

NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS
A MICROPROCESSOR INTERFACE FOR THE
NM24CF04 SERIAL- ACCESS FERROELECTRIC

MEMORY

by

Thomas C. Gonter

December, 1991

Thesis Advisor: Douglas J. Fouts

Approved for public release; distribution is unlimited

^260307

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

la REPORT SECURITY CLASSIFICATION

UNCLASSIFIED
lb RESTRICTIVE MARKINGS

2a SECURITY CLASSIFICATION AUTHORITY

2b DECLASSIFICATION/DOWNGRADING SCHEDULE

3 DISTRIBUTION/AVAILABILITY OF REPORT

Approved for public release; distribution is unlimited.

4 PERFORMING ORGANIZATION REPORT NUMBER(S) 5 MONITORING ORGANIZATION REPORT NUMBER(S)

6a NAME OF PERFORMING ORGANIZATION
Naval Postgraduate School

6b OFFICE SYMBOL
(If applicable)

32

7a NAME OF MONITORING ORGANIZATION

Naval Postgraduate School

6c ADDRESS (City, State, and ZIP Code)

Monterey, CA 93943-5000

7b ADDRESS (City, State, and ZIP Code)

Monterey, CA 93943 5000

8a NAME OF FUNDING/SPONSORING

ORGANIZATION
8b OFFICE SYMBOL

(If applicable)

9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

8c ADDRESS (City, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS

Program Element No Project No TdJk No Work Unit Accession

Number

1 1 . TITLE (Include Security Classification)

A MICROPROCESSOR INTERFACE FOR THE NM24CF04 SERIAL-ACCESS FERROELECTRIC MEMORY

12 PERSONAL AUTHOR(S) CAPT Thomas C. GonLer

13a TYPE OF REPORT

Master's Thesis

13b TIME COVERED

From To

14 DATE OF REPORT (year, month, day)

1991 December

15 PAGE COUNT
102

16 SUPPLEMENTARY NOTATION

The views expressed in this thesis are those of the author and do not reflect the official policy or position of the Department of Defense or the U.S.

Government.

17 COSATl CODES

FIELD GROUP SUBGROUP

18 SUBJECT TERMS (continue on reverse if necessary and identify by block number)

Ferroelectric memory, FERRAM , NM24CF04, nonvolatile memory

19 ABSTRACT (continue on reverse if necessary and identify by block number)

The goal of this study was to demonstrate the feasibility of utilizing ferroelectric memory as a portion of main microprocessor memory.
An interface between National Semiconductor's NM24CF04, a nonvolatile, serial-access, ferroelectric memory device, and Intel's 8086

microprocessor was designed and implemented. This thesis discusses the architectural and implementation problems that arise

when installing this ferroelectric memory device as a portion of main memory. The actions of the interface are detailed to explain the control and

timing requirements necessary to effectively perform write and read operations on the NM24CF04.

20 DISTRIBUTION/AVAILABILITY OF ABSTRACT

FfniNCI ASSIHED/UNUMIUL' J SAMl AS REPOKT

21 ABSTRACT SECURITY CLASSIFICATION

UNC1J\SSIF1ED

22a NAME OF RESPONSIBLE INDIVIDUAL

Douglas J Fouls

22b TELEPHONE (Include Area code)

(408)646 2852

22c OFFICE SYMBOL
EC/Fs

DD FORM 1473. 84 MAR 83 APR edition may be used until exhausted

All other editions are obsolete

SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED

Approved for public release; distribution is unlimited.

A Microprocessor Interface for the

NM24CF04 Serial-Access Ferroelectric Memory

by

Thomas C. Gonter

Captain, United States Marine Corps

B.S., Texas A&M University, 1985

Submitted in partial fulfillment

of the requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
December 1991

n

ABSTRACT

The goal of this study was to demonstrate the feasibility

of utilizing ferroelectric memory as a portion of main

microprocessor memory. An interface between National

Semiconductor's NM24CF04, a nonvolatile, serial-access,

ferroelectric memory device, and Intel's 8086 microprocessor

was designed and implemented. This thesis discusses the

architectural and implementation problems that arise when

installing this ferroelectric memory device as a portion of

main memory. The actions of the interface are detailed to

explain the control and timing requirements necessary to

effectively perform write and read operations on the NM24CF04.

in

TABLE OF CONTENTS

I. INTRODUCTION 1

A. BACKGROUND ' 1

B. NATIONAL SEMICONDUCTOR'S NM24CF04 5

1. Pin Descriptions 5

C. 8086 MICROPROCESSOR 7

1. Write Bus Cycle 9

2. Read Bus Cycle 11

II. DATA AND CONTROL PATH DESIGN 13

A. ADDRESS AND DATA BUS STRUCTURE 13

B. DATA FLOW OVERVIEW 15

C. DATA PATH DESIGN 16

D. CONTROL PATH DESIGN 19

1. NM24CF04 Control Bytes 19

2. Main Finite State Machine 21

3. Counter " 26

III. IMPLEMENTATION 27

A. NM24CF04 SDA BUS OPERATION 27

B. FINITE STATE MACHINE IMPLEMENTATION 30

C. MEMORY CHIP SELECTION 34

D. DATA PATH IMPLEMENTATION 35

IV

-

E. WRITE CYCLE IMPLEMENTATION 38

F. READ CYCLE IMPLEMENTATION 42

IV. TESTING PROCEDURE 4 6

A. TESTING STRATEGY 46

1. Control Circuitry 47

2. Ferroelectric Memory 48

V. CONCLUSIONS 55

APPENDIX A 58

A. PROGRAM 'FSM1.PRG' 58

B. FILE 'FSM1.INFO' 60

C. PROGRAM 'FSM2.PRG' 6 3

D. FILE 'FSM2.INFO' 63

APPENDIX B 64

A. PROGRAM 'EPLD1.ABL' 64

B. PROGRAM 'EPLD2.ABL' 67

C. PROGRAM 'EPLD3.ABL' 7

D. PROGRAM 'EPLD4.ABL' 71

E. PROGRAM 'EPLD5.ABL' 7 4

F. PROGRAM 'EPLD6.ABL' 7 7

G. PROGRAM 'EPLD7.ABL' 7 8

H. PROGRAM 'EPLD8.ABL' 7 9

I. PROGRAM 'EPLD9.ABL' 81

J. PROGRAM 'EPLD10.ABL' 83

APPENDIX C 85

A. BOARD LAYOUT 85

B. SCHEMATICS 86

LIST OF REFERENCES 91

BIBLIOGRAPHY 92

INITIAL DISTRIBUTION LIST 93

VI

LIST OF FIGURES

Figure 1.1 Ferroelectric Capacitor, [Ref.l] 2

Figure 1.2 Logical Representation Through Current Flow,

[Ref.2] 3

Figure 1.3 NM24CF04 Pin Diagram 6

Figure 1.4 Typical BIU Bus Cycle, [Ref. 3] 9

Figure 1.5 8086 Write Bus Cycle, [Ref. 3] 10

Figure 1.6 Wait State Insertion, [Ref. 4] 11

Figure 1.7 8086 Read Bus Cycle, [Ref. 3] 12

Figure 2.1 System Bus Structure 14

Figure 2.2 Interface Block Diagram 15

Figure 2.3 Data Path 17

Figure 2.4 Byte Formats 21

Figure 2.5 Main Finite State Machine 22

Figure 2.6 Counter Finite State Machine 26

Figure 3.1 Definition of START and STOP, [Ref. 5]. . . 28

Figure 3.2 Acknowledge Response from Receiver,

[Ref. 5] 29

Figure 4.1 Ferroelectric Memory Write Cycle 51

Figure 4.2 Ferroelectric Memory Read Cycle 52

vn

I . INTRODUCTION

A . BACKGROUND

Semiconductor memories, such as dynamic and static random

access memories (DRAMSs and SRAMs) , currently dominate the

fast access memory areas of modern computer systems. However,

they have one critical deficiency, they lose their contents

when power is interrupted. Due to recent technological

breakthroughs, ferroelectric memory is now being offered as an

alternative, nonvolatile data storage device.

The concept of a ferroelectric memory is by no means a new

discovery and the term ferroelectric is deceptive since no

iron is used. Ferroelectric ' s only link with ferromagnetics

is the fact that the Q-V hysteresis loop of a ferroelectric

device is similar to a B-H loop in ferromagnetics. During the

1950 's and 1960 's several researchers investigated

f erroelectrics as a replacement for iron core memory,

[Ref. 1]. However, their efforts were abandoned because of

technological issues such as structural fatigue (endurance),

inability to produce high quality submicron films, high

voltage switching thresholds, and addressing by row and column

lines could not be accomplished. Breakthroughs in thin-film

and CMOS technologies are responsible for ferroelectric '

s

resurgence as a viable source of nonvolatile data storage.

One method of building a ferroelectric memory element is

known as the ferroelectric capacitor. This device, shown in

Figure 1.1, consists of a layer of ferroelectric material,

such as lead zirconate titanate (PZT), serving as the

dielectric between two electrodes. When the element is being

written to (charged), the bipolar molecules are aligned in one

direction (+ on one end and - on the other). The element is

read by applying another voltage across the capacitor and

observing the current pulse generated by the charging current

of the capacitor.

Top
Electrode

PZT thin Till*

BottoM
Electrode

Glass

Metal

Silicon
Dioxide

P-well/ N-well-

Silicon
substrate

Source Gate Drain

Figure 1.1 Ferroelectric Capacitor, [Ref.l].

A small current pulse indicates the proper alignment of

molecules. However, a large current pulse indicates that the

molecules had to relocate to opposite ends of the device in

response to the applied voltage. Therefore, a logic '0' or

' 1 ' can be determined by the switching current present

whenever the sampling reference has been applied.

In Figure 1.2, it is assumed that a '0' is stored in the

device. With a voltage applied to the capacitor, the

molecules are in the correct position with respect to the

applied voltage, resulting in minimal current flow.

u

TlMd

I "

\ Stored
\ Zero

^>v*^ . Time

I

(*~~
"-^V. Stored
\ One

^*»vt, .. Ti mo

Figure 1.2 Logical Representation Through Current Flow,
[Ref .2]

.

However, if a ' 1' was stored in the capacitor, the molecules

would be aligned in the opposite direction, and more current

flows. Notice that this is a 'destructive read' and the

information must be written back to the device after every

read operation. Another important aspect of ferroelectric

thin-films are their high degree of radiation hardness.

For PZT, the radiation hardness exceeds 5Mrad total dose

and 2 x 10 11 rad/s. Therefore, ferroelectric memories are

attractive for satellite use where the device will be exposed

to high radiation. Semiconductor manufacturers are beginning

to mass produce ferroelectric memories utilizing integrated

circuit technology.

Engineering samples of National Semiconductor's NM24CF04

were obtained and this thesis demonstrates the feasibility of

installing the NM24CF04 as a portion of main memory. The

speed performance of the NM24CF04 is also addressed due to the

serial nature of the device. Hardware was designed and

implemented to overcome architectural problems so that the

device was incorporated as a functional block of addressable

8086 memory.

The contents of this thesis include:

Chapter I: Introduces the ferroelectric technology, NM24CF04,

and 8086 microprocessor.

Chapter II: Contains a discussion of the architectural and

timing considerations that were necessary to develop the

design of the interface between the NM24CF04 and 8086

microprocessor

.

Chapter III: Describes the implementation of the final

circuit. Lessons learned from the implementation are also

discussed.

Chapter IV: Discusses the strategy employed to test the final

circuit and the results of the testing.

Chapter V: Summarizes the study and includes recommendations

for areas of further research.

B. NATIONAL SEMICONDUCTOR'S NM24CF04

The NM24CF04 is fabricated with CMOS ferroelectric

technology and provides 512 bytes of ferroelectric memory

cells. The chip is internally organized as two 256 byte

pages. The NM24CF04 is compatible with Xicor's X24C04 EEPROM.

However, National Semiconductor's ferroelectric version

provides 10 11 write cycles where the Xicor product only allows

10 5 write cycles. The improvement in the number of write

cycles makes it an attractive prospect to become a functional

block of main memory, providing the nonvolatility of ROM and

the flexibility of RAM. The chip uses a two wire serial

interface and a bidirectional data transfer protocol to move

data between itself and the reguesting device.

1. Pin Descriptions

Figure 1.3 shows the pin diagram for the NM24CF04.

Serial Clock Line (SCL): The SCL pin is used to clock

data into and out of the device. The NM24CF04 is capable of

operating at a maximum clock freguency of 100 kHz. The clock

is provided by the external master device requiring service

and should be removed when the chip is not being addressed.

The SCL is an open drain input reguiring a pull-up resistor.

AO VCC1^8
2 7

3 6

4 5

Al TEST
A2 SCL
GND SDA

Figure 1.3 NM24CF04 Pin Diagram

Serial Data Line (SDA): The SDA pin is bidirectional

and allows data transfer into and out of the chip. It is also

an open drain output and requires a pull-up resistor. The

open drain output may also be wire ORed with other open drain

devices. This is how four devices are connected on the same

SDA bus.

TEST: This pin is unused, but must be wired to

ground.

AO : This pin is unused by the NM24CF04. However it

must be wired to ground for proper device operation.

A1,A2: These two pins form the LSB's of the six bit

slave address. The four MSB's of the slave address are always

represented by the binary pattern '1010'. Whenever access of

a ferroelectric memory chip is desired, the requesting device

must get the attention of the proper device by transmitting

the slave address of the desired chip onto the SDA bus. Four

separate NM24CF04's may reside on the same SDA bus and the

binary combinations of pins Al and A2 provide the ability to

address four different devices. The pins may be driven or

static. The design employed the static approach and connected

the pins to either +5 volts or ground to establish the

hardwired address for each device. Table 1.1 shows the

possible combinations.

TABLE 1.1 Bank Selection.

A2 Al BANK #

GND GND
GND V

cc
1

Vrr GND 2
cc

V V 3
cc cc

C. 8086 MICROPROCESSOR

The 8086 microprocessor's standard operating speed is 5

MHz. The microprocessor operates on an 8-bit or 16-bit

multiplexed bus. The device can address up to 1 megabyte of

memory and operate in one of two modes of operation. In

minimum mode the CPU emits the bus control signals for memory,

where in maximum mode an 8288 Bus Controller assumes the

responsibility of controlling all devices on the system bus.

The described design utilizes the 8086 configured in minimum

mode. The CPU of the 8086 is further divided into two

separate processing units. The execution unit (EU) executes

instructions and the bus interface unit (BIU) fetches

instructions, reads operands, and writes results.

While the processor is busy executing instructions the BIU

looks ahead and fetches additional instructions from memory.

The retrieved instructions are stored in the instruction

stream gueue. The 8086 's instruction stream gueue can store

up to six instruction bytes. The BIU normally fetches two

bytes unless the fetch is from an odd address, where the BIU

only fetches the byte from the odd address. The BIU is

responsible for executing all external bus cycles to read data

from memory or write data to memory. All bus cycles consist

of a minimum of four clock cycles or "T-states" known as T<,

,

T
2 , T

3 , and T,. Figure 1.4 shows a typical BIU bus cycle.

