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The stable structures of Ag–Au and Cu–Au clusters with 1 : 1,
1 : 3 and 3 : 1 compositions with up to 108 atoms are obtained
using a modified adaptive immune optimization algorithm
with Gupta potential. The dominant motifs of Ag–Au and
Cu–Au clusters are decahedron and icosahedron, respectively.
However, in Ag-rich Ag–Au clusters, more icosahedra are
found, and in Cu-rich Cu–Au clusters, there exist several
decahedral motifs. Four Leary tetrahedral motifs are
predicted. CucoreAushell configurations are predicted in Cu–Au
clusters. In Ag–Au clusters, most Ag atoms are on the surface,
but partial ones are located in the inner shell, while Au atoms
are interconnected in the middle shell.

1. Introduction
Nanoclusters have been extensively studied by experimental and
theoretical studies because of their great importance in medicine,
biology, catalysis, optics and electronics [1–3]. In the field of
nanomaterials, multi-metallic clusters and their compounds have
increased interest for wider range of properties by mixing two or
more chemical elements, which often exhibit enhanced catalytic
reaction performance compared to those of the pure metals [4–7].
For instance, for the reduction of 4-nitrophenol by NaBH4, the
catalytic activity of Ag–Au nanoparticles was higher than Ag and
Au monometallic ones [4]. The structural morphology, chemical
ordering or composition have a substantial influence on the
properties of multi-metallic clusters, e.g. kinetic stability [8],
the activity and selectivity of a reaction [1].

For Ag–Au and Cu–Au clusters, exhaustive experimental and
theoretical studies have been carried out to reveal structural
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details [9–16]. It was found that the nanoparticle architecture depended on the surfactants [9], and

Ag–Au nanoparticles with core/shell and alloy configurations could be formed while the surfactants
are hexadecyltrimethylammonium chloride and sodium dodecyl sulfate, respectively. The synthesized
AucoreAgshell nanoparticles could be tuned by varying sizes and compositions independently [10,11].
However, AgcoreAushell nanoparticles could be an excellent alternative for surface-enhanced Raman
scattering measurements [12,13]. In a theoretical study, the results by density functional theory (DFT)
showed that the doping of Au atoms improved the stability of Ag–Au clusters [17]. A combination of
global optimization, i.e. Birmingham cluster genetic algorithm (BCGA), and DFT calculations was
applied to study Ag–Au clusters [18–20]. Results showed that the transition from two- to three-
dimensional structures was predicted between Au6Ag2 and Au5Ag3 [18], and the atomic ordering in
core/shell structures was found to be related to the electric dipole moment [19]. There existed
apparent tendency for surface segregation of the Ag atoms in 38-atom Ag–Au clusters, and the
stability of clusters was related to the increasing number of Au–Au and Ag–Au bonds [20]. In the
stable structures of Ag–Au clusters containing 20–150 atoms (with atomic ratio 1 : 1), decahedra (Dh)
and icosahedra (Ih) were the main motifs [21], and Ag44Au44 cluster was deemed to have high
structural, electronic and thermal stability. Furthermore, a cluster expansion model was used to
determine the chemical ordering of 309-atom Ag–Au Mackay icosahedral nanoparticles [22].

In the theoretical study of Cu–Au clusters, the structural, energetic and electronic properties of the
CunAu26−n clusters have been carried out by DFT calculations [23]. A molecular dynamic (MD) study
of the 256-atom Cu–Au clusters using the Gupta potential found that Au doping of Cu clusters led to
a clear decrease of the surface energy [24]. In a study of the coefficient of thermal conductivity of
55-atom Cu–Au clusters by MD simulations with the quantum Sutton–Chen (SC) potential, it was
found that melting temperature of Cu–Au clusters increased with Cu atom fraction [25]. The
distribution with a Cu-rich core/Au-rich surface was found in stable icosahedral structures at sizes 4
and 10 nm by thermodynamic approach with the quantum SC potential [26], as well as with energy
calculations of the structures of large-scale Cu–Au clusters up to 561 atoms modelled by the Gupta
potential [27]. On the other hand, based on the Gupta potential, the stable structures of Cu–Au
clusters with up to 56 atoms were investigated using BCGA [28], and the structures of Cu–Au clusters
around CuAu3, CuAu and Cu3Au compositions were also studied [29].

