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The choice of the exit to egress from a facility plays a
fundamental role in pedestrian modelling and simulation. Yet,
empirical evidence for backing up simulation is scarce. In this
contribution, we present three new groups of experiments that
we conducted in different geometries. We varied parameters
such as the width of the doors, the initial location and
number of pedestrians which in turn affected their perception
of the environment. We extracted and analysed relevant
indicators such as distance to the exits and density levels.
The results put in evidence the fact that pedestrians use time-
dependent information to optimize their exit choice, and that,
in congested states, a load balancing over the exits occurs.
We propose a minimal modelling approach that covers those
situations, especially the cases where the geometry does not
show a symmetrical configuration. Most of the models try
to achieve the load balancing by simulating the system and
solving optimization problems. We show statistically and by
simulation that a linear model based on the distance to the
exits and the density levels around the exit can be an efficient
dynamical alternative.

1. Introduction
Humans are confronted on a daily basis with a route choice
problematic. It happens at large scales such as choosing a different
highway to reach a destination or at smaller scales such as picking
the right queue at the vending machines or choosing between
the right and the left exit when going out of a shopping mall.
The route choice is based on subjective attributes such as the
familiarity with the location or the experience gathered under
similar conditions. Persons familiar with a location might have
a preferred route or might avoid some others. The route choice
is also based on objective attributes such as the length of the
route or the estimated travel time. To calibrate or validate models,
empirical data are needed. Field studies are often difficult to
understand because the motivation plays an important role. In
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organized and controlled experiments, we can fix some degrees of freedoms. For instance, all participants
can be instructed to leave the room.

In this paper, 16 pedestrian laboratory experiments addressing standard issues in pedestrians’ exit
choice are presented. The participants were asked to leave a room presenting several equivalent possible
issues. Corridor, square and corner geometries were tested. The initial density levels were sufficiently
high to observe congestion at the exits. The results show that load balancing occurs. Such a feature
appears in all the experiments we carried out. It confirms that, in a normal situation, the pedestrians
choose dynamically the exit in order to minimize their travel times. Then, a minimal model based on the
distance to the exits and on the density level in the vicinity of the exits is calibrated and analysed. Most
of the models try to achieve load balancing by simulating the system and solving optimization problems.
We highlight statistically and by simulation that the minimal model including the density level around
the exits can be an efficient dynamical alternative for the modelling of the exit choice.

The second section of this contribution presents related works. The third section describes the
experiments and the extraction of features such as trajectories and exit usage. The models for the exit
choice and their calibration are described in the fourth section. Validation of the models with simulation
are proposed in the fifth section. The last section summarizes the content of the article and provides
concluding remarks.

2. Related works
Data gathering for the exit choice of pedestrians is performed in real-world [1–4], as well as in
virtual environments [5–7]. Participants might behave differently in the virtual environments where
the perception is different. However, we observe in both cases that pedestrians are able to dynamically
optimize their travel time by choosing adequate exits. In the models, the choice of the exit corresponds
to the tactical level of the pedestrian behaviour. Early works consider the shortest path as an adequate
solution for uncongested situations [8]. For congested states, the closest exit, if it is congested, may not
be the one minimizing the travel time. Therefore, most of the models are based on the distance to the
exit and travel time (see e.g. [9–13]). Other factors are also used, such as route preference [4], density
level around the exits [1,2], socio-economic factors [7], type of behaviours (egoistic/cooperative, see [3]),
or the presence of smoke, the visibility, the herding tendency or again the faster-is-slower effect in the
case of emergency [4,14–16]. Several types of modelling are developed. Some of them use log-IT or Prob-
IT statistical models [4,5,7,11,17]. Some others are based on notions from game theory of pedestrian
rationality and objective function [9,10]. While iterative methods such as the Metropolis algorithm or
neural networks allow to reach user or system optima by minimizing individual travel time or marginal
cost [2,13].

The estimation of travel times in congested situations is a complex problem. Such procedure is
realized in general by using simulation of an operational pedestrian model. The coupling to simulation
makes the use of the exit model a hard task in terms of computation effort. Yet, there exist strong
correlations between the travel time and the density level. They are a consequence of the characteristic
fundamental relationship between the flow and the density, that is well established in the literature
of traffic theory (see e.g. [18]). Some recent dynamical models are based, among other parameters, on
the density levels in the vicinity of the exits (see [1,2,4]). In such models, the density substitutes the
travel time. The density levels are simple to measure and, in contrast to the travel time, do not require
simulation of the system to be estimated. This makes the density-based models easier to implement than
equilibrium-based models.