A bus cycle consists of a chain of events in which the

address of memory location is output, then a read or write

control signal is presented, followed by the data in a write

operation. The addressed device accepts the data on a write

cycle or places data on the bus during a read operation.

For slow devices, such as the NM24CF04, wait states must

be inserted between T
3
and T

4
. During a wait state the data

on the bus remains unchanged. Upon completion of the cycle,

memory latches data written or the BIU removes data read.

YaodressY buffer Y YaddressY buffer Y X

Figure 1.4 Typical BIU Bus Cycle, [Ref. 3]

1. Write Bus Cycle

Figure 1.5 shows the write bus cycle. The CPU places

the write address on the multiplexed address/data bus during

T
1

. During state, T
1
Address Latch Enable (ALE) is asserted

high to latch the write address into banks of 74LS373 octal

latches. The state of these latches can then be decoded by

combinational logic to generate the necessary chip select for

memory. Upon completion of T., , the CPU places the write data

on the multiplexed bus (AD25 - AL»0) from T
2
until T

4
.

ONE BUS CYCIE

tj
Ij~L_r^L_r^Lj-n_j"

»hoSHE/S7 y-c
AODRESS BRT OUT X

>—

c

ADDRESS OUT X
/ V r

.«2ZX LOW = I/O WHITE HIGH MEMORY WRITE X
*R \ f

OTlfi /

I

6TR \

Figure 1.5 8086 Write Bus Cycle, [Ref. 3].

During state T
2 , WR is asserted low to indicate to

memory that a write operation is requested. The READY signal

is used to force the CPU to insert wait states in the bus

cycle. To insert a wait state, READY must be low prior to the

end of state T
2

. Figure 1.6 shows the timing relationship

required to generate a wait state. Signal READY is produced

by an 8284 Clock Generator and Driver, which generates the

signal depending on combinational logic inputs. It is the

responsibility of the user when addressing memory or I/O

peripherals to realize that if data transfers require more

time than is allowed via the standard bus cycle that READY be

asserted low to insert wait states. The user must also assert

10

READY high after the proper data transfer time has passed so

that the bus cycle may terminate.

Signal Data Transmit/Receive (DT/R) controls the flow

of data through banks of 8286 octal bus transceivers when

operating in the minimum mode configuration. With the signal

high, data can flow from the 8086 microprocessor onto the data

bus and into the appropriate memory location. Data Enable

(DEN) is provided as an output enable for the data

transceivers

.

RtAOT INACTIVE • n. MAX u MOID TIMt M n.

-J L 111 n. TO OUAMANTEE THE
NEXT CYCLE IS T 4

Figure 1.6 Wait State Insertion, [Ref. 4].

2. Read Bus Cycle

Figure 1.7 shows the 8086 Read Bus Cycle. The cycle

is very similar to the write cycle and reguires four "T"

states. The CPU places the read address on the multiplexed

address/data bus during T
1

. Again, during state T
1

, Address

Latch Enable (ALE) is asserted high to latch the write address

into banks of 74LS373 octal latches. These latches are

11

decoded to generate the necessary chip select for memory.

Upon completion of T
1

, the CPU floats the address/data bus in

preparation for data to be received from memory. During state

T
2

, R~D is asserted low to indicate to memory that a read

operation is requested. Again, if reading from a slow memory

device, the user is responsible for adding logic to control

READY and generate wait states prior to state T
3

. Data is

expected and sampled on the data bus at state T,. Signal DT/R

is asserted low to configure transceivers in the receive mode.

Signal DEN is asserted low to enable the transceivers to pass

the received data to the CPU.

ONE BUS CYCLE

*1»/S«-*l};Sj
we mfffi

")
(ADDRESS BET OUT ^

*0,5-ADo
-c

ADDRESS OUT

STATUS OUT >

} c >

J V r
x LOW • I/O REAO HIGH = MEMORY READ X

RB

DIIR

\ /
J.

r3Eli \ f _.

Figure 1.7 8086 Read Bus Cycle, [Ref. 3].

12

II. DATA AND CONTROL PATH DESIGN

A. ADDRESS AND DATA BUS STRUCTURE

Figure 2.1 shows the system bus structure implemented.

The 8086 has the ability to address one megabyte of memory.

It is also capable of 8 bit or 16 bit data transfers. The

8086 has a 20 bit address bus, A19-A0. The address space is

split into two banks of 512K bytes each. One bank connects

the lower half of the data bus (D7-D0) and corresponds to even

addresses (A0 = 0). The remaining bank connects the the upper

half of the data bus (D15-D8) and corresponds to odd addresses

(A0 = 1). Address lines A19-A1 specify a particular byte in

each bank. To perform a byte transfer to an even address the

8086 specifies an address with A0 low and signal Bus High

Enable (BHE) high. With BHE high the upper bank of memory or

odd byte of the word address is disabled from and memory

access

.

To perform a byte transfer to an odd address the 8086

asserts BHE low and A0 high. This allows access to the upper

bank while disabling any memory access of the lower bank or

even byte. To perform a word transfer of 16 bits the 8086

asserts both BHE and A0 low. This enables both memory banks

and allows transfer of the entire data bus D15-D0 during one

bus cycle.

13

• CLK
.JREADV
RESET

AD15-ADO

8O86

MB
A15-A16

BHE
ADDRESS BUS

CHIP
SELECT

ROM

CONTROL

SL SDA

RAM

CONTROL

DATA BUS

Figure 2.1 System Bus Structure.

The design effort did not require a system with an address

space of 1 megabyte. The design required 4K bytes of

ferroelectric RAM, 8K of ROM, and 8K of static RAM. The

memory selected is dependent on A14, A13, and A12. Table 2.1

shows the memory selected based upon the address on the

address bus.

Table 2.1 Memory Selection.

ADDRESS
LINES
A14,A13,A12

0,1,0
0,1,1
1,0,0
1,0,1
1/1,0

MEMORY
ACCESSED

FERRO
FERRO
RAM
RAM
ROM

14

B. DATA FLOW OVERVIEW

The objective of the design was to install the NM24CF04 as

a functional block of memory without requiring any special

actions on the part of the 8086 microprocessor. With the 8086

operating at 5 MHz and the NM24CF04 only capable of operating

at 100 KHz, it was obvious that circuitry would be required to

insert wait states whenever the ferroelectric memory was

accessed. Additionally, circuitry was required to handle the

actual transfer of data between the NM24CF04 and the 8086

microprocessor and vice-versa. Figure 2.2 shows a block

diagram of the microprocessor-ferroelectric interface.

Serial
Data
Line

*0-All

DO-D15
Serial
Data
Line

RD
MR
BHE

Odd
Bate

Bank2

Even
Byte

Bankl

Bank3

Microprocessor Control logic Ferroelectric
MeMor

y

Figure 2.2 Interface Block Diagram.

The control logic monitors only five sets of signals: RD
,

WR, BHE, A0-A15, and D0-D15. When the microprocessor requests

a read operation from ferroelectric memory, it places the read

address on the address bus and indicates a read request by

15

asserting RD low. The control logic block takes over by-

initiating microprocessor wait states and performing the

required tasks to retrieve information from the appropriate

bank of ferroelectric memory. Control tasks performed include

identifying and selecting the correct chip, converting the

parallel address to a serial address, transmitting the address

to memory serially, receiving the data from memory serially

and transferring the received information into parallel form,

latching the received data, and releasing control to the

microprocessor. Writing to ferroelectric memory is very

similar.

When the microprocessor writes data to ferroelectric

memory, the write address is placed on the address bus, data

on the data bus, and a write operation is indicated by

asserting WR low. Again, the control block intercedes to

perform data translations and input/output functions necessary

to store data into the appropriate address.

C. DATA PATH DESIGN

The data path, consisting of a multiplexer and shift

register, serial data (SDA) bus, ferroelectric memory, and

required control signals is shown in Figure 2.3. The most

important function performed by the data path is the parallel

to serial conversion of information and vice versa. The data

path is controlled by signals muxa , muxb , sO , and si. Any

communication with the NM24CF04 must be performed on the SDA

16

bus, which is bidirectional. The multiplexer in the circuit

is a 4 to 1 byte multiplexer. By changing the selection lines

muxa and muxb, one of four bytes can be multiplexed to the

parallel load port of the shift register. The control signals

sO and si allow the shift register to be loaded in parallel

from the multiplexer. After applying a clock pulse the

selected byte is loaded into the shift register. A detailed

discussion of the information contained in each of the four

bytes is located in the control path design section.

byteO

muxta

bytel byte2 byte>3

4 to 1 byte Multiplexer

sO
si

H

SHIFT REGISTER

Bidirectional Serial Data (SDA) Bus

Ferroelectric
Memory

Figure 2.3 Data Path

17

With information loaded, control signals sO and si place

the shift register into the right shift operation. One bit of

data can be shifted to the ferroelectric memory via the SDA

bus on each successive clock pulse. As soon as the parallel

load has been completed, the bit in position H of the shift

register is available to the ferroelectric memory when the

appropriate bus driver is enabled. Therefore, the shift

register only reguires seven shift right operations, or clock

pulses, to move all data onto the SDA bus.

When data is read from the ferroelectric memory, it

becomes available on the SDA bus in serial form. Control

signals sO and si configure the shift register to shift right.

The information is clocked into the shift register via another

enabled bus driver. Therefore, eight clock periods are

reguired to move a byte of data into the shift register. Once

the shift register has been loaded with the received byte, the

information can be latched onto the data bus.

Four ferroelectric memory banks, or separate NM24CF04

packages, can reside on the SDA bus, providing 2,048

addressable memory locations. Each bank contains 512 bytes of

addressable memory. A bank is further divided into two pages

of 256 bytes. A bank is designated as bank 0, 1, 2, or 3

dependent on the hardwiring of address pins upon installation.

By hardwiring two address pins (A2,A1) on each package to GND

or V
cc , a specific integrated circuit can be addressed on the

common SDA bus.

18

D. CONTROL PATH DESIGN

The control path has the ability to control two blocks of

ferroelectric memory. The blocks are referred to as the upper

and lower bytes, or odd and even byte addresses, respectively.

The control path provides data patterns, which contain control

information, to the ferroelectric memory whenever

communication is desired by the microprocessor. The data

patterns are timing sensitive and are transmitted on the

bidirectional SDA bus. To implement the control data

patterns, with their critical timing criteria, requires two

finite state machines.

1. NM24CF04 Control Bytes

To communicate with the ferroelectric memory, during

a read or write operation, requires the transmission of three

of four control bytes onto the SDA bus within specific timing

tolerances. Whenever communication with a NM24CF04 is

desired, regardless of operation, byte is loaded in the

shift register, via the multiplexer, and shifted onto the SDA

bus. The first four bits are always a 1010 pattern to get the

attention of all chips residing on the SDA bus. Again, in

this design, there are four NM24CF04 integrated circuits

residing on the SDA bus. The next two bits, which are from

the address bus, generate a chip address corresponding to one

of the hardwired addresses. This gets a specific chip's

attention. The next bit is a page selection bit. Finally,

19

the last bit is hardwired low. Byte 1 contains the contents

of the address bus lines Al - A8 and provides the ability to

address up to 512 memory locations on a specific chip. If the

operation were a write, data contained in byte 2 of the

multiplexer would be loaded into the shift register and

transferred serially to memory. Byte 3 is used only during

the write operation and is called a "dummy read" . The format

of the byte is identical to byte except that the last bit is

hardwired to +5 volts. Control byte information is summarized

in Figure 2.4. Byte 2 in Figure 2.4 shows the data bus lines

required to transfer data to the low block, or even byte

addresses. When transferring data to the high byte, or odd

byte addresses, data bus lines D8 - D16 are contained in byte

2.

20

Page Address

\
Chip Address

Byte A9
s
AlO All 1iii i

1

F\W Address

Byte 1 Al
,
A2 A3 A4 A5 A6iii i

A7
i

A8

Data to Write (low byte >

Byte 2 DO
,
Dl

,
D2 , D3 D4 D5 D6

,

D7

Page A ddress

\
Chip Addx>ecc

Byte 3
\

1 A9
i

A 1 O A 1
i

i 1
1 1 1 1

1

Figure 2.4 Byte Formats.

2. Main Finite State Machine

The main finite state machine is shown in Figure 2.5

and consists of 15 states. Therefore, the state machine can

be produced with a four flip flop state counter, generating a

count from to 14. For example, in Figure 2.5, State A

translates to a count of and State would translate to a

count of 14 in the state counter. Notice that states B - E

are performed regardless of the type of operation. The '!'

symbol is used to indicate a not or low assertion of a signal.

21

o

jntr7\sO

s ° / ^J«cntr7\sO \LJ

r oocntr-7NtO ^-—^

WD•-"- ©^ ,„„„„.,
\NsO,s.L t nuxa. r nux)b +

\/^\ ..ckN.O.sl UokNBUKb.sO.sl

ackNsVf.)
|

sO.sl V^>
J,ackxsl.muxa.V—y p»d write / ^^ nuxa,sO,sl

•~n" I
lontp? N

ontp?\sO

V.
«ok\nuxa,sO,sl

Figure 2.5 Main Finite State Machine.

STATE A: State A is the normal position of the state

machine when no communication is occurring. When the

microprocessor addresses the ferroelectric memory,

combinational logic asserts the chip select signal ferro low,

as indicated by I ferro. The state machine recognizes the chip

select signal and advances the state machine to State B.

STATE B: When in this state sO and si are asserted,

which readies the shift register for a parallel load. With

neither multiplexer control signals muxa or muxb asserted,

byte is multiplexed to the output of the byte multiplexer.

Byte 0, which contains an attention pattern and chip address

for the desired NM24CF04 chip residing on the SDA bus, is

clocked into the shift register on the falling edge of the

clock. The appropriate bus driver is enabled to allow the

shift register's output onto the SDA bus.

22

STATE C: This state changes the mode of the shift

register to shift right by only asserting sO . The state

machine remains in this state until the shift register has

been clocked right seven times. The control signal cntr7

indicates that the shift register has been clocked seven

times

.

STATE D: This states looks for signal ack, which is

transmitted on the SDA bus by an NM24CF04 when the chip

address sent in byte matches the hardwired chip address of

the appropriate chip. While waiting for an acknowledge from

the memory, muxb, sO , and si are asserted to prepare the shift

register for a parallel load of byte 1. Byte 1 contains the

address location of where to store or retrieve data. No

determination of whether a read or write operation is

requested has been made yet. Again, byte 1 is loaded into the

shift register on the falling edge of the clock. A bus driver

is also enabled to allow the shift register's output onto the

SDA bus.

STATE E: The state machine remains in this state until

the shift register has been clocked right seven times as

indicated by control signal cntrl . Once the shift register

has been clocked seven times, a determination of operation is

made. If the operation requested by the microprocessor is a

write, the state machine will branch to State F. If a read

operation is being performed, the state machine will branch to

State J.

