
Calhoun: The NPS Institutional Archive

DSpace Repository

Theses and Dissertations 1. Thesis and Dissertation Collection, all items

2014-09

Preventing pirates from boarding commercial

vessels - a systems approach

Cabungcal, Juan; Kaniss, David; Laing, Chris; Mastran,

Keith; Powell, Jason; Quijano, Nathaniel; Rosenberg, Eric;

Walsh, Greg; Team Pirates; Cohort 311-111A4 and 311–131A...

Monterey, California: Naval Postgraduate School

http://hdl.handle.net/10945/43991

Downloaded from NPS Archive: Calhoun

NAVAL

POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

SYSTEMS ENGINEERING

CAPSTONE PROJECT REPORT

Approved for public release; distribution is unlimited

PREVENTING PIRATES FROM BOARDING

COMMERCIAL VESSELS – A SYSTEMS APPROACH

by

Team Pirates

Cohort 311-111A4 and 311–131A

September 2014

Project Advisor: Paul Shebalin

Second Reader: Richard Millar

THIS PAGE INTENTIONALLY LEFT BLANK

 i

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704–0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction,

searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send
comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to

Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA

22202-4302, and to the office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
September 2014

3. REPORT TYPE AND DATES COVERED
Capstone Project Report

4. TITLE AND SUBTITLE

PREVENTING PIRATES FROM BOARDING COMMERCIAL VESSELS – A

SYSTEMS APPROACH

5. FUNDING NUMBERS

6. AUTHOR(S) SE Cohort 311-111A4 and 311–131A, Team Pirates

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Naval Postgraduate School

Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION

REPORT NUMBER
NPS-SE-XZY

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)

N/A
10. SPONSORING/MONITORING

 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES the views expressed in this thesis are those of the author and do not reflect the official policy or

position of the Department of Defense or the U.S. Government. IRB protocol number ____N/A____.

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

Piracy represents a serious threat to modern maritime traffic, causing significant financial losses as well as loss of life.

The system’s proposed area of operation is the waters of Indonesia, as current antipiracy solutions are not feasible due

to the region’s unique physical geography. Worldwide deployment is possible with minimal modifications. The

systems engineering process was used to identify a system that effectively and economically prevents pirates from

boarding commercial vessels. A model of the operational environment was developed in MATLAB to run simulations

designed to estimate the relative effectiveness of each assessed countermeasure. A cost analysis was performed on the

most effective system configurations to determine economic feasibility; the best-value system was recommended. The

results of the project indicated that the P-Trap countermeasure, designed to entangle the pirate’s propellers with thin

lines, is both effective and economically viable for wide-scale deployment. The further addition of a fire hose system

using net projectiles to increase the difficulty of boarders to climb onto the vessel was found to enhance the system

effectiveness, while remaining cost-effective.

14. SUBJECT TERMS
modeling and simulation, system integration, system architecture, Southeast Asia, Indonesia, piracy, boarding,
countermeasures, hijacking, trade study

15. NUMBER OF

PAGES
147

16. PRICE CODE

17. SECURITY

CLASSIFICATION OF

REPORT
Unclassified

18. SECURITY

CLASSIFICATION OF THIS

PAGE

Unclassified

19. SECURITY

CLASSIFICATION OF

ABSTRACT

Unclassified

20. LIMITATION OF

ABSTRACT

UU

NSN 7540–01-280-5500 Standard Form 298 (Rev. 2–89)

 Prescribed by ANSI Std. 239–18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

PREVENTING PIRATES FROM BOARDING COMMERCIAL VESSELS –

A SYSTEMS APPROACH

Cohort 311-111A4 and 311–131A/Team Pirates

Juan Cabungcal David Kaniss Chris Laing

Keith Mastran Jason Powell Nathaniel Quijano

Eric Rosenberg Greg Walsh

Submitted in partial fulfillment of the

requirements for the degree of

MASTER OF SCIENCE IN SYSTEMS ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL

September 2014

Lead editor: Eric Rosenberg

Assistant editor: David Kaniss

Reviewed by: Dr. Paul Shebalin Dr. Richard Millar

 Project Advisor Second Reader

Accepted by:

Dr. Cliff Whitcomb

Chair, Systems Engineering Department

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

Piracy represents a serious threat to modern maritime traffic, causing significant financial

losses as well as loss of life. The system’s proposed area of operation is the waters of

Indonesia, as current antipiracy solutions are not feasible due to the region’s unique

physical geography. Worldwide deployment is possible with minimal modifications. The

systems engineering process was used to identify a system that effectively and

economically prevents pirates from boarding commercial vessels. A model of the

operational environment was developed in MATLAB to run simulations designed to

estimate the relative effectiveness of each assessed countermeasure. A cost analysis was

performed on the most effective system configurations to determine economic feasibility;

the best-value system was recommended. The results of the project indicated that the P-

Trap countermeasure, designed to entangle the pirate’s propellers with thin lines, is both

effective and economically viable for wide-scale deployment. The further addition of a

fire hose system using net projectiles to increase the difficulty of boarders to climb onto

the vessel was found to enhance the system effectiveness, while remaining cost-effective.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION..1
A. BACKGROUND ..1

1. Piracy in Indonesian Waters ...3
2. Pirate Attack Strategies ...8

B. PROBLEM STATEMENT ...9
C. RESEARCH QUESTIONS ...9
D. PROJECT OBJECTIVE ...10
E. SCOPE ..10

II. APPROACH ...11

A. SYSTEMS ENGINEERING PROCESS OVERVIEW11

B. NEEDS ANALYSIS ...15

C. REQUIREMENTS DEVELOPMENT ..15
D. FUNCTIONAL ARCHITECTURE DEVELOPMENT16

E. SYSTEM ARCHITECTURE DEVELOPMENT17
F. MODELING AND SIMULATION APPROACH21

1. Model Foundation ..23
2. Model Architecture ..23
3. Countermeasure Implementation...29

4. Model Implementation ..32
G. COST ANALYSIS APPROACH ..32

1. Cost Model ..33
2. Labor Cost ..34

3. System Purchasing ...34
4. System Life-Cycle Considerations ..35

5. Consumables ...36
6. Maintenance ...37
7. IT Support ..38

8. Documentation ...38
9. Training ..39

10. Net-Present-Value Calculation ...40
H. SELECTING THE SYSTEM SOLUTION ...41

III. RESULTS ...43
A. NEEDS ANALYSIS RESULTS ..43

1. Stakeholders ...43

2. Stakeholder Needs ..45
3. Effective Need ...47

B. REQUIREMENTS ...49
1. Concept of Operations (CONOPS)...49
2. Design Reference Mission..51
3. Functional Requirements ..52
4. Non-Functional Requirements ..53

 viii

C. FUNCTIONAL ARCHITECTURE ...54

D. SYSTEM ARCHITECTURE ...56
1. Viable Solutions ..56

2. Trade Study ..61
3. Selected Countermeasures ..62

E. MODELING AND SIMULATION RESULTS ...64
1. Modeled System Configurations ...64
2. Results ...64

3. Model Limitations ..65
F. COST ANALYSIS RESULTS ..65
G. SYSTEM CONFIGURATION SCORING ...71

IV. CONCLUSIONS ..75

V. RECOMMENDATIONS ...77

APPENDIX A. SYSTEM CONFIGURATIONS LIST ...79

APPENDIX B. MODEL SOURCE CODE ..81
A. AIR_CANNON.M ..81

B. BARBED_WIRE.M ...83
C. BARBED_WIRE_SEGMENT.M ...85
D. COM_SHIP.M ..86

E. CREW.M ..89
F. CREW_STATUS.M ...89

G. CURTAIN.M ..90
H. DISPLAY.M ...91
I. DOMAIN_MANAGER.M...93

J. GET_ANGLE.M ..97
K. MIL_SHIP.M ...98

L. PIRATE.M ..99
M. PIRATE_STATUS.M ..101

N. PTRAP.M ...102
O. SKIFF.M ...104
P. SKIFF_STATUS.M ...106

Q. WATER_CANNON.M ..107

APPENDIX C. MODEL UML CLASS RELATIONS ..111

APPENDIX D. MODEL ASSUMPTIONS...113

APPENDIX E. MODEL FUTURE WORK ...123

LIST OF REFERENCES ..125

INITIAL DISTRIBUTION LIST ...127

 ix

LIST OF FIGURES

Figure 1. 2013 Pirate Attacks in Indonesia ..6
Figure 2. 2013 Pirate Attacks near Singapore ..7
Figure 3. Project SE Process Overview ..12
Figure 4. Model Architecture ...24
Figure 5. Com_Ship Angular Approximations ..26

Figure 6. Example of Display...28
Figure 7. P-Trap Regions of Effect ..30
Figure 8. Water Cannon Regions of Effect ..31
Figure 9. Context Diagram ...48
Figure 10. Top-Level CONOPS ...49

Figure 11. OV-1 Operational Concept ...50

Figure 12. Operational Environment ..51
Figure 13. Piracy Prevention System Requirements ..52
Figure 14. Top-level Functional Hierarchy of BPS ...55

Figure 15. Cost vs. Survival Percentage...72

 x

THIS PAGE INTENTIONALLY LEFT BLANK

 xi

LIST OF TABLES

Table 1. Regions of Actual and Attempted Pirate Attacks Worldwide 2009–20132
Table 2. Analysis of Traffic, Cargo, and Danger in Indonesian Straits6
Table 3. Measures of Performance Criteria Ranking Weights20
Table 4. List of Identified Stakeholder Needs ..46
Table 5: Functional Requirements ..53

Table 6. Non-Functional Requirements ..54
Table 7. BPS Functions ...56
Table 8. Decision Matrix Analysis of Potential Countermeasures61
Table 9. Selected Countermeasures ..62
Table 10. Simulation Results ..64

Table 11. System Configuration Cost ...66

Table 12. Water Cannon Total Ownership Cost ...67
Table 13. Compressed Air Launcher total Ownership Cost ...68
Table 14. P-Trap Total Ownership Cost ...69

Table 15. Pirate Curtain Total Ownership Cost ..70
Table 16. Razor Wire Total Ownership Cost ..71

Table 17. Cost and Survival Results ...73

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiii

LIST OF ACRONYMS AND ABBREVIATIONS

BPS Boarding Prevention System

C2 Command and Control

CONOPS Concept of Operations

COTS Commercial off-the-Shelf

DOE Design of Experiments

DOD Department of Defense

FY Fiscal Year

ICC International Chamber of Commerce

IMB International Maritime Bureau

KPP Key Performance Parameter

LCC Life-Cycle Cost

MOE Measure of Effectiveness

MOP Measure of Performance

M&S Modeling and Simulation

RPG Rocket Propelled Grenade

SA Situational Awareness

SE Systems Engineering

SoS System-of-Systems

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

 xv

EXECUTIVE SUMMARY

Maritime piracy is often thought of as a historical problem, but it is a significant

contemporary threat to international commerce. Pirates are able to capture cargo ships

and tankers worth millions of dollars and ransom the ship and its crew back to the home

nation. While naval deployments have successfully controlled hotspots of pirate activity

such as Somalia, this stratagem is not universally effective. Pirates in the seas around

Indonesia are able to use local geography to reduce the effectiveness of naval task forces.

In part due to this, piracy in Indonesian waters has surged to nearly half of all reported

pirate attacks in recent years. This report focuses on the identification of a solution that

will prevent pirates from boarding commercial shipping vessels.

This project involves a wide range of stakeholders interested in some aspect of the

system. Merchant crews, shipping companies, and international maritime organizations

were identified as key stakeholders. Inputs were obtained from the key stakeholders, and

were used to generate system requirements. The analysis of top-level user requirements

showed that the system could be considered successful in deterring piracy if pirate

boarding is prevented for the period of time required for aid to arrive. Pirate deterrence

can be accomplished by the second level requirements of impeding pirate entry routes,

forcing pirates away from the target merchant vessel, or degrading pirate capabilities.

Research of the current and theorized pirate countermeasures used to deter or

prevent boarding resulted in a comprehensive database of twenty-five (25)

countermeasures. The list of countermeasures was reduced by rating each item on

Measures of Performance (MoP) and Measures of Suitability (MoS) such as Time to

Deploy, Ease of Use, Maintenance, Cost, and Logistics. The results indicated that the five

countermeasures should be modeled to determine effectiveness: Razor Wire, P-Traps,

Water Curtains, Fire-hoses, and Compressed Air Cannons.

A model of the operational environment was coded using MATLAB that utilizes a

predator-prey relationship to represent the pirate vessels and the commercial ship. The

model assumed that multiple hostile vessels would engage in an attack, with the intent to

 xvi

overrun the target’s defenses. For each countermeasure configuration a functional flow of

events versus a simulated pirate attack was performed using MATLAB software. System

configurations were developed to estimate the relative effectiveness of each

configuration, as well as the cumulative effects of employing multiple countermeasures

simultaneously.

Twenty-four system configurations were selected out of thirty-two possible by

filtering out the eight system configurations in which neither of the passive defense

countermeasures was used; utilizing only complex, active countermeasures would

unnecessarily increase both manpower requirements and cost, and would be rejected as

gold-plating. Each system configuration was modeled using MATLAB and a simulation

of a pirate attack on a commercial vessel was run 1,000 times for each modeled system

configuration to determine the system configuration most effective at preventing pirate

capture of the commercial vessel. A cost analysis of each system configuration was also

performed, and used to determine the overall desirability of the system configuration.

The results of the simulations and cost analyses showed three configurations that

maximized cost-effectiveness. Usage of the P-Trap countermeasure combined with the

Compressed Air Cannon provided a success rate of 97.3% with a five-year cost of

$1.164M/ship. A slightly more effective system configuration consists of the P-Trap

countermeasure combined with the Fire Hose, with a success rate of 99.4% and a five

year cost of $1.341M/ship. Adding the Anti-Piracy Curtain to the P-Trap and Fire Hose

countermeasures improves the success rate to 99.7%, but increased the system cost to a

five-year cost of $1.576M/ship.

 xvii

ACKNOWLEDGMENTS

The Pirates team wishes to express our gratitude to our capstone advisor, Doctor

Paul Shebalin, for his guidance, suggestions, and feedback throughout this project. This

project could not have been completed without his generous and professional assistance.

We would similarly like to thank Doctor Richard Millar, who reviewed our paper and

provided valuable feedback.

The team would also like to thank Heather Hahn, our distance learning

coordinator, for her clear explanations of the capstone process and her eagerness to assist

the team with any questions or concerns.

Finally, the team would also like to thank Professor Ron Carlson for his talent in

explaining the concepts, philosophy, and methods of Systems Engineering during his

Introduction to Systems Engineering course. This class laid the groundwork for the

remainder of the program, and ensured that students enrolled in the Naval Postgraduate

School gained an understanding of systems engineering tools and processes.

 xviii

THIS PAGE INTENTIONALLY LEFT BLANK

1

I. INTRODUCTION

A. BACKGROUND

Modern-day piracy presents a difficult and expensive problem for international

trade, driving up shipping costs and placing merchant crews in peril. According to Peter

Chalk in his analysis of maritime security for the RAND Corporation, pirates board and

capture maritime traffic ranging from small luxury yachts to fully loaded supercargo

ships carrying multi-million dollar cargoes (Chalk 2008). High-profile incidents where

cargo, ship, and crew are held for ransom have made international news and have been

dramatized in film, such as the 2013 action-thriller movie, Captain Philips. Far more

numerous are incidents of mere thievery, where valuables and cargo are stolen under

threat of force or stealthily, under the cover of darkness. The financial costs incurred

from these criminal acts significantly increase shipping costs due to higher insurance

premiums, increased transportation costs due to longer trade routes bypassing piracy

prone areas, and loss of operation of attacked ships. As noted in Hellenic Shipping News,

the economic effects of piracy cost the worldwide economy an estimated $6B in 2012

(Hellenic 2014).

The International Maritime Bureau (IMB), a department of the International

Chamber of Commerce (ICC), has published an annual report for the last two decades

detailing maritime piracy. According to the report detailing 2013 incidents, Southeast

Asia accounts for almost half of the total worldwide pirate attacks, while Africa accounts

for 30% of the total incidents. The results from these studies (Table 1) show that

Indonesia is an obvious area to target for an anti-piracy system or program, as over 48%

of piracy-related incidents occurred in Indonesian sovereign waters and since Southeast

Asia is the sole area where pirate attacks are on the increase (IMB 2013).

2

Table 1. Regions of Actual and Attempted Pirate Attacks Worldwide 2009–2013

Adapted from ICC IMB 2013 annual report, this table shows reported

pirate attacks in each region for the last five years, as well as each

region’s percentage of global pirate attacks in 2013.

 2009 2010 2011 2012 2013

% of total

Attacks in

2013

SE Asia 46 70 80 104 128 48.5%

Africa 266 259 293 150 79 29.9%

India 30 28 16 19 26 9.8%

South America 37 40 25 17 18 6.8%

Far East 23 44 23 7 13 4.9%

Rest of World 8 4 2 0 0 0.0%

Total Attacks 410 445 439 297 264

To date, the most successful method for combatting the piracy problem has been

naval patrols. The waters around the Horn of Africa were a hotspot for piracy in the early

2000s, resulting in the United Nations Security Council assembling a twenty-five nation

task force, known as Combined Task Force 151 (CTF-151), to combat the pirate threat.

CTF-151 succeeded in reducing the number of piracy incidents in the affected region due

to the Gulf of Aden’s geography, consisting of a long and narrow strait used by

commercial traffic. The strait contained limited options for a pirate to evade a naval

vessel and few areas suitable for a pirate headquarters. Unfortunately, this strategy is

unlikely to prove effective in the burgeoning piracy hotspot of the Indonesia region.

The deployment of naval forces in the Indonesia region would face difficulties

beyond those seen in Somalia, as the physical geography significantly differs from the

Gulf of Aden. Andrew Manners, a piracy analyst for the region, noted that the area to be

patrolled is significantly larger, shipping traffic is much less concentrated, and thousands

of islands and coastal mangrove swamps with relatively small waterways provide ample

3

opportunities for pirates to evade capture (Manners 2014). As such, the number of naval

vessels required to effectively patrol the region would be a massive and expensive

undertaking. In addition, a second large force of patrol boats would be required to pursue

the pirates through shallow, swampy channels. Finally, the political and diplomatic

considerations required for a large naval deployment in Indonesian waters are likely to be

significant due the number of competing sovereign states. Therefore, a non-taskforce

based solution is required to effectively combat piracy in this region.

1. Piracy in Indonesian Waters

Four conditions are required for piracy to thrive: a target-rich environment, a lack

of strong government, weak or corrupt local law enforcement, and a high reward-to-risk

ratio (Samatar 2014). Several areas near high-traffic shipping lanes, such as Southeast

Asia and West Africa, fit the stated conditions and have become hotbeds for pirate

activity (Ben-Ari 2013). Indonesia is a prime example of an environment perfectly suited

to incubate piracy. As noted by Eric Frécon in his fieldwork amongst the communities of

the Riau islands near Singapore, the local government is corrupt, and the local security

forces lack the resources to deter piracy. Specifically, he notes that in the coastal

community of Kampung Hitam, “the police only have at their disposal small sampans

with only one outboard motor, when, in comparison, pirates often have two or three.

often shabbily dressed without proper uniforms, the policemen spend their time

idling…rather than clamping down upon pirate activities.” (Ong-Webb 2006, 73). While

improvements could be made to strengthen local forces, such efforts are not likely to

yield results swiftly or cheaply.

In order to better characterize the vessels involved in a typical pirate attack, a

gross tonnage (GT) analysis was performed for both local maritime traffic and

commercial vessels to determine typical scenario data. According to a 2012 report

published by Equasis, commercial shipping vessels are categorized into four classes:

small (under 500 GT), medium (between 500 GT to 25,000 GT), large (25,000 GT and

60,000 GT), and very large (over 60,000 GT). Forty-six percent of global merchant

4

vessels are classed as medium, while small vessels take a close second place with 36%.

Large and very large vessels are considered less applicable for this study, comprising

only 12% and 6%, respectively, of the total worldwide number of merchant vessels

(Equasis 2012). Indonesian fishing vessels are significantly smaller than commercial

merchant ships: out of roughly 300,000 registered fishing vessels, 40% are small (under 5

GT), 24% fall between 5 and 10 GT, 18% fall between 10 and 30 GT, while 18% are

above 30 GT (Lymer 2009).

 The results of the GT analysis highlighted the disparate sizes of local vessels

versus the commercial vessels, and were used to determine a baseline pirate attack

scenario. Small and medium commercial shipping vessels represent 83% of the

worldwide fleet. Because medium ships contain more enemy approach routes and thus a

larger area to protect, they were used to define the typical targeted ship. The typical pirate

vessel is more difficult to quantify due to the wide spread of GT, so a smaller size (5 GT)

was chosen for inclusion in scenario design to maximize the boarding threat as smaller

vessels are faster and more likely to be used in swarming attacks.

Indonesian pirates use similar methods as those in other regions of the world,

consisting primarily of pretending to be a fishing vessel until the target ship is close

enough for an attempt to board (Allen 2013). Indonesia is currently the second largest

producer of seafood worldwide (FAO 2014), so the pirates are able to easily blend in

amongst genuine fishing vessels to avoid anti-piracy enforcement or alarming potential

targets. Since most pirate vessels are repurposed fishing vessels, it is virtually impossible

to obtain a positive identification of the pirate before an attack commences. A pirate can

track, survey, and approach their targets with impunity, only revealing hostile intentions

once close to a target. While the number of pirates in an attack can vary considerably, the

weaponry used typically consists of small arms, knives, and grenades. Pirate attacks have

ranged from a small number of people in a single boat to larger groups with multiple craft

in more organized attacks (Lamb 2011).

