THE NEWS LEITER

 OF THE
BUREAU OF PUBLIC ROADS

VOL. 3, NO. 1
NOVEMBER, 1927
A. C. ROSE, EDITOR

CONTENTS

Chief Of Bureau To Be Knighted By King Of Norway $\ldots \ldots \ldots \ldots \ldots \ldots \ldots$
U. S. Supreme Court Rules O_{n} Grade-Crossing Accident $\ldots \ldots \ldots \ldots$

Rebullt Fresno Effective For Loose-Rock Haul _ _ _ _ _ _ _ _ _ 3

Status Of U. S. Highway Markers And Signs $\ldots \ldots \ldots \ldots$

Yadkin River Bridge Test Progressing $\ldots \ldots \ldots \ldots \ldots$

Motor Vehigle Registrations And Receipts - First Half Of $1927 \ldots \ldots \ldots$

Gasoline Taxes - First Half Of $1927 \ldots \ldots \ldots \ldots$

New Traffic-Flow Recorder In Use On Cleveland Traffic Survey $\ldots \ldots \ldots$

3,118 Grade Crossings Eliminated Since $1921 \ldots \ldots \ldots \ldots$

Burlap Concrete-Pavement Covering Spread By Mechanically-Operated Roll $-\ldots-22$

Ord Finisher Used For Shaping Bituminous Surfacing $\ldots \ldots \ldots \ldots$

John G. Rose $\ldots \ldots \ldots \ldots \ldots-\ldots \ldots-\ldots \ldots$

In recognition of his services to the Norwegian bureau of puelic Roads, Mr. MacDonalo has eeen offered appointment ey the King of Norway as a Knight of the first Class of His Order of St. Olav.

Notification of the contemplated honor was received by Mr. Macdonald on Novemeer 10, through the Charge d' Affalres, ad interim, of the royal norwegian legation, whose letter FOLLOWS:
"My dear Mr. MacDonald:
"| have eeen instructed ey my Government to inform you that it is the intention of His Majesty the King of Norway to appoint you a Knight of the first Class of His Order of st. Olav in recognition of services you have rendered the Norwegian bureau of Puelic Ro ads, more especially services you have been good enough to render Mr. Baalsrud, the Director of puelic Roads of Norway. I have the honor to inquire whether you are desirous of ACCEPTING THIS CONTEMPLATED HONOR.
"। DO NOT OMIT TO INFORM YOU THAT I AM FULLY AWARE THAT in your case Congress would prosaely have to give its consent EEFORE YOU ARE AELE TO ACCEPT AND WEAR A FOREIGN DECORATION. I WILL, IN CASE YOU ARE DESIROUS OF ACCEPTING THIS DISTINCTION, INQUIRE OF MY GOVERNMENT WHETHER IT HAS ANY OBJECTION TO DEPOSITing the insignia of the order with the State Department until SUCH CONSENT CAN be obtalined.

II am, my dear Mr. MacDonald,

Very sincerely yours,
(SIGNED) A. LUNDH.
Charge d' Affalres A.1:"

It is understood that the State department will make the NECESSARY ARRANGEMENTS FOR ACCEPTANCE OF THE DISTINCTION, AND that the order itself will ee held in the archives of that department while Mr. Macdonald remains in the federal service.
U. 日. SUFREME COURT RULES ON GRADE-CROSSING ACCIDENT
(NOT FOR RELEASE)
the baltimore and Ohio Railroad Company, petitioner vS.
Dora Goodman, Administratrix of Nathan Goodman
No. 58.- October TERM, 1927.

The United States Supreme Court, IN AN OPINION DELIVERED BY Justice Holmes, on Octorer 31 , 1927, held that an automobile ORIVER, GOING UPON A RAILROAD TRACK AT A GRADE CROSSING, DID SO AT HIS OWN RISK AND THAT THE RAILROAD COMPANY WAS NOT RESPONSIGLE FOR DAMAGES CLAIMED FOR SUCH AN AC~IDENT.

THE SUIT WAS EROUGHT EY THE WIDOW AND ADMINISTRATRIX OF Nathan Goodman against the Baltimore and Ohio Railroad for runNING HIM down at a grade crossing. The defense made by the railroad company was that Goodman's own negligence caused his death. at the trial, in the lower court, the rallroad company asked the COURT TO DIRECT A VERDICT IN ITS FAVOR, BUT THE REQUEST AND OTHERS looking to the same end were refused, and Mrs. Goodman received a JUdgment which was affirmed ey the United States Circuit Court of Appeals. $10 \mathrm{~F}(20)$ 58. The railload company then appealed the case to the United States Supreme Court.

The Supreme Court in reversing the judgment of the lower court - Justice Sutherland eeing absent - Rendered the following OPINION: "GOODMAN WAS DRIVING aN aUTOMOEILE tRUCK IN aN EASTERLY OIRECTION AND WAS KILLED BY A TRAIN RUNNING SOUTHWESTERLY ACROSS the road at a rate of not less than sixty miles an hour. the LINE WAS Stralght but it is sald ey the respondent that Goodman 'HAD NO PRACTICAL VIEW' EEYOND A SECTION HOUSE TWO HUNDRED AND FORTY-THREE FEET NORTH OF THE CROSSING UNTIL HE WAS ABOUT TWENTY FEET FROM THE FIRST RAIL, OR, AS THE RESPONDENT ARGUES, TWELVE FEET FROM DANGER, AND that then the engine was still orscured. by the section house. He had been driving at the rate of ten or twelve miles an hour but had cut down his rate to five or six MILES AT ABOUT FORTY FEET FROM THE CROSSING. IT IS THOUGHT THAT there was an emergency in which, sq far as appears, Goodman old all that he coulo.
"We do not go into further details as to Goodman's precise SITUATION, BEYOND MENTIONING THAT IT WAS DAYLIGHT AND THAT HE WAS FAMILIAR WITH THE CROSSING, FOR it APPEARS TO US PLAIN THAT NOTHING

Is sugbested ey the evidence to relieve Goodman from responsigility for his own death. When a man goes upon a rallroad track he knows that he goes to a place nhere he will ee killed if a train comes UPON HIM EEFORE HE IS ClEAR OF THE TRACK. HE KNOW'S that he mUSt STOP FOR THE TRAIN, NOT THE TRAIN STOP FOR HIM. IN SUCH CIRCUMStances it seems to us that if a driver cannot ee sure otherwise WHETHER A TRAIN IS DANGEROUSLY NEAR HE MUST STOP AND GET OUT OF HIS VEHICLE, ALTHOUGH OEVIOUSLY HE WILL NOT OFTEN EE REQUIRED TO DO MORE THAN TO STOP AND LOOK. It SEEMS TO US THAT IF HE RELIES UPON NOT HEARING THE TRAIN OR ANY SIGNAL AND TAKES NO FURTHER PRECAUTION HE DOES SO AT HIS OWN RISK. IF AT THE LAST MOMENT GOODMAN FOUND HIMSELF IN AN EMERGENCY IT WAS HIS OWN FAULT HHAT he did not reduce his speed earlier dr come to a stop. it is true à sajd in flannelly vi delaware \& Hudson Coi, 225 U. S. 597, 603, that the question of due care very generally is left to the JURY. BUT WE ARE DEALING WITH A STANDARD OF CONDUCT, AND WHEN the standard is clear it should ee lald down once for all ey the Courts. See Southern pacific Co. v. Berkshire, 254 U.S. 415 , 417, 419."

REBUILT FRESNO EFFECTIVE FOR LOOSE-ROCK HAUL

Compiled from a report suemitted ey john D. Slye of District 3.
A reeuilt fresno for hauling loose rock was found to be an effective plece of equipment in the grading work on Wyoming FEderal-ald project No. $159-\mathrm{C}$. In this $10-\mathrm{mile}$ joe there were TWO CUTS IN WHICH EOWLDERS AND LOOSE ROCKS PREDOMINATED. AFTER the material was loosened, it was found to ee difficult to load IT INTO THE OROINARY fRESNOES EECAUSE THE SCRAPERS WOULD SLIDE aND JUMp oVER the loose rock eefore they were fully loaded.

To OVERCOME THIS TENDENCY, THE CONTRACTOR IN CHARGE OF THE WORK REBUILT A NUMBER OF THE FRESNOES AS SHOWN IN THE ACCOMPANYING pHOTOGRAPH. THE PRINCIPAL fEATURE OF THE REEUILT EQUIPMENT CONSISTS OF A CURVED IRON EAR FAETENED TO THE WOODEN FRAME WITH A SWIVEL EOLT AND EXTENDING TO THE EACK OF THE fRESNO PAN. THERE IS ALSO A CHAIN FASTENED TO THE fRAME AND JOINED TO A POST FIXED TO THE PAN. THE FUNCTION OF THE GAR IS TO PREVENT THE PAN FROM TIPPING fORWARD DURING THE LOADING OPERATION WHILE THE CHAIN holos the pan in position and does away with this part of the WORK FORMERLY ACCOMPLISHED BY THE TEAMSTER. THE WORK OF RECONstructing the fresno was done entirely ey the camp elacksmith.

