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Cytoplasmic dynein 1 (hereafter referred to simply as dynein) is a

dimeric motor protein that walks and transports intracellular

cargos towards the minus end of microtubules. In this article,

we formulate, based on physical principles, a mechanical

model to describe the stepping behaviour of cytoplasmic

dynein walking on microtubules from the cell membrane

towards the nucleus. Unlike previous studies on physical

models of this nature, we base our formulation on the whole

structure of dynein to include the temporal dynamics of the

individual subunits such as the cargo (for example, an

endosome, vesicle or bead), two rings of six ATPase domains

associated with diverse cellular activities (AAAþ rings) and the

microtubule-binding domains which allow dynein to bind to

microtubules. This mathematical framework allows us to

examine experimental observations on dynein across a wide

range of different species, as well as being able to make

predictions on the temporal behaviour of the individual

components of dynein not currently experimentally measured.

Furthermore, we extend the model framework to include

backward stepping, variable step size and dwelling. The power

of our model is in its predictive nature; first it reflects recent

experimental observations that dynein walks on microtubules

using a weakly coordinated stepping pattern with

predominantly not passing steps. Second, the model predicts

that interhead coordination in the ATP cycle of cytoplasmic

dynein is important in order to obtain the alternating stepping

patterns and long run lengths seen in experiments.
1. Introduction
Cytoplasmic dynein 1 (hereafter referred to simply as dynein) is a

protein complex which moves in the centripetal direction along
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microtubules, i.e. towards the minus ends of microtubules which are usually directed towards the cell

centre, transporting cellular cargo such as vesicles and organelles, and is crucial for supporting events

associated with cell division, cell survival and cell migration (see [1–5] for further details).

Experimentally, it is known that during mitosis, dynein plays a key role in the positioning of spindles,

focusing microtubules into poles, thereby regulating the spindle assembly check point. A large

number of neurodegenerative diseases and developmental problems are now known to result from

mutations in dynein or dynein-binding proteins [6–9]. Errors in the heavy chain of dynein, encoded

by dynein cytoplasmic 1 heavy chain 1 (DYNC1H1) gene, have been implicated in spinal muscular

atrophy with lower extremity predominance (SMA-LED), Charcot-Marie-Tooth disease type 2 (CMT2)

and intellectual disability (reviewed in [8]; see also [9]). Investigations into mutations in dynein have

shown particular behavioural differences, such as a decrease in velocity and distance travelled in a

mouse strain known as ‘Legs at odd angles’ (Loa) [10–12]. Studies by Hafezparast et al. [10,13], have

shown that the DYNC1H1F580Y mutation in the Loa mouse strain negatively affects fast retrograde

transport mediated by dynein, including an increase in pauses in motion. Work by Deng et al. [14],

has shown that the Loa mutation gives rise to a lower affinity of dynein to dynactin, which regulates

cargo binding and dynein processivity. The devastating effect of dynein malfunction presented in

mutation studies on mouse models as well as in humans shows the need for greater understanding of

the mechanics and processes used by dynein [8–10,13]. The dynein family is particularly interesting

as it has evolved separately from other motor protein families, kinesin and myosin, and has a very

different structure and mechanics (see [15] for a detailed review).

The largest components of the dynein complex are two homodimerised heavy chains, each of which

is made up of a tail and a motor domain. The N-terminal tail domain (residues 1 to approx. 1400) binds to

other regulatory and structural components of dynein, through which cargo and adaptor proteins bind

to the complex (figure 1). The structure of the head comprises a linker, a ring of six ATPase domains

associated with diverse cellular activities (AAAþ), from which a microtubule-interacting stalk region

and a buttress extend, and a C-terminal sequence [16]. The linker is located between the tail and the

ring and spans across the top face of the ring before bending down the side of the AAA1 domain of

the ring. It plays a key role in the nucleotide-dependent power stroke of the motor by switching from

bent to straight conformations [7,17]. Only four of the AAAþ domains of the motor domain are

thought to bind ATP [8,18–22]. This is in contrast to kinesin and myosin, each of which have a single

ATPase-binding site per motor domain [23]. The coupling of ATP hydrolysis and force generation is

not yet fully understood, although recent progress has been made with structural cycles being

suggested by Carter [16] and Lin et al. [24] as well as by Nicholas et al. [25] and DeWitt et al. [26] on

the role of the AAA3 domain (see [3,27] for detailed reviews on dynein’s mechanism). The stalk is

formed of an anti-parallel-coiled coil, which extends from between the AAA4 and AAA5 domains

ending with a microtubule binding domain (MTBD); the recently identified component labelled a strut
or buttress is proposed to support the stalk under load [8,18,19]. The stalk-coiled coil acts as a

communication pathway between the AAA rings and the MTBDs.

It must be noted that dynein-driven transport of cargos along microtubules requires other components

such as the cofactor dynactin and other regulatory proteins [1,2,28]. For example, recent experimental

observations show how dynactin recruits two dimeric dyneins for faster movement, supporting the

notion that dynein stepping patterns on microtubules could be influenced by such cofactors [28,29].

The emerging evidence on the structure and function of dynein-dynactin are providing growing insight

into how these two act together to carry cargos [2,28–33]. In this study, we will not take into account

other complex processes associated with dynein structure and function and these include the role of

cofactors in the dynein transport mechanism, dynein auto-inhibition and activation (by phi-particle, for

example), etc. [34,35]. Instead, we will focus on the whole dynein structure and how it walks on

microtubules. The mathematical framework presented allows for other cofactors or processes to be

included in future studies; however, such studies are beyond the scope of this study.

Hence, in this paper we derive a general integrative mechanistic model for dynein that describes the

qualitative and quantitative results observed in experiments and could be applied to particular dynein

complexes through parameter variations or functions. The form of stepping pattern used by dynein

and the possibility of interhead coordination is modelled and discussed. Hence, this article is

structured as follows. In the next section, we review experimental observations setting premises for

the derivation of the integrative mechanical model based on physical principles. Section 3 reviews

briefly current mathematical models for dynein transport from the cell membrane towards the

nucleus. It is here that we contrast our model with those in the literature. The main thrust of our

work is presented in §4 where we formulate from first principles the physical mechanical model
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Figure 1. A schematic diagram of cytoplasmic dynein protein complex. (a) Cytoplasmic dynein is a protein complex consisting of
two homodimerized heavy chains (DYNC1H1) and associated proteins intermediate (DYNC1I), light intermediate (DYNC1LI) and light
chains (DYNLRB, DYNLL, DYNLT). The C-terminal portion of the heavy chain encompasses the microtubule binding (MTBD) and motor
domains. The N-terminal domain is responsible for the heavy chain homodimerization and binding of accessory proteins to the
complex. (b) DYNC1H1 domains and the site of the Legs at odd angles (Loa) mutation in the mouse protein.
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integrating the temporal dynamics of the individual components that include the cargo, tail domain,

AAAþ rings and MTBDs. For simplicity, we formulate our modelling on a one-dimensional

microtubule, leaving extensions to multi-dimensions for future studies. Similarly, modelling of

multiple dyneins walking on microtubules [7] is omitted and forms part of our future studies. In §5,

stochasticity is introduced into the model to account for the random binding of ATP to either of the

two motor domains, and numerical simulations for the model equations are presented. Within this

section, qualitative and quantitative agreements with some experimental observations are discussed,

and the effect of interhead coordination is explored. Backward stepping, variable step size and

dwelling are further modelled, and numerical simulations exhibit this stepping behaviour.