Previously, we have studied the stable geometrical structures of 55-atom Cu–Au (i.e. 37 icosahedra and
18 amorphous structures) and Ag–Au clusters (i.e. 55 Mackay icosahedra) by using a global optimization
algorithm, i.e. amodified adaptive immune optimization algorithm (AIOA), on the basis of themany-body
Gupta potential [30]. It was found that the stability of the bimetallic clusters was affected by different size,
chemical composition and symmetry. To investigate the influence of Ag and Cu metallic dopants on the
stable structures of Au-based clusters, we perform the comparison on the most stable structures of
Ag–Au and Cu–Au clusters up to 108 atoms. The stable structures of those clusters with atomic ratio
1 : 1, 1 : 3 and 3 : 1 are located by using a modification algorithm of AIOA (called AIOA-IC algorithm),
i.e. AIOA based on the construction of inner cores, and the Gupta potential. Their structural
characteristic and atomic distribution in M–Au (M=Cu and Ag) clusters are studied. Furthermore, the
influence of different ratio of Ag and Cu atoms on the motifs of Au-based clusters is analysed.
2. Method
2.1. Gupta potential for Ag–Au and Cu–Au clusters
TheGuptapotential, as formulated byCleri&Rosato [31], is adopted to describe the interatomic interactions
in bimetallic Ag–Au and Cu–Au clusters. It is derived from a second-moment approximation to a tight-
binding Hamiltonian. The Gupta potential (VN) with N atoms has the following form:

VN ¼ 1
2
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Table 1. The Gupta potential parameters for bimetallic Ag–Au and Cu–Au clusters.

parameters

Ag–Au clusters Cu–Au clusters

Ag–Ag Ag–Au Au–Au Cu–Cu Cu–Au Au–Au

Aij (eV) 0.1031 0.1488 0.2096 0.0855 0.1539 0.2061

ξij (eV) 1.1895 1.4874 1.8153 1.224 1.5605 1.79

pij 10.85 10.494 10.139 10.96 11.05 10.229

qij 3.18 3.607 4.033 2.278 3.0475 4.036

rð0Þij (Å) 2.8921 2.8885 2.885 2.556 2.556 2.884
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where rij represents the distance between atoms of species i and j. Vr(i) is a pairwise repulsive term, and
Vm(i) is the attractive many-body terms. In this study, all the parameters for Ag–Au and Cu–Au clusters
are taken from [31,32] as listed in table 1.
 sci.6:190342
2.2. Optimization algorithm
The AIOA method is a global search technique based on the evolutionary ideas of clonal selection
principles and biological immune systems [33]. In the domain of structural optimization, it has
been successfully applied for locating the stable structures of monoatomic clusters, e.g. Lennard–Jones
(LJ)3–200 clusters [34], binary clusters, e.g. Cu–Au [30] and Ag–Pd [35] clusters, ternary clusters such as
Ar–Kr–Xe [36] and Au–Pd–Pt clusters [37], and quaternary Ag–Au–Pd–Pt clusters [38]. The basic step
of AIOA includes generating initial structures, clone selection, mutation operation and updating
operation. At first, a certain number (nlib) of initial configurations are randomly generated and locally
minimized [39], forming the original gene library. Then by an immune clone selection procedure, a
population (npop) of individuals is selected from the gene library. In binary clusters, there exist
geometrical isomers and homotopic isomers, i.e. the same configurations with different atomic type
arrangement. In the mutation operation, to solve geometrical isomers problem, half of these
individuals are carried out with the energy-based mutation, and for the other half, two types of
atoms are randomly selected and their locations are exchanged to solve the homotopic problem.
Energy-based mutation is designed based on the fact that the atoms with lower number of nearest-
neighbour contacts generally have higher potential energies. For each atom, the probability to be
mutated is with respect to the number of nearest-neighbour contacts. Then, the selected atom is
moved to a random site on the surface of the cluster. New individuals are thus generated. Next,
a similarity checking method is designed to update the gene library, in which the new individuals
with less similarity and lower energy are kept by using connectivity table (CT) [34]. At last, the
cycle of the clone selection, mutation operation and updating operation repeats nrep times to find
the global minima.