5

Pirates in this region are often successful once they begin an attack. Figure 1

depicts high-traffic straits and all reported pirate attacks in Indonesian waters during 2013

(ICC IMB 2013). Yellow pins represent attempted attacks, orange pins show a boarded

ship, and red pins depict a hijacked ship. However, while the figure shows pirate attacks,

it does not show how many ships traveled through this region safely and what the relative

danger level is to estimate the probability of attack by pirates, a traffic analysis conducted

by the U.S. Energy Information Administration of four large straits was analyzed and

recorded in Table 2: the Strait of Malaccca, the Sunda Strait, and the combined Makassar

and Lombok Straits (EIA 2012). The ships attacked in 2013 were divided by the total

number of vessels to obtain the percentage of ships attacked. Additionally, the financial

impact was estimated by determining the average worth of the cargo and multiplying it

by the number of attacks to obtain the total dollar amount that could be seized by pirates.

While the Straits of Malacca contained the most traffic and thus the most attacks, the

combined Makassar and Lombok Straits had significantly higher attack rates and ship

cargo worth. The results of the analysis indicate due to the low piracy prevention rate, a

potential need for a new method of prevention exists in this region. However, the

relatively low chance of pirate attacks shows that any solution must be cost-effective to

appeal to a profit-driven industry.

6

Figure 1. 2013 Pirate Attacks in Indonesia

Adapted from ICC Piracy Reporting Center 2013, this figure depicts pirate attacks in

Southeast Asia during 2013.

Table 2. Analysis of Traffic, Cargo, and Danger in Indonesian Straits

Adapted from Nanyang Technological University, the U.S. Energy Information

Administration, and the Commander of U.S. Pacific Fleet, this table shows the percent of

ships attacked, as well as the average ship value and potential financial loss of the cargo.

Yearly
Vessels

Yearly
cargo

worth ($B)

2013
Attacks

% Ships
Attacked

Average Ship
Value ($M)

2013
Affected

($M)

Strait of
Malacca

60000 1300 55 0.09% $21.67 $1,191.67

Makassar and
Lombok Straits

420 40 7 1.67% $95.24 $666.67

Sunda Strait 2280 5 8 0.35% $2.19 $17.54

7

The area around Singapore, shown in Figure 2, is the largest regional piracy

hotspot, with the bulk of pirate attacks occurring on either side of the heavily travelled

Singapore Strait. On the western outlet, a typical pirate attack involves a single wooden

boat with no more than five pirates armed with long knives attacking a slow moving

commercial vessel transiting out of the strait. In all of these attacks, the pirates stole

mechanical parts and crew valuables but always fled after being spotted by the target

ship’s crew.

Figure 2. 2013 Pirate Attacks near Singapore

Adapted from ICC Piracy Reporting Center, this figure depicts reported pirate attacks

near Singapore in 2013. Many attacks near western Singapore waters consist of snatch-

and-grabs by a small number of pirates near a port. Attacks in eastern waters involve full

speed chases and hijacking.

The eastern outlet of the Singapore Strait and the shipping lanes feeding into it

from the South China Sea are home to pirates with considerably better equipment,

manpower, and coordination. A typical pirate attack involves multiple pirate craft with

larger engines, capable of chasing down a commercial vessel travelling at full speed (21-

8

25 knots) in open waters. The pirates manning these craft are more numerous and possess

small arms as well as long knives. These pirates targeted isolated commercial vessels (at

least an hour from any assistance) at twenty to fifty nautical miles from shore. Upon

successfully boarding, merchant crews were always subdued and bound, the

communication system of the target vessel was destroyed, and cargo transferred off to a

pirate cargo vessel (typically a bunker ship). Usually the merchant crew and ship were

released after the theft was completed, with the exception of a single incident where a tug

was stolen and the crew set adrift on a barge. Because these pirates caused significantly

more economic damage, further research was focused on the open waters pirates to

discern the typical types of pirate attack in the region

2. Pirate Attack Strategies

According to Elleman, Forbes, and Rosenberg, pirate attacks near Indonesia

employ a similar attack strategy. Each attack is typically conducted on a moving

commercial ship, using the cover of darkness to avoid detection. Attacks typically fall

between the hours of 0100 and 0600 to ensure that the majority of the crew is asleep.

When the pirates are within range of the vessel, grappling hooks are used to board the

target ship; the boarding party makes their way on to the vessel, and then subdues the

lookouts. Once the pirates have boarded, they quickly make their way to the crew

quarters to subdue the crew, pilfering any valuables encountered. Once the crew is

neutralized, the pirates will employ one of three different strategies: cargo theft,

kidnapping for the purpose of ransom, or seizure of the ship (Elleman, Forbes, and

Rosenberg 2010).

This first strategy, cargo theft, is the most common of the three. The pirates

transfer part or all the of the ship’s cargo onto their own vessel(s), requiring from three to

seven hours. Once the pirate ship is full of stolen goods, the pirates will release the crew

and depart.

The second possible strategy consists of attempting to extort a ransom from the

crew’s employer by taking the crew hostage. Key crew members, such as the captain or

pilot, are taken as hostages and removed from the ship to a remote, land-based location.

The pirates then begin negotiations with the hostages’ employer for the release of the

9

crew members. In most cases the hostages are released once the ransom amount is

received. A variation on this approach is for the pirates to remain on the ship and ransom

the ship, crew, and goods back to the shipping company for an exorbitant sum.

The third possible action is a complete high-jacking and confiscation of the ship,

crew and cargo. Once the ship is under the pirates control, it is taken to a hidden location

where the cargo is removed, the crew is either killed off or ransomed, and the ship is

repainted by the pirates for use in future attacks. The ship’s navigation system is

modified to squawk false identifications, allowing the pirates to trick other vessels into

allowing them to get close enough to mount an attack. This method is virtually unheard

of in Indonesian waters due to the additional time requirements and risk for the pirates.

B. PROBLEM STATEMENT

Indonesian geography presents unique challenges that prevent traditional anti-

piracy methods from being deployed effectively. While current anti-piracy approaches,

such as CTF-151, have reduced pirate attacks in traditional hotspots such as Somalia,

detecting and responding to pirate attacks in time to prevent or defeat the attack is

problematic for counter-piracy military and police forces. Commercial vessels in

Indonesian waters often must fend for themselves against prepared and determined foes.

Because of this, commercial vessels in Indonesian waters need an onboard means of

preventing or delaying pirates from boarding.

C. RESEARCH QUESTIONS

The central research question is: What systems engineering solution will prevent

or reduce the success of maritime piracy in Indonesian waters? the following research

sub-questions were considered for this project:

• What capability gaps need to be addressed in current anti-piracy approaches?

• What characteristics, signatures and patterns mark a pirate vessel?

• What tactics, equipment, and methods are used by pirates during an attack?

• What distinguishes piracy in Indonesia from that in other regions?

10

D. PROJECT OBJECTIVE

The purpose of this project was to define and simulate a Boarding Prevention

System (BPS) for use on commercial vessels affected by piracy in Indonesian waters. The

results of the project simulation and cost modeling were used to recommend a specific

system configuration of countermeasures to be employed by the BPS.

E. SCOPE

The definition and simulation of the BPS focused on determining the efficacy of

multiple countermeasures working in concert. The capabilities, costs, reliability,

maintainability, and supportability of the countermeasures were the main focus of

investigation. Effects from crew training and capability were not examined and are a

potential area for future study.

In order to develop the BPS simulation, all the noted research questions were

investigated. Analysis of the piracy problem in the Indonesian region was limited to

pirate vessels, equipment, tactics, targeted commercial ships, and how the unique

geography of the region affects anti-piracy efforts. Areas for further study could include

the effectiveness of the local navies (Malaysian, Indonesian, Singaporean) working in

concert to combat regional piracy. Additionally, socio-economic solutions to the regional

piracy problem could be investigated.

11

II. APPROACH

In meeting the research objective stated above, this project identified an unmet

commercial need, and applied a modified Systems Engineering methodology to refine,

analyze, and address this need. The approach used for this project is detailed in this

chapter and the results are shown in Chapter III.

A. SYSTEMS ENGINEERING PROCESS OVERVIEW

A tailored System Engineering (SE) process, summarized in Figure 3, was used to

investigate and combat maritime piracy in troubled regions throughout the world, with a

focus on commercial vessels in Indonesian waters. Six sequential main phases were

identified, beginning with needs analysis and concluding with a recommended solution in

the final report; each phase contained multiple sub-phases that were executed

simultaneously. A tailored process model was chosen due to the limited scope of the

project, and was loosely based on a Systems Engineering “Vee” methodology created by

Forsberg and Mooz (Blanchard and Fabrycky, 2011.)

12

Figure 3. Project SE Process Overview

This figure depicts the customized Systems Engineering process used to develop the

system recommendation. The arrows between blocks represent outputs from one phase to

another. The overall model is sequential, but processes inside blocks may occur

simultaneously.

13

The needs analysis built upon the general objective by defining stakeholder

requirements and generating an effective need that could be met with a systems solution.

A stakeholder analysis was performed, and the resulting stakeholders were categorized

according to the type of role filled, such as regulatory or end user. Additionally, key

stakeholders were identified, consisting of the entities that would be adopting the system,

operating the system, or materially affected by the system. The needs of the stakeholders

were discovered and used as the basis for the requirements definition phase. The phase

was then concluded by deriving an effective need that could be satisfied with a systems

solution.

The second phase consisted of developing system requirements. Stakeholder

needs were allocated to system requirements that provided aspects of the system. These

requirements were then sorted into functional and non-functional requirements. The

functional requirements were used to develop a functional architecture in the fourth

phase. Since the problem had been narrowed down to specific requirements, a Design

Reference Mission (DRM) was developed to generate a baseline pirate boarding threat

scenario, intended for use during the construction of the model. Additionally, a Concept

of Operations (CONOPS) was created to allow the project team to understand the system

at the top level.

The third phase developed the functional architecture of the system. A top-level

function was generated from the effective need statement, and a functional decomposition

was performed to derive lower level functions. Requirements were mapped to the

generated functions; each function and requirement block was paired with at least one

other block to avoid purchasing unnecessary capabilities and to ensure all stakeholder

needs were met. The combination of the top-level and detailed functions formed the

functional architecture, which was used in the system architecture development process.

The phase wrapped up by developing an operational view OV-1 diagram to visualize top-

level architecture.

The fourth phase developed the physical system architecture. Research was

performed to identify COTS countermeasures that could provide at least one of the

functional requirements of the system. The available countermeasures were narrowed to a

14

more workable list by performing a pairwise comparison and decision matrix analysis.

Weighted functional requirements and factors such as estimated cost, operational

availability, and required maintenance were used to select five system configurations for

analysis. The cost and logistical footprint-centric approach was used as there was little or

no data on the effectiveness of the countermeasures in the field; the initial decision matrix

filtered out logistically infeasible system configurations. The functional attributes of the

selected countermeasures were then used in the generation of a system model.

The fifth phase consisted of building and running a system model. The

operational constraints and system configurations were based on the DRM, while the

success conditions were based on Key Performance Parameters (KPP) generated in the

functional analysis phase. Multiple system configurations were developed and simulated

to determine the effectiveness of both individual and combined countermeasures. Each

scenario was iterated 1000 times and measures of effectiveness were generated for each

countermeasure based on an average rate of success. A statistical analysis was performed

to determine the effects of each countermeasure, and how each countermeasure interacted

with other countermeasures. The highest scoring countermeasures and combinations were

used to determine the system recommendation. The modeling and simulation phase fed

back into the system architecture phase as the obtained results were used to refine the

model and more closely reflect reality. Ultimately, the simulation results were used to

rank the selected countermeasures by effectiveness.

Finally, a recommended system configuration was chosen. In order to do this, a

detailed cost analysis was performed for each high scoring countermeasure due to the

importance of marketing to the largest possible customer base, ranging from large

corporations to independent mariners. Life-cycle costs (LCC) and required maintenance

were analyzed to generate a total system cost used to rank the top countermeasure. A

recommendation was then chosen based on the best value system, which contained the

intersection of both cost and performance data.

15

B. NEEDS ANALYSIS

The second phase of the project was to perform a needs analysis to determine and

refine user and customer needs, considered to be unmet capabilities or approaches that

can be made more cost-effective. A Stakeholder Analysis was performed to identify

entities that would be utilizing and maintaining the system, or who represent sources of

technical or financial information. The results of the Stakeholder Analysis were sorted

into two groups: key stakeholders, and non-key stakeholders, based on a requisite

authority to dictate system needs during development. The inputs from each key

stakeholder were compiled to develop an objective list of stakeholder desires. Each item

on this list was then marked as either a need or a want based on the relative level of

importance to the project objective.

Once a list of stakeholders had been compiled, stakeholder feedback was solicited

to gain insight into each entity’s needs and desires. Phone discussions were conducted

with representatives from shipping companies Maersk and Cosco, a U.S. Navy officer

previously assigned to anti-piracy duties, and a merchant insurance company. A list of

stakeholder wants and needs was generated from the gathered input, and common themes

determined. Additional correspondence was conducted with technical representatives

from companies producing anti-piracy products, providing technical and cost data, as

well as a unique perspective on what attributes were needed for defensive system to be a

success. Additionally, an Effective Need was derived from the list of stakeholder needs

that represented the broadest possible need that must be fulfilled for the system to be

successful.

C. REQUIREMENTS DEVELOPMENT

The Requirements Analysis section transformed the unknown nature of the pirate

danger into quantifiable criterion capable of being modeled using the results from the

Needs Analysis. The top-level Effective Need was used to derive a top-level system

requirement, which specifies the overall system attribute or capability required for

mission success. The needs from the key stakeholders were used to generate specific

requirements that would ensure the system fulfilled the associated need. Each

requirement was then categorized as either functional or non-functional. A functional

16

requirement consists of a system requirement to perform some action or function, while a

nonfunctional requirement consists of possessing some attribute or quality. Each

functional requirement was used to develop a comprehensive requirements hierarchy by

breaking down the top-level requirement into the lower-level requirements and showing

the resulting connection between the low-level requirements and overall mission success.

The next step in this phase was to develop a Design Reference Mission to define a

baseline threat scenario. The Requirements Development phase concluded with the

construction of a top-level Concept of Operations diagram and a system-level OV-1

diagram, both used to present high-level goals and process statements in an easily

comprehensible pictorial format.

The DRM allowed the team to develop a common reference point with which to

analyze piracy as a maritime threat. According to Lilly, a DRM “defines the specific

projected threat and operating environment baseline for a given force element … and is

primarily an engineering/design tool to support systems engineering activities by

identifying significant design-driving operational elements and characterizing them to the

level of detail necessary to assess design impact” (Lilly 2003, 257). Once the DRM was

completed, the team was able to discuss, research, and develop the operational

requirements from the same vantage point as well as properly assess the feasibility of

possible solutions with respect to schedule, cost, and technical maturity.

D. FUNCTIONAL ARCHITECTURE DEVELOPMENT

The Functional Architecture phase translated the system requirements hierarchy

into functions, which are considered to be actions or processes that the system performs.

A function is derived from each requirement by determining what action is required to

meet the associated requirement. Once all requirements had been met by a function, the

functional relationship was mapped by decomposing the derived functions into detailed

low-level functions, which represent specific processes which cumulatively lead to

mission success. Each function block fulfilled at least one requirement block, while each

requirement block was met with at least one function block, avoiding unmet requirements

and non-required capabilities.

17

The top-level through low-level functional blocks combined to form the

functional architecture, which was used to construct the system architecture.

Additionally, a data model was generated, which is discussed further in section F,

Modeling and Simulation, and is detailed in Appendix C.

E. SYSTEM ARCHITECTURE DEVELOPMENT

The System Architecture phase allocated physical components to the functional

architecture. This process was conducted by identifying physical countermeasures that

would perform the desired function, and thus aid in meeting the overall functional

requirement. Because this was an effort in identifying rather than developing

countermeasures, our approach to developing the system architecture was to specify how

multiple countermeasures could be incorporated into a common anti-boarding system and

to identify Commercial-off-the-Shelf (COTS) countermeasures that would fit into the

architecture. A list of suitable countermeasures was compiled, and a trade study was

performed via a decision matrix to narrow the available pool of possibilities to a small,

manageable list. Measures of Performance (MOPs) were created and ranked using a

pairwise comparison to determine the relative importance of each factor; each factor was

then weighted per the results to allow assessment of the identified countermeasures. Once

the factors had been weighted, a decision matrix was constructed to score each

countermeasure against how well it performed each weighted factor, and the resulting

scores were sorted highest to lowest. The top-performing countermeasures were selected

for modeling and simulation to determine which system-of-systems (SoS) configuration

of countermeasures offered the best anti-piracy performance.

Research indicated that most commercial vessels do not deploy pirate

countermeasures; amongst vessels that did, typically one countermeasure was used. The

commercially available countermeasures were sorted into categories based on the

expected amount of crew management required to operate the system during a pirate

attack:

 passive defense, a countermeasure that requires no crew management once

deployed and affects pirates attempting to board the target vessel.

18

 active defense, a countermeasure that requires crew management when in

operation and affects pirates attempting to board the target vessel.

 active offense, a countermeasure that requires crew management when in

operation and can affect pirates and/or pirate craft at range.

Several Measures of Performance (MOP) were developed to analyze each piracy

prevention countermeasure. Each measure was weighted using a pairwise comparison,

which determines the relative importance of each measure and allows multiple

countermeasures to be ranked according to determine decision-making criteria. A full list

of the MOP’s is listed below along with a description and the evaluation criteria.

 Measures of Performance

The MOPs listed below were used for an initial evaluation of the COTS

countermeasures to narrow the field of candidate countermeasures by and determine

which of them were worth investigating.

 Time to deploy

o Deployment time is based upon the average length of time required for an

average crewmember to set up the anti-piracy defensive system

o Rating of 1 for < 1 minute to deploy

o Rating of 5 for >5 minutes to deploy

 Ease of use

o This measure was based on the usability of the option by an average

crewmember, relating to its effectiveness of use

o Rating of 1 for few steps and intuitive use

o Rating of 5 for numerous complex steps requiring skill and training

 Maintenance

o This measure was based on the need for and length of maintenance required for

the anti-piracy option to be effective over a year of average use. This related to

number of parts and complexity of the parts.

o A rating of 1 was used for simple maintenance which could be performed

onboard the vessel with little training by an average crewmember

o A rating of 5 was used for options which require specialized offsite maintenance

or calibration by the OEM

19

 Cost

o This measure was based on the cost of use over the first five years of the options

deployment, including purchase, operations, maintenance, and training costs.

Rough estimates for cost were used at this stage due to the number of options.

o A rating of 1 was given for an option costing less than $10,000 in its first five

years of deployment

o A rating of 5 was given to an option costing greater than $250,000 in its first five

years of deployment

 Ease of overcoming

o This measure was based on the difficulty with which the adversary would have

overcoming the countermeasure and continuing with their attempt to gain control

of the vessel

o A rating of 1 was given to options which required high skill and or numerous

steps to overcome

o A rating of 5 was given to options which required little skill or number of steps to

overcome

 Need for logistics support

o This measure was based on the need to support the anti-piracy option with

communications, intelligence and or consumables

o A rating of 1 was given to options requiring little logistics support

o A rating of 5 was given to options requiring high levels of logistics support

 Effect on Crew

o This measure was based on the effect of the countermeasure on the crew onboard

the vessel using the option. Some options utilized acoustic or visual methods

which could possibly harm the users if they malfunctioned slightly.

o A rating of 1 was given to options which had a low probability of harming or

incapacitating the crew of the vessel using the option

o A rating of 5 was given to options which had a high probability of harming the

crew of the vessel using the option

Each measure was assigned a raw rank from 1 to 5 to designate relative

importance to the system. The weighted level was determined by developing a linear

equation containing the summation of the rank multiplied by a variable x, where to total

of all weights is equal to one. Once the value of x was determined, it was multiplied by

20

the raw rank to determine a relative weighted value of each measure. The results of

pairwise comparison can be found in Table 3, and were used in a decision matrix ranking

system.

Because the purchasers of the system were expected to be highly sensitive to the

cost of the final selected system, this criterion was added to the decision matrix as a

weighted measure. This allowed cost to be considered during the process of selecting the

countermeasures to be modeled, reducing the likelihood that all selected countermeasures

would have an unacceptable cost/benefit ratio when the simulations were complete.

Table 3. Measures of Performance Criteria Ranking Weights

This table shows the weighting of MOPs by assigning a raw rank from 1 (low) to 5 (high)

to each measure, then normalizing rank by dividing each MOP by the sum of raw ranks

to obtain a percentage of total possible rank.

MOP
Raw

Rank
Reasoning for Raw Rank

Normalized

Rank Weight

Time to

deploy
3

Countermeasure must respond quickly to

unexpected attack
0.1305

Ease of Use 3
Countermeasure must be easy to use

effectively due to high stress situations
0.1305

Maintenance 3

Countermeasure must not require excessive

maintenance to minimize Operations and

Support costs.

0.1305

Cost 5

Countermeasure must represent low

cost/benefit ratio for purchase cost to

encourage widespread adoption

0.2175

Ease of

overcoming
3 Countermeasure must resist pirate attacks 0.1305

Need for

Logistics

Support

1

Countermeasure must avoid encumbering the

crew or associated ships with excessive

logistics support. Common consumables can

be purchased at friendly ports.

0.0435

Effect on

Crew
5

Countermeasure must maintain or improve

the safety of the crew during a pirate attack.
0.2175

The decision matrix scores were based on the convention that a rating of 1 was

desired and a rating of 5 was undesirable. The scores, based on the ratings of the

countermeasures multiplied by the rankings of the measures, were summed across all

measures then ranked based on their proximity to 1 or 5. The sum of the weighted scores

21

was then normalized to a percentage, representing how well each countermeasure met the

ranked factors. The results for the examined system configurations are shown in Section

III. The five highest ranked options were chosen for further analysis and input into the

modeling phase.