23

STATE F: The accessed NM24CF04 indicates that it has

received the previously transmitted address by pulling the SDA

bus low with signal ack. Control signals sO and si are

asserted, which ready the shift register for a parallel load.

Multiplexer control signal muxb is asserted to place byte 2 on

the parallel input of the shift register and the shift

register is loaded on the falling edge of the clock. Byte 2

contains the data to be stored into the ferroelectric memory.

Once again, bus drivers ensure the shift register has access

onto the SDA bus for data transfer.

STATE G: Shift register control signal sO is asserted to

allow the shift register to shift right. Again, the shift

register is clocked right seven times as indicated by control

signal cntr7

.

STATE H: The clock is disabled on the SCL bus.

STATE I: The START_STOP flip-flop is enabled onto the SDA

bus and set to generate the STOP condition for the NM24CF04.

The state machine has completed a write operation and returns

to State A.

STATE J: The microprocessor has reguested a read

operation and the address to read from was transmitted during

State E. This state looks for an acknowledgement from the

NM24CF04 that it has received an address. Multiplexer control

signals muxa and muxb are asserted to place byte 3 onto the

parallel load ports of the shift register. Byte 3 contains a

"dummy write", which is identical to byte 0, except the last

24

bit is hardwired high. Shift register control signals sO and

si are asserted for a parallel load. Again, the shift

register is clocked on the falling edge of the clock. The

clock on the SCL bus is also temporarily disabled during the

last half of this state.

STATE K: A START condition is transmitted onto the SDA

bus, followed by activating drivers to let the shift

register's least significant bit onto the SDA bus.

STATE L: Shift register control signal sO is asserted for

a shift right operation. The shift register is clocked onto

the SDA bus seven times as indicated by cntrl

.

STATE M: The NM24CF04 acknowledges the receipt of byte 3

and places the first bit of the byte read onto the SDA bus.

This bit is clocked into the shift register on the next rising

edge of the clock.

STATE N: Bit one has already been shifted in, therefore,

the shift register must be clocked seven more times. Again,

cntrl indicates that seven shifts or clocks have occurred.

STATE 0: The received data can be latched to the

microprocessor. The SCL bus is disabled and the START_STOP is

set to transmit a STOP condition to all NM24CF04's residing on

the SDA bus. Control is returned to State A.

25

3 . Counter

As previously mentioned, the second finite state machine

maintains a count to control the number of shift operations

performed by the shift register. The counter, when enabled,

will count from zero to seven. Figure 2.6 illustrates the

operation of the counter state machine. The counter is

cleared by signal counter_clr whenever the main finite state

machine is in states B, D, F, K, or M. The counter will begin

counting when enabled by signal counter_en in states C, E, G,

L, or N. While the counter is in operation, the main finite

state machine is dormant and reactivated when cntr7 is

asserted by the counter.

\counter_clr

\countep_en

Figure 2.6 Counter Finite
State Machine.

26

III. IMPLEMENTATION

Implementing the system described in Chapter II was quite

challenging. Fifty-eight separate integrated circuits were

required for the final circuit. The circuit was built on a

perforated board with wire wrapped connections between chips.

Most of the circuitry was required for the physical

implementation of the data and control path design previously

described. Ten Erasable Programmable Logic Devices (EPLD's)

were utilized to reduce the number of integrated circuits

required to implement much of the combinational logic for the

system. Without EPLD's, the size of the system would have

grown by an additional forty-five chips, causing increased

power consumption. Before discussing the implementation, a

more detailed description of NM24CF04's operation must be

presented.

A. NM24CF04 SDA BUS OPERATION

The NM24CF04 supports a bidirectional communications

protocol on the SDA bus. The occurrence of data on the SDA

bus is dependent upon the phase of the clock present on the

SCL bus. Data states on the SDA bus can change only on the

low transition of the SCL bus. The data state must be stable

on the high half of the SCL clock to allow the NM24CF04 to

latch the data into its internal registers. Prior to sending

27

any data, a START condition must be transmitted on the SDA

bus. A START condition is defined as a high to low transition

of the SDA bus while SCL is high, as shown in Figure 3.1.

I\! /

/

\ i/i

i i\
S1MT Iff

Wj
j

STOf ITT

Figure 3.1 Definition of START and STOP,
[Ref. 5]

Recall that both the SDA and SCL pins on the NM24CF04 are open

drain devices, which require pull-up resistors and are

constantly high when no external device is driving the bus.

Therefore, in a working circuit, SCL should only be clocked

when the roaster device, in this case the microprocessor, is

requesting access. This fact is extremely important for the

proper operation of the device and is not discussed in the

NM24CF04 documentation. Therefore, in the implemented

circuit, the clock on the SCL line was disabled whenever the

main state machine was in state A. Recall the main state

machine only leaves state A whenever the microprocessor

requests access to the ferroelectric memory. With the clock

disabled, the SCL line remains high due to the pull-up

resistors. A high to low transition of the SDA bus when

moving to state B satisfies the START condition. The actual

28

high to low transition of the SDA bus is caused by enabling a

set flip-flop onto the. SDA bus and then resetting it.

Immediately after executing a START condition, the clock is

enabled on the SCL line and the slave address is ready to be

placed on the SDA bus, beginning with the first low half of

the clock. The slave address consists of eight bits and the

appropriate bank of memory acknowledges the slave address on

the ninth clock cycle. An acknowledge is defined as the

receiver, or addressed NM24CF04 in this case, pulling the SDA

bus low during the ninth clock cycle. Figure 3.2 shows the

timing relationship of the acknowledge response from the

receiver.

W. mow
UASTtR

Winn
raou

ntMnwrna

DATA

outrvT

mow
ntctrvw

"
1 /—

C

D T

ih

StAIT

\—T
taxmaa.

Figure 3.2 Acknowledge Response from
Receiver, [Ref. 5],

After the proper device has acknowledged its address, the

write or read cycle can be executed. After every byte is

transmitted, the device responds with an acknowledge. Upon

completion of either cycle, it is then necessary to place a

STOP condition on the SDA bus. A STOP condition is defined as

the low to high transition of the SDA bus while SCL is high.

29

This is accomplished similar to the START condition. When the

cycle is completed the external clock, is removed from the SCL

line, which causes it to return to a high state. A reset

flip-flop is then enabled onto the SDA bus and set, which

effectively satisfies the STOP condition. Once the STOP

condition is executed, the write or read cycle is complete and

the ferroelectric memory is standing by for the next request.

B. FINITE STATE MACHINE IMPLEMENTATION

Chapter II described the design of the main finite state

machine and produced a classical state diagram. Producing the

state equations could have been accomplished utilizing

Karnaugh maps and state reductions techniques. However, the

overall design of the main finite state machine was an

evolutionary process, and rather than recomputing new state

equations after every change by hand the Computer Aided Design

(CAD) tool PEG was used. PEG (PLA Equation Generator) is a

finite state machine compiler and provides the ability to

produce the appropriate state equations when a program

representing the state diagram of the finite state machine is

submitted for execution. PEG uses the Moore model for finite

state machines, in which outputs are a function of the current

state. Appendix A contains the program FSM1 .PRG, which is the

programmed representation of the main finite state machine.

File FSM1 . INFO of Appendix A is the resulting output that PEG

produces after compiling FSM1 .PRG , and contains all the state

30

equations in their reduced form. The main finite state

machine has fifteen states. Therefore, the machine can be

implemented with four flip-flops. The PEG output

automatically labels these flip-flops OutSt3*-OutStO* and

produces the state equations to control the machine. For

example, looking at flip-flop 0utSt2* results in the following

representation

:

0utSt2*=
(JRESET& cntr7& InStO*& InStl*& ! InSt2*& InSt3*)|
(! RESETS !cntr7& InStO*& ! InSt 1*& InSt2*& InSt3*)|
(!RESET&!InStl*& InSt2*& ! InSt3*

)

|

(1RESET& ack& InStO*&!InStl*&!InSt2*& InSt3*)|
(IRESET&! InStO*& InStl*& InSt2*& ! InSt3*

)

]

(IRESET& ack&!InStO*& InStl*& ! InSt2*& InSt3*)|
(!RESET&!ack&!InStO*&! InStl*& InSt2*& InSt3*)|
(!RESET&!InStO*&! InStl*& ! InSt2*& InSt3*);

The symbols 'j', '!'
, and '&' represent OR, NOT, and AND

operations, respectively. The flip-flop represented is the

second most significant bit of the machine. PEG automatically

inserts the 1RESET, which would be utilized if building a VLSI

PLA. However, the effective reset term for the implemented

finite state machine is the chip select signal ferro, which is

low when the microprocessor requests a read or write from

ferroelectric memory. Each line of the state equation, when

high, can set the flip-flop on the next clock and all lines

are ORed together. The resultant state equations of FSM1 . INFO

were then manually encoded into their ABEL representations and

stored in program EPLD5 . ABL of Appendix B. ABEL is an

application that provides the ability to program an Altera

EP310 EPLD. Flip-flops Q4-Q1 correspond to flip-flops

31

OutSt3*-OutStO* , respectively, and must still be decoded by-

other circuitry so that specific actions might be executed

depending on the current state of the machine. Continuing the

example, Q3 is the translated version of 0utSt2* , and is

represented by the following equation in EPLD5 .AJBL:

Q3 := (!FERR0&CNTR_7&Q1&Q2&!Q3&Q4)#
! FERRO& ! CNTR_7&Q1& ! Q2&Q3&Q4)

#

!FERRO&!Q2&Q3&!Q4)#
IFERRO& IQ1&Q2&Q3& !Q4)#
!FERR0&!Q1&!Q2&!Q3&Q4)#
!FERRO&ACK&((! Q1&Q2& ! Q3&Q4) # (Q1& ! Q2& ! Q3&Q4)))#
!FERR0&!ACK&!Q1&!Q2&Q3&Q4)

;

The symbol '#' indicates an OR operation in ABEL. The state

equations for the other flip-flops of the finite state machine

were hand translated in the same manner and can be examined

closer in EPLD5 .ABL. The main finite state machine is

completely encoded into one EPLD, which would normally require

at least fifteen chips if standard TTL combinational logic

were used. Two separate EPLD's were required to decode the

state of the main finite state machine.

File FSM1 . INFO also lists the state equations to decode

states A-0. The Altera EP310 is physically limited to eight

outputs. Therefore, states A-H were encoded on one EPLD and

states 1-0 on another. The ABEL source code to implement the

state decode is contained in programs EPLD6 .ABL and EPLD7.ABL

of Appendix B. Finally, FSM1 . INFO contains the excitation

equations to drive the multiplexer lines, MUXA and MUXB , and

shift register control signals, SO and SI. These equations

32

are transferred to program EPLD8 . ABL in Appendix B. This

program is then downloaded to an EPLD, which provides the

multiplexer and shift register control signals dependent upon

the current state of the main finite state machine. The

counter finite state machine was implemented in a similar

manner

.

The counter finite state machine's purpose is to count to

seven and indicate this by asserting CNTR_7 high. While the

counter is operating the main finite state machine is in a

wait state and will not re-establish control until CNTR_7 is

high. Program FSM2 .PRG in Appendix A contains the PEG source

code for the implementation of the counter finite state

machine. File FSM2 . INFO contains the result of the PEG

compilation. Counting to seven only reguires three flip-

flops, and this is reflected in the PEG compilation by

observing 0utSt2* -OutStO* . Once again, the results of the PEG

compilation were used to encode an EPLD representation of the

state machine, which is contained in program EPLD4 . ABL of

Appendix B. The schematic representation of the EPLD

implemented finite state machines is shown in the

Ferroelectric Control Circuitry (sheet 3 of 5) of Appendix C.

33

C. MEMORY CHIP SELECTION

Selecting memory during a read or write cycle was

approached in the classical way; combinational logic generated

the appropriate chip select signal depending on the address on

the address bus. All chips select signals are asserted low

and generated by EPLD10, whose source code is contained in

program EPLD10 .ABL of Appendix B. The design only required 4K

bytes of ferroelectric memory, 8K of ROM, and 8K of RAM. ROM

consisted of two 2732A's, each of which provides 4K bytes of

storage. RAM consisted of 4 AM9128's, each of which provides

2K bytes of storage. Therefore, ferroelectric memory is from

address 1000H to 18FFH. RAM is mapped to address range 2000H

to 28FFH. ROM is mapped to addresses 3000H and above. Each

ROM chip is connected to either the upper or lower half of the

data bus. When the ROM chip select signal, ROMCS , is asserted

low by EPLD10 both banks of ROM place the addressed byte onto

their halves of the data bus. If only a byte operation is

required the 8086 controls the transfer by only sampling one

half of the data bus. RAM is slightly more complicated.

EPLD10 provides four chip select signals for the four RAM

chips: LOWRAM1 , LOWRAM2 , HIRAM2 , and HIRAM2 . The EPLD must

monitor not only address lines A12-A14, but also BHE and A0

because RAM is divided into two banks of low byte storage and

two banks of high byte storage. Finally, an access of

ferroelectric memory is requested when signal FERRO is

34

asserted low by EPLD10. EPLD10 also asserts RDY1 when

ferroelectric memory is accessed. Signal RDY1 is used by the

8284 to generate wait states for the 8086 because accessing

the ferroelectric memory is slow relative to the operating

speed of the 8086. Table 3.1 summarizes the chip select

signal asserted according to the address on the address bus.

Table 3.1 Memory Chip Select.

CHIP
ADDRESS A0 BHE SELECT

2000-27FF 1 LOWRAM1
2800-2FFF 1 LOWRAM2
2000-27FF 1 HIRAM1
2800-2FFF 1 HIRAM2
1000-1800 X X FERRO
>= 3000 X X ROMCS

D. DATA PATH IMPLEMENTATION

The operational description of the data path was presented

in Chapter II. Armed with an understanding of the functioning

of the data path, a circuit was built to physically implement

the data path. As described earlier, the ferroelectric memory

is split into two blocks. One block is addressed by even

addresses and is known as the lower byte. The other block is

addressed by odd bytes and is known as the upper byte. The

data path for each block is separate but identical with the

exception that the upper byte reads and writes the eight most

35

significant bits (MSB's) of the system data bus while the

lower byte reads and writes from the lower half of the system

data bus. Therefore, both data paths can be implemented with

duplicate circuitry. The lower data path will be discussed.

Low Ferroelectric Memory is shown in the schematics (sheet

4 of 5) contained in Appendix C. Four 74LS153's (Dual 4-to-l

Multiplexers) were chosen to provide the byte multiplexing

capability required by the design. By connecting the inputs

of the multiplexer chips to address lines, data lines, +5

volts, or ground the proper control byte is generated. Recall

there are four unique control bytes and these appear at the

output of the byte multiplexer depending on the state of

signals MUXA and MUXB , which are generated by EPLD8 . The

control byte must then be loaded into a shift register.

