

運

動

學

吳 蘊 瑞 著

東南大學體育學士 美國哥崙比亞大學教育碩士 國立中央大學副教授報體育科主任

3 0477 8520 3

商務印書館發行

序

運動學,一名人體機動學。英名為"kinesiology"。一新創之科學也。發達不早。在一八九五年,瑞典體育家 Baron Nils Posse, 著有"Special Kinesiology"一書。專將瑞典體操及器械體操,分為若干基本動作。應用解剖學,詳註各動作所用之肌肉。雖材料無多,方法簡單,而體操之應用解剖,此實為其嚆矢。

一九〇九年,美國體育家 William Skarstrom,亦瑞典派也。著有"Gymnastic Kinesiology"一書。內容亦含瑞典體操及器械體操,而間以天然活動一二種。各基本動作,亦如 Posse 氏之註以肌肉外,各基本動作之互相牽制,各肌肉收縮放鬆之互相調節等,莫不論之精詳。故 Posse 氏所註之肌肉,祇有動肌(motor muscle) 一種,而氏則更有引導肌 (guiding muscle),住定肌 (steading muscle),反對肌 (antagonistic muscle) 等名稱。以解剖學而應用於體操之書,當以此為第一。然力學方面,完全拋棄。對於改正體操,固多可取之處;而於學習運動,指導運動,則毫無助力也。

一九一九年,美國體育家 Wilbur P. Bowen 著有"Applied Anatomy and Kinesiology"一書。上半册為解剖學,下半册為

人體機動學。於動作方面,加有田徑賽動作及數種天然活動。其以肌肉解釋動作,不若 Skarstrom 之詳細。且力學方面應用無 幾,與 Skarstrom 之書,有同樣缺點。

渾

十年來,體育之目的改變,各體育家之主張亦異。動作採自然,方法取自動。凡一切太呆板少興味之材料,如體操等,均在 屏棄之列。所謂皮之不存毛將焉附。上舉各書,當然亦隨潮流而 成為過去作品。此種材料,萬不堪再用以敷衍後進之光陰。本書 之作,一方揣摩當世之需要,所以供給有用之数材。一方希貫徹 向來『體育學術化』之主張,俾科學家與體育家攜手,以解決體 育上一切疑難問題。尚望各科學家予以指正,各體育同志加以批 舒。

一九二九年九月自序於雞鳴寺前。

引言

今之談運動者,每日運動是一種技術,並非屬一種學科; 練習 動運之外, 可無須應用科學。其議似是而非, 不辯自明。夫建築 術也. 何必講究工程學; 耕稼亦術也. 何必研究土壤及肥料學; 運動旣屬技術,援他種技術之例,亦有應用科學之可能。大抵科學 未昌明, 社會未進化時代, 百業皆用非科學方法, 而不覺其拙。 及人類之欲望高, 非高堂大厦無以歷其欲; 人口之繁殖速, 非增 加生產, 無以供其求; 於是反而求諸科學, 以謀卓越之進步。建 築及耕稼然,運動亦何獨不然。二十年前,舉校視運動為陪意功 課。跑之遲速,跳之遠近,漠不介意。及遠東運動會及世界運動 會產生,始覺吾國運動成績,遠遜他國。例如跳高, 吾國成績至多 不過五呎十吋,而世界以六呎八吋開矣。撑高跳不過十一呎四吋, 而世界成績以十四呎間矣。以後欲求進步,捨講求方法,豈有他 道哉? 本年春, 作者在中央體育研究會所出之體育雜誌中, 登有 『運動成績的進步有限制的還是無窮盡的』—文, 對於使運動進 步之方法, 作較深切之討論。列舉方法三條, 其最重要者, 為應 用力學,以求最有效力之方法。故應用力學之於運動, 猶工程學 之於建築, 土壤及肥料學之於耕稼, 其重要可知。各國人十、誤

認渾動純為一種技術. 無應用科學之餘地。有科學根底而好事研 究者, 桧之而他求。有技能而以有技術為能事者, 每缺乏科學之 基礎,不知所以研究。涂致運動一門,無科學化之機會。運動落 伍之訾識,良有以也。作者在六七年前,即有見及此。用論理的方 法,研究運動學; 其一採演繹方法,即以力學之公式及定律為中心, 應用於各種運動。第一編應用力學,即由此產生。其二用歸納方 法,分析各種運動,引用力學之公式及定律,以求適宜之方法。 第二編運動, 即由此編成。此作始於民國十一年, 當時所得材料, 極為有限。至十三年,則較備。十四五六遊學歐美。知各國坊間, 尚無此項著作。在法國陸軍體育專門學校,僅有某體育教授,抱 同樣之見解。當時由吾友嚴君濟慈翻譯,敍談之下,頗爲相得。 近年來有無著作,不得而知。回國以來,益覺此書之重要。十七 十八兩年間, 教授兩次, 增減頗多。然猶未敢信為有出版之價值。 迨屢經友人之督促,體育科同學之要求,不容固拒。爱於十八年 夏,用全副精神,修改整理,即成是本。稿脫後,復就正於胡剛 復及倪志超二先生。胡為作者業師, 倪係同學, 皆物理專家也。 校閱之餘, 允為作序, 殊堪感謝。

是書第一編材料,已教過四次。據經驗所及,可作大學體育 科及體育專門學校之運動學之(或人體機動學)教科書。惟中多作 者自化之公式,非豫修物理不易了解。第二編運動,尚缺球術拳 術角力等,擬日後編續。惟本書所含田徑運動,器械體操,及游 泳等,均參考德美兩國運動書籍而作,凡各國運動名手所用之方式,莫不臚列淨盡。終則根據力學,詳加批評。他種運動書籍中, 三言兩語了事者,本書每討論至數百字之多。無他,欲學者明其 究竟,徹底了悟也。

是書編製,採提網挈領方法。各項運動,已為詳細分析。指 導之時,可一目瞭然,教授極為便利。故本書又為運動指導員必 備之書。

是書照片極多,皆表明各動作之眞相。所揷圖畫,均屬全部 動作。如推鉛球,擲標槍等,各部動作,面面畫到。不讀文字, 專看圖畫,亦能領略大概。故又可為中等以上各學校學生之運動 參考書。

十八年九月澄江吳蘊瑞識於中央大學。

運 動 學

目 錄

第一編 應用力學

}	運動學之足義
=	質量1
Ξ	運動之種類 ····································
四	速度
五.	加速度
六	有向量之合成與分解 ····································
七	運動量
Д	衡力10
九	運動之定律10
十	地心吸力18
+-	- 物體下落運動之定理19
+=	物體之上擲······1 2
十三	E 抛物線·····20
十四	4 向心加速度·······26
十五	ī 向心力與離心力27
十六	· 圓運動時反動力與原動力之關係·······29

十七 カ	7轉矩32
十八	写力34
十九	∮速度······36
二十	9加速度••••••37
二十一	惰性矩40
=+=	各種物體之惰性矩······41
二十三	單弦運動46
二十四	擺
二十五	工作52
二十六	工率55
二十七	能力58
二十八	摩擦力60
二十九	彈性60
三十 电	勿體之安定61
三十一	平衡63
三十二	槓杆65
三十三	管中之水流·····69
	第二編 運動
	第一節 器械體操
一 振身	}75

=	蹬足上77
Ξ	迴園動作·····-82
四	木馬上之騰越動作85
五.	單杠上向後脫手迴園下87
六	向前膝鈎下87
七	墊上運動88
	第二節 游泳
	仰游90
	側游93
Ξ	俯游95
四	魚躍97
	第三節 田徑運動
_	起跑100
<u>,</u>	弧形跑道上之起跑法 106
Ξ	短程賽跑
四	中程賽跑
五	長程賽跑113
六	到終點之姿勢 113
七	賽跑結論

八春	季換賽跑 ······· 1	18	
九 蒿	5欄1	21	
十二	9跳高	31	
+-	立定跳高	L39	
+=	跑跳遠	41	
十三	立定跳遠	51	
十四	三級跳遠	53	
十五	撑高跳	157	
十六	擲標槍 ························ 1	65	
十七	擲鐵餅1	76	
十八	推鉛球	190	
十九	籃球擲遠	202	
附錄·	2	206	
參考書籍			

運動學

第一編 應用力學

一 運動學之定義

運動學,一名人體機動學。以解剖與力學,解釋各種運動之 科學也。解剖所以論人體各部之構造與力之來源。力學所以論用 力之方向,時間,速度等,使人體之各種運動,合於力學之公式 及定理,以生充分之效力。蓋人體為一機械,其運動方法有合於 力學原則之可能,而能依據力學以求得其最適宜之運動方法者也。 為了工起見,是書專本力學立論,關於解剖問題略而不談。

又<u>史芥</u>(Skarstrom) 氏稱運動學為"gymnastic kinesiology", 此乃專指體操而言。若加以田徑賽及球戲體操之動作,則須改田 徑賽為"gymnastic and athletic kinesiology", 今去"gymnastic" 及"athletic" 二形容字,總名之謂運動學(kinesiology)可也。

二 質量(Mass)

物體中所含物質之量,為其物體所有之質量。質量者占有位 置。能威觸吾人之視覺。能受外力之作用。 質量與重量之區別 質量與地心吸力無關,重量則全視地心 吸力之大小而變,譬如物體在太陽之面上,則重量為地上之二十 八倍。若在地心中,則重量等於零。質量則各處不變。

三 運動之種類(Types of Motion)

一物質移動在一直線上者,謂之直線運動。反之若一物證移動,依一軸而迴轉者,謂之圓運動。人體上之活動,表於體外者,有直線運動亦有圓運動,而作用於體內者皆圓運動。例如以臂推球,就客觀方面而言,球受直線之推動而前進。反之就主觀方面而言,則是胸大肌牽引肱骨,三頭肌牽引尺骨,二種圓運動也。故人體上之運動,由客觀方面講,有直線運動,有圓運動,由主觀方面講,則無一非圓運動也。故直線運動及圓運動均宜詳細研究。

四 速度(Velocity)

速度者物體運動之時間率也。有下列二種:——

【甲】等速運動(uniform motion) 物體以相等之時間,以同一速度,過相等之距離之謂也。故以總時間除總距離,所得結果即為等速度。

$$v = \frac{s}{t} - \dots (1)$$

由同種關係可得 8=vt 及 $t=\frac{8}{v}$

即在不等速運動時,若所過之距離為 8, 所養之時間為 6, 則仍可由公式 (1) 算出其平均速度。例如賽跑, 起跑時之速度, 中途之速度, 及終了時之速度, 決不相同。今欲行長距離及短距 離之比較。求其各平均之速度而比較之可矣。

【乙】不等速運動(non-uniform motion) 物體始動之後,速度刻刻變化,非逐漸增加,即逐漸減少。如物體之下墜及上擲是也。人體之運動,大半屬不等速運動。故於加速度一項,不可不詳細討論。

加速度(Acceleration)

加速度為單位時間內所增加或減少之速度也。前者謂之正加速度,後者謂之負加速度。在人體運動時,及使物體或自己之身體運動時,常應用正加速度。在停止一球或接球之時,常應用負加速度。然而運動者往往不明正加速度之理,遂不能善為應用。所謂正加速度者,乃原有速度之上,更加以某種速度之謂。若原來之速度消失,雖後加以第二種速度,亦不成為加速度。

凡推重, 擲重, 起跑等運動, 莫不應用加速度。今列舉於下 以明之。

【應用一】推鉛球 推鉛球之速度,有以下五種。

(一)前進之速度 在行動之車上向前擲球則較立於地上為流。

因其已得向前移動之速度也。擲球之速度若相等,則在車上所擲者之比較遠度,必與車之速度為正比例。推鉛球時前進之後,如稍停頓,其前進之速度消失,則成績必與立定擲球紅異。故運動者欲知其前進之動作有無發生效力,可與立定擲球比較,如所差不多,則前進之速度必已消失。欲前進之速度不消失,右足前跑時,左足須舉起,與上體成一直線。單足跳後,身體隨即向前擺動下左足落地。身體稍下蹲,再加以跳之動作。若右足前跳之後,左右足同時落地,或稍停止之後再行跳起,則前進之速度消失。

- (二)跳之速度 兩足交叉跳,須繼左足落地之動作行之。否 則不合加速度之理。
- (三)

 (三)

- (四)伸臂之速度 是須與轉體同時發生。過遲則失加速度之 意。
- (五) 屈腕之速度 宜在伸臂未及最遠方時發生,過遲則失加速度之意。

【實驗一】令一班中之善推球者,行以下各種推法。

- (一) 專用屈腕之動作而推球。
- (二)同上,加伸臂動作而推球,身體毫不轉跳。
- (三)同上,加轉體之動作。
- (四)同上,加交叉跳之動作。

(五)同上,加前進之動作。

記五種成績而行比較。可以知各動作發生之效果。**并可以知** 五者相併合之效果。

【應用二】擲鐵餅

- (一)旋轉之速度。
- (二)雙足跳之速度。
- (三)轉體之速度。
- (四)摔臂之速度。
- (五)腕轉動之速度。

【應用三】擲槍

- (一)跑之速度。
- (二)跳之速度。
- (三)轉體之速度。
- (四)臂擲之速度。
- (五)屈腕之速度。

【其他各種應用】如擲室內棒球,籃球,及打網球發隊球等, 欲得極大之速度,皆當應用是理。

【甲】加速度之公式 設 V_0 為物體開始運動時之速度。V 為最後之速度,t 為經過之時間。a 為加速度。則

$$a = \frac{V - V_0}{t} \cdots (2)$$

$$V = V_0 + ai \cdots (3)$$

【乙】等加速度之公式 因所得之速度相等而為一常數。故平 均速度為初速度與終結速度和之半。距離 8, 即平均速度與時間 之相乘積也。

$$S = \frac{V + V_0}{2} t \cdots (4)$$

以公式(3) V 之值代入(4) 則得

$$S = \frac{2V_0 + at}{2} = V_0 t + \frac{1}{2} a t^2 \cdot \dots (5)$$

(2) 與(4) 相乘則得

$$aS = \frac{V^2 - V_0^2}{2}$$

或 $V^2 = V_0^2 + 2aS \cdots (6)$

若初速度為零。(3)(5)及(6)可變為

$$V=at$$
······(7)

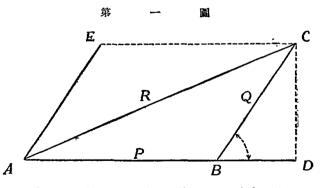
$$S = \frac{1}{2}at^2$$
(8)

$$V^2 = 2aS \cdots (9)$$

六 有向量之合成與分解

(Addition and Resolution of Vectors)

【甲】有向量與無向量之分別


(一)無向量祇有大小,而無方向之關係。如一百立方呎之水,

十赶之糖,及五十分之時間,皆為無向量。凡容量,質量,時間,密度,能力等,皆屬之。

(二)有向量不但有大小且有方向。以是二量之合成,往往有任比其一小者,亦有比原二力之和小者。故二力作用於一物體, 其效果未必等於二分力之和。例如一輪船在某時間內駛五英里。 同時又為風吹動五英里。實駛之路,以兩力之力向而斷定其大小。 凡移動距離,速度,加速度,及力等皆為有向量。

【乙】有向量之合成 無向量之相加,用加法可矣。有向量之相加,與方向大有關係。欲求其結果,不得不用幾何方法解決之。有向量尋常用直線表明。其長短表力之大小,其角度表力之方向。

設 PQ 為二有向量以 AB, BC 二直線表之。 物體可由兩次 相繼之移動而由 A 到 C。 (即先由 AB 而後 BC) 其結果為 R。

以 AC 表之。又有進者, 設 A 一點同時有二速度之作用。一表 以 AB, 一表以 BC。則其合成速度為對角線 AC。是因 A 點在 一秒之間以等速度沿 AB 線而進,而同時 AB 又依 BC 之方向 平行移動,至 BC 之距離而止,(由 B 至 C)故實走之路為 AC,即為 P,Q 兩有向量之和,以三角形之第三線 AC 表明。欲知其 值,可由下列邊形之律求得。

二有向量,同時作用於一物體。可以平行四邊形之相接二邊 表其大小及方向。其合成量之大小及方向,可以平行四邊形之對 角線表之。

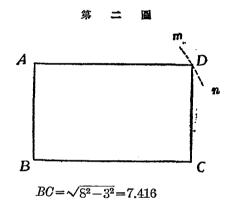
其計算方法,可由上圖而施之。設 θ 爲二有向量間之角,則

$$AC^{2} = AD^{2} + DC^{2}$$

$$R^{2} = (P + Q\cos\theta)^{2} + Q^{2}\sin^{2}\theta$$

$$= P^{2} + P^{2}P^{2}Q\cos\theta + Q^{2}\cos^{2}\theta + Q^{2}\sin^{2}\theta$$

$$= P^{2} + 2P^{2}Q\cos\theta + Q^{2}(\sin^{2}\theta + \cos^{2}\theta)$$


$$\therefore R^{2} = P^{2} + Q^{2} + 2P^{2}Q\cos\theta$$

公式中 θ 之值,不論如何大小,皆得代入計算。設 $\theta=0$,則 \cos $\theta=1$,而 R=P+Q。若 $\theta=90$ °,則 \cos $\theta=0$,而 $R^2=P^2+Q^2$ 。倘 $\theta=180$ °,則 \cos $\theta=-1$,而R=P-Q。

【丙】有向量之分解 一有向量,可任意分成二任何方向之二 有向量,與合成適為相反。普通一有向量往往分為互成正交之二 有向量。其一為有用之力,其方向與所欲之方向相同。其二與之 成直角而與所欲之方向全無關係。

設有一秒八米之速度欲**分**為二速度。其一為每秒三米。求他

一分速度。 其法先责 AB 長三米,從 A 點作 AD 線,垂直於 AB。以 B 為中心,以八米為半徑,作 mn 之圓弧。在 D 點與 AD 交。於是作一長方形 ABCD,AB 及 BC 為 BD 之分速度。 其值可由直三角形 BDC 而求得之。

者求一分速度,知其與原速度成 θ 角,則更容易。即 $BC = BD\cos\theta$

七 運動量(Momentum)

運動量為速度與質量之相乘積,卽

$$M = mv \cdot \cdots \cdot (10)$$

運動量為質量與速度之相乘積,質量固定不變,故運動量全 視速度之大小而變化。亦即視加速度之大小而變化。

運動量,當二物體之速度相等時,隨質量之大小而變化。例

如以網球擲人,速度雖大,而易受傷,但被擲者之身體毫不移動, 因速度大而質量小也。反之以重而且大之樂球擲人,被擲者雖不 受傷,而身體為之衝動,因質量大而運動量亦大也。

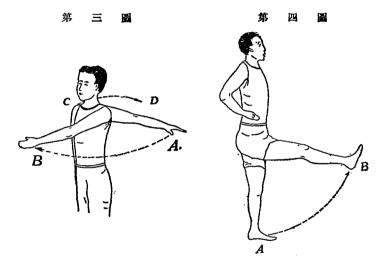
渾

入 衝力(Impulse)

被動方面所受之力,與其質量所成之積為運動量。(M=mv) 在主動方面所發之力,與時間之相乘積為衝力。(I=FT)衝力等 於運動量

$$FT = mv \dots (11)$$

$$F = \frac{mv}{t}$$


欲得同大之運動量,則力與時間成反比例。如推一重物若欲 片刻使之運動,則用力須極大。若徐徐使之運動,則用力較少。 在停一重物亦然。例如接一樂球,若立刻停止之,則需力極大。 若用縮之動作,使停止之時間延長,則用力可較小,且不覺有何 等之衝力。

九 運動之定律(Law of Motion)

【甲】第一定律 不論任何物體,若不加以外力,則靜止者常保靜止,運動者常保持其等速度,向一直線進行。故第一定律實 為惰性。在下列四境過中,可以見其作用。

- (一)由靜止而至運動時 物體有靜止之惰性作用。例如火車 開時,吾人對開往之方向而立,常有向後傾倒之傾向。因足受火 車之帶動前進,而身體則仍保靜止之態度,故呈此現象。電梯上 升或下降時,人體受同等之速度而運動,內臟則仍保靜止之態度, 因之內臟器官受惰性作用而起下降(上升時)及上升(下降時)之運 動,予吾人以不快之感覺。又當電車開行之時,若欲跳上,當先 快跑,使身有與車同等之速度,則上車時得穩立。若立定而執車 上之握手,則身體必至俯平舉之部位,亦惰性之作用使然也。
- (二)由運動而至靜止時 物體有繼續運動之惰性。例如火車 將停之時,吾人向開往之方向而立,則常有向前傾倒之頃向。是 因足受火車之影響而停止,而上體仍保其運動之狀態,故呈此現 象。當電車微動時而欲下車,宜先使身體後仰,則着地之後可以 立定。否則必致向前傾倒。當自來墨水筆中之水不流入筆頭上時, 將筆向下振動而水即下落,行揮汗之動作而汗墮地,皆可以用是 理解釋。
- (三)改换方向時 一物體運動,常有向直線進行之惰性。火車轉彎之時,身體常有向車之外方之勢。又在賽跑之時身體常覺不易轉彎。是因火車及身體有向前一直線進行之惰性。故將身體向內傾斜,或將跑道或鐵軌向內傾斜,利用地心吸力,以助改變方向。
 - (四)停止四肢運動時之惰性作用 是為物理家所不注意。而

尋常亦極難解釋者。按第(三)節,人體上之各種運動增屬圓運動,例如第三圖,將左臂由 A 之部位向 B 之方向而振,至 B 之部位而停止之,則惰性作用使身體由 C 向 D 而旋轉,並以 B 為中心。又如第四圖以右腿由 A 而用力振至 B 點,突然停止其運

動,則因惰性作用,使左腿向前移動。在跳遠之時,若能利用舉起之腿行是動作,則遠距可大增。惰性之大小與力為正比例,但 $F = \frac{mv}{t}$,故又與運動量為正比例,與時間 t (由靜止而至運動或由運動而至靜止之時間) 為反比例。如黃包車夫載重時,或拉快時,轉彎極為困難。又當賽跑之時,轉彎愈急促則愈難。故室內跑道往往在轉變之處向內傾斜。利用地心吸力以助轉彎,亦此理也。

【乙】第二定律 運動量之變更與力為正比例。而此力作用之方向,即用力之方向。

是定律足以表二力或數力作用於一物體,各不相干涉之理。 故有稱為力之獨立定律者(law of independence)。

是定律之前半、測力之大小。由公式(11)

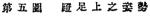
$$Ft = mv$$

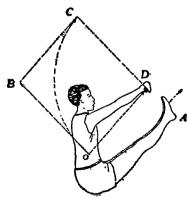
$$\therefore F = \frac{mv}{t}$$
但 $\frac{v}{t} = a$

$$\therefore F = ma \cdot \dots (12)$$

即力之大小, 與質量及加速度之積為正比例。

是定律之下半,所以表明運動之方向,即用力之方向。雖有 時因原有運動之方向而不顯其本來之方向,實則未嘗改變其力之 方向也。故運動者宜先知物體欲去之方向,然後定用力之方向。 則所用之力,不致一部份費去。例如起跑之時宜蹲伏,跳遠時之 宜向直上,皆根據是理。