3. Description of the experiments
The experiments were performed within the framework of BaSiGo [19] which aims to understand the
behaviour of large crowds in specific situations. The configurations were built with square modules
higher than 2.0 m. The participants were arranged in holding areas before the start of the experiments.
After an acoustic signal, they were asked to pass through the geometry as quickly as possible but without
running or pushing. To guarantee precise measurements, the experiments were recorded by a camera
grid of six by four cameras mounted 7.5 m above the floor. Each camera has a resolution of 1280 × 1024
pixel and a frame rate of 16 fps. Besides, an additional camera to measure the heights of the participants
and a fish-eye camera to overlook the entire experimental area were placed. More information about the
measurements and extraction of the trajectories is given in [20].
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Figure 1. Experiment A—set-up and snapshot. The unit of the sketch ismetre. In the first runs, the participants started from the holding
area I. For subsequent runs, people were placed in both holding areas. The density was measured in the ridged areas. (a) Experiment
configuration and (b) experiment snapshot.

Three groups of experiments and 16 runs addressing standard issues in pedestrian route choice were
carried out. In the first group, the participant had an overview of the situation: they entered a room
and were faced with two exits to choose. In the second group, the participants started from a square
room with four exits. In the third group of experiments, the scene is unclear and there is a visibility
factor. The exit number and their position are unknown from the starting location. Such experiments are
useful to understand short-term decisions taking in human behaviour under different conditions. They
were performed with a total of 138 participants. To avoid and eliminate learning effects, each person
participates in one specific experiment set-up only once (excepted for experiment C, run 3).

The data analysis was carried out using the programming tools Python [21] and R [22]. The densities
are measured using the Voronoi tessellation method introduced in [23] which is more precise than
classical discrete methods.

3.1. Experiment A
The first experiment was conceived to understand the exit choice in clear situations. The set-up of the
experiment A is presented in figure 1. It consists of a 10 m wide square room with two frontal exits (width
of 70 cm and 110 cm). The participants entered the room from the 2 m wide entry situated opposite the
exits. Ten experiment runs were performed with the following number of participants: 40, 40, 40, 18, 138,
40, 40, 40, 18 and 138. The participants in the runs with 40 and 18 pedestrians started from the holding
area I. In the runs with 138 participants, 90 of them started from the waiting area II and the remaining
from the area I with a delay of few seconds.

The pedestrians’ trajectories are plotted in figure 2 while the mean density, specific flow, and last exit
time are given in figure 3. The density is measured in the rectangular areas in front of the exits and
the flow is measured when the density is strictly positive. Even if the two exit widths differ, we observe
comparable density and specific flow by exit, and a load balancing occurs (the last exit times are the same
over the exits). Participants seem to choose their exit after entering the room. Yet, some pedestrians adjust
their initial choice (see especially runs 1, 3, 5, 7 and 10). This is a proof of time-dependant information
used by the participants.

3.2. Experiment B
The second experiment adds more complexity to the scene. The participants started from one of the
corners of a square room and had to choose between four exits that were 80 cm wide and located in the
middle of each face of the room. The set-up for the experiment B is presented in figure 4. We performed
three runs with (40, 38, 36) participants.

The pedestrians’ trajectories are plotted in figure 5. The mean density, specific flow and last exit
time are given in figure 6. Exits 1 and 2 are grouped on the X-axis while exits 3 and 4 are grouped
on the Y-axis. Such representation allows to compare exit 1 with exit 4 and exit 2 with exit 3, which
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Figure 2. Experiment A—pedestrian trajectories. The pedestrians weremoving from the top to the bottom. The colourmatches the exit
choice. In runs 5 and 10, some participants started from the room. In all other runs, the participants were held in the area outside the
geometry.
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Figure 3. Experiment A—mean performances. The numbers in circles identify the run. The densities observed are similar, except for
runs 5 and 10, where we observe congestion at the exits. The last passing times over the exits are approximately equal (load balancing).