A strategy by fixing the inner cores of the starting structures has played an important role in
determining the structures of large-scale monoatomic clusters, and LJ clusters up to 150 atoms by
Hartke [40]; LJ670 [41] and Al510 [42] clusters are thus optimized. The idea is also adopted in the
AIOA-IC method, which is a modification of AIOA. Besides randomly generating the atomic
coordinates as in AIOA, an inner core is also constructed while building the starting structure in
AIOA-IC. Furthermore, decahedron (Dh), icosahedron (Ih), face centred cubic (fcc), sixfold pancake
and Leary tetrahedron (LT) are the main motifs in atomic clusters as plotted in figure 1, and they
are selected as their inner cores as introduced in [43]. Then around the inner core, the remaining
atoms are randomly dispersed to form starting structures. Therefore, nlib initial configurations are
randomly selected from random generation of atomic coordinates and different core structures.
The developed AIOA-IC method has been applied for locating the stable structures of trimetallic
Cu–Au–Pt clusters [43] with 147 atoms. In this work, AIOA-IC is used for M–Au (M =Ag and Cu)
clusters with N = 60–108, and 55-atom Dh, 55-atom Ih, 44- and 88-atom fcc, 51-atom sixfold
pancake-like, 34- and 98-atom LT cores are adopted. Moreover, the following parameters are
employed: nlib = 20, npop = 15, and nrep = 1500. On the other hand, the procedure of AIOA-IC should
run nrun = 100 times.



Dh55 Ih55 fcc44 fcc85

sixfold51 LT34 LT98

tetrahedral
core

Figure 1. Typical motifs of decahedral (Dh), icosahedral (Ih), face centred cubic ( fcc), sixfold and Leary tetrahedron (LT). Tetrahedral
core of LT98 is also shown. The inner cores of LT34 and LT98 configurations are represented by grey spheres.

Table 2. Potential energies for AgnAun (n = 30–54) clusters. Lower energies are in bold.

N E (eV) Eref (eV)
a n E (eV) Eref (eV)

a

30 −188.3738 −188.1643 43 −272.8780 −272.3030

31 −194.8413 −194.7674 44 −279.6674 −279.1388

32 −201.5975 −201.1421 45 −286.2538 −285.5936

33 −207.9968 −207.7146 46 −292.7457 −292.0234

34 −214.4447 −214.0908 47 −299.3887 −298.8105

35 −221.0684 −220.7654 48 −306.1635 −305.3793

36 −227.6291 −227.1792 49 −312.7878 −312.1650

37 −234.1900 −233.8269 50 −319.1323 −318.7294

38 −240.7105 −240.3646 51 −325.6465 −325.4572

39 −247.0362 −246.6945 52 −332.5967 −332.0059

40 −253.4077 −253.0306 53 −338.8598 −338.4055

41 −259.9580 −259.4811 54 −345.7535 −344.7734

42 −266.5060 −265.7221
aThe values of Eref are taken from [21].
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3. Results and discussion
3.1. Stable structures of AgnAun and CunAun clusters
The putative stable structures of M–Au clusters are optimized by using AIOA-IC method. Previously, the
stable structures of Ag–Au clusters of 1 : 1 composition up to 150 atoms were determined by BCGA [21]
using the same Gupta potential and parameters. In order to confirm that the same parameters are used,
AgnAun (n = 10–30) clusters are optimized, and the same structures and energies are obtained.
Furthermore, the stable structures of AgnAun (n = 30–54) clusters are reproduced, and new lower
energy minima are found in this work. The potential energies of the investigated Ag–Au clusters are
listed in table 2, and as a comparison the corresponding potential energies reported in [21] are also
listed in the table. In the table, the lower energies are labelled in bold font, and it is clear that all
clusters found in this study have lower energies than those reported. The maximum difference
between energy values is about 0.9801 eV at Ag54Au54, and the minimum difference (about 0.0739 eV)
appears at Ag31Au31. Such results are also a proof for the high efficiency of the AIOA-IC method for
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Figure 2. Stable structures of AgnAun (n = 30–54) clusters, and Ag and Au atoms are represented by blue and yellow spheres,
respectively, and the potential energies E (eV) are also added.
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bimetallic clusters optimization. Nevertheless, it should be noted that the cut-off constraint in the Gupta
potential reflects the pairwise repulsive term and the attractive many-body terms, i.e. potential energies
[44]. In our studies, the Gupta potential does not include cut-off constraint, and the relatively higher
energies obtained in [21] may be due to the cut-off values.