Furthermore, we make predictions amenable for experimental manipulations. Finally, in §6, we

discuss the implications of our modelling to understanding mechanisms for dynein-mediated transport.
2. Experimental observations
Experimental studies (using total internal reflection fluorescence, X-ray crystallography and high-

resolution cryo-electron microscopy) on how cytoplasmic dynein motors move along microtubules

transporting cargo to the nucleus can be subdivided into two parts. Those that focus on the single

molecule motility properties of dynein [3,21,36,37] and those that focus on the mechanical structural

dynamics of dynein [2,20,21,35,38]. Furthermore, experimental data both in vivo [39–41] and in vitro
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[2,4,42] are performed and obtained on different species (e.g. yeast [3,35], Dictyostelium discoideum

[2,4,7,20,23], human [38,42], Saccharomyces cerevisiae [21,36,37], etc.). Moreover, studies are carried out

either in one-dimension [37] or two-dimensions [4,36,37]. In the work by Qiu et al. [37], two-

dimensional particle tracking shows dynein’s two motor domains can step both alternatively and non-

alternatively in time and either passing or not passing in space. One-dimensional tracking results are

then extrapolated from the two-dimensional data through a projection operator in the direction of

motion along the microtubules axis. Given these different experimental conditions, it is therefore a

significant challenge to come up with a single mathematical model that can capture all these

processes. Given that the single molecule motility dynamics are part of the whole dynein structure,

we therefore propose to study the whole dynein structure with the rationale that different

experimental conditions can either be modelled through parameter variations and functions or

through appropriate extensions of the model to take into account other processes associated with

dynein transport that are not the subject of our study. Having this in mind, we therefore present some

of the most recent experimental observations of cytoplasmic dynein with an eye to making

comparisons with the model where appropriate. Moreover, the structural mechanism of cytoplasmic

dynein’s processive stepping along MTs is unclear and sets the motivation for this study.

Recent experimental studies on the structure of yeast and Dictyostelium discoideum dyneins include

works by Bhabha et al. [35], Carter et al. [18] and Schmidt et al. [21], which allowed for detailed

visualization of the AAA domain and linker movements. On the other hand, studies on yeast and

Dictyostelium discoideum dyneins show that the replacement of the tail with glutathione S-transerase

yields a simpler dimer that still processively steps along MT [7]. It is known that perhaps the most

striking feature of stepping dynein is the huge flexibility between the ATPase domain and the track-

binding domain, which is in contrast to kinesin and myosin motors [7]. In order to provide quantitative

data on dynein’s processive stepping along MTs, Dewitt et al. [36] and Qiu et al. [37] tracked

fluorescent-tagged yeast cytoplasmic dynein in two-dimensions, and their studies suggested

uncoordinated stepping pattern by the two heads but that they also must communicate (i.e. coordinate)

as the properties of dimerization to MTs are different from those of monomers [7]. Statistically, their

studies found that 74% of dynein steps were taken by each of the two heads alternating in time (i.e. the

motor domains’ relative temporal behaviour) and that 83% did not pass each other (in terms of their

relative spatial behaviour), suggesting that dynein may move predominantly by passing rather than in

an alternating fashion [37]. This is in contrast to the processive kinesin and myosins which walk hand-

over-hand [4,43–46]. Both papers also found that the leading head was more likely to be to the right of

the lagging head along the direction of movement [36,37]. Furthermore, experimental observations show

that dynein has a variable step size, with the majority of steps being 8 nm in distance [36,37,47–49]. It

must be noted, however, that this reflects the position of the tail of dynein rather than the motor

domain, and further investigations have shown that the motors move with a usual step size of around

16 nm [36,37,48]. Moreover, we note that dynein steps are not always parallel to the microtubule and

usually have off-axis components [10,36,37,48], and dynein can also take backward steps [47,48]. Carter

et al. [50] proposed that the stalk acts as a tether in the stepping process and that the MTBD determines

the direction of the step, while Redwine et al. [51] proposed that conformational changes in the MTBD

lead to movement in the linker domain and hence displacement of the MTBD.

We note that the experimental studies by DeWitt et al. [36] and Qiu et al. [37] revealed the stepping

behaviour of yeast cytoplasmic dynein; however, throughout this paper, we will also consider

mammalian cytoplasmic dynein; hence, the model is not restricted to specific species. Furthermore, due

to the fact that at the stalk–stalkhead junction, the hinge is located close to the MT surface (two-

dimensional geometry), the dynein head swings over a wide range of approximately 20 nm compared

with approximately 8 nm spacing between the binding sites on the MT. Studies by Imai et al. [7] suggest

that experiments such as those by DeWitt et al. and Qiu et al., where fluorescent tags are attached to the

heads for stepping studies, may not reliably report the position of the MT-bound stalkheads. During the

processive stepping, the flexibility between the ATPase and track-binding domains may allow for the

stalkhead to detach from its partner motor with greater freedom to explore the MT surface for locating

its next binding site. Hence, these studies provide a structural basis for a wide range of step sizes

(variable) seen in dynein stepping studies [7]. As a proof of concept, we will nevertheless compare our

results to those of DeWitt et al. and Qiu et al. (with the caveat above and noting also that our model is

formulated in one dimension) as our theoretical study is a first stepping stone in modelling the

integrated dynein structure. The framework can easily be applied to specific dynein stepping studies

when quantitative experimental data are available. For example, by including a linker into the

modelling, results could be compared quantitatively with those obtained in studies by Cleary et al. [4].
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While these experimental studies enable detailed understanding of dynein’s structure [2,4,7,18–21,35]

and transport mechanism [3,34,36,37,42,47,48,52]; to our knowledge, few models have been developed

to describe such observations [53–55]. Our results bridge this gap, by presenting a robust integrative

mechanical and stochastic model describing the stepping behaviour of cytoplasmic dynein.
lsocietypublishing.org
R.Soc.open

sci.5:171568
3. Overview of current mathematical models describing transport
processes for cytoplasmic dynein

Recently, there has been a notable increase in mathematical models studying endocytosis and

cytoplasmic dynein and these include models proposed by Ashwin et al. [56], Smith & Simmons [57],

Šarlah & Vilfan [54], Mukherji [58] and Tsygankov et al. [55,59]. For example, the Smith and Simmons

model [57] allows for motion of dynein along the microtubules when cell organelles and vesicles,

referred to as particles, are attached and freely diffuse when they are not. Under this framework, they

consider particle densities in one dimension, described by reaction-diffusion-transport equations. This

model helps us to understand the macroscopic behaviour of endosomes and not the particular

mechanisms of dynein. In the model proposed by Ashwin et al. [56], they consider a single

microtubule for which the motor protein dynein moves to the minus end (i.e. towards the nucleus)

when bound and is carried by the motor protein kinesin to the plus end (towards the cell periphery).

They assume that right and left moving motors pass without interaction, but there is an exclusion
principle enforcing that a motor can only move forward if the site ahead is free of motors of the same

type. They discretize the microtubule into two tracks and use a mean field approximation and further

simplifications. This model describes the behaviour of a population of dynein; it does not consider a

more detailed model involving a single dynein within the transport process and therefore is not able

to quantify the temporal behaviour of the individual components of the dynein structure.

Single dynein models have been considered by Mukherji [58], Tsygankov et al. [55,59] and Šarlah &

Vilfan [54]. Mukherji [58] and Tsygankov et al. [59] study the mechanochemical cycle of dynein which is

essential for understanding dynein’s behaviour. An extension to the model by Tsygankov looks at the

bending energies of dynein using Langevin equations and couples this to the biochemical reactions

modelled previously [55,59]. Šarlah and Vilfan propose a winch model for cytoplasmic dynein which

couples an elastomechanical model to a kinetic model of the ATPase cycle. For the elastomechanical

model, they consider elastic energies within the complex, interaction between the two motors and

work done against external load. Monte Carlo methods are then used to find the shapes of the

complex with minimum energy. In this work, we propose an alternative framework; our aim is to

derive a model that studies dynein’s progress along the microtubule over time as opposed to mean

run lengths and velocities, taking a mechanical approach with the long-term aim of modelling the

mechanical effects of mutations on dynein. A similar approach has been studied for kinesin by

Hendricks et al. [60] and by us in a previous work by Crossley et al. [53]. We will study the whole

structure, looking at the positions of the cargo carried by dynein, the tail domain, AAAþ rings and

MTBDs comparing our results to data from different experiments tracking single components of the

transport process. We will also consider dynein in general, allowing the model to be applied later to

particular dynein species through the use of parameter variations. Unlike this current work, the

previous study was devoid of any statistical analysis which forms the bulk of the current modelling

approach. The main contributions of this study are the stochastic multiscale modelling, as opposed to

the use of continuous functions to model binding and ATP force previously studied, and the

introduction of the tail component. Furthermore, we model for the first time variable stepping,

including heads being able to move independently, not in a strictly coordinated pattern. Other processes

such as variable steps, backward stepping and dwelling times are also modelled for the first time.
4. Derivation of the mechanical model
Following our previous study by Crossley et al. [53], we derive from first principles a system of six

second-order nonlinear ordinary differential equations (ODEs) to model the transport mechanisms of

a single dynein acting on a cargo. Let xC(t), xT(t), xA(t), xB(t), xD(t) and xE(t) denote the positions of

the cargo, tail, AAAþ rings A and B, and the MTBDs D and E, respectively, at time t [ [0, TFinal] for

some end time TFinal . 0. We note that throughout this work, time is measured in nanoseconds and

length in nanometres. For simplicity, we omit the units when stating the time and length variables.
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The coordinates xA and xD represent one head domain of dynein with the coordinates xB and xE

representing the other head (figure 2). We model the microtubule as a one-dimensional line with

binding sites 8 nm apart; we only consider motion along this line. We make the following assumptions:

— The mass of the cargo remains constant and is modelled as a sphere with small Reynolds number.