F. MODELING AND SIMULATION APPROACH

The Modeling and Simulation Approach consisted of constructing and running the

system model. The model utilized the DRM to generate the operational constraints and

deterrent, while the only success condition was the commercial vessel preventing a

successful boarding; the result was a model that accurately portrayed the operational

environment. MATLAB, a programming language and computational environment, was

used to create the model and run the associated simulations. The central variables

contained a mix of random, constant, and probabilistic factors:

 pirate skiffs were initially set at a constant range from the commercial ship

 number of skiffs and initial angular direction from commercial ship were

randomly chosen

 countermeasure strikes for targets at range were assigned a probabilistic

value of hitting the target.

Multiple system configurations were developed and simulated to determine the

effectiveness of both individual and combined countermeasures. Each scenario was run

1000 times and measures of effectiveness (MoEs) were generated for each

countermeasure based on an average rate of success.

 The randomized design of experiments (DOE) was constructed to ensure the

generation of valid data and efficiently plan the scenario run order. The top five

countermeasures from the decision matrix each contained two discrete states, on and off.

Thirty-two possible system configurations were predicted using formulas (1) and (2)

below:

22

number of countermeasures

possiblescenarios number of states (1)

 5 2 32possiblescenarios (2)

The number of system configurations was reduced to twenty-four by removing

the eight in which neither of the passive defense system configurations was used, despite

an active system being utilized. An active defensive system is more manpower intensive

than a passive system, and must be operated immediately before or during a pirate attack.

The large cost difference between a passive system and an active system indicates that

utilizing an active system without a passive component would be considered gold-plating,

and as such should not be considered for recommendation. A practical scenario can be

pictured to further illustrate this reduction: it is not standard practice to protect a home

with a high-quality security system, yet neglect to install a lock on the door. As such, the

number of possible system configurations can be safely reduced without filtering out

potentially valid solutions.

A statistical analysis was performed to determine the effects of each

countermeasure, and how each countermeasure interacted with other countermeasure.

The highest scoring countermeasure and combinations were used to determine the system

recommendation. The modeling and simulation phase feeds back into the system

architecture phase as the physical architecture, and thus the model, utilizes the obtained

results to refine the model and more closely reflect reality.

The model was set up to determine the percentage of successful defenses against

pirate attacks through use of passive defense, active defense and/or active offensive

methods for the status quo scenario as well as finding the best current solution and

recommending options for further advanced study.

Model system configurations were run against a DRM with varying piracy

countermeasure combinations enabled aboard the target ship. For each configuration, 100

simulation runs were performed and evaluated and the overall percentage of successful

defenses of the vessel were calculated to generate initial data in order to facilitate

analysis. A follow-on effort of 1000 runs for each scenario was completed to validate and

refine the initial results by filtering outlying values and generating a precise average. The

23

cost of each scenario was independently calculated, and the success percentage and cost

were equally weighted against each other to determine the best scenario.

1. Model Foundation

The Model was created as an incremental-time object-oriented MATLAB

program. MATLAB was selected due to its wide availability, commonality across

organizations, and flexibility. Lower-level programming languages, which are close to

machine code, were declined due to the reduced ability to transfer the model amongst

different computing environments. Higher-level modeling tools, which are closer to

human spoken language, were not selected due to concerns over their flexibility and

reduced availability. MATLAB represents a midlevel programming language that

maintains most of the flexibility of the lower-level languages, while using the higher-

level language verbiage.

2. Model Architecture

Figure 4 shows the overall architecture structure of the model. The program was

divided into thirteen object classes, three enumeration classes, and one helper function

file. The enumeration classes are used to define commonly used states for other classes

and map logical states to discrete values for MATLAB to track. The helper function is

used to define the commonly used get_angle function as it does not inherently belong to

any particular class. The object classes define the logical constructs that the model is built

of and are described below. Additionally, a UML relational diagram was generated to

control and document the interactions between the model functions. This diagram can be

found in Appendix C.

24

Figure 4. Model Architecture

This figure depicts the Domain Manager and the modules created inside it, consisting of

Commercial Ship, Display, Military Ship, and multiple instances of pirate skiffs. The

commercial ship and the skiff modules each create low level modules that track either

crew or pirates, while the commercial ship also creates countermeasure modules.

a. Domain_Manager

The prebuilt functions included in MATLAB are not powerful enough to manage

a model of this complexity, so a custom background object called Domain Manager, was

developed to control operation of the overall model. It creates the other objects within

itself, initializes them, and then calls their operations iteratively to simulate the passage

of time. Domain Manager controls the passing of data between the other objects (as

opposed to a shared memory structure). Domain Manager determines when a scenario

has concluded based upon established criteria; primarily that all pirates have been

disabled or that one has boarded. The Domain Manager also controls repeated runs of the

various system configurations in order to calculate the overall MOE. Domain Manager is

the connection between the MATLAB user interface and the rest of the program, it takes

25

in the scenario configuration and outputs the calculate probability of survival for the

commercial ship.

b. Com_Ship

The Commercial Ship class represents the target ship from the DRM within the

model. It tracks the location, velocity and all other necessary factors associated with the

ship’s status and actions. The Commercial Ship object contains within itself objects

representing all of its crew members as well as the objects associated with each

countermeasure.

The Commercial Ship is represented within the model not as a rectangle but rather

as a point in space. Figure 5 shows how the dimensions of the ship sides were

approximated with angles from the center point.

Note from Figure 4 that the Crew objects are shown in the same color but the

Countermeasure objects are varying. This is because Commercial Ship creates several

instances of the same Crew class but the Countermeasures actually consist of various

class objects that merely have similar roles in the architecture.

26

Figure 5. Com_Ship Angular Approximations

This figure depicts how the dimensions of the ship sides were approximated with

angles measured from the center point.

c. Mil_Ship

The Military Ship class generically represents some assisting vessel coming to the

aid of the Commercial Ship that can stop the pirate attack if it arrives in time. The

program object actually does very little, merely tracking its own progression. If it reaches

the Commercial Ship then Domain Manager will end the scenario.

d. Skiff

The Skiff class represents the pirate vessels within the model. The object tracks

the status (active or disabled), position, and remaining crew of a particular skiff and

determines the skiff’s next actions when called. As shown in Figure 4, each Skiff object

also contains a number of Pirate objects (described below) and triggers them to carry out

27

their own actions in each time increment. The Skiff objects are all generated and tracked

by Domain Manager.

In general, Skiffs move directly towards the Commercial Ship in an attempt to

allow their Pirates to board. Skiffs can be disabled by countermeasures, rendering them

immobile. If all Skiffs in the scenario are disabled the Domain Manager will end the

scenario.

e. Display

The Display class is a special use class that is only invoked when a demonstration

version of the model is called from Domain Manager. The Display object translates the

data stored within Domain Manager into a visual display of the moving ships and skiffs

for each time increment. Display was created primarily to enable debugging, validation of

overall operation, and to facilitate presentation and explanation of the model. Figure 6

shows an example of the Display class output. Note that active Skiffs are denoted by red

circles, disabled ones by grey, the Commercial Ship by blue and the Military Ship (out of

view in this case) by green.

28

Figure 6. Example of Display

This figure depicts the display module tracking the commercial ship, disabled pirate

skiffs, and active pirate skiffs. Skiffs begin as red circles and turn black if

neutralized. The commercial ship attempts to approach military vessel (not shown)

before being overwhelmed.

f. Pirate

The Pirate object represents an individual pirate. A Pirate can transition primarily

between different states and keeps track of the time required for individual pirates to

accomplish tasks, such as boarding the side of a Commercial Ship.

Pirate objects are created and reside within Skiff objects. Seven pirate objects are

created at the start of each run. The Skiff passes update calls down to the Pirate object as

well as all data or pointers needed for it to accomplish its tasks.

Disabled skiffs

Commercial Ship

Active skiffs

29

g. Crew

The Crew class is largely a vestigial remnant within the model. Most of the

intended functionality of the class was de-scoped from this iteration of the model. Crew

objects reside within the Commercial Ship object.

h. Pirate_Status/Skiff_Status/Crew_Status

The three Status classes define enumeration sets. Enumeration sets are used in

programming to provide meaningful names in software code to what is essentially a list

of identifiers. In this example each of these classes represents a list of possible states that

their respective objects may be in at a given time. The enumerations can be invoked

throughout the entire program to provide a meaningful title to the status as opposed to a

number.

i. Countermeasures

The Countermeasure classes are each defined individually. They were generated

this way, instead of through an inheritance structure, due to the drastically different ways

in which the countermeasures operate. Additionally, different types and fidelity of data

are available for the different countermeasures and it was not prudent to treat them

similarly. Five shipboard countermeasures were selected from the trade study for

modeling and simulation. The approach used to model the individual Countermeasure

classes is described in the following chapter.

3. Countermeasure Implementation

a. Pirate Trap (P-Trap)

The pirate trap countermeasure is a system of difficult to see lines trailed through

the water along the sides of and behind the commercial ship in order to foul the propellers

of pirate craft. Figure 7 shows how these physical regions were translated into angular

representations within the model.

30

Figure 7. P-Trap Regions of Effect

This figure depicts how the trailing lines of the p-trap were translated into angular

representations within the model.

Each P-Trap region within the model can stop 10 pirate skiffs in a given scenario.

Each region is created as a separate instance of the class and tracks how many lines it has

remaining.

a. Water Cannon

The water cannon countermeasure features a remote-controlled water turret that

operates like a fire hose in suppressing and forcing away pirates. The intended use is to

flood the skiffs, but it was determined that the pirates would seek to avoid this eventuality

so within the model the Water Cannon object acts to force skiffs out of its range. The

Water Cannons act on one skiff at a time and causes them to flee the Commercial Ship’s

proximity. Each of the six Water Cannons is created as its own instance and tracks its

own tasking. The Water Cannon Regions are shown in Figure 8.

31

Figure 8. Water Cannon Regions of Effect

This figure depicts placement of water cannons on ship, as well as the associated

angular representation used in the model.

b. Razor/Barbed Wire

The countermeasure option of wrapping the perimeter of the ship with barbed or

razor wire is represented by the Barbed Wire class. The Barbed Wire object in turn

creates a large quantity of Barbed Wire Segment objects which each track the health of

the barbed wire over a small portion of the Commercial Ship’s circumference.

The Barbed Wire directly adds two minutes of scenario time needed for a Pirate to

bypass the Barbed Wire Segment. Multiple Pirates at the same Barbed Wire Segment can

work together to accelerate the time they bypass it in.

c. Pirate Curtain

The commercially advertised pirate curtain system consists of a combination of

fire hoses used to flood pirate skiffs and erratically flailing hoses with weighted ends that

can cause bodily harm to individuals scaling the side of the vessel. It was determined that

32

the first component of the system heavily overlapped with the Water Cannon already

under consideration, but that the flail version represented a unique countermeasure

option. The Pirate Curtain class then represents the flail portion alone of the

commercially proposed solution.

The Object monitors the Port and Starboard regions of the Commercial Ship and

applies a chance to strike any pirate who is in the process of attempting to board. If

struck, the Pirate is presumed to be permanently disabled within the timeline of the

scenario.

d. Air Cannon

The air cannon is a mounted, remote controlled turret that fires one of several

projectiles to stop pirate skiffs. Selected for the model from among these was the net/line

option that is fired at pirate craft to ensnare their propellers.

The Air Cannon class fires nets at regular intervals at random pirate skiffs within

its range. With each shot there is a chance to miss. The cannon is currently represented as

having a clear field of view across all angles. It has a limited number of shots for each

scenario based off the assumption that pirate weapon fire will prevent the crew from

reloading the deck-mounted launcher.

4. Model Implementation

Appendix B contains the model script code and soft copy is available upon

request. Appendix C contains a Unified Modeling Language (UML) diagram showing

how the class relationships were implemented.

G. COST ANALYSIS APPROACH

Commercial shipping is a profit-driven industry, and as such will only adopt a

piracy defensive system if the benefits outweigh the cost of implementation. The system

will be marketed towards a range of merchant companies, ranging from independent

ship-owners running single ships to mega-corporations such as Maersk, who command

over 600 vessels. A cost analysis was performed on all system configurations for factors

33

such as initial purchase cost as well as logistical support, and the results combined into a

five year total cost.

1. Cost Model

The cost model used in this project for each countermeasure was formulated

based on a number of factors specific to each system. The cost was calculated as a five

year total ownership cost using net present value. An aggressive, 6% yearly inflation rate

was used to reduce the likelihood that the estimated costs generated by the model would

underestimate the Boarding Prevention System cost in order to account for items not

included in the model. Since the shipping companies likely have large bank accounts, the

interest that the companies earn on their product or overhead accounts was estimated at

3.3%. The timespan of five years was used as that is a typical overhaul time period for

U.S. naval vessels, at which point the ships maintenance authority would utilize an

overhaul budget separate from the O&M budget used for normal operations.

Manufacturing companies of current anti-piracy systems fitting our system

descriptions were polled to determine system specific cost information. The companies

were asked to provide data on initial purchases, maintenance, IT support, integration cost

and operation specific data for each system. Data was reported as months for time based

data and FY14 dollars for monetary data. The requested data included:

Initial Purchase

Estimated Initial Contracting percentage

Initial Consumables price

Initial System Price

Manufacturer

Number of Systems needed to support vessel

Maintenance

Estimated time between unplanned maintenance

Estimated cost for unplanned maintenance

Estimated Routine maintenance cost

Estimated time between routine maintenance

34

IT

Estimated interval between IT support

Estimated IT Support cost

Complexity

Estimated ship integration cost per system

Operations

Estimated system life

Estimated routine Consumable cost

Estimated Time between Consumables purchases

2. Labor Cost

The labor cost of operations for vessel crew members was not factored into this

cost estimate as the labor rates per shipping company representatives may vary based on

a wide variety of factors including time of year, national origin of the shipping company,

etc. The contracting effort was taken to be a series of one time purchases with a single

contracting percentage. More complex contracting vehicles, such as those with multi-year

options or clauses or variable contracting percentages, are out of the scope of this project.

3. System Purchasing

Total purchasing price for the vessel-wide Boarding-Prevention System was

separated into sub-categories as well as the initial purchase of materials or services prior

to the initial build and integration as well as for five years of system use. A limitation of

this model is that it assumes that the boarding-prevention countermeasures will be used

on a scheduled basis, which will hopefully not be the case. As this will likely assume

usage on a higher rate than real world usage for these systems, the estimate will be

slightly high, thus deferring unforeseen charges. Year zero is taken to be FFY14 and

accounts for the vessel being in a maintenance status for a lengthy repair time period.

During the time period in year zero the vessel holding company will contract for the

purchase, integration documentation and crew training regarding the vessel-wide

35

boarding-prevention system and perform the purchasing as well as the integration efforts.

A short time frame is sufficient for contracting efforts of this type of system since the

boarding-prevention systems will be COTS items with minimal modifications. Year zero

costs therefore are in FY14 costs and Year one will start as of FY15 for actual

countermeasure usage. The consumables and maintenance budgeted for year zero will be

utilized for the initial integration effort and those line items budgeted for years one

through five will be used for underway use.

The total initial purchase price is based on formula (3) below:

 1 *

 * #

contracting percentage

countermeasure price consumables price of countermeasures

Initialpurchase IP
 (3)

4. System Life-Cycle Considerations

Since the system is estimated to have a usage life and not last indefinitely, the

estimated countermeasure life (assuming regular maintenance per the manufacturer) was

taken into account for system purchases in out years. A round-down function noting the

number of months for the countermeasure life span as well as the number of months until

the end of the purchase year in question was used to predict the system purchase price for

all out years up until five years have passed. The year zero is taken to be the initial

purchasing contract pricing, with years one through five being the O&M budget for the

ship for each of those years, regarding the boarding-prevention countermeasure usage.

The round-down function, executed via Excel, accounts for the fact that each purchase

will be an individual event and partial system purchases will not be made.

System purchase in years one through five is based on formula (4):

 1

12*
* ,0

n n

year n
SP IP ROUNDDOWN SP

systemlife

 (4)

The total integration cost (TIC) is based on the following formula (5):

 1 * # * TIC contracting percentage of systems systemintegrationcost (5)

36

For years one through five, a round-down function was used to determine the

number of countermeasures needing to be integrated for each of those years. It takes into

account the system life as well as the number of months which have elapsed by the end of

that fiscal year (FY) and the total system integration cost. Additionally, the round-down

function takes factors in that the system integrations will be individual events and cannot

happen as partial events.

System Integration for out years is based on the formula below (6):

 1

12*
* * ,0

n n

year n
SI TIC TIC ROUNDDOWN SI

systemlife

 (6)

5. Consumables

Consumables used in the total system under routine use were accounted for in a

yearly consumables line item. The routine consumable cost for a set time span for each

individual system was obtained from the manufacturer as well as the length in months of

that time span, i.e., how often a batch of consumables would need to be purchased. Year

zero routine consumable purchases represent the price for one set of the routine

consumables in addition to those which will come with the countermeasure, since those

often become expended during check out testing. For years one through five the pricing is

calculated using a round-down function (7) including the routine cost, routine usage

period and the total number of months until the end of that yearly time period; the costs

associated with previous years are subtracted. The round-down function accounts for the

fact that the consumable purchases will occur as individual events and cannot occur as

partial events.

 1

 1 5 () *

12*
,0

n

n

Consumable Purchase for years CP routineconsumable price

year n
ROUNDDOWN CP

estimated timebetweenroutinereplacement

 (7)

37

6. Maintenance

Routine maintenance costs are calculated by accounting for the time period in

question (initial or later years), as well as the mean time between maintenance for the

countermeasure and the routine maintenance costs. As with other cost sub-categories in

this cost model, the routine maintenance cost uses a round-down function (8) which

accounts for each routine maintenance action being an individual action which cannot be

conducted as a partial action. For years two through five the maintenance performed in

previous years is subtracted out in order to not charge for a maintenance action multiple

times.

 1

 1 5 () *

12*
,0

n

n

RoutineMaintenanceCost for years RM estimated routinemaintencecost

year n
ROUNDDOWN RM

meantimebetweenroutinemaintenance

 (8)

Unscheduled maintenance cost is calculated by assuming a ratio of routine to

unscheduled maintenance. Or the total maintenance period, it is estimated that 78 % of

the maintenance is routine maintenance since these systems are only a few levels deep

regarding systems of systems. This makes the unscheduled maintenance 22 % of the total

number of maintenance actions. If a particular system has reason to believe that the ratio

between routine and unscheduled maintenance is something different than this, the ratio

of routine to unscheduled maintenance is a variable which can be changed within the

model. The time between unscheduled maintenance events is taken from the ratio of

unscheduled to routine maintenance actions as well as the MTBM for routine

maintenance (9). This MTBM for unscheduled maintenance is used along with an

estimated cost for the unscheduled maintenance actions to determine the yearly

unscheduled maintenance costs. A round-down function (10) is used to determine the

number of individual unscheduled maintenance actions within the yearly time frame; this

round down function takes into account the fact that the unscheduled maintenance actions

are individual actions which can’t be performed as partial events. If a cost for

unscheduled maintenance was unable to be found from a vendor, the cost for the

unscheduled maintenance was estimated to be three times the cost of scheduled

maintenance for that same system.

38

0.28205

R
U

MTBM
MeanTime BetweenUnscheduled Maintenance MTBM (9)

 1

 1 5

12*
 * ,0

n

n

U

Unscheduled MaintenanceCost for years UM

year n
estimated unscheduled maintenancecost ROUNDDOWN UM

MTBM

 (10)

7. IT Support

After detailed queries for each countermeasure had been performed, it was

determined that the articles onboard ship would not likely have automated tracking or

self-diagnostic systems and that IT support would not be needed. In this case, the values

within the algorithm were set to zero for IT support (11).

 0 5 0nIT support cost for years IT (11)

8. Documentation

Documentation is a key piece of the operating environment for the

countermeasures. In order to perform the initial documentation effort, it was assumed that

a quality assurance representative from either the manufacturing company or the vessel

holding company would spend 80 hours’ time (two week time frame was assumed based

on team member experience with documentation efforts) drafting the initial

documentation manual, after which a team of senior engineers would spend

approximately three weeks’ time to review and publish the documentation. Fully

burdened labor rates for quality assurance representatives and senior engineers were

taken from the department of labor website at $89.19 and $113.08, respectively. Given

that countermeasures with more complex sub-systems would require more documentation

for use and maintenance of those sub-systems, the complexity factor discussed above was

multiplied against the sum product of the labor rates and time required by the QA

representative and the senior engineers. For later years it was assumed that the

documentation would need to be updated approximately once a year based on team

member experience with IT software documentation updates for the Navy Oil Analysis

Laboratory or NOAP program. The cost for these documentation updates was estimated

39

to be half of the cost of the initial documentation effort, based on half the number of labor

hours being needed.

The hourly rates consist of :

 Hourly Rate, Quality Assurance Representative (HRQ) = $89.19

 Hourly Rate, Senior Engineer (HRS) = $113.08

Formulas (12) and (13) were used to determine initial and recurring

documentation costs:

 80* 1 20*Initial DocumentationCost IDC HRQ HRS (12)

 1 5 0.5 * nDocumentation for years DC IDC (13)

9. Training

Training for each countermeasure was assumed to be performed during the initial

build/integration/trial period. The quality assurance representative, who wrote the

manual, or an equally paid and competent contemporary, would perform the training for

the units for the entire vessel staff. It was assumed that the training would take two weeks

(80 hours) worth of time at the quality assurance representative’s labor rate, as discussed

above (14). This time was also multiplied by the complexity factor to account for

countermeasures, which may have lengthy training needed to train crew in proper use

(15). IT was assumed that the training would only need to occur once, and any further

training would be passed down from crew member to crew member on the vessel, and

therefore does not need to be accounted for within the cost estimate. Travel for the

quality assurance representative was not accounted for within the cost estimate as the

manufacturing company location and the vessel location are unknown.