Figures 2 and 3 plot the putative stable structures of AgnAun and CunAun (n = 30–54) clusters. In
figure 2, structures of AgnAun clusters can be categorized into 18 Dh at n = 30, 32–40, 42, 44, 46–48,
52–54, one distorted Ih at Ag31Au31, one twinned Dh at n = 41, three stacking-fault fcc (sf-fcc) at n =
43, 45 and 51, and two LT at Ag49Au49 and Ag50Au50. LT motifs were discovered as the global minima
of LJ98 [45], Ni98 [46] and partial 98-atom Pd–Pt clusters [47], exhibiting Td point group. Apparently, the
dominant motif of the studied AgnAun clusters is Dh. Compared with the results in previous work [21],
it is found that there exist significant differences in structures. For instance, both Ag49Au49 and
Ag50Au50 clusters have LT motifs in this study, but they are recognized as Dh motifs in the literature. It
can also be seen in figure 2 that most of Ag atoms are distributed on the surface of the structures. In
figure 3, it is clear that all CunAun clusters take the icosahedral motifs based on 55-atom Mackay
icosahedron. The segregation of Au atoms to the surface in Cu–Au clusters can be found in figure 3.

It should be noted that although the random generation of atomic coordinates is also retained in the
AIOA-IC algorithm, the algorithm is biased to a certain extent. It is shown that when the optimal
configuration of the cluster with the lowest energy is the same as one of the initial core configurations, it
is easier to search the configuration from the corresponding initial core. For example, the optimal structure
with Ih motif is mostly derived from the Ih cores. However, the optimization process shows that Ih motifs
can also be obtained from the Dh cores because of the structural transformation from Dh to Ih [32].
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Figure 3. Stable structures of CunAun (n = 30–54) clusters, and Cu and Au atoms are represented by red and yellow spheres,
respectively, and the potential energies E (eV) are also added.
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3.2. Stable structures of AgnAu3n and CunAu3n clusters
Figure 4 shows the stable structures of AgnAu3n and CunAu3n (n = 15–27) clusters. In AgnAu3n clusters,
structures include eight Dh at n = 15–19, 23, 24 and 27, three Dh with anti-layers at n = 20, 25 and 26, one
fcc at Ag22Au66, and one sf-fcc at Ag21Au63. Therefore, the main structure of AgnAu3n clusters is Dh as
discussed in AgnAun clusters plotted in figure 2. On the other hand, at Cu15Au45 in figure 4, ring-like
structure linked by three face-sharing double icosahedra [48] is formed. In the size range of n = 16–18,
clusters take the icosahedral motifs. At Cu19Au57, four face-sharing double icosahedra are linked to form a
ring-like structure. With the increase of n = 20–27, all clusters have icosahedral configurations. Therefore,
icosahedral is still the main motif in the investigated CunAu3n clusters as found in CunAun clusters.
3.3. Stable structures of Ag3nAun and Cu3nAun clusters
Figure 5 shows the stable structures of Ag3nAun and Cu3nAun (n = 15–27) clusters. In Ag3nAun clusters, at
Ag45Au15, an icosahedral motif is formed. In the size range of n = 16–20, clusters have decahedral
configurations. With the increase of n, at Ag63Au21, Ag66Au22 and Ag72Au24, partial icosahedra based
on 147-atom Mackay icosahedron are formed. The motifs of Ag69Au23 and Ag75Au25 clusters are Dh,
which is recognized as (3,3,2)-Dh [49]. The form of (m,n,l )-Dh is used to define Marks’ decahedron,
where parameters m and n denote the width and height of the rectangular (100) faces, and l
represents the depth of the Marks re-entrance. At Ag78Au26, the structure is grown based on 98-atom
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Figure 4. Stable structures of AgnAu3n and CunAu3n (n = 15–27) clusters, and Cu, Ag and Au atoms are represented by red, blue
and yellow spheres, respectively, and the potential energies E (eV) are also added.
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LT configuration. At last, at Ag81Au27 cluster, a Dh motif with anti-layers is formed. Therefore, it can be
seen that in Ag-rich regions of Ag–Au clusters, more icosahedral structures are found than in Au-rich
regions as discussed in AgnAu3n clusters.

