prismoidal Formula.-Let Fig. 81 represent a solid bounded by two parallel planes and whose side faces are triangles. Draw the mid-section 12345678 and join any point P in this mid-section with ABCDEFGH, 1, 2, 3, 4, $5,6,7$, and 8 . This divides the solid into three kinds or types of pyramids. The first class has P for a vertex and $A B C D$ for a base; the second has P for a vertex and EFGH for a base, while the third class has P for a vertex and for bases the side face triangles, as P $E D C$.

Fig. 81.

Let $B_{1}=$ area $A B C D$ $B_{2}=$ area $E F G H$
$h=$ perpendicular distance between parallel planes $A B C D$ and $E F G H$.

1. Volume $P-A B C D=\frac{1}{3} A B C D \times \frac{1}{2} h=\frac{1}{6} h B_{1}$
2. Volume $P-E F G H=\frac{1}{3} E F G H \times \frac{1}{2} h=\frac{1}{6} h \quad B_{2}$
3. To find the volume of the pyramids of the third class, consider $P-E D C$ as a type of the third class. The pyramids $P-E 12$ and $P-E D C$ have the same vertex P and bases in the same plane $E D C$. Hence they are to each other as their bases.
$\therefore P-E D C: P-E 12:: E D C: E 12$.
As 1 and 2 are the mid-points of the sides $E D$ and $E C, E D C$ $=4 \times E 12$.
$\therefore P-E D C=4 \times P-E 12$.
But the volume of the Pyramid $P-E 12=\frac{1}{3} \times$ Area $P 12 \times \frac{1}{2} h$ $=\frac{h}{6} \times P 12$.
\therefore Volume $P-E D C=4 \times \frac{h}{6} \times P 12=\frac{4 h}{6} \times P 12$.
Similarly, Volume $P-E F C=\frac{4 h}{6} \times P 23$.
\therefore Total volume of pyramids of third class $=$
$=\frac{4 h}{6}(P 12+P 23+P 34+P 45+P 56+P 67+P 78+P 18)=\frac{4 h}{6} M$, where $M=$ area of mid-section 12345678 .

Adding the volumes of the three types we get for total volume $V=$ Volume of solid $=\frac{h}{6}\left(B_{1}+4 M+B_{2}\right)$.

Fig. 82.
148. Railroad Excavation.-In railroad earthwork, cross-sections at right angles to the center line of track are taken every 100 ft . Slope stakes are set and data obtairied for calculating the volume to be excavated between the two sections 100 ft . apart. Such a solid is bounded by a plane roadbed, two parallel end areas, whose planes are perpendicular to the planes of the side slopes, while the upper surface is terminated by planes that are either triangular areas or that can be divided into triangles by drawing the diagonals as $D^{\prime} C$. The prismoidal formula applies to such a solid. Fig. 82 represents the part of the excavation on one side of the central plane of roadbed. $B K K^{\prime} \dot{B}^{\prime}$ represents half of the roadbed between cross-sections $D K B C$ and $D^{\prime} K^{\prime} B^{\prime} C^{\prime}$. To find the volume of the excavation by the prismoidal formula given above, it is necessary to find the areas of the ends or bases and of the mid-section.
149. Level Sections.-Where the intersection of the cross-section plane with the surface of the earth is horizontal, the section is said to be level, or a one-level section.

In Fig. $83 . A B=2 b, D K=c, C G=E F$. Now, $B G=s C G$ $s C G=s c=A F$
$\therefore F G=2 b+2 s c=E C$
Area $E A B C=1 / 2(E C+A B) D K$

$$
\begin{align*}
& =\frac{1}{2}(2 b+2 s c+2 b) c, \\
& =c(2 b+s c)=2 b c+s c^{2} \tag{34}
\end{align*}
$$

Fig. 83.
Example: Given $2 b=18^{\prime}, c=8.4, s=3 / 2$, find area of section.

Area $=2 b c+s c^{2}=18 \times 8.4+3 / 2 \times(8.4)^{2}=257.04$ sq. ft.
150. Two Level Sections. When the surface of the ground slopes uniformly transverse to the roadway, two points established on the surface will be sufficient to determine the cross-section.

Let $h_{1}=C G$, and $h_{2}=E F, B G=s C G=s h_{1}, A F=s h_{2}$
$F G=2 b+s h_{1}+s h_{2}$
Then area $A B C E=E C G F-B C G-A E F$
$=1 / 2\left(h_{1}+h_{2}\right)\left(2 b+s h_{1}+s h_{2}\right)-1 / 2 s h_{2}-1 / 2 s h_{1}{ }^{2}$
$=b\left(h_{1}+h_{2}\right)+s h_{1} h_{2}$
The center cut is used only in locating the slope stakes at C and E, but is not used in the calculation of the area.

Example: Given $2 b=18, s=3 / 2, h_{1}=8.4, h_{2}=6.6$.
Area of section $=9(8.4+6.6)+3 / 2(8.4 \times 6.6)=135+83.16$ $=218.16$ sq. ft .
151. Three Level Sections.-By far the most common and usual section is the one where the two side heights and the center cut are used in calculating the area.

As usual, $C G=h_{1}, E F=h_{2}, K G=d_{1}, K F=d_{2}, D K=c, A B$ $=2 b, B G=s h_{1}, F A=s h_{2}, K G=b+s h_{1}, K F+q=s h_{2}$.

Area $D K B C=D K C+C K B=1 / 2 c d_{1}+1 / 2 b h_{1}$.
In the same way, $D K A E=1 / 2 c d_{2}+1 / 2 b h_{2}$.
Total area $=c / 2\left(d_{1}+d_{2}\right)+b / 2\left(h_{1}+h_{2 .}\right)$
Thus, in the three-level section, the double area is equal to the center cut multiplied by the sum of the distances out, plus the half roadbed multiplied by the sum of the side heights.

Fig. 86.
152. Irregular Sections.-When the surface of the ground is very irregular, rod readings must be taken at every change in slope of surface. Thus, in Fig. 86 rod readings must be taken at seven different places, and this section would be called a seven-level section. In the field we would locate N by measuring its distance out $K n$, and by its elevation $N n$ above $A B$ the roadbed. Thus, for any point on the surface, we have its co-ordinates, i. e., distance above $A B$ (roadbed) and the dis-
tance from K (center of roadbed) to foot of perpendicular. To find the area of the section, we find first the area on the right of the central plane $D K$ and then on the left.
$B K D M N P C=K D M m+m M N n+n N P p+p P C G-B C G$
Let $c, h_{\mathrm{m}}, h_{\mathrm{n}}, h_{\mathrm{p}}, h_{1}$ be the heights of D, M, N, P, C above $A B$ and $d_{\mathrm{m}}, d_{\mathrm{n}}, d_{\mathrm{p}}$ and d_{1} equal the distance out of M, N, etc.

$$
\begin{aligned}
& \text { Area } K D M m=\frac{1}{2}\left(c+h_{\mathrm{m}}\right) d_{\mathrm{m}} \\
& \text { Area } m M N n=\frac{1}{2}\left(h_{\mathrm{m}}+h_{\mathrm{n}}\right)\left(d_{\mathrm{n}}-d_{\mathrm{m}}\right) \\
& \text { Area } n N P p=\frac{1}{2}\left(h_{\mathrm{n}}+h_{\mathrm{p}}\right)\left(d_{\mathrm{p}}-d_{\mathrm{n}}\right) \\
& \text { Area } p P C G=\frac{1}{2}\left(h_{\mathrm{p}}+h_{1}\right)\left(d_{1}-d_{\mathrm{p}}\right) \\
& \text { Area } B C G=\frac{1}{2} h_{1}\left(d_{1}-b\right)
\end{aligned}
$$

Expanding and simplifying, we have,
Double Area BKDMNPC $=c d_{\mathrm{m}}+h_{\mathrm{m}} d_{\mathrm{n}}+h_{\mathrm{n}} d_{\mathrm{p}}+h_{\mathrm{p}} d_{1}+b h_{1}-$ $h_{1} d_{\mathrm{p}}-h_{\mathrm{p}} d_{\mathrm{n}}-h_{\mathrm{n}} d_{\mathrm{m}}$
153. Rules.-The notes in the field book are written as follows:

Center	Side
$\frac{c}{o}$	$\frac{h_{\mathrm{m}}}{d_{\mathrm{m}}}$

Now, the point B is a corner of the polygon whose area we wish. In the table of notes we write each cut as a numerator of a fraction with the distance out of the point as denominator. To complete the notation for each point we can write the notes as follows:

$$
\frac{c}{o}, \frac{h_{\mathrm{m}}}{d_{\mathrm{m}}}, \frac{h_{\mathrm{n}}}{d_{\mathrm{n}}}, \frac{h_{\mathrm{p}}}{d_{\mathrm{p}}}, \frac{h_{1}}{d_{1}}, \frac{o}{b}
$$

By an inspection of the formula for the area in connection with the Figure 86, we observe that each positive term consists of each cut or height (numerator) multiplied by the next denominator to the right (left), and that each negative term consists of the numerator multiplied by the denominator to the left (right). This gives the following ustual

Rulc: To obtain the area of the cross-section:

1. For positize terms, begin at center and multiply each uumerator by the next outward denominator.
2. For negative terms, begin at ends and multiply each mumerator by the next denominator towards center cut.
3. Take half the algebraic sum of the positio'e and negatize. terms for the area of the cross-section.

The data should be arranged as in Figure 87.
If we begin at the center and multiply each numerator by the denominator with which it is connected by the solid arrow and sum the results we get the positive terms, and if we multiply each numerator by the denominator with which it is con-

$$
\frac{0}{9}<\frac{8}{21} \times \frac{9}{7}<\frac{14}{0}<\frac{15}{8} \times \frac{12}{14} \times \frac{16}{20} \times \frac{12}{27}<\frac{0}{9}
$$

Fig. 87.
nected by the dotted arrow, we get the negative terms. Half the algebraic sum of the positive and negative terms gives the area of the cross-section. Thus, from Fig. 87:

Double area on right $=14 \times 8+15 \times 14+12 \times 20+16 \times 27$ $+12 \times 9-12 \times 20-16 \times 14-8 \times 12=542 \mathrm{sq} . \mathrm{ft}$.

Double area on left $=14 \times 7+9 \times 21+8 \times 9-8 \times 7=303$ sq. ft.

Double area of section $=542+303=845 \mathrm{sq} . \mathrm{ft}$.
Second Rule: The double area can be found by arranging the data as in Fig. 87 and by multiplying the sum of taoo adjacent numerators by the difference of their denominators and by taking the algebraic sum of the products, treating the two extremes as negatio'e.

Thus,
Double area $=-8 \times 12+17 \times 14+23 \times 7+29 \times 8+27 \times$ $6+28 \times 6+28 \times 7-12 \times 18=845 \mathrm{sq} . \mathrm{ft}$.
154. Side Hill Cuts.-It often happens that the railroad runs along the side of a hill and that part of the roadbed will be in cut and part in fill. The elevation of the roadbed is known and the center cut or center fill, as the case may be, is also known. Thus, if EC, Fig. 88 , is the surface of the earth and $A B$ the roadbed, part of the cross-section will be in cut and part in fill. The cut $D K$ at the center is known and the slope stake at C is located as usual. The point P (cross-section grade-
point) is located by the levelman and the distance $K P$ measured. Below the point P, grade-point, the ground shown may be roughened or cut into steps, as shown in figure, to prevent slipping during wet weather.

Fig. 88.
Let $B P=a$, then area $P B C D=P D K+D K B C=\frac{c}{2}(a-b)$ $+\frac{b}{2}\left(c+h_{1}\right)-\frac{1}{2} s h_{1}{ }^{2}$

Fig. 89.
Area $P A E=1 / 2 E F \times A P=1 / 2(2 b-a) h_{\imath}$.
Example: Given $2 b=18, s=3 / 2$ on both sides and $D K=$ $2^{\prime}, h_{1}=8^{\prime} . h_{2}=-4$.

The distances out are 21 on upper side, and 15 on the lower. The grade-point is found 3^{\prime} to left of center.

$$
\text { Area in cut }=\frac{21}{2}(2+8)+\frac{1}{2}(2+3)-48=60 \mathrm{sq} . \mathrm{ft}
$$

$$
\text { Area in fill }=1 / 26 \times 4=12 \text { sq. } \mathrm{ft} .
$$

Problem $72 .-\mathrm{If} \quad B K=8^{\prime}, \quad D K=2^{\prime}, \quad K A=7^{\prime}, \quad P K=3^{\prime}$, slope in cut $=1: 1$, slope in fill $=3: 2$, find area in cut and fill if $h_{1}=8, h_{2}=-4$.
155. Average End Areas.-In practice, the volume is calculated by the average end area formula.

Fig. 89 represents a form of a three-level section. The central plane $D K$ divides the solid of excavation into two parts that
can be treated separately. Let the center and side cuts at one station be c and h_{1} and those at the next station 100^{\prime} away be c_{1} and h_{1}^{\prime} and let both sections be three-level sections, as in the figure.

Let $B_{1}=$ area $D K B C$
$B_{2}=$ area at the next station corresponding to $D K B C$,
We have,

$$
\begin{aligned}
& B_{1}=1 / 2\left(d_{1} c_{1}+b h_{1}\right) \\
& B_{2}=1 / 2\left(d_{1}^{\prime} c_{1}^{\prime}+b h_{1}^{\prime}\right)
\end{aligned}
$$

Now, if the solid is bounded by plane faces, we have center cut, side height, and distance ont at mid-section.

$$
\begin{gather*}
1 / 2\left(c_{1}+c_{1}^{\prime}\right), 1 / 2\left(h_{1}+h_{1}^{\prime}\right), 1 / 2\left(d_{1}+d_{1}^{\prime}\right) \\
8 M=\left(d_{1}+d_{1}^{\prime}\right)\left(c_{1}+c_{1}^{\prime}\right)+2 b\left(h_{1}+h_{1}^{\prime}\right) \\
\text { But } V=\text { true volume }=\frac{100}{6}(B+4 M+B) \ldots \ldots(3 \tag{33}\\
=\frac{100}{12}\left(2 d_{1} c_{1}+2 d_{1}{ }^{\prime} c_{1}^{\prime}+d_{1} \mathrm{c}_{1}^{\prime}+d_{1} c_{1}+3 b h_{1}+3 b h_{1}^{\prime}\right) \\
\text { The average end areas }=\frac{1}{2}\left(B_{1}+B_{2}\right) \ldots \ldots \ldots \ldots \ldots . \ldots \tag{37}\\
\text { Let } V_{\mathrm{e}}=\frac{100}{2}\left(B_{1}+B_{2}\right)=\frac{100}{12}\left(3 d_{1} c_{1}+3 d_{1}{ }^{\prime} c_{1}^{\prime}+3 b h_{1}+3 b h_{1}{ }^{\prime}\right)
\end{gather*}
$$

156. Error of Average-End Area Formula.-The average end area formula generally gives an excess of volume. Let E be the excess in volume by end-area formula.

$$
\begin{equation*}
\cdot E=V_{\mathrm{e}^{2}}-V=\frac{100}{12}\left[\left(c_{1}-c_{1}^{\prime}\right)\left(d_{1}-d_{1}^{\prime}\right)\right] \tag{38}
\end{equation*}
$$

In the majority of cases, $c_{1}-c_{1}^{\prime}$, and $d_{1}-d_{1}{ }^{\prime}$ have the same sign \therefore excess is positive, that is, there is really an excess. But in passing over a saddle, c_{1} can be greater than c_{1}^{\prime} and d_{1} less than $d_{1}{ }^{\prime}$. In such cases the excess is negative-that is, the volume calculated by the average-end-area formula is smaller than the true volume.

By common consent among engineers, contractors and surveyors, practically all volumes in railway practice are calculated by the average-end-area ($A E A$) formula. In fact, it is highly probable that for the real earth solid, the $A E A$ formula gives results as near the actual cubic contents as the true prismoidal formula.
157. Examples.-The stations $1,2,3$, etc., in the following table are 100 ft . apart. The numerators in each case show the depths of cuts and the denominators the distances out at the different points. Width of roadbed $=18^{\prime} .0$, slope $=3 / 2$.

| Station | Cut or Fill | | | | Areas |
| :--- | :---: | :---: | :---: | :---: | :---: | | Cubic |
| :---: |
| Yards |

In calculating the areas (as at Station 3) we arrange the data as follows:

$$
\frac{0}{9} \quad \frac{8.2}{21.3} \quad \frac{10.2}{10.0} \quad \frac{12.0}{0} \quad \frac{13.8}{11.0} \quad \frac{14.2}{30.3} \quad \frac{0}{9}
$$

and for positiye terms work from the center outward, multiplying each numerator by the next denominator ahead as we pass out from center, and for negative terms multiplying each numerator by the next denominator towards the center.

Calculaion:
Area on right $=\frac{1}{2}[12.0 \times 11.0+13.8 \times 30.3+14.2 \times 9.0-14.2 \times$

$$
11.00]=260.9
$$

Area on left $=\frac{1}{2}[12 \times 10+10.2 \times 21.3+8.2 \times 9-8.2 \times 10]$

$$
=164.53
$$

Check calculation:
Area on right $=\frac{1}{2}[25.8 \times 11.0+28 \times 19.3-14.2 \times 21.3]$ $=260.9 \mathrm{sq} . \mathrm{ft}$.

$$
\begin{aligned}
\text { Area on left }= & \frac{1}{2}[22.2 \times 10+78.4 \times 11.3-8.2 \times 12.3] \\
& =164.53 \text { sq. } \mathrm{ft} .
\end{aligned}
$$

Total area $=260.9+164.53=425.4$

Area at Sta. $4=\frac{1}{2}[13.8 \times 12+15 \times 33.6+16.4 \times 9+13.8 \times$ $27.3+12.2 \times 9-12.0 \times 16.4]=553.47$.
Area at Sta. $5=\frac{1}{2}[16.6 \times 67.2+32.8 \times 9]=705.4$.
Volume $\quad 1-2=\frac{100}{54}[221.31+320.46]=1003.3$ cubic y ds.,
Volume $2-3=\frac{100}{54}[320.46+425.4]=1381.2$ cubic yds.,
Volume $3-4=\frac{100}{54}[425.4+553.47]=1812.7$ cubic $y d s .$,
Volume $4-5=\frac{100}{54}[553.47+705.4]=2331.2$ cubic $y d s$.
Total volume $1-5=6528.4$ cubic yards.
Problem 73.-Find the areas, volumes and total volume from the following field notes:

Cut or Fill.
Cubic
Station.

Station.		or		Areas	Yards
	Left	c	Right		
6.	15.8	18.	$\underline{20.2}$		
	$\overline{32.7}$	18.4	$\overline{39.3}$	$\because \cdot$.	
7	14.8		18.8		
	$\overline{31.2}$	16.9	$\overline{37.2}$		
8	12.814 .7		$16.3 \quad 17.4$		
	$\overline{28.2} \overline{13.0}$	15.0	$\overline{12.0} \quad \overline{35.1}$		
9..	11.4		14.416 .2		
	. 26.1	13.6	$\overline{11.0} \overline{33.3}$		

Areas
Yards

Total volume $=7533.7$ cubic yards.
158. Preliminary Estimates.-In comparing preliminary surveys of several lines, it is necessary that we know the number of cubic yards of excavation required on each line. The preliminary profile will give the cut or fill at the different stations, and if we assume that the cross-section is level we can obtain a close approximation to the true areas and hence to the volumes without going to extra expense of setting slope stakes to determine the true cross-section.

From article 149 the area of B of a level cross-section is given by

$$
B=2 b c+s c^{2}
$$

Where $2 b=$ width of roadbed, $c=$ center cut, $s=$ slope
If $2 b=18^{\prime}, s=3: 2$, then $B=18 c+1.5 c^{2}$.
Now, if we make $c=1, \therefore, 3,4,5$, etc., we get areas of $19.5,42$, $67.5,96$, etc.

It is assumed that any of these areas is the average of the two sections, 50 ft . on each side of it.

$$
\text { Pat Volume }=\frac{100 \mathrm{~B}}{27} \text { cubic yards }
$$

Making B equal to the areas above, we get the volumes in cubic yards to be $72,156,250,356,472$ cubic yards, etc. In the same way we can find the volumes for any width of roadbed and any slope. The usual widths are $12,14,16$, etc.

Table V. gives the volumes in cubic yards, slopes $1: 4,1: 2,1: 1$, $3: 2,2: 1$ and $3: 1$ and for the various widths.

Example: If $2 b=18, s=1: 1$, and it is desired to find the volume in cubic yards from stations 5 to stations 10 , where the center cuts are $6 ; 8,10,12,11$, we look in the table headed "Slopes $3: 2$ " under "base" and opposite 6 we find 600 , opposite 8, 889, etc. These are read from Table V. and recorded as below:

Station.	Center Cut.	Volume.
5	6	600
6	8	889
7	10	1,222
8	12	1,600
9	11	1,406
10	9	1,050

Sum of volumes $=6,767 \mathrm{cul}$. yds.
From this we must subtract half the end volumes, or 8.5 . Volume between Sta. 5 and Sta. $10=5942 \mathrm{cu} . \mathrm{yds}$.
Problem 74.-If the center cuts at Stations 17, 18, 19, 20 and 21 are $12,14,15,16,15$, find the number of cubic yards between Stations 17 and 21 for level sections by use of Table V.
159. Earthwork Note-Book.-The preliminary estimate of the amount of earthwork is for a basis of comparison with other preliminary lines, but the final estimate is based on the actual notes taken in the field in setting the slope stakes. The level
notebook, as commonly used, has a left-hand page ruled into six columns, as shown in Fig. 90. The grade column (marked "Gr."

Fig. 90.
in Fig. 90) is filled in from the profile or established rise per 100 feet. The right-hand page of the notebook is ruled into,
spaces one-tenth to one-fourth inch square. A central line divides the right-hand page into two halves and these can be utilized for the earthwork notes. The difference between the "Elev." and "Gr." is record as the center cut under "C." with a zero for the denominator and the left and right-side cuts are written on the left and right, respectively, with the "distance out" as the denominator. The areas are calculated in square feet and recorded under the heading "Areas" and the volumes are found by the mean-end-area formula, that is, by multiplying the average of the two end areas by 100 to obtain the cubic feet, and by dividing this by 27 to obtain the cubic yards. In passing from cut to fill the usual practice has been followed, averaging the plus area (cuts) between Stations 27 and 28 to obtain the amount of cut or plus volume. In the same way the average of the negative areas between Stations 28 and 29 has been taken for the amount of fill between these two stations. Thus, the amount of cut between Stations 27 and $23=$ $\frac{100}{2}(25.6+2.4) \div 27=51.9$ cubic yards. The number of cubic yards of fill between stations 28 and $29=\frac{100}{2}(7.9+12.8) \div 27$ $=38.3$ cubic yards.

If a grade-point occurs between two stations and the intersection of cut and fill is approximately normal to line of survey, that part in cut is treated as a wedge whose volume is equal to the half area in cut at last station in cut multiplied by the distance of grade-point from said station. In the same way the part in fill is treated as another wedge whose volume is found the same way.
160. Special Case.-Where there is a rather sudden change from celt to fill a special solution is required to obtain the exact quartity of earth in cut and fill. Let ${ }^{*} A B$, Fig. 91, be the contour between the excavation and embankment, $E B=$ width $\subset f$ roadbed in cut, and $C H=$ width of roadbed in fill. Locate the points A, B, C, D on the ground where the plane of the roadbed intersects the surface of the ground. Take level notes on the cross-section $F E B$ and $C H G$ and measure the dis-
tances $A E$ and $D H$. Then the volumes of $A-F E B$ and $D-$ $C H G$ are treated as pyramids whose bases are $F E B$ and $C H G$ and altitudes $A E$ and $D H$, respectively. The volume between the sections $F M B$ and the next full station is found by multi-

Fig. 91. plying the average of the end areas by the distance between $F M B$ and the full station and by dividing the product by 27 . Thus, if the contour $A B$ occurs between Stations 54 and 55 and M is 42 ft . from Station 54 and the area in cut at Station 54 is 286.8 sq. ft., area $F M B=73.8$; then the volume between sta. 54 and $F M B=1 / 2(73.8+286.8) \times 42 \div 27=$ 280.5 c. y.

Example: Given $E B=18^{\prime}, \quad C H=14^{\prime}$, slope in cut $=1: 1$, slope in fill $=3.2$, cut at F $=6.00^{\prime}$, cut at $M=3.2$, fill at $G=4.8^{\prime}$, fill at $K=2.2^{\prime}, A E=20.0^{\prime}, D H=15.6$. Then area of $F M B=73.8$ sq. ft. Volume $\mathrm{A}-F E B=1 / 3 \times 73.8 \times 20 . \div 27=18.2$ cu. yds. Area $C K H G=49.50$ sq. ft. Volume $D-C K H G=1 / 3$ $\times 49.50 \times 15.6 \div 27=9.53 \mathrm{cu} . \mathrm{yds}$.

Now distance $E A=20$ and $D H=15.6$, hence $M N=10.0$, $K N=7.88$. Therefore, distance from K to station $54=42+10$ $+7.8=59.8$. Hence, distance from K to station $55=100-59.8$ $=40.2 \mathrm{ft}$. Find number cubic yards in fill between K and 55 if area in fill at $55=222.2$ sq. ft.
161. Borrow Pits.-When the excavations will not fill the cuts or embankments, or when the haul is too far for economy, it becomes necessary to obtain earth from the areas adjacent to or near the embankment. Such places are called "borrow pits," and when it is desired to ascertain the amount of earth excavated the area is first divided into rectangular sections about $10 \times 10 \mathrm{ft}$. With some local point as bench mark or datum, the elevation of each corner of rectangles is determined with reference to the bench mark. After the excavating is finished the points are re-located in the pit and the new elevation of each point again determined with reference to the datum. The difference of the two elevations of any point will be the depth of
excavation of that point. The volume taken out of any rectangle will be found by drawing the diagonal (as 13) in the 1234.

Fig. 92.
Then let $A=$ area 1234,

$$
\begin{aligned}
& h_{1}=\text { depth of cut at } 1, \\
& h_{2}=\text { depth of cut at } 2, \\
& h_{3}=\text { depth of cut at } 3, \\
& h_{4}=\text { depth of cut at } 4 .
\end{aligned}
$$

Now, volume $123=\frac{A}{6}\left(h_{1}+h_{2}+h_{3}\right)$

$$
\begin{equation*}
\text { volurne } 134=\frac{A}{6}\left(h_{1}+h_{3}+h_{4}\right) \tag{39}
\end{equation*}
$$

\therefore Total volume $1234=\frac{A}{6}\left(h_{2}+h_{4}+2 h_{1}+2 h_{3}\right) \ldots$.
Rule: Multiply one-sixth the arca of rectangle by twice the sum of the two heights at ends of diagonal plus the sum of the other two heights. Ordinarily, the volume can be found with sufficient exactness by taking the average of the four cuts and multiplying this by the area, or,

$$
\text { Volume }=\frac{A}{4}\left(h_{1}+h_{2}+h_{3}+h_{4}\right), \text { nearly }
$$

In order to re-establish the points $1,2,3$, etc., after the excavation has been made it is necessary to establish some base line like $P Q$, that will not be disturbed by the plows or teams and tie every point to this line by rectangular co-ordinates. Thus, to re-establish the point 3 , its perpendicular distance from a certain point on $P Q$ must be known.
162. End of Fill.-When a fill has a gap in ii for a trestle, the dirt. is often allowed to spill obliquely beyond the end of the dirt on the track grade. Thus, if $A B$, Fig. 93, is width of roadbed and is the termination of dirt roadbed, the dirt is allowed to fall down the slope to the irregular line $C D E F G$, where $G H$ and $C K$ are the intersection of the side slopes with the ground surface. The depths of G and C below the plane of roadbed are known from the slope stake notes. It is sufficient to treat the volume whose base is $A B D F$ as a wedge whose base is $A M B$ and whose edge is $D E F$, and the volumes $C B D$ and $A F G$ as quarter cones whose bases are $B C D$ and $G A F$, and whose altitudes are the heights of B and A, respectively.

The bases $B C D$ and $A F G$ can be treated as quarter-ellipses.

Fig. 93.

Fig. 94.

Hence, the area $B C D=1 / 4 B D \times B C \pi$ and area $A F G=1 / 4 A G$ $\times A F \pi$.

Example: Given $A B=14^{\prime}$; heights of A, M, and $B=8^{\prime}$, 7.6^{\prime} and 6.8^{\prime}, respectively, and $A G=12^{\prime}, B C=10.2, B D=14^{\prime}$. $A F=14^{\prime}$.

Cross-section of wedge $=1+(8+2 \times 7.6+6.8)=10$)
Volume of wedge $=\frac{105}{2} \times \frac{14}{27}=27.2 \mathrm{c} . \mathrm{y}$.
Volume of $C B D=\frac{1}{3} \times \frac{10.2 \times 14 \pi}{4} \times \frac{6.8}{27}=9.4 \mathrm{c} . \mathrm{y}$.
Volume of $A F G=\frac{1}{3} \times \frac{12 \times 14 \pi}{4} \times \frac{8}{27}=13.0 \mathrm{c} . \mathrm{y}$.
Total volume $G C D F=49.6 \mathrm{cu}$. yds.
163. Overhaul.-In contracts for earth work the price per cubic yard is based upon the condition that for this price no material should be traisported further than a certain dis-
tance (called the "frec lianl"), and that extra pay should be allowed for all material carried further than this. In Fig. 94 $M L=$ free hanl, $A B M N$ represents the excavated material and L.DHK represents the material deposited in embankment. If O and P represent the centers of gravity of the volumes $A B M N$ and $L D H K$, the distance $R Q$ is the total hatul and the excess of this over the free haul is the overhanl.

$$
\therefore \text { Overhaul }=R M+L Q
$$

To find the centers of gravity O and P, multiply each elcmentary mass by its distance from some point C and dividethe sum of such products by the sum of the elementary masses. However, it is sufficient in practice to find a point that divides each mass into two equal parts and use these as the centers of gravity.
164. Shrinkage.-From a varied mass of data, H. P. Gillette, in his book on "Earthwork and Its Cost," has compiled the deduced principles:

1. Taking extreme cases, earth swells when first loosened with a shovel, so that after loosening it occupies $11-7$ to $1 \frac{1}{2}$ times as much space as it did before loosening. In other words, loose earth is 14 to 50 per cent more bulky than natural bank earth.
2. As an average, we may say that clean sand and gravel swell $1-7$, or 14 to 15%; loam, loamy sand or gravel swell $1-\frac{5}{\text {; }}$, or 20%; dense clay and dense mixtures of gravel and clay, $1 / 3$ to $1 / 2$, or 33 to 50%, ordinarily about 35%; while unusually dense gravel and clay banks swell 50%.
3. That this lcose earth is compacted by several means: (a) the puddling action of water, (b) the pounding of hoofs and wheels, (c) the jarring and compressive action of artificial rolling.
4. If the puddling action of rains is the only factor, a loose mass of earth will shrink slowly back to its original volume, but an embankment of loose earth will, at the end of a year, be still about $1-12$, or 8%, greater than the cut it came from.
5. If the embankment is made with small one-horse carts, or wheel scrapers, at the end of the work it will occupy 5 to
10% less space than the cut from which the earth was taken, and in subsequent years will shrink about 2% more, often less than 2%.
6. If the embankment is made with wagons or dump carts, and made rapidly in dry weather without water, it will shrink about 3% to 10% in the year following the completion of the work, and very little in subsequent years.
7. The height of the embankment appears to have little effect on its subsequent shrinkage.
8. By the proper mixing of clay or loam and gravel, followed by sprinkling and rolling in thin layers, a bank can be made weighing $13 / 4$ times as much as loose earth, or 133 lbs . per ctr . ft. *
9. The bottom lands of certain river valleys and banks of cemented gravel or hardpan are more than ordinarily dense and will occupy more space in the fill than in the cut unless rolled.

Earthwork is paid for by the cubic yard, usually measured "in place," that is, in the natural bank, cut, or pit before loosening; but there is no good reason why it should not be measured in the fill or embankment, and it often is so measured where it is very difficult to measure the borrow pits. In either case the specifications should distinctly state how the measurements are to be made. Sand or gravel for mortar and concrete are usually paid for by the load in the wagon.

Bibliography.-"Railway and Earthwork Tables." By C. L. Crandall. It is sufficient to say that this book bears out its title, where the tables are arranged by which we can read the volume for railroad cuts and fills for any of the usual data given in the field notebooks for cross-sectioning.
"Railway Earthwork." Parts I and II. By the late A. M. Wellington. Part I discusses the volumes of the various solids in railway earthwork, while Part II consists of a series of diagrams from which the volume corresponding to the field notes can be read at once.
"Railroad Curves and Earthwork" (with Tables). By C. Frank Allen. In the section on earthwork the theory and use of
graphical diagrams are treated and the methods of using these diagrams to obtain the volumes are illustrated by many examples.
"Primoidal Formulas and Earthwork." By T. U. Taylor. The history of the different formulas that apply to the earthwork solid and their application to railway cuts and fills are given. A chapter is devoted to the two-term formula wherein it is shown that there is an indefinite number of two-term formillas that give the exact volume of the prismoid; that if we take the average of two sections, these sections must be 21.14 feet from each end of the solid 100 ft . in length.
"Manual of Road Making." By W. M. Gillespie. Contained in appendix some 40 pages upon the subject of earthwork, in which, in addition to the treatment of the ordinary cases, he showed that the prismoidal formulas applied to give the exact volume of the earthwork solid when the upper surface was a warped surface.
"Earthwork and Its Cost." By H. P. Gillette. 244 pages. This work has taken up and considered actual examples, giving date, size of contract, conditions under which constructed, kind of earth, how handled, etc. The author has winnowed from many a contract the essentials as to shrinkage, classification, loosening, cost when carried by wheel barrows, wagons, buck and drag scrapers, wheel scrapers, by elevating grader, steam shovels, cars, etc.
"Rock Excavation. Methods and Cost." By H. P. Gillette. 375 pages. Its title abundantly indicates its scope. Its estimates of cost are from concrete examples where actual conditions are given.
"Handbook of Cost Data." By H. P. Gillette. One of the most valuable books for the engineer that has appeared in many years, and it comes nearer filling a long existing void than any book before the engineering public. It includes a great deal of the material in the two books mentioned above and much additional matter. It deals directly from the ground with such questions as cost of earth and rock excavation, roads and pave-
ments, stone masonry, concrete construction, water works, sewers, piling, trestling, erecting buildings, steam and electric railways, bridge erection, railway and topographic surveys and miscellaneous structures. This book should be a valuable Vade Mecum for any engineer who has to deal with the cost of structures.

CHAPTER X.

CITY SURVEYING.

165. The City Engineer.-The most important factor and vital unit in all city surveying is the city engineer. A careless engineer means a careless, loose, inaccurate, conflicting and litigous survey. The city engineer is the supreme court and all the lower courts with respect to the accuracy of city surveying. As the city engineer, so is the survey. The engineer should be the first instrument of precision selected, and it is supreme folly to have a standardized steel tape and a highly sensitive transit in the hands of a carcless operator. We apply corrections for sag, temperature and pull to our tape-line measurements, but these are mockeries if the engineer can be sagged from his true course, or if he allows a "pull" to draw him from the straight line. The accurate, just, and fearless performance of his duty shotild be his platform. To this end should he be born, for this cause came he into the world, and he should bear witness to the truth.

The surveying demanded of a city engineer does not involve any principles, operations, or intricacies that may not be easily overcome by any person who understands thoroughly the use of the ordinary instruments and theory of surveying heretofore described, but as land is much more valuable in cities than in the country it follows that the measurement of city property must be made much more carefully than the survey of a farm. The accuracy of the survey should increase with the value of the property. Small errors that may be neglected now may involve perplexing difficulties in years to come. It is always wise and safe to be considered a little too fine-haired rather than a little too careless.
166. Objects of Survey.-The prime object in a city survey is to establish the points and boundaries of city property with absolute accuracy. To do this, it is necessary to establish certain reference lines or points which will remain permanently
fixed and which, like a reference library, are of easy access and of undisputed authenticity. Property is valuable, and to prevent litigation it is necessary to have all property lines authoritatively established beyond the shadow of a doubt. Chains with their many hundred wearing surfaces are unfit for such work, and as it lacks accuracy the compass can not be used. As the ordinary transit measures to the nearest minute and as an angle of 1^{\prime} is subtended by an arc of 18 ins. at a distance of one mile its use should be precluded where accurate work is demanded. The primary object of a city survey should be the accurate location of all property lines in accordance with recorded notes or maps, and complete provision for the rapid, convenient and accurate re-establishment of these at any time. The most accurate instruments and greatest care should be used.
167. Monuments.-It is of fundamental importance that lasting monuments be established to which all city lines, points and buildings can be referred. Eternal montments is the price of accurate work in city surveying. While engineers and surveyors are liable to rail at and descant sneeringly at the loose methods pursued in making the original land surveys, many of such land surveys are monuments of accuracy when compared with the surveys of many of our cities. In fact, although our original land șurveys were loosely made, all transfers of property have been based on such surveys. These surveys have many monuments in the shape of trees to stand as silent witnesses to be called upon. The land at least had an original survey, while the original part of a majority of our cities has expanded without the semblance of an original survey. It is worthy of remark that more care and accuracy are displayed in surveying the "additions" and "out-lots" than obtained in the original survey of the nest-egg of the town.

But whether or not monuments were established in the original survey of the town, it is of the utmost and urgent importance that they be established at the earliest possible moment. In some cities a very loose habit has prevailed of using old buildings for reference points. Such a practice should be condemned as a make-shift, for with the enhanced value of property, such
buildings are liable to be razed to make room for modern structures.
168. Additions.-The map of every "addition" or projected town should when. filed in the county clerk's office show clearly the location of all monuments and no map should be admitted to record that does not give these data. Not only should such a map show the location of such monuments, but a full' description of such monuments should be made a matter of record. Such requirements should not be a matter of custom, ethics, or taste of the surveyor, but should be a matter of law; and there is no more reason for a law authorizing the employment of skilled surveyors to locate state lands and file a complete set of field notes for the same than there is for a similar law requiring every city to have a similar map or set of notes filed and made a matter of record. These notes should be so clear and include such a number of sketches that they may be readily understood by any person of average intelligence; and such notes should be capable of only one interpretation. Litigation has always fed fat on loose and inaccurate surveying and an unmonumented city.

Monuments should be set and established by the original surveyor. He it is that made the surveys with respect to such monuments and it is his duty to finish his survey. It can be truthfully said, "An unmonumented city has no survey." There is a certain respect paid to the County Surveyor and his work should command respect. So it should be with the work of the city engineer, but while our laws provide for "witness trees," "fore and aft trees," for land surveying, there are in many states no adequate laws for enforcing or establishing imperishable witnesses to the city lines in a city survey.
169. Kinds of Monuments.-Monuments should be constructed of permanent material and the special kind will be decided by the question of economy. The materials most commonly used are stone, concrete, wood, and iron rods or pipes. If a stone is used it should be imbedded in the ground with its upper part well underneath the surface, so that the big end will be down and so that it will rest solidly in its bed and have no tendency to change its position. A small hole from $1 / 2$ to 1 in .
in diameter should be drilled in the upper surface of the stone to a depth of 6 to 8 ins. Into this hole a copper bolt should be inserted and melted lead or babbit metal run around it to hold it securely in position. The upper end of the bolt should be flush with the surface and two normal diametral lines should be marked across the bolt, their intersection forming the reference point over which the plumb-bob of the transit is suspended, or a hag pole set when other points are to be established.

A concrete block, Fig. 95, can be constructed as a monument and it has many advantages over the stonc monument, as it can be formed into any desired shape. For cconomy, the concrete monument should be built in the form of the frustrum of a cone or pyramid, and its upper surface should be kept well below the surface of the street. The copper bolt can be imbedded

Fig. 95. in the concrete before it hardens and it can be located in any desired position in the concrete.

If wood is used, the most durable available wood should be selected. The important monuments should be at least 6×6 ins. by 4 ft . in length and should be imbedded on hard soil or preferably on a flat rock or a concrete mixture. Cedar is an excel. lent material, while osage orange (boisdarc) has no superior. The young mountain locust, 10 ins. in diameter, is the most durable in the east. while mesquite would be practically the only locally available wood of the southwest.

An-iron rod or pipe is often driven with manl or sledge for a monument, but these do not make very satisfactory monuments and are not to be recommended, but it must be said that they are infinitely better than none at all and greatly superior to a small wooden stake. Wooden stakes are very easily disturbed or destroyed and unless they are immediately replaced by other monuments of a more permanent character the work will be wasted.

If the street is already graded and paved the monument should be set with its top below the foundation of the pavement and should be protected and made easily accessible by means of an iron jacket and cover plate such as are provided for the valves of the city water supply.

If the street is neither graded nor paved, some thought should be given to the probable final street level and the monument should be located to conform therewith if possible.

It is the duty of the city engineer to establish suitable permanent monuments wherever needed, to indicate the same clearly and correctly on the proper maps, to deposit in the office a complete set of all field notes, to leave his work in such a state that-it may all be intelligible and useful to his successor.
170. Location of Monu-ments.-These should, if possible, be located in the center lines of cross streets and should be on high points. They should be of easy access; a few well located monuments are more valuable than many to which ready reference cannot be made. The fundamental re-

Fig. 96. quisites of good monuments are that their location is known and that their distance and azimuth are matters of record.

Sometimes it is impracticable to set monuments in the center of the street. When this is the case, they should be placed as near the center as convenient, but they should always be referenced in to the four corners of the street.

Wherever the monuments are located, the four corners of the streets should be marked by sub-monuments whose distances from the main monument are recorded.
171. Tapes.-It is useless to have an excellent system of monuments unless this excellence prevails throughout the whole
organization of the city survey. All lines should be measured with standardized steel tapes. The material of the tape should be of the best steel and its own individual constants should be determined. It should be sent to the U. S. Coast and Geodetic Survey, Washington, D. C., to be standardized. It is there compared .with an absolute standard, its coefficient of expansion ascertained, its pull and temperature for standard length determined. These data are returned with the tape and in all important measurements should be used and corrections should be made for temperature, pull, sag, and grade. But accurate work can not be performed with accurate instruments unless accurate methods are used. In chaining, if the street is graded uniformly and the tape can be made straight, the correction for sag would thus be eliminated. If in addition to this, the standardizing pull be applied, the only correction remaining would be that for temperature and grade, and if the street is horizontal, the only correction to be applied would be that due to temperature.
172. Transit.-After the nonuments have been located with accuracy and the exact point of these monuments marked by the intersection of lines on the copper bolt head, it becomes necessary to use the most accurate and refined instruments in the prosecution of the further surveying of the city. As the ordinary trausit reading to one minute of are would produce an error of 18 ins. in one mile, its unfitness for accurate city surveying is at once seen. It is useless to locate monuments accurately and to use an accurate standardized tape in connection with a transit that has such possibilities of error as the ordinary engineer's transit. For this reason a special transit (Fig. 97) is constructed with minuter graduations. The same reason that precludes the use of the engineer's transit in refined city work, of course, would exclude the surveyor's compass to a greater degree. In the modern transit constructed for accurate city surveying, the needle and the needle box are omitted and the standards are constructed in one U-shaped piece that gives greater rigidity of bearing to the horizontal axis that supports the telescope, and consequently greater accuracy. The horizontal circle is much larger and the graduations can be made as small as ten seconds of arc. The

 CALIFORNIA
horizontal circle is protected from view by a cover plate except where the slot is made for the reading by the verniers. The rerniers are read by special reading glasses, which are often attached to the instrument itself. Whatever the fineness of the reading may be, whether it reads to $10^{\prime \prime}$ or $20^{\prime \prime}$, we can by the repeating method read the angle five times and thus reduce the fineness of the reading to one-fifth of that given by the verniers. Thus if the transit is graduated to $30^{\prime \prime}$, we can by repeating the observation five times get a reading of $6^{\prime \prime}$, and if it reads to $10^{\prime \prime}$, we can by the repetition of five times get a reading to $2^{\prime \prime}$. In the length of one mile a reading of $2^{\prime \prime}$ would mean about a half an inch error.

The transit can be provided with stadia wires and complete

Fig. 98. vertical circle and a heavy tripod. The complete vertical circle and stadia wires are auxiliaries that are added for the purpose of making topographic survey. The transits fulfilling these requirements cost from $\$ 300$ to $\$ 700$ and if it is desired the stadia wires and vertical circle can be omitted.
173. Datum.-There should be established in every city bench marks to which all elevations should be referred. In the majority of cases, the elevation of the bench marks can be referred to the sea level or mean low tide. In many cities the U. S. Coast and Geodetic Survey has bench marks with reference to sea level that have been established by a system of precise levels run and checked from the coast to the interior. These are by far the most reliable and accurate bench marks that can be obtained. The U. S. Geological Survey has also a chain of bench marks established in certain sections of the country. The bench marks established by these two surveys are often copper bolts set vertically in the cap stone of bridge piers, or horizontal bolts set inside of stone buildings. Another form is a circular disc, Fig. 98, from the center of which a bolt 3 ins. long projects at
right angles to the surface of the disc. Two diametrical lines normal to each other are marked across the face of the disc and the elevation is stamped on the horizontal line of the disc. A bed or setting is cut out of the stone for the dise and in the center of this bed a hole is drilled to receive the bolt. The bolt is then leaded into the stone.
174. General Maps.-There is generally a small scale map made of the whole city, but this shows few engineering features and except in the case of small cities it can not show the dimensions of lots and the field notes for the location of monnments. In addition to the map of the whole city there should be a map of certain sections to a seale sufficiently large to show all lengths of all lines and angles made by intersecting lines. It is the practice in many cities to have block maps containing from one to four blocks with the position of all monuments marked with distance from street corners and angles made by such tie lines. These maps should show the center line of street, angles of intersection of center lines, and the location of monuments on street corners.

The map should contain the following data:

1. Length of all lines.
2. Angles made by intersecting lines.
3. The exact position of all monuments.
4. The number of each block and lot.
5. The names of all streets and streams.
6. Water pipes and fire plugs.
7. Sewer pipes.
8. The true meridian.
9. Width of streets.
10. The position of adjoining property lines.
11. A complete title to map.
12. The scale.
13. Water-Pipe Map.-If the city owns the water-works and sewerage systems, it should possess an up-to-date, accurate and distinct map of both the water-pipe lines and the sewer-pipe lines. If the city is small and pipe connections are not intricate
nor numerous, one map will suffice for both systems, by adopting a different legend for the two systems. A water-pipe map should show clearly the position of all mains, valves, connections, fire hydrants, size of pipe, and all side connections. Such a map usually pays for itself many times over and it is a very loose city government that does not keep such a map. Without a pipe-line map all extensions and repairs have to be made somewhat upon the temporary makeshift basis. In some cases, the city authorities depend upon the memory of a day laborer to locate sub-mains, and these often have to spend hours in search of the pipe, all of which time could be saved by an accurate map. If a private company owns the water-works, an accurate map is part of its equipment because it is simply a part of good business to have such a map. However, there often seems to be some fatality about municipal ownership in regard to proper records. The city records, covering expenditures of mullions of dollars for public improvements are often thrown aside or dumped into hoxes, or cases that caunot be used for any other purpose. The proper keeping of enginecring data is a weak spot of municipal ownership, an indictment that cannet obtain in the same degree against private ownership.

When city strects are improved by paving, it is of the utmost importance in making repairs or connections to know the exact distance of the main or sub-main from the sidewalk or property lines, as it is a matter of economy in time and renders the tearing up of a large area of paving unnecessary.
176. City Blocks.-The size and shape of city blocks vary in different sections of the country and, in fact, in different sections of the same city. It is difficult to set any limits, but the regular rectangular blocks vary in length from 400 to 900 ft . With a width of street of 80 ft . there will be $51 / 3$ to 11 blocks to the mile, and of course if the streets are narrower there would be from 6 to 12 to the mile, etc.
177. Rectangular Blocks.-In ordinary cases, a rectangular block consists of two rectangular sections with an alley between. Thus if $A B F G$. Fig. 99, is a rectangular block, there are two sections, $A B C D$ and $E F G H$, with an alley $D C E H$. If the length of
the block is 300 ft . and if each section contains five lots, these should be 60 ft . wide. The length of the lot is 125 ft . and width of alley 16 ft ., the block being 266 ft . wide.

Each lot is described (1) by its number, (2) by the number of the block, (3) by the sub-division or addition, (4) by the name of the city, county, and state. Thus we should write:
" "Lot number (3) three in Block thirty-nine (39), Borden Addition, in City of Austin, Travis County, Texas." This description is sufficient if an official map of this "Borden Addition" is on record in the city or county clerk's office, showing all dimensions of such lot. However, if it is desired to insert the metes and bounds, this can be done as follows:
"Lot number threc (3) in block thirty-nine (39), Borden Addition, in the City of Austin, County of Travis, State of Texas, and bounded as follows: Beginning at the northeast corner of lot number two (2) in said block, addition and city, one hundred and twenty (120) feet from the northwest corner of said block, thence $\mathrm{S} 9^{\circ} \mathrm{W}$, one hundred and twenty-five (125) feet with the east line of lot number two (2), to a corner on the

Fig. 99. alley, thence $\mathrm{S} 81^{\circ}$ E sixty (60) feet to the SW corner of lot number four (4) ; thence $\mathrm{N} 9^{\circ} \mathrm{E}$, with west line of lot number four (4) one hundred and twenty-five (125) feet to a point on the north side of block, the northwest corner of lot number four (4), thence $\mathrm{N} 81^{\circ} \mathrm{W}$ with the north line of said block and with the south line of Adams St., sixty (60) feet to the beginning."
178. Rectangular Lots.-The size of lots runs the scale from the narrow business property lot 25 ft . in width to that of the broad frontage, merging into the suburban property defined by the acre and metes and bounds. The lots in the regular residence section vary from 40 to 100 ft . in frontage, but there is
infinite variety to the special dimensions and the foregoing figure are approximate only.

In regard to the depth of the regular rectangular residence lot, it can be said that the depths are approximately double the frontage, varying from 90 to 200 ft . unless some irregular boundary, stream or hill intervenes to modify the general plan by which the lots are laid off.
179. Irregular Blocks and Lots.-It often happens that the topography, old roads or streams force the engineer to make a block of irregular shape, the flat-iron, horse-shoe, triangular or

Fig. 100. oval. In such a case no rules can be laid down for cutting such a block up into lots, and the engineer can have only one guide, and that is to make each lot wide enough for the buildings of that locality (business or residence) and of the ordinary depth.

If $A B C D$, Fig. 100 , represents the apex block between two converging streets it is often difficult to divide this up into lots to the best advantage. The simplest method is to run the lot side lines perpendicular to the street line. This is shown by the side lines of lots $1,2,3,4$, and 5 , all of which lines are perpendicular to the strect line on Shaw St. However, it may happen that for some substantial reason the lot lines are parallel to the alley or some other line. Again the lines may be drawn according to $n o$ system whatever. In the latter case, the opposite sides of the lot will not be parallel, and it will be necessary to describe each lot by the metes and bounds. In addition to this the corners should be marked by some permanent marks, as gal'vanized pipe, stones or conerete blocks.

In the flatiron form of blocks, as in Fig. 100, a dead-end alley can be provided for at the big end of the block, and this can extend as far as the line of lots will permit. A lot in an irregular shaped block should have a rather full description. Thus lot 9 should be described as follows: "Lot number nine (9) in Block thirty-five (35), Division A, in the City of Austin, County of Travis, State of Texas, which is bounded as follows: beginning at an iron pipe in line of Fox Street 70 ft . from northwest corner of said block 35 , thence along Fox Street $\mathrm{S} 6^{\circ} \mathrm{W} 40$ ft . to corner of lot number 8 , thence $\mathrm{S} 87^{\circ} \mathrm{E} 64 \mathrm{ft}$. to a copper bolt in a stone which is a corner to lots number 2 and 9 of said block, thence north 46 ft . to a stone corner to lots 3,9 , and 10 , thence $\mathrm{S} 87^{\circ} 15^{\prime} \mathrm{W} 54 \mathrm{ft}$, to the beginning."
180. Private Notes.-The careful engineer will mark the length of all lines, the angles made by the boundary lines of lots, give the full number of lot, the name of "addition," and all other data necessary to define clearly and distinctly the lot so that another engineer, years later, will have no trouble in tracing the steps of the former. Every modern engineer experiences a genuine appreciation of the original engineer, when he finds that the recorded map shows clearly all distances and angles, and the modern does not hessitate to commend the former when map dimensions, when applied to the field, are found to be true. Too many engineers are stingy with their data when it comes to putting it on the map. The question often arises as to how much data should be placed on the map, and this can be answered by saying that sufficient data should be placed on the map to enable another. engineer to go upon the ground and re-locate any lot without doubt or shadow of turning. Until this condition is fulfilled the map is incomplete; the claim of the engineer that his notes are private cannot be set up or maintained. The city engineer "is a public officer and should keep complete records of all work done in his official capacity during his incumbency. If he walks out of his office and retains notes the lack of which would embarrass his successor, he is practicall a thief." (Ernest McCullongh.)
181. Prescriptive Rights.-Owners in new and sparsely settled additions are often permitted to locate their own lots, and in doing so they get the side lines of the lots shifted a few feet. A fence is usually erected on the lot lines erroneously located and this fence stands as the visible mark of the lot lines for many years. The adjacent lots are not improved and the result is that the owner of the improved lot, although his fence lines are wrongly located and though there may be an excess in his frontage, has been in peaceable possession, undisturbed for a sufficient time to constitute a prescriptive right. This gives him the right of possession and when the cwners of adjacent lots want the amount their deeds call for, they find the prescriptive right set up as a bar to moving fence lines. The result is that legal mills have to be set to grinding with no assurance of the quality of the grist.

Fig. 101.
Where the prescriptive right obtains it is of the highest importance to property owners to see that their lots are located properly and accurately by an official engineer, and that permanent corners are established.
182. Cross-Section of Streets.-After the blocks and lots have been laid off and accurately marked, it then often falls within the province of the surveyor or engineer to establish the form of cross-section of the street. This cross-section is usually a curve having a certain rise or crown, depending on the material out of which the surface of the strect is constructed. If the street is paved with vitrified brick the crown should be from $1 / 8$ to $3 / 8$ in. per foot of half width. Thus for a street width of 96 ft . between side walks there should be a crown of 6 to 18 ins., preferably the latter. If the side walks are at different elevations, local conditions may demand that the cross-section shall consist of two curves tangent to each other at the crown or crest and that the amount of their descent shall be different.

Thus in Fig. 101 the cross-section can be formed by the two curves $O A$ with a fall of $O V$ and $O B$ with a fall of $O C$.

Let $V A=$ distance from curb to crest $=b ; O V=v ; O K$ $=x ; P K=y$, fall from O to P.

Then if curve $O A$ is a parabola.

$$
P K=\frac{O V}{V A^{2}} O K^{2}
$$

$$
\begin{equation*}
\text { Or } y=\frac{v}{b^{2}} x^{2} \tag{40}
\end{equation*}
$$

If $b=48$ feet, and $v=18^{\prime \prime}=1.5^{\prime}, y=\frac{1.5}{48 \times 48} x^{2}=\frac{x^{2}}{1536}$.
If y equal fall in inches and $x=$ distance in feet, $y=\frac{x^{2}}{128}$
By making $x=0,4,8$, etc., the falls at these distances are found below.

x	y	x	y	x	y
0	.00	16	2.00	36	10.12%
4	.125	24	4.5	40	12.5
8	.5	32	8.00	48	18.0

Formula (40) is a general formula and will apply to any conditions, and does not assume that the crest O is in the center of street.

Circular Curve. - Some engineers prefer to treat the curve $O A$ as a circle and specify the amount of curvature by the radius of the circle.

Let $V A=$ half of chord of circular arc $O A ; v=$ rise $=O V$. As the arc is very flat, $K P$ can be treated as a secant from P to circle.

Then if $R=$ radius of circle, $O K^{2}=K P(2 R+P K)$, or, $x^{2}=y(2 R+y)=2 R y+y^{2}$.
The last term is so small in comparison with the first that it can be omitted.

$$
\therefore y=\frac{x^{2}}{2 R}, \text { or } R=\frac{x^{2}}{2 y}
$$

If the crown is $3 / 8$ or $1 / 8 \mathrm{in}$. per horizontal foot, then $R=192$ ft ., or 5 Ji f ft . respectively.
183. City Engineering Records.-There are three different kinds of records that should be kept by the City Engineer :

I Field Note-Books.

11 Detail maps.

III Orders, letters of correspondence, bids, prices, contracts, specifications, results of tests, etc.
184. Field Note-Books.-For simplicity one kind of style of book that is applicable to all kinds of surveying should be adopted and used exclusively. It should have stuff covers, should be leather bound, and be as large as the average coat pecket will accommodate. If the left hand page is ruled with horizontal blue lines $1 / 4 \mathrm{in}$. apart and the page divided by vertical red lines into six columns, the right page being divided into small squares by horizontal and vertical blue lines, with a vertical red line in the center of the page, the book will be found to answer admirably for all-round work. In this book, level notes, transit notes, notes on carth-work, sewer-pipe, water-pipe, tri-angulation, land surveying, etc., can be recorded with clearness and neatness. The measurements can all be placed on the left page, while sketches can be placed on the right page to an approximate scale.

Proper provision should be made for storing or filing all the note-books, preferably in a fire-proof vault. The books should be numbered consecutively and arranged in order on the shelves, and the Chief Engineer should require every note-book to be put in its proper place on the shelves or in the vault over night. Books should be assigned to certain classes of work rather than to particular assistants or transit men. . For example, all miscellaneous work relating to property lines should be kept in one book, all work relating to grades of streets in another, etc. Each new book should be immediately given a number, the class of work for which it is intended being plainly lettered on the outside of the cover, thus: "Street Grades and Profiles, כth, 6th and 7th Wards," and the first half dozen pages should be left blank for an index to its contents. Every new piece of work should be indexed in the book, and also in the general index of all the note-books kept in the cffice. The Chief Engineer shouid see that each assistant enters his notes in the proper book so neatly, completely and correctly that at the end of añy day's
work the book may be handed to any other assistant who would be able to continue the work without the least possible duplication or loss of time.

Each assistant should be required to carry with him the proper note-book, and to make in it the original notes of the work. If this is done, the field-book may be presented as evidence in case of law suits, but it could not be presented as evidence had the notes been copied in it from other books or from scraps of paper.

Note-books should not be permitted to litter the dranghting tables or desks of the office. When not in use they should be in their proper places on the shelves, or in cases.'

Each member of the office staff should be imp:essed with the fact that surveys are expensive and that the data contained in these note-books are valuable. Books should not be carelessly thrown about, but on the contrary should be carefilly preserved and everything should be done to make the records readily available for future reference.
185. Detail Maps.-In addition to the large wall map of the city there should be smaller maps to a larger scale, showing all essential details of lines, angles, monuments, distances, etc. The wall map may be divided into sections by lines at right angles to each other, or by streets and streams into sections corresponding to the smaller maps. This enables the detailed map of any section of the city to be fo:1nd with the least loss of time and trouble. On these detail sheets the water, gas, sewer, and stcam mains, telephone conduits, etc., should be represented by different colored inks or by specially dotted lines. If there are many of these pipe lines, it may be necessary to have several copies of each sheet, one devoted exclusively to water service (called the water-pipe map), one to sewerage, etc.

Such maps slould be made on the best quality of mounted egg-shell paper and should be service maps on which every change in pipe lines should be noted immediately. If it is considered necessary to have records of conditions at different dates-i. e., on the first of January each year-tracings of these service sheets may be made, dated and filed.

An excellent plan for standard sizes for drawings is to acept the full sheet, half sheet, quarter sheet, and eighth sheet plan, and the dimensions of these can be for full sheets, 24×36 ins.; for half sheets, 24×18 ins.; for quarter sheets, 12×18 ins.; and for eighth sheets, 12×9 ins. Each shert should be trimmed $1 / 2$ to 1 in. outside the border except on the left, where a double margin should be left for binding purposes.

However, it is useless to have or to demand accurate city maps and drawings and not at the same time provide safe and secure repositories for such records. Substantial cases should be constructed with a set of drawers (say 40×27 ins. inside dimensions) for the full size drawings. For the half size drawings the 40 by 27 drawer can be divided by a thin partition across the middle, dividing it into two compartments about $27 \times 193 / 4$ ins. Another set can be provided for the quarter size drawings where the 40×27-in. drawer has two divisions or partitions at right angles to each other; and in a similar way the eighth size drawings can be provided for. The drawers should be numbered consecutively and if divided into compartments for fractional sizes each compartment should be given a letter and the drawings in it numbered in a special place on the drawing in additionto the general number that it must bear. Thus the drawing should be labeled "Drawer 26 D, Sheet 14," in one corner, while the general number 76 will indicate that it is the 76 th drawing made by the city. The legend "Drawer 26 D , sheet 14 ," indicates that it is to be replaced in drawer 26 in compartment D . between sheets 13 and 15 .

In addition, a systematic record should be kept showing clearly what each numbered drawing refers to in the general series. An alphabetical list should be made of these drawings, where the leading word in title or location will indicate the character of the drawing. Better than this, however, is a card catalogue where every map is cross-indexed in such a manner that it may be readily found. The card catalogi:e has many advantages over the book catalogue, in that references can be made with greater dispatch, and corrections and new insertions can be made without disturbing the ather records.
186. Orders, Bids, Etc.-It is doubtful whether it is necessary to mention the necessity of keeping a record of all correspondence, orders, etc., as this is the usual practice of every good business man, and every engineer should be a good business man, as far as the city is concerned at least.

Contracts and specifications are important documents in connection with large undertakings or important works, and these should be kept in a fire proof safe, to which only the trusted members of the staff have access. Specifications, results of tests, and other data on miscellaneous matters should be indexed and may be filed in a manner similar to that for drawings.

Bibliography.-"Theory and Practice of Surveying." By the late J. B. Johnson. This book has long been a standard work for the surveyor and engineer. Its chapter on City Surveying was prepared by William Bouton, City Engineer of St. Louis, Mo., and gives the conditions necessary for high grade, accurate city surveying.
"Principles and Practice of Surveying." By Breed and Hosmer. An excellent book for the city engineer, containing full directions, discussions, and illustrations of many problems that confront the city engineer.
"Engineering Work in Towns and Cities." By Ernest McCullough. While the author disclaims any intention of writing for city engineers of cities over 10,000 population, the limit should have been placed at 50,000 instead of 10,000 . The book is a history of city surveying. With gloves off it deals with the qualifications necessary for the position of city engineer, - the compensation he should receive, the problems he has to solve, the difficulties he has to meet, how to keep city records, the necessary theory and principles for the various duties of the position, including the location of monuments, roads, walks, pavements, sanitation, drainage, sewerage, water supply, concrete, contracts and specifications, office system, city engineer's records and field work. It ranks as possibly the best book before the public for the use of the city engineer and especially for that city engincer who wishes to learn the best methods.

CHAPTER XI. PLOTTING AND LETTERING.

187. Plots.-After a farm is surveyed a line map of the farm or land should be made to some convenient scale, for the purpose of showing the shape of the farm or body of land, its connections with adjoining properties, and its location with respect to natural objects. Such a plot should contain the following data:
188. Boundary lines.
189. Bearing and distance printed on each line.
190. All corners described, as "a hickory 1 ft . diam., marked H," "a stone."
191. Names of adjoining property owners.
192. Meridian, or north and south line.
193. Owner's name printed inside plot.
194. Number of acres printed under owner's name.
195. Complete set of field notes printed below plot.

Fig. 105 illustrates the plot, description and style of letters.
There are various methods used in making a plot from the field notes. These are generally known as the protractor, the tangent, the sine, or the co-ordinate method.
188. Protractor Method.-A protractor, Fig. 102, is a semicircle of horn, celluloid, German silver, etc., graduated to half degrees. A diameter line is marked at one end 0° and at the other end 180°. A bearing is laid off by placing the center of the protractor over the point and the diameter along the meridian and the protractor to the right or left of the meridian as indicated by the last letter of the bearing; that is, east for the right and west for the left. A point is made on the circumference of the protractor at the point of the correct bearing, the protractor is moved and this point joined by a line to the begimning line or point. The length of the course is then laid off on this line to the scalc of the map. Through the point thus located another meridian is located and the bearing is laid off as before.
189. Latitude and Departure Method.-Begin at some point A as in Fig. 103, and lay off the latitude $A B$ due north and south from A, and through the point thus located draw an east and west line and lay off the departure on this line, and join the point thus located to A. Lay off the latitude of next course on line through C, and through the point thus located draw another east and west line and lay off the departure on this line, thus locating the point D. Proceed as above until all the points are located.
190. The Tangent Method. -To lay off a line making a given angle with a given line at a given point A, Fig. 103. by the tangent method, lay off $A B$ equal to ten parts on some scale, and at B erect a perdicular to the given line, and on this perpendicular lay off $C B$ equal to ten times the natural tangent of the angle desired; join C to A. Thus, to lay off an angle of $29^{\circ} 41^{\prime}$, we find from the table that the natural tangent of $29^{\circ} 41^{\prime}=$.5000 . Make $A B$ equal to ten parts and lay off $C B$ equal to 5. $\overline{7}$ parts, thus locating C; then join C to A and you have the

Fig. 102. angle required.
191. The Sine Method.-To lay off a given angle at a given point by the natural sine method, take a radius equal to
ten parts and with the given point as a center describe a circle. On a perpendicular to the given line at the given point lay off $A 3$, Fig. 104, equal to ten times the natural sine of the angle required. Through 3 draw a line parallel to the given line cutting the circumference of the circle at B, join B to A and $B A N$ is the angle required. Example: To construct an angle of $33^{\circ} \unrhd 2^{\prime}$ we find that the natural sine of the angle $33^{\circ} 22^{\prime}$ is .5500 . After describing the circle whose radius is ten parts, lay off $A 3$ equal to 5.5 parts, and draw $B 3$ parallel to the line $A N$ and join B, where it cuts the circumference of the circle, to A, and $B A N$ then will be an angle of $33^{\circ} 22^{\prime}$.
192. Co-ordinate Method.-Plotting can be done by the Co-ordinate Method: Determine the co-ordinates of each point

Fig. 103.

Fig. 104.
with respect to axes (through the initial point, if convenient) and plot from the axes each time. This method will avoid carrying forward any error, as each corner of the survey is found by returning to the original axes. The Y ordinate of any point is equal to the sum (algebraic) of the latitude of the previous points and its own latitude. The X ordinate is equal to the sum of the previous departures plus its own. Using this table of corrected latitudes and departures insures the closing of the plot. This is most accurate method for any large plot, as previous to plotting the sheet can be checked off in squares accurately, say $1,000 \mathrm{ft}$. on each side, and table of ordinates computed, etc.

Beginning at a stone on Bull Creek a corner to R.A.Jones and John Cusler thence with Custer's line S. $41^{\circ} \mathrm{E} .100$ poles to a black oak a corner to John Custer and D.R.Thomas, -thence with Thomas' line $S 29^{\circ} \mathrm{W}, 41$ poles to a hickory a corner to D.R.Thomas;- thence with Thomas' line N.G9 ${ }^{\circ}$ W. 99 poles to a gum on Bull Creek a corner to D.R.Thomas and T.C.Gore;-thence up the creek with the meanders of the same to the point of beginning;-containing 42.9 acres.
193. Correcting the Plot.-For the very same reasons that the latitudes and departures very rarely balance, the plot when completed to scale will very rarely close by an amount equal to $A A^{\prime}$, Fig. 106. In balancing we really shift each corner in the direction of $A A^{\prime}$, a distance proportional to its length from the beginning corner. To some scale lay off on a straight line the length of the courses $A B C D A^{\prime}$, and on a line at right angles to this line lay off $A A^{\prime}$ and through the points B, C, and D draw parallels to $A A^{\prime}$.

Through B, C, and D on the plot draw lines parallel to $A A^{\prime}$ and on these lines lay off distances equal to the amount of correction, locating the

Fig. 106. points B^{\prime}, C^{\prime} and D^{\prime} in the direction that A^{\prime} has to be moved to close. Then connect these points and close the plot.
194. Lettering.-Every surveyor or engineer should learn some one system of free-hand letters, similar to that in Fig. 107, or some other standard system. Many conclude before trial that they can not letter well, or even make a decent letter. While there is no royal road to good lettering, it is possible for every surveyor or engineer, not afflicted with palsy or extreme nervousness, to learn and execute a good, plain system of letters. But it requires care and implicit obedience to rules. Eternal vigilance and constant practice are required till a system of letters is once learned. After an experience of over twenty years in teaching, it can be asserted that the special books on lettering are far snperior to the ordinary alphabets printed as an appendix to works on surveying. If the young engineer will get "Lettering," by
C. W. Reinhardt, published by D. Van Nostrand Company, New York, and will follow instructions faithfully, he can, without doubt, become a good letterer. There is no necessity for fancy letters in a drawing, as neatness, legibility, and clearness are the fundamental requisites. One of the most effective systems of lettering is shown in Fig. 107. Guide lines should always be drawn before the lettering is commenced and the student should adhere strictly to rules.

Bibliography.-"Lettering." By Chas. W. Reinhardt. Published by D. Van Nostrand \& Co. This book explains in a clear
> abcdefghijkImnopqrstuvwxyz. ABCDEFGHIJKLMNOPQRSTU $V W X Y Z . I 2345678910$. CROSS SECTION SECTION Extended Lettering Ordinary Compressed Type. INTERSTATE BRIDGE. Spur Wheel, 32"Biam, 7"Face
> abcdefghijkImnopqrstuvwxyz. ABCDEFGHIJKLMNOPQRSTUV WXYZ. 12345678910 . Ordinary Lettering Extended Compressed: NEW YORK CENTRAL

Fig. 107.
and concise manner the system of letters devised by the author and shows by concrete examples how each letter should be formed and how constructed. In addition to this a well selected set of examples of title, heading, and detail lettering is given
"Mechanical Drawing." By F. E. Giesecke. Part I. Published by Eugene Dietzgen Company. This book has grown out of the necessities of the office and class room and gives an excellent system of free-hand letters for detail work and full instructions are given for the construction of each letter. This book meets all the demands that a learner of lettering can make.

CHAPTER XII.
 GOVERNMENT SURVEYING.

195. Radii of Parallels.-Government lands are bounded by meridians and parallels of latitude. If $A B$, Fig. 108, is pari' of a parallel of latitude, its latitude is the arc $B Q$ or the angle $B O Q$, which we will call L. Let the radius of the earth be R and the radius of the parallel be r or $B H$. Then in the right triangle $O B H$,

$$
\frac{B H}{O B}=\operatorname{Cos} O B H
$$

That is,

$$
\frac{r}{R}=\operatorname{Cos} \mathrm{L}
$$

Or $\quad r=R \operatorname{Cos} \mathrm{~L}$
196. Angular Convergence of Meridians.-The two meridians $P A$ and $P B$, Fig. 108, at the points A and B have the direction $A K$ and $B K$, respectively, the tangents to these meridians. The amount of convergence is the angle that they lack of being parallel ; that is, the angle $A K B$ or their angle of intersection. Let $\theta=$ the difference of longitude of A and $B=$ angle $A H B=$ $E O Q$. In the sector $A H B$ we have:

$$
A B=\frac{\Theta}{57.3} \times B H
$$

In $A K B$ we have:

$$
A B=\frac{X}{57.3} \times B K, \text { where } X=A K B
$$

Censequently:

$$
\begin{align*}
\frac{X}{57.3} \times B K & =\frac{\theta}{57.3} \times B H \\
X & =\Theta \times \frac{B H}{\overline{B K}} \\
X & =\theta \sin . L \tag{41}
\end{align*}
$$

197. Linear Convergence.-In the two similar sectors $A B H$ and $E O Q$ we have :

$$
\begin{aligned}
A B & : E Q:: B H: O Q \\
A B & =E Q \times \frac{B H}{O Q} \\
& =E Q \times \frac{r}{R} \\
& =E Q \cos L
\end{aligned}
$$

Fig. 108.