The design of the data path called for a shift register

that was capable of being parallel loaded or shifted right.

Therefore, a 74198 Shift Register was chosen to provide this

ability. The mode of the shift register is determined by the

states of signals SO and SI . Both SO and SI high indicate the

parallel load mode of operation, while SO high and SI low set

the shift right mode. Again, SO and SI are provided by EPLD8

.

The shift register clock, LO_SR_CLK, is supplied by EPLD1

.

Signal LO_SR_CLK has two unique properties.

First, during the shift right mode, the clock is an

inverted version of the 100 KHz SCL clock. This is done so

that the shift register is effectively clocked on the low half

36

of the clock, which is required to meet the data setup and

hold times of the NM24CF04 present on the SDA bus. This

action is required during states C, E, G, L, M, and N.

Second, during the parallel load mode the signal provides

only one low to high transition of the clock to load data into

the shift register. This action is required during states B,

D, F, and K of the main finite state machine.

During the shift right mode, data is shifted out QH . This

data is be enabled onto the SDA bus. Several packages of

74LS241 Line Drivers were required to control data traffic on

the SDA bus.

When the shift register is shifting data onto the SDA bus,

signal LO_SR_BUS_EN from EPLD2 is high and drives QH of the

shift register onto the SDA bus. After eight clocks, the

driver is disabled. To receive data from memory, the shift

register is configured in the shift right mode and driver

signal LO_SR_INPUT_EN from EPLD3 is high, enabling the routing

the SDA bus to the SRSI (shift right serial input) pin of the

shift register. The shift register is clocked eight times and

the data is now in parallel form. The parallel outputs of the

74LS198 QA-QH are now driven onto the lower half of the system

data bus. The data path is therefore complete, control bytes

can be transmitted to the ferroelectric memory, data can be

converted to its serial representation, and finally, received

data can be converted back to the parallel representation

necessary for the microprocessor.

37

E. WRITE CYCLE IMPLEMENTATION

By decoding the address bus, signal FERRO (U7) is asserted

low by the chip select logic of EPLD10 whenever the

ferroelectric memory is accessed. The state of signal R/VJl

(U37) is the result of monitoring the WR and R~D pins of the

8086; high indicates a read and low indicates a write. Both

FERRO and R/W! are input to the main finite state machine,

EPLD5 . While FERRO is high the state machine remains in State

A. However, when FERRO is low the state machine is free to

start execution. Also, when FERRO is low, RDY1 of EPLD10 is

asserted low, which causes the 8086 to insert wait states

until State I. Recall that AO and BHE are used to indicate

which block of memory is being accessed. AO low indicates an

even address or lower memory block, where BHE low indicates an

odd address or upper memory block. Most of the control is

universal regardless of which block is written to. Signals

that are specifically for low block application begin with LO,

where HI would be in the signal name of signals specifically

for high block accesses. For example, LO_SR_BUS_EN (EPLD2

U17) is used only by the lower block to enable the shift

register onto the lower SDA bus. There exists a signal

HI_SR_BUS_EN (EPLD2 U17), which provides the same function for

the shift register associated with the upper SDA bus. With

this in mind, a write to lower memory will be discussed.

Schematics to follow this discussion can be found in Appendix

C.

38

The first task to be performed is the transmission of the

START condition onto the SDA bus. A 74LS74 flip-flop (U40) is

reset whenever the machine is in State A. The flip-flop is

then enabled onto the SDA bus by the assertion of

LO_START_STOP_EN , which is high for the high half of State B.

Another important function that takes place when the state

machine leaves State A is the enabling of the 100 KHz onto the

SCL bus via the assertion of LO_CLK_DISABLE (EPLD4 U19). At

the beginning of State B, signals SO and SI are high in

preparation of a parallel load, and MUXA and MUXB are low to

select the first control byte. During the low half of State

B, LO_SR_CLK (U37) clocks the control byte into the 74198

shift register and LO_SR_BUS_EN enables the output of the

shift register onto the lower SDA bus. During State B, the

counter finite state machine located in EPLD4 is cleared by

the assertion of COUNTER_CLR (EPLD3 U18). The main finite

state machine then advances to State C, where it remains until

the counter state machine has counted to seven, and indicates

this by asserting CNTR_7 (EPLD4 U19) high. While in State C,

LO_SR_CLK continues to clock or shift the register onto the

SDA bus, and LO_SR_BUS_EN is enabled until CNTR_7 is asserted.

Once CNTR_7 has been detected the controller advances the

machine to State D.

In State D, the controller looks for the acknowledge from

memory by asserting ACK_EN (EPLD9 U16), which routes the SDA

bus through a 7404 inverter (U38) to the input of a 74LS74

39

flip-flop (U40). The flip-flop is constantly clocked at 100

KHz. When the output is high, an acknowledge is interpreted

by the controller, and it advances the machine to State E on

the next clock. While in State D, other functions are also

occurring. The counter is cleared again by asserting

COUNTER_CLR. The shift register and multiplexer are

controlled to load control byte 1. By the low half of State

D, the shift register is loaded and the first bit is placed

onto the SDA bus via LO_SR_BUS_EN again.

After advancing to State E, LO_SR_BUS_EN remains asserted.

State E exists for seven clock cycles because the byte in the

shift register must clocked onto the SDA bus. The counter is

enabled by COUNTER_EN (EPLD3 U18), and after counting to seven

asserts CNTR_7 . After the counter has asserted CNTR_7 ,

LO_SR_BUS_EN is disabled and a decision must be made about

whether the current cycle is a read or write. The mode of the

cycle is determined by the state of R/W!; high read or low

write. For the write operation, the main finite state machine

branches to State F.

In State F, an acknowledge is expected from memory for the

lest control byte that was transmitted. The processing of the

acknowledge is just like the actions performed in State D.

Again, ACK_EN is asserted, which routes the SDA bus through a

7404 inverter to the input of a 74LS74 flip-flop. The flip-

flop is tested for acknowledge state (high), and if present

the machine is advanced to State G on the next clock. State

40

F also clears the counter once more by asserting COUNTER_CLR .

State F also prepares the shift register for the transfer of

control byte 2, which contains the write data. Therefore, by

the low half of State F, the first bit of the write data is

placed onto the SDA bus via LO_SR_BUS_EN

.

State G enables the counter and lasts for seven clocks.

Again, the machine remains in this state until the remaining

seven bits of write data have placed onto the SDA bus. After

the assertion of CNTR_7 by the counter LO_SR_BUS_EN is

disabled and the machine advances to State H, where once again

an acknowledge is expected. By the lower half of State H the

clock is removed from the SCL bus. This is accomplished by

asserting LO_CLK_DISABLE (EPLD4 U19) high. With the

acknowledge received, the machine advances to State I.

In State I, the STOP condition must be placed onto the SDA

bus. The clock has already been stopped, so the SCL is

naturally high. The STOP condition is accomplished by

allowing a reset 74LS74 flip-flop onto the SDA bus via

LO_START_STOP_EN , and then setting the flip-flop with control

signal START_STOP_SET (EPLD4 U19). The START/STOP flip-flop

is common to both upper and lower memory. State I also

indicates to the 8086 that the write cycle is complete by

asserting RDY1 (EPLD10 U7) high, which causes the 8086 to stop

inserting wait states and continue the bus cycle. Upon

completion of State I, the main finite state machine returns

to State A and awaits the next access.

41

F. READ CYCLE IMPLEMENTATION

The read cycle begins by repeating the same actions that

have already been described for States A-E of the write cycle.

During State E, a check of signal R/Wl (U37) is made. For a

read operation, the signal is high. While in State E, the

main finite state machine is awaiting an acknowledge from

memory. Once the acknowledge has been received, via the

assertion of LO_ACK (U40) high, the state machine branches to

State J.

The disabling of the clock onto the SCL bus is the most

important function performed during State J. By the lower

half of State J, signal LO_CLK_DISABLE is asserted high, which

disables a 74LS241 Line Driver (U46) and removes the 100 KHZ

clock from the SCL bus. This is done to allow the SCL bus to

float high in preparation for applying an additonal START

condition onto the SDA bus. Additionally, SO, SI, MUXA, and

MUXB are asserted high in preparation for a parallel load of

control byte 3 into the 74198 Shift Register (U27). State J

only lasts for one clock period and then advances to State K.

In State K, the START condition is applied to the SDA bus.

Again, a reset 74LS74 flip-flop is allowed onto the SDA bus

via the low assertion of LO_START_STOP_EN , which enables a

74LS241 Line Driver (U24). This enabling signal is only

active for the high half of State K. The 100 KHz clock is

enabled onto the SCL bus on the low half of State K so that

data transmission can resume. By the low half of State K the

42

flip-flop is disabled from the SDA bus and the output of the

74198 Shift Register is enabled onto the SDA bus via the

assertion of LO_SR_BUS_EN . It should also be pointed out that

the shift register is loaded at the same time it is allowed on

the bus. Recall data transitions on the low half of the clock

are mandatory for proper operation of the NM24CF04. The state

machine then advances to State L.

State L is active for seven clock periods once again to

allow the shift register the neccessary clock cycles to shift

byte 3 onto the SDA bus. Signal SO is asserted high to keep

the shift register in the shift right mode. The main state

machine remains in State L until the counter has asserted

CNTR_7 high, indicating the proper number of clock cycles have

occurred. With CNTR_7 received, the main finite state machine

it free to advance to State M.

During State M, the state machine is again looking for an

acknowledge from memory. The acknowledge is determined by the

state of a 74LS74 flip-flop (U40) whose output generates

LO_ACK . With LO_ACK high, the state machine is free to

continue. Signal SO is asserted high during State M because

read data is now expected back from the ferroelectric memory.

The counter is cleared again by asserting COUNTER_CLR . During

State M, signal LO_SR_INPUT_EN is asserted low enabling a bus

driver (U32), and allowing the SDA bus to be applied to the

SRSI (shift right serial input) input of the the shift

register. By the lower half of State M, bit 1 from memory is

43

present at the input of the shift register and awaiting a

clock transition on LO_SR_CLK to load the bit. At this time,

LO_SR_CLK and the 100 KHz clock are synchronized and the

loading of the bit and advancement of the state machine to

State N occur on the next high transition of the SCL clock.

During State N, the shift register is clocked seven more

times by LO_SR_CLK allowing the read byte to be loaded into

the shift register. The counter is enabled via COUNTER_EN and

counts until it reaches seven, where it then asserts CNTR_7

again. CNTR_7 causes the advancement of the state machine to

State O and disables the 100 KHz SCL bus once again.

State O enables a bus driver (U15), which places the

output of the eight stages of the shift register onto the

system data bus (D0-D7). This is the read data that is now

present on the system data bus, and control can now be passed

back to the 8086. This is accomplished by asserting RDY1

(EPLD10 U7) high, which is input to the 8284 (Ul) and causes

READY to go high. The 8086 ceases to generate wait states and

finishes the current read cycle. A STOP condition must also

be sent to the ferroelectric memory.

Recall that the SCL bus is high due to disabling of the

clock at the end of State N. Therefore, a reset flip-flop

(U40) is allowed onto the SDA bus under the control of

LO_START_STOP_EN . This draws the SCL bus low. Setting the

flip-flop on the next high transition of the clock satisfies

the STOP condition and returns the ferroelectric memory to

44

standby mode, where it awaits the next access cycle. State

only lasts one clock cycle, and upon completion the state

machine returns to State A.

45

IV. TESTING PROCEDURE

The development of the final circuit was an evolutionary

process. The previous chapters of this thesis presented the

final version of the design and implementation after several

iterations of testing and modification. During the testing

phase, many problems were discovered. Some problems were

easily rectified. However, early in the testing phase, the

actual functionality of the main finite state machine required

further development. Unanticipated problems and errors or

omissions in the manufacturer's preliminary documentation were

the most prevalent reasons for modifying the design. Though

at times burdensome, testing led to the eventual discovery of

design and implementation errors, and finally to the goal of

the research, actually reading and writing data to the

NM24CF04.

A. TESTING STRATEGY

The testing strategy was to build the circuit piecemeal

and verify the functionality of small sections of the

implementation rather than building the entire circuit and

then beginning the testing phase. This strategy split the

project into smaller and more manageable parts: control

circuitry, lower and upper ferroelectric memory, RAM, ROM, and

46

latch circuitry. The first circuitry built and tested was the

control circuitry.

1. Control Circuitry

With the EPLD's programmed, the control circuitry

schematic shown in Appendix C (sheet 3 of 5) was installed and

verified for proper operation. Any inputs to the control

circuitry such as FERRO, AO , BHE , R/W!, and ACK were tied

either to ground or +5V. The progression through the states

of the controller were verified for both the read and write

operation. Surprisingly, few errors were found, and those

that were found were the result of typographical errors in the

source code of the EPLD program that was hand entered based on

the output of the PEG compiler. To correct any problems

usually only required the modification of the source program

and programming a new EPLD. No logical errors were generated

from the PEG compilation of the state machines. Overall, the

testing of the control circuitry was a smooth process due to

the efficiency and flexibility of both ABEL and PEG, which

allowed the hardware design of the control circuitry to be

solved more or less by software. Once the control circuitry's

operation was firmly established, the installation of the

ferroelectric memory was accomplished.

47

2. Ferroelectric Memory

Recall, that ferroelectric memory is organized into

high and low blocks. The circuitry and methods to read and

write data to memory are identical. Therefore, rather than

building the entire circuit at once, only the lower block of

memory was wire wrapped initially (sheet 4 of 5, Appendix C).

The first test to be performed was the write

operation. A write only requires control byte 0-2 to perform

the operation. The control bytes are provided by the byte

multiplexer, which would receive address and data bus

information from the 8086. The byte multiplexer had its

inputs wire wrapped to ground or +5 volts to generate the

required control bytes because the microprocessor was not

installed at this stage of development. For example, byte

was wired to output the bit pattern '10101110' at the output

of the byte multiplexer. The four MSB's are the required

'1010' pattern that activate all chips. The next two bits

contain '11', or address chip 3 on the SDA bus. The next '1'

bit indicates page 1 and the last '0' bit indicates a write

operation. By wiring the inputs for control bytes 1 and 2, a

byte of data containing E7
16

was written to 07
16 , or byte

location 7 of the chip. However, remember that page 1 has also

been selected, so byte location 263 is written to. With the

inputs hardwired, a slow clock of 1 Hz was applied, and

signals FERRO, WR, and kO were wired low. A bank of LED's

43

were installed to track the state of the main finite state

machine and the shift operation of the shift register.

The first problem encountered was the lack of an

acknowledge signal from the ferroelectric memory that was

expected after transmitting the control byte 1 to the

ferroelectric memory. After verifying the installed

circuitry, attention was turned to the specification sheet of

the NM24CF04. The concern was that since the NM24CF04 had not

responded to the transmission, had the control circuitry

actually started the process correctly? The START condition

was studied and determined to be the culprit, or rather the

timing of the START condition. In the documentation, the

START Condition Setup Time was defined to be a minimum of 4.7

microseconds from the rising edge of the SCL clock. In the

original implementation, the START condition was synchronized

with the rising edge of the SCL clock and, therefore, did not

meet the specification. After a phone conversation with the

manufacturer, it was learned that the SCL clock was not

required when the chip was not being accessed. Therefore, the

SCL bus was floated high when the memory was not required.