 80 * InitialTraining Cost ITC HRQ (14)

 1 5 0nTraining cost for years TC (15)

40

10. Net-Present-Value Calculation

The cost for initial purchase of the vessel-wide countermeasure installation, the

vessel-wide system integration, the routine consumable price, routine and unscheduled

maintenance costs, IT support, documentation and training are all summed up each year

and multiplied by the yearly estimated inflation then divided by the yearly interest

generated by the vessel company to get a yearly present value for the boarding-

prevention countermeasure from year zero to year five (16). The net present value was

calculated by summing each yearly present value. It was assumed that the

countermeasures would be used until they no longer functioned properly, and as such

there was no resale price taken into account at the end of the five-year period as with

some system configurations.

The variables used as inputs for all five countermeasures were based on OEM

queries as well as trade articles and estimation by similarity when other values could not

be found. Due to relative system simplicity, the complexity factors for each system were

set to one. Routine maintenance costs were not available from the manufacturers, so a

standard of two men for eight hours at $40/hr. was chosen, giving a $640 cost to all

routine maintenance events. Unplanned maintenance events were estimated to take three

times longer than their scheduled counterparts, therefore making them $1920 per event.

An unscheduled maintenance event cost of $8,000 was found for the compressed air

launcher based on manufacturers input. The MTBM for routine maintenance events was

found from the manufacturer in most cases, and estimated by similarity in the case of the

razor wire.

1.06
*

1.033

n

n

n n n n n n n n n

PresentValue per year PV

SP SI CP RM UM IT DC TC

 (16)

NOTE: PV for year zero was calculated with the initial costs for each variable

(17).

5

0

 n

n

Net PresentValue NPV PV

 (17)

41

H. SELECTING THE SYSTEM SOLUTION

Shipping companies ranging from large corporations to independent mariners are

expected to adopt the boarding prevention system; the final stage of this project

determined the intersection point of cost vs performance to appeal to the broadest

possible number of system users. Due to the profit-driven nature of the commercial

shipping industry, any countermeasure must both provide an effective defense against

maritime piracy and be economically affordable. The best value system was one which

would be both effective for survivability in an attack situation and cost-effective.

The modeled system configurations were scored using the survival data from the

modeling phase and the five-year cost from the cost analysis. All system configurations

that did not produce mission successes were discarded to remove inconsequential data.

Each scenario was plotted on a single chart to produce a visual representation of the

results; the x-axis represented cost while the y-axis represented survival rate.

A numerical analysis was then performed to normalize cost and survival data into

a single ranking. The scenario with the highest rate of success was determined, and all

individual system configurations were divided by the first; the results indicate to what

extent each scenario matches the performance of the theoretical maximum. A similar

operation was then performed on the cost data to determine lowest cost, and how well

other system configurations matched this value. The cost ranking and survival were then

multiplied together to determine the overall ranking. Three solutions were selected,

consisting of a cheap scenario with medium effectiveness, a high-effectiveness scenario,

and a midpoint scenario.

42

THIS PAGE INTENTIONALLY LEFT BLANK

43

III. RESULTS

A. NEEDS ANALYSIS RESULTS

1. Stakeholders

By following the process outlined in the Analysis section, the list of stakeholders

below was generated. All needs of the stakeholders were aggregated, but not all were

implemented in creating system requirements, as some needs were not cost feasible.

a. Key Stakeholders

Our research showed that the key stakeholders were the crew that would use the

BPS system, the shipping companies owning the vessels the BPS would be installed on,

and the customers of said companies. The stakeholders are detailed below.

Shipping Companies

A multitude of commercial shipping companies operating vessels under many

different flags (US/European shipping ~20% of traffic). The companies are responsible

for implementing new boarding-prevention solutions including the cost of incorporating

the solution as the primary stakeholder for the output of this project.

Merchant Vessel Crew Members

The safety of the crew is of obvious importance. Crew members that may be

taken hostage have an inherent risk of being harmed or even killed if pirate demands are

not met in a timely manner. Pirates may even harm the crew to prove the seriousness of

their intent. Further, any component of the system solution that is an active offensive or

defensive measure must be operated by a crew member.

Shipping Company Customers

The customers of shipping companies have a certain confidence in any given

shipping company to deliver cargo to the destination for a cost and in a timely manner as

agreed in their contracts. If a merchant vessel is captured, the cargo may be lost. Even if a

captured vessel is returned to shipping company control, the cargo will almost certainly

44

be late. Customers of shipping companies often have customers themselves in the global

merchant market. Therefore, pirate deterrence is of significant important for customers of

shipping companies.

a. Other Stakeholders

 Pirates

The pirates, being the subject of prevention, must be considered a stakeholder of

the system. It should be noted that the pirates are considered to be a dynamic force, and

therefore shall respond to the system as necessary, modifying tactics to nullify or mitigate

the effectiveness of countermeasures. For example, if pirates notice that the starboard

side of the ship is incorporating P-Trap countermeasures, they may choose to attack the

port side of the ship. Factors such as these were incorporated into the statistical

probabilities of each selected component of the system’s ability to deter pirate boarding.

USPACOM (US NAVY Pacific Command)

USPACOM is the United States Navy element responsible for the Pacific Ocean

area, including the waters around Indonesia. It consists of the United States Third and

Seventh Fleets and several other subordinate task forces. USPACOM has a potential

interest in the results of this capstone project.

IMO (International Maritime Organization)

The International Maritime Organization (IMO) is a specialized agency of the

United Nations whose primary responsibility is improving the safety and security of

international shipping. Its secondary responsibility is environmental, preventing marine

pollution from ships. The standards and regulations of the IMO apply to all vessels that

operation internationally. Their stake in anti-piracy operations in the Indonesia region

pertains to their responsibility to maintaining and improving the safety and security of

international shipping.

Malaysian, Singaporean, and Indonesian (Local) Navies

These countries are currently providing the bulk of patrolling naval forces in the

affected region. These parties have a potential interest in the changes in commercial

vessel response to pirate attacks in their national waters.

45

2. Stakeholder Needs

The list of stakeholders and needs discovered through the research process

outlined in Chapter II are listed in Table 4. Similar needs and desires were grouped

together to minimize space and aid in system design, and an effective need was generated

from the inputs gathered from the key stakeholders.

Some of the suggested needs are easily incorporated into the scope of a Boarding

Prevention System, such as logistical support considerations. However, other inputs were

not feasible as requested, such as eliminating maritime piracy worldwide. Others were

not within the scope of creating a boarding prevention system, such as tracking

suspicious vessels. The stakeholder needs discovered in the analysis are listed below.

46

Table 4. List of Identified Stakeholder Needs

This table summarizes the needs identified from the stakeholder analysis and notes which

stakeholders have a given need.

Stakeholder Need Applicable Stakeholders Within Scope Of

Project?
Provide Situational Awareness

(SA)

Shipping Companies

Merchant Vessel Crew

No

Track Suspicious Vessels Shipping Companies

Merchant Vessel Crew

USPACOM

Local Navies

No

Prevent ships from being captured

by pirates

Shipping Companies

Merchant Vessel Crew

Shipping Company Customers

USPACOM

Local Navies

Yes

Protect Crew Shipping Companies

Merchant Vessel Crew

Yes

Deny Hostile Access to ship Shipping Companies

Merchant Vessel Crew

Shipping Company Customers

Yes

Halt Maritime piracy worldwide Shipping Companies

Merchant Vessel Crew

Shipping Company Customers

USPACOM

IMO

Local Navies

No

High Operational Availability Shipping Companies Yes

Cost-effective, affordable

maintenance

Shipping Companies Yes

Minimal installation requirements Shipping Companies Yes

Interoperability across

commercial ship types

Shipping Companies

IMO

Yes

Ruggedized Equipment Shipping Companies

Merchant Vessel Crew

Yes

Ease of Use Shipping Companies

Merchant Vessel Crew

Yes

Cost-effective Shipping Companies

Shipping Company Customers

Yes

Low Operational and Support

Costs

Shipping Companies

Shipping Company Customers

Yes

Low logistical Impact Shipping Companies

Merchant Vessel Crew

Shipping Company Customers

Yes

Effective against all pirate vessels Shipping Companies

Merchant Vessel Crew

USPACOM

IMO

Local Navies

Yes

47

3. Effective Need

The analysis of stakeholder needs showed that preventing pirate control of a

merchant vessel is paramount. The prevention of pirate control however, is in every case

precluded by the pirates themselves boarding the vessel. Therefore, the system solution

must economically and efficiently prevent pirates from boarding commercial vessels in

Indonesian waters, maintaining compliance with international maritime law. This anti-

boarding system concept was given the name “Boarding Prevention System” or BPS. A

context diagram detailing the boundaries of the system and interaction with external

entities is shown below in Figure 9. The context diagram serves as a pictorial

representation of the overall flow of information and material. Four primary external

entities are listed: the commercial vessel, friendly forces, a fishing fleet composed of

pirates and neutral boats, and overtly hostile pirate vessels.

48

Figure 9. Context Diagram

This figure depicts the boundaries of the BPS and how the system interacts with external

entities.

49

B. REQUIREMENTS

1. Concept of Operations (CONOPS)

The top-level CONOPS includes a commercial shipping vessel, pirate skiffs, and

rescue forces. Pirate vessels approach the commercial vessel during transit and attempt to

hijack the ship. The commercial vessel will immediately call for aid, and attempt to hold

off the attacking forces until friendly vessels arrive. Once friendly naval or coast guard

forces approach, the pirates will scatter in the face of superior firepower. Figure 10

illustrates the CONOPS, and is overlaid over a map of Indonesia.

Figure 10. Top-Level CONOPS

This figure depicts the top-level operation of system. Pirates attack the commercial

ship, which defends using onboard countermeasures until friendly military or coast

guard arrive to rout pirates.

50

The CONOPS aided the effort of further defining the situation in which the BPS

would be used by focusing research on the maximum time required for the BPS to

operate before assistance would arrive. Once this was determined, efforts were focused

on analyzing the boarding attempt, generating an OV-1 diagram which divides the

operational theater into four ranges, from detection point to interception. Defensive

systems will focus on either one or multiple ranges, and will use some combination of

active and passive countermeasures to prevent hijacking. The OV-1 is shown in Figure

11.

Figure 11. OV-1 Operational Concept

This figure depicts the use of ship-borne countermeasures against pirates at various

ranges. Close through long ranged countermeasures act against skiffs, while anti-

climbing countermeasures act only on pirates attempting to scale the ship.

51

2. Design Reference Mission

A Design Reference Mission was constructed to define a baseline threat scenario.

The overall scenario consists of commercial vessels traveling through pirate infested

travel routes surrounding Indonesia. The operational environment, shown in Figure 12,

consists of a cargo ship attacked by pirate skiffs 100 nm from an allied military base. Aid

is requested, and the military ship launches immediately on an intercept course. Pirates

attempt to board the commercial ship and obtain control of it; the ship deploys the anti-

boarding defensive system to prevent the loss of the ship.

Figure 12. Operational Environment

This figure depicts the operational environment and the key entities involved in a typical

scenario.

The scenario assumes that the pirate attack will cease if driven off or friendly

vessels arrive to aid the commercial ship. The mission is defined as a success if the

pirates are prevented from gaining control of the commercial ship. Success scoring is

based on the following factors:

o Pirates are prevented from boarding ship through various methods

o Ship maneuvers to safe waters OR Navy task force arrives

o Loss of crew life is minimized

52

3. Functional Requirements

The top-level requirement of the system is the prevention of pirates from boarding

the commercial vessel and gaining control of it. A decomposition of this requirement is

shown below in Figure 13. The top-level requirement can be accomplished by impeding

the entry routes of the pirates, forcing the pirate skiffs away from the vessel, or by

degrading pirate capabilities. Increasing the distance between pirate skiffs and the

commercial vessel can be accomplished in two ways: by increasing operational range or

by a system configuration that decreases the pirate craft’s ability to remain in the

operational range. Finally, the pirate capabilities can be degraded by reducing pirate craft

maneuverability, neutralizing pirate crew, or impairing pirate communications.

Figure 13. Piracy Prevention System Requirements

This figure depicts the requirements for the BPS, showing the breakdown of the top-

level function into more specific system requirements.

53

The requirements generated from the decomposition of the top-level requirement

are described in Table 5.

Table 5: Functional Requirements

This table identifies the functional requirements from the stakeholder needs and provides

additional details.

Functional Requirement

Name
Requirement Detail

1.0 Prevent boarding by pirates
the system shall prevent a pirate boarding long

enough for help to arrive.

1.1 Impede pirate entry routes
the system shall impede pirate boarders from using

their typical boarding routes.

1.2
Force pirate craft away

from ship

the system shall push pirate vessels away from the

ship to a distance of greater than 3 meters.

1.3 Disable pirate vessels

the system shall degrade the pirates’ ability to

execute their mission by disabling propulsion,

crew capability, and ability to coordinate.

1.3.1
Disable the pirate vessels’

propulsion

the system shall disable the pirate crafts’ ability to

keep up with the commercial vessel.

1.3.2 Disable pirate crews

the system shall neutralize pirate crew and

boarders as participants in the attack using

nonlethal methods

1.3.3
Disable pirate Command

and Control (C2)

the system shall prevent the pirates from

effectively coordinating their assault

4. Non-Functional Requirements

The non-functional requirements listed in Table 6 represent the stakeholder needs

that were unmet by the functional requirements. These requirements were given

consideration during the trade study of COTS countermeasures in the System

Architecture phase.

54

Table 6. Non-Functional Requirements

This table identified the functional requirements from the stakeholder needs and provides

additional details.

Non-functional

Requirement Name Requirement Detail

Compliance with

international law

the system shall comply with all applicable laws for

international waters

High system reliability
the system shall incorporate a MTBF sufficient for the

vessel to complete 10 voyages between average failures.

Cost-effectiveness
the system shall have an affordable purchase cost and

minimize Operations & Support costs

Standard deck equipment

interface and installation

the system shall require minimal installation time and shall

not require a dry dock or non-standard tools

Interoperability
the system shall be usable on all commercial ships

manufactured globally in the last 30 years

Affordable and simple

logistics support

the system shall not require unique or hard-to-obtain

consumables nor shall it require replacement of routine

consumables more frequently than once per quarter

Increase the range at

which pirate craft can

remain near the ship

unmolested

the system shall increase the range pirate craft must remain

at in order to avoid countermeasures.

the system shall decrease

the pirate crafts’ ability

to remain within the

protected region

the system shall reduce the time that a pirate craft will

remain within the vicinity of the vessel protected by the

system.

Low environmental

impact

the system shall have minimal impact on the environment

the system shall not produce any waste harmful to the crew

or requiring enhanced disposal techniques

Low maintenance

the system shall not require active oversight for deployed

passive systems

the system shall not require more scheduled maintenance

than standard deck equipment

Built-in, automatic

notification of failures

the system shall create an audio-visual notification if a

failure occurs that would prevent mission success

C. FUNCTIONAL ARCHITECTURE

After analyzing the requirements for the BPS, the functional development process

generated an overall function for the system, which was then decomposed into more

defined functional elements. The overall function was for the system to prevent pirates

55

from boarding the commercial vessel, and the decomposed functions providing the

specific tactical functions (second and third level functions) can be found in Figure 14.

Several identified requirements were also determined to be non-viable for

implementation in the BPS. Specifically, neutralizing pirate crew via lethal measures will

encounter numerous ethical, legal, and safety guidelines. Additionally, the impairment of

communications is not a viable approach; pirates typically do not coordinate between

skiffs once an attack is started. Therefore, the project shall prevent pirates from boarding

the commercial vessel by some combination of impeding entry routes, forcing pirate craft

away from the target ship, or degrading pirate capabilities.

Figure 14. Top-level Functional Hierarchy of BPS

This figure depicts the functional decomposition from the top-level function of boarding

prevention to lower-level functions detailing how the overall function is accomplished.

This diagram covers the general functions performed by the countermeasures.

56

Table 7. BPS Functions

This table identifies the system functions from the functional requirements and provides

additional details.

Function Name Function Detail

1.0 Prevent boarding by pirates

the system shall prevent a pirate boarding long

enough for help to arrive through use of

countermeasures.

1.1 Impede pirate entry routes

Block routes of ingress to the commercial vessel or

increase difficulty and time required to board by

using obstacles and hoses.

1.2
Force pirate craft away

from ship

Physically push pirate craft out of boarding range

or create zones pirate craft will avoid.

1.3 Disable pirate vessels

Degrade the pirates’ ability to execute their

mission by disabling propulsion, crew capability,

and ability to coordinate by using

countermeasures.

1.3.1
Disable the pirate vessels’

propulsion

Foul pirate craft propellers with projectiles, lines,

and nets.

1.3.2 Disable pirate crews
Non-lethally subdue pirates or knock them into the

water.

1.3.3 Disable pirate C2
Prevent the pirates from effectively coordinating

their assault by using distraction systems.

D. SYSTEM ARCHITECTURE

1. Viable Solutions

The output from the development of the system architecture provided a list of 25

possible piracy countermeasures listed below:

 Razor Wire

Razor wire is a low-cost and widely used method of creating a defensive barrier.

It is typically comprised of metal strips with sharp edges or barbs placed throughout its

length. The principle method of deterrence is by posing a high risk of lacerations to the

trespasser. often times the metal strips are laid in a spiral and placed under tension so that

if they are cut, the wire snips and strikes the trespasser.

57

 Electrified Wire

This defensive barrier is razor wire that has an electrical source provide a pulsed

high voltage through the wire, potentially stunning an intruder making contact with the

wire.

Pepper Spray

A crew operated aerosol system mounted on the side of a ship, can release up to

300 gallons of pepper spray onto individuals boarding the ship.

Long Range Acoustic Device (LRAD)

“The Long range acoustic device is a non-lethal anti-piracy device that uses a pain

inducing sound beam to drive away pirates. The sonic weapon produces high-pitched

noise that is higher than the tolerance level of an average human being. LRAD has been

used on few cargo and cruise ships until now” (“18 Anti-Piracy Weapons” 2013). Range:

10 to 3,000 meters. (http://www.lradx.com/site/content/view/323)

Anti-Piracy Laser Device (non-lethal)

“The anti-piracy laser device uses non-lethal laser beam to provide a visual

warning to pirates and distract them temporarily. The laser device can be used during

both day and night, and can be easily operated by the ship’s crew” (“18 Anti-Piracy

Weapons” 2013). Developed by BAE, tests suggest it is effective at a distance of 1.5km.

Nets-Boat Traps

“Boat trap is a type of ballistic net which can be used to stop pirates’ boats when

they come near to a merchant ship. When in water, the net ensnares the propellers of the

boats that disable the vessel, preventing it from moving forward” (“18 Anti-Piracy

Weapons” 2013).

Slippery Foam

“Slippery foam or Anti-traction material is a non-lethal substance that can be used

to make the deck or sides of a ship slippery to avoid pirates from climbing it. The highly

viscous substance substantially reduces traction of anything that comes in contact with it,

making it difficult to walk or stand” (“18 Anti-Piracy Weapons” 2013).

58

 Foul-Smelling Liquid (Liquid Countermeasure System)

“An anti-piracy technology by the International Maritime Security Network of

U.S. involves showering approaching pirates with slick, foul-smelling green liquid, which

stinks and burns. The burning sensation and the nasty stink caused by the liquid forces

pirates to jump into the water, thus stopping a possible pirate attack” (“18 Anti-Piracy

Weapons” 2013).

Anti-Boarding device (Razor Wire Canister)

“Anti-boarding device is an anti-piracy method which uses canisters with sharp

razor wires to prevent pirates from boarding the ship. The wires act as a barrier between

the pirates and the ship, which thwarts forward movement of pirates” (“18 Anti-Piracy

Weapons” 2013).

Compressed Air - Ship Bourne Shore Launcher

“the Ship Bourne Shore Launcher is a product of a UK based company. The

Buccaneer Ship Bourne Shore Launcher is a cannon shaped device which uses

compressed air to fire a variety of projectiles. The power and lethality of the projectiles

used can vary according to the distance of the pirates from the ship” (“18 Anti-Piracy

Weapons” 2013)

P-trap Anti-Piracy Fouling lines

“[The] P-trap concept is a non-lethal system which helps prevent pirates from

boarding ships. The system carries thin lines which float at the water level around the

sides of the vessel. When pirate skiffs/boats come in contact with the lines, the later gets

entangled with the engine and disable the vessel” (“18 Anti-Piracy Weapons” 2013).

Effective if run into P-trap, limited range, limited lines. According to FAQs, after four

attacks, nine P-trap lines were used, there are 20 traps per side, and so multiple waves of

craft can defeat P-trap.

Anti-Piracy Curtain

“Designed by a division of Japan’s NYK group along with hose manufacturer

Yokoi, the anti-piracy curtain is a unique method to keep pirates from climbing the ships.

The system consists of a series of hoses which are dangled on the port and starboard sides

59

of the vessel. Sea water is passed through the nozzles at a force of 0.2 Mega Pascal,

which makes the hoses go in unpredictable whirling motion, generating enough force to

seriously hurt anyone who gets in the way” (“18 Anti-Piracy Weapons” 2013).

 Non-lethal/Stun Grenade

“Stun grenade or flash grenade is a non-lethal anti-piracy device which produces a

blinding flash of light and loud noise. Stun grenades are used to temporary disorient a

pirate’s senses without causing any kind of permanent injury” (“18 Anti-Piracy

Weapons” 2013).

Dazzle Gun

“Dazzle guns is a type of laser weapon which uses green light to disorient and

temporary blind the pirates. The concentrated blast of green light can be used during both

day and night” (“18 Anti-Piracy Weapons” 2013).

 Rubber Ball Grenade

“Rubber ball grenade as a non-lethal weapon sprays rubber bullets on detonation.

The anti-piracy grenade also produces light and sound which can be used to deter pirates

from coming towards the ship” (“18 Anti-Piracy Weapons” 2013).

Active Denial System - Pain Ray

“Officially known as the Active Denial System (ADS), the Pain Ray is a non-

lethal weapon which transmits a narrow beam of electromagnetic energy to heat the skin

without causing permanent damage. The wave penetrates beneath the skin which causes

unbearable burning sensation, forcing pirates to run away or jump overboard” (“18 Anti-

Piracy Weapons” 2013). Operational range and specific time it takes to achieve an effect

is access restricted.