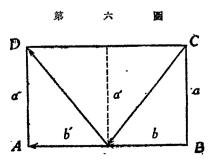

【丙】第三定律 一原動力作用於一物體,則此物體必起相等之反動力,即兩物體間之相互作用常相等,而方向常相反。

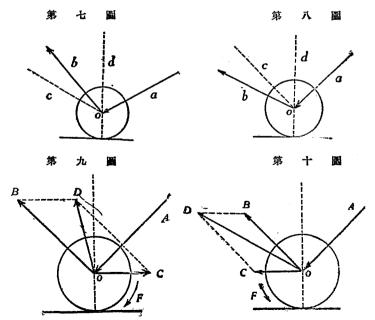

是定律又可稱謂運動量之不滅。(conservation of momentum) 即兩物體交互作用時,一物體所得之運動量,等於他一物體所失 之運動量。兩運動量相等而方向相反。鎗彈之出鎗口,鎗身向後 退之運動量,必等於鎗子向前之運動量。二者之速度與其質量為 反比例。推鉛球,接重物,身體愈重者愈便利,亦是理也。

蓮

(一)反動力之減殺及增加 運動之物體,觸他一運動之物體 時,若其方向同者,則反動力必減殺。球入沙中,不見躍起。因 沙鬆而受球之推動,與球有同方向之運動也。接籃球或接棒球時, 手宜放鬆。當球觸手之際,宜依球來之方向而退縮,以免球從手 中彈出。球來愈急,而縮之速度宜愈大。反之運動之物體觸他一 運動之物體,而其方向相反者,則反動力必大增。例如打棒球或 網球是也。若棒與拍之速度大,則球反動之速度亦大。又推鉛球 時亦起反動力之作用,雖是人推球,實則球亦推人。若停止其反 動力,即增加原動力。

(二)身體由屈而至伸時之反動力 身體之一部由屈而伸時,




他部受反動力而運動。例如人體在單杠上弓身懸垂之部位,向 A 之方向行蹬足之動作,則反動力使頭向 B 之方向而進行。 因手吊杠上, 有向心力 OD。 於是 OB 與 OD 相合而成 OC,而身體受合力之作用,向 OC 方向而進。加以雙臂之壓力,身體即上至前正撑之部位。

(三)反動力之方向

1. 物體直線進行時之反動力 反動力之方向與原動力相反而常在一直線上,物體投射於一平面不成直角時,反射角必等於入射角。此與前句之意義,似有歧異之點。實則不然。例如一物體若其彈性係數為 1, (e=stress strain)向 AB 面投射,則此力可分為 a,b 二力。由 0 點 a 以其相反之方向反動為 a'。因其彈性係數等於 1, 故 a'=a。而 b 仍以其原來之速度向前進行。b'=b, A,B 二角皆為直角, a=a'=a", b'=b, 故兩三角形 DOE 及 COE 相等故 ∠DOE=∠COE。入射角 ∠COE 與反射角 ∠DOE> ∠COE。若物體之彈性係數小於 1,a'<a。則 ∠DOE>∠COE。

2. 物體旋轉時之反動力 網球任空中旋轉而進行,觸地之際,則反射角與入射角不相等,並非因彈性小於1之故。乃旋轉之力使之改變也。設球向左轉,則反射角必大於入射角。如第七圖反射角 ∠bod 大於入射角 ∠aod。若球向右轉,反射角必小於入射角。如第八圖,反射角 ∠bod 小於入射角 ∠aod。若前後轉亦同理。旋轉愈急改變之方向愈大。蓋合力使然也。其改變方向之理,可由第九第十兩圖說明。如第九圖設球之彈性係數為1,以 A 之方向着地。若球不轉,則以 OB 之方向反射。惟因其向右旋轉,着地時有 F 之力,使生向右之反動力。故球躍起之時,受 OB

及 OC 二力之作用,依二者之合力 D 之方向進行。其角不但小 於入射角,有時反成負角。又如第十圖 AO 為入射之方向。OB 為不旋轉時反射之方向。 OC 為旋轉力 F 之反動方向。 球受二 力之作用,遂按 OD 之方向而反射。由第九第十兩圖比較之, 反射角大者合力變大。小者合力變小。打網球時抽球 (drive) 速 度大,削球 (chop) 速度小,即是理也。

發網球時,見對手偏立右方,則向左削球,使球左射。如偏立左方,則向右削球使向右射。在往返回擊時,見對手離網極遠則用削球法(chop),球向網之方面反射,使對手奔前不及。見對手離網甚近,則用抽球法(drive)使球反射低而速,對手後退不及。見其偏立左方,則向左削。(方向與發球相反,因發球時拍子向下,而此時則向上,其結果相同。)見敵人偏立右方則向右削。

籃球在籃下擲籃,不易命中。但亦可應用旋轉之反動力而使 之易於入籃。設欲球從籃之右方進籃則球上擲之時,須同時有左 旋之運動。至觸板下落之時,可向左偏斜而入籃。欲從籃之左方 進籃則旋轉相反。

(四)助躍臺 人從地上跳高或跳遠也,一特地之反動力;一 特小腿各肌肉之彈性。用助躍臺跳時,則此二者之外,尚有臺之 彈性可以利用。然其回復之時,常有一定,始而加以壓力,臺板 向下彎。繼而由彎而復原狀。其間有週期。其長短視支點重點間 距離之大小而定。上跳板時初不宜作跳起之動作,須俟板回彈之時行之。若過早則足跳之方向與板下彎之方向相同,毫無反動力之可言。在板復元時,板彈力之方向與跳之方向相反,反動力可大增加。

十 地心吸力(Gravity)

從前之哲學家謂重物之落地快,輕物之落地慢。此言實不合理。蓋不論何物,從同高之地位下落,其着地之時間必相等。 Galileo 氏會從一塔上墜物得是結果。惟物體之下落,不但為地心 吸力之作用,空氣之阻力亦干涉之。一銅元及羽毛從真空瓶之上 端下落,其達底之時間相等。故不論物體之輕重若何,受地心吸力 之作用相等,即其加速度相同也。物體下落每秒得 980 輝之速度。 故地心吸力之加速度為每秒 9.8 米/秒,即每分鐘得 588 米/分。

【甲】地心吸力之方向 物體下墜,依垂直之方向。與是線垂 直者曰水平線。若另有物體在數呎外下墜,則此物體下墜之方向, 可作為並行。若雖一百呎,則成一秒之角度。

【乙】地心吸力不受他力之干涉 不論何力作用於一物體,必 顯其作用,不受外力之干涉。地心吸力亦然。故一彈出鎗口至落 地之時間,雖射出數米,而落地之時間,確與其由鎗口下落之時 間相等。

地心吸力及任何力既不受外力之干涉,則推鉛球時,球在空

中之時間與高度為比例。故同大之向前速度,其向上之方向,與 所得之距離大有關係也。

十一 物體下落運動之定理 (Law of Falling Body)

等加速度運動之公式及例已在第五節[乙]說明。地心吸力之加速度,在地面可作為等加速度,故以(7)(8)(9)公式之 a 換為 g,即得物體下落之公式。如下:

$$V = gt \cdot \cdots \cdot (13)$$

$$S = \frac{1}{2}gt^2 \cdot \cdots \cdot (14)$$

$$V^2 = 2gS \cdots (15)$$

公式(13)因 t=1 而 $t^2=1$ 。一物體由靜止而下落之距離,

當為
$$\frac{1}{2}g$$
。 即 $\frac{980}{2}cm = 490 \ cm \left(\frac{0+980 \ cm}{2} = 490 \ cm\right)$; 而其時

之物體,已有每秒 980 之速度,同時加速度亦為每秒 980 cm/sec。

應用上列三式而申說之, 得三定理如下:

【甲】下落物體所得之速度,與下落之時間為正比例。

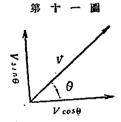
【乙】下落之距離與時間之平方為正比例。

【丙】加速度為下落第一秒鐘所得距離之二倍。

十二 物體之上擲(Projection Upward)

當物體向上擲時, 其加速度為負的。即每秒減少 980 cm 或

32.15 呎, 而其達最高點所費之時間, 必為 g 除 v, 即

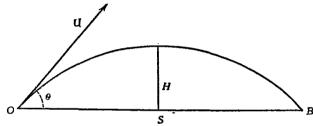

運

$$t = \frac{v}{g}$$
 (16)

例如垂直上擲之速度為一秒 $1960 \, cm$,大氣之壓力不顧,則上擲之時間為 $\frac{196}{980} = 2$ 秒。其下降時亦同,即下降第一秒為 $\frac{1}{2}g^2$ = $\frac{1}{2}g = 490 \, cm$ 。 第二秒為 $\frac{1}{2}g \times 4 = 980 \times 2 = 1900 \, cm$ 。 可見落於 地上時之速度,仍為 $1960 \, cm/sec$ 。

十三 抛物線(Projectile)

一物體斜向上擲時,依分力之方法,可看作水平及垂直二力。 垂直之力,常受 g 之影響。始而上擲,繼而停止,再又下落。 而水平部份,設無空氣之阻力,則常保持一定之速度而前進。今 設斜向上擲之速度為 v,與水平線成 θ 角。則可分為水平部份 之分力 $v\cos\theta$,及垂直向上之分力 $v\cos\theta$ 。


設 S 為 t 秒後之水平距離,則 $S=vcos \theta \times t$

設 丑 為 t 秒後之垂直距離。

$$H = vsin \left(t - \frac{1}{2}gt^2\right)$$

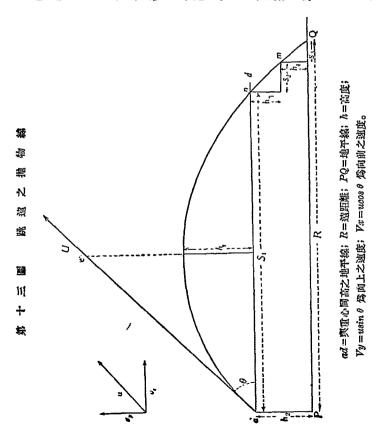
【甲】達最高點所需之時間

物體上抛,至最高處,其速度必為零,即

【乙】最高距離

$$H = v \sin \theta \times t - \frac{1}{2}gt^2$$

以
$$\frac{vsin \theta}{g}$$
代 t


$$H = v \sin \theta \times \frac{v \sin \theta}{g} - \frac{g \times v^2 \sin^2 \theta}{2 \times g^2} = \frac{v^2 \sin^2 \theta}{g} - \frac{v^2 \sin^2 \theta}{2g}$$
$$= \frac{v^2 \sin^2 \theta}{2g} - \dots (17)$$

【**丙**】水平距離 OB 等於 S_1 ,如無地心吸力,則所過之距離為 $v\cos\theta$ 。但受地心吸力之影響,升至最高點,復落於地上,其所費之時間為

$$t = \frac{2vsin\ \theta}{g}$$

$$S = v\cos\theta \times \frac{2v\sin\theta}{g} = \frac{v^2\cos^2\sin\theta}{g}$$
$$= \frac{v^2 \times 2\sin\theta \cos\theta}{g} = \frac{v^2\sin2\theta}{g} \dots (18)$$

【丁】最適宜之投射角度 由上式 S 之值最大時, $\sin 2\theta$ 須

等於 1, 即 2θ =90°, θ =45°。若 θ 比 45° 大, 則 2θ 比 90° 大而 $sin(90°+A)=cos\ A$ 。其值(A 角比 90° 小)不論何度皆比 1 小。又投射之仰角若比 45° 小,則 2θ 比 90° 亦小。而比 90° 小之數,固小於 1。故仰角為 45° 時,發射距離最大。

- 【戊】跳遠抛物線之分析 跳遠時應用抛物線之外,又應用<u>牛</u> 頓運動第二定律。今欲明分力合力之作用,不得不先明其抛物線。 (如第十三圖)
- (一) h₂ 為身體重心之高度。蓋身體為一可變形圓柱體。臂可舉起及下垂。腿可屈縮及伸張。以四肢或軀體之一部份,不能代表全體。經多時研究之結果,以重心為標準最安。
 - (二) h₁ 為重心升起之高度。

$$h_1 = Vyt - \frac{1}{2}qt^2$$

$$= usin \theta t - \frac{1}{2}gt^2$$

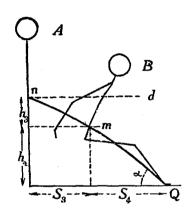
$$\therefore t = \frac{usin \theta}{g}$$

$$\therefore h_1 = \frac{u^2sin^2 \theta}{g} - \frac{u^2sin^2 \theta}{2g}$$

$$= \frac{u^2sin^2 \theta}{2g} \circ$$

 $(三) h_3 = h_2 - h_4$ 即身體直立時重心高與蹲時重心高之差。

$$(\square)S_1 = \frac{u^2 \sin 2\theta}{g}$$


 $(\mathcal{F}_L)S_2 = V \times t = u\cos\theta t$.

$$\underline{\mathbf{H}} t = \sqrt{\frac{2h_3}{g}}$$

$$S_2 = u\cos\theta \sqrt{\frac{2h_3}{g}}$$

(六) $S_3 = mQ\cos a$

mQ 之大小與腿伸出之多寡有關,腿舉愈高,伸出愈多,而 a 角愈小。& 之距離亦愈大。(如第十四圖)

A 為人體直立之姿勢,B 為人體蹲而腿前伸之姿勢。

(七)跳遠之總距離 $=S_1+S_2+S_3$

$$=\frac{u^2\sin 2\theta}{g} + u\cos\theta \sqrt{\frac{2h_3}{g}} + mQ\cos\alpha \cdots (19)$$

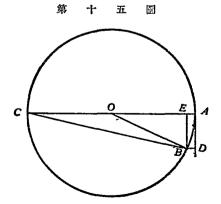
【習題】設有一運動員,體高等於 183 糎,重心高 105 糎, 前跑之速度為 100/11.8 米/秒,跑之高度為 80 糎,腿與地之角 $\alpha=40^{\circ}$, 問能跳若干米?

【測驗】

- (---)測量事項
- 1. 跑之速度 跳板後八米之速度為標準。
- 2. 跳時身體之高度 跳者腰間束紅帶,適在重心上,量擬作 跳起時重心之高度。
- 3. 跳起後騰在空中重心之高度 用跳高架兩具,置跳坑旁, 在跳遠成績之中途,由三四人從旁觀其紅腰帶之高度。
 - 4. 跳之遠度。
 - 5. 由跳起至落地間之時間。
 - (二)計算事項
- 1. 求向前之水平速度 Vx 如第十三圖, 拋物線 am 為由跳起至落地時重心所經之路, 在水平距離則為 $PQ-S_3$, 設其所需時間為 T, 則

$$Vx = \frac{PQ - S_3}{T} - \dots (20)$$

$$Vy = \frac{h_1 + \frac{1}{2}gt^2}{t} = \frac{h_1}{t} + \frac{1}{2}gt$$
但
$$t = \frac{T - \sqrt{\frac{h_3}{g}}}{\frac{g}{2}}$$


$$Vx = \frac{h_1}{\frac{T - \sqrt{\frac{h_3}{g}}}{2}} + \frac{1}{2}g \frac{T - \sqrt{\frac{h_3}{g}}}{2}$$

$$= \frac{2h_1}{T - \sqrt{\frac{h_3}{g}}} + \frac{g\left(T - \sqrt{\frac{h_3}{g}}\right)}{4} - \dots (21)$$

蓮

十四 向心加速度(Centripetal Acceleration)

設 ABC 為一圓,一物體繞之而轉。 AB 為此圓之極小部份,而其所費之時間為 t。 今 AB 圓弧代以 S。 則因運動等速度, S=vt。 AB 為小平行四邊形 AEBD 之對角線。 AE 為 t 時間向 心之距離。 AB 為同時間直線進行之距離。 AE 為向心加速度之距離, 設其等加速度為 a,則由 $S=\frac{1}{2}at^2$ 之公式,得 $AE=\frac{1}{2}at^2$ 。

二直角三角形 ABE 及 ABC 為相似形。

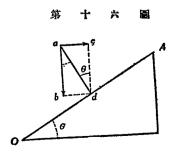
故
$$AE:AB=AB:AC$$
 $AC=2r$ 則 $v^2t^2=\frac{1}{2}at^22r=at^2r$ 由之 $a=\frac{v^2}{r}$ 若 T 為一周之時間 則 $v=\frac{2\pi r}{T}$ $v^2=\frac{4\pi^2r^2}{T^2}$ 代入 $a=\frac{v^2}{r}$ 式中 則 $a=\frac{4\pi^2r}{T^2}$ (22)

十五 向心力與離心力

(Centripetal and Centrifugal Force)

上節既述等速度圓運動之向心加速度為 v^2/r 。但力為加速度 與質量之相乘積 (F=ma),因之向心力為 mv^2/r 。此為迫物體 不循直線運動而變為圓運動之力也。根據牛頓第三定律,原動力 等於反動力。可知離心力等於向心力。惟方向與之相反。卽物體 因惰性作用而生之阻力, 使物體向一直線進行者也。 用公式表 之:

$$F = \frac{mv^2}{r} \cdots (23)$$


按上公式離心力與 m 及 v^2 為正比例。與 r 為反比例。惟 F 旣與 v^2 為正比例,則 v 增一倍,離心力必增加四倍。

設物體繞中心迴轉,其速度為原速度之二倍,則離心力必增至四倍, $(4F = \frac{m(2v)^2}{r})$ 故直線速度與成績大有關係,擲鐵餅當轉體將終之時,須加至極大速度。

又離心力與r 為反比例。即以同大之v,若r 大則離心力小。r 小則離心力大。

【應用一】室內跑道或脚踏車(或機器脚踏車)道之傾斜度及其 算法 室內跑道及脚踏車道之傾斜度,應用離心力之公式,當視 下列兩條件而定。

(一) 視賽跑或賽車時之速度而定 設在一圓跑道上賽跑。跑之速度愈大,離心力亦愈大。在轉彎急促之處,身體往往傾斜以反抗離心力之作用。跑道傾斜之用意,即藉地心吸力以反抗之也。在圓跑道上,將身體傾倒之地心吸力為 ac, (如第十六圖) 圓跑道之半徑為 r, 跑之速度為 v, 則所生之離心力必為 mv² 。 設 ac 之大小與 mv² 相等,則人體在 OA 斜面上,能保持與斜面成垂

直之姿勢,可無外傾或內倒之虞。在此合式情境之下, θ 角究為何度,當設法求之。今假定 θ 為合式之傾斜角度,則 $ac=\frac{mv^2}{r}$ 。

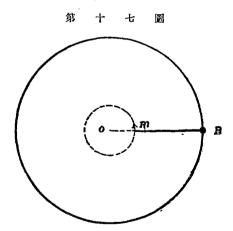
又設此人體之重量為 mg, 則對於 OA 斜面上之重量, 必為 $mg\cos\theta$ 。今以 2d 代之, 則

$$cd = mg\cos\theta$$

$$4B \quad tan\theta = \frac{\frac{mv^2}{r}}{mg\cos\theta}$$

$$\therefore \quad sin\theta = \frac{v^2}{r\sigma} \qquad (24)$$

(二) 視圓跑道之半徑大小而定 依 $F = \frac{mv^2}{r}$ 之公式,則離心力與半徑 r 為比例。又據公式(24),若以百米賽跑之世界成績,而建築室內跑道,則跑道之半徑與其面之傾斜度,常有互為消長之關係。即半徑愈小,傾斜愈多。而二者與g之乘積,必等於 v^2 。即 $v^2 = rgsin \theta$ 。


【習題】

- (一)設跑道之半徑為 25 呎, 百米之世界成績為 10.4 秒, 依此二條件建築室內跑道應傾斜幾度?
- (二)設有一體育館,其寬為 65 英尺,長為 220 呎, 欲設 寬 10 英尺之跑道,問傾斜須幾度?

十六 圓運動時反動力與原動力之關係

按牛頓第三定律。(反動力等於原動力。)離心力等於向心力。 前者為反動力,後者為原動力,二者在相反地位。故行圓運動時, 向心力愈大,則離心力亦愈大。當二物體同時運動,而一物體繞 他一物體時,二物體可皆起旋轉作用。例如拋鏈球,有二種方法, 如下:

【爭】用力小而效果亦小 人與球在圓心之一邊繞一圓心迴轉。 是因人之力量不足,不能抵抗其離心力而然。得使一部份加速度, 減去。實際上因原動力不足,離心力亦不足,而成績亦為之減少。 如用離心力公式證明之,亦覺不謬。

 $F=rac{mv^2}{r}$ 式中之 r,當為鏈長 Bm 加入所繞小圓之圓半徑 om。球脫手時人體停止。 以人體 m 為圓心。半徑由 oB 縮為 Bm。按

$$F = \frac{mv^2}{c}$$

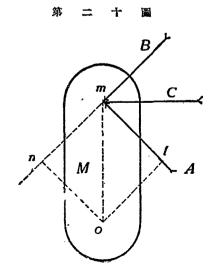
而 v=ωr (ω 為角速度)


$$F = \frac{m\omega^2 r^2}{r} = m\omega^2 r$$

m 不變,角速度 ω 一時不能增加。因當時 r 縮短之故離心力必大減,故丟鏈球時不能用此法。

【乙】人體與球在圓心之兩側,以同方向繞圓心而轉。按牛頓第三律而言,此時即增加原動力。 但此圓之半徑 oB, 非球與胸間之距離, 乃球與足間之水平距離。較 mB為小。因其小之故,角速度易大。當球脫手之時,人體突然停止。以上肢用力丟出,增加其角速度, 其時之圓半徑由 oB 而增為 mB。按公式

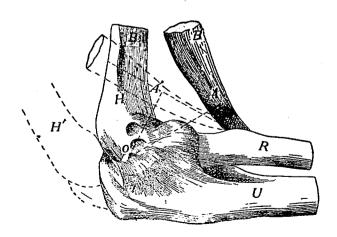
第十八圖


 $F = m\omega^2 r$

m 不變, ω 與 r 均增大。故結果離心力大增。凡擲鐵餅及 應用圓運動之運動,皆可應用是理。

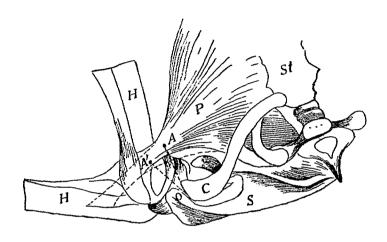
十七 力轉矩(Moment of Force)

行直線運動時,結果視力之大小而定。行圓運動時,視力大小之外,尚有力點與圓心距離大小之關係。例如關門,用力取垂 直於門之方向,由握手上推之,可較在門軸附近推之之力為小。 又以同大之力,與門垂直而推之,其角速度均比與門成鈍角或銳 角而推之為大。


如第二十圖 om>ol>on,三力雖相等,而用力之距離有大小,故三力之效果亦不同。

上述之用力方向,與軸最短距離成直角,可觀第二十圖而知之。是謂力之垂直距離。其與力之相乘積曰力轉矩。例如 M 為一剛體,依穿過 o 點之軸而迴轉。力以 A 方向所得之結果,不若力以 C 方向所得之結果大。蓋前者之力矩為 $F \times ol$,後者為 $F \times om_0 om$ 大於 ol, F 相等,故 $F \times ol < F \times om_0$

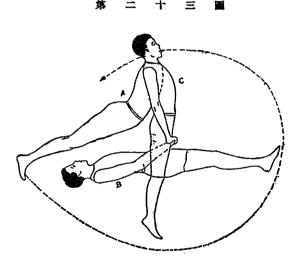
【甲】人體內肌肉之力轉矩作用 人體肌肉之牽動骨格,都屬 圓運動,已如上述。故亦可計算其力轉矩。欲求其力矩,須先知 其力杠之大小。如二頭肌,當大小臂成相當角時,力杠大,伸直 時小。胸大肌亦然,臂左右平舉時小,前舉時大。(如第二十一 圖及二十二圖)


第二十一圖 二頭肌之力矩

B, 二頭肌; H, 肱骨; U, 尺骨; R, 橈骨; OA' 為轉起。

第二十二圖 胸大肌之力短

運


H,肱骨;S,肩胛骨;C,鎖骨;St,胸骨;P,胸大肌;OADOA'均烯力矩。OA' < OA。

【乙】正提與反握引體向上 正握引體向上,用背肌多,用胸肌少,因背肌之力杠長也。反提用背肌少,用胸肌多,因胸肌與二頭肌之力杠長也。加以胸肌較背肌強,而身體之重杠,反提時較正握時為小,故反握易也。

十八 偶力(Couple)

兩相等之力,作用於一物體而其方向相反者,曰偶力。其合 成之結果為 0。 故物體無移動作用,但能使物體旋轉。力轉矩為 二力間之最短距離與力之和乘積。此最短距離曰偶力臂 (arm of couple).