have similar characteristics (exits 1 and 4 are the farthest ones from the initial positions, while exits
2 and 3 are the closest ones). Here, the compromise between distance and time is clearly visible. All
the exits are used, even if two of them are on the opposite side of the room from the initial pedestrian
positions. A discrepancy of around 2 s is observed for the evacuation time (figure 6, right panel). This time
corresponds approximately to the time needed by a participant to go from one exit to another one (the
exits are spaced by around 5 m). This characteristic shows that the participants initially chose an exit and
only changed for a freer one if the time won was bigger than the time necessary to reach it. Therefore, the
discrepancy is due to the spacial configuration of the experiment and to the initial configuration. Modulo
this, the load balancing over the exits occurs again.
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Figure 4. Experiment B—set-up and snapshot. The units of the sketch are metres. The participants had to choose one of the four exits.
The density was measured in the ridged areas. (a) Experiment configuration and (b) experiment snapshot.
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Figure 7. Experiment C—set-up and snapshot. The units of the sketch are metres. In the two first runs, the participants started from
holding area I. For the last run, theywere placed in both holding areas I and II. The density ismeasured in the ridged areas. (a) Experiment
configuration and (b) experiment snapshot.

X coord. (m)

Y
 c

oo
rd

in
at

e 
(m

)

–2 0 2

–6

–4

–2

0

2

4

6
1

# 67

1

2

X coord. (m)

–2 0 2

2
# 71

1

2

X coord. (m)

–2 0 2

3
# 138

1

2

Figure 8. Experiment C—pedestrian trajectories. The pedestrians walked from top to bottom along a corridor and had to choose
between two exits. The colour of the trajectories matches the exit selection.

3.3. Experiment C
In the last experiment, the pedestrians walked down a corridor before choosing between two exits in a
connected room. While in the corridor there was no possibility to know the number of exits and their
position. The set-up of experiment C is presented in figure 7. The room at the end of the corridor had
two lateral exits on the same side (exit width 80 cm). We performed three experiment runs with 67, 71
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Figure 9. Experiment C—mean performances. The numbers identify the run. Even if the flow and the density can differ from one exit
to the other, the last passing time is almost the same over the exits (load balancing).

and 138 participants. In the first two runs, the participants started from holding area I, which is in the
corridor. In the last run, two groups of 90 and 48 participants were built. They started from holding areas
I and II, respectively. Here, the participants of the last run had already performed the experiment once
and a learning effect should not be excluded. The pedestrian trajectories are plotted in figure 8 while the
mean density, specific flow and last exit time are given in figure 9. We also observe in this situation a load
balancing over the different exits.

The empirical results show that the exit chosen by a pedestrian is not always the one minimizing the
distance. Each pedestrian is able to estimate and minimize his/her exit time, even if congestion occurs.
Consequently, the pedestrians share equitably over the exits available and a load balancing occurs. By
doing so, the global exit times are optimized.

4. Exit choice models
In this section, we develop two minimal decision models for the exit choice. In the first one, the chosen
exit is simply a function of the distance to the exits. In the second, the model depends on the distance to
the exits and the density level in front of the exits. The models are based on linear discriminant analysis
of the data.

4.1. Linear discriminant analysis
The first exit choice model is simply a function of the distance to the exits. The discriminant between two
exits i and j is

Y1 = γ + αd̃i + α0d̃j (4.1)

d̃k = dk/dmax being the relative distance to the exit k = i, j. In the second model, the exit choice depends
not only on the distance but also on the density level in front of the exits The discriminant is

Y2 = γ + αd̃i + α0d̃j + βρ̃i + β0ρ̃j (4.2)

with ρ̃k = ρk/ρmax the relative density in front of the exit k = i, j. In this second model, the width of the
area where the density is measured should depend on the width of the exit in order to measure a quantity
proportional to the number of persons queuing in front of the exit.

We denote Yi the discriminant for the exit i. The parameter P = (γ , α, α0, β, β0) is estimated by
minimizing the discriminant intra-variability

∑
i var(Yi(P)). This corresponds to the maximization of the

distance between the mean discriminants by exit. This estimation method is the maximum-likelihood
one under homoscedasticity and multivariate normal distribution assumptions (e.g. [24]). The parameter
estimations with dmax = 12 m and ρmax = 6 ped m−2 are given in table 1. The discriminant quantifies the
exit choice as a function of distance and density. Negative values of the discriminant correspond to the
choice of the first exit, while positive values correspond to the choice of the second exit. The sign of the
estimations are reasonable : α (resp. β) is positive and α0 (resp. β0) is negative for the all the experiments
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Figure 10. Histograms of the parameter estimations on sub-samples for the exit choice model based on the distance and the density
with the global sample.