Then, when the START condition was applied the 4.7 microsecond

requirement was satisfied. Clock disabling circuitry was

added to solve the problem, and an acknowledge was finally

received, which indicated that bidirectional communication had

been established. The write cycle then advanced through the

states of the control circuitry until the entire write cycle

49

was completed. Smaller problems, such as two line drivers

enabled at the same time, were discovered and rectified.

Figure 4.1 shows a photograph of a logic analyzer's output

that resulted from monitoring the SCL and SDA bus during a

successful test of the ferroelectric memory write cycle. The

following is a discription of the logic analyzer output:

• Line 1 shows the monitored SCL bus. Notice periods of
time when the SCL bus floats high. This is the natural
state of the SCL bus when memory is not being accessed.

• Line 2 shows the activity on the monitored SDA bus.
Recall a write operation requires the transmission of
control bytes 0-2. Also, between each control byte is a
one clock cycle delay for the acknowledge response from
memory. In the test example, byte contained '10101110',
byte 1 contained the address of '00000111', and byte 2

contained the write data '01111110*.

• Line 3 monitors State B of the main finite state machine
and was selected for clarity. Notice that State B is
present for only one clock cycle. During the first half
of State B, the START condition is applied to the SDA bus
and during the last half of State B the clock is enabled
onto the SCL bus.

• Lines 4, 5 and 6 monitor States C, G, and F of the main
finite state machine. The outputs of the state machine
coincide with the transmission of control bytes 0-2.
Therefore, for example, Line 4 shows the duration of State
C, and while State C is active, the control byte bit
pattern of '10101110* is displayed on the SDA bus.
Likewise, lines 5 and 6 show the times control bytes 1 and
2 are on the SDA bus, respectively.

• Line 7 monitors State I of the state machine. Recall
during a write operation, State I is the last state
executed. Notice the SCL clock is disabled, signalling
the end of the write cycle.

50

Figure 4.1 Ferroelectric Memory Write Cycle.

With confidence in the write operation attention was

turned to the read cycle. As a test an attempt was made to

read the data out of the same memory location that had just

been written to. The read cycle duplicates States A-E of the

write cycle, therefore, half of the work was already done and

confirmed. States J-0 required validation and once again

timing errors, such as drivers being on for one half a clock

period too long, seemed to predominate the testing process.

Finally, all corrections were made via new EPLD programming or

additional circuitry, and a valid read cycle was performed.

Figure 4.2 shows the logic analyzer's output of the successful

read operation.

51

BMUBBfflBppi

Figure 4.2 Ferroelectric Memory Read Cycle.

The first five lines of the photograph are identical

to the write cycle presented in Figure 4.1. However, the read

cycle lasts seventeen clock cycles longer, therefore, the

sampling period of the logic analyzer had to be changed to

allow the entire read cycle to be displayed on the screen.

Once again, the bottom three lines were added to show the

timing of the SDA bus relative to the state of the controller.

Notice that at the end of State G, the clock on the SCL bus is

disabled. This is required because of the second START

condition that must be placed on the SDA bus during a read

operation. Line 6 indicates State L, and the activity on the

SDA bus at this time is due to the transmission of control

byte 1. Line 7 corresponds to State N, which is when the

52

received data is clocked into the shift register. The SDA bus

during this time period shows that a '01111110 'is present,

which is the data that was written to the chip during the

write test. Line 8 of Figure 4.2 shows the occurrance of

State O, which idicates the end of the read cycle. Notice

that during State 0, the SCL bus is floated high, and the low

to high transition of the STOP condition is placed on the SDA

bus .

The nonvolatility of the data was the final test.

Power was removed from the circuit for a day. The circuit was

activated and the read test was performed again. The data

pattern stored the previous day was retrieved, which proved

the manufacturer's claim of nonvolatility. The specification

sheet claims 10 years of data retention. Obviously, this

specification can not be tested during the research time of

this thesis. Testing was also performed to validate some of

the specifications contained in Reference 5. First the timing

specifications of the NM24CF04 were tested.

Read and write cycles were performed at various clock

freguencies. The NM24CF04 had no problems operating at clock

freguencies at or below the 100 KHZ specification. However,

at freguencies above 100 KHz, the chip did not function

properly. It usually missed the attention signal from control

byte 0, or placed useless information on the SDA bus when

operating at the higher freguencies.

53

The manufacturer also claims a write cycle of less

than 200 nanoseconds. The results of the write test show that

29 clock cycles are required for a write cycle. At lOOKHz the

period of the clock is 10 microseconds. Therefore, the

overall time requirement for the write operation is 290

microseconds. The discrepancy between the testinq results and

the NM24CF04 specifications could be a matter of write cycle

definition.

This study considers the write cycle time as the time

that passes from the point when the 8086 places the write

address on the address bus, which starts the main finite state

machine, to the time when the finite state machine returns to

State A. The data sheet claim of less than 200 nanoseconds

for a write cycle could be the time required to latch data

into an individual memory cell.

The results of the read test show that 38 clock cycles

are required for the read operation. Therefore, a read cycle

requires 380 microseconds.

54

V. CONCLUSIONS

This study has successfully demonstrated the feasibility

of interfacing the NM24CF04 as a block of 8086 microprocessor

main memory. The use of ferroelectric technology would

provide a radiation hardened and nonvolatile, yet modifiable,

area of memory where mission parameters or new programs could

be stored. The nonvolatility of the NM24CF04 has been proven.

The use of this new memory device in any system would combine

the strengths of current technologies; the flexibility of RAM

and the nonvolatility of ROM. However, the data and address

communications, timing, and control for the ferroelectric

memory is significantly different than for standard ROM and

RAM.

This research has successfully developed a hardware

solution to overcome the communications, timing, and control

difficulties of the bidirectional protocol necessary to access

the NM24CF04. The bidirectional protocol is somewhat

cumbersome and places additional delays on an already slow

device, relative to the 5 MHz operating speed of the 8086.

For example, the write cycle takes 290 microseconds to

complete. With the 8086 microprocessor operating at 5MHz, or

a clock period of 200 nanoseconds, this would reguire the 8086

microprocessor to insert 1450 wait states before the data was

latched into the NM24CF04. The read cycle reguires 380

55

microseconds, and the microprocessor would insert 1900 wait

states before data would be returned from the ferroelectric

memory. With faster microprocessors, the number of wait

states would increase significantly. As the ferroelectric

technology evolves, what is really needed is a ferroelectric

integrated circuit that is accessed by means compatible with

current RAM accessing techniques. The availability of a

parallel accessed ferroelectric memory would decrease the read

and write cycle times.

Counteracting the speed concerns of this integrated

circuit is the improvement in the number of write cycles when

compared to the EEPROM version of the NM24CF04. With 10 11

write cycles, approximately 22 years of constant writes could

be performed on the integrated circuit, as derived in the

following equation:

ltlp 11 t290 microsecs
tl

sec
tl

min tl hi
t

Iwzite l*l0 6microsecs 60secs eomins

1
daJ .1 y^— =22. Olyrs

24hrs 365days

Using the same equation, except with the number of write

cycles reduced to 10 5
, the EEPROM version of the chip would

reach the write cycle limit after only 29 seconds of

constantly writing to the chip. Clearly, the ferroelectric

version of the integrated circuit shows a most noteworthy

56

performance improvement. Of course, the microprocessor is not

going to constantly access the ferroelectric memory, but the

ability to perform over a long time period adds futher

credibilty to the assertion that the NM24CF04 become part of

main memory that has historically been reserved for RAM and

ROM.

57

APPENDIX A
PEG PROGRAMS

A. PROGRAM FSM1.PRG'

INPUTS:
OUTPUTS

start

:

stateb:

statec

stated

statee

statef

RESET ferro cntr7 ack wr;
si sO muxa muxb abcdefghij klmno;
ASSERT a;
IF NOT ferro THEN stateb ELSE LOOP;

ASSERT b si sO;
GOTO statec;

ASSERT c sO;
IF cntr7 THEN stated ELSE LOOP;

ASSERT d muxa sO si;
IF ack THEN statee ELSE LOOP;

ASSERT e sO;
CASE (cntr7 wr)
1 => statef;
1 1 => state j;
ENDCASE => statee;

ASSERT f sO si muxb;
IF ack THEN stateg ELSE LOOP;

stateg: ASSERT g sO;
IF cntr7 THEN stateh ELSE LOOP;

stateh: ASSERT h ;

GOTO statei;

statei: ASSERT i;

GOTO start;

state j : ASSERT j sO si muxa muxb;
IF ack THEN statek ELSE LOOP;

statek: ASSERT k sO si muxa muxb;
GOTO statei;

statei: ASSERT 1 sO;
IF cntr7 THEN statem ELSE LOOP;

58

statem: ASSERT m sO;
IF ack THEN staten ELSE LOOP;

staten: ASSERT n sO;
IF cntr7 THEN stateo ELSE LOOP;

stateo: ASSERT o;

GOTO start;

59

B. FILE 'FSM1.INF0'

INORDER=
RESET
f erro
cntr7
ack
wr
InStO*
InStl*
InSt2*
InSt3*;

OUTORDER=
OutSt3*
OutSt2*
OutStl*
OutStO*
sl
sO
muxa
muxb
a
b
c

d
e
f

g
h
i

J

k
1

m
n
o;

OutSt3*=
RESETS
RESETS
RESETS
RESETS
RESETS
RESETS
RESETS
RESETS
RESETS
RESETS

!cntr7S
ackS I

!cntr7S
InStO*
lacks I

cntr7S
lacks!

I

cntr7S
lacks!

I

! ferroS

InStO*
nStO*S
InStO*

S! InStl
nStO*S!
!InStO*
nStO*S
!InStO*
nStO*S!
JInStO*

S InStl*
InStl*S!
SJInStl*
*S InSt2
InStl*S!
S InSt2*
InStl*S!
S InStl*
InStl*S
S!InStl*

S!InSt2*S InSt3*)

|

InSt2*S!InSt3*)

|

S InSt2*S InSt3*)

[

S!InSt3)

|

InSt2*S InSt3*)

|

S!InSt3*)

|

InSt2*S InSt3*)

|

S!InSt2*S!InSt3*)

j

InSt2*S InSt3*)

|

S!InSt2*S!InSt3*);

60

OutSt2*=
(

(

RESETS
RESETS!
RESETS!
RESETS
RESETS!
RESETS
RESETS!
RESETS!

OutStl*=
(! RESETS
(! RESETS
(! RESETS!
(! RESETS!
(! RESETS
(! RESETS!
(! RESETS

OutStO*=
(! RESETS
(! RESETS
(! RESETS
(! RESETS!

! RESETS
sl =

cntrVS InStO*S InStl*S ! InSt2*S InSt3*)j
cntrVS InStO*S! InStl*S InSt2*S InSt3*)j
InStl*S InSt2*S!InSt3*)

J

ackS InStO*S! InStl*S! InSt2*S InSt3*)j
InStO*S InStl*S InSt2*S!InSt3*)

j

ackS!InStO*S InStl*S ! InSt2*S InSt3*)j
ackS!InStO*S!InStl*S InSt2*S InSt3*)j
InStO*S ! InStl*S! InSt2*S InSt3*)

;

InStO*S InStl*S! InSt2*)

j

cntr7S InStO*S! InStl*S InSt2*S InSt3*)|
InStO*S InStl*S InSt2*S ! InSt3*

)

|

InStO*S InStl*S! InSt2*S InSt3*)|
cntr7S!wrS!InStO*S InStl*S ! InSt2*S ! InSt3*

)

|

cntr7S! InStO*S InStl*S ! InSt2*S ! InSt3*
)

|

ackS! InStO*S! InStl*S InSt2*S InSt3*);

InStO*S InStl*S!InSt2*)

|

InStO*S!InStl*S InSt2*)|
InStO*S! InStl*S! InSt2*S InSt3*)|
InStO*S InStl*S InSt2*S InSt3*)|
cntr7S wrS!InStO*S InStl*S ! InSt2*S ! InSt3*)

;

sO =

muxa=

muxb=

InStO*S
!InStl*S
!InStO*S
!InStO*S

InStO*S
!InStl*S
! InStl*S
!InStO*S
! InStO*S

InStO*S
InStO*S
!InStO*S

InStO*S
InStO*S
!InStO*S

!InStl*S InSt2*S! InSt3*)

!

!InSt2*S InSt3*)

|

InStl*S! InSt2*S InSt3*)|
!InStl*S InSt2*S InSt3*);

InStl*S! InSt2*)

|

InSt2*)

!

!InSt2*S lnSt3*)

|

InStl*S! InSt3*)

|

InStl*S! InSt2*S InSt3*);

!InStl*S InSt2*S!InSt3*)

!

! InStl*S! InSt2*S InSt3*)|
!InStl*S InSt2*S InSt3*);

!InStl*S InSt2*S! InSt3*)

|

!InStl*S! InSt2*S InSt3*)|
InStl*S! InSt2*S InSt3*);

a=

b=

c=

(!InStO*S!InStl*S!InSt2*S! InSt3*)

;

(! InStO*S! InStl*S! InSt2*S InSt3*)

;

(!InStO*S!InStl*S InSt2*S ! InSt3*)

;

d=
(! InStO*S! InStl*& InSt2*S InSt3*);

61

e=

f=

g=

h=

i=

j
=

k=

1 =

IT1=

n=

o=

!InStO*& InStl*&! InSt2*&! InSt3*

!InStO*& InStl*&! InSt2*& InSt3*

!InStO*& InStl*& InSt2*&!InSt3*

!InStO*& InStl*& InSt2*& InSt3*

InStO*&!InStl*&!InSt2*&!InSt3*

InStO*&!InStl*&!InSt2*& InSt3*

InStO*&!InStl*& InSt2*&!InSt3*

InStO*&!InStl*& InSt2*& InSt3*

InStO*& InStl*&!InSt2*&!InSt3*

InStO*& InStl*&!InSt2*& InSt3*

InStO*& InStl*& InSt2*&!InSt3*

62

C. PROGRAM •FSM2.PRG'

INPUTS: RESET ;

OUTPUTS: cntr7 ;

start

ASSERT cntr7;
GOTO start;

D. FILE 'FSM2.INFO'

INORDER=
RESET
InStO*
InStl*
InSt2*;

OUTORDER=
OutSt2*
OutStl*
OutStO*
cntr7;

OutSt2*=
('RESETS !InSt2*);

OutStl*=
(IRESET& InStl*&!InSt2*)

I

(!RESET&!InStl*& InSt2*);
OutStO*=

(IRESET& InStO*&!InSt2*)

j

(IRESET& InStO*&!InStl*&
(!RESET&!InStO*& InStl*&

cntr7=
(InStO*& InStl*& InSt2*);

InSt2*)
!