Views of the loaded and unloaded rebuilt fresno which moved loose rock and bowlders efficiently on a Wyoming Federal-aid grading project

the loaded fresno is shown in the photograph. When the UNLOADING POSITION IS REACHED, THE GAR IS DISENGAGED FROM THE Catch and swung around a quarter turn, then the chain is detached and the fresno is dumped in the usual manner. A numeer of the resuilt fresnoes were in operat ion when the pictures were taken and were moving the classified material efficiently. Approximately 4,000 cueic yards of eowlders and loose rock had been MOVED FROM ONE CUT.

STATUS OF U. S. HIGHWAY MARKERS AND SIGNS
Contrieuted ey F. W. Mills of the Division of Design

> (Not for release)

On September I, nineteen States had completed the erection of the numbered markers and the danger and miscellaneous signs on all sections of the United States highways. These were: Georgia, indiana, lowa, Kansas, Maine, Massachusetts, Michigan, Minnesota, Missouri, Neeraska, New Hampshire, North Carolina, Ohio, Oklahoma, Vermont, Washington, West Virginia, Wisconsin, and Wroming. In adoition to these complete installations, six States - alaeama, Colozado, Mississippi, New Mexico, Oregon, and Rhode Island had finished the installation of the numbered U. S. shielos, and two States - Tennessee and Virginia - had completed the caution and miscellaneous signing. This information is based upon answers recelved from questionnalres sent to the State highway departments on august 5, 1927. The detalled answers are given in the following taele:

State	: SHIELD : CAUTION AND :EXPECT TO COM-:EXPECT TO COM- : MARKERS:MISCELLANEOUS:PLETE SHIELD :PLETE MISCELLA- : ERECTED:SIGNS ERECTED: MARKING :NEOUS SIGNING			
	: PER CENT	Per cent	-	-
alabama	: 100	-	: -	: -
ARI zona	5	5	: JAN. 1, 1929	: Jan. 1, 1929
Arkansas	90	50	:Sedt. 1, 1928	:Dec. 31, 1928
California	: -	-	During	1927-28
Colorado	100	50	: -	: June 1, 1928
Connecticut	30	30	July 1, 1928	: July 1, 1928
Delaware	: -	-	No ACt	on taken
Florida	: -	90	: -	: -

(CONTINUED FROM PRECEDING PAGE)

YADKIN RIVER BRIDGE TEST PROGRESSING

Contrieuted ey A. L. Gemeny of the Division of Tests

(Not for release)

The first phase of the tests of the gr idge over the Yadkin River eetween Aieemarle and Mt. Gilead, N. C., - involving the structure as it stands - Is now completen. Tesist cn the second PHASE WITH THE CONTINUITY OF THE SUPERSTRUCTURE DESTROYED WILL be made shortly.

The purpcse of the stress measurements is to determine the MANNER IN WHICH A FULL-SIZED CONCRETE ARCH, EUILT UNDER NORMAL CONDITIONS, DE CORMS UNDER DETEFMINATE LOADS, AMID TO COMPARE THESE DEFORMATIONS AND THE STREESES PRODUCED IN THE ARCH RIB WITH THE DEFORMATIONS AND STRESSES AS COMPUTED BY THE GENERALLY ACCEPTED ELASTIC THEORY OF ARCHES AND THOSE DERIVEG TFOM THE TESTS OF models by means of the Beggs Deformeter gages.

Procedjre. - The loads are imposed by means of tanks of water placed at all possibie pusitions on the span. These tanks ARE MADE OF WOOD, f? Ey 20 ey 18 fEET INSIDE JIMENSIONS, AND WEIGH, WHEN FULL, 160 TONS EACH.

The experiment is divided into the following phases:

1. - A complete series of loads on the eridge as it stands; using ONE LOADING TANK.
2. - A complete series of loads on the eridge with the continuity OF THE SUPERSTRUCTURE DESTROYED, SO AS TO APPROACH AS NEAR AS possible to the conditions generally assumed in designing arches; USING ONE LOADING TANK.
3. - Loading the eridge in the most critical positions, with two tanks, in an effort to cripple the argh fit.

The tanks are weighed ey means of the deformation of supPORTING COPPER CYL.INDERS SET IN STEEL CYLINDERS AND RECEIVING THE LOAD FROM CLOSELY-Fitting pISTONS. SFEC:ALLY ANNEALED COPPER cylinders (!/2 Ifschey $1 / 2$ INCH), accurately shaped, are placed in the cells so that they carry the entire weight of the tank placed on the pistons. The weight, a function of the deformation

OF THE COPPER CYLINDERS, IS TAKEN FROM GALIERATION CURVES PREVIOUSLY DETERMINED IN THE LASORATORY. BY THIS MEANS THE EMPTY-TANK WEIGHT OF 47,000 POUNDS WAS CHECKED WITHIN 300 POUNDS OF THE COMPUTED WEIGHT AND OTHER CHECK MEASUREMENTS.

Measurements. - The following measurements are taken for EACH OF THE FIRST TWO PHASES OF THE EXPERIMENT, WITH THE LOAD PLACED IN ALL POSSIELE POSITIONS, AND THREE INCREMENTS OF WATER FOR EACH POSITION.

1. - The deformation of the concrete and steel at 24 POINTS ON THE ARCH RIE. FROM THESE MEASUREMENTS THE STRESS IS DETERMINED BY THE USE OF THE MODULUS OF ELASTICITY DERIVED FROM TESTS OF SPECIMENS TAKEN FROM THE ERIDGE.

Instrument. - The deformation is measured ey electric TELEMETERS WHICH ARE DESIGNED ON THE PRINCIPLE THAT THE ELECTRI-CAL RESISTANCE OF A CAREON PILE VARIES WITH THE PRESSURE ON THE pIle. The instrument is attached to steel plugs grouted in the CONCRETE ARCH RIE SO THAT THE DEFORMATION MOVEMENTS ARE TRANS MITTED AS PRESSURES UPON THE CAREON PILES. THE TELEMETERS ARE READ TO ONE TEN-THOUSANDTH OF AN INCH AND ESTIMATED TO ONE HUNDRED-THOUSANDTH OF AN INCH.
2. - THE ANGULAFR ROTATION OF THE AXIS OF THE BRIDGE AT 3 POINTS.

Instrument. - This measurement is made ey means of a cliNOMETER, CONSISTING OF A STEEL EAR CARRYING A LEVEL BUEELE AND LEVELING SCREW ATTACHED TO A DIAL READING TO ONE-THOUSANDTH OF an inch. The instrument is placed and leveled on gage points LOCATED 20 INCHES APART ON STEEL PLUGS IN THE ARCH RIE. THE RELAT IVE DISPLACEMENT OF THE GAGE POINTS IS MEASURED, AND FROM THESE MEASUREMENTS THE ANGULAR ROTATION UNDER ANY INCREMENT OF LOAD IS DERIVED DIRECTLY.
3. - THE CHANGE IN THE LENGTH OF THE MIDDLE ORDINATES OF J-FOOT ARCS OF THE AXIS AT 5-FOOT INTERVALS OVER THE ENTIRE LENGTH OF THE ARCH RIE.

Instrument. - The middle -ordinate changes are measured BY MEANS OF A RADIUS METER. THIS INSTRUMENT CONSISTS OF A STEEL EAR 5 FEET LONG, CARPYING AT ITS CENTER A FEDERAL DIAL READING TO ONE TEN-THOUSANDTH OF AN INCH. GAGE POINTS AT THE ENDS OF

THE RADIUS METER ARE PLACED ON CORRESPONDING POINTS ON STEEL PLUGS IN THE ARCH AND THE NEEDLE OF THE DIAL IS ALLOWED TO REST ON THE SURFACE OF A SQUAFE STEEL PLUG HAI_FWAY EETWEEN THE GAGE POINTS. The movements of the square plug are transferred to the needle AND READ ON THE DIAL.
4. - DEflect ions at each spandrel point of the arch.

Instrument. - The deflections are measured from a wire SUSPENDED OVER A PULLEY WITH A COUNTER WEIGHT AT ONE END TA MAINTAIN A CONSTANT TENSION AND SAG. POINTS AFE LOCATED ! N THE CON CRETE AT THE TOP OF EACH SPANDREL COLUMN AND THE DEFLECTIONS are measured from these points to the wire.
5. - Rotation of the piers at the end of the span under oESERVATION.

INSTRUMENT. - THE pIER ROTATIONS ARE MEASUREd by Clinometers in the same manner as the axial rotations, the gage polnts being PLACED ON THE TOP OF EACH PIER. THESE ROTATION MEASUREMENTS AFE CHECKED BY MEANS OF TWO WIRES PLACED 5 FEET AFART VERTICALLY AND SUSPENDED INDEPENDENTLY OF THE SPAN UNDER OESERVATION. MOVEMENTS are shown ey the relative longitudinal displacements of fixed polnts, on the wires and on the ends of the plers.