 Anti-Piracy Fire Hoses

“Ship’s fire hoses or special Anti-piracy fire hoses are often used to fight pirates

trying to board the ships. These high pressure water hoses are extremely powerful and

effective to fight pirates. Special anti-piracy fire hoses also come with semi-automatic

and remote control system” (“18 Anti-Piracy Weapons” 2013).

60

Laser Weapon Systems (LaWS) (lethal)

LaWS is a system based on a design developed by the Navy Research Lab and

engineers at the Naval Sea Systems Command and Naval Surface Warfare Center

Dahlgren. Its purpose is not to vaporize enemy ships but to provide a low-cost way for

the Navy to defend against drones, small boats, light aircraft, and missiles at ranges of

about a mile.

Hire Security Personnel to train self-defense/combat

This countermeasure entails hiring private military contractors to provide

advanced self-defense techniques and drilling the crew of commercial vessels in the use

of small arms for self defense

Agree to Ransom Conditions of Pirates

This “countermeasure” is included as a baseline to measure other countermeasure

options against as this is the status-quo solution being used currently.

Hire Security Team on Board

Hiring private military contractors to provide security for commercial vessels

Weapons

This countermeasure entails providing the crew with small arms and training the

crew in basic safety measures.

Smaller Vessels w/ less cargo, therefore lower value target

This solution would involve changing the composition of shipping fleets to

emphasize smaller vessels that present less lucrative targets for pirates.

Change Ship Route

Travel via a safer but less-efficient route.

Anti-piracy guardrails

Plastic/rubber matrix formed over the guardrails of the ship similar to bumpers for

bowling lanes. Simply put these on after getting into open water, then remove before

docking. If the boat’s above board height is >8 ft., then no reported instances of failure.

This will not allow grappling hooks to come onboard and hook onto anything. Developed

for British merchant ships.

61

2. Trade Study

A trade study was conducted to reduce the available countermeasures via a

decision matrix, found in Table 8. The decision matrix scores were based on the

convention that a rating of one was desired and a rating of five was undesirable. Each

factor was ranked according to an overall score determined by dividing individual

countermeasure scores by the theoretical maximum. The top five countermeasures were

selected for modeling to determine success in preventing pirate attacks.

Table 8. Decision Matrix Analysis of Potential Countermeasures

This table shows the decision matrix of 25 possible countermeasures. Each

countermeasure was ranked according to generated MOPs and assigned a normalized

overall score based on the countermeasure score divided by the theoretical maximum.

D
ep

lo
y
m

en
t

E
a
se o

f U
se

S
ch

ed
u

led
 M

a
in

ten
a
n

ce

C
o
st

R
esista

n
ce to

 A
tta

ck

R
eq

u
ired

 L
o
g
istics

E
ffect o

n
 C

rew

 M
u

ltip
lier

0
.1

3
0
4
3
4
8

0
.1

3
0
4
3
4
8

0
.1

3
0
4
3
4
8

0
.2

1
7
3
9
1
3

0
.1

3
0
4
3
4
8

0
.0

4
3
4
7
8
3

0
.2

1
7
3
9
1
3

Countermeasure Score

Razor Wire 1 2 1 1 2 1 3 86.09%

Electrified Wire 2 2 3 3 4 2 4 59.13%

Pepper Spray 1 2 1 1 2 3 3 84.35%

Long Range Acoustic Device (LRAD) 3 3 4 5 4 3 2 50.43%

Anti-Piracy Laser Device (non-lethal) 4 3 4 5 5 3 1 49.57%

Nets-Boat Traps 5 3 3 3 3 3 1 63.48%

Slippery Foam 2 2 3 3 2 4 1 75.65%

Foul Smelling Liquid - Liquid Countermeasure

System

3 2 3 3 2 4 3 64.35%

Anti-Boarding device - Razor Wire Canister 2 2 2 3 4 2 1 74.78%

Compressed Air - Ship Bourne Shore Launcher 3 4 2 2 2 3 2 71.30%

P-trap Anti-Piracy Fouling lines 2 1 2 2 4 2 1 81.74%

Anti-Piracy Curtain 2 2 2 1 3 2 2 81.74%

Non-lethal/Stun Grenade 2 1 1 2 4 2 4 71.30%

62

Dazzle Gun 3 2 3 3 3 2 1 72.17%

Rubber Ball Grenade 4 2 2 2 3 3 3 66.96%

Active Denial System - Pain Ray 3 4 3 5 2 3 1 60.00%

Anti-Piracy Fire Hoses 2 2 2 2 2 2 2 80.00%

Laser Weapon Systems (LaWS) (lethal) 4 3 5 5 2 3 3 46.09%

Hire Security Personnel to train crew in self-

defense/combat

1 3 2 5 2 4 2 65.22%

Agree to Ransom Conditions of Pirates 2 2 1 5 3 3 5 53.04%

Hire Security Team on Board 2 2 2 5 2 3 3 61.74%

Weapons 2 1 3 3 3 3 5 59.13%

Smaller Vessels w/ less payload, therefore lower

value target

1 3 1 5 4 4 3 58.26%

Change Ship Route 2 2 1 2 5 4 2 73.04%

Anti-piracy guardrails 3 1 2 3 2 3 1 79.13%

3. Selected Countermeasures

Table 9 shows the five piracy countermeasures that were incorporated into the

model based on their scores in their respective categories in the decision matrix. The two

passive defense countermeasures are razor wire and P-Traps. For active defense, the

Anti-Piracy Curtain and Anti-Piracy Fire Hoses scored the highest. The active offense

countermeasure is the compressed air cannon.

Table 9. Selected Countermeasures

This table shows the top five countermeasures from the trade study, which are selected

for modeling.

Countermeasure Category Score
Razor Wire Passive Defense 0.86

P-Trap Anti-Piracy Passive Defense 0.82

Anti-Piracy Curtain Active Defense 0.82

Anti-Piracy Fire Hoses Active Defense 0.80

Compressed Air Cannon Active offense 0.71

Razor wire is a low cost and widely used method of creating a defensive barrier. It

is typically comprised of metal strips with sharp edges or barbs placed throughout its

length. The principle method of deterrence is by posing a high risk of lacerations to the

trespasser. often times the metal strips are laid in a spiral and placed under tension so that

if they are cut, the wire whips and strikes the trespasser. It is designated as a passive

defense system because once it is set, the system is turned “on.”

63

P-Traps are a passive defensive system primarily distributed by Westmark BV.

This anti-piracy system is comprised of heavy lines hung of booms mounted on the sides

of a vessel. It is a close range system as their effectiveness is only as far as the boom

extends which is currently maxed out at 12 meters. Booms can be mounted so that the

lines trail from bow to stern on both the port and starboard sides, and additional booms

can be mounted straight off the stern to provide a rear defense. The primary deterrence

mechanism is disabling an attacking vessel’s propeller by entangling the heavy lines onto

them degrading their maneuverability considerably.

 The anti-piracy Curtain is a countermeasure that uses intense water pressure

contained in heavy gauge hoses to thwart would be boarders to a vessel. Hung off the

sides of the vessel, the intense pressure causes the hoses to whip wildly along the flanks

of the ship. A would-be boarder who decides to climb a vessel equipped with the curtain

would be subject to blunt force trauma from the turbulent hoses. It was considered an

active defense because the system would have to be engaged prior to a pirate attack and

turned off after the attack.

Anti-piracy Fire Hoses are modelled on UNIFIRE’s anti-pirate water cannons

system. Typical installations on commercial vessels include six water cannons, three for

the port and starboard side each. These cannons can be remote operated or automated

through integration with a radar system. They fire up to 50 liters of water per minute, at a

pressure of 10 bars, and with an effective range of up to 90 meters. These hoses can be

used to keep pirates at bay by using the pressure exerted to keep them outside a critical

range, or, against smaller skiffs, they can be used to quickly fill and sink the attacker’s

vessel. These are also active defense systems because they must also be engaged prior to

the pirate attack.

The Compressed Air Cannon is a pneumatic projectile launcher that can be loaded

with a wide range of munitions. For the anti-piracy application, the non-lethal projectiles

were selected. The launchers fire net-like non-lethal projectiles intended to entangle with

the attacking skiff’s propellers rendering them immobile or severely handicapped with

respect to maneuverability. Their reported effective range is up to 300 meters.

64

E. MODELING AND SIMULATION RESULTS

1. Modeled System Configurations

The full list of selected system configurations can be found in Appendix A. The

system configurations selected to be simulated were each run 100 times, validated, and

then run 1000 times.

2. Results

For each of the twenty-four system configurations, the DRM was simulated 1000

times, and the total number of successful runs divided by the number of total runs to

average the success rate. Four DRM runs contained all mission failures, three DRM runs

contained all mission successes, and the remainder fell between 0.8 and 0.99. The

survival percentages for each configuration are listed below in Table 10.

Table 10. Simulation Results

This table shows which countermeasures are enabled for each simulation run, and what

survival rate each system configuration obtained per set of 100 and 1000 runs,

respectively.

Passive Defense Active Defense Active offense
Survival

MOE Results

Run #
Razor

Wire

Pirate

Curtain

P-

Trap

Water

Cannon

Compressed

Air Cannon

100x

Runs

1000x

Runs

1 off off On off off 0 0.000

2 On off On off On 0.99 0.972

3 On On On off On 0.98 0.996

4 On On On On off 0.99 0.997

5 On off On On off 0.92 0.919

6 off off On On On 0.9 0.864

7 On On On off off 0.99 0.994

8 On off off On off 0.87 0.89

9 off off On On off 0 0.000

10 On On On On On 1 0.996

11 On On off off off 0.99 0.994

12 On off On On On 0.99 0.984

13 On On off On off 1 0.997

65

14 On off off off off 0.87 0.85

15 off On On On On 0.99 0.995

16 On off On off off 0.8 0.085

17 On On off On On 0.98 0.997

18 On On off off On 1 0.997

19 off off On off On 0.92 0.847

20 off On On off off 0 0.000

21 On off off off On 0.94 0.973

22 On off off On On 0.99 0.981

23 off On On On off 0 0.000

24 off On On off On 0.98 0.993

3. Model Limitations

Several assumptions and limitations are identified for the model as it exists today.

Appendix D lists the areas where it is identified that the model relies upon assumptions

due to a lack of data available today, or where the data sources are considered less than

unquestionable. Appendix E lists known areas where the model has significant room for

improvement and could be focused on in any follow-on effort.

F. COST ANALYSIS RESULTS

Each set of simulation runs evaluated a specific system configuration. The five-

year Net Present Value (NPV) system cost for each system configuration was determined

using the formulas discussed in Section II and the results are listed in Tables 11 through

16. Not all cost data was obtainable from the countermeasure manufacturers as some

systems, such as the Compressed Air Cannon, had not been integrated with a commercial

shipping vessel. A best estimate was made for integration costs and other areas without

hard data.

66

Table 11. System Configuration Cost

This table shows the total five-year NPV cost of all installed countermeasures for a given

configuration.

System

Configur

ation

Razor

Wire

P-Trap Curtain Fire Hose Compressed

Air Cannon

 Sum

1 $394,889 $0 $0 $0 $0 $394,889

2 $394,889 $361,871 $0 $0 $802,610 $1,559,370

3 $394,889 $361,871 $0 $978,831 $802,610 $2,538,200

4 $394,889 $361,871 $235,280 $978,831 $0 $1,970,871

5 $394,889 $361,871 $235,280 $0 $0 $992,040

6 $394,889 $0 $235,280 $0 $802,610 $1,432,779

7 $394,889 $361,871 $0 $978,831 $0 $1,735,591

8 $0 $361,871 $235,280 $0 $0 $597,151

9 $394,889 $0 $235,280 $0 $0 $630,169

10 $394,889 $361,871 $235,280 $978,831 $802,610 $2,773,480

11 $0 $361,871 $0 $978,831 $0 $1,340,701

12 $394,889 $361,871 $235,280 $0 $802,610 $1,794,650

13 $0 $361,871 $235,280 $978,831 $0 $1,575,981

14 $0 $361,871 $0 $0 $0 $361,871

15 $394,889 $0 $235,280 $978,831 $802,610 $2,411,610

16 $394,889 $361,871 $0 $0 $0 $756,760

17 $0 $361,871 $235,280 $978,831 $802,610 $2,378,591

18 $0 $361,871 $0 $978,831 $802,610 $2,143,311

19 $394,889 $0 $0 $0 $802,610 $1,197,499

20 $394,889 $0 $0 $978,831 $0 $1,373,720

21 $0 $361,871 $0 $0 $802,610 $1,164,480

22 $0 $361,871 $235,280 $0 $802,610 $1,399,760

23 $394,889 $0 $235,280 $978,831 $0 $1,609,000

24 $394,889 $0 $0 $978,831 $802,610 $2,176,330

67

Table 12. Water Cannon Total Ownership Cost

This table shows a five-year NPV for the Water Cannon

NPV Water Cannon Year

Item 0 1 2 3 4 5

System Purchase $704,000 $0 $0 $0 $0 $0

System Integration $17,600 $0 $0 $0 $0 $17,600

Consumable

Purchase
$1,000 $2,000 $2,000 $4,000 $4,000 $6,000

Routine

Maintenance
$0 $7,680 $7,680 $15,360 $15,360 $23,040

Unscheduled
Maintenance

$0 $5,760 $5,760 $11,520 $11,520 $17,280

IT Support $0 $0 $0 $0 $0 $0

Documentation $20,704 $10,352 $10,352 $10,352 $10,352 $10,352

Training $7,135 $0 $0 $0 $0 $0

Inflation multiplier
Estimate

1 1.06 1.12 1.19 1.26 1.34

Subtotal(Current
Value)

$750,440 $27,339 $28,980 $49,108 $52,054 $99,393

Interest Multiplier
Estimate

1 1.03 1.07 1.1 1.14 1.18

total (Present Value) $750,440 $26,466 $27,158 $44,550 $45,715 $84,499

Net Present Value $978,830

68

Table 13. Compressed Air Launcher total Ownership Cost

This table shows a five-year NPV for the Compressed Air Launcher

NPV Compressed
Air Launcher

Year

Item 0 1 2 3 4 5

System Purchase $372,900 $0 $0 $0 $0 $0

System Integration $211,200 $0 $0 $0 $0 $0

Consumable
Purchase

$5,000 $0 $5,000 $0 $10,000 $0

Routine
Maintenance

$0 $2,560 $2,560 $5,120 $5,120 $7,680

Unscheduled
Maintenance

$0 $8,000 $8,000 $16,000 $16,000 $32,000

IT Support $1 $1 $2 $3 $4 $5

Documentation $20,705 $10,352 $10,352 $10,352 $10,352 $10,352

Training $7,135 $0 $0 $0 $0 $0

Inflation multiplier
Estimate

1 1.06 1.12 1.19 1.26 1.34

Subtotal(Current
Value)

$616,941 $22,168 $29,117 $37,488 $52,363 $66,961

Interest Multiplier
Estimate

1 1.03 1.07 1.1 1.14 1.18

total (Present Value) $616,941 $21,460 $27,287 $34,009 $45,986 $56,928

Net Present Value

$802,610

69

Table 14. P-Trap Total Ownership Cost

This table shows a five-year NPV for the P-Trap

NPV P-trap Year

Item 0 1 2 3 4 5

System Purchase $62,400 $0 $0 $0 $0 $0

System Integration $1,040 $0 $0 $0 $0 $0

Consumable Purchase $3,000 $6,000 $6,000 $12,000 $12,000 $18,000

Routine Maintenance $0 $7,680 $7,680 $15,360 $15,360 $23,040

Unscheduled
Maintenance

$0 $7,760 $7,760 $15,520 $15,520 $23,280

IT Support $0 $0 $0 $0 $0 $0

Documentation $20,705 $10,352 $10,352 $10,352 $10,352 $10,352

Training $7,135 $0 $0 $0 $0 $0

Inflation multiplier
Estimate

1 1.06 1.12 1.19 1.26 1.34

Subtotal(Current
Value)

$94,280 $33,700 $35,722 $63,401 $67,205 $99,929

Interest Multiplier
Estimate

1 1.03 1.07 1.1 1.14 1.18

total (Present Value) $94,280 $32,623 $33,476 $57,517 $59,020 $84,955

Net Present Value $361,871

70

Table 15. Pirate Curtain Total Ownership Cost

This table shows a five-year NPV for the Pirate Curtain

NPV Pirate Curtain Year

Item 0 1 2 3 4 5

System Purchase $88,200 $0 $0 $0 $0 $0

System Integration $12,600 $0 $0 $0 $0 $0

Consumable
Purchase

$1,000 $0 $1,000 $0 $2,000 $0

Routine
Maintenance

$0 $2,560 $2,560 $5,120 $5,120 $7,680

Unscheduled
Maintenance

$0 $1,920 $1,920 $3,840 $3,840 $7,680

IT Support $0 $0 $0 $0 $0 $0

Documentation $20,705 $10,352 $10,352 $10,352 $10,352 $10,352

Training $7,135 $0 $0 $0 $0 $0

Inflation multiplier
Estimate

1 1.06 1.12 1.19 1.26 1.34

Subtotal(Current
Value)

$129,640 $15,722 $17,789 $23,001 $26,906 $34,409

Interest Multiplier
Estimate

1 1.03 1.07 1.1 1.14 1.18

total (Present Value) $129,640 $15,220 $16,671 $20,867 $23,630 $29,253

Net Present Value $235,280

71

Table 16. Razor Wire Total Ownership Cost

This table shows a five-year NPV for the Razor Wire

NPV Razor Wire Year

Item 0 1 2 3 4 5

System Purchase $35,700 $35,700 $0 $0 $0 $0

System Integration $4,200 $4,200 $4,200 $8,400 $8,400 $12,600

Consumable Purchase $2,000 $4,000 $4,000 $8,000 $8,000 $12,000

Routine Maintenance $0 $7,680 $7,680 $15,360 $15,360 $23,040

Unscheduled
Maintenance

$0 $7,680 $7,680 $15,360 $15,360 $23,040

IT Support $0 $0 $0 $0 $0 $0

Documentation $20,705 $10,352 $10,352 $10,352 $10,352 $10,352

Training $7,135 $0 $0 $0 $0 $0

Inflation multiplier
Estimate

1 1.06 1.12 1.19 1.26 1.34

Subtotal(Current
Value)

$69,740 $73,789 $38,104 $68,451 $72,558 $108,440

Interest Multiplier
Estimate

1 1.03 1.07 1.1 1.14 1.18

total (Present Value) $69,740 $71,432 $35,708 $62,098 $63,721 $92,191

Net Present Value $394,889

G. SYSTEM CONFIGURATION SCORING

The modeled system configurations were plotted using the survival data from the

modeling phase and the five-year cost from the cost analysis and can be found in Figure

15; the green circles (system configurations 21, 11, and 13) represent the “knee of the

curve” and the non-dominated solutions that should be looked at closely in selecting a

single system configuration for procurement. Table 17 contains the raw cost and survival

percentages.

72

Figure 15. Cost vs. Survival Percentage

This figure depicts cost in $M vs survival percentage of each system configuration. The

green circles (system configurations 21, 11, and 13) represent the “knee of the curve”

and the non-dominated solutions that should be looked at closely in selecting a single

system configuration for procurement.

73

Table 17. Cost and Survival Results

This table shows the system configurations and the associated cost and survival

numbers. The green boxes (system configurations 11, 13, and 21) represent the

“knee of the curve” and the non-dominated solutions that should be looked at

closely in selecting a single system configuration for procurement.

Run #

1000x

Survival

MOE

 5 Year

Cost

1 0 $394,889

2 0.972 $1,559,370

3 0.996 $2,538,200

4 0.997 $1,970,871

5 0.919 $992,040

6 0.864 $1,432,779

7 0.994 $1,735,591

8 0.89 $597,151

9 0 $630,169

10 0.996 $2,773,480

11 0.994 $1,340,701

12 0.984 $1,794,650

13 0.997 $1,575,981

14 0.85 $361,871

15 0.995 $2,411,610

16 0.085 $756,760

17 0.997 $2,378,591

18 0.997 $2,143,311

19 0.847 $1,197,499

20 0 $1,373,720

21 0.973 $1,164,480

22 0.981 $1,399,760

23 0 $1,609,000

24 0.993 $2,176,330

74

THIS PAGE INTENTIONALLY LEFT BLANK

75

IV. CONCLUSIONS

Out of twenty-five available piracy countermeasures, five were selected by

decision matrix. These five countermeasures were analyzed using a model simulating a

commercial vessel defending against a pirate boarding attempt mimicking the conditions

specified in a Design Reference Mission. Twenty-four unique combinations of the

selected countermeasures were tested in the model.

After simulations were completed for all of the system configurations, the

simulation results and cost estimates were imported into Microsoft Excel software to

determine the effects of the countermeasure interactions. The five-year costs and

effectiveness were ranked and combined into an overall ranking.

The results of the simulations and cost analyses showed three configurations that

maximized cost-effectiveness. Usage of the P-Trap countermeasure combined with the

Compressed Air Cannon provided a success rate of 97.3% with a five-year cost of

$1.164M/ship. A slightly more effective system configuration consists of the P-Trap

countermeasure combined with the Fire Hose, with a success rate of 99.4% and a five

year cost of $1.341M/ship. Adding the Anti-Piracy Curtain to the P-Trap and Fire Hose

countermeasures improves the success rate to 99.7%, but increased the system cost to a

five-year cost of $1.576M/ship.

76

THIS PAGE INTENTIONALLY LEFT BLANK

77

V. RECOMMENDATIONS

While multiple system configurations are effective for commercial vessels

seeking to prevent pirate boarding, the research indicates that the P-Trap, supplemented

with either Compressed Air Cannons or Fire Hoses is the best option for preventing

maritime piracy based on the effectiveness, associated costs, ease of use, and the other

determining factors. Because the Fire Hose countermeasure is a less complicated system

that requires less crew action during a pirate boarding attempt, it is recommended that a

combination of P-Traps and Fire Hoses be employed on commercial shipping vessels

traversing Indonesian waters.