InSt2*)

;

63

"100 KHZ CLOCK
"STATES
"STATES

"8086 CONTROL LINES
"FSM #1 STATES

APPENDIX B
ERASEABLE PROGRAMMABLE LOGIC DEVICE PROGRAMS

A. PROGRAM 'EPLD1.ABL'

MODULE EPLD1
TITLE 'SHIFT REGISTER CLOCK ENABLE 08/09/91'
"AUTHOR -- T. C. GONTER

Ul DEVICE 'E0310' ;

"Input pins

CLK
B,C,D,E
F,G,K,L,M
A0,BHE
N

"Output pins

LO_SR_LOAD_CLK

LO_SR_LOAD_CLK

LO_SR_SHIFT_CLK

LO_SR_SHIFT_CLK

HI_SR_LOAD_CLK

HI_SR_LOAD_CLK

HI_SR_SHIFT_CLK

HI_SR_SHIFT_CLK

"Equivalences

PIN 1;

PIN 2,3,4,5;
PIN 6,7,8,9,11;
PIN 12,13;
PIN 14;

PIN 19; "LOW SHIFT REGISTER
"CLOCK

IsType ' com, feed_or ,pos
'

;

PIN 18; "LOW SHIFT REGISTER
"CLOCK

IsType ' com, feed_or ,pos
'

;

PIN 17; "HIGH SHIFT REGISTER
"CLOCK

IsType ' com, feed_or ,pos
'

;

PIN 16; "HIGH SHIFT REGISTER
"CLOCK

IsType ' com, feed_or,pos
'

;

X = . X . ;

STATES = [B,C,D,F,E,G,K,L,M,N,X,X];

64

EQUATIONS
"CLK SR ON LOW TRANS
"OF CLK WHEN DOING
"PARALLEL LOAD.
"LOAD ON B,D,F,K

LO SR_LOAD_CLK = ! A0& ! CLK&
(

(STATES==~H200)

#

(STATES—
(STATES==
(STATES==

H800)#
H100)#
H020))

"CLK SR ON LOW TRANS
"OF CLK WHEN SHIFTING.
"SHIFT ON C,E,G,L

LO SR SHIFT CLK = !A0&((!CLK&((STATES==~H080)#
(STATES==~H040)#
(STATES==~H010)#
(STATES==~H400)

))#
(CLK&((STATES==~H004)#

(STATES ==~H008)
)))

;

"CLK SR ON LOW TRANS
"OF CLK WHEN DOING
"PARALLEL LOAD.
"LOAD ON B,D,F,K

HI_SR_LOAD_CLK = ! BHE& ! CLK&
(

(STATES==~H200)

#

(STATES—
(STATES==
(STATES—

H800)#
H100)#
H020));

"CLK SR ON LOW TRANS
"OF CLK WHEN SHIFTING.
"SHIFT ON C,E,G,L,M

HI_SR_SHIFT_CLK = ! BHE& ((! CLK& ((STATES==~H080)

#

(STATES==~H040)#
(STATES==~H010)#
(STATES==~H400)))#
(CLK&((STATES==~H004)#

(STATES =="H008)
)));

TEST_VECTORS ([CLK, STATES , AO , BHE] ->

[LO_SR_LOAD_CLK
/ LO_SR_SHIFT_CLK /

HI_SR_LOAD_CLK /
HI_SR_SHIFT_C

LK])
[0, *H200,0,1] -> [1,0,0,0]
[0, ~H800,0, 1] -> [1,0,0,0]
[0, *H100,0, 1] -> [1,0,0,0]
[0, ~H020,0,1] -> [1,0,0,0]
[1/ ~H200,0,1] -> [0,0,0,0]
[1/ ~H800,0,1] -> [0,0,0,0]

65

[1 , "H100 rO ,1
1

-> "0 rO pO ,0]

[1 , ~H020 rO , 1 -> :

,0 pO pO]

[0 , ~H008 rO p 1 -> rO pO pO]

[0 , "H080 rO p 1 -> "0
p 1 rO,pO]

[0 , ~H040 ,0 ,1 -> :

o pi rO,pO]

[0 , ~H010 rO , 1 -> :

o pi rO,pO]

[0 , ~H400 rO,,1 -> o,pi rO,pO]

[0 , ~H004 ,0 ,1 -> :

o ,0 rO,pO]

[1< , ~H008 rO ,1 -> o,,1 rO,,0]

[1, , ~H080 rO,,1 -> :

o pO rO, 0]
[1 p

~H040 ,0 .1 -> :

o ,0 rO,,0]

[1 , "H010 rO,,1 -> :

o pO rO,,0]

[1/ , "H400 rO,,1 -> rO,rO,,0]

[1/ , "H004 rO,,1 -> :

o pi rO,pO]

[0- , "H200 rl/,0 -> o,-0,rl/,0]

[0 - "H800 '1/,0 -> o
(
pO rl/,0]

[0< , "H100 -1/,0 -> o,pO rl/pO]

[0i , ~H020 rl/,0 -> o,pO '1/,0]

[1/ "H200 rl/,0 -> o,,0 rO,,0]

[1< r ~H800 rl/,0 -> o,,0 rO,,0]

[1/ ~H100 '1/ -> o,,0 pO,,0]

[1/ ~H020 '1/ -> :

o ,0 rO,,0]

[0; "H008,-1/ -> o,,0 rO,,0]

[0, "H080,'1/ -> o,pO,pO, 1]

[0- ~H040,'1/ -> o,pO,pO, 1]

[0, "H010,'1/ -> o
1
,0,-0, 1]

[0, ~H400,'1/ -> o,pO,rO, 1]

[0; "H004,'1/ -> o,,0,,0, 0]
[1/ -H008, 1

;

-> o,pO,,0, 1]

[1/ "H080,rl/ o- -> o
1
,0,-0, 0]

[1/ "H040,'1/ o
: -> o,,0,,0, 0]

[1/ "H010,'1/ -> o,-0,-0, 0]
[1< "H400, 1,

0" -> o,-0,,0, 0]

t
1

-
"H004, 1,

0" -> o,,0,,0, 1]

END EPLD1

66

B. PROGRAM EPLD2.ABL'

MODULE EPLD2
FLAG ' -r2

'

TITLE 'SHIFT REGISTER OUTPUT BUS ENABLE 07/31/91'

"AUTHOR: T. C. GONTER

Ul DEVICE 'E0310'

;

"Input pins

CLK
C i E f G/

L

B,D,F,K
A0,BHE
CNTR_7

"Output pins

LO_SR_BUS_EN

LO_SR_BUS_EN

HI_SR_BUS_EN

HI_SR_BUS_EN

RTERM1
RTERM1

RTERM2
RTERM2

RTERM3
RTERM3

"Equivalences
STATES = [C,E,G,L];

EQUATIONS

PIN 1;
PIN 2, 3,4,5;
PIN 6,7,8,9;
PIN 11,12;
PIN 13;

"100 KHZ CLOCK
"FINITE STATE INPUTS
"FINITE STATE INPUTS
"8086 CONTROL LINES
"SHIFT COUNT

PIN 19; "LOW SHIFT REG BUS
"ENABLE

IsType ' com, feed_or ,pos
'

;

PIN 18; "HIGH SHIFT REG BUS
"ENABLE

IsType ' com, feed_or,pos
'

;

PIN 17; "REDUCTION TERM
IsType ' com, feed_or ,pos

'

;

PIN 16; "REDUCTION TERM
IsType ' com, feed_or ,pos

'

;

PIN 15; "REDUCTION TERM
IsType ' com, feed_or,pos

'

;

"ENABLE LO SR
"OUTPUT ON SDA BUS

LO_SR_BUS_EN = ! A0& (RTERM3#RTERM2#RTERM1)

;

67

"ENABLE HI SR
"OUTPUT ON SDA BUS

HI_SR_BUS_EN = !BHE&(RTERM3#RTERM2#RTERM1)

;

RTERM1 = (!CLK&(B # D # F # K));

RTERM2 =
(
(C$(C&CNTR_7&!CLK))#
(E$(E&CNTR_7&!CLK))#
(G$(G&CNTR_7&!CLK)));

RTERM3 = (L$(L&CNTR_7&!CLK));

TEST_VECTORS ([AO , BHE , CNTR_7

,

[LO
C,E,G,L, !CLK,
_SR_BUS_EN,HI_

B,D,F,K] ->

_SR_BUS_EN
])

[0-'0,-0, 0;,0 '0,,0 '0,,0 '0,-0
J
,0]

[0-'li-0, 1,-0,rO,,0 rli,0 rO,,0 ,0]

[0, li o, 1,,0 '0,,0 -0,,0 -0,-0,-0]

[0-'li 1, 1,-0,,0 '0,'0,,0 '0,'0,,0]

[0, 1,'li 1,'0,rO,,0 'li,0 rO,-0,-°]

[0- 1,-0,'0,,1 r 0,-0,'0,'0,rO,-0,,0]

[0- 1,rO, o,,1 -0,,0 'lirO -0,-0,,0]

[0-'li'0;-0,,0,'li-0 '0,,0,'0,,0 -0]

[0-'li o, 0;'0,'li,0 'li '0, ,0]

[0-'li'0,-0,'0;'0,,1 '0,-0,,0,-0,,0]

[0-'li-0, 0; -0,,1 'li-0,'0,,0 ,0]

[0-'li-0,-0 <
,0 -0,,0 ' li'0,-0,,0 rO]

[0-'li-0, o,-0,'0,'0;'li,1 '0,,0 -0]

[0,'li,o i-0,-0,,0,'0,'li'0,'li,0 ,0]

[0<'li'0,'0,,0 '0,,0 ' li'0,rO,,1 rO]

[0,'li-0,-0, rO
i
,0 'li,0 -0,,0 '1]

[Oi'li'0, o.,0 '0,rO '0,,1 -0,,0 ,0]

[0-'li-0,-0,'0,rO,,0 rO,,0,'li,0 ,0]

[0-'li-0,-0,,0 r 0,,0 rO,,0 rO, 1 ,0]

[0-'li-0,'0,,0 rO,,0 rO,,0 '0,,0 '1]

[0.,0,-0 1
'0,,0 -0,,0 -0,'0,'0,-0,,0]

[li'0,'0
;
,1 ,0 rO,,0 'li-0,'0,,0 ,0]

[li,0 -0
i
'li,0 rO,,0 rO,'0,,0,'0,-0]

[li'0,'li'li,0 rO,,0 '0,-0,-0,-0,,0]

[li-0,,0,-0,,1 '0,-0,rO,'0,rO,'0,-°]

[li-0,'0,,0 ,1 '0
t
,0 'li'0

(
'0,-0,,0]

[li'0,rO,,0 ,0 'li'0,rO,'0
(
'0,'0,,0]

[!i'0,-0,'0,'0,'li-0,'li-0,'0 (
'0,,0]

[li o,rO,'0, o,'0,,1 rO,'0,-0,'0,,0]

[1-'0,-0,-0,,0 rO,,1 'li-0,-0,'0,,0]

[li-0,-0,,0,rO <o
t
<0>'li o,'0,-0,,0]

[lirO,'0,-0, o,,0,,0,'li,1 -0,-0,,0]

[li,0,'0,-0,,0 ,0,,0,'li-0,'li o,'0]

[li'0,-0,'0
(
,0 '0

;
-0,'li-0,'0, 1,,0]

[li-0,'0,,0 ,0 rO,-0,'li'0,'0, o,'1]

[li-0,'0,,0,,0 >o,,0 '0,,1 -0,'0,,0]

->
->
->
->
->
->
->
->
->
->
->
->
->
->
->
->
->
->
->
->
->
->
->
->
->
->
->
->
->
->
->
->
->
->
->
->

[
o

[1

-0];

'0];

[1 '0];

[1 '0];

[
o '0];

[1 '0];

[1 '0];

[1 '0];

[1 '0];

[1 rO];

[1 rO];

[
o ,0];

[1 '0];

[1 '0];

[1 '0];

[1 '0];

[
o rO];

[
o '0];

[
o '0];

[
o ,0];

[
o rO];

[
o 'i];

[o 'i];

[
o 'i];

[
o 'i];

[
o 'i];

[
o -i];

[o -1];

[Oi'i];

[
o -I];

[Oi-0];

[Oi-I];

[Oi-I];

[o i];

[o,'i];

[o, o];

68

[1,0,0,0,0,0,0,0,0, 1,0,0]
[1,0,0,0,0,0,0,0,0,0, 1,0]
[1,0,0,0,0,0,0,0,0,0,0, 1]

->
[0,0]

->
[0,0]

->
[0,0]

END EPLD2

69

C. PROGRAM 'EPLD3.ABL'

MODULE EPLD3
TITLE 'FSM #2 -- COUNTER CONTROL 06/10/91'

Ul DEVICE * E0310' ;

"Input pins

B,D,F,K PIN 2,3,4,5; "FINITE STATE
"INPUTS

L,C,E,G,M,N

"Output pins

COUNTER_CLR

COUNTER EN

PIN 6,7,8,9,11,12; "FINITE STATE
" INPUTS

PIN 19;

PIN 18;

"COUNTER CLEAR

"COUNTER ENABLE

EQUATIONS

COUNTER_CLR = B#D#F#K#M;

COUNTER EN = C#E#G#L#N;

TEST VECTORS ([B,D,F,K,M,C,E,G,L,N] ->

[COUNTER_CLR , COUNTER_EN
]

)

0,0,0,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
0, 1,0,0,0,0,0,0,0,0
0,0, 1,0,0,0,0,0,0,0
0,0,0, 1,0,0,0,0,0,0
0,0,0,0, 1,0,0,0,0,0
0,0,0,0,0, 1,0,0,0,0
0,0,0,0,0,0, 1,0,0,0
0,0,0,0,0,0,0, 1,0,0
0,0,0,0,0,0,0,0, 1,0
0,0,0,0,0,0,0,0,0,

1

]
-> [0,0]

]
-> [1,0]

]
-> [1/0]

]
-> [1,0]

]
-> [1/0]

]
-> [1/0]

]
-> [0,1]

]
-> [0,1]

]
-> [0,1]

]
-> [0,1]

]
-> [0,1]

END EPLD3

70

D. PROGRAM 'EPLD4.ABL'

MODULE EPLD4
FLAG ' -r2 '

TITLE 'FSM #2 -- BIT SHIFT COUNTER 07/31/91

Ul DEVICE 'E0310 1

;

"Input pins

CLK
COUNTER_CLR
COUNTER_EN
N,A,H, J, 1,0
01,02,03
Q1,Q2,Q3
BHE,A0

"Output pins

CNTR_7
CNTR 7

STOP_START_SET
STOP START SET

PIN 1;

PIN 2;
PIN 3;
PIN 4,5,6,7,8,9;
PIN 14,15,16;

"100 KHZ CLOCK
"CLEAR COUNTER
"ENABLE COUNTER
"FSM #1 STATES
"COUNTER

LO_CLK_DISABLE

LO_CLK_DISABLE

HI_CLK_DISABLE

HI_CLK_DI SABLE

"Equivalences

CK = . C
.

;

EQUATIONS

"Reset

[Q1.RE,Q2.RE,Q3.RE] = COUNTER_CLR;

Q3 := COUNTER_EN&!Q3;

IsType ' f eed_reg, reg_d,pos
'

;

PIN 12,11; "8086 CONTROL LINES

PIN 19; "COUNTER = 7

IsType ' com, feed_or ,pos
'

;

PIN 18; "SET STOP_START FF
IsType ' com, feed_or ,pos

'

;

PIN 13; "LO FERRO SCL
"ENABLE

IsType ' com, feed_or ,pos
'

;

PIN 17; "HI FERRO SCL
"ENABLE

IsType ' com, feed_or ,pos
'

;

"RESET COUNTER
"FROM EPLD3

"COUNTER ONLY COUNTS
"IN STATES C,E,G,L,N.
"SEE EPLD3.

71

Q2 := (COUNTER_EN&Q2&!Q3)#
(COUNTER_EN& ! Q2&Q3)

;

Ql := (C0UNTER_EN&Q1&!Q3)#
(C0UNTER_EN&Q1 & ! Q2&Q3)

#

(C0UNTER_EN&!Q1&Q2&Q3);

CNTR_7 = Q1&Q2&Q3;

LO_CLK_DISABLE = ! A0& (A#I#0# (H& ! CLK)

#

(J&!CLK)#(N&CNTR_7&!CLK))

;

HI_CLK_DISABLE = ! BHE& (A# I#0# (H& ! CLK)

#

(J&!CLK)#(N&CNTR_7&!CLK));

STOP_START_SET = I#(0&!CLK);

TEST_VECTORS
(

[CLK, COUNTER_CLR, COUNTER_EN] ->

[0,1,0] ->
[

[CK,1,0] ->
[

[CK,0,1] ->
[

[CK,0,1] ->
[

[CK,0,1] ->
[

[CK,0,1] ->
[

[CK,0,1] ->
[

[CK,0,1] ->
[

[CK,0,1] ->
[

[CK,0,1] ->
[

0,0,0,0
0,0,0,0
0,0,1,0
0,1,0,0
0,1,1,0
1,0,0,0
1,0,1,0
1,1,0,0
1,1,1,1
0,0,0,0

Q1,Q2,Q3,CNTR_7]

)

TEST_VECTORS
(
[N,CNTR 7,A,I,H,J,C),c:lk,a(),BHE] -

[HI CLK DISABLE, LO CLK DISABLE, ST(

[1,1,0,0,0,0,0,1,0""l
1

-> 0,0,0];
[1,0,0,0,0,0,0,0,0, 1 -> 0,0,0];
[1,0,0,0,0,0,0,1,0, 1 -> 0,0,0];
[0,0,1,0,0,0,0,0,0, 1 -> 0,1,0];
[0,0,1,0,0,0,0,1,0, 1

: -> 0,1,0];
[0,0,0,1,0,0,0,0,0, 1

: -> 0,1,1];
[0,0,0,1,0,0,0,1,0, 1 -> 0,1,1];
[0,0,0,0,1,0,0,0,0, 1 -> 0,1,0];
[0,0,0,0,1,0,0,1,0, 1 -> 0,0,0];
[0,0,0,0,0,1,0,0,0, 1

: -> 0,1,0];
[0,0,0,0,0,1,0,1,0, 1

: -> 0,0,0];
[0,0,0,0,0,0,1,0,0, r -> 0,1,1];
[0,0,0,0,0,0,1,1,0, 1

: -> 0,1,0];
[1,1,0,0,0,0,0,1,1, o

: -> 0,0,0];
[1,0,0,0,0,0,0,0,1, o

: -> 0,0,0];
[1,0,0,0,0,0,0,1,1, o

: -> 0,0,0];
[0,0,1,0,0,0,0,0,1, -> 1,0,0];
[0,0,1,0,0,0,0,1,1, o

: -> 1,0,0];
[0,0,0,1,0,0,0,0,1, o

: -> 1,0,1];

72

[0,0,0,1,0,0,0,1,1,0] -> [1,0,1]
[0,0,0,0,1,0,0,0,1,0] -> [1,0,0]
[0,0,0,0,1,0,0,1,1,0] -> [0,0,0]
[0,0,0,0,0,1,0,0,1,0] -> [1,0,0]
[0,0,0,0,0,1,0,1,1,0] -> [0,0,0]
[0,0,0,0,0,0,1,0,1,0] -> [1,0,1]
[0,0,0,0,0,0,1,1,1,0] -> [1,0,0]

END EPLD4

73

E. PROGRAM •EPLD5.ABL'

MODULE EPLD5
FLAG ' -r2

'

TITLE 'FSM #1 -- FERRO I/O CONTROLLER 06/13/91'

Ul DEVICE ' E0310'

;

"Input pins

CLK

FERRO

ACK

CNTR_7

RW

PIN 1;

PIN 2;

PIN 3;

PIN 4;

PIN 6;

"100 KHZ CLOCK

"CLEAR/ENABLE
"FSM

"MEMORY
"ACKNOWLEDGE

"FSM #2=7

" 1=RD, = WR

Q1,Q2,Q3,Q4
Q1,Q2,Q3,Q4

RTERM1
RTERM1

"Equivalences

PIN 12,13,14,15; "COUNTER
IsType ' feed_reg, reg_d,pos

'

;

PIN 16; "REDUCTION TERM
IsType ' com, feed_or ,pos

'

;

2\ — • A • J

COUNT = [Q1,Q2,Q3,Q4];

EQUATIONS

"Reset

[Q1.RE,Q2.RE,Q3.RE,Q4.RE] = FERRO; "RESET FSM

RTERM1 = (!FERRO&CNTR_7&((COUNT == ~H2)# (COUNT == ~H6)#
(COUNT == "H4)))#

(!FERRO&!ACK& (COUNT == "H3))#
(!FERRO&(COUNT == "HO));

74

Q4 :

Q3 :
=

Q2 :
=

Ql

TEST_VECTORS

!FERR0&!CNTR_7&(COUNT == ~HD))#
!FERRO&ACK&(COUNT == ~HC))#
!FERRO&!CNTR_7&(COUNT == AHB))#
!FERRO&(COUNT == ~HA))#
!FERRO&!ACK&((COUNT == ~H5)#
COUNT ==~H3)#(COUNT==~H9)

))#

RTERM1;

FERR0&CNTR_7&Q1&Q2& IQ3&Q4)#
FERR0&!CNTR_7&Q1&!Q2&Q3&Q4)#
FERRO&!Q2&Q3&!Q4)#
FERR0&!Q1&Q2&Q3&!Q4)#
FERR0&!Q1&!Q2&!Q3&Q4)#
FERRO&ACK&((IQ1&Q2& IQ3&Q4) # (Q1& !Q2& IQ3&Q4)))#

FERRO& IACK& !Q1& IQ2&Q3&Q4)

;

FERR0&Q1&Q2&!Q3)#
FERRO&CNTR_7&Ql& ! Q2&Q3&Q4)

#

FERRO& IQ1&Q2&Q3& ! Q4)

#

FERRO& 1Q1&Q2& ! Q3&Q4)

#

FERRO&CNTR_7& ! RW& IQ1&Q2& ! Q3& !Q4)

#

FERR0&!CNTR_7&!Q1&Q2&!Q3&!Q4)#
FERRO&ACK&IQ1&1Q2&Q3&Q4)

;

FERR0&Q1&Q2&!Q3)#
FERR0&Q1&!Q2&Q3)#
FERRO&Q1& !Q2& ! Q3&Q4)

#

FERRO& !Q1&Q2&Q3&Q4)#
FERR0&CNTR_7&RW&!Q1&Q2&!Q3&!Q4) ;

, FERRO,CNTR_7,RW, ACK]
->[Q1,Q2,Q3,Q

[0, 1,0,0,
- -> 0,0,0,0];

[C,1,0,0,0
: -> 0,0,0,0];

[0,0,0,0, o
: -> 0,0,0,1];

[C,0,0,0,0
: -> 0,0,1,0];

[C,0,1,0,0
: -> 0,0,1,1];

[C, 0,0, 0,1 -> 0,1,0,0];
[C, 0,1, 0,0 -> 0,1,0,1];
[c,o,o,o,r -> 0,1,1,0];
[C, 0,1,0,0 -> :

, 1 , 1 , 1
] ?

[C, 0,0, 0,0 -> 1/0,0,0];
[C, 0,0, 0,0 -> 0,0,0,0];
[C, 0,0, 0,0 -> 0,0,0,1];
[C, 0,0, 0,0 -> 0,0,1,0];
[C, 0,1,0,0 -> 0,0,1,1];
[C, 0,0,0,

1

-> 0,1,0,0];
[C,0, 1,1,0 -> :

1 , , , 1
] ;

[C, 0,0,0,

1

-> 1,0,1,0];
[C, 0,0, 0,0 -> :

1 , , 1 , 1] ;

[C, 0,1,0,0 -> :

1 , 1 , ,]

;

75

[0,0,0,0,1] -> [1,1,0,1];
[C, 0,1,0,0] -> [1,1,1,0];
[C, 0,0, 0,0] -> [0,0,0,0];

END EPLD5

76

F. PROGRAM 'EPLD6.ABL'

MODULE EPLD6
TITLE 'FSM #1 OUTPUT STATE DECODE 07/01/91

Ul DEVICE 'E0310
'

;

"Input pins

Q1,Q2,Q3,Q4

"Output pins

A,B,C,D,E,F
A,B,C,D,E,F

G,H
G,H

PIN 2,3,4,5; "FSM COUNTER

PIN 12,13,14,15,16,17; "OUTPUT STATES
IsType ' com, f eed_or ,pos

'

;

PIN 18,19; "OUTPUT STATES
IsType ' com, f eed_or ,pos

'

;

EQUATIONS

A =

B =

C =

D =

E =

F =

G =

H =

!Q1&!Q2&!Q3&!Q4);

IQ1&IQ2&1Q3&Q4)

;

!Q1&!Q2&Q3&!Q4);

!Q1&!Q2&Q3&Q4)

;

!Q1&Q2&!Q3&!Q4);

IQ1&Q2&IQ3&Q4)

;

IQ1&Q2&Q3&IQ4)

;

IQ1&Q2&Q3&Q4)

;

TEST_VECTORS
([Ql , Q2 , Q3 , Q4

]

[0,0,0,0]
[0,0,0,1]
[0,0,1,0]
[0,0,1,1]
[0,1,0,0]
[0,1,0,1]
[0,1,1,0]
[0,1,1,1]

END EPLD6

>[A,B,C,D,E,F,G,H])
->

[1,0,0,0,0,0,0,0]
-> [0, 1,0,0,0,0,0,0]
-> [0,0, 1,0,0,0,0,0]
-> [0,0,0,1,0,0,0,0]
-> [0,0,0,0, 1,0,0,0]
-> [0,0,0,0,0, 1,0,0]
-> [0,0,0,0,0,0,1,0]
-> [0,0,0,0,0,0,0,1]

77

PIN 2,3,4,5;

G. PROGRAM 'EPLD7.ABL'

MODULE EPLD7
TITLE 'FSM #1 -- OUTPUT STATE DECODE 07/31/91'

Ul DEVICE 'E0310*

;

"Input pins

Q1,Q2,Q3,Q4

"Output pins

I, J,K,L,M,N,0

I, J,K,L,M,N,0

EQUATIONS

I = (Q1&!Q2&!Q3&!Q4)

;

J = (Q1&IQ2&IQ3&Q4);

K = (Q1&IQ2&Q3&1Q4);

L = (Q1&IQ2&Q3&Q4);

M = (Q1&Q2&IQ3&IQ4);

N = (Q1&Q2&1Q3&Q4);

= (Q1&Q2&Q3&IQ4)

;

"COUNTER

PIN 12,13,14,15,16,17,18; "OUTPUT
"STATES

IsType ' com, feed_or ,pos
'

;

TEST_VECTORS
(
[Ql ,Q2 , Q3 , Q4] ->[I

[1,0,0,0]
[1,0,0,1]
[1,0,1,0]
[1,0,1,1]
[1,1,0,0]
[1,1,0,1]
[1,1/1,0]

->
->
->
->
->
->
->

J,K,L,M,N,0])
1,0,0,0,0,0,0]
0, 1,0,0,0,0,0]
0,0, 1,0,0,0,0]
0,0,0, 1,0,0,0]
0,0,0,0, 1,0,0]
0,0,0,0,0,1,0]
0,0,0,0,0,0, 1]

END EPLD7

78

H. PROGRAM * EPLD8.ABL*

MODULE EPLD8
TITLE 'FSM #1 - OUTPUT STATE DECODE 07/01/91

Ul DEVICE 'E0310 '

;

"Input pins

01,02,03,04

"Output pins

MUXA,MUXB

MUXA,MUXB

SO, SI

SO, SI

EQUATIONS

PIN 2,3,4,5; "COUNTER

PIN 13,14; "MUX CONTROL
" LINES

IsType ' com, feed_or
,
pos

'

;

PIN 15,16; "SHIFT REG MODE
"CONTROL

IsType ' com, feed_or ,pos
'

;

MUXA = (Q1&!Q2&Q3&!Q4)#
(Q1&!Q2&!Q3&Q4)#
(IQ1&IQ2&Q3&Q4)

;

MUXB = (Q1&!Q2&Q3&!Q4)#
(Ql&!Q2Sc!Q3&Q4)#
(1Q1&Q2&IQ3&Q4);

SI =

SO =

Q1&!Q2&Q3&!Q4)#
!Q2&!Q3&Q4)#
!Q1&Q2&!Q3&Q4)#
IQ1&IQ2&Q3&Q4)

;

Q1&Q2&!Q3)#
!Q2&Q3)#
!Q2&!Q3&Q4)#
!Q1&Q2&!Q4)#
IQ1&Q2&IQ3&Q4);

TEST VECTORS ([Q1,Q2,Q3,Q4]
[0,0,0,0]
[0,0,0,0]
[0,0,0,1]
[0,0,1,0]
[0,0,1,1]
[0,1,0,0]
[0,1,0,1]

>[MUXA,MUXB,S0,S1]

)

-> [0,0,0,0]
-> [0,0,0,0]
-> [0,0,1,1]
-> [0,0,1,0]
-> [1,0,1,1]
-> [0,0,1,0]
-> [0,1,1,1]

79

[0,1,1,0] -> [0,0,1,0]
[0,1,1,1] -> [0,0,0,0]
[1,0,0,0] -> [0,0,0,0]
[1,0,0,1] -> [1,1,1,1]
[1,0,1,0] -> [1,1,1,1]
[1/0,1,1] -> [0,0,1,0]
[1,1,0,0] -> [0,0,1,0]
[1,1,0,1] -> [0,0,1,0]
[1,1,1,0] -> [0,0,0,0]