STATES ANOOISTRICT OF COUMB:A	MOTOR VEMICLES REGISTEREO, 2) INOIVIDYALLY AND COMEREIALLY OHNED			OTHER REGISTEREO V낃ㅌ		TAX-EXEMPTOFFICIALCARSABREPORTED	TOTAL RECEIPTS	OISPOBITION OF CROSB REOEIPTS (apmoximately alygoatco men hot aepontco) FOR HCLAAY pubpasss						COMPNRATIVE INCREABEOF 1827 REOIETRATIONOVER 1926 (SIX-MONTHB) 3/		8TATES NO OIBTAICT OF COLLBBIA	
		PASSENGER	motor trucks														
	$\begin{array}{\|c\|} \text { GRNO TOTAL } \\ \text { WOTOR CARS } \\ \text { ANO TRUCKB } \\ \hline \end{array}$	$\begin{gathered} \text { ANTONOB ILEg } \\ \text { TAX15 ANO } \\ \text { BUSGES } \\ \hline \end{gathered}$	ANO RONO tracters	trallert	MOTORCYCLE8			COLLECTION ANO AOMINISTRATION	$\begin{aligned} & \text { sTate } \\ & \text { HIGMAYE } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { tocal } \\ & \text { RONAB } \end{aligned}$	STATE NO COUNTY 4/ RONO 80408	$\begin{gathered} \text { FOR } \\ \text { OTHER } \\ \text { PRPOOES } \end{gathered}$		meer	PER CE		
мяали	211,386	184,059 59,599	27.326	1,061	287		$2,863.482$ 409, 443 $3,42,130$	100,819	$\begin{array}{r} 1,112,080 \\ 40,443 \\ 2,244,289 \end{array}$			-	197, 602	13.783	7.0		
ARIzOM	69,699		10,000		260							-	$\begin{array}{r} 197,608 \\ 64,165 \\ 177,236 \end{array}$	$\begin{gathered} 6,143 \\ 66,434 \\ (1,526) \end{gathered}$	$\begin{gathered} 8.0 \\ \text { Dencabce. } 0.9 \end{gathered}$		
ARKNSAS	175,709	149,387	26,322		211							-				нехеляAя	
California	1,584,723	1,386,894	198,829	29,670	8,122	9,293;	7,882,541		$\begin{aligned} & 2,244,289 \\ & 3,061,850 \\ & \hline \end{aligned}$				125,153	8.8	california		
COLORADO	234,794	216,031	${ }^{18,763}$	77320			1,436,773	$\frac{6 / 1,738,841}{71,839}$	--	682,467	$\begin{gathered} 882,467 \\ - \end{gathered}$		-	$\frac{1,459,670}{226,810}$	8,984 2,308 2,481	4.0 9.8 8.1	
conmecticut	262,035	222, 277	39,408		2.862	1,765	8.175, 7153	-	$\begin{array}{r} 8,174,232 \\ 775,699 \end{array}$			[$\begin{array}{r}238,727 \\ 40,303\end{array}$		coniectiant delanare			
oelamare	42,784	34,705	8,079	.204	$\begin{array}{r} 261 \\ 1,069 \\ \hline \end{array}$					-			-				
florioa	373,482	315,009	58,473				5,510,715	589,64739,859	3,626,050	1,296,018			7) 376,700	$\begin{aligned} & 2,481 \\ & 7 / 2,218) \end{aligned}$	$\begin{gathered} 8.1 \\ \text { Ocoscase, } 0.6 \end{gathered}$		
GEORG/A	260,078	226,146	33,033	$\begin{array}{r} 133 \\ 3.063 \end{array}$			$\begin{gathered} 3,478,424 \\ 1,351,96 \\ 14,301,782 \\ 6,027,737 \end{gathered}$			$1,216,787$	$\begin{gathered} \overline{-} \\ 4,829,750 \end{gathered}$		238,618	21,461	9.0		
10NO	89,006	81.181	7,946		378	1.174		-	$\left.\begin{array}{r} 3,386,565 \\ 136,199 \\ 9,471,998 \end{array} \right\rvert\,$			-	$\begin{array}{r} 84,161 \\ 1,217,285 \end{array}$	$\begin{array}{r} 4,045 \\ 148,795 \end{array}$	$\begin{array}{r} 6.8 \\ 12.2 \end{array}$	10ano ILLINDI8	
ILINOIS	1,366.060	1.192,286	173,774		6,319												
inotana	745,000	641,881	103, 119	$\begin{array}{r}6,318 \\ \hline 150\end{array}$	2,689	3,917		$\ldots 190,573$	4, 837, 194				$\begin{array}{r} 1,69,285 \\ 690,704 \\ \hline \end{array}$	54,296	7.9		
10\%A	650,888	610,416	50,473		1,528		9,977,714	598,663	9,379,051				648,282	12.606			
XANSAS	454,685	406,606	48,080		847	2,198	3,406, 129	228,967	3,178,162			-	433,561	21, 124	4.9	10 +1 KANSAS KENTUCKY Loulsiana	
KENTUCKY	254,586	227,776	26,819		535	1,579	4,093.126	78,7c0	3,576.455				247, 104	7,431	3.0		
louisiana	210,000	178,500	31,500	-	450		3,954,306		3,954,306				218,500	$(8,500)$	Occarabc.3.0		
¢	141.605	119,261	22,344	75554740912,959	$\begin{array}{r} 886 \\ 2,607 \\ 6,395 \\ 2,806 \end{array}$	$\begin{array}{r} 1.117 \\ 965 \\ 800 \\ 7.375 \end{array}$	$2,248,145$$2,567,324$$10,770,789$$16,049,507$	$\begin{array}{r} 101,944 \\ 256,732 \\ 1.160,000 \\ 258,326 \\ \hline \end{array}$	$\begin{aligned} & 1,604,266 \\ & 1,797,127 \\ & 8,630,998 \\ & 7,550,117 \\ & \hline \end{aligned}$		479,436 62,500 $1,090,000$ $8 / 513,465$ $2,248,638$ -		128,466	13.139	10.2	LuINE mary Lavo Massachusetts HICHIGAN	
varylano	249,883	239,862	10,021										227,491	22,392	9.8		
massachugetts	697,404	611.747	85,657										627,738	\% ${ }^{\text {, } 688}$	11.1 5.0		
प\| NNESOTA	1,0407,725	533.457	739,298	$\begin{aligned} & 2,838 \\ & 1,939 \\ & - \end{aligned}$				$\begin{array}{r} - \\ 168,038 \\ 1.001,000 \\ 3!, 647 \end{array}$		$\begin{array}{r} 2 . \\ 2.071,470 \\ 915,574 \\ \hline 172507 \end{array}$	$\left\lvert\, \begin{array}{r} \varepsilon, c+0,000 \\ 2,500,000 \\ 4,431,777 \end{array}\right.$		574,356	33,369	6.8	प्ञातNEEOTA yIssissIppI MSSOURI MONTAMA	
\$158186IPP1	197,981	179,093	15,788		$\begin{array}{r} 2.118 \\ 57 \\ 1.468 \\ 118 \end{array}$	$\begin{aligned} & 1.661 \\ & 1248 \\ & \hline \end{aligned}$	$9,699,521$$2,439,514$$7,500,000$$1,020,380$		$\begin{array}{r} 7,099,621 \\ 200,000 \\ 2.067,223 \end{array}$				180,030	17,851	9.9		
w1560uri	609,849	547.479	52.370										582.450	28,399	4.5		
nontama	91,701	78,396	13,305										92,340	(639)	Orcarase, 0,7 7		
NESPASKA	324.169	297.747	26,422	$\begin{array}{r} 1.3 c 0 \\ 71 \\ 477 \\ 1.598 \\ \hline \end{array}$	679 58 1.059 5,504 13	926-396$\overline{5} 400$	$\begin{array}{r} 3,318,189 \\ 208,759 \\ 1,005,769 \\ 11,592,566 \end{array}$	041,729 11,481 67,000 368,256 49	742,938 67.181 938,763 $11 / 160,000$	$\begin{gathered} 1.733,522 \\ - \\ 3,144,300 \end{gathered}$	$130,097$		329.669	$\begin{array}{r} (5,500) \\ 1,930 \\ 7,639 \\ 84,102 \\ \hline \end{array}$	$\begin{gathered} \text { Oceacast. } 1.7 \\ 9.4 \\ 9.7 \\ 11.1 \\ \hline \end{gathered}$	mebraska nevain NEW HNDPSIRE new Jensey	
NEVEOA	22,457	17,958	4,599										78,979				
new Jersey	639,339	524,550	114,789										575,237				
vew mexico	50,656	49,315	1,261	5,1691,2761	$\begin{array}{r} 172 \\ 13.096 \\ 1.020 \\ 228 \\ \hline \end{array}$	$\begin{array}{r} 619 \\ 10.670 \\ 2,452 \end{array}$	$\begin{array}{r} 495,100 \\ 28,852,931 \\ 5,894,49 \\ 1,413,984 \\ \hline \end{array}$	$\begin{array}{r} 48,707 \\ 1,117,116 \\ 397,288 \\ 170,000 \end{array}$	$\begin{array}{r} 297,596 \\ 20,801,861 \\ 3,890,603 \\ 558,947 \\ \hline 1 \end{array}$	$\begin{array}{r} 149,796 \\ 6,933,954 \\ 56,947 \\ \hline \end{array}$	$1,006,558$	$\begin{gathered} \overline{7} \\ - \\ 12 / 130,000 \end{gathered}$	$\begin{array}{r} 315,601 \\ 1,56,671 \\ 371,492 \\ 144,079 \\ \hline \end{array}$	$\begin{array}{r} 3,985 \\ 142,495 \\ 46,918 \end{array}$	$\begin{array}{r} 8.6 \\ 9.1 \\ 10.6 \end{array}$	NET MEXICO Hew yofox MORTH CAROLIN NORTH ONKOTA.	
NEW YORK'	1,704,987	1,421.562	283,426														
NORTH CAROLIMA NORTH OAVOTA	418,271 145,383	381,338 133,973	36,933												12.6		
OHIC	1,459,806	1,299,505	160,209	$\begin{gathered} 10,466 \\ -14 / \\ 3,319 \end{gathered}$	$\begin{array}{r} 8.284 \\ 835 \\ 1,598 \\ 10,526 \\ \hline \end{array}$	$\begin{aligned} & 5,600 \\ & - \\ & 3,068 \\ & 3,175 \end{aligned}$	$\begin{array}{r} 8,784,204 \\ 5,300,000 \\ 5,922,14 \\ 2,925,010 \\ \hline \end{array}$	125,000 614,555	$\begin{array}{r} 4,392,102 \\ 2,120,000 \\ 4,347,910 \\ 22,024,686 \\ \hline \end{array}$	$\begin{aligned} & 4,392,108 \\ & 3,199,000 \\ & 1,449,304 \end{aligned}$			$\begin{array}{r} 1,370,756 \\ 441,000 \\ 195,941 \\ 1,326,682 \end{array}$	$\begin{array}{r} 89,059 \\ 18,429 \\ 9,254 \\ 98,742 \\ \hline \end{array}$	6.6		
OnLHCOM	459,429	415,929	43,500												4.2	OHIO OKlationa OREGON PENNSYLVANIA	
OREM	204,895	189,756	14/ 15.139												4.7		
pennsrlvania	1,425,424	1,241,247	184,177												7.4		
ThCDE ISUANO	103.533	86,503	17,030	$\begin{aligned} & 1,176 \\ & - \end{aligned}$	995297159643	$\begin{aligned} & 565 \\ & 3.268 \\ & 3.200 \\ & 3, \end{aligned}$	$\begin{aligned} & 1,904,750 \\ & 1,976,239 \\ & 2,346,85 \\ & 3,461,233 \end{aligned}$	$\begin{array}{r} 100,000 \\ 121,450 \\ 46,937 \\ 41,544 \\ \hline \end{array}$	$\begin{aligned} & 1,704,750 \\ & 1,854.789 \\ & 1,173,427 \\ & 3,109,749 \end{aligned}$	$1,128,490$	0		96,659	$\begin{array}{r} 6,881 \\ 23,366 \\ (3,694) \\ 38,067 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 7.1 \\ 15.5 \\ \text { OccREAEE, } 2.4 \\ 16.7 \\ \hline \end{array}$	SOUTH CNEOLISA south वakOta TENEESEE	
SOUTH jarolina	174,378	157,087	17,291										161,012				
Sovte jaxota	152,069 265,542	138,955 243,443	13,214 22,399										155,763				
TEXA9	950,180	853.981	96,229	6,980	2,335		14.236,439	674,783	8,833,676	4,727,980			904,050	48,060	5.1	TExCS	
UTAN	84,450	72,927	11,523	149	432	650	603,771	138.000	246.773		225,00	-	81,830	2,620	3.2		
vERWENT	69,058	63,951	6,207	119	449	-	1,702,168	44,633	1,657.535	-		-	62,699	6,159	9.8	VEPMONT	
vizaivia	299,924	256,358	43,566	285	1,023		4,049, 833	87, 141	4,782,692				277,126	22,799	8.2	VIROISIA	
NASHINSTON	348,628	298,639	49,989	1.451	1,914	4.434	6, 676,974	-88,172	4,650,968				326,500	22,128	6.8	masin maton	
aEST VIAGTVIA	205, 121	182, 316	22.305	292	1,043	2.036	3,525,284	16/139,ws	2,235,585		1.150,000		183,788	21,333	11,8	mest viroinia	
${ }^{\text {a } 3 \text { consin }}$	626.452	548,384	79.128		2,211	391	$8,961,029$;	540,200	6,200,000	3,221.029		-	590,797	36,555			
otstaing of coumeia	46,198 91,873	(40, 822			(106	1,915	$\begin{gathered} 479,330 \\ 344,931 \end{gathered}$		228,661	-	1,7	17/340,931	$\begin{aligned} & 44,367 \\ & 89,857 \end{aligned}$	$\begin{aligned} & 1,831 \\ & 2,518 \end{aligned}$	$\begin{aligned} & 4.1 \\ & 8.8 \end{aligned}$	WYoulne DI STRICT OF COLLMAIA	
totals	20,991,333	18,414,767	2,576.566	25.558	96.789	88,884	272,119,534	12.452,069	188.525,679	47,937,	21,795,33	11,408,825	18/ 19,818,756	1,374,578	7.0	rotals	