Fig. 109.

If $D C$ is a part of a parallel between the same meridians in latitude L^{\prime} we have:

$$
D C=E Q \operatorname{Cos} L^{\prime}
$$

Let $c=$ Convergence $=A B-D C$
$=E Q \operatorname{Cos} L-E Q \operatorname{Cos} L^{\prime}$
$=E Q\left(\operatorname{Cos} L-\operatorname{Cos} L^{\prime}\right)$

$$
\frac{D d}{A B}=\frac{\operatorname{Cos} L^{\prime}}{\operatorname{Cos} L}
$$

Therefore:

$$
\begin{equation*}
c=A B-D C=\frac{A B(\operatorname{Cos} L-\operatorname{Cos} L!)}{\operatorname{Cos} L} \tag{42}
\end{equation*}
$$

Generally we do not know the difference of longitude of A and B, but know the length of $A B$ in miles, and it is necessary to find θ from the data given. The length of one degree on the equator is 69.16 miles.

If $D=$ length of $A B$ in miles, then

$$
\begin{aligned}
& A B \text { in degrees }=\frac{D}{69.16 \operatorname{Cos} L} \\
& \text { But } X=\theta \operatorname{Sin} L
\end{aligned}
$$

$$
\begin{aligned}
& \text { Therefore } X=\frac{D \operatorname{Sin} L}{69.16 \cos L} \\
& X^{\circ}=\frac{D}{69.16} \tan L \\
& X^{\prime \prime}=\frac{3600}{69.16} D \times \tan L=52.05 D \tan L
\end{aligned}
$$

198. Off-Sets.-If we set the transit at B, Fig. 109, and set the zero on the meridian and turn off a right angle from this meridian, this last line will cut to the left of A. Draw the sector $A K B$ as in the figure and make the angle $K B R$ equal to 90°. The amount the line $B R$ misses A is called the off-set

The angle $A B R=$ onc-half X.

$$
\text { But } A R=\frac{A B R}{57.3} \times A B
$$

If $A B=D$, we have :

$$
A R=O f f-\text { set }=\frac{\lambda}{57.3 \times 2} \times D
$$

But $X=\Theta \sin L=\frac{D}{69.16} \tan L$
Therefore, $\quad A R=\frac{\frac{1}{2} D}{69.16} \tan L \times \frac{D}{57.3}$

$$
A R=\frac{D^{2}}{69.16 \times 57.3 \times 2} \tan L
$$

This is the off-set in miles. If D is in miles and we wish the off-set in feet, we have:

$$
\text { Off-set }=\frac{D^{2}}{69.16 \times 57.3 \times 2} \tan L \times \overline{5} _80
$$

$$
\begin{align*}
\text { Therefore off-set } & =\frac{5280}{69.16 \times 57.3 \times 2} \tan L \times D^{2} \\
& =.66618 \tan L D^{2} \\
& =\frac{2}{3} D^{2} \tan L, \text { nearly....... } \tag{43}
\end{align*}
$$

199. Running Parallels.-It is impossible to run out the parallel of latitude with the transit directly. We can locate the
secant $B A$ or the tangent $B R$, and then take off-sets to the curve of latitudes at different points, which are generally one-half mile apart. There are two methods of locating points on the parallel of latitude, the secant method and the tangent method.
200. Tangent Method.-Set up the transit at B and sight along the meridian $B K$. Then turn off an angle $K^{\prime} B R$ equal to 90°. The line of sight will now locate the line $B R$, which is tangent to the latitude curve. To obtain the off-sets from this tangent line to the curve at any point on $B R$, let $d=$ distance from the point to B. Then we have from formula (43):

$$
O f f-s e t=2 / 3 d^{2} \text { tan. } L
$$

After the full distance has been measured, the point R is located. To locate the point A, set, up the transit at R, and sight along the line $B R$, and then turn off an angle of $90^{\circ}-X^{\circ}$. The line of sight will now locate the meridian $R A K$, and if we measure the distance $R A$ along this line an amount equal to the off-set, it will locate the point A on the parallel of latitude passing through B.
201. Secant Method.-Set up the transit at B, as before, and sight along the meridian $B K$; then turn off an angle of $90^{\circ}-1 / 2 X$. The line of sight will now lo-

Fig. 110. cate the secant line $B \dot{A}$, which can be run out to the distance $B A$. To locate points on the parallel of latitude for either method, off-scts must be taken from the tangent or secant.
202. Intermediate Off-Sets.-To find the off-sets at any intermediate point between B and A, let $d=$ distance $B T$ or $B S$, Fig. 110. The point C on the curve can be located by the off-set $T C$ from the tangent or the off-set $S C$ from the secant. The angle $S B T=1 / 2 \mathrm{X}^{\circ}$.

$$
\therefore \text { Secant-tangent off-set } S T=\frac{1}{2} X^{\circ} B T \div 57.3
$$

$$
\begin{aligned}
& \text { But } X=\frac{d}{69.16} \text { tan. } L . \\
& S T=\frac{1}{2} \frac{D}{69.16} \tan L d \div 57.3=\frac{D d}{2 \times 69.16 \times 57.3} \tan L .
\end{aligned}
$$

If $S T$ is in feet and D and d are in miles, then
Secant-tangent off-set, $S T=2 / 3 D d$ tan. L.
To find the off-set from the tangent $B R$ to the curve, we have, $B T^{2}=T C(2 C K+T C)=2 C K \times T C+T C^{2}$.
The last term is so small in comparison with the others that it can be-omitted.

$$
\begin{aligned}
& B T^{2}=2 T C \times C K=2 T C \times B K \therefore T C=\frac{B T^{2}}{2 B K} \\
& B u t B K=R \operatorname{Cot} . L \text { and } B T=d, \text { then, } \\
& T C=\frac{d^{2}}{2 R \operatorname{Cot} . L}=\frac{d^{2}}{2 R} \tan L . \text { If the offset is in feet }
\end{aligned}
$$ and d in miles we have,

$$
\text { Offset } T C=2 / 3 d^{2} \text { tan. } L .
$$

The secant-curve off-set can be found by subtracting the tangentcurve off-set from the secant-tangent off-set.

$$
\therefore S C=2 / 3 D d \tan . L .-2 / 3 d^{2} \tan . L=2 / 3 d(D-d) \tan . L .
$$

The secant-curve off-set is equal to two-thirds of the tangent of the latitude multiplied by the segments into which S divides $A B$.
203. Example.-If a line $A B$ is six miles in length and is a parallel of latitude where $L=45^{\circ}$ the different off-sets for each mile can be found as follows:
A. Tangent-curve off-set $=2 / 3 d^{2} \tan . L .=2 / 3 d^{2} \tan 45=2 / 3 d^{2}$.
B. Secant-tangent off-set $=2 / 3 D d \tan . L=2 / 3 D d \tan 45=2 / 3$ Dd.
C. Secant-curve off-set $=2 / 3 d(D-d) \tan .45=2 / 3 d(D-d)$.

Distance d.	Secant-tangent.	Tangent-curve.	Secant-curve.
1	4	.667	3.333
2	8	2.667	5.333
3	12	6.000	6.000
4	16	10.667	5.333
5	20	16.667	3.333
6	24	24.000	0.000

Problem 75.-Fill out a similar table when latitude $=36^{\circ}$.
204. Reference Meridians and Standard Parallels.-In those states where public lands were surveyed by government surveyors, meridians were located very accurately at certain in-
tervals and parallels of latitude were also accurately located at certain distances apart. As an example the two meridians $B C$ and $A D$, Fig. 111, called "reference meridians," were located 24 miles apart, and the "Standard Parallels," $A B$ and $C D$, were also located 24 miles apart. This makes a spherical trapezoid whose sides are nearly 24 miles each. The six-mile points on these sides are marked and joined by meridians and parallels, thus dividing the area into smaller trapezoids, with sides 6 miles each way approximately. These trapezoids are called "Townships."

Fig. 111.

Fig. 112.

The south base of a trapezoid is 24 miles on a standard parallel and the next standard parallel is 24 miles to the north. If the latitude of the south base is 40°, find the amount of convergence.

To find L^{\prime} the latitude of the north base we have:
One degree $=69.16$ miles.

$$
\begin{gathered}
24 \text { miles }=\frac{24}{69.16} \text { degrees } \\
L^{\prime}=40^{\circ}+\left(\frac{24}{69.16}\right)^{\circ}=40^{\circ} 20^{\prime} 49^{\prime \prime} \\
c=\text { convergence }=\frac{24\left[\operatorname{Cos} 40^{\circ}-\operatorname{Cos}\left(40^{\circ} 20^{\prime} 49^{\prime \prime}\right)\right]}{\operatorname{Cos} 40^{\circ}} \\
=\frac{24(.76604-.76549)}{.76604}=.12219 \text { miles }
\end{gathered}
$$

Problem 76.-A trapezoid is 24 miles each way, and the latitude of the mid-parallel is $46^{\circ} 30^{\prime}$. Find the amount of convergence.

Problem 77.-Find the convergence of a trapezoid with 6 -mile base and 24 miles north and south, if the latitude of the south base is 36°.
205. Ranges.-In each State or Territory a principal meridian was located as $B C$, Fig. 112. It received a name due to some locality, as the Fayetteville or Butte meridian. Also a principal parallel is located as $A B$. The country is then divided into townships on either side of these axes and they serve as coordinates in locating the townships. Thus in the figure all ranges are west and north. Any row of townships running

Fig. 113.
north and south is called a Range, while that ruming east and west is called a Tier. Each township is defined as in Range $1,2,3$, or 4 , Tier $1,2,3$, or 4 , as the case may be, numbering from the Principal Meridian and Principal Parallel. Thus the township crossed will be Range 3 west, Tier 4 north.
206. Townships.-The trapezoid in Fig. 112, 24 miles each way, was surveyed between reference meridians and standard parallels. If the six-mile points on the north and south lines are marked the spherical trapezoid would be divided into approximate squares six miles each way, called townships.

Each township is divided into 36 approximate squares, about one mile on each side, called sections. The sections in each township are numbered as shown in Fig. 113. Section number 1 is in the northeast corner of the township, while number 36 is in the southeast corner.
207. Dividing Up a Township.-All township lines on the south base, on the standard parallels, are full 6 miles, as are all township lines on the meridians. In the range of townships $E B C F$, Fig. 112, there would really be only one east and west line that was fully 6 miles long, as all the others are reduced by the convergence. In dividing the first township X into sections we mark off full miles on the south base $E B, 80$ chains each, and also full miles on the north and south lines $B C$ and $E F$. If we made the north and south division lines true meridians the sections would decrease materially in size as we proceeded north. To counteract this and keep them approximately 1 mile each way we make the south base of each section bordering on the township lines 80 chains as far as possible. On each east and west township line we commence at the meridian on the east side of the township and measure off 's full miles, marking the corners; thus out of 144 sections in a Range we would have 21 sections with a full mile for the south base instead of 6 sections if it were divided by true meridians on the mile points of the standard parallel $A B$. The amount of convergence of the townships X, Y, Z, and W will be practically the same if they have equal south bases. On the outlines of the townships the corners are marked with stones or posts as indicated by the small circles in Fig. 113. On the township lines the full mile points are all established and marked by corners. In making the survey of sub-division, we begin on the south base of the township at corner to sections 35 and 36 , and then run the line between sections 35 and 36 so that it will be parallel to the east line of 36 . In the same way all the north-south lines are run parallel to the east line of the township except for sections from 1 to 6 inclusive. From the corner of $1,2,11$, and 12 the line between 1 and 2 is run directly to the established corner on the north base of the township. The lines between sections 2 and 3,3 and 4,4 and 5 ,
and 5 and 6 are run in a similar way. On all north-south lines five full miles are measured from the south base of township, setting a post or stone at the end of each full mile for a section corner. The east-west lines join the corners on the north-south lines. A random line is first run from the section corners to the eastward and if it does not hit the corner, the correction is

Fig. 114.
made and the true line run. The east-west lines of sections 31 , $30,19,18,7$, and 6 receive practically all the effect of convergence of the township; and, if these sections are divided into quarter sections, the shortage in length is thrown into the west halves.

The township is subdivided, Fig. 114, as follows:
Beginning at corner $1-2-35-36$ on the south base, thence N1'W between sections 35 and 36 .

Wire fence, bears E. and W.
Scattering cottonwood bears east and west. F. G. Alexander's house bears $\mathrm{N} 28^{\circ} \mathrm{W}$.
Leave cottonwood timber bears east and west. Enter road bears north.
Southeast corner Alexander's field. Thence along west side of road.
Cross roads. Bears east to Mound City. Bears north to Link City.
Quarter section corner point falls in the road.
Enter dense cottonwood timber; bears N54 ${ }^{\circ} \mathrm{E}$.
Set locust post $4^{\prime \prime} \times 4^{\prime \prime}-2^{\prime}$ in the ground for corner sections $25,26,35$, and 36 .

Thence $\mathrm{S} 89^{\circ} 57^{\prime} \mathrm{E}$ on a random line between sections 25 and 36.
Set temporary quarter section corner post.
Intersect east line of township 3 links north of corner of sections $25,30,31$, and 36 , which is a sandstone $5^{\prime \prime} \times 8^{\prime \prime}$ set $5^{\prime \prime}$ above the ground, marked and witnessed.
Thence $\mathrm{N} 89^{\circ} 56^{\prime} \mathrm{W}$ on a true lime between sections 25 and 36 -over level bottom land.
18.60
20.50
32.50
39.98
46.50

76
79.96

Cherry Creek, 12 links wide, clear water, 1 ft . deep, gentle current, sandy bottom, course northwest.
Heavy timber, bears north and south.
Leave heavy timber bearing north and south.
Deposit a quart of charcoal 12 ins. in the ground as a quarter section corner. Dig pits $18 \times 18 \times 12$ ins. east and west 4 ft . and raised a mound of earth $31 / 2 \mathrm{ft}$. base by $11 / 2 \mathrm{ft}$. high over the deposit.
Enter heavy timber bears north and south.
Leave heavy timber, enter scattering timber bears $\mathrm{N} 25^{\circ} \mathrm{E}$.
Corner sections $25,26,35$, and 36.

Thence N1'W between sections 25 and 26 .
Right bank of Yellowstone river. Set locust post $4^{\prime \prime} \times 4^{\prime \prime}-24^{\prime \prime}$ in the ground for meander corner for sections 25 and 26 , marked $M C$ on north side. Entered shallow water 1 to 2 ft . deep.
Across shallow channel 64 links wide to sand bar.
26
To right bank of main channel, course east.
Quarter section corner falls in the river.
Left bank of Yellowstone river, 12 ft . high, deposited a marked stone 12 ins. in the ground.
Wire fence bears east and west.
55.70
62.80

Telegraph line bears east and west.
80
Set cedar post for corner sections $23,24,25$, and 26 .
Thence $\mathrm{S} 89^{\circ} 56^{\prime} \mathrm{E}$ on a random line.
Set temporary quarter section corner.
Intersect east line of township 3 links north of section corners $25,24,30$, and 19 ; which is a sandstone 5×9 ins. -4 ins. above ground marked and witnessed.
Thence back $\mathrm{N} 89^{\circ} 55^{\prime} \mathrm{W}$ on a true line between sections 25 and 24.
39.99
58.00
79.98

Set a cedar post 3 ft . by 3 ins. square with a marked stone 24 ins. in the ground for a quarter section corner.
Short creek, 3 links wide.
Cor. of secs. $23,24,25$, and 26 .
The survey progresses in this way till we reach the corner of sections $1,2,11$, and 12 , when we continue as follows:

Beginning at corner 1, 2, 11, 12.
Thence $\mathrm{N}^{\prime} \mathrm{W}$ on a random line between sections 1 and 2.
40
79.77
39.77

Set temporary quarter section corner.
Intersect north line of township at corner of sections $1,2,35$, and 36 , which is a limestone $6 " \times 66^{\prime \prime}-5^{\prime \prime}$ above ground, marked and witnessed.
Thence $S 1^{\prime} E$ on a true line between sections 1 and 2. Set marked stone for quarter section corner.

In the next Range of sections we begin at corner on south base $2,3,34$, and 35 , and proceed as before. In this case, after the surveyor has located the corner $2,3,10,11$ he runs a random line N. $\varrho^{\prime} \mathrm{W}$. between sections 2 and 3 and misses the corner of
sections $2,3,34$, and 35 , five links to the west, and thence runs due south on a true line between sections 2 and 3 .

Bibliography.-"A Manual of Land Surveying." By F. Hodgman. 374 pages. A very valuable book for the surveyor or field engineer in surveying the public lands. A unique and very important feature is a digest of the legal decisions , by the different State and Federal courts in regard to U. S. Lands, surveys, conflicts, etc.
"A Manual of Surveying Instructions." Prepared under direction of the Commissioner of the General Land Office of the United States, Washington, D. C. It contains full and minute directions for the execution of surveys in the field in conformity to the laws of the United States.

CHAPTER XIII.

TRIGONOMETRIC FORMULAS.

208. Formulas for Right Triangle.-In the right triangle $A B C$, Fig. 115, where C is the right angle, and a, b, and c are the sides, we have the following expressions for the different trigonometric functions:

Fig. 115.

Fig. 116.

$$
\begin{aligned}
& \sin A=\frac{a}{c} ; \quad \csc A=\frac{c}{a} \\
& \cos A=\frac{b}{c} ; \quad \sec A=\frac{c}{b} \\
& \tan A=\frac{a}{b} ; \quad \cot A=\frac{b}{a}
\end{aligned}
$$

Also,

$$
\sin A=\frac{1}{\csc A} ; \quad \cos A=\frac{1}{\sec A} ; \quad \tan A=\frac{1}{\cot A}
$$

The following relations are sometimes useful:

$$
\begin{aligned}
\sin ^{2} A+\cos ^{2} A & =1 \\
1+\tan ^{2} A & =\sec ^{2} A \\
1+\cot ^{2} A & =\csc ^{2} A
\end{aligned}
$$

209. Solutions for Right Triangle.-There are four general cases that can occur, according to the data given, which may be-
I. The hypotenuse and one leg;
II. The two legs;
III. The hypotenuse and one of the acute angles;
IV. A leg and an acute angle.

The data given, the data required, and the solutions are given in the following tabular statement. It is assumed that if angle B is known, A is also known.

Given Required Solutions
$\begin{array}{lll}a, c \ldots & b, A, B & \sin A=\frac{a}{c} ; b=c \cos A ; B=90-A . \\ a, b \ldots . & A, c, B & \tan A=\frac{a}{b} ; c=\frac{a}{\sin A} ; B=90-A . \\ c, A \ldots & a, b, B & a=c \sin A ; b=c \cos A ; B=90-A . \\ A, a \ldots & c, b, B & c=\frac{a}{\sin A} ; b=\frac{a}{\tan A ;} B=90-A .\end{array}$
210. Oblique Triangle.-In the general triangle $A B C$, Fig. 116, three parts, one of which must be a side, have to be given to find the other three. There are four general cases according to the data given. Thus we may have:
I. Two angles and the included side;
II. Two sides and the included angle;
III. Three sides:
IV. Two sides and an angle opposite one of them.

The given parts, the required parts, and the formulas for solution are given in the following table:
Given Required Formulas for Solutions
$A, C, b \quad B, c, a \quad B=180-(A+C), c=\frac{b \sin C}{\sin B} ; a=\frac{b \sin A}{\sin B}$.
$a, c, A \quad B, C, a \quad B+C=180-A ; \operatorname{lan} \frac{1}{2}(B-C)=\frac{b-c}{b+c} \tan \frac{1}{2}(B+C)$

$$
a=\frac{b \sin A}{\sin B}
$$

$a, b, c \quad A, B, \epsilon^{\prime} \quad \sin \frac{1}{2} A=\sqrt{\frac{(s-b)(s-c)}{b c}} ;$
$\cos \frac{1}{2} A=\sqrt{\frac{s(s-a)}{b c}} ;$
$\tan \frac{1}{2} A=\sqrt{\frac{(s-b)(s-c)}{s(s-a)}}$.
Check : $A+B+C=180$
$a, b A \quad B, C, c \quad \sin B=\frac{b \sin A}{a} ; C=180-(A+B)$

$$
c=\frac{a \sin C}{\sin A}
$$

Case IV is sometimes ambiguous. We may have the following conditions and results:

If A is obtuse, and $a>b$ there is one solution;
If A is acute and $a=$ or $>b$, there is one solution;
If A is acute and $a<b$ and $a>b \sin A$, there are two solutions;
If A is acute and $a<b$ and $a=b \sin A$, there is one solution;
If A is acute and $a<b$ and $a<b \sin A$, there is no solution.
211. Right Spherical Triangle.-If $A B C$ is a right spherical triangle where $C=90^{\circ}$, and the hypotenuse (c), and the two acute angles $(A$ and $B)$ are treated as co-parts, the five parts of the triangle in order are $a, b, 90-A, 90-c$, and $90-B$. To these five parts the following laws (discovered by Napier) apply:

Tangent Law: The sine of any part is equal to the product of the Tangents of the Adjacent parts.

Cosine Law: The sine of any part is equal to the product of the Cosines of the Opposite parts.

The right angle C is not counted or regarded as a part and a and b are regarded as adjacent parts as no significant part comes between them. For any one part the two adjacent parts are those next to it, while the opposite parts are the other two, or parts once removed from the special part under consideration. Thus for $90-A$, the adjacent parts are b, and $90-c$, while the opposite parts are a and $90-B$.

By the application of Napier's laws we can solve any spherical triangle where the three given parts are two sides and an angle or two angles and a side.
212. Oblique Spherical Triangle. -If three sides of a spherical triangle $A \cdot B C$, are given, let

$$
\begin{aligned}
2 s & =a+b+c, \text { and we have, } \\
\sin \frac{1}{2} A & =\sqrt{\frac{\sin (s-b) \sin (s-c)}{\sin b \sin c}} \\
\tan \frac{1}{2} A & =\sqrt{\frac{\sin (s-b) \sin (s-c)}{\sin s \sin (s-a)}}
\end{aligned}
$$

If the three angles are given, pass to the polar triangle and solve, and then pass back.

CHAPTER XIV.
TABLES OF
LOGARITHMS OF NUMBERS.
LOGARITHMIC SINES, COSINES, TANGENTS, AN COTANGENTS.
NATURAL SINES AND COSINES.
NATURAL TANGENTS AND COTANGENTS.
CUBIC YARDS PER 100 FT . FOR VARIOUS SLOPES.

No.
$\overline{100} \overline{000000} \overline{000434} \overline{000868} \overline{001311} \overline{001734} \overline{002166} \overline{002598} \overline{003 n 29} \overline{003461} \overline{003891} \overline{432}$

 $8 \quad 8600 \quad 9026 \quad 9451 \quad 9876010300010724011147011570011993012415$ 424 | 3 | 012837 | 013259 | 013680 | 014100 | 4521 | 4940 | 5360 | 5779 | 6197 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 4 | 7033 | 7451 | 7868 | 8284 | 8700 | 9116 | 9532 | 9947 | 420131 | $\begin{array}{llllllllllllllll}5021189 & 021603 & 022016 & 022428 & 022841 & 023252 & 023664-024075 & 4486 & 4896 & 412\end{array}$ $\begin{array}{llllllllllll}6 & 5306 & 5715 & 6125 & 6533 & 6942 & 7350 & 7757 & 8164 & 8571 & 8978 & 406\end{array}$ $7 \quad 9384 \quad 97890301950306000310040314080318120322160326190331411404$ $\begin{array}{llllllllllll}8 & 033424 & 033826 & 4227 & 4628 & 5029 & 5430 & 5830 & 6230 & 6629 & 7028 & 400\end{array}$

 $\begin{array}{lllllllllll}3053078 & 053463 & 053846 & 4230 & 4613 & 4996 & 5378 & 5760 & 6142 & 6524 & 383\end{array}$ $4 \begin{array}{lllllllllll}4 & 6915 & 7286 & 7666 & 8016 & 8426 & 8805 & 9185 & 9563 & 9942 & \text { (1605201) } 379\end{array}$ $6060698061075061452061829062216(062582062958)(163333)(163709) 4083 ~ 376$ $\begin{array}{lllllllllllll}6 & 4458 & 4832 & 5206 & 5580 & 5953 & 6326 & 6699 & 7071 & 7443 & 7815 & 373\end{array}$

8	071882	072250	072617	072985	073352	3718	4085	4451
0	6547	5912	6276	6640	7004	7368	7731	8044
185	5182	366						

1	082785	083144	083503	3861	4219	4576	4934	5291
2	6360	6716	7071	7426	7781	8136	8490	8845

 $\begin{array}{lllllllllllll}1 & 7271 & 7603 & 7934 & 8265 & 8595 & 8926 & 9256 & 9586 & 9915 & 120245 & 330\end{array}$

6	3539	3858	4177	4496	4814	5133	5451	5769	6086	6413
7	6721	7037	7354	7671	7987	8303	8618	8934	9249	9564
16										

140	146128	146438	146748	147058	147367	147676	147985	148294	148603	148911	309											
1	9219	9527	9835	150142	150449	150756	151063	151370	151676	151982	307		$\mathbf{2} 152288$	152594	152900	3205	3510	3815	4120	4424	4728	5132
---:	---:	---:	---:	---:	---:	---:	---:	---:	---:													
$\mathbf{3}$	5336	5640	5943	6246	6549	6852	7154	7457	7759													
80161	303																					

 \begin{tabular}{|r|r|r|r|r|r|r|r|r|r|}
\hline 5 \& 161368 \& 161667 \& 161967 \& 162266 \& 162564 \& 162863 \& 3161 \& 3460 \& 3758

$\mathbf{6}$ \& 4353 \& 4650 \& 4947 \& 5244 \& 5541 \& 5838 \& 6134 \& 6430 \& 6726

7029 \& 299

\hline

7 \& 7317 \& 7613 \& 7908 \& 8203 \& 8497 \& 8792 \& 9086 \& 9380 \& 9674 \& 9968 \& 295
\end{tabular}

 $\begin{array}{llllllllllllll}9 & 3186 & 3478 & 3769 & 4060 & 4351 & 4641 & 4932 & 5222 & 5512 & 5802 & 291\end{array}$

289 \begin{tabular}{|l|r|r|rrr|r|r|r|r|r|r|}
1 \& 8977 \& 9264 \& 9552 \& 9839 \& 180126 \& 180413 \& 180699 \& 180986 \& 181272 \& 181558 \& 287

$\mathbf{2}$ \& 181844 \& 182129 \& 18215 \& 182700 \& 2985 \& 3270 \& 3555 \& 3839 \& 4123 \& 4407 \& 285

\hline

\hline 2 \& 181844 \& 182129 \& 182415 \& 182700 \& 2985 \& 3270 \& 3555 \& 3839 \& 4123

3 \& 4691 \& 4975 \& 5259 \& 5542 \& 5825 \& 6108 \& 6391 \& 6674 \& 6956

7239 \& 285

\hline

4 \& 7521 \& 7803 \& 8084 \& 8366 \& 8647 \& 8928 \& 9201 \& 9490

5 \& 9771 \& 190051 \& 281

\hline \& 190332 \& 190612 \& 190892 \& 191171 \& 191451 \& 191730 \& 1921010 \& 92289

\hline

 $\begin{array}{llllllllllllll}6 & 3125 & 3403 & 3681 & 3959 & 4237 & 4514 & 4792 & 5069 & 5346 & 5623 & 278\end{array}$

7 \& 5900 \& 6176 \& 6453 \& 6729 \& 7005 \& 7281 \& 7556 \& 7832 \& 8107

8 \& 8657 \& 893 \& 8206 \& 276

\hline
\end{tabular}

$\left\|\frac{10}{200}\right\|$	$\frac{0}{342423}$	$\overline{342620}$	$\frac{2}{342817}$	$\overline{343014}$	343212	343409	343606	$\overline{343802}$	33999	44196	
	4392	45×9	4785	4981	5178	5374	5570	5766	5962	6157	196
2	6353	549	6744	6939	7135	7330	7525	7720	915	110	195
3	8305	8500	8694	8889	9083	$927 ¢$	9472	9666	9860	350054	
	350248	350442	350636	350829	351023	351216	351410	351603	351796	1989	93
5	2183	2375	2568	2761	2954	3147	3339	3532	3724	3916	193
	4108	4301	4493	4685	4876	5068	5260	5452	5643	5834	92
7	6026	6217	6448	6599	6790	698	7172	7363	755	7744	
8	7935	12	8316	$850 ¢$	696	886	9076	9266	9456	9646	90
9	9835	36002	360215	360404	360593	360783	360972	361161	361350	3615	189
23	36					362671	362859				188
1	3612	3800	3988	4176	4363	4551	4739	4926	5113	5301	188
2	54	675	5862	6049	6236	6423	6610	6796	-6983	7169	187
3	7	54	7729	7915	101	8287	8473	8659	885	9030	186
	92	9401	958	9772	9958	370143	370328	370513	370698	370883	185
	371068	37125	371437	371622	371806	1991	2175	2360	2544	272	84
6	2912	3096	3280	3464	3647	831	4015	4198	4382	4565	84
7	4748	4932	115	5298	5481	664	5846	029	212	39	183
8	6577	6759	6942	7124	7306	7488	7670	7852	8034	821	182
	8398	8580	8761	8943	9124	9306	9487			00	81
0		380	380573	380	38	38	38				1
,	201	2197	2377	2557	73	2917	30	3277	3456		80
2	3815	399	4174	4353	4533	4712	4891	5070	6249	5428	179
3	5606	8	964	6142	6321	6499	6672	685		21	178
4	7390	568	7746	7923	8101	8279	8456	8634	81	898	178
5	9166	9343	952	9698	9875	390051	390228	390405	390582	390759	177
	390935	391112	39128	391464	391641	1817	1993	2169	2345	2521	176
	2697	2873	3048	3224	3400	3575	3751	392	4101	4277	176
8	4452	4627	302	4977	51	3326	6501	567		6025	175
250	3979	3981	398257	398461	398634	398808	398981	399154	39932	399501	173
	9674	9847	400020	400192	400365	400538	400711	400883	401056	40122	173
	401401	401573	1745	1917	2089	2261	2433	2605	2777	'29	172
3	3121	3292	3464	3635	3807	3978	4149	4320	4492	466	171
	4834	500	176	6346	6517	688	585	6029	6199	637	71
	6540	710	881	7051	221	7391	56	773	901	8070	170
	8240	8410	8579	8749	8918	9087	9257	1			69
	41162	41010	410271	410	410609 2293	410777 2461	410946	[411114	411283	41	69
9	3300	34				4137	43	4472	46		67
60		4151		咗	415641	415808	415	416141	416308	416474	67
	6641	6807	6973	7139	7316	7472	7638	7804	7970	813	166
	8301	8467	8633	8798	8964	9129	9295	9460	962	979	165
3	9956	420121	420286	420451	420616	420781	420945	421110	421275	42143	165
	421604	1768	1933	2097	2261	24	259	2754	291	30	164
6	324	3410	3 \%	37	391	46		439	505	47	163
	4882	5045	\%	5371	5034	5697	析	6023	618	634	163
	6511	6674		6999	7161	7324		64	811	7973	62
8	8135	8297	8459	86\%1	8783	8944	91	926	9429	59	62
9	9752	9914	4300	4302	4303	4305	4307	4308	4310		
5	431364	43152	43168	43184	432007	432167	432328	432488	4326	432809	161
	296	3130	3290	3	3610	3770	393	4090	424	44	160
	4569	4729	488	5	5217	536	55	68	684	600	59
3	6163	6322	6481	6640	6799	6957	7116	7275	7433	59	159
	7751	79019	8067	8226	8334	8542	8701	8859	9017	9175	158
	9333	9491	9648	9806	9964	440122	440279	440437	440594	44075	158
	440909	441066	441224	441381	441538	169	1852	2009	2166	2323	157
7	2480	2637	2793	2950	316	32	3419	3576	373	3889	157
	475	4201	4357	4513	4669	4825	438	6137	629	5449	156
				6071		6382			6848	7003	155
H0.	(1)	1	2		2	5		7	8	9	Dit

N	-	1	2	3				7	8	9	If.
280	447158	$\overline{447313}$	$\overline{447468}$	$\overline{447623}$	$\overline{447778}$	447933	$\overline{448038}$	$\overline{448242}$	$\overline{448397}$	448552	155
1	8706	8861	9015	9170	9324	9478	9633	9787	9941	450095	54
	450249	450403	450557	450711	450865	451018	451172	451326	451479	1633	154
3	1786	1940	2093	2247	2400	2553	2706	2859	3012	3165	153
4	3318	3471	3624	3777	3930	4082	4235	4387	4540	4692	153
6	4845	4997	5150	6302	5454	5606	5758	5910	6062	6214	152
6	6366	6518	6670	6821	6973	7125	7276	7428	7579	7731	152
7	7882	8033	8184	8336	8487	8638	8789	8940	9091	9242	151
8	9392	9543	9694	9845	9995	460146	460296	460447	460597	460748	151
9	460898	461048	4611984	461348	461499	1649	1799	1948	2098	2248	150
0	4623	462548	462697	62847	462997	463146	463296	463445	463594	463744	150
1	3893	4042	4191	4340	4490	4639	4788	4936	5085	5234	149
	538	5532	5680	5829	5977	6126	6274	6423	6571	6719	149
3	68	7016	7164	7312	7460	7608	7756	7904	8052	8200	148
4	834	8495	8643	8790	8938	9085	9233	9380	9527	9675	48
	9822	9969	470116	470263	470410	470557	470704	470851	470998	471145	47
	471292	471438	1585	1732	1878	2025	2171	2318	2464	2610	46
7	2756	2903	3049	3195	3341	3487	3633	3779	3925	4071	46
8	4216	4362	4508	4653	4799	4944	5090	5235	5381	5526	146
9	5671	5816	5962	6107	6252	6397	6542	6687	6832	6976	145
300	477121	4772	477411	477555	477700	477	477989	478133	4782	478	5
	8566	8711	8855	8999	9143	9287	9431	9575	9719	9863	44
	480007	480151	480294	480438	480582	480725	480869	481012	481156	481299	44
3	1443	1586	1729	1872	2016	2159	2302	2445	2588	2731	143
	2874	3016	3159	3302	3445	3587	3730	3872	4015	4157	143
5	430	4442	4585	4727	4869	5011	5153	5295	5437	5579	42
8	572	5863	6005	6147	6289	6430	6572	6714	6855	6997	142
7	7133	72	7421	7563	7704	7845	7986	8127	82	8410	41
8	8551	8692	8833	0380	9114	255	9396	9537	9677		
9	995	490099	490239	490380	490520	490661	490801	49094	491081	491222	
	491	491502	491642	491782	491922	492062	492201	492341	492481	492621	140
	2760	2900	3040	3179	3319	3458	3597	3737	3876	4015	39
2	4155	4294	4433	572	4711		4989	5128	5267	5406	39
3	5544	5683	5822	5960	6099	6238	6376	6515	665	6791	39
	6930	706	7206	7344	7483	7621	7759	7897	8035	8173	138
	8311	844	8586	8724	8862	8999	9137	9275	9412	9550	38
	9687	9824	9962	500099	500236	500374	500511	500648	500785	500922	37
	501059	501196	501383	1470	1607	1744	1880	2017	2154	2291	137
	2427	2564	2700	2837	2973	3109	3246	3382	3518	3655	136
9	3791	3927	4063	4199	4335	447	460	4743		501	136
320	505150	505236	505421	505557	505693	505828	505964	506099	506234	506370	36
	6505	6640	6776	6911	7046	7181	7316	7451	7586	7721	135
	7856	7991	8126	8260	8395	8530	8664	8799	8934	9068	135
	9203	9337	9471	9606	9740	9874	510009	510143	510277	510411	134
	510545	510679	510813	510947	511081	511215	1349	1482	1616	1750	134
	1883	2017	2151	2234	2418	2551	2684	2818	2951	308	133
	321	3351	3484	3617	3750	3883	4016	4149	4282	441	133
8	454	4631	4813	4946	5079	5211	5344	5476	5609	5741	133
	581	6006	6139	627 I	6403	6535	6668	6800	6932	706	132
9	7196	732	746	759		78	708	8119	8251	83	13
330	58514	518646	518777	518909	519040	519171	519303	519434	519566	519697	131
	9828	9959	520090	521221	(52)(1353	520484	520615	520745	520876	521007	131
	251138	521269	1400	1530	1661	1792	-1922	2053	2183	2314	131
	2444	2575	2705	2835	2966	3096	3226	3356	348	3616	130
	3746	3876	4006	4136	4266	4396	64526	4656	478	4915	130
5	5045	5174	45304	5434	5563	5693	5822	6951	6031	6210	129
6	6339	6469	6598	6727	6856	6985	5114	7243	7372	7501	129
	763	7759	7888	8016	68145	8274	8402	8531	8660	878	129
	8917	9045	9174	9302	9430	9559	9687	9815	9943	530072	128
	53020	530328	530456	530584	530712	5308	5309	531	5312	1351	12
Na	0	1	2	3	4	5	6	7	8	9	Diff.

2570543	$57(1660)$	$57(1276$	570593	571010	571126	1243	1359	1476	1592	117

3	1709	1825	1942	2058	2174	2291	2417	2523	2639	2755	116
	2872	2988	3104	3220	3336	3452	3568	3684	$3 \mathrm{~B}, \mathrm{~N}$	3915	116
6	4031	4147	4263	4379	4494	4610	4726	4841	4957	5012	116
6	5188	5303	5419	6534	5650	5i65	6840	5996	6111	6226	116
7	6341	6457	6572	6687	6S(12	6917	7032	7147	726i2	7375	115
8	7492	7607	7722	7836	7951	81166	8181	8295	8410	8525	115
9	8639	8754	8863	8983	9097	9212	9326	9441	9565	9669	114

1	2177	2288	2399	2510	2621	2732	2843	2954	3164	3175	111
2	3286	3397	3508	3618	3729	3840	3950	4161	4171	4252	111
3	4393	4503	4614	4724	4834	4945	5155	5165	5276	53×6	110
4	5496	5606	5717	5827	5937	6047	6157	6267	6377	64>7	110
5	6597	6707	6817	6927	7137	7146	7256	7366	7476	7586	110
6	7695	7805	7914	8024	8134	8243	8353	8462	8572	86×1	110
7	8791	8900	9019	9119	9228	9337	9446	9556	9665	9774	119
	9883	9992	600101	600210	600319	60042>	610537	604646	600755	600164	119
9	600973	601082	1191	1299	1408	1517	1625	1734	1843	1951	109
No.	0	1	2	3	4	5	6	7	8	9	Difr.

$\frac{\mathrm{Nu}}{400}=0$	602169	$\frac{1}{602277}$	602336	$\underline{602491}$	602603	$\overline{602711}$	$\overline{602819}$	$\frac{8}{602928}$	$\frac{9}{603036}$	108
1) 3144	3.53	3361	3169	$3: 77$	368	3794	3902	4010	603	1
24226	4334	4412	4.550	46	47	4874	4982	9	5197	108
3.5315	5413	5521	5628	5736	- 5844	5951	6059	6166	6274	108
4 6 6381.	6.139	6596	6704	6811	6919	7026	7133	7241	7348	107
67455	7562	7669	777	7884	7991	8098	8205	8312	8419	107
6.8526	333	874)	7	8954	9061	9167	9274	9381	9488	107
$7 \quad 9594$	9701	9808	9914	610021	610128	610234	610341	610447	610554	107
8610660	610767	610873	610979	1086	1192	1298	1405	1511	1617	106
$9 \quad 1723$	1829	1936	2042	2148	2254	2360	2466	2572	2678	106
410,612	612390	61		13207			613525			6
13342	3947	4053	4159	4264	4370	4475	4581	4686	479	106
4897	5003	5108	5213	6319	5424	5529	5634	5740	8	105
35950	6055	6160	6265	6370	6476	6581	6686	6790	6895	105
47000	7105	7210	7315	7420	7525	7629	734	839	9	105
58048	8153	8257	8362	8166	8571	8676	780	884	858	105
$6{ }^{6} 9093$	9198	9312	3406	9511	9615	9719	9824	9928	620032	104
7620136	620240	620344	620448	620552	620656	620760	620864	620968	1072	104
81176	1280	1384	1488	1592	1695	1799	1903	2007	2110	104
92214	2318	2421	2525	2628	2732	2835	2939	3042	3146	104
0623249	623353		623539	623663	623766	623869	623973	624076	624179	3
14232	4385	4488	591	4695	4798	4901	5004		0	103
25312	5415	5518	521	5724	6827	5929	032	6135	. 6238	103
36340	143	6516	673	751	83	6956	058	61	7263	103
47366	463	571	673	7775	878	7980	082	8185	8287	102
$5 \quad 8339$	191	593	695	97	900	900	9104	9206	9308	102
$6 \quad 9410$	9512	9613	9715	9817	9919	630021	630123	630224	6303	102
76304286	630530	630631	630733	630835	630936	1038	1139	1241		102
$8 \quad 1444$	1545	1647	1748	1849	1951	2052	2153	2255	235	101
$9 \quad 2457$	2559	2660	2761	2862	2963	3064	3165	3266	3367	101
430.633468	633569	633670	633771	633872	633973	634074	634175	634276	6343	101
1.4477	4578	4679	4779	4890	4981	5081	5182		-	101
25484	558	5685	5785	588	5986	608	6187	6287	6388	100
6488	6583	6688	6789	6889	6989	089	7189	290		100
4.7490	759	690	790	680	990	8090	8190	8290	338	100
8189	8589	8689	8789			9088	9188	9287	9387	100
$6 \quad 9436$	9586	96.36	9785	9883		640084	640183	640283	640382	99
640481	640581	640680	640779	640879	640978	1077	1177	1276	1375	9
$8 \quad 1474$	1573	1672	1771	1871	1970	2069	2168	2267	2366	吅
9.2465	2563	2662	2761	2860	2959	3058	3156	3255	3354	9
410643453	643551	643650	643749	643847	643946	644044	644143		4340	98
$1) 4439$	4537	4636	4734	4832	4931	5029	5127	52\%	5324	98
25422	5521	5619	5717	5815	5913	6011	6110	6208	6306	98
3.6404	6502	6600	6698	6796	6894	6992	7089	7187	285	98
47333	7481	7579	7676	7774	7872	7969	8067	8165	262	8
8360	8458	8555	653	8750	8848	8945	9043	9140	9237	97.
6.9335	9132	9530	9627	918	9821	9919	650016	650113	650210	97
7650308	650405	650502	650599	$65(1696$	650793	650890	0987	1084	1181	97
81278	1375	1472	1569	1666	1762	1859	1956	2053	215	97
$9 \quad 2246$	2343	2440	2536	2633	273	2826	2923	3019	311	97
450653213	653309	653405	653502	653:593	653695	653791	653888	653984	654080	96
14177	4273	4369	- 4465	- 4562	4658	4754	4850	4946	5042	96
2513	5235	5331	5427	-5523	5619	5715	5810	6906	6002	96
36098	6194	6290	6386) 6482	6577	6673	6769	6864	6960	96
7056	7152	7247	7543	7438	7534	76:23	725	7820	7916	96
8011	8107	-8202	8298	8393	8488	8584	8679	8774	8870	95
8965	9060	9155	9250	9346	9141	9536	9631	9726	9821	95
7 9916	660011	660106	660201	660296	660391	660486	660581	660676	660771	95
$66 \cap 865$	0960	1055	1150	1245]	! 1339	1434	1529	1623	1718	95
181	1907	2002	2096	2191	- 2286	- 2380	2475	2569	2663	95
Ead 0		8	3		5	6	7	8	9	Diti

No.	$\frac{0}{662758}$	$\overline{66259}$		663041		$\frac{5}{66320}$					$\underline{178 P}$
$\overline{460}$	$\underline{662758}$	$\overline{662852}$	662947	663041	$\overline{663135}$	$\overline{663230}$	$\overline{663324}$	$\overline{663418}$	$\overline{663512}$	$\overline{663607}$	94
1	3701	3795	3889	3983	4078	4172	4266	4360	4454	4548	94
2	4642	4736	4830	4924	5018	6112	5206	5299	5393	5487	94
3	5581	5675	5769	5862	5956	6050	6143	6237	6331	6424	4
4	6518	6612	6705	6799	6892	6986	7079	7173	7268	7360	4
5	7453	7546	7640	7733	7826	7920	8013	8106	8199	8293	93
6	8386	8479	8572	8665	8759	8852	8945	9038	9131	9224	93
7	9315	9410	9503	95	9689	9782	9875	9967	670060	670153	93
8	670246	670339	670431	6705246	670617	670710	70802	670895	0988	1080	33
9	1173	1265	1358	1451	1543	1636	1728	1821	1913	2005	38
470	67209	672190	672283	672	672467	672560	672652	672744	672836	67	2
1	302	3113	3205	3297	3390	3482	3574	3666	3758	3850	92
2	394	4034	126	4218	4310	402	4494	4586	4677	4769	92
3	4861	4953	45	5137	. 5228	320	5412	6503	5595	5687	92
4	5778	5870	5962	6053	6145	6236	6328	6419	6511	6602	92
5	6694	6785	6876	6968	7059	7151	7242	7333	7424	7516	91
6	760	7698	7789	7881	7972	8063	8154	8245	8336	8427	91
7	8518	8609	8700	8791	8882	8973	9064	9155	9246	9337	91
	9428	9519	9610	9700	9791	9882	9973	680063	680154	680245	91
96	680336	680426	680517	680607	680698	680789	680879	0970	1060	116	91
480	681241	681332	681422	681513	681603	681693	681784	681874	681964	682055	0
1	2145	2235	2326	2416	2506	2596	2686	2777.	2867	2957	90
2	304	3137	3227	3317	340	3497	3587	3677	3767	3857	90
3	3947	4037	4127	4217	4307	4396	4486	4576	4666	4756	90
	4845	4935	5025	5114	5204	5294	5383	5473	5563	65	0
5	5742	5831	5921	6010	6100	6189	6279	6368	6458	6547	89
6	6636	6726	6815	6904	6994	7083	7172	7261	7351	7440	
7	7529	7618	7707	7796	7886	7975	8064	8153	8242	8331	89
	8420	3509	8598	8687	8776	8865	8953	9042	9131	9220	89
9	9309	9398		9575	96	9753	9841		690019	690107	
490	690196	690285	690373	690462	690550	690639	690728	690816	690905	690993	89
	1081	1170	1258	1347	1435	1524	1612	1700	1789	1877	
2	1965	2053	2142	2230	2318	2406	2494	2583	2671	2759	
,	2847	2935	3023	3111	3199	3287	3375	3463	3551	3639	
4	3727	3815	3903	3991	4078	4166	4254	4342	4430	4517	
5	4605	4693	4781	4868	4956	5044	6131	5219	5307	5394	
6	5482	5569	5657	5744	5832	5919	6007	6094	46182	6269	-87
7	6356	6444	6531	6618	6706	6793	6880	6968	7055	7142	
8	7229	7317	7404	7491	7578	7665	7752	7839	7926	8014	87
9	8101	8188	82	836		85	86	8709	87	8883	87
500	698970	699057	699144	699231	699317	699404	699491	6995	699664	699751	7
1	9838	9924	700011	700098	700184	700271	700358	700444	700531	700617	
2	700704	700790	0877	0963	1050	1136	1222	1309	1395	1482	86
3	1568	1654	${ }_{2} 741$	1827	1913	1999	2086	2172	2258	2344	86
4	2431	2517	2603	2689	2775	2861	2947	3033	- 3119	30	
5	3291	3377	3463	3549	3635	3721	3807	3893	3979	4065	
6	4151	4236	4322	4408	4494	4579	4665	4751	4838	4922	
7	5008	5094	5179	5265	5350	5436	5522	5607	75693	5778	
8	5864	6949	6035	6120	6206	6291	6376	6462	26547	6632	85
						71	7229	7315	740		
510	707570	707655	707740	707826	707911	707996	708081	708166	6708251	708336	85
	8421	8506	8591	8676	8761	8846	8931	9015	59100	9185	85
-2	9270	9355	9440	9524	9609	9694	49779	9863	39948	710033	85
	710117	710202	710287	710371	710456	710540	710625	710710	710794	0879	85
4	0963	1048	1132	1217	1301	\| 1385	51470	1554	41639	1723	84
5	1807	1892	1976	2060	2144	2229	92313	2397	72481	2566	84
6	2650	2734	2818	2902	2986	3070	- 3154	3238	3323	3407	84
7	3491	3575	3659	3742	3826	3910	- 3994	4078	4162	4246	84
	4330	4414	4497	4581	4665	4749	483	4916	65000	5084	84
	5167	5251		5118	5502		6669	5753	58	5920	84
Evo	0	1	3	3	4	b	6	7	8	9	Sffi

No	0		2								Dift.
5207	7160037	716087	716170	$\overline{716254}$	$\overline{71633 \tilde{7}}$	716421	716504	$\overline{716588}$	716671	$\overline{716754}$	83
,	6838	6921	7004	7088	7171	7254	7338	7421	7504	7587	83
2	7671	7754	7837	7920	8003	8086	8169	8253	8336	8419	83
3	8502	8585	8668	8751	8834	8917	9000	9083	165	9248	83
4	9331	9414	9497	9580	9663	9745	9828	9911	9994	720077	83
	720159 \|	7202427	7203257	720407	720490	720573	720655	720738	720821	0903	83
6	0986	1068	1151	1233	1316	1398	1481	1563	1646	1728	82
7	1811	1893	1975	2058	2140	222	2305	2387	2469	2552	82
8	2634	2716	2798	881	2963	3045	127	3209	3291	3374	82
9	3456	3533	3620	3702	3784	3866	3948	4030	4112	419	82
6307	724276	72435	7244407	724522	724604	724	724767	724849	،24931	725013	2
5	5095	5176	5258	5340	5422	5503	5585	5667	5748	5830	2
2	5912	5993	6075	6156	6238	6320	6401	6483	6564	6646	2
3	6727	809	6890	972	7053	7134	7216	7297	7379	746	81
4	7541	623	7704	785	866	7948	8029	8110	8191	8273	81
5	8354	8435	8516	8597	8678	8759	8841	8922	9003	9084	81
6	9165	9246	9327	9408	9489	9570	9651	9732	9813	98	
7	9974	730055	730136	730217	730298	730378	730459	730540	730621	73070	31
8	730782	0363	0944	1024	1105	1186	1266	1347	1428	150	81
9	1589	1669		1830	1911	1991	2072	2152	22	2313	
540	732394	732474	732555	732635	732715	732796	732876	732956	733037	733117	0
1	3197	3278	3358	3438	3518	3598	3679	3759	3839	3919	80
2	3999	4079	4160	4240	4320	4400	4480	4560	4640	4720	80
3	4800	4880	4960	5040	5120	62	5279	5359	5439	5519	0
4	5599	5679	5759	5838	5918	5998	6078	615	6237	631	30
5	6397	6476	6556	6635	6715	679	6874	6954	703	7113	0
6	7193	7272	7352	7431	7511	7590	7670	7749	7829	790	79
7	7987	8067	8146	8225	8305	8384	8463	8543	8622	870	79
8	878	8860	8939	9018	9097	9177	9256	9335	9414	949	79
9	9572	0651	9731	9810	9889		740047	740126	740205	740	
550	40363	740442	710521	740600	740678	740757	740836	740915	740994	7410	9
1	1152	1230	1309	1388	1467	1546	1624	1703	1782	186	79
2	1939	2018	2096	2175	2254	2332	2411	2489	256	264	79
3	2725	2804	2382	2961	3039	3118	3196	3275	3353	343	78
4	3510	3538	3667	3745	3823	3902	3930	4058	4136	4215	78
5	4293	4371	4449	4528	4606	4684	4762	4840	4919	4997	78
	5075	5153	5231	5309	5387	5465	5543	5621	5699	577	78
	5855	5933	6011	6089	6167	6245	6323	6401	6479	655	78
9	7412	7489	7567	76	7722	7800	7878	7955	803		78
	748188		7	748	748		748				
	8963	9140	9118	9195	9272	9350	9427	9504	9582	9659	77
2	9736	9814	9891	9968	750045	750123	750200	750277	750354	750431	77
	3750508	750586	750663	750740	0817	0894	0971	1048	1125	1202	77
4	41279	1356	1433	1510	1587	166	1741	1818	189	197	77
.	52048	2125	2202	2279	2356	2433	2509	2556	2663	250	7
6	62316	2393	2970	3047	3123	3200	3277	3353	3430	5	77
7	75583	3660	3736	3813	3889	3966	4042	4119	4195	427	77
8	- 4348	4425	4501	4578	4654	4730	4807	4883	4960	5036	76
	9 5112		5265	5341	5417	5494	5570	5646	5722	579	76
570	755875	755951	756027	756103	756180	756256	756332	756408	756484	756560	76
	6636	6712	6788	6864	6940	7016	7092	7168	7244	7320	76
	27396	7472	7548	- 7624	7700	7775	7851	7927	8003	8079	76
	38155	8230	8306	68382	8158	8533	8609	8685	8761	883	76
	8912	89.83	9063	$3 \quad 9139$	9214	9290	9366	9441	9517	959	76
5	5.966	9743	9819	9 9394	9970	76 \% 125	760121	760196	760272	760347	75
	6761422	760493	760573	3760649	760724	0799	0875	0950	1125	1101	5
	1176	1251	1326	61412	1477	150	1627	170	1778	185	75
	192	2003	2078	$8 \quad 2153$	2223	2303	2378	2453	2529	260	75
	2679	27	23	92904		3053	3128	3213	3278	3353	75
No.	. 0	1	2	3	4	5	6	7	8	9	Dff.

$\left\|\frac{\mathrm{No}}{\mathrm{k} 90}\right\|_{7 \mathrm{~F}}$	$\frac{0}{76328}$	$\frac{1}{26503}$	$\overline{7635} \overline{8}$	763653	$\overline{76327}$	$\overline{763802}$	$\underline{6}$				Diffi
bot	4176	4251	4326	4400	4475	4550	4624	4699	4774	46418	75
2	4923	4993	+5172	5147	5221	5254	5370	5445	5520	5594	75
3	5669	5743	5818	5892	5966	6141	6115	6190	6264	6338	74
4	5413	6487	6562	6636	6710	6785	6859	6933	7017	7082	74
5	7156	7230	7304	7379	7453	7527	7601	7675	7749	7823	74
6	7898	7972	8046	8120	8194	8268	8342	8416	8490	8564	74
7	8638	8712	8786	8860	8934	$9{ }^{9} 18$	9082	9156	9230	9313	4
8	9377	9451	9525	9599	9673	9746	9820	9894	9968	770042	74
97	770115	7701897	770263	770336	770410	770484	770557	770631	770705	0778	74
590	770852	770926	770999	7710737	771146	771220	771293	771367	771440	771514	74
1	1587	1661	1734	1808	1881	1955	21128	2102	2175	2248	73
2	2322	2395	2468	2542	2615	2688	2762	2835	2908	2981	73
3	3055	3128	3201	3274	3348	3421	3494	3567	3640	3713	73
4	3786	3860	3933	4006	4079	4152	4225	4298	4371	4444	73
6	4517	4590	4663	4736	4809	4882	4955	5028	5100	5173	73
6	5246	5319	6392	5465	5538	5610	5683	5756	5829	5902	73
7	5974	6047	6120	6193	6263	6338	6411	6483	6556	6629	73
8	6701	6774	6846	6919	6992	7064	7137	7209	7282	7354	73
9	7427	7499	7572	7644	7717	7789	7862	7934	8006	8079	72
600	778151	778224	778296	778368	778441	778513	778585	778658	778730	778802	72
1	8874	8947	$9{ }^{9} 19$	9091	9163	9236	9308	9380	9452	9524	72
2	9596	9669	9741	9813	9885	9957	780029	780101	780173	780245	721
	780317	780389	780461	7805337	781605	780677	0749	0821	0893	0965	7%
4	1037	1109	1181	1253	1324	1396	1468	1540	1612	1684	72
6	1755	1827	1899	1971	2042	2114	2186	2258	2329	2401	72
6	2473	2544	2616	2688	2759	2831	2902	2974	3046	3117	72
7	3189	3260	3332	3403	3475	3546	3618	3689	3761	3832	71
8	3904	3975	4146	4118	4189	4261	4332	4403	4475	4546	71
9	4617	4689	4760	48.1	4906	4974	5045	5116	5187	5259	71
610	785330	785401	785472	785543	785615	785686	785757	785828	785899	785970	71
	6041	6112	6183	6254	6325	6396	6467	6538	6609	6680	71
2	6751	6822	6893	6964	7035	7106	7177	7248	7319	7390	71
3	7460	7531	7602	7673	7744	7815	7885	7956	8027	8098	71
4	8168	8239	8310	8381	8451	8522	8593	8663	-8734	8804	71
5	8875	8946	9016	9087	9157	9228	9299	9369	9440	9510	71
6	9581	9651	9722	9792	9863	9933	790004	790174	790144	790215	70
	790285	790356	790426	790496	790567	790637	0707	0778	- 0848	0918	70
	0988	- 1059	11129	1199	1269	1340	1410	1480	1550	1620	70 70
9	1691	1761	1831	1901	1971	2041	2111	2181	2252	2322	70
620	792392	792462	792532	792602	792672	792742	792812	792382	792952	793022	70
1	3092	3162	3231	$3301{ }^{1}$	3371	3441	3511	3581	3651	3721	70
2	3790	3860	3930	4000	4070	4139	4209	4279	4349	4418	70
3	4488	4558	4627	4697	4767	4836	4906	4976	5045	6115	70
4	5185	5254	5324	5393	5463	5532	5602	5672	5741	5811	70
6	5880	5949	6019	6088	6158	6227	6297	6366	6436	6505	69
6	6574	6644	6713	6782	6852	6921	6990	7060	7129	7198	69
7	7268	7337	7406	7475	7545	7614	7683	7752	7821	7890	69
8	7960	8029	8098	8167	8236	8305	8374	8443	8513	8582	69
9	8651	8720	8789	8858	8927	8996	- 9065	9134	4203	9272	69
630	799341	799409	799478	799547	799616	799685	799754	799823	799892	799961	69
	800029	800098	800167	800236	800305	800373	800442	800511	1800580	800648	69
2	0717	0786	0854	0923	0992	1061	1129	1198	1265	1335	69
3	1404	1472	1541	1609	1678	1747	1815	1884	41952	2021	69
4	2039	2158	2226	2295	2363	2432	2500	2568	- 2637	2705	68
5	2774	2842	2910	2979	3047	3116	3184	3252	2321	3389	68
6	3457	3525	3594	3662	3730	3798	3567	3935	54003	4071	68
7	4139	4208	4276	4344	4412	4480	- 4548	4616	64685	4753	68
	4821	4889	4957	5025	5093	5161	5229	5297	5365	5433	68
			37	5705			5908	5976	6	6112	68
No.	0	1	2.	3	4	5	6	7	8	9	DIR.

							816587				Difi.
	806180	806218	806316	806.3418	806451	$\overline{806519}$	806587	806655	$\overline{806723}$	$\overline{806790}$	68
1	6×58	696	6994	7061	7129.	7197	7264	7332	7400	7467	8
2	7535	7603	7670	7738	7816	7873	7941	8008	8076	8143	68
3	8211	8279	8346	8414	8481	8549	861	8684	8751	8818	67
4	8286	8953	9021	9088	9156	9223	9290	9358	9425	9432	67
5	9560	9527	9694	9762	9829	9896	9964	810031	810098	810165	67
	81 (12338	810300	81113678	810434	810501	810569	810636	0713	0770	0837	67
7	$09(4)$	0971	1039	1106	1173	1240	1307	1374	1441	1508	67
8	1575	1642	1709	1776	1843	1910	1977	2074	2111	2178	67
9	2245	2312	2379	2445	2512	2579	2646	2713	2780	2547	67
6508	2313		313047		181	13247	813314	813391	13	13	67
1	3581	3648	3714	3781	3848	3914	3981	4048	4114	41	67
2	4248	4314	4381	4447	4514	4581	4647	4714	4780	4847	67
3	4913	4930	5046	5113	5179	5246	5312	5378	5445	5511	66
4	5578	5614	5711	5777	5843	5910	5976	6042	6109	6175	66
5	6241	6308	6374	6440	6506	6573	6639	6705	6771	6838	
6	6904	6970	7036	7102	7169	7235	7301	7367	7433	7499	6
7	7565	7631	7698	7764	7830	7896	7962	8028	8094	8160	66
8	8226	$8{ }^{2} 92$	8358	8424	8490	8556	8622	8638	8754	8820	66
9	8885	8951	9017	9083	9149	9215	9281	9346	9412	9478	66
6609	S19544	819610		819741			S19939	20004	0070		
	820201	820267	8213338	820399	820464	82053	820595	0661	0727	0792	6
2	0358	0924	0939	1055	1120	1186	12.1	1317	1382	1448	66
3	1514	1579	1645	1710	1775	1841	1906	1972	2037	2103	5
4	2168	2233	2299	2364	2430	2495	2550	2626	2691	2756	5
-	2822	2397	2952	3018	31183	3148	3213	3279	3344	3409	
6	3474	3539	3605	3670	3735	3800	3865	3930	399	4061	
7	4126	4191	4256	4321	4336	4451	4516	4581	464	4711	
8	4776	4841	4906	4971	5036	5101	5166	5231	5296	5361	65
9	5426	5491	5556	5621	568	57	58	5880		cold	
670	826075	826140	826204	826269	820334	826399	326161	\$26528	826593	826658	5
1	6723	6787	6852	6917	6981	7046	7111	7175	7240	7315	5
2	7369	7434	7499	7563	7628	7692	7757	7821	7886	7951	5
3	8015	8080	8144	8209	8273	8338	8402	8467	8531	8595	
4	8660	8724	8789	8853	8918	898	9046	9111	9175	923	
	9304	9368	9432	9497	9561	96	9690	9754	9818	988	4
6	9947	830011	830075	830139	830204	830268	830332	830396	830460	83052	
7	30589	0653	0717	0781	0845	0909	0973	1037	1102	116	
9	1870	1934	199	2062	2126	21	2253	2317	238		64
680	832509	832573	832637	832700	832764	832328	832892	332956	833020	833083	64
	3147	3211	3275	3338	3402	3466	3530	3593	3657	3721	64
2	3784	3848	3912	3975	4039	4103	4166	4230	4294	435	64
3	4421	4484	4548	4611	4675	4739	4802	4866	4929	499	,
4	5056	5120	5183	5247	5310	5373	5437	5500	5564	562	
5	5691	5754	5817	5881	5944	6007	6071	6134	6197	6261	63
6	6324	6387	6451	6514	6577	6641	6704	6767	6830	689	63
7	6957	7020	7083	7146	7210	7273	7336	7399	7462	752	63
8	7588	7652	7715	7778	7841	7904	7967	8030	8093	8156	63
9	8219	8282	8345	8408	8471	8534	8597	8660	8723	878	63
650	83884	838912	83397	839038	839101	839164	839227	839289	839352	S3945	63
	9478	9541	9604	9667	9729	9792	9855	9918	9981	840043	63
	840106	840169	840232	840294	840357	840420	840482	840545	840608	0671	63
3	0733	0796	0859	0921	0984	1046	1109	1172	1234	1297	63
	1359	1422	1485	1547	1610	1672	173	1797	1860	1922	63
5	1935	2047	2110	2172	2235	2297	2360	2422	2484	2547	62
6	2609	2672	2734	2796	2859	2921	2983	3046	3108	3170	62
7	3233	3295	3357	3420	3482	3544	3606	3669	3731	3793	62
8	3855	3918	3980	4042	4104	4166	4229	4291	4353	4415	62
	447		46				48	491	4974	5036	62
No. 1	0	1	2	3		5	6	7	8	9	0

No.	0	1		3			6		8		Diff.
$\overline{700}$	$\overline{845098}$	$\overline{845160}$	845222	845284	$\overline{845346}$	845408	845470	845532	845594	845656	62
1	5718	5780	5842	5904	5966	6028	6090	6151	6213	6275	62
2	6337	6399	6461	6523	6585	6646	6708	6770	6832	6894	62
3	6955	7017	7079	7141	7202	7264	7326	7388	7449	7511	62
4	7573	7634	7696	7758	7819	7881	7943	8004	8066	8124	62
5	8189	8251	8312	8374	8435	8497	8559	8620	8682	8743	62
6	8805	8866	8928	8989	9051	9112	9174	9235	9297	9358	61
7	2419	9481	9542	9604	9665	9726	9788	9849	9911	9972	61
8	850033	850095	850156	850217	850279	850340	850401	850462	850524	850585	61
9	0646	0707	0769	0830	0891	0952	1014	1075	1136	1197	61
710	851258	851320	851381	851442	851503	851564	851625	851686	851747	851809	61
1	1870	1931	1992	2053	2114	2175	2236	2297	2358	2419	61
2	2480	2541	2602	2663	2724	2785	2846	2907	2968	$30 \% 9$	61
3	3090	3150	3211	3272	3333	3394	3455	3516	3577	3637	61
4	3698	3759	3820	3881	3941	4002	4063	4124	4185	4245	61
5	4306	4367	4428	4488	4549	4610	4670	4731	4792	4852	61
6	4913	4974	5034	5095	5156	5216	5277	5337	5398	5459	61
7	6519	5580	5640	5701	5761	5822	5882	5943	6003	6064	61
8	6124 6729	6185 6789	6245	63010	6366	6427 7031	6487 7091	6548 7152	6608 7212	7272	60 60
7208	857332	857393	857453	857513	857574	857634	857694	857755	$85 \% 815$	857875	60
1	7935	7995	8056	8116	8176	8236	8297	8357	8417	8477	60
2	8537	8597	8657	8718	8778	8838	8898	8958	9018	9078	60
3	9138	9198	9258	9318	9379	9439	9499	9559	9619	9679	60
	9739	9799	9859	9918	9978	860038	860098	860158	$86(1218$	860278	60
5	860338	860398	860458	860518	860578	0637	0697	0757	0817	0877	60
6	0937	0996	1056	1116	1176	1236	1295	1355	1415	1475	60
7	1534	1594	1654	1714	1773	1833	1893	1952	2012	2072	60
8	2131	2191	2251	2310	2370	2430	2489	2549 3144	2608	2668	60
9	2728	2787	2847	2906	2966	3025	3085	3144	3204	3263	60
730	863323	863382	863442	863501	863561	863620	863680	863739	863799	863858	69
	3917	3977	4036	4096	4155	4214	4274	4333	4392	4452	69
2	4511	4570	4630	4689	4748	4808	4867	4926	4985	5045	59
3	5104	5163	5222	5252	5341	5400	5459	5519	5578	5637	59
4	5696	5755	5814	5874	5933	5992	6051	6110	6169	6228	59
6	6287	6346	6405	6465	6524	6583	6642	6701	6760	6819	69
6	6878	6937	6996	7055	7114	7173	7232	7291	7350	7409	69
7	7467	7526	7585	7644	7703	7762	7821	7880	7939	7998	59
8	8056	8115	8174	8233	8292	8350	8409	8468	8527	8586	59
9	864	8703	87	8821	8879	8938	8997	9056	9114	9173	59
740	869232	869290	869349	869408	869466	869525	869584	869542	869701	859760	59
1	9818	9877	9935	9994	870053	870111	870170	870228	870287	870345	59
2	870404	870462	870521	870579	0638	0696	0755	0813	0872	0930	58
3	0989	1047	1106	1164	1223	1281	1339	1398	1456	1515	58
4	1573	1631	1690	1748	1806	1865	1923	1981	2040	2098	58
5	2156	2215	2273	2331	2389	2448	2506	2564	2622	2681	58
6	2739	2797	2855	${ }_{319} 2913$	2972	3030	3088	3146	3204	3262	58
8	33321	3379 3960	3437 4018	3495 4076	3553 4134	3611 4192	3669 4250	3727 4308	3785 4366	3844 4424	58 58
-	4482	4540	4598	4656	4714	4772	4830	4888	4945	6003	58
750	875061	875119	875177	875235	875293	875351	875409	875466	87552.1	875582	8
1	5640	5698	5756	5813	5871	5929	5987	6045	6102	6160	58
2	6218	6276	-6333	6391	6449	6507	6564	6622	6680	6737	58
3	6795	6853	6910	6968	7026	7083	7141	7199	7256	7314	58
4	7371	7429	7487	7544	7602	7659	7717	7774	7832	7889	58
5	7947	8004	-8062	8119	8177	8234	8292	8349	8407	8464	57
6	8522	8579	-8637	8694	8752	8809	8866	8924	8981	9039	57
	9096	9153	-9211	9268	9325	9383	9440	9497	9555	9612	67
	-9669	[9726	9784 880356	[$\begin{array}{r}9841 \\ 880413\end{array}$	r 9898	9956 880528	880013 0585	880070 0642	880127 0699	880185 0756	67 57
No.	0	1	2	3	4	5	6	7	8	9	Dif.

No.	-	1	2	3		5	6	7	8	9	Diff.
760	880814	880871	880928	880985	881042	$\overline{881099}$	881156	$\overline{881213}$	881271	$\overline{881328}$	57
1.	1385	1442	1499	1556	1613	1670	1727	1784	1841	1898	57
2	1955	2012	2069	2126	2183	2240	2297	2354	2411	2468	57
3	2525	2581	2638	2695	2752	2809	2863	2923	2980	3037	67
4	3093	3150	3207	3264	3321	3377	3434	3491	3548	3605	67
5	3661	3718	3775	3832	3888	3945	4002	4059	4115	4172	57
6	4229	4285	4342	4399	4455	4512	4569	4625	4682	4739	67
7	4795	4852	4909	4965	5022	5078	5135	6192	5248	5305	57
8	5361	5418	5474	6531	6587	5644	5700	5757	5813	6870	57
9	5926	5983	6039	6096	6152	6209	6265	6321	6378	6434	56
770	856491	886547	886604	886660	886716	386773	886829	386885	886942	886998	56
,	7054	7111	7167	7223	7250	7336	7392	74.49	7505	7561	56
2	7617	7674	7730	7786	7842	7898	7955	8011	8067	8123	56
3	8179	8236	8292	8348	8414	8460	8516	8573	8629	8685	56
4	8741	8797	8853	8909	8965	9021	9077	9134	9190	9246	56
5	9302	93.58	9414	9470	9526	9582	9638	9694	9750	9806	66
7	9862	9918	9974	890030	890086	890141	890197	890253	890309	890365	66
78	890421	890477	890533	0589	0645	0700	0756	0812	0868	0924	56
8	0950	1035	1091	1147	1203	1259	1814	1370	1426	1482	56 56
9	1537	1593	1649	1705	1760	1816	1872	1928	1983	2039	66
780	892095	892150	892206	892262	892317	892373	892429	892484	892540	892595	56
1	2651	2707	2762	2318	2873	2929	2985	3040	3096	3151	56
2	3207	3262	3318	3373	3429	3484	3540	3595	3651	3706	56
3	3762	3817	3873	3928	3984	4039	4094	4150	4205	4261	55
4	4316	4371	4427	4482	4538	4593	4648	4704	4759	4814	56
-	4870	4925	4980	5036	5091	5146	5201	5257	5312	5367	55
6	5423	5478	5533	5588	5614	5699	5754	6809	5864	5920	55
7	6975	6030	6085	6140	6195	6251	6306	6361	6416	6471	55
8	7072	6581	6636	6692 7242	6747 7297	6802 7352	6857 7407	7912	6967	7022	65
					7297	7352	7407	7462	7517	7572	0
790	897627	897682	897737	897792	897847	897902	897957	898012	898067	898122	55
1	8176	8231	8236	8341	8396	6451	8506	8561	8615	8670	65
2	8725	8780	8835	8890	8944	8939	9054	9109	9164	9218	56
3	9273	9328	9333	9437	9492	9547	9602	9656	9711	9766	65
4	9821	9875	9930	9985	900039	900094	900149	900203	900258	900312	55
5	900367	900422	900476	900531	0586	0640	0695	0749	0804	0859	55
6	0913	0968	1022	1077	1131	1186	1240	1295	1349	1404	55
8	1458	1513	1567	1622	1676	1731	1785	1840	1894	1948	54
8	2003	2057	2112	2166	- 2221	2275	2329	2384	2438	2492	54
9	2547	2601	2655	2710	2764	2818	2873	2927	2981	3036	64
800	903090	903144	903199	903253	903307	903361	903416	903470	903524	903578	54
1	3633	3687	- 3741	3795	3849	3904	3958	4012	4066	4120	54
2	4174	4229	4283	4337	4391	4445	4499	4553	4607	4661	54
3	4716	4770	4824	4878	4932	4986	5040	5094	5148	5202	54
	5256	5310	5364	5418	5472	5526	5580	5634	5688	5742	54
5	5796	5850	5904	5958	6012	6066	6119	6173	6227	6281	54
6	6335	6389	6443	6497	6551	6604	6658	6712	6766	6820	54
7	6874	$69 \Sigma 7$	6931	7035	7039	7143	7196	7250	7304	7358	54
8	7411	7465	7519	7573	7626	7680	7734	7787	7841	7895	54
9	7949	8002	8056	8110	8163	8217	8270	8324	8378	8431	54
810	908485	908539	908592	908646	908699	908753	908807	908860	908914	908967	54
1	9421	9074	9128	9181	9235	9289	9342	9396	9449	9503	54
2	9556	9610	9663	9716	9770	9823	9877	9930	9984	910037	53
	910091	910144	910197	910251	910304	910358	910411	910464	910518	0571	53
4	0624	0678	0731	0784	0838	0891	0944	0998	1051	1104	53
5	1158	1211	1264	1317	1371	1424	1477	1530	1584	1637	53
6	1690	1743	1797	1850	1903	1956	2009	2063	2116	2169	53
7	2222	2275	2328	2381	2435	2488	2541	2594	2647	2700	63
8	9753	2806	2359	2913	2966	3019	3072	3125	3178	3231	3
	3234	3337	90	3443	3496	35	3602	3655	3708	3761	53
No.	0	1	3	3	4	5	6	7	8	9	Dits.