【應用一】單杠上之手盆迴園 此種動作,完全應用偶力之理。 設迴園動作始於前正撑時,身體宜先向前上後下之方向傾斜,以 得位能。然後頭向後倒,脚下前舉,以得動能。即使下體繞手之 支點廻轉。同時身體挺直成一直線。若祇有下肢一力而無上體後 倒之力,則不成偶力作用。而廻轉之動作,亦無法做成。

【應用二】角力 角力時應用偶力最多。例如第二十四圖為切 蹤壓喉倒法。(cross throat and back heel) 攻者之右肘向前推, 力之方向向前。右蹤向後用力, 力之方向向後, 適成偶力。故對 手易於傾倒。

第二十四國

十九 角速度(Angular Velocity)

角速度者,物體移動角度之速度也。設一物體在 t 秒時間迴轉 θ 角,則平均角速度為 $\frac{\theta}{t}$ 。通常用度為角之單位,而時間以 秒為標準。設一物體,每秒轉 $\frac{1}{2}$ 周或 n 周,則角速度當為 $\frac{1}{2} \times 360°$ 或 $n \times 360°$ 。

旋轉時之直線速度 一物體 m 離圓心之距離為 r, 其繞一周時, 所轉之速度, 曰直線速度 $v=2\pi r$ 。 設一秒鐘繞 n 周, 則直線速度 $v=2\pi rn$ 。

合 $2\pi n = \omega$

$$v = r\omega \cdots (25)$$

二十 角加速度(Angular Acceleration)

一托克 (torque)* 作用於一旋轉物體上,則此物體之角速度 更變,角加速度α亦增加。故角加速度者,為單位時間內所變之 角速度也。設原有之角速度為ω₀, t 秒後為ω,則平均角加速度為

$$a = \frac{\omega - \omega_0}{t}$$
....(26)

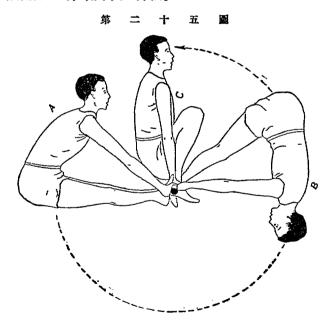
但直線加速度(a), 為單位時間內所變化之直線速度。即

$$a = \frac{v - v_0}{t} = \frac{r\omega - r\omega_0}{t} = r\frac{\omega - \omega_0}{t}$$

$$a=ra$$
(27)

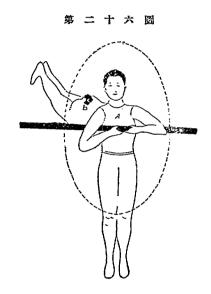
即物體旋轉時之直線加速度,等於角加速度與半徑之相乘積。

$$\pm (25) \qquad \omega = \frac{v}{r} \cdots (28)$$


即角速度與其半徑為反比例,與直線速度為正比例。角加速 度與半徑為反比例,與直線加速度為正比例。

【應用一】器械體操 凡單杠上大部份之迴園動作,多應用間

 ^{*} 托克為 torque 之譯音,在力學公式中書為 g,等於 Iω,g 與直線運動中之 F 相當, Iω 與 ma 相當。


運動。如手足心迴園,大迴園,膝釣迴園,手膝鈎小迴園, (向前或向後)手臂迴園, (向前或向後)是也。然由方法之不同, 可大別為兩額。

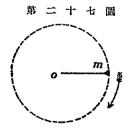
【甲】利用力矩及位能大,不能利用縮短半徑使角速度加大者。 如手臀迴園,手膝迴園,手足背迴園,小迴園(向前或向後)等, 只能於開始之時,用下列二方法。

- (一)半徑增大,使力矩大。
- (二)位能增大, 即始動之時, 身體伸直, 向斜上方拋擲。
- 【乙】利用力矩及位能大乘能利用縮短半徑使角速度大者。如

膝鉤迴圓,手足心迴圓,雙手膝鉤小迴圓,大迴圓等。起動之際,身體挺直,向前斜方倒,至過垂直線之後,則屈體使予徑縮短, 角速度增加,易迴成一圓。

觀以上二種迴園動作,於物理上之便利(乙)種較(甲)種多。 於心理之變化,(乙)種亦較(甲)種多。故(乙)種為較難。不論何 種運動,利用力學之處愈多則愈複雜而愈難,且須多訓練。蓋運 動不但與物理有關係,與心理亦大有關係。

【應用二】棍棒操 棍棒之小圓,往往不易自如。其原因在其 末端之直線速度不大。欲其直線速度大,有二法。


【甲】半徑增大 用以下二法:

(一)臂伸直。

- (二)在棒之基底加重、使其重心向下移動。(擺距增長)
- 【乙】大圓之速度增大 蓋大圓之直線速度大。行小圓時,其 棒末端之直線速度,保持原狀。半徑縮短,則小圓之角速度可大 為增加,旋轉當能自如。

二十一 惰性矩 (Moment of Inertia)

設物體 m 以圓心 o 旋轉,直線速度為 a,其方向與圓成正 切,則動是物體所用之力為 F=ma 而與力之距離 r 所成之積,為 mra。惟 a 等於 ra,故物體 m 之力轉矩為 mr^2a 。設一物體含許多 m 小質點,則物體之力轉矩為 Σmr^2a 。因角加速度 α 各點均同。 故可書為 $\alpha\Sigma mr^2$ 。 是為物體被動方面之結果。而在主動方面,則為 $F\times r$,F 為使物體旋轉之力,所以抵抗物體之惰性。(向切線方向之惰性) r 為力之垂直距離,主被二方面相等。

 $F \times r = \alpha \sum m r^2 \cdots (30)$

是以惰性矩者,生角加速度時所用之托克。(torque)(g = Ia)

二十二 各種物體之惰性矩

惰性矩視物體之形狀而異。設惰性矩為 I, 而 $\alpha \Sigma m = M$, 則 可得以下各種公式。

【甲】一純一和大之棍、軸穿過棍中心、而其長為 L 則

$$I = M - \frac{L^2}{12}$$

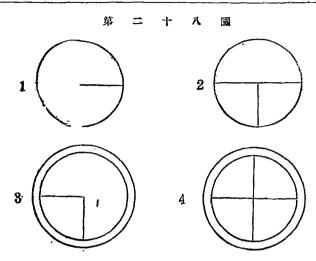
【乙】同上之棍、軸穿過一端、而其長亦為 L、則

$$I=M\frac{L^2}{3}$$

【丙】長方形體, 軸經過中心點, 而與一邊並行。設一邊之長 為 a, 一邊之長為 b。軸兩分 b 邊而與 a 並行, 則

$$I = M \frac{b^2}{12}$$

【丁】長方形體, 軸與平面垂直, 而經過中央, 則


$$I = M \frac{a^2 + b^2}{12}$$

【戊】圓薄片,軸穿過中心,與圓面垂直,半徑為r,則

$$I = M - \frac{r^2}{2}$$

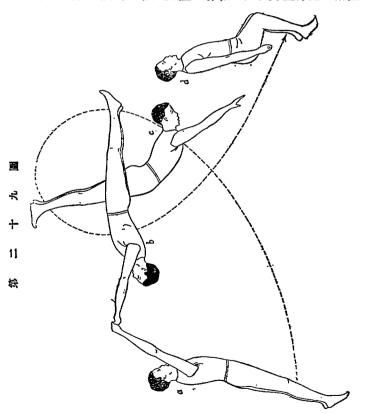
【己】圓薄片,軸與直徑平行,半徑為r,則

$$I=M-\frac{r^2}{4}$$

【庚】圓環,軸經中心而與其面並行,外半徑為 R,內半徑為 r,則

$$I = M - \frac{R^2 + r^2}{2}$$

【辛】圓環,軸與任何直徑並行,半徑與上同,則

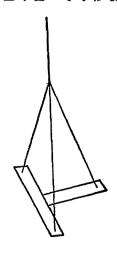

$$I = M - \frac{R^2 + r^2}{4}$$

【壬】橢圓形柱體,隨其原有之軸而旋轉,長半徑為 R, 短半徑為 r, 則

$$I = M \frac{R^2 + r^2}{4}$$

【癸】入體之惰性矩, 按旋轉軸之部位及運動之種類而不同, 大概可分之如下: (一)人體直立時,依身體之重心線而旋轉。同時兩臂下垂, 則惰性矩大概與橢圓形柱體相仿。撑高跳時,轉體能得法,惰性 矩可至最小之度。若兩腿分開,則 R 增大,惰性矩即大。木馬 上之旋身分腿騰越,身體伸直易做,膝屈難做,亦是理也。

(二)側臥時旋轉之軸與身體之脊軸垂直。身體伸直則惰性矩



大。身體屈縮則小。如脫手迴園下,身體挺直,不易轉身,故非 有重大之擺勢不可。若脫手之時, 髖關節稍屈,則旋身容易, 握 勢可小,即此理也。

渾

- (三)直立,臂左右平舉,則身體之左右徑增加,惰性矩亦增 加。
- (四)蹲踞身體之左右徑不變,而前後徑增加。因大腿在前後 平學之部位,故惰性矩比兩臂下垂直立時為大。
- 【子】人體惰性矩之測定 欲測人體之惰性矩,須先得一載身體之器具,而測定其惰性矩。丁字形板雖適於載人體之用,但為一不規則器具,無從測其旋轉惰性矩。故宜先將一規定之板測定之後,再置丁字板上而測之。其法先以一長方形之板按 $T=2\pi$

第三十圖 丁字形板

$$\sqrt{\frac{I}{\mathcal{G}}}$$
 測定其惰性矩。 次置於丁字板上,按 $T'=2\pi\sqrt{\frac{I+I'}{\mathcal{G}}}$ 之公式求之。即 $\frac{T^2}{T_1^2}=\frac{I}{I+I'}$,
$$I'=\frac{T_1^2I-T^2I}{T^2}=\frac{(T_1^2-T^2)I}{T^2}$$

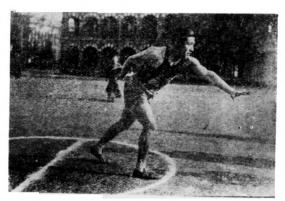
設人體之惰性矩 I, 丁字板之惰性矩為 I, 空丁字板之迴轉時間為 I, 人體立(或臥)板上之迴轉時間為 I, 則

$$T = 2\pi \sqrt{\frac{I+I'}{g}}$$

$$\frac{T}{T_1} = \sqrt{\frac{I+I'}{I'}}$$

$$\frac{T^2}{T^2} = \frac{I}{I'} + 1$$

$$\frac{T^2}{T^2} - 1 = \frac{I}{I'}$$


$$\therefore I = I' \left(\frac{T^2 - T^{2}}{T^{2}} \right) \dots (31)$$

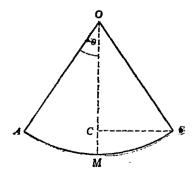
依公式(31)可測定人體各種部位之惰性矩。

【應用一】木馬上之旋身騰越 是動作關於平均之理,另詳於後,惟最要者為旋身動作。當時身體之伸直與屈縮,與惰性矩大有關係。身體伸直時,身體之前後徑最小。屈縮時左右徑雖不變,而前後徑確增大,既不易做,且感困難。又若身體伸直,而旋轉不依脊軸,則惰性矩更大,於是非用助躍臺不可。

【應用二】擲鐵餅 身體轉動時鐵餅之位置 擲鐵餅利用雛心力。而雛心力與轉之速度有關係。尋常身體旋轉時,餅在右後下方,右臂保持伸直之姿勢。因其惰性矩太大,旋轉速度不易增大,故有用臂後平屈而餅在背後之姿勢者,(如第三十一圖)其利益在

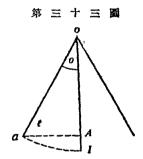
惰性矩小,角速度大。雖然物理上之利益固多,而心理上之問題不易解決。人類腦筋之反應時間有一定,若旋轉過速,腦力是否能應付,則是一問題。不論何種運動,物理心理常並行不悖,須兩方顧到;經長時間之練習,方臻熟練。

【應用三】跳高時之旋身動作 跳高之旋身動作,上體臥倒易, 上體挺直難。<u>霍郎(Holine)</u>氏之方法,轉體須在臥倒之部位行之, 即此理也。


二十三 單弦運動(Simple Harmonic Motion)

單絃運動者,一物體懸於一線上,為等速度之圓運動時,投射於垂直平面之運動也。其半徑為擺幅,其直徑為全幅,其一週之時間,謂之週期。而此最要之點,即加速度與速度之關係。二者處互為消長之地位。即一為零時,一為最大。在直徑之兩端,加速度等於圓之向心加速度,而速度等於零。在直徑之中心,速度等於是圓之直線速度,而加速度等於零。加速度與 cos θ 為比例,而速度則與 sin θ 為比例。

二十四 擺(Pendulum)


擺為單弦運動。 BC 為其圓半徑,亦卽擺幅也。由 M 至 A, 或由 M 至 B, 其時間為 $\frac{1}{4}$ 週期。由 A 至 B 或由 M 至 A(B) 再回至 M, 為半週期。週期與擺幅之大小無關係,與擺長之平方根為正比例,與地心吸力之平方根為反比例。

第三十二日

$$T = \pi \sqrt{\frac{l}{g}} \cdots (32)$$

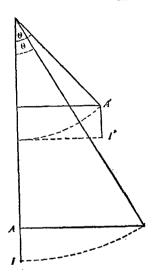
【甲】速度與擺長短之關係 在等大擺角之下,(即 θ 為常數) 則位能與擺之長短為正比例。如第三十三圓,設描、為 r(oa), 位能為 AI,則

 $OA = r\cos\theta$

$$AI = r - r\cos\theta = r(1 - \cos\theta)$$

設 r=1 則

$$AI=1(1-\cos\theta)\cdots(33)$$


設 ア=2 則

$$AI = 2(1 - \cos \theta)$$

因 θ 不變, 故 $\cos\theta$ 亦不變, 而 $1-\cos\theta$ 亦不變, 故 AI 之值, 常與 r 為比例。

$$AI = l(1 - \cos \theta)$$

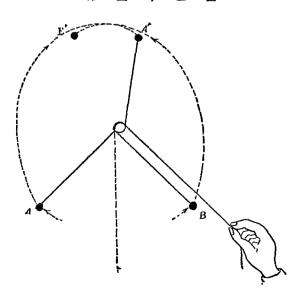
第三十四圖

今擺之長縮為 $\frac{1}{a}l$

$$K.E.=P.E.$$

$$A'I' = AI$$

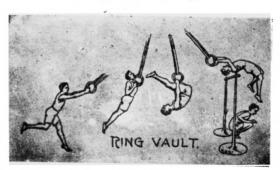
$$\therefore \frac{1}{a} \cdot l(1 - \cos \theta') = l(1 - \cos \theta)$$
$$\frac{1}{a} l - \frac{1}{a} l \cos \theta' = l - l \cos \theta$$


$$\therefore \cos \theta' = \frac{l\cos \theta - l + \frac{1}{a}l}{\frac{1}{a}l} = \frac{\cos \theta - 1}{\frac{1}{a}} + 1 \cdot \cdots (34)$$

 α 大於 1, 則 $\cos \theta'$ 之值必比原來 $\cos \theta$ 之值為小。 故 θ' 必比 θ 為大。

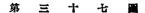
【習題】

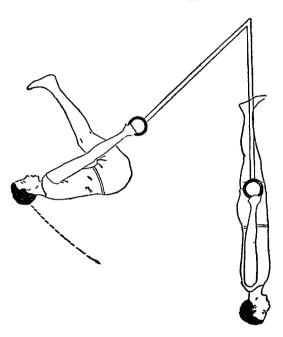
- (一)設擺之長原為四呎,擺過垂直線時,則縮為二呎,原擺 角為三十度。問擺縮短後之擺角幾何?
- (二)設一擺原有之擺角為三十度,今欲其增至四十五度。問 該擺須縮短若干?
- (三)以繩之一端懸於球駕一竿上而擺之,俟其擺過垂直之部 而以手引之,(如第三十五圖 A 部位)則球躍竿而過之。若回擺


第三十五圖

至 B之部位而引之,則球繞竿不已,且繞之速度,漸次增加。試解釋之。

【應用一】吊繩上騰越過杠 是種動作完全應用擺之理。第一點所宜注意者,即擺角 θ 宜大,第二點 身體伸直使擺增長。前者使位能大,後者使身體屈縮之後,擺角 θ' 可增大。 又身體宜過垂直線後,方能屈縮引體。若在垂直線前行之,則減少地心吸力對於身體加速度之作用。並使身體無再屈縮之餘地,而使擺角 θ' 增大也。最後過杠宜重蹬足,一方使繩上受反動力之作用而增大擺角 θ',一方使身體騰起,易於進杠。




【應用二】吊環上起振 在吊環上欲擺動勢大,最好用起振之方法,其步驟如下:

- (一)向後振時舉腿,所以使擺縮短,而增其擺角。
- (二)向前回擺至前方時腿下落,使其擺心降低,位能增加。

【應用三】吊環上倒身懸垂時之起振法 是動作亦應用擺之理,

應人常行之,人在吊環倒身懸垂之時,擺動至最高度,則將身體 屈縮,所以使擺心降低。至近垂直線之部位,則身體伸直,所以 使擺心上升,擺角 θ 得以增大。

二十五 工作(Work)

一力加於一物體,則此物體,依其力之方向而移動,是力做相當的工作。物體若不移動,雖受力而不做工作。舟之駛於水面, 地心吸力對於舟,未有工作,因其動之方向與地心吸力成直角也。 木之於大廈,雖支持極大之重量,其力相抵,不做工作。故測量 工作之多少,須測其力之大小,及移動之多少。即

$$W = FS \cdots (35)$$

但 $F \lesssim m \times a$ 之乘積,

 $W = maS \cdots (36)$

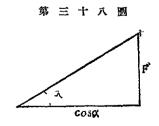
若移動之方向與力之方向成 α 角, 則

 $W = F S \cos \alpha$

赛跑時, 欲身體在水平之方向移動。若兩足推之力向斜上方, 則力與水平線成一 α 角, 起跑後身體若保持向前斜之姿勢, 則 α 之 cos 值即大, 而身體對於水平方向所做之工作亦大。

【书】E作距離 公式(35)中之 8,在徑賽中為屈膝屈臀時,至伸膝伸臀時間身體重心之距離,非身體向前移動之距離也。田賽中之 8,即指運動物件豫備擲出之部位,至脫手而出之部位間之距離,非物擲出之距離也。是距離名曰工作距離。例如跳高,人體為 m,所謂工作距離者,乃豫備蹬足時身體重心之部位,(其時身體下蹲,體膝髁三關節屈)與體膝髁三關節,伸直後重心之部位間之距離也。推鉛球時之工作距離,乃身體向右彎,並右肘向後張球之部位,與推出後手所至之部位間之距離。擲鐵餅之工作距離,乃身體向右轉,向右彎,臂後張時餅之部位,至鐵餅脫手時手之部位間之距離也。凡網球,棒球,擲槍,擲籃球等,莫不各有其工作距離。此工作距離,與工作之大小為比例。又在此

距離間之加速度大,則工作亦大。擲鐵餅之轉身宜速,及各力之 須同時並用,亦因是理。


【乙】接球時之工作 接球時手上所用之力,與球來之方向相 反,對於球而言,所用之力為 -F

$$-F.S = -W......(37)$$

若 -F 大,則手對於球之反動力亦大, 球由手中彈出,不能接牢。欲接球極穩,-F 宜小,工作距離宜大。 而 -FS 仍可等於吾人所欲做的負工作。接急球時之手宜大縮,球入砂坑中,而不反動,皆可用是理說明。

【丙】工作之表法 工作為力與距離之相乘積,故得以面積表之。若力為一常數,則可以長方形表之,其一邊表距離,一邊表力量。

若力由 0 而漸漸等加至某量,則工作為力與距離之相乘積之半, 可以一直角三角形表之, 其底邊為依力之方向移動之距離。垂線 F 為力之終結量, α 表等加速度之大小。故工作等於 $\frac{1}{2}F$ Scos α ,可以下三角形表之。

二十六 工率(Power)

工率為工作之時間率。同樣之工作,而其工率之大小,與工作之時間有關係。即工作時間愈短,工率愈大。故

$$P = \frac{W}{T} = \frac{FS}{T} \cdots (38)$$

工率在田賽與徑賽各有其解釋。在徑賽為 mas T , m 為人體, a 為向前跑之加速度,S 為舉踵時人體重心之高與足着地屈膝時, 重心之高之差。跑時足推地之時間愈短,則工率愈大,而身體向前推出之距離亦愈大。蓋時間與工率確成反比例。在田賽亦然。推動一物件,經某工作距離,其所費之時間愈短,則工率愈大,而推出之距離亦愈遠。然此工作距離,不能測量,只能從客觀方面,測量工率所發之投射距離,為其工率之測定。