In Cu3nAun clusters as plotted in figure 5, structures can be categorized into eight Ih at n = 15, 16, 20–
24 and 27, four Dh at n = 17–19 and 26, and one LT at Cu75Au25. It is apparent that Ih is still the main
motif as in the studied CunAu3n clusters. However, in Cu-rich contents of Cu–Au clusters, more Dh
structures are found than in Au-rich contents as discussed in CunAu3n clusters (demonstrated in
figure 4). Furthermore, around 98 atoms, e.g. Cu75Au25 cluster, an LT structure is found, which is not
found in CunAu3n and CunAun clusters.

On the other hand, it should be noted that over the 100 independent runs of the AIOA-IC method, all
the stable structures of the investigated Ag–Au and Cu–Au clusters are located with the successful rate
above 2/100. The successful rates for some clusters are as high as 20%. It provides a proof for the
efficiency of AIOA-IC method for the structural optimization of Ag–Au and Cu–Au clusters.
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Figure 5. Stable structures of Ag3nAun and Cu3nAun (n = 15–27) clusters, and Cu, Ag and Au atoms are represented by red, blue
and yellow spheres, respectively, and the potential energies E (eV) are also added.
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3.4. Analysis of atomic distribution
The order parameter (R) in binary A–B clusters is adopted to explain the atomic distribution or mixing
degree of different elements. Actually, R-value is measured by the average distance of a type of atom (A
or B) from the centre of a cluster, i.e.

RA ¼ 1
nA

XnA
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2i þ y2i þ z2i

q
ð3:1Þ

where nA denotes the number of the atoms of type A in the binary A–B clusters, and xi, yi and zi represent
their atomic coordinates. Generally, a small or large R-value means that the corresponding type atoms are
at the centre or surface of the cluster having segregated pattern, respectively, and a medium value
explains a mixed form.

Figure 6 shows the variation of the order parameter R and its standard deviation (s.d.) values of Ag
and Au atoms in AgnAun clusters (figure 6a) and Cu and Au atoms in CunAun clusters (figure 6b) along
with the n-value. From the curve of figure 6a, RAg is slightly larger than RAu in AgnAun clusters. It means
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that compared with Au atoms, Ag atoms are more inclined to be in the outer shell. Relatively large s.d.
values for RAg indicate that partial Ag atoms are also located in the inner shell. For Au atoms, their RAu

values are medium, and the corresponding s.d. is small. It indicates that Au atoms are mainly distributed
in the middle shell in a more compact way. In figure 6b of CunAun clusters, RAu values are clearly larger
than those of RCu. Therefore, for Cu–Au clusters there exist significant surface segregation with Au atoms
on the surface and Cu atoms in the core. On the other hand, the difference between RAu and RCu in 1 : 1
Cu–Au clusters is bigger than that between RAg and RAu in 1 : 1 Ag–Au clusters.

The number of bonds, i.e. the nearest-neighbour contacts (nij), can be further calculated to analyse
the atomic distribution between homogeneous atoms or heterogeneous atoms. The calculation of nij is
given by