$\frac{20}{820}$	$\overline{913814}$	913567	913920	9139	914026	914079				$\frac{9}{914290}$	3
	4343	4396	4449	4502	4555	4608	4660	4713	4766	4819	
	4872	4925	4977	5180	5053	5136	$51 \sim 9$	5241	5294	347	
	5400	54，3	5505	6558	5611	5664	5716	6769	5822	875	3
4	5927	5980	33	85	138	191	243	296	6349	111	
	645－	65017	59	12	6664	717	70	822	6875	6927	3
	698	7033	85	33	7190	43	295	348	7400	453	3
	7506				16	768	820	73	7925	978	
	8		8135	8188	8240	8293	45	397	8450	51	
	8555	8607	59	712	8764	8816		8921	8973	026	
830	9190	919130			9192						
1		9653		9758	9810		991	9967	920019	920081	
	920123	920176	920228	920280	920332	920384	920436	920489	0541	0593	62
3	0645	0697	0749	0501	0853	0906	0958	1010	1062	1114	52
4	116	121	270	322	1374	142	14	1530	1582	63	5
	165	1738	17	842	1894	946	998	2050	2102	15	
	2206	58	2310	362	2414	2466	518	2570	2622	674	
	2725	77	29	1	2933	2985	3037	3089	3140	3192	
	3244	3296	48	3399	3451	3503	355	3617	3658	310	
	3762	3514	3365	3917	3969	4021	4072	4124	41	4228	
840	924	92	92	92		92	92	92	924		
1	47	4848	4899	4951	13	5054	106	157	52015		
	5312	536	5415		6518	65\％	6621	673	572	5776	
3	682	5879	931	5982	6134	60	6137	188	6240	291	
	634	6394	145	497	654	660	6651	702	6754	805	
6	6857	6908	959	7011	7062	7114	7165	7216	7268	319	
6	737	7422	473	524	7576	7627	7678	7730	7781	832	
7		7935	986	037	808	8140	8191	8242	8293	345	
8		844	8493	8549	86	8652	8703	8754	8805	8857	
9							92				
50											1
	933	9981	930032	930083	930134	930185	930236	$931+287$	931334	93：1389	
2	330440	930491	0542	0592	0643	0694	0745	0796	0847	0898	
3	0949	1000	1051	1102	1153	1204	1254	1305	1356	140	
4	145	1509	1560	1610	1661	1712	1763	814	8	91	
5	196	2017	206	1	2169	2220	2271	322	237	2423	
6	47	252			87	22	278	29	2879	293	
7	291					3234	，			${ }^{3437}$	
8	3487	3	3589	3639			3791	3841	3892	3943	
9			4034								
60	934498	93454	934599	934650	934700	934751	934501	934852	934902	934	
1	5003	6054	5104	5154	5205	5255	5306	6356	5416		
	550	65	56	6658	570	576	680	5860	5910		
	601	600	6111	6162	621	6262	631	6363	6413		
	65	65	6614	606	6	6.6	6815	6865	硅		
	，		7117	6	721	析	7317	7367	析	46	
6	\％		7618	863	楮		7819	7869	919	969	
7	05	8069	8119	169			8320	8370	8420	析	
8	8520	8570	8620	8670	8720	8770	8820	8870	8920	8970	
9							9320	9369			
870	93951		，	，							
	40018	94006	940118	94016	$94(218$	940267	940317	910367	940417	9404	
2	0516	056	0616	06	0716	0	0815		0915	096	
3	1014	1064	1114	1163	1213	1263	1313	362	1412	146	
4	1.0	156	1611	1660	1710	176	1819	1859	1909	1958	
5	2108	2058	2107	2157	2207	22.56	2306	2355	2405	245	
	2514	2554	26013	2653	2702	2752	2301	2851	901	2950	
	3000	3 my	3.	3148	3193	32	3297	3546		445	
	3495	－ 3544	$35!$	3643	3692	3742	37	3541	380	3939	49
	398		4088					4335	4384		49
	0		2			5	6	7	8	9	DtS

No. 0	1								9	Diff.
$\overline{880} 94148 \overline{3}$	$\overline{914532}$	$\overline{944531}$	$\overline{944631}$	$\overline{94680}$	$\overline{944729}$	$\overline{94} \overline{4779}$	$\overline{944828}$	$\underline{944877}$	$\underline{944927}$	49
14978	5025	5074	5124	5173	5222	5272	5321	5370	5419	49
85469	$55!8$	5567	5616	5665	5715	5764	5813	5862	5912	49
35981	6010	6059	6108	6157	6207	6256	6305	6354	6403	49
46452	6501	6551	6600	6649	6698	6747	6796	6845	6894	49
56943	6992	7041	7090	7140	7189	7238	7287	7336	7385	49
67434	7483	7532	7581	7630	7679	7728	7777	7826	7875	49
77924	7973	8022	8070	8119	8168	8217	8266	8315	8364	49
8.8413	8462	8511	8560	8609	8657	8706	8755	8804	8853	49
9,8902	8951	8999	9048	9097	9146	9195	9244	9292	9341	49
990.949390	949439	949488	949536	949585	949634	949683	949731	949780	949829	49
1.9878	9926	9975	950024	950073	950121	950170	950219	950267	950316	49
29503659	950414	950462	0511	0560	0608	0657	0706	0754	0803	49
30851	0900	0949	0997	1046	1095	1143	1192	1240	1289	49
41338	13×6	1435	1483	1532	1530	1629	1677	1726	1775	49
5) 1823	1872	1920	1969	2017	2066	2114	2163	2211	2260	48
62308	2356	2145	2453	2502	2550	2599	2647	2696	2744	48
$7 \quad 2792$	2841	2859	2938	2986	3034	3083	3131	3180	3228	48
$8 \quad 3276$	3325	3373	3421	3470	3518	3566	3615	3663	3711	48
93760	3808	3856	3905	3953	4001	4049	4098	4146	4194	48
900954243	954291	954339	954387	954435	954484	954532	954580	954628	954677	48
14725	4773	4×21	4569	4918	4966	5014	5062	5110	6158	48
26207	5255	5303	5351	5399	5447	5495	5543	5592	5640	48
3.6688	5736	5784	5832	5380	5928	5976	6024	6072	6120	48
46168	6216	6265	6313	6361	6409	6457	6505	6553	6601	48
5 6649	6697	6745	6793	6840	6888	6936	6984	7032	7080	48
6.7128	7176	7224	7272	7320	7368	7416	7464	7512	7559	48
71.7607	7655	7703	7751	7799	7847	7894	7942	7990	8038	48
888086	8134	8181	8229	8277	8325	8373	8421	8468	8516	48
98564	8612	8659	8707	8755	8803	8850	8898	8946	8994	48
910959041	959089	959137	959185	959232	95923C.	959328	959375	959423	959471	48
1.9518	9566	9614	9661	9709	9757	9804	9852	9900	9947	48
29995	960042	360090	960133	960185	960233	9602S0	960328	960376	960423	48
3960471	0518	0566	0613	0661	0709	0756	0804	0851	0899	48
4.0946	0994	1041	1089	1136	1184	1231	1279	1326	1374	48
51421	1469	1516	1563	1611	1658	1706	1753	1801	1848	47
$6 \quad 1895$	1943	1990	2038	2035	2132	2180	2227	2275	2322	47
$7 \quad 2369$	2417	2464	2511	2559	2606	2653	2701	2748	2795	47
$8 \quad 2843$	- 2890	2937	- 2935	3032	3079	3126	3174	3221	3268	47
93316	3363	3410	3457	3504	3552	- 3599	3646	3693	3741	47
920963783	963835	963882	963929	963977	364024	964071	964118	964165	964212	47
$1{ }^{1} 4260$	4307	4354	4401	4448	4495	4542	4590	4637	4684	47
2.4731	4778	4825	4372	4919	4966	- 5013	5061	6108	5155	47
35202	5249	5296	5343	5390	5437	5484	5531	5578	5625	47
45672	5719	5766	5813	5560	- 5907	5954	6001	6048	6095	47
56142	6189	6236	6283	6329	-6376	6123	6470	6517	6564	47
6.6611	6658	6705	6752	6799	6845	5 6892	6939	6986	7033	47
$7 \quad 7080$	7127	7173	7220	7267	7314	7361	7408	7454	7501	47
87548	7595	7642	7638	- 7735	7782	7829	7875	7922	7969	47
98016	- 8062	8109	8156	- 8203	3829	- 8296	8343	8390	8436	47
930968483	968530	968576	968623	968670	963716	668763	968810	968856	968903	47
1) 8950	8996	- 9043	- 9090	- 9136	. 9183	- 9229) 9276	9323	9369	47
$2{ }^{2} 19416$	- 9463	-9509	9556	9602	, 9649	99695	9742	9789	9835	47
39882	. 9928	9975	970021	970068	970114	4970161	970207	970254	970300	47
4970347	7970393	970440	0486	- 0533	-0579	9626	0672	0719	0765	46
50812	0858	0904	0951	0997	71144	411990	1137	1183	1229	46
6.1276	61322	1369	1415	1461	1508	8 1554	1601	1647	1693	46
$7 \quad 1740$	1786	- 1832	1879	1925	-1971	12018	- 2064	2110	2157	46
$8 \quad 2203$	- 2249	- 2295	3 2342	2388	8 2434	4 2481	- 2527	2573	2619	46
92666	-2712	$\underline{2758}$	-2804	42851	12597	$7 \quad 2943$	-2989	-3035	3082	$\underline{46}$
Ia. 0	11	8	3	4	5	6	7	8	9	Die.

No.	0	1	2	3	4	5	6	7	8	9	Diff.
940	973128	$\overline{9731 \widetilde{4}}$	973:20	$\overline{973: 266}$	973:13	973359	973405	973451	973497	$\overline{973513}$	46
1	3590	3636	3682	3728	$3 \pi 74$	$38: 30$	3866	3913	3959	4005	46
2	4051	409\%	4143	4189	4235	4281	4327	4874	4420	44.6	46
3	4512	4558	4604	4650	4696	$4 \pi 42$	4788	4834	4880	4926	46
4	4972	5018	5064	5110	5156	5202	5248	$5: 29$	5340	5386	46
5	5432	$54 \% 8$	5524	55\%0	5616	5662	570	5753	5799	5845	46
6	5891	593\%	5983	$60: 9$	$60{ }^{5} 5$	6121	616\%	6212	6258	6304	46
7	$6: 350$	6396	6442	6488	6533	6579	66:5	6671	6717	6763	46
8	6808	6854	6900	6946	6992	\%03i	7083	7129	7175	\% 220	46
9	7266	7312	\%358	T403	7449	\%405	7541	7586	7632	\%678	46
950	$97 \% 24$	97\%69	97.815	97681	97\%906	9\%7952	$97 \% 998$	978043	978089	9:8135	46
1	8181	8226	8\%2	$831 \sim 1$	8363	8409	8454	8500	8546	8591	46
2	8637	86×3	8728	85.74	8819	8865	8911	8956	9002	9047	46
3	9093	9138	9184	92.30	9275	9321	9366	9412	$945 \sim$	9503	46
4	9548	9594	9639	96\%	9730	976	9821	986π	9912	9958	46
5	980003	980049	980094	980140	980185	980231	9802r6	9803:2	98036\%	980412	45
6	0458	0503	0549	0594	0640	0685	$0 \% 30$	076	0821	0867	45
7	0912	095í	1003	1048	1093	1139	118	1229	1275	1320	45
8	1366	1411	1456	1501	154\%	1592	$163 \tilde{\sim}$	1683	1728	$17 \% 9$	45
9	1819	1864	1909	1954	2000	2045	2090	2135	2181	2226	45
960	982\% 1	982316	982362	982407	982452	982497	98543	982588	98:633	9826\% 8	5
1	22^{23}	2669	2814	2859	2904	2949	2994	3040	3085	3130	45
2	3175	3×20	3263	3310	3356	3401	8446	8491	3536	35.81	45
3	3026	3671	3.16	3762	$380{ }^{\circ}$	3852	389\%	8942	3987	4032	45
4	40%	4122	416~	4212	425\%	4.302	434ĩ	4392	443%	4482	45
5	4524	$45 \% 2$	461%	466	$4{ }^{2} 07$	4752	4797	4842	4887	493\%	45
${ }^{6}$	497\%	50\%2	506%	5112	515%	5302	$524 \sim$	5292	533\%	5382	45
\%	5426	$54 \sim 1$	5516	5561	5606	5651	5696	5041	5786	5830	45
8	5875	5920	5905	6010	6055	6100	6144	6189	6234	6899	45
9	6324	6369	6413	6458	6503	6548	6593	6637	6882	6%	45
970	$86 \div 12$	98681 \%	980861	986906	986851	986996	$8 \% 040$	987085	987130	98\%175	45
,	T219	7264	3309	7.353	7398	7443	7488	\%53:	75\%	762\%	45
-	\%666	711	7156	T800	7845	7890	7434	7979	8024	8088	45
	8113	815%	$8: 002$	8247	8291	8336	8381	8435	84%	8514	45
4	8509	8604	8648	8693	8737	8782	8826	$88 \% 1$	8916	8960	45
5	9005	9049	9094	9138	9183	92 z	920%	9316	9364	9405	45
6	9450	9494	9539	9583	9698	9672	9717	9761	9806	9850	44
5	9895	6939	9:383	99002*	90007\%	99011	990161	990206	990250	990294	44
	990339	990383	990428	$04{ }^{\text {\% }}$ 2	0516	0561	0605	0650	0694	0738	44
9	0783	082\%	$08 \% 1$	0916	0960	1004	1049	1093	113\%	1182	44
980	991226	9912%	991315	991359	91403	991448	991492	991536	991580	991625	44
1	1669	$1 \sim 13$	$1 \% 58$	1802	1846	1890	1935	19\%9	20:3	206π	44
2	2111	2156	2200	2944	2388	2338	2371	2421	2465	8509	44
3	2554	2598	2642	2686	2730	$2 \% 4$	2819	2463	2907	2951	44
4	2995	3039	3083	3124	3172	3216	3260	3304	3348	3392	44
5	3436	3480	3524	3568	3613	365%	3701	3745	3789	3633	44
6	38%	3921	3965	4009	4053	4097	4141	4185	4229	$42 \% 3$	44
7	431\%	4361	4405	4449	4493	4537	4581	4625	4669	$4 \pi 13$	44
8	$4 \pi 5 \sim$	4801	4845	4889	4933	$49{ }^{\prime \prime}$	5021	5065	5108	5152	44
9	519	5240		532			5460	5504	5545	5591	44
990	995635	9956\%9	995\%23	995~6\%	995811	995854	995898	995942	995986	996030	44
,	$60 \% 4$	611\%	6161	6305	6249	6293	6337	6380	6424	6468	44
2	6512	6555	6599	6643	6687	6731	6754	6818	6862	6906	44
3	6949	6993	703i	\%080	\%124	7168	\%212	7255	\%299	T343	44
4	\%386	T 430	7444	7517	7561	7605	7648	7692	7736	769	44
5	7823	T86\%	7910	7954	7998	8041	8085	8129	$81 \% 2$	8216	44
6	8259	8303	8317	8390	8434	84%	8521	8564	8608	8652	44
$\stackrel{7}{8}$	8695	8739	8782	8826	8869	8913	8956	9000	9043	9087	44
8	9131	$91 \sim 4$	9218	9261	9305	9348	9392	9435	9479	9522	,
9	9565	960	9652	9696	9739	9783	9826	98\%0	9913	57	43
No.	0	1	\%	3	4	5	6	7	8	9	Diff.

TABLE II.
LOGARITHMIC SINES, COSINES, TANGENTS AND COTANGENTS.

NOTE.

The table here given extends to minutes only. The usual method of extending such a table to seconds, by proportional parts of the difference between two consecutive logarithms, is accurate enough for most purposes, especially if the angle is not very small. When the angle is very small, and great accuracy is required, the following method may be used for sines, tangents, and cotangents.
I. Suppose it were required to find the logarithmic sine of $5^{\prime} 24^{\prime \prime}$. By the ordinary method, we should have

log. $\sin .5^{\prime}=7.162696$
diff. for $2^{\prime \prime}$
log. $\sin .5^{\prime} 24^{\prime \prime}$
---:
l.194369

The more accurate method is founded on the proposition in Trigonometry, that the sines or tangents of very small angles are proportional to the angles themselves. In the present case, therefore, we have $\sin .5^{\prime}: \sin .5^{\prime} 24^{\prime \prime}=5 \prime: 5^{\prime} 24^{\prime \prime}=300^{\prime \prime}: 324^{\prime \prime}$. Hence $\sin .5^{\prime} 24^{\prime \prime}=\frac{324 \sin .5^{\prime}}{300}$, or log. $\sin .5^{\prime} 24^{\prime \prime}=\log . \sin .5^{\prime}+\log .324-$ $\log .300$. The difference for $24^{\prime \prime}$ will. therefore, be the difference between the logarithm of 324 and the logarithm of 300 . The operation will stand thus:-

log. 324	$=2.510545$
log. 300	$=2.47 \% 121$
ff. for $24^{\prime \prime}$	33424
log. sin. $5^{\prime \prime}$	$=\boldsymbol{\pi} .162696$
log. sin. 5^{-}	$=\pi .196120$

Comparing this ralue with that given in tables that extend to seconds, we find it exact eren to the last figure.
II. Given \log. sin. $A=7.004438$ to find A. The sine next less than this in the table is $\sin .3^{\prime}=6.94084$ \%. Now we have sin. 3^{\prime} : $\sin . A=3: A$. Therefore, $A=\frac{3 \sin . A}{\sin .3^{\prime}}$, or $\log . A=\log .3+$
$\log . \sin . A-\log . \sin 3$. Hence it appears, that, to find the logarithm of A in minutes, we must add to the logarithm of 3 the difference between $\log \cdot \sin . A$ and \log. $\sin .3 "$.

$$
\begin{aligned}
& \begin{array}{l}
\log \sin A= \\
\log \sin 3
\end{array}=\frac{6.004438}{63591} \\
& \log .3 \quad=\frac{0.457121}{0.540512} \\
& A=3.473
\end{aligned}
$$

or $A=3^{\prime 2} 2838^{\circ}$. By the common methal we should hare found $A=3^{\prime} 30.54$.

The same method applies to tangents and cotangents, except that in the case of cotangents the differences are to be subtracted.
** The radius of this table is unity, and the characteristics 9, 8,7 , and 6 stand respectively for $-1,-2,-3$, and -4 .

M.	Stne.	D. 1	Cosine.	D. $1^{\prime \prime}$.	Tang.	D. ${ }^{\prime \prime}$.	tang.	M.
0	Inf. ne		0.000000		Inf. neg.		Infni	60
1	6.463726		. 0000000	. 00	6.463726		3.536274	69
2	. 764756	2934.85	. 000000	. 00	. 764756	2934.85	. 235244	58
3	. 940847	2082.31	. 0000000	. 00	. 940847	${ }_{2}^{2934.85}$. 059153	57
4	7.065786	1615.17	. 000000	. 00	7.065786	1615.17	2.934214	56
5	. 162696	1319.69	. 0000000	. 00	. 162696	1615.17 1319.69	. 837304	55
6	. 241877	1115.78	9.999999	. 00	. 241878	1115.78	.758122	54
8	. 308824	966.53	999999	. 00	. 3088825	966.54	. 6931175	53 52
8	. 3668516	852.54	999999	. 01	. 3668817	85\%.55	${ }^{6} 633183$	52
9		762.62		. 01		762.63	. 582030	61
10	7.463726		9.999998	. 01	7.463727	689.88	2.536273	50
11	. 505118	629.81	. 9999998	. 01	. 505120	629.81	. 494880	49
12	. 542906	679.87 57	999997	. 01	. 542909	679.87 579	.457091	48
13	. 577668	536.41	. 9999997	. 01	. 6776767	536.42	.422328	47
14	:609853	499.38	. 9999996	. 01	. 6098857	499.39	.390143	46
15	639816	467.14	. 9999996	. 01	639820	467.15	. 360180	45
16	. 667845	438.81	999995	. 01	. 6678489	438.82	. 332151	44
178	. 7189997	413.72	. 99999994	. 01	. 69719003	413.73	. 2805897	43
19	. 742478	391.35	999999	. 01	. 742484	391.36	. 257516	41
20	7.76475		9.999993		7.7647		2.235239	40
21	. 785943	353.15 336	999992	. 01	. 785951	353.16	. 214049	39
22	. 806146	321.75	. 999991	01	. 805155	336.73	193845	38
23	. 825451	308.05	99999	. 01	. 525460	308.07	. 174540	37
24	. 843934	295.47	999989	02	. 843944	295.49	. 156056	38
25	. 861662	283.88	999989	. 02	861674	283.90	138326	35
26	. 87869	273.17	99998	. 02	. 878708	273.18	. 121292	34
27	. 89	263.23	9999	02	895099	263.25	104901	33
28	. 910879	253.99	999986	. 12	910894	254.01	. 089106	32
29	. 926119	245.38	99998	. 02	134	245.40	. 073866	31
30	7.94084	237.33	9.9999	. 02	7.9408	237.35	2.059	30
31	. 955082	229.80	999982	. 02	. 955100	229.82	. 044900	29
32	. 968870	2222.73	999981	. 02	968889	222.75	. 031111	28
33	. 9822233	216.08	999980	. 02	. 9822253	216.10	. $01 \% 1 \% 747$	28
34	. 995198	209.81	999979	. 02	. 9995219	209.83	. 0092781	28
35	8.007787	203.90	999977	. 02	8.007809	203.92	1.992191	25
36	. 022002	198.31	9999975	. 02	. 0319	198.33	${ }^{968055}$	23
38		193.02	9999975	. 02	. 0439427	193.05	956473	22
39	. 0547881	188	. 9999972	. 02	. 0434809	188.03	.945191	21
40	8.06577		9.9999		8.0658		1.934194	20
41	. 076500	178.72	. 9999969	03	.07653!		. 923469	19
42	. 086965	174.42	999968	03	. 086997	174.44 170.34	. 913103	18
43	. 097183	170.31	. 999966	03	. 097217	170.34	. 902783	17
44	. 107167	166.39 162.65	. 999994	. 03	107203	162.48	. 892797	16
45	. 116926	162.65 159.08	. 999963	. 03	116963	159.11	. 88310377	15
46	. 126471	155.66	. 9999961	. 03	. 126510	155.69	. 873490	14
47	.135810	152.38	. 9999959	. 03	135851	152.41	. 8651149	13
48	. 144953	149.24	. 9999958	. 03	144996	149.27	. 8555004	12
49	. 153907	146.22	. 9	. 03	. 153952	146.25	. 846048	11
50	8.162681		9.999954	. 03	8.162727	143.36	1.837273	10
51	. 171280	140.54	. 999955	. 03	. 171328	143.36	. 8286727	9
52	. 179713	140.54	999950	. 03	. 179763	140.57 137	. 8214237	8
53	. 187985	135.89	999948	. 03	. 1880136	135.32	. 811964	7
54	. 196102	132.80	999946	. 03	. 196156	132.84	. 8038844	6
55	. 204070	130.41	999944	. 03	. 2104125	130.44	.795874 788047	4
56	. 211895	128.10	999942	. 03	. 211964	128.14	. 78880478	3
57	. 2195881	125.87	9999940	. 04	219641 227195	125.91	. 78012595	2
68 59	. 2234155	123.72	$\begin{aligned} & 9999388 \\ & \hline 99936 \end{aligned}$. 04	227195 .23621	123.76	. 765379	1
60	. 241855	121.64	999934	. 04	.241921	121.68	. 7588079	0
M.	Cosine.	D.	Sing.	D. 11.	Ontang.	D. 1^{16}.	Tang.	M.

M.	Sine	D. 11.	Corine.	D 1".	Tang.	D. $1^{\prime \prime}$.	Cotang.	M.
0	8.241855		9.999934		8.241921		1.758079	50
1	.243033	117.69	$.999932$. 04	$.249102$	119.72	.750898 743835	59 58 58
3	. 2636044	115.80	. 9999929	. 04	. 2663115	115.84	. 736885	57
4	. 269881	113.98	. 999925	. 04	. 269956	114.02	. 730044	56
5	. 276614	112	. 999922	04	. 276691	11	. 723309	55
6	. 283243	108.83	. 999920	. 04	.283323		. 716677	54
7	. 289773	107.22	. 999918	. 04	. 289856	108.87	. 710144	53
8	. 296207	105.66	. 999915	. 04	. 298292	107.26	. 703708	52
9	. 302546	104.13	. 999913	. 04	. 302634	104.70	. 697366	51
10	8.308794		9.9949		8.3088		1.691116	50
11	. 314954	101.66	. 999907	. 04	. 315046	102.70 101.26	. 684954	49
12	. 321027	101.22 99.82	. 999905	. 04	. 321122	101.26 99.87	. 678878	48
13	. 327016	99.82 98.47	. 999902	. 06	. 327114	99.87	672886	47
14	. 332924	97.14	. 999899	. 05	. 333025	19	666975	46
15	. 338753	97.14 95.86	. 9998997	. 05	. 338856	97.19 95.90	. 661144	45
16	. 344504	94.60	. 999894	. 05	. 344610	94.65	. 655390	44
17	. 350181	99.38	. 9998891	. 05	. 350289	94.65 93.43	. 649711	43
18	. 355783	93.19	. 999888	. 05	. 355895	93.43	. 644105	42
19	. 361315	92.19 91.03	. 999885	. 05	. 361430	91.08	. 638570	41
20	8.366777	89.90	9.99988	. 05	8.3668		1.633105	40
21	. 372171	89.90 88.80	. 999879	. 05	. 372292	89.95 88.85	. 627708	39
$2{ }^{2}$. 377499	88.82	. 9998876	. 05	. 377622	88.85	. 622378	38
23	. 382762		. 999873	. 05	. 382889	88.77	. 617111	37
24	. 387952	85.64	. 999870	. 05	. 388092	85.70	. 611908	36
25	. 393101	84.64	. 999867	. 05	. 393234	84.69	. 606766	35
86	. 398179	83.66	. 999864	. 05	. 398315	83.71	. 601685	34
27	. 403199	88.71	. 9998861	. 05	. 403338	82.76	. 596662	33
28	. 408161	88.71	. 9998858	. 05	. 408304	81.82	. 591696	32
29	. 413068	81.77	. 999854	. 05	. 413213	81.82	. 586787	31
30	8.417919		9.999851		8.418068		1.581932	30
31	. 422717		. 999848	. 06	. 422869	79.14	. 577131	29
32	. 427462	79.09 78.23	. 999844	. 06	. 427618	78.14	. 572382	28
33	. 432156	77.40	. 9998841	. 06	. 432315	77.45	. 667685	27
34	. 436300	76.58	. 9998838	. 06	. 436962	76.63	. 363038	26
35	. 441394	76.77	. 9998834	. 06	. 441560	75.83	558440	25
36	. 445941	74.99	. 9999831	. 06	. 446110	75.05	. 5538890	24
37	. 4504480	74.22	. 9999827	. 06	. 450613	74.28	. 5493887	23 22
38	. 45	73.47	. 999824	. 06	. 455070	73.53	30	22
39	. 459301	72.73	. 999820	. 06	. 459481	72.79	. 540519	21
40	8.463665		9.999816		8.463849		1.536151	20
41	. 467985	71.29	. 999813	. 06	. 468172	71.35	. 531828	19
42	. 472263	70.60	. 9998809	. 06	. 472454	70.66	. 527546	18
43	. 476498	69.91	. 999805	. 06	. 476693	69.98	. 523307	17
44	. 4806938	69.24	. 9999801	. 06	. 4808952	69.31	. 519108	16
45	. 484848	68.59	. 9999797	. 06	. 485050	68.65	. 514950	15
46	488963	67.94	. 9999794	. 07	.489170 493250	68.01	.510830 .506750	13
47	.493040 .497078	67.31	. 9999790	. 07	. 4972935	67.38	. 506750	12
48	. 501080	66.69	. 9999782	. 07	. 501298	66.76	. 498702	11
50	8505045		9999778		8.505267		1.494733	10
51	. 508974	65.48	. 999774	. 07	8.5092000	65.55	. 490800	9
52	. 512867	64.89 64.32	. 999769	. 07	. 513098	64.96	. 486902	8
53	. 516726	64.32	. 999765		. 516961	63.82	. 483039	7
54	. 520551	63.75 63.19	. 999761	. 07	. 520790	63.26	. 479210	
56	. 524343	62.65	. 999757	. 07	. 524586	62.72	. 475414	5
56	. 528102	62.11	. 9997753	. 07	. 528349	62.18	. 471651	4
57	. 531828	61.58	. 9999748	. 07	. 5320870	61.65	. 467920	3
58	. $535523{ }^{\circ}$	61.06	. 9999744	. 07	. 535779	61.65 61.13	. 464221	2
69	. 539186	60.55	. 9999740	. 07	. 5439447	60.62	. 460553	1
60	. 542819		. 99973		. 543084		. 456916	0
M.	Costue.	D. 1^{1}.	8ine.	D. $1^{\prime \prime}$.	Cotang.	D. $1^{\prime \prime}$.	Tang.	M.

M.	Sine.	D. $1^{\prime \prime}$.	Cosine.	D. $1^{\prime \prime}$.	Tang.	D. $1^{\prime \prime}$.	Cotang.	M.
0	8.542819		9.999735		8.5430184		1.456916	60
2	. 5464422	60.04 59.55	999731	. 07	$.546691$	60.12 59.62	. 4533309	59
2	. 5499395	59.55 59.06	. 9999726	. 08	. 5550268	59.62 59.14	. 449732	58
3	. 5553539	59.06 58.58	. 9999722	. 08	. 5538817	59.62 58.66	. 446183	57 56
4	. 5657054	58.58	. 9999717	. 08	.557336 .560828	58.19 58.19	.442664 439172	56 55
6		57.65	. 9999713	. 08	. 5608298	57.73		54
$\stackrel{+}{*}$. 567431	57.19	. 999	. 08	.664291 .567727	57.27	.435709	53
8	570836	56	999	. 08	571137	56.82	. 428863	52
9	. 574214		. 999694	. 08	. 574520	56.38	. 425480	51
10	8.577566		9.99968		8.577877		1.422123	60
11	. 580892	. 44	. 999685	. 08	581208		. 418792	49
12	. 584193		. 999680	. 08	. 584514	54.68	. 415486	48
13	. 587469	54	. 999675	. 08	587795	54.68	. 412205	47
14	. 590721	53.79	999670	. 08	. 591051	54.27 53.87	. 408949	46
15	. 593948	53.39 53.79	999665	. 08	594283	53.47	. 405717	45
16	. 597152	53.39 53.00	999660	. 08	. 597492	53.08	. 402508	44
17	. 6003332	52.61	. 9999655	. 08	. 500677	52.70	. 399323	43
18	. 603	52.61 52.23	. 999650	. 08	. 603839	52.32	. 396161	12
19	. 606623	51.86	99645	. 09	. 506978	51.94	. 393022	41
20	8.609734		9.9996	09	8.610094	51.58	1.389906	40
21	. 612823		. 999635	. 09	. 613189	51.21	. 386811	39
22	. 615891		. 999629	. 09	. 616262	50.85	. 383738	38
23	. 618937	50.41	. 999624	. 09	. 619313	50.50	380687	39
24	. 621962	50.06	. 999619	. 09	. 622343	50.15	377657	36
25	. 624965	49.72	. 999614	. 09	. 6253532	49.81	374648	35
26	. 627948	49.38	. 999608	. 09	. 628340	49.47	. 371660	34
27	. 630911	49.04	. 9999603	. 09	. 634256	49.13	. 3636744	33
29	. 636776	48.71	. 999592	. 09	. 637184	48.80	. 362816	31
30	8.639680		9.9995		8.6400		1.359907	30
31	. 642563	. 75	. 9995	. 09	. 642982	48.16	. 357018	29
32	. 645428	47.75	. 999575	. 09	. 645853	47.84	. 354147	28
33	. 648274	47.43	. 999570	. 09	. 648704	47.23	. 351296	27
34	. 651102	47.12 46.82	. 999564	. 09	. 651537	47.22	. 348463	26
35	. 653911	46.82	. 999558		. 654352	46.61	. 345648	25
36	. 656702		. 999553	10	. 657149	46.31	. 342851	24
37	. 659475	46.22	. 999547	10	. 659928	46.31	. 340072	23
38	. 662230	45.93 45.63	99541	10	. 662689	45.73	. 337311	22
39	4968		. 999535	10	. 665433	45.45	. 334567	21
40	8.667689		9.9995		8.668160		1.331840	20
41	. 670393	44.79	. 999524	10	. 670870	44.88	329130	19
42	. 673080	44.79 44.51	. 9999518	. 10	. 673563	44.61	. 326437	18
43	. 675751	44.24	. 999512	. 10	. 676239	44.34	323761	17
44	. 678405	44.24	. 9999506	. 10	. 6788900	44.07	.321100	16
45	. 681043	43.70	. 999500	. 10	. 681544	43.80	. 318456	15
46	. 683665	43.44	. 9999493	10	. 684172	43.54	. 315828	14
47	. 686272	43.18 43.4	999487	. 10	. 686784	43.28	313216	13
48	. 688863	42.92	99881	. 10	. 689381	43.03	. 310619	12
49	. 691438	42.67	. 999475	.10	. 691963	42.77	308037	11
50	8.693998		9.999469		8.694529	42.52	1.305471	10
51	. 6966543	42.17	. 9999463	11	. 6970817	42.28	. 302919	9
52	. 6999073	41.93	. 9999456	11	. 699617	42.03	. 300388	8
53	. 701589	41.93 41.68	. 9999450	.11	. 702139	41.79	. 297861	7
54	.704090 .706577	41.44	. 99994433	.11	.704646 .707140	41.55	. 29525854	6
55	. 7065777	41.21	. 999943	11	. 70	41.32	. 29298680	5
87	. 711507	40.97	. 9999424	11	. 712083	41.08	. 287917	3
58	. 713952	40.74	. 999418	11	. 714534		. 285466	,
59	. 716383		. 999411	11	. 710972	40.62	. 283028	1
60	. 718800		. 99944	11	. 719396		. 280604	0
M.	Cosine.	D. ${ }^{\prime \prime}$.	8ine	D. 11.	Cotang.	D. 1^{17}	Tang.	4.

M.	Sine.	D. $1^{\prime \prime}$.	Cosine.	D. $1^{\prime \prime}$.	Tang.	D. 1^{11}.	Cotang.	M.
0	8.718800		9.999404		8.719396		1.280604	60
1	. 721204	40.06 39.84	$.999398$.11	$.721806$	40.17 39.95	. 278194	59
2 3 3	. 723595	39.84 39.62	. 9999391	.11	. 724204	39.17 39.74	. 275796	58 57
3	-. 725972	39.41	. 9999384	.11	. 7265888	39.52	.273412	57 56
4	.728337 .730688	39.41 39.19	. 9999378	.11	${ }^{.} 7288959$	39.31	. 271041	56
6	. 73	38.98	. 99993641	.11	. 733663	39.10	. 2686833	55
7	. 735354	38.77	99935	.11	. 735996	39.89	. 264004	53
8	. 737667		. 999350	11	. 738317	38.68	. 261683	52
9	. 739969		999343	12	. 740626		. 259374	51
10	\$.742259		9.99933		8.742922		1.257078	50
11	. 744536		. 9993329	. 12	. 745207		. 254793	49
12	. 746302	37.56	. 999322	.12	. 747479	37.68 37.68	. 252521	48
13	. 749055	37.57	. 999315	.12	. 749740	37.49	. 250260	47
14	. 751297	37.17 37.17	. 999308	. 12	. 751989	37.49 37.29	. 248011	46
15	. 753528	37.17 36.98	. 9993301	.12	. 754227	37.29 37.10	. 245773	45
16	. 755747	36.98 36.80	. 9999294	. 12	. 756453	36.92	. 243547	44
17	.75795	36.61	. 999237	.12	. 7586668	36.73	. 241332	43
18	.760151	36.42	. 9999279	.12	.760372 .763065	36.55	. 233128	42 41
20	8.76451		9.9992		8.7652		1.2347	40
21	. 76667		. 999257		. 767417		. 232583	39
22	. 768828	35.88	. 999250	.12	. 769578	36.00	. 230422	38
23	. 770970	35.70	. 999242	. 12	. 771727	35.83	. 228273	37
24	. 773101	35	. 999235	.13	. 773866		. 226134	36
25	. 7752	35	. 999227	.13	. 775995	18	. 224005	35
26	. 777333	35	999220	.13	. 778114	35.31	. 221886	34
27	. 779434	34.01	999212	. 13	. 780222	35.14	. 219778	33
28	. 781524	34.67	999205	.13	. 782320	34.80	. 217680	32
29	. 783605	34.67 34.51	999197	.13	. 784408	34.80	. 215592	31
30	8.785675		9.99918		8.786		1.213514	30
31	. 787736	34.34 34.18	999181	.13	. 788554	34.47	. 211446	29
32	. 789787	34.18 34.02	999174	.13	. 790613	34.31	. 209387	28
33	. 791828	34.02 33.86	. 999166	. 13	. 792662	9	. 207338	27
34	. 793859	33.86 33.70	. 999158	.13	. 794701	89	. 205299	26
35	. 795881	33.54	. 999150	13	. 796731	33.83	. 203269	25
36	. 797894	33.54 83.39	. 999142	13	. 798752	33.63	. 201248	24
37	. 799897	33.23	. 999134	.13	. 800763	33.52	. 199237	23
38	. 801892	33.08	. 999126	. 13	. 802765	33.37	. 197235	22
39	. 803876	33.08 32.93	. 999118	. 13	. 804758	33.22 33.07	. 195242	21
40	8.805852	32.78	9.999110		8.806742		1.193258	20
41	. 807819	32.78	. 999102	. 14	. 808717	32.92	. 191283	19
42	. 809777	32.63 32.49	. 999094	14	. 810683	32.77	. 189317	18
43	. 811726	32.49 32.34	. 999086	. 14	. 812641		. 187359	17
44	. 813667	32.34 32.20	. 999977	. 14	. 814589	32.48	. 185411	16
45	. 815599	32.20	. 999069	.14	. 816529	32.33	. 183471	15
46	. 817522	32.05 31.91	. 999961	. 14	. 818461	32.19 32.05	. 181539	14
47	. 8194346	31.91 31.77	. 9999053	. 14	. 820384	31.91	.179616	13
48	. 821343	31.63	. 9999044	. 14	. 8222298	31.91 31.77	. 177702	12
49	. 823240	31.49	. 999	. 14	. 824205	31.63	. 175795	11
50	8.82513C		9.999027		8.826103		1.173897	10
51	. 827011	31.36 31.22	. 999919		. 827992		. 172008	9
52	. 828884	31.22 31.08	. 999010	14	. 829874	\$1.36	. 170126	8
53	. 830749	30.95	. 9999002	.14	831748	31.23 31.09	. 168252	7
54	. 8332607	30.95 30.82	. 9939993	. 14	. 833613	31.09 30.96	. 166387	6
55	. 83445	30.69	. 9993984	. 14	. 835471	31.96 30.83	. 164529	5
56 57 57	. 8	3656	. 9998976	. 15	. 837321	30.83 30.70	.162679	4
58	. 839956	$3 \mathrm{3t} .43$. 999898988	. 15	. 8390963	30.57	. 160837	3
59	. 841774	30.30	. 998950	. 15	. 842585	30.45	. 157175	2
60	. 843585	30.17	. 998941	. 15	. 844644	30.32	. 155356	0
M.	Cosine.	D. $1^{1 \prime}$	Sine.	D. $1^{\prime \prime}$.	Cotang.	D. $1^{\prime \prime}$.	Tang.	M.

	ne.	D. $1^{\prime \prime}$.	Coslue.	$\mathbf{1}^{\prime \prime}$.	Tang.	11.	Cotang.	M.
0	8.8	30.05		. 15	8.844644	30.20	1.155356	${ }^{60}$
1	. 847418387	29.92	. 9998932	15	.846155 .848260	30.07	.153545 .151740	59 58
3	. 848971	29.80 29.68	.998914	15	. 8501157	${ }_{29}^{29.95}$. 149943	57
4	. 850751	29.55	.933905		. 851846		.148154	56
5	. 852525	${ }_{29.43}^{29.55}$	993896	15	. 8536	29.70	. 146372	55
6	. 854291	29.43 29.31	998887	15	. 855403	29.58	. 144597	54
?	. 8556049	29.19	${ }_{9}^{9988879}$. 15	. 8557171	- 29.35	. 142829	53
8	851	29.08	${ }_{9} 99888696$. 8588932	${ }_{29}^{29.35}$. 141068	52
9	. 8	${ }_{28.96}^{29.18}$	93886C	15	8606	${ }_{29.11}^{29.23}$	3314	51
10	8.861283		9.998851		8.862433		1.137567	50
11	. 8638174	${ }_{23}^{28.8}$. 9998841		. 864173		. 135827	49
12	. 8647	23.61	. 9988382	15	. 86679	23.77	. 134094	48
13	. 8666455	28.50		. 16	. 8676		. 132368	47
		23.39	995853	16	. 8693	28.55	. 130649	46
16	. 86		9993874	16	${ }^{.871064}$	28.43	. 1283936	45
17	.8732	28.17		16		28.32		4
18	. 874933	${ }_{27}^{28.06}$	${ }_{998 \text { it6 }}$	16	. 88744696	23.22	. 1238338	${ }_{42}^{43}$
19	. 876615	27.95 27.4	. 9987	${ }^{16}$. 877849	28.11	. 122151	41
20	8.875285		9.9987		8.8795		1.120471	
	9949			16		27.89	. 118798	39
22		27		16	. 8828	27.88	. 117131	38
23	.883258	2742	.99×728	${ }^{6}$. 8845	27.58	. 115470	37
24	884903			${ }^{16}$. 886	27.58	. 113815	36
25	. 8865	27.21		16		27.37	. 112167	35
26	8881		99\%6		. 889476		. 1110524	${ }^{34}$
27	.889301	27.10		. 16	. 891112	27.17	. 108888	33
28	891421	26.90	679	16		${ }_{27.07}$	07258	32
29	035	26.80	. 998669	. 17	. 89	26.97	. 1056	31
30	8.894643	70	9.998	17	8.895	26.87	1.104	30
				17		26.77	102	29
32	.8978	26.51	.99866	. 17	. 8992203	26.67	. 100797	25
	. 899432	26.41		. 17	90080	26.58	. 09	27
3	${ }_{9} 90102596$	26.31	998	17	90233	26.48	. 097	26
36	.901169	26.22	.998599	17	.905570	${ }^{26.39}$.094430	24
37	.905736	${ }_{26}^{26.12}$	998589	17	. 907147	${ }_{26}^{26.29}$	092	23
38	. 907297		99		9087		. 091281	22
39	. 9088	${ }_{25.54}^{25.93}$	99856	17	.9102	${ }_{26.01}^{26.10}$. 0897	21
40	8.910404		9.998		8.911		1.088154	20
	. 91			17				9
	. 913488	${ }_{25} 5.56$. 998537	17	. 914951	25.	. 085049	18
43	. 915122				. 916	${ }_{25}^{25} 5$. 083505	
		${ }_{25.38} 25$		17		${ }_{25} 5$. 081966	: 6
45	. 918073	25.29	. 99850	18	. 919568	${ }_{25} 25.47$	080	15
4	.919.991	25.21	. 939495		. 9210		. 078904	14
47	. 921103	${ }_{25.12}^{25.21}$. 9934×5	18	. 922	${ }_{25.29}$. 077381	13
4	. 922610	${ }_{25.03}$. 999474	18	. 924136	${ }_{25} 21$	075	12
49	. 924112		64	. 18	. 925649	25.12	. 074351	11
50	8.925609	2	9.9984	18	8.927	25.04	1.072344	10
51	927	24.87	9984	18		2495	.071342	
52		2463	. 99	18	${ }_{931}^{930}$	24.87	0693	8
54	. 9331.544	24.60	${ }^{.9988410}$	18		2478		7
55	. 933015	24.52	. 9983399	18	${ }_{934616}$	24.70	. 065383	5
56	. 934481		. 998	18	. 936 6	24	. 063907	4
57	. 9359	${ }_{24}^{24.37}$.9375	24.53	. 062435	3
	. 93	24.19		18	939	24.37		2
	. 938850	24.11	335	. 18	. 9104	24.		1
60	. 940296	24.11	. 998344	18	. 941952		. 058048	0
M.	Cosine.		Stine.	D. 1	cotang	D. 1	Taug.	M

M	Sine.	D. 14.	Coslne.	D. $1^{\prime \prime}$.	Tang.	D. 1 .	Cotang.	M.
0	8.940296	24.03	9.993344	. 18	8.941952	24.21	1.058048	60
1	. 941738	24.03 23.95	. 938333	. 18	. 943404	24.21 24.13	. 056596	59
2	. 943174	23.95 23.87	. 998322	. 19	. 944852	24.13 24.05	. 055148	58
3	. 944606	23.79	. 998311	. 19	. 916295	24.05 23.97	. 053705	57
4	. 946034	23.71	.998300	. 19	. 947734	23.97 23.90	. 052266	56
5	. 947456	23.63	. 9988289	. 19	. 949168	23.90 23.82	. 050832	55
ϵ	. 948874	23.63 23.55	.998277	.19	. 950597	23.82 23.74	. 049403	54
7	. 950287	23.58	.998266	. 19	. 952021	23.74 23.67	. 047979	53
δ	. 951696	23.48	.998255	. 19	953441	23.67 23.59	. 046559	52
9	. 953100	$\begin{aligned} & 23.40 \\ & 23.32 \end{aligned}$. 998243	19	. 954856	$\begin{aligned} & 23.59 \\ & 92.51 \end{aligned}$. 045144	51
10	8.954499	23.25	9.998232		8.956267		1.043733	50
11	. 955394	23.25 23.17	. 998220	19	. 957674	23.44 23.36	. 042326	49
12	. 957284	23.10	. 998209	.19	. 959075	23.36 23.29	. 040925	48
13	. 958670	23.02	.998197	. 19	. 960473	23.29 23.22	. 039527	47
14	. 960058	22.95	. 998186	19	. 961866	23.22 23.14	. 038134	46
15	. 961429	22.88	. 998174	.19	. 963255	23.14 23.07	. 036745	45
16	962301	22.81	. 998163	19	. 964639	23.07 23.00	. 035361	44
17	. 964170	22.81 22.73	. 998151	. 19	. 966019	23.00 22.93	. 033981	43
18	. 965534	22.66	. 998139	. 20	. 967394	22.93 22.86	. 032606	42
19	. 966393	$\begin{aligned} & 22.66 \\ & 22.59 \end{aligned}$. 998128	. 20	. 968766	$\begin{aligned} & 22.86 \\ & 22.79 \end{aligned}$. 031234	41
20	8.968249		9.998116		8.970133		1.029867	40
21	. 969600	22.52 22.45	. 998104	20	. 971496	22.72	. 028504	39
22	. 970947	22.45	. 998092	. 20	. 972855	22.65 22.58	.027145	38
23	. 972289	22.38	. 993080	20 .20	. 974209	22.58	. 025791	37
24	. 973623	22.31	. 998068	20	. 975560	22.51	.0244.10	36
25	. 9749×2	22.17	. 998056	20	. 976906	22.44	. 0231194	35
26	.976293	22.17 22.10	. 998044	. 20	. 978248	22.37 22.30	. 021752	34
27	. 977619	22.10	. 998032	20	. 979586	22.30	. 020414	33
28	. 978941	22.03 21.97	. 998020	20	. 950921	22.24	. 019079	32
	. 980259	21.97	. 998008	0	.982251		. 017749	31
30	8.981573		9.997996		8.983577		1.016423	30
31	.988383	21.83	. 997984	20	. 984899	22.04	. 015101	29
32	. 984189	21.77 21.70	. 997972	. 20	. 986217	21.97 21.91	. 013783	28
33	. 985491	21.70 21.61	. 997959	. 20	. 987532	21.91 21.84	. 012468	27
34	. 986789	21.61 21.57	. 997947	. 20	. 988842	21.84	. 011158	26
35	. 988083	21.57	. 997935	21	. 990149	21.78	. 009851	25
36	. 989374	21.51 21.44	. 997922	.21	. 991451	21.71	. 008549	24
37	. 990660	21.44 21.38	. 997910	21	. 992750	21.65	. 007250	23
38	. 991943	21.38 21.31	. 997897	21	. .994045	21.59	. 005955	22
39	.993222	21.31 21.25	. 997885	. 21	. 995337		. 004663	21
40	8.994497		9.997872		8.996624		1.003376	20
41	. 995768	21.19 21.12	. 997860	21	. 997908	21.40 21.34	. 002092	19
42	. 997036	21.12 21.06	. 997847	. 21	. 999188	21.34	. 000812	18
43	. 993299	21.06 21.00	. 997835	. 21	9.000465	21.27	0.999535	17
44	. 999560	21.00 20.94	. 997822	. 21	. 001738	21.21	. 998262	16
45	9.000816	20.94 20.88	. 997809	. 21	. 003007	21.15	. 996993	15
46	. 002069	20.88 20.82	. 997797	. 21	. 004272	21.09 21.03	. 995728	14
47	. 003318	20.82 20.76	. 997784	. 21	. 005534	21.03 20.97	. 994466	13
48	. 004563	20.76 20.70	. 997771	21	. 006792	20.97 20.91	. $993 \% 08$	12
49	. 005805	20.70 20.64	. 997758	. 21	. 008047	$\begin{aligned} & 20.91 \\ & 20.85 \end{aligned}$. 991953	11
50	9.007044		9.997745		9.009298		0.990\% 02	10
51	. 008278	20.58	. 997732	. 22	. 010546	20.80	. 989454	9
52	. 009510	20.52 20.46	. 997719	. 22	. 011790	20.64 20.68	. 988210	8
53	. 010737	20.46 20.40	.997706	. 22	. 013031	20.68 20.62	. 986969	7
54	$\cdot .011982$	20.40 20.35	.997693	. 22	. 014263	20.62 20.56	. 985732	6
55	. 013182	20.35 20.29	. 997620	. 22	. 015502	20.56 20.51	. 984498	5
56	. 014400	20.29 20.23	. 997667	. 22	. 016732	20.51 20.45	.9892668	4
57	.015613	20.23 20.17	. 997654	. 22	. 017959	20.45 20.39	. 982041	3
58	. 016824	20.17 20.12	. 997641	. 22	. 019183	20.39 20.34	. 980817	2
59	. 018031	20.12 20.06	. 997628	. 22	. 020403	20.34 20.28	. 979697	1
60	. 019235	20.06	. 997614	22	. 021620	20.28	.978:380	0
M.	Oosine	D. 1".	810e.	D. 11 .	Cotang.	D. 11 .	Trag.	1.

M.	8ine.	D. ${ }^{11}$.	Cosine.	D. $1^{\prime \prime}$.	Tang.	D. $1^{\prime \prime}$.	Cotang.	M.
1	9.019235		9.997614		9.021620		0.978380	60
1.	. 020435	21.00	. 997601	. 22	$.022834$	20.23 20.17	. 977166	59
2	. 021632	19.95 19.89	. 9975088	. 22	. 024044	20.17 20.12	. 975956	58 57
3	. 0222825	19.89 19.84	. 9997574	. 22	. 0252525	20.12 20.06	. 974749	57 56
5	. 024016	19.78	. 997561	. 22	. 0264545	20.01	. 9735345	56 55
6	.026386	19.73	.997547	22	. 028855	19.95	. 97231148	55
7	. 027567	19.67	. 997534	. 23	. 0302046	19.90	. 9699954	53
8	. 1225744	19.62	. 997507.	23 23	. 031237	19.85	. 968763	52
9	. 029918		. $997493{ }^{\circ}$	23	. 032425		. 967575	51
10	9.031089		9.997480		9.033609		0.966391	50
11	032257		. 997466	$\stackrel{23}{23}$. 034791		. 965209	49
12	.033421	19.36	. 997452	${ }_{23} 23$. 335969	19.58	. 964031	48
13	. 034582	19.30	. 997439	23	. 037144	19.53	. 962856	47
14	. 035741	19.25	. 997425	23	. 038316	19.53 19.48	. 961684	46
15	. 036896	19.20	. 9997411	. 23	. 039485	19.43	. 960515	45
16	. 038918	19.15	.99\%397	. 23	. 040651	19.38	. 959349	44
17	. 039197	19.10	.997353 .997369	. 23	. 041813	19.33	. 958187	43 42
18	.040342 .041485	19.05	. 99737355	. 23	. 044130	19.28	. 95558870	42 41
20	9.042625		9.997341		9.0452		0.9547	40
21	. 043762		. 997327		. 046434		. 953566	39
22	. 044895	18.85	. 997313	24	. 047582	19.13	. 952418	38
23	. 046026	18.85 18.80	. 997299	.24	. 048727	19.08	. 951273	37
24	. 047154	18.85	. 997285	. 24	. 049869	19.03	. 950131	36
25	. 048279	18.70	. 997271	. 24	051008	18.98 18.93	. 948992	35
26	. 049400	18.65	. 997257	. 24	. 052144	18.93	. 947856	34
27	. 050519	18.60	. 997242	. 24	. 053277	18.84	. 946723	33
28	.051835	18.65	72	. 24	. 054407	18.79	. 945593	32
20	. 052749	18.50	. 997214	. 24	. 055535	18.74	944465	31
30	9.053859		9.997199		9.056659		0.943311	30
31	. 054966		. 997185	24	. 057781	18.65	. 94221	29
32	. 056071	18.41	. 997170	24	. 058900	18.65	. 941100	28
33	. 057172	18.36	. 997150	. 24	. 060016	18.56	. 939984	27
34	. 058271	18.27	. 997141	. 24	. 061130	18.51	. 938870	26
35	. 059367	18.27	. 997127	. 24	. 0622240	18.46	. 937760	25
36	. 060460	18.17	. 997112	. 24	. 0633	18.42	. 936652	24
37	. 061551	18.13	.997098	. 24	. 061453	18.37	. 935547	23
38	. 0622639	18.08	997183	. 24	5556	18.33	. 934444	22
39	. 063724	18.04	. 997068	. 25	6655	18.28	933345	21
40	9.064306		9.997053	25	9.067752		0.932248	20
41	. 0658885	17.99	. 997039	. 25	. 068846	18.24	. 931154	19
42	. 066962	17.95	. 997024	. 25	. 063938	18.19 18.15	. 9301162	18
43	. 063036	17.86	. 997009	. 25	. 071027	18.15 18.10	. 9228973	17
44	. 069107	17.86	. 9969994	. 25	. 072113	18.06	. 9228887	16
45	. 070176	17.77	. 996979	. 25	. 073197	18.02	. 926813	15
46	. 071242	17.72	. 996964	. 25	. 074278	17.97	. 9258722	14
47	. 072306	17.68	. 996949	. 25	. 075356	17.93	.924644	13
48	. 073366	17.64	. 996933	. 25	. 076432	17.89	. 9235688	12
49	. 074424	17.59	. 996919	. 25	. 077505	17.84	. 922495	11
50	3.075480		9.996904		9.078576		0.921424	10
51	.076533	17.51	. 9968889	. 25	. 079644	17.76	. 9203356	9
52	. 077583	17.46	. 9968574	. 25	. 080710	17.72	. 9192920	8
53	.07\%631	17.46 17.42	. 9966858	. 25	. 081773	17.67	. 91918227	7
54	.079676 .080719	17.38	.996843	. 26	. 08283893	17.63	.917167 .916109	5
56	. 081759	17.34	. 9996812	. 26	. 084947	17.59	. 915053	4
57	. 082797	17.29	. 996797	.26	.086000	17.55	. 9141000	3
68	. 083832		. 996782	26	. 087050		. 912350	2
59	. 084864	17.17	. 996766		. 088098	17.47	. 911902	
60	. 085894	17.17	. 996751	. 26	. 089144	17.43	.910 ${ }^{\text {c }}$	0
M.	Cosine.	D. ${ }^{110}$.	8190	D. 1	Cotang.	D. $1^{\text {M }}$.	Tang.	M

K.	8 ino.	D. $1^{\prime \prime}$.	Cosine.	D. ${ }^{10}$.	Tang.	D. $1^{\prime \prime}$.	Cotang	M.
0	9.085894		9.996751	.26,	9.089144		0.910856	60
.	.086922	17.13 17.19	. 9967375	. 26	. 0901818	17.35	. 909813	59
2	. 087947	17.05	. 996720	.26	. 091228	17.31	. 9087772	58
3	. 088970	17.00	. 996704	. 26	. 1992266	17.27	. 9077734	57
4	. 0899990	16.96	996638	. 26	.0933142	17.23	. 90.6698	56
5	. 091610	16.92 16.92	996673	. 26	. 094336	17.19	.905664	55
6	. 0920124	16.88	996657	. 26	. 0953367	17.15	.9046:33	51
7	. 0931137	16.84	996641	. 26	096395	17.11	. 903605	53
8	. 094047	16.80	996625	. 26	.097422	17.07	. 9002578	52
9	. 095056	16.76	. 996610	. 26	. 098446	17.03	. 901554	51
10	9.09606		9.9965	. 27	9.099468	16.99	0.900532	50
11	. 0971165	16.69	996578	. 27	. 100487	16.95	. 8999513	49
12	. 093 (166	16.65	996562	. 27	101504	16.91	. 893496	48
13	. 0999165	16.65 16.61	996546	. 27	102519	16.88	. 8974881	47
14	100162	16.57	996530	. 27	103532	16.84	. 896468	46
15	.101156	16.53	99651	. 27	104542	16.80	. 895458	45
16	102048	16.49	9649	. 27	1055	16.76	. 893450	44
17	. 103037	16.46	996482	. 27	. 106556	16.72	. 8933444	43
18	. 104025	16.42	996405	. 27	107559	16.69	. 8924441	42
19	. 105010	16.38	. 936449	. 27	. 108560	16.65	. 891440	41
20	9.105992	16.34	9.996	27	9.1095	16.61	0.890441	40
21	106973	16.30	996417	. 27	. 110556	16.58	. 889444	39
22	107951	16.27	. 996400	. 27	. 111551	16.54	. 888449	38
23	. 108927	16.23	.9963 4	. 27	. 112543	16.50	. 887457	37
24	. 109991	16.19	99630	. 27	. 113533	16.47	. 886467	${ }^{36}$
25	. 110873	16.16	. 996351	. 27	. 114521	16.43	. 8854479	35
26	. 111842	16.12	996335	. 28	. 115507	16.39	. 8844939	34 3
27	. 112809	16.08	996318	. 28	. 116491	16.36	. 8835519	33 32
28	. 113774	16.05	. 996302	. 28	. 1174782	16.32	. 882525	32
29	. 114	16.01	. 996285	. 28	2	16.29	. 881548	31
30	9.115698	98	9.996269		9.119429		0.880571	30
31	. 116656	15.94	. 996252	. 28	. 120404		. 879596	29
32	. 117613	15.90	. 996235	. 28	. 121377	16.22	. 878623	28
33	. 118567	15.87	. 996219	. 28	. 122348	16.15	. 877652	27
34	. 119519	15.83	. 996202	. 28	123317	16.11	. 8766883	26
35	. 120469	15.83 15.80	996185	. 28	124234	16.18	. 875716	25
36	. 121417	15.80	996168	. 28	125249	16.04	. 874751	24
37	. 122362	15	996151	28	126211	16.04	. 873789	23
38	. 123306	15.69	996134	. 28	127172	15.98	. 872828	22
39	. 124248		96117	. 28	. 128130	15.94	. 871870	21
40	9.12518		9.996100		9.129087		0.870913	20
41	. 12612	15.62	996183	. 28	. 130041	15.91	. 869959	19
42	. 1271160	15.56	996066	. 28	. 130994	15.84	. 869006	18
43	. 127993	15.52	. 996049	. 29	. 131944	15.81	. 868050	17
44	. 123925	15.52	. 996032	. 29	. 132893	15.77	. 867107	16
45	. 129854	15.49	. 996015	. 29	. 133839	15.74 15.74	. 866161	15
46	. 130781	15.42	. 995998	. 29	. 134784	15.71	. $8652+6$	14
47	. 131706	15.39	. 995980	. 29	. 135726	15.68	. 864274	13
48	. 132630	15.35	995963	. 29	. 136667	15.64	. 8633333	12
489	. 133551	15.32	995946	. 29	. 137605	15.61	. 862395	11
50	9.134470	15.29	9.99592		9.139542	15.58	0.861458	0
51	. 135337	15.29	995911	. 29	139476	15.58	. 8605054	
52	. 136303	15.26	995894	. 29	140409	15.51	. 859591	8
53	137216	15.19	995876	. 29	141340	15.48	.853660	7
54	. 138128	15.16	995859	. 29	. 142269	15.45	. 857731	6
55	. 1391378	15.13	995841	. 29	143196	15.42	. 8563804	5
56	. 139994	15.09	995323	. 29	. 144121	15.39	. 8555879	4
57	140150	15.06	995806	.29	145044	15.36	. 854956	3
68	141754	15.03	995788	. 29	.145966	15.32	. 8541113	${ }^{2}$
59 60	142655	15.00	$\begin{aligned} & 995771 \\ & \hline 995753 \end{aligned}$	30	$\begin{aligned} & 146835 \\ & 147803 \end{aligned}$	15.29	$\begin{aligned} & .853115 \\ & .852197 \end{aligned}$	1
M.	Costne.	D. $1^{\prime \prime}$.	Slue.	D. 1^{11}.	Jotang.	D. 1^{11}.	Tang.	M

M.	Sine	D. $1^{\prime \prime}$.	Cosine.	D. 1^{\prime}	Tang.	D. $1^{\prime \prime}$.	Cotang	M.
0	9143555		9.995753		9.147803		0.852197	60
1	. 144453	14.97	. 995735	. 30	. 148718	15.26	. 8.851282	$\begin{aligned} & 59 \\ & 59 \end{aligned}$
2 3 3	. 145349	14.93 14.90	. 9995717	. 30	. 149632	15.23 15.20	. 850368	58
3	. 146243	14.87	. 995699	. 30	. 150544	15.17	. 849456	57
4	.147136	14.84	995681	. 30	. 151454	15.14	. 848546	56
5	. 148026	14.81	. 995664	. 30	152363	15.11	. 847637	55
6	. 148915	14.78	. 9955646	. 30	. 153269	15.08	. 846731	54
8	.149802 .150686	14.75	. 9995628	. 30	154174	15.05	. 8458826	53
9	. 151569	14.72	. 995610	. 30	155077 .155978	15.02	. 8444923	52
10	9.152451		9.995573		9.156877		0.843123	50
11	. 153330	14.66	. 995555	. 30	. 157775	14.96 14.93	. 842225	49
12	154208	14.63 14.60	. 995537	. 30	. 158671	14.93 14.90	. 841329	48
13	. 1555083	14.60 14.57	. 9955519	. 30	. 159565	14.90 14.87	. 840435	47
14	. 155957	14.54	. 995501	. 30	. 160457	14.87 14.84	. 839543	46
15	. 156830	14.51	. 9955482	31	. 161347	14.81	. 838653	45
16	. 157700	14.48	. 9995464	. 31	. 1622336	14.78	. 837764	44
17 18	. 1585869	14.45	. 9995446	. 31	. 163123	14.75	. 8368777	43
18 19	. 159435	14.42	.995427 .995409	. 31	. 164008	14.73	835992	42
19	. 160301	14.39	. 995409	. 31	. 164892	14.70	. 835108	41
20	9.161164	14.36	9.995390	. 31	9. 165774	14.67	0.834226	40
21	. 162025	14.33	.995372	. 31	. 1666554	14.64	. 833346	39
22	.162885 .163743	14.30	.995353	31	. 1688409	14.61	832468	38
23	.163743 .164600	14.27	. 9955316	. 31	. 1684284	14.58	. 831591	37
24	.164600 .165454	14.24	. 995316	. 31	. 169284	14.56	. 830716	36
25	.165454 .166307	14.22	. 9952978	. 31	. 1710157	14.53	. 829843	35
26	.166307 .167159	14.19	. 9995278	. 31	. 171029	14.50	. 8288971	34
27	.167159 168008	14.16	. 9995241	. 31	. 171899	14.47	. 828101	33
29	. 168856	14.10	.93522	. 31	. 173634	14.42		
30	9.169702		9.995203		9.174499		0.825501	30
31	. 170547	14.05	. 995184	. 32	. 175362	14.36	. 824688	29
32	. 171389	14.05 14.02	. 9955165	. 32	. 176224	114.33	. 823776	28
33	. 172230	13.99	. 995146	. 32	. 177084	14.31	. 822916	27
34	. 173070	13.96	. 995127	. 32	. 177942	14.28	. 822058	26
35	. 173908	13.94	. 995108	. 32	. 178799	14.25	. 821201	25
36 37	. 1747444	13.91	. 9950808	. 32	. 179655	14.25 14.23	. 820345	$\stackrel{24}{23}$
37	. 1775578	13.88	. 995070	. 32	.180508 .181360	14.20	. 81818640	23 22
38	176411 .177242	13.85	. 9995032	. 32	. 1813211	14.17	. 81817789	21
39	. 177242	13.83	. 995032	. 32	. 182211	14.15	. 817189	21
40	9.178072		9.995013		9.183059		0.816941	20
41	.1789(10	18.77	. 994993	. 32	. 183907	14.12 14.09	. 816093	19
42	. 179726	13.75	. 99497974	. 32	. 184752	14.07	. 815248	18
43	. 180551	13.72	. 994955	. 32	. 185597	14.04	. 814403	17
44	. 181374	13.69	. 99494935	. 32	. 186439	14.02	. 8135561	16
15	.182196	13.67	. 9949496	. 32	. 18881280	13.99	. 812720	14
46	. 183016	13.64	. 9948986	. 33	. 188120	13.97	811880 .811042	14
48	. 1838851	13.61	. 99948578	. 33	. 1889794	13.94	. 8110206	12
45	. 185466	13.59	. 994838	. 33	. 190629	13.91	. 809371	11
50	9.186259		9.994818		9.191462		0.808538	10
51	187092	1354	. 994798		. 192294	13.86 13.84	-. 807706	9
52	. 187903	13.48	. 994779	. 33	. 193124	13.84 13.81	. 8068876	8
53	. 188712	13.46	. 994759	. 33	. 193953	13.89	. 806047	7
54	. 189519	13.43	. 994739	. 33	. 194780	13.76	. 805220	5
55	. 190325	13.41	.994720 994700	. 33	195606 .196430	13.74	.804394 803570	5
56	. 191130	13.38	994700 .994680	. 33	. 1964350	13.71	. 80302747	3
58	. 19192734	13.36	. 9946860	. 33	. 198074	13.69	. 8001926	3 2
59	. 193534	13.33	994640	33	. 198894	13.66	. 801106	1
60	. 194332	13.3!	.994620	. 33	199713	13.6	. 800287	0
M.	Cueine.	D. $1^{\prime \prime}$.	8ine.	D. $1^{\prime \prime}$.	Cowang.	D. $1^{\prime \prime}$.	Thug.	M.