There are additional factors that were not modeled in this effort, such as levels of

crew training, or employing countermeasures in a scenario where lookouts have failed to

notice a pirate attack at range. These are areas for possible future work on boarding-

prevention countermeasures. It should be noted that the P-Trap is a system that can be

employed well in advance of a pirate attack. This allows the system to protect a vessel

even in situations where crew lookouts do not notice pirate vessels approaching and

system success is not dependent on crew training for successful use during a pirate attack.

78

THIS PAGE INTENTIONALLY LEFT BLANK

79

APPENDIX A. SYSTEM CONFIGURATIONS LIST

Passive

Defense
Active Defense

Active

offense

Run #
P-

Trap

Water

Cannon

Razor

Wire

Pirate

Curtain

Compressed

Air Cannon

1 off off On off off

2 On off On off On

3 On On On off On

4 On On On On off

5 On off On On off

6 off off On On On

7 On On On off off

8 On off off On off

9 off off On On off

10 On On On On On

11 On On off off off

12 On off On On On

13 On On off On off

14 On off off off off

15 off On On On On

16 On off On off off

17 On On off On On

18 On On off off On

19 off off On off On

20 off On On off off

21 On off off off On

22 On off off On On

23 off On On On off

24 off On On off On

80

THIS PAGE INTENTIONALLY LEFT BLANK

81

APPENDIX B. MODEL SOURCE CODE

A. AIR_CANNON.M

classdef Air_Cannon

 %Air_Cannon Represents the Air Cannon countermeasure countermeasure.

 % the air cannon is a mounted, remote controlled turret that fires one of

several projectiles to stop pirate skiffs. Selected for the model from among these was

the net/line option that is fired at pirate craft to ensnare their propellers.

 properties

 max_range = 850; %Described the maximum range that the air cannon can fire.

Defined by

http://www.bcbin.com/products/product_details.php?category=marine&product=Security

Buccaneer#BUC001

 max_magazine_size = 6; %the maximum number of shots that can be fired without

the countermeasure being reloaded.

 time_between_shots = 10; %Delay, in seconds, that the cannon must wait between

successive shots.

 prob_of_hit = 0.5; %Likelihood of any given shot successfully disabling a pirate

skiff.

 time_of_last_shot; %Tracks the time at which the last shot was fired in order to

determine when the next shot is eligible to be fired.

 magazine; %Tracks how many shots are remaining in the magazine for the current

run.

 end

 methods

 function obj = Air_Cannon()

 %Constructor allocates space and pointers for the object as well as

specifically initializing specific variables.

 obj.magazine = 0;

 obj.time_of_last_shot = 0;

 end

 function obj = activate(obj)

 %Turns the Air Cannon on by setting its magazine to full.

 obj.magazine = obj.max_magazine_size;

 end

 function [obj,skiffs] = act(obj,origin,skiffs,time)

 %Takes appropriate actions such as movement for the skiff for the given time

step as well as calling action for all its Pirates.

 %If there is ammunition remaining.

 if(obj.magazine)

 %If enough time has passed to allow another shot

 if(time - obj.time_of_last_shot > obj.time_between_shots)

 %Build an array of all Skiffs within range of the Air

http://www.bcbin.com/products/product_details.php?category=marine&product=Security

82

 %Cannon.

 potential_targets = 0;

 for i=1:size(skiffs,2)

 if norm(skiffs(i).location-origin) < obj.max_range

 if potential_targets

 potential_targets(size(potential_targets,2)+1) = i;

 else

 potential_targets(1) = i;

 end

 end

 end

 %If any Skiffs were found within range.

 if(potential_targets)

 %select a target skiff from the potential targets

 target = potential_targets(randi(size(potential_targets,2)));

 %take the shot

 shot = unifrnd(0,1);

 if(shot < obj.prob_of_hit)

 skiffs(target).status = Skiff_Status.DISABLED;

 end

 %reset timer

 obj.time_of_last_shot = time;

 end

 end

 end

 end

 end

end

83

B. BARBED_WIRE.M

classdef Barbed_Wire

 %Barbed_Wire Represents the Barbed Wire countermeasure countermeasure. Delays Pirates

in boarding.

 % the countermeasure option of wrapping the perimeter of the ship with

barbed or razor wire is represented by the Barbed Wire class. The Barbed Wire object in

turn creates a large quantity of Barbed Wire Segment objects which each track the health

of the barbed wire over a small portion of the Commercial Ship’s circumference. Directly

adds to the time needed for Pirates to board.

 properties

 time_to_remove = 120; %Assumed time, in seconds, it would take a single pirate to

bypass or remove the barbed/razor wire barricade. Update with time in seconds it is

believed will be needed to bypass a length of razor wire.

 segment_size = 5; %number of degrees of the ship’s circle that constitute a

discrete section of razor wire. Psuedo-arbitrary at this time.

 segments = [Barbed_Wire_Segment(0,179,0),Barbed_Wire_Segment(-1,-180,0)]; %An

array of the Barbed Wire Segment sections to track each independently.

 end

 methods

 function obj = Barbed_Wire()

 %Constructor allocates space and addresses as well as initializing the Barbed

Wire segments to a disabled state.

 %Initialize Segments to broad sections with no durability.

 obj.segments = [Barbed_Wire_Segment(0,179,0),Barbed_Wire_Segment(-1,-180,0)];

 end

 function obj = Activate(obj)

 %Reinitializes the Barbed Wire Segment to segment sizes as defined by the

segment_size property and with appropriate durability.

 %Iterate through all segments on on half of the ship

 for i=1:(180/obj.segment_size)

 obj.segments(i) = Barbed_Wire_Segment(obj.segment_size*(i-

1),(obj.segment_size)*i - 1, obj.time_to_remove);

 end

 %Iterate through the other side of the ship

 for j = ((180/obj.segment_size)+1):((180/obj.segment_size)*2)

 obj.segments(j) = Barbed_Wire_Segment((obj.segment_size*(j-i-1)+1)*(-

1),(obj.segment_size)*(j-i)*(-1) , obj.time_to_remove);%(obj.segment_size)*(i-1)*(-

1),((obj.segment_size)*i - 1)*(-1), obj.time_to_remove);

 end

 end

 function durability = is_effective(obj,relative_approach_vector)

 %Tests whether there is barbed wire countermeasure remaining in a particular

direction.

84

 relative_angle = get_angle([1,0],relative_approach_vector);

 durability = 0;

 %Find the appropriate Barbed Wire Segment and test its

 %durability.

 for i = 1:size(obj.segments,2)

 if(relative_angle < obj.segments(i).max_angle) && (relative_angle >

obj.segments(i).min_angle)

 durability = obj.segments(i).durability;

 break;

 end

 end

 end

 function obj = degrade(obj, time_spent_bypassing, relative_approach_vector)

 %Reduces the durability in the Barbed Wire Segment at the appropriate area.

 relative_angle = get_angle([1,0],relative_approach_vector);

 %Find appropriate segment and reduce its durability.

 for i = 1:size(obj.segments,2)

 if(relative_angle < obj.segments(i).max_angle) && (relative_angle >

obj.segments(i).min_angle)

 obj.segments(i) = obj.segments(i).degrade(time_spent_bypassing);

 break;

 end

 end

 end

 end

end

85

C. BARBED_WIRE_SEGMENT.M

classdef Barbed_Wire_Segment

 %Barbed_Wire_Segment Class that defines a small length of the Barbed Wire

countermeasure. Used to track health for an arbitrarily small portion of the overall

barricade.

 % the Barbed Wire Segment is a small part of what makes up the entire Barbed Wire

barricade. Since the barrier can be broken at any particular point, the condition must be

tracked in segments to show how a breach can happen at one point due to focused efforts.

 properties

 min_angle; %Defines the starting point along the unit circle of this segment.

 max_angle; %Defines the ending point along the unit circle of this segment.

 durability; %Defines how many seconds it would take an individual to bypass or

remove the segment. Serves as the overall health of the segment.

 end

 methods

 function obj = Barbed_Wire_Segment(min, max, time_to_bypass)

 %Constructor that allocates memory and addresses as well as initializes

object variables to the selected parameters.

 obj.min_angle = min;

 obj.max_angle = max;

 obj.durability = time_to_bypass;

 end

 function obj = degrade(obj, time_spent_bypassing)

 %Takes in the time a Pirate has spent working against the

 %Segment and updates the Segment’s durability.

 obj.durability = obj.durability - time_spent_bypassing;

 end

 function remaining_durability = is_functional(obj)

 %Query to determine if the particular Segment can still hold back a Pirate.

 remaining_durability = 0;

 if(obj.durability > 0)

 remaining_durability = obj.durability;

 end

 end

 end

end

86

D. COM_SHIP.M

classdef Com_Ship

 %Com_Ship Class representing the Commercial Ship that is targeted by Pirates within

the scenario.

 % the Commercial Ship class represents the target ship from the DRM within

the model. It tracks the location, velocity and all other necessary factors associated

with the ship’s status and actions. The Commercial Ship object contains within itself

objects representing all of its crew members as well as the objects associated with each

countermeasure.

 properties

 move_speed = 10.28; %the maximum movement speed of the Commercial Ship. Based on

presumed 20 knot max speed. Needs to be verified. representative value based on the

design scenario

 location = [0,0]; %Holds the current location of the Commercial Ship within the

model space.

 crew; %A 1 x n array holding Crew objects to represent the Commercial Ship’s

crew members.

 bearing; %A unit vector showing which direction the ship traveled in the

previous time increment in order to know the direction it is oriented.

 last_time; %Tracks when the object was last updated within model time in order

to scale action progress appropriately.

 ptrap_on; %Flag indication if the P-Trap is engaged in the current run.

 ptrap; %Object representing the P-Trap countermeasure within the model.

 water_cannons_on; %Flag ingicationg if the Water Cannons are present and engaged

in the current model run.

 water_cannons = Water_Cannon(0,0); %1 x n array of objects representing the Water

Cannons within the model.

 wire_perimeter = Barbed_Wire(); %Object representing the ship’s Barbed Wire

countermeasure.

 pirate_curtain = Curtain(); %Object representing the Pirate Curtain

countermeasure within the model.

 air_cannon = Air_Cannon(); %Object representing the Air Cannon countermeasure

within the model.

 end

 methods

 function obj = Com_Ship(initial_position, crew_status, ptrap_enabled,

water_cannon_enabled, wire_perimeter_enabled, pirate_curtain_enabled,air_cannon_enabled)

 %Constructor allocates memory for the object and establishes its pointers as

well as initializing object properties and constructing the countermeasure objects.

 %Initialize properties

 obj.location = initial_position;

 obj.crew =

[Crew(crew_status(1)),Crew(crew_status(2)),Crew(crew_status(3)),Crew(crew_status(4)),Crew

(crew_status(5)),Crew(crew_status(6)),Crew(crew_status(7)),Crew(crew_status(8))]; %8 is

an arbitrary max. Fill out DRM to define crew sizes

 obj.last_time = 0;

 %Construct and initialize countermeasures as defined by the

87

 %input parameter flags.

 if ptrap_enabled

 obj.ptrap_on = ptrap_enabled;

 obj.ptrap = Ptrap();

 end

 if water_cannon_enabled

 obj.water_cannons(1) = Water_Cannon(0,60);

 obj.water_cannons(2) = Water_Cannon(60,120);

 obj.water_cannons(3) = Water_Cannon(120,180);

 obj.water_cannons(4) = Water_Cannon(-60,0);

 obj.water_cannons(5) = Water_Cannon(-120,-60);

 obj.water_cannons(6) = Water_Cannon(-180,-120);

 obj.water_cannons_on = water_cannon_enabled;

 end

 if wire_perimeter_enabled

 obj.wire_perimeter = obj.wire_perimeter.Activate();

 end

 if pirate_curtain_enabled

 obj.pirate_curtain = obj.pirate_curtain.activate();

 end

 if air_cannon_enabled

 obj.air_cannon = obj.air_cannon.activate();

 end

 end

 function loc = getLocation(obj)

 %Returns the current location of the Commercial Ship within the model space.

 loc = obj.location;

 end

 function crew_state = getCrewStatus(obj)

 %Returns the a copy of Crew array

 crew_state = obj.crew;

 end

 function obj = move(obj, time, military_ship_loc)

 %Moves the commercial ship closer to the military ship based on the move

speed is used to scale the magnitude.

 % Calculate the directional vector

 vector = [military_ship_loc(1)-obj.location(1), military_ship_loc(2)-

obj.location(2)];

 % Normalize the vector and scale it to both the ship’s speed

 % and the time increment

 vector = vector/norm(vector);

 obj.bearing = vector;

88

 vector = vector * obj.move_speed * (time - obj.last_time);

 % Update x,y and time records

 obj.location(1) = obj.location(1) + vector(1);

 obj.location(2) = obj.location(2) + vector(2);

 obj.last_time = time;

 end

 function [obj,skiffs] = act(obj, time, skiffs)

 %Causes the Commercial Ship to act in response to the actions of the Skiffs.

Includes effects of the Ship countermeasures on the SKiffs.

 %Cause all able Crew members to act.

 for i = 1:size(obj.crew,2)

 if((obj.crew(i).status ~= Crew_Status.ABSENT)&&(obj.crew(i).status ~=

Crew_Status.KILLED)) %This elimination statement may be replaced by switch case within

Crew

 obj.crew(i).act(time,skiffs);

 end

 end

 %Cause all active countermeasures to act.

 if obj.ptrap_on

 [obj.ptrap,skiffs] = obj.ptrap.ptrap_effect(obj,skiffs);

 end

 if obj.water_cannons_on

 for n = 1:6

 [obj.water_cannons(n),skiffs] =

obj.water_cannons(n).Engage(obj,skiffs);

 end

 end

 [obj.air_cannon,skiffs] = obj.air_cannon.act(obj.location,skiffs,time);

 end

 end

end

89

E. CREW.M

classdef Crew

 %Crew Class represents an individual crew member of the targeted commercial ship.

 % the Crew class objects represent individual crew members of the targeted

commercial ship. Initially they were intended for more complex behavior and that may be

spiraled in during future efforts, but for this model increment the class serves largely

as a placeholder.

 properties

 status; %Enumerated indicator of the Crew member’s current status.

 end

 methods

 function obj = Crew(initial_status)

 %Constructor allocates memory and address pointers as well as initializing

the status.

 obj.status = initial_status;

 end

 function obj = act(obj,time,skiffs)

 %Logic defining how individual crew members would act in each time

incremement can be inserted here.

 end

 end

end

F. CREW_STATUS.M

classdef Crew_Status

 %Crew_Status Enumeration of possible states for a Crew object.

 % Enumeration class describing the possible states for a Crew member to be in.

 enumeration

 ABSENT

 KILLED

 IDLE

 end

end

90

G. CURTAIN.M

classdef Curtain

 %Curtain Represents the Pirate Curtain countermeasure countermeasure.

 % the commercially advertised pirate curtain system consists of a

combination of fire hoses used to flood pirate skiffs and erratically flailing hoses with

weighted ends that can cause bodily harm to individuals scaling the side of the vessel.

It was determined that the first component of the system heavily overlapped with the

Water Cannon already under consideration, but that the flail version represented a unique

countermeasure option. The Pirate Curtain class then represents the flail portion alone

of the commercially proposed solution. the Object monitors the Port and Starboard

regions of the Commercial Ship and applies a chance to strike any pirate who is in the

process of attempting to board. If struck, the Pirate is presumed to be permanently

disabled within the timeline of the scenario.

 properties

 per_second_probability_of_impacting_pirate = 0.05; %Defines the likelihood in

each second interval that any pirate within range of the flailing hose would be struck

solidly. Studies are needed to determine better effectiveness data

 min_angle = 20; %the start of the angular range over which the Pirate Curtain

covers one side of the ship.

 max_angle = 160; %the ending angle of the angular range over which the Pirate

Curtain covers on side of the ship.

 curtain_active = 0; %Flag indicatiing if the Pirate Curtain is present and

active.

 end

 methods

 function obj = Curtain()

 %Constructor allocates memory and establishes addess pointers. Sets validity

flag to FALSE until the countermeasure is initialized.

 obj.curtain_active = 0;

 end

 function obj = activate(obj)

 %Initializes the Pirate Curtain by setting the validity flag to TRUE.

 obj.curtain_active = 1;

 end

 function pirate = flail(obj,pirate,approach_vector,time)

 %Simulates the Pirate Curtain’s flailing action over the time leading up to

the input time point in order to determine if any Pirates were struck and disable them if

so.

 approach_angle = get_angle([1,0],approach_vector);

 %Determine if the Pirate is within the Pirate Curtain’s reach

 if(((approach_angle > obj.min_angle)&&(approach_angle <

obj.max_angle))||((approach_angle < (-1)*obj.min_angle)&&(approach_angle>(-

1)*obj.max_angle)))

91

 cumulative_probability_of_survival = power((1-

obj.per_second_probability_of_impacting_pirate),time - pirate.time_entering_curtain);

 %randomly determine if pirate is struck

 if(unifrnd(0,1) < cumulative_probability_of_survival)

 %pirate survives

 pirate.time_entering_curtain = time;

 else

 %pirate is struck and disabled

 pirate.status = Pirate_Status.KILLED;

 end

 end

 end

 end

end

H. DISPLAY.M

classdef Display

 %Display Controls all display functionaility for the model system.

 % Class object used to implement a model display feature for testing and

demonstrations of the model.

 properties

 width; %Defines the window size for the display view.

 end

 methods

 function obj = Display(skiff_start_range)

 %Constructor establishes memory space and addresses for the Display object.

 obj.width = 2 * skiff_start_range;

 end

 function obj = refresh(obj,com_ship, mil_ship, skiffs)

 %Resets all element positions within the view screen

 % set the vertex associated with the commercial ship

 scatter_x = com_ship.location(1);

 scatter_y = com_ship.location(2);

 scatter_size = 20;

 scatter_color = [0,0,1];

 % add the vertex associated with the military ship

 scatter_x(2) = mil_ship.location(1);

 scatter_y(2) = mil_ship.location(2);

 scatter_size(2) = 20;

 scatter_color(2,:) = [0,1,0];

92

 % add vertices for all skiffs

 for i=1:size(skiffs,2)

 scatter_x(2+i) = skiffs(i).location(1);

 scatter_y(2+i) = skiffs(i).location(2);

 scatter_size(2+i) = 10;

 switch skiffs(i).status

 case Skiff_Status.NORMAL

 scatter_color(2+i,:) = [1,0,0];

 case Skiff_Status.DISABLED

 scatter_color(2+i,:) = [0.3,0.3,0.3];

 case Skiff_Status.REPELLED

 scatter_color(2+i,:) = [0.5,0,0];

 otherwise

 scatter_color(2+i,:) = [0,0,0];

 end

 end

 %display plot

 scatter(scatter_x,scatter_y,scatter_size,scatter_color);

 %scale plot

 axis([com_ship.location(1) - obj.width/2, com_ship.location(1) + obj.width/2,

com_ship.location(2) - obj.width/2, com_ship.location(2) + obj.width/2]);

 end

 end

end

93

I. DOMAIN_MANAGER.M

classdef Domain_Manager

 %Domain_Manager controls overall operation of the model.

 % the Domain Manager object controls operation of the overall model. It

creates the other object within itself, initializes them, and then calls their operations

iteratively to simulate the passage of time. Domain Manager controls the passing of data

between the other objects (as opposed to a shared memory structure). Domain Manager

determines when a scenario has concluded based upon established criteria; primarily that

all pirates have been disabled or that one has boarded. The Domain Manager also controls

repeated runs of the various system configurations in order to calculate the overall MOE.

Domain Manager is the connection between the MATLAB user interface and the rest of the

program, it takes in the scenario configuration and outputs the calculate probability of

survival for the commercial ship.

 properties

 time_increment = 1; %Controls how many seconds pass between each time increment

of the model. Decrease to improve fidelity and increase to improve run speed.

 distance_to_aid = 1075000; %Sets the distance between the targeted Commercial

Ship and the Military Ship that can aid it. Jakarta and Belawan appear to be the two most

distant naval bases at 2154 km from each other. Halfway between them would be 1075km.

 skiff_start_range = 8046; %Sets how far away the skiffs are when the scenario

starts. Based on binocular range described in

https://answers.yahoo.com/question/index?qid=20120516151214AAieTBM

 min_num_skiffs = 6; %Minimum number of skiffs that will appear in any run of the

model.

 max_num_skiffs = 10; %Maximum number of skiffs that will appear in any run of

the model.

 num_skiffs = 0; %Holds the number of skiffs in the current run of the model.

 mil_ship %Mil_Ship class object that represents the Military Ship coming to the

Commercial Ship’s aid in the scenario.

 com_ship %Com_Ship object that represents the targeted Commercial Ship the

pirates are attempting to overwhelm.

 skiffs %A 1 x n array of Skiff objects that represents the swarm of pirate craft

attacking the COmmercial Ship.

 time %Holds the current time, in seconds, since the beggining of the scenario.

 end

 methods

 function obj = Domain_Manager()

 %Simple constructor for Domain Manager. Allocates space and pointers for all

class members.

 end

 function results = SingleRun(obj,distance_to_aid, ptrap_enabled,

water_cannon_enabled,wire_perimeter_enabled,pirate_curtain_enabled,air_cannon_enabled)

 %Executes a single run of the selected scenario.