This is a significant assumption for experiments in vivo; however, it is applicable to in vitro
experiments with beads.

— Any regulators of cargo binding, such as dynactin, are modelled as part of the cargo.

— The tail domain is modelled as two identical springs, from the AAAþ rings, connected to a sphere

with small Reynolds number and constant mass. The linker is modelled as part of these springs.

The binding between the tail and the cargo is modelled via another spring connecting the tail

domain to the cargo.

— The AAAþ rings are identical and modelled as spheres with small Reynolds number whose masses

remain constant.

— The stalks are modelled as two identical springs. We model the strut or buttress as part of this spring.

— The MTBDs are identical and modelled as spheres with small Reynolds number whose masses

remain constant.

See figure 2 for a schematic diagram illustrating the whole structure on which the mathematical

model is based and table 1 for a list of parameter values. We make four simplifying assumptions that

will be relaxed in future studies (see remark 4.1):

— The spring between the cargo and tail domain is parallel to the microtubule.

— The springs between the tail domain and AAAþ rings are at a fixed angle to the microtubule.

— The stalks are at a fixed angle to the microtubule.

— There are no external forces acting on the cargo from other motor proteins nor an optical trap.

Remark 4.1. The simplifying assumption of fixed angles means that the AAAþ rings and cargo will

move according to the extension and relaxation of the springs horizontally. This is an appropriate

assumption for the model while we remain in one space dimension but will need to be considered

when moving to higher dimensions. It is likely that there is some rigidity within the complex with

regard to these angles, with the main variation arising from the conformational change under ATP



Table 1. Dimensional parameters and the primary values used in the mathematical model. The drag coefficients are given by
gi ¼ (6phRi) MDa/ns for i ¼ C, T, M, S with h and Ri given below. The binding sites are described by pkþ1 ¼ ( pk þ 8) nm
where p0 ¼ (LC þ LT 2 4) nm, with LC, LT given below.

parameter description value ref.

MC mass of the cargo 2 MDa estimated

MT mass of the tail component 0.14 MDa estimated

MM mass of the AAAþ ring 0.5 MDa estimated

MS mass of the MTBD 0.03 MDa estimated

RC radius of the cargo 460 nm [47]

RT radius of the tail domain 3 nm [61]

RM radius of the AAAþ ring 6.5 nm [61,62]

RS radius of the MTBD 1.5 nm [62]

LC unstressed length between the cargo and tail 12 nm [61]

LT unstressed length between the AAAþ ring and tail 8 nm [61]

LS unstressed length between the AAAþ ring and MTBD 15 nm [61]

KC spring constant between the cargo and the tail 1 MDa ns22

(�1.66 pN nm21)

estimated

KT spring constant between the tail

and the AAAþ ring

1 MDa ns22

(�1.66 pN nm21)

estimated

KS spring constant between the AAAþ ring

and the MTBD

10 MDa ns22

(�16.61 pN nm21)

estimated

FC external force exerted on the cargo 0 MDa nm ns22

(¼0 pN)

assumption

h viscosity of the cytoplasm 1.2 MDa nm21 ns

(�1.99 cP)

[63]

LATP unstressed length between the binding sites 16 nma estimated

[19,61]

KATP ATP unbound state spring constant 10 MDa ns22

(�16.61 pN nm21)b

estimated

gATP ATP unbound state drag coefficient 10 MDa ns21

(�16.61 pN ns nm21)b

estimated

uAD angle of the stalk between AAAþ ring A and MTBD D 538 [61]

uBE angle of the stalk between AAAþ ring B and MTBD E 538 [61]

uAT angle of the spring between AAAþ ring A and the

tail domain

338 [61]

uBT angle of the spring between AAAþ ring B and the

tail domain

338 [61]

aIn §5.4, we use LATP ¼ 8 nm to allow for step sizes in multiples of 8 nm.
bNote that in §5.3 we explore a range of values for KATP, 10 – 1000 MDa ns22 and gATP, between 1 and 1000 MDa ns21. Some
of the values such as the ATP unbound state spring and drag coefficients KATP and gATP, respectively, are estimated by trial-and-
error method.
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hydrolysis. The model has been solved in two space dimensions with variable angles, but gives similar

results to the simpler model presented here (see the electronic supplementary material for further details).

It must be noted that structural studies show that both stalks are tilted towards the plus-end and

more or less in parallel orientation to each other (rather than pointing towards each other as depicted
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in figure 2). The mathematical framework can be modified easily to take into account this particular

structure with no changes in the numerical results and model predictions (see the electronic

supplementary material for further details on the model reformulation and the corresponding

numerical results). Hence, our studies confirm similar results if stalks are assumed to be tilted

towards the plus-end with angles ranging between 41.98+13.78 [2,7,29,34,64,65]. In order to account

for the angles of the dynein’s off-axis steps, it is necessary to consider a two-dimensional model. The

two-dimensional model will allow us to investigate whether dynein has a preferential stepping

behaviour, either right or left on the microtubule surface. Such an analysis is not possible within the

one-dimensional set-up proposed in this study.

To proceed, using Newton’s Second Law we study the net forces acting on the system. For the cargo,

there is a spring force, viscous drag and an external force acting on it. By Hooke’s Law, we take the spring

force to be:

FSpring(t) ¼ KC(xT(t)� xC(t)� LC), ð4:1Þ

where KC is the spring constant and LC is the natural length. We obtain the viscous drag by Stokes’ Law:

FDrag(t) ¼ gC

dxC

dt
, ð4:2Þ

where the damping coefficient gC ¼ 6phRC with h the viscosity and RC the radius of the cargo. For

completeness, we include an external force FC that is exerted on the cargo, although throughout

the model this is assumed to equal zero. Therefore, the equation of motion for the cargo can be

modelled by

mC
d2xC

dt2
¼ KC(xT � xC � LC)� FC � gC

dxC

dt
: ð4:3Þ

The equations of motion for the tail domain and AAAþ rings can be derived similarly. Therefore, we

obtain the following system of ordinary differential equations for the cargo, tail and AAAþ rings,

respectively:

mC
d2xC

dt2
¼ KC(xT � xC � LC)� FC � gC

dxC

dt
, ð4:4Þ

mT
d2xT

dt2
¼ KT(xB � xT � LT cos (uBT))� KT(xT � xA � LT cos (uAT))� KC(xT � xC � LC)� gT

dxT

dt
,

ð4:5Þ

mM
d2xA

dt2
¼ KT(xT � xA � LT cos (uAT))� KS(xA � xD � LS cos (uAD))� gM

dxA

dt
ð4:6Þ

and mM
d2xB

dt2
¼ KS(xE � xB � LS cos (uBE))� KT(xB � xT � LT cos (uBT))� gM

dxB

dt
: ð4:7Þ

We wish to model the mechanics of ATP hydrolysis on the motor domain of dynein. The binding

of ATP occurs randomly and is followed by microtubule release of the corresponding MTBD and a

recovery stroke towards the next binding site [16,24]. Hence, we will assume that there are two

MTBD states:

— Bound: This is defined to be when the MTBD is bound to the microtubule and hence is stationary.

— Unbound: Defined to be when the MTBD is unbound from the microtubule and undergoing the

recovery stroke towards the next binding site.