M.	Sine.	D. $1^{\prime \prime}$.	Cosine.	D. $1^{\prime \prime}$.	Taug.	D. $1^{\prime \prime}$.	Cotang.	M.
0	9.194332	13.28	9.994620	. 33	9.199713	13.62	0.800287	60
1	. 195129	13.26	. 999660	. 33	$.201529$	13.59	. 7998771	59 58
2	. 1959925	13.26 13.23	.991580 .991560	. 34	. 201345	13.57	.798655 .797841	58 57
3	. 196719	13.21	. 9994560	. 34	2012159 212971	13.54	. 79797841	57 56
4	. 197511	13.18	.994540 .994519	. 34	2112971 .213782	13.52	.797029 .796218	56 55
6	. 198302	13.16	.994519 .994499	. 34	. 2134592	13.49	. 7965408	54
6	. 199091	13.13	. 994499	. 34	. 205400	13.47	. 794600	53
8	. 200666	13.1	. 994459	. 31	. 206207	13.45	. 793793	52
9	. 201451	13.08	. 994438	. 34	. 207013	13.42 13.40	792937	51
10	9. 202234		-994418	34	9.207817	13.38	0.792183	0
11	. 203017	13.01	994398	. 34	. 203619	13.35	7913	49
12	. 203797	12.99	. 9943777	. 34	. 209420	13.33	.790580	48
13	. 204577	12.96	. 9943357	. 34	. 210220	13.31	789780	47
14	205354	12.94	.994336	. 34	. 211018	13.28	788982	46
15	206131	12.92	994316	. 34	. 211815	13.26	.788185	45
16	206906	12.89	994295	. 34	. 212611	13.24	.7873>9	44
17	207679	12.87	94274	. 34	. 213405	13.21	.786595	43
18	203452	12.85	+2J4	.35	. 214198	13.19	785802	42
19	209222	12.82	+233	. 35	. 214989	13.17	. 785011	41
20	9.209992	12.80	9.994212	. 35	9.2157	13.15	0.784220	40
21	210760		. 994191	. 35	216568	13.12	. 783432	39
22	211526	12.78	. 994171	. 35	. 217356	13.10	782644	38
23	. 212291	12.75	. 994150	. 35	. 218142	13.10	. 781858	37
24	213055	12.71	. 994129	. 35	. 218926	13.06	. 781074	36
25	213818	12.68	. 994108	. 35	. 219710	13.03	. 780290	35
26	214579	12.66	. 994087	. 35	. 220492	13.01	. 779508	34
27	215338	12.64	. 994066	. 35	221272	12.99	. 7778728	33
28	216097	12.62	. 994045	. 35	2222052	12.97	. 7777948	32
29	216854	12.59	. 991024	. 35	222330	12.95	. 777170	31
30	9.217609		9.99400		9.22360		0.776393	30
31	218363	12.55	993392	. 35	224332	12.90	. 775618	29
32	219116	12.53	993960	. 35	225156	12.88	. 774844	28
33	219563	12.50	993939	. 35	22:5929	12.86	. 774071	27
34	220618	12.48	. 993918	. 36	226700	12.84	773300	26
35	221367	12.46	. 9933397	. 36	227471	12.82	.772529	25
36	222115	12.44	. 9933875	. 36	223239	12.79	. 771761	24
37	222361	12.42	. 993354	. 36	2290017	12.77	. 7770993	23
38	223606	12.39	. 99337311	. 36	229773 230539	12.75	27	22
39	2243	12.37	. 993811	. 36	230539	12.73	. 76946	21
40	9.225092		9.993789		9.231312		0.768698	20
41	225833		993763	. 36	232165	12.69	. 7679335	18
42	226573	12.33	993746	. 36	232326	12.67	. 767174	18
43	. 227311	12.29	993725	. 36	233586	12.65	. 766114	17
44	.223048	12.26	.993703	. 36	234345	12.63	. 76565655	16
45	. 2288784	12.24	. 9933681	. 36	235103	12.60	. 7648997	15
46	. 2239518	12.22	993660 993638	. 36	235859	12.58	. 7631431	14
47	.230252 .230934	12.20	993638 .993616 .99318	. 36	236614 .237363	12.56	疗	13
48 49	. 231715	12.18	. 993594	. 36	. 233120	12.54		12
50	9.232444	12	9.9935	. 36	9.238872	12.	0.761128	10
51	-233172	12.14	993550	. 37	. 239622	12.50	. 760378	9
52	233399	12.10	993528	. 37	240371	12.48	. 759629	7
53	231625	12.07	. 9935116	. 37	241118	12.44	. 758882	7
54	235319	12.07	. 993484	. 37	. 241865	12.42	. 758135	6
55	236073	12.03	. 993362	. 37	242610	12.42	. 757390	5
56	. 236795	12.01	. 993440	. 37	243354	12.38	. 756646	4
57	. 237515	11.99	. 993418	. 37	244197	12.36	.755903	3
58 59	.2382: 5	11.97	. 9933396	37	244839	12.34	. 7555161	2
59	. 233953	!1.95	. 9933374	. 37	245579 216319	12.32	. 754421	1
60	.239674		. 993351		. 2163		. 753681	0
M.	Cosine.	D. $1^{\prime \prime}$.	Sline.	D. 1'1	Cotang.	D. $1^{\prime \prime}$	Tang.	.

M.	8lne.	D. $1^{\prime \prime}$.	Cosine.	D. $1^{\prime \prime}$.	Tang.	D. $1^{\prime \prime}$.	Cotang	M.
0	8.239670		9.993351		9.246319		0.753681	60
$\frac{1}{2}$. 240386	11.93	. 9933329	. 37	$.247057$	12.30	. 752943	59
2	. 241101	11.89	. 9933317	. 37	. 247794	12.26	. 752206	58
8	. 241818	11.87	. 993284	. 37	. 248530	12.24	. 751470	57
4	.242528	11.85	. 9933262	. 37	. 249264	12.22	. 750736	56
5	. 2432387	11.83	993240	. 37	. 2499988	12.20	. 750002	55
6	. 24394656	11.81	. 9933217	. 38	. 250730	12.18	. 7489270	${ }_{54}^{54}$
8	. 2445363	11.79	. 9933172	. 38	. 25146191	12.17	. 7488889	5
9	. 246069	11.77	. 993149	. 38	. 252920	12.15	. 747080	51
10	9.246775		9.993		9.253648		0.746352	50
11	. 247478		-.993104		. 254374		745626	49
12	. 248181	11.71	. 993081	.38	. 255100	12.09	744900	48
13	. 248883	11.69 11.67	. 993059	. 38	. 255824	12.07	. 744176	47
14	. 249583	11.65	. 993036	. 38	. 256547	12.05	. 743453	46
15	. 250282	11.63	. 993013	. 38	. 257269		. 742731	45
16	. 250980	11.61	. 992990	. 38	. 257990	12.01	. 742010	44
17	. 251677	11.61	. 992967	. 38	. 258710	11.98	. 741290	43
18	. 252373	11.59	. 992944	. 38	. 259429	11.98	. 740571	42
19	. 253067	11.58	. 992921	. 38	. 260146	11.96	. 739854	41
20	9.253761		9.99		9.2608		0.7391	40
21	. 254453	11.54	. 992885	. 38	. 261578	11.92	. 73842	39
22	. 255144	11.52	. 992852		. 262292	11.90	. 737708	38
23	. 265834	0	. 992829	. 39	. 263005	9	. 736995	37
24	. 256523	11.48	. 992806	39	. 263717	11.87	. 736283	36
25	. 257211	11.46	. 992783	39	. 264428	11.85	. 735572	35
26	. 257898		. 992759	39	. 265138	11.83	. 734862	34
27	. 258583	11.42	. 992736	39	. 265847	11.89	. 734153	33
28	. 259268	11.41	. 992713		. 266555	11.78	733445	32
29	. 259951		. 9926	39	. 267261		. 732739	31
30	9.260633		9.992		9.2679		0.732033	30
31	. 261314	11.35	. 992643		. 268671	11.74	. 731329	29
32	. 261994	11.33	. 992619		. 269375	11.72	730625	28
33	. 262673	11.30	. 992596	39	. 270077	11.70	. 72.9923	27
34	. 263351	11.38	. 992572	. 39	. 270779	11.67	. 729221	26
35	. 264027	11.28	. 992549	. 39	. 271479	11.67	. 728521	25
36	. 264703	11.24	. 992525	. 39	. 222178	11.64	. 727822	24
37	. 265377	11.24	. 992501	. 39	. 272876	11.64	727124	23
38	. 266051	11.22	. 992478	. 40	. 273573	11.62	. 726427	22
39	. 266723	11.20	. 992	. 40	. 27		. 725731	21
40	9.267395		9.99243		9.2749		0.725036	20
41	. 268065		. 992406	40	. 275658	11.55	. 724342	19
42	. 263734		. 992382		. 276351	11.55	. 723649	18
43	. 269402	11.13	. 992359	. 40	. 277043	11.53	. 722957	17
44	. 270069	11.12	. 992335	. 40	. 277734	11.51	. 722266	16
45	. 270735	11.08	. 9923211	. 40	. 278424	11.48	. 721576	15
46	. 271400	11.08	. 99922887	. 40	. 279113	11.48	. 720887	14
47	. 272064	11.05	. 9922263	. 40	. 27980488	11.45	720199	13
48	. 272726	11.03	. 992239	. 40	. 230488	11.43	719512 718826	12
49		11.01	. 992214	. 40	2	11.41	. 718826	1
50	9.27404		9.992190		9.2818		0.718142	10
51	. 274708	10.99	. 992166	40	. 282542	11.40	. 717458	9
52	. 275367	10.98	. 992142	. 40	. 283225		. 716775	8
53	. 276025	10.96 10.94	. 992118	. 41	. 283907	11.36	. 716093	7
54	.276681	10.92	. 992093	. 41	. 284588	11.33	. 715412	6
55	. 277337	10.91	. 992069	. 41	. 285268	11.31	. 714732	5
56	. 277991	10.89	. 992044	. 41	. 285947	11.30	. 714053	4
57	. 278645	10.87	22020	. 41	.286624	11.28	. 713376	3
69	.2792978	10.86	. 991996	. 41	. 287301	11.26	. 712699	2
69 60	. 2799598	10.84	. 99191971	41	$\begin{aligned} & .287977 \\ & .288652 \end{aligned}$	11.25	$\begin{aligned} & .712023 \\ & .711348 \end{aligned}$	1
14.	Cosine.	D. ${ }^{\prime \prime}$.	Sine.	D. $1^{\prime \prime}$.	Cotang.	D. 1".	Tang.	M.

COSINES, TANGENTS, AND COTANGENTS.

M.	Sinc	D. 1".	Cosine.	D. $1^{\prime \prime}$.	Tang.	D. ${ }^{\prime \prime}$.	Cotang.	M.
0	9.280599	10.82	9.991947	. 41	9.288		0.711348	60
,	. 281248	10.82 10.81	. 99191922	. 41.	. 2889326	11.22	. 710674	59
2	. 2818987	10.79	. 99918978	. 41	. 2899999	11.20	. 710001	58
3	. 282544	10.77	. 991873	. 41	. 2901381	11.18	. 7098329	57
4	. 283190	10.76	${ }_{991823}$. 41	. 291342	11.17	7.708688	56 55
5	.284480	10.74	-991799	. 41	. 2922682	11.15	. 707318	54
6	. 285121	10.72	. 991774	41	. 293350	11.14	706650	53
8	. 285768	10.71	. 991749	41	. 2931017	12	705983	52
9	. 286408	10	. 99172	41	. 294684		705316	51
10	9.287048		9.991699		9.295349		0.704651	50
11	. 287688	10.66	. 991674	42	. 296013		. 703987	49
12	. 288326		. 991649	. 42	. 296677	11.04	. 703323	48
13	. 288964	61	. 991624	42	. 297339	11.03	702661	47
14	. 289600	10.59	. 991595	42	. 298001	11.01	. 701999	46
15	. 2902386	10.58	. 9991574	. 42	. 2986662	11.00	701338	45
16	. 290870	10.56	. 991549	. 42	. 2999322		. 700678	44
18	. 291504	10.55	. 9991524	. 42	. 2999980	10.98 10.97	0020	43
18	292137	10.53	. 991498	. 42	. 300638	10.95	98705	41
19	29276	10.51	99	. 42	301	10.93	05	41
20	9.293399		9.991	. 42	9.30195		0.698049	40
21	. 294029		. 991422	. 42	. 302607		697393	39
22	294658	10.48 10.47	. 991397	42	. 303261	10.89	. 696739	38
23	295286	10.45	. 9913732	42	303914	10.87	. 696086	37
24	295913	10.43	. 991346	. 42	. 304567	10.86	. 6954733	36 35
25	296539	10.42	. 991321	. 43	. 305218	10.84	. 694782	35
28	-. 297164	10.40	. 991295	. 43	305869 306519	10.83	${ }^{694131}$	4
27	. 297788	10.39	. 9912724	. 43	. 307168	10.81	. 6928382	32
28	29841	10.37	. 991218	. 43	. 307816	10.80	. 692184	31
30	c. 29965		9.99119		9.3084		0.69	30
31	. 30027	10.34	. 99116	. 43	. 309109	10.77	. 690891	29
32	3001995	10.33	. 991141	. 43	. 309754	10.76	. 690246	68
33	. 301514	10.30	. 991115	. 43	. 310399	10.74	. 689601	27
34	. 302132	10.38	. 991090	. 43	. 311042	10.73	. 688958	26
35	. 302748		. 991064	. 43	. 311685	10.70	. 688315	25
36	. 303364	10.25	. 991038	. 43	. 312327	10.68	. 687673	24
37	. 303979	10.25	. 991012	. 43	. 312968	10.68	. 687032	23
38	. 304593	10.22	. 990986	. 43	. 313608	10.65	. 686392	22
39	. 305207	10.22 10.20	. 990960	. 43	. 314247	10.65	. 685753	21
40	9.305819		9.9909		9.3148		0.685115	20
41	. 306130	10.19	. 9909008	. 44	. 315523	10.62	. 684477	19
42	. 307041	10.17	. 990882	. 44	. 316159	10.61	683841	18
43	. 307650	10.16 10.14	. 990855	. 44	. 316795		. 683205	17
44	. 308259	10.13	.990829	. 44	. 317430	10.58	682570	16
45	. 318867	10.12	. 9908803	. 44	. 318064	10.55	. 681936	15
48	. 309471	10.10	. 9997777	. 44	. 318697	10.54	. 681303	14
47	.310080		. 9990750		. 319330	10.53	. 6806070	13
48	. 310685	10.09 10.07	.990724 .990697	. 44	. 319961	10.51	. 680039	12
49	. 311289	10.07	. 990697	. 44	. 320592	10.51	679408	11
50	9.311893		9.99067		9.321222		0.678778	10
51	. 312495	10.03	. 990645	. 44	. 321851	10.47	. 678149	9
52	313097	10.03 10.01	. 990618	. 44	.322479	10.47	. 677521	8
53	313693	10.00	. 990591	. 44	. 323106	10.44	. 676894	\%
54	. 314297	9.98	. 9990565	. 44	323733 32438	10.43	. 676267	6
55	. 314897	9.97	. 99050511	. 44	. 324358	10.41	. 675642	5
56	. 315495	9.96	. 99050511	45	. 3249838	10.40	. 675017	4
57	.316192	9.94	. 9990485	. 45	. 3256607	10.39	. 6743769	3
	689	9.93	. 9914	. 45	${ }^{.3262311}$	10.37	.673769 .673147	2
60	$\begin{aligned} & .317284 \\ & .317879 \end{aligned}$	91	$\begin{aligned} & .99(431 \\ & .990404 \end{aligned}$. 45	$\begin{array}{r} 326853 \\ .327475 \end{array}$	10.36	$\begin{aligned} & .673147 \\ & .672525 \end{aligned}$	0
M.	Coalde.	D. 1^{11}	Sline.	D. $1^{1 /}$	Cotang.	D. $1^{\prime \prime}$.	Taug.	M.

M.	Sine	D. $1^{\prime \prime}$	Cosine	D. 1^{14}.	Tang.	D. ${ }^{11}$.	Cotang.	M.
0	9.317	9.90	9.990	45	9.327475	10.35	0.672525	${ }_{59}^{60}$
1	.318473 .319066	9.88	${ }^{.990378}$. 45	${ }^{.328095}$	10.33	. 671285	59 58
3	. 3196	${ }_{9.86}^{9.87}$. 9901324	45 .45	329334	10.32 10.31	670666	57
4	. 320249	${ }_{9.84}^{9.86}$.9902977	. 45	329953	10.31 10.29	. 670047	56
6	.321540	${ }_{9.83}$. 990270	. 45	. 330570	10.28	. 669430	55
6	. 321430	${ }_{9.81}^{9.83}$. 9901243	. 45	. 331187	10.28 10	. 668813	54
7	. 322019	9.80	. 990215	. 45	. 331803	10.25	. 668197	53
8	.322607				${ }^{332418}$. 667582	52
9	. 323194	9.77 9	. 990161	. 45	. 333033	10.23	. 666967	51
10	9.323740		9.990134		9.333646		0.666354	50
11	.324366		. 990107		. 334259	10.20	. 665741	49
12	. 324950	${ }_{9.73}^{9.75}$.990079		334871	10.19	. 665129	48
13	. 32553	${ }_{9.72}$	990052	${ }_{46}$. 335482	10.17	. 664518	47
14	326117	9.70	990025	. 46	.336193	10.16	. 663907	46
15	. 326700				. 336	10.15	. 663298	45
16	. 327281	9.68	989970	. 46	. 3373	10.14	. 662	44
	. 327862	${ }_{9.66}$	989942	. 46	. 337919	10.12	. 662081	43
18							.661473	42
19	. 32902	${ }_{964}^{9.65}$. 46	339	10.10	. 660867	41
20	9.329599		9.989860		9.339739		0.660261	
21	. 330176	9.61	. 989832	. 46	. 3403		659656	39
	. 33175	${ }_{9.60}$.989804	${ }_{46}$. 3409	10.06	. 6590	${ }_{37}$
	. 3313	9.58	989777		. 341552	10.05	. 658448	
24	.331903	9.57	. 9898749		. 3421	10.03	. 657845	38
	. 3324	9.56	. 989721	. 46	342757	10.02	. 6572	${ }^{35}$
	. 3330	9.54	. 989	46	313		. 656642	3
27	. 333624	9.53		47	${ }_{3} 343958$	10.00	. 65	33
28	334195	9.52	. 989637	. 47	. 344558	9.98		${ }_{31}$
. 29	334767	9.50	. 989610	. 47	,	9.97	. 654	31
30	9.335337		9.989582		9.345		0.654245	30
	${ }_{3} 3359$	9.48	9805	. 47	. 346	9.95		${ }_{28}^{29}$
	. 336	9.4		. 47	.3469	9.93	. 6530515	
${ }^{33}$. 33771	9.45			. 3485	9.92	. 652455	
34	. 3376	9.44	${ }_{989441} 98946$. 47	. 348	91		26
	. 3381	9.43	989441	. 47	. 348735	9.90	. 651	25
	. 338742	9.41	989413	. 47	. 349329	${ }_{9} 9.88$. 650671	${ }^{24}$
37	. 339307	9.40	999335	. 47	. 349	9.87	. 651078	23
	33987	9.39	${ }^{999356}$	${ }_{4}$. 350	9.86	649486	22
39	. 340434	9.37	9893	47	35	9.85	. 648	21
4 C	9.340996	. 36	9.989300		9.3516		0.648303	20
		9.35	909271	47	352	9.82	647	19
42	. 342119	9.34	989243 989214	. 47	${ }^{.352876}$	9.81	. 647124	18
43	. 342679	9.32	${ }_{989986}^{989214}$		${ }_{3} .353465$	9.80	${ }^{646535}$	
44	. 343239	9.31	${ }_{98995}^{98915}$. 48	. 354053	${ }_{9.79}$. 645	16
45 46	. 34433795	9.30	${ }_{989128}^{989158}$. 48	. 3534640	9.78	.645360 644773	15
47	. 344912	9.29 9.27	. 989100	. 48	. 355813	${ }_{9} 9.76$.644187	13
48	. 345469	9.26	. 9898171		. 356398	9.74	643602	12
49	. 346024	9.25	. 989042	. 48	. 356982	9.73	. 643018	11
50	9.346579	9.24	9.9890		9.	72	0.642	
	. ${ }_{\text {. }}^{3477688}$	9.22	. 988898	48		9.70	64	8
53	. 348240	9.21		. 48		9.69	. 64	8
	. 34	9.20		. 48	${ }_{359893}$	9.68	${ }^{6} 640687$	7
55	349343	9.19	. 9888869	. 48	${ }_{360474}$	9.67	${ }_{6} 639526$	5
5	. 3498	9.17	. 988840	. 48		${ }^{9.66}$. 63×947	4
57	. 351443	${ }_{9}^{9.15}$. 988811	48	361632		. 638368	3
58	3511992	9.14	. 988782		${ }^{362210}$	9.62	. 637790	2
${ }_{6}^{59}$. 351540	9.13	$\begin{aligned} & 988753 \\ & .988724 \end{aligned}$. 49	362787	9.61		1
	. 352088						636636	0
M.	Cosino.	D. ${ }^{\prime \prime}$.	Sine.	D.	Cotang.	D. 1	Tang.	M

M.	ine.	D. $1^{\prime \prime}$.	Cosize.	D. 1^{14}.	Tang.	D. ${ }^{1 \prime}$.	Cotang.	M.
0	9.352038	9.11	9.988724	. 49	9.363364	9.60	0.636636	60
1	. 352635	9.11	. 988695	. 49	. 363940	9.60	. 636060	59
3	. 353181	9.09	${ }^{.988666}$. 49	. 364515	9.58	. 6335485	58
3	. 353798	9.08	. 9888636	. 49	${ }^{.365096}$	9.57	. 63433196	68 56
4	. 3542715	9.07	. 99885678	. 49	. 3656237	9.55	.634336	56 55
6	. 355353	9.05	. 9888548	. 49	. 366810	9.54	.633190	54
7	. 355901	9.04 9.03	. 938519	. 49	. 367382	9.53	. 632618	53
8	. 356443	03	. 988489	49	. 367953	9.62	. 632047	52
9	. 356984		. 988460		. 368524	1	. 631476	51
10	9.357524		9.988430	. 49	9.369094		0.630906	50
11	. 358064		. 9588101	. 49	. 369663		. 6303337	49
12	. 358603	8.98 8.97	. 988371	. 49	-370232	9.48	. 629768	48
13	. 359141	8.96	. 988342	. 50	. 370799	9.45	. 629201	47
14	. 359678	8.95	. 988312	. 50	. 371367	9.44	. 628633	46
15	. 360215	8.94	. 938282	. 50	. 371933	9.43	. 628067	45
16	. 360752	8.94 8.92	. 988252	. 60	. 372499	9.48	. 627501	44
17	. 361287	8.91	. 9888223	. 50	. 373064	9.41	${ }^{.} 6269371$	43
18	.361822	88.90	. 988193	. 60	. 37	9.40	${ }^{.626371}$	42
19	. 362356	8.89	988163	. 60	. 374193	9.39		41
20	9.362889		9.988133	. 50	9.37475		0.625	40
21	. 363422	8.87	. 988103	. 50	. 375319	9.37	.624681	39
22	. 363954	8.86	. 988073	. 50	. 375881	9.36	. 624119	38
23	. 364485	8.84	. 988043	. 50	. 376442	9.35	. 6233558	37
24	.365016	8.83	. 988013	. 50	. 377003	9.33	. 6222997	38
25	. 3655546	8.82	. 987983	. 50	.377563	9.32	. 6222437	35
26	. 366075	8.81	. 987953	. 50	. 378122	9.31	78	34
27	. 36666131	8.80	987922 98892	. 50	. 3786881	9.30	.6210761	33
29	. 3671	8.79	987892 987862	. 50	. 379797	9.29	. 6220203	${ }_{31}^{32}$
30	9.3681		9.98783		9.380		0.6196	30
31	. 368711	88.78	. 987801	. 51	. 330910	9.27	. 619090	29
32	369236	88.74	987771	. 51	. 381466	9.26 9.25	. 618534	28
33	369761	8.73	987740	. 51	. 332020	9.24	. 617980	27
34	370285	8.73	. 987710	. 51	. 382575	9.24	. 617425	26
35	370808	8.71	. 987679	. 51	. 383129	9.23 9.22	. 616871	25
36	. 371330	8.70	. 987643	. 51	. 383682	9.21	. 616318	24
37	. 371852	8.69	. 987618	. 61	. 384234	9.20	. 615766	23
38	. 372373	8.68	. 9875888	. 61	. 384786	9.19	. 615214	22
39	. 372894	8.66	. 987557	. 51	. 385337	9.18	.614663	21
40	9.373414		9.987526		9.3858		0.614112	20
41	. 373933	8.65	. 987496	. 51	. 386438		. 613562	19
42	. 374452	8.63	. 987465	. 61	. 386987	9.16 9.15	. 613013	18
43	. 374970	8.62	. 987434	. 51	. 387536	9.16 9.14	. 612464	17
44	. 375487	8.61	. 957403	. 51	. 388084	9.12	. 611916	16
45	. 376003	8.60	. 987372	. 62	.388631	9.11	. 6111369	15
46 47	. 376519	8.59	. 9887341	. 62	. 3898178	9.10	. 610822	14
47	. 3777035	8.58	. 9887310	. 52	. 399724	9.09	. 610276	13
48	.377549 .378063	8.57	. 987279	. 52	. 390270	9.08	.609730 .609185	12
43.	. 378063	8.56	. 987248	. 62	90	9.07	85	11
50	9.378577		9.987217		9.3913		0.608640	10
51	. 379089	8	. 987186	. 52	. 391903	9.06	. 6081997	9
52	. 379601	8.52	. 987155	. 52	. 392447	9.04	. 607553	8
53	. 380113	8.51	. 987124	. 52	. 3929889	9.03	. 607011	7
54	. 380624	8.50	. 987092	. 52	. 393531	9.02 9.02	. 606469	6
55	:331134	8.49	. 9887061	. 62	. 39407614	9.01	. 6059288	5
56 57	. 381	8.48	. 9887030	. 52	. 39461514	9.00	.605386 .604846	4
58	. 332661	8.47	. 9869697	52	. 395694	8.99	. 6043116	3
59	. 383168	45	. 986936	. 52	. 3966233	8.98	.613767	1
60	. 383675	8.45	. 986904	. 52	. 396771	8.9	.603229	0
M.	Cosine.	D. 1	Sine.	D. $1^{\prime \prime}$.	Cotang.	D. 1".	Tang.	M.

M	Sine.	D. $1^{\prime \prime}$.	Cosine.	D. $1{ }^{\prime \prime}$.	Teng.	D. $1^{\prime \prime}$.	Cotang	
6	9.383675	8.44	$9.9869 \cap 4$	53	9.396771	8.96	0.6133229	50
1	. 384182	8.44	. 936873	. 53	. 397319	8.96	. 602691	59
2	. 384687	8.42	.936341	. 53	. 397846	8.95	.6012154	58
3	. 385192	8.41	. 986809	. 53	. 39×383	8.95	. 601617	57
4	.385697	8.40	. 986778	. 53	. 3939919	8.93	. 6010181	56
5	.386201	8.39	. 9367746	. 53	. 399455	8	. 601554	55
6	. 386704	8.33	. 9867114	. 53	399990	8.91	. 6 (k)H10	54
7	. 387207	8.37	. 986683	. 53	. 4011524	8.90	. 599476	53
8	. 3887709	8.36	.9866.31	. 53	. 401058	8.89	. 598942	52
9	. 388210	8	. 986619	. 53	. 401591	8.88	. 598409	51
10	9.388711		9.956		9.402124	8.87	0.597876	50
11	. 399211	88.34	. 98655	. 53	. 402656	88.88	. 597344	49
12	. 339711	8.33	. 936523	. 53	. 403187	8.86 8.85	. 896813	48
13	. 390210	8.31	. 936491	. 53	. 403718	8.85 8.84	. 596282	47
14	. 3910708	8.30	. 956459	. 53	. 404249	8.84 8.83	. 595751	46
15	. 391206	8.29	. 9566427	. 54	. 404778	8.82	. 595222	45
16	. 391703	8.23	. 9336395	. 54	. 405308	8.81	. 594692	44
17	. 392199	8.27	. 936363	. 54	. 405836	8.80	. 594164	43
18	.392695	8.26	.986331	. 54	. 406364	8.81 8.79	. 5933636	42
19	. 393191	8.25	. 986299	. 54	. 406892	8.78	. 593108	41
20	9.393685		9.956266		9.407419		0.592581	40
21	. 394179	8.24 8.23	.9936234	. 54	. 4177945	8.76	. 592055	39
22	. 394673	8.23 8.22	.9362142	. 54	. 408471	88.75	. 591529	38
23	. 395166	8.21	. 986169	. 54	. 408996	8.75	. 591004	37
24	. 395658	8.20	. 936137	. 54	. 409521	8.74	. 590479	36
25	. 396150	8.19	. 356104	. 54	. 410045	8.73	. 589955	35
26	. 396641	8.18	986072	. 54	. 410569	8.72	. 589431	34
27	. 397132	8.17	. 986039	. 54	. 411092	8.71	. 588908	33
28	. 397621	8.18	. 98860074	. 54	. 411615	8.70	. 588385	32
29	. 398111	5	. 9859	. 54	. 412137	8.69	. 587863	31
30	9.398600		9.985942		9.412658		0.587312	30
31	. 399088		. 9359719	. 55	. 413179		. 586821	29
32	. 399575	88.12	. 985876	. 55	. 413699	8.66	. 586301	28
33	. 400062	88.11	. 985843	. 55	. 414219	8.65	.585781	27
34	. 400549	8	. 985811	. 55	. 414738	8.65	. 585262	26
35	. 401035	8.09	. 985778	. 55	. 415257	8.64	. 584743	25
36	. 401520	8.08	. 985743	. 55	. 415775		. 584225	24
37	402005	8.08 8.07	. 985712	. 55	. 416293	8.63	. 583707	23
38	. 402489	8.07 8.06	. 98.5679	. 55	. 416810	8.62	. 583190	22
39	. 402972		. 985646		17326		. 582674	21
40	9.403455		9.98561		9.417842		0.58215	20
41	. 403938		. 9855530		. 418358		581642	19
42	. 404420	8.03 8.02	. 985547	55	. 418873	8.58	. 581127	18
43	. 404901	8.02	. 935514	. 55	. 419387	8.57	. 581613	17
44	. 405382	8.00	. 985480	. 55	. 419901	8.	. 580099	16
45	. 405862	7.99	. 985147	. 55	. 420415	8.55	. 579585	15
46	. 406341	7.99 7.98	. 985414		. 420927	8.54	. 579073	14
47	. 406320	7.97	. 985381		421440	88.88	. 578560	13
48	. 407299		. 985347		421952		. 578048	12
49	. 407777	7.96 7.96	. 98		422463	8.52 8.51	. 577537	11
50	9.408254		9.98528		9.42297		0.577026	0
51	. 408731	7.95	. 985247	. 56	. 423484	8.50	576516	9
52	. 409207	7.94	. 985213	. 56	. 423993	88.49	. 576007	8
53	. 4019682	7.93	. 935180	. 56	. 424503	8.49	.575497	7
54	. 410157	7.92	. 985146	. 56	.425011		. 574989	6
55	. 410632		. 985113	. 56	. 425519		. 574481	5
56	. 411106	7.89	. 985179		.426027	8.45	. 573973	4
57	. 4111579	7.88	. 985045		426534	8.44	. 573466	
58	. 412052	7.88	. 985011		427041	88.43	. 572959	2
59	. 412524	7.86	. 984979	. 56	. 427547	8.43	. 572453	1
60	. 412996	7.86	. 984944	. 56	. 428052		71	0
M.	Cosine.	D. ${ }^{\prime \prime}$	Slne.	$1{ }^{\prime \prime}$	Cotang.	1	Taxg	M.

COSINES, TANGENTS, AND COTANGENTS.

M.	Sino.	D. $1^{\prime \prime}$.	Coside.	D. ${ }^{\prime \prime}$.	Tang.	D. 1'.	Cotang.	M.
1	9.412996		9.984944		9.428052		0.571948	60 59
1	. 413467	7.85 7.84	$.984910$. 57	423558	8.48	. 671442	59 58 58
2	. 4139388	7.84	. 9848786	. 57	429062 4×29566	8.41 8.40	. 570938	58 57
3	414408 414878	7.83	984812 984818	. 57	429566 430670	88.39	.570434 .569930	57 56
4	.414878 .415347	7.82	984818 984774	57	431070 430573	8.38	.569930 .569427	56 55
5	.415347 .415815	7.81	954774	67	430573	8.38	. 5689929	56 54
6	. 415815	7.80	984740	67	431075	8.37	${ }_{568423}$	64
7	. 416283	7.79	${ }_{9846726}$	67	431577	8.36	. 5687423	63
8	. 4167517	7.78	984672 984638	67	.432079 432580	8.35	67921	52 51
9	. 417	7.77	9	67	. 432580	8.34	20	51
10	9.417684		9.984603	67	9.433080	8.33	0.566	50
11	. 418150	75	984569	. 57	433580	8.33	. 5664	49
12	. 418615	7.75	984535	. 57	434080	8.32	. 565920	48
13	. 419079	7.74	. 984500	. 57	434579	8.31	. 565421	47
14	. 419544	7.73	. 984466	. 67	. 435078	8.30	. 564922	46
15	. 4201007	7.72	. 984432	. 57	. 435576	8.29	. 564424	45
16	. 420470	7.71	. 984397	. 68	436073	8.28	. 563927	44
17	420933	7.70	. 984363	. 68	. 436570	8.28	. 563430	43
8	421395	7.69	. 984328	. 68	. 437067	8.27	.562433	42
19	. 421857	7.68	. 934294	58	. 437563	8.26	. 562437	41
20	9.42231	7.67	9.9842	58	9.4330	8.25	0.561	40
21	42277	7.67	.984224	. 58	4385	8.25 8.24	. 561446	39
22	423238	7.67	. 984190	. 58	439048	8.24 8.24	. 560952	38
23	423697	7.66	. 984155	. 58	. 439543	8.24 8.23	560457	37
24	424156	7.65	. 984120	. 58	. 440036	8.22	. 659964	36
25	424615	7.64 7.63	984085	. 68	440529	8.21	. 559471	35
26	425073	7.63	984050	58	44102	8.20	. 558978	34
27	425530	7.61	934015	. 58	4415	8.20	658486	33
28	425987	7.61	983981	. 68	442206	8.19	. 557994	32
29	426443	7.60	. 983946	. 58	442497	8.18	. 557503	31
30	9.42689		9.983		9.442		0.557012	30
31	427354	7.59	. 983875	58	443479	8.16	. 556521	29
32	427819	7.58	. 983840	. 69	443968	8.16	. 656032	28
33	428263	7.66	. 983805	59	444458	8.16	. 555542	27
34	428717	7.65	983770	69 69	444947	88.15	. 655053	26
35	429170	7.55	. 983735	. 69	445435	88	. 554565	25
36	429623	7.53	983700	. 69	445923	8	. 654077	24
37	430075	7.52	983664	. 69	446411	8	. 5535889	23
38	430527	7.52	983629	. 69	446898	8.11	. 553102	22
39	43097	7.51.	983594	. 59	447384	11	. 552616	21
40	9.431429		9.983558		9.4478		0.552130	20
41	431879	7.50	983523	59	448356	88.09	651644	19
12	432329	7.4	983487	59 59	448841	8.09 8.08	551159	18
13	432778	7.48	983452	59	449326	88.08	. 550674	17
44	433226	7.47	983416	. 69	449811	8.06	. 550190	16
45	433675	7.46	983331	. 59	450294	8.06	. 549706	15
46	434122	7.45	983345	. 69	450777	8.05	. 549223	14
37	434569	7.44	983309	. 69	451260	8.04	. 5488740	13
48	435116	7.44	983273	. 60	451743	8	. 54825775	12
49	435462	7.43	98323	60	45	8.03	75	11
50	9.435908		9.983202		9.452706		0.547294	10
51	436352	7.41	.983166	60	453187	8.01	. 546813	9
52	436798	7.40	983130	60	453668	8.00	. 546332	8
53	437242	7.40	9831194	60	454148	8.00	. 5458572	7
54.	437686	7.39	. 9833158	60	454628	7.99	. 5443893	6
55	438129	7.38	.983022	60	455107 45586	7.98	. 5444414	5
56	438572	7.37	9829186	. 60	455586	7.97	544414 .543936	4 3
57	439014	7.36	982950	. 60	456164 456542	7.97	${ }_{5434936}$	3
59	439456 439997	736	.982878	. 60	$\begin{aligned} & 456542 \\ & 457019 \end{aligned}$	7.96	. 542981	1
60	. 440338	7.35	. 982842	60	457496	7.95	. 542504	0
M.	Cosinu.	D. $1^{\text {H/ }}$	Stine.	D. ${ }^{1 \prime}$.	Cotang.	D. $1^{\prime \prime}$ 。	Tang.	M.

M.	Slne.	D $1^{\prime \prime}$.	Cosine.	D. ${ }^{\prime \prime}$ '.	Tang.	D. ${ }^{1 \prime}$.	Cotang.	M.
0	9.440338	7.34	9.982842	. 60	9.457496	7.94	0.542504	60
1	. 440778	7.33	. 9822805	. 60	. 457973	7.94	. 5422027	59
2	. 441218	7.33 7.32	. 982769	. 61	. 458449	7.94 7.93	. 541551	58
3	. 441658	7.31	.982733	. 61	. 458925	7.92	. 541075	57
4	. 442096	7.31	. 9826966	61	. 459400	7.91	. 640600	56
5	. 442535	7.30	. 982660	. 61	. 459875	7.91	. 540125	55
6	. 442973	7.29	. 9882624	. 61	.460349	7.90	. 539651	54
7	. 443410	7.28	. 9825887	. 61	. 460523	7.89	. 539177	53
8	. 4433817	7.27	. 982551	. 61	. 4612977	7.88	. 5388703	52 51
	. 444234	7.27		. 61		7.88		51
10	9.444720	7.26	9.982477	. 61	9.462242	7.87	0.637758	50
11	. 445155	7.25	. 982441	. 61	. 462715	7.86	. 5372885	49
12	.445590	7.24	.982404	.61	. 463186	7.86	. 536814	48
13	. 446025	7.24	.982:367	. 61	. 463658	7.85	. 536342	47
14	. 446459	7.23	. 9823331	. 61	. 464128	7.84	. 535872	46
15	. 446893	7.22	${ }^{.9822294}$. 61	.464599 465069	7.83	. 535401	45
16	. 447326	7.21	. 9822577	. 61	. 465069	7.83	. 534931	44
17	. 447759	7.20	. 9882220	. 62	. 465539	7.32	. 534461	43
18	. 4488191	7.20	. 982183	. 62	. 4666008	7.81	.533992	42
19	. 448623	7.19	. 932146	. 62	. 466477	7.81	. 533523	41
20	9.449054		9.982109	. 62	9.466945	7.80	0.533055	40
21	. 449485	7.17	. 982072	. 62	. 467413	7.79	532587	39
22	. 149915	7.17	. 932035	. 62	. 467880	7.78.	532120	38
23	450345	7.16	. 981998	. 62	. 468317	7.78	. 531653	37
24	. 450775	7.15	. 981961	. 62	. 468814	7.77	. 531186	36
25	. 451204	7.14	. 931924	. 62	.469280	7.76	. 530720	35
26	. 451632	7.13	. 981836	. 62	.469746	7.76	. 530254	34
27	. 452060	7.13	. 9318189	. 62	. 470211	7.75	. 529789	33
28	. 452438	7.12	. 931812	. 62	. 470676	7.74	. 5293824	32
29	. 452915	7.11	. 981774	. 62	. 471141	7.74	. 528859	31
30	9.453342		9.981737	. 62	9.471605		0.528395	30
31	. 453768	7.10	. 981700	. 62	. 472069	7.73 7.72	. 527931	29
32	. 454194	7.10	. 981662	. 63	. 472532	7.71	. 527468	28
33	. 454619	7.09 7.08	. 931625	. 63	. 472995	7.71	. 527005	27
34	. 455044	7.08	. 981587	. 63	. 473457	7.70	. 526543	26
35	. 455469	7.07	. 931549	. 63	. 473919	7.69	. 526081	25
36	. 4558893	7.06	. 981512	. 63	. 474381	7.69	. 525619	24
37	. 456316	7.05	. 981474	. 63	. 474842	7.68	. 525158	23
38	. 456739	7.04	. 931436	. 63	. 475303	7.67	. 524697	22
39	. 457162	7.04	. 981399	. 63	. 475763	7.67	. 524237	21
40	9.457584		9.981361	63	9.476223		0.523777	2
41	. 458006	7.03	. 981323	. 63	. 476683	7.66 7.65	. 523317	19
42	. 458427		. 981235	. 63	. 477142		. 522858	18
43	. 458348	7.01	. 931247	. 63	. 477601	7.64	. 522399	17
44	. 459268	7.00	. 981209	. 63	. 478059	7.64	. 521941	16
45	. 459688	6.99	. 981171	. 63	. 478517	7.63	. 521483	15
46	. 460108	6.98	. 981133	. 63	. 478975	7.62	. 621025	14
47	. 460527	6.98	. 981095	. 64	. 479432	7.61	. 520568	13
48	. 460946	6.97	. 981057	. 64	. 4798889	7.61	. 520111	12
49	. 461364	6.97 6.96	. 981019	. 64	. 480345	7.60	. 519655	11
50	9.461782		9.980981		9.480801		0.519199	10
51	. 462199		. 980942		. 481257	7.59	. 518743	9
52	. 462616	6.95	. 980904	. 64	. 481712	$\xrightarrow{7.59}$. 518288	8
53	. 463032	6.94 6.93	. 980966	. 64	. 482167	7.57	. 517833	
54	. 463148	6.93 6.93	. 980827	. 64	. 482621	7.57	. 517379	6
55	. 463964	6.93 6.92	. 9807878	. 64	. 4831075	7.56	. 516925	5
56	. 464279	6.91	. 980750	. 64	. 483529	7.55	. 516471	4
57	. 464694	6.90	. 980712	. 64	. 4833982	7.55	. 516018	3
58	. 465108	6.90	. 9880673	. 64	.484435	7.54	. 515565	2
69 60	.465522 .465935	6.89	.980635 .980596	. 64	. 48483837	7.53	. 515113	1
M.	Cosine.	D. ${ }^{\prime \prime}$.	Sina	D. 11 .	Cotang.	D. $1^{\prime \prime}$.	Tang.	M.

M.	Sine.	D. $1^{1 \prime}$.	Cosine.	D. 1'1.	Tang.	D. 1".	Cotang.	M.
0	9.465935	6.88	9.980596	. 64	9.485339		0.514661	60
1	466348	6.88	. 930558	. 64	. 485791	7.53	. 514209	59
2	466761	6.88	. 980519	. 65	. 486212	7.52	. 513758	58
3	467173	6.87	.980480	. 65	. 4×6693	7.51	. 513307	57
4	467585	6.85	. 980442	. 65	. 487143	7.51	. 512857	56
5	467996	6.85	. 980403	65	.487593	7.50	. 512107	55
6	.468407	6.85 6.84	. 980364	65	. 488043	7.50	. 511957	54
7	. 468817	6.84	. 980325	65	. 488492	7.49	. 511508	53
8	. 469227	6.83	. 980286	65	. 488941	7.48	. 511059	52
9	. 469637	6.83 6.82	. 980247	65	. 489390	7.48	. 510610	51
10	9.470046	6.81	9.980208		9.489833		0.510162	50
11	. 470455	6.81	. 980169	. 65	. 490286	7.46	. 509714	49
12	. 470863	6.81	. 980130	. 65	. 490733	7.46	. 509267	48
13	. 471271	6.79	.980091	65	.491180	7.45	. 508820	47
14	. 471679	6.78	. 980052	65	. 491627	7.44	. 508373	46
15	. 4720×6	6.78	. 980012	65	.492073	7.44	. 507927	45
16	. 472492	6.77	.979973	65	. 492519	7.43	. 507481	44
17	472898	6.77	. 979934	65	. 492965	7.43	. 507035	43
18	473304	6.76	. 9793935	66	. 493410	7.42	. 506596	42
19	473710	6.76	. 979855	66	. 493854	7.41	. 506146	41
20	9.474115	6.74	9.979816	66	9.494299		0.505701	40
21	. 474519	6.74	. 979776	. 68	. 494743	7.40	. 505257	39
22	474923	6.74	. 979737	. 66	. 495186	7.39	. 504814	38
23	475327	6.73	. 979697	. 66	. 495630	7.39 7	. 504370	37
24	475730	6.72	. 979658	. 66	. 496073	7.38	. 503927	36
25	476133	6.72	. 979618	. 66	. 496515	7.38	. 503485	35
26	476536	6.71	. 979579	. 66	. 496957	7.37	. 503043	34
27	. 476938	6.70	. 979539	. 66	497399	7.36	. 502601	33
28	.477340	6.69	. 979499	. 66	. 497841	7.36	. 502159	32
29	. 477741	6.68	. 979459	. 66	. 498232		.501718	31
30	9.478142		9.979420		9.498722		0.501278	31
31	. 478542	6.67	. 979380	66	499163	7.34	. 500837	29
32	. 478942	6.67	. 979340	. 67	. 499603	7.33	. 500397	28
33	. 479312	6.66	. 979300	. 67	. 500042	7.33	. 499958	27
34	. 479741	6.65	. 979260	. 67	. 500481	7.32	. 499519	26
35	. 480140	6.65	. 979220	. 67	. 500920	7.31	. 499080	25
36	. 480539	6.64	. 979180	. 67	. 501359	7.31	. 498641	24
37	. 480937	6.63	. 979140	. 67	. 501797	7.30	. 498203	23
38	. 481334	6.63	. 979100	67	. 502235	7.30	.49.765	22
39	. 481731	6.62	. 979059	. 67	. 502672	7.29	. 497328	21
40	9.482128		9.979019		Э.503109		0.496891	20
41	. 432.525	6.61	. 978979	. 67	503540°	7.28	. 496454	19
12	. 482921	6.60	. 978939	67	503982	7.27	. 496018	18
43	. 483316	6.59	. 978898	. 67	. 504418	7.27	. 495582	17
44	. 483712	6.59	. 978858	67	. 504854	7.26	. 495146	16
45	. 484107	6.58	. 978817	. 67	. 505289	7.25	. 494711	15
46	. 484501	6.57	. 978777	67	. 505724	7.25	. 494276	14
47	. 484395	6.57	. 978737	. 67	. 506159	7.24	. 493841	13
48	. 485289	6.56	. 978696	. 68	. 506593	7.24	. 493407	12
49	. 485682	6.55	. 978655	. 68	. 507027	7.23	. 492973	11
50	9.496075		9.978615		9.507460		492540	10
51	. 486167	6.54	. 978574	. 68	. 507893	7.22	. 492107	9
52	. 486860	6.54	. 979533	. 68	. 509326	7.21	. 491674	8
53	. 437251	6.53	. 978493	. 68	. 509759	7.21	. 491241	7
54	. 497643	6.52	. 978452	68	. 509191	7.20	.490809	6
55	. 488034	6.52	. 978411	. 68	. 509622	7.20	. 490378	5
56	. 488424	6.51	. 978370	. 68	. 510 O54	7.19	. 489946	4
57	. 488814	6.50	. 978329	. 68	. 510495	7.18	.489515	3
58	. 48924	6.50	. 978288	. 68	.510916	7.18	. 489084	2
59	.489593	6.19 6.48	. 978247	.68	. .511346	7.17	. 488654	1
60	. 489982	6.48	. 978206	68	. 511776	7.17	. 488224	0
M.	Cosine.	D. 1".	Sine.	D. ${ }^{\prime \prime}$.	Ootring.	D. 1 n .	Tang.	M.

M.	Sine.	D. 11.	Costre	D. 1^{11}.	Tang.	D. $1^{\prime \prime}$.	Cotang.	M.
0	. 490371	6.48	9.97820	68	$9.5!$	7.16	0.488224	60 59
2	.499371 .490759		${ }^{.978165}$. 69	. 5121221685	7.16	. 48777364	59
	. 491147	6.46 6.46	. 978083	.69 .69	. 513064	7.15	486936	57
4	. 491535	6.46 6.45	. 978042	.69 .69	513493	7.14	186507	56
5	. 491922	6.45	. 973001	. 69	. 513921		\$86079	56
	. 492308	6.44 6.45	. 977959	. 69	. 514349	7.13		54
7	. 492695		. 977918	. 69	. 514777	7.12	485223	53
8	. 493081	6.43 6.43	. 9778878	. 69	. 515204	7.12	484796	52
9	. 49346	6.42 6.42	. 977	69	. 615	7.11	59	
10	9.493851		9.977794		9.516057		0.483943	50
11	. 494236		. 977752	. 69	. 516484		. 483516	49
12	. 494621	${ }_{6}^{6.40}$. 9777711	69	. 5169910	7.09	483090	48
13	. 495005	6.39	. 977669	69	517335	7.09	. 482665	
14	. 495338	6.39		. 69	. 517	08	. 482239	46
15	. 495772	${ }_{6} 6.38$. 9775	69	. 61818	\% 08		45
16	. 496154	6.38	. 977544	. 70	. 518610	7.07	. 48	44
17	. 496537		. 9777503		. 519034		. 480966	
8	.496.119	${ }_{6}^{6.36}$. 97744	70	. 159958	7.06	. 4805452	42
19	. 497301	6.36	. 977419	70	. 519882	7.05	480118	
20	9.497632		9.977377		9.520305		0.479695	
21	. 49306	${ }_{6}^{6.34}$. 97733	. 70	5207	7.04	. 4798272	398
	. 498444	6.34	. 9777293	70	. 521151	7.04	. 478849	
23	. 498825	6.33	. 9777251	. 70	. 521573	7.03	. 478427	37
24	. 499204	6.33	. 97772	. 70	.521993	7.03	. 478005	36
		6.32	. 9777167	. 70	. 522417	7.02	. 4777653	${ }_{34} 3$
26	. 499963	6.31	. 9777125	. 70	${ }^{.} 5228388$	7.02	. 477162	34
27	. 5000342	6.31	.977083	. 70	. 52323595	7.01	${ }_{4}^{4} .4763741$	33
29	. 50072	6.30	. 9777041	. 70	. 5224100	- 01	${ }^{4} 475900$	31
30	9.501476	6.30	9.976	.	9.524520	.	0.475480	
31	. 501854	${ }_{6}^{6} 29$. 9769	. 70	. 5249	6.99	475060	
	. 5022	6.28 6.28	. 9768	. 71	. 525359		. 474641	28
33	. 502607	6.23 6.27	. 976830	71	. 625778	6.98 6.98	. 474222	27
	. 502934	6.27	. 9767	. 71	526197	6.97	. 473383	26
	. 5033	6.26	. 9767	. 71	. 526615	6.97	473	25
36	. 503735	6.25	. 976702		. 527033	6.96	479267	24
	. 504110	6.25	.97666	71	. 5227451	6.96	472549	23
38	. 5044	6.24	.9766	. 71	.527868 .52828	${ }_{6}^{6.55}$. 472132	22
39	. 504860	6.24	.9765]	71	. 528	6.95	471716	21
40	9.505234	6.23	9.9766	71	9.523702	94	0.471298	19
	. 50556	6.22	.976489	71	${ }^{.5299535}$	6.94	${ }^{.470465}$	
42	. 50595981	6.22	${ }^{.976446}$. 71	${ }^{.529951}$	6.93	${ }^{.} 470049$	17
44	. 5066727	${ }_{6}^{6.21}$.976361	. 71	. 530366	6.93	${ }_{469634}$	16
45	. 5070999	6.21 6.20	. 976318	. 72	. 533781	6.92	469219	15
46	. 507471	6.19	. 9776275	72	${ }^{.531196}$	6.91	.468804 46839	14
47	. 5078843	6.19		. 72		6.90		13
49	. 5003214	6.18	.976146	72	. 532439	6.90	${ }_{4} 467561$	11
		6.18		72			0.467147	
5	${ }^{\text {9 }}$. 5093926	6.17	${ }^{\text {9 }} .9766060$	72	${ }^{9.533266}$	6.89	. 466734	
52	. 50 ¢ 1696	6.16	. 976017	. 72	. 533379	6.88	466321	8
53	. 510065	6.15	. 97599	72	${ }_{5}^{534092}$	6.87	465908	7
	. 510434	6.15		.72		6.87	4.465094	6
55	. 51080303	6.14	.973887	. 72	. 53439328	6.86	${ }_{464672}$	4
56	. 511178	6.14		. 72	${ }^{.5353339}$	6.86	${ }_{464261}$	$\stackrel{4}{3}$
58	. 511907	6.13	${ }^{.975757}$. 72	. 536150	6.85	${ }_{463550}$	2
59	. 512275	6.12 6.12	. 975714	${ }^{72}$	536561	6.85 6.84	463439	1
60	. 512642		.975670		.b36972		8	0
M.	Cosiva.	D. 110	8ine.	D. ${ }^{11}$.	Cotang.	D. ${ }^{10}$.	Tang.	M.

M	Sine.	D. $1^{\prime \prime}$.	Cosine.	D. $1^{\prime \prime}$.	Tang.	D. $1^{\prime \prime}$.	Cotaing.	M.
0	9.512642	6.11	9.975670	. 73	9.536972	6.84	0.462028	60
1	. 513009	6.11	. 97.5627	. 73	. 537382	6.83	. 462618	59
2	. 513375	6.10	. 975583	. 73	. 5377922	6.33	. 462208	58
3	. 513741	6.09	. 9755589	. 73	. 5382811	6.82	. 461798	57
4	. 514107	6.09	. 975496	. 73	. 5388611	6.82	. 461389	56
6	. 514472	6.08	. 97545408	. 73	.539020	6.81	. 4660571	55
7	. 515202	6.08	. 975365	. 73	. 539837	6.81	. 460163	53
8	515566	6.07 6.07	. 975321	. 73	. 540245	6.80	. 459755	52
9	515930	6.07 6.06	. 975277	. 73	. 540653	6.80	. 459347	51
10	3.516294	6.05	9.975233		9.541061		0.458939	50
11	. 516657	6.05 6.05	. 975189	. 73	. 541468	6.79 6.78	. 458532	49
12	. 517020	6.05 6.04	. 975145	. 73	. 541875	6.78	. 458125	48
13	. 517382	6.04 6.04	. 975101	. 73	. 542281	6.78	. 457719	47
14	. 517745	6.04 6.03	. 975057	. 73	. 542688	6.77	. 457312	46
15	. 518107	6.03	. 975013	. 74	. 543094	6.76	. 456906	45
16	. 518468	6.02	. 974969	. 74	. 543499	6.76	. 456501	44
17	. 518829	6.02	. 974925	. 74	. 543905	6.75	. 456095	43
18	. 519190	6.01	. 974880	. 74	. 544310	6.75 6.75	. 455569	42
19	. 519551	6.00	. 974836	. 74	. 544715	6.74	. 455285	41
20	9.519911	6.00	9.974792	. 74	9.545119		0.454881	40
21	. 520271	5.99	. 974748	. 74	. 545524	6.73	. 454476	39
22	. 520631	6.99 5.99	. 974703	. 74	. 545928	6.73	. 454072	38
23	. 520990	6.99 5.98	. 974659	. 74	. 546331	6.73 6.72	. 453869	37
24	. 521349	5.98	. 974614	. 74	. 546735	6.72	. 453265	36
25	. 521707	5.97	. 974570	. 74	. 547138	6.71	. 452862	35
26	. 522066	5.97	. 974525	. 74	. 517540	6.71	. 452460	34
27	. 522424	5.96	. 974481	. 74	. 547943	6.70	. 452057	33
28	. 522781	6.97 6.95	. 974436	. 74	. 548345	6.70 6.70	. 451655	32
29	. 523138	6.95	. 974391	. 75	. 548747	6.69	. 451253	31
30	9.523495		9.974347	. 75	9.549149		0.450851	30
31	. 523852	5.94	. 974302	.75	. 549550	6.68	. 450450	29
32	. 524208	5.93	. 974257	. 75	. 549951	6.68 6.68	. 450049	28
33	. 524564	5.93	. 974212	. 75	. 550352	6.68	. 449648	27
34	. 524920	5.92	. 974167	. 75	. 550752	6.67	. 449248	26
35	. 525275	5.92	.974122	. 75	. 551153	6.67	. 448847	25
36	. 525630	5.91	. 974077	. 75	. 551552	6.66	. 448448	24
37	. 525939	5.90	. 974032	. 75	. 551952	6.66	. 448048	23
38	. 526339	5.90	. 973987	. 75	. 552351	6.65	. 4477649	22
39	. 526693	6.89 .	. 973942	.75	. 552750	6.65	. 447250	21
40	9.527046		9.973897		9.553149		0.446851	20
41	. 527400	5.88	. 973852		. 553548	6.64 6.64	. 446452	19
42	. 527753	5.88 5.88	. 973807	. 75	. 5553946	6.64 6.63	. 446054	18
43	. 528105	5.87	. 973761	. 75	. 554314	6.63 6.63	. 445656	17
44	. 523458	5.87	. 973716	. 76	. 554741	6.62	. 445259	16
45	. 528810	6.86	. 9737371	. 76	. 5555139	6.62	. 444861	15
46	. 5299516	5.86	. 973625	. 76	. 5555536	6.61	. 4444464	14
47	. 529513	5.85	. 9735880	. 76	. 6556333	6.61	. 44.1067	13
48	. 5298364	5.85	. 97373535	. 76	. 55563729	6.60	. 4433671	12
49	. 530215	5.84	. 973489	. 76	. 556725	6.60	. 443275	11
50	9.530565		9.973444		9.557121		0.442879	10
51	. 530915	6.83	. 973398	.76	. 557517	6.59	. 442483	9
52	. 531265	5.82	. 973332	. 76	. 5578313	6.59	. 442087	8
53	. 531614	5.82	${ }^{.973307}$. 76	. 5583308	6.58	. 441692	7
54	. 531963	5.81	. 973261	. 76	. 5588703	6.58	. 441297	6
55	. 532312	5.81	. 973215	. 76	. 559097	6.57	. 440903	5
56	${ }^{.532661}$	5.80	. 973169	76	. 5599989	6.57	. 440509	
57		5.80	.973124 .973078	. 76	. 5599885	6.56	.440115	3
58	. 53333504	5.79	.973078 .973032	. 77	.560279 .560673	6.56	. 439721	2
60	. 534052	5.79	.973032 .972986	. 77	. 56061066	6.55	. 43938934	1
M.	Oostue.	D. $1^{\prime \prime}$.	Slue.	D. 11 .	Cotung.	D. $1^{\prime \prime}$.	Tang.	M.

M.	Slue.	D. ${ }^{\prime \prime}$.	Cosine.	D. $1^{\prime \prime}$.	Tang.	D. $1^{\prime \prime}$.	Cotang.	M.
0	9.554329	6.48	9.970152	. 81	9.584177	6.29	0.415823	60
1	. 5546588	6.48 5.48	$.9701(1)$.970055	. 81	$\begin{aligned} & .584555 \\ & .584932 \end{aligned}$	6.29	.415445 .415068	$\begin{aligned} & 59 \\ & 68 \end{aligned}$
2 3 4	.554987 .555315	5.47	.970055 .970006	. 81	.584932 .585309	6.28	. 4151468168	68 67
3 4	. 5555315	5.47	. 9700065	. 81	. 58556886	6.28	.414691 .414314	58 56
5	. 555971	5.46	. 969909	81	. 586062	6.28	. 413938	55
6	. 556299	5.46 5.45	. 969860	. 81	. 586439	6.27	. 413561	54
7	. 556626	6.45 5.45	. 969811	. 81	. 586815	6.27 6.26	. 413185	53
8	556953	5.45 5.44	.969762	. 81	. 587190	6.26 6.26	. 412810	52
9	. 557280	5.44 5.44	. 969714	. 81	. 587566	6.26 6.26	. 412434	51
10	9557606		9.969665		9.587941		0.412059	60
11	. 557932	6.44 5.43	. 969616	. 82	. 588316	6.25	. 411684	49
12	. 558258	6.43 6.43	. 969567	. 82	. 588691		. 411309	48
13	. 558583	5.43 5.42	. 969518	. 82	. 589066	6.24	. 410934	47
14	. 558909	5.42 5.42	. 969469	. 82	. 589440	6.24	. 410560	46
15	. 559234	5.41	. 969420	. 82	. 589814	6.24 6.23	. 410186	45
16	. 5595558	5.41	. 9693370	. 82	. 590188	6.23 6.23	. 409812	44
17	. 559888	5.40	. 969327	. 82	. 590562	6.23 6.22	. 409438	43
18	. 560207	5.40 5.40	. 969272	. 82	. 5901935	6.22	. 409065	42
19	. 560531	6.39	. 969223	. 82	. 591308	6.22	. 408692	41
20	9.560855	5	9.969173	82	9.591681		0.408319	40
21	. 561178	6.38	. 969124	. 82	. 592054	6.21	. 407946	39
22	. 561501	6.38 5.38	. 969075	. 82	. 592426	6.20	. 407574	38
23	. 561824	5.38 5.37	. 9699025	. 82	. 592799	6.20	. 407201	37
24	. 562146	5.37 5	. 9689796	. 83	. 593171	6.20	. 406829	36
25	. 5624688	5.37	. 96889896	. 83	. 5933542	6.19	. 406458	35
26	. 562790	6.36	.968877	. 83	. 593914	6.19	. 406086	34
27	. 563112	6.36 6.36	. 9688877	. 83	. 694285	6.18	. 405715	33
28	. 563433	6.36 5.35	. 9687777	. 83	. 594656	6.18	. 405344	32
29	. 563755	6.35	728	83	. 695027	6.18	. 404973	31
30	9.564075		9.968678		9.595393		0.404602	30
31	. 664396	5.34	. 968628	83	.595763	6.17	. 404232	29
32	. 564716		. 968578	. 83	. 596138	6.17	. 403862	28
33	. 565036	5.33	. 968528	. 83	. 596508	6.16	. 403492	27
34	. 565356	5.32	. 968479	. 83	.596878	6.16	. 403122	26
35	. 665676	6.32 5.32	. 968429	. 83	. 597247	6.15	. 402753	25
36	. 565995	6.32	. 968379	. 83	. 597616	6.15	. 402384	24
37	. 566314	6.32 5.31	. 968329	. 83	. 597985	6.15	. 402015	23
38	. 566632	5.31	. 968278	. 84	. 698354	6.15	. 401646	22
39	. 566951	5.30	. 968228	. 84	. 598722	6.14	. 401278	21
40	9.567269		9.968178		9.599091		0.400909	20
41	. 567587	5.30	. 968128	84	. 599459	6.13	. 400541	19
42	. 567904	5.29 5.29	. 968078	. 84	. 599827	613 6.13	. 400173	18
43	. 568222	5.29	. 968027	.84	. 600194	6.13	. 399806	17
44	. 568539	5.23 5.28	. 967977	. 84	. 60056 \%	6.12 6.12	. 399438	16
45	. 568856	5.28 5.28	. 967927	. 84	. 600929	6.12 6.12	. 399071	15
46	. 569172	5.27	. 967876	. 84	. 601296	6.11	. 398704	14
47	. 569488	5.27	. 967826	. 84	. 601663	6.11	. 398337	13
48	. 569804	5.26	. 9677775	. 84	. 602029		. 397971	12
49	. 570120	5.26 5.26	. 967725	. 84	. 602395	6.10 6.10	. 397605	11.
50	9.570435		9.967674		9.602761		0.397239	10
51	. 570751	5.25 5.25	. 967624		. 603127	6.10 6.09	. 396873	9
52	. 571066	5.25 5.24	. 967573	.84	. 603493	6.109 6.09	. 396507	8
53	. 571380	5.24 5.24	. 967522	. 85	. 603858	6.09 6.09	. 396142	7
54	. 571695	5.24 5.24	. 967471	.85	. 604223	6.08	. 395777	6
55	. 572009	5.23	. 967421	. 85	. 604588	6.08 6.08	. 395412	5
56	. 572323	5.23	. 967370	. 85	. 604953	6.07	. 395047	4
57	572636	5.22	. 967319	. 85	. 605317	6.07	. 394683	3
58	572950 .673263	6.22	. 9672688	. 85	. 6056682	6.07	. 3943318	2
60	. 673575	5.21	. 967166	. 85	. 606410	6.06	. 393590	0
M.	Sosinco.	D. $1^{\prime \prime}$.	Sine.	D. $1^{\prime \prime}$.	Cotrang.	D. $1^{\prime \prime}$.	Tang.	M.

4.	Sinc.	D. $1^{\prime \prime}$.	Corine.	D. $1^{\text {n }}$.	Tang.	D. ${ }^{\prime \prime}$.	Cotang.	M.
0	9.573575		9.967166		9.606410		0.393590	60
1	. 573888	5.21	. 967115	. 85	. 606773	6.00 6.06	. 393227	59
2	. 574200	5.21	. 967064	. 85	. 607137	6.06 6.05	. 392363	58
3	. 574512	5.20	. 967013	. 85	. 607500	6.05 6.05	. 392500	57
4	. 574824	5.19	. 966961	. 85	. 607863	6.05	. 392137	56
5	. 575136	5.19	. 9669910	. 85	. 608225	6.04	. 391775	55
6	. 575447	5.19 5.18	. 966859	. 85	. 6085888	6.04	. 391412	54
7	. 575758	5.18 5.18	. 966808	. 86	. 6089550	6.03	. 3911050	53
8	. 576069	5.18 5.17	.966756 .966705	. 86	.609312 .609674	6.03	. 3901688	52
9	. 576379	5.17 5.17	. 966705		. 609674	6.03	. 390326	51
10	9.576589		9.966653	. 86	9.610036	6.02	0.389964	50
11	. 5769999	5.17 5.16	. 9666602	. 86	. 610397	6.02	. 389603	49
12	. 577309	5.16 5.16	. 9666550	. 86	. 610759	6.02	. 389241	48
13	. 5777618	5.15	. 9664999	. 86	. 611120	6.01	. 388880	47
14	. 577927	5.15	. 9666447	. 86	. 611480	6.01	. 388520	46
15	. 578236	5.14	. 9666395	. 86	. 611841	6.01	. 388159	45
16	. 5785855	5.14 5.14	966314 .966292	. 86	.612201 612561	6.00	. 3877799	44
17		5.14 5.14	. 9666292	. 86	612561 612321	6.00	. 387439	43
19	. 579470	5.13	. 96	. 86	613281	5.99	. 386719	41
20	9.579777		9.966136		9.613341		0.336359	40
21	. 580085	5.12 5.12	. 366035	. 87	. 614000	5.98	. 386000	39
22	. 580392	5.11	. 966033	. 87	. 614359	5.98	. 335641	38
23	. 580699	5.11	. 965981	. 87	. 614718	5.98	. 385282	37
24	. 581005	5.11	.96:5929	. 87	. 615077	5.97	. 384923	38
25	. 581312	5.10	. 96.5876	. 87	. 615435	5.97	. 384565	35
26	. 581618	5.10	. 9655824	. 87	. 61516151	5.97	. 3838449	34 33
27	. 681924	5.09	. 9655720	. 87	. 616509	5.96	. 38384919	33
28	. 58822535	5.09	. 965668	. 87	. 616867	5.96	. 383133	31
29	. 582535	5.09	. 365668	. 87		5.96		31
30	$9.5 \$ 2340$		9.965615		9.617224		0.382776	30
31	. 583145	5.08	. 9655563	. 87	. 617582	5.95	. 382418	29
32	. 583449	5.07	. 9655511	. 87	. 617939	5.95	. 382061	28
33	. 5833754	5.07	. 9655458	. 87	. 618295	5.94	. 381705	27
34	. 584058	5.06	. 9655406	. 88	.618652 .619008	5.94	. 381348	26
35	. 5843661	5.06	. 9655353	. 88	. 61919008	5.94	. 3819692	25
36 37	. 5849668	5.06	. 9653248	. 88	.619364 .619720	5.93	. 3800280	${ }_{23}^{24}$
38	. 53.5272	5.05	. 965195	. 88	. 6201076	5.93	. 379924	22
39	. 585574	5.05	. 965143	. 88	. 620432	5.93	. 379568	21
40	9.585377		9.965090		9.620787		0.379213	20
41	. 586179		. 965137	. 88	. 621142	2	378858	19
42	. 536882	5.03	. 964954	. 88	. 621497	5.92	.378503	18
43	586783	5.03	. 964931	. 88	. 621852		378148	17
44	587085	5.03 5.02	. 961879	. 88	. 6222017	5.91	. 377793	16
45	587386	5.02 5.12	. 964826	. 88	. 622561	5.90	. 377439	15
46	. 537638	5.12 5.01	. 964773	. 88	. 622915	5.90 5.90	377085	14
47	. 587939	5.01	. 964720	. 88	. 6232699	5.90 5.90	. 376731	13
48	. 588239	5.01	. 9646466	. 89	${ }_{6} 623623$	5.89	376377	12
49	. 588590	5.00	. 964613	. 89	. 6 ¢3976	5.89	. 376024	11
50	9.588890		9.964560		9.624330		0.375670	10
51	. 589190	5.00 4.99	. 964507	. 89	. 624683		. 375317	9
52	599439	4.99 4.99	. 964454	. 89	. 625036	5.88 5.88	. 374964	8
53	589789	4.99	. 964400	. 89	. 625388	5.88 5.88	. 374612	7
54	.590038	4.99	. 964347	. 89	. 62.5741	5.88	. 374259	6
55	. 5903887	4.98 4.98	. 964294	. 89	. 626093	5.87	. 373907	5
56	. 590686	4.97	. 964240	. 89	. 626445	5.87	. 373555	4
57	. 5909884	4.97	. 964187	. 89	. 6267979	5.86	. 373203	3
58	. 591282	4.97	. 964133	. 89	. 627149	5.86	. 372851	2
59 60	. 591581878	4.96	.964330 .961026	. 89	. 627501	5.86	.372499 .372148	1 0
60	591878		. 961026					
M.	Corine.	D. $1^{\prime \prime}$.	Sine.	D. ${ }^{\prime \prime}$.	Cotarg.	D. $1^{1 \prime}$.	Tang.	M.

M.	Sino.	D. $1^{\prime \prime}$.	Cosi	D. 1^{11}.	Tang.	D. $1^{\prime \prime}$.	Cotang.	M.
0	9.591878	4.96	9.964	. 89	9.627852		0.372148	60
1	. 592176	4.95	.9633972	. 89	. 6282803	5.85	. 371797	59
2	.592473	4.95	963919	. 90	. 228554	5.85	. 371446	58
8	.592770	4.95	963865	. 90	. 628905	5.84	. 371095	57
4	. 5933167	4.94	. 963811	. 90	.6292255	5.84	. 370745	56
5	. 5933363	4.94	. 9633757	. 90	. 629606	5.84	. 370394	55
6	. 593659	4.93	. 963704	. 90	. 629	5.83	. 370044	54
7	. 593955	4.93	5	. 90	. 6303	5.83	. 369694	53
8	. 594251	4.93	. 963596	. 90	. 630656	5.83	. 369344	52
9	. 594547	4.92	. 963542	. 90	. 631005	5.82	368995	51
10	9.594842	4.92	9.963	. 90	9.631	5.82	0.36	50
11	. 595137	4.91	. 963434	. 90	. 631704	5.82	. 368296	49
12	. 595432	4.91	. 963379	. 90	. 632053	5.81	. 367947	48
13	. 595727	4.91	. 963325	. 90	. 6324112	5.81	. 367598	47
14	. 596021	90	. 963271	. 90	. 632750	1	. 367250	46
15	. 596315	4.90	. 963217	. 90	. 633049	5.80	. 366901	45
16	. 596609	4.89	63163	. 91	. 633447	5.80	. 366553	44
17	. 596903	4.89	. 963108	. 91	. 633795	5.80	. 366805	43
18	. 597196	4.89	. 963054	. 91	. 634143	5.79	. 365857	42
19	. 597490	4.88	. 962999	. 91	. 634490	5.79	. 365510	11
20	9.597783	4.88	9.9629	. 91	9.6348		0.365162	40
21	. 598075	4.88 4.88	. 962890	. 91	. 635185	5.78	364215	39
22	. 598368	4.88 4.87	. 962336	. 91	. 635532	5.78	. 364468	38
23	. 59866	4.87	. 962781	. 91	. 635879	5.78	. 364121	37.
	. 59895	4.86	. 962727	. 91	. 636226	6.78	363774	36
25	. 5992	4.86	9626	. 91	. 6	5.77	. 363428	35
28	. 599536	4.86	2617	. 91	.636919	5.77	. 363081	34
27	. 599827	4.85 4.85	. 962562	. 91	. 637265	5.77	. 362735	33
28	. 600118	4.85	. 9682508	. 91	. 637611	5.76	. 362389	32
29	. 600409	4.85	53	. 1	. 637956	6.76	. 362044	31
30	9.600700		9.96235		9.6383		0.361698	30
31	. 600990		. 962313	. 92	. 638647		. 361353	29
32	. 601230	4.83	. 962288	. 92	. 635992	5.75	. 361008	28
33	. 601570	4.83	.9622\%	. 92	. 639337	5.75	. 3601663	27
34	. 601860	4.83 4.83	. 962178	.92	. 639682	5.74	. 360318	26
35	. 602150	4.83 4.82	.962123	. 92	. 640027	5.74	.359973	25
36	. 602439	4.82	. 9621067	. 92	. 640371	5.74	. 359629	24
37	. 602728	4.81	. 962012	. 92	. 640716	5.73	. 359284	23
38	. 603017	4.81	. 961957	. 92	. 641060	5.73	.358940	22
39	. 603305	4.81	. 961902	. 92	. 641404	6.73	. 358596	21
40	9.603594		9.961846		9.64174		0.358253	20
41	. 603382	4.80	. 961791	. 92	. 642091	6.72	. 357909	19
42	. 604170	4.89	. 961735	. 92	. 642434	5.72	. 357566	18
43	. 604457	4.79	. 961680	. 93	. 642178	5.72	. 357223	17
44	. 604745	4.79	. 961624	. 93	. 643120	5.71	. 356880	16
45	. 605032	4.78	. 961569	. 93	. 643463	5.71	. 356537	15
46	. 605319	4.78	. 961513	. 93	. 643806	5.71	. 356194	14
47	. 6050589	4.78 4.78	. 961458	. 93	. 644148	5.70	.355852 355510	13
48	. 60589	4.77	. 961402	. 93	. 64	5.70	. 3555516	12
49	. 6061	4.77 .	. 9613	. 93	. 644832	5.70	355168	11
50	9.60648		9.961290		9.645		0.354826	10
51	. 60675	4.76	. 961235	93	. 6455	6.69	. 354484	9
52	. 607036	4.76	. 951179	. 93	. 645357	0.69	.354143	8
53	. 607322	4.75	. 961123	. 93	. 646199	5.69	.353801	7
54	. 607607	4.75	961067	. 93	. 616540	5.68	. 353460	6
55	. 607898	4.74	961011	. 93	646881	5.68	. 353119	5
	. 608177	4.74	. 9660955	. 93	647222	5.68	.352778	
		4.74	.960399	. 94	. 647562	5.67	. 352438	3
69	. 609029	473	. 960786	94	. 64×243	5.67	. 351757	1
60	. 609313	4.73	. 960730	94	. 648583	5.6	. 351417	0
M.	Cosine.	D. $1^{1 \prime}$	Sine	D. ${ }^{1 \prime}$.	Cotang	D. $1^{\prime \prime}$.	Tang.	M.