 %initialize time

 obj.time = 0;

https://answers.yahoo.com/question/index?qid=20120516151214AAieTBM

94

 %initialize Commercial ship

 obj.com_ship = Com_Ship([1,1],[1,1,1,1,1,1,1,1],ptrap_enabled,

water_cannon_enabled, wire_perimeter_enabled, pirate_curtain_enabled,air_cannon_enabled);

 %initialize Military ship

 obj.mil_ship = Mil_Ship([1+distance_to_aid,1]);

 %initialize pirate skiffs

 obj.num_skiffs = randi([obj.min_num_skiffs, obj.max_num_skiffs],1);

 obj.skiffs = Skiff([0,0],[0,0,0,0,0,0,0]);

 for n = 1:obj.num_skiffs

 %place each skiff in a random direction from the commercial

 %ship

 direction = randn(1,2);

 direction = direction/norm(direction);

 displacement = direction * obj.skiff_start_range;

 obj.skiffs(n) =

Skiff([obj.com_ship.location(1)+displacement(1),obj.com_ship.location(2)+displacement(2)]

,[1,1,1,1,1,1,1]); %need random position at range and table input if arms

 end

 %keep track of how many skiffs are still active so the scenario

 %can be aborted if they are all disabled

 active_skiff_count = size(obj.skiffs,2);

 %iterate scenario

 while ((sqrt((obj.com_ship.location(1)-obj.mil_ship.location(1))^2 +

(obj.com_ship.location(2)-obj.mil_ship.location(2))^2) > ((obj.com_ship.move_speed +

obj.mil_ship.move_speed)*obj.time_increment))&&(~CountBoarders(obj.skiffs))&&active_skiff

_count)

 %update time

 obj.time = obj.time + obj.time_increment;

 %move the commercial ship

 obj.com_ship = obj.com_ship.move(obj.time, obj.mil_ship.getLocation());

 %move the military ship

 obj.mil_ship = obj.mil_ship.move(obj.time, obj.com_ship.getLocation());

 %All skiffs act

 for i = 1:obj.num_skiffs

 [obj.skiffs(i),obj.com_ship] =

obj.skiffs(i).act(obj.time,obj.com_ship);

 end

 %Commercial ship’s crew acts

 [obj.com_ship,obj.skiffs] = obj.com_ship.act(obj.time,obj.skiffs);

 %update number of active skiffs

 active_skiff_count = 0;

 for h=1:size(obj.skiffs,2)

95

 if obj.skiffs(h).status ~= Skiff_Status.DISABLED

 active_skiff_count = active_skiff_count + 1;

 end

 end

 end

 %Return TRUE if no boarders made it onto the ship, FALSE if any

 %boarders are on the ship.

 if (~CountBoarders(obj.skiffs))

 results = 1;

 else

 results = 0;

 end

 end

 function results = DemoRun(obj, ptrap_enabled,

water_cannon_enabled,wire_perimeter_enabled,pirate_curtain_enabled,air_cannon_enabled)

 %Executes a single run of the model with the specified

 %parameters and displaying a graphic of the ships and skiffs

 %moving.

 %the Display object manages the view window to show the

 %commercial ship, military ship and skiffs as moving dots on a

 %chart.

 viewer = Display(obj.skiff_start_range);

 %initialize time

 obj.time = 0;

 %initialize Commercial ship

 obj.com_ship = Com_Ship([1,1],[1,1,1,1,1,1,1,1],ptrap_enabled,

water_cannon_enabled, wire_perimeter_enabled, pirate_curtain_enabled,air_cannon_enabled);

 %initialize Military ship

 obj.mil_ship = Mil_Ship([1+obj.distance_to_aid,1]);

 %initialize pirate skiffs

 obj.num_skiffs = randi([obj.min_num_skiffs, obj.max_num_skiffs],1);

 obj.skiffs = Skiff([0,0],[0,0,0,0,0,0,0]);

 for n = 1:obj.num_skiffs

 %place each skiff in a random direction from the commercial

 %ship

 direction = randn(1,2);

 direction = direction/norm(direction);

 displacement = direction * obj.skiff_start_range;

 obj.skiffs(n) =

Skiff([obj.com_ship.location(1)+displacement(1),obj.com_ship.location(2)+displacement(2)]

,[1,1,1,1,1,1,1]); %need random position at range and table input if arms

 end

96

 %iterate scenario

 while ((sqrt((obj.com_ship.location(1)-obj.mil_ship.location(1))^2 +

(obj.com_ship.location(2)-obj.mil_ship.location(2))^2) > ((obj.com_ship.move_speed +

obj.mil_ship.move_speed)*obj.time_increment))&&(~CountBoarders(obj.skiffs)))

 %update time

 obj.time = obj.time + obj.time_increment;

 %move the commercial ship

 obj.com_ship = obj.com_ship.move(obj.time, obj.mil_ship.getLocation());

 %move the military ship

 obj.mil_ship = obj.mil_ship.move(obj.time, obj.com_ship.getLocation());

 %All skiffs act

 for i = 1:obj.num_skiffs

 [obj.skiffs(i),obj.com_ship] =

obj.skiffs(i).act(obj.time,obj.com_ship);

 end

 %Commercial ship’s crew acts

 [obj.com_ship,obj.skiffs] = obj.com_ship.act(obj.time,obj.skiffs);

 %update plot in each increment

 viewer = viewer.refresh(obj.com_ship,obj.mil_ship,obj.skiffs);

 drawnow;

 end

 %Return TRUE if no boarders made it onto the ship, FALSE if any

 %boarders are on the ship.

 if (~CountBoarders(obj.skiffs))

 results = 1;

 else

 results = 0;

 end

 end

 function results = Multiple_Trials(obj,num_of_runs, ptrap_enabled,

water_cannon_enabled,wire_perimeter_enabled,pirate_curtain_enabled,air_cannon_enabled)

 %Runs the model with the specified parameters the specified

 %number of times and then returns the proportion of times the

 %skiff avoided being boarded.

 %Establish a counter to track the number of times the

 %commercial ship survives.

 num_of_survivals = 0;

 %Iterate single runs the specified number of times.

 for i=1:num_of_runs

 num_of_survivals = num_of_survivals + obj.SingleRun(obj.distance_to_aid,

ptrap_enabled,

water_cannon_enabled,wire_perimeter_enabled,pirate_curtain_enabled,air_cannon_enabled);

97

 end

 %Calculate the proportion of survivors.

 results = num_of_survivals/num_of_runs;

 end

 end

end

function has_boarders = CountBoarders(skiffs)

%Helper function that takes in an array of Skiffs and counts the number of

%Pirates marked as having boarded the ship.

has_boarders = 0;

for i = 1:size(skiffs,2)

 for j = 1:size(skiffs(i).pirates,2)

 if(skiffs(i).pirates(j).status == Pirate_Status.BOARDED)

 has_boarders = has_boarders + 1;

 end

 end

end

end

J. GET_ANGLE.M

function [angle_in_degrees] = get_angle(a,b)

%get_angle Helper function determines the angle in between two directional vectors.

% Helper function determines the angle in between two directional vectors.

angle_in_degrees = acosd(dot(a,b)/(norm(a)*norm(b)));

anticlockwise = cross([a,0],[b,0]);

anticlockwise = anticlockwise(3);

if anticlockwise < 0

 angle_in_degrees = angle_in_degrees * (-1);

end

end

98

K. MIL_SHIP.M

classdef Mil_Ship

 %Mil_Ship Represents the Military Ship that is coming to the target commercial

vessel’s aid within the model.

 % the Military Ship class generically represents some assisting vessel

coming to the aid of the Commercial Ship that can stop the pirate attack if it arrives in

time. The program object actually does very little, merely tracking its own progression.

If it reaches the Commercial Ship then Domain Manager will end the scenario.

 properties

 move_speed = 15.55; %the maximum speed at which the Military SHip may move.

Representative value based on the design scenario; based on advertised speed of Arleigh-

Burke class destroyer

 location = [0,0]; %the current locatgion of the Military SHip within the model

space.

 bearing; %the direction in which the ship is facing as a vector.

 last_time; %the last point, in model time, at which the Military Ship object was

updated.

 end

 methods

 function obj = Mil_Ship(initial_position)

 %Constructor allocates memory, sets address pointers and initializes object

properties to the starting values.

 obj.location = initial_position;

 obj.last_time = 0;

 end

 function loc = getLocation(obj)

 %Returns the current location of the Military Ship within the %model space.

 loc = obj.location;

 end

 function obj = move(obj, time, commercial_ship_loc)

 %Moves the military ship closer to the commercial ship based on the move

speed is used to scale the magnitude.

 % Calculate the directional vector

 vector = [commercial_ship_loc(1)-obj.location(1), commercial_ship_loc(2)-

obj.location(2)];

 % Normalize the vector and scale it to both the ship’s speed

 % and the time increment

 vector = vector/norm(vector);

 obj.bearing = vector;

 vector = vector * obj.move_speed * (time - obj.last_time);

 % Update x,y and time records

 obj.location(1) = obj.location(1) + vector(1);

99

 obj.location(2) = obj.location(2) + vector(2);

 obj.last_time = time;

 end

 end

end

L. PIRATE.M

classdef Pirate

 %Pirate Represents the individual Pirate within the model.

 % the Pirate object represents an individual pirate. A Pirate can transition

primarily between different states and keeps track of the time it should be taking to

accomplish tasks, such as boarding the side of a Commercial Ship. Pirate objects are

created and reside within Skiff objects. The Skiff passes update calls down to the Pirate

object as well as all data or pointers needed for it to accomplish its tasks.

 properties

 weapon; %Enumeration representing the weapon this Pirate carries. Not used within

this version of the model.

 status; %Enumeration representing the current state of this individual Pirate.

 last_time; %the last time, in model time, that the Pirate object was updated.

Used to scale actions.

 task_start; %the time, in model time, that the Pirate’s current task was begun.

Used to calculate progress to completion.

 maximum_boarding_distance = 2; %the distance, in meters, that the Pirate must get

to the Commercial Ship in order to attempt to board it.

 max_simultaneous_boarders = 2; %the number of Pirates in one skiff who may

attempt to board the Commercial Ship at the same time. Driven by assumptions about the

stability of the skiff and the length of its rail.

 time_to_board = 45; %the time, in seconds, it is expected to take a

pirate to board the Commercial Ship in the absence of any countermeasures. Considered a

strong Assumption

 time_entering_curtain = 0; %the model time at which the Pirate entered the

Pirate Curtain’s region of influence.

 end

 methods

 function obj = Pirate(weapon_setting)

 %Constructor allocates memory, sets address pointers and sets the status of

the Pirate.

 obj.weapon = weapon_setting;

 obj.status = Pirate_Status.ABSENT;

 %If pirate was not entered as absent change the status to idle

 if obj.weapon ~= Pirate_Status.ABSENT

100

 obj.status = Pirate_Status.IDLE;

 end

 obj.last_time = 0;

 end

 function [obj,com_ship] = act(obj, time, skiff, com_ship, approach_vector)

 %Causes the Pirate to take action based on the Skiffs, Commercial Ship and

time passed since its last action.

 %Route to the appropriate logic based on the Pirate’s current

 %status

 switch obj.status

 case Pirate_Status.ABSENT

 %no effect for absent pirate

 case Pirate_Status.KILLED

 %no effect for dead pirate

 case Pirate_Status.IDLE

 %Pirater assumes an action

 %if the skiff is near the commercial ship the pirate

 %may attempt to board

 if(pdist([skiff.location;com_ship.getLocation()]) <

obj.maximum_boarding_distance)

 %presuming that the skiff can only manage to let

 %some of it’s passengers mount hooks/ladders at the

 %same time it is necessary to count how many are

 %already trying and wait till they are done

 boarders = 0;

 for i = 1:size(skiff.pirates,2)

 if (skiff.pirates(i).status ==

Pirate_Status.ATTEMPTING_TO_BOARD)

 boarders = boarders + 1;

 end

 end

 %if there are not too many pirates attempting to

 %board already, this pirate begins to attempt to

 %board

 if (boarders < obj.max_simultaneous_boarders)

 obj.status = Pirate_Status.ATTEMPTING_TO_BOARD;

 obj.task_start = time;

 obj.time_entering_curtain = time;

 end

 end

 case Pirate_Status.PILOTING_SKIFF

 %Pirate who is piloting cannot take other actions\

 case Pirate_Status.ATTEMPTING_TO_BOARD

 %Pirates who are in the process of boarding

 %If the barbed wire is in place the Pirate will spend

 %time disabling it.

101

 if(com_ship.wire_perimeter.is_effective(approach_vector))

 com_ship.wire_perimeter = com_ship.wire_perimeter.degrade(time -

obj.task_start, approach_vector);

 obj.task_start = time;

 end

 %If the Pirate Curtain is active then check to see if

 %the Pirate is struck.

 if com_ship.pirate_curtain.curtain_active

 obj = com_ship.pirate_curtain.flail(obj,approach_vector,time);

 end

 %Check if the pirate has been working at boardinf

 %sufficiently long.

 if(time - obj.task_start > obj.time_to_board)

 obj.status = Pirate_Status.BOARDED;

 end

 case Pirate_Status.BOARDED

 %If the Pirate has boarded the Domain Manager will end

 %the scenario.

 otherwise

 disp(‘invalid pirate status’);

 end

 obj.last_time = time;

 end

 end

end

M. PIRATE_STATUS.M

classdef Pirate_Status

 %Pirate_Status Enumeration describing the possible states a Pirate may be in.

 % Enumeration describing the possible states a Pirate may be in.

 enumeration

 ABSENT

 KILLED

 IDLE

 SMALL_ARM

 RPG

 PILOTING_SKIFF

 ATTEMPTING_TO_BOARD

 BOARDED

 end

end

102

N. PTRAP.M

classdef Ptrap

 %Ptrap Represents the Pirate Trap countermeasure countermeasure within the model.

 % the pirate trap countermeasure is a system of difficult to see lines

trailed through the water along the sides of and behind the commercial ship in order to

foul the propellers of pirate craft. Three seperate regions (port, starboard, aft) are

seperately tracked as they each have their own set of lines.

 properties

 port_line_count; %Number of lines currently in the port region.

 starboard_line_count; %Number of lines currently within the starboard region.

 aft_line_count; %Number of lines currently in the aft region.

 num_of_lines = 10; %Number of lines all sectors will be initialized with.

 ptrap_range = 10; %the distance (m) from the Commercial Ship hull that the P-Trap

lines extend out.

 port_min_angle = 30; %the starting angle for the port region.

 port_max_angle = 150; %Ending angle for the port region.

 starboard_min_angle = -150; %Starting angle for the starboard region.

 starboard_max_angle = -30; %Ending angle for the starboard region.

 aft_min_angle = -150; %Starting angle for the aft region.

 aft_max_angle = 150; %Ending angle for the aft region.

 end

 methods

 function obj = Ptrap()

 %Constructor allocates memory and sets the starting number of lines into all

three regions.

 obj.port_line_count = obj.num_of_lines;

 obj.starboard_line_count = obj.num_of_lines;

 obj.aft_line_count = obj.num_of_lines;

 end

 function [obj,skiffs] = ptrap_effect(obj,com_ship,skiffs)

 %Causes any appropriate effects on the Skiffs to be effected.

 %Check all skiffs to see if they lie within one of the active

 %regions.

 for i = 1:size(skiffs,2)

 %starboard

 if (obj.starboard_line_count > 0)&&

(pdist([com_ship.location;skiffs(i).location],’euclidean’) < obj.ptrap_range) &&

(get_angle(com_ship.bearing,skiffs(i).location - com_ship.location) >

obj.starboard_min_angle) && (get_angle(com_ship.bearing,skiffs(i).location -

com_ship.location) < obj.starboard_max_angle)

 skiffs(i).status = Skiff_Status.DISABLED;

 obj.starboard_line_count = obj.starboard_line_count - 1;

 end

 %port

103

 if (obj.port_line_count > 0)&&

(pdist([com_ship.location;skiffs(i).location],’euclidean’) < obj.ptrap_range) &&

(get_angle(com_ship.bearing,skiffs(i).location - com_ship.location) > obj.port_min_angle)

&& (get_angle(com_ship.bearing,skiffs(i).location - com_ship.location) <

obj.port_max_angle)

 skiffs(i).status = Skiff_Status.DISABLED;

 obj.port_line_count = obj.port_line_count - 1;

 end

 %aft

 if (obj.aft_line_count > 0)&&

(pdist([com_ship.location;skiffs(i).location],’euclidean’) < obj.ptrap_range) &&

((get_angle(com_ship.bearing,skiffs(i).location - com_ship.location) > obj.aft_max_angle)

|| (get_angle(com_ship.bearing,skiffs(i).location - com_ship.location) <

obj.aft_min_angle))

 skiffs(i).status = Skiff_Status.DISABLED;

 obj.aft_line_count = obj.aft_line_count - 1;

 end

 end

 end

 end

end

104

O. SKIFF.M

classdef Skiff

 %Skiff Represents a single pirate skiff within the model.

 % the Skiff class represents the pirate vessels within the model. The object

tracks the stats, position, and crew of a particular skiff and determines the skiff’s

next actions when called. Each Skiff object also contains a number of Pirate objects

(described below) and triggers them to carry out their own actions in each time

increment. The Skiff objects are all generated and tracked by Domain Manager. In

general, Skiffs move directly towards the Commercial Ship in an attempt to allow their

Pirates to board. Skiffs can be disabled by countermeasures, rendering them immobile. If

all Skiffs in the scenario are disabled the Domain Manager will end the scenario.

 properties

 location; %the current location in the model space of the pirate Skiff.

 pirates; %1 x n array of Pirates aboard this SKiff.

[pirat1,pirate1,pirate2,...,pirate7]

 move_speed = 12.86; %Maximum movement speed of the Skiff. 25 knots max speed (in

meters per second) based upon literature

 bearing; %Direction the Skiff is currently facing.

 status; %Current state of the Skiff.

 last_time; %the model time at which the SKiff was last updated.

 approach_vector; %Stores the relative direction the skiff is from the commercial

ship so that when they overlap in the model the skiff can still be treated as having come

to some particular side of the ship

 end

 methods

 function obj = Skiff(initial_position,pirate_settings)

 %Constructor allocates memory for members, initializes properties, and

generates all Pirate objects.

 obj.location = initial_position;

 obj.pirates = [Pirate(pirate_settings(1)), Pirate(pirate_settings(2)),

Pirate(pirate_settings(3)), Pirate(pirate_settings(4)), Pirate(pirate_settings(5)),

Pirate(pirate_settings(6)), Pirate(pirate_settings(7))];

 obj.last_time = 0;

 obj.status = Skiff_Status.NORMAL;

 end

 function [obj, com_ship] = act(obj, time, com_ship)

 %Updates the skiff to include approaching/moving with the ship as well as

activating any passenger actions.

 %determine if the skiff has a valid pilot

 has_pilot = false;

 for i=1:size(obj.pirates,2)

 if obj.pirates(i).status == Pirate_Status.PILOTING_SKIFF

 has_pilot = true;

 end

 end

 % if it does then the skiff moves towards the ship

105

 if has_pilot

 obj = obj.move(time, com_ship.getLocation());

 else

 %if not look for an idle pirate to take over piloting

 for j=1:size(obj.pirates,2)

 if obj.pirates(j).status == Pirate_Status.IDLE

 obj.pirates(j).status = Pirate_Status.PILOTING_SKIFF;

 has_pilot = true;

 break;

 end

 end

 %if no idle pirates, pull one from another task

 if(~has_pilot)

 for k = 1:size(obj.pirates,2)

 if (obj.pirates(k).status ~= Pirate_Status.ABSENT) &&

(obj.pirates(k).status ~= Pirate_Status.KILLED)

 obj.pirates(k).status = Pirate_Status.PILOTING_SKIFF;

 has_pilot = true;

 break;

 end

 end

 end

 end

 % All Pirates take action

 for m = 1:size(obj.pirates,2)

 [obj.pirates(m),com_ship] = obj.pirates(m).act(time, obj, com_ship,

obj.approach_vector);

 end

 %update time

 obj.last_time = time;

 end

 function obj = move(obj, time, target_loc)

 %calculates the movement in each time increment. An increment is lost each

time the pilot must be changed in the current schema. May want to add

acceleration/deacceleration effects.

 % Calculate the directional vector

 vector = [target_loc(1)-obj.location(1), target_loc(2)-obj.location(2)];

 % Normalize the vector and scale it to both the ship’s speed

 % and the time increment

 vector = vector/norm(vector);

 obj.bearing = vector;

 vector = vector * obj.move_speed * (time - obj.last_time);

 if obj.status == Skiff_Status.NORMAL

 %if distance to commercial ship is greater than the distance

 %the skiff can move, then move as far as it can; otherwise move

 %to the ship’s point.

106

 if(pdist([obj.location;target_loc],’euclidean’) > (obj.move_speed * (time

- obj.last_time)))

 % Update x,y and time records

 obj.location(1) = obj.location(1) + vector(1);

 obj.location(2) = obj.location(2) + vector(2);

 obj.approach_vector = -vector;

 else

 obj.location(1) = target_loc(1);

 obj.location(2) = target_loc(2);

 end

 elseif obj.status == Skiff_Status.REPELLED

 %If the Skiff is being repelled by a countermeasure it

 %heads in the opposite direction.

 obj.location(1) = obj.location(1) - vector(1);

 obj.location(2) = obj.location(2) - vector(2);

 obj.approach_vector = -vector;

 end

 end

 end

end

P. SKIFF_STATUS.M

classdef Skiff_Status

 %Skiff_Status Enumeration of all possible states for the Skiff.

 % Enumeration of all possible states for the Skiff.

 enumeration

 NORMAL

 DISABLED

 REPELLED

 end

end

107

Q. WATER_CANNON.M

classdef Water_Cannon

 %Water_Cannon Represents the water cannon countermeasure system within the model.

 % the water cannon countermeasure features a remote-controlled water turret

that operates like a firehose in suppressing and forcing away pirates. The intended use

is to flood the skiffs, but it was determined that the pirates would seek to avoid this

eventuality so within the model the Water Cannon object acts to force skiffs out of its

range. The Water Cannons act on one skiff at a time and cause them to flee the Commercial

Ship’s proximity. Each of the six Water Cannons is created as its own instance and tracks

its own tasking.

 properties

 min_angle; %the starting angle for the region of effect over which the Water

Cannon can act.

 max_angle; %the ending angle for the region of effect over which the Water Cannon

can act.

 max_range = 85; %the maximum distance from the Commercial Ship in meters at which

the Water Cannon can reach.

 target_break_range = 70; %the distance a Skiff must be pushed before the Water

Cannon will consider alternate targets.

 current_target; %the array index of the currently targeted Skiff.

 end

 methods

 function obj = Water_Cannon(min,max)

 %COnstructor allocates memory, establishes pointers, and initialized object

members to starting values.

 obj.min_angle = min;

 obj.max_angle = max;

 obj.current_target = 0;

 end

 function [obj,skiffs] = Engage(obj,com_ship,skiffs)

 %the Water Cannon takes action; targeting a Skiff and pushing it back.