[^0]UNIIEU STATES DEPARTNENT OF AG̈RICULTURE
GASOLITE TAXES FOR FIRST HALF YEAR, 1927
TOTAL TAXES EARAEO ON MDTOR VEHICLE FUEL, REFUNDS ON GROSG TAX, OISPOSITION OF FUND, RATES, AVD GALLOVS OF GASOLINE CONSUIEO sy motor vehicles taxeo

 ALITIES.
$\$ 40,000$.
THE YEAR.
YEAR.
FOR HAI ITENANE OF STREE TS IN WNIICIPAL
PAIC FROM GEEERAL FUNO: APDROXIMAELY
NEW 3 CENT TAX EFECTIVE JUY 1 , 1927 .
STATE APPROPRIATION OF 35.000 FOR THE
FOR FREE SCHOOL FUND.
NOT AVALEALE FOR RON USE UNTIL 1928.
29/ COLL OF BJ, 228 PAIO FROM APPROPRIATION FROM STATE REVENUES.

notes: I/ DISPOBITICN DATA IS EBTIMATEO IN SONE CAEES, ANO I5 APPROXIMMTELY ALLOCATEO ACCOROING

PAIO FROM STATE GENERAL FUND, 34,501 .

16) FOA BELMALL TO PROTECT HIOMAY; COLLEC
17 NED 1 CENT IN HNNOCK CONT.
I CENT TAX EFFECTIVE JULY 1, 1927.

NEW TRAFFIC-FLOW RECORDER IN USE ON CLEVELAND TRAFFIC SURVEY

Contrieuted ey J. G. Mckay, Chief of the Division of Highway economics, and L. W. Teller, division of tests

(Not for release)

A New device, designed to measure and record the speed of A VEHICLE AT ANY INSTANT DURING A RUN OR TRIP, AND SIMULTANEOUSLY to fecord the elapsed time and distance since the eeginning of the run, is geing used ey the bureau in connection with the high-WAY-PLANNING SURVEY NOW IN PROGRESS IN COOPERATION WITH THE COUNTV Commissioners of Cuyamoga County, ohio, in the Cleveland Metropolitan Region.

The device consists essentially of a clock, a speedometer, and an odometer - the three so mounted as to be within the field OF A MOTION-DICTURE CAMERA WITH WHICH THEY CAN BE PHOTOGRAPHED Simultaneously at any time when illuminated ey two flash lights WHICH also form a part of the device. The entire apparatus is enclosed in a eox approximately two feet long and one foot square. A plan of the device is shown in figure 1.

The apparatus may ee installed in any car by making the NECESSARY CONNECTION TO THE SPEEDOMETER, AND THE ONLY OTHER EQUIPMENT REQUIRED IS A 6-8 Voll StORAGE EATTERY TO PROVIDE CURRENT FOR THE FLASH LIGHTS.

The operation of the instrument is extremely sindple. A SMALL KNOE ON THE TOP OF THE EOX IS PRESSED WHEN A RECORD IS TO BE MADE. THIS ACTION FIRST TURNS ON THE FLASH LIGHTS AND ALMOST Immediately actuates the camera exposing the film for one-sixtieth OF A SECOND AND MOVING IT FORWARD FOR THE NEXT PICTURE. THE CAMERA IS LOADED WITH 18 FEET OF STANDARD MOTION-PICTURE FILM WHICH PROvides for 250 exposures.