M.	Sino.	D. $1^{\prime \prime}$.	Cosive.	D. $1^{\prime \prime}$.	Tang.	D. 1^{1}.	Cotang.	M
0	9.609313		9.960730		9.648583		0.351417	60
1	. 6119597	4.73 4.72	9661674	94	. 64×923	5.67 5.66	. 351077	59
2	. 6199580	72	. 9611618	94	. 649263	5.66 5.66	. 350737	58
3	. 610164	4.72 4.72	. 9611561	. 94	. 649602	6	. 350398	57
5	. 610447	4.71	. 961505	94	. 649942	5.65	. 350058	56
5	. 610729	4.71	. 961448	. 91	. 65 (1231	5.65	. 319719	55
6	. 611012	4.71	. 9603392	94	. 650620	5.65 5.65	. 349380	54
7	. 611294	4.70	. 9603335	. 94	. 650959	5.65	349041	53
8	. 611576	4.70	. 9602279	.94	. 651297	5.64	. 348703	52
9	. 611858	4.70	. 960222	. 9	. 651636	d	. 348364	51
10	9.612140	4.69	9.96016		9.651		0.348026	50
11	. 612421	4.69	. 960119	. 95	. 652312	5.64	. 347688	49
12	. 612702	4.69	. 960052	. 95	. 652650	5.63	. 347350	48
13	. 612983	68	. 959995	. 95	. 652938	5.63	. 347012	47
14	. 613264	4.68	. 959938	. 95	. 653326	3	. 346674	46
15	. 613545	4.67	. 959882	. 95	. 653663	5.62	. 346337	45
16	. 613325	4.67	. 959325	.95	. 654000	5.62	. 36010	44
17	. 614105	4.67	. 959768	. 95	. 654337	5.62	. 45663	43
18	. 614385	4.66	. 959711	. 95	. 654674	5.61	345326	42
19	. 614665	4.66 4.66	. 959654	. 95	. 655011	5.61	. 344939	41
20	9.614944		9959		9.655		0.344	40
21	. 615223	4.65	. 959539	${ }_{95}$. 6556	5.61	. 314316	39
22	. 615502	4.65	. 959482	. 95	656020	5.61	. 343930	38
23	.615781	64	. 959425	.95	. 656356	5.60	. 343644	37
24	. 616060	64	. 959368	${ }^{.96}$.656692	5.60	. 343308	36
25	.616333	64	. 959310	. 96	. 657023	b. 60	. 342972	35
26	. 616616.	4.63	.959253	. 96	. 657364	5.59	.342636	34
27	. 616394		. 959195		. 657699		.342301	33
28	. 617172	4.63	. 9.99139	96	. 658034	5.59	. 311966	32
29	. 617450		. 959080		. 658369	5.58	. 31631	31
30	9.61772		9.959023		9.658704		0.341296	30
31	. 618004		. 959965		. 653039		. 340961	29
32	. 618231	4.61	. 959908	. 96	659373	5.58	. 341627	28
33	. 618558	4.61	. 9598850	. 96	659708	6.57	. 340292	27
34	. 618834	4.61	. 9538792	.96	. 660042	5.57	. 339959	26
35	. 619110	4.60	. 958734	.96	660376	5.67	. 339624	25
36	. 619336	4.60	. 955677	.96	$660 \cdot 10$	5.56	. 339290	24
37	. 619662	4.59	. 955619	97	. 661043		. 33×957	23
38	. 619938		. 953561		. 661377		. 333623	22
39	. 620213		. 9585 C 3		710		. 338290	21
40	9.620488		9.958445		9.662043		0.337957	20
41	. 620763	59	.95338\%		.6623;6		$33 ; 624$	19
42	. 621038	4.58	. 958329	.97	. 662709	5.54	337\%291	18
43	. 621313	4.57	. 9588271	.97	. 663042	5.54	. 336958	17
44	. 621587	4.57	. 959213	. 97	.663375	5.54	336625	16
45	. 621861	4.57	. 958154	. 97	. 663707	5.54	336293	15
46	. 622135	4.56	. 958096	. 97	664039	5.63	335961	14
47	. 622409	4.56	. 953038	.97	.6643ī1	5.53	335629	13
48	. 622692	4.56 4.56	. 957979	. 97	664703	5.83	335297	12
49	. 6222956	4.56	. 957921		665035		33496.5	11
50	9.623229		9.957863		9.665366		0.334634	10
51	. 623502		. 957804		665698	5.52	334302	9
52	. 623774		. 957746		666029	5.52	. 333971	8
53	. 624047		957687	. 98	666360		. 333640	7
54	. 624319	4.53	957628	98	666691	5.51	.3333309	6
55	. 624591	4.53	. 957570	98	667021	5.51	332979	5
66	. 624863	4.53	. 957511	. 98	667352	5.51	. 3322648	4
57	. 625135	4.52	. 957452	98	667682	5.50	.332318	3
58	. 625106	4.52	957393	. 98	668013	5.50	331987	2
M.	Corlne.	D. $1^{\prime \prime}$	Sino.	D. $1^{\prime \prime}$	Cotang.	D. $1^{\prime \prime}$.	Tang.	M.

14	Slue.	D. 1".	Cosine.	D 111.	Thung.	D. 1".	Uotaus.	M.
0	9.625948	4.51	9.957276	. 88	9.665673	5.50	0.331327	60
1	. 626219	4.61	. 957217	. 98	. 669002	6.49	. 330998	59 59
8	. 626490	4.61	. 957158	. 98	. 669332	6.49 5.49	. 330668	58
3	. 626760	4.60	. 957099	. 98	. 669661	6.49	. 330339	57
4	. 627030	4.50	. 9576981	. 99	. 6699991	6.49	. 330009	56
5	. 627300	4.60	. 9569881	. 99	. 670320	5.48	. 3296850	65
8	. 6275780	1.19	. 9569862	. 99	.670649 .670977	5.48	329351 329023	54
8	. 6288109	4.49	. 9568808	. 99	. 67130977	5.48	. 3288694	63 62
9	. 628378	4.49 4.48	. 956744	. 99	. 671635	5.47	. 328365	61
ic	9.628647	4.48	9.956684	. 99	9.671963	5.47	0.328037	50
11	. 623916	4.48	. 956625	. 99	. 672291	6.47 6.47	. 327709	49
12	. 629185	4.47	. 956566	. 99	. 672619	6.47 5.46	. 327381	48
13	. 629453	4.47	. 956506	. 99	. 672947	6.46 5.46	.327053	47
14	. 629721	4.47	. 956447	. 99	. 673274	5.46	. 326726	46
15	. 629989	4.46	. 956387	.99	. 673602	6.46 6.46	. 326398	45
16	. 630257	4.46	. 956327	. 99	. 673929	6.46 5.45	. 326071	44
17	. 630524	4.46	956268	. 99	. 674257	6.45 5.45	. 325743	43
18	. 630792	4.45	. 9556218	1.00	. 674584	6.45	. 325416	42
19	. 631059	4.45	. 956148	1.00	. 674911	6.45	. 325089	41
20	9.631326		9.956089	. 00	9.675237		0.324763	40
31	. 631593	4.44	. 9566129	1.00	. 635564	6.44	. 324436	39
22	. 631859	4.44	. 955969	1.00	. 675890	5.44 5.44	. 324110	38
23	. 63225	4.44	. 955909	1.00	.676217	6.44	323783	37
24	. 632392	4.43	. 955549	1.00	. 676543	6.43	323457	36
25	. 632658	143	. 95578789	1.00	. 676869	543	. 323131	35
26	. 632923	4.43	. 9555729	1.00	. 677194	5.43	. 322806	34
27	. 633189	4.42	. 9555669	1.00	. 6777520	5.42	. 322480	33
28	.633454 .633719	4.42	. 9555609	1.00	. 6778171	5.42	. 322189	32
29	. 633719	4.42	. 965548	1.00	. 678171	5.42	321829	31
30	9.633984	4.41	9.955488		9.678496		0.321504	30
31	. 634249	441	. 955428	1.01	. 678821	5.41	. 321179	29
32	. 634514	4.41	. 9555368	1.01	. 679146	5.41	. 320854	28
33	. $6347{ }^{\circ} 8$	4.40	. 955307	1.01	. 679471	5.41	. 320529	27
34	. 635042	4.40	. 9552477	1.01	. 679795	${ }_{6}^{6.41}$. 320205	26
35	. 635306	4.40	. 9555186	1.01	. 680120	6.40	. 319880	25
36	.6355570	4.39	. 9555126	1.01	. 680444	5.40	.319556	24
37	. 6358834	4.39	. 9555065	1.01	. 680768	5.40	. 319232	23
38 38	. 636097	4.39	. 955505	1.01	. 681092	5.40	. 318909	22
39	. 636300	4.38	. 954944	1.01	. 681416	5.39	. 318584	21
40	9.636623		9.954883		9.681740		0.318260	20
41	. 636886	4.38	. 954823	1.01	. 682063	5.39 5.39	. 317937	19
42	. 637148	4.38 4.37	. 954762	1.01	. 682387	5.39 6.39	. 317813	18
43	. 637411	4.37	. 954701	1.01	. 682710	5.38	. 317290	17
44	. 637673	4.37	. 954640	1.02	. 683033	6.38	.316967	16
45	. 637935	4.36	. 954579	1.02	. 683356	6.38 6.38	.316644	15
46	. 638197	4.36	. 954518	1.02	. 683679	6.38	.316321	14
47	. 638458	4.36	. 954457	1.02	. 684001	5.37	315999	13
48	. 638720	4.35	. 9544396	1.02	. 684324	5.37	. 315676	12
49	. 638981	4.35	35	1.02	. 684646	5.37	. 315354	11
50	9.639242		9.954274		9.684968		0.315032	10
51	. 639503	4.34	. 954213	1.02	. 685290	6.36	. 314710	9
52	. 639764	4.34	. 954152	1.02	. 685612	5.36	. 3143888	8
53	. 640924	4.34	. 954090	1.02	. 685934	5.36	. 314068	7
54	. 640284	4.33	. 9543968	1.02	. 6868525	5.36	. 313745	6
56	. 640544	4.33	. 9539688	1.02	. 68685877	5.35	. 313423	4
57	. 641064	433	. 953845	1.02	. 687219	5.35	. 312781	3
58	. 641324	4.32	. 953783	1.03	687540	5.35	. 312460	2
59	. 641583	4.32 4.32	. 953722	1.03	687861	6.35 5.35	. 312139	1
60	. 641842	4.32	.SE3660	1.03	. 638188	6.35	3118	0
\%	Cosine	D $1^{\prime \prime}$	Slue	D. $1^{\prime \prime}$.	Cotang	11.	Tang.	1.

M.	Sine.	D. $1^{\prime \prime}$.	Cosine.	D. $1^{\prime \prime}$.	Tang.	D. $1^{\prime \prime}$.	Cotang.	M.
0	9.641846	4.32	9.953660	1.03	9.688182		0.311818	60
1	. 642101	4.31	. 953599	1.03	. 688502	5.34	. 311499	59
2	.f-42360	4.31	. 9535337	1.03	.688523	5.34	. 3111777	58
3	. 642618	4.31	. 953475	1.03	. 6899143	5.34	. 3110557	57
5	${ }^{.642877}$	4.30	. 953413	1.03	. 689463	6.33	.310537	56
5	${ }^{.643135}$	4.30	.953352 .953290	1.03	.689783 .690103	5.33	310217 309897	55
7	. 643650	4.30	. 9533228	1.03	. 690423	5.33	. 309577	53
8	. 643908	4.29 4.29	. 953166	1.03	. 690742	5.33	309258	52
9	. 644165	4.29 4.29	. 953104	1.03 1.03	. 691062	6.32 6.32	. 308938	51
10	9.644123	4.28	9.953042	1.03	9.691381	5.32	0.308619	50
11	. 644630	4.28	. 952980	1.04	. 691700	6.32	. 308300	49
12	. 644936	4.28	. 952918	1.04	. 692019	5.31	. 307981	48
13	. 645193	4.27	. 952855	1.04	. 6922338	5.31	307662	47
14	. 645450	4.27	. 952793	1.04	. 6922656	5.31	2.734	4.6
15	. 645706	4.27	. 9527313	1.04	${ }^{692975}$	5.31	. 317025	45
16	. 645962	4.26	. 9525669	1.04	69	5.30	. 306707	14
17	. 646218	4.26	. 952606	1.04	${ }_{6} 693693$	5.30	. 306388	43
18	. 646474	4.26	. 9525244	1.04	. 693930	6.30	. 306070	42
19	. 646729	4.26	. 952481	1.04	. 694248	5.30	. 305752	41
20	9.646984	4.25	9.952419	1.04	9.694566	5.29	0.305434	40
21	. 647240	4.25	. 952356	1.04	. 694883	5.29	. 305117	39
22	. 647494	4.25	. 9522294	1.04	${ }^{.695201}$	5.29	. 304749	38
23	. 647749	4.24	. 952231	1.04	.695518 .695836	6.29	. 304482	37
24	. 64888258	4.24	${ }^{.952168}$	1.05	. 69968153	6.29	. 3041647	35
25	. 648512	4.24	. 9521043	1.05	. 695470	5.28	303530	34
27	. 648766	$\begin{array}{r}4.23 \\ 4.23 \\ \hline\end{array}$. 951980	1.05	. 696787	5.28	. 303213	33
28	. 649020	4.23 4.23	. 851917	1.05	. 697103	5	. 302397	32
29	. 649274	4.23 4.22	. 951854	1.05	. 697420	6.28	. 302580	31
30	9.649527		9.951791	1.05	9.697736		0.302264	30
31	. 649781	4.22 4.22	. 951728	1.05	. 698053	5.27	. 301947	29
32	. 650034	4.22 4.22	. 951665	1.05	. 698369	5.27 5.27	. 301631	28
33	. 650287	4.21	. 951602	1.05	.698685	6.27 5.26	. 301315	27
34	. 650539	4.21	. 951539	1.05	. 6990001	5.26	. 300999	28
35	. 650792	4.21	. 951476	1.05	. 6993316	6.26	. 300684	25
36	. 651044	4.20	. 951412	1.05	${ }^{699632}$	6.26	. 300368	24
37	. 651297	4.20	. 951319	1.06	${ }^{.699947}$	5.26	. 300053	23
38	. 651549	4.20	. 951286	1.06	. 700263	5.25	. 2999737	22
39	. 651800	4.19	. 951222	1.06	. 710578	6.25	. 299422	21
40	9.652452		9.951159		9.700893		0.299107	20
41	. 652304	4.19	. 951096	1.06	. 701208	5.25	. 298792	19
42	. 652555	4.19 4.18	. 951032	1.06	. 701523	5.24	. 298477	18
43	. 652306	4.18 4.18	. 950968	1.06 1.06	. 701837	5.24 5.24	. 298163	17
44	. 653057	4.18	. 950905	1.06	. 702152	5.24 5.24	. 297848	16
45	. 653308	4.18	. 950841	1.06	.702466	5.24	. 2977534	15
46	. 653558	4.17	. 950778	1.06	.702781	5.24	. 297219	14
47	${ }^{.653508}$	4.17	. 950714	1.06	. 7030985	5.23	. 296905	13
48 49	654059 654309	4.17	. 95065058	1.06	.703419 .703722	5.23	. 2965278	12
50	9.654558	4.16	9.9505	1.06	9.704038	5.23	0.295964	10
51	. 654808	4.16	. 950458	1.07	. 704350	5.23	. 295650	,
52	. 655058	4.16 4.15	. 950393	1.07 1.07	. 704663	5.22	. 295337	8
53	. 655307	4.15 4.15	. 950330	1.07	. 704976	5.22 5.22	. 295024	7
54	. 655555	4.15	. 950266	1.07	.705290	5.22	. 294710	6
55 56	. 6555805	4.15	. 9502012	1.07	. 705603	6.22 6.22	. 294397	5
56 57	. 65603054	4.14	. 950138	1.07	. 705916	5.21	. 2943878	3
57 58	.656302	4.14	. 9500074	1.07	. 70622841	5.21	.293772 .293459	3 8 8
59	. 6567699	4.14	. 949945	1.07	. 706854	5.21	. 293146	1
60	. 657047	4.13	. 949381	1.07	. 707166	5.21	. 292834	0
M.	Cosine.	D. $1^{\prime \prime}$.	Sline.	D. 1'1.	Ootsang.	D. $1^{\prime \prime}$.	Tang	M.

M.	She.	D. $1^{\prime \prime}$.	Cosine.	D. $1^{\prime \prime}$.	Tang.	D. $1^{\prime \prime}$.	Cotang.	M.
0	9.657047	4.13	9.9198	1.07	9.707166	5.20	0.292834	60
	. 657295	4.13	. 919816	1.07	. 707478	5.20	. 29292522	59
2	. 657542	4.12	. 949752	1.07	707790	5.20	. 292210	58
3	. 657790	4.12	. 9496638	1.08	.708102	5.20	. 291598	57
5	. 65383837	4.12	949623	1.08	. 708726	5.20	291584	56
5	. 6588531	4.12	.949494	1.03	. 709037	5.19	290963	54
7	. 658778	4.11	. 949429	1.08	. 709349	5.19	291651	53
	.659025	4.11	. 949364	1.08	. 709660	19	. 290340	52
8	.659271		929300		709971	5.19	. 290029	51
10	8.659517		9.943235	1.08	9.710282		0.289718	50
11	. 659763	10	. 949170	1.08	. 710593	5.18	. 289407	49
12	. 6601109	4.10	. 949105	1.08	. 710904	5.18	. 239096	48
13	.660255	4.09	. 949040	1.08	. 711215	6.18	. 288785	47
14	. 680501	4.09	. 948975	1.08	. 711525	5.17	. 288475	46
15	. 6660749	4.09	.948910	1.08	. 711836	6.17	. 288164	45
16	. 6609991	4.08	. 918845	1.09	. 712146	5.17	.287854	44
17	. 6661236	4.08	. 94878780	1.09	.712456	5.17	. 2875724	43
18	.661481 .661726	4.08	. 943715	1.09	. 712766	5.17	. 28723824	42
19	. 661726	4.08	. 948	1.09		5.16	. 286924	41
20	9.661970	. 07	9.9485	1.09	9.713	5.16	0.286614	40
21	. 662214	4.07	. 943519	1.09	. 713696	5.16	. 236304	39
22	. 662159	4.07	. 943454	1.09	. 714005	5.16	. 285995	38
23	. 662703	4.06	. 9483	1.09	. 714314	5.15	. 285686	37
24	. 662916	4.1	. 943323	1.09	. 714624	5.15	. 285376	36
25	. 663190	4.16	. 9182587	1.09	. 714933	6.15	. 285067	35
$\stackrel{26}{27}$. 6634337	4.05	. 948192	1.09	. 715242	5.15	. 2847458	34
27	. 6633677	4.05	943060	1.09	.715860	5.15	284140	33
29	. 6634163	4.05	. 947996	1.09	. 716168	6.14	. 283832	31
30	9.66440		9.9479		9.716		0.283	30
81	. 66464	4.04	. 947863	1.10	. 716785	5.14	. 283215	29
32	. 664391	4.04 4.04	. 947797	1.10	. 717093	5.14	. 282907	28
33	. 635133	4.04 4.03	. 947731	1.10	. 717401	6.12 6.13	. 282599	27
34	.665375	4.03	. 917665	1.10	. 717709	5.13 5.13	.282291	26
35	. 665517	4.03	. 917760	1.10	. 718017	6.13 5.13	. 281983	25
36	. 6655359	4.03	. 947533	1.10	. 718325	5.13	. 281675	24
37	. 666100	4.02	. 947467	1.10	. 718633	6.13	. 281367	23
38	. 666312	4.02	. 947401	1.10	. 718940	6.12	. 281060	22
39	. 666533	4.02 4.02	77335	1.10	. 7192	6.12 5.12	. 280752	21
40	9.666824		9.947269	1.10	9.71955		0.280445	20
41	. 667065	4.01	. 947203	1.10	. 719862	6.12	. 280138	19
42	. 667305	4.01	. 947136	1.11	.720169	6.11	. 279331	18
43	. 667546	4.01	. 947070	1.11	720476	5.11	.279524	17
44	. 66778	4.00	. 9477004	1.11	. 720783	5.11	.279217	16
45	. 663027	4.00	. 9469337	1.11	. 72108	5.11	. 278911	15
46	. 6682687	4.00	. 946871	1.11	. 721396	5.11	. 278604	14
47	. 6635506	3.99	. 9163804	1.11	.721702	5.10	.278298	13
48 49	. 6637936	3.99	. 94646738	1.11	. 7222009	5.10	. 277991	12
49	. 668986	3.99	. 91667	1.11	. 722315	5.10	. 277685	11
50	9.669225	3.99	9.946604		9.722621		0.277379	10
51	669464	3.98	. 916533	1.11	. 724.327	6.10	. 277073	9
52	669703	3.98	. 946471	1.11	. 723232	5.09	. 276768	8
53	. 6699942	3.93	. 94646404	1.11	. 7232338	5.09	. 276462	7
54	. 670181	3.98	. 9463337	1.12	.721	5.09	. 276156	6
55	. 670419	3.97	. 976270	1.12	244	5.09	. 275351	5
57	. 670896	3.97	. 9468136	1.12	. 724760	5.09	275240	4
68	. 671134	3.97	. 9461669	1.12	.725065	5.08	. 274935	2
55	671372	3.96	. 946102	1.12	. 725370	5.08	. 274630	1
60	.671609	3.96	. 945935	112	. 725674	5.05	. 274326	0
M	Contre.	D. $1^{\text {H. }}$	Sine.	D $1^{\prime \prime}$.	Cotang	D. 11	Tang.	4.

M.	Slno.	D. $1^{\prime \prime}$.	Cosine.	D. 11.	Tang.	D. $1^{\prime \prime}$.	Cotang.	M.
0	9.671609	3.96	9.945935	1.12	9.725674	5.08	0.274326	60
1	. 671847	3.96 3.96 3	. 9445868	1.12	.7245979 .726284	5.08 5.08	.274021 .273716	59 58
8	. 672321	3.95	. 94545733	1.12	.726284 .726588	6.07	.273716 .273412	58 57
4	. 672558	3.95 3.95	. 945666	1.12	. 726892	6.07	. 273108	56
5	. 672795	3.95 3.94	. 945598	1.12	. 727197	5.07	. 272803	56
6	. 673032	3.94 3.94	. 945531	1.12	. 727501	5.07	. 272499	54
7	. 673268	3.94 3.94	. 945464	1.12	. 727805	5.07	. 272195	53
8	. 673505	3.94 3.94	. 945396	1.13 1.13	. 728109	6.06 5.06	. 271891	52
9	.673741	3.94 3.93	. 945328	1.13 1.13	. 728412	5.06	. 271588	51
10	9.673977	3.93	9.945261	1.13	9.728716	5.08	0.271284	50
11	. 674213	3.93 3.93	. 945193	1.13	. 729020	6.06	. 270980	49
12	. 674448	3.93 3.93	. 945125	1.13 1.13	. 729323	6.06 5.05	. 270677	48
13	. 674684	3.93 3.92	. 945058	1.13 1.13	. 729626	5.05	. 270374	47
14	. 674919	3.92 3.92	. 9449990	$\stackrel{1}{1.13}$. 729929	6.05	. 270071	46
15	. 675155	3.92 3.92	. 9444922	1.13	. 730233	5.05	. 269767	45
16	. 675390	3.91	. 9444854	1.13	. 730535	6.05	. 269465	44
17	. 675624	3.91	. 9447786	1.13	. 730838	6.05	. 269162	43
18	. 675859	3.91	. 9447718	1.13	. 7311414	6.04	. 268859	42
19	. 676094	3.91 .	. 944650	1.13	. 731444	6.04	. 268556	41
20	9.676328	3.90	9.944582	1.14	9.731746	6.04	0.268254	40
21	. 676562	3.90 3.90	. 944514	1.14	. 732048	6.04	. 267952	390
22	. 676796	3.90	. 944446	1.14	. 732351	6.04 6.04	. 267649	38
23	. 677030	3.90 390	. 944377	1.14	. 732553	6.04 5.03	. 267347	37
24	. 677264	8.89	. 944309	1.14	. 732955	5.03	. 267045	36
25	. 677498	3.89	. 944241	1.14	733257	5.03	. 266743	35
28	. 677731	3.89	. 944172	1.14	. 733558	5.03	. 266442	34
27	. 677964	3.88	. 944104	1.14	. 733860	5.03	. 266140	33
28	. 678197	3.8 3.88	. 9444036	1.14	. 734162	6.02	. 2655838	32
29	. 678430	3.88 3.88	. 943967	1.14	. 734463	6.02	. 265637	31
30	9.678663	3.88	9.943599	1.14	9.734764	6.02	0.265238	30
31	. 6788895	3.87	. 9443830	1.14 1.14	.735066 .735367	5.02	. 2649334	29
32	. 679128	3.87	${ }^{.} 9437661$	1.15	.735367 .735688	6.02	. 2646333	28
33 34	.679360 .679592	3.87	.943693 .943624	1.15	. 7355668	5.01	. 2644332	27
35	. 679324	3.87	. 943555	1.15	. 736269	5.01	. 2633731	25
36	. 630056	3.86 3.86 3.86	. 943486	1.15 1.15	. 736570	5.01	. 263430	24
37	. 680238	3	. 943417	1.15	. 736870	5.01	. 263130	23
38	. 680519	3.86 3.86	. 943348	1.15 1.15	. 737171	6.01	. 262829	22
39	. 680750	3.86 3.85	. 943279	1.15	.737471	5.01	. 262529	21
40	9.680982		9.943210		9.737771		0.262229	20
41	. 681213	3.85	. 943141	1.16	. 738071	6.00	. 261929	19
42	. 681443	3.85 3.84	. 943072	1.15	. 738371	6.00	. 261629	18
43	. 681674	3.84	. 943003	1.15	. 738671	5.00	. 261329	17
44	. 681905	3.84	. 942934	1.15	. 738971	4.99	. 261029	${ }^{6}$
45	682135 .682365	3.84	. 94242864	1.16	. 739271	4.99	. 2610729	15
46 47	. 68236595	3.83	.942795 .942726	1.16	.739570	4.99	. 260430	14
48	. 682825	3.83	. 942656	1.16	. 7390169	4.99	. 259883 !	13 12
49	. 683055	3.83	. 942587	1.16	.740468	4.99	.25853.	11
50	9.683284		9.942517	1.10	9.740767		0.259233	I:
51	. 683514	3.82	. 942448	1.16	. 741066	4.98	. 258934	$\dot{3}$
52	. 633743	3.82 3.82	. 942378	1.16	. 741365	4.98	. 258635	8
53	. 683972	3.82 3.82	. 942308	1.16 1.16	.741664	4.98 4.98	. 258336	7
54	. 684201	3.82 3.81	. 942239	1.16 1.16	. 741962	4.98 4.98	. 258038	6
65	. 684430	3.81 3.81	. 942169	1.16 1.16	. 742261	4.98 4.97	. 257739	5
56	. 684658	3.81 3.81	. 942099	1.16 1.16	. 742559	4.97 4.97	. 257441	4
57	. 684887	3.80	. 9421292	1.16	. 7428558	4.97	. 257142	3
58	. 685115	3.80 3.80	. 941959	1.17	.743156	4.97 4.97	. 256844	2
59	. 685343	3.80 3.80	. 941889	1.17	.743454 743752	4	. 256546	1
60	. 685571	3.80	. 941819	1.17	. 743752		256248	0
M.	Oneino.	D ${ }^{1 \prime \prime}$.	Sline.	D. 1".	Cotang.	D. $1^{1 /}$	Thang.	M.

M	Sino.	D. $1^{\prime \prime}$.	Cosine.	D. ${ }^{\prime \prime}$.	Tang.	D. 1'1.	Cotang.	M.
0	9.685571	3.80	9.941819		9.743752	4.96	0.256248	60
2	685799	3.79	. 941749	1.17	. 7441050	4.96	. 255950	59
2	.6860127	3.79 3.79	. 941679	1.17	. 7444348	4.96	. 255652	58 57
3	656254	3.79	.9116119	1.17	. 7444645	4.96	. 2555355	67 56
4	. 636442	3.79	. 941539	1.17	. 7449933	4.96	. 25547678	66 56
5	.6667119	3.78	. 941469	1.17	. 7445240	4.96 4.95	. 2547460	56 54
6	. 636336	3.78	. 9711398	1.17	${ }^{.745538}$	4.95	. 254462	${ }_{5}^{64}$
8	637163	3.78	. 9411258	1.17	. 74458132	4.95	. 2541658	5
	$.6373 \times 9$.687616	3.78	. 9411258	1.17		4.95	. 2535371	52
9	. 687616	3.77	. 941187	1.17	. 746429	4.95		61
16	9.687843	3.77	9.941117	1.18	9.746726	4.95	0.253274	50
11	. 638069	3.77	. 941046		. 7471023	4.95	. 252977	49
12	. 638295	3.77	. 910975	1.18	. 747319	4.94	. 252681	48
13	. 638521	3.76 3.76	. 910905	1.18	. 747616	4.94	. 252384	47
14	. 688747	3.76 3.76	. 9440334	1.18	. 747913	4.94	. 252087	46
15	. 635972	3.76	. 940763	1.18	. 7482209	4.94	251791	45
16	. 639193	3.76	. 940693	1.18	. 7435005	4.94	. 251495	44
17	. 639123	3.75	.941622	1.18	. 748801	4.93	. 251199	43
18	.689648	3.75 3	. 940551	1.18	. 7490997	4.93	. 250903	42
19	639873	3.75 3.75	. 940480	1.18	. 749393	4.93	. 250607	41
20	9.690098		9.940409		9.749689		0.250311	40
21	. 6911323	3.75 3.74	. 91010338	1.18 1.18	. 749985	4.93 4.93	. 250015	39
22	. 690548	3.74 3.74	. 940267	1.18	. 750281	4.93 4.93	. 249719	38
23	.691772	3.74 3.74	. 9411196	1.19 1.19	.750576	4.93	. 249424	37
24	. 697996	3.74 3.74	. 940125	1.19	. 750872	4.92	. 249128	38
25	. 691220	3.73	.940054	1.19	. 751167	4.92	. 248833	35
26	. $691+44$	3.73	. 9399882	1.19	. 751462	4.92	. 248538	34
27	. 691663	3.73	. 9399911	1.19	. 751757	4.92	.24*243	33 38
28	. 691732	3.73	. 939440	1.19	. 752052	4.92	. 247948	32
29	. 692115	3.73 3.72	. 939768	1.19	.752347	4.91	. 247653	31
30	9.632339		8.939697	1.19	9.752642		0.247358	30
31	. 692562	3.72 3.72	. $9396 \% 5$	1.19	. 752937	4.91	. 247063	29
32	.692785	3.72 3.72	. 939554	1.19 1.19	.753231	4.91	. 246769	28
33	.6933(108	3.71	. 939482	1.19	. 753526	4.91	. 246474	27
34	.693231	3.71	. 939410	1.19	. 753820	4.91	. 246180	23
35	. 693453	3.71	. 9393339	1.19 1.20	. 754115	4.90	. 245858	25
36	. 693676	3.71	. 939267	1.20	. 754409	4.90	. 245591	24
37	.693<98	3.70	. 939195	1.20	. 7545403	4.90	. 245297	23
38	. 694120	3.70 3.70	. 939123	1.20	. 754997	4	. 245003	22
39	. 694342	3.7	. 939052	1.20	91	4.90	. 244709	21
40	9.694564		9.939980		9.755585		0.244415	20
41	. 694786	3.69	. 933908	1.20	. 755878	4.89 4.89	. 244122	19
42	. 635107	3.69 3.69	. 933836	1.20	. 756172	4.89 489	. 243328	18
43	.695229	3.69	. 933763	1.20	. 756465	4.89 489	.243535	17
44	. 69.5450	3.69 3.69	. 938691	1.20	. 756759	4.89 4.89	. 243241	16
45	. 695671	3.69 3.68	. 933619	1.20	. 757052	4.89 4.89	. 242948	15
46	. 695892	3.68 3.68	. 933547	1.20	. 757345	4.89	. 242655	14
47	. 696113	3.68 3.68	. 933475	1.20	. 757638	4.88 4.88	. 242362	13
48	. 696334	3.68 3.68	. 933402	1.21	. 757931	4.88 4.88	. 242069	12
49	. 696554		. 938330	1.21	. 758224	4.88	. 241776	11
50	9.696775		9.939258		9.758517		0.241483	10
51	. 696995	3.67	. 939185	1.21	. 758810	4.88	241190	9
52	.697215	3.67 3.67	.93113	1.21	. 759102	4.88 4.87	. 240893	8
53	. 697435	3.67	. 938840	1.21	. 759395		. 2411605	7
54	.697654	3.66 3.66	.937467	1.21	759687	4.87 4.87	. 240313	6
55	. 697874	3.66	. 9337895	1.21	. 759979	4.87 4.87	. 2400221	5
56	. 698094	3.66 366	. 937×22	1.21 1.21	. 760272	4.87	. 239728	4.
57	. 698313	366 3.65	. 937749	1.21	. 760564	4.87 4.87	. 239436	3
58	. 698532	3.65 3.65	. 937676	1.21	. 760855	4.86	. 239144	8
59	.698751	3.65 3.65	.937604	1.22	. 761148	4.86	. 238852	1
60	. 698870	3.65	. 937531		. 761439	4.86	. 238561	0
M.	Cosine.	D. 1".	Sine.	D. 1^{11}.	Cotang.	D. $1^{1 \prime}$.	Thag.	M.

M.	silne.	D. 1".	Cosine.	D. $1^{\prime \prime}$.	Tang.	D. 1^{*}.	Cotang.	M
0	9.658970	3.65	9.937531	1.22	9.761439	4.86	0.238561	60
1	. 699189	3.66 3.64	. 937458	1.22	. 761731	4.86	. 233269	69
3	. 6999407	3.64	. 9373735	1.22	. 7622×23	4.86	.237977	${ }^{58}$
3	. 699926	3.64	. 937312	1.22	.762314	4.86	.23\%646	57 56
4	.699844	3.64	. 9337238	1.22	. 76286116	4.86	237394 237103	${ }^{66}$
6	.700062 .706230	3.63	.937165 .937192	1.22	.762897 .763188	4.85	. 236312	${ }^{55}$
7	. 700498	3.63 3.63	.937019	1.22	. 763479	4.85	. 236521	63
8	. 700716	3.63 3.63	. 936946	1.22	. 763770	4.85 4.85	.2364230	62
9	. 700933	3.63 3.62	. 936872	1.22	. 764061	$\begin{aligned} & 4.85 \\ & 4.85 \end{aligned}$. 235939	61
10	9.7¢1151	3.62	9.936799	1.22	9.764352	485	0.235648	50
11	. 01368	3.62 362	. 936725	1.23	. 764643	4.85	235i357	49
12	. 701585	3.62	. 9366652	1.23	. 764933	4.84	23.167	48
13	. 701502	3.61	. 936578	1.23	. 7652224	4.84	. 234776	47
14	. 702019	3.61	. 936505	1.23	. 7655514	4.84	234486	46
15	. 7022236	3.61	. 936431	1.23	.765505	4.84	231195	45
16	. 702452	3.61	. 936357	1.23	.766695	4.84	233965	44
17	. 702669	3.60	. 936284	1.23	.766385	4.83	233315	43
18	. 702885	3.60	. 936210	1.23	. 766675	4.83	233325	42
19	. 703101	3.60	. 936136	1.23	. 766965	4.83	.233035	41
20	9.703317	3.60	9.936062	1.23	9.767255		0.232745	40
21	. 7113533	3.69	.935988	1.23	767545	4.83	232455	39
22.	. 703749	359	. 935914	1.23	767834	4.83	232166	38
23	. 733964	3.59	. 935840	1.23	768 !24	4.82	231876	37
24	. 704179	3.59 3.59	. 935766	1.24	768114	4.82	. 231586	36
25	. 704395	3.59	. 93569	1.24	7687113	482	231297	35
26	. 704610	3.58	. 935618	1.24	.763992	4.82	$2310 n 3$	34
27	. 704525	3.58	. 935543	1.24	. 769281	4.82	231719	33
28	. 7050540	3.58	. 935469	1.24	. 7695911	4.82	. 231429	32
29	. 705254	3.58	. 935395	1.24	. 769860	4.82	. 231140	31
30	9.705469	3.57	9.9335320	1.24	9.770148	4.81	0.229952	30
31	. 705683	3.67	. 935246	1.24	. 770437	4.81	. 229566	29
32	. 705898	3.57	. 935171		. 770.26		. 2292274	28
33	. 706112	3.67	. 935097	1.24	. 771015	4.81	.228985	27
34	. 706325	3.56	. 935022	1.24	. 771313	4.81	.2204697	26
35	. 705539	3.56	. 934948	1.24	. 771592	4.81	.22-108	25
36	. 706753	3.56	. 934873	1.25	. 771888	4.80	.225120	24
37	. 706967	3.56	. 934798	1.25	. 772168	4.80	. 227×32	23
38	. 707180	3.55	. 934723	1.25	. 772457	4.80	. 227543	22
39	. 705393	3.55	. 934649	1.55	. 772745	4.80	. 2227255	21
40	9707606	3.55	9.934574	1.25	9.773033	4.80	0.226967	20
41	. 707819	3.55	. 934499	1.25	. 773321	4.80	. 226679	19
42	. 708032	3.54	. 934424	1.25	. 773608	4.80 4.80	. 2226392	18
43	. 705245	3.54	. 934349	1.25	. 773898	4.80 4.79	. 2226104	17
44	. 708458	3.54	. 934274	1.25	. 774184	4.79	. 225816	16
45	. 708670	3.54	. 934199	1.25	. 774471	4.79	. 2225529	15
46	. 703882	3.54	. 934123	1.25	. 774759	4.79	. 225241	14
47	. 707094	3.53	. 934048	1.25	. 775096	4.79	. 224954	13
48	. 709306	3.53	. 9333973	1.26	. 775333	4.79	.224667	12
49	. 709518	3.53	. 933398	1.26	. 775621	4.78	. 224373	11
50	9.709730	3.53	9.933822	1.26	9.775908	4.78	1) 224092	10
51	. 709994	3.52	. 9333747	1.26	. 776195	4.78	.223805	9
52	. 710153	3.52	. 9333671	1.26	.7764*2		. 223518	8
53	. 710364	3.52	. 9333596	1.26	. 776768	4.78	. 223232	7
54	. 710575	3.52	933520	1.26	. 7777055	4.78	. 2222345	6
55	. 710786	3.51	933445	1.26	. 777342	4.78	. 2226538	5
56	. 710997	3.51	933369	1.26	.777628	4.77	. 2222372	4
57	. 711208	3.51	933293	1.26	. 777915	4.77	.222185	3
58	. 711419	3.61	933217	1.26	. 7782201	4.77	. 221799	2
59	. 7111629	3.51	. 9333141	1.26	$\begin{aligned} & .778488 \\ & .778774 \end{aligned}$	4.77	. 221512	0
60	. 711839		. 933066		. 278774		. 221226	-
M.	Cosine.	1\%.	Slue.	D. 1"	Cotang.	D. $1^{\prime \prime}$	Tang.	M.

M.	Slne.	D. $1^{\prime \prime}$	Coslrie.	D. ${ }^{11}$.	Trug.	D. $1^{\prime \prime}$.	Cotang	M
0	9.711839	3.50	9.933166	1.27	9.778774	4.77	0.221226	60
1	. 7124.50	3.50 3.50	932490	1.27	. 779060	4.77	. 2219940	59
2	.712260	3.50	9328914	1.27	. 7793346	4.77	.2211654	58
3	. 712469	3.50	. 9328338	1.27	. 7796932	4.76	. 22210368	57 56
4	.712679 $.712 \times 39$	3.49	.932762 $.9326 \div 5$	1.27	. 7799203	4.76	. 22219798	$\stackrel{56}{55}$
6	. 7131398	3.49	9326619	1.27	. 780489	4.76	. 219511	54
7	. $7133 / 18$	3.49 3.49	.932533	1.27 1.27	. 780775	4.76 476	. 219225	53
8	. 713517	3.49 3.48	. 932457	1.27 1.27	. 781060	4.76 4.76	. 218940	52
9	. 713726	3.48 3.48	.9323 0	1.27	. 781346	4.76	.218654	51
10	9.713935	3.48	9.932304	1.27	9.781631		0.218369	50
11	. 714144	3.48	. 9322228	1.27	. 781916	4.75	218184	49
12	.71435\%	3.48	.932151	1.28	. 782201	4.75	. 217799	48
13	. 714561	3.49 3.47	. 932075	1.28	. 782186	4.75	. 217514	47
14	. 714769	3.47	. 931998	1.28	. 782771	4.75	. 217229	46
15	. 714978	3.47	. 931921	1.28	. 783056	4.75	. 216944	45
16	. 715156	3.47	. 93181845	1.23	. 7833311	4.75	. 216659	44
17	. 715394	3.46	. 931763	1.28	.783626	4.74	. 2163374	43
18	. 715602	3.46	.931691	1.28	.783910		. 216090	42
19	. 715849	3.46	. 931614	1.28	. 784195	4.74	. 215805	41
20	9.716017	3.46	9.931537	1.28	9784479	4.74	0.215521	40
21	. 716224	3.46	.931460	1.23	784764	4.74	. 215236	39
22	716432	3.45	. 931333	1.23	785048		.214952	38
23	716639	3.45	931316	1.28	. 785332	4.74 4.74	. 214668	37
24	716 246	3.45	931229	1.29	. 785616	4.73	. 214384	36
25	717053	3.45	931152	1.29	785900	4.73	. 214100	35
28	717259	344	931075	1.29	786184	4.73	213816	34
27	. 717466	3.44	931993	1.29	\% 786468	4.73	. 213532	33
28	. 717673	3.44	. 8319921	1.29	. 786752	4.73	. 213248	32
29	. 717879	3.44	. 930343	1.29	. 787038	4.73	. 212964	31
30	9.718085	3.43	9.930766	1.29	9.787319		0.212681	30
31	. 718×291	3.43 3.43	. 9330638	1.29	. 787603	4.73 4.72	. 212397	29
32	. 718497	3.43 3.43	930611	1.29 1.29	. 787888	4.72 4.72	. 212114	28
33	. 718203	3.43 3.43	. 930533	1.29	. 788170	4.72 4.72	. 211830	27
34	. 718909	3.43 3.43	. 930456	1.29	. 788453	4.72 4.72	. 211547	28
35	. 719114	3.42 3.42	. 930378	1.29	. 788736	4.72	211264	25
36	. 7193320	3.42	. 930300	1.39 1.30	. 7899319	4.72	. 210981	24
37	. 719525	3.42	. 9331223	1.30	. 7898362	4.72	. 210698	23
38	. 719730	342	. 9330145	1.30 1.30	. 789585	4.71	. 210415	22
39	. 719935	3.41	. 930067	1.30	. 789868	4.71	. 210132	21
40	9.720140	3.41	9.929989		9.790151		0.209849	20
41	. 7221345	3.41	. 929911	1.30 1.30	. 790434	4.71	. 2099566	19
42	.720549	3.41	. 9299333	1.30	. 790716	4.71	. 209284	18
43	. 721754	3.41	. 9229755	1.30 1.30	. 790999	4.71	.209101	17
44	. 7221958	3.41 3.40	. 9292977	1.30	.791281	4.71	. 208719	16
45	. 721162	3.40	. 9299599	1.30	. 791563	4.70	. 208437	16
46	. 721366	3.40	929521	1.30	. 7918186	4.70	. 208154	14
47	. 721570	340	. 9293442	1.31	. 792128.	4.70	. 207872	13
48	.721774	3.39	. 9293364	1.31	. 792410	4.70	. 207590	12
48	. 721978	3.39	. 923236	1.31	. 792692	4.70	. 207308	11
5 C	9.722181		9.929207		9.792974		0.207026	10
51	. 7223385	3.39 3.39	. 9292129	1.31	. 793256	4.70 4.70	.2116744	9
52	.722538	3.39 3.39	.929050	1.31	.793538	4.70	. 21646462	8
53	.7\%2791	3.38 3.38	. 9224972	1.31	. 793819	4.69	.296181	7
54	.722994	3.38	.924893 .923815	1.31	. 794101	4.69 4.69	. 205899	6
55	. 723197	3.38	.923815 .923736	1.31	. 7943883	4.69	.205617	5
56	. 723400	3.38	. 9228736	1.31	. 794664	4.69	. 205338	4
57 58	.723603 723845	3.37	.928657	1.31	\%94946	4.69	. 2050474	3
58 59	.723805 .724007	3.37	. 92325478	1.31	. 7989227	4.69	. 204773	8
60	. 724210	3.27	. 9228420	-1.32	$\begin{aligned} & .795508 \\ & .795789 \end{aligned}$	4.59	. 204211	0
M	Oosine.	D. 1 '1.	Slue.	D. $1^{\prime \prime}$.	Cotang.	D. $1^{\prime \prime}$.	Tang	M

M.	Stine.	D. $1^{\prime \prime}$.	Cosino.	D. $1^{\prime \prime}$.	Tang.	D. 111.	Cotang.	M.
0	9.784210		9.928420		9.795789		0.204211	60
1	9.724412	3.37 3.37	9.92L3442	1.32	. 796170	4.68 468	. 203930	59
2	. 724614	3.36	. 928263	1.32	. 746351	4.68	. 2036449	58
8	.724816	3.36 3.36	.920183	1.32	.796632	4.68	. 2103368	57
4	. 725017	3.36	.928.04	1.32	. 796913	4.68	. 2133087	56
5	.725219	3.36	.923i125	1.32	. 797194	4.68	. 2112816	55
6	. 725420	3.36	. 927946	1.32	. 797174	4.68	. 21122526	54
7	. 72525822	3.35	.9277¢67	1.32	.797855	4.68	. 21212424	53
8	. 725823	3.35	. 9277787	1.32	.798036	4.67	. 201964	52
8	. 726024	3.35	. 927708	1.32	. 798316	4.67	. 201684	51
10	9.726225	3.35	9.927629	1.32	9.798596	4.67	0.201404	50
11	. 7266426	3.34	. 927549	1.33	. 79×887	4.67	. 201123	49
12	. 7266826	3.34 3.34	.927470	1.33	. 7999157	4.67	. 2001843	48
13	. 726827	3.34	. 9227390	1.33	. 7999437	4.67	. 200563	47
14	.727027	3.34	.927310 .927231	1.33	.799717 .799997	4.67	. 21112283	46
15	.727228 .727428	3.34	. 92723151	1.33	. 8999977	4.66	. 20199 NK 23	45
17	.727428 .727628	3.33	. 92787071	1.33	. 80102557	4.66	.199723	44
18	. 727828	3.33	. 926991	1.33	. 801836	4.66	199843	43
19	. 728027	3.33 3.33	. 926911		. 801116	4.6	. 198884	41
20	9.728227	3.3	8.926831		9.8011396		0.198604	40
21	. 728427	3.32	. 926751	1.33 1.33	. 8011675	4.66 4.66	. 198325	39
22	. 728626	3.32 3.32	. 926671	1.33	. 801955	4.66	. 198045	38
93	728825	3.32 3.32	. 926591	1.34	. 81×2234	4.66	. 197766	37
24	.72902	3.32 3.32	. 9265511	1.34	. 8112513	4.65	.197487	36
25	.729223	3.31	. 9266431	1.34	.8n2792	4.65	. 197218	35
26	. 729422	3.31	. 926351	1.34	. 8113072	4.65	. 196928	34
27	.729621	3.31	. 9226270	1.34	. 883351	4.65	. 196649	33
98	. 729820	3.31	. 926190	1.34	.8133630	4.65	. 196370	32
29	. 730018	3.31	. 926110	1.34	.813909	4.65	. 196091	31
80°	9.730217	3.30	9.926029		9.804187		0.195813	30
81	. 730415	3.30	925949	1.34	. 8144466	4.65	. 195534	29
32	. 730613	3.30 3.30	925568	1.34	. 814745	4.64 4.64	. 195255	28
33	. 730811	3.30 3.30	. 925788	1.34	. $8155(123$	4.64 4.64	. 194977	27
34	. 731009	3.30	. 9225707	1.35	. 805302	4.64	. 194698	26
35	. 731206	3.29	. 9255626	1.35	. 8155580	4.64 4.64	. 194420	25
36	. 731404	3.29	. 925545	1.35	. 805×59	4.64	. 194141	24
37	. 731602	3.29	. 925465	1.35	. 81613137	4.64	. 1938863	23
38	. 731799	3.29 3.29	.925334	1.35	. 8164645	4.64 4.64	. 1933585	22
88	. 731996	3.29 3.28	. 925303	1.35	.816693	4.64 4.63	. 193307	21
40	9.732193	3.28	9.925222	1.35	y 806971		0.193029	20
41	.732390	3.28	. 925141	1.35	. 81724249	4.63	.192751	19
42	. 7322587	3.28	. 92501060	1.35	. 81817527	4.63 4.63	. 192473	18
43	. 732784	3.28	. 924979	1.35	8078505	4.63 4.63	.192195	17
44	. 732980	3.27	. 924897	1.35	. 81851838	4.63	. 191917	16
45	. 733177	3.27	. 924818	1.35	. 80514361	4.63	. 191639	16
6	.733373	3.27	. 924735	1.35	. 81×6738	4.63	. 191372	14
47	. 733569	3.27	. 924654	1.36	. 809916	4.62	.191044	13
48	. 733765	3.27	. 924572	1.36	. 809193		.190807	12
49	. 733961	3.26	. 924491	1.36	. 809471	402	. 190529	11
50	9.734167	3.26	9.924409		9.8619748		0.190252	10
51	. 734353	3.26 3.26	. 924328	1.36	. $81 / 10125$.189975	9
52	. 734549	3.26 3.26	. 924246	1.36 1.36	. 810312	4.62 4.62	. 189698	8
63	. 734744	3.26 3.26	. 924164	1.36	.810580	4.62 4.62	. 189420	7
64	. 734939	3.25	. 924083	1.36 1.36	. 8111857	4.62	. 189143	6
65	. 735135	3.25	.94416)1	1.36	. 811134	4.61	.188866	5
56	. 735330	3.25	. 9223919	1.36	. 811410	4.61	. 188590	4
57	. 735525	3.25	. 9243×37	1.37	. 811687	4.61	. 188313	8
68	. 735719	3.25	.923755	1.37	. 811964	4.61	.188036	2
65	. 735914	3.24	.9236\%3	1.37		4.61	187759	1
60	.736109		923591		.812517		187483	0
M.	Cosine.	D. $1^{\prime \prime}$.	Sluo.	D. $1^{\prime \prime}$.	Cotarg	D. $1^{\prime \prime}$	Tang	1.

M.	Sine.	D. $1^{\prime \prime}$.	Cosine.	D. $1^{\prime \prime}$.	Tang.	D. $1^{\prime \prime}$.	Cotang.	M.
0	9.736109		9.923591		9.812517		0.187483	60
1	. ${ }^{\text {a }} 36303$	3.24 3.24	. 9233509	1.37	. 812794	4.61	. $187 \% 06$	59
2	. 736498	3.24 3.24	.923427	1.37	. $8130{ }^{\circ} 0$	4.61 4.61	. 1869330	58
,	.736692	3.24 3.23	.923345	1.37	.813347	4.61	. 1866373	57 56
4	. 736886	3.23	.923263	1.37	.813623	4.60	. 1863101	56
5	.73،080	3.23	.923181	1.37	. 8131176	4.60	. 186581	55
7	. .137467	3.23	. 9233016	1.37	. 814452	4.60	. 185548	53
8	.73\%661	3.23 3.22	.9222933	1.37 1.37	. 814728	4.60 4.60	.1852\% 2	52
9	. 737855	3.22 3.22	. 9228851	1.38	. 815004	4.60	. 184996	51
10	9.738048	3.22	9.922\%68	1.38	9.815280	4.60	0.184720	50
11	. 738241	3.22	. 9222686	1.38	. 8155505	4.60	.184445	49
12	.738134	3	. 9222603	1.88	. 8158107	4.69	. 184169	48
13	. 738627	3.21	.922520	1.38	. 816107	4.59	. 183893	47
14	. 738820	3.21	. 9222438	1.38	.816382	4.59	. 183618	46
15	. 739013	3.21	. 9223355	1.38	.816658	4.59	. 183342	45
16	. 739206	3.21	. 9232278	1.38	. 8169333	4.59	. 183067	44
17	. 739398	3.21	. 922189	1.38	. 817209	4.59	.182791	43
18	. 739590	3.20	. 922106	1.38	. 817484	4.59	. 182516	42
19	. 739783	3.20	.92:2023	1.38	.817\%59	4.59	.180241	41
20	9.739975	3.20	9.921940	1.39	9.818035	4.59	0.181965	40
21	. 740167	3.20	.921857	1.39	. 818310	4.58	. 181690	39
22	. 740359	3.20 3.20	. 921774	1.39	. 818585	4.58	. 181415	38
23	. 740550	3.19	. 921691	1.39	. 818860	4.58	. 181140	37
24	. 740742	3.19	. 921607	1.39	. 819135	4.58	. 180865	36
25	. 740934	3.19 3.19	. 9215151	1.39	. 819410	4.58	. 180590	35
26	.741125	3.19	. 921441	1.39	. 819684	4.58	. 180316	34
27	. 71316	3.19	.921357	1.39	. 819959	4.58	. 180041	33
28	. 741508	3.18	.921274	1.39	.820334	4.58	.179766	32
29	. 741699	3.18	. 921190	1.39	.820508	4.58	. 179492	31
30	9. 741889		9.921107		9.820783		0.179217	30
31	. 742080	3.18 3.18	. 921023	1.39	. 821057	4.57	. 178943	29
32	. 742271	3.18 3.18	. 920939	1.39 1.40	. 821332	4.57	. 178668	28
33	. 742462	3.17	.920856	1.40	. 821606	4.57	. 178394	27
34	. 742652	3.17	. $920 \% \sim^{2} 2$	1.40	. 821880	4.57	. 178120	26
35	. 742842	3.17	.920688	1.40	.822154	4.57	. 177846	25
36	. 743033	3.17	. 920064	1.40	. 822429	4.58	. 177571	24
37	. 743223	3.17	. 9205050	1.40	.822\%03	4.57	.17\%297	23
38	. 743113	3.16	. 920436	1.40	.822977	4.57	. 177023	22
39	.74360\%	3.16	52	1.40	.823251	4.56	.176749	21
40	9.743792	3.16	9.920268	1.40	9.823524		0.176476	20
41	. 743982	3.16	. 920184	1.40	.823798	4.56	. 176202	19
42	. 744171	3.16	. 9200099	1.40	. 824072	4.56 4.56	. 175928	18
4.3	. 744361	3.15	. 920015	1.41	. 834345	4.56	. 175655	17
44	. 744500	3.15	. 919931	1.41	. 824619	4.56	. 175381	16
45 46	. 744739	3.15	${ }^{.919846}$	1.41	. 824893	4.56	. 175107	15
46 47	. 744928	${ }_{3.15}^{3.15}$. 919762	1.41	.855166	4.56	. 1748384	14
47	.745117 .745306	3.15 3.15	.919677 .919593	1.41	.825439 825713	4.56	. 174561	13
49	. 745494	3.14	. 919508	1.41	.825986	4.55	. 174014	11
50	9.\%45683		9.919424		9.826259		0.173741	10
51	. 715371	3.14 3.14	. 919333		.826.932		. 173468	9
52	. 746060	3.14 3.14	. 919354	1.41	. 826805	4.55	. 173195	8
53	. 746218	3.14	. 919169	1.41	.82\%078	4.55	. 172922	7
54	. 746436	3.13 3.13	. 919085	1.42	.8273.51	4.55	. 172649	6
55	. 146624	3.13	. 919000	1.42	. 827624	4.55	. 172376	5
56	. 746812	${ }_{8.13}$. 918915	1.42	. 827897	4.55	. 172103	4
57	. 746999	3.13 3.13	.9188:30	1.42	. 828170	4.54	. 171830	8
58	. 747187	3.12	. 918745	1.42	.828442	4.54	. 1715558	2
59	.747374	3.12	.918659	1.42	.828715	4.54	. 171285	1
60	. 747562		. 918574		.828987		. 171013	0
M.	Cosine.	D. $1^{\prime \prime}$.	Sine.	D. $1^{\prime \prime}$.	Cotang.	D. $1^{\prime \prime}$.	Tang.	M.

M.	Sino	D. ${ }^{\prime \prime}$.	Cosing.	D. $1^{\prime \prime}$.	Tang.	D. $1^{\prime \prime}$.	Cotang.	
0	9.747562		9.918574		9.823987		0.171013	
1	.747749 .747936	3.12 3.12	$.918489$	1.42	. 829260	4.54 4.54	. 170740	59
2 3 3	.747936 .748123	3.12 3.12	. 918404	1.42	. 8289532	4.54	.171468 .170195	58
3	.748123	3.11	. 915318	1.42	. 8299 -15	4.54	. 170195	
5	. 748310	3.11	. 918233	1.42	. 8310077	4.54 4.54	. 169923	
5	. 7438497	3.11	. 918147	143	. 830349	4.64	. 1696551	
${ }_{7}$. 7488883	3.11	. 918062	1.43	. 8306621	4.53 4.53	. 169379	
7	. 7438870	3.11	. 917976	1.43	. 830893	4.53	. 169107	53
8	. 749058	3.10	. 917899	1.43	. 831165	4.53	. 163835	52
		3.10	. 917805	1.43	. 831437	4.53	. 168563	
10	9.749129	10	9.917719	1.43	9.831709	4.53	0.168 .491	50
11	. 749615	3.10	. 917634	1.43 1.43	. 831981	4.53	. 168019	49
12	. 7498901	3.10	. 917548	1.43	. 8322253	4.53	. 167747	48
13	. 749987	3.10	. 917462	1.43	. 832.525	4.53 4.53	. 167475	47
14	. 750172	3.09	. 917376	1.43	. 832796	4.63	.167204	46
15	. 750358	3.09	. 917290	1.43	. 833068	4.63	. 166932	45
16	. 75054	3.09	. 917204	1.43	. 8333339	4.52	. 1666661	44
17	. 750729	3.09	. 917118	1.44	. 8336	4.52	. 166389	43
18	. 750914	3.09	. 917032	1.44	. 833882	4.52	166118	42
		3.08		1.44		4.52		1
20	9.751234	3.08	9.91685	1.44	9.8314		0.165575	0
21	.751469	3.08	.916773	1.44	$.831696$	4.52	. 165304	39
22	. 7516164	3.08	. 916657	1.44	. 834967	4.52	. 165033	8
23	. 751839	3.08	. 916600	1.44	. 835238	4.52	. 164.62	37
24	.7521423	3.07	.91651 t	1.44	. 8355509	4.52	. 164491	36
25	.752\% 2	3.07	. 916427	1.44	. 835780	4.52	. 164220	35
27	. 7523	3.07	. 916354	1.44	.836322	4.51	.163949 .163678	4
28	.	3.07	. 916167	1.44	. 8365593	4.51	. 163407	32
29	. 752944	3.07	. 916081	1.45	.836864	4.61	. 163136	1
30	9.753123		9.915		9.837		0.1628	30
31	. 753312	3.06 3.08	. 915907	1.45	. 83740	4.51	. 162595	29
32	. 753495	. 6	. 915520	1.45	. 837675	4.51	. 162325	28
33	. 753679	3.06	. 915733	1.45	. 837946	1	. 162054	27
34	. 753362	3.05	. 915646	1.45	. 833216		. 161784	28
35	. 754046	3.05	. 91555	1.45	. 833487	4.61	. 161513	5
36	. 754229	3.05	. 915472	1.45	. 838757	4.61	. 161243	24
37	. 754412	3.05	. 915385	1.45	. 839027	4.60	. 160973	23
38	. 754595	3.05	. 915297	1.45	. 839297	4.50	. 160703	2
39	. 754	3.05	. 915210	1.45	. 839568	4.50	. 160432	21
40	9.754960		9.915123		9.839838		0.160162	0
41	. 755143	,	. 915035	1.46 1.46	. 840108		. 159892	19
42	. 755326	3.04 3.04	. 914948	1.46 1.46	. 840378	4.50 4.60	. 159622	8
43	. 755508	3.04	. 914560	1.46 1.46	. 840643	4.60 4.60	. 159352	7
44	. 755690	3.04	. 914773	1.46 1.46	. 840917	4.60	. 159083	6
45	. 7558872	3.03	. 914685	1.46	. 841187	4.49	. 158813	5
46	. 756054	3.03 3.03	. 914598	1.46	. 841457	4.49	. 158543	4
47	. 756236	3.03	. 914510	1.46	. 841727	4.49 4.49	. 158273	3
48	. 7566418	3.03 3.03	. 914422	1.46	. 841996	4.49	. 158004	2
49	. 7566	3.03	91433	1.46	. 842266	4.49	. 157734	1
50	9.756782		9.914246		9.842535		0.157465	0
51	. 756963	3.02	. 914158		. 8423305		. 157195	9
52	. 757144	3.02	. 914070	1.4	. 843074	4.	. 156920	8
53	. 7573726	3.02	. 9139882	1.47	. 843343	4.49 449	. 156657	
54	. 757507	3.02	. 913894	1.47	. 843612	4.49	. 156388	
55	. 757688	3.02 3.02	. 9138068	1.47 1.47	. 8438882	4.49	. 156118	5
68	.757869	3.01	. 913718	1.47	. 844151	4.48	. 155849	4
57		3.01	913630	1.47	. 844420	4.48	. 1555580	3
58 59		3.01	.913541 .913453	1.47 1.47	.8446*9	4.48 4.48	. 155311	
60	. 758591	3.01	. 913365	1.47	. 845227	4.48	. 154773	0
M.	Cosine.	D. 1"	Slne.	D. $1^{\prime \prime}$	Cotang	$1{ }^{17}$	Tang	L

M.	Sino.	D. ${ }^{\prime \prime}$	Coalne.	D. 1'.	Tang.	D. $1^{\prime \prime}$.	Cotang.	M
0	9.758591	3.01	9.913365	1.47	9.845227	4.48	0.154773	60
1	. 758772	3.010	. 913326	1.48	. 845496	4.48	. 154504	59
2	. 7588952	3.00	.913187	1.43	. 845764	4.48	. 154236	68
3	. 759132	3.10	. 91313099	1.48	. 8461133	4.48	. 153969	${ }_{6}^{67}$
5	.769312	3.00	. 91312910	1.48	. 84636570	4.48	. 1534398	56
6	. 7596972	3.00	. 91.12383	1.48	. 8465670	4.48	153430	55
7	. 759852	2.99	. 912744	1.48	. 847108	4.48	. 152×92	53
8	. 76 (\%)31	99	. 912655	1.43	. 847376	4.47	. 152624	52
9	. 760211		. 912566		. 847644		.152356	51
10	9.760390		9.912477		9.847913		0.152087	50
11	. 760569		. 912358	1.48	. 848181	7	. 161819	49
12	. 7601748	2.99 2.98	. 912299	1.49	. 848449	4.47	. 151551	48
13	. 760927	2.98	. 912210	1.49	. 848717	4.47	.1512*3	47
14	. 761106	2.98	. 912121	1.49	. 848936	4.47	. 151014	46
15	.761285	2.98	. 912031	1.49	. 849254	4.47	. 150746	45
16	. 761464	2.98	. 911942	1.49	. 849522	4.47	. 150478	44
17	. 761642	2.97	. 911853	1.49	.849790	4.46	. 150210	43
18	. 761821	2.97 2.97	. 911763	1.49	. 850057	4.46 4.46	.149943 .149675	42
19	. 761999	2.97	. 911674	1.49	. 350325	4.46		41
20	9.762177	97	9.911584	1.4	9.850593		0.149407	40
21	.7623:56	2.97	. 911495	1.49	. 85 (1861	4.46	. 149139	39
22	. 7625234	2.97	. 911405	1.49	. 851129	4.46	. 148871	38
23	. 762712	2.96	. 911315	1.50	. 851396	4.46	. 148604	37
24	. 7623389	2.	. 9111226	1.50	. 851664	4.46	. 148336	36 35
25	. 7631067	2.96	. 9111136	1.50	. 8519193	4.46	. 1481169	35
28	. 7632424	2.96	.911046 910956	1.50	.852199 852466	4.46	01	34 33
27	. 763422	2.96	. 910986	1.50	. 85242733	4.46	147267	33
28	. 76360	2.95	. 910776	1.50	. 8553001	4.46		31
29	. 763777	2.95		1.50		40		31
30	9.76395	2.95	9.9106	1.50	9.853		0.146732	30
31	764131	2.95	91059	1.50	. 853535	4.45	. 146465	29
32	764308	2.95	910506	1.60	. 853802	4.45 4.45	. 146198	28
33	764485	2.95	. 910415	1.51	. 8541699	4.45	. 145931	27
34	. 764662	2.94	. 910325	1.51	. 854338	4.45	. 145664	26
35	.764 38	2.94 2.94	. 910235	1.61	. 854603	4.45	. 145397	25
38	. 765015	2.94	. 910144	1.61	. 854870	4.45	. 145130	24
37	.765191	2.94	. 910054	1.61	. 855137	4.45	. 144863	23
38	. 765367	2.94	. 909963	1.61	. 855404		. 144596	22
39	. 765544	2.83	. 909873	1.51	. 855671	4.45	. 144329	21
40	9.765720	2.93	9.909782		9.855938		0.144062	20
41	: 765896	2.93	. 909691.	1.61	. 856204	4.44	. 143796	19
42	. 7660172	2.93 2.93	. 909601	1.81	. 856471	4.44	. 143529	18
13	. 766247	2.93 2.93	. 909510	1.51	. 856737	4.44	.143263	17
44	. 766423	2.93	909419	1.52	. 857004	4.44	. 142996	16
45	.766598		909323	1.52	. 857270		. 142230	15
46	. 766774	2.92	. 909237	1.52	. 857537	4.44 4.44	. 142463	14
47	. 766949	2.92	. 909146	1.52	. 857803	4.44	. 142197	13
48	. 767124	2.92 2.92	. 9019135	1.52	. 858069	4.44	. 141931	12
49	. 767300		.9089f4	1.62	. 858336		. 141664	11
50	9.767475		9.908873		9.858602		0.141398	10
61	.767649		.905781.	1.52	. 858888	4.43	. 141132	9
52	. 767824	2.91	. 9018690	${ }_{1}^{1.52}$. 859134	4.43	. 1401566	8
53	. 767999	2.91	. 9168599	1.52	.859410	4.43	. 1414600	7
54	.768173	2.91	. 908507	1.52	. 8599666	4.43	. 1403334	6
65	. 768348	2.91	. 906416	1.53	. 8599932	4.43	. 14016168	5
66 57	- 776×8622	2.90	. 901×324	1.53	. 8611198	4.43 4.43	. 1395012	4
57	.768697	2.90	. 90×1433	1.53	.86(1464	4.43	. 1395386	3 2
58	.768871 .769945	2.90	.90 K 141 .908049	1.63	.861730 .861995	4	. 139270	2
60	.769945 .769219	2.90	.908049 .907958	1.53	$\begin{aligned} & .86(19955 \\ & .861261 \end{aligned}$	4.43	.1390105 .138739	0
M.	Oosino.	D. 1	Slne.	D. $1^{\text {H/ }}$	Cotang.	D. $1^{1 \prime}$.	Tang:	M.

M.	Sios.	D. 1"	Oosine.	D. 1'.	Tang.	D. $1^{\prime \prime}$.	Cotang.	M
0	9.769219		9.907958		9.861261		0.138739	60
$\frac{1}{2}$. 7699393	2.90 2.90	. 9078866	1.53	. 8611527	4.43	. 138473	59 58 58
2	. 7699566	2.98 2.89	. 907774	1.53	. 861792	4.43	. 138208	58 57
3	.769740 769913	2.89	.907682 .907590	1.53	.862058 $86 \% 323$	4.42	. 137942	57 56
4	. 7769913	2.89	.907590 .907498	1.53	.862323 .862589	4.42	. 137677	56 55
5	. 770087	2.89	. 9074988	1.53	.862589	4.42	.137411	55
7	. 770433	2.89	. 9007314	1.54	.862854	4.42	. 136881	53
8	. 770696	2.88	. 907222	1.54	. 8633385	4.42	. 136615	54
9	. 770779	2.88 2.88	. 907129	1.54	. 863650	4.42	. 136350	51
10	9.770952	2.	9.907037		9.863915		0.136085	30
11	. 771125	2.88	. 906945	1.54	. 864180	2	. 1355820	49
12	. 771298	2.88 2.88	. 906852	1.54	. 864445	4.42	. 135555	48
13	. 771470	2.88 2.87	. 906760	1.54	. 864710	4.42	. 135290	47
14	.771643	2.87	. 9066667	1.54	. 864975	4.42 4.42	. 135025	46
15	. 771815	2.87	. 906575	1.54	. 8655240	4.41	. 134760	45
16	. 771987	2.87	. 906482	1.55	. 8655505	4.41	. 134495	44
17	. 772159	2.87	. 9063389	1.55	. 8655770	4.41	. 134230	43
18	. 772331	2.87	. 906296	1.55	. 866035	4.41	.133965	42
19	. 772503	2.86	. 906204	1.55	. 8663300	4.41	. 133700	41
20	9.772675	2.86	9.906111		9.866564	4.41	0.133430	40
21	. 772847	2.86	. 906018	1.55	. 866829	4.41	. 133171	39
22	. 773018	2.86 2.86	. 905925	1.55	. 867094	4.41	. 132906	38
23	. 773190	2.86 2.86	. 905832	1.55	. 867358	4.41	. 132642	37
24	. 773361	2.85	. 90573	1.55	. 867623	4.41	. 132377	36
25	. 773533	2.85	. 9	1.55	. 8678887	4.41	. 132113	35
28	. 773704	2.85	. 9055552	1.55	. 8688152	4.41	. 131848	34
27	.7\%3875	2.85	. 905459	1.56	. 868416	4.41	. 131584	33
28	. 774046	2.85 2.85	.905366	1.56 1.56	. 8688680	4.40	.131320	32
29	. 774217	2.85	. 905272	1.56	. 868945	4.40	. 131055	31
30	9.774388	2.84	9.905179	1.56	0.869209	4.40	0.130791	30
31	. 774558	2.84	. 905085	1.66	. 869473	4.40	. 130527	29
32	. 774729	2.84	. 904992	1.56 1.56	. 869737	4.40	. 130263	28
33	. 774899	2.84	. 904898	1.56 1.56	. 870001	4.40 4.40	. 129999	27
34	. 775170	2.84	. 904804	1.56	. 870265	4.40	. 129735	26
35	775240	2.84	. 904711	1.56	. 870529	4.40	. 129471	25
36	. 775410	2.83	. 904617	1.56	. 870793	4.40	. 129207	24
37	. 7755850	2.83	. 904523	1.57	. 871057	4.40	. 128943	23
38	. 775750	2.83	. 904429	1.57	. 871321	4.40	. 128679	22
39	. 775920	2.83	. 904335	1.57	. 871585	4.40	. 128415	21
40	9.776090	2.83	9.904241	1.57	9.871849	4.40	0.128151	20
41	. 776259	2.83 2.83	. 914147	1.57	. 872112	4.49	. 127888	19
42	. 776429	2.83 2.82	. 904053	1.57	. 8723376	4.39	. 127624	18
43	. 7765998	2.82	. 903959	1.57	. 872640	4.39 4.39	127360	17
44	. 776768	2.82	. 903384	1.57 157	. 872903	4.39 4.39	. 127097	16
45	. 7779337	2.82	. 9037770	1.57	. 873167	4.39	. 126883	15
46	. 777106	2.82	. 903676	1.57	. 873430	4.39	. 126570	14
47	. 77772745	2.82	. 9035581	1.57	. 873694	4.39	. 126306	13
48 49	. 7774444	2.81	. 903487	1.58	. 873957	4.39	. 126043	12
50	9.777781	2.81		1.58		4.39	120	11
51	9.777950	2.81	9.9032	1.58	9.874484	4.39	0.125516	10
52	. 778119	2.81	. 9033108	1.58	.874747	4.39	. 12252583	9
53	. 778287	2.81	.903)14	1.58	.8752\%3	4.39	. 124727	7
54	. 778455	2.81	. 902919	1.58	. 875537	8	. 124163	6
55	. 778624	2.80 2.80	. 902824	1.58	. 875800	4.38	. 124200	5
56	.778792		9 n 2729		. 876063	4	. 123937	4
57	. 778960	2.80 2.80	. 902534	1.58	. 876326	4.38	. 123634	8
68	. 779128	2.80 2.80	. 9022539	1.58	. 8765889	4.38	. 123411	2
59	. 779295	2.80 2.79	. 902444	1.59	. 876852	4.38 4.38	. 123148	1
60	. 779463	2.79	. 902349	1.59	. 877114	4.38	. 122888	0
M.	Cortna.	D. $1^{\prime \prime}$.	Sine.	D. $1^{\prime \prime}$.	Cutaug.	D. 1^{11}.	Tang.	M.