It is hypothesized that ATP hydrolysis induces a conformational change in dynein, potentially causing

a 378 kink in the stalk [19]. Hence, for the unbound state the conformational change is modelled

by a dashpot and spring acting solely on the MTBD (figure 3) [66]. It is assumed that this force is

independent of the particular interval on the microtubule, defined by x [ [ pk, pkþ2], and is identical

for the two head domains. Binding sites are taken to be p2k for MTBD D and p2kþ1 for MTBD E

with k ¼ 0, 1, 2, . . . and p2kþ1 2 p2k ¼ 8 nm, binding sites are 8 nm apart on the microtubule with

each MTBD binding to distinct binding sites that are 16 nm apart. The current model is one

dimensional and hence it is assumed that this force acts only in the horizontal direction. The force



MTBD

pk pk+2

LATP

Figure 3. A schematic diagram of the dashpot-spring model for the conformational change in dynein resulting from the binding of
ATP. For the time interval [ti, tiþ1], the MTBD is at the binding site pk at time ti and moves to the binding site pkþ2 by time tiþ1

with a step size of LATP.
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produced by the dashpot is proportional to the velocity and the spring force is proportional to the

displacement, hence

FATP(x(t)) ¼ �gATP

dx
dt
þ KATP(LATP � (x(t)� x(0))), ð4:8Þ

where gATP and KATP are parameters determining the size of the ATP force, with estimated values given

in table 1. These parameters are estimated by trial and error. The parameter LATP represents the

unstressed length of the spring and is taken to be the step size of the head domain. Here, we use a

fixed step size of 16 nm; however, in §5.4 we model variable step sizes in order to represent more

faithfully experimental observations which show dynein stepping in a variable fashion. If MTBD D is

in an unbound state and MTBD E is in a bound state, then the equations of motion can be shown to

be given by

mS
d2xD

dt2
¼ �gATP

dxD

dt
� KATPðxD � p2k � LATPÞ � gS

dxD

dt

� KSðxD � xA � LS cosðuADÞÞ,
ð4:9Þ

dxE

dt
¼ 0, ð4:10Þ

for t [ [ti, tiþ1] for i [ N such that 0 � ti , tiþ1, where p2k with k [ N0 is the binding site that MTBD D

was bound to at time t ¼ ti. The equations are similar for when MTBD E is in the unbound state and

MTBD D is in the bound state:

dxD

dt
¼ 0, ð4:11Þ

mS
d2xE

dt2
¼ �gATP

dxE

dt
� KATPðxE � p2kþ1 � LATPÞ � gS

dxE

dt

� KSðxE � xB � LS cosðuBEÞÞ,
ð4:12Þ

again for t [ [ti, tiþ1] and where p2kþ1 with k [ N0 is the binding site that MTBD E was bound to at time

t ¼ ti. Here, we are assuming some inherent coordination between the two MTBDs to keep the motor

attached to the microtubule as one motor is unable to bind ATP, while the other is detached. The

MTBDs are assumed to become unbound once the corresponding AAAþ ring binds ATP. This occurs

randomly and the transition between states is explained below. The model is extended to include

dwelling between steps, backward stepping and a variable step size in §5.4.

Remark 4.2. Fixing the step size to 16 nm with predetermined binding sites is a strong assumption

on where the MTBDs can bind. MTBDs are restricted to binding to specific binding sites on the

microtubule due to the position of tubulin and cannot bind to a site that another MTBD is already

bound to. The displacement of the MTBD, under a conformational change during the ATP cycle, has

been suggested to be close to the 16 nm step size [19], with this being the predominant step size in

these studies. Other step sizes have been recorded alongside off-axis displacement. For simplicity, we

will consider the simplest model of dynein stepping in one space dimension. Variable steps sizes are

considered in §5.4, while two-dimensional stepping is left for future studies.



rsos.royalsocietypublishing.org
R.Soc.open

sci.5:171568
10
4.1. Continual stochastic stepping

To model the continual stepping by dynein over a microtubule, stochasticity is introduced to the model

via the randomness in which an AAAþ ring binds ATP and hence an MTBD becomes unbound. We

assign the values PD (PE) to the probability that MTBD E steps given that MTBD D (E) stepped

previously and the maximum separation distance d that can occur between the MTBDs is defined.

Consider t [ [0, TFinal] with TFinal . 0 and ti ¼ ti21 þ TFinal/N for i ¼ 1, 2, . . ., N. Let q ¼ fqigi¼1:N be a

random vector where qi is from the uniform distribution on the interval (0, 1). If the maximum

separation between the MTBDs has been exceeded, then it is assumed that the rearward head steps;

else, given that MTBD j stepped previously, if qi , Pj, then MTBD E is set to be in the unbound state

(i.e. unbound from the microtubule and undergoing the recovery stroke) and MTBD D is set to be in

the bound state (i.e. bound to the microtubule). Otherwise, we assume that the MTBD D is in the

unbound state and MTBD E in the bound state. Hence, we can define a step function hE given by

hE(t, xD, xE, d) ¼ 1 if xD � xE . d or (qi , P j and xE � xD � d),
0 otherwise;

�
ð4:13Þ

and similarly hD(t, xD, xE, d ) ¼ 1 2 hE(t, xD, xE, d ) for t [ [ti, tiþ1] with i ¼ 1, 2, . . ., N. This does assume

some form of coordination between the two head domains of dynein as only one head will step

during each time interval, but it does not enforce coordination of the stepping pattern itself if the

head domains are allowed to separate past consecutive binding sites. The rearward head always steps

if the two head domains become too far apart. This assumption reflects the existence of a linker that

plays a critical role in gating dynein stepping behaviour thereby modelling tension-dependency at

high interhead separation during the processive stepping [4]. In future studies, it might be worth

introducing a model specifically taking into account how the linker gates dynein stepping behaviour

[4]. The system of ODEs is therefore given by

mC
d2xC

dt2
¼ KC(xT � xC � LC)� FC � gC

dxC

dt
, ð4:14Þ

mT
d2xT

dt2
¼ KT(xB � xT � LT cos (uBT))� KT(xT � xA � LT cos (uAT))

� KC(xT � xC � LC)� gT

dxT

dt
,

ð4:15Þ

mM
d2xA

dt2
¼ KT(xT � xA � LT cos (uAT))� KS(xA � xD � LS cos (uAD))� gM

dxA

dt
, ð4:16Þ

mM
d2xB

dt2
¼ KS(xE � xB � LS cos (uBE))� KT(xB � xT � LT cos (uBT))� gM

dxB

dt
, ð4:17Þ

mShD(t, xD, xE, d)
d2xD

dt2
¼ hD(t, xD, xE, d) �gATP

dxD

dt
� KATP(xD � p2k � LATP)

�

�KS(xD � xA � LS cos (uAD))� � gS
dxD

dt

ð4:18Þ

and mShE(t, xD, xE, d)
d2xE

dt2
¼ hE(t, xD, xE, d) �gATP

dxE

dt
� KATP(xE � p2kþ1 � LATP)

�

�KS(xE � xB � LS cos (uBE))� � gS
dxE

dt
,

ð4:19Þ

for t [ [0, TFinal] with dimensional parameter values given in table 1 and the ranges or distributions for

the stochastic parameters given in table 2.

Remark 4.3. In this model, we only consider continual stepping; therefore, we fix the size of the time

interval for each step, TStep ¼ tiþ1 2 ti, and hence TFinal will depend on the time interval TStep and the

number of steps N. Therefore, the stepping rate of the motors is predetermined. This assumption is

relaxed in §§4.4 and 5.4 where independent and random dwell times are introduced to the model,

respectively.

Remark 4.4. The binding sites are predetermined. The initial binding site p0 is assigned a value and

all binding sites are taken to be 8 nm away from the previous binding site. For each time step, the

binding site is updated by taking the next binding site of the unbound MTBD. For example, if an

MTBD is unbound on [ti, tiþ1] and bound to pk at time t ¼ ti, then the binding site will be updated to



Table 2. Stochastic stepping parameters and the respective ranges or distributions used in the mathematical model.

parameter description range/distribution

d maximum separation distance between the MTBDs 8 – 80 nm

m mean dwell time 0 – 2 � 109 ns

PD probability that MTBD E steps given that MTBD D stepped previously 20 – 80%

PE probability that MTBD E steps given that MTBD E stepped previously 20 – 80%

PBack probability that the unbound MTBD steps backwards 0 – 20%

q random vector that determines which MTBD steps U(0, 1)

qD random vector that determines when MTBD D steps exp( 1
m

)

qE random vector that determines when MTBD E steps exp( 1
m

)

n random number that determines the step size:

— for a forward step of nLATP

— for a backward step of 2nLATP

Pois(2)