Installed in an automoeile as arove described, this device IS USED TO MEASURE AND RECORD THE VARIAELE SPEED OF HIGHWAY TRAFFIC EY SO OPERATING THE TEST CAR AS TO "FLOAT" WITH THE TRAFFIC. THE SIMULTANEOUS RECORDS OF TIME, SPEED, AND DISTANCE WHICH CAN RE MADE AT ANY INSTANT DURING A RUN OR WHENEVER THE SPEED OF THE CAR IS CHANGED FOR ANY REASON WILL PROVIDE THE DATA NECESSARY FOR A VARIETY OF STUDIES OF FLOW OF TRAFFIC, THE EFFECT OF TRAFFIC OESTRUCTIONS AND CONGESTION, THE TIME REQUIRED TO TRAVEL OVER SECTIONS OF A ROUTE, ETC.

A-BATTERY CABLE B-SPEEDOMETER C-CAMERA D-CLOCK
E-OPERATING ROD F-LAMP SWITCH G-WINDOW H-LAMP

FIGURE I.- SKETCH OF THE NEW SPACE-TIME RECORDER.

THE OPERATING CREW CONSISTS OF THREE MEN - A DRIVER, AN IISSTRUIAENT OFERATOR AND OBSERVER, AND A RECORDER. A WINDOW IN THE TOP OF THE INGTRUNENT EOX PERMITS THE OPERATOR AND OBSERVER TO NOTE THE ODCMETER FIGURE AT THE INSTANT OF PHOTOGRAPHIC EXPOSURE, AND THIS FIGURE AND THE REASON FOR THE EXPOSURE ARE GIVEN TO THE RECORDER WHO NOTES THEM ON THE RECORDING FORM. AN ENLARGED REPRODUCTION OF THREE OF THE PHOTOGRAPHIC RECORDS IS SHOWN IN FIGURE 2, AND A SAMPLE RECORD FORM IS SHOWN IN Figure 3.

In making a run with traffic, the initial exposure is made AT THE INSTANT THE CAR IS PUT IN MOT ION, ANOTHER WHEN IT ATTAINS the predetefmined speed, and others when it is "floating" with the average speed of the traffic on the road. Thereafter, other EXPOSURES ARE MADE WHEN FOR ANY REASON THE SPEED IS ALTERED appreciaely. In this manner, a series of photografhlc records ARE OETAINED, WHICH CAN EE USED SUESEQUENTLY TO DETERMINE THE EFFECT UPON THE SPEED OF THE TEST CAR (AND CONSEQUENTLY OF THE TRAFFIC WITH WHICH IT IS "Floated") of traffic congestion, slow VEHICLES, TRAFFIC LIGHTS, STREET CARS, STREET CAR LOADING PLATFORMS, RAILROAD CROSSINGS, NARROW PAVEMENTS AND ERIDGES, CURVES, GRADES, ETC.

ONE FORM IN WHICH the data thus oetained may be plotted, FOR PURPOSES OF ANALYSIS, IS SHOWN IN FIGURE 4. IN THIS GRAPH SPEED IS PLOTTED AGAINST DISTANCE, AND EACH UP AND DOWN CHANGE IN THE DIRECTION OF THE GRAPH REPRESENTS A CHANGE IN SPEED OCCURRING AT A PARTICULAR DISTANCE FROM THE STARTING POINT, THE ENT IRE GRAPH CONSTITUTING A RECORD OF THE ウARIAELE SPEED OF the TEST CAR IN OPERATION OVER A SECTION OF HIGHWAY. SUPERIMPOSED UPON THE SPEED RECORD IN THIS CASE, AS AN INDICATION OF THE VARIOUS COMEINATIONS POSSIELE, IS A RECORD OF THE DENSITY OF TRAFFIC ON THE ROAD AT THE TIME OF THE RUN, THE WIO゙H OF THE ROAD SURFACE, AND THE ROUGHNESS OF THE SURFACE AS DETERMINED BY ROUGHOMETER READINGS.

ONE OF THE INTEREST ING STUDIES IN CONNECTION WITH THE CLEVELAND SURVEY, FOR WHICH THIS DEVICE IS EMPLOYED, IS THAT OF DETERMINING THE TRAFFIC CAPACITY OF PAVEMENTS OF VARIOUS WICTHS. A NUMEER OF SECTIONS OF HIGHWAY RANGING IN PAVEMENT WIDTH FROM 18 TO 50 FEET HAVE EEEN SELECTED FOR STUDY. TRAFFIC ON THE SEVERAL SECTIONS VARIES FROM 2,000 TO MORE THAN 30,000 VEHICLES PER DAY AND, IN COMPOSITION, FORMS AN EXCLUSIVELY PASSENGER-CAR MOVEMENT TO A COMEINED PASSENGER-CAR AND TRUCK TRAFFIC IN WHICH THE TRUCKS CONST ITUTE UPWARDS OF 1.5 PER CENT.

It is assumed that the traffic capacity of a pavement of ANY PARTICULAR WIDTH IS THAT TRAFFIC VOLUME WHICH IT WILL DISCHARGE WITHOUT UNDUE CONGESTION; AND IT IS TAKEN FOR GRANTED THAT CONGESTION ! S INVARIAELY REFLECTED IN A RETARDATION OF THE SPEED OF VEHICLES. ACTING ON THESE ASSUMPTIONS AN EFFORT WILL be made to determiry the traffic capacity of each of the test PAVEMENTS IN THE FOLLOWING MANNER.

The pavement will ee marked transversely at one-foot interVALS, AND EY THIS MEANS A STUDY WILL EE MADE OF THE LATERAL DIStrieution of the traffic throughout the day, segregating in the RECORD THE OBSERVATIONS MACE DURING EVERY \$5-MINUTE PERIOD. A TRAFFIC COUNT, SIMILARLY SUEDIVIDED, WILL SHOW THE VARIATION IN TRAFFIC DENSITY THROUGHOUT THE DAY; AND, ONCE IN EACH $15-\mathrm{MINUTE}$ period, a run will be made with the test car equipped with the TRAFFIC-FLOW RECORDER OVER A DESIGNATED SECTION OF THE HIGHWAY, PAST THE TRAFFIC-COUNTING AND TRANSVERSE-DISTRIEUTION STATIONS.

As there is invariably a wide range of traffic density dURING THE COURSE OF A DAY, THERE WILL EE OBTAINED IN THIS WAY DATA WHICH WILL SHOW, FOR VARIOUS DENSITIES OF TRAFFIC, THE CORRESPONDING SPEED OF THE TRAFFIC AND THE DISTRIEUTION OF THE TRAFFIC TRANSVERSELY OVER THE PAVEMENT, THE LATTER SERVING AS A measure of the degree to which the avallable width is utilized.

As the roads selected are tho se upon which there appears to be congestion at the peak hours, It will be possible, ey using THE TRAFFIC SPEED AS A GU!DE, TO ASCERTAIN THE DENSITY OF TRAFFIC at WhICH THE CONGESTION FIRST MAKES ITSELF FELT, AND THE VARIOUS degrees of congestion associated with greater densities, utilizING THE TRANSVERSE-DISTRIBUTION DATA TO DETERMINE WHETHER OR NOT the avallable width of pavement is fully used.

3,118 GRADE CROSSINGS ELIMINATED ON FEDERAL-A1D PROJECTS SINCE 1921

Contributed ey the Division of Design
(Not for release)

Since the passage of the Federal Highway act in 1921, the approved plans for federal-aid projects, completed or in progress on Novemeer 11, 1927, have provided for the elimination of 3, 118 ralleoad grade crossings.

The projects, on which these crossings have eeen or will shortly ee eliminated, are all those which have been initiated since 1921, aggregating 48,000 miles. Before the improvement Which has eeen completed or planned, there were 5,635 grade crossings on these highways. This numeer has eeen reduced to 2,517; and the resulting improvement in safety of transportation is even greater than the mere reduction in numbers of hazards indicated, since, on the whole, it is the more dangerous crossings that have been eliminated.

Of the 3,118 crossings thus removed from the path of highway users, 1,966 have been eliminated ey the construction of grade separating structures, and the remaining 1,152 have eeen avoided by relocation of the highway.

What has eeen accomplished in each of the states - the NUMEER OF CROSSINGS ON the roads before improvement, and the NUMBERS ELIMINATED EY STRUCTURES AND RELOCATION - IS SHOWN IN the following table. It will ee noted that, in.each case, the data are tabulated separately for primary and secondary routes of the Federal-aid system.