M.	Sine.	D. 1*.	Cosine.	D. $1^{\prime \prime}$.	Tang.	D. 1".	Cotang.	M.
0	9.779463	2.79	9.9112349	1.59	9.877114	${ }^{4.38}$	0.122886	60
1	. 779631	2.79 2.79	. 9112253	1.59	. 877377	4.38 4.38	. 122623	59
2	. 779798	2.79	. 9112158	1.59	. 877640		. 122360	68
3	. 779966	2.79 2.79	. 9122083	1.59 1.59	. 877913	4.38 4.38	. 122097	57
4	.781133	2.79	. 901967	1.59	. 878165	4.38 4.38	.121835	56
6	. 780310	2.78	. 901872	1.59	. 878428	4.38 4.38	. 121572	05
6	. 780487	2.78	. 9011776	1.59	. 878691	4.38 4.38	.121309	64
7	. 780634	2.78	.901631	1.59	. 875953	4.38	. 121047	63
8	. 7808181	2.78	. 901585	1.59	. 879216	4.38 4.37	. 1212784	52
9	. 780968	2.78	. 901490	1.60	. 879478	4.37 4.37	. 120524	$5!$
10	9.781134	2.78	9.951394	1.60	9.879741	4.37	0.120259	50
11	. 781311	2.78 2.77	. 901298	1.60	. 880003	4.37	. 119997	49
12	.781468	2.77	.9012012	1.60 160	. 880265	4.37 4.37	.119735	48
13	. 781634	2.77	. 901106	160 1.60	. 880528	4.37 4.37	.119472	47
14	.781800	2.77	.901010	1.60	. 880790	4.37	. 119210	46
15	. 781966	2.77 2.77	.900914	1.60	. 881052	4.37 4.37	.118948	45
16	. 782132	2.77	. 901818	1.60	881314	4.37 4.37	.118686	44
17	. 7822298	2.76	. 900722	1.60	. 831577	4.37	.118423	43
18	. 782464	2.76	.900646	1.60	.881839*	4.37 4.37	. 118161	42
19	. 782630	2.76	. 900529	1.60 1.61	. 882101	4.37 4.37	. 117899	41
20	9.782796	2.76	9.900433	1.61	9.882363		0.117637	40
21	. 782961	2.76	. 90101337	1.61	. 832625	4.37 4.37	. 117375	39
22	. 783127	2.76	.901240	1.61	. 882887	4.37 4.36	. 117113	38
23	. 783292	2.76 2.75	.900144	1.61	. 883148	4.36 4.36	. 116852	37
24	. 783458	2.75	.900047	1.61	. 883410	4.36 4.36	. 116590	38
25	. 783623	2.75	. 899951	1.61	. 883672	4.36	. 116328	35
26	. 783788	2.75	. 899854	1.61	. 883934	4.36 4.36	. 116066	34
27	. 783953	2.75 2.75	. 899757	1.61	. 884196	4.36 4.36	. 115814	33
28	. 784118	2.75	. 8999661	1.61	. 884457	4.36 4.36	.115543	32
29	. 784282	2.75 2.74	. 899564	1.61 1.62	. 884719	4.36 4.36	. 115281	31
30	9.784447		9.899467		9.884980		0.115020	30
31	. 784612	2.74 2.74	.899370	1.62	. 885242	4.36	. 114758	29
32	. 784776	2.74 2.74	. 899273	1.62 1.62	. 885504	4.36 4.36	. 114496	28
33	. 784941	2.74 2.74	. 899176	1.62 1.62	. 885765	4.36 4.36	. 114235	27
34	. 785105	2.14 2.74	. 899078	1.62 1.62	. 886026	4.36 4.36	.113974	20
35	. 785269	2.74 2.73	. 893981	1.62	. 886288	4.36 4.36	. 113712	25
36	. 785433	2.83 2.73	. 898884	1.62	. 886549	4.36 4.36	.113451	24
37	. 785597	2.78 2.73	. 893787	1.62 1.62	. 886811	4.36 4.35	. 113189	23
38	. 785761	2.73 2.73	. 898689	1.62 1.62	. 887072	4.35 4.35	. 112928	22
39	. 785925	2.73 2.73	. 898592	1.62 1.62	. 887333	4.35 4.35	. 112667	21
411	9786089	2.73	9.898494	1.63	9.887594		0.112406	20
41	. 786252	2.73 2.73	. 898397	1.63 1.63	. 887855	4.35	. 112145	19
42	. 786416	2.73 272	.898299	1.63 1.63	. 888116	4.35	. 111884	18
43	. 786579	272 272	. 89821%	1.63 1.63	. 888378	4.35	. 111622	17
44	. 786742	272 272	. 898104	1.63 1.63	. 888639	4.35	.111361	16
45	. 786896	2.72 2.72	. 8983006	1.63 1.63	. 888900	4.35	.111100	15
45	. 787069	2.72 2.72	. 897908	1.63 1.63	. 889161	4.35	. 110839	14
47	. 737232	2.72	. 897810	1.63 1.63	. 889421	4.35	. 110579	13
48	. 787395	2.72 2.71	. 897712	1.63 1.63	. 889682	4.35 4.35	. 110318	12
49	. 787557	2.71	. 897614	1.63 1.63	. 889943	4.35 4.35	. 110057	11
50	9.787720		9.897516		9.890204		0.169796	10
51	. 787883	271 2.71	. 897418	1.64	. 89×1465	4.35	. 109535	9
52	. 788045	2.71	. 897320	1.64	. 890725	4.35	. 109275	8
53	. 7882118	2.71	. 897222	1.64	. 8909×6	4.34 4.34	. 109014	7
54	. 788370	2.71 2.70	. 897123	1.64	891247	4.34 4.34	. 108753	6
55	. 788532	2.70 2.70	. 8971125	1.64	. 841515	4.34 4.34	. 1 NE493	5
56	788694	2.70 2.70	. 896926	1.64	891768	4.34 4.34	. 108232	4
57	. 788956	2.70 2.70	. 896823	1.64	3942128	4.34 4.34	. 107972	3
58	789118	2.70 2.70	. 896729	1.64	. 89.22×9	4.34 4.34	. 107711	2
59	. 789180	2.70 2.70	. 896631	1.64	. 8822549	4.34	. 107451	1
60	. 789342	2.70	. 896532	1.64	. 892810	4.34	. 107190	0
M.	Cosing.	D. 1 H .	Bline.	D. $1^{\prime \prime}$.	Cotang	D. 1'.	Tang.	M.

M.	Slne.	D. $1^{\prime \prime}$.	Cosine.	D. $1^{\prime \prime}$.	Tang.	D. $1^{\prime \prime}$.	Cotang.	M.
0	9.789342	2.69	9.896532		9.892510		0.107190	60
2	. 7895964	2.69	.896433	1.65	. 8933070	4.34	. 1116930	59
2	. 7896665	2.69	. 8963335	1.65	. 893331	4.34	.1166699	58
	. 789827	2.69	. 8966236	1.65	. 893591	434	106419	57
4	. 7899888	2.69	. 896137	1.65	. 893×1	4.34	.106149	56
5	. 790149	2.69	. 8960038	1.65	. 894111	434	. 105 N 89	55
8	.790310	2.68	. 8959539	1.65	.8943\%2	4.34	. 11151528	54
8	. 790632	268	.8958741	1.65	.891632	434	. 105108	63
8	. 790793	2.63	. 895641	1.65	. 895152	4.33	. 104548	51
10	9790954		9.895542		9.8954		0.104588	60
11	. 791115	2.68	. 895443	66	.8956\%2	4.33	. 104328	49
12	. 791275	2.68	. 895343	1.66	. 895932	4.33	. 1041168	48
13	.791436	267 267	. 895244	1.66	. 896192	4.33 4.33	. 103808	47
14	. 791596	2.67	. 895145	1.66	. 896452	4.33 4 4	. 103548	46
15	. 791757	267	. 895045	1.66	. 896712	4	. 11132288	45
16	. 791917	267 2.67	. 894945	1.66	. 896971	433	. 1031×29	44
17	.792077	2.67	. 894846	1.66	.897231	4.33	. 102769	43
18	. 792237	2.67	. 894136	1.66	.89\%491	4.33	. 1122509	42
19	. 792397	2.66	. 894646	1.66	. 897751	4.33	. 102249	41
20	9.792557		9.894546	1.67	9.898010		0.101930	40
81	. 792716	266	. 894446	1.67	.8982:0	433	. 101730	39
22	. 792876	266	. 894346	1.67	.89853)	4.33	. 101470	38
23	. 793035	266	. 89.1246	1.67	. 898789	4.33 433	. 101211	37
24	. 793195	266	. 894146	1.67	. 899049	433 43	. 1101951	36
25	. 7933354	265	. 8931046	1.67	. 8993018	4	. 100692	35
28	. 7933514	265	. 893946	167	899.363	432	. 100432	$3{ }^{4}$
27	. 7933673	265	. 8933846	1.67	. 899327	432	. 1601173	33
28	. 79	265	. 893	1.67	. 90000	432	. 099913	32
29	. 78	2.65	. 80	1.67	. 900346	4.32	. 099654	31
30	9.794150	2.65	9.893514		9.90060		0.099395	30
31	. 794308	2.64	. 893414	1.68	.900scy	432	. 099136	29
82	. 794467	2.64	. 893343	1.68	. 901124	432	.098876	28
33	. 794626	264	.893243	1.68	. 901383	432	(0)4617	27
35	.794:84	264	. 893142	1.68	. 901642	432	.09\%358	26
35	. 791912	264	.893141	1.68	. 901901	432	. $09 \sim 799$	25
36	. 795101	2.64	. 8922940	1.63	. 902160	432	.097<40	24
37	.795259	2.64	.892>39	1.68	.902420	432	.0975880	23
38	.795-117	263	.892\%'39	1.68	.9026\%9	432	.097321	22
39	. 79	2.63	.892638	1.68	. 902933	4.32	09:162	21
40	9.795733	2.63	9.892536		9.303197		0.096 Na 3	20
41	. 795891	2.63	. 892435	1.69	. 903456	4	(1)3,544	19
42	. 796049	2.63	. 892334	1.69	. 903714	431	.096246	18
43	. 7962206	2.63	. 8922233	1.69	903973	431	. 1596127	17
44	. 796364	2.62	. 832132	1.69	. 904232	431	. 0955788	16
45	.7965\%21	2.62	. 8921130	1.69	. 904191	431	. 0955509	15
46	. 796679	2.62	. 891929	1.69	.904750	431	095250	14
47	. 7967336	262	. 891827	1.69	. 905008	431	. 034992	13
48	796993	2.62 2.62	. 891726	1.69	. 905267	431 431	. 0991733	12
49	. 797150	2.61	. 891624	1.69	. 90	4.31	091474	1.
50	9.797307		9.891523		9.905785		0.094215	0
61	.79\%464		. 891421	1.70	. 9016043	4.31	. 0939597	9
52	. 797621	2.61	. 891319	1.70	.9063142	4.31	.093698	8
53	.797777	2.61	.891217	1.70	.916560	4.31	. 133440	7
54	. 797934	2.61	. 891115	1.70	.964819	4.31	. 093181	6
55	.795091	261	.891013	1.70	9120,7	4.31	0042×23	5
66	.798247	2.61.	. 890911	1.70	.907336	4.31	. 1823664	4
67	.798403	2.60	.890<69	1.70	. 907594	4.31	. 0924416	3
58	. 798566	260	.890707	1.70	.907853	431	. 0921478	2
60	. 7939716	2.60	.8906115 8905013	1.70	$\begin{aligned} & .918111 \\ & .918369 \end{aligned}$	4.31	$.091889$	
M.	Cosine.	D. 1	Sino.	D. 1".	Cotang.	D. 1	Tang.	M.

M.	Sine.	D. 1^{11}	Cosine.	D. ${ }^{1 \prime}$.	Tang.	D. ${ }^{\prime \prime}$.	Cotang.	M.
0	9.79337	2.60	9.89		9.905369	4.30	0.091631	1 60 59
1	${ }^{.7991023}$	2.60	.8904100 .890298	1.71	$.90625$	4.30 4 4	.091372	59 58 8
3	. 7993339	2.60 2.59	. 890195	1.71	. 909144	4.30	090356	57
,	. 799995	2.59 8.59	.890193	1.71	.9034122	431 4310	030598	56
	. 799651	3.59 2.59	.88995	1.71		4.30	. 19903340	55
6	.7998166	2.59	. 8898	1.71	. 91491	4.30		54
7	. 799962		99785	1.71	. 9111177	4.30	0353823	53
8	. 809117	2.59		1.71		4.30		52
9	. 800	2.59	. 889579	1.71	. 914	4.30	. 089307	
10	9.8014		9.8		9.91033		089049	50
11		2.58		1.72	. 9112119	4.30	${ }_{0}^{088791}$	
12	. 80073	2.58	. 8889271	1.72	. 911467	4.30	.088i33	
13	. 80	2.58		1.72	. 911725	4.30	. 088275	${ }_{46}^{47}$
14	b0	2.58	. 88890	1.72	. 9119892	4.30		${ }_{45}^{46}$
15	.3012	2.53	. 8889	1.72	. 912240	4.30	. 08877760	
18	. 801356			1.72	. 912438	4.30	. 087502	4
17	. 8115	2.57	. 8888755	1.72	${ }_{0130} 912$	4.30	. 088	42
18	. 80166			172	. 9131327	4.30	.0867729	41
		2.57		1.72		4.30		
20	9.81	2.57	9.8	1.73	9.91	4.29	0.086471	39
$\stackrel{21}{22}$	8082	2.57	8882	1.73	. 914	4.29	. 0898956	
${ }_{21}^{22}$		2.57	.88821	1.73	9143	4.29	.0< 6899	37
23	. 88 (12735	2.56	. 888830	1.73	. 91955	4.29		
	-812039				9143	4.9	0851	
25	. 8102743	2.56	378	1.7	91	4.29	08492	
28	. 81228		. 8878782	1.73	.9150			
	. 80310	2.56	.837718	1.73	. 91535	4.29	.084663	33
28	. 8032		. 89	1.7	. 91553	4.29	. 084	
89	. 803357	2.55	510		5347	. 29	. 084	31
30	9.8035	2.5	9.8974	1.74	9.916	4.29	0.0833	30
31	. 803664		.857302					
${ }^{32}$. 803×17	255	. 887193	1.74	. 916619	4.29	. 0833881	
	. 8039	2.55		1.74	.91631	4.29	. 083123	27
	8041	2.55	. 8869	1.74	.9173	4.29	08266	${ }^{28}$
35	. 804276	2.55	. 8368		.9173	4.29	0^{082609}	
36	. 8012	2.54		1.74	. 9176	4.29	. 082352	24
	81	2.54		1.74	. 917	4.29		23
38	.804734	2.54	. 8865571		. 918163	4.29	. 0381837	
39	. 804386	2.54	. 886466	1.75	420		815	21
40	$9.805 \cap 39$	2.5	9.8863		9.9186	4.28	0.081	20
11	. 805191	2.54	. 886257	1.75	. 918934	428	81	
	. 805343	2.54	886	. 75	. 919191	4.28	O81089	18
43	. 81	2.53	8860	. 75	. 919	4.25	080552	17
45	.805647	${ }_{2} 2.53$. 8859912	1.75	. 91979	4.23	O80293,	16
45	.80579	2.53	.8803837	1.75	.9199	4.23	0814138	15
46		2.53	. 8857	1.75	92020	4.23	T9	14
	. 80	253	. 885	1.75		28		
48	.8n6254						.079207	
49	. 8166406	2.52	. 885416	1.75	. 920990	4.28	. 079110	11
50	9.8		9.8		9.9212		0.078753	10
51	.				. 921			
	. 816	2.52	.885ic 100	1.76	9217	4.28	.07>240	8
	. 81701	2.52	. 884994	1.76	922 217	4.23	.07	7
54	. 81712		. 884		.9222	4.23	.0i7726	6
		2.52	. 881	1.76	92\%2in	4.23	. 377771	5
	. 80746	2.51	. 8376	1.76	.9222787	423	.077213	4
67	. 816615	2.51	. 884575	1.76				3
58	. 8017766	2.51	. 84360	1.77		4.28	14	2
59 60	$\begin{aligned} & .807917 \\ & 803167 \end{aligned}$	2.51	$.84360$	1.77	$.923557$	4.2	$.076186$	0
4.	Costno	D. 1	Slne.	D.	Cotan	D. 11	Tang	M.

M.	Sine.	D. $1^{\prime \prime}$.	Cosine.	D. ${ }^{\prime \prime}$.	Tang.	D. 1	Cotang.	M.
0	9.805067	2.51	9.884254		9.923814		0.076186	60
1	. 808218	2.51	. 884148	1.77	. 924470	4.28 4.28	. 125930	59
2	. 803368	2.51	. 884142	1.77	. 9243327	4.28 4.27	. 075673	58
3	. 808519	2.51	. 883936	1.77	.9245\%3	4.27 4.27	. 075417	57
4	. 808669	2.50	. 883×29	1.77	. 924840	27	.075160	56
6	. 808819		.883723	77	. 925096	27	. 074904	55
6	808969	2.50	. 883617	1.77	. 9255352	4.27	. 074648	54
7	. 809119	2.50 2.50	. 883510	1.77	.925619	4.27	. 074391	53
8	. 8092269	250	. 883404	1.78	. 925865	4.27	. 074135	52
9	. 809419	2.50	. 883297	1.78	. 9226122	4.27	. 073878	51
10	9.809569		9.883191		9.9263		0.073622	50
11	. 809718	2.49 2.49	. 883084	1.78	. 9226634	4.27 4.27	073366	49
12	. 809368	2.49	. 882977	1.78	. 9268590	4.27 4.27	. 073110	48
13	. 810017	2.49	. 8822371	1.78	. 927147	4.27 4.27	. 072853	47
14	. 810167	2.49	. 882764	1.78	.927403	4.27	. 072597	46
15	. 810316	2.49	.882657	1.78	.927659	4.27	. 072341	45
16	. 810465	2.48	.882550	1.78	.92\%915	7	. 072085	44
17	. 810614	2.48	. 882443	1.78	. 928171	27	. 071829	43
18	. 810763	2.48	. 882336	1.79	. 923427	27	. 071573	42
19	. 810912	2.48	. 8822229	1.79 1.79	. 923684	4.27	. 071316	41
20	9.811061		9.882121	1.79	9.928940		0.071060	40
21	. 811210	2.48	. 882014	1.79	. 929196	27	. 070004	39
22	. 811358	2.48	. 881017	1.79	. 9294452	4.27	. 0715548	38
23	. 811507	2.48	. 881799	1.79	.929703	4.27	.070292	37
24	. 811655	2.47	. 881692	1.79	. 929964	4.27	. 076036	36
25	. 811804	2.47	. 881584	1.79	. 93 (1220)	4.27	. 069780	35
26	. 811952	2.47	. 881477	1.79	.930475)	4.27	. 069525	34
27	. 812100	7	. 881369	1.79	. 930731	4.26	. 069269	33
28	. 812248	2.47	. 881261	1.80	. 934937	4.26	. 069013	32
29	. 812396		. 881153	80	. 931243		. 068757	31
30	9.812544		9.881046		9.931499		0.068501	30
31	.812692		. 880938		.931755		. 06×245	29
32	. 812340	2	. 880830	1.80	. 932010	4.26	. 067990	28
33	. 812938	2.46	. 850722	1.80	. 9322266	4.26	. 067734	27
34	. 813135	2.46	. 880613	1.80	. 932522	4.26	. 067478	26
35	. 813283	2.46	. 880505	1.80	.932778	4.26	. 067222	25
36	. 813430	2.46	. 880397	1.80	. 933033	4.26	. 066967	24
37	. 813578	45	. 880289	1.81	. 9332389		066711	23
38	. 813725	45	. 880180	1.81	. 9333545		. 066455	22
39	. 813872		. 88007	1.81	. 933800		.066200	21
40	9.814019		9.879963		9.934056		0.065944	20
41	. 814166	45	. 8798555		. 934311		. 065689	19
42	. 814313	2.45	. 879746	1.81	. 934567		. 065433	18
43	. 814460	2.45	. 879637	1.81	. 934822	4.26	. 065178	17
44	. 814607	2.44	. 879529	1.81	. 935078	4.26	. 064922	16
45	. 814753	2.44	. 879420	1.81	. 935333	4.26 4.26	. 064667	15
46	. 814900	2.44 2.44	. 879311	1.81	. 935589	4.26 4.26	. 064411	14
47	. 815046	2.44	. 873202	1.82 1.82	. 935844	4.26 4.26	. 064156	13
48	. 815193	2.44	. 879093	1.82	. 936100	4.26 4.26	. 0639900	12
49	. 815339	2.44	. 878984	1.82	.936355	4.26	. 063645	11
50	9.815485		9.878875		9.936611		0.063389	10
51	. 815632		. 878766	1.82	. 936866	4.26 4.26	. 063134	,
52	. 815778	2.43	. 878656	1.82	.937121	4.26 4.26	. 062879	8
53	. 815924	2.43 2.43	. 878547	1.82	. 937377	5	.06\%623	7
54	. 816069	2.43	. 878438	1.82	. 937632	25	. 062368	6
55	. 816215	2.43	. 878328	1.82	. 9377887	4.25 4.25	. 062113	5
56	. 816361	2.43 2.43	. 878219	1.83	. 9338142	4.25 4.25	. 061358	4
57	. 816507	2.43 2.43	. 878109	1.83	. 9383398	4.25	. 061602	3
58 59	. 816652	2.42	. 877999	1.83 1.83	. 93×653	4.25	. 061347	2
59	. 816798	2.42	$.877890$	1.83 1.83	.9334908 .939163	4.25	. 0611192	1
M.	Cosine	D. $1^{\prime \prime}$.	Sine	D. $1^{\prime \prime}$.	Cotang	D. $1^{\prime \prime}$	Tang.	M

M.	Slve.	D. 11.	Coside.	D 110.	Tang.	D. 1^{10}.	Cotang.	M.
0	8.816943	2.42	9.877780	1.83	9.939163	4.25	0.060837	60
1	.817088 .817233	2.42	.877670 .877560	1.83 1.83	. 9389418	4.25	.060582 .060327	69 58
2 3 3	.817233 .817379	2.42	.877560	1.83	. 93969738	4.25	. 0660172	58
4	. 817624	2.42	. 877340	1.83	. 940183	4.25	. 059817	56
5	. 817668	2.42	.87\%230	1.84	. 940439	4.25	. 059561	65
6	. 817813	2.41	. 877120	1.84	. 940694	4.25 4.25	. 0593016	54
7	. 817958	2.41	. 877010	1.84	. 9410949	4.25 4.25	. 059051	63
8	. 818103	2.41	. 876899	1.84	. 9412124	4.25 4.25	. 058796	52
9	. 818247	2.41	. 876789	1.84	. 941459	4.25	. 058541	51
10	9.818392	2.41	9.876678	1.84	9.941713	4.25	0.058287	50
11	. 818536	2.41	. 876568	1.84	. 941968	4.25	. 058032	49
12	. 818681	2.40	. 876457	1.84	. 9422223	4.25	. 057777	48
13	. 818825	2.40	. 876317	1.84	. 942478	4.25	. 057522	47
14	. 818969	2.40	. 876236	1.85	. 942733	4.25	. 057267	46
15	. 819113	2.40	. 876125	1.85	. 942988	4.25	. 057012	45
16	. 819257	2.40	. 876014	1.85	. 943243	4.25	. 056757	44
17	. 819401	2.40	. 8759794	1.85	. 943498	4	. 056502	43
18	. 819545	2.40	. 875793	1.85	. 943752	4.25	. 056248	42
19	. 819689	2.39	. 875682	1.85	. 944007	4.25	. 055993	41
20	9819832		9.875571	1.85	9.944262		0.055738	40
21	. 819976	2.39	. 875459	1.85	. 944517	4.25 4.25	. 055483	39
22	. 820120	2.39	. 875348	1.85	. 944771	4.25 4.24	. 055229	38
23	. 820263	2.39	. 875237	1.86	. 945026	4.24	. 054974	37
24	. 820406	2.39	. 875126	1.86	. 945281	4.24	. 054719	36
25	. 820550	2.39	. 875014	1.86	. 945535	4.24	. 054465	35
26	. 820693	2.38	. 8749903	1.86	. 945790	4.24	. 054210	34
27	. 820836	2.38	. 874791	1.86	. 946045	4.24	. 0533955	33
28	. 821979	2.38	.874680 .874568	1.86	. 946299	4.24	. 0533746	32
29	. 821122	2.38	. 874568	1.86	. 946554	4.24	. 053446	31
30	9.821265	2.38	9.874456	1.86	9.946808		0.053192	30
31	. 821407	2.38	. 874344	1.86 1.86	. 947063	4.24 4.24	. 052937	29
32	. 821550	2.38	. 874232	1.87	. 947318	4.24	. 052682	28
33	. 821693	2.37	.874121	1.87	. 947572	4.24	. 052428	27
34	. 821835	2.37	. 874009	1.87	.947827	4.24	. 052173	26
35	. 821977	2.37	. 8738896	1.87	. 94848081	4.24	. 051919	25
36	.822120	2.37	. 8737864	1.87	${ }^{.948335}$	4.24	. 051410	24 23
37	. 8222262	2.37	.873672	1.87	. 94888944	4.24	. 0514156	22
38	. 8222546	2.37	. 87373448	1.87	. 9498909	4.24	. 050901	21
39	. 824546	2.37	. 873448	1.87	. 949099	4.24	.060501	
40	9.822688		9.873335		9.949353		0.050647	20
41	. 822330	2.36	. 873223	1.88	. 949608	4.24	. 050392	19
42	. 822972	2.36	. 873110	1.88	. 949862	4.24	. 050138	18
43	. 823114	2.36	. 872998	1.88	. 950116		. 049884	17
44	. 823255	2.36	. 872885	1.88	. 950371	4.24 4.24	. 049629	16
45	. 823397	2.36	. 872772	1.88	. 950625	4.24 4.24	. 049375	15
46	. 823539	2.36	. 872659	1.88	. 950879	4.24	. 049121	14
47	. 823680	2.36	. 8725477	1.88	. 951133	4.24	. 048867	13
48	. 823821	2.35	. 872434	1.88	. 951388	4.24 4.24	. 048612	12
49	. 823963	2.35	. 872321	1.88	. 951642	4.24	. 048358	11
50	9.824104		9.872208		9.951896		0.048104	10
51	. 824245	2.35 2.35	. 872095		. 952150	4.24	. 047850	9
52	. 824386	2.35 2.35	. 871981	1.89	. 952405	4.24 4.24	. 047595	8
53	. 824527	2.35	. 871868	1.89	. 952659	4.24 4.24	. 047341	7
54	. 824668	2.35	. 871755	1.89	. 952913	4.24	. 047087	6
55	. 824808	2.34	. 871641	1.89	. 953167	4.24	. 046833	5
66	. 824949	2.34	. 871528	1.89	. 953421	4.24	. 0465789	4
57	. 8250930	2.34	. 871414	1.89	. 953675	4.23	. 046325	3
58 69	. 82253230	2.34	. 871301	1.89	. 953929	4.23	. 04646817	2
60	. 825511	2.34	. 8711073	1.90	. 954437	4.23	. 045563	0
M.	Cosine.	D. $1^{1 N}$.	8ine.	D. $1^{\prime \prime}$.	Cotang.	D. $1^{\prime \prime}$.	Tang.	M.

M.	Sine.	D. $1^{\prime \prime}$.	Cosio	D. $1^{\prime \prime}$.	Tang.	D. ${ }^{1 \prime}$.	Cotang.	M.
0	9.825511		9.871073		9.954437		0.045563	60 59
1	. 8256551	2.34	.870960	1.90 1.90	$.951691$	4.23	. 0453019 045054	59 58
2	.825791	2.33	.877046	1.90	. 954946	4.23	. 045054	58
4	. 826071	2.33	. 8711618	1.90	. 9555454	4.23	.044546	56
5	. 826211	2.33	. 870504	1.90	.955718	4.23	. 041292	55
6	. 826351		. 870390	1.90	. 955961	4.23	. 0411139	54
7	.826491	2.33	. 87 (1276		. 9.56215	4.23	. 043785	53
8	. 826631	2.33	. 870161	1.90	.956169	4.23 4.23	.043531	52
9	. 826770	2.33	. 870047	1.9	. 956723	4.23	. 043277	51
$1 ¢$	9.826910	2.32	9.86993	1.91	9.95697		$0.043 n 23$	50
11	. 827049	2.32	. 869318	1.91	. 957231	4.23	. 042769	49
12	. 827189	2.32	. 869704	1.91	. 9557485	4.23	. 042515	48
13	. 8277328	2.32	. 8695889	1.91	. 9577739	4.23	. 042261	47
14	. 8277467	2.32	. 869474	1.91	. 957993	4.23	.042007	46
15	. 827606	2.32	. 8693360	1.91	. 958247	4.23	. 041753	45
16	. 82774	2.32	. 869245	1.91	. 958580	4.23	16	44
17	. 82	2.31	.869015	1.92	. 9590008	4.23	040992	12
18	. 828162	2.31	. 8688900	1.92	. 959262	4.23	. 040738	1
20	9.828301		9.868		9.9595		0.040484	40
21	. 823439	2.31	. 8636	1.92	.959769	4.23	. 040231	39
22	. 828578	2.31	. 868555	1.92	. 960023	4.23	. 039977	$3 ¢$
23	. 823716	2.31	. 863440	1.92	. 960277		. 039723	37
24	. 823855	2.31	.8883:24	1.92	. 960530	4.23	. 039470	36
25	. 82899	2.30	. 868209	1.92	. 960784	4.23	. 039216	35
28	. 82	2.30	. 863×193	1.93	. 96103	4.23	. 038962	34
27	. 8292	2.30	. 867978	1.93	9612	4.23	. 033708	33
28	. 829407	2.30	867862	1.93	961545	4.23	. 033455	32
29	. 829545	2.30 2.30	. 867747	1.93	. 961	4.23 4.23	. 038201	31
30	9.82968		9.867		9.962	4.23	037948	30
31	. 8299921	2.30	. 867515	1.93	.962306	4.23	.037694	29
32	. 829959	2.29	. 867399	1.93	.962560	4.23	. 037410	28
33	.830197	2.29	. 867233	1.93	. 962813	4.23	. 037187	27
34	830234	2.29	. 86716	1.93	. 963 (167	4.23	. 036933	28
	831372	2.29	. 86705	1.94	. 963320	4.23	. 036680	25
36	. 830509	2.29	. 8669335	1.94	. 963574	4.23	. 036426	24
37	. 8330616	2.29	. 866319	1.94	. 9633828	4.23	.036172	23
38	. 830784	2.29	. 866703	1.94	. 964081	4.23	. 035919	22
39	. 830921	2.29	. 8665	1.94	. 964335	4.23	. 035665	21
40	9.831058	2.29	9.86647	1.94	9.964588		0.035412	20
41	. 831195	2.23	. 866353	1.94	. 961842	4.22	. 035158	19
42	. 831332	2.28	. 866237	1.94 1.94	. 965095	4.22	. 034905	18
43	. 831469	2.28	. 866120	1.94	. 965349	4.22	. 034651	17
44	. 831606	2.28	. 86600	1.95	. 965602	4.22	. 034393	16
45	. 831742	2.28	. 8653887	1.95	. 965855	4.22	. 034145	15
46	. 831879	2.23	. 8657770	1.95	. 966109	4.22	. 033891	14
47	. 8322015	2.27	.86.5653	1.95	. 966362	4.22	.0336638	13
48	. 832152	2.27	. 8655536	1.95	. 966616	4.22	. 033384	12
49	.832288	2.27	. 86	1.95	. 9668	4.22	. 033131	11
50	9.832425		9.865302		9.967123		0.032877	10
51	.8322561	2.27	. 865185	1.95	. 967376	4.22	. 032624	9
52	. 832697	2.27	. 8651163	1.95	. 967629	4.22	. 032371	3
53	. 832333	2.27	. 864950	1.96	. 96.7883	4.22	. 032117	7
54	. 832969	2.27	. 864×33	1.96	. 963136	4.22	. 031864	6
55	. 833105	2.26	. 864716	1.96	. 968389	4.22	. 031611	5
56	.833241	2.26	.864593	1.96	. 968843	4.22	. 031357	4
57	. 8333377	2.26	.8644>1	1.96	. 96.38996	4.22	. 0311104	3
58	. 83	2.26	.864 .363 .864245	1.96	. 969149	4.22	.030351 .030597	$\stackrel{2}{1}$
69	.833678	2.26	. 8664127	1.96	. 9696556	4.22	.030314	0
M.	Cosive.	D. $1^{\prime \prime}$	Sine.	D. $1^{\prime \prime}$	Cotang	D. 1	Tang.	M.

M.	Sine.	D. $1^{\prime \prime}$.	Casine.	D. $1^{\prime \prime}$.	Tang.	D. ${ }^{1 \prime}$.	Cotang.	M.
0	9.833783		9.864127		9.969656		0.030344	60
1	. 8833919	2.26 2.26	. 8641110	1.96	. 9699919	4.22	. 0310391	59
2 3 3	. 8341645	2.26 2.25	. 8833×92	1.97 1.97	. 970162	4.22	. 0299838	58 57
3 4 4	$\begin{array}{r}.834189 \\ .834325 \\ \hline 8\end{array}$	2.25	.863774 .863656 863	1.97 1.97	.971416 .970669	4.22	.1129584 .029331	57 56
4	. 8343425	2.25	.863656 .863538 8.858	1.97	.970669 .970922	4.22	.029331 .029078	56 55
5	$.83+469$.831595	2.25	. 866353119	1.97	. 970922	4.22	.029078	55 54
${ }_{6}$. 8315935	2.25	.863419 .863301	1.97	${ }^{.971175}$	4.22	. 02885871	5
7	. 834730	2.25		1.97	. 971429	4.22	. 0228318	53 52
8	.834865	2.25	.863103	1.97	.971682 .971935	4.22	.028318	51
9	.834939	2.25		1.97	.971935	4.22		
10	9.835134	2.24	9.862946	1.98	9.972188	4.22	0.027812	50 49
11	.835:269	2.24	.862527 .862709	1.98	$\begin{array}{r} .972441 \\ .97 \cdot 2695 \end{array}$	4.22	.027559 .027305	49
12		2.24	.862709	1.98	.972695 .972948	4.22	.027305 .027052	48
14	. $83.566 / 2$	2.24	. 862471	1.93	. 973201	4.22	. 026799	46
15	. 8358517	2.24 2.24	. 862353	1.93 1.98	. 973154	22	. 026546	45
16	. 835941	2.24 2.24	. 862234	1.98	. 973707	4.22	. 026 293	44
17	. 8366175	2.24 2.23	. 862115	1.98	. 973960	4.22	. 026640	43
18	.836209	2.23	. 861996	1.98	.974213	4.22	. 025787	42
19	. 836343	2.23	. 861877	1.99	. 974466	4.22	. 025534	41
20	9.836477	2.23	9.861758	1.99	9.974 20	4.22	0.025280	40
21	. 836611	2.23 2.23	. 861638		. 974973	4.22	.025027	39
22	. 836745	2.23 2.23	. 861519	1.99 1.99	. 975226	4.22	. 024774	38
23	. 836378	2.23 2.23	. 861400	1.99	. 975479	4.22 4.22	. 024521	37
24	. 837012	2.23 2.23	. 861280	1.99 1.99	. 975732	4.22	. 024268	38
25	. 837146	2.23	. 861161	1.99	. 975985	4.22	. 024015	35
26	. 837279	2.22	. 861041	1.99	. 9762	4.22	. 023762	34
27	. 837412	2.22	. 8609822	1.90	. 976491	4.22	. 0233509	33
28	.837546	2.22	. 860802	2.00	. 9767694	4.22	.023256	32
-29	. 837679	2.22	. 860682	2.00	. 976997	4.22	. 0233003	31
30	9.837812		9.860562		9.977250		0.022750	30
31	. 837945	222	. 860442	2.00 2.00	. 9777503	4.22	022497	29
32.	. 8331178	2.22 2.22	. 860322	2.00 2.00	. 977756	4.22 4.22	. 0222244	28
33	. 8332111	2.21	. 8602022	2.00 2.00	. 978009	4.22	. 021991	27
34	$.83 \times 344$	2.21	. 86010182	2.00 2.00	. 978262	4.22 4.22	. 021738	26
35	. 833477	2.21	859962	2.00	. 9788768	4.22	. 021485	25
36	. 83×610	2.21	.859342	2.01	. 97878768	4.22	. 021232	24
37	.83:742		.859721	2.01	. 979021	4.22	. 0211979	23
38	. 833875	2.21	${ }^{.859601}$	2.01	. 979274	4.22 4.22	. 02020726	22
39	. 839007	2.21	. 859480	2.01	. 979527	4.22 4.22	. 020473	21
40	9.839140		9.859360		9.979780		0.020220	20
41	. 839272	2.21 2.20	. 859239	2.01 2.01	. 9800033	4.22 4.22	. 019967	19
42	. 839404	2.20 2.20	. 859119	2.01	. 980286	4.22 4.22	. 019714	18
43	. 839536	2.20 2.20	. 85589898	2.01	. 98050538	4.22	. 019462	17
44	. 8339668	2.20	. 8558877	2.02	. 9880791	4.22	. 0192109	16
45	.839500	2.20	. 8588756	2.02	. 98104104	4.21	. 018956	15
46		2.20	. 85888535	2.02	. 9812975	4.21	. 01878450	14
48	. 84840196	2.20	.8588393	2.02	. 9881500	4.21	. 01818197	13 12
49	. 84.3228	2.19 2.19	. 858272	2.102	. 982056	4.21	. 017944	11
50	9.840459		9.858151		9.982309		0.017691	
51	. 810591	2.19 2.19	. 8588029	2.02	.982562	4.21	. 017438	9
52	. 810722		. 8579018	2.122	. 982×14	4.21	. 017186	8
53	. 840×54	219 619	. 857756	2.02	. 9833167	4.21 4.21	. 016933	7
54	. 840985	219 2.19	. 857665	2.03 2.03	. 9833320	4.21 4.21	. 016680	6
55	. 811116	2.19 2.19	. 8577543	2.03 2.03	. 9×3573	4.21	. 016427	5
56	. 811247	2.18	. 8577422	2.03	.983*26	4.21	. 016174	4
57	. 841378	2.18	. 857310	2.03 2.03	. 934179	4.21	.01592!	3
58	. 841509	2.18	. 8557178	2.03	. 984332	4.21	. 0156668	2
59 60	.841640 .841771	2.18	$\begin{aligned} & .857056 \\ & .856934 \end{aligned}$	2.03	. 9845884	4,21	. 015416	1
M.	Cusine.	D. $1^{\prime \prime}$.	Slne.	D. $1^{\prime \prime}$.	Cotang.	D. 1".	Tang.	M.

M.	Sine.	D. $1^{\prime \prime}$.	Cosine.	D. $1^{\prime \prime}$.	Tang.	D. $1^{1 \prime}$.	Cotang.	M.
0	9.841771		9.856934		9.984837		0.015163	60
1	. 841902	2.18	.856812	2.03 2.04	$.985190$	4.21	. 014910	59
2	. 842133	2.18	. 856690	2.04	. 985343	4.21	. 014657	58
3	. 842163	2.18	. 8565568	2.04	. 985596	4.21	. 014404	57
4	. 842294	2.17	. 856446	2.04	. 985848	4.21	. 014152	56 55
5	. 842424	2.17	. 856323	2.04	. 986101	4.21	. 0133999	55
6	. 842555	217	. 856201	2.04	. 9866354	4.21	. 013646	54
7	. 84282815	2.17	.856078	2.04	. 98868607	4.21	. 013393	53 52
9	. 842946	2.17	. 855883	214	. 987112	4.21	. 012888	51
10	9.843076		9.855711		9.987365		0.012635	50
11	. 843206	2.17	. 8555538	2	. 987618	4.21	. 0123×2	19
12	. 843336	2.17	. 855465	2.05	. 987871	4.21	. 012129	48
13	. 843466	2.16	. 855342	2.05	. 988123	4.21	. 011877	47
14	. 843595	2.16	. 855219	2.05	. 988376	4.21	. 011623	46
15	. 843725	2.16 2.16	. 855096	2.05	. 988629	4.21	. 011371	45
16	. 843855	2.16	. 854973	2.05	. 9888882	4.21	. 011118	44
17	. 843934	2.16	. 854850	2.05	. 989134	4.21	. 010366	43
18	. 844114	2.16	. 854727		. 9893387	4.21	. 0111613	42
19	. 844243	2.16	. 854603	2.06	. 989640	4.21 4.21	. 010360	41
20	9.844372	2.15	9.854480	206	9.989893	4.21	0.010107	40
21	. 844502	2.15	. 854356	2.06	. 990145	4.21	. 009855	39
22	. 844631	2.15	. 854233	2.06 2.06	. 990398	4.21	. 009602	38
23	. 844760	2.15	. 854109	2.06	. 990551	4.21	. 019349	87
24	. 844889	2.15	. 853998	2.06 2.06	. 990903	4.21	. 009097	36
25	. 845018	2.15	. 853962	2.06	. 991156	4.21	. 008844	35
28	. 845147	2.15	. 853738	2.06	. 991409	4.21	. 008591	34
27	. 845276	2.15	. 853614	2.07	991662	4.21	.008338	33
28	. 845405	214	. 853490	2.07	. 991914	4.21	. 008086	32
29	. 845533	2.14	. 853366	2.07	. 992167	4.21	. 007833	31
30	9.845662		9.853242		9.992420		0.007580	30
31	. 845790	2.14	. 853118	2.07	. 992672	4.21	. 007328	89
32	. 845919	2.14	. 852994	2.07 2.07	. 992925	4.21	. 007075	28
33	. 846047	2.14	. 852369	2.07	. 993178	4.21	. 006822	27
34	. 846175	2.14 2.14	. 852745	2.07	. 993431	4.21	. 006569	26
35	. 846304	2.14	. 852620	2.08	. 993653	4.21	. 006317	25
36	. 846432	2.13	.852496	2.08	. 9933936	4.21	. 006064	24
37 38	. 846560	2.13	.852371	2.08	. 994189	4.21	.005811	23
38 38	. 84646888	2.13	.852247	2.08	. 994441	4.21	. 0055559	22
		2.13		2.08		4.21	.065306	21
	9.846944	2.13	9.851997	2.08	9.994947	4.21	0.005053	20
41 42	. 8477197	2.13	. 8851872	2.08	. 9995199	4.21	. 004881	19
42	.847199 .847327	2.13	. 8551622	2.08	. 9995452	4.21	. 0004548	18 17
44	. 847454	2.13	. 851497	2.09	. 995957	4.21	. 004043	16
45	. 847582	2.12	. 851372	2.09	. 996210	4.21	. 003790	15
46	. 847709	2.12	. 851246	2.09 2.09	. 996463	4.21	. 003537	14
47	. 847836	2.12	. 851121	2.09 2.09	. 996715	4.21 4.21	. 003285	13
48	. 847964	2.12	. 850936	2.09 2.09	. 996968	4.21 4.21	. 0033132	12
49	. 848091	2.12 2.12	. 850870	2.09 2.09	. 997221°	4.21	. 002779	11
50	9.848218		9.850745		9.997473		0.002527	10
51	. 843345	2.12 2.12	. 850619	2.109	. 997726	4.21 4.21	. 002274	9
52	. 848472	2.11	. 850493	2.10 2.10	. 997979	4.21 4.21	. 002 2 21	8
63	. 848599	2.11	.85^368	2.10 2.10	. 998231	4.21	. 001769	7
54	. 848728	2.11	. 850242	2.10	. 9998484	4.21	. 001516	6
65	. 848858	2.11	. 850116	2.10	. 998×737	4.21	. 001263	5
56	. 848979	2.11	. 8499996	2.10	.9987989	4.21	. 001011	4
58 58	.849106	2.11	. 84949764	2.10	.999242 .999495	4.21	.000758 .000505	8
69	. 849359	2.11	. 849611	2.10	. 9999747	4.21	. 0101253	1
60	. 849485	11	. 849485	2.11	0.010000	4.21	. 000000	0
M.	Oosine.	D. $1^{1 \prime}$.	Sine.	D. $1^{\prime \prime}$.	Cotang.	D. $1^{\prime \prime}$.	Tang.	M.

TABLE III. NATURAL SINES AND COSINES

	0°		10		$2 \bigcirc$		$3{ }^{\circ}$		40		N.
	Sine.	Cosin.									
	000	One.	. 01745	. 99985	. 03490	99939	.05234		16976	56	00
	OHL29	One.	. 01774	. 99934	(13519	. 99938	. 05263	99, 61	. 070005	99754	53
2	200058	One.	. 01803	.99944	.03548	. 99937	. 05292	99>60	. 071134	99752	58
	(0U1)87	One.	. 01832	.999×3	.03577	. 99933	05321	99858	. 071163	99750	97
	00116	One.	. 01862	. 99983	. 036116	. 99935	.05350	.99>57	. 07092	99745	56
5	00145	One.	. 01891	. $999>2$. 03633	. 99934	. 05379	. 99855	. 07121	. 99746	56
6	. 00175	One.	. 01920	. 99952	. 3664	. 99933	. 05408	99854	. 07150	. 99744	54
7	00204	One.	. 01949	. 99981	. 03693	. 999332	. 05437	99852	. 07179	95742	53
	01233	One.	. 01978	. 99930	. 03723	. 99931	. 05466	. 99851	07208	99740	54
	00:262	One.	. 12007	. 99930	. 03752	. 99930	. 05495	99849	07237	99738	51
10	00291	One.	. (12136	. 99979	. 03781	99929	. 05524	99847	07266	99736	50
11	00320	. 99939	. 02065	. 99979	.03>10	. 99927	. 05553	99846	07295	99734	49
12	00349	. 99999	.02094	. 99978	. 03839	. 99926	.05532	99314	07324	99731	48
13	00378	. 99993	. 02123	. 99977	. 03368	. 999225	. 05611	99842	. 07353	99742	47
14	00417	. 93999	. 02152	.99977	. 03597	. 99924	.05640	99841	. 07332	99727	46
15	00436	. 99999	. 02181	. 99976	. 03926	. 99923	. 05669	99839	07	99725	45
16	00463	. 99999	. 02211	. 99976	. 03955	99922	. 05693	99833	. 07440	99:23	44
17	00495	. 99999	.02:241	:,9375	. 03984	. 99921	. $0572 i$	99336	. 07469	99721	43
18	00524	. 99999	.0226y	97974	1.04013	. 99919	. 05756	99834	07498	. 99719	42
19	.00553	. 99933	. 02298	.999\%4	. 04042	99918	. 05785	99833	07527	99テ̈16	41
20	. 00532	99993	.02327	. 99973	. 04071	. 99917	. 05814	99831	. 0755	99714	40
21	00611	. 99993	. 023356	. 99972	. 04100	. 99916	. 05544	. 93929	. 07585	99712	39
22	01640	. 99993	. 02335	. 99972	. 04129	99915	.05573	99327	07614	99710	38
23	00669	. 99993	. 02414	. 99971	. 04159	99913	.05902	99326	07643	99708	37
24	00698	99993	. 02443	.99970	. 04188	99912	. 05931	. 93824	07672	99705	36
25	00727	. 99997	. 02472	. 99969	. 01217	. 99911	. 05960	99322	07701	99703	35
26	00756	. 99997	.02501	. 99969	. 04246	. 99910	. 05939	99821	. 0773	99701	34
27	00785	. 99997	.02:30	. 99963	.01275	. 93909	06018	99519	. 07759	99699	33
23	00314	999\%	. 025650	99367	. 01301	99907	. 06047	99317	. 07788	99696	32
29	00844	99y\%6	.02:589	. 99966	. 01333	. 999916	. 06076	99815	. 07817	99694	31
30	00873	.9:	. 026	99366	. 04362	99905	. 06105	99813	. 07816	91592	30
3	(1) $\sim_{1} 12$	99996	. 02647	99965	. 04391	. 99904	. 06134	99312	07875	95	29
32	00931	99996	. 022676	. 99964	. 04420	.99902	. 06163	99310	. 07904	99687	88
33	00960	99935	. 02705	. 99963	. 04449	. 99901	. 06192	993018	. 0793	. 93685	27
34	. 00979	99995	. 02734	. 99963	. 04478	. 99990	. 06221	99806	0796	. 99683	26
35	. 01118	. 99995	. 122763	. 99962	. 04507	. 99893	.06250	93804	. 07991	99680	25
36	. 01047	99995	. 02792	. 99961	. 01536	. 99397	. 06279	99503	.04020	99678	24
37	01076	99994	02321	. 99960	. 04565	. 93396	. 06.301	99*01	. 08049	. 99676	23
38	01105	. 99994	02350	. 99959	. 01594	. 99894	. 06.337	99799	. 08078	. 99673	22
39	01134	. 99994	. 02379	.99959	. 04623	. 99393	. 063366	99797	. 08107	. 99671	21
40	01164	99993	. 02908	. 99958	.04653	. 99892	.06395	99795	. 08136	. 9966	20
41	01193	. 99993	. 02933	. 99957	. 04632	. 99890	. 06424	99793	08165	99666	19
42	. 01222	. 99993	. 02967	. 99959	. 04711	. 99889	. 06453	99792	. 08194	. 99664	18
43	. 01251	. 99992	. 02996	. 93955	. 04749	. 99388	. 06482	. 99790	. 08223	. 99661	17
44	. 01230	.99992	. 03025	. 99954	. 04769	. 99886	06511	. 99788	08252	. 99659	16
45	01309	. 99991	. 03054	. 99953	. 04798	. 99885	06540	99786	08281	99657	5
46	. 01338	99991	03083	99952	. 04827	. 99883	. 06569	99784	08310	. 99654	4
47	. 01367	. 99991	. 03112	. 99952	. 04×56	. 99382	. 06598	99752	08339	. 99652	13
48	. 01396	. 99990	. 03141	. 99951	. 04885	. 99881	. 06627	.99780	05368	. 99649	12
49	. 01425	. 99990	. 03170	.99950	. 04914	. 99879	.06656	99778	08397	. 99647	11
50	. 01454	. 99939	. 03199	. 99949	. 04943	. 99878	. 06685	. 99376	08426	. 99644	0
51	. 01483	. 99999	. 03223	. 99948	. 04972	. 998876	.06714	99774	08455	.99642	9
52	. 01513	. 999×9	. 032257	. 99947	. 050101	. 99875	. 06743	99772	08484	. 99639	8
53	. 01542	. 99938	03236	. 99946	. 051130	. 99973	. 06773	99770	08513	99637	7
54	. 01571	. 99988	. 03316	. 99945	. 05059	. 99882	. 06302	. 99768	03542	. 99635	6
55	. 01600	.999マ7	03345	. 99344	. 05088	. 99878	. 06×31	. 99766	08.571	. 99632	5
56	01629	.99937	.03374	. 99913	. 05117	. 99869	. 06×60	. 99764	08670	. 99630	4
57	$016 \% 8$. 99996	. 034103	. 99934	. 05146	.99<67	. 06399	. 99762	0×629	. 99627	3
58	. 01687	. 999336	. 03432	. 99941	. 05175	. 99966	. 06918	. 99760	(1)658	. 99625	2
59	. 01716	. 99935	. 03461	. 99940	.05205	.99764	. 06947	. 99758	08687	9962	
60	01745	. 99935	. 03190	. 99939	. 05234	. 99563	06976	. 99756		99619	0
-	Costr.	sine	Cosia	Sine	Cosin	Sinc.	Cosin	in	Cob	Sin	M.

	50		6°		70				90		
M.	Sine.	Cosl	Sine.								
		.	10453	9952					. 15648	9	60
	(13745	. 9961			.12216	. 94251	. 13946	990)23	15672	64	59
2	08774	. 93614	10511	. 99446	12245	99248	. 13975	99019	. 15701	9576	
3	(0)8073	99612	10.54)	. 994413	. 12224	. 99244	. 14004	99015	. 15730	98 ¢	5
	. 08731	93614	10569	. 94440	. 12312	.99240	. 14033	99011	15758	. 987	5
	08960	99807	11597	. 99437	. 12331	. 99237	. 14061	99	. 15787		
	08839	996	10626	. 0.04	. 12	99		99	158		4
	03918	936	10	. 994	. 1	. 9923	. 14119	98		08	53
8	08947	99	10634		. 12418	99226		9>99			52
9	03976	99	13	93424	. 12447	. 99222	. 14177	989	15902		51
10	09105	99594	10742	99421	. 12476	. 93219	. 14205	989	15931	98	5
11	09034	. 99591	10771	. 99418	. 12504	. 9921	. 14234	. 98932	15959	. 987	9
12	0306	99.	10800	. 99415	. 12	99211	. 14	989	15938	987	48
13	0909	995		. 991	. 1256	99203	. 14292	9897	16017	98	7
14.	0912				. 12591	.93204	. 14320	9896	16046		6
15		995		-		. 9920	. 14349	9896	16074		5
16	91		10916	. 99		.9919					44
17	.0920	. 995	10945	. 99	. 1	991	. 144	989	161		
18	1192	995t	10973	. 99		931		98	1616		42
19	0926	99		. 99	1	991		. 939	16189		1
20	0923	$93: 10$		993	. 12764	. 93182	. 1449	939	1621		0
21	093324	9956	1106	. 99.3	. 12793	99178	. 145	. 989	1624		9
22	09353	.99.56	110	. 993		99175	. 145	98	16275		
23	19	.995:	11118	. 993	. 1	. 9917	. 1	98	16304		
24	09111	99	i 1	. 9937		99	146	989	163		
25	(1941	993		. 993		991	146	989	636		
26	0946	9935		993	1293	991	1466	989	1639		
27	0949	99.5	112	993	. 1296	. 9915	1469	989	19		
28	095	.993:		993		99			16447	. 986	
29	1			. 993		. 99	1475	98	164	. 98633	31.
30											
31	096			99				988			29
32	096412	9953	11	993	13110	991	1483	988	165		27
33	09671	.9953	1140	993	13139	99133	148		1659		27
34		99.5		. 993		. 9912			66		26
	197	9952		. 993	. 13	.9912			166		25
36	097	.9952		9933	13226	.991		988	166	98	
3	0978	995		993	. 13	99		9887	1670	9S	
38	19	9951	115	9933	. 1328	991	1501	9886	16		2
39	10	. 9951	. 115	.9932	13312	. 991	150				
1		9951	11	. 993	. 13	991			167		20
41	0991	.9950	11638	. 99322	13370	9910	. 156	988		-	19
	0993			. 99317			1512				
43	09961	995	11696	. 9931	. 134	990	15155	988	687		
44	09990	9950	. 1177	9931	. 13456	. 9909	15184	9884	169		16
45				. 993		. 990		9883	1693		15
				. 9931		990	.1524				
	100			. 993	. 135	990	. 1527	988	16992	9	13
48	10106	994	11840	9929	. 13572	990)	1529	. 9882	1702	9854	12
4	10135	:994*5	11869	99293	136	. 9901	1533	988	1705	985	
50	1016	99142	11893	. 9929	13629	.99(167	. 1535	9881	. 1707		0
5	1019	9947	. 11923	.992	13	9916	. 1538	. 9888	.1*1	9852	
52	1121	. 9947	1	. 9923	. 136	990:	. 15414	9880	. 1713		
53	11250	3917	985	9927	13716	990	. 1544	. 9880	. 1716	51	
54	112279	9947	12014	99276	13744	9915	. 1547	9879	1719	ax	
55	1103.1	9946	12043	99272	13773	9914	15500	9879	17222		
	1033	9346	12071	. 99269	13802	9904	15529	${ }_{9878}$. 1725	-	
	1136	9916	12110	. 9926	13531	9903	1555	987	172		
	1.3129	$994:$	12129	992	13×6	991	15586	98			
59	15121	9945:		99	13899	93	15615				
	10				13917		15643			9<481	
M	Co	Si	Cosin	sine	Conin		Cosin.	Sine.	Cos	SLue.	-

	10°		110		120		13°		140		
M.	8ine.	Cosio	8ine.	sin.	Sine.	Cosin	Sine.	Cosin	Sine	Cosin.	M.
0	17365	9481		163	21691		-		2	. 370	60
	17393	.954i6	19179	98157	210520	97819	$2 \mathrm{CL23}$	974311	24220	97023	59
2	174.22	. 93471	. 19138	. 98152	2048	. 97×113	22502	974 4	24249	. 97015	58
3	17451	. 93466	. 19167	. 98146	241877	. 97797	2250	97417	24277	.970K ${ }^{\text {c }}$	57
	17479	. 93461	. 19195	. 981411	209115	. 97791	2266	97411	24305	.970)	56
5	17503	. 93455	19224	.98135	211933	. 97784	22637	97414	. 24333	. 96994	55
6	17537	.93451	19252	.98129	29962	. 97778	22663	97398	. 24362	. 96987	54
	17565	93445	19231	. 98124	21399	97772	22693	97391	24390	. 96980	53
8	17594	. 934411	19319	. 98118	. 21019	. 97766	220,22	97384	$24+18$	96973	52
	17623	.93435	19338	. 98112	21047	97760	22750	97378	24446	96966	51
10	17651	.98431	19366	. 98107	211176	97754	222778	97371	24474	96959	60
11	17640	. 98425	19395	.95101	. 21104	97748	22807	97365	245113	96952	49
12	17701	. 98420	19123	. 93096	21132	97742	22835	97358	24531	96345	48
13	17737	. 93414	19452	. 98090	21161	97735	22363	97351	24559	96937	47
14	17766	. 93419	19481	. 98044	21189	. 97729	223922	97345	24587	96930	46
15	. 17794	.934/4	19509	. 98079	. 21218	. 97723	22920	.97338	24615	95923	45
16	. 17823	. 98399	19:3	. 98073	21246	. 97717	22948	. 97331	24644	96916	44
17	17852	98394	19566	. 98067	21275	. 97711	22977	97325	24672	96919	43
18	17330	. 983×9	19595	.98:161	21303	. 97715	23005	97318	$247(1)$	96912	42
19	17919	. 93383	19823	. 98056	21331	. 9763 -	231133	97311	2472	96894	41
20	17937	.98378	19652	93050	21360	. 97692	. 233162	. 97304	24756	96887	10
21	17966	. 93373	19680	. 98044	21338	97646	23190	97293	24784	96880	39
22	17995	.93363	19709	. 93039	21417	. 97681	23118	97291	24813	96873	38
23	18023	. 93382	19737	98033	21445	97673	23146	972<4	24.341	96	37
24	18052	. 98357	19766	. 931127	21474	9766i	23175	97278	2+189	96858	36
25	$18(1) 1$.98352	19794	.98121	21502	97661	232313	97271	24×97	96×51	35
26	18119	. 98347	19823	. 98016	21530	97655	23231	97261	24325	96344	4
27	18133	.93341	19851	. 98010	21559	97648	23260	9725:	24954	96×37	33
23	18166	.93336	19830	. 98104	87	97642	23884	97251	24952	$96 \div 29$	32
29	18195	9×331	19908	. 97998	21616	97636	23:316	97244	25010	96222	1
30		.98325	1937	9798			23345	97<37	25.13		0
31	18252	98320	19965	. 97987	21672	97623	23373	972311	25×166	96817	29
32	15231	. 98315	19994	. 97991	21701	97617	23401	97×23	25094	96311	28
33	15319	. 98310	201022	97975	21729	97611	23429	97217	25122	967	27
34	18338	.98314	21051	. 97969	21758	97614	23458	97210	25151	96736	26
35	18367	. 9×2393	201079	. 97963	21786	. 97538	23456	97203	25179	96778	25
36	18395	.95294	21109	. 97958	. 21814	97592	23514	97196	25207	96771	24
37	18424	.99238	20136	. 97952	21843	97585	23:42	. 97189	25235	96764	3
33	1452	.98283	20165	. 97946	21871	. 97579	23.571	971×2	25:263	96756	22
39	1481	. 942277	20193	.97940	21899	97573	23599	97176	25291	96749	21
40	18509	98272	211222	. 97934	. 21928	97566	23627	97169	253220	96742	20
41	. 18538	.9\$267	212250	. 9792 z	21956	. 97560	233656	97162	25348	96734	19
42	. 18567	. 98261	20279	. 979×2	. 21950	. 97553	236394	97155	25376	96727	1
43	18595	. 98256	201307	. 97916	. 22113	. 97547	23712	97148	25414	96719	17
44	18624	. 982525	20336	. 97910	22041	. 97541	237411	97141	25432	96712	6
45	. 18	9	20364	97905	2207	. 975	2376	97			5
46	. 18681	.982A0	20393	. 97899	. 220198	. 97528	23797	97127	25488	96697	14
47	. 18710	. 98234	20421	. 97893	22126	. 97521	23325	97120	.25516	96690	13
48	. 18738	. 98229	20450	. 97887	22155	. 97515	23353	97113	25.545	966×2	12
49	18767	. 9×2423	21478	. 97881	. 221×3	. 97503	23392	97106	25573	96675	11
50	18795	93218	20507	. 97875	22212	. 97502	23910	97100	25.601	9666	0
51	18824	. 9×212	20535	. 97869	22240	97496	23438	97093	25629	9666	9
52	18852	982217	21563	. 97863	22268	97489	23.966	97086	25657	96653	8
53	18881	93201	20592	. 97857	22297	97483	23.995	97179	25685	98645	7
54	18910	. 92196	21620	. 97×51	22325	97476	24023	97172	25713	9663	6
55	18938	98190	211649	. 97445	223.53	97470	24051	971165	25741	9663	5
56	18967	.981	20677	. 97×39	223×2	. 97463	24079	9705s	25769	9662	
57	18995	. 9×179	207116	. 97833.3	22410	. 97457	24103	97151	25798	9661	3
58	19124	. 98174	20734	.97827	24438	. 97450	24136	97044	25426	966	2
59	19052	. 92168	21776	. 97×21	22467	9744	24	97113i	25854	96	1
60	19181	98163	21)791	97815	22495	9:437	. 24192	97030	25882	93	\bigcirc
M.	Cosin	sine.	C	ine	Cosin	in	Cosir	$8 \ln$	Cosin.	8ire.	M
									8	,	

	15°		160		170		18°		19°		
\underline{M}	8ine.	Cosin	Sine.	Cosin	Siue.	Cosin.	Sine.	Cosin.	Sliw.	Cudn.	I.
$\overline{0}$	25832	. 96593	. 27564	. 96126	29237	.9a	. 30902		. 32557	94552.	60
	25910	. 96635	. 27592	. 96118	. 24255	.956\%2	. 311929	. 95097	. 32584	42	59
2	25938	. 96578	.276\%0	. 96110	. 24293	. 95613	. 30957	. 95188	. 32612	94533	58
3	25966	. 96570	. 27648	. 961112	.24321	95605	. 319885	. 95079	. 32639	94523	67
4	25994	.96562	. 27676	. 96194	. 29348	. 955596	. 31012	. 95070	. 32667	. 94514	56
5	26022	.96535	. 27704	. 96 (1)6	. 29376	. 95558	. 31040	. 95061	. 32694	94504	55
6	26050	. 96547	. 27731	. 96078	. 294104	. 955579	. 31063	. 95052	. 32722	94495	54
7	26079	. 96540	. 27759	. 96070	. 24432	. 95571	. 31095	. 95043	. 32749	944	53
8	26107	.96532	. 27787	. 96062	. 29460	.95562	. 31123	. 95033	. 32777	94476	52
9	26135	.96524	. 27315	. 96054	. 29487	. 95554	. 31151	. 955024	.32804	94466	51
10	26163	. 96517	. 27843	. 96046	. 29515	.95545	. 31178	. 95015	. 322382	${ }_{944477}^{94}$	50
11	26191	. 96509	. 27871	. 96037	.29.43	. 955536	.31206 .3123	. 95006	. 328289	944478 94	49
12	. 26219	.96502	. 278999	.96029 .96021	. 29571	. 955528	. 31233	. 949997	. 32888	94438	48
14	26275	. 964×6	. 27955	. 96013	. 29626	. 95511	. 31289	. 94979	. 32942	94418	46
15	26303	. 96479	. 279	. 960	. 29654	. 95502	. 31316	94970	. 32969	94409	5
16	26331	. 96471	. 23011	. 95997	. 29682	95493	. 31344	94961	. 32997	94399	44
17	26359	. 96463	. 23039	. 959×9	. 29710	. 95485	. 31372	94952	. 33024	94390	43
18	26337	.964;5	. 23067	.95981	. 29737	. 95476	. 31399	94943	. 33051	94380	42
19	26115	. 96448	. 23095	. 95972	. 29765	. 95467	. 31427	94333	33179	94370	41
20	26443	. 96440	. 28123	. 95964	.29793	. 95459	. 31454	94924	33106	94361	0
21	26471	.96433	. 23150	. 95956	. 29821	. 95450	. 31482	94915	33134	94351	39
22	26500	. 96425	. 28178	. 95943	. 29849	. 95441	. 31510	94906	33161	94	38
23	26523	. 96417	. 28206	. 95940	.29976	. 95433	. 31537	94897	33189	9433	37
24	26356	. 96410	. 23234	. 95931	. 29904	95424	.31565	94888	33216	94322	36
25	26534	.96412	. 28262	. 95923	. 29932	. 95415	. 31593	94878	33244	94313	35
26	26612	. 96394	23290	. 95915	. 29960	. 95407	. 31620	94869	33271	94303	
27	26640	963>6	23318	95907	. 29987	. 95398	. 31648	94860	3329	94293	33
28	26668	. 96379	23346	. 95398	. 30015	. 953389	. 31675	94851	33326	94244	2
29	26696	. 96371	28374	. 95890	. 30043	.95380	.31703	94842	33353	. 94274	31
30	267	-	23402	. 95	. 30071	95372	. 31730	948	33381		30
31	26752	. 96355	. 28429	. 95874	. 30098	. 95363	. 31758	94823	33408	94254	29
32	26780	. 96347	23457	. 95865	. 30126	. 95354	. 31786	94814	33436	94245	88
33	26308	. 96310	23185	. 95857	. 30154	. 95345	. 31813	94805	33463	94235	27
34	26836	. 963332	23513	. 95849	. 31182	. 953337	. 31941	94795	33490	94225	25
35	26364	. 96324	28541	. 95841	. 312209	. 953328	. 31868	94786	33518	94215	25
36	26992	. 96316	28569	. 95832	${ }^{3} 0237$. 95319	. 31896	94777	${ }_{33545}^{33545}$	94216	24
37	26920	96301	23597	. 95532	. 312265	. 95310	. 31923	94768	33573 33600	94196 94186	23
38 39	26978	96301 96293	28625	.95316 .95817	.30292 .30320	.95301 .95293	.31951 .31979	94758	333600 33627 3	. 94186	22
39 40	27976	96293 96255	23652	95307 95799	. 30320	${ }^{9} 95293$. 31979	94749	33627	${ }_{9} 94167$	20
41	27032	96277	29708	95791	. 30376	. 95275	. 32034	94730	33682	94	19
42	27060	96269	28736	. 95782	. 30403	. 95266	. 32061	94721	33710	94147	8
43	27038	96261	28764	. 95774	. 30431	. 95257	. 32089	94712	. 33737	9413	17
44	27116	. 962	25792	. 957	. 30459	. 95248	. 32116	94702	. 33764	94127	6
45	27144	. 96246	. 28820	. 95757	. 3	. 95240	-	94693	2		5
48	27172	96238	28847	95749	. 30514	. 95231	. 32171	94684	33819	94108	14
47	27200	96233)	29975	95740	. 31542	95222	. 32199	94674	. 33846	94098	13
48	27228	96222	23903	. 95732	. 30570	. 95213	. 32227	94665	33874	941188	2
49	27256	96214	23931	. 957 \% ${ }^{\circ}$. 30597	. 95204	32254	94656	33901	94078	1
50	27244	962116	28959	. 95715	. 31625	. 95195	. 32232	94646	33929	9406	0
61	27312	:96198	29987	. 957717	. 31653	. 95186	. 32309	94637	33956	9405	9
52	27340	98.90	29015	.95698	. 31680	. 95177	. 32337	94627	33983	. 94049	
53	27368	96192	29042	.95697	. 3177118	. 95168	32364	94618	. 34011	94039	7
54	27396	96174	29170	.956 21	. 311736	95159	32392	94609	. 34038	94029	6
55	27124	96166	$29(193$. 95673	. 311763	95150	32419	94599	. 34065	94019	5
56	27452	96153	29126	. 95664	. 311791	. 95142	32447	94596	. 34093	94009	4
57	27480	96150	29154	.95656	3619	. 95133	. 32474	94:89	. 34120	93999	3
58	27508	96142	29182	.95647	311346	. 95124	. 32502	94571	. 34147	.93949	2
59	27536	96134	29219	956739	30374	95115	. 32529	94561	. 34	. 939379	1
00	27564	96126	.29237		. 30912	.95106	7	52	34202	. 93969	\bigcirc
M.	Curdin	Sino.	Cosin.	Sine.	Cosin.	Sine.	Cosin	Sine	Cosin	Sine.	IL.
		4		3		3°		$1{ }^{\circ}$	7	00	

4	20°		210		220		23°		840		
	81.8	Cosin	Sine.	osin	Sine.	osin.	Sine.	Cosia	8ine. Codots		
0	$312 \pi / 2$. 93969	35837	.933:88	374 71	92715	3! 3173	(1)	6.4	913 5\%	0
1	अ2229	93959	. 35×1	.9334	374×8	.92717	3:11(3)	421139	f10̈(x)	91343	59
2	3:257	.9394:	35491	.9333	37515	.9269i	3912i	92 2-	416.27	$913: 31$	$5 \times$
3	3424	.93933	3.5918	.93322:	. 37542	. 92645	3:15:3	. 92116	41753	91319	5%
4	34311	.93:343	3.915	.93316	. 37569	.926i5	3!12	. 921115	41750	91307	36
5	313:39	. 93919	33973	:933111	. 37595	. 92664	$33^{2} \times 17$. 91994	-10) ${ }^{\text {a }}$	91:205	$5 E$
6	34366	939159	36110	.9329i	.37622	. 92663	. 3424	919\%	46×3.3	91243	4
7	31393	.93499	$3612 i z$.932-25	. 37649	.9264\%	392601	91971	$40 \sim 60$	91272	53
8	34121	.9:3849	. 36154	. 93274	. 37676	. 92631	3920~7	91959	11246	91260	52
9	34148	.93379	36181	. 93264	377113	.926811	39314	9194-	41913	91248	31
10	34475	.93 699	. 36108	. 93253	37731	. 926619	39341	91936	40939	91236	511
11	3 H 113	. 93859	. 36135	. 93243	37757	.92592	. 39367	. 91925	403666	91224	49
12	3530	. 93349	. 36162	.932:32	37784	.92547	39394	. 91914	415982	91212	$4 \times$
13	34.57	. 933×3.9	36190	.932222	37811	. 92576	39421	.91312	41019	$918{ }^{\text {¢ }}$	17
14	31534	.93329	36217	. 93211	37438	. 925565	39448	. 91891	41145	$911 \times$	46
15	31612	. 93819	. 36244	. 93201	. 37865	. 92554	39474	. 91879	41072	91176	5
16	34639	.93209	36271	. 93190	. 37892	92543	39501	. 91868	41098	91164	4
17	31666	93799	36238	. 93180	. 37919	. 92532	. 39528	. 91856	41125	91152	4
18	34694	937~9	36325	. 93169	. 37946	.92521	39555	. 91845	41151	911411	42
19	34721	. 93779	36352	. 93159	. 37973	. 92510	39.81	. 91833	41178	91128	11
20	34748	. 93769	36379	. 93148	.37999	92499	. 39608	. 91828	412 CH	91116	11
21	34775	. 93759	36476	. 93137	. 35×126	. 92488	396.35	. 918111	41231	91104	39
22	34303	.93748	36431	. 93127	. 38053	. 92477	39661	91799	41257	91192	3
23	34×30	. 93738	36461	. 93116	$33(183)$. 92466	396.38	. 91787	. 41244	910	6
24	34×37	. 93728	36488	. 93106	. 38107	92455	39715	. 917775	. 41310	91165	6
25	3484	. 93718	36515	. 93095	. 3×134	92444	39741	91764	. 41337	91155	5
26	34912	. 933003	36.12	.930*4	. 38161	. 92432	39768	. 91752	. 41363	91144	析
27	$319: 39$.93693	36569	. 93074	. 38188	.92421	. 39795	. 91741	. 413	911132	33
28	34966	.936<8	36596	. 93063	. 3×215	. 92410	. 39×22	. 91729	. 41416	91 (12:	32
29	31993	93677	36623	. 93052	. 38241	. 92399	39848	. 91718	. 41443	. 91110	,
30	35021	. 93667	366	. 93042	8263	.923>8	39875	. 91706	. 41469	91946	31
31	3 F 4 4	. 93657	36677	. 93031	. 32295	92377	3990.	. 91694	41496	909	23
32	3:075	. 93617	36704	. 930220	. $3 \times 3 \times 2$	92366	39923	.91683	41522	$919 \% 2$	28
33	35102	. 933637	35731	. 93010	. 3×349	. 92335	. 39955	. 91671	41549	90960	27
34	. 35130	. 93626	36758	. 92999	. 3×376	. 92343	39982	. 91660	41575	9 CH	26
35	35157	. 93616	. 367×5	. $929 \times$. 3403	. 92332	40008	.91644	41812	914336	25
36	35184	. 936116	36812	. 92938	. 384 40	.92321	40035	. 91636	4162	919324	24
37	35211	.933596	36>39	. 92967	. 38156	. 92310	40162	.91625	41605	90911	3
38	35239	. 93585	36367	. 922956	. 3 ¢483	922999	401138	. 91613	416×1	90439	22
39	35266	. 93575	36594	. 92915	. 3×510	922:	40115	. 916111	. 41708	$91 \mathrm{RS7}$	21
40	35293	. 935163	. 36921	.92935	. 38537	92276	40141	.91591	41734	90675	21
41	35320	. 93355	36948	. 92924	. 38564	. 92265	. 40168	. 91578	41760	91836	9
42	35347	.93544	36975	.92913	. 38591	.92254	40195	. 91566	41787	9 N 51	8
43	35375	.93534	37002	.92912	. 38617	. 92243	$41{ }^{2} 21$. 91555	41813	90839	7
44	35402	.93524	37029	. 922392	. 3×644	. 92231	40248	. 91543	. 41840	91820	6
45	. 35429	. 93514	37056	. 92881	. 38671	. 922230	40275	. 91531	. 41866	9081	5
46	35456	. 93503	37083	.92370	38698	. 92209	40301	. 91519	41892	9082	14
47	35434	. 93493	37110	. 92359	. 37725	.9219*	40328	. 9151 K	41919	91790	13
48	35511	. 934×3	37137	. 92849	38752	. $921 \sim 6$	40355	. 91496	41945	90778	12
49	3.533	. 93472	. 37164	. 92×33	3*778	. 92175	40381	.91434	41972	91766	11
50	35.565	.93462	37191	. 92×27	. 38305	.92164	40408	91472	41998	. 91753	0
51	35592	. 93452	37218	. 92816	. 38×32	. 92152	4(434	91461	422124	. 911441	9
52	35619	. 93411	37245	. 923×5	. 38859	. 92141	40461	91419	42251	. 911729	8
53	35617	. 93431	37272	. 92794	. 388886	. 92130	4/458	914:37	421177	.90\%17	7
54	. 35674	. 93421	37299	. $92 \% 44$. 3×912	. 92119	4×514	91425	42114	90704	6
55	.35i01	.93411	. 37326	. 92773	. 3×939	.921117	. 411541	. 91414	42130	.91692	5
56	3.723	.934 k$)$. 37353	. 92762	. 39966	. 922196	41567	914122	42156	916	
57	35755	.93349	37330	. 9275 !	. $3 \sim 943$	92035	40594	.91391	42183	9:166	3
58	35782	.933374	37407	.92i40	.39(1)'	920173	41681	9137*	+22019	91665	?
59	35×10	93336	37434	. $922 \cdot 29$	3:146	92062	41647	91366	4×235	90f43	1
60	37	93354		2718	3407	924 ¢0)	41674	1355	42262	1631	0
M.	Cosin	ne	Cosin.	Sine	C	Sine.	sin	Sine.	Cosin.	lue.	