Pois(1)
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pkþ2 ¼ ( pk þ 16) nm for t ¼ tiþ1. It must be observed that the time continuity of the model is reflected and

embedded in the time-variables associated with the domains. These variables are monitored (once

computed) if they are located at the discrete steps or not. Variable step sizes are explored in §5.4;

however, they are restricted to multiples of 8 nm to ensure that they can only bind at a specified

binding site on the microtubule.
4.2. Non-dimensionalization
To non-dimensionalize the model, let xC ¼ LCxC, xT ¼ LTxT, xA ¼ LSxA, xB ¼ LSxB, xD ¼ LSxD, xE ¼ LSxE

and t ¼ (mC/gC)t. The non-dimensionalized coefficients of the acceleration terms turn out to be small

and the dynamics are dominated by the viscous drag [53]. Hence, neglecting the small coefficients of

the second derivatives, we obtain the following non-dimensional system:

aC
dxC

dt
¼ 1

r1

xT � 1

� �
� l� xC, ð4:20Þ

aT
dxT

dt
¼ 1

r2

(xB þ xA)� cos (uBT)þ cos (uAT)

� �
þ r1k1(xC þ 1)� (2þ k1)xT, ð4:21Þ

aM
dxA

dt
¼ r2k2(xT � cos (uAT))þ (xD þ cos (uAD))� (k2þ1)xA, ð4:22Þ

aM
dxB

dt
¼ (xE � cos (uBE))þ r2k2(xB þ cos (uBT))� (k2 þ 1)xB, ð4:23Þ

aS
dxD

dt
¼ hD(t, xD, xE, d)[k3(b2k þ r3)þ (xA þ cos (uAD))� (1þ k3)xD] ð4:24Þ

and aS
dxE

dt
¼ hE(t, xD, xE, d)[k3(b2kþ1 þ r3)þ (xB þ cos (uBE))� (1þ k3)xE]: ð4:25Þ

The non-dimensional parameters are given by

aC ¼
gCgC

mCKC
, aT ¼

gTgC

mCKT
, aM ¼

gMgC

mCKS
, aS ¼

(gATP þ gS)gC

mCKS
,

r1 ¼
LC

LT
, r2 ¼

LT

LS
, r3 ¼

LATP

LS
,

k1 ¼
KC

KT
, k2 ¼

KT

KS
, k3 ¼

KATP

KS
,

bk ¼
pk

LS
, l ¼ FC

KCLC
, d ¼ d

LS
:

See table 1 for dimensional parameter values and table 2 for the range of values for d.
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4.3. Initial conditions
We prescribe initial conditions as follows: MTBD D and E are taken to be at binding sites p0 and p1 ¼ ( p0 þ 8)

nm, respectively. The cargo is taken to be at the origin and the tail component is set to be at its natural

length LC from the cargo. The AAAþ rings are taken to be at the same point midway between the

MTBDs, at a distance of the natural length LT from the tail. Therefore, the initial conditions are set to be

xC(0) ¼ 0, xT(0) ¼ LC, xA(0) ¼ LC þ LT, xB(0) ¼ LC þ LT,

xD(0) ¼ p0 ¼ LC þ LT � 4, xE(0) ¼ p1 ¼ LC þ LT þ 4:

)
ð4:26Þ

The non-dimensional initial conditions are given by

xC(0) ¼ 0, xT(0) ¼ r1, xA(0) ¼ r2 þ r1r2, xB(0) ¼ r2 þ r1r2,

xD(0) ¼ b0, xE(0) ¼ b1:

)
ð4:27Þ
pen
sci.5:171568
4.4. Independent stepping
It has been suggested in previous studies that interhead coordination is important to the stepping mechanism

of two-headed cytoplasmic dynein [67]; therefore, we explore the significance of this coordination by

considering the resultant behaviour if it is disrupted, i.e. if the two head domains step independently. The

dwell time before the binding of ATP for each motor domain is modelled by the exponential distribution

(see remark 4.5). We assume that these waiting times for each motor domain are independent of each

other and are given by qD ¼ {qi
D}i[N for MTBD D and qE ¼ {qi

E}i[N for MTBD E with qi
D and qi

E taken

from the exponential distribution with mean dwell time m. The system continues to be modelled by

equations (4.10)–(4.13), with different stepping functions to hD, hE in equations (4.14) and (4.16). For

MTBD D, we assume that it steps after qi
D ns, hence we define the following step function:

hq,D(t, qD) ¼ 1 if t[ [ti þ qi
D, tiþ1]

0 if t[ [ti,ti þ qi
D],

�

where ti and tiþ1 are the times when MTBD D binds back onto the microtubule after stepping with t0 the initial

time. The stepping function for MTBD E can be defined similarly:

hq,E(t, qE) ¼ 1 if t[ [t j þ qi
E, t jþ1]

0 if t[ [t j,t j þ qi
E]

�

with tj and tjþ1 the times when MTBD E binds to the microtubule. Here, tj denotes different time intervals to ti.

Therefore, the following model system of ODEs can be derived as follows:

mC
d2xC

dt2
¼ KC(xT � xC � LC)� FC � gC

dxC

dt
, ð4:28Þ

mT
d2xT

dt2
¼ KT(xB � xT � LT cos (uBT))� KT(xT � xA � LT cos (uAT))

� KC(xT � xC � LC)� gT

dxT

dt
,

ð4:29Þ

mM
d2xA

dt2
¼ KT(xT � xA � LT cos (uAT))� KS(xA � xD � LS cos (uAD))� gM

dxA

dt
, ð4:30Þ

mM
d2xB

dt2
¼ KS(xE � xB � LS cos (uBE))� KT(xB � xT � LT cos (uBT))� gM

dxB

dt
, ð4:31Þ

mShq,D(t, qD)
d2xD

dt2
¼ hq,D(t, qD) �gATP

dxD

dt
� KATP(xD � p2k � LATP)

�

�KS(xD � xA � LS cos (uAD))

�
� gS

dxD

dt

ð4:32Þ

and mShq,E(t, qE)
d2xE

dt2
¼ hq,E(t, qE) �gATP

dxE

dt
� KATP(xE � p2kþ1 � LATP)

�

�KS(xE � xB � LS cos (uBE))

�
� gS

dxE

dt
,

ð4:33Þ
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for t [ [0, TFinal]. See table 1 for dimensional parameter values and table 2 for the ranges and distributions for

the stochastic parameters.

Remark 4.5. Experimental observations suggest that the dwell times of dynein can be approximated

well by an exponential distribution with an average dwell time of 2 s, i.e. 2 � 109 ns, per ATP cycle [48]. It

is currently assumed that the dwell times are identical; however, differences in mean dwell times could

be explored in future work.

We take a multiscale approach when non-dimensionalizing the model system, using one fast

timescale for the stepping and one slow timescale for the dwelling. For the dwelling interval, we

non-dimensionalize as above with tc ¼ m and for the stepping intervals we take tc ¼ mC/gC. For the

sake of brevity, details of the non-dimensionalization are omitted here (see the electronic

supplementary material for details).
Soc.open
sci.5:171568
5. Numerical experiments
The scheme is implemented in MATLAB for N stepping intervals of [0,�TFinal] with non-dimensional end

time �TFinal ¼ 108 and N ¼ 100 using the solver ode45 [68]. ode45 is one of several solvers for integrating a

system of non-stiff ordinary differential equations given appropriate initial conditions and is based

on Runge–Kutta time-integrators. For further detailed description and implementation, we refer the

interested reader to consult MATLAB MathWorks [68]. The initial conditions are given by

xC(0) ¼ 0, xT(0) ¼ r1, xA(0) ¼ r2 þ r1r2, xB(0) ¼ r2 þ r1r2,

xD(0) ¼ b0, xE(0) ¼ b1:

)
ð5:1Þ

For the initial step, it is assumed that MTBD D is in an unbound state and MTBD E is in a bound state.

For each following step, a random number qi is generated from the uniform distribution on the interval

(0, 1) and the initial conditions are given by the values from the previous simulation: xC(ti), xT(ti), xA(ti),

xB(ti), xD(ti) and xE(ti). From here onwards, we refer to trajectories, the physical loci or paths taken by

each xi(t), and these represent the distances travelled in time. Also these could be referred to as

positions of the components as a function of time.

Remark 5.1. In all our numerical simulations (unless stated otherwise), in the absence of explicit

modelling of the tension generated by the linker to gate dynein stepping behaviour, we impose a

maximum interhead separation distance of 48 nm.
5.1. Stochastic stepping with limited coordination
Initially, we assume that the motor domains bind ATP at random when they are both attached to the

microtubule; therefore, we take PD ¼ PE ¼ 50%. This entails that the two head domains will not be

highly coordinated in terms of their ATPase cycle, although they will experience some coordination, in

terms of attachment to the microtubule, as we assume that only one motor domain can detach at a time.