Elimination of railroad grade crossings with federal ald, from Novemeer 9, 1921 to Novemeer 11, 1927

State	: Numeer of grade : Numeer of grade : Numeer of grade : CRCSSINGS EEFORE: CROSSINGS ELIMI-: CROSSINGS ELIMI- : FEderal-ald im- : Nated ey struc- : Nated by reloca- : PROVEMENT : TURES : TION OF ROADS											
	:PRIMARY:SECONDARY:PR!MARY:SECONDAFY:PRIMARY: SECONDARY : ROADS: ROADS : ROADS: ROADS : ROADS : ROADS											
			:									
Alabama	:	84	:	54		40	:	29		28	:	20
Arizona		8	:	26		0	:	7		0		5
ARKANSAS		54	:	66		5	:	4		0		2
California		66	:	17	:	38		3		14		2
Color:do		55	:	23		24	:	6		12	:	6
Connecticut	:	10	:	2		4	:	2		0		0
Delamare	:	4	:	12		0	:	0		0		0
Florida	:	18	:	10		3	:	4		1	:	0
Georgia	:	121	:	180	!	37	:	116		23		99
Hawall	:	1	:	7		0	:	4		0	:	4
Idaho	:	59	:	8		30	:	1		18	:	1
Illinois	:	103	:	87		10	:	18		3	:	7
Indiana	:	68	:	17		7	:	3		2	:	1
Iowa	:	119	:	91	!	54	:	32		30	:	17
Kansas	:	141	:	89	!	24	:	29		13	:	16
Kentucky	:	58	:	56		17	:	11		7	:	7
Louisiana		45	:	67		$1!$:	9		7	:	6
Maine	:	18	:	38		8	:	13		6	:	10
Maryland		8	:	9		2	:	5		0	:	2
Massachusetts	:	34	:	17		7	:	3		2	:	1
Michigan	:	77	:	41	:	19	:	9		6	:	5
Minnesota	:	188	:	112		83	:	40		53	:	22
Mississippl	:	64	:	73	:	32	:	15		14	:	8
Missouri		114	:	59		28	:	9		14	:	2
Montana		55	:	43	:	27	:	25		19	:	22
Nebraska		119	:	118	:	31	:	22	:	24	:	16
Nevada		31	:	19	:	23	:	7		14	:	6
New Hampshire	:	11	:	29	:	5	:	7		0	:	4
New Jersey	:	31	:	22	:	13	:	4		8	:	1
New Mexico	:	15	:	31	:	3	:	1.3	:	0	:	10
New York		58	:	82	:	19	:	19		5		10
North Carolina		75	:	62		42	:	25		12	:	17
North Dakota		107	:	98	:	30	:	4	:	13	:	3

(Cont inued from preceding page)

BURLAP CONCRETE-PAVENENT COVERING SPREAD BY MECHAN ICALLY-OPERATED ROLL

Compiled from a report suemitted by C. A. Welton of District 5.

A MECHANICALLY-OPERATED ROLL FOR SPREADING THE EURLAP COVERING, DUR ING THE CURING PERIOD, WAS USED, IN THE CONSTRUCTION OF THE CEMENT CONGRETE PAVEMENT ON MISSOURI FEDERAL-AID PROJECT 2J3-C G. THE CONTRIVANCE, WHICH IS SHO WN IN THE ATTACHED ILLUSTRATION, WAS DEVISED BY A MEMEER OF THE CONTRACTING FIRM AND CONSISTS OF A REVOLVING STEEL CYLINDER SUPPORTED UPON A STEEL FRAME THAT IS MOUNTED ON FOUR WHEELS RUNNING UPON THE TOP OF THE SIDE FORMS.

The hollow steel roll is 19 feet long by 12 inches in diameter. THE fRAME WAS faERICATED FROM SMALL, ANGLE aND fLAT BAR StEEL. THE ROLL IS ROTATED AND THE FOR'NARD MOVEMENT OF THE FRAME IS ACCOMPLISHED EY A HAND-OPERATED WINCH CONNECTED THROUGH CHAINS, SPROCKETS, AND GEARS TO THE ROLL AND THE WHEELS. THE ENTIRE CONTRIVANCE WEIGHED AEOUT 400 POUNDS AND COULO EE KNOCKED DOWN FOR CONVENIENT SHIPMENT.

AS THE MACHINE IS MOVED FORWARD THE EURLAP COVERING IS SpREAD aND REWIND ING is accomplished ey the reverse movement. THE CYLINDER HOLDS AEOUT I, 200 LINEAL FEET OF COVER MATERIAL. THE EURLAP IS WOUND ON THE CYLINDER AFTER THE ORIGINAL STRIPS have eeen sewed together into a sheet $18-1 / 2$ feet wide and of THE REQUIRED LENGTH. AS SOON AS THE CONCRETE HAS HARDENED SUFFICIENTLY, TWO MEN PUSH THE MACHINE FORWARD AND UNROLL THE BURLAP COVERING SMOOTHLY AND EVENLY UPON THE NEWLY-LAID SURFACE.

The following advantages of the machine over the manual PLACING OF THE BURLAP ARE NOTED:
1.- Speed in covering and removing burlap.
2. - Eliminates the necessity of overlapping the eurlap STRIPS AND THEREBY REDUCES THE AMOUNT REQUIRED.
3. - Single sheet of burlap is less easily distureed by the WIND THAN THE STRIPS. THIS ELIMINATES THE PROEABILITY OF THE TOO RAPID DRYING ON UNCOVERED AREAS.
4. - Prov Ioes for immediate covering of the slab so as to PREVENT TOO RAPID DEHYDRATION OF THE CONCRETE. DIFFICULTY IN THIS RESPECT IS OFTEN ENCOUNTERED WITH THE hand-placed eurlap strips.

The mechanically-operated roll in position on the steel side forms. In this case about 500 lineal feet of burlap covering remains on the cylinder

ORD FINISHER USED FOR SHAPING BITUMINOUS SURFACING

COMPIIFD FROM REPORTS SUEMITTED EV V. G. WATSON, AND C. F. ROGERS OF THE DIVISION OF CONTROL
(Not for release)

The use of an Ord concrete-pavement finish!ng machine for SHAPING THE SURFACE OF AN ASPHALTIC CONCRETE PAVEMENT, PRIOR TO the rolling operation, is eelieved to ee a novel departure from THE COMMONLY ACCEPTED METHODS QF EITUMINOUS PAVEMENT CONSTRUCTION. THE PROCESS, WHICH IS ILLUETRATED IN THE ACCOMPANYING PHOTOGRAPHS, was devised ey Superintendent Holstrom of the Griffith Company, on their county-road contract near placent ia, Orange County, Calif. AN UNALTERED ORD CONCRETE FINISHING MACHINE WAS USED THROUGHOUT THIS PROJECT WITH SUCH SUCCESS THAT IT ATTRACTED THE ATTENTION OF highway engineers of the state.

Believing that a modification of the machine would expedite THE CONSTRUCTION OF THE EITUMINOUS SURFACING ON FEDERAL-AID PROJECT 16!-E at Formosa, Cal:f.; the State Highiay ComMission gought a new machine and remodeled it in the Sacramento shoos. Although the. RECONSTRUCTED FINIEHER IS STILL IN THE EXPERIMENTAL STAGE, IT PROOUCES A SMOOTHER SURFACE THAN IT HAS EEEN POSSIBLE TO OETAIN BY THE CUSTOMARY HAND-RAK!NG METHOD. THE VIALOG READING ON THE FIRST HALFMILE OF MACHINE -F!NISHED PAVEMENT - IN SPITE OF THE EXPERIMENTATION AND FREQUENT ADJUSTMENTS OF THE DEVICE - WAS FOUND TO BE 9.5. THIS ESTAELISHES A NEW LOW RECORD FOR THE SMOOT:HNESS OF ASPHALTIC CONCRETE PAVEMENT IN THE STATE. THE AVERAGE FOR ALL OTHER ROADS OF THE TYPE EUILT IN 926 BEING 22.0, AND THE LOWEST PREVIOUS RECORD 15.0.

In reeuiloing the machine, the side frame was lengthenéo I $\frac{1}{2}$ FEET, AS SHOWN IN FIGURE 1 , AND THE REAR WHEELS WERE MOVED EACK UNTIL THEY SUPPORTED THE ENDS OF THE EXTENDED FRAME. THEN THE REAR SCREED WAS PLACED IN THE POSITION FORMERLY OCCUPIED EY THE EACK WHEELS, AND IN ITS ORIGINAL POSITION THERE WAS SUSPENDED A FRAMEWORK CARRYING RAKING TEETH SET IN TIVO ROWS $7 \frac{1}{3}$ INCHES APART WITH 3 INCHES EETWEEN ADJACENT TEETH IN EACH FOW. TME TEETH WERE MADE OF $7 / 8-1 \mathrm{NCH}$ SQUARE STEEL aND EACH WAS TAPERED TO A 45-DEGREE angle on the side toward the rear. Finally, in order to convert THE SCREEDS INTO STRIKING TEMPLATES, I $\frac{1}{3}$-INCH PLATES WERE PLACED UNDER THE TWO ENDS OF EACH WHERE THEY WOULD RIDE THE FORMS, AND IRON PLATES EXTENDING $1 \frac{1}{3}$ INCHES EELOW THE EOTTOMS OF THE ORIGINAL SCREEDS WERE EOLTED TO THEIR VERT ICAL FACES. THESE VERTICAL PLATES THUS CONSTITUTED THE STRIKING TEMPLATES:

Figure 1. - Close-up view of the remodeled concrete-finishing machine

Figure 2. - A view of the front of the machine showing the extension plate on the front screed

Figure 3. - The leveling course remains high near the side forms because of the sidewise motion of the screed

The first trial was made on the levelling course of a paveMENT, USING THE FRONT AND REAR SCREEDS SOTH SET TO STRIKE OFF THE MATERIAL FLUSH WITH THE TOP OF THE FORMS, WITH THE RAKE EETWEEN THEM, THE PURPOSE OF THE LATTER EEING TO LOOSEN TRAMPLED MATERIAL AND EFFECT A MORE UNIFORM DISTR! EUTION.

