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Circulant matrices are an important family of operators,
which have a wide range of applications in science and
engineering-related fields. They are, in general, non-sparse
and non-unitary. In this paper, we present efficient quantum
circuits to implement circulant operators using fewer resources
and with lower complexity than existing methods. Moreover,
our quantum circuits can be readily extended to the
implementation of Toeplitz, Hankel and block circulant
matrices. Efficient quantum algorithms to implement the
inverses and products of circulant operators are also provided,
and an example application in solving the equation of motion
for cyclic systems is discussed.

1. Introduction
Quantum computation exploits the intrinsic nature of quantum
systems in a way that promises to solve problems otherwise
intractable on conventional computers. As the most widely used
model of quantum computation, a quantum circuit provides a
complete description of a specified quantum algorithm, whose
computational complexity is determined by the number of
quantum gates required. In general, the number of two-level gates
(i.e. unitary matrices acting non-trivially on two-dimensional
subspaces, which are universal for computation) needed to
decompose an arbitrary unitary in N dimensions scales as
O(N2). There are many known N-dimensional matrices that
cannot be decomposed as a product of fewer than N − 1 two-
level gates [1], and thus cannot be implemented efficiently on
a quantum computer. An essential research focus in quantum
computation is to explore which kinds of linear operations
(either unitary or non-unitary) can be efficiently implemented
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using O(poly(log N)) number of elementary quantum gates (i.e. one- or two-level unitary matrices) and
measurements.

Significant breakthroughs in the area include the development of efficient quantum algorithms for
Hamiltonian simulation, which is central to the studies of chemical and biological processes [2–8].
Recently, Berry, Childs and Kothari presented an algorithm for sparse Hamiltonian simulation achieving
near-linear scaling with the sparsity and sublogarithmic scaling with the inverse of the error [8].
Additionally, using the Hamiltonian simulation algorithm as an essential ingredient, Harrow et al. [9]
showed that for a sparse and well-conditioned matrix A, there is an efficient algorithm (known as the
HHL algorithm) that provides a quantum state proportional to the solution

∑
j xj|j〉 of the linear system

of equations Ax = b.
However, as proven by Childs & Kothari [10], it is impossible to perform a generic simulation of an

arbitrary dense Hamiltonian H in C
N×N in time O(poly(‖H‖, log N)), where ‖H‖ is the spectral norm, but

possible for certain non-trivial classes of Hamiltonians. It is then natural to ask under what conditions
we can extend the sparse Hamiltonian simulation algorithm and the HHL algorithm to the realm of
dense matrices. In this paper, we use the ‘unitary decomposition’ approach developed by Berry et al. [7]
to implement dense circulant Hamiltonians in time O(poly(‖H‖, log N)). Combining this with the HHL
algorithm, we can also efficiently implement the inverse of dense circulant matrices and thus solve
systems of circulant matrix linear equations.

Furthermore, we provide an efficient algorithm to implement circulant matrices C directly, by
decomposing them into a linear combination of unitary matrices. We then apply the same technique to
implement block circulant matrices, Toeplitz and Hankel matrices, which have significant applications
in physics, mathematics and engineering [11–21]. For example, we can simulate classical random walks
on circulant, Toeplitz and Hankel graphs [22,23]. In fact, any arbitrary matrix can be decomposed
into a product of Toeplitz matrices [24]. If the number of Toeplitz matrices required is in the order of
O(poly(log N)), we can have an efficient quantum circuit.

This paper is organized as follows. In §2, we present an algorithm to implement circulant matrices,
followed by discussions on block circulant matrices, Toeplitz and Hankel matrices in §3. In §§4 and 5, we
provide efficient methods to simulate circulant Hamiltonians and to implement the inverse of circulant
matrices. In §6, we describe a technique to efficiently implement products of circulant matrices. In the
last section, we provide an example application in solving the equation of motion for vibrating systems
with cyclic symmetry.

2. Implementation of circulant matrices
A circulant matrix has each row right-rotated by one element with respect to the previous row, defined
as

C =

⎛
⎜⎜⎜⎜⎝

c0 c1 · · · cN−1
cN−1 c0 · · · cN−2

...
...

. . .
...

c1 c2 · · · c0

⎞
⎟⎟⎟⎟⎠ , (2.1)

using an N-dimensional vector c = (c0 c1 · · · cN−1) [25]. In this paper, we will assume cj to be non-
negative for all j, which is often the case in practical applications. We also assume that the spectral norm
(the largest eigenvalue) ‖C‖ =∑N−1

j=0 cj of the circulant matrix C is equal to 1 for simplicity.
Note that C can be decomposed into a linear combination of efficiently realizable unitary matrices

as follows:

C =

⎛
⎜⎜⎜⎜⎝

c0 c1 · · · cN−1
cN−1 c0 · · · cN−2

...
...

. . .
...

c1 c2 · · · c0

⎞
⎟⎟⎟⎟⎠= c0

⎛
⎜⎜⎜⎜⎝

1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

⎞
⎟⎟⎟⎟⎠+ c1

⎛
⎜⎜⎜⎜⎜⎝

0 1 · · · 0

0 0 · · ·
...

...
...

. . . 1
1 0 · · · 0

⎞
⎟⎟⎟⎟⎟⎠+ · · · =

N−1∑
j=0

cjVj, (2.2)

where Vj =∑N−1
k=0 |(k − j) mod N〉〈k|. Such a linear combination of unitary matrices can be dealt with

by the unitary decomposition approach introduced by Berry et al. [7]. For completeness, we restate their
method as lemma 2.1 given below.
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register 1 (L qubits) |0LÒ

register 2 (L qubits) |ψÒ

Oc O†
c•

Vj

| jÒ
|0LÒ

C |ψÒ

Figure 1. Quantum circuit to implement a circulant matrix.

Lemma 2.1. Let M =∑J
j=0 αjWj be a linear combination of unitaries Wj with αj ≥ 0 for all j and

∑J
j=0 αj = 1.

Let Oα be any operator that satisfies Oα |0m〉 =∑J
j=0

√
αj|j〉, where m is the number of qubits used to represent |j〉,

and select(W) =∑J
j=0 |j〉〈j| ⊗ Wj. Then

(O†
α ⊗ I) select(W)(Oα ⊗ I)|0m〉|ψ〉 = |0m〉M|ψ〉 + |Ψ⊥〉, (2.3)

where (|0m〉〈0m| ⊗ I)|Ψ⊥〉 = 0.

Unless stated otherwise, we assume that N = 2L, where L is an integer. If N is not a power of two, we
will need to embed the system into a larger Hilbert space whose dimension is a power of two. On the
other hand, it is also convenient to simply discretize practical problems using powers of two. Lemma 2.1
can be directly applied to implement the circulant matrix C, as shown in figure 1, by taking M = C,
αj = cj, Wj = Vj, J = 2L and m = L. Since select(V)|j〉|k〉 = |j〉|(k − j) mod N〉, it can be implemented using
quantum adders [26,27], which requires O(log N) one- or two-qubit gates. Note that when N is not a
power of two, it may take additional O(log N) ancillary qubits to implement the ‘mod N’ operation in
select(V), for example, by first subtracting N from k − j and then using the sign qubit to control the
‘mod N’ operation.

A measurement result of |0L〉 in the first register generates the required state C|ψ〉 in the second
register. The probability of this measurement outcome is O(‖C|ψ〉‖2). With the help of amplitude
amplification [28], this can be further improved, requiring only O(1/‖C|ψ〉‖) rounds of application
of (O†

c ⊗ I) select(V)(Oc ⊗ I). The amplitude amplification procedure also requires the same number of
applications of Oψ , where Oψ |0L〉 = |ψ〉, and its inverse in order to reflect quantum states about the
initial state |0L〉|ψ〉. If Oψ is unknown, amplitude amplification is not applicable and we will need to
repeat the measuring process in figure 1 O(1/‖C|ψ〉‖2) times, during which O(1/‖C|ψ〉‖2) copies of |ψ〉
are required. It is worth noting that with the assumption cj ≥ 0, C is unitary if and only if C = Vj. In other
words, a non-trivial circulant matrix is non-unitary and therefore, the oblivious amplitude amplification
procedure [29] cannot be applied.

Provided with the oracle Oc satisfying Oc|0L〉 =∑N−1
j=0

√
cj|j〉, theorem 2.2 follows directly from the

above discussions. Oc can be efficiently implemented for certain efficiently computable vectors c [30–32].
Another way to construct states like

∑N−1
j=0

√
cj|j〉 is via qRAM, which uses O(N) hardware resources

but only O(log N) operations to access them [33,34].

Theorem 2.2 (Implementation of circulant matrices). There exists an algorithm creating the quantum state
C|ψ〉 for an arbitrary quantum state |ψ〉 =∑N−1

k=0 ψk|k〉, using O(1/‖C|ψ〉‖) calls of Oc, Oψ and their inverses,
as well as O(log N/‖C|ψ〉‖) additional one- or two-qubit gates.

The complexity in theorem 2.2 is inversely proportional to the square root of p = ‖C|ψ〉‖2,
which depends on the quantum state to be acted upon. Specifically, |C|ψ〉|2 = 〈ψ‖C†C‖ψ〉 =
〈ψ |FΛ†F†FΛF†|ψ〉 = 〈ψ |FΛ†ΛF†|ψ〉. Here we use the diagonal form of C [25], C = FΛF†, where F is
the Fourier matrix with Fkj = e2π ijk/N/

√
N and Λ is a diagonal matrix of eigenvalues given by Λk =∑N−1

j=0 cj e2π ijk/N . Since the spectral norm ‖C‖ of the circulant matrix C is equal to one, we have p =
〈ψ |FΛ†ΛF†|ψ〉 ≥ 1/κ2, where κ is the condition number, defined as the ratio between C’s largest and
smallest (absolute value of) eigenvalues [9]. Therefore, our algorithm is bound to perform well when
κ = O(poly(log N)). In the ideal case where κ = 1 and p = 1, the vector c is a unit basis in which only one
element is equal to one and the others are zero.

Even when κ is large, our algorithm is still efficient when the input quantum state after
Fourier transform is in the subspace whose corresponding eigenvalues are large. For example,
when Λk = cos(2πk/N) we have κ = ∞ when N> 2. p = 〈φ|Λ†Λ|φ〉 =∑N−1

k=0 cos(2πk/N)2|φk|2 ≥∑
k/∈[N/8,3N/8]∪[5N/8,7N/8]

1
2 |φk|2 in which |φ〉 := F†|ψ〉 =∑N−1

k=0 φk|k〉. The success rate is therefore
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lower-bounded by a constant as long as the input quantum state is restricted in a subspace such that
φk = 0 when k ∈ [N/8, 3N/8] ∪ [5N/8, 7N/8].

3. Circulant-like matrices
3.1. Block circulant matrices
Some block circulant matrices with special structures can also be implemented efficiently in a similar
manner. We assume the blocks are N′-dimensional matrices and L′ = log N′ in the following discussions.

Firstly, when each block is a unitary operator up to a constant factor (i.e. Cj = cjUj), we have a unitary
block (UB) matrix:

CUB =

⎛
⎜⎜⎜⎜⎝

C0 C1 · · · CN−1
CN−1 C0 · · · CN−2

...
...

. . .
...

C1 C2 · · · C0

⎞
⎟⎟⎟⎟⎠=

⎛
⎜⎜⎜⎜⎝

1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

⎞
⎟⎟⎟⎟⎠⊗ C0 +

⎛
⎜⎜⎜⎜⎜⎝

0 1 · · · 0

0 0 · · ·
...

...
...

. . . 1
1 0 · · · 0

⎞
⎟⎟⎟⎟⎟⎠⊗ C1 + · · ·

=
N−1∑
j=0

Vj ⊗ Cj =
N−1∑
j=0

cjVj ⊗ Uj. (3.1)

If the set of blocks {Uj}N−1
j=0 can be efficiently implemented, then by simply replacing select(V) =∑N−1

j=0 |j〉〈j| ⊗ Vj with
∑N−1

j=0 |j〉〈j|(Vj ⊗ Uj), we can efficiently implement the block circulant matrices CUB

using the same algorithm discussed in §2 as illustrated in figure 2a.
Specifically, when the set of blocks {Uj}N−1

j=0 are one-dimensional, we can implement complex-valued

circulant matrices with efficiently computable phase. For example, for Uj = (eiθ j), j = 0, 1, . . . , N − 1,
circulant matrices with the parameter vector c = (c0, eiθ c1, . . . , ei(N−1)θ cN−1) can be implemented
efficiently. Moreover, if θ = π , c = (c0, −c1, . . . , (−1)N−1 cN−1) corresponding to the circulant matrix with
negative elements on odd-numbered sites is efficiently implementable.

Another important family is block circulant matrices with circulant blocks (CB), which has found a
wide range of applications in algorithms, mathematics, etc. [18–21]. It is defined as follows:

CCB =

⎛
⎜⎜⎜⎜⎝

C0 C1 · · · CN−1
CN−1 C0 · · · CN−2

...
...

. . .
...

C1 C2 · · · C0

⎞
⎟⎟⎟⎟⎠ , (3.2)

where Cj is a circulant matrix specified by a N′-dimensional vector cj = (cj0 cj1 · · · cj(N′−1)). CCB is a
N × N′-dimensional matrix determined by N × N′ parameters {cjj′ } j=0,...,N−1

j′=0,...,N′−1
. It can be decomposed as

follows:

CCB =
N−1∑
j=0

N′−1∑
j′=0

cjj′ Vj ⊗ Vj′ . (3.3)

Given an oracle Oc′ satisfying Oc′ |0L+L′ 〉 =∑N−1
j=0

∑N′−1
j=0 cjj′ |j〉|j′〉, we can implement CCB using the

quantum circuit shown in figure 2b, which adopts a combination of two quantum subtractors.

3.2. Toeplitz and Hankel matrices
A Toeplitz matrix is a matrix in which each descending diagonal from left to right is constant, which can
be written explicitly as

T =

⎛
⎜⎜⎜⎜⎜⎜⎝

t0 t−1 · · · t−(N−2) t−(N−1)
t1 t0 · · · t−(N−3) t−(N−2)
t2 t1 · · · t−(N−4) t−(N−3)
...

...
. . .

...
...

tN−1 tN−2 · · · t1 t0

⎞
⎟⎟⎟⎟⎟⎟⎠

, (3.4)

specified by 2N − 1 parameters. We focus on the situation where tj ≥ 0 for all j as in §2. Clearly, when
t−(N−i) = ti for all i, T is a circulant matrix. Although a Toeplitz matrix is not circulant in general, any
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Vj

VjUj

Vj¢

CUB |ψÒ

CCB |ψÒ

⎧⎪⎨
⎪⎩

⎫⎪⎬
⎪⎭

unitary blocks

•

•
⎧⎪⎨
⎪⎩

⎫⎪⎬
⎪⎭

circulant blocks

Oc
Oc¢

O†
c

O†
c¢

|0LÒ |0LÒ

|0L¢Ò |0L¢Ò

|jÒ
|0LÒ

|jÒ
|0LÒ

|ψÒ

|ψÒ

(a) (b)

Figure 2. The quantum circuit to implement block circulant matrices with special structures.

•register 1 (L +1 qubits) |0L+1Ò

register 3 (L  qubits) |ψÒ

register 2 (1 qubit) |0Ò

O
c

O†
c

V
j

| jÒ
|0LÒ

|0Ò

T |ψÒ

Figure 3. The quantum circuit to implement a Toeplitz matrix. In this figure, Oc|0L+1〉 =∑2N−1
j=0 cj|j〉, where c =

(t0 t−1 · · · t−(N−1) 0 tN−1 · · · t1).

Toeplitz matrix T can be embedded in a circulant matrix [15,35], defined by

CT =
(

T BT
BT T

)
, (3.5)

where BT is another Toeplitz matrix defined by

BT =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 tN−1 · · · t2 t1
t−(N−1) 0 · · · t3 t2
t−(N−2) t−(N−1) · · · t4 t3

...
...

. . .
...

...
t−1 t−2 · · · t−(N−1) 0

⎞
⎟⎟⎟⎟⎟⎟⎠

. (3.6)

As a result, we use this embedding to implement Toeplitz matrices because(
T BT

BT T

)(
ψ

0

)
=
(

Tψ
BTψ

)
. (3.7)

Therefore, by implementing CT, we obtain a quantum state proportional to |0〉T|ψ〉 + |1〉BT|ψ〉. Then
we do a quantum measurement on the single qubit (in the second register in figure 3) to obtain the
quantum state T|ψ〉. The success rate is ‖T|ψ〉‖2 according to theorem 2.2 under the normalization
condition that

∑N−1
j=−(N−1) tj =∑N−1

j=0 cj = 1. With the help of amplitude amplification, only O(1/‖T|ψ〉‖)
applications of the circuit in figure 3 are required.

A Hankel matrix is a square matrix in which each ascending skew-diagonal from left to right is
constant, which can be written explicitly as

H =

⎛
⎜⎜⎜⎜⎜⎜⎝

hN−1 hN−2 · · · h1 h0
hN−2 hN−3 · · · h0 h−1

...
...

. . .
...

...
h1 h0 · · · h−(N−3) h−(N−2)
h0 h−1 · · · h−(N−2) h−(N−1)

⎞
⎟⎟⎟⎟⎟⎟⎠

, (3.8)

specified by 2N − 1 non-negative parameters. A permutation matrix P = σ⊗L
x transforms a Hankel matrix

into a Toeplitz matrix. It can be easily verified that T = HP and H = TP, in which tj = hj for all j. Note
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that when N is not a power of two, we need to be careful with the embedding when mapping a
circulant matrix into a Hankel matrix. The subspace span{|0〉, . . . , |N − 1〉} in the implementation of
circulant matrices corresponds to the subspace span{|2L − N〉, . . . , |2L − 1〉} in the implementation of
Hankel matrices.

Therefore by inserting the permutation P before the implementation of T, the circuit in figure 3
can be used to implement H, and the success rate is ‖H|ψ〉‖2 under the normalization condition that∑N−1

j=−(N−1) hj =∑N−1
j=0 cj = 1. With the help of amplitude amplification, only O(1/‖H|ψ〉‖) applications

are required.
In comparison with existing algorithms, such as that described in [35], the above described quantum

circuit provides a better way to realize circulant-like matrices, requiring fewer resources and with
lower complexity. For example, only 2 log N qubits are required to implement N-dimensional Toeplitz
matrices, which is a significant improvement over the algorithm presented in [35] via sparse Hamiltonian
simulations. More importantly, this is an exact method and its complexity does not depend on an error
term. It is also not limited to sparse circulant matrices C as in [35]. Moreover, implementation of non-
unitary matrices, such as circulant matrices, is not only of importance in quantum computing, but also
a significant ingredient in quantum channel simulators [36,37], because the set of Kraus operators in the
quantum channel ρ 
→∑

i KiρK†
i is normally non-unitary [1]. The simplicity of our circuit increases its

feasibility in experimental realizations.

4. Circulant Hamiltonians
Hamiltonian simulation is expected to be one of the most important undertakings for quantum
computation. It is therefore important to explore the possibility of efficient implementation of circulant
Hamiltonians because of their extensive applications. Particularly, the implementation of e−iCt is
equivalent to the implementation of continuous-time quantum walks on a weighted circulant graph
[38,39]. Moreover, simulation of Hamiltonians is also an important part in the HHL algorithm to solve
linear systems of equations [9].

A number of algorithms have been shown to be able to efficiently simulate sparse Hamiltonians [2–8],
including the unitary decomposition approach [7]. We show that this approach can be extended to the
simulation of dense circulant Hamiltonians. It is well known that circulant matrices are diagonalizable
as e−iCt = F e−iΛtF†. In general, implementing an arbitrary diagonal unitary requires up to O(N log N)
one- or two-qubit gates [40]. However, when {Λk}N−1

k=0 can be efficiently computed, one can efficiently
implement e−iCt [23,41,42].

In this section, we will focus on the simulation of Hermitian circulant matrices, when e−iCt is
unitary. For completeness, we first summarize briefly the unitary decomposition approach in [7] and
then discuss how it can be used to efficiently simulate dense circulant Hamiltonians. To simulate
U = e−iCt, the evolution time t is divided into r segments with Ur = e−iCt/r, which can be approximated
as Ũ =∑K

k=0 1/k!(−iCt/r)k with error ε. It can be proven that if we choose K = O(log(r/ε)/log log(r/ε)) =
O(log(t/ε)/log log(t/ε)), then ‖Ur − Ũ‖ ≤ ε/r and the total error is within ε.

Since C =∑N−1
j=0 cjVj as given by equation (2.2), we have

Ũ =
K∑

k=0

(−iCt/r)k

k!
=

K∑
k=0

N−1∑
j1,...,jk=0

(−it/r)k

k!
cj1 · · · cjk Vj1 · · · Vjk . (4.1)

Let W(k,j1,...,jk) = (−i)kVj1 · · · Vjk and

Oα |0K+KL〉 = 1√
s

K∑
k=0

N−1∑
j1,...,jk=0

√
(t/r)k/k!cj1 · · · cjk |1k0K−k〉|j1〉 · · · |jk〉|0(K−k)L〉, (4.2)

where |1k0K−k〉 is the unary encoding of k. Here, s is the normalization coefficient and we choose
r = �t/ ln 2� so that

s =
K∑

k=0

N−1∑
j1,...,jk=0

(t/r)k

k!
cj1 · · · cjk =

K∑
k=0

((c0 + · · · + cN−1)t/r)k

k!
≈ 2. (4.3)
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.
.
.

· · · • • · · ·

· · · • · · ·

· · · • · · · · · ·

.

.

.
.
.
.

.

.

.

· · · · · · • · · ·

· · · e−iCt/r |ψÒ

select (W)

– i

– i

– i

|0LÒ
|0LÒ K

|0LÒ 2

|0LÒ 1

|0Ò K

|0Ò 2

|0Ò 1

|ψÒ

|0LÒ

|0LÒ

|0Ò

|0Ò

|0Ò

O†
c

R†
ini

Rini

O†
c

O†
c

O†
a

Oa

Oc

Oc

Oc

|j1Ò

|jkÒ

|jKÒ

VjKVjkVj1

Figure 4. The quantum circuit to implement one segment of circulant Hamiltonians. Here Rini |0K〉 =∑K
k=0

√
(t/r)k/k!|1k0K−k〉

and −i = |0〉〈0| + (−i)|1〉〈1|.

By taking M = Ũ, αj =
√

(t/r)k/k!cj1 · · · cjk , Wj = W(k,j1,...,jk), J = KNK and m = K + KL in lemma 2.1, we have

(O†
α ⊗ I)select(W)(Oα ⊗ I)|0K+KL〉|ψ〉 = 1

s
|0K+KL〉Ũ|ψ〉 + |Ψ⊥〉, (4.4)

where (|0K+KL〉〈0K+KL| ⊗ I)|Ψ⊥〉 = 0. It has been shown in [7] that after one step of oblivious amplitude
amplification procedure [29], Ur = e−iCt/r can be simulated within error ε/r. The oblivious amplitude
amplification procedure avoids the repeated preparations of |ψ〉 so that Ũ|ψ〉 can be obtained using only
one copy of |ψ〉, as shown in figure 4. The total complexity depends on the number of gates required to
implement select(W) and Oα .

If C is not Hermitian (and Ũ is not at least approximately unitary), the oblivious amplitude
amplification procedure [29] will not be applicable, and then we have to resort to the traditional
amplitude amplification [28]. This will lead to a complexity depending exponentially on t because we
have to run the amplitude amplification recursively, but the complexity will still depend logarithmically
on N.

Theorem 4.1 (Simulation of circulant Hamiltonians). There exists an algorithm performing e−iCt on an
arbitrary quantum state |ψ〉 within error ε, using O(t(log(t/ε)/log log(t/ε))) calls of controlled-Oc

1 and its
inverse, as well as O(t(log N)(log(t/ε)/log log(t/ε))) additional one- and two-qubit gates.

Proof. We first consider the number of gates used to implement Oα in equation (4.2). It can
be decomposed into two steps. The first step is to create the normalized version of the state∑K

k=0

√
(t/r)k/k!|1k0K−k〉 from the initial state |0K〉, which takes O(K) consecutive one-qubit rotations

on each qubit. We then apply K sets of controlled-Oc to transform |0L〉 into
∑N−1

j=0
√

cj|j〉 when the
control qubit is |1〉. We therefore need O(K) calls of controlled-Oc and O(K) additional one-qubit gates
to implement Oα .

Next we focus on the implementation of

select(W) =
∑

(k,j1,j2,··· ,jk)

|1k0K−k〉|j1〉 · · · |jk〉|0(K−k)L〉〈1k0K−k|〈j1| · · · 〈jk|〈0(K−k)L| ⊗ (−i)kVj1 · · · Vjk , (4.5)

which performs the transformation

|1k0K−k〉|j1〉 · · · |jk〉|0(K−k)L〉|ψ〉 select(W)−−−−−→
|1k0K−k〉|j1〉 · · · |jk〉|0(K−k)L〉(−i)kVj1 · · · Vjk |ψ〉. (4.6)

1By controlled-Oc, we mean the operation |0〉〈0| ⊗ I + |1〉〈1| ⊗ Oc.
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As Vj|
〉 = |(
− j) mod N〉, we can transform |ψ〉 into Vj1 · · · Vjk |ψ〉 by applying K quantum subtractors
between |j〉j=j1,j2,...,jk,0,... and |ψ〉. K phase gates on each of the first K qubits multiply the amplitude

by (−i)k. Therefore, select(W) can be decomposed into O(K log N) one or two-qubit gates.
In summary, O(K) calls of controlled-Oc and its inverse as well as O(K log N) additional one-qubit

gates are sufficient to implement one segment e−iCt/r; and the total complexity to implement r segments
will be O(tK) calls of controlled-Oc and its inverse as well as O(tK log N) additional one-qubit gates,
where K = O(log(t/ε)/log log(t/ε)). �

Note that we assumed the spectral norm ‖C‖ = 1. To explicitly put it in the complexity in theorem 4.1,
we can simply replace t by ‖C‖t.

5. Inverse of circulant matrices
Following from §4, we now show that the HHL algorithm can be extended to solve systems of circulant
matrix linear equations. We assume C to be Hermitian in this section in order for the phase estimation
procedure to work.

Theorem 5.1 (Inverse of circulant matrices). There exists an algorithm creating the quantum state
C−1|ψ〉/‖C−1|ψ〉‖ within error ε given an arbitrary quantum state |ψ〉, using Õ(κ2/ε) calls of controlled-Oc

and its inverse, O(κ) calls of Oψ , as well as Õ(κ2 log N/ε) additional one- and two-qubit gates.2

Proof. The basic procedure is the same as the HHL algorithm [9], except that C is a dense circulant
matrix rather than sparse as required by the HHL algorithm, which is summarized below.

1. Apply the oracle Oψ to create the input quantum state |ψ〉:

|0L〉 Oψ−−→ |ψ〉 =
N−1∑
j=0

bj|uj〉,

where {|uj〉}N−1
j=0 are the eigenvectors of C.

2. Run phase estimation of the unitary operator ei2πC:

N−1∑
j=0

bj|uj〉 →
N−1∑
j=0

bj|uj〉|Λj〉,

where Λj are the eigenvalues of C and Λj ≤ 1.
3. Perform a controlled-rotation on an ancillary qubit:

N−1∑
j=0

bj|uj〉|Λj〉|0〉 →
N−1∑
j=0

bj|uj〉|Λj〉
⎛
⎝ 1

(κΛj)|1〉 +
√√√√1 − 1

(κ2Λ2
j )

|0〉
⎞
⎠ ,

where κ is the condition number defined in §2 to make sure that 1/(κΛj) ≤ 1 for all j. The
realization of this controlled-rotation requires the computation of Λ−1

j ’s [43].
4. Undo the phase estimation and then measure the ancillary qubit. Conditioned on getting 1,

we have an output state ∝∑N−1
j=0 bj/Λj|uj〉 and the success rate p =∑N−1

j=0 |bj/κΛj|2 =Ω(1/κ2).

Error occurs in step 2 in Hamiltonian simulation and phase estimation. The complexity scales
sublogarithmically with the inverse of error in Hamiltonian simulation as in theorem 4.1 and scales
linearly with it in phase estimation [1]. The dominant source of error is phase estimation. Following
from the error analysis in [9], a precision O(ε/κ) in phase estimation results in a final error ε. Taking
the success rate p =Ω(1/κ2) into consideration, the total complexity would be Õ(κ2/ε), with the help of
amplitude amplification [28]. �

For s-sparse Hamiltonians (with at most s non-zero entries in any row or column), the HHL algorithm
scales as Õ(s2κ2 log N/ε) [9]. In this work, we extended the HHL procedure to dense Hamiltonians with
special structure and proved the scaling is independent of matrix sparsity. This simplification stems from
the efficient implementation of select(V) which makes possible the decomposition of C into O(N) terms
without introducing O(N) into the computational complexity.

2We use the symbol Õ to suppress polylogarithmic factors.



9

rsos.royalsocietypublishing.org
R.Soc.opensci.4:160906

................................................

•

•|0LÒ

|0LÒ

Oc
(2)

Oc
(1)

|0LÒ

N–1
j = 0

V
†
j1 V

†
j2

|j1Ò |jÒ |FjÒcj
(1,2)

|j2Ò

Figure 5. The quantum circuit of Oc(1,2) . Here V†
j =∑N−1

k=0 |(k + j) mod N〉〈k| and controlled-V†
j is a quantum adder.

6. Products of circulant matrices
Products of circulant matrices are also circulant matrices, because a circulant matrix can be decomposed
into a linear combination of {Vj}N−1

j=0 that constitute a cyclic group of order N (we have VjVk =
V(j+k) mod N). Suppose C(1,2) = C(1)C(2) is the product of two circulant matrices C(1) and C(2) which have
a parameter vector c(1,2), where

c(1,2)
j =

∑
j1,j2

j1+j2≡j mod N

c(1)
j1

c(2)
j2

, (6.1)

where c(1) and c(2) are each the parameters of C(1) and C(2). Clearly, when the spectral norm of C(1) and
C(2) are one, the spectral norm of C(1,2) is also one. Classically, to calculate the parameters c(1,2) would take
up O(N) space. However, in the quantum case, we will show that Oc(1,2) , encoding c(1,2), can be prepared
using one Oc(1) and one Oc(2) . It means that the oracle for a product of circulant matrices can be efficiently
prepared when its factor circulants are efficiently implementable, as illustrated in figure 5.

Theorem 6.1 (Products of circulant matrices). There exists an algorithm creating the oracle Oc(1,2) , which
satisfies

Oc(1,2) |03L〉 =
N−1∑
j=0

√
c(1,2)

j |j〉|Φj〉, (6.2)

where |Φj〉 is a unit quantum state dependent on j, using one Oc(1) , one Oc(2) and O(log N) additional one- and
two-qubit gates.

Proof. We need 2L ancillary qubits divided into two registers to construct the oracle for the product of
two circulant matrices. We start by applying Oc(1) and Oc(2) on the last 2 registers, we obtain

|03L〉 → |0L〉
⎛
⎝N−1∑

j1=0

√
c(1)

j1
|j1〉
⎞
⎠
⎛
⎝N−1∑

j2=0

√
c(2)

j2
|j2〉
⎞
⎠ . (6.3)

In order to encode c(1,2)
j in the quantum amplitudes, we once again apply quantum adders to achieve our

goals. By performing the following transformation:

|0〉|j1〉|j2〉 → |j〉|j1〉|j2〉, (6.4)

where j ≡ ( j1 + j2) mod N. This can be achieved using two quantum adders, we obtain the state

N−1∑
j=0

√
c(1,2)

j |j〉|Φj〉, (6.5)

because the amplitude of |j〉 is equal to
√∑

j1,j2
j1+j2≡j mod N

(
√

cj1 cj2 )2 =
√

c(1,2)
j . �

This algorithm can be easily extended to implementing oracles for products of d circulants, in which d
oracles of factor circulants and dL ancillary qubits are needed. Though the oracle described in theorem 6.1
may not be useful in all quantum algorithms, owing to the additional |Φj〉 in equation (6.2), it is applicable
in §§2 and 4 according to lemma 6.2 (the generalized form of lemma 2.1) described below. It implies that
this technique could also be useful in other algorithms related to circulant matrices.
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Lemma 6.2. Let M =∑

αj
αjWj be a linear combination of unitaries Wj with αj ≥ 0 for all j and

∑
j αj = 1.

Let Oα be any operator that satisfies Oα |0m〉 =∑
j
√
αj|j〉|Φj〉 (m is the number of qubits used to represent |j〉|Φj〉)

and select(W) =∑
j |j〉〈j| ⊗ I ⊗ Wj. Then

(O†
α ⊗ I) select(W)(Oα ⊗ I)|0m〉|ψ〉 = |0m〉M|ψ〉 + |Ψ⊥〉, (6.6)

where (|0m〉〈0m| ⊗ I)|Ψ⊥〉 = 0.

Proof.

(O†
α ⊗ I)select(W)(Oα ⊗ I)|0m〉|ψ〉 = (O†

α ⊗ I)select(W)
∑

j

√
αj|j〉|Φj〉|ψ〉

= (O†
α ⊗ I)

∑
j

√
αj|j〉|Φj〉Wj|ψ〉

(|0m〉〈0m|O†
α ⊗ I)

∑
j

√
αj|j〉|Φj〉Wj|ψ〉 = |0m〉

∑
j′

√
αj′ 〈j′|〈Φj′ |

∑
j

√
αj|j〉|Φj〉Wj|ψ〉

= |0m〉
∑

j

αjWj|ψ〉 = |0m〉M|ψ〉.

�

7. Application: solving cyclic systems
Vibration analysis of mechanical structures with cyclic symmetry has been a subject of considerable
studies in acoustics and mechanical engineering [14,17]. Here we provide an example where the above
proposed quantum scheme can outperform classical algorithms in solving the equation of motion for
vibrating and rotating systems with certain cyclic symmetry.