The results show a mixed stepping pattern for both the MTBDs and AAAþ rings with both not passing

and passing stepping patterns present (figure 4d,e). This matches experimental observations (one-

dimensional projections of two-dimensional experiments) on yeast cytoplasmic dynein, labelled at the

AAAþ rings [36,37]. Here, we are able to compute the trajectories of the AAAþ rings and MTBDs,

which is not yet achievable in experiments, as tagging functional MTBDs is technically challenging. The

tail domain also moves with a stepping profile, as seen in experiments on dynein labelled at the tail

domain (figure 4c,f). The cargo moves along the microtubule with increasing velocity, which becomes

oscillatory at longer times once the dynein has settled into a stepping behaviour (figure 4a,b). By

computing the solutions over a larger interval, with end time tFinal ¼ 109 and N ¼ 1000, the velocity of

the cargo reaches a relative plateau where it stops increasing over time and oscillates within a small band

(figure 5a,b), matching observations by Garrett et al. [10]. The velocity of the cargo increases over time

before reaching a plateau due to the fact that dynein starts to move from a stationary position and

therefore must pick up speed. We do not impose an external force at the initial phase of the stepping process.

In order to make statistical comparisons with experimental observations, we compiled data from 1000

simulations of the model and then took averages over these different realizations. Observations by Qiu

et al. [37] show that approximately 83% of steps did not pass each other and in our simulations we have

an average of 84.71% steps not passing when d ¼ 48 nm (figure 6a, table 3). However, experimental
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results also show that dynein moves with predominately an alternating stepping pattern with

approximately 74% of steps alternating in time [37], whereas our simulations show only 56.11% of

steps alternating in time for d ¼ 48 nm (figure 6b, table 3). This may be due to the randomness in the

model where the probability of stepping is independent of which head stepped previously.

Remark 5.2. Many experiments on cytoplasmic dynein, including the experiments by DeWitt

et al. [36] and Qiu et al. [37], use dimerized yeast dynein. We have therefore also looked at a reduced

version of the model for a dimerized dynein motor with no cargo and we get similar results for the

stepping pattern and trajectories (see the electronic supplementary material for details).
5.2. Extensive interhead coordination
If dynein uses a more extensive form of interhead coordination, the probability that each MTBD steps

will depend on the previous step. Therefore, the impact of dependent stepping probabilities on the

model is investigated by taking PD = PE. It is assumed that the probability that MTBD E steps

increases if MTBD D stepped previously and decreases if MTBD E stepped previously. By taking

PD ¼ 70% and PE ¼ 30%, the results show the same mode of stepping to previous results, with a

mixed stepping pattern of 84.0% not passing steps reflecting experimental observations of 83%

(figures 7 and 8a). However, in comparison to our previous results, these results also resemble
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Table 3. Mean percentage of not passing steps and alternating steps given a range of values for the maximum separation
distance d (nm). The data represent the results of 1000 simulations with the probability that MTBD E steps set at 50%. If x% of
steps are not passing, then (100 2 x)% of steps are passing. Similarly, if x% of steps are alternating, then (100 2 x)% of steps
are not alternating.

d (nm) % not passing steps % alternating steps

16 66.07 66.13

32 79.36 59.19

48 84.71 56.11

64 87.71 54.44

rsos.royalsocietypublishing.org
R.Soc.open

sci.5:171568
15
experimental observations with 73.5% of steps alternating in our simulations and 74% in experiments

(figure 8b). This suggests that some form of coordination, in relation to the ATP cycles of each head

domain, occurs between the motor domains of dynein, with one domain being more likely to step if

the previous step was taken by the other motor domain. The proportion of alternating steps increases

with an increase in the probability that MTBD E steps given that MTBD D stepped previously (table 4).

5.3. Independent stepping
We now relax the assumption that there is coordination between the head domains and that they step

independently. Owing to the independence of the two MTBDs, both MTBDs could become detached

from the microtubule, if this occurs then the simulation is terminated and the number of steps and the

run length are recorded. Initially, we consider forward stepping with a fixed step size of 16 nm. We

consider a maximum of N ¼ 100 steps with a mean dwell time of m ¼ 2 � 109 ns for each head domain.

Numerical simulations are run in MATLAB using the solver ode15s for the dwelling period and ode45
for the stepping intervals [68]; example profiles are given in figure 9, and the mean percentage of steps

passing and alternating are given in figure 10. The MATLAB solver ode15s is employed here to provide

numerical solutions to a system of stiff ordinary differential equations (and in practice as well as

systems of differential-algebraic equations (DAEs)), unlike ode45 previously used [68].

By analysing the stepping behaviour of this model, we see that for larger values of KATP, in the

400–1000 MDa ns22 range in table 5, we achieve 83.63% to 86.97% not passing steps on average,

which is close to the 83% seen in experiments. However, all values of KATP in table 5 give much

lower values for the average percentage of alternating steps than those seen experimentally

(predominantly around 49% compared to 74%). This suggests that this independent form of stepping

cannot account for the alternating stepping patterns seen in experiments and hence there must be

some form of coordination acting between the two head domains to account for this behaviour.

Remark 5.3. We note that by allowing the head domains to step independently, they are able to

diverge considerably implying larger interhead separation distances which might not be biologically

realistic (e.g. figure 9c,d ). This shows the need to explicitly model the linker which has been shown to
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Figure 8. Bar charts showing the mean percentage of steps: (a) passing versus not passing and (b) alternating versus non-
alternating. The data represent the results of 1000 simulations with the probability that MTBD E steps set at 70% if MTBD D
stepped previously and 30% otherwise. The maximum separation distance is set to be 48 nm.
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gate interhead coordination at larger separation distances (and therefore able to bring the domains closer

to each other) [4]. Alternatively, modelling internal forces that are known to influence the

stepping behaviour may bring the complex back together [47]. Both of these remedies are the subject

of our future studies.

Variations in the values of KATP show that run lengths are highly dependent on this parameter. We

see that for KATP ¼ 10 MDa ns22 and KATP ¼ 100 MDa ns22 the mean number of steps in a run is less than

one, suggesting that predominantly the run is terminated before the first step can be completed.

Processivity is therefore dependent on the value of KATP. Although this parameter cannot be directly

measured in experiments as it is an approximation of the effects of the ATP force, it suggests that if

the ATP cycle of the detached head domain is not completed quickly enough, then an uncoordinated

detachment of the attached MTBD is likely to occur and hence the run will be terminated after fewer

steps. Taking KATP ¼ 500 MDa ns22 gives a mean number of steps of 33.50 and mean run lengths of

275.95 nm for the cargo and 276.69 nm for the tail domain (tables 5 and 6). Although this gives the

highest run lengths, these values are still much lower than those seen in experiments, with typical run

lengths of 800 nm and 1.5 mm measured for murine and bovine dynein in vitro [69]. This suggests

that although some processivity can be achieved with independent head domains, coordination is
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Table 4. Mean percentage of not passing steps and alternating steps given a range of values for the stepping probabilities of
MTBD E. The data represent the results of 1000 simulations with the maximum separation distance set to be 48 nm. Observe
that the percentage of not passing steps is independent of the probabilities PD and PE, while the percentage of alternating steps
is closely related. If x% of steps are not passing, then (100 2 x)% of steps are passing. Similarly, if x% of steps are alternating,
then (100 2 x)% of steps are not alternating.

PD (%) PE (%) % not passing steps % alternating steps

20 80 85.19 31.00

30 70 85.14 39.53

40 60 84.70 48.09

60 40 84.65 64.72

70 30 83.98 73.54

80 20 83.40 85.87
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important to obtain the higher run lengths that are seen in experiments. The fact that the mean run

lengths are lower than those seen in experiments could be due to the regulatory functions of dynactin

and other cargo adaptor proteins such as BICD2 present in vivo, which activate long-distance

movement of the motor [33,34,42]. Further modelling in this direction might help to confirm or refute

such hypotheses. Variations in gATP have little effect on the percentage of not passing and alternating

steps; however, they do have an effect on run length, with an increase in gATP . 10 MDa ns21 leading

to a fall in the mean number of steps and lower run length for all variables (tables 5 and 6).
Remark 5.4. We have extended this model framework to include random backward stepping and a

variable step size, details are discussed below in §5.4. If independent stepping is assumed, then this

leads to a reduction in run length to 158 nm for the cargo. This is likely to be due to the presence of

backward steps shortening the run length. However, larger step sizes may also lead to an increase in

detachment time for a single head within the model, increasing the likelihood that the other head will

also detach.