【甲】<u>麥克樂</u>氏田徑運動分數表之力學根據 氏所著田徑賽分數表,全根據工率標準。即工率愈大,得分愈多。然工率與成績居何等關係。茲據力學而求之。由公式(38)

$$P = \frac{FS}{T} = Fv$$

又 $F.S=\frac{1}{2}mv^2$ $\frac{1}{2}m$ 為常數, 若工作距離相等, 則

$$F\infty v^2$$

 $\therefore P \propto v^2 v (=v^3)$

又如推鉛球抛物線之公式

$$S = \frac{v^2 \times \sin 2\theta}{g}$$
 如 $\frac{\sin 2\theta}{g}$ 為常數,則 $S \propto v^2$

- $\therefore \sqrt[3]{P} \propto \sqrt[2]{S}$
- $\therefore P \infty S^{\frac{3}{2}} (= S^{1.5})$

【乙】田徑運動分數表之製法 人受生理之限制,及心理之限制,各人成績,至一定之度,難於進步。初學跳高者,由三呎而進至四呎極易,再由四呎而進至五呎較難,更由五呎而進至六呎則極難。同是進步一时,在三四呎之間易,在四五呎之間較難,在五六呎之間,則極難。故同是一时,所得之分數,當有參差。即在五六呎間者宜多,而在三四呎間者宜少。美國青年會各體育家,在十五年前,即明了其中關係,當時製定之分數表,類皆出於武斷,無力學之根據,故不適用。民國十二年間,麥克樂氏根據力學、另製分數表,其方法如下。

(一)田徑運動分數之計算 由[甲]節可知兩人成績之比,不能即謂其分數之比。如鉛球推二十五呎與推四十呎之人比較,其分數不能以8與5之比批給。蓋愈遠進步愈難。欲二十五呎進步一呎易,欲四十呎進步一呎難。故其分數之比,當為 40^{1.5} 與 25^{1.6} 呎之比。今知推鉛球之世界成績為 51 呎,而其所得分數為 925。(因若以 1000 為世界成績所得之分數,則日後尚有更進步者,無從計分矣。又若以最小之成績為零,則是為外國成績,中國尚

有較外國零分之成績為小者,則無從計分矣。故從 25 分為正常 區線上之零。)今知推鉛球之世界成績為 51 呎,平均成績(由多數成績中統計而來)為 43 呎,鉛球之方數為 1.5,則其所得分數,可按下式求得。

設 x 為所得之分數, W 為世界成績, m 為平均成績, 則

$$\frac{925}{x+25} = \frac{W^{1\cdot 5}}{m^{1\cdot 5}}$$

$$\therefore x = \frac{925 \times m^{1\cdot 5}}{W^{1\cdot 5}} = \frac{925 \times 43^{1\cdot 5}}{51^{1\cdot 5}} - 25 = 688$$

徑賽之公式稍異。徑賽之成績,以秒數計,秒數愈多,成績愈小,秒數愈少,成績愈大。故上公式中, W^n 與 m' 之位置適相反。故 $x = \frac{925 \times W^n}{m^n} - 25$

(二)求各項運動方數 n 之方法 今以推鉛球為標準,而算出 百碼之方數。百碼之世界成績,為 9.6 秒,平均成績為 10.36 秒, 則 9.6 與推鉛球之 51 呎相常, 10.36 秒與 43 呎相常。

百碼

$$\frac{W^{1.5}shot}{m^{1.5}shot} = \frac{W^{n}100y}{m^{n}100y}$$

$$\therefore n = \frac{\frac{log Wshot \times 1.5}{log wshot \times 1.5}}{\frac{log W100y}{log m 100y}}$$

$$= \frac{log51 \times 1.5 - log43.7 \times 1.5}{log10.29 - log9.6} = 3.3$$

高欄 n=2.26

鐵餅及標槍 n=1.183

跳高及一切立定跳 n=2.03

運

跳遠 n=1.87

撑竿跳高 n=1.78

引體向上 n=.517

俯臥撑雙臂屈伸 n=.655

盤繩比快 n=.925

二十七 能力(Energy)

上節所論工率 (power) 及工作 (work), 皆為一種結果, 而其 所以生工率及工作者, 則全恃能力。故能力實為工作之要素, 可 分以下兩種論之。

【甲】位能(potential energy) 變之弓,於緊之發條,已裝之氣鎗,皆有隱藏待發之能力。機關一撥,即現工作。此隱藏之能力,曰位能。舉起之物體,預備未推出之鉛球,起跑未發之運動員,皆具位能。位能以 B=mgh 表之。即一物體舉起之高度為 h,而其質量為 m。則因地心吸力之作用,而其位能為 mgh。在推鉛球時,位能為 B=maS。蓋 S 與 h 相當,為預備部位,至鉛球脫手部位之距離也。 a 為推者之肌力所能發生之加速度,與 g 相當,m 為鉛球。跳高時蹬足前所有之位能,亦等於 maS。

【乙】動能(kinetic energy) 鉛球推出之後, 球受力之作用, 即發生運動, 而此球上所有之能力, 即為動能。惟能力平時不發生何種力量, 須遇抵抗力或障礙物, 始發現。

【丙】動能以質量及速度而表之方法 設一力 F作用於一物體 m,而其作用之時間為 t,則其結果為 Ft。據第二定律 Ft=mv(a)

設又有一刀,使物起等加速度之運動,則其平均速度,為開始速度與終結速度和之半。而此平均速度,一方亦可以物體移動之距離,除以時間而得之。

$$\therefore \frac{S}{t} = \frac{1}{2}v \cdots (b)$$

$$(a) \times (b)$$

$$F.S = \frac{1}{2}mv^{2} \cdots (39)$$

F.S 即力 F 在 m 物體上所作之工作。 $\frac{1}{2}mv^2$,即 m 物體所有之動能。

【丁】位能與動能之關係 位能與動能互為更換。設一工作,發現於 m 物體,而舉之高為 h,則此物體有 mgh 之位能。若此物體下落,則失位能而得動能,至下落經 S 距離之後,則其動能可由 $v^2=2gS$ 算出,即 $mv^2=2mgS$,因 S=h

$$\therefore \frac{1}{2}mv^2 = mgh \cdot \cdots \cdot (40)$$

當擺擺過垂直線而至他邊,則得位能。當達最高點而下擺時,位能漸變為動能。至垂直之部位,位能消失,全以動能而上擺。

於是動能漸漸減少,變為位能。至最高點,則動能消失,全變為 位能。若此擺無摩擦力,及空氣無阻力,則二能互相變換,其值 不變。擺動亦不息。

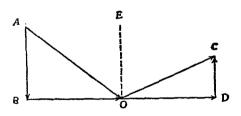
【應用】接棒球

棒球丟愈急則速度愈大,而其動能亦愈大。因 v 增一倍,而 K.E. 增至四倍也。接球時,手若不退縮,則手易受傷, 動能為 之也。若退縮極快,而退縮之距離亦極大,則手受動能之作用甚 小,不覺有何等痛苦。蓋 S 大則 F 即小。

【問題】問縮球之動作,何以須極快?縮球之速度與來之速度 若相等,手上有無受動能之作用?

二十八 摩擦力(Friction)

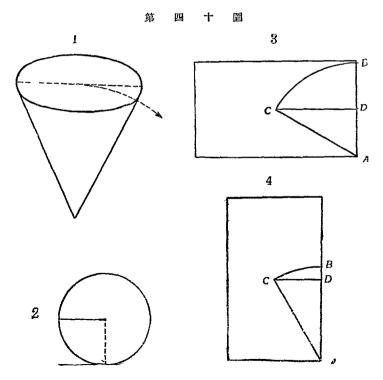
兩物體相接觸,一物體欲移動,其間常生一種阻力,而停減 其運動,即摩擦力也。摩擦力等於摩擦係數乘壓力。(F=µP)摩 擦係數與面之精粗及滑劑之有無,有直接關係。與接觸面之大小 及壓力之大小無關係。而壓力 P 與物體之重量有關係。 賽跑時 之跑鞋,所以有釘者,蓋以增加鞋與地面間之摩擦力。又在地板 上之着象皮鞋,及光滑之地板上擦松香,皆所使µ之值增大也。


二十九 彈性(Elasticity)

物體受外力之壓迫, 變其形或變其體積。所生之反動力而使

之回復原來之形式或地位者,曰禪性。外力使物變形者,曰變形(strain)。 使物體回復至原形或復原位者, 曰應力(stress)。 彈性 $e=\frac{stress}{strain}$ 。 e 等於 1 時,彈性最大。 鋼絲在彈性限度以內,往往為 1。極好之網球,亦近於 1。

彈性與反射角之關係 當球以角度斜擲於地時,若無旋轉之動作,而其彈性等於 1,則入射角當等於反射角。若彈性小於 1,則反射角大於入射角。例如下圖 40 為球投射之力,可分為一垂直向下之力 4B,及向前進之力 BO。 觸地之後 4B 反動而為 CD,BO 不變。因 CD 小於 4B,故反射角 ∠COB大於入射角 ∠40B。故彈性不足之網球,落地反射往往極低。



三十 物體之安定(Stability)

物體受地心吸力之作用,常寬一較低之部位而靜止。故重心 愈低,安定之度愈大。設重心在支點之下,則安定平衡。例如懸 於單杠上,支點在手上,重心則在臍上,故安定度大。反之重心 在支點之上, 欲其安定, 重心須在支持之根基以內。例如倒立於 單杠上, 重心須在兩手中, 又須在掌骨中, 普通掌骨之長度不及 掌之寬, 故雙杠上倒立易於單杠上之倒立也。平衡可分三種。

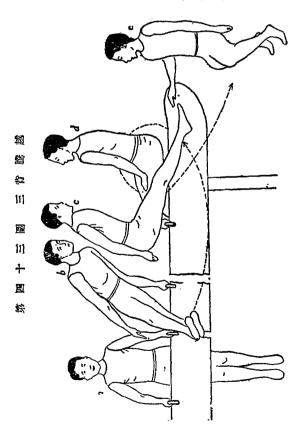
(一)不安平衡 物體起動之後,轉矩增長,重心直接下落,如第四十圆(1)。

(二·隨處平衡 物體起動之後,轉矩不變,重心之高低亦不變,如第四十圖(2)。

(三)安定平衡 物體起動後,因混基甚大,起動之後轉矩減短,重心升高,如四十圖(3)與(4)。A 為物體起動時迴轉之中心, BD 為由安定而至不安定之距離, BD 愈大,安定之度愈大。

體操動作,目的養成平均之功夫者,根基宜小。以健身為目的者,則根基宜大。向前之動作,宜用向前箭步或出步。向侧之動作,則宜用開立或向侧箭步。

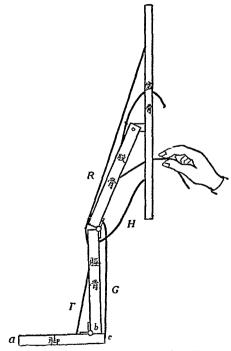
三十一 平衡(Equilibrium)


運動上所謂平衡, 卽身體成一直線, 首足兩端相稱之謂。大概可分兩種:

(一)重心在支點之下 在吊環上,平身懸垂。(四十一屬)身體在水平之部位,重心在支點下之垂直線上,則得平衡。此時身體成一直線。頭與足前後若相等,則其力轉矩相等,而身體上可不用力。然實際上用力極多者,因上身之轉矩短於下體之轉矩,欲

保持其力矩相等,故背肌,臀肌,須極用力。否則失平衡而下落。

(二)重心在支點之上 支持之點,須在重心之直下,身體一端之力臂與地心吸力所成之力矩,須與身體他端之力矩相等。例如第四十二圖,轉矩 Of 與重心以上身體重量之相乘積,須等於轉矩 Be 與重心以下身體重量之相乘積相等。木馬上之三背騰越


(如四十三圖),各種腿繞園之動作,及單杠由前正撑,雙腿繞至 後正撑等,皆應用是理。故足向右方,頭須向左方。足在左方繞 圓圈,頭須在右方繞圓圈。

【甲】槓杆之種類 一槓杆上有三點。重點,支點,力點是也。

眉

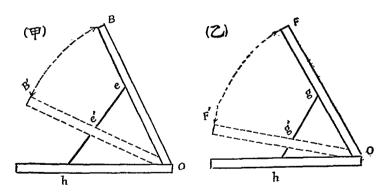
+

a, 脚尖; b, 踝翮節; c, 踵; T, 前脛骨肌; G, 腓腸肌; H, hamsting (股二頭肌, 半腱肌, 半腱肌); R, 股直肌: P, 腸腰肌。

支點與重點之間曰重杠,支點與力點之間曰力杠。三者位置變更, 可有三種不同之槓杆。

- (一)支點在重力二點之間 如以足挺物,足尖為重點,踝節 為支點,踵為力點。
- (二)重點在力支二點之間 如起踵,(俗謂脚跟點起)足尖為 支點, 踝節為重點, 踵為力點。
- (三)力點在支重二點之間 如手提物而屈肘,肘節為支點, 二頭肌末為力點,手為重點。
 - 【乙】杠杆之利益 杠杆之利益有二。

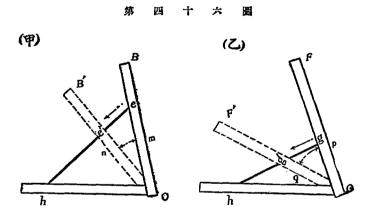
渾


- (一)以小力起重物 是類杠杆,力杠常大於重杠。
- (二)以大力增速度 是類杠杆,力杠常小於重杠。
- 【丙】人體內之杠杆 人體內之杠杆為骨,肌肉之末為力點, 關節為支點,重點無定。以第二種為最多,第一第三種極少。且 力杠短於重杠,而重杠之長度能自由增減。故運動時大有利益焉。
- (一)力杠常短於重杠之例 兩臂向前平圖,同時肘節伸直, 重杠由手指端起至肩關節止,等一臂之長,力杠由胸大肌之末至 肩關節,長不過二吋。又以手提物,重杠為重物至肘關節間之距 離,長在一呎以上。力杠為肘關節與二頭肌末點間之距離,其間 不過一吋有半。
- (二)人體內重杠可自由增減之例 人體各部,有關節可屈伸, 屈時使重杠減短。例如舉腿之動作,重杠為脚尖與體關節間之距

離。若膝關節與髁關節屈,則重杠減短。反之,若在膝髁二關節 伸直時,則重杠增長。

【丁】杠杆與運動之關係 人體之肌肉牽引骨格,皆屬圓運動。 故重杠與力杠之長短與角速度均有關係。

(→)重杠及力杠之長短與直線速度之關係 人體內之力杠, 為關節與肌末間之距離,已如上述。設肌肉收縮之度同(卽縮短 之長度)及肌肉收縮之速度同。力杠愈長,則直線速度愈小。例 如在(甲)(乙)二圖。Oe,Og 為力杠, OB 及 OF 為二骨, gh 及


eh 為肌肉,ee' 及 gg' 為肌肉縮短之長度。ee'=gg'。 BB' 及 FF' 為 OB 及 OF 二骨端之直線速度。 由(甲)(乙)二圆,可以比較力杠之長短與直線速度之關係。即骨之長短及縮短長度相等,力杠與直線速度為反比例,Oe>Og,而 BB'<FF'。

人體爲敏捷之機械, 故力杠常短。至於重杠, (即 OB 及 OF)

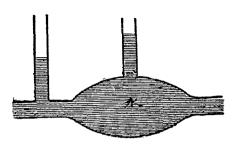
則與直線速度為正比例。踢足球,拍網球,欲球出而有力,膝須 伸直。蓋肢末之直線速度大,而球所得之速度亦大也。

渾

(二)重杠及力杠之長短與角速度之關係 肌肉縮短之度與收縮之速度同,則力杠愈短,角速度愈大。例如(甲)(乙)二圖, OB=OF, se'=gg', mn 及 pq 為角速度。因 Oe>Og, 而 mn <pq。

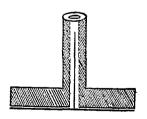
又同大之力杠,同大之直線速度,則重杠愈短,角速度愈大。 (蓋乙圖中之 OF 為圓運動之半徑,依公式 $(25)\omega = \frac{v}{r}$ 。即運 動體之半徑與角速度 (ω) 為反比例。)

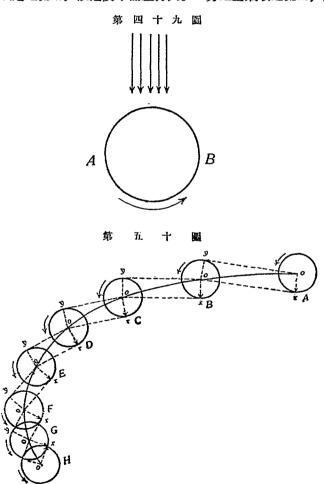
人體之四肢,由數關節而成,可以伸縮,有增長或減短之餘 地。即角速度亦有增減之餘地也。故人體宜於作各種機巧動作。


凡人之體格高大者, 其杠杆必長。若其肌肉充分發達, 則運動之效果必優於杠杆之短者。如跳高, 跳遠, 擲鐵餅等, 莫不應用

長大之杠杆。夫杠長固費力,但據用進廢退之理,重杠長者,費力多。即肌肉之發達機會亦愈多。彼杠杆短者,雖有省力之利益,確少增加速度之利益。欲與杠杆長者比較運動之速度,非各部肌肉收縮快速不可。例一矮子與身體高大者並行走路,矮子之步數,須較高者為多。即肌肉收縮之次數多,而收縮之速度亦須大,否則落後。比賽之時,不論身體高矮,皆試以最大之速度運動。體格矮小者,速度易於達到極點。(按反應時間 reaction time 不因體之高矮而有別)故高矮兩人,其練習之功夫同,其种經肌肉之反應時間同,其身體健康狀態同,身體高杠杆長者,速度有增大之餘地,而其便利當優於體格矮小之人。

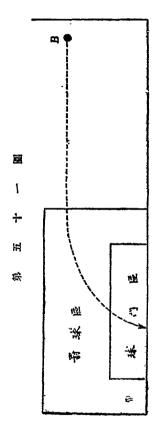
三十三 管中之水流(Flow in Pipes of Variable Section)


水平之水管中,一端之壓力大於他端,則水向壓力小之一端 流動,壓力初加之時,水由靜止而得加速度。至一端之壓力常保 相等時,管中各部所流之量,與管中各部之壓力皆相等。此在管 徑各部相等之水管習見之現象。若管徑不相等,而其一端之壓力 常保相等,其各部所流之量相等,其速度不相等。即由膨大之處 向縮小之處速度大,縮小之處向膨大之處速度小,欲縮處之速度 大,膨大之處壓力不能不較縮處為大。故膨大之處速度小而壓力 大。反之由收縮而至膨大之處速度減,而壓力增加,結果膨大之 處壓力大而速度小。由是可知速度愈大,壓力愈小,速度愈小,壓

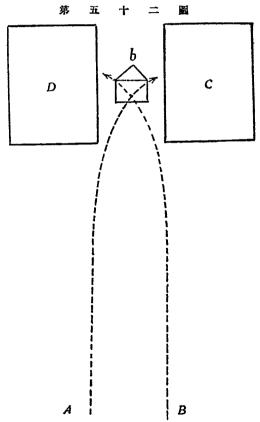


力愈大。壓力大小之差視管徑之大小之差而定。並由水流速度之大小而定。人體內之血壓,與血流之速度大有關係。有心病者,往往血壓大,故往往虛腫。因心弱,血速度小也。空氣屬流體,亦有同樣之現象。如四十八圖所示之凸形管,下附以與其底同大之紙,上插有針入管中,(針之功用在防其左右移動也)由管之上端吹之,則空氣經管中及管底與紙之間,速度大增。壓力因之減少。故大氣壓力壓紙之下面,而使之不得脫落。

第四十八圖



棒球丟出之時,及足球踢出之時,同時有旋轉作用。其所走 之路徑為曲線,是因球兩旁所受之壓力不相等而然。設球出而有 旋轉之運動,則球前方之空氣,向球而來。(如第四十九圖)B方之空氣遊之流動,故速度小而壓力大。A方之空氣順之流動,故


速度大而壓力小。 球遂向 A 方偏 向。雖然球纔脫手時, 球向前之速 度大, 因空氣之阻力, 球向前之速 度漸漸減小, 一方球轉之速度不易 减小,因之向一方偏斜之速度,始 終所差不多。故戀曲之度, 起初不 大。例如第五十圖, ox 為偏向速 度, oy 為珠前進之速度。因 oy 大 於 ox 數倍, 故 oo' 曲線, 改變之 方向不多。至向前之速度減慢,而 與偏向之速度所差無幾, 於是變曲 之度更甚。如第五十圖, 球由 4至 B, 及由 $F \subseteq G$ 比較, 可以明瞭。 發棒球時, 至壘上始現變者即此理 也。

【甲】關於足球之應用 在踢角 球時,或在場之左右角上打門時,

可利用是種曲線球。如在敵邊之右角踢球,足尖着球之處,不在 球心,而在球心之稍右方,使球向左旋轉,向左方偏向而入門。 (如五十一圖)若在敵邊之左角上踢球,宜在球之中心稍左方之處 着球,使球向右方旋轉而入門。 【乙】關於棒球之應用 棒球應用曲線球者,莫如發球員,目的使打者不能認明球來之方向,而所打不中也。普通有以下四種。

(一)內曲球(incurve ball) 球擲出之後,向右旋轉。至壘之近旁則向打球者之身體偏向(如五十二圖 a),其法有二。

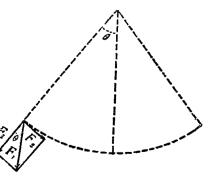
A 為棒球之內曲線; B 為外曲線; DC 為打球員立之區域; b 為本壘。

1. 球從大母指與食指中出,以食指與中指行鈎之動作,使球 向右方旋轉。

渾

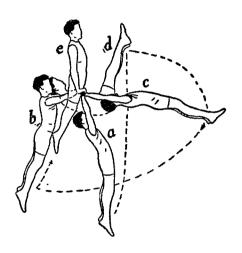
- 2. 球從中指與無名指中出,以中指食指壓球,使之旋轉,其時腕宜伸直,使球轉軸近垂直之部位。
- (二)外曲球(out curve) 球丟出之後,向左旋轉,至壘處向打者之遠方偏向(如圖 b),丟此球時,球之半,突出食指與大母指所成平面之外。而此平面向身體之右方,腕節過伸。
- (三)下落球 (drop) 球之執法與外曲球同。惟丟出時食指 與母指所成之平面,與水平面並行。丟出之後,球向前迴轉,過 壘上面下落。
- (四)上曲球(curve up) 丢出之後,球向後迴轉,至近壘處, 球向上升,丢時手掌向下,以食中二指鈎球,使生向後迴轉之動作。

第二編 運動


第一節 器械體操

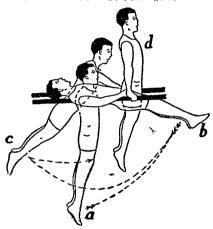
振身上(Uprise)