II.	25°		260		870		28°		29°		M.
	Sine.	in.	Sine.	in.	Bive.	Cosln.	Sine.	Cosin.	Sine.	Vasin.	
0	. 42262	. 906	. 43×37	379	45399	.89101	. 46947		. 48481	. 87462	60
1	422 2×8	. 91618	. 43×63	. 89367	. 45425	. 890187	46973	. 882831	. 445016		59
2	.42315	903116	. $43 \times 2 \times 9$. 89854	.45451	. 891174	. 46999	. 88267	. 48532	. 87434	88
3	42:341	.910.94	. $43: 16$. 89341	. 45477	. 890161	471124	.88254	. 48557	87420	57
	42367	. $90-382$. 43342	.89>28	. 455513	. 89148	. 47050	.8824 11	. $48: 883$.87416	56
5	42394	90.56	. 433963	. 89816	. 45529	. 891135	. 47076	. 88226	. 43608	. 87391	55
6	42242	. 90557	. 43994	. 89803	45:54	. 89121	. 47101	.882i3	. 48634	97377	54
7	42446	.90545	441420	. 89790	45580	.890(1)	. 47127	. 88199	. 48659	. 87363	3
8	42473	. 90532	. 44 (4)6	. 89777	456116	. 88995	. 47153	. 88185	. 48634	. 87349	2
9	42499	.90520	4.4102	. 89764	32	. 88981	. 47178	. 88172	. 48710	. 87335	31
10	425:25	. 90507	. 441198	. 89752	. 45658	. 88988	.47204	. 88158	. 48735	. 87321	30
11	. 42552	.90495	. 44124	. 89739	. 45684	.88955 88942	. 47229	. 88194	. 4878186	. 873116	48
12	42578	. 9047	. 44151	. 89726	. 45710	. 88942	. 47255	. 88130	. 4878811	. 87292	48
13	42604	. 90470	.44177 .44213	.89713 89700 8968	.45736 .45762	.88928	.47231 .47306	.88117 .88103 8	. 48811	.87278 .87264	47
14 15	.4263 42657	. 90454	. 44212	.89700	. 457568	. 888915	.47306 .47332	. 88103	. 48838	$.87264$	46
15	. 42657			. 89687	.45787 45813						45
16	. 42683	.90433 .90421		.88674	. 45313	$\|.88888\|$.47358 47383	88075	.48887 48913	$\mid .87235$	43
17	. 4272736	. 90424	44231 44307	.896c゙2	. 45839	. 8888862	.47353 .47409	. 888062	. 488913	$\left\|\begin{array}{\|c\|c\|c\|c\|} \hline .872 n 77 \end{array}\right\|$	42
19	. 42762	. 90396	44333	. 89636	45891	. 88848	. 47434	. 88034	. 48964	. 87193	41
20	42788	. 90383	41359	.89623	. 45917	. 88835	47460	. 88020	. 48989	. 87178	0
21	42>15	. 90371	44335	83610	45942	. 88822	47486	. 88006	. 49014	. 87164	39
22	42341	. 91351	44411	. 89597	45963	. 88808	47511	. 87993	. 49040	. 87150	38
23	42ㄴ67	90346	44437	.89584	45994	. 887	. 47537	. 87979	. 49065	. 87136	37
24	. 42894	. 90	44464	. 89571	. 46021	. 887	. 47562	. 87965	. 49090	. 87121	6
25	42920	. 90321	44490	.895.58	46046	. 88763	. 47588	. 87951	. 49116	. 871107	5
26	42916	. 903×19	44516	.895	46072	. 88755	. 47614	. 87937	. 49141	. 87033	4
27	42972	. 911296	44542	. 89532	46097	. 88741	. 47639	. 87923	. 49166	. 87079	33
23	42999	.914244	63	. 89519	. 46123	. 88728	47665	. 87909	. 49192	. 871164	32
29	43)25	. 902271	44594	. 895116	. 46149	. 88715	47690	. 87896	. 49217	. 87050	31
30	43051	. 9	44620	. 89493	. 46	. 88	6	. 87882	2	. 87036	30
31	43077	. 9021	. 41646	. 89480	. 46201	. 88688	. 47741	. 87868	. 49268	. 87021	29
32	43104	. $9122: 3$	41672	. 89167	. 46226	. 85674	. 47767	.87854	. 49293	. 87007	8
33	43130	. 9022	. 41693	89454	. 46252	. 88661	. 47793	. 87840	49318	. 86993	7
34	43156	.912028	44724	. 89441	46278	. 88647	. 47818	. 87826	49344	. 8697	26
35	43182	. 90196	44750	. 89422	46304	. 88634	47844	. 87812	49369	. 86964	25
36	4:3209	. 90183	44776	. 89415	46.330	.886:20	47969	87798	$49: 394$. 86949	24
37	43235	. 90171	44302	. 89402	46.355	. 88661	.47:895	. 87784	49119	. 86935	23
3	48261	. 90158	44323	.893*9	46381	. 88593	. 47920	. 877711	49445	. 86921	2
39	4:3287	. 90146	44854	.893i6	46417	.885\%	47916	.87756	49470	. 86916	1
4	43313	. 90133	4750	. 89363	46433	. 8856	. 47971	. 87743	49495	. 86832	0
41	43340	. 90120	. 449146	.893.50	46458	.88553	47997	. 87729	49521	. 86878	9
42	43366	90108	44932	. 893337	46484	. 88539	48122	. 87715	49546	. 86863	8
43	43392	. 91095	44958	. 89324	16510	. 88526	48048	. 87701	49571	. 86849	7
44	43418	. 901182	44994	. 89311	46.336	. 88512	48073	. 87687	49596	.86834	6
45	43445	. 900	. 45010	. 89298	. 465561	. 88199	99	. 87673	49622	.86\%2	5
46	43471	. 90057	45036	. 89295	.46587	. 88485	. 48124	. 87659	49647	. 86805	14
47	43497	. 9045	45062	. 8927	. 46613	. 88472	48150	. 87645	49672	. 86791	3
48	43523	. 90032	45088	.89\%39	. 46639	. 88458	48175	.87631	49697	. 86777	12
49	43549	. 90019	45114	. 89245	. 46664	. 88445	48201	. 87617	49723	. 86762	
50	43.575	96M0:	45140	. 892232	. 46690	. 84431	48226	.87613	49\%48	. 86748	${ }_{1}$
51	43602	. 89994	45166	. 89219	. 46716	. 88417	4825.5	. 87589	49773	. 86733	9
52	43628	899×1	45192	. 89220	. 46742	.8844	4 2×277	. 87575	49798	. 86719	8
53	43654	.8992N	45218	. 89193	. 46767	.8839 ${ }^{\text {a }}$	4×313	.87561	$49 \div 24$.86\% 14	7
54	436*	.899:6	45243	. 89180	. 46793	.88377	48328	. 87546	4949	.86690	6
65	43706	.89943	45269	. 89167	. 46×19	.88363	4×354	.87532	49 474	. 86675	5
56	43733	. 899311	45295	. 89153	46244	. 88349	4×379	.87518	49×99	. 86661	4
57	43759	. 89918	45321	. 89140	$46^{3} 70$. 883336	. 48405	. 87514	49924	. 86646	3
58	43785	. 89915	45347	. 89127	$46^{\sim} 96$	888324	-1813	. 87491	49950	8663	2
59	237	.899is	45373	. 89114	. 46921	5	$4{ }^{4}$	左	49975	7	0
M.	O	8lne.	Cosin	Bino.	12	Sine.	Cosin	Sins.	Cosin.	Sline.	d

M.	300		$31{ }^{\circ}$		880		33°		840		M.
	$n \mathrm{n}$.	Cosin	Sinte	Cosil	8ine	Ccesin	Sine.	Cosin.	Sine.	Oovin	
0	50×10	86603	51504	. 85717	52992	. 84985	54464		19		60
	50 25	885*4	51529	. 85702	53117	847*9	. 544×8	.83851	. 55943	82×87	59
	. 50150	86573	51554	. 85687	5:3041	. 847	. 54513	. 83835	55968	.82571	58
3	. 50076	86559	. 51579	. 8072	53066	. 847	. 64537	.83019	65392	. 82855	57
	50101	86544	51004	. 85057	63.191	. 8	. 64561	.83-74	56016	82439	6
	50128	86531	51688	. 3 ibl 2	. 63115			. 837	66(4)	P202\%2	55
	. 50151	86515	51653	. $\times 627$. 63140	. 84712	. 54610	. 83772	561164	.82416	54
	. 50176	86501	01678	. 36012	. 631 it	. 8164	. 51635	. 83756	561088	. 82790	53
	.50201	. 864×36	51714	. $\times 5597$. 631189	. 84691	. 54659	. 83740	. 66112	. 82773	52
	50227	. 86471	. 517×8	. 3550%	53214	. 81666	. $516-3$. 83724	. 56136	. 82757	51
10	.50252	. 86457	51753	. 8556 i	53:38	.84650	. 517118	. 837	. 56160	. 82741	50
11	50277	86442	5177	. 8855	53263	. 8463	. 51732	83692	. 56184	. 82724	49
,	50302	86127	51803	8553	. 53288	. 84619	. 54756	. 83676	. 56208	. 92708	8
13	. $n 3327$	86113	. 51828	. 85521	. 53312	. 816	. 54781	.83664	. 56232	. 8269	7
14	50352	86398	5185%	85516	. 53337	. 8158	. 54405	. 83645	. 56256	82675	48
15	. 60377	. 86334	5187%	. 85491	. 53361	. 84573	. 54829	. 83629	. 56280		45
16	. 60403	. 86369	.519n2	8.5476	. 53336	. 845	. 54854	. 83613	. 563105	. 82643	4
17	. 5442^{3}	. 86354	. 51927	85461	. 53411	. 84542	. 51578	. 83597	. 56329	. 826	43
18	. 50453	. 86340	. 51952	85416	. 63435	. 84526	. 51902	. 83531	56353	. 828	2
19	51478	. 86325	. 51977	8.7.1	. 53460	. 84511	. 5192	. 83565	56377	. 8259	11
20	. 50503	. 86310	. 520172	8:516	. 53484	. 844	. 54951	. 83549	56401	. 8257	0
21	50528	. 86235	. 52026	85401	. 53509	. 814	. 54975	. 83533	56425	82561	9
22	50553	.86231	52/51	853	.5.3531	. 8446	. 64999	. 83517	56449	. 82544	38
23	50578	. 86286	. 52076	853i0	. 5355	. 8441	. 551124	. 83501	56473	. 8252	\%
24	50603	86251	. 62101	. 85355	. 535	.844:	. 55048	834	. 56497	. 825	6
25	. 50623	. 86233	. 52126	.85.40	. 53617	. 844	. 55072	. 8	. 56521	. 824	5
26	51654	.86224	. 52151	85322	. 53632	. 31	.55097	. 8	56545	. 82	34
97	50679	.88207	. 52175	85310	. 5363	. 8133	. 5512	. 83437	5656	.8246	33
24	50704	. 86192	52200	85224	. 53 f	. 843	. 55	. 83421	56593	5244	32
29	50729	. 86178	52:225	85279	. 53710	. 84355	. 55	. 83415	56617	. 8242	31
30	. 6	. 86163	54250	.8528	. 63	. 84		83		.824	30
31	50779	.86142	52275	85249	. 537	. 84324	. 55218	833	56665	. 82	29
32	50\%04	. 86133	52299	85.23	. 53779	. 84314	. 55212	. 83356	56659		2
3	50823	. 86119	52324	8.5213	. 533×4	. 84232	.55266	.833-11	56713	. 82	27
	. 50×54	. 86101	52349	85203	. 53×2	. 84277	. 55291	.83324	.56:38	8234	${ }^{2} 6$
35	50279	.86п39	52371	. 8518	. $23 \% 53$. 84261	. 55315	833	56760	. 8233	25
36	60904	.88174	52399	. $\mathrm{R} \boldsymbol{5 1 7}$. 53577	.84215	. 55339	83292	56784	. 8231	24
37	50 y 29	. 86069	524	. 85157	. 53902	.842:30	. 553	. 83276	56308	. 822297	23
3.	50954	. 88445	52	. 85142	. 53926	. 84214	553	. 83260	56832	. 82281	2
39	. 50979	. 88030	52433	.85127	. 53951	. 84198	. 55412	. 83214	56305	.84264	21
40	51004	.86015	52498	85112	. 53975	. 84182	55.436	.83228	56×80	. 822	21
41	51029	360 m	52522	85096	. 541100	. 84167	55180	83212	56904	. 82	19
	51054	859×5	52547	.85081	. 54024	. 8415	554×4	831	56928	.82	18
43	. 61079	.859711	52572	851)66	. 54049	. 84135	55509	831	56952	. 821	17
4	51104	. 85456	52597	8505	. 54073	. 84	555	-	56976	. 821	16
45								. 83147			E
	51154	. 85926	52646	85020	. 54122	. 84088	55.581	. 83131	.57024		1
47	51179	. 85911	52671	85015	. 51146	.84072	. 55565	. 83115	57047	. 8213	13
	51204	. 85×96	52696	84989	. 54171	. 84057	55630	8309	57071	. 82115	1
	51229	. 85881	52720	84974	. 54195	. 84041	*55654	. 83182	. 57095	.8200	11
60	51254	85*66	52745	. 84959	. 54220	. 841125	. 65674	. 831166	57119	. 82088	10
5	51279	85×1	52770	84943	. 54244	. 841 KMg	657	83151	57143	. 82	9
52	51314	85836	52794	.84922	54269	. 83.49	557\%	83134	. 57167	. 8214	
53	51329	. 85×21	52×19	. 4913	54293	. 8397	65750	.83017	. 57191	.8213	
54	51.354	85×116	5244	84×97	54317	. 8396	55775	. 83001	. 57215	.822115	
55	51379	85792	52469	84882		. 83946	55799	82985	. 57238	. 81999	5
	51414	857%	52493	$84 \sim 66$	54366	.839:\%	55823	82969	57262	8198	1
	51429	. 85782	52918	84×51	54391	. 83915	55847	82953	57236	819	
	51454	. 85747	52943	84836	54415	. 83×99	.55871	82936	310	. 81	2
	51479	. 85732	52967	84*211	54440	. 23838	. 58895	829231	57334	. 81	
			92	-	54464	83-67	. 55919	82901		81915	0
M.					Cosin	8ine		Bin	Corin	ne.	.

M	23°		36°		370		38°		39°		
	Slue．Cosin．			osin．		08	83	Cosin．		Cct	M．
	67358	． 81915	587.9	8090	60182	． 79×64		．78801			C0
	67381	． 81899	． 58812	． $80 \times \times 3$	612015	． 79846	． 615×9	787＊3	62955	． 776	69
2	57415	． 81882	． 58826	8U＞67	61 12228	．79－49	．61612	78765	62977	． 776	58
3	67429	． 81865	． 58849	． 80×551	61251	．79811	．616：35	78747	633100	． 776	57
4	57453		58873	． 80833	$6 \mathrm{Cr}_{2} 274$	． 79793	61658	． 78729	63122	． 776	56
5	57477	． 81832	58896	．8R16	611298	． 79778	．61681	． 78711	63145	7：6	55
6	． 67501	． 81815	5×920	． 81799	$61: 321$	．79758	．61714	78804	631168	7＇：	5
7	57.524	． 81798	58943	． 81784	611344	． 79741	61726	786.6	630190	775	53
8	57543	． 81782	5.967	90765	601367	． 79723	61749	78658	63113	775	62
	57572	81765	． 5×990	8074	61390	7970	． 61772	78641	63135		51
10	57596	． 81749	59114	．80\％30	60414	79688	61795	786：${ }^{(2)}$	63158	77	0
11	． 57619		59137	． 80713	60437	．79671	61818	78614	63180	775	碞
12	57643	81714	59061	． 80696	． 61460	． 79653	． 61841	78586	63203	77	7
13	． 57667	． 81698	590R4	S0679	60483	． 79635	61864	78568	63225	77	7
14	57691	． 81681	59108	81662	． 605016	． 79618	61887	78550	63248	7	46
15	57715	． 81664	59131	． 80644	60529	． 79600	9	． 78532	63271	． 7	5
		． 81647	59	．	．60553	79583		． 78514	63293		
1	57762		59178	． 80610	． 60576	79565	． 61955	． 78496	63316		，
18	57786	． 81614	59201	． 80593	． 60599	79547	． 61978	78478	63338	． 773	42
19	57810	．81597	53225	． 80576	． 611622	79530	62001	78460	63361	． 773	
20	57833	81581	59248	． 80558	．60645	79512	． $62(124$	78442	63383	773	40
21	57857	． 81563	59272	． 80541	． 616668	79494	． 62×16		6	773	39
22	57881	． 81546	59295	． 80524	． 60691	79477	． 62069	78405	63428	． 773	38
23	57904	．815311	59318	． 805117	． 60714	79459	． 620192	78387	451	． 772	37
24	57928	． 81513	59342	． 80489	． 60738	7941I	． 62115	78369	62173	． 772	38
25	57952	． 81496	59365	． 80472	． 60761	79424	． 62138	78351	63456	．7725	36
28	57976	81479	59339	． 80455	． 6078		．62160	78333	635	772	34
27	57999	81462	59412	． 80138	． 60807	． 79388	． 62183	78315	63540	772	33
28	58	81445	59436	． 80420	． 60830	． 79371	． 622216	78297	3	． 77	32
29	63047	8142N	59459	．80403	． 60853	． 79353	． 622229	782\％ 9	35	． 7718	31
30		． 81412		． 80386				1	8	． 771	30
31	58034	． 81395	）	． 80368	． 60399	． 79318	． 6	78243	63630		29
32	58118	． 81378	59529	．80351	619322	． 79300	． 6	78225	63653	． 7712	24
33	5814	． 81361	59552	． 80334	60945	． 79252	．6232	78206	6：3675	7710	27
34	58165	． 81344	59576	． 80316	60968	． 79264	． 62342	78188	63698	77n	26
35		813．）	59599	． 802899	60991	． 79247	． 6236	78170	63720	771r	25
36	． 5×212	． 813111	59622	． $802 \times{ }^{\circ}$	． 61015	． 792229	． 623888	78152	63742	． 7705	24
37	54236		59646	． 80264	61138	． 79211	． 62411	78134	63765	． 7703	23
38	58260	． 81276		． 80247	． 61106	． 79193	． 62433	． 78116	6378	． 7711	22
39	58243	． 81259	59693	． 80230		． 79176	． 624456	78198	．63）10	． 7699	21
40	583	． 8124	59716	． 80212	． 61107	． 79158	62479	78079	63×3	． 769	20
41	． 5×3330	． 81225	59739	． 80195	． 611130	． 79140	．625112	78061	． 63×54	． 769	19
42	． 58354	．8121N		． 80178	． 61153	． 79122	． 62524	78043	． 63377	． 769	18
43	． 58378	． 81191	597	． 80160	． 61176	． 79105	62547	． 781125	． 63499	． 7692	17
	58401	． 81174	59809	． 80143	． 61199	． 790187	62570	． 780107	． 63922	． 769	16
45	584					． 79069		． 77988		． 7	16
46	． 58449	． 81		．80108	． 6	． 79051	． 62615	． 77970	． 63966	． 76866	14
47	． 58472	． 81123	598．9	．80091	． 61268	． 79 （133	． 62	． 77952	6398	． 76847	13
48	． 58496	． 811116	5991	． 801173	． 61291	． 79×116	． 626	． 77934	64111	． 7682	12
49		． 81 （1）89	． 59926	．SM5\％	． 61314	． 78998	$6 \times 6 \times 3$	． 77916	641133	． 7681	11
50	． 58543	． 81072	59949	．8003	． 61337	．789）	．62716	．77897	6415	． 7679	10
51		． 811155	59972	．80021	．61360	． 78962	． 62728	． 77879	641178	． 76772	9
52	5×590	． 811134	54995	．80世13	．613～3	． 78944	． 62751	． 77861	64100	． 76754	8
53	5×614	．81（r21	61619	．799＜6	． 614116	． 739226	． 62774	． 77843	64123	． 76735	7
54	． $5 \sim 637$	． 816 m 4	61042	． 7996	61429	． 78908	． 62779	．77824	64145	． 76717	
55	5×661	． 809×7	61065	． 7995	61451	． 78891	．62＊19	．77816	． 64167	． 76698	5
56	5×624	． 80970	$6 \mathrm{flO}_{1} 89$	． 79934	61474	．78873	． 62×42	． 77788	64190	76679	
57	．58708	． 81953	60112	． 79916	． 61497	． 78855	． 62864	． 77769	64212	． 76661	
58	． 58731	． 809.36	（01）135	． 79×99	61520	． 78837	． 62887	． 7775	64234	． 76648	2
59	． 58755	． 80919	． 60158	．79881	61543	． 78819	． 62909	． 77733	． 644256	．76623	
60	． 68779	． 80902	60182		． 61566	． 78801	． 62932	． 77715	． 64279	． 76014	0
］	Cowin	Slue．	in．	Slne．	边11	Sino．	Cosin	8ine．	osit	Slue．	
									80		

	40°		41°		420		43°		44°		M.
			Sine.	Cosin.	Sine.	Cosin.	Sine	Cosin.			
		. 76604		75471			68200		69166	. 71934	80
	643111	765:36	. 65628	75452	. 66935	. 74295	6×221	73116	64437	. 71914	59
2	64323	76.367	6.665	75433	. 66956	. 74276	. $6 \times 2+2$	73096	. 69503	. $71-94$	58
3	64346	765	6.5672	75114	. 66978	. 74×256	. 6×24	73076	. 69515	. 71873	7
4	64368	.76.),30	65.694	75395	. 66999	.742337	6**285	73.156	69549	. 71853	6
5	64:390	. 76311	. 65716	75375	. 67021	. 74217	6-306	731136	69570	71833	55
6	64412	. 76492	${ }^{6} 6738$	753515	. 67043	. 74198	$.6 \times 327$ 6×319	73016	69591	71813 71792	54
8	64457	. 764.55	${ }^{635} 81$. 75318	. 67 (1)6 6	. 74159	. 6×370	72976	69633	${ }_{71} 71782$	52
9	64479	.764:36	. 65803	75299	. 67117	. 71139	68391	72957	696:4	7175	51
0	64501	. 76417	. 65325	752>0	.67129	. 74121	. 6412	72937	69675	. 7173	50
1	64524	.76393	65347	75261	. 67151	. 74100	6*434	72917	69696	. 7171	49
2	64546	. 763311	65869	75241	. 67172	740311	6445	72397	69717	7169	48
3	64563	76361	65891	75222	. 67194	74061	. 64476	72377	. 69737	7167	47
4	64590	76342	65913	75\%113	67215	74041	$6 \$ 497$	72857	. 69758	7165	46
5	64612	.76323	65935	75134	.67237	.74022	68518	72837	69779		45
6	64635	76304	65956	75165	67258	74012	68539	72817	. 69880		44
7	64657	762:6	$6: 978$	75146	.67230	73983	68561	72797	. 69921	715	43
8	64679	.76267	66100	75126	. 67301	73963	63582	72777	. 69342	71569	42
9	$64: 01$. 76243	661122	75107	.67323	73944	6×603	72757	69862	715	41
20	64723	.762229	66144	75038	. 67344	73924	6862.1	72737	6938	715	40
21	64746	. 76210	$66 \cap 66$	75069	67366	. 73904	68645	72717	69904	7150	39
22	61768	. 76192	66188	75050	. 67387	73385	64666	72697	69925	7148	38
23	6479	76173	66109	7503)	. 67409	73365	636×8	72677	69946	7146	37
24	6131	. 76154	66131	75011	6:430	$73 \gtrdot 16$	68709	72657	69966	7144	36
25	648	. 6135	66153	74392	. 67452	73326	68730	72637	69957	7142	35
26	64356	. 76116	66175	74973	.67473	73×16	.68751	72617	7000	714	4
27	64878	. 761997	66197	74953	67495	73787	6×772	72597	701229	7133	33
23	64901	. $7607 \times$	66218	749:34	67516	73767	68793	72577	7 \%L49	7136	32
29	61923	76159	66210	74915	67538	.73747	68814	7255%	710170	71345	31
31	64945	.76041	66262	74896	67559	73724	68	72537	09	71325	30
31	64967	.76022	66234	74976	. 67580	73708	68857	72517	70112	71\%	20
32	64939	.761113	6f:3016		. 67602	738	68878	73497	70132	7124	3 A
33	65011	.759-4	66327	74833	.67623	73669	68399	72477	70153	7126	27
34	650133	. 75965	66349	74818	.67645	73619	68920	72457	70174	7124	26
35	65155	. 75946	66371	74799	.6:666	7362?	6×941	72437	7019	7122	25
36	65177	. 75927	66393	74780	.6:638	73611	6×962	72417	70215	7121	24
37	65100	75908	66414	74760	.67719	73590	689×3	72397	712236	71182	23
38	65122	.75-89	66436	74741	. 67730	73570	69014	72377	71257	71162	22
39	65144	.75870	$6645 \times$	74722	.67752	73551	69025	723:37	7 U 277	71141	21
40	65.166	. 75851	$66+30$	747113	67773	73531	69046	723337	70298	71121	20
41	6.188	. 75×32	66501	776×3	67795	73511	6!067	72317	70319	7110	19
42	65.210	.75313	66523	74664	. 67816	73491	691168	72297	70339	7108	18
43	6.523	. 75794	66:35	74614	. 67837	734\%2	69119	72277	70361	7105	17
44	65254	. 75775	66.966	74625	. 67859	. 73452	69130	72257	70381	71039	16
45	65276	. 75756	66588	74616	. 67885	73432	69151	72236	7040	71	5
46	65293	. 75738	66610	74586	67901	. 73413	. 69172	72216	. 70422	7099	14
47	653320	. 75719	666.32	74:567	.67923	733:3	69193	72196	70443	7097	13
48	65342	.75700	666.53	74:48	. 67944	.73373	69214	72176	. 70463	7095	121
49	65364	. 7560	. 66675	74528	67965	. 73353	. 69235	$721: 56$. 70484	7093	11
50	$6.53>6$. 755681	66697	74519	67937	. 73333	69256	72136	70505	7091	0
51	654118	. 75642	66718	744×9	631088	. 73314	69277	72116	70525	70096	-
52	6:430	.75623	66740	74470	68129	.73224	. 69248	721195	70546	70875	8
53	65452	.75614	66762	74451	6×151	.732:4	69319	72175	715667	70255	7
54	6:474	. 75585	66783	. 74431	68172	.732in	.69341	. 72055	70587	70×3	6
55	65496	. 75566	66805	. 74412	63093	.73234	. 69331	.720135	716008	7081	5
56	65518	. 75547	.66*27	. 743392	. 68115	. 73215	693>2	. 72015	70628	70793	
57	$65: 319$.75528	. 66348	74373	. 68136	73195	69403	. 71995	. 70649	70772	3
58	65.562	. 75509	66*70	74353	.68157	73175	69424	. 71974	. 70670	70752	2
59	65.534	. 75490	66×91	743:34	. 68179	73155	69445	71954	. 70690	71731	
60	6:5616	471	. 66913	14	.68200	73135	69466	934	7071	. 70711	
M.	Cosin	Sine.	Cosin	Sine.	in	ine	Cosin	Sine.	Cosin		
									48		

TABLE IV.
NATURAL TANGENTS AND COTANGENTS.

M.	00		10		2°		30		M.
	Taug.	Cotang.	Tang.	Cot		Cotang	g.	Cotang.	
0	. 000610	Infinito.		57.2910		28.6363	$05 \% 41$	19.18811	60
1	.00029	3737.75	. 01775	56.35116	. 035321	28.344 .4	052\%0	18.9755	69
2	. 010058	1718.67	. 0189	$55.4+15$. 03550	28.1664	05299	18.8711	58
3	.01087	1145.92	. 01033	54.5613	. 03579	27.9372	05328	18.7678	57
4	. 00116	859.436	. 01562	53.71 N 6	. 036119	27.7117	. 05357	18.6656	56
5	. 00145	687.549	01091	$52.80^{\circ} 21$. 0363	274899	05387	18.5645	65
6	. 0 (1)75	572.957	. 01922	52.0007	. 0366	27.2715	41	18.46	54.
7	. 002204	491.116	. 01849	51.3032	. 13369	27.0566	54	18.3	53
8	.01233	429.718	. 01928	50.5485	.03i'	26.8450	0 m 47	18.2677	52
9	. 012262	381.971	. 022017	49.8167	. 0375	26.6367	05503	'8.17148	51
IC	.00291	313.774	. 024136	49.1039	. 03783	26.4316	05533	8.1750	50
11	. 003220	312.621	. 02166	48.4121	. 03812	26.2296	05562	17.9802	49
12	. 00349	256.478	. 02195	47.7395	.03542	26.0317	05591	17.8863	48
13.	. 01378	264.441	. 02124	47.0853	.03571	25.834 s	05620	17.7934	47
14	. 00417	215.552	. 02153	46.4489	. 0390	25.641	5649	17.7015	46
15	. 00436		. 02	45.8	, 3	25.4517	. 05678		45
16	. 00465	21	. 022	45.2261	. 03	25.2644	.05708	17.5205	44
17	.00495	212.219	.02240	44.6376	. 0398	25.0793	. 05737	17.4314	43
15	. 00524	190.9>4	. 022269	44.1661	. 04016	24.8978	05766	17.3432	42
19	.00553	180.932	.02293	43.5081	. 04146	24.7185	. 05795	17.2558	41
$\stackrel{0}{4}$. 00582	171.885	. 02323	42.9641	. 04016	24.5418	.05824	17.1693	40
21	. 20611	163.710	. 02357	42.433	. 0410	24.3675	. 05	17.14-37	39
22	. 00640	156.259	023	41.	. 0413	24.195	. 058	16	
23	. 01669	149.46	. 0241	41.4106	. 0116	24.1226	0591	16.915	
24	0169	143.237	. 024	4).9174	. H 12	23.8593	. 0594	16.8319	
25	01127	137.517	. 0217	40.43 5	. 0422	23.6945	05970	16.7496	35
26	0×125	132.219	. 0252112	39.96.55	. $0+250$	23.5321	05999	16.66 지	
271	00785	127.321	. 02531	39.5059	. 04279	23.3718	0602	$16.58 i 4$	
28	00815	122.734	. 02560	39.0568	. 0130	23.2137	(16015	16.5075	32
29	. 0 us 44	118.540	. 122539	33.617	. 0433	23.1537	. 16	16.4283	11
30	. 0087	114.589	. 02613	38.1885	. 04			9	
31	.0090	11	. 026		. 043	519	. 06145	16.2722	29
32	. 00931	107.42	. 1226	7.3.79	. 044	6riz	. 06175	16.1952	
33	. 005960	108.171	. C 2 a 1	36.9560	. 044	22.4541	. 162204	16.1190	27
34	.00ys9	101.1117	. 02235	36.5627	. 0448	22.3181	06233	16.0435	26
35	. 01018	93.2179	. 02764	36.1776	. 04512	22.1640	. 06262	15.9687	
36	. 01147	95.4595	. 02793	$35.8(0) 6$. 0454	22.0217	. 06291	15.8945	24
37	. 011076	92.9115	. 02422	35.4313	. 0457	21.8813	(16321	15.82	23
38	. 011105	90.4633	.02451	35.0695	. 0459	21.742	. 163350	15.7433	22
39	. 01135	88.1436	.02>81	34.7151	. 0462	21.6156	$(1637$	156762	21
40	. 01164	85.939 y	. 02910	34.3678	. 0465	21.4714	0640	15.6018	20
41	. 01193	83.8435	.02939	34.0273	. 01687	21.3369	. 16437	15.5310	19
42	. 01222	81.8470	. 02963	33.6935	. 04716	21.2049	. 16467	15.4638	18
43	. 01251	79.9134	. 02997	33.3662	. 04745	21.0447	. 0649	15.3943	17
44	. 01230	78.1263	. 031125	33.	047́:	2	. 0	15.3254	16
45	. 01	76.3910	. 03	32.7303	. 0	20.8188	. 06554		15
46	. 01338	74.729	. 03084	32.4213	0483	20. 6932	. 06584	15.1893	3
47	. 01367	73.139	. 03114	32.1141	. 04862	20.5691	. 06613	15.1222	13
48	01396	71.6151	. 03143	31.8205	. 04891	201.4465	.06642	15.6557	12
49	. 01425	70.1533	. 03172	31.524	. 04920	20.3253	. 06671	14.9898	11
51	. 01455	68.7501	. 03201	31.2416	. 04949	20.2056	.067(10	14.9244	10
51	. 01484	67.4019	. 03230	30.9599	. 04978	20.1872	. 06730	14.8596	
52	. 01513	66.1055	.032i9	30.6×33	. 0.6007	19.97(12	0675	14.7951	
53	. 01542	64.85=0	. 0.3228	30.4116	. 051137	19.854	0678	14.7317	
54	. 01571	63.656	. 13317	30.1446	. 051156	19.7403	06817	14.66×6	
55	. 01600	62.4992	033316	29.8×2.3	. 151195	19.627 .3	06847	14.60159	
56	. 01629	61.3*29	033376	29.6245	0.512	19.5156	$06 \times \sim 6$	$14.543{ }^{\circ}$	
57	. 01658	60.31 hax	. 13415	29.3711	(05153	19.4151	Of: 65	14 4 223	
	. 01687	59.2659	. 133134	29.1220	. 05112	19.2959	(16934	14.4212	
	. 01716	58.2612	.13463	24. 8731	. 15212	19.1~79	${ }^{166963}$	14.36	
	. 01746	57.29111		25.6363			(16443	14.3007	0
M	Crany	Ta	Cotang.	Taug	ang.	Tan	Cotan	Tand	In.
						$7{ }^{\circ}$		60	

边.	40		50		60		\%		M.
	Thung	Cotang	Tang.	Cotang.	Tans.	Cotang.	Taug.	Ootand.	
0	06993	14.31007	. 08749	11.4301	. 10510	9.51436	12278	8.14436	60
1.	. 07422	14.2411	. 08778	11.3919	. 11540	$9.4 \bigcirc 781$. 12303	8.12451	59
	. 07051	14.1821	. 08807	11.3540	. 110569	9.46141	12338	8.10536	58
2	07080	14.1235	. 08837	11.3163	. 110599	9.43515	12367	8.08600	57
3	07110	14.10655	. 18866	11.2789	111628	9.40914	12397	8.106674	56
5	. 07139	14.0079	. 08895	11.2417	11657	9.38307	12426	8.04756	55
6	. 07168	13.95117	. 08925	11.2148	11687	9.35724	12456	8.022:48	54
7	. 07197	13.8940	.08954	11.1681	10716	9.33155	. 12485	8.00948	53
8	. 072227	13.8378	.089i3	11.1316	11776	9.30599	12515	7.99058	52
9	. 07256	13.7821	. 09013	11.0954	. 10775	9.28158	12544	7.97176	51
10	07225	13.7267	. 09042	11.0594	:10805	9.25530	12574	7.95302	50
11	. 07314	13.6719	. 09071	11.0237	. 10834	9.23016	12603	7.93438	49
12	. 07334	13.6174	. 09101	10.9382	. 10863	9.20516	12633	7.91582	48
13	. 07373	13.5634	. 09130	10.9529	. 10893	9.18020	12662	7.89734	47
14	.074(12	13.509y	. 09159	10.9178	. 10922	9.15554	12692	7.87895	46
	. 07431	13.4566	. 09189	10.8829	10952	9.13193	12722	7.86064	45
	07461	13.4039	. 09218	10.8483	. 10981	9.10646	12751	7.84242	44
16 17	03490	13.3515	. 09247	10.8139	. 11011	9.08211	12781	7.82428	43
18	. 07519	13.2996	. 09277	10.7797	. 11040	9.05789	12810	7.80622	42
19	. 07548	13.2450	09316	10.7457	. 11070	9.03379	12310	7.78825	41
20	. 07578	13.1969	09335	10.7119	. 11099	9.00983	12569	7.77035	40
$\begin{aligned} & 20 \\ & 21 \end{aligned}$	07607	13.1461	09365	10.6783	. 11123	8.98598	12899	7.75254	39
22	.076:36	13.0958	09394	10.6450	. 11158	8.96227	12929	7.73480	38
$\begin{aligned} & 23 \\ & 241 \end{aligned}$. 07665	13.0458	09423	10.6118	. 11187	8.93:67	12958	7.71715	37
	. 07695	12.9962	09453	10.5789	. 11217	8.91520	12938	7.69957	36
$\begin{aligned} & 24 \\ & 25 \end{aligned}$. 07724	12.3469	. 09432	10.5462	11246	8.89185	13017	7.68208	35
$\begin{array}{\|l\|} 25 \\ 28 \end{array}$. 07753	12.8981	09511	10.5136	11276	8.86362	13047	7.66466	34
27	. 07782	12.8496	09541	10.4813	. 11305	8.84551	13076	7.64732	33
28	. 07812	12.8014	- 09570	10.4491	. 11335	8.82:252	13106	7.63005	32
	. 07841	12.7536	. 19600	10.4172	. 11364	8.79964	13136	7.61237	31
29 30	. 07870	12.7062	09629	10.3854	. 11394	8.77639	13165	7.59575	30
30	. 07899	12.6591	. 09658	10.3538	11423	8.75425	13195	7.57872	29
32	. 07929	12.6124	. 09688	10.3224	. 11452	8.73172	13224	756176	28
33	. 07858	12.5660	. 09717	10.2913	. 11482	8.70931	13254	7.54487	27
34	. 07987	12.5199	. 09746	10.2602	. 11511	8.68701	13284	7.52806	26
35	. 08017	12.4742	. 09776	10.2294	. 11541	8.66432	13313	7.51132	25
3637	. 081446	12.4238	. 09805	10.1988	. 11570	8.64275	13343	7.49465	24
	. 08075	12.3838	09834	10.1683	. 11600	8.620)78	13372	7.47806	23
$\left.\begin{aligned} & 37 \\ & 35 \end{aligned} \right\rvert\,$. 03104	12.3390	. 09864	10.1381	. 11629	8.59893	13402	7.46154	22
$\begin{aligned} & 35 \\ & 39 \end{aligned}$. 08134	12.2946	. 09893	10.1080	. 11659	8.57718	13432	7.44509	21
40	. 08163	12.2505	09923	10.0780	. 11688	8.55555	13461	7.42881	20
41	. 08192	12.2167	09952	10.0483	. 11718	8.53412	13491	7.41240	19
	. 08221	12.1632	. 09981	10.0187	. 11747	8.51259	13521	7.35616	18
43	. 08251	12.1201	. 10011	9.93931	. 11777	8.49128	13550	7.37999	17
$\begin{aligned} & 43 \\ & 44 \end{aligned}$. 08280	12.0 ż 72	. 10040	9.96007	11806	8.47007	13580	7.36389	16
$\begin{aligned} & 44 \\ & 45 \end{aligned}$. 08309	12.0316	. 10069	9.93101	. 11836	8.44896	13609	7.34786	15
45	. 08339	11.9923	. 10099	9.90211	. 11865	8.42795	13639	7.33190	14
46	. 08368	11.9504	. 10128	9.87333	. 11395	8.417815	13669	7.31600	13
48	. 08397	11.9087	. 10158	9.844×2	. 11924	8.3×625	13698	7.31018	12
	. 18427	11.8673	. 10187	9.81641	. 11954	8.36555	13728	7.2×442	11
49 50	. 08456	11.8262	. 10216	9.78817	. 11983	8.34496	13758	7.26873	10
51	. 08485	11.7853	. 10246	9.761619	. 12013	8.32446	13787	7.25310	9
52	. 08514	11.7448	. 10275	9.73217	. 121442	8.314416	13817	7.23754	8
53	. 08544	11.7145	. 10315	9.70441	. 121272	8.22×376	13846	7.22224	7
54	. 08573	11.6645	. 10334	9.67680	. 12101	8.26355	13876	7.21661	6
54	08602	11.6248	. 10363	9.64935	. 12131	8.24345	13916	7.19125	5
	086352	11.5853	. 10393	9.622015	12160	8.22334	13935	7.17594	4
56	08661	11.5461	.10422	9.59490	12190	8.211352	13965	7.161171	3
58	0×690	11.5172	. 10452	9.56791	12219	8.18370	13995	7.14553	2
59	. 08720	11.46×5	.10481	9.541116	12249	8.1639 s	141124	7.13142	1
60	. 08749	$11+301$. 10510	9.51436	12278	8.14435	14054	7.11537	0
M	Cotalig.	Tang.	Coting.	Tang.	Cotang.	Tang.	Cotang	Tang.	M.
								30	

M.	8°		9°		10°		110		
	Tang.	Cotang.	Tang.	Cotang.	Tang.	Cotang	Tang.	Cotang.	N
0	14054	7.11537	. 15838	6.31375	. 17633	5.67128	19438	5.14455	60
1	. 14084	7.10438	15863	6.30189	. 17663	5.66165	19468	5.13658	59
2	. 14113	7.08546	. 15×98	6.291117	. 17693	5.65215	19498	5.12\%62	58
3	. 14143	7.071159	. 15928	6.27* 29	. 17723	5.61448	. 19529	5.121169	57
4	. 14173	7.05579	. 15958	6. 26665	. 17753	5.63295	. 19559	5.11279	56
5	. 14202	7.04105	. 15938	6.2i4-6	. 17783	5.68334	19559	5.10490	5
6	.14232	7.02637	. 16017	6.24321	. 17813	5.61397	19619	5.09704	54
	.14262	7.11174	16147	6.23161	. 17843	5.60452	19649	5.08921	53
5	. $1 \cdot 129$!	6.99718	. 16177	6.220103	. 17873	5.59511	19630	5.08139	52
9	. 14321	1.98263	. 16107	6.211551	. 17903	5.58573	19710	5.07360	51
10	. 14351	6.96*23	. 16137	6.19703	17933	5.57638	19740	5.06584	E0
11	. 14381	6.9538 is	16167	6.18559	17963	5.567016	19770	5.05809	49
	. 14410	6.93952	. 16196	6.17419	17993	5.55777	19801	5.05137	48
13	. 14440	6.92525	16226	6.16253	. 18023	5.54851	19831	5.04267	47
14	14470	6.91104	16256	6.15151	18053	5.53927	19861	5.03499	46
15	. 14499	$6.8968 \checkmark$	16236	6.14023	18083	5.53007	19891	5.02734	45
16	14529	6.88278	16316	6.12899	. 18113	5.520901	19921	6.01971	44
17	14559	6.86874	16346	6.11779	. 18143	5.51176	19952	5.01210	43
18	14538	6.85475	16376	6.10eG	. 18173	5.512264	199:2	5.00451	42
19	14618	6.84($\mathrm{c}^{2} 2$	16905	6.03552	. 182013	5.49356	20012	4.99695	41
20	14648	6.82694	$16+35$	6.18144	. 18233	5.48451	20042	4.98940	40
21	14678	6.81312	16.165	6.173411	15263	5.47548	20×173	4.98188	39
22	14707	6.79936	16195	6.062411	18293	5.46F-4	20103	4.97438	38
23	14737	6.78564	16.25	6.05143	. 18323	5.45751	20133	4.96690	37
2	14767	6.77199	16555	6.04151	. 18353	5.44-57	20164	4.95945	36
25	14796	6.75>38	16545	6.02962	1034	5.43966	20194	4.952\% 1	35
26	14-26	6.74453	16615	6.018 Ts	18414	5.43077	211224	4.94460	34
27	14356	6.73133	166-10	6.01797	.18444	5.42192	21224	4.93721	33
28	148×6	6.71789	16674	5.93720	. 18474	5.413143	$2 \mathrm{y}+2 \cdot 5$	4.92994	32
29	14915	6.70450	16704	5.94616	.18514	5.414248	8)315	4.922249	31
30	14945	6.69116	16734	5.925:6	. 18534	5.39552	21345	4.91516	30
31	14975	6.67787	16764	5.96510	. 18564	5.34677	20376	$4.90 \div 85$	29
32	151×15	6 66-163	16794	5.95148	. 18594	5.37505	2 HH 16	4.900156	28
33	15034	6.65144	16:24	5.91339	. 18624	5.36936	20436	4.89330	27
34	15164	6.63*31	16854	5.93335	. 18654	5.361070	2 (1466	$4.8+615$	26
35	151194	6.6.25\%23	16384	5.922;3	.1864	5.35246	24497	4.87842	25
36	15124	6.61219	16914	5.91236	. 18714	5.34315	215227	4.87162	24
37	15153	6.59521	16914	5.90191	. 18745	5.33127	21555	4.86-44	23
38	15183	6.58627	16974	5.89151	:18755	5.32631	21058	$4.85 \% 27$	22
39	15213	6.57339	17004	5.88114	188815	5.31778	21618	4.85013	21
40	15243	6.56055	17033	5.8 (kri	. 18635	5.314228	211648	4.843×10	20
41	15272	6.54777	17063	5.86151	. 18865	5.31 以-30	20679	4.83590	19
42	. 153112	6.53503	. 17093	5.85024	. 18895	5.29235	20709	4.82382	18
43	. 15332	6.52234	.17123	$5.84(0) 1$. 18925	5.24393	20739	4.82175	17
44	15362	6.51970	. 11153	5.829<2	. 18955	5.27553	. 20770	4.81471	16
45	. 15391	6.49710	. 17183	5.81966	. 18936	5.26715	. 20500	4.80769	15
46	15421	6.48456	17213	5.80953	. 19016	5.25880	20830	4.80068	14
47	. 15451	6.4721)6	.17213	5.79044	19146	5.25148	20861	4.79370	13
48	15481	6.45961	. 17273	5.789 .38	. 19176	5.24218	. 20891	4.78673	18
49	. 15511	6.44720	. 173113	5.77936	19116	5.23391	20921	4.77978	11
50	. 15540	6.4:484	. 17333	5.76937	19136	5.22566	20952	4.77286	10
51	. 15570	6.42253	.17363	5.75241	19166	5.21744	21992	4.76595	9
52	. 15600	6.41026	. 17393	5.74949	19197	52×1925	21113	4.75916	8
53	. 15630	6.39\% 4	. 17423	5.73960	.19227	5.21117	21143	4.75219	7
54	. 15660	6.345887	.17453	5.72974	19257	5.19\%293	21073	4.74534	6
65	. 156×9	6.37374	17463	5.71992	19247	6. 184×1	21104	4.73×51	8
56	. 15719	6.36165	17513	5.711113	19317	5.17671	21134	4.73170	4
57	. 15749	6.34961	17543	5.701137	19347	5.16>63	21164	4.72490	3
58	.15779	6.33761	17573	5.69164	19378	5.16415\%	21195	4.71813	2
59	. 15819	6.32576	17603	5.6×194	19418	5.15256	. 21225	4.71137	1
60	15838	31375	17633	5.67128	438	455	21256	4.70463	0
M	Cotang	Taug.	Cotang.	Tang.	Cutang.	Tang.	Cotancos.	Thap.	M
					80				

TABLE IV. NATURAL TANGENTS AND COTANGENTS. 289

M.	190		13°		140		150		$1 \mathrm{M}$
	Tang.	Cotang.	Tuing.	Cotang.	Tang.	Cotang.	Tang.	Cotang.	
$\overline{0}$	21256	4.71463	$23 / 167$	4.33148	. 24933	4.01078	. 26795	3.73205	60
1	212×6	4.69791	. 23117	4.32573	. 24964	4.00582	. $268 \diamond 26$	3.72771	59
2	21316	4.69121	. 23148	4.322101	. 24995	4.04086	.26857	3.72338	58
3	21347	1.68452	. 23179	4.31430	. 254126	3.99592	. 26888	3.71907	57
4	21377	4.67786	23\%19	4.30560	. 25056	3.99199	. 26920	3.71476	56
6	214118	4.67121	23240	4.30291	. 25087	3.98607	. 26951	3.71046	65
6	21438	4.66458	23271	4.29724	. 25118	3.98117	. 26982	3.70616	54
7	21469	4.65797	23301	4.29159	25149	3.97627	. 27013	3.70188	53
8	21499	4.65138	23332	4.28595	. 25180	3.97139	. 27044	3.69761	52
9	21529	4.64480	23363	4.28032	25211	3.96651	. 27076	3.69335	51
10	21560	463825	23393	4.27471	. 25242	3.96165	. 27107	3.68909	50
11	21590	463171	23424	4.26911	25273	3.95680	. 27138	3.68485	49
12	21621	4.62518	23455	4.26352	25304	3.95196	27169	3.68061	48
13	21651	4.61868	23485	4.25795	. 25335	3.94713	27201	3.67638	47
14	21682	4.61219	23516	4.25239	. 25366	3.94232	. 27232	3.67217	46
15	21712	4.60572	23547	4.24685	. 25397	3.93751	. 27263	3.66796	45
16	21743	4.59927	23578	4.24132	. 25428	3.93271	. 27294	3.66376	44
17	21773	$4592 \sim 3$	23608	4.23580	. 25459	3.92793	. 27326	3.65957	43
18	21804	4.50641	23639	4.23030	. 25490	3.92316	27357	3.65538	42
19	21834	4.580611	23670	4.22481	. 25521	3.91839	27388	3.65121	41
20	21864	4.57363	23700	4.21933	. 25552	3.91364	27419	3.64705	40
21	21895	4.56726	23731	4.21387	25583	3.90890	27451	3.64289	39
22	21925	456191	23762	4.211842	25614	3.90417	27482	3.63874	38
23	21956	455458	23793	4.20298	. 25645	3.89945	27513	3.63461	37
24	21986	4.54826	23823	4.19756	. 25676	3.89474	27545	3.63048	36
25	22017	4.54196	23854	4.19215	. 25707	3.89004	27576	3.62636	35
26	22047	4.53568	. 23885	4.18675	. 25738	3.88536	27607	3.62224	34
27	22178	4.52941	23916	4.18137	25769	3.88068	27638	3.61814	33
28	22108	4.52316	23946	4.17600	. 25800	3.87601	27670	3.61405	32
29	22139	4.51693	23977	4.17064	25831	3.87136	27701	3.61996	31
30	22169	4.5	24008	4.16530	25862	3.866	27732	3.60588	30
31	22200	4.50451	24039	4.15997	25893	3.86208	27764	3.60181	29
32	22231	4.49832	24169	4.15465	. 25924	3.85745	27795	3.69775	28
33	22261	4.49215	24100	4.14934	25955	3.85284	27826	3.59370	27
34	22292	4.48600	24131	4.14405	. 25986	3.84824	27858	3.58966	28
35	22322	4.47936	24162	4.13877	. 26017	3.84364	27889	3.58562	${ }^{25}$
36	22353	4.47374	24193	4.13350	26048	3.83906	27921	3.58160	24.
37	22333	4.46764	24223	4.12825	. 26079	3.83449	27952	3.57758	23
38	22414	4.46155	24254	4.1230!	. 26110	3.82992	27983	3.57357	22
39	22444	4.45548	24295	4.11778	. 26141	3.82537	28015	3.56957	21
40	22475	444942	24316	4.11256	. 26172	3.82083	28046	3.56557	20
41	22505	4.44338	24347	4.10736	. 26203	3.81630	28077	3.56159	19
42	22536	443735	24377	4.10216	. 26235	3.81177	28109	3.55761	18
43	22567	4.43134	24408	4.09699	. 26266	3.80726	28140	3.55364	17
44	22597	442534	24439	4.09182	. 26297	3.80276	28172	3.54968	16
45	22628	4.41936	24470	4.08666	. 26328	3.79827	28203	3.54573	15
46	22658	4.41340	24501	4.08152	. 26359	3.79378	28234	3.54179	14
47	22689	4.40745	24532	4.076.39	26390	3.78931	28266	3.53785	13
48	22719	4.40152	24562	4.07127	. 26421	3.78485	28297	3.53393	12
49	22750	4.39560	24593	4.06616	. 26452	3.78040	. 283229	3.53001	11
50	22781	4.38969	24624	4.06107	. 26483	3.77595	28360	3.52609	10
51	22811	4.38381	24655	4.05599	26515	3.77152	28391	3.52219	9
52	22842	4.37793	24696	4.05192	26546	3.76709	28423	3.51829	
53	22872	4.37207	24717	404586	26577	3.76268	. 28454	3.51441	7
54	22903	4.36623	24747	4.041 NI	26603	3.55828	28486	3.51053	6
55	22934	436140	24778	4.13578	26639	3.75388	28517	3.50666	5
56	222964	4.35459	24×19	4.103176	26670	3.74950	28549	3.50279	
57	22995	4.34879	24840	4.112574	26701	3.74512	. 28580	3.49894	3
58	234126	4.3431×1	24871	4.02174	26733	3.74175	. 28612	3.49509	2
59	23056	4.33723	249142	4.01576	26764	3.78640	28643	3.49125	1
60	233187	4.33148	24933	-	26795	3.73205	28675	3.4874	0
M	Cotaug	Tang	Cotang	Tang	Cotang.	Tang.	Cotang	Tang.	m.
								0	

	16°		17°		18°		190		M.
$\frac{30}{0}$	Taug.	Cotang.	Tang.	Cotang.		Cotang.	ag.	ang.	
	. 236	3.48	. 31	$\overline{3.27085}$. 32492	3.0	. 34433	2.90421	60
1	. 287	3.48359	. 31160	3.2	. 32	3.07464	. 3	2.90147	59
2	. 28738	3.47977	. 316637	3.26406	.32i5	3.07160	. 34498	2.89873	88
3	. 28769	3.47596	. 30669	3.26067	. 32588	3.06857	. 34530	2.89600	57
4	. 28800	3.47216	. 30700	3.25729	. 32621	3.96554	34563	2.89327	56
5	. 28832	3.46837	. 30732	3.25392	. 32653	3.06252	34596	2.89055	55
6	. 28864	3.46458	. 30764	3.25055	. 32635	3.05950	. 34628	2.88783	5
7	. 28895	3.46080	. 3079	3.24719	. 32717	3.05649	. 3466	2.88511	53
8	. 28927	3.45703	. 3082	3.24383	. 32749	3.05349	. 3	2.88240	52
9	. 28958	3.453	. 30860	3.24049	. 32782	3.05049	. 347	2.87970	51
10	. 28990	3.4495	. 30891	3.23714	. 32814	3.04749	. 34758	2.87700	50
11	. 29021	3.44576	. 30923	3.23381	. 32846	3.04450	. 34791	2.87430	49
12	. 29053	3.44202	. 30955	3.23048	. 32378	3.04152	34824	2.87161	48
13	. 29084	3.43829	. 310987	3.22715	. 32911	3.03854	. 3485	2.86892	47
14	. 29116	3.43456	. 31019	3.223	. 32943	3.035	. 3488	2.86624	46
15	. 291	3.	. 31051	3.22053	. 32975	3.0	3492	2.86356	5
16	29	3.42713	. 31083	3.21722	. 33007	3.02963	. 349	2.86089	4
17	29210	3.42343	. 31115	3.21392	. 33040	3.02667	. 34987	2.85822	43
18	. 29242	3.41973	. 31147	3.21063	. 33112	3.02372	. 35023	2.85555	42
19	. 29274	3.41601	. 31178	3.20734	. 331124	3.0207%	. 35052	2.85289	41
20	. 29305	3.41236	. 31210	3.204:	. 33136	3.0178	. 350	2.85023	40
21	. 29337	3.40869	. 31242	3.20079	. 33169	3.01	. 3511	2.84758	9
22	. 29368	3.40502	. 3127	3.19752	. 33201	3.0119	. 35150	2.84494	
23	. 29400	3.40136	. 31306	3.1942	. 33233	3.0090	. 35183	2.84229	
24	. 29432	3.39771	. 31338	3.19100	. 33266	3.00611	. 35216	2.83965	
25	. 29463	3.39406	. 31370	3.18775	. 33238	3.00319	. 35248	2.83702	
26	29495	3.39042	. 31402	3.18451	. 33330	3.00028	. 35231	2.83439	
27	. 29526	3.38679	. 3143	3.18127	. 33363	2.99	531	2.8317	
28	. 29558	3.383	. 31	3.1780	. 333	2.	. 353	2.82914	
29	. 29590	3.3795	. 31	3.17481	. 33427	2	35379	2.82653	
30	. 29621	3.37594	. 31530	3.17159	3346	2	35412		
31	29653	3.37234	. 31562	3.1	. 334	2.98	. 3	2.82130	
32	. 29685	3.36875	. 31594	3.16517	. 33524	2.98292	354	2.8	23
33	. 29716	3.36516	. 31626	3.16197	. 3355	2.980	355	2.816	27
34	. 29748	3.36158	. 31658	3.15877	. 3358	2.9771	355	2.813	28
35	. 29780	3.358	. 31690	3.1555	. 3362	2.97430	355	2.81091	25
36	. 29811	3.35443	. 31722	3.15240	. 3365	2.971	35608	2.80833	
37	. 29843	3.35087	. 3175	3.14922	. 33636	2.968	35641	2.80574	23
38	. 29875	3.34732	. 31786	3.14605	. 33718	2.965	35674	2.80316	22
39	. 29906	3.34377	. 31818	3.14288	. 337	2.9628	5	2.800	21
$4)$. 29938	3.34123	. 31850	3.13972	. 3370	2.960	3574	2.798	20
41	. 29970	3.33670	. 31882	3.13656	. 33816	2.95721	3577	2.79545	19
42	. 30001	3.33317	. 31914	3.13341	. 33848	$2.9543 i$	3580	2.79289	17
43	30033	3.32965	. 31946	3.13027	33881	2.95155	. 35838	2.79033	17
44	-. 30065	3.32614	. 31978	3.12713	. 33913	2.94872	. 3587	2.7	16
45	. 30097	3.3226	. 32	3.1	3	2.94591	. 35904	2.78523	15
46	. 30128	3.319						2.78269	
47	. 30160	3.315	. 3207	3.1177	. 340	2.9402	. 3596	2.78014	13
48	. 30192	3.31216	. 32106	3.1146	. 3404	2.93748	. 3600	2.77761	12
49	. 30224	3.30868	. 32139	3.11153	. 34075	2.93468	. 3603	2.77507	11
50	. 30255	3.30521	. 32171	3.10842	. 34108	2.93189	3606	2.772	10
51	. 30287	3.30174	. 32203	3.10532	. 34140	2.92910	3610	2.77072	
52	. 30319	3.29829	. 32235	3.10223	. 3417	2.9243	3613	2.76750	
53	. 30351	3.29483	. 3226	3.0991	. 3420	2.92354	. 3616	2.76498	
54	. 30382	3.29139	. 32299	3.0960	423	2.92076	36199	2.76247	
5	. 30414	3.28795	. 32331	3.09293	,	2.91799	36232	2.75996	
66	. 30446	3.28452	. 32363	3.08991	. 3430	2.91523	. 36265	2.75746	
57	. 30478	3.28109	. 32396	3.08685	. 3433	2.91246	. 36298	2.754	
58	. 30509	3.27767	. 32428	3.08379	. 3436	2.9097	. 36331	2.75246	8
59	. 30541	3.27426	. 32460	3.08073	. 3440	2.9169	36364	2.74997	
60	30573	3.27085	. 32492	3.07768	. 34433		3639	2.74748	0
M.	Cotsug	Tung.	ng	Tang.	Cotang.	Tang.	Cotan	Tam	M.