nij ¼
X
i,j

dij, ð3:2Þ

where dij ¼
1, rij � 1:2rð0Þij

0, rij . 1:2rð0Þij

8<
: i, j =Ag and Au in Ag–Au clusters, or Cu and Au in Cu–Au clusters,

and rð0Þij is a nearest-neighbour criterion described above.
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Relative bond number, i.e. the proportion of Ag–Ag (or Cu–Cu) and Au–Au bond number to total
bond number in AgnAun (or CunAun) clusters is plotted in figure 7. In the figure, the relative number
of Au–Au bond is significantly larger than that of Ag–Ag bond in AgnAun clusters. It is because Ag
atoms tend to be on the surface, and Au atoms are interconnected with each other in the middle shell.
The conclusion is consistent with the analysis by RAg and RAu and their s.d. values above.
Furthermore, from the figure, the relative number of Cu–Cu bond is significantly larger than that of
Au–Au bond in CunAun clusters. It can be explained by the fact that Cu and Au atoms are located in
the inner shell and outer shell, respectively. The segregation phenomena of Cu and Au in Cu–Au
clusters can be explained in terms of larger surface energy of Cu (114 meVÅ−2) compared to Au
(96.8 meVÅ−2) [37]. The surface energy of Ag (78 meVÅ−2) [50] is smaller than that of Au, so most Ag
atoms tend to occupy the surface sites.

3.5. Comparison with previous studies
The surface segregation phenomenon of Ag atoms in Ag–Au clusters has been predicted using genetic
algorithm with the Gupta potential [20], which is in agreement with our simulated results. In a study
of 1 : 1 Ag–Au clusters, in the size range 20–66, the structures were in favour of icosahedral motifs,
and in the size range 68–128, they changed to be decahedra [21]. The tendency of forming decahedron
is consistent with our modelling results in this work. However, it should be noted that previous
studies showed that the Gupta model with the present parameters was insufficiently accurate to
predict the degree of segregation or mixing for Ag–Au clusters, because the charge transfer effects
were not considered [19,51–53]. In a reparametrization of Gupta model developed by taking into
account such effects, larger proportion of Au atoms on the surface was observed than in the present
work [54]. In addition, recent experiments for Ag–Au nanoparticles grown in the gas phase showed
that atomic mixing pattern was pretty stable [55], which is not consistent with our results.

In a study by Darby et al. [28], the Gupta potential was also used for Cu–Au clusters with up to
56 atoms, and results showed that they exhibited primarily icosahedral motifs. The conclusion is
consistent with our simulation. Furthermore, the CucoreAushell segregation tendency was also found by
Cheng et al. [56] with the Gupta potential and Monte Carlo method. Wilson et al. [27] performed
searching the lowest energy homotops for icosahedral and cuboctahedral Cu–Au nanoalloys, and
results showed that for each composition structures tended to have predominantly Au atoms on the
surface and Cu atoms in the core. It was further verified by Tran & Johnston [57] while studying all
compositions of CunAu38−n clusters by DFT calculations. Furthermore, in a Cu135Au174 core–shell
cluster calculated using DFT, most surface sites were occupied by Au atoms [58], which is consistent
with our results. Moreover, we note that a better parametrization of the Gupta potential was
developed by Goh et al. [59], which showed better agreement with DFT results than in the present study.
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4. Conclusion

The putative stable structures of Ag–Au and Cu–Au clusters with 1 : 1, 1 : 3 and 3 : 1 compositions in the
size range of 60–108 are obtained using adaptive immune optimization algorithm with the constructed
inner cores (AIOA-IC) method. The many-body Gupta potential is adopted to describe the interaction in
bimetallic clusters. Results show that the dominant motifs of Ag–Au and Cu–Au clusters are decahedron
and icosahedron, respectively. However, In Ag3nAun clusters, i.e. Ag-rich contents, more icosahedra are
found than in AgnAun and AgnAu3n clusters. In Cu3nAun clusters, i.e. Cu-rich contents, there exist several
decahedral motifs. Furthermore, a special Leary tetrahedral motif appears at Ag49Au49, Ag50Au50,
Ag78Au26 and Cu75Au25. On the other hand, order parameters and bond numbers are calculated to
study the atomic distribution. Results show that in all investigated Cu–Au clusters, Cu atoms occupy
the inner shell, and Au atoms scatter on the surface, forming CucoreAushell configurations. In Ag–Au
clusters, most of Ag atoms tend to occupy the outer-shell sites, but partial Ag atoms are located in the
inner shell, while Au atoms are interconnected with each other in the middle shell.
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