Table 5. Mean percentage of not passing and alternating steps, and mean number of steps in a run given a range of values for
the parameters KATP (MDa ns22) and gATP (MDa ns21). The data represent the results of 100 simulations with a mean dwell
time of m ¼ 2 � 109 ns. If x% of steps are not passing, then (100 2 x)% of steps are passing. Similarly, if x% of steps are
alternating, then (100 2 x)% of steps are not alternating; except for the case labelled* where the number of steps in a run
was always less than or equal to one and hence neither alternating or non-alternating steps were present.

KATP (MDa ns22) gATP (MDa ns21) % not passing steps % alternating steps mean number of steps

10 10 100 0* 0.36

100 10 100 33.60 0.75

250 10 46.80 66.08 9.56

400 10 83.63 43.89 29.28

500 10 85.56 46.40 33.50

550 10 85.19 50.49 33.37

600 10 86.97 49.22 30.99

750 10 86.39 50.40 27.65

1000 10 84.56 48.07 22.92

500 1 85.06 47.12 32.90

500 10 85.56 46.40 33.50

500 100 84.52 43.58 26.71

500 1000 78.55 46.11 14.84
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Figure 10. Bar charts showing the mean percentage of steps: (a) passing versus not passing and (b) alternating versus not
alternating. The data represent the results of 100 simulations with KATP ¼ 500 MDa ns22 and gATP ¼ 10 MDa ns21.

rsos.royalsocietypublishing.org
R.Soc.open

sci.5:171568
18
5.4. Backward stepping, variable step size and large-scale dwelling
In this section, we extend our modelling framework to take into account the backward stepping, variable

step sizes and large-scale dwelling of dynein. Previously, we used a fixed time interval TFinal/N for the

stepping of a single MTBD; however, the active stepping of the MTBD should end when the MTBD binds

to the microtubule. Consider the interval [ti, tiþ1] , [ti, ti þ tmax] with

tiþ1 ¼ min {t[ [ti, ti þ tmax] : xi(t) � pkþ2},

where pkþ2 is the next binding site for the unbound MTBD j and tmax is the maximum potential length of

the stepping interval. Hence, the total time spent stepping is given by TF ¼
PN

k¼1 (tiþ1 � ti). In order to

model dwelling over large timescales, we take a multiscale approach by using one timescale for

stepping and one for dwelling; variable step sizes and backward stepping are also included in the

model (see the electronic supplementary material for details).

The model is solved numerically in MATLAB for N ¼ 100 steps using ode45 for the stepping model

and the stiff solver ode15s [68] for the dwelling model. The non-dimensional systems are solved and then

converted back to dimensional results so that they can be presented together on the same timescale.



Table 6. Mean run lengths for the cargo and tail domain given a range of values for the parameters KATP (MDa ns22) and gATP

(MDa ns21). The data represent the results of 100 simulations with a mean dwell time of m ¼ 2 � 109 ns. If x% of steps are
not passing, then (100 2 x)% of steps are passing. Similarly, if x% of steps are alternating, then (100 2 x)% of steps are not
alternating.

KATP (MDa ns22) gATP (MDa ns21) cargo (nm) tail (nm)

10 10 10.96 15.54

100 10 14.09 19.12

250 10 84.52 88.87

400 10 242.20 243.79

500 10 275.95 276.69

550 10 277.54 277.79

600 10 255.87 255.95

750 10 229.17 229.18

1000 10 191.34 191.34

500 1 271.15 271.69

500 10 275.95 276.69

500 100 221.65 222.60

500 1000 126.70 129.37
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The maximum length of the stepping time interval is taken to be tmax ¼ 106. The primary values are taken

as follows: the probability that MTBD E steps given that MTBD D (E) stepped previously is taken to be

PD ¼ 84% (PE ¼ 16%), the maximum separation distance is taken to be 48 nm and the probability of

backward stepping (PBack) is set to be 20%. The mean dwell time is taken to be m ¼ 2 � 109 ns as

experimental results have shown the average dwell time for dynein to be 2 s [48]. For each step, we take

n from the Poisson distribution about 2 to give the step size nLATP for the forward step sizes and n
from the Poisson distribution about 1 for the backward steps to give the step size 2nLATP (see

remark 5.5). We assume that zero steps are possible, but they are not counted toward alternating or

non-alternating steps. See table 2 for the range of values or distributions used for the stochastic parameters.

Remark 5.5. Note that the distribution used to obtain the step size nLATP could be obtained through

analysis of the experimental data to give a more accurate representation of the step sizes of a particular

dynein species. However, it could also be used to analyse the effect of different distributions on stepping

behaviour and run lengths which is left for future studies.

The results show similar profiles for the tail, AAAþ rings and MTBDs, with a clear presence of

backward steps, variable step sizes and increased dwell times between steps; however, we see a

significant difference for the velocity of the cargo (figure 11). Our computational results show that the

frequency of alternating steps does not differ and is an emergent process of the modelling. On the

other hand, our results show that the not-passing steps differed by approximately 1–4% for optimal

parameters, which is not such a big variation. However, this variation becomes significant for small

values of the maximum separation distance (see the electronic supplementary material for details).

The cargo now dwells between steps, with an oscillatory velocity profile that returns to zero between

steps which is similar to the in vivo experimental results shown by Garrett et al. [10]. Using the

primary values for the parameters gives a maximum velocity of the cargo of 15 � 105 nm s21, and a

velocity of up to 2 � 108 nm s21, for the tail domain. This is much higher than velocities measured

experimentally with dynein typically moving at speeds of 600 nm s21, at saturating ATP levels and at

room temperature with in vivo velocities reaching up to 3 mm s21 in mammalian neurons, although

yeast dynein moves at slower speeds of around 50–80 nm s21 [69]. A full parameter analysis of all

unknown model parameters needs to be conducted in order to establish the parameter set which

gives quantitatively accurate values for the velocity for each species and context.

Although the overall direction of travel for the AAAþ rings and MTBDs are closely related, we do see

differences in their behaviour, with the two AAAþ rings being further apart from each other than the

two MTBDs and crossing paths at different time points (figure 11e,f ). This would suggest that
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labelling at the AAAþ ring may not automatically give a clear picture of the stepping behaviour at the

MTBD. However, there is no significant difference in stepping pattern with 82.72% non-passing steps for

the MTBDs and 83.15% for the AAAþ rings.

We also achieve a range of backward steps in the model. For a fixed step size and minimal dwelling of 2

ns (see remark 5.6), taking the probability of backward stepping to be 20% and the maximum separation

distance to be 48 nm results in 24.91% backward steps, reflecting the experimental observations of Qiu et al.
(23%) [37]. While in order to match the observations of Reck-Peterson et al. (13%), we can take the

probability of backward stepping to be 10% and the maximum separation distance to be 56 nm to

obtain 13.19% backward steps [48]. A probability of backward stepping of 0% does not mean that there

will be no backward stepping in the model as we use this parameter to represent random backward

stepping, which we differentiate from the corrective backward steps taken when the MTBDs are too far

apart. We see from the results that this gives a very low presence of backward stepping, much lower

than in experimental results. Hence, this suggests that the MTBDs might randomly step backwards or

that tension within the complex causes restorative backward steps through some mechanism not

explicitly modelled. However, such processes are beyond the scope of this study. Experimental studies

have shown that dynactin plays an important role in the directionality of dynein, and hence we may

need to explore these effects in greater detail [2,6,28–30,32,34,65]. The effects of stepping along the

microtubule in two dimensions may play a role in backward stepping if the motor domain rotates due

to the off-axis components of the steps. In our current model, we are setting external forces to be zero,

but these forces may play a role in the directionality of the head domain for in vivo studies.

Remark 5.6. The effects of backward stepping and variable step sizes were explored on an initial

minimal dwelling model for a single timescale, using the non-dimensionalization given in §4.2, taking

m ¼ 2 ns.