Table 1. Estimations of the parameters for the discriminant variables.

Y1 Y2

γ α α0 γ α α0 β β0

experiment A −0.22 9.89 −9.01 −0.36 10.08 −9.06 1.61 −1.45

experiment B 0.23 2.88 −4.92 0.39 3.92 −5.56 7.09 −8.37

experiment C 0.27 8.95 −16.33 0.62 9.06 −16.75 2.6 −2.6
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

global sample −0.23 4.91 −5.29 −0.1 5.68 −5.81 5.22 −4.41
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 2. Fisher test p-value for the comparison of the variance of the model solely based on the distance and the model based on the
distance and the density. The variability is significantly reduced by adding the density in the decision model for the global sample and
experiments B and C.

Fisher test experiment global

σY1 = σY2 A B C sample

p-value 2.50 × 10−1 1.11 × 10−14 1.82 × 10−2 <1 × 10−22
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(the distance (resp. the density) has a repulsive effect on the exit choice). More precisely, the values are
approximately opposed while the constant γ is close to zero. Therefore, we do not detect bias such as
preferred exit in the observations. Note that in order to keep the model as simple as possible, we only
simultaneously compare two exits. In experiment B, which had four possible exits, we had to separately
consider the chosen exit to one of the three others. Yet, the minimum operation used to select the exit
is commutative, therefore, this approach does not change the nature of the model (the chosen exit is the
one minimizing the discriminant, independently of the number of possible exits).

The parameter estimations differ from one sample to another. Yet, the values are close for experiment
B and the global sample. The bootstrap method with 2000 sub-samples is used to evaluate the precision
of the estimation. The histograms of the estimations are presented in figure 10. The variability is
relatively low and the distributions of the parameters are symmetric. Therefore, the estimations can be
considered precise.

The histograms of the discriminants are plotted in figure 11. The values tend to be negative for one
exit and negative for the other. This means that the distance and the density allow (at least partially)
to explain the exit choice. The misclassification error gives the percentage of wrong classification from
the sign of the discriminant. The error decreases with the model based on the density. The Fisher test is
significant for the experiments B and C, and the global sample (table 2). This confirms that the density
has a role in the decision of the exit choice. More precisely, the distributions tend to be unimodal, more
distinct and compact with the model depending on the density level in front of the exits. This is especially
the case within experiment B and the global sample.
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Ȳ i
1 = –0.91
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Ȳ j
1 = 0.73

mean
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4.2. Decision model for the exit choice
The decision models for the exit choice are based on the results of the discriminant analysis. The
estimations of the relative slope γ /Ȳ of the discriminant are close to zero. Moreover, the coefficients
for the distance and the density are approximately equal (at least for the global sample). The decision
model is based on a roughly estimate of the discriminants. The exit choice model solely based on the
distance is

Choice of exit with minimal d̃i,

while the exit choice model based on the distance and the density is

Choice of exit with minimal d̃i + ρ̃i.

Here, d̃i = di/dmax is the relative distance to the exit i and ρ̃i = ρi/ρmax the relative density in front of the
exit i. Note that the the first model is simply the shortest path. The parameters for the second model are
dmax = 12 m and ρmax = 6 ped m−2.

5. Simulation results
Some simulations are performed to compare the exit choice model solely based on the distance to the
exits, and the model based on the distance and the density level around the exits. The same settings as in
the real experiments (i.e. same geometries and initial conditions) are used. The microscopic pedestrian
models introduced in [25] are used to simulate the trajectories. For the distance-based model, the exit
chosen is the closest one. For the distance- and density-based model, the exit is the one minimizing
d̃i + ρ̃i. The exit choice is done at each time step of the simulation δt = 0.1 s.

5.1. Experiment A
The mean performances obtained for the experiment A are presented in figure 12. The black points
correspond to the simulation while the grey ones are the real data. The numbers identify the run. In
this experiment, the size of exit 1 is smaller than the size of exit 2. With the distance-based model, the
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Figure 12. Experiment A—mean performances for the simulation results. The numbers identify the run. The black points are the
simulation while the grey ones are the real data. The load balancing that is observed in the data does not occurs with the distance-based
model (top panels). But arises with the density- and distance-based model (bottom panels).
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Figure 13. Experiment B—mean performances for the simulation results. The numbers identify the run. The black points are the
simulations while the grey ones are the real data. The circles corresponds to exits 2 and 3 while the squares correspond to exits 1 and
4. The load balancing trivially does not occur with the shortest distance model because exits 1 and 4 are not used (top panels). It arises
with the density- and distance-based model in good agreement to the data (bottom panels).
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Figure 14. Experiment C—mean performances for the simulation results. The numbers identify the run. The black points are the
simulations while the grey ones are the real data. Both exits are equitably used with the real data and the model based on the density
(bottom panels) while the farthest exit is clearly underused with the model solely based on the distance (top panels).

pedestrians share equally the two exits, and more congestion occurs at the smallest exit (figure 12, top
panels). Consequently, the last exit times are different: the load balancing does not occur. With the density
and distance model, the pedestrians share as for the real data so that the densities and the last exit times
are equal (load balancing) (figure 12, bottom panels).

5.2. Experiment B
The mean performances obtained for the experiment B are presented in figure 13. Here, again the
numbers identify the run. The black points correspond to the simulation while the grey ones are the
real data. The circles correspond to exits 2 and 3 while the squares correspond to exits 1 and 4. Owing to
the initial conditions, only exits 2 and 3 are used with the model solely based on the distance (figure 13,
top panels). The load balancing clearly does not occur and the time needed to make the room empty is
higher than the times observed in the real data. The results are improved with the model based on the
density and the distance (figure 13, bottom panels). As observed, the two other exits 1 and 4 are also used
and the load balancing occurs. Note that the density is lightly over-estimated with the model. This may
overweight the role of the density in the exit choice model.

5.3. Experiment C
The mean performances obtained for the experiment C are presented in figure 14. Here, again the load
balancing occurs clearly with the density- and distance-based model (figure 14, bottom panels), and
trivially not with the model solely based on the distance (figure 14, top panels). As a consequence the
egress time is over-evaluated with the distance-based model.

6. Conclusion
New experiments about pedestrian exit choice in symmetric and asymmetric congested situations are
presented. We observe a load balancing of the distribution of the participants over the exits for different
initial conditions, resulting in optimization of the egress time. The results highlight that in a normal



12

rsos.royalsocietypublishing.org
R.Soc.opensci.4:160896

................................................
situation pedestrian exit choice is not solely based on the distance to the exits. Estimations of travel time
taking into consideration the congestion is also preponderant.

Minimal exit choice models based on the distance to the exit and the density level in the vicinity of
the exits are calibrated using a discriminant analysis. We observe that the use of the density significantly
improves the model. These results are corroborated by simulation experiments. The model based on the
distance describes unrealistic behaviours in the case of congestion or within asymmetric scenarios. The
load balancing does not occur. The model including the density allows to describe the repartition of the
pedestrians over the exits. The density, easy to estimate, substitutes the role of the travel time in the
classical models. Yet, it provides robust dynamical optimization, as such observed in the data, without
requirement of estimations of travel times.

This analysis allows to basically describe the exit choice of pedestrians in a normal situation
and in the case of equivalent exits. Knowledge of the environment, preferences or again herding
effects are not considered. Such phenomena require other mechanisms and parameters extending the
minimal model we propose. The model only depends on the maximal distance dmax and density ρmax

parameters. The values used here for the different geometries are the same (dmax = 12 m and ρmax =
6 ped m−2). Further experiments regarding very crowded situations and the size of the measurement
area for the density remain to be investigated. The model has been validated by simulation for
three rooms, which configuration can be asymmetric, up to approximately 100 m2. In bigger rooms,
some visibility constraints as well as nonlinear effects may make the model imprecise. For instance,
a pedestrian may prefer to wait at a congested exit instead of going to a free exit farther just
because, in the case of long distance, he/she wants to avoid to walk a long time. Finally, this
minimal approach can lead in simulation to numerical oscillations related as the ping–pong effect.
Such a drawback can be corrected by using inertial system and relaxation processes, and here again,
additional parameters.
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