IT WAS FOUND at once that the three -INCH Spacing of the RAKE TEETH WAS TOO CLOSE. THE RAKE SIMPLY CARRIED ALL THE MATERIAL AHEAD OF IT. ACCORDINGLYY EVERY OTHER TOOTH IV EOTH ROWS WAS TAKEN OUT AND THIS DIFFICULTY VIAS LAFGELY OVERCOME.

The next defect came to light when the levelling course was rolled and It was found to ee im>ossiele to compress the material, WHICH HAD EEEN STRUCK OFF FLUSH WITH THE FORMS, SUFFICIENTLY TO PROVIDE FOR A $1 \frac{1}{2}-I N C H$ TOP COURSE. THIS DIFFICULTY WAS OVERCOME by aEandoning the rake and rear screed in the levelling-course TREATMENT, AND ALTERING THE FRONT SCREED SO AS TO STRIKE-OFF THE MATERIAL THREE-QUARTERS OF AN INCH こELOW THE FORMS. THIS WAS DONE EY ADDING AN EXTENSION PLATE, WHICH WAS MADE ADJUSTAELE IN OPDER that the screed could also ee used on the surface course. The ADJUSTMENT WAS EFFECTED EY PROVIDING FOUR THREADED EOLTS WITH WHICH TO RAISE AND LOVER THE EXTENSION PLATE AND FOUR GUIDES WITH WHICH TO KEEP IT RIGIDLY IN POSIIION WHEN IN USE. (SEE FIG. 2)

WHEN USED FOR SPREADING THE TOP COURSE IT WAS NECESSARY TO RAISE the heIght of the forms ev nalling to them $1 / 2-\ln$ inh plates, IN ORDER TO PROVIDE FOR COMPRESSION UNDER THE ROLLER.

ON the work done thus far, eoth screeds and the rake have. beEn Used on the surface course; gut it is a question whether the RAKE GHOULO NOT EE AEANDONED ALTOGETHER. ONE OEJECTION TO IT IS THAT IT LEAVES MARKS WHICH are VISISLE IN THE COMPLETED PAVEMENT; ALTHOUGH A CLOSE EXAMINATION FAILS TO SHOW THAT ANY DEPRESSION REMAINS AFTER ROLLING. AS NEARLY AS CAN EE DETERMINED THESE MARKS ARE THE RESULT OF A SEGREGATION OF THE MATERIAL, THERE EEING A TENDENCY FOR THE COARCER MATEFIAL TO FALL INTO THE GROOVES LEFT EY tHE TEETH. A FURTHER OEJECT ION IS THAT THE RAKE RETARDS THE FORWARD MOT ION OF THE MACHINE; AND THIS IS PARTICULARLV SERIDUS IN DEALING WITH the top course eecause of the large area over WHICH A LOAD OF THE HOT MATERIAL MUST EE DISTRIEUTED. AS WITH REASONAELE CARE, IT MAY APPARENTLY BE POSSIBLE TO OETAIN A SMOOTHNESS OF 12, AS MEASUFED WITH THE VIALOG, AND AS THIS !S LOWER THAN THE RECORD OF 15 OETAINED WITH NAND METHOOS, THERE IS SOME QUESTION,

AS STATED AEOVE, WHETHER THE EEVEFITS OF THE RAKING FROM THE STANDPOINT OF SMUOTHINESS ARE VORTH WHAT THEY COST IN DELAYED OPERATION.

ONE OTHER DEFECT UHICH HAS NOT YET EEEN ELIMINATED IS I LLUSTRATED IN FIGURE 3. IT WILL ヨE OSSERVED THAT THE LEVELLING COURSE, WHICH IS SHOWN IN THE FHOTOGFAPH AFTER PASSAGE OF THE MACHINE, IS LEFT HIGH AT THE EDGES. THIS OGCURS ONLY IN THE DISTRIEUT ION OF THE LEVELLING GOUFSE, AND IS CAUSED EY THE FACT THAT THE LENGTH OF THE EXTENSION PLATE ON THE FRONT SCREELD MIST BE IESS THAN THE DISTANCE ЗETWEEN THE FORMS EY AN AMOUNT SUFFICIENT TO PERMIT THE SIDEWISE MOTION OF THE SCREED. THE RESULT IS THAT WHEN THE SCREED MOVES AWAY FROM ONE SIDE OF THE ROAD IT LEAVES BEHIND IT NEXT TO THE FORMS A ROW OF MATERIAL WHICH IS STRUCK DOWN TO THE LEVEL OF THE FORMS ヨY THE HORIZONTAL $1 \frac{1}{3}-I N C H$ BEARING PLATE AS IT PASSES OVER. AS YET NO MEANS HAVE BEEN DEVISED TO OVERCOME THIS DEFECT.

JOHN G: ROSE

```
(NOT FOR RELEASE)
```

John G. Rose, assistant highway engineer in District 3, died at l2:30 a.m.g Fr!day, Octoger 28, 1927, at the St. Luke's Hospital in Denver, Colo., following an operation for appendicitis. It is possiele that the attack was erought on ey two aUtomoeile accidents in which he had the m!sfortune to participate, on Satirday and Sunday Octoeer 23 and 24, while on a Federal-aid road inspection trip. Returning io Denver from Cheyenne, Wyo., - near whire the last accinent occurred - Mr. Rose was taken with an acute attack of appendicitis at 2:00 A.M. Monday mofilng ano was hurried to the St. Luke's hospital, where an operation was performed nine hours later. He never rallied from the severe operation and passed away at 12:30 A.M., friday MORNING. HE HAD EEEN SUFFERING FOR SOME TIME WITH !NTERMITTENT appendicitis and it is probaele that the shock of the accidents SO agGravated his condition as to Cause his immediate death.

John G. Rose was gorn at Hutchinson, Kans., on April lif, 1878, AND AFTER THE USUAL ELEMENTARY SCHOOLING WAS GRADUATED FROM the scientiflc course of Nickerson College, with the degree of B.A., in 1903. In ;911, he received a B.S. in C.E. degree from the University of Colorado. After the customary miscellaneous ENGINEERING EXPERIENCE - THE MOST IMPORTANT ENGAGEMENTS EE!NG with the Atchison, topeka and Santa fe Rallway and the U.S. Reclamation Service - he entered the Bureau, in April 1919, as a Chief of Road Survey party. H!s early activities with our organization ingluded forest and federal-ald road work. Because of his thoroughness and accuracy with regard to detalls, he was promoted, in Januart 1923, to the position of materials engineer in District 3 and in June, 1924, was given the title of Assistant highway Engineer. In preparation for the materials assignment, he was DETAILED TO THE HEADQUARTERS OFFICE FOR TWO WEEKS DURING THE EARLY PART OF 1923, IN ORDER TO EECOME FAMILIAR W'ITH the procedure developed ey the Division of tests.