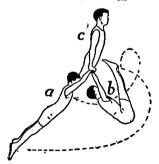
【甲】高橫杠上 是動作,從縣垂之部位,利用向後之擺勢,上 至前正撑之部位心。


- (一)屈臂引體,至屈肘懸垂之部位。
- (二)舉腿向上,至弓身縣垂之部位。(第五十四圖 b)
- (三) 雙足極力向前上蹬, 同時雙臂前推, 促身體挺直於前方。 (如 c)
- (四)在身體向後回振,重心將過杠下之後,身體向後上擺。 尙未了之前, 卽預備引體。 是因引體之初至上撑之間, 隔若干時, 若太遲, 則引體 之力, 受向前回擺速度之干 涉,終歸失敗。若引體太早, 則擺之利益不能利用。例如 第五十三圖,原來引體之力 為 F, 在擺至 θ 角時, 則所

第五十三圖

用之力為 $F_8 = F \cos \theta$, 卽 θ 愈大, F_8 愈小, 而省力愈多。


第五十四圖 單杠上振身上


【乙】在雙杠上 從前掛臂懸垂之部位,儘力向後振,上至中 側撑之部位。其物理作用,與在高橫杠上相同。雙腿及臀均須伸 直,(如 55 圖 b)得最大之擺角。至擺過垂直之部位時,則壓臂 上撑。

【丙】在吊環上 動作與在高橫杠上同,但身體向前擺至最前方,或向後擺至最後方時,均可行之。所異者,擺之範圍較大,而所費之時間較多。故引體之時間可稍遲,若太早,則受上擺之力干涉,太遲則受下擺之力干涉。故引體終了之時,當在擺動至最前方,或最後方之時。

第五十五圖 雙杠上振身上

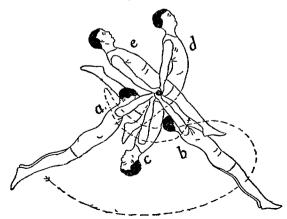
第五十六圆

二 蹬足上

【甲】在單杠上

(一) 尋常蹬上 其要點如下

- 1. 斜跳 使得極大之擺角。
- 2. 直臂挺身向前振,至將向後回振時,即舉腿使之近杠。在 重心向後經過杠下時,極力向前蹬足,上至前正撑之部位。
- 3. 力學之應用 是動作應用蹬足之反動力。(蹬足之動作向前,而其反動力向後,參觀第九節第十四面)反動力與兩臂下壓之力,及向後迴轉之力,三者合成向上之力。若太早,則蹬足之反動力不向後而向下。太遲,則不但向後回擺之力消失,且受地心吸力之干涉。故蹬足以重心將過杠下之時為最合式。又當蹬足之後,重心宜切近杠,以減少離心力。
- (二)挺胸蹬足上 從直立部位,由後方前斜跳上。向前擺動至過杠下之時,極力向前挺胸,同時兩腿保持垂直之部位。(如第五十七圖b)其用意在使兩臂擺動之角度加大而身體搖動之勢較小。及挺至最前方,立即舉腿至懸垂之部位。(如同圖 a)兩第五十七圖 挺 臨 器 足 上



臂乘向後擺回之動作,臂擺動之角度加大,身體搖動之勢較小。 及挺至最前方,立即舉腿至弓身懸垂之部位,(如同圖 c) 乘向後 回擺之動作,下壓上杠。同時挺胸,頭向前傾,以助身體近杠。 是動作與尋常蹬足上不同,後者利用反動力多,前者利用兩臂下 壓之力及頭前傾之力多。

- (三)反身蹬足上 是動作為高橫杠上最難之上法。作者經半年之外,始得學成,故其方法有研究之價值。
 - 1. 斜跳 所以增加擺勢。
- 2. 向前振至最前方,雙腿上舉,從臂中穿過,至倒身舉腿之部位。(腿與身體成直角如第五十八圖 c) 復振向前,值重心從杠下經過時,即速向後蹬足。令反動力迫身體向前上擺,同時極力挺胸,而上至後正撑之部位。

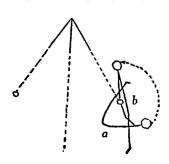
3. 要點 雙腿上舉宜在最前方,否則減殺擺動之勢。蹬足太早,則至 b 時已無向上迴轉之勢。太遲,則受回擺力量之干涉, 更難上撑矣。

【乙】在雙杠上

(一)掛臂蹬足上,從前掛臂懸垂之部位,振至前方,向上舉 腿。隨即前上蹬足,達中側撑之部位。

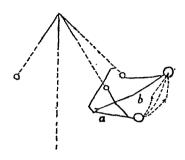
是動作由上蹬之力與兩下壓之力合成而上。兩手為旋轉之軸 身體之重心須在軸上。故舉腿之時,臀舉不可太高。蹬足之後臀 落軸上,上體循之向前上迴轉,下肢循之向前下迴轉,至中側撑 之部位。

【丙】在吊環上 各種動作之物理作用與單杠相仿。惟有三點 須注意。

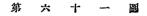

(一)舉腿之時,宜在後擺過垂直之時。

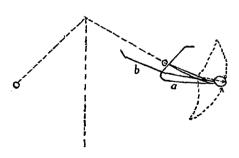
第

五

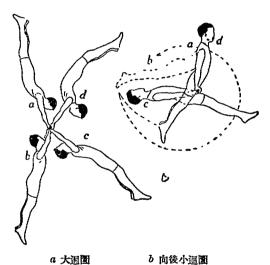

(二) 蹬足之時間,宜在擺速度等於零時。過早,則身體受上

十 九




擺離心力之干涉,頭不能向吊環中去。故蹬足之後,身體與縄垂 直。(如第六十圖 b)

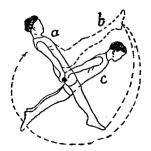
(三)若太遲,則身體迴轉之力,受向下擺動速度之干涉。蹬 足之後身體與縄並行。(如第六十一圖 b)



a 爲未蹬足前之姿勢 b 爲已蹬後之姿勢

(四)迴轉之軸,須在手上,重心宜在軸上,太下則身體往吊環之後,而離環甚遠。

迴園動作



第六十三圖 向前小迴圈

a

b 向後小迴圍

第六十四圆 向前小迴圍

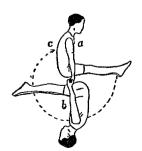
第六十五圆 手膝迴圈

【甲】大迴園 俗名大風車,分向前向後兩種;前者反握,後 者正握。當向前向後下落之際,宜在最高之處,身體伸直,使轉 矩增長,位能增高。初學者,握手不牢,膽量不大,則下落動作, 可在較低之部位開始。至上擺之時,身體較屈,使角速度增加, 易回倒立之部位。

【乙】小迴園

- (一)向前 從前正撑之部位,向前迴繞一圓。開始之際,身 體挺直,與地面成四十五度,以得位能。起動時,上體向前迴轉, 腿向後迴轉,確成偶力。使上體與腿之動作一致,否則不能成功。
- (二)向後 從正撑之部位,向前迴繞成一圓,方法與向前同, 起動時,雙腿前平舉,同時上體後傾,以得較大之位能。迴轉時, 上體與下肢一致,方能繞成一圓。
- 【丙】手膝迴園 由手膝懸垂之部位,行迴園動作,可得以下 數種:

(一)雙手單膝迴園 兩手在外,一腿在內,或一腿在外,均可繞成一圓。應注意者,為伸直之一腿,宜伸直而用力擺動,上體亦挺直與腿一致,使力轉矩大。


運

(二)雙手膝迴園 雙腿在內或在外均可。起動之時,上體挺直,用力向後,使力轉矩大。過垂直線而向上擺之時,上體屈縮,使角速度增加。

【丁】手臀迴園

- (一)在正坐之部位,雙手握杠,向前或向後迴成一圓,舉腿 與否均可。起動之時,頭宜向外拋擲,使頭在一圓圈上走。若直 向下落則頭書圈不圓,終歸失敗。
- (二)從側騎坐之部位,迴成一閱,俗名騎馬風車,起動之時,身體宜伸直。

【戊】手與足背迴園 雙手反握,雙足背在手外方鈎杠,向前 第六十六圖 手聲迴圈 第六十七圖 手與足背迴園

迴成一圓、起動之際, 頭宜向前注, 膝伸直, 多分開, 胸挺直,

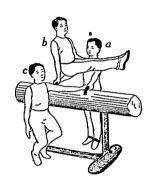
同時放鬆, 使轉矩及位能增大。 髁節全屈, 以免脫杠。

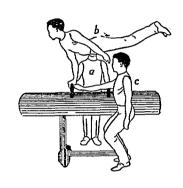
【己】膝鈎迴圓 又名脫手迴圓。起動之時,上體伸直放鬆, 向後上方傾倒,雙膝牢鈎。至身體上擺之時,上體屈縮,使角速 度增加。

第六十八圖 膝鉤迴園

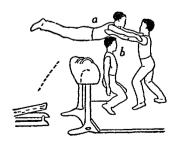
四 木馬上之騰越動作

【甲】侧騰越 雙手正握,雙腿以身體之左(右)方向器械而過 之。若向左邊行之,則跳起之後身體之重心宜移於右手上,使支 點兩側之力轉矩相等,身體暫時經水平平衡之部位。


【乙】背騰越 是為水平騰越,以背向器械而過之。跳法握法 與倒騰越同惟身體轉四分之一耳。轉時,膝伸直,使惰性短縮小°


【丙】俯騰越 起跳方法,同侧騰越,惟轉體四分之一,以胸 腹對器械,經過片時騰身撑之部位。此時平衡之姿勢,最難維持。 胸宜挺出,頭向前注,臀肌薦棘肌用力收縮,使支持點前後之力

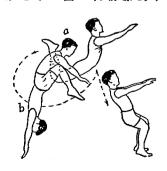
轉矩相等。



【丁】魚躍 運動員由助躍臺跳起,向前魚躍,雙手向助動員之肩而下落,跳上助躍臺之後,宜乘臺回彈之時跳起,則兩腿下蹬之力與臺回彈之力相反,反動可大增加。(參觀第十四面(一)) 騰在空中時,身體水平,全體伸直,兩腿倂攏,助動員接着運動員之身體,勿向後退,祇向上托其胸可矣。

第七十一圖 魚鹽

五 單杠上向後脫手迴阛下

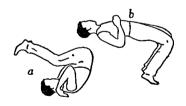

人體前振至最高之部位時,——即脫手,在空中向後迴成一 圍,而落於地上。

是動作有二種做法:其一脫手之後,屈膝屈臀,利用縮短半徑,使迴轉之角速度增加。然此往往因迴轉太多,而落地之時過直立之部位者,臀膝屈太多,及擺勢太大為之也。屈縮之度數與擺勢須有相當之比例。其二脫手之後,臀膝完全伸直,且挺胸舉臂,(如第九圖)惰性矩極大。故擺勢亦須極大,否則不易迴轉至直立之部位。

六 向前膝鈎下

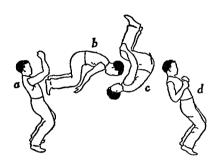
從正坐之部位,擺至最前方時,即脫膝前下於地上。是動作 有三種做法:其一,由前正坐於單杠上之部位,向後脫手下落。

第七十二圖 向前膝鉤下


(如七十二圖)臀宜伸直,使轉矩大,以得擺勢。其二,由掛膝懸垂之部位,擺動數次,擺至最前方時,脫膝落於地上。所宜注意者,擺動之時,臀部伸直,使擺以膝鈎之處為中心。

運

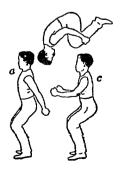
七 墊上運動


【甲】蹬足躍起 從仰臥舉腿之姿勢,極力向前上方蹬足,將身體躍起至立之部位。此種動作完全利用反動力,即向前上蹬足之力,使上體生推墊之反動力,而身體即賴此反動力舉起也。最要者,舉腿之後,頸前屈。(如第七十三圖 a)蹬足之時頸伸直。以增加推墊力量。此外身體迴轉之軸,宜在重心上,蹬足之後,宜屈小腿,使迴轉之角速度增加,且脚可速至重心之下站立。(如七十三圖 b)

第七十三圆 蹄足题起

- 【乙】向前騰空翻 以雙足跳,而騰身於空中。向前迴成一園, 以雙足落於地上。加跑者較易,立定者較難。以下諸點宜注意:
 - (一) 跳時須高, 俾得在空中有充足之迴轉時間。
 - (二)上體向前下彎,下肢向後,臀向上後舉。

第七十四圖 向前騰空翻



(三)在空中之時,屈膝屈臀,兩手抱膝,使迴轉之角速度增 加。

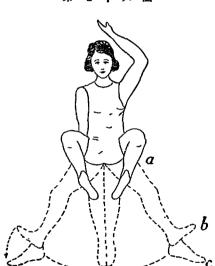
(四)兩臂向前下振,增加迴轉之運動量。

【丙】向後騰空翻 其方法及原理與向前騰空翻同,惟方向相 反耳。(如七十五圖)

第七十五圆 向後騰空翻

第二節 游泳

水之阻力,大於空氣數倍,利用得當,事半功倍。利用失當, 事倍功半。故身體四肢在水中之姿勢,宜詳細講究。

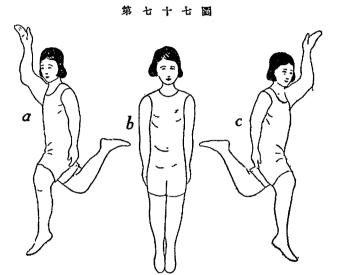

一 仰游

【甲】兩臂過頂交互推水兩脚蛙式踢水法 是法有一定之程序, 即兩脚踢水之動作,與一臂推水之動作一致。同時頭微下沉,以 鼻孔呼氣。一臂推水終了之後,兩腿伸直,兩臂緊靠體旁,四肢 暫停片刻,使身體之抵抗面積減少,發生至大之效力。此後他一 臂再行舉起,同時以口吸氣,兩膝輕輕前提。欲是式之效力增大, 宜注意以下豁點:

- (一)上肢之姿勢 手在空中之時,肘節腕節宜屈,使重杠縮短,減省三角肌之負擔。手宜經面部頭頂,免得上臂在侧方浸水,而倒行推水。推水之時,肘節腕節都伸直,俾推水之面積得以增加。
- (二)一臂行推水之時, 他一臂須停靠身旁, 禹不可同時型 起。
- (三)臂舉起之時,不可有一小部份倒行推水。舉起之動作, 勿太急促,切勿有一點水落在面上。
 - (四)蛙式踢水後,腿提起之時(如第七十六圖由 $d \ge a$) 宜輕

緩而髁節伸直,所以免避倒行推水。在 a 之部位,向 b 推水時, 髁節屈,以增足底推水之面積。至兩膝仰直之時髁節伸直。(由 b 至 c)

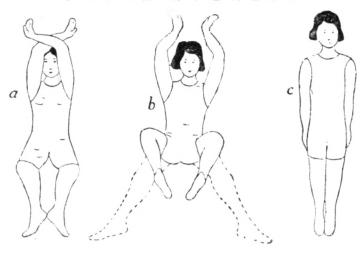
(五)兩腿伸直至分腿之部位,向中夾水,速度宜大。


第七十六圖

(六)至兩臂緊靠身旁而兩足相倂時,全體伸直,稍停片刻。

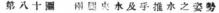
【乙】兩臂過頂交互推水兩脚剪絞踢水法 (alternate overarm, with scissors kick) 是法亦屬仰游但在前流終了之時,脊柱向側轉動,下方之腿,向前進之方向提起,行有力之踢水。再以背面浸水,向前流動。例如以左手推水,則在左方工作,以左右足剪

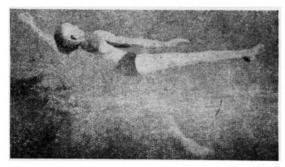
得名。


絞踢水。(如七十七圖 c) 以右手推水,則在右方工作,以左右足剪絞踢水。(如同圖 a) 每次推水之後,繼以仰天直臥之姿勢。(如同圖 b) 此為身體前駛最力之時,全體宜伸直。是式為一極省力之游法,可終日不倦。

【丙】半身不遂之游法(the half paralized stroke) 是與上 法相仿。惟用左脚踢水時,只用左手推水。右脚踢水時專用右手 推水。他方之脚與手完全不動。方式適用於半身不遂之人,因此

【丁】雙臂過頂推水法(double overarm stroke) 與甲式相仿,惟兩臂與兩腿同時推水。其注意之點相同。


二 側游

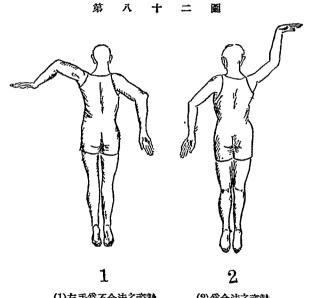

【甲】手在水中法 (the side underarm) 推水之動作,與兩脚剪絞踢水連合。全體可分三節施行。(1)下方之臂推水,雙腿

第七十九圖 右腿上提右臂上舉之姿勢

前提,上方之臂前伸。(如七十九獨)(2)兩脚踢水同時上方之臂推水,下方之臂前伸。(3)兩脚相併,上臂緊靠身旁,下臂上舉。 此時身體在一直線之部位,(如八十一圖)確為向前之阻力最小之時,宜暫停片刻俾得向前速駛。上臂活動之範圍不大,推水與前

第八十一圖 開始及終了之姿勢

伸之動作須緊靠身體。至近大腿時,宜停片刻不動。下臂活動之 範圍極廣,宜盡量前伸及推水。欲是式之效力加增,應注意以下 諸點:


- (一)臂前伸之時,手指向去之方向。
- (二)推水時,手掌之面與去之方向垂直,手指倂攏,增加推 水面積。
 - (三)脚前提之動作宜緩,髁節伸直,使倒行推之力減至零度。
 - (四) 脚踢水之動作宜快。
 - (五)向前速駛之時,全體伸直。
- 【乙】上臂出水法 是法純係前式之變相。其異點一在上方一臂前伸之時,完全拖出水面,二在上臂推水之時,面與身體向下轉也。全部動作可分三節:(1)下方之臂推水,雙腿前提,上方之臂從水面向上前伸。(2) 兩脚踢水,上方之臂推水。同時身體向下轉,面在水中,由鼻孔呼氣。身體比重大者,往往全體浸水中。(3) 兩脚相倂,上臂緊靠身旁,下臂前舉,全體成一直線。暫停片刻。以口吸氣。其應注意之點與上式同。

三 俯游

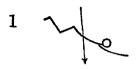
【甲】爬行游法(the crawl stroke) 是為兩手交互提出手面而行推水之法。兩腿平直打水,與手之動作無何等聯絡。臂長者或肺小而臂短者,每次推水(左右各一次作為一次)時,宜行呼吸。臂短而肺大者每兩次推水,呼吸一次。臂長適中者,推手一次半呼吸一次。(先在左方吸繼在右方吸)呼吸宜深,與臂之動作,有一定之韶律。萬不可屏氣不息。

腿打水之速度不一。臂每推一次,有打十次者,有打四次者, 平均數為六次。大抵大腿之肌肉強, 肩胛之肌肉较弱者, 腿打之 數次可多。反之, 則可較少。腿打之動作極重要, 初學者宜注意 學習。各部動作之注意點如下:

(一)推水之動作,宜向後不可向前。小臂之推水動作宜快。

(1)左手爲不合法之姿勢

(2) 爲合法之姿勢

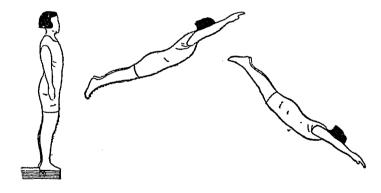

- (二)肘宜提起,遠離肋骨。在推水終了之時,尤須注意,以 免大臂浸水,而倒行推水。
 - (三)推水終了之際,大母指須轉向後。
 - (四)兩臂交互向前迴轉時,掌面注意向上。(如第八十二圖

- (2)左手。)與水面並行。萬不可以手掌向水面(如同圖(1)左手) 或掌與水面垂直。蓋前者易致大臂浸水而倒行推水,後者易使肘 舉太高而費力。
 - (五)從一方吸氣, 面隨上提之一臂轉向。
 - (六) 腿打水時, 膝不可屈。
- (七)手在最前方插入水中時,腕節宜屈,使手掌向後,推水 之面積增加。
- 【乙】步行游法(the trudgeon stroke) 為兩臂交互提出水面,與剪絞踢水連合之方法也。在侧游式中(以身體之右方向地面)剪絞踢水之動作與右臂以時針方向前繞之動作一致。在此式中,則逆時針之方向——前繞。(同爬行游法中之右手動作)剪絞踢水時,同時吸氣,尋常左右手各推水一次,一腿踢水亦一次。亦有左右轉動而行兩次踢水者,非正式之方法也。是式特殊之點,在踢之動作,注重在下方一腿。上腿向前上伸太遠,則轉動太多,不類俯游方式。

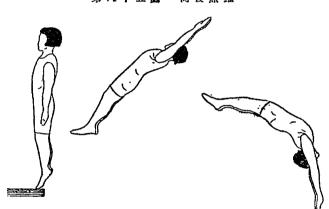
四 魚躍(Dive)

水之抵抗力最大,魚躍入水,欲不受水之抵抗,應注意兩點: (1)手指先觸水面。(2)身體前進之方向,與兩臂並行。(如第八十三圖(2))初學者往往身體太平,與前進之方向,成某種角度。(如同圖(1))且同時犯肩節膝節屈縮之病。一觸水面身體與水碎

第八十三圖 魚躍入水時姿勢之比較



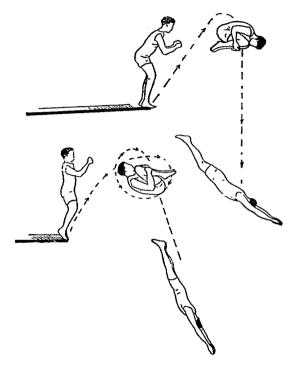
(1)不合法之入水法


(2)合法之入水法

擊浪起數寸,體內外受莫大之打擊;而成績不過數尺。欲免是弊, 宜注意兩點: (1) 脚盡力前跳,上體向前下方,與跳力和地心吸力 二者之合力,取同一方向。(2) 肩股膝三關節,竭力伸直。

【甲】向前魚躍 學習時,宜由立定之部位做起。上體向前下 第八十四國 向前魚圈

彎,成四十五度。脚輕跳起,注意兩手插入水中之動作,及身體 入水之角度。正確後,再加跑之動作。前跳之距離,由近及遠, 漸漸增加。最要者身體與肩節膝節髁節均伸直,與水面成四十五 度之角。 【乙】向後魚躍 是項魚躍,首宜解除恐頭部受傷之感想,身體向後竭力挺胸,肩關節十分伸張。向上跳之力量,起初愈小愈妙。跳起之後,頭竭力向後看。全體成弧形。入水之後自能回至俯臥之部位。



第八十五圆 向後魚躍

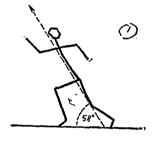
【丙】向前騰空翻加魚躍(cannon ball dive) 是為向前騰空翻一周有半加魚躍之動作。實際上毫不難做。最好之法,躍前加跑之動作。

【丁】向前騰空翻一周有半加魚躍(forward somersault and dive) 跳起之後,兩臂向前下振,發生旋轉之惰性作用,同時頭向下彎抱腿。如是則惰性矩小,而迴轉之速度可以增加。至視線與水面成四十五度時,則全體伸直,此時萬不可再行迴轉之動作。

第八十六圖 向前騰空翻加魚躍

第三節 田徑運動

— 起跑(Start)

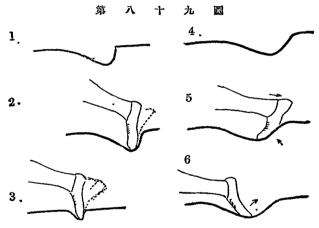

起跑之目的有二: (1)使靜止之身體,在短時間內,達極大之速度。(2) 使起跑動作本身迅速。欲達此目的,須根據力學,求最合宜之方式。自有賽跑以來,起跑之法,經兩次變遷,前後

共有三式。

【甲】第一種 為直立式,兩足在起跑線後,前後出立,後脚 蹠部及身體重心間所連直線與地面所成之角太大。後腿後推之力 F,對於前進有利者為 Fcos θ。但 cos θ 之結果與 θ 為反比例。直 立起跑時, θ 角既太大,推身體前進之力,(Fcos θ) 不得不小。 欲身體在短時間得最大速度極難,故此式今已絕對不用。(如第 八十七圖)

第八十七圖 直立起跑

第八十八圖 舊式蹲伏起跑



【乙】第二種 為蹲伏式,兩手與前足尖,在起跑線之後,同在一直線上。兩足立入穴中,後脚推身體之力,經重心之前。 雖 部與重心間連成之線,與地面所成之角太大。故起跑之後,身體 易於擡起,第一步易趨過大。且因上下肢相隔太近,身體變屈太多,覺不舒暢,實一極不自然之部位。今已廢棄不用。

【**丙**】第三種 亦爲蹲伏式,最為合理,各國嫻用之。茲爲詳細分析起見,分論於下:

(一)蹲伏之姿勢 兩手撑起跑線後,足立穴中。前穴離起跑線 10-25 糎,(視運動員身體之高矮而行伸縮)不可太遠,遠則後腿推進之力量經重心之上部,(如第九十圖 3)後穴與前穴之左右距離,約 10 糎,前後之距離視小腿之長短而定。(大概後腿跪地之後膝與前脚心齊)後膝跪地,兩脚立穴中,宜以脚底之前


起跑穴及即立穴中之姿勢: 1. 穴太陡。2. 髁閉節太伸直, 脚軟化。3. 穴太淺, 建部無用力之點, 起跑時煙下落, 時間 延長。4. 穴之正當形式。5. 脚之正當立法, 髁風。6. 根本 無着力點。

半部抵穴之後面。〔穴勿太淺太陡(如第八十九圖(1)(2)(3))〕髁 關節宜屈,使工作距離大。小腿後諸肌伸長,得有充分收縮之餘 地。向前跨之時,萬弗有一點放鬆。否則蹬力無多。兩足尖正向 前。

兩臂撑線後, 微屈或伸直, 兩手之間寬與肩等。四手指宜向

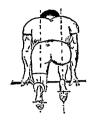
外,大母指向内。

(二)預備之姿勢 運動員聞令之後,身體擡起,頭向前看。 後腿微挺直,(大小腿成 90 之角如下圖 1)但不可太多。多則 第九十圖 預備出發及出發後之姿勢

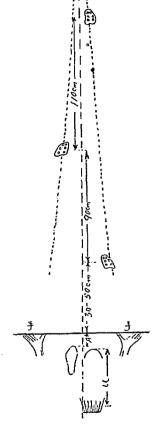
1. 正當之預備姿勢,後大小惡成 90°之角。因後推之力,穿過重心。 2. 1a膝太向前,大小惡間之角太小,應後退至2a之姿勢。 3. 手距足尖太遠,大小惡間之角太大。後題推進之力,經重心之上。 4. 發脚之後,身體前傾成 45°。跨步之角,與前一惡的大小惡間之角,皆爲90°。後方一腿推進之力,適過重心。第一步至多不得過30—50捷(中國矮小還可短墊)。 5. 步太長,前脚向上推進,阻礙前進。

有二弊: (1)後腿推進之力,不穿過重心,而經重心之上,一部份之力費於無用。 (2)後腿之工作距離減小,身體向前傾出不可太多。多則重心大向前,腿上之負擔反小,而腿力亦無所用之。 腿上之肌肉在未令跑前,須完全放鬆,不可緊張。

第九十一圆 起跑豫備姿勢



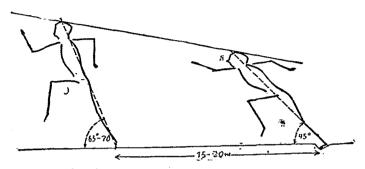
(三)出發之姿勢 及令跑或聞爺之後,後腿向前跨出, 體膝 髁三關節伸直,身體即向前進。前大小腿間之角度,由銳尖而增 第九十二圖 起跑後第二步之姿勢 第九十三四 起跑後第一步之姿勢


第九十四屬

從後方看之起跑法: 脚立穴中, 膝勿向外指。

至 90°。故身體更向前進。於 是後腿向前速跨短步,其大小 腿所成之角,仍成 90°。惟小 腿與留地之一腿並行。(如第 九十圖 4) 手離地之後,一臂 向後重振,一臂向前重振,一臂向 向與同邊之腿相反。身體與 面所成之角在 45° 左右。若 再較小,必向下倒。起初七八 步,腿推進之力須正對重心。 步伐宜小,速度宜大。否則向 前傾倒。

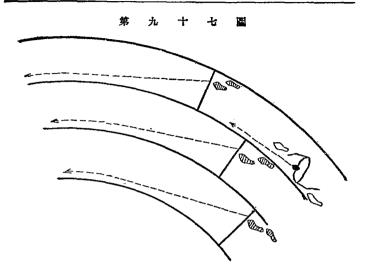
第九十五圖



起跑及起初三步,由上而下看之大概:前即及後膝離起跑線後 10-15 種,手指斜外向,與居 阵咒。第一步在起跑線前 80—50 體,第二步為90種,第三步110種,第一步離中線15—20種。

依實驗之結果, 跑至 15-18 米時, 步伐增至最大。身體上 所有之速度亦達極點。身體傾斜之角度, 漸漸增加。至 15-20 米後, 則成 65°-70°。(如第九十六圖)

蓮


第九十六圖 體角

綜觀是式,身體各部,所用力量,皆促身體前進。可為最好 之起跑法。

二 弧形跑道上之起跑法

人在弧形跑道上起跑, 同時受離心力之干涉。 其大小可由 $F = \frac{mv^2}{r} = \frac{ma^2t^2}{r}$ 之公式計算。即弧線之半徑愈小,離心力愈大。起跑之加速度 (a) 愈大,則離心力愈大。起跑之目的,欲在一定之短時間內,加至最大之速度,其間之加速度須大,故發生之離心力亦大。由實驗之結果,加速度在起初數米(約4-6米間)最大。此距離內能向一直線跑,則可免離心力之干涉。故在弧形跑道上起跑,起跑穴宜掘在靠近外圈線上。目光向五六米前內圈線上看。(如第九十七圖)出發後之數步,向前直跑,至沿弧線跑時,身體之重量,始移內足之上,同時兩臂向內斜擺動。身體不

但向前傾 50°-70°並內傾 15°-20°。其多寡视彎度之多少及長短而定。

三 短程賽跑

短程賽跑者,以全身之力量及速度,跑過短距離之項目也。 在極短之時間內,每步效力之大小,與成績大有關係,故跑之姿勢,不可不研究。

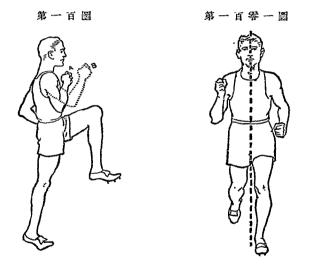
【甲】體角(body angle) 身體挺直時與地面所成之角也。凡程之遠近,以水平距離計算。而吾人下肢推身體之力,則與水平線可成種種角度。用三角函數計算,則知下肢推進之力與水平線所成之角愈小,向水平方向推進之分力愈大。然實驗之結果,身

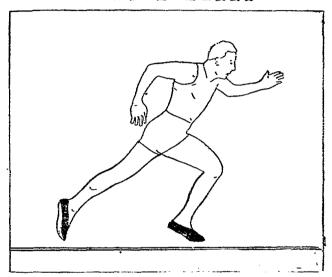
體向前傾斜,與地面所成之角,不可少於 45°,小則向前傾倒。 故短程賽跑之體角在 45°至 65°度之間。(如第九十六屬)

運

【乙】重心所走之路徑 自發脚點至終點間,身體重心所走之路徑,可畫一波線。緣谷之高低,足以定其路徑之長短。體角愈大,緣谷愈高,則波線愈長,而費力愈多,效力亦愈小。故短程賽跑,重心須在水平線上進行。其法有二: (1)脚落地之後,用力後推,趕速離地,身體逐無從下沈。 (2)腿前舉之時,注意大腿高舉之動作,少用伸直膝節之動作。如是則落地時,大小腿間有正當之角度(90°)。 (3)上體向前傾斜,重心正在推力之上。三者能完全做到,則效力大而成績亦優。以上所討論者,為從側

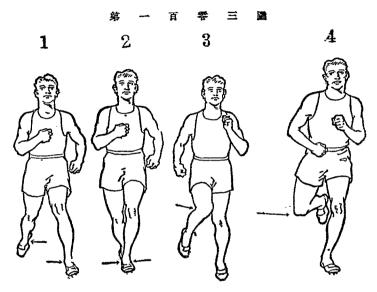
第九十八周


第九十九圆



看之路徑。若從後方觀察,則身體重心之移動,亦有出入。左右 平均,如能合式,則重心在一直線上走。若重心左右移動,則重 心走之字形之曲線。費時費力,影響成績,實非淺鮮。

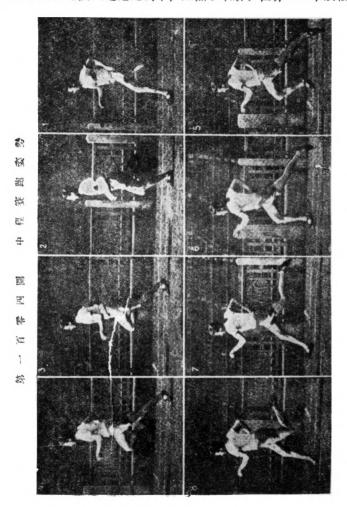
【丙】上肢之動作 兩臂之動作,與身體之平均問題有關,亦 即與重心所走之路徑有關。設令一人,兩手牢縛體旁而跑,必致 搖擺不堪,前進非常困難。失其平均使然也。當右腿向前,右方


之盆骨亦隨之向左轉。故此時須將右臂向後方擺動,牽動右肩, 上體亦微向右扭轉,以反抗盆骨向左轉之動作對於上體之影響, 而使重心左右之位置不變。若當時無右臂後擺之動作,則重心必 向左偏,而平均破。不但在上肢完全停止時爲然。卽擺之不當時, 亦於平均大有妨礙。例如第九十八圖,左臂向體前繞而擺動,足 使身體向左扭轉太多,而失平均;如第九十九圖右臂 A,足令上 體扭轉太多;如第一百圖,足使重心向右移動。則臂之動作,從 前面看,應如一百零一圖,臂切體旁而擺動;從側面看,應如一 第一百零二圖 短程姿姿勢

百零二圆,後大臂近水平,小臂與身體並行。前大小臂間之角為 90°-120°。其對邊亦近水平。

【丁】下肢之動作 下肢之動作,與平均及速度兩問題,有密切關係。從跑者之後面看,足跡應切一直線之兩邊,足尖踵體膝髁三關節,均宜在一前後平面上。太分開(如一百零三圖 1)則重心左右搖動。膝太分開(如一百零三圖 4)或太靠緊(如一百零三圖 3)下肢推進之方向,不能一直向前,重心亦必向左右搖動。

兩脚的脚跡如在一直線上, (如一百零三圖 2) 則脚有前繞之動作。凡此種種, 皆足使速度減慢。



又從跑者之側面看,後腿離地之後,小腿不可後擡太高,高 則費時間。當前進時,大小腿間之角度,宜任 45°左右。太大, 則致推進之力,完全向上。太小,則步伐太短。凡此種種,皆是 使速度減慢。

【戊】上體之姿勢 頭頸宜與脊柱在一直線上,頭不可向上仰起,而使重心向後。肩胸腰放鬆,使動作自然。

四 中程賽跑

中程賽跑須富有長力,與短程不同。但長力之外,速度亦極 重要。若缺少速度與迅速之對手,則無以取勝。世界800米成績

最好者為每100米13.9秒。可見力量之外,倘有速度一要素存乎其間。單獨100米跑至慢為12秒。而800米之每100米之平均速度為18.9秒,可見欲成績之進步,宜從速度着手也。

中程賽跑之起跑,雖不若短程賽跑之絕對重要。但究比立定 起跑為快,故亦宜採用蹲伏式。體角較短程為大,上下肢之擺動, 亦不如短程之用力,大腿上提不甚高。當小腿前舉之時,大腿與 身體成鈍角。落地時以踵着地,繼以起踵及伸髁關節之動作而推 地,(如一百零四圖 1,2,3,4) 與短程逈乎不同。大小臂成 70°—120° 角。(如第一百零七圖 2) 擺動愈大,步伐愈長。臂擺動時,肘不 緊靠體旁,所以便於呼吸也。

五 長程賽駒

長程賽跑,為一疾徐相間之賽跑,全程間之速度,可以上下。 其慢跑之時間,所以恢復疲勞。步伐之長短,視身體之高矮而定。 平日練習時,宜求得最合式之長度。步伐愈長而自然愈好。體角 較中程賽跑為大。(如第一百零七圖)以 75°-85°為度。大小臂 間之角亦較大。擺動時放鬆,肩不向前,擺角窄小,祇以小臂向 前擺動,以免上肢之疲勞。步伐須富彈性。先以踵輕輕落地,繼 行伸髁關節之動作。用蹠部推地,作流滑之狀。脚勿向後高舉。

六 到終點之姿勢

運動成績愈進步,成績之相差愈少。跑程愈短,達終點時,

各人距決勝線之相差亦愈少。達終點之姿勢, 與短程賽跑之成績 大有關係。研究所得, 達終點之姿勢約有三種, 分析於下:

a. 跳躍法

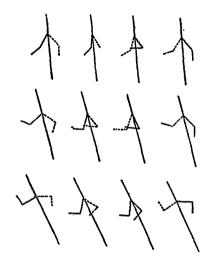
b. 挺身直衝法

【甲】跳躍法 到終點時,用最後一躍,以觸終線,是有二弊: (1)準備跳時,全體下蹬,向前之速度減低。 (2)跳起後之速度, 向前上斜方,向前之速度減慢。若描寫身體重心所經之路,必為 一變屈極大之曲線,時間極不經濟。(如第一百零五圖 a)

【乙】挺胸直衝法 離終點最後一兩步時,保持向前衝之速度。 更加以挺胸之速度,則身體觸線,當然更快。然此動作,不可太 早,蓋挺胸之時,兩臂後張,頭傲仰後,不免板滯。若在離終點 兩步以上之前行之,亦足使速度減慢。故挺胸動作,宜在末一兩 步行之。(如同圖 b)

【丙】舉臂直衝法 在最後一二步,兩臂上舉。身體放鬆,頭

不後仰,胸不挺出,體角改變不多,故前進之速度並不減少。如 第一百零六屬所表者,為最好之姿勢。


七 賽跑結論

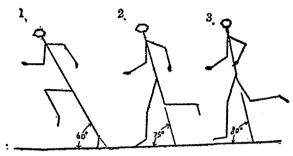
【甲】上肢動作

- (一)大小腿所成之角愈小,則擺動愈快,(蓋角速度與半徑為 反比例也)而向上之工作愈多。腹肌若不強壯,則體角難小。
- (二)跑之速度 愈大,身體之左右平衡愈不需顧慮。臂擺動之 方向愈直,兩脚間之距離愈小。(但不可在一直線之上)

(三)臂之擺動愈放鬆,則肩之動作益自然。凡肩帶僵硬、肌 肉呆板,握拳肘僵等病,均可免除。

第一百零七圖 體角與醬角之分配

- 1. 長程賽跑:體角75°-85° 大小臂間之角80°-180°
- 2. 中程賽跑:體角70°-75° 大小聲間之角70°-120°
- 3. 短程賽跑:體角50°-60° 大小聲間之角90°


(四)臂之擺動愈用力,則臀之伸直愈充分。長程賽跑時,盆 骨及肩胛之轉動太大,及起跑時兩脚間之距離太大,皆足以使左 右之平均破壞。臂重擺之動作,即所以維持其平均也。

【乙】下肢動作

- (一) 膝舉愈高,則着地之動作愈有力。重心所走之波線愈高, 腿之向前擺動愈用力,則下一次向前提起愈費時間,而身體下降 亦愈低。
 - (二)步伐之長短,與盆骨之轉動(向擺動腿的一邊轉動)及

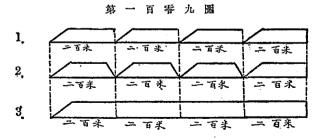
小腿之向前擺動有關。與膝之高舉無關。

第一百零八圖 體角

短程,中程,長程賽跑之體角

- (三)脚落地離重心愈遠,則以踵落地之機會愈多,腿與地面 所成之角愈銳尖,而與下一步所隔之時間愈長。(跑者不講求姿 勢,專從步大以求速,則重心必致向後移動。脚推重心之作用無 多、結果事倍功半)
- (四) 脚落地時近重心,或在重心之後,則髁關節易伸直。以 踵落地之機會愈少,而姿勢愈近短跑。
- (五)跑之速度,來源有三: (1)用力後推。(2)步伐長大。
- (3) 踏地快速。然而步長則慢,步短則快。步之長短,與每步間之速度,有不能兼顧之勢。欲求兩全,則步伐祇可由用力後推以增長,不可由小腿向前擺動作以增長。

[丙]身體之姿勢


- (一)跑之距離愈短,體角愈小。距離愈長,體角愈大。
- (二)身體向前傾斜愈多,則盆骨愈少工作之可能。 髋關節愈

易伸直,而身體愈易正直,轉動之動作愈易繞體軸而行。短程賽 跑,伸臀之動作極重要,故體角宜小。

(三)短程賽跑,重心所走之波線,起伏愈甚,則速度愈慢。

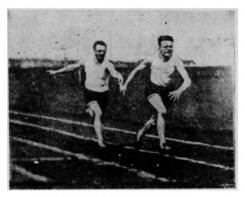
入 替換賽跑

短程替換賽跑,不論 4×200 米或 4×100 米,接棍之區域, 均為二十米。常人以為定此規則之時,恐接棍之動作太難,與以 二十米以內接棍之機會,含有保險之意。經作者研究推考,其用 意在與接棍之人,有加速度之機會,毫無保險接棍之意味。按令 春在中央大學人體機動學班上實驗的結果。短跑在起跑之後,至 16-18 米之間,跑之速度,始加至極點。則此二十米之區域,確 是與接棍者,以增加速度之機會無疑。由此推知,接棍得法,800 米或 400 米之成績,可比 800 米或 400 米之個人成績為優,反 之則可較為劣。欲閱者易於明瞭,故以圖表明於下。

- (一)四周二百米之速度。(假定四人之速度相等)
- (二)四個替換簽題,接棍不合法之速度。
- (三)四個替換賽跑,接棍導法之速度。

以上各梯形,高度表速度之升降,各梯形面積和之比, 即三種替換法速度之比例。在圖(→)假定起跑之後,速 度由零漸漸加高,至接棍區域之近線,而第二人即起跑。 (並不接棍)如第三第四人均以此法替換,則每人所跑 之速度,必如第一圖之各梯形。在圖(二)第一人起跑之 後,先由速度零增至最大之速度,在接棍之時,速度減

低,在速度等於零時接棍,故梯形之面積較小。又如圖 (三)只有第一人起跑時之速度,由零加高,其速度亦表 以梯形。至於第二,三,四人,均在速度最大之時,接棍 授棍。其速度不成梯形,乃成矩形。故其速度較大。以 上三種圖解,第二種速度最低,第一種欢之,第三種最 高。今欲其達最大之速度,以下諸點須分別注意。


【甲】接根之地位 接根之區域,有二十米之長,究在何處接 棍,不可不加研究。據測驗之結果,人由靜止而至速度最大之時, 在十七八米之間。此處接棍,最為合宜。

【乙】接棍者之起跑方法 起跑取蹲伏式,與第一人相同,在 第一人離己之起跑線尚有五六米時,即蹲伏預備,身體前彎,兩

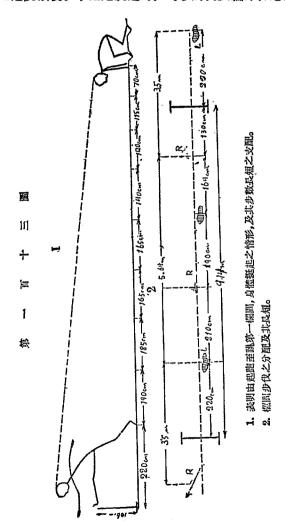
臂傲屈,目視右後方,注意其後跑來之人。至來者觸其起跑線,即向前起跑,後腿向前,左臂前振,右臂後振,此時須注意者有二: (1)與第一人同步。如第一人用左手執棍,則在左方尾其後;棍在右手,則在右方尾其後。何以須同步?因同步之時,棍在左手,而接者在左後方。授棍者之左手後擺之際,即接棍者右手前擺之時。接棍之動作,即在兩手相觸之機會中行之也。 (2)授棍者後擺之動作,手宜靠近身旁,身體向前傾,使其手與上體間之空間增加,而擺動之方向,由前後之方向,改為上下之方向,以便接棍。 (3)兩人間之距離,視授棍者手擺動之大小,與其前進之速度而定。可由人時之練習,求得最合式之距離。善接棍者,其接棍動作必在二十米之盡頭處行之。所以使接棍者,得加大速度之機會。

第一百十二圖

前者為傳棍之人,後者為接棍之人

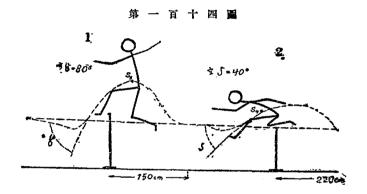
【丙】接根時手之更替 第一人以右手執棍之前半段而出發, 第二人以左手接棍,握棍之後半段。(如第一百十圖)第三人以右 手接棍,握棍之前半段。(如第一百十一圖)第四人更以左手接棍, 握棍之後半段。

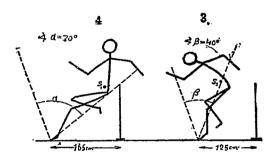
九高欄


高欄運動德文為 hurdenlanf,其意為跑欄。吾國譯為跳欄, 實足引起誤會。蓋跳欄之決勝負,以向前之速度為標準。跳欄所 用方法,皆所以使向前之速度與空跑相近。學者宜徹底了解。

【甲】跑之姿勢 高欄之起跑方法, 與短程賽跑同。起跑之後, 步伐先短後長, 如一百十三圖之支配方法, 最為合式。身體先低後高. 體角最大不得過 65°度。過大, 則跳之方向, 易於向上,

122


同時跑之速度減慢。不論跑跳之時,均以脚尖及蹠部着地。若用


動

脚跟, 則易向上跳, 重心不向前而向上, 向前之速度減慢。

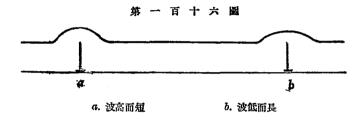
跑之速度愈快,過欄時愈易保持平均。擺臂之動作,愈能令 重心向前。

- 【乙】跳時重心之升降 尋常人體,重心之高為1.10-1.15米。 因體角為65°,故跑時重心之高為0.95-1.05米。在欄頂時,重 心之高,至多不可過1.20-1.30米。否則重心所走之波線,起伏 太大,向前之速度減低。
- 【丙】起跳之姿勢 起跳之姿勢與重心之高度有關。欲重心上 升不太高,須注意以下各點:
- (一) 起跳點之遠近 起跳之點,宜離欄 2.10-2.40 米。若再縮短,則重心不得不升。否則觸欄。比較第一百十四圖 1,2 二圖可以明瞭。
- (二)跳時之體角 跑時之體角為 65°, 跳時宜縮為 55°。否 則上跳太高。
- (三)跳時後腿推地之動作 後腿推地之結果,向前之速度宜 大,向上之速度宜小。其用力之處,在趾蹠兩部。萬不可如跳高 跳遠之先以踵着地,然須經蹠部而跳起。
- (四)前腿舉起之麥勢 設以左足起跳,則右腿前舉之時,膝關節起初並不完全伸直。蓋先以大腿前舉,然後繼以伸膝動作,至腿直而止。髁關節至屈,此時股二頭肌半腱肌半膜肌,有牽盆骨向後迴轉之傾向。同時左腿受闔肌之牽制。蹬足之方向,與地面所成之角,大於55°,致跳太高,而向前之速度減小。欲免是弊,宜訓練右邊之半腱肌半膜肌及股二頭肌之伸長。有時伸長不足,右膝關節可微屈以湊之,以免向上跳之弊。雖然。膝屈太多,

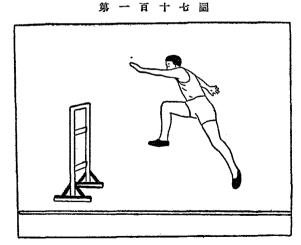
易於觸欄。反釀高跳之弊。故 最好之方法,宜盡力伸長上述諸肌 肉。

- (五)臂之動作 左足起跳,右腿前舉,盈骨向左轉,身體不 免向左扭轉。故左臂向前外上斜舉,右臂同時向後外斜舉,以平 均之。
- (六)身體之姿勢 上述體角宜由 65°縮至 55°。故身體竭力 向前傾,與舉起之膝相接近。同時頭向前注,增加向前之速度。
- 【丁】身體在欄頂之姿勢 身體騰起之後,依然向前,至落地之前,此時後臂向前擺動,前臂向後擺動。身體在欄頂之時,兩臂即在左右平舉之地位。前腿過欄之後,膝速屈,腿切欄而速下伸,後大腿側平舉,膝蓋向外,小腿與大腿成直角,其提過之動作宜速。初學者往往因闔肌太短,不能盡量向外展。致後腿非高跳不能過欄。故闔肌之伸長,為練跳欄之要件。
- 【戊】前腿落地之姿勢 脚落地之點,須離欄 1.20-1.40 米。 太遠則脚着地時之體角與原來體角之差為 70°。欲回至原來之體 角極難。故失向前之速度。(如一百十四圖 4)太短則重心在脚着 地之前,身體易前傾倒。故脚落地點與欄之距離平均以 2.15 米 為最合式。
- 【己】欄間步伐之長短 兩欄之距離為 9.14 米, 減去下落與欄間距離 1.25 米, 及起跳點與欄之距離 2.20 米, 尚餘 5.69 米, 須分三步跑盡。第一步稍短,第二步稍長,第三步最長。蓋含加

速度之意也。(參觀第一百十三圖)

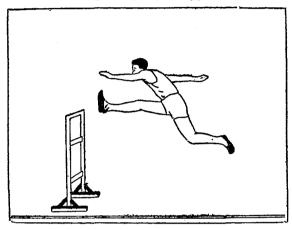

圖上共有五人。今為便註解起最近者為第一人,持遠者為第五人。第一人為正點起以後之姿勢,其前腿舉起之順序,先大腿而後小腿,並非大小腿同時舉起者也。第二人為正在起跳之時,跳脚之踵毫不着地。第三人為正在標項之姿勢,左脚率起髁關節全屈,上體向前傾,前腿與胸相接甚近。

【庚】結論

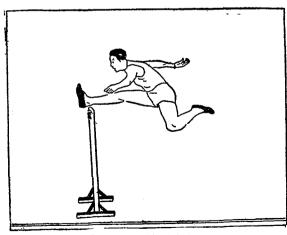

- (一)身體愈矮小,則起脚宜愈遠,腿愈能直向前上舉,上體 愈向前傾倒。
- (二)身體感高大,速度愈大,則過欄愈難,因身體近欄而過 欄時,四肢之動作須極快也。
- (三)起脚意遠,向前之速度愈大,向上之速度愈小,而重心 所走之波線,起伏愈小,時間愈經濟。
 - (四)兩臂愈伸直,而肩帶愈放鬆,則平均愈易維持。
- (五)前大腿後面之肌肉,及後腿之闔肌愈長,則跳可低,重 心升高亦愈少。

[辛]跳欄之普通誤點

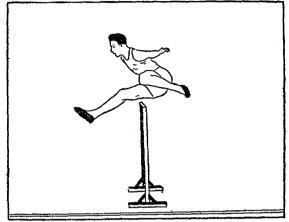
(一)跳太高 其病在重心升高。若全體以重心為標準,則重心所走之路必為極大之波線。依幾何定理屈線大於直線,波線之起伏愈甚,則所費之時間愈多。跳欄雖不能使重心在一水平線上進行,確能使其波浪極小。如一百十六圖 b 是也。



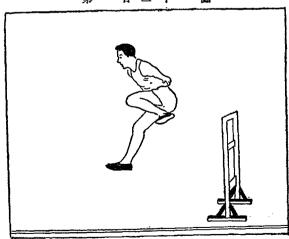
(二)落地停頓 此弊因前腿下地時向前斜,而上體後傾所致。


跌腿完全伸直, 他腿前擺, 戳亦伸膝。

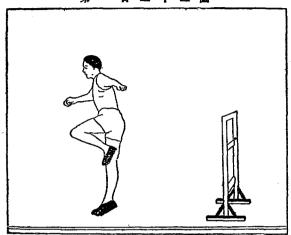
第一百十八圖


是人從離欄2.30米處起跳,他腿前率,兩臂在反對方向前後平率。保持平均。

第一百十九圖


前腿已達欄頂,跳腿膝屈。

第一百二十圓


兩臂攝至左右平皋之部位,以維持身體之平均。跳腿用力向前拖,大小腿均在水平面上。其足之內邊,平向下方過機。

第一百二十一圖

跳者已過欄,前腿下伸,將在離欄 1.30 米處下落。

第一百二十二圖

前題已下地,點題前提,預備跨第一步。前題同邊之臂向前 擺,反對方向之臂向後擺。

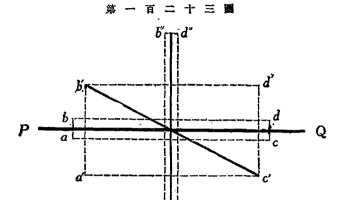
故過欄時身體仍保向前傾之姿勢。

- (三)腰太直 弊同(一)而流弊為(二)。
- (四)落地後第一步太長,使身體挺直。
- (五)前腿太屈。
- (六) 起脚太近,落地太遠。
- (七)過欄時後腿伸直。
- (八) 軀體扯轉。
- (九)落地時重心在後足上, 致身體伸直。
- (十)臂不摔動。
- (十一) 跳之角度太大。

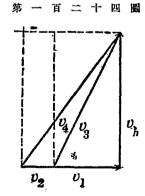
十 跑跳高

跳高之姿勢可分三種,剪絞式(scissors style)直跑式 (eastern style) 及滚式 (horine style)。三式各有利弊, 茲分析於下:

【甲】剪絞式 是法舊而簡單,跑取斜之方向,外足跳起,內 腿高踢。內腿下落,外腿過竿。過竿之時,以臀向竿,身體毫不 轉動。以高踢之一腿落地,在空中停留之時間短促。物理上之利 益,絲毫不能利用。世界上之用是法者,至多不過六呎四吋,故 个後有廢除之傾向。


【乙】直跑式(左足跳)

(一)跑法 依方向論,有斜跑直跑之分。斜跑時與竿所成之 角愈小,則跳過時觸竿之機會愈少。比較第一百二十三圖 a,b 可 以明瞭。故直跑式,當未兩步時,面須轉向,而踢起之腿不宜與 橫竿成直角也。


跳高之速度,利用向前者少,向上者多,故跑之速度,不可甚大。如第一百二十四圖, v b 為向上之速度, v₁ 與 v₂ 為向前之速度, 而 v₂ 大於 v₁。然 v₄ 一合速度,不因 v₂ 之大於 v₁ 而增加其高度。可見向前之速度無補於向上之速度,則又何取乎快跑。且向前之速度太大,足使蹬足之動作無充分之時間舉行,(蓋跳高之蹬足,先以踵着地,然後以蹠部落地,終則足尖着地。動作之遷移,需一定之時間)效果不大。故跳高起跑之處,距榮不

過十步。且跑之速度,無庸甚大。

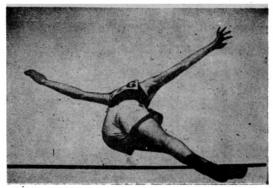
運

ab, a'b', a"b" 之長短,表觸竿機會之多少, ab最少, a"b"最多。

當跑近竿三四步之時,身體須下蹲,所以使工作距增長也。 蓋跳高時,用三部肌肉。(1)伸足之肌(腓腸深肌,腓腸淺肌,屈趾 長肌, 屈姆長肌, 脛骨後肌)。(2)伸小腿諸肌(股四頭肌)。(3) 伸臀諸肌(臀大肌, 臀中肌, 梨狀肌, 半腱肌, 半膜肌)。若跌高 時髁膝髋三關節伸直, 則諸肌已無收縮之餘地, 有何工作之可做。

(二)跳法

- 1. 蹬足 蹬足之方向,純依據力學之理,須正對重心,直接 將身體重心上抬,效果始大。末二三步方向微改,體之重心須載 在跳足上,利用伸髁膝髋三關節之肌肉上跳。初學者往往不知伸 髁關節之動作,宜特別注意。起跳之末一步,不可太小。小則踢 起一腿(外腿)之運動量不大。
 - 2. 高踢 後腿高踢之動作, (如第一百二十五圖)可以帶動臀

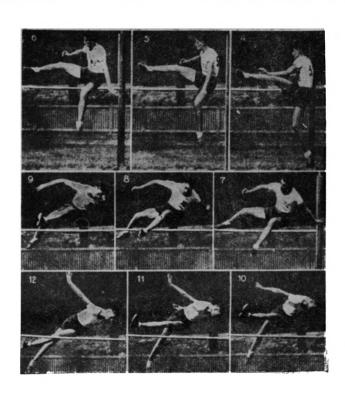


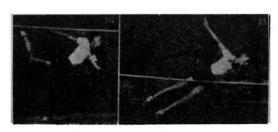
第一百二十五圖 高踢之姿勢

部高舉,其重要甚於蹬足。但上踢之時,膝不可太直,直則股二 頭肌半腱肌半膜肌,牽引盆骨向後迴轉。髂股韌帶阻礙蹬足之動 作。故內腿上舉時,宜有相當之屈度。及達最高之點,立刻停止 向上之動量,其惰性作用,足使臀部高抬。

- 3. 兩臂之動作 設左脚蹬足,則左臂向前上重振,右臂向後 上重振,而停止其運動量,其惰性作用,可以增加向上舉體之力。
 - (三)體在空中之動作
- 1. 上體臥倒 在內腿高踢未完全時,是動作不能開始。至兩腿上飛達最高點,則立刻實行。其反動力,足使臀部抬起,避開 橫竿。
- 2. 踢起之腿在空中之動作 踢達最高點時,踢起之腿(內腿) 宜伸直,以水平之方向後振,所以使臀部抬起,並可保持身體在 空中騰留片刻,俾跳腿(外腿)有充分之過竿時間。剪絞式之弱點, 即在缺此利益。
- 3. 跳腿在空中之動作 在踢腿水平後振之際, 跳腿(外腿) 亦以水平之方向, 作向右繞之動作, 而過橫竿。此時足尖伸直, 則膝亦易直。往往因其一邊(外腿)之半腱肌, 半膜肌, 股二頭肌太短, 不能伸直, 致踵觸竿。故習跳者, 平日宜練一字步。
- 4. 轉體之動作 跳腿(外腿)繞過橫竿時,上體向內轉,(向 竿)使臀部向上而以腹面向橫竿。如是則成積可高一呎左右。剪 絞式之弱點在此,此式之優點亦在此。

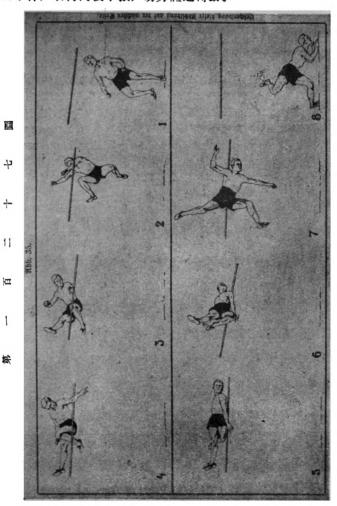
第一百二十六圖(甲)


此為上體過橫竿時,兩臂後斜平舉之姿勢,所以 使兩臂鴻橫竿也。


5. 跳過竿時兩臂之動作 設以左足跳,則在過竿之時,右臂 向後上振,左臂向後外振。(如第一百二十五圖)蓋轉體之反動力 使然也。亦有用兩肩關節向後做過伸之姿勢者,所以避免臂之觸 竿也。(如第一百二十六圖(甲))

【丙】滚式(左足跳) 此式以內足跳起,外足高踢,與上二式

第一百二十六圖(乙)



1. 電心向左脚移載,以腿開始高踢。 2. 左脚跟依然着地,至左膝伸直終了之時,始行伸髁關節之動作,右腿向上高踢。 3. 左遮已接過,脚尖點地,左臂舉至最高之點。 3.—6. 身體騰起之時,左腿下垂,行漸漸擊起之動作,而以左臂下降之動作平均之,(4—6)使重心不致移動太多。 4.—6. 右腿向內扭轉,使小腿得以水平之部位過橫竿。同時帶動盆骨,使向內扭轉。 7.—13. 兩臂後斜擊之動作,所以使上體前傾,助盆骨向左扭轉,及左脚之過橫竿。腕不可卒然振動,左肘後属,右臂前上振。 10.—12. 左腿用力上提,左踵行上內轉動,使繞過橫竿之動作完全。 13. 為下地前之姿勢。 14.—15. 為落地之姿勢。

相反。跑之方向, 與橫竿成 45°或 40°之角。

- (一)跑 尋常以八步為度,速度亦不甚大。跑以踵着地,與 跳同。起跳之點,在雛竿三呎之處。
- (二)跳之姿勢 起跳時之重心,移載左足上。身體徽向後傾。蓋跑之速度向前,身體微後傾,所以使蹬力正對重心也。右腿高踢,與竿所成之角,小於跑角,使身體與竿漸趨並行,而觸竿之機會減少。兩臂向竿前上舉,與上式一臂後上振,一臂前上振之姿勢不同。
- (三)跳起後之動作 右腿高踢之時,體膝髁三關節風,以免 髂股韌帶牽制盆骨。一方使腿之角速度大,腿易上舉,以帶起臀 部。右腿達最高之點,上體向後傾倒,腿停止向上之運動。賴惰

性作用,使臀伸而舉起。臀部受其反動,可以高舉。同時左臂向 竿前下伸,右臂向後下振,助身體之轉動。

- 1. 起跳之姿勢,身體落不向竿傾斜,惟兩臂則向竿攝動。 2. 右膝向前上提,小腿上舉,跳腿仍下垂。 3. 臀向前上舉,高奥竿等,上體向後仰,左臂向竿前下伸,右腿繼續向上伸,所以留升臀時右脚截下落之餘地。(在 4. 圖右脚下降臀伸直而抬起) 4. 右脚上踢之運動停止,因惰性作用,臀舉起並伸直,左臂繼續向竿前下伸。左膝高舉。右臂與腿一致,截向下振。 5. 伸臀完畢,橫臥竿上,左膝為向左轉體之先導而向下落。右腿更做分舉伸臀之動作,令左腿有過竿之餘地,右臂因反動力之作用,以體輔為中心而向下振。 7.8. 為下落之姿勢,以跳腿及辆手落地。
- (四)身體在橫竿上之動作 身體橫臥竿上之時。自頂至右足, 成一直線。其時上體繼續向左轉,右腿向後外振,留左腿過竿之 餘地。左體膝髁三關節屈,自竿上流過。此時上體毫無觸竿下落 之動作。雖有時着竿,不過將竿下壓,而竿並不落地。
- (五)下落之動作 下落時,右腿保持上舉,左腿下垂,因身 體在平之部位,重心在足之前方,故助以兩手,方得穩落地上。
- (六)此式之優點有二: (1)效力大 前二式跳之力量不能正推重心,一部分之力量,易費諸無用。此式則絕無此弊。 (2) 觸 竿之機會少 上二方之過竿也,先兩腿,然後驅體,然後兩臂,此則因身體橫臥之關係。四肢與身軀成一直線,且與竿並行。一滚之間,即能過竿,觸竿之機會極少。

十一 立定跳高

立定跳高與跑跳高同,有兩種姿勢,剪絞式及橫臥式是也。 [甲]剪絞式

- (一)起跳之預備 足離竿 30-50 糎,以身體之右(左)方對 橫竿,足尖微向內指,兩膝屈,大約達一百度。上體屈,所以使 伸足伸膝伸臀諸肌之工作距離大也。兩臂後斜伸,所以使臂上振 之速度大,而向上之惰性之作用亦大也。
- (二) 跳起之動作 兩臂前上重振, 髁膝髋三關節伸直。臂上振至上舉之部位, 作煞時之停止, 使起惰性作用, 將重心上提。
- (三)過橫竿之動作 身體騰起之後,內腿上振,內臂下落,同時上體微後仰。繼以分腿上騰過竿,同時外臂上振,至水平部位。
 - (四)落地姿勢 內足先落地,外足後落地。

第一百二十八圖 剪絞式立定跳高

- 【乙】潢队式(以左面對竿)
- (一)起跳預備姿勢 同上式
- (二)跳之動作 同上式
- (三)過橫竿之動作 身體騰空之後,雙腿上舉,兩臂下降。

同時上體向左側橫臥,左臂從體下過竿。繼以右腿後上振,左腿 帶過橫竿,同時右臂後外振,身體滾過竿。

(四) 落地之姿勢 身體從竿滾過之後,左臂速前舉。以免身 體下落,着地受傷。近地之時,左膝前屈,使左足先着地。

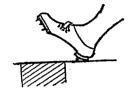
第一百二十九圖 法式立定跳高

十二 跑跳遠

跳遠應用牛頓第二定律,(law of independence) 成績之高下,視向前之速度,及跳之高度而定。前者愈大,則距離愈遠。後者愈大,則身體騰在空中之時間愈長,而在空中向前移動之機會愈多,因之距離亦愈遠。雖然,二者有互相牽制之作用,不能任意增大。故運動員宜根據其反應之速度及運動之能力,以求其適當之支配。

【甲】跑之速度 上述向前之速度, 與跳之距離有密切關係。

渾


學習跳遠者須善長短跑。按實驗之結果,起跑之後,盡力向前快 跑,至十八米左右,速度加至極點。似跑之距離十七八米左右已 足。然酬遠有步點之關係、不能如百米之一意有跑。有作跳之進 備,終了數步,不能同時再加向前速度。且在短距離間,加至最 大速度難, 在長距離間則易。故跑之距離須四十米有零。其間得 分三段: 第一段速度由零漸加, 跑 12 步共長 18 米左右, 平均每 步長為1.50米; 第二段速度, 增至極點, 跑8步, 共長15.20米 左右, 平均每步長為 1.90 米; 第三段, 保持前段之速度, 跑四步, 共長 7.20 米左右, 平均每步長 1.80 米。普通有兩步點:第一步點 宜在第八步; 第二步點官在十六步。練習時宜刻定。蓋非如是, 即注意力不能專在快跑, 而起跑之脚, 不得正在跳板上也。速度 以板前二十米測定者為進。大約每秒八米左右為最合式。惟運動 員之反應遲鉢者,往往因跑之速度太大,受惰性之影響,無充足 之時間高跳, 致減低向上之速度, 此時宜酌減向前之速度。在最 後二三步,身體重心下降,作跳之準備,起跳時,重心宜載在跳 脚上。

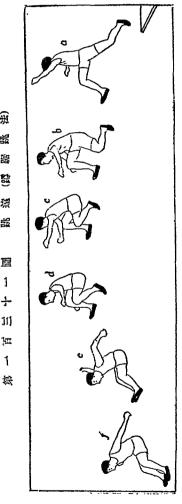
【乙】跳之姿勢 跳之動作,除利用伸膝關節及髖關節諸肌之外,更宜利用伸髁關節之力量。起跳之足,先以踵落地,次經伸 髁關節之動作,終以足尖離地。(如第一百三十圖)學者往往不注 意此點,成績大受影響。大抵向前之速度,可以隨意增加,而向 上之速度,易達極點。苟有方法增加,宜十分注意練習。

第一百三十圆 跳遠蹬足時脚之姿勢

- (一)身體騰起之角度 按拋物線公式,水平距離以四十五度 為最遠。跳遠之時,將身體騰起之速度,乃向上與向前二速度合 成。據實驗之結果,向上之速度,常小於向前之速度,跳之力量 各部用到,使合速度,尚難達四十五度。若上跳之力量不足,則 騰起之角度,比四十五度益小。
- (二)歷足之方向與重心之關係 重心代表身體, 蹬足力量穿 過重心,則十分經濟。否則起分力作用,蹬足之力,一部份費諸 無用。宜十分注意。
- 【丙】身體在空中之格勢 身體在空中之格勢如何,與第十三 圖之 S_1 無關係,與 S_2 S_3 則大有出入。欲 S_2 與 S_3 增長,身體在 空中前進之時,宜從早準備。蹲踞跳法之屈體,挺身跳法,由挺 身而至弓身,皆為此也。
- (一)蹲踞式 (hock sprung) 跳起之後,跳腿(左)伸直,同方向之臂(左)上振,臂腿與軀體三者在一直線上。同時他方(右)之膝用力上舉,大小腿成直角。其同方向之臂(右)微向外上舉。 (如第一百三十圖之 a)兩脚離地之後,前大腿竭力前平舉,後大