We explored variations in the maximum separation distance on the stepping patterns (table 7). The

reduction in maximum separation distance increases the likelihood of backward stepping, this is to be

expected as backward stepping is directly related to the separation distance in the model, with an

unbound head stepping backwards if it is too far in front of the other MTBD. We also see that

reducing the maximum separation distance increases the likelihood of passing steps, which makes

sense as closer MTBDs are more likely to cross over one another during stepping.

Increasing the stepping probability of MTBD E after MTBD D has stepped decreases the percentage of

not passing steps and also decreases the percentage of backward steps (table 8). This is likely to occur as

the increased coordination would create a more efficient stepping pattern reducing the prevalence of

wasteful backward steps by keeping the motor domains closer together and hence passing steps

would also be more likely to occur.



Table 7. Mean percentage of not passing, alternating and backward steps given a range of values for the maximum separation
distance d (nm). The data represent the results of 100 simulations with the probability that MTBD E steps set at 74% if MTBD D
stepped previously and 26% otherwise. The probability of random backward stepping is set to be 10% and the mean dwell time
is taken to be 2 ns. If x% of steps are not passing, then (100 2 x)% of steps are passing. Similarly, if x% of steps are
alternating, then (100 2 x)% of steps are not alternating.

d (nm) % not passing steps % alternating steps % backward steps

8 49.36 73.90 26.63

16 53.57 74.39 20.88

24 68.05 73.73 17.14

32 75.45 74.31 15.80

40 80.85 74.73 14.47

48 81.68 73.53 13.19

56 84.50 74.35 12.90

64 85.72 73.43 12.96

72 85.89 74.30 12.08

80 87.29 73.67 12.70

Table 8. Mean percentage of not passing, alternating and backward steps given a range of values for the stepping probabilities
of MTBD E. The data represent the results of 100 simulations with the maximum separation distance set to be 56 nm. The
probability of random backward stepping is set to be 10% and the mean dwell time is taken to be 2 ns. Observe that the % of
not passing steps is independent of the probabilities PD and PE, while the % of alternating steps is closely related. If x% of
steps are not passing, then (100 2 x)% of steps are passing. Similarly, if x% of steps are alternating, then (100 2 x)% of steps
are not alternating.

PD (%) PE (%) % not passing steps % alternating steps % backward steps

20 80 88.00 19.93 23.01

30 70 87.13 29.90 17.87

40 60 87.29 39.74 16.49

50 50 86.23 50.06 15.41

60 40 85.87 60.51 13.44

70 30 84.17 70.82 13.28

80 20 84.81 80.18 12.90
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Owing to the presence of zero sized steps, in order to achieve similar results to experiments we take

the probability that MTBD E steps set at 84% if the previous step was taken by MTBD D, and 16%

otherwise. This results in 82.72% non-passing steps, 74.68% alternating steps and 20.91% backward

steps (figure 12). Approximately 10% of steps by the MTBDs were of a zero step size, the majority

of steps were of 8–16 nm and histograms of both forward and backward step distributions (not

including zero steps) are given in figure 13. It is likely that dynein does experience step sizes of ‘zero’

length, i.e. detaches but rebinds to the same point on the microtubule. However, this stepping

behaviour is not picked up (and therefore not accounted for) by the step-finding algorithms used in

experimental data analysis. This suggests that the coordination between head domains could actually

be higher in reality than recorded in experiments.
6. Discussion
In this study, we have derived a general integrative mechanistic model that describes the transport

mechanism of cytoplasmic dynein. Our results give a mixed stepping pattern with a predominantly

not passing stepping profile, which is an emergent process of the model, matching experimental
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if MTBD D had stepped previously and 16% otherwise. The maximum separation distance is set to be 48 nm, the mean dwell time is
2 ns and the probability of random backward stepping is taken to be 20%.
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observations. We have shown that there is likely to be some form of interhead coordination between the

timing of the ATP cycles of the two AAAþ rings in order to account for the alternating patterns seen in

experiments.

We have been able to model uncoordinated motion and have shown that dynein can still achieve

some level of processivity through this mechanism. For example, the model achieves run lengths close

to those seen for murine dynein in the absence of dynactin, when using a fixed forward stepping

pattern. This may suggest that either dynactin has some influence on the coordination of the motor

domains or that we need to account for the effect of dynactin in our model in some other way.

Loa dynein in mice has been shown to exhibit shorter run lengths than wild-type complexes [10–12].

Ori-McKenney et al. [11] measured run lengths of 259 nm for Loaþ/2 mutants and 175 nm for Loa2/2

mutants; we are able to achieve similar run lengths through an appropriate choice of parameters.

Ori-McKenney et al. [11] suggest that the Loa mutation may cause altered coordination in the motor

domain of dynein. Our results suggest that it may be possible that this mutation disrupts the

coordination within the complex, potentially leading to more frequent detachment of the motor from

the microtubule and shorter run lengths. Deng et al. [14] have also shown that the Loa mutation

causes dynein to have a lower affinity to dynactin, and so it may be through this disruption that the

mutation affects the transport mechanisms of dynein.

It would be interesting to investigate the effect of the differences in these dwell times rather than

assuming that the mean dwell time for each head domain is equivalent. In particular, allowing the

lagging and leading head to have different dwell times may encourage a more coordinated stepping

pattern, and experiments have shown that the lagging and leading heads have different stepping

characteristics [36,37].

Currently, the motor domain can diverge as we assume that once the MTBD is bound, it is bound

until a conformational change through ATP hydrolysis cycle occurs, it would therefore be interesting

to introduce the effect of forces on detachment in this model. It has been shown by Gennerich et al.
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[47] that dynein can walk through applied force alone, and so these forces are important to the model.

Another alternative is to introduce explicit modelling of the linker that has been shown to gate the ATP-

dependent release of dynein from microtubules [4]. In particular, the linker has been shown to play a

critical role in gating dynein stepping behaviour at high interhead separation distances. By

introducing a linker, a tension-dependent force that acts to retract the leading head or to pull the

lagging head will counterbalance the larger separation distances between heads during dynein

stepping behaviour.

We have also been able to incorporate backward stepping, a variable step size and dwelling over large

timescales into the model. The results give trajectories for the complex and cargo that qualitatively match

experimental observations. Although we have compared our results qualitatively and quantitatively with

results published in the literature, it would be beneficial to carry out detailed comparisons for a specific

dynein whereby space–time series distributions data are provided. An ideal candidate is to employ a

Bayesian parameter identification approach that allows us to compute optimal parameter distributions

resulting from fitting the solution of the mathematical model (with all parameters assumed unknown)

to experimental data (known) in an optimal sense [70]. The result of this approach is the rich

statistical data that provide various statistical measures such as mean, variance and 95% credible

regions. Furthermore, velocities can also be computed as distributions, which is more suitable for

analysis and comparison to experiments. This approach forms part of our current studies, the only

requirement is finding appropriate experimental data generated in terms of space–time series to allow

us to optimize parameter identification such that the model solution best fits the data.

We have also shown that backward stepping that is directly related to the separation within the

complex cannot account for the high percentages of backward stepping seen experimentally, and

hence there must be something else external to this simple model causing these characteristics. We

suggest that the impact of dynactin on the transport mechanisms and the three-dimensional nature of

dynein need to be explored further with regard to their impact on backward stepping.

By prescribing the levels of coordination within the model, we can match experimental observations

of the alternating stepping pattern, but when considering the possibility of ‘zero’ step sizes, this

coordination must be higher than that seen in experimental observations. The model predicts the

preference of dynein to the not passing stepping pattern when the motor is allowed to separate

(which is realistic due to the large step sizes seen in experiments), and this matches experimental

observations. The model also predicts that species of dynein which prefer a tighter conformation may

be more likely to experience backward steps and have a higher prevalence of passing steps. Stronger

coordination between the two motor domains could also reduce backward stepping, which leads to

more efficient stepping as backward steps may be wasteful.

Other future works involve studies to investigate the effects of variable dwell times and strain-

dependent stepping to establish a complete model which incorporates all aspects of transport

mechanisms for cytoplasmic dynein. Apart from extending the model to take into account dynactin

and tension linker domain, it will also be interesting to model multiple dyneins and how they aid or

hinder the stepping behaviour. Recent studies by Urnavicius et al. [28] and Grotjahn et al. [29] reveal

that dynactin has the capacity to recruit a team of dyneins for processive motility. However, to the

best of our knowledge, no mathematical model has been formulated that could describe such

experimental observations. The approach presented here sets foundations for such a study.
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