END EPLD8

80

I. PROGRAM 'EPLD9.ABL'

MODULE EPLD9
TITLE 'ACKNOWLEDGE ENABLE 08/12/91'

Ul DEVICE 'E0310
'

;

"Input pins

CLK
CNTR_7
0,C,E,G,L
B,H, I, K
BHE,A0

PIN 1;
PIN 2;
PIN 3,4,5,6,7;
PIN 8,9,11,12;

PIN 13, 14;

"100 KHZ CLK
"SHIFT COUNT = 7

"FSM #1 STATES
"FSM #1 STATES

"8086 CONTROL LINES

"Output pins

HI_START_

HI_START_

LO_START_

LO_START_

ACK_EN
ACK_EN

EQUATIONS

ACK EN =

STOP_EN PIN 18; "SDA START OR STOP
"CONDITION BUS ENABLE

STOP_EN IsType ' com, feed_or
,
pos

'

;

STOP_EN PIN 17; "SDA START OR STOP
"CONDITION BUS ENABLE

STOP_EN IsType ' com, feed_or
,
pos

'

;

PIN 19; "SDA BUS ACK ENABLE
IsType ' com, feed_or ,pos

'

;

(C&CNTR_7&!CLK)#
(E&CNTR_7&!CLK)#
(G&CNTR_7&!CLK)#
(L&CNTR_7&!CLK)

;

HI START STOP EN =

LO START STOP EN =

!BHE&(I#
(H&!CLK)#
(K&CLK)#
(B&CLK)#0);

!A0&(I#
(H&!CLK)#
(K&CLK)#
(B&CLK)#0);

TEST_VECTORS
([C,CNTR_7, !CLK,E,G,L]
[0,1,1,0,0,0] -> [0]
[1,1,1,0,0,0] -> [1]
[0,1,1,0,0,1] -> [1]

-> [ACK_EN])

81

TEST_VECTORS
(

0,1,1,0,1,0] -> [1]
0,1,1,1,0,0] -> [1]
1,0,1,0,0,0] -> [0]
0,0,1,0,0,1] -> [0]
0,0,1,0,1,0] -> [0]
0,0,1,1,0,0] -> [0]

A0,BHE,B, I,H,K,0,CLK] ->

[H I_START_STOP_EN , LO_START_STOP_EN
]

)

, 1 , 1 rO '0,,0 '0,,0 -> '0,rO];
,1 ,1 rO rO, rO,,1 -> o,rl]/
,1 '0, r

l rO, ,0,,1" -> o
J
i];

,1 ,0 ,1 ,0,,0,,0,,0 -> '0,ri];
,1 ,0 ,0 '1/-0,,0,,0 -> o,-I];
,1 ,0 ,0,rl/ ,0,,1 -> o, , 0];
,1 ,0,-0,'0, 1,rO, 1 -> o,-I];
,1 r 0,-0,-0, 1,,0,,0 -> o,,0];
1,r0;,0,,0,'0,'1/,1 -> o,-I];

,1 rO,rO,'0, o,'1/,0 -> o,ri];
1,,o

t
,1 -0,,0,,0,,o t

,0 -> o,rO];
1 ,0,rl,rO,rO, o,<o, 1 -> 1 rO];
1 >o>-0,rl/-0,rO,rO,,1 -> :

ljrO];
1 ,0 '0,rl/,0,-0,,0, -> :

1,rO];

1,,o t
-0,-0,'1/-0,,0, -> :

1,rO];
1 ,0,'0,,0, 1, o,,0, l' -> o,rO];

1, o,rO,,0,,0, 1
J,0, 1 -> :

1, 0];
1,-0,,0,-0,,0; 1, o, -> o,rO];
1,'0,,0,,0,,0,'0,'1/ 1

: -> :

1,rO];
1 ,0,'0,-0,-0, o, 1, -> 1, 0];

END EPLD9

82

J. PROGRAM 'EPLD10.ABL'

MODULE EPLD10
FLAG ' -r2

'

TITLE 'MEMORY CHIP SELECT 09/10/91'

Ul DEVICE '
E0310'

;

"Input pins

A0,BHE
A14,A13,A12
1,0

"Output pins

LOWRAM1
LOWRAM1

LOWRAM2
LOWRAM2

HIRAM1
HIRAM1

HIRAM2
HIRAM2

ROMCS
ROMCS

FERRO
FERRO

RDY1

RDY1

"Equivalences

PIN 2,3;
PIN 4,5,6;
PIN 7,8;

"808 6 CONTROL SIGNALS
"ADDRESS LINES
"FERRO FSM STATES

PIN 12; "LOW BYTE FIRST RAM BANK CS
IsType ' com, feed_or , neg

'

;

PIN 13; "LOW BYTE 2ND RAM BANK CS
IsType ' com, feed_or , neg

'

;

PIN 14; "HI BYTE FIRST RAM BANK CS
IsType ' com, feed_or , neg

'

;

PIN 15; "HI BYTE 2ND RAM BANK CS
IsType ' com, feed_or , neg

'

;

PIN 16; "ROM CHIP SELECT
IsType ' com, f eed_or , neg'

;

PIN 17; "FERRO MEMORY CHIP SELECT
IsType ' com, feed_or , neg

'

;

PIN 18; "WAIT STATE GENERATOR FOR
"8086

IsType ' com, feed_or ,pos
'

;

X = . X .

;

ADDRESS =[A14,A13, A12,X,X,X, X,X,X,X, X,X,X,X];

EQUATIONS

ILOWRAM1 = !A0&(ADDRESS >= "H2000) & (ADDRESS< "H2800);

ILOWRAM2 = !A0&(ADDRESS >= "H2800)& (ADDRESS< = "H2FFF);

IHIRAM1 = !BHE&(ADDRESS >= "H2000) & (ADDRESS< "H2800);

83

IHIRAM2 = !BHE& (ADDRESS >= ~H2800) & (ADDRESS< = ~H2FFF);

IROMCS = (ADDRESS >= ~H3000);

1FERRO = (ADDRESS >= "H1000)& (ADDRESS < ~H1800);

RDY1 = FERRO # I # O;

TEST_VECTORS
(
[ADDRESS ,A0 , BHE

]

"H2000
"H2000
~H27FF
~H27FF
"H2800
"H2800
~H2FFF
"H2FFF
"H3000
"H3000
"H1000
"H1000
-H17FF
-H17FF
"H1800
~H1800

Ml,LOWRAM2
#
HIRAM1,HIRAM2

,0,1; -> 0,1,1,1,1,1];
,1,0; -> :

1, 1,0, 1,1,1];
f o,i; -> 0,1,1,1,1,1];
,1,0; -> 1,1,0,1,1,1];
,0,1 -> 1,0,1,1,1,1];
,1,0; -> :

1, 1,1, 0,1,1];
,0,1; -> 1,0,1,1,1,1];
,1,0; -> 1,1,1,0,1,1];
,0,1; -> 1,1,1,1,0,1];
,1,0; -> :

1, 1,1, 1,0,1];
,0,1; -> :

1, 1,1, 1,1,0];
,1,0; -> 1,1,1,1,1,0];
,0,1; -> :

1, 1,1, 1,1,0];
,1,0; -> :

1, 1,1, 1,1,0];
,1,0; -> 1,1,1,1,1,1];
,0,1; -> 1,1,1,1,1,1];

,ROMCS, FERRO]

)

TEST VECTORS
(
[FERRO,
[1,0,0]
[0,1,0]

0,1]

1,0] -> [RDY1])
-> [i];
-> [l];
-> [i];

END EPLD10

84

A. BOARD LAYOUT

APPENDIX C
CIRCUIT SCHEMATICS

[J

I"!

OE3,

sLd[Zl

a
1 3|

2

n El

85

B. SCHEMATICS

LTi .—

1

I.J (J
cr ly".

a 2o <
*t C£

»—

lO <t
oo
&i «r
ou O

////// /./

ooqcoooq;

777777 77777

\ O Q O O O Q Z
IS

"rrrrrrhr-lrH'-

7/

oocaooooozii

> 1-^ OQ O". X

O O O O O <

H#l#]ti
EEC

—

_

p

77777777 ///// >/

>

>/,/,-/' ' '/, ZZAL
s.U-LsLr.

,

o-^oc

si£|EEf

fl"

86

/777777T ////////

//////////<

////////

O L J £^ CJ (

tls|=

• «cr>-

^r

///////////

.000000 tlsfc

ET

'//// /////

"777777^7"

, O O O O O O <

///////////

. -77—'—~~
OOOOOCjOO

SO <7» — — (UJ ^S
< < < «I^J^

1 I I ! I V

?

;tf

//////// /V//V//////V

ffil
uoooooooo

rn W
////,-

87

88

1 1 - 1
<

1'

* <
o*1 ool ^ UJ

-
" kotos' "* 2i

—ris -!-— ^ 5 o
E

.-

-

Y Ql
X

O* — 1 X
ii .

|
i i—ii r~~

"

^

»•

I

'

D

3 o z *
Pt*tt=.rH+T
u— ^ «o c-* — K-J » <o oi ~~ , <= « < « tfo < < < < -

a A „ ^ |o. ~ <-, .-. <-,| •
u_

o

pJ W-k H=h ::

1 — i 1

1

» > ii i i 1

v
-." 1

*

o,s ""l:> °8<,3J /777~ ' (((sna »i*q
•? I« .- *„» K, N-« -

OIS sna *as * ' o e. o a o___

, ,

*<HH=|° = S3Ife -

=-|=M -th -I'M ~1tI ~._rp r-> J^ r- o>

«•- — .- — CMrs,r>*CM ^
rv, Si

—

•w — «>* *o ^ ft—i
•- <-" •*"> •» h-j 3 * _ rsi ~-i *> k*j — <"-*«-> ^-k^i =

= 5I 1 1 Y
1 LI V est •rlteffla — — --,L-. *-- L» — — —

<_> X
,

,

^ 1 ^, a a o o o c
..'.....* la;

z,ri :

^ * *«._>.OUJ U

z <** .^r,«L-„„|
«•> " °|a

^_ , . o • A <» <*

--l

. ' C -L ' _ ^i

c '\ H • A

IP

-
' ^4= !fx4^ o

" - S A - ° —i ""
*ty

- «
uj » /\ •

'
'~

"*j '*> iAj
£ 1 1 *

1 4^1
^2

«c o
H—* —

'

o

r- r- «n i-~ <* ^ -r -

>- ^

2 < ^^ r^
•" — "^ ^,

r- o tj ouLo oqcjL .-^ <- oooot sisspss
=

II J n ,—
4 .

i f 1

—« --- - 1
• J

90 i-— 4 •— , X • «»—

«

' • • • 1 1> „
axnn

« J> »

Jo" iO to %q •'.£ oiOQ >0 *0 90 —b
iv 6¥ Z> . v* T* 1

»* fv tnq im.ip, £ v" 9V* /;** iv*

89

rt>

|t_j ^- •-> <-n* — k— »•--»«
O « < < < O -C < -

Jo* 0* r« p* o.|— — — «

•* m c* — *!>'

x

T

.tv.. Odaij

rr

tttj

- «M "O h-j — O* O * fi—

i

c < < *k> * -c * *\o
— ^- »— *- |— (M NM <»(<%«

fhH-fc $EE[

re -&^—

a

/777 7777

a. tm

N3~MDV~"U

ESSSSK

I IftJ U. C» X i

!B a
*As

- [^ <n <n cm <-.[*--. t/t is> »- — *— •— [^ *^* r^t c^ cvtp^ «-i t

T y i—I—I—i u
-|«— r*. ex r^. c|<-n« wi i/i

. ' wrw V" TV il»'ly.««4«»»JBP» S« -ST*-

90

LIST OF REFERENCES

1. Bondurant, D., and Gnadinger, F., "Ferroelectrics for
Nonvolatile RAMs," Spectrum v. 26, pp. 30-33, July 1989.

2. Bogert, H. D., "FERRAM: The Memory the Market Always
Wanted", Dataquest Research Newsletter

, pp. 1-12, January
1988.

3. Intel Corporation, The 8086 Family User's Manual,
October 1979.

4. Intel Corporation, 8086/8088 User's Manual Programmer '

s

and Hardware Reference , 1989.

5. National Semiconductor, NM24CF04, 4096-Bit (512x8) CMOS
Serial Nonvolatile Memory, November 1990.

91

BIBLIOGRAPHY

1. Evans, J. T., Womack, R. , and Tolsch, D. , "Ferroelectric
Non-volatile Memory, " Proceedings of the IEEE National
Aerospace and Electronics Conference, v. 1, pp. 65-72,
1988.

2. Scott, J.F., and Paz de Araujo, C. A., "Ferroelectric
Memories," Science, v. 246, pp. 1400-1405, 15 December
1989.

3. Simons, M. , "Radiation effects in GaAs integrated
circuits: A comparison with silicon," Proceedings of the
IEEE Gallium Arsenide Integrated Circuit Symposium, pp.
124 - 128, 1983.

4. Harris Semiconductor, Rad-Hard/Hi-Rel Data Book, 1990.

5. Bogard, M. , "Ferroelectric Memory Applications,"
Dataguest Report, pp 1-12, 1988.

6. Scott, J. F. and others, "Radiation Effects on
Ferroelectric Thin-Film Memories: Retention Failure
Mechanisms", Journal of Applied Physics, v. 66,
1 August 1989.

7. Bondurant, D., "Ferroelectric RAM Memory Family for
Critical Data Storage", Proceedings of the First
Symposium on Integrated Ferroelectrics , Colorado Springs,
CO, pp. 212-215, March 1989.

92

INITIAL DISTRIBUTION LIST

No. Copies

1. Defense Technical Information Center 2

Cameron Station
Alexandria, Virginia 22304-6145

2. Library, Code 52 2

Naval Postgraduate School
Monterey, California 93943-5002

3. Department Chairman, Code EC 1

Department of Electrical and
Computer Engineering
Naval Postgraduate School
Monterey, California 93943-5002

4. Commandant of the Marine Corps 1

Code TE-06
Headquarters, U.S. Marine Corps
Washington, D.C. 20380-0001

5. Professor Douglas Fouts, Code EC/Fs 3

Department of Electrical and
Computer Engineering
Naval Postgraduate School
Monterey, California 93943-5002

6. Professor Herschel Loomis, Code EC/Lm 1

Department of Electrical and
Computer Engineering
Naval Postgraduate School
Monterey, California 93943-5002

7. CAPT Thomas C. Gonter 2

MCRDAC
C2IS
Quantico, Virginia 22134-5080

93

Thesis
G54753
c.l

Gonter
A microprocessor inter-

face for the NM24CF04
serial-access ferroelec-
tric memory.

Thesis
G54 753

c.l
Gonter
A microprocessor inter-

face for the NM24CF04
serial-access ferroelec-
tric memory.