 %identify targets within range

 potential_targets = 0;

 for i = 1:size(skiffs,2)

 angle = get_angle(com_ship.bearing,skiffs(i).location -

com_ship.location);

 if (angle > obj.min_angle) && (angle < obj.max_angle) &&

(norm(skiffs(i).location - com_ship.location) < obj.max_range) && (skiffs(i).status ~=

Skiff_Status.DISABLED)

 if potential_targets

 potential_targets(size(potential_targets,2)+1) = i;

 else

 potential_targets(1) = i;

 end

 end

 end

108

 %if there is not currently a target

 if (~obj.current_target)

 %If there are potential targts select one as the current

 %target.

 if potential_targets

 obj.current_target = obj.Get_Closest(com_ship.location, skiffs,

potential_targets);

 end

 elseif ~obj.In_Range(com_ship,skiffs(obj.current_target))

 % if the current target is

 %outside the maximum range then if there are potential targets

 %set the closest as the new target.

 %Free the current target if it has moved out of range

 skiffs(obj.current_target).status = Skiff_Status.NORMAL;

 obj.current_target = 0;

 else

 %cannon repels skiff provided ptrap has not just disabled

 %it

 if skiffs(obj.current_target).status ~= Skiff_Status.DISABLED

 skiffs(obj.current_target).status = Skiff_Status.REPELLED;

 end

 %cannon knocks all boarders back

 for k = 1:size(skiffs(obj.current_target).pirates,2)

 if skiffs(obj.current_target).pirates(k).status ==

Pirate_Status.ATTEMPTING_TO_BOARD

 skiffs(obj.current_target).pirates(k).status =

Pirate_Status.IDLE;

 end

 end

 end

 end

 function nearest_skiff_index = Get_Closest(obj, origin, skiffs,

allowable_indices)

 %Determines which skiff out of an array is the closest the selected origin

point.

 nearest_skiff_yet = 0;

 nearest_range_yet = 86;

 %Iterate through skiffs and keep track of the nearest one

 %checked yet.

 for j = 1:size(allowable_indices,2)

 if(norm(skiffs(allowable_indices(j)).location - origin) <

nearest_range_yet)

 nearest_skiff_yet = allowable_indices(j);

 nearest_range_yet = norm(skiffs(allowable_indices(j)).location -

109

origin);

 end

 end

 nearest_skiff_index = nearest_skiff_yet;

 end

 function in_range = In_Range(obj, com_ship, skiff)

 %Checks if a particular Skiff is within range of this Water Cannon both in

regards to distance and angular region.

 in_range = 0;

 angle = get_angle(com_ship.bearing,skiff.location - com_ship.location);

 if (angle > obj.min_angle) && (angle < obj.max_angle) && (norm(skiff.location

- com_ship.location) < obj.max_range)

 in_range = 1;

 end

 end

 end

end

110

THIS PAGE INTENTIONALLY LEFT BLANK

111

APPENDIX C. MODEL UML CLASS RELATIONS

112

THIS PAGE INTENTIONALLY LEFT BLANK

113

APPENDIX D. MODEL ASSUMPTIONS

Assumption Explanation Rationale Consequence of Incorrect
Assumption

Reference

Pirate skiffs
move directly
at the
commercial
vessel, resulting
in a chase
pattern.

the two major movement
patterns considered for
the skiffs was the current
aim-directly-at-the-ship or
a more complex aim-
where-the-ship-will-be.
That is, it would be more
efficient for the pirates to
aim at a forward intercept
point, but this requires
they be able to accurately
judge the ships and their
own relative velocities in
order to maintain the
relative angle-off-bearing
of the target.

the predictive behavior
was considered
challenging to
accomplish on the seas
from a small skiff and
would have driven
additional complexity
into the model and so
was deferred.

Would result in the
proportion of pirate skiffs
approaching from the rear
of the ship in the model to
non-representative.

None found

the commercial
vessel begins
the scenario
1,075 km from
a ship that can
provide
effective aid
(presumably a
military vessel).

 Jakarta and Belawan
appear to be the two
most distant naval
bases from each other
in the region of interest
(about 2154 km). It is
likely the pirates would
try and attack ships at
the worst place for
them, which would be
halfway between the
two.

A dramatically shorter
required distance to travel
would result in time-delay
countermeasures (such as
razor wire) being more
effective than currently
represented within the
model.

http://www.ordersofbattle.darkscape.net
/site/maps/map_files/indonesia_navybas
es.gif

114

Assumption Explanation Rationale Consequence of Incorrect
Assumption

Reference

Pirate
gun/rocket fire
prior to
boarding does
little to degrade
the commercial
ship’s
capabilities.

With all countermeasures
selected for the model
either not needing active
control or allowing for
remote control from
within the ship, it was
presumed that the lack of
crew exposure would
render pirate weapons
ineffective prior to
boarding.

While the pirates have
RPGs that could
potentially cause
structural damage to
the ship; they are
unlikely to fully disable
or sink the ship as that
would prevent them
from profiting. The
countermeasure
system emplacements
should present small
enough a target that
attacks against them
are not a driving factor.

If the pirates are able to
fire rockets from skiffs
accurately enough to
disable countermeasure
emplacements then there
is a significant dynamic to
the system configurations
that the model is not
currently accounting for.
Assuming accuracy is a
factor of range the longer
distance countermeasures
would be preferred under
those conditions.

Pirate skiffs are
first recognized
as hostile at 1
mile.

the scenario begins with
all pirate skiffs entering
the recognition range
simultaneously
(considered a worst-case).
This range is defined by
how far out the ship can
recognize them as pirates
at and begin to respond
to the attack.

the range is intended
to represent the
distance at which the
pirates can be
observed by binoculars
to identify possibly
armaments or other
indicators of possible
hostility.

Relatively little effect if
the recognition distance
is, in fact, greater than
that used. If the distance
is shorter however, some
countermeasures may
experience a smaller area
over which they can be
effective.

http://www.steiner-
optics.com/binoculars/military/m50-lrf-
military-10x50-lrf

115

Assumption Explanation Rationale Consequence of Incorrect
Assumption

Reference

the number of
skiffs in an
attack ranges
from 6 to 10.

the model uses a uniform
distribution of 6–10 pirate
skiffs on each scenario.

 Some countermeasures
may be susceptible to
breaking down if
overwhelmed. In
particular the P-trap could
run out of lines and
become entirely
ineffective against
additional skiffs.

the pirate skiffs
move at 12.86
meters per
second

 Based on a presumed
maximum speed of 25
knots.

If pirate skiff speeds are in
fact less than the
commercial ship speeds
then there would be
significant changes in
which countermeasures
are preferred as the skiffs
need only be fended off
for one pass. If they are
much faster than
predicted then ranged
countermeasures would
have less time to be in
effect before the skiff
reached the hull.

116

Assumption Explanation Rationale Consequence of Incorrect
Assumption

Reference

Skiffs carry 8
pirates each.

Each skiff contains 8
Pirate objects, one of
which is immediately
committed to piloting the
skiff.

 the only countermeasure
currently in the model
that is directly impacted
by the number of pirates
on board is the pirate
curtain system. The
results for that system are
likely to change as a result
of differing numbers of
pirates per skiff.

Razor wire and
the pirate
curtain are
mutually
supportive and
non-interfering.

the model assumes that
the razor/barbed wire can
be placed such that the
pirates remain within
range of the pirate curtain
while trying to bypass the
wire, but also such that
the pirate curtain never
damages the wire.

there is insufficient
data on the statistical
movement patterns of
the pirate curtain to
understand the validity
of this assumption. It is
possible that there is
not actually any
placement where the
wire would keep the
pirates within the
curtain’s range without
risking damage to the
wire itself.

A synergy that the model
represents between the
razor wire and pirate
curtain countermeasures
would be reversed with
the two in conflict and
weakening each other
instead of supporting.

More data is needed on the pirate curtain
movement patterns.

117

Assumption Explanation Rationale Consequence of Incorrect
Assumption

Reference

the commercial
vessel moves at
10.28 meters
per second.

 Based on a presumed
maximum speed of 20
knots.

the relative speeds of the
commercial vessel versus
the skiffs affect the
amount of time ranged
countermeasures have to
work on the skiffs as they
approach. A significantly
higher speed for the
commercial ship may also
allow the ship to pull away
from the skiffs, or
dramatically shorten the
time needed to reach aid.

http://www.theguardian.com
/environment/2010/jul/25/ slow-ships-
cut-greenhouse –emissions

the military
vessel moves at
15.55 meters
per second.

 Based on an advertised
maximum speed of
Arleigh-Burke class
destroyer.

Slower speeds would
increase the time the
commercial ship must
fend for itself; reducing
the effectiveness of
countermeasures that
only delay without
disabling.

http://www.navy.mil/navydata/fact_displ
ay.asp?cid=4200&tid=900&ct=4

Pirates can
attempt to
board the ship
once their skiff
is within 2
meters.

2 meters is the trigger
chosen to start the pirate
boarding actions.

Based on boarding
attempts with ladders
and grappling hooks.
Presumed based on
best-guess.

Little effect for changes
within the same order of
magnitude.

http://www.theguardian.com/

118

Assumption Explanation Rationale Consequence of Incorrect
Assumption

Reference

Only 2 pirates
from a single
skiff may
attempt to
board at any
given time.

It was believed that there
would be some limitation
on the amount of
boarding gear (such as
ladders) that could be fit
within the skiff.
Additionally, there are
constraints to how many
pirates can congregate
against the same rail at
any given time.

2 was a best
assumption made with
scarce data.

Would decrease the time
barbed wire delays
boarders (more people
cutting at it) and would
decrease the effectiveness
of the pirate curtain.

It takes an
unhindered
pirate 45
seconds to
board the
commercial
vessel.

This constant accounts for
the time needed for an
unharrassed pirate to
mount and climb a ladder
or grappling line.

This is a strong
assumption that was
made in the absence of
any identified study on
the subject.

Would alter the
effectiveness of the razor
wire, pirate curtain and
water cannon
countermeasures at a
minimum as well as
changing how the baseline
no-countermeasure
scenario plays out.

the air cannon
can effectively
fire 850 meters

 Based on advertised
capability.

Changes would directly
impact the effectiveness
of the air cannon.

http://www.bcbin.com/prod
ucts/product_details.php?ca
tegory=marine&product=Security
Buccaneer#BUC001

http://www.bcbin.com/prod

119

Assumption Explanation Rationale Consequence of Incorrect
Assumption

Reference

the air cannon
can fire six
shots in any
given attack.

Based on the
presumption of a 6 shot
clip with the crew being
precluded from reloading
it during the attack due to
gunfire from the skiffs.

Assumed based on the
size of the pictured
device. A relatively
strong assumption.

With only six shots the air
cannon is easily
overwhelmed by larger
numbers of skiffs. If the
true count is significantly
higher in relation to the
number of skiffs than the
air cannon’s effectiveness
would greatly increase.

the air cannon
requires 10
seconds
between shots.

This is largely based on a
notional time needed to
aim at a new target to
some extent the physical
workings of the air
cannon may require time
to rebuild air pressure or
move the next projectile
into position.

Actual data is not
available. Arbitrarily
assumed.

Relatively small changes if
the true delay is within
several seconds of the 10
currently used. Much
larger delays would give
pirate skiffs the
opportunity to rush in
between shots; lowering
the cannon’s
effectiveness.

the air cannon
has a 0.5
probability of
disabling a skiff
with any given
shot.

This metric takes into
account the chance of the
shot missing entirely and
of the skiff managing to
ignore the impediment.

No true data has been
generated yet. 0.5 was
selected to allow the
model to take into
account the miss
chance.

Performance of the air
cannon will scale directly
with the probability per
shot.

120

Assumption Explanation Rationale Consequence of Incorrect
Assumption

Reference

It takes 120
seconds to
remove or
bypass the
razor/barbed
wire.

A two-minute delay
period is associated with
boarders disabling the
wire. If multiple boarders
are at the same segment
they can work together to
bypass it faster.

Two minutes was a
best assumption. No
study was found
showing razor wire
delay time directly. It is
believed that the shape
of the ship hull would
preclude methods that
are used to bypass wire
on fences (i.e.,
throwing a rug over it).

Alters the effectiveness of
system configurations
where the wire is giving
other countermeasures
more time to work on the
skiffs.

the pirate
curtain’s
probability of
impacting an
attempted
boarder in its
range is 0.05
each second.

Represents the chance
each second of the flailing
hose to impact a pirate on
a ladder/rope in such a
way as to disable or kill
them.

Strong assumption. No
studies are available
and the dynamic
motion of the hose is
not described
sufficiently to model in
detail.

Directly affects the
effectiveness of the
curtain.

the P-Trap can
stop 10 skiffs in
each of three
regions:
starboard, port
and aft.

the P-Trap has 20 lines
hanging off its starboard
and port rails and another
20 aft of it. Each boat
passing through the lines
consumes 2–3 lines
(worst case of 2). Thus,
20/2 = 10 skiffs stopped
per side.

Based on a
representative
configuration selected
from the supplier’s
advertised models.

Would scale the
effectiveness of the P-
trap.

https://www.google.com/pat
ents/EP2459439B1?cl=en

121

Assumption Explanation Rationale Consequence of Incorrect
Assumption

Reference

P-Trap lines
extend 10
meters from
the hull of the
ship.

Defines the region in with
which the skiffs will be
affected by the entangling
lines. In reality the lines
off the aft extend further
(50-1000m) but treating
the aft equivalently
simplifies the model
without much expected
effect on the analysis.

the main driver for P-
trap success is an
adequate number of
lines deployed.
Defining the rear range
as shorter than it is in
reality in order to
simplify the model will
not change how many
skiffs can be entangled.

None expected. https://www.google.com/pat
ents/EP2459439B1?cl=en

the water
cannon’s
maximum
range is 85
meters.

 Based upon the
advertised capability of
a representative
system.

May affect the
effectiveness of the water
cannon countermeasure.

http://www.unifire.com/sites

/default/files/pliki/unifire_ anti-

pirate_water_cannon_

system_brochure.pdf

the water
cannon
operator looks
for a new
target once a
skiff has been
forced out to
70m.

A defined distance at
which the operator starts
searching for a higher
priority target to focus on.
Prevents tunnel vision on
one skiff while others
approach unimpeded.

Likely that a tactical
operator would try to
prioritize nearby skiffs,
but at the same time
that some minimum
distance must be
reached for the current
target for it to be safe
to switch off them
momentarily.
Somewhat arbitrarily
chosen based off those
parameters.

Affects how the cannon
performs when juggling
between targets.

http://www.unifire.com/sites%20/default/files/pliki/unifire_%20anti-pirate_water_cannon_%20system_brochure.pdf
http://www.unifire.com/sites%20/default/files/pliki/unifire_%20anti-pirate_water_cannon_%20system_brochure.pdf
http://www.unifire.com/sites%20/default/files/pliki/unifire_%20anti-pirate_water_cannon_%20system_brochure.pdf
http://www.unifire.com/sites%20/default/files/pliki/unifire_%20anti-pirate_water_cannon_%20system_brochure.pdf

 122

THIS PAGE INTENTIONALLY LEFT BLANK

 123

APPENDIX E. MODEL FUTURE WORK

 Refactor the model code for efficiency.

o The Model was architected and programmed with a focus on simple,

comprehensible logic. These attributes were prioritized in order to increase the

likelihood of the model working correctly and being transferable to other users;

but at the cost of prolonged run times. There are multiple examples of real-time

memory allocation or calculation of intermediate values that could have been

precalculated and hardcoded. Given the prolonged run times of the model in

operation (around 1 hour for 100 runs), it would likely be worth making the code

more efficient to increase usability.

 Utilize crew member tasking tracking.

o An original intent of the model that fell out of scope in order to a) reduce

complexity and runtime of the model and b) bring the modeling schedule back to

the left, was to track what each crew member of the commercial ship was doing

at any time. This would show limitations of user-controlled countermeasures

with and without additional crew members. As the model exists today the task

load on the ship’s crew is not considered, to the perceived benefit of

countermeasures that require active control.

 Test and refine implementation of the variable time increment feature of the model.

o The model was originally designed to allow the user to select what time

increment should be used in order to tradeoff between fidelity and run time. By

default the model runs in one second increments. While this philosophy was

maintained in the design and coding of the model, the feature was not included in

the debugging and testing of the model due to schedule constraints. This helped

bring the model schedule back in line with the project’s, but has constrained

users to the 1 second option.

 Incorporate pirate psychology/physical limitations.

o The model currently assumes a mindless dedication by the pirates. They fight to

the last man and for the entire trip to aid. It is likely that at some point prior to

those conditions the pirates would abandon their attack. Whether it is running out

of gas or losing too many skiffs, there are likely some conditions that would

cause the pirates to “give up” that should be identified and incorporated.

 124

 125

LIST OF REFERENCES

“18 Anti-Piracy Weapons for Ships to Fight Pirates.” 2013. Marine Insight. Retrieved 17,

Aug 2014. http://www.marineinsight.com/marine/marine-news/headline/18-anti-

piracy-weapons-for-ships-to-fight-pirates/.

Ben-Ari, Nirit. 2013. “Piracy In West Africa: A Bumpy Road to Maritime Security”

Daily News Egypt (Cairo), December 15.

Blanchard, Benjamin S., & Fabrycky, Wolter J. 2011. Systems Engineering and Analysis.

Boston: Prentice Hall.

BMP4 Best Management Practices for Protection against Somalia Based Piracy. 2011.

Edinburgh: Witherby Pub. Group. Retrieved January 12, 2014.

http://eunavfor.eu/wpcontent/uploads/2013/01/bmp4-low-res_sept_5_20111.pdf.

Booton, Jennifer 2013. “Piracy Pays: Inside the Lucrative Fight to Foil High-Sea

Hijackings.” FOX Business, April 10.

Chalk, Peter. 2008. The Maritime Dimension of International Security: Terrorism,

Piracy, and Challenges For the United States. Santa Monica: RAND Corporation.

CJCSI Instruction 3170.01.2007, Joint Capabilities Integration and Development System.

2007. Washington, D.C.: Department of Defense

Defense Acquisition Guidebook. 2013. Defense Acquition University. Retrieved Aug 17,

2014. https://dag.dau.mil/Pages/Default.aspx

Elleman, Bruce, Forbes andrew, & Rosenberg David. 2010. Piracy and Maritime Crime:

Historical and Modern Case Studies. Newport Papers 35: 97–137.

“Enforcing the Law: An Economic Approach to Maritime Piracy and Its Control.” 2014.

Hellenic Shipping News. Retrieved July 23.

http://www.hellenicshippingnews.com/14f77eeb-86e6-4252-bd03-92aeb0ab35fb/.

Hughey, Richard L. 2007. Targeting At the Speed of Light. Air War College. Retrieved

Aug 17, 2014. http://www.au.af.mil/au/awc/awcgate/cst/bh_hughey.pdf.

Lilly, Trena C., & Russell, Bruce R. 2003. The Multi-Mission Maritime Aircraft Design

Reference Mission. Johns Hopkins APL Technical Digest, 24(3): 257–262.

Lymer, David, Funge-Smith, Simon, & Greboval, Dominique. 2009. The Fishing Fleet In

Aceh Province, Indonesia. Washington, D.C.: RAP Publication.

 126

Madsen, Jens V., Seyle, Conor, Brandt, Kellie, Purser, Ben, Randall, Heather, & Roy,

Kellie. 2014. State of Maritime Policy 2013. Colorado: OBP Oceans Beyond

Piracy. Retrieved Aug 17, 2014.

http://oceansbeyondpiracy.org/sites/default/files/attachments/SoP2013-

Digital.pdf.

Manners, Andrew. 2014. Pirates Release Ship, But Indonesia Still Worst For Piracy.

Future Directions International, June 4.

“Modern Piracy.” 2014. Maritime Connector. Retrieved Aug 17. http://maritime-

connector.com/wiki/piracy/.

Ong-Webb, Graham G. 2006. Piracy, Maritime Terrorism and Securing the Malacca

Straits. Leiden, Netherlands: Institute of Southeast Asian Studies/International

Institute for Asian Studies

Piracy and Armed Robbery Against Ships. 2014. ICC International Maritime Bureau.

Retrieved Aug 17. www.kvnr.nl/stream/2013-annual-imb-piracy-report.

Ramones, Ikaika. 2013. “Pirates Take over the Waters In Indonesia.” Forbes Asia, Aug

12.

Samatar, Ismail Abdi, Lindberg, Mark, & Mayhani, Basil. 2010. “The Dialectics of

Piracy In Somalia: the Rich Versus the Poor.” Third World Quarterly, 31(8), pp.

1377–1394.

The State of World Fisheries and Aquaculture. 2014. FAO: Food and Agriculture

Organization of the United Nations. Retrieved Aug, 17, 2014.

http://www.fao.org/3/a-i3720e.pdf.

Systems Engineering Process. 2014. Defense Acquition University. Retrieved May 22,

2014. https://dap.dau.mil/acquipedia/Pages/ArticleDetails.aspx?aid=9c591ad6-

8f69-49dd-a61d-4096e7b3086c.

World Oil Transit Chokepoints. 2012. Energy Information Agency.

http://www.eia.gov/countries/analysisbriefs/World_Oil_Transit_Chokepoints

/wotc.pdf.

 127

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center

 Ft. Belvoir, Virginia

2. Dudley Knox Library

 Naval Postgraduate School

 Monterey, California