M.	20°		210		23°		23°		M.
	Tang.	Cotang.	Tang.	Cutang.	Tang.	Cotang.	Tang.	Cotang.	
$\overline{0}$. 36397	2.74748	. 38386	2.60509	. 40403	2.47509	. 42447	2.35585	60
1	. 36430	2.74499	3×420	2.611283	. 40436	2.47312	. 42482	2.35395	59
2	. 36463	2.74251	3×453	2.60157	. 40470	2.47095	. 42316	2.35205	58
3	. 36496	2.741104	384×7	2.59×31	. 40514	2.46×3	. 42551	2.35015	57
4	. $365<9$	2.73756	. 38520	2.59616	. 40538	2.46682	. 425885	2.34825	56
5	. 36562	2.73509	38553	2.593×1	. 410572	2.46476	. 42619	2.34636	55
6	. 36595	2.73263	38587	2.59156	. 40606	2.46270	. 42654	2.34447	54
7	. 36628	2.73117	3×620	2.58932	. 40640	2.46065	42688	2.34258	53
8	36661	2.72771	38654	2.58708	. 40674	2.45860	42722	2.34069	52
9	. 36694	2.72526	38687	2.58484	. 40707	2.45655	. 42757	2.33881	51
10	. 36727	2.72281	38721	2.58261	. 40741	2.45451	42791	233693	50
11	36760	2.72036	38754	2.58038	. 40775	2.45246	42826	2.33505	49
12	.36793	2.71792	38787	2.57815	. 40809	2.45043	42560	2.33317	48
13	. 36826	2.71548	38821	2.57593	. 40843	2.44839	42894	2.33130	47
14	36859	2.71305	38854	2.57371	44877	2.44836	42929	2.32943	46
15	. 36892	2.71062	38888	2.57150	40911	2.44433	42963	2.32756	45
16	36925	2.70819	38921	2.56928	. 40945	2.44230	42998	2.32570	44
17	. 36958	2.70577	33955	2.56707	. 419979	2.44027	43032	2.32383	43
18	36951	2.70335	33988	2.56487	. 41013	243825	431167	2.32197	42
19	37124	2.70194	$39 \cap 22$	2.56266	. 41047	2.43623	43101	2.32012	41
20	37057	2.69×53	39155	2.56046	. 41081	2.43422	43136	2.31826	40
21	37090	269612	39089	2.55827	. 41115	2.432211	43170	2.31641	39
22	37123	2.69371	39122	2.55613	41149	2.43019	43205	2.31456	38
23	37157	2.69131	39156	2.55339	41183	2.42819	43239	2.31271	37
24	37190	2.68892	. 39190	2.55170	41217	2.42618	43274	2.31086	36
25	37223	26×6	39223	2.54952	. 41251	2.42418	433118	2.30972	35
26	37256	2.6414	39257	2.54734	. 41285	2.42218	43343	2.30718	34
27	37239	2.68175	39290	2.54516	. 41319	2.42119	43378	2.30534	33
28	37322	2.6793**	39324	2.54299	41353	2.41819	43412	2.30351	32
29	37355	2.67700	39357	2.640×2	. 41337	2.41620	43447	2.30167	31
30	3733	2.67462	39391	2.53865	. 41421	2.41421	43481	2.29984	30
31	37422	2.67225	39425	2.53648	. 41455	2.41223	43516	2.29801	29
32	3:455	2.66989	59458	2.53432	. 41490	2.411125	43550	2.29619	28
33	37438	2.66752	उ-1+4i	2.53217	. 41524	2.40827	43585	2.29437	27
34	37521	2.66516	395\%	2.53 (0)	. 41558	2.40629	43620	2.29254	26
35	37554	2662×1	39554	252786	41592	2.40432	43654	2.29073	25
36	37588	2.66646	39.593	2.52571	41626	2.40235	43689	2.28891	24
37	37621	265×11	39626	2.52357	41660	2.40038	43724	2.28710	23
38	27654	2.65576	39660	2.52; 42	41694	2.39841	43758	2.28528	22
39	37687	2.65342	39694	2.51924	41728	2.39645	43793	2.28348	21
40	37720	2.651119	39727	2.51 ¢15	41763	2.39449	43×28	2.28167	20
41	. 37754	2.64875	39761	2.51512	41797	2.39253	43*62	2.27987	19
42	37787	2.64642	39795	2.51289	41831	2.391158	43897	2.27806	18
43	37820	2.64410	39×29	2.51076	41865	2.38863	43932	2.27626	17
44	37353	264177	39562	2.50864	41899	2.38668	43966	2.27447	16
45	378	2.	39896	2.50652	41	2.38473	4400	2.27267	15
46	37920	2.63714	39930	2.50440	41968	2.38279	44036	2.27088	14
47	37953	263483	39963	2.50229	42002	2.35084	44071	2.26909	13
48	37986	2.63252	39997	251018	42036	2.37891	44105	2.26730	12
49	. 35020	263121	40031	2.49807	42070	2.37697	44140	2.26552	11
50	38053	2.62791	40165	2.49597	42105	2.3:504	. 44175	2.26374	10
51	. 380186	262561	40098	2.49386	42139	2.37311	44210	2.26196	9
52	38120	2 623:32	40132	2.49177	42173	2.37118	44244	2.26018	8
53	38153	2621113	40166	2.4×967	42207	2.36925	. 44279	2.25840	7
54	38186	261874	40210	2.48758	42242	2.36733	. 44314	2.25663	6
55	33220	261646	411234	2.4×549	4×276	2.36541	. 44349	2.25486	5
56	. 33253	261418	$4 \cap 267$	2.48340	42310	2.36349	44384	2.25309	4
57	38296	261190	41301	2.48132	. 42345	2.36158	44418	2.25132	3
58	. 38320	2.61963	401335	2.47924	. 42379	2.35967	. 44453	2.24956	2
59	. 3×353	2.60736	. 40369	2.47316	42413	2.35776	. 44488	2.24780	1
60	. 38386	61509	4(1403	. 47509	42447	2.35585	44523	2.24604	0
M.	Cotang	Tang.	Cotang.	Tang.	Cotang.	Tang.	Cotang.	Tang.	M.
		9°		8°		7°		8°	

M.	240		25°		280		27°		M.
	Tang.	Cotang.	Tang.	Cotaug.	Tang.	Cotang.	Taug	Cosaug.	
	. 44523	2.24604	. 46631	2.14451	. 48773	2.15030	. 50953	1.96261	60
1	. 44558	2.24428	. 46666	2.14288	. 48809	2.04879	. 50989	1.96120	59
2	. 44593	$2.24: 252$. 467112	2.14125	. 48845	2.04728	. 51026	1.95979	58
3	. 44627	2.24077	. 467.37	2.13963	. 48881	2.04577	. 511163	1.95838	57
	. 44662	2.23902	. 46772	2. 13×01	. 48917	2.04426	. 51099	1.95698	56
5	. 44697	2.23727	46808	2.13639	. 48953	2.04276	. 51136	1.95557	65
6	44732	2.23553	1643	2. 13477	48989	2.04125	. 61173	1.95417	54
7	. 44767	2.23378	46879	2.13316	. 49026	2.03975	. 61209	1.95277	53
$\begin{aligned} & 7 \\ & 8 \end{aligned}$. 44802	2.23204	46914	2.13154	. 49062	2.03825	. 51246	1.95137	52
8	44837	2.23030	46950	2. 12993	. 49093	2.03675	. 51283	1.34997	51
	44872	2.22857	46985	2. 128332	. 49134	2.03526	. 51319	1.94858	50
11	44907	2.22683	47021	2.12671	. 49170	2.03376	51356	1.94718	49
	44942	2.22510	42056	2.12511	492316	2.03227	61393	1.94579	48
12	44977	2.22337	47192	2. 12350	49242	2.031078	51430	1.94440	47
	45012	2.22164	47123	2.12190	. 49278	2.02929	51467	1.94301	46
14 15	45047	2.21992	47163	2.12130	49315	2.12780	51503	1.9162	45
	45082	2.21819	47199	2.11871	. 49351	2.02631	51540	1.94023	44
16	45117	2.21647	47234	2.11711	. 49387	2.024×3	51577	1.93885	43
18	45152	2.21475	47270	2.11552	49423	2.12335	51614	1.93746	42
	45187	2.21304	47305	2.11392	49459	2.12187	51651	1.93608	41
	45222	2.21132	47341	2.11233	49495	2.120139	51638	1.93470	40
$\left\lvert\, \begin{aligned} & 20 \\ & 21 \end{aligned}\right.$	45257	2.20961	47377	2.11075	49532	2.01891	51724	1.93332	39
22	45292	2.20790	47412	2.10916	49:563	2.01743	51761	1.93195	38
22 23	45327	2.20619	. 47448	2.10758	49604	2.01596	51798	1.93067	37
24	45362	2.20449	47483	2.10600	. 49640	2.01449	51835	1.92520	36
25	45397	2.21278	47519	2.10442	. 45677	2.01302	51872	1.92782	35
	45432	2.20108	47555	2.10234	49713	2.01155	51911	192645	34
28	45467	2.19938	47590	2.10126	49749	2.01018	51946	i.92508	33
$\begin{aligned} & 27 \\ & 28 \end{aligned}$	45502	2.19769	47626	2.09969	49786	2.00362	51983	1.92371	32
	45538	2. 19599	47662	2.09311	49822	2.00715	52120	1.92235	31
30	45573	2.19430	47698	2.09654	49858	2.00569	52057	1.92098	30
31	45608	2.19261	47733	2.09498	. 49894	2.00423	52094	1.91962	29
3233	45643	2.19092	47769	2.09341	. 49931	2.00277	52131	1.91826	28
	45678	2.18923	47805	2.09184	49967	2.00131	52168	1.91690	27
33 34	45713	2.18755	47840	2.09028	50114	1.99986	52215	1.91554	28
3536	45748	2.18587	47876	2.08872	50040	1.99×41	52242	1.91418	25
	45784	2.18419	47912	2.08716	50076	1.99695	522279	1.91282	24
37	45819	2.18251	47948	2.08560	50113	1.9955 (52316	1.91147	23
38	45854	2.18084	47984	2.08405	. 50149	1.994116	52353	1.91012	22
39	45889	2.17916	48019	2.08250	. 50185	1.99261	52390	1.90876	21
40	45924	2.17749	48055	2.08094	. 50222	1.99116	52427	1.91741	20
$\begin{aligned} & 41 \\ & 42 \end{aligned}$	45960	2.17582	48091	2.07939	. 50258	1.98972	52464	1.91607	19
	45995	2.17416	48127	2.07785	50295	1.98828	52501	1.91472	18
42	46030	2.17249	48163	2.07630	. 50331	1.98684	52538	1.901337	17
$\begin{aligned} & 43 \\ & 44 \end{aligned}$	46065	2.17083	48198	2.07476	50368	1.98540	52575	1.96 (203	16
44 45	46101	2.16917	. 48234	2.07321	50404	1.98396	52613	1.90069	16
45	46136	2.16751	48270	2.07167	50441	1.98253	52650	1.89935	14
46	46171	2.16585	48306	2.07014	50477	1.98110	52687	1.89301	13
48	46206	2.16420	48342	206860	50514	1.97966	52724	1.89667	12
48 49	46242	216255	48378	2.06706	. 50550	1.97823	52761	1.89533	11
49 50	46277	2.16090	. 48414	2.06553	. 50587	1.97681	52798	1.89400	10
50	46312	2.15925	48450	2.164010	50623	1.97538	52836	1.89266	
51	46348	2.15760	48486	2.06247	50660	197395	52873	1.89133	8
52	46383	2.15596	48521	2.06094	511696	1.97253	52910	1.89000	7
53	46418	2.15432	48557	2.05942	50733	1.97111	52947	1.88867	6
54 55	46454	2.15268	48593	2.05790	. 50769	1.96969	52995	1.88734	5
56	46489	2.15104	48629	2.05637	50806	1.96×27	533122	1.886112	4
57	46525	2.14940	48665	2.05485	50843	1.96685	53 [159	1.88469	3
58	46560	2.14777	48701	2.05333	50879	1.96544	531196	1.88337	2
59	46.595	2.14614	48737	2.05182	57916	1.964142	53134	1.88205	1
60	46631	2.14451	48773	2.05030	50953	1.96261	53171	1.88073	0
$\overline{\mathrm{M}}$.	Cutang	Tang.	Cotang.	Tang.	Cutang.	Tang.	Cotang.	Tang.	M.
				\%		3			

M	28°		29°		30°		310		M.
	Tang.	Cotang.	Tang.	Cotang.	Tang.	Cotang.	Tang.	Cotang	
0	. 63171	1.88073	55431	1.80405	. 57735	1.73205	. 60086	1.66428	60
1	632118	1.87941	55469	1.80231	. 57774	1.73089	60126	1.66318	69
2	. 53246	1.878119	55517	1.81158	. 57813	1.72973	60165	1.66209	58
3	53283	1.87677	55545	1.800134	57851°	1.72857	60205	1.66099	57
4	533\%0	1.87546	55583	1.79911	. 57890	1.72741	60245	1.65990	56
5	63358	1.87415	65621	1.79788	. 57929	1.726 .5	61284	1.65881	55
6	53395	1.872×3	55659	1.79665	. 67968	1.72509	60324	1.65772	54
7	63432	1.87152	55697	1.79542	. 58007	1.72393	60364	1.65663	53
8	. 63470	1.87021	55736	1.79419	. 58046	1.72278	60403	1.65554	52
9	. 63507	1.86891	55774	1.79296	. 58085	1.72163	60443	1.65445	51
10	. 53545	1.86760	55812	1.79174	. 58124	1.72047	60483	1.65337	50
11	53582	1.86630	55850	1.79051	. 58162	1.71932	$6052 \cdot$	1.65228	49
12	. 53620	1.85499	55888	1.78929	. 58201	1.71817	60562	1.65120	48
13	53657	1.86369	55925	1.78807	. 58240	1.71702	60602	1.65011	47
14	53694	1.86239	55964	1.78685	. 58279	1.71588	60642	1.64903	46
15	. 53732	1.86109	56003	1.78563	. 58318	1.71473	. 60681	1.64795	45
16	63769	1.85979	56041	1.78441	. 58357	1.71358	60721	1.64687	44
17	53807	1.85850	560179	1.78319	. 58396	1.71244	60761	1.64579	43
18	63844	1.85720	56117	1.78198	. 58435	1.71129	60801	1.64471	42
19	53882	1.85591	56156	1.78077	58474	1.71015	60841	1.64363	41
20	53920	1.85462	56194	1.77955	. 58513	1.70901	60881	1.64256	40
21	53957	1.85333	56232	1.77834	. 58552	1.70787	60921	1.64148	39
22	53995	1.85214	56270	1.77713	. 58591	1.70673	60960	1.64041	38
23	54032	1.85075	56309	1.77592	. 58631	1.70561	61000	1.63934	37
24	84070	1.84946	56347	1.77471	. 58670	1.70446	61140	1.63826	38
25	54107	1.84818	56385	1.77351	. 58709	1.70332	61080	1.63719	35
26	54145	1.84689	56424	1.77230	. 58748	1.70219	61120	1.63612	34
27	54183	1.84561	56462	1.77110	. 58787	1.70116	61160	1.63505	33
28	54220	1.84433	56501	1.76990	. 58826	1.69992	61200	1.63398	32
29	54258	1.84305	56539	1.76869	. 58865	1.69879	61240	1.63292	31
30	54296	1.84177	. 56577	1.76749	. 58905	1.69766	61280	1.63186	30
31	.54333	1.84049	56616	1.76629	. 58944	1.69653	61320	1.63079	29
32	64371	1.839\%2	56654	1.76510	. 58983	1.69541	. 61360	1.62972	28
33	64409	1.83794	. 66693	1.76390	. 59142	1.69428	. 61400	1.62866	27
34	54446	1.83667	56731	1.76271	. 59061	1.69316	61440	1.62760	28
35	54484	1.33540	. 56769	1.76151	. 59101	1.69203	61480	1.62854	25
36	54522	1.83413	56308	1.76032	. 59140	1.69091	61520	1.62548	24
37	${ }^{54560}$	1.83286	56346	1.75913	. 59179	1.68979	61561	1.62442	23
38	64597	1.83159	56885	1.75794	. 59218	1.68866	61601	1.62336	22
39	54635	1.83033	56923	1.75675	. 59258	1.68754	61641	1.62230	21
40	54673	1.82906	56962	1.75556	. 59297	1.68643	. 61681	1.62125	20
41	64711	1.82780	57000	1.75437	. 59336	1.68531	. 61721	1.62019	19
42	54748	1.82654	57039	1.75319	. 59376	1.68419	. 61761	1.61914	18
43	54786	1.82528	57078	1.75200	. 59415	1.68308	. 61801	1.61808	17
44	54824	1.82402	57116	1.75082	. 59154	1.68196	. 61842	1.61703	16
45	54862	1.82276	. 57155	1.74964	. 59494	1.68085	. 61882	1.61598	15
46	. 64900	1.82150	. 67193	1.74846	. 59533	1.67974	61922	1.61493	14
47	. 64938	1.82025	. $5: 232$	1.74728	. 59573	1.67863	61962	1.61388	13
48	. 64975	1.81899	. 57271	1.74610	. 59612	1.67752	62003	1.61283	12
48	. 65013	1.81774	. 57309	1.74492	. 69651	1.67641	62043	1.61179	11
5C	. 55051	1.81649	. 57348	1.74375	. 59691	1.6753)	62083	1.61074	10
51	. 55089	1.81524	. 57386	1.74257	59730	1.67419	62124	1.60970	9
52	. 65127	1.81399	. 57425	1.74140	59770	1.67309	62164	1.60865	8
53	. 65165	181274	57464	1.74022	. 59809	1.67198	62204	1.60761	7
54	. 55203	1.81150	. 67503	1.73905	59849	1.67 (188	. 62245	1.60657	6
55	65241	1.81025	. 57541	1.73788	. 59888	1.66978	62285	1.60553	5
56	55270	1.80901	. 57580	1.73671	59928	1.66867	. 62325	1.60449	4
57	55317	1.80777	57619	1.73555	59967	1.66757	62366	1.60345	3
58	55355	1.80653	57657	173438	60007	1.66647	. 62406	1.60241	2
59	65393	1.80529	57696	173321	60046	1.66538	. 62446	1.60137	1
60	. 65431	1.80405	57735	1.73205	. 60086	1.66428	62487	1.60033	0
M.	Cotaly	Taug.	Cotang.	Tang.	Cotang.	Tang.	Cotang.	Tang.	M.
		10		\bigcirc		0°		${ }^{\circ}$	

M	8\%0		33°		340		30°		M.
	Tang.	Cotang.	Tang.	Cotang.	Tang.	Cotang.	Tang.	Cotany.	
0	. 62487	1.60033	. 64941	1.53986	. 67451	1.43256	. 70021	1.42815	60
1	. 62527	1.69930	. 64982	1.53888	. 67493	1.48163	.70164	1.42726	69
2	. 62568	1.69826	. 65024	1.53791	. 67536	1.18070	. 70107	1.42638	58
3	. 62608	1.69723	. 65065	1.63693	. 67578	1.47977	. 70151	1.42550	67
4	. 62649	1.59620	. 65106	1.53595	. 67620	1.47885	. 70194	1.42462	56
5	. 62689	1.69517	. 65148	1.53497	. 67663	1.47792	70238	1.42374	65
6	. 62730	1.59414	. 65189	1.53410	. 67705	1.47699	. 70281	1.42286	54
7	. 62770	1.59311	. 65231	1.53312	. 67748	1.47607	70325	1.42198	53
8	. 62811	1.69208	65272	1.53205	. 67790	1.47514	. 70368	1.42110	52
9	. 62852	1.59105	65314	1.63107	. 67832	1.47422	70412	1.42022	51
10	. 62892	1.69002	. 65355	1.53010	. 67875	1.47330	70455	1.41934	60
11	. 62933	1.58900	. 65397	1.62913	. 67917	1.47238	70499	1.41847	49
12	. 62973	1.58797	65438	1.52816	. 6796	1.47146	70542	1.41759	48
13	. 63014	1.58695	65480	1.62719	. 68002	1.47053	70586	1.41672	47
14	. 63055	1.58593	. 65521	1.52622	68045	1.46962	70629	1.41584	46
15	. 63095	1.58490		1.62525	. 68088	1.46870	70673	1.41497	45
16	. 63136	1.583	. 656	1.52429	. 68130	1.46778	. 70717	1.41409	4
17	. 63177	1.58286	. 656	1.52332	. 68173	1.46686	70760	1.41322	43
18	. 63217	1.58184	65688	1.52235	. 68215	1.46595	. 70804	1.41235	42
19	. 63258	1.58083	65729	1.52139	. 68258	1.46503	. 70848	1.41148	41
20	. 63299	1.57981	65771	1.52043	. 68301	1.46411	70891	1.41061	40
21	. 63340	1.57879	. 65813	1.61946	68343	1.46320	70935	1.40974	39
22	. 63380	1.57778	. 65854	1.51850	. 68386	1.46229	70979	1.40887	38
23	. 63421	1.67676	. 65896	1.51754	. 68429	1.46137	71023	1.40800	37
24	. 63462	1.57575	. 65938	1.51658	. 68471	1.46046	71066	1.40714	36
25	. 63503	1.57474	6598	1.61562	. 6851	1.45965	7111	1.40627	35
28	. 63544	1.57372	6602	1.51466	. 6855	1.45864	7115	1.40540	3
27	63584	1.57271	66063	1.51370	. 68600	1.45773	71198	1.40454	3
28	. 63625	1.67170	66105	1.51275	. 68642	1.45682	. 71242	1.40367	38
29	. 63668	1.67069	. 66147	1.61179	. 68685	1.45592	. 71285	1.40281	31
30	. 6	1.56969	. 66189	1.6	68	1.4	. 71329	1.40195	30
31	. 637	1.56	. 662	1.509	68771	1.45410	. 71373	1.40109	29
22	. 63789	1.56767	. 66272	1.50893	. 6881	1.45320	. 71417	1.40022	28
33	. 63830	1.56667	6631	1.50797	. 6885	1.45229	. 7146	1.39936	27
34	. 63871	1.56566	66356	1.507012	. 68900	1.46139	. 71505	1.39850	2
36	. 63912	1.56466	66398	1.50607	. 68942	1.45049	. 71549	1.39764	25
36	. 63953	1.56366	66140	1.50512	. 68985	1.44958	. 71593	1.39679	24
37	. 63994	1.56265	66482	1.50417	. 69028	1.44868	. 71637	1.39593	2
38	. 64035	1.56165	66524	1.50322	. 69071	1.44778	. 7168	1.39507	22
39	. 64076	1.66065	. 66566	1.50228	. 69114	1.44688	7172	1.39421	1
40	. 64117	1.55966	6660	150133	. 6915	1.44598	71769	1.39336	20
41	. 64158	1.55866	66650	1.50038	. 69200	1.44508	71813	1.39250	19
42	. 64199	1.65766	. 66692	1.49944	69243	1.44418	. 71857	1.39165	18
43	. 64240	1.65666	. 66734	149849	.692s6	1.44329	. 71901	1.39079	17
44	. 64281	1.65567	. 66776	149755	. 69329	1.44239	. 71946	1.38994	16
45	. 64	1.5	. 66818	1.49661	. 69372	1.44149	. 71990	1.38909	15
46	. 64363	1.65368	. 66860	1.49566	. 69416	1.44060	. 7203	1.38824	14
4	. 64404	1.65269	. 66902	1.49472	. 69459	1.43970	. 72078	1.38738	13
48	64446	1.55170	. 66944	1.49378	. 69502	1.43881	. 72122	1.38653	12
49	. 64487	1.65071	. 66986	1.49284	. 69545	1.43792	. 72167	1.38568	11
50	. 64528	1.54972	. 67028	1.49190	. 69588	1.43703	. 72211	1.38484	10
51	. 64569	1.54873	. 67071	1.49097	. 69631	1.43614	72255	1.38399	
62	. 64610	1.54774	. 67113	1.49003	. 69675	1.43525	72299	1.38314	
63	. 64652	1.54675	. 67155	1.48909	. 69718	1.43436	. 7234	1.38229	7
64	. 64693	1.54576	. 67197	1.48816	. 69761	1.43347	. 72388	1.38145	
56	. 64734	1.54478	. 67239	1.48722	. 69804	1.43258	. 72432	1.38060	5
56	. 64775	1.54379	. 67282	1.48629	. 69847	1.43169	. 72477	1.37976	
57	. 64817	1.54281	. 67324	1.48536	.69891	1.43080	. 72521	1.37891	
68	. 64858	1.54183	. 67366	1.48442	. 69934	1.42992	. 72565	1.37807	2
89	. 64899	1.64085	. 67409	1.48349	. 69977	1.42903	72610	1.37722	1
60	41	1.53986	67451	1.48256	70021	42815	54	1.37638	0
\bar{M}	Cotaug.	Tang.	Cotang.	Tang	Cotalug.	Tang	Cotang.	Taug.	M.

M.	30°		37°		380		39°		M.
	Tang.	Cotang.	Tang.	Cotang.	Taug.	Cotang.	Tang.	Cotang.	
	. 72654	1.37638	. 75355	1.32704	. 78129	1.27994	. 80978	1.23490	60
1	. 72699	1.37554	. 75401	1.32624	. 78175	1.27917	. 81027	1.23416	59
2	. 72743	1.37470	. 75447	1.32544	. 78222	1.27841	. 81075	1.23343	58
3	. 72788	1.37386	. 75492	1.32464	. 78269	1.27764	. 81123	1.23270	57
,	. 72832	1.37302	. 75538	1.32384	. 78316	1.27688	. 81171	1.23196	56
5	. 72877	1.37218	. 75584	1.32304	. 78363	1.27611	. 81220	1.23123	55
6	. 72921	1.37134	. 75629	1.32224	. 78410	1.27535	. 81268	1.23050	54
7	. 72966	1.37050	. 75675	1.32144	. 78457	1.27458	. 81316	1.22977	53
8	. 73010	1.36967	. 75721	1.32064	. 78504	1.27382	. 81364	1.22904	62
9	. 73055	1.36883	. 75767	131984	. 78551	1.27306	. 81413	1.22831	61
10	. 73100	1.36800	. 75812	1.31904	. 78598	1.27230	. 81461	1.22758	50
11	. 73144	1.36716	. 75858	1.31825	. 78645	1.27153	. 81510	1.22685	49
12	. 73189	1.36633	. 75904	1.31745	. 78692	1.27077	. 81558	1.22612	48
14	. 73323	1.36466 1.36383	. 76996	1.31586 1.31507	. 788834	1.26925 1.26849	. 81703	1.22394	46 46
16	. 73368	1.36300	. 76088	1.31427	. 78881	1.26774	. 81752	1.22321	44
17	. 73413	1.36217	. 76134	1.31348	. 78928	1.26698	. 81800	1.22249	43
18	. 73457	1.36134	. 76180	1.31269	. 78975	1.26622	. 81849	1.22176	42
19	. 73502	1.36051	. 76226	1.31190	. 79022	1.26546	. 81898	1.22104	41
20	. 73547	1.35968	. 76272	1.31110	. 79070	1.26471	. 81946	1.22031	40
21	. 73592	1.35885	. 76318	1.31031	. 79117	1.26395	. 81995	1.21959	39
22	. 73637	1.35802	. 76364	1.30952	. 79164	1.26319	. 82044	1.21886	38
23	. 73681	1.35719	. 76410	1.30873	. 79212	1.26244	. 82092	1.21814	37
24	. 73726	1.35637	. 76456	1.30795	. 79259	1.26169	. 82141	1.21742	36
25	. 73771	1.35554	. 76502	1.30716	. 79306	1.26093	. 82190	1.21670	35
28	. 73816	1.35472	. 76548	1.30637	. 79354	1.26018	. 82238	1.21698	3
27	. 73861	1.35389	. 76594	1.30558	. 79401	1.25943	. 82287	1.21526	33
28	. 73906	1.35307	. 76640	1.30480	. 79449	1.25867	. 82336	1.21454	32
29	. 73951	1.35224	. 76686	1.30401	. 79496	1.25792	. 82385	1.21382	31
30	. 73996	1.35142	. 767	1.30323	. 795	1.25717	. 82434	1.21310	30
31	7404	1.35060	. 7677	1.30244	. 79591	1.25642	. 82483	1.21238	29
32	. 74086	1.34978	. 76825	1.30166	. 79639	1.25567	. 82531	1.21166	28
33	74131	1.34896	. 76871	1.30087	. 79686	1.25492	. 82580	1.21094	27
34	74176	1.34814	. 76918	1.30009	. 79734	1.25417	. 82629	1.21023	28
35	. 74221	1.34732	. 76964	1.29931	. 79781	1.25343	. 82678	1.20951	25
36	. 74267	1.34650	. 77010	1.29853	. 79829	1.25268	. 82727	1.20879	24
37	74312	1.34568	. 77057	1.29775	. 79877	1.25193	. 82776	1.20808	23
38	74357	1.34487	. 77103	1.29696	. 79924	1.25118	. 82825	1.20736	22
39	. 74402	1.34405	. 77149	1.23618	. 79972	1.25044	. 82874	1.20665	21
40	. 74447	1.34323	. 77196	1.29541	. 80020	1.24969	. 82923	1.20593	20
41	. 74492	1.34242	. 77242	1.29463	. 80067	1.24895	. 82972	1.20522	19
42	. 74538	1.34160	. 77289	1.29385	. 80115	1.24820	. 83022	1.20451	18
43	. 74583	1.34079	. 77335	1.29307	. 80163	1.24746	. 83071	1.20379	17
44	. 74628	1.33998	. 77382	1.29229	. 80211	1.24672	. 83120	1.20308	16
45	. 74674	1.33916	. 77428	1.29152	,80258	1.24597	. 83169	1.20237	15
40°	74719	1.33835	. 77475	1.29074	. 80306	1.24523	. 83218	1.20166	14
47	74764	1.33754	. 77521	1.28997	. 80354	1.24449	. 83268	1.20095	13
48	74810	1.33673	. 77568	1.28919	. 80402	1.24375	. 83317	1.20024	12
49	. 74855	1.33592	. 77615	1.28842	. 80450	1.24301	. 83366	1.19953	11
50	. 74900	1.33511	. 77661	1.28764	. 80498	1.24227	. 83416	1.19882	10
51	. 74946	1.33430	. 77708	1.28687	. 80546	1.24163	. 83465	1.19811	9
62	. 74991	1.33349	. 77754	1.28610	. 80594	1.24079	. 83514	1.19740	8
63	. 75037	1.33268	. 77801	1.28533	. 80642	1.24005	. 83564	1.19669	7
54	. 75082	1.33187	. 77848	1.28456	. 80690	1.23931	. 83613	1.19599	6
65	. 76128	1.33107	. 77895	1.28379	. 80738	1.23858	. 83662	1.19528	5
56	. 75173	1.33026	. 77941	1.28302	. 80786	1.23784	. 83712	1.19457	
57	. 75219	1.32946	. 77988	1.28225	. 80834	1.23710	. 83761	1.19387	8
58	. 76284	1.32865	. 78035	1.28148	. 80882	1.23637	. 83811	1.19316	2
59	.75310	1.32785	. 78082	1.28071	. 80930	1.23563	. 83860	1.19246	,
60	55	1.32704	. 78129	1.27994	. 80978	1.23490	. 83910	1.19175	0
T.	Otang.	Tang.	Cotaug.	Tang.	Cotang.	Tang.	Cotang.	Tang.	$\overline{\mathrm{M}}$.
		3°		80				00	

M.	400		410		48°		430		M.
	Tang.	Cotang.	Tang.	Cotang.	Tang.	Cotang.	Tang.	Cotang.	
0	. 83910	1.19175	. 86929	1.15137	. 90040	I.1106i	. 932252	1.07237	60
1	. 83960	1.19105	. 86980	1.14969	.91193	1.10996	. 933316	1.07174	59
2	. 84009	1.19035	. 87431	1.14902	. 90146	1.111931	. 93360	1.07112	58
,	. 84059	1.18964	. 87082	1.14834	. 90199	1.110667	93415	1.07049	57
4	. 84108	1.18894	. 87133	1.14767	. 90251	1.10802	93469	1.06987	56
5	. 84158	1.18824	. 87184	1.14699	. 903134	1.11737	93524	1.06925	65
	.84248	1.18754	. 87238	1.14632	. 90357	1.10672	93578	1.06862	54
7	. 84258	1.18684	. 87283	1.14565	. 90410	1.10607	93633	106800	53
8	. 84307	1.18614	. 87338	1.14498	. 90463	1.10543	93688	1.06738	52
9	. 84357	1.18544	. 87389	1.14430	. 90516	1.10478	. 93742	1.06676	51
10	. 84407	1.18474	. 87441	114363	. 90569	1.10414	93797	1.06613	50
11	. 84457	1.18404	.87442	1.14296	. 90621	1.10349	93852	1.06551	49
12	. 84507	1.18334	. 87543	1.14229	. 90674	1.10285	. 93906	1.06489	48
13	. 84556	1.18264	. 87595	1.14162	. 90727	1.10220	. 93961	1.06427	47
14	. 84606	1.18194	. 87646	1.14095	. 90781	1.10156	. 94016	1.06365	46
15	. 84656	1.18125	. 87698	1.14028	. 90834	1.10091	. 94071	1.06303	45
16	. 84706	1.18055	. 87749	1.13961	. 90887	1.10027	. 94125	1.06241	4
17	84756	1.17986	. 87801	1.13894	. 90940	1.09963	. 94180	1.06179	43
18	84806	1.17916	. 87852	1.13828	. 90993	1.09899	. 94235	1.06117	42
19	. 84856	1.17846	. 87904	1.13i61	. 91046	1.09834	94290	1.06056	41
20	. 84906	1.17777	. 87955	1.13694	. 91099	1.09770	. 94345	1.05994	40
21	. 84956	1.17708	. 88007	1.13627	. 91153	1.09706	. 9440	1.05932	39
22	. 85006	1.17638	. 88059	1.13561	. 91206	1.09642	3445	1.05870	38
23	. 85057	1.17569	. 88110	1.13494	. 91259	1.09578	. 94510	1.05809	37
24	. 85107	1.17500	. 83162	1.13428	. 91313	1.09514	. 94565	1.05747	36
25	. 85157	1.17430	. 88214	1.13361	. 91366	1.09450	94620	1.05685	35
26	. 85207	1.17361	. 88265	1.13295	. 91419	1.09386	. 94676	1.05624	34
27	. 85257	1.17292	. 88317	1.13223	. 91473	1.09322	94731	1.05562	33
28	. 85308	1.17223	. 88359	1.13162	. 91526	1.09258	. 94786	1.05501	32
29	85358	1.17154	. 88421	1.13096	. 91580	1.09195	94841	1.05439	1
30	. 85408	1.17085	. 88473	1.13029	. 91633	1.09131	. 94896	1.05378	30
31	. 85458	1.17016	. 88524	1.12963	. 91687	1.09067	94952	1.05317	29
32	. 85509	1.16947	. 88576	1.12997	. 91740	1.09003	95007	1.05255	28
33	. 85559	1.16878	. 88628	1.12831	. 91794	1.08940	95062	1.05194	27
34	. 85609	1.16809	. 88680	1.12765	. 91847	1.08876	. 95118	1.05133	28
35	. 85660	1.16741	. 88732	1.12699	. 91901	1.08813	. 95173	1.05072	25
36	. 85710	1.16672	. 88784	1.12633	. 91955	1.08749	95229	1.05010	24
37	. 85761	1.16603	. 88836	1.12567	. 92008	1.08686	. 95284	1.04949	23
38	. 85811	1.16535	. 88888	1.12501	. 92062	1.08622	. 95340	1.04888	22
39	. 85862	1.16466	. 88940	1.12435	. 92116	1.08559	95395	1.04827	21
40	85912	1.16398	. 88992	1.12369	. 92170	1.08496	9545	1.04766	20
41	. 85963	1.16329	. 89045	1.12303	. 92224	1.08432	. 95506	1.04705	19
42	. 86014	1.16261	. 89097	1.12238	. 922277	1.08369	95562	1.04644	18
43	. 86064	1.16192	. 89149	1.12172	. 92331	1.08306	. 95618	1.04583	17
44	. 86115	1.16124	. 89201	1.12106	. 92385	1.08243	. 95673	1.04522	16
45	. 86166	1.16056	. 89253	1.12041	. 92439	1.08179	. 9572	1.04461	15
46	. 86216	1.1698%	. 89306	1.11975	. 92493	1.08116	9578	1.04401	14
47	. 86267	1.15919	. 89358	1.11909	. 92547	1.08053	. 95841	1.04340	13
48	. 86318	1.15851	. 89410	1.11844	. 92601	1.07990	95897	1.04279	12
49	. 86368	1.15783	. 89463	1.11778	. 92655	1.07927	95952	1.04218	11
50	. 86419	1.15715	. 89515	1.11713	. 92709	1.07864	. 96008	1.04158	10
51	. 86470	1.15647	. 89567	1.11648	. 92763	1.07801	. 96064	1.04097	9
52	. 86521	1.15579	. 89620	1.11582	. 92817	1.07738	96120	1.04036	8
53	. 86572	1.15511	. 89672	1.11517	. 92872	1.07676	. 96176	1.03976	7
54	. 86623	1.15443	. 89725	1.11452	. 92926	1.07613	. 96232	1.03915	6
5	. 86674	1.15375	. 89777	1.11387	. 92980	1.07550	. 96288	1.03855	5
56	. 86725	1.15308	. 89830	1.11321	. 93034	1.07487	. 96344	1.03794	4
57	. 86776	1.15240	. 89883	1.11256	. 93088	1.07425	. 96400	1.03734	8
58	. 86827	1.15172	. 89935	1.11191	. 93143	1.07362	. 96457	1.03674	2
59	. 86878	1.15104	. 89988	1.11126	. 93197	1.07299	. 96513	1.03613	1
60	. 86929	1.15037	. 90040	1.11061	. 93252	1.07237	. 96569	1.03	0
2	Cotang	Tang.	Cotang	Tang.	Cotang.	Tang.	Cotan	Tang.	I
								\bigcirc	

M.	44°		M.	M.	44°		M.	M.	${ }^{50} 44^{\circ}$		M.
	Tang.	Cotang.			Tang.	Cotang.			Tang.	Cotang.	
0	. 96509	1.03553	60	20	. 97700	1.02355	40	40	. 98843	1.01170	$\overline{20}$
1	. 96625	1.03493	59	21	. 97756	1.02295	39	41	. 98901	1.01112	19
2	. 96681	$1.03+33$	58	22	. 97813	1.02236	38	42	. 98958	1.01053	18
3	. 96738	1.03372	57	23	. 97870	1.02176	37	43	. 99016	1.00994	17
4	. 96794	1.03312	56	24	. 97977	1.02117	36	44	. 99073	1.00935	16
5	. 96850	1.0325\%	55	25	. 97984	1.02057	35	45	. 99131	1.00876	15
6	. 96907	1.03192	54	26	. 98041	1.01998	34	46	. 99189	1.00818	14
7	. 96963	1.03132	53	27	. 98098	1.01939	33	47	.90247	$1.00{ }^{\text {a }} 59$	13
8	.97020	1.03072	52	28	. 98155	1.01879	32	48	. 99304	1.00701	12
9.	. 97076	1.03012	51	29	. 98213	1.01820	31	49	. 99362	1.00642	11
10	. 97133	1.02952	50	30	. 98270	1.01761	30	50	. 99420	1.00583	10
11	. 97189	1.02892	49	31	. 98327	1.01702	29	51	. 99478	1.00525	9
12	. 97246	1.02832	48	32	. 98384	1.01642	28	52	. 99536	1.00467	8
13	. 97302	1.02\%72	$4{ }^{\text {r }}$	33	. 98441	1.01583	27	53	. 99594	1.00408	7
14	. 97359	1.02713	46	34	. 98499	1.01524	26	54	. 99652	1.00350	6
15	. 97416	1.02653	45	35	. 98555	1.01465	25	55	. 99710	1.00291	5
16	. $974{ }^{\text {\% } 2}$	1.02593	44	36	. 98613	1.01406	24	56	. 999768	1.00233	
17	. 97529	1.02533	43	37	. 98671	1.01347	23	57	. 99826	1.00175	3
18	. 97586	1.02474	42	38	. 98728	1.01288	22	58	. 99884	1.00116	2
19	. 97643	1.02414	41	39	. 98786	1.01229	21	59	.99942	1.00058	1
20	. 97700	1.02355	40	40	. 98843	1.01170	20		1.00000	1.00000	0
	$\frac{\text { Cotang. }}{45}$	Tang.			$\frac{\text { Cotang. }}{45}$	Tang.	M.		Cotang. 45	Tang.	M.

TABLE V.
CUBIC YARDS PER 100 FEET. SLOPES $1 / 4: 1 ; 1 / 2: 1$; $1: 1 ; 11 / 2: 1 ; 2: 1 ; 3: 1$.

Depth	$\begin{gathered} \text { Base } \\ 12 \end{gathered}$	$\begin{gathered} \text { Base } \\ 14 \end{gathered}$	$\begin{gathered} \text { Base } \\ 16 \end{gathered}$	$\begin{gathered} \text { Base } \\ 18 \end{gathered}$	$\begin{gathered} \text { Base } \\ 22 \end{gathered}$	$\begin{gathered} \text { Base } \\ 24 \end{gathered}$	$\begin{gathered} \text { Base } \\ 26 \end{gathered}$	$\begin{gathered} \text { Base } \\ 23 \end{gathered}$
1	45	53	60	68	82	90	97	105
2	93	107	122	137	167	181	196	211
3	142	163	186	208	253	2%	297	319
4	193	222	252	281	341	$3{ }^{1} 0$	400	430
5	245	282	319	356	431	468	505	542
6	300	344	389	433	522	567	611	656
7	356	408	460	512	616	668	719	771
8	415	474	533	593	711	770	830	889
9	475	542	608	675	808	875	942	1008
10	537	611	685	759	907	981	1056	1130
11	601	682	764	845	1008	1090	1171	1253
12	667	756	844	933	1111	1200	1289	1378
13	734	831	926	1023	1216	1312	1408	1505
14	804	907	1010	1115	1322	1426	1530	1633
15	875	986	1096	1208	1431	1542	1653	1764
16	948	1067	1184	1304	1541	1659	1 1\%8	1896
17	1023	1149	1274	1401	1653	1779	1905	2031
18	1100	1233	1366	1500	1767	1900	2033	2167
19	1179	1319	1460	1601	1882	2023	2164	2305
~ 0	1259	1407	1555	1704	2000	2148	2296	244
21	1342	1497	1653	1808	2119	2275	2431	2586
22	1426	1589	1752	1915	2241	2404	256%	2730
23	1512	1682	1853	2023	2364	2534	2705	28%
24	1600	1778	1955	2133	2489	2667	2844	3022
25	1690	1875	2060	2245	2616	2801	2986	3171
26	1781	1974	2166	2359	2744	2937	3130	3322
27	1875	2075	2274	2475	2875	3075	3275	34%
28	1970	2178	2384	2593	3007	3215	342	3630
29	2068	2282	2496	2712	3142	3358	$35 \% 1$	3786
30	2167	2389	2610	2883	3278	3500	3722	3944
	2268	2497	$2 \chi^{26}$	2956	3416		$38 \% 5$	4105
32	2370	2607	2844	3081	3556	3793	4030	4267
33	2475	2719	2964	3208	3697	3942	4186	4481
34	2581	2833	3085	3337	3841	4093	4344	4596
35	2690	2949	3208	3468	3986	4245	4505	$4 \% 64$
36	2800	3067	3333	3600	4133	4400	4667	4933
37	2912	3186	3460	3734	4282	4556	4831	5105
38	3026	3307	3589	3870	4433	4715	4996	5278
39	3142	3431	3719	4008	4586	4875	5164	5453
40	3259	3556	3852	4148	4741	5037	5333	5630
41	3379	3682	3986	4290	4897	5201	5505	5808
42	3500	3811	4122	4433	5056	5367	5678	5989
43	3623	3942	4260	4579	5216	5534	5853	6171
44	3748	$40 \% 4$	4400	4726	5378	5704	6030	6356
45	3875	4208	4541	48%	5542	5875	6208	6542
46	4004	4344	4684	5028	5707	6048	6389	6730
47	4134	4482	4830	5179	5875	6223	6571	6919
48	4267	4622	4978	5333	6044	6400	6756	7111
49	4401	4764	5127	5490	6216	6579	6942	7305
50	4537	4907	5278	5648	6389	6759	7130	7500
	4675		5430	5808	6564	6942	7319	7697
52	4815	5200	5584	5970	6741	7126	7511	7896
53	4956	5349	5741	6134	6919	7312	7705	8097
54	5100	5500	5900	6300	7100	7500	7900	8300
55	5245	5653	6060	6468	7282	7690	8097	8505
56	5393	5807	6222	6637	7467	7881	8296	8711
57	5542	5964	6386	6808	7653	8075	8497	8919
58	5693	6122	6552	6981	7841	8270	8700	9130
59	5845	6282	6719	7156	8031	8468	8905	9342
60	6000	6444	6889	7333	8222	8667	9111	9556

TABLE V.-CUBIC YARDS PER 100 FEET. SLOPES $1 / 2: 1$.

Depth	$\begin{aligned} & \text { Base } \\ & 12 \end{aligned}$	$\begin{gathered} \text { Base } \\ 14 \end{gathered}$	Base 16	$\begin{gathered} \text { Base } \\ 18 \end{gathered}$	$\begin{gathered} \text { Base } \\ 22 \end{gathered}$	$\begin{gathered} \text { Base } \\ 24 \end{gathered}$	$\begin{gathered} \text { Base } \\ 26 \end{gathered}$	$\begin{gathered} \text { Base } \\ 28 \end{gathered}$
	46	54	61	69	83	91	98	106
2	96	111	126	141	$1 \% 0$	185	200	215
3	150	122	194	217	261	283	306	328
4	207	237	267	296	356	385	415	444
5	269	306	343	380	454	491	528	565
6	333	378	422	467	556	600	644	689
7	402	454	506	557	661	713	765	317
8	474	533	593	652	770	830	889	948
9	550	617	683	750	883	950	1017	1083
10	630	704	778	852	1000	1074	1148	1222
11	713	794	876	957	1120	1202	1283	1365
12	800	889	978	1067	1244	1333	1422	1511
13	891	987	1083	1180	$13 \% 2$	1469	1565	1661
14	985	1089	1193	1296	1504	1607	1711	1815
15	1083	1194	1306	1417 ,	1639	1750	1861.	1972
16	1185	1304	1422	1511	1779	1896	2015	2133
17	1291	1417	1543	1669	1920	2046	2172	2298
18	1400	1533	166%	1800	2067	2200	2333	2467
19	1513	1654	1794	1935	2217	2357	2498	2639
20	1630	1778	1926	2074	2370	2519	2667	2815
21	1750	1906	2061	2217	2528	2683	2839	2994
22	1874	2037	2200	2363	2689	2852	3015	3178
23	, 2002	2172	2343	2513	2854	3024	3194	3365
24	2133	2311	2489	2667	3022	3200	3378	3556
25	2269	2454	2639	2824	3194	3380	3565	3750
26	2407	2600	$2 \pi 93$	2985	3370	3563	3756	3948
27	2550	2750	2950	3150	- 3550	3750	3950	4151
28	2696	2904	3111	3319	3733	3911	4148	4356
29	2846	3061	3266	3491	3920	4135	4350	4565
30	3000	3222	3444	3667	4111	4383	4556	4778
31	3157	3387	3617	3846	4306	4535	4765	4994
32	3319	3556	3793	4030	4504	4741	4978	5215
33	3483	3728	3972	4217	4706	4950	5194	5439
34	3652	3904	4156	4407	4911	5163	5415	5667
35	3824	4083	4343	4602	5120	5380	5639	5898
36	4000	4267	4533	4800	5333	5600	5867	6133
37	4180	4454	4728	5002	5550	5824	6098	6372
38	4363	4644	4926	5207	5770	6052	6333	6615
89	4550	4839.	5128	5417	5994	6283	6572	6861
40	4741	5037	5333	5630	6222	6519.	6815	7111
41	4935	5239	5543	5846	6454	6757	7061	7365
42	5133	5444	5756	6067	6689	7000	7311	7622
43	5335	5654	$59 \% 2$	6991.	6928	7246	7565	7883
44	5541	5867	6193	6519	7170	7496	782\%	8148
45	5750	6083	6417	6750	7417	7750	8083	8417
46	5963	6304	6644	6985	7667	8007	8348	8689
4π	6180	6528	6876	7224	7920	8269	8617	8965
48	6400	6756	7111	7467	8178	8533	8889	9244
49	6624	${ }^{6987}$	7350 7593	7713	88839	8802 9074	9165 9444	9528
50	6852	722	7593	7963	8704	9074	9444	9815
51	7083	7461	7839	8217	8972	9350	9728	10106
52	7319	7704	8089	8474	9244	9630	10015	10400
53	7557	7950	8313	8735	9520	9913	10306	10698
54	7800	8200	8600	9000	9800	10200	10600	11000
55	8046	8454	8561	9269	10083	10491	10898	11306
56	8296	8711	9126	9541	10370	10785	11200	11615
5%	8550	8972	9394	9817	10661	11083	11506	11928
58	8807	9237	9667	10096	10956	11385	11815	12244
59 60	9069 9333	${ }_{9778}^{9506}$	-9943	10380 10667	11254	11691	12128	12565
60	9333	9778	10222	10667	11556	12000	1244	12889

Depth	Base 12	Base 14	$\begin{gathered} \text { Base } \\ 16 \end{gathered}$	$\begin{gathered} \text { Base } \\ 18 \end{gathered}$	$\begin{gathered} \text { Base } \\ 20 \end{gathered}$	Base 28	$\begin{gathered} \text { Base } \\ 30 \end{gathered}$	$\begin{gathered} \text { Base } \\ 32 \end{gathered}$
1	48 104	56 119	63 133	70 148	78 163	107	${ }_{23}^{115}$	122 252
$\stackrel{2}{3}$	104	119	133	148	163	344	3237	252
4	237	267	296	326	356	474	504	533
5	315	352	389	426	463	611	648	685
6	400	444	489	533	578	756	800	844
7	493	544	596	648	700	907	959	1011
8	593	652	711	770	830	1067	1126	1185
9	700	767	833	900	967	1233	1300	1367
10	815	889	963	1037	1111	1407	1481	1556
11	937	1019	1100	1181	1263	1589	1670	1752
12	1067	1156	1244	1333	1422	1778	1867	1956
13	1204	1300	1396	1493	1589	1974	2070	2167
14	1348	1452	1556	1659	1763	2178	2281	2385
15	1500	1611	1722	1833	1944	2389	2500	2611
16	1659	1778	1896	2015	2133	2607	2726	2844
17	1826	1952	2078	2204	2330	2833	2959	3085
18	2000	2133	2267	2400	2533	3067	3200	3333
19	2181	2322	2463	2604	2744	3307	3448	3589
20	2370	2519	2667	2815	2963	3556	$3 \% 04$	3852
21	2567	$2 \% 22$	2878	3033	3189	3811	3967	4122
22	2770	2933	3096	3259	3422	4074	4237	4444
23	2981	3152	3322	3493	3663	4344	4515	4685
24	3200	3378	3556	3733	3911	4622	4800	4978
25	3426	3611	3796	3981	4167	4907	5093	5278
26	3659	3852	4044	4237	4430	5200	5393	5585
27	3900	4100	4300	4500	4700	5500	5700	5900
28	4148	4356	4563	4770	4978	5807	6015	6222
29	4404	4619	4833	5048	5263	6122	6337	6552
30	4667	4889	5111	5333	5556	6444	6667	6889
31	4937	5167	5396	5626	5856	6764	7004	7233
32	5215	5452	5689	5926	6163	7111	7348	7585
33	5500	5744	5989	6233	6478	7456	$7 \% 00$	7944
34	5793	6044	6296	6548	6800	7807	8059	8311
35	6093	6352	6611	6870	7130	8167	8426	8685
36	6400	6667	6933	7200	7467	8533	8800	9067
37	6715	6989	7263	7537	7811	8907	9181	9456
38	7037	7319	7600	7881	8163	9289	9570	9852
39	7367	7656	7944	8233	8522	9678	9967	10256
40	7704	8000	8296	8593	8889	10074	10370	10667
41	8048	8352	8656	8959	9263	10478	10781	11085
42	8400	8711	90\%2	9333	9644	10889	11200	11511
43	8759	9078	9396	9715	10033	1130%	11626	11944
44	9126	9452	9778	10104	10430	11733	12059	12385
45	9500	9833	10167	10500	10833	12167	12500	12833
46	9881	10222	10563	10904	11244	12607	12948	13289
47	10270	10619	10967	11315	11663	13056	13404	13752
48	10667	110\%	11378	11733	12089	13511	13867	1422
49	11070	11433	11796	12159	12522	13974	14337	14700
50	11481	11852	12222	12593	12963	14444	14815	15185
51	11900	12278	12656	13033	13411	14922	15300	15678
52	12326	12711	13096	13481	13867	15407	15793	16178
53	12759	13152	13544	13937	14330	15900	16293	16685
54	13200	13600	14000	14400	14800	16400	16800	17200
55	13648	14056	14463	14870	15278	1690%	17315	17722
56	14104	14519	14933	15348	15763	17422	17837	18252
57	14567	14989	15411	15833	16256	17944	18367	18789
58	15037	15467	15896	16326	16756	18474	18904	19333
59	15515	1595\%	16389	16826	17263	19011	19448	19885
60	16000	16444	16889	17333	17778	19556	20000	20444

TABLE V.-CUBIC YARDS PER 100 FEET. SLOPES $11 / 2: 1$.

Depth	$\begin{gathered} \text { Base } \\ 12 \end{gathered}$	$\begin{gathered} \text { Base } \\ 14 \end{gathered}$	$\begin{gathered} \text { Base } \\ 16 \end{gathered}$	$\begin{aligned} & \text { Base } \\ & -18 \end{aligned}$	$\begin{gathered} \text { Base } \\ 20 \end{gathered}$	$\begin{gathered} \text { Base } \\ 28 \end{gathered}$	$\begin{gathered} \text { Base } \\ 30 \end{gathered}$	$\begin{gathered} \text { Base } \\ 32 \end{gathered}$
1	50	57	65	\%	80	109	117	124
2	111	126	141	156	170	230	214	259
3	183	206	228	250	272	361	383	406
4	267	296	326	356	385	504	533	563
5	361	398	435	472	509	657	694	731
6	467	511	556	600	644	822	867	911
7	583	635	687	739	791	998	1050	1102
8	711	770	830	889	948	1185	1244	1304
9	¢50	917	983	1050	1116	1388	1450	1517
10	1000	1084	1148	1222	1296	1593	1667	1741
11	1161	1243	1324	1406	1487	1813	1894	1976
12	1333	1422	1511	1600	1689	2044	2133	2222
13	1517	1613	1709	1806	1902	2287	2383	2480
14	1711	1815	1919	2022	2126	2541	2644	2748
15	1917	2028	2139	2250	2361	2806	2917	3028
16	2133	2252	2300	2489	2607	3081	3200	3319
17	${ }_{2}^{2361}$	2487	2613 2867	2739 3000	2865 3133	3369 3667	3494 3800	3620 3933
18	2850	2991	3131	3272	3413	3976	4117	4257
20	3111	3259	3407	3556	3704	4296	4444	4592
21	3383	3539	3694	3850	4005	4628	4783	4939
22	3667	3830	3993	4156	4318	4970	5133	5296
23	3961	4131	4302	4472	4642	5324	5494	5665
24	4267	4444	4622	4800	4978	5689	5867	6044
25	4583	4769	4954	5139	5324	6065	6250	6435
26	4911	5104	5296	5489	5681	6452	6644	6837
27	5250	5450	5650	5850	6050	6850	7050	7250
28	5600	5807	6015	6222	6430	7259	7467	7674
29	5961	6176	6391	6606	6820	7680	7894	8109
30	6333	6556	6778	7000	$7 \% 22$	8111	8333	8555
31	6717	6946	7176	7406	7635	8554	8783	9013
32	7111	7348	7585	7822	8059	9007	9244	9482
33	7517	\% 761	8006	8250	8494	$94 \% 2$	9717	9962
34	7933	8185	8437	8689	8941	9948	10200	10452
35	8361	8620	8880	9139	9398	10435	10694	10954
36	8800	9067	9333	9600	9867	10933	11200	11467
37	9250	9524	9798	100%	10846	11443	11717	11991
38	9711	9993	10274	10556	10837	11963	12244	12526
39	10183	$104 \% 2$	10761	11050	11339	12494	12783 13333	$130 \% 2$
40	10667	10963	11259	11556	11852	13037	13333	13630
41	11161	11465	11769	12072	12376	13591	13894	14198
42	11667	11978	12289	12600	12911	14156	14467	14778
43	12183	12502	12820	13139	13457	14731	15050	15369
44	12711	13037	13363	13689	14015	15319	15644	15970
45	13250	13583	13917	14250	14583	15917	16250	16583
46	13800	14141	14481	14822	15163	16526	16867	17207
47	14361	$14 \% 09$	15057	15406	15754	17146	17494	17843
48	14933	15289	15644	16000	16356	17778	18133	18489
49	15517	15880	16243	16606	16968	18420	18783	19146
50	16111	16481	16852	17222	17592	19074	19444	19815
51	16717	17094	17472	17850	18228	19739	20117	20494
52	17333	17719	18104	18489	18874	20415	20800	21185
53	17961	18354	18746	19139	19531	21102	21494	21887
54	18600	19000	19400	13800	20200	21800	22200	22600
65	19250	19657	20065	20472	20880	22509	22917	23324
56	19911	20326	20741	21156	21574	23230	23644	24059
57	20583	21006	21428	21850	222\%	23961	24383	24805
58	21267	21696	22126	22556	22985	24704	25133	25563
59	21961	22398	22835	23272	23709	25457	25894	26332
60	22667	23111	23556	24000	24444	26222	26667	27111

TABLE V.-CUBIC YARDS PER 100 FEET. SLOPES $2: 1$.

Depth	$\begin{gathered} \text { Base } \\ 12 \end{gathered}$	$\begin{gathered} \text { Base } \\ 14 \end{gathered}$	$\begin{gathered} \text { Base } \\ 16 \end{gathered}$	$\begin{gathered} \text { Base } \\ 28 \end{gathered}$	$\begin{gathered} \text { Base } \\ 20 \end{gathered}$	$\begin{gathered} \text { Ba=e } \\ 28 \end{gathered}$	$\begin{gathered} \text { Base } \\ 30 \end{gathered}$	$\begin{gathered} \text { Base } \\ 32 \end{gathered}$
1	52	59	67	74	81	111	119	126
2	119	133	143	$1 \mathrm{1C3}$	178	237	252	267
3	200	222	244	267	289	378	400	422
4	296	326	356	385	415	533	563	E93
5	407	444	481	519	556	704	741	$7 \% 8$
6	533	$5 \% 8$	622	637	711	889	933	978
7	674	726	778	830	881	1089	1141	1193
8	830	889	943	1007	1067	1304	1363	1422
9	1000	1067	1133	1200	1267	1533	1600	1667
10	1185	1259	1333	1407	1481	1778	1852	1926
11	1385	1467	1548	1630	1711	2037	2119	2200
12	1600	1689	1778	1867	1956	2311	2400	2489
13	1830	1926	2023	2119	$2: 15$	2600	2696	2793
14	2074	2178	2281	2385	2489	2904	3007	8111
15	2333	2144	2.556	2667	2778	3222	$3: 33$	3444
16	2607	27:6	2844	2903	3081	3556	3674	3793
17	2896	3022	3148	3274	3400	3904	4030	4156
18	8200	5333	3437	3630	3733	4267	4400	4533
19	3519	3659	3800	3941	4081	4644	4785	4926
20	3852	4000	4148	4296	4444	5037	5185	5333
21	4200	4356	4511	4667	4822	5444	5600	5756
22	4563	4730	4889	505\%	5215	5867	6030	6193
23	4941	5111	5281	5452	5622	6304	6474	6644
24	5333	5511	5689	5867	6014	6756	6933	7111
25	5741	5926	6111	6296	6481	7222	7407	7593
26	6163	6356	6548	6741	6933	7704	\%896	8089
27	6600	6800	7000	7200	7100	8800	8400	8600
28	7052	7259	7467	7674	7881	8711	8919	9126
29	7519	77.3	7948	8163	8378	9237	9452	9667
30	8000	82823	8444	8667	8889	$97 \% 8$	10000	10222
31	8496	8726	8956	9185	9415	10333	10583	10793
32	9007	9244	9481	9719	9956	10904	11141	11878
83	9533	9:78	10022	10267	10511	11489	11733	11978
94	20074	10326	105\%\%	10330	11081	12089	12341	12593
35	10330	10889	11148	11407	11667	12\%04	12963	13228
86	11200	11467	11733	12000	12267	${ }_{1} 13333$	13600	13867
87	11785	12059	12333	12607	12381	13:178	142.5	14526
38	12385	12667	12948	13230	13511	14637	14919	15200
39	13006	13289	13578	13867	14156	15311	15600	15889
40	13630	13926	14222	14519	14815	16000	16296	16593
41	$142 \% 4$	145\%8	14881	15185	15489	16704	17007	17311
42	14:133	15244	155:6	15867	16178	17422	17733	18044
43	15607	15926	16224	16563	16881	18156	18474	18793
44	10296	16622	16948	172\%4	17600	18904	19:30	19556
45	17000	17333	17667	18000	18333	19667	20000	20333
46	17719	18059	18400	18741	19081	20444	20785	21126
47	18152	18800	19148	19496	19844	21237	21585	21933
48	19200	19556	19911	20267	20622	22044	22400	22756
49	19963	20326	20689	21052	21415	22867	23230	23593
50	20741	20711	21481	21852	22222	23704	24074	24444
51	21:33	21911	22289	22667	23044	24556	24933	25311
52	22.341	22326	23111	23496	23881	25422	25847	26193
53	23163	23556	23948	24341	24733	26304	26696	2 2089
54	24000	21400	24800	25200	$2{ }^{2} 600$	27200	27600	28000
55	24852	25259	25667	21004	26481	28111	28519	28926
56	25\%19	26133	26548	26963	27378	29037	29452	29867
57	23600	27022	27444	27867	28289	29978	30400	30822
58	27496	- . 226	28356	23785	29215	30933	31363	31793
59	28407	28844	29281	29719	30156	31904	32341	32778
60	29333	29778	30222	30667	31111	88889	33333	33778

Depth	$\begin{gathered} \text { Base } \\ 12 \end{gathered}$	$\begin{gathered} \text { Base } \\ 14 \end{gathered}$	$\begin{gathered} \text { Base } \\ 16 \end{gathered}$	$\begin{gathered} \text { Base } \\ 18 \end{gathered}$	$\begin{gathered} \text { Base } \\ 20^{\circ} \end{gathered}$	$\begin{gathered} \text { Base } \\ 28 \end{gathered}$	$\begin{gathered} \text { Base } \\ 30 \end{gathered}$	$\begin{gathered} \text { Base } \\ 32 \end{gathered}$
1	56	63	${ }_{7} 7$	78.	85	115	${ }_{26 \pi}^{122}$	130
${ }_{3}^{1}$	${ }_{23}^{133}$	148	${ }^{163}$	178	193	2511	267	281
4	233 356	${ }_{385}$	248	300 44	332	111 593	${ }_{622}^{433}$	456 652
5	500	537	574	611	618	796	833	870
6	667	711	75	800	844	1023	1067	1111
7	856	907	959	1011	1763	12:0	132\%	1374
8	106%	1126	1185	1244	1304	1541	1600	1659
9	1300	1367	1433	1500	1567	1833	1900	1967
10	1556	1630	1704	$17 \% 8$	1852	2148	2222	2296
11	1833	1915	1996	$20 \% 8$	2159	2485	2567	2648
12	2133	2×2	2311	2100	2489	284	2933	3022
	2456	2552	2618	$2 \pi / 4$	2841	3226	3322	3419
14	2800	2904	300%	3111	3215	3630	3733	3837
15	3167	3278	3389	3500	3611	4056	4167	4278
16	33556	36\%4	$3{ }^{3} 93$	3911	4030	4504	4622	4741
17	3967	4093	4219	4344	44 ¢10	4974	5100	5226
18	4400	4533	${ }^{466 \%}$	4800	4933	5467	5600	5733
19	4856	4996	5137	$52 \% 8$.	5419	5981	6122	6263
20	5333	5481	5630	5\%\%8.	5926	6519	6667	6815
21	5833	5989	614	6300	6456	7078	7233	7389
22	${ }^{6356}$	6519	6681	6844	7007	7659	78:22	7985
23	6900	7070	\%211	7411	7581	8263	8133	8504
24	7467	7644	7822	8000	8178	8889	9067	9144
25	8056	824	8426	8611	8796	9537	9722	9807
26	8667	8859	9052	9244	9437	10207	10400	10593
27	9300	9500	9700	9900	10100	10900	11100	11300
$\stackrel{28}{ }$	9956	10163	10370	10578	10785	11615	11822	12030
29	10633	10818	11063	112\%8	11493	12352	12567	12781
30	11333	11556	11778	12000	12222	13111	13333	13556
31	12056	12285	12515	12744	12974	13893	14122	14352
32	12800	13037	13274	13511	13748	14696	14933	15170
33	13567	13811	14056	14300	14514	15522	15767	16011
34	14356	14607	14859	15111	15363	16370	16623	16874
35	15167	15426	15685	15944	16204	17241	17500	17759
36	16000	16267	16533	16800	17067	18133	18400	18667
${ }_{38}^{37}$	16856	17130	. 17404	17678	17952	19048	${ }_{9}^{19322}$	19596
${ }_{39}^{38}$	17733	18015	18296	18558	18859	19985	20267	20548
39	18633	18922	19211	19500	19789	20944	21233	${ }_{2}^{21522}$
40	19556	19852	20148	20144	20741	21926	22222	22516
41	20500	20804	21107	21411	21715	22930	23233	23537
42	21467	21778	22089	22400	$22 \% 11$	23956	24267	24578
43	$\because 2456$	$22 \% 4$	23093	23411	23730	25004	25322	25641
44	29467	$23 \% 93$	21119	24444	$24 \% 0$	26074	26400	26726
45	24500	24833	25167	25500	$\stackrel{2}{2} 8833$	27167	27500	27833
46	2.556	25896	26237	26578	26919	28881	28622	28963
47	26633	26981	27330	27678	28026	29419	29767	30115
48	27733 28856	${ }_{28089}^{28989}$	${ }_{2}^{28144}$	28800 29944	${ }_{30307}^{29156}$	30578 31759	30938	${ }^{31289}$
50	30000	30370	$30 \% 41$	31111	31481	$3296{ }^{3}$	${ }_{33333}$	${ }_{3}^{32785}$
51	31167	31544	31922	32300	32678	34189	34567	34944
52	323356	$32 \sim 41$	33126	33511	33896	35437	35822	3620%
53	33567	33959	34352	3474	35137.	36707	37100	87493
54	34800	35200	35600	36000	36400	38000	38400	38800
55	36056	36463	$368 \% 0$	37278	3\%685	39315	39722	40130
56	37333	$3 \uparrow 748$	38163	38578	38993	40652	41067	41481
57	38633	39056	89478	39900	40322	42011	42433	42856
58	39956	40385	40815	41244	41674	43393	43822	44252
59	41300	41737	42174	42611	42048	44798	45233	45670
60	42667	43111	43556	44000	4444	46222	46667	47111

INDEX.
Acre in square chains 18
in square feet 18
in square meters 18
in square poles 18
in square varas 18
in square vards 18
ddditions, city 173
Adjustments, axis of revolu- tion 36
bubble tube 106
compass 36
compass needle 36
compass pivot. 37
compass plate bubble 36
cross-wire 106
plane of sights 37
transit line of sights. 46
transit plate levels 46
wyes 107
Agonic line 29
Alidade 38
Angles by repetition 45
Angular convergence 196
Application of 57.3 rule 20
Arproximate traversing 76
Approximations in stadia 124
Area, by coordinates 75
of farm 67
of triangle 19
table 68
Attachment, compass 40
Attraction, local 35
Average end areas 157
formula 158
Azimuth 25
by sun 54
formula 53
Back sights 102
Baiancing a survey 64
rule, no latitude 72
Bearing 25
and length lost 85
how read 27
lost 89
magnetic 33
of line. 25
true 25
Bench marks 104
Berm 148
Bibliography, city surveying. 189
compass surveying 37
division of land 94
earthwork 168
lettering 195
topography 127
Blocks, city 180
irregular 182
Borrow pits 164
Boundaries, irregular 78
Breaking chain 8
Bubble tube adjustmert 106
radius $10 ́ t$
Cabinets for drawings 188
Cases for city drawings 182
Chain, breaking 8
engineer's 2
Gunter's 1
problems 10
surveying 9
vara 3
Chaining 7
over hills 9
over valleys 9
Chainman, head 8
rear 8
Chainmen 7
Changes in declination 31
Chart, isogonic 30
Circular curve cross-section. 1 185
Circular curves, vertical 112
Circumpolar stars 51
City additions 173
blocks 186
contracts 189
datum 178
engineer 171
engineer's notes 183
engineer's records 185
field notes 186
orders 189
surveying 171
Colby's slide rule 123
Compass 25
adjustments 36
attachment 39
bibliography 37
tripod 26
use of 27
vernier 30
Concrete monuments 174
Convergence, angular 196
linear 197
of meridians 196
Correction for erroneousareas16
lengths 16
plot 194
puil 13
sag 15
temperature 13
Courses of no departure I2
no latitude
no latitude
122
Cox's stadia computer 184
railiroad 152
Cross-wire adjustment 106
Culmination, lower 52
upper 52
Curvature of earth 109
refracted ray 109
Curve at sag. 111
summit 110
Curves, parabolic 110
vertical 110
Cuts, side-hill 157
Data for city map 179
on land plots 190
Datum for city 178
plane 103
Declination changes 31
for farm 34
how set off 31
on vernier 29
Degree formula 129
of curve 129
Departure, definition 61
how found 61
Detall maps for city 187
Diagonal prism 56
Dipper, the 51
Discrepancies in survey 79
Dividing land 90
Division of quadrilateral 83
of township 203
of triangle 81
Double meridian distance. 66
Drawing cabinets 188
Earthwork 151
bibliography 168
examples 159
note book 162
special 164
Effect of refraction 109
Elasticity, modulus of 14
Elevation 103
Elongation, east 52
west 52
End areas 157
End of fill 166
Engineer's chain 2
Erroneous areas 16
lengths 15
Error of closure 63
External 130
Eye-piece of telescope. 98
Feet to varas 18
Field notes for city 186
for farm 36
for U. S. survey 205
Foot curves 135
Foresights 102
Formula for area of triansle. 19
for azimuth. 53
for length correction 16
for oblique triangle 209
for offsets 198
prismoidal 15
Formulas, approximate 133
for right triangle 208
Freehaul 167
General formulas, railroad. 130
maps for city 179
solution for division 84
Government surveving. 196
Grade 163
point 164
Great Bear 52
Gunter's chain 1
Gunter's chain to varas. 18
Hand-level 142
topography 126, 143
Height of instrument
Hook's law 14
Hubs 141
Inclined sights 117
Intersections 23
Irregular boundaries 78
blocks 182
section 154
Isogonic chart 30
Jacob's staff 27
Labor 18
Land plots 190
Latitude, definition 61
how found 61
Laying out curve 130
League, Spanish 18
Length of two courses. 86
of curve 131
Lenses of eye-piece 98
Lettering 194
books 195
Level note books 105
sections 153
the wye 96
Leveling, theory of 102
Linear convergence 197
units
units 17
Local attraction 35
Location field book 138
by off-sets 132
of houses 22
of meridian. 48
of meridian by Polaris 52
survey 136
INDEX.
Lost parts 85
Lots, rectangular 181
Lower motion of transit 42
Magnetic bearing 33
needle 25
Maps, detail for city 187
for city 179
Meanders 78
Meridian by Polaris 48
by sun 54
distance 66
reference 200
without calculation 57
Metallic Tapes 5
Meters to varas 18
Methods of plotting 190
Metric c•irves 135
Middle ordinate 133
Modulus of elasticity 14
Monuments, kinds 173
for city surveying 172
location of 175
necessity for 172
Motion, lower 42
upper 42
Napier's laws 210
Needle, magnetic 25
New York rod 100
Note-book for earthwork 162
for level 105
for transit 137, 139
Object glass 98
Objective of telescope 97
Objects of city survey 171
Oblique triangle 208
spherical triangle 210
Obstacles 132
Off-sets, examples 200
in government surveying 198
intermediate 199
location by 132
Old lines, how run 33
Outs 18
Overhaul 166
Pacing survey 21
Parallels, how run 198
of latitude 196
standard 200
Parts of compass 25
of level 96
of transit 38
Peg adjustment of transit 48
Philadelphia rod 100
Pins, surveying 5
Pit, borrow 164
Pivot adjustment 37
Plot corlection 194
of farm 193
Plots 190
and lettering 190
Plottlng by co-ordinates 192
by latitudes and depar- tures 191
by sines 191
by tangents 191
Plumb-bob 6
Point of curvature (P.C.) 130
of intersection (P. I.) 130
of tangency (P.T.) 136
Polaris 51
Poles to varas 18
range 6
Preliminary earthwork esti mates 160
note-book 136
survey 136
Prescriptive rights 184
Primary triangulation 120
Principal focus 115
focal distance 115
Prismoid 151
Prismoidal formula 151
Private notes 183
Profile 106
Protractor 188
Protractor plotting 199
Pull on tape 13
Radius of bubble tube 101
of curve 129
of parallels 196
of street cross-section 185
Railroad curve 129
excavation 152
surveying 129
Range lines 23
poles 6
Ranges $2(12$
Reading bearings 27
compass vernier 31
of transit vernier 30
rod vernier 29
Records, city engineer's 185
Rectangular blocks 180
lots 181
off-sets 23
Reduction method 122
tables 134
Reference lines 44
meridians 200
Refraction 55
effect of 109
Reinherdt's lettering 195
Repeating method for angles 45
Result of declination changes 32 32
Reticule 41
Right angle by chain 10
plane triangle 208
spherical triangle 210
Rights, prescriptive 184
Rod, New York 100
Philadelphia 100
self-reading 102
stadia 118
Kule tor balancing 65
for borrow pits 165
for D.M.D. 66
for earthwork 155
for finding area 67
for setting slope stakes 145
of 57.3 20
Running parallels 198
Sag correction 15
Secant method 199
Sections, irregular 154
level 153
three-level 154
two-level 153
Self-reading rod 102
Setting declination 31
up level 100
up transit 41
Shifting center 41
Shrinkage in earthwork 167
Side-hill cut 157
Slide rule, Colby's 123
slope-stakes in cut. 144
in fill 145
on level 145
Solar attachment 55
Spanish labor 18
league 18
Special case of earthwork 164
Square chains in acre 18
feet in acre 18
poles in acre 18
varas in acre 18
yards in acre 18
Stadia computer 123
formulas 115
rod 118
stations 120
Stakes for railroad survey 141
Standard parallels 200
Standardized tapes 4
Steel tapes 3
Stone monuments 174
Street cross-section 184
Survey by pacing 21
discrepancies 79
of farm by pace 23
topographic 114
Surveying by transit 43
city 171
Surveyor's compass 25
pins 5 5
Table for area 68
for level sections 161
traverse 62
Tangent method 199
of plotting 191
Tapes for city surveying 175 metallic 5
standardized 1
steel 3
Telescope 101
Temperature correction 13
The 57.3 rule. 19
Theory of leveling 102
Three-level sections 154
Tiers 202
Topographic field work 119
survey 114
Topography by hand level 126
by stadia 115
Township division 293
Townships 202
Transit 38
as compass 43
essential parts 38
for city use 176
party 140
plate levels adjusted 46
surveying 43
topography 114
vernier 43
Traverse tables 62
Traversing 76
approximate 76
Trees, fore and aft 35
line 35
witness 35
Triangle area of. 19
oblique 209
PZS 52
Trigonometric formulas 208
Tripod, compass 26
Two-level sections 153
Unit pull 13
stress 14
stretch 13
Units of land measure 18
Upper motion of transit 42
Use of compass. 27
of transit 42
Vara 18
Vara chain 3
Vernier, compass 30
rod 28
transit 43
Vertical circle 40
circular curves 112
curves 110
Wire interval 116
Witness trees 35
Witnessing a corner 35
Wye adjustment 107
level 96
Yard 17
Yards to varas 18
Y level 96

THIS BOOK IS DUE ON THE LAST DATE STAMPED BELOW
AN INITIAL FINE OF 25 CENTS WILL BE ASSESSED FOR FAILURE TO RETURN THIS BOOK ON THE DATE DUE. THE PENALTY WILL INCREASE TO 50 CENTS ON THE FOURTH DAY AND TO \$1.00 ON THE SEVENTH DAY OVERDUE.

ОСТ 221935

WAR 81793

JUL 71955 LU
APR 121980
RECO CH APR 10 I950

Cha/wt+1 -87 2 114

if
\&