Nr. Rose leaves eehind him a wide circle of friends who WILL always rememeer his quiet, genial personality. He was given a Masonic eurial ey his Denver lodge - Union No. 7 - of the order of Ancient Free and Accepted Masons. He is survived ey his wife AND FOUR CHILDREN.

state		068			mmoreo rom somstaverion			PA1O STAFES Woing FIBCM VEN	（1）						P．Q． 6 e．nccandioto son 			staje
		＊10804 4．0	ceses		froceas A．0	Wucese			＇cosest 10	Hesese		Fcosack Ale	Hoceses		Fsosen Abe	wicener		
			101＊＊	6rab		coltion	Braos			，ine			00181540	0 Hest		007010．4	61as	
\％				$\because 4$	17.284 .44 156.699 .13	0.3 0.3	0.6			$\begin{array}{r} 0 \\ 14 \\ 14 \\ 0,1 \\ 0.1 \end{array}$				1.6 4.4	$\begin{array}{r} 738.210 .73 \\ 1.724 .43 \\ -398.834 .27 \\ \hline \end{array}$	$\begin{array}{r} 53.2 \\ 0.3 \\ 0.4 \\ \hline 0.4 \\ \hline 18 \end{array}$	0.6	
	3.371134 .93 2.009 .119 .61	3．350．047．4 3.266 .387 .97		12.4		0.3 0.1 3.8							23.6 130.5 20.9	0.8	－	10.8 38.1 23.1	3.2	$\frac{\text { Andraph }}{\text { And }}$
cosevil	399．795．04	$1,480.499$ Tr			150.751 .34	1．2		42， 9371	35．4．45，			1．401．039．20	38.7		310，101， 7	11.8		conecticu
Litami	7.979 .16	38.371 .10	31.1	2.1				1／f 9men 22	17.208	14.6		735.145 .10	28.7		60．937．00	4.4	2.1	Det Heme
Cotion	180.769 .6	$\therefore 361.78$	${ }^{176.3}$		264．70．00	\％ 0		$3{ }^{3} 1500$	4， 206.79	33.7	24.7	3．241．44．43	170.0		580.101 .4	24.3		Flurios
	229，475．46	2， 215.20 .11	233．9	77.3		$0 \cdot 1$		－8325450it｜	1.936 .341 .19	159．2．	63.8		208.4	$\pi .3$		16.6		－cruata
	1.074 .114 .38	T．097．07．05	Sosi．	ω	1.482 .658 .16	108.	28			57.4		6．274．797．37	4858	24.4	2，738．580． 5	73.4 14.0	$\begin{gathered} 54.3 \\ 2.3 \end{gathered}$	$\begin{aligned} & \operatorname{Jon} 0 \\ & \operatorname{lLL} 100 \cdot 8 \end{aligned}$
1014na	crissela	circille 4	s19．0		241，129，05	k． 2	0,6	247，834．49				－ 54.085 .38	c92． 1		171．931．23	0.3		12，ylum
\cdots	$17.24{ }^{1084}$	0．473．735 5	801.	236.6	${ }^{19} 13.390 \mathrm{sm}$		2.	1.18 .33696	． 5337.00	1143		6．311． 188.61	507.0	${ }^{235} .6$	19，008．00		12.2	
NWCas，	602.102	8． 22.127 .23	3070		（170．280 313	47.				31.6 77.5		5．595．403． 15	185.0 42.4	14．8	－ 117.508 .21	39.6	$\begin{array}{r}0.3 \\ 21.1 \\ \hline\end{array}$	KMSES
	81．960．00	1． 518.858	${ }^{\text {che }}$	7.8	\＄61．35．70	\％． 4		301．12： 23	4	${ }^{3} 1$		1， 500.468 .24	$\frac{12.6}{59.6}$	1.6	99.077 .0			
Mice	1.085 .20874	60． 116.4	40.0		196.439 .27	16.9		15．） 13835	． 2196	33.8		821.233 .4	38.1		12.970 .27	3.1		${ }_{\text {c }}^{4}$
Wizamert			15.1		．nx	4			120.474	． 5		T．423．123．51	－		33.6509	231		Wasion
	552．270．93	6．794， 74.75	4124	12.6	700．390	3.7	， 5	$1.294 .593 \times 8$	$\because y^{10}$	33.6		5．072．259．35	34.	126	2，422．395．90	－ 0 s． 2	6.5	－a
，mitur	112.810 .4	2．339， 2988	390．4	107． 5		$\frac{45.3}{23.4}$		1． 155.209 .67		c3． 5	8.4		368.4	15.	${ }^{487}$	$\stackrel{5}{48}$		W
－165smit	－9．05 08	3．918． 5.57 .34	24	37.7					870 ＋－ 9	7.3		3．303．749，45	288.1	27.6	Sce．9x．ex	238	1.2	${ }^{\text {cke }}$
E0n1ana	－0．033， 279.30	2．485， 38.17	3×1.6		21\％，66	188，4	4.1	594.411 .37	18，${ }^{\text {cose }} 5$	35.3		3， X 3 3， 326,24	430.5		156， 113.8			notian
	41\％．58． 51	5.684 .819 .21 1.488 .850 .08	＇11．${ }^{\text {\％}}$	${ }_{31,9}$	${ }_{279} 2398$	178	90.9		10¢	84.3		（1，530．881．e8	$\xrightarrow{1.230 .9}$	$\begin{aligned} & 563.0 \\ & 31.6 \end{aligned}$	711 213.217 .23 180	11.8 9	${ }^{110} 9$	4もとお
	－ 3 ， 13.53				20， 11000	1.9		26． 36.98	5． 4.4 .27			63.	43.0		Sters， 1	4.9		
\％0．N世＊	2．36	T．344．399．E8	120.0					15． 2885.00 ，		24.2		1．442．176．56	93.1		11.20000	6.9		
	，519．78．49	2.408 .129 .33	233.9					757 352 ${ }^{\text {cos }}$	5	＇9，		${ }^{2} .488 .129 .33$	223 ？			－		
		$\frac{16,452}{170}$	${ }^{5} 5.6 .1$	3.8	121，500．00	81.0		1．29， 159	tstin 9×15	$\frac{55.8}{30.2}$		1，355．108．28	${ }_{60}{ }^{\text {c }}$	20.8	\＄60．007．20	5.3	， 1	
volim Cuas ？	1100351	2，733．43911	9654	38.6	${ }^{215} 5.633^{14}$	87.1	72	53.165	1，C4， 9398	166.2	362	2.415 .499 .46	856.9	346.8	509．978．8	79.6	＊x．	
Onio	2，333，076．18												292．7		$\frac{2,365,56000}{1,62,066.60}$	1151		
coun	$\begin{aligned} & 182.87264 \\ & 5 \leqslant 3.47431 \end{aligned}$	－． 292.49327	74.	35.0	1．308．744．98	4.			$57 \%,-54.99$ $\%$ 393．sc	9.6 0.2		，	－78．91	33.8	1，02．006．60			
x ${ }^{\text {a }}$	1	3，927．666． 82	372.2	3.0	765.257 .49	398	3.2	1，350，，221．11	57－970 ${ }^{1} 3$			5．563． 109.59			1．029．417．72		62	
प＊515． 15	－ 225.80 .35	332349	27.2		12 C .51867	${ }^{7} 6$		148 cre ic．	1．8 20.0	9.9		335．103．74	22.7		108.183 .67	51		क－0）
surn Mratis	$11+247.00$	2．391．420．73	2312	938	65．905．94		${ }^{2}{ }^{2} 2$	$4{ }^{40}$ x5． 71	51． 5.90	143	5.5	2．072． 3 ＋3． 26	159.6	${ }^{24.4}$	351.131 .64	35.8	\％． 5	20un Exay
		2， 4 46，193，10	${ }^{134,5}$	$\frac{113.4}{23.7}$	$\frac{250.085 .06}{276.134}$			846．4．	${ }_{5}^{61} 5$					173.4 33.7	－ $1.412,6512.36$			ditam Dive
$\mathrm{Tbxas}^{\text {Timast }}$	3，50．622．86	6． 888.382 .98	433.8	188.0	1．873．874．85	137.7	126.5	1．557．094 ${ }^{6}$	2.453×1.84	lat ：	31.4	3．355，533．85	416.5	12.4	2．351．723．98			THu
	197， 267.30	2，00s， 007.34	180.5	3.4	197，593，66	37.9	\cdots	159．957．65，	290，155， 85			1，923，409．62	192.5		cos，151．28		14.5	
KCandit	12，487 93	1．0．3． 99457	39.7					$352.0{ }^{\text {a }}$／	268.933 .49			1．202．699．05	59.7		1．035．82			viacri
vime．ue．	16，846．99	2．193．151．15	173	4.0	79，535 23	6.0 8.6 8		5.99 .450 .34	117．531．38	8.2		2．232．532．67	120.3	4.0	39．733．72	2.0		VIRGisia
Korviver	${ }_{735} 719.193$		${ }_{23} 18.5$		617，476．22	68.6 48.7	7.1					， 3.286 .456 .184			320.734 .03	20.7	7.1	－\leqslant br riec
－ 5 Scimalm	1．978．747．6．	4．279．049．97	331.9	43.1	140，000．00	11.5		1． 33.23986	1，063，613． 32	1117	0.9	3．943．569．42	291.7	39.7	515．430．5＂	31.0	3.4	－1500．sim
－raunc．	227.550 .00	1852.25600	${ }^{22+1}$	119.1	127.61610	35.1		811.7159	143.800 .81	24.3		1，795．196．56	22． 1	19	194．117．．${ }^{\text {c }}$	1		wrounc
\％ratil		$\begin{array}{r}\text { 491，882 } 64 \\ \hline 152.542 .490 .20\end{array}$	＋28．0	2．361．6	16．945．502．19	1，700． 6	490.8	30，588，${ }^{138989} 91$	\％． $70,460.00$	20.4	533.3	$\begin{array}{r}\text { 498，922．64 } \\ \hline 142.534,620.45\end{array}$	13．722．8	2，214．9	26．953．37．94	2.146 .5	637.6	T07L6

[^0]:

