Algorithmic approaches to privacy at WMF

Hal Triedman – Privacy Engineering Intern

Table of Contents

- Introduction
 - Organizational values, the meaning of "privacy"
- Privacy tools
 - General approaches
 - K-anonymity
 - Differential privacy
- Future directions

Privacy Policy vs. Open Access Policy

Privacy Policy? Or Open Access Policy?

Privacy policy and data retention guidelines:

- Minimize harms of collecting user data
- Clear guidelines around retaining data
- Anti-surveillance
- "Lean data diet"

Open access policy:

- As much transparency as possible
- Recognition that WMF controls resources that lots of people regularly access
- Releasing more data could conceivably allow us to better understand the internet

The stakes are high, because Wikipedia is inherently political – users and editors are pseudonymous for a very good reason

What does "privacy" even mean?

(... it's complicated, and depends on who you ask)

What does "privacy" even mean?

Some potential definitions (from least to most technical):

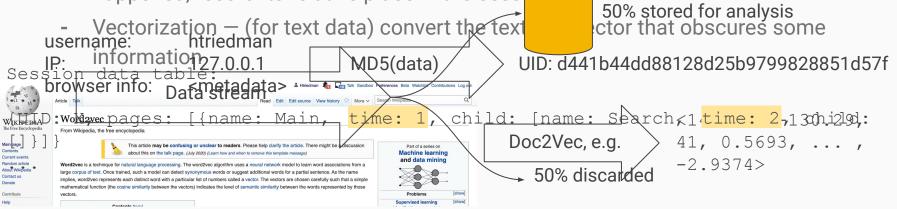
- Privacy is a vibe you know it when you feel it
- US legal privacy freedom from state search without a warrant/CCPA
- Bits of entropy how much does a given piece of information identify you?
- Differential privacy we'll come back to this later

What are the tools in our privacy toolbox?

General Approaches

General Approaches

- Pseudonymization hashing usernames/IPs
- Filtering only save a percentage of the data for analysis purposes
- Relative timestamps (for a session) rather than recording exactly when something happened, record its relative place in the session



K-anonymity: Definition

For some group size *K*, selectively aggregate fields in your database so that no subgroup is smaller than *K*

K-anonymity: Example

UID	Gender	Age	Location		UID	Gender	Age	Locatio
1	F	29	Barcelona	2-anonymity	1	F	18-29	Europe
2	М	64	Houston		2	М	50-64	US
3	М	54	DC		3	М	50-64	US
4	F	18	Berlin		4	F	18-29	Europe
5	F	44	Boston		5	F	30-49	US
6	М	66	London		6	М	65+	Europe
7	F	38	SF		7	F	30-49	US
8	М	75	Rome		8	М	65+	Europe

12

K-anonymity: Problems

- K-anonymity is an <u>NP-hard</u> problem computationally intractable with large datasets
 - (or you can just sorta eyeball it)
- Same issue as with bits of entropy what if a government is comfortable arresting *K* people?
- Vulnerable to re-identification attacks can link this database with outside knowledge (a la Latanya Sweeney) to break privacy

Differential Privacy

- Imagine we had two databases, X and X', owned by the **database owner**
- X and X' are comprised of entries
- X and X' are adjacent if they differ by one and only one entry
- An analyst can can send queries to the database owner

- Differential privacy: a **promise** between the database owner and participants who contribute entries:

"From the perspective of the analyst, your participation in this database will be completely hidden. Population-level information can be extracted, but no one will be able to infer your presence or absence (even if you're an outlier)."

Let ε be a positive real number, \mathcal{M} be an algorithm that adds noise to a dataset, *R* is a result in the range of \mathcal{M} , and *X* and *X'* be two adjacent databases. \mathcal{M} is ε -differentially private if:

$$\Pr[\mathcal{M}(X) = R] \le e^{\varepsilon} \cdot \Pr[\mathcal{M}(X') = R]$$

As $\varepsilon \rightarrow 0$, the bound e^{ε} gets tighter, and we need to add more noise.