The equation of motion for a cyclically symmetric system consisting of N identical sectors, as shown
in figure 6, can be written as

Mq̈ + Dq̇ + Kq = f , (7.1)

where q and f are N-dimensional vectors, denoting the displacement of and the external force acting
on each individual sector, respectively. The mass, damping and stiffness matrices are all circulants,
represented by M = circ(m1, m2, . . . , mN), D = circ(d1, d2, . . . , dN) and K = circ(s1, s2, . . . , sN).

Assume all sectors have the same mass (M ∝ I) and there is zero damping (D = 0). If the system is
under the so-called travelling wave engine order excitation, the equation of motion can be simplified
as [14]:

q̈ + Kq = f einΩt, (7.2)

where the travelling wave is characterized by fj = f ei2πnj/N for the external force vector f , n is the order
of excitation and Ω is the angular frequency of the excitation. We search for solutions of the form q =
q0 einΩt, which leads to

(K − n2Ω2I)q0 = f . (7.3)

Since K − n2Ω2I is a circulant matrix, we can use theorem 5.1 to calculate

q0 = (K − n2Ω2I)−1f .

It is important to consider the conditions under which theorem 5.1 works.

1. K − n2Ω2I is Hermitian. This is generally true for symmetric cyclic systems, where the coupling
between qj and qj+d and the coupling between qj and qj−d are physically the same for any sector
j and distance d.

2. K − n2Ω2I has non-negative (or non-positive) entries. Although this is not in general true,
theorem 5.1 will work under a slight modification. We observe that the off-diagonal elements
of K − n2Ω2I are always negative because the coupling force between two connecting sectors is
always in the opposite direction to their relative motion.

— If the diagonal elements of K − n2Ω2I are also negative, then no modification to the
proposed procedure is necessary.
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q1

(a)
qN

qN–1

qN–2

q4

q3

q2

q1

qN

qN–1

qN–2

q4

q3

q2

(b)

Figure6. Topology diagramof anN-sector cyclic system. (a) A general cyclic systemwith coupling between any two sectorswhich can be
solved using theorem 5.1. (b) A cyclic system with nearest-neighbour coupling which can be solved using the HHL algorithm [9].

— If the diagonal elements of K − n2Ω2I are positive, using the technique stated in §3.1, we
can simply replace select(V) with Ref0 · select(V), where Ref0 = |0L〉〈0L| − 2I is a reflection
operator operating on the first register.

3. The condition number κ of K − n2Ω2I is small. This is true when the couplings among sectors are
relatively weak—when |K0 − n2Ω2| � K1 where K0 characterizes the coupling between a sector
and the exterior and K1 characterizes the coupling among sectors.

4. The corresponding oracle Oc of the circulant matrix K − n2Ω2I can be efficiently implemented. It requires
either there is a special structure of K − n2Ω2I or the information of K − n2Ω2I is stored in
a qRAM in advance.

If all four conditions are satisfied, we have an exponential speed-up compared to classical computation.
Note that the output q0 is stored in quantum amplitudes, which cannot be read out directly. However,
further computation steps can efficiently provide practically useful information about the system from
the vector q0, for example the expectation value q0

†Mq0 for some linear operator M or the similarity
between two cyclic systems 〈q′

0|q0〉 [9]. This type of speed-up is not achievable classically for it takes
at least O(N) steps to read out the value of q0. It is also worth noting that the proposed algorithm, in
contrast to previous quantum algorithms [3–7,9,35], works for dense matrices K − n2Ω2I. It means that
the cyclic systems need not be subject to nearest-neighbour coupling.

8. Conclusion
In this paper, we present efficient quantum algorithms for implementing circulant (as well as Toeplitz
and Hankel) matrices and block circulant matrices with special structures, which are not necessarily
sparse or unitary. These matrices have practically significant applications in physics, mathematics
and engineering-related fields. The proposed algorithms provide exponential speed-up over classical
algorithms, requiring fewer resources (2 log N qubits) and having lower complexity (O(log N/‖C|ψ〉‖))
in comparison with existing quantum algorithms. Consequently, they perform better in quantum
computing and are more feasible to experimental realization with current technology. Obstacles still exist,
though, in the efficient realization of the oracles to generate the components of the circulant matrices.

Besides the implementation of circulant matrices, we discover that we can perform the HHL algorithm
on circulant matrices to implement the inverse of circulant matrices, by adopting the Taylor series
approach to efficiently simulate circulant Hamiltonians. Owing to the special structure of circulant
matrices, we prove that they are one of the types of the dense matrices that can be efficiently simulated.
Being able to implement the inverse of circulant matrices opens a door to solving a variety of real-
world problems, for example, solving cyclic systems in vibration analysis. Finally, we show that it is
possible to construct oracles for products of circulant matrices using the oracles for their factor circulants,
a technique that will be useful in related algorithms.
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