Importantly, ε serves as a measurable, quantifiable metric called *privacy loss*:

$$\ln\left(\frac{\Pr[\mathcal{M}(X) = R]}{\Pr[\mathcal{M}(X') = R]}\right) = \varepsilon$$

Impossible for differentially-private algorithms to be subject to re-identification attacks

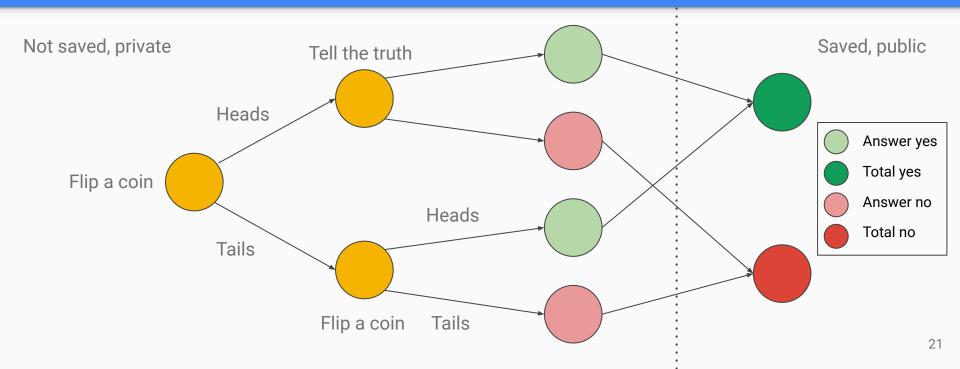
- \mathcal{M} is independent from the world \rightarrow data participants are protected from prior outside knowledge and protected from future outside knowledge

Differential Privacy: Randomized Response

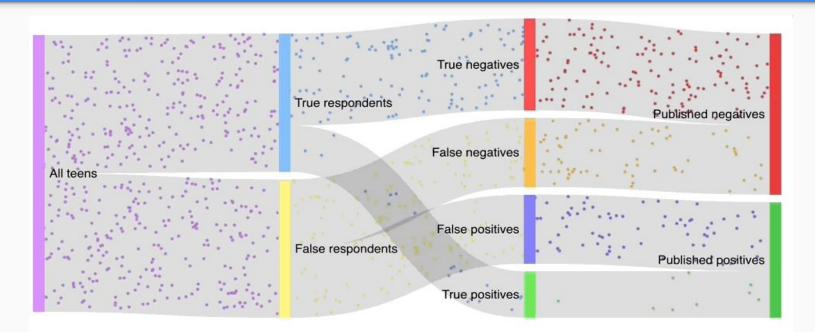
Let's imagine you were conducting a poll about teen drinking:

- NIH estimates 33.6% of teens have consumed alcohol in the past month
- The behavior is illegal/taboo \rightarrow respondents might not answer truthfully
- Probabilistically add noise to the number
 - Not an accurate count, but you can track changes proportionally over time
 - If methodology is published, can work backwards to derive estimates

Differential Privacy: Randomized Response

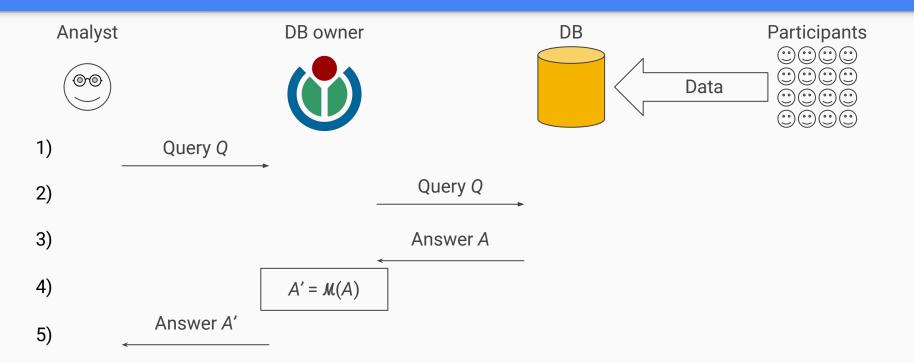


Differential Privacy: Randomized Response



836 published positives 1164 published negatives

Differential Privacy: Real World



Differential Privacy: Limitations

- Counts are not exactly accurate
- Privacy loss is measurable (ε), but every time the DB owner answers a query, it increases
- Lots of these parameters are very abstract how should we communicate with less- or non-technical community members about them?

Future Directions

Future Directions: Granular Pageview Data

Currently working to privately release (page, language, country, views) tuples:

- <u>MediaWiki API</u> currently has (page, language, views) and (page, country, views), but filtering by both could leak a lot of information
- Increase knowledge for editors in multilingual/less-connected places
 - e.g. editors in India, Anglophone/Francophone Africa, Vietnamese speakers in the US
- Disaggregate country-level trends
 - e.g. <u>2021 storming of the US Capitol</u> was a top-10 enwiki article for two weeks in January, but probably not in South Africa

Beta version of this available at <u>https://diff-privacy-beam.wmcloud.org</u>

Future Directions: Session Data

Could combine differential privacy with existing Wikipedia ontologies to anonymize and release some form of session data

- Maybe a knowledge graph based on browsing history?