쇖

路


き 璟 监

屋 1 +

<u>}¤</u>

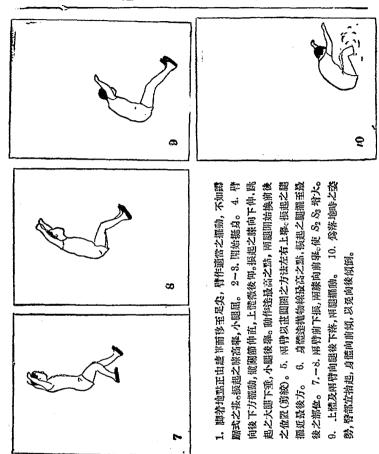
1

後小腿上屈, 脚底向上。(如一百三十二圖)後腿之

a. 為將途拋物線頂點之姿勢。阿滕皆向胸接近,兩臂前下放,上體南前 c. 表明小腿向前道架,同時 阿臂向後下重振之姿勢,而上燈依然向前傾。 f. 用足落地,重心下沉。阿臂向前掘,以兔上盟向後 投以上各部之姿勢,可以歸納於互盟各部互相调節之理。即題向下之動作與臂向上之動作同 時。特向下之即作與閩南上之即作同時。兩國向前之即作與兩臂向後之動作同時。所以然者,欲保持 b. 起跳之足向上握趄。 前後之平均耳。非然者則落地之時非失之於距離,即立體不能保前後平均而上體後傾。 a. 装明極好之起陶姿勢。起跳之足蓝力暗地。 補助之一腿及兩骨向前舉。 d. 裁則小腿正開始向前伸時之姿勢,而兩臂亦正在向下重振。 同時福閱之滕,向胸接近。 氨

第一百三十二圆

屈膝節,伸髋節及伸髁節等動作,等於擲鐵餅時之屈腕屈肘屈肩 關節諸動作。所以增加向前向上之速度,在跳遠之動作中,占極 重要之部份。此後上體徽前傾,起跳之膝(左)漸漸前舉,他方之 臂(右)亦竭力上舉。(如一百三十三圖,蓋兩臂愈高舉,則下振時 之反動愈大,而兩腿愈易向前伸。)同時兩膝上舉,愈高愈妙。身 體過拋物線之頂,兩臂向下重振,同時兩腿前伸,(如一百三十四 屬)與水平線成極小之角度,使 S₃ (參觀上編第十三圖)之值加大。


一百三十三圖

(二)挺身式 (schneppe sprung) 是為一新式之跳法,中美田徑運動書籍所不載。吾國運動界上尚不知也。因其方法奇異而合學理,故亦列入。起跳之方法,與蹲踞式同。惟跳起之後,身

第一百三十五國 跳建(挺身跳法) ĸ,

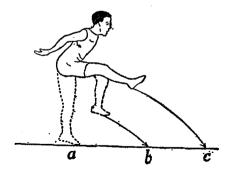
體不向前拳屈而向前挺腹,兩臂不前上舉而向後張,兩腿不向前 舉而向後伸。其用意在增加重心向前之速度。因反動力之作用, 四肢不得不向後也。若常保挺身之姿勢,則非特 8½ 及 8½ 無從得 到,(參觀上編第十三圖) 8¼ 或且減短。故挺身之後,上體隨即前

屈,兩臂上舉。(如第一百三十五圖 7,8)同時兩腿前舉。上體及 兩腿之姿勢,與蹲踞跳法相似。惟後者在落地之前,(如一百三十 一圖 e)兩臂後側斜舉,而此則上舉也。

第一百三十六圖

此圖與第一百三十五圖 3 相當

【丁】落地之姿勢 不論何法, 兩腿須向前伸, 使 S_3 增大。 上體宜向前屈, 使 S_2 增大。以保持身體之平均也。蓋身體伸直, 則腿與地面所成之角, 須大於 45°, 否則落地之後, 易於傾倒, 破壞成績。若身體前屈, 重心向前, 腿與地面所成之角, 雖小於 45°,亦得平均。此於成績有數尺之出入,學者宜注意。茲將腿之 各種姿勢, 與成績之關係, 用圖說明之。(一百三十八圖)


第一百三十七圓

動

此圖與第一百三十五圖7相當

第一百三十八圆

第一百三十八圓為近落地之姿勢,若當時號關節伸直,則在 a 點即隔 地。若大腿前舉,小腿不向前伸,在 b 點即落地。若能於落地之前,大 小腿前舉,則可在 c 點落地。其計算之方法,詳上編十二節。

十三 立定跳遠

立定跳遠之成績,除方法外,與身材之大小,肌肉之速度, 及運用肌肉之自制力,有密切關係。蓋立定跳遠所利用之力量, 盡限於腿之蹬力及上肢之擺動力。需槓杆之長度,肌肉之速度, 及肌肉之自制力更多也。

起跳之前,立跳板上,以蹠部之前端,切跳板之前邊。中間 雛一手之闊,足尖向前,微向內斜,較外斜為善,因跳出時,得 用全蹠之力也。兩臂向前上振,全體伸直,於是臀下降,上體向 前傾,重心下降,屈大小腿。小腿與地面近四十五度,以預備跳。 (如第一百三十九圖 b)於是兩腿之股膝踝三關節,霎時伸直以起

第一百三十九圖

跳。兩臂同時向前上振,上體亦向前上移動,胸向前挺直。至全體伸直與地面成 45°,(如第一百四十圖 c 及第一百三十九圖)身體在最高之點,兩膝向前上提,小腿亦向前進,兩臂開始前下振。(如 d_o)繼以兩腿前伸,兩臂向後擺如 e_o至兩足落地之時,兩臂更向前擺動,使重心前移,以免身體向後傾倒,破壞成績。

第一百四十圖

普通之誤點

- 1. 跳起之時, 力量及速度不大, 與成績最有損害。
- 2. 跳起之時,兩臂不向前重振,於是向上之速度,大於向前 之速度。
- 3. 足尖向外,则膝屈時,膝亦向外。跳之力量不能一直向前, 一部份費之於無用。
- 4. 上體太向前傾,則因平均問題,膝不得不多屈,於是重心 低降,舉起身體時,須多用力。

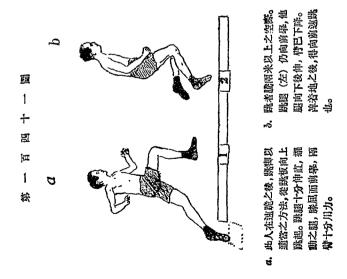
十四 三級跳遠

三級跳遠之起跳,與跳遠同,茲不贅述。尋常由 20 糎閥之 跳板起跳。其式共有三種: 1. 為德國式, 2. 為英國式, 3. 為阿爾蘭式。

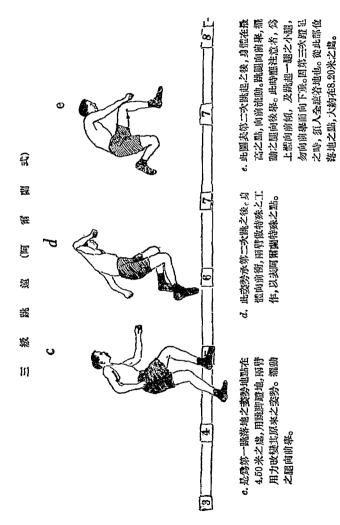
【甲】廖國式(step, step and jump) 內含兩步一雙落單跳。 所跳之足,繼續更換,重心向左右移動,難於支配。但因其近似 跑步,易於學習。通病為第一步太長,第二步太短,致第三步不 能盡力猛躍,成績減色。

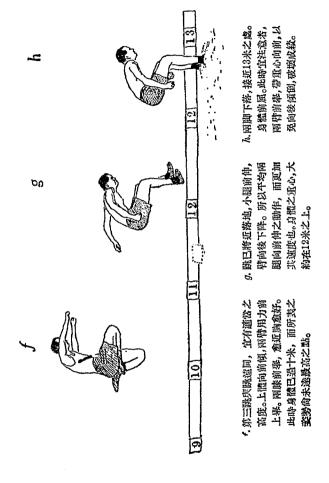
當三級跳遠跑跳遠起跳時,同以左足起跳,右腿前振,毫無差別。惟後者起跳之後,立即將左腿前提,高觸胸部。前者則任其後伸,不向前提。故身體微轉向左,身體之右方向前。與跳遠不同之點在此。身體之扭轉,於第一步無益,於第二步有損。第一步太大,向左轉之度益多。在左足跨第二步時,循體軸而向右轉之度亦愈多,致第二步無法增長。較其成績,則第一步之所得,不如第二步之所失。故第一步太長,於成績毫無裨益。第三步繼以左足跳。宜注意適當之高度,而起跳之後,須仿跑跳遠之姿勢,以兩膝舉起,高觸胸膛,小腿向前斜舉,上體向前傾,兩臂由前向後振,至將落地時,小腿前伸,兩臂後張。落地之後,兩臂更向前舉,以防身體後傾。

普通之誤點有二:


- (1) 第一步太長。 其弊已詳於前。
- (2) 第一步跳勿太高,大腿勿向前斜太多,所以使第二步跳時,右足能向後下方跨足。
- 【乙】英國式 (hop, step and jump) 例如以左足跳,則仍以左足落地,再以左足跳右足落地,終以右足跳,雙足落地。跑法跳法與上式相同。所異者左足跳起之後,膝向胸前上提,大腿前上舉,使上體之移動向前多而向上少。向前之速度不致大減。落地時身體之重心,仍載左足上,使第二跳尚得有猛烈之蹬力。凡單足跳之動作,姿勢能與起跑後數步之姿勢相仿最好,所異者向後推之動作,不若短跑之多,及蹬足時用足之全部耳。(短跑專用蹠部)第二部為跨步(以左足起跳右足落地)其速度與第一步之距離,及第一步落地之姿勢有關。若第一步太大,第一步落地之時上體不向前傾,則向前之速度,強半消滅。第二跳時雖有重蹬之力,亦無濟於事。學者往往易犯此病,宜十分注意。第二跳以右足落地。第三跳以右足跳。此後所有各姿勢與上式同。

是項運動之要點:


- (1) 第一跳之後,擺動之足官向前重振,起惰性作用,助向前之速度。
- (2) 第一跳之後,身體騰起愈多,則擺動之一邊向前愈多, 即身體向左轉愈多。第二跳愈難致遠。
 - (3) 第一跳落地, 左足宜平脚落地, 俾第二次時有伸髁節之

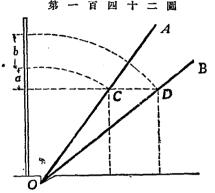

動作, 助前跳之力。

【丙】阿爾蘭式 (hop, hop and jump) 含雨次單足跳,一次雙落單跳。即跳之動作,完全由一足負擔,其距離最大。是式宜注意者,為跳不可太高,高則下落之勢太大,而支持之腿,易於過屈,不利於下一次之蹬足。第一第二跳宜相等,小腿不可向前下斜,宜向後作全足蹬地之動作。當身體下落之時,跳足向後下伸而蹬足。繼則膝更前舉,擺動之腿亦與之一致。如是則可使下落之身體,更得向上向前移動也。第三跳與上同,不赘。

運

十五 撑高跳

撑高跳為極複雜之運動,其主要之物理作用為擺。然尋常之

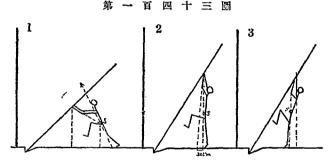

擺,物體直接受地心之吸力而擺動。撑高跳時,人體直接受地心之吸力作用而擺之外,尚間接受竹竿之擺動力量而擺動。故身體之擺動,受兩種力量之作用。如何能使以上二力發生極大效力, 乃本節範圍內重要之問題。

【甲】跑法 跑法有人主張與跳遠同。其實不能。跑時執竿於手中,體角難小,不便疾跑一也。竿突出前方,兩臂不能自由擺動,跑難維持平均二也。據研究結果,其速度達跳遠時之80%已足。步伐宜較跳遠為短,使平均易於維持。跑之距離當為40-50米,與跳遠同。為步伐正確起見,在16-18米處,應有一步點。自起跑之處至此點,速度漸加大,達最大之量。自此點至離起跳點四步處,用最大之速度快跑。未四步不加速度,維持以前之速度可矣。

跑時呼吸方法,極為重要。起跑時吸氣,至步點之前換氣。 跳起屏氣不息,身體伸直,懸垂時呼氣。引體時吸氣。

【乙】持竿法 以左足跳者,竿持於右方,左臂前平屈,手在 肩前,手背向上,竿載拇指上,餘四指勿握竿,以便插洞時上縮。 右手持竿,正在右盆後,肘微屈,並向內扭轉,手掌向上。竿根 與眼相平,不可太高,高則插洞不易正確。竿與前後平而不得成 何角度,不可左右振動,身體正向前方,不可向左扭轉。肩不可 前後搖動,兩臂不能緊壓身體,皆恐有礙跑之速度也。

【丙】執竿之高低與跳跑之合速度之關係 揷洞之後,竹竿受

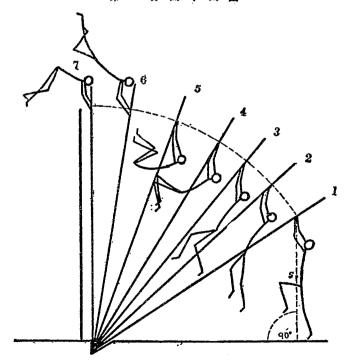

a b 之長短表所需動能之多少,a 爲率起 A 竿所需之動能,b 爲率起 B 竿所需之動能。b 大於 a。

跑跳之合速度而擺。當時所需之動能,與執竿之高低為比例。蓋人體之高為一常數。執竿愈高,揷洞時竿與垂線所成之角愈大,而舉起之高度亦愈大,即所需之動能亦愈大,(如一百四十二圖)而跑跳之合速度亦須增加。據能力之公式 $mgh=\frac{1}{2}mv^2$, mg 及 $\frac{1}{2}$ 為常數。 $h \times v^2$,即 h 加一倍,v 加一方倍。可知執竿之高度加一點,而所加之速度須極多也。常人跑跳之合速度皆有限,執竿不能任意增高。故是項運動,不能專恃增加執竿高度,以求成績之進步。大概身體輕者,執竿可較低,重且高者得較高。據經驗所得,跳之姿勢好者可較低。

【丁】挿洞法 跑至末四步,速度不再增加,全體準備跳之動作,已如上述。至末二步及末一步之間,竿之上部,向前上擺動,高至肩齊,同時左臂沿前後平面向上滑動,至接近右手而止。(跳

起之後,萬不可放鬆下落)至左足蹬地之前,竿根近地,沿地面而挿洞,不可有下擊及由上向下挿之動作。蓋挿洞之目的,欲竿根向前之速度立刻停止,而竿之上部受跑跳之速度,向前上擺,以釣起身體。若用下擊及下挿之動作,則竿根停止不快,竿他端上擺之速度亦減低。挿洞時兩臂微屈,作懸起之姿勢。

【戊】跳法 跳之方向,向前少而向上多。體角為80°。起跳之點,全視執竿之高低而定。竿執愈高,上方一手之正射影離洞愈遠,起跳點亦宜稍遠。起跳點普通以離正射影後 20 糎之處為最合式。(如第一百四十三圖 2)過向後則跳之力不能完全舉起身體,過向前則跳起之後少位能之利益,向前擺動之勢不足。(如一百四十三圖)



撑高跳握竿之高低奥起跳點之遠近: 1. 起脚太遠,握手點之正射影, 與起跳點及重心之正射影相離太遠。 2. 為合式之起跳部位,起跳點, 重心及握手點,均在一直線上。握手點之正射影,在起跳點之前。 8. 起跳太近,握手點之正射影,在重心之後。

【己】耀法 撑高跳身體為一擺,按上編二十四節擺愈長,則

位能愈大,而擺過垂直線時之動能亦愈大。故跳起之後身體宜伸直,(屈肌不可放鬆)臂微屈,髋關節伸直,小腿微後屈。此不但可使位能增大,且可留以後身體縮短之餘地。(如一百四十四圖)

【庚】引體法 按上編二十四節,擺過垂線之後,擺縮短愈多, 則擺角之增加愈大。撑高跳引體及屈體愈多,則身體愈能上舉而 第 - 頁 四 + 四 圖

撐高跳各部動作之順序: 1. **為起跳。 2.3. 為攝。 4.5.** 上身體及驅擊起。 6. 風射倒立。 7. 弓身撑。

脚愈能向上伸。當身體伸直前擺,至重心高出地 1.80 米,竿與地面之角,為 40°-50°。身體向竿接近,下肢亦向前高舉。但兩臂依然保持微屈之姿勢,(如一百四十四圖)及腿向上高舉近手,則極力引體,腿可升高數呎,而身亦易至倒立之部位。有時引體而不能達倒立之部位者,大約因引體太早,未得擺動之速度也。如

第一百四十五圖

引體終了之部位:兩脚向上指,右腕向左扭轉,故引體時十 分得力。上體膽之上部最足注意。

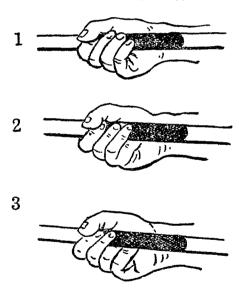
第一百四十五圖所示者,為最合式之引體後之麥勢。此外所應注 意者,即運用肌肉之法。自跳起之後,身體雖伸直擺動,而全身 屈肌不能放鬆。因竿擺起至直立之時間極短,須早準備引體,則 引體之動作,方得快速。

【辛】蹬脚及轉體 是動作正繼引體之後, 腿舉愈高, 離竿愈近, 則蹬足愈高愈向上, 轉體愈易而身體離橫竿愈多。此固一定之理。然欲達是目的, 須注意以下三點: 1. 全體屈肌十分收縮,維持屈腿弓身懸垂之姿勢。 2. 在屈腿弓身懸垂之部位, 上擺終了之前, 即須行蹬足轉體之動作。 3. 蹬足及轉體須同時而迅速。

4. 蹬足之方向宜向上。以上諸點,苟均能達到,則屈肘倒立之姿勢(如一百四十四圖 6)不難做成。

【壬】手推及雙腿下振之動作 倒立之後,須做手推及雙腿下振之動作。否則受地心吸力之作用,身體直接下落。蓋振腿之動作,可使上體向上迴轉,到弓撑(jack knife)之部位,兩臂伸直,行推竿之動作,可以使兩臂上舉;二者皆足以令身體過橫竿時,遠離橫竿。

【癸】結論 過橫竿時,不能達弓身撑 (jack knife) 之姿勢, 第一百四十七圖 弓身撑

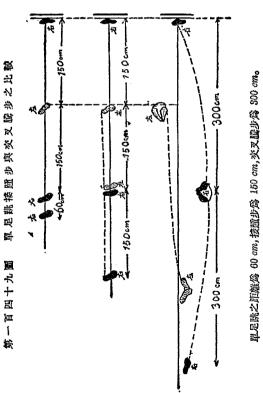

非身體觸橫竿,即兩手打橫竿,其重要可知。果用何種方法,以 成就此姿勢,乃本節所應討論者。弓身撑之姿勢,承兩腿前振之 後,而兩腿前振之動作,須從屈肘倒立時行之,身體在水平部位 不能也。故弓身撑之成敗,視屈肘倒立之成敗而定。又屈肘倒立 之部位,承蹬足轉體之後。蹬足轉體之後,能否成屈肘倒立之姿 勢,視全身屈縮之程度,與腿舉之高度蹬足之方向而定。故弓身 撑之成敗,間接又與引體蹬足有關。欲引體之後,擺角增大,兩 腿高舉,一方固賴全體之屈縮,而跳起後身體之善事擺動,亦極 重要。故弓身撑之成敗,又與擺動有關。由是可知,弓身撑為一 結晶之動作,步步到家,方能成功,非易事也。

十六 擲標槍

鄉標槍與擲鐵球擲鐵餅統稱鄉重,又名三鐵。根據力學分析 三者所施力量,並不相類。蓋擲鐵餅純係圓運動,鐵球多直線運 動,而標槍則直線運動與圓運動並用,其性質較為複雜。鄉標槍 者,具機巧敏捷之身體,反較力量為重要。二十年來,鄉之方法 大有進步。前後可得三種,第一種,發明最早而容易,第三種發 明不久,最難。

【甲】握槍法 握之部位,宜在纏繩之上端,以食指大拇指, 握繩之外,自中指以下,皆握繩上,以便手指用力。握之方法, 普通有三種: 1. 大拇指與四指均握槍。 2. 大拇指食指中指無 名指握槍,以小指墊槍下。 3. 大拇指食指與中指握槍,以無名指墊槍下。三者究採何種,須視手之解剖及鄉之方法而定。臂垂直上舉握槍之時,槍尖向下,(卽槍下身與臂所成之角小於90°)小指握愈緊,則槍尖愈下向,擲出之前,身體卽能後傾 45°,而槍身與地所成之角決不及 40°。擲出之後,不能達拋物線之最遠

第一百四十八圖

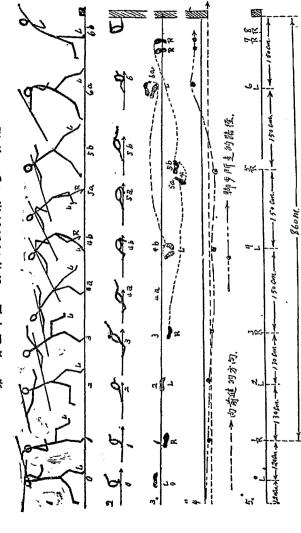

距離。可見小指與無名指握之鬆緊,實與槍擲出之方向大有關係。 故用第一種方法握槍,無名指小指不可緊握。第二種握法,槍下 半身與臂所成之角,可較第一種握法為大。且因小指墊槍下,方 向易於穩定,第一第二式擲法均可採用。至於第三種握法,手指 與槍之間動作自由,槍與臂間之角度,可任意變更。第三種擲法, 須採此握法。否則臂繞圓圈之時,槍不得保持原來之角度。

【乙】跑法 擲槍亦應用加速度,立停擲出,加速度之餘地只有數尺。擲前,如跑若干距離,使槍得有相當之加速度,然後再加以身體及上肢擲槍之速度,成績定能較立定擲出時為遠。跑之用意,即在於此。至於跑之距離及速度,視運動員體格之大小,跑道之情形,擲法之不同而異。體格高大者,其體力足以擲遠,跑可較短而速度可較小。體格矮小者,體力不足,擲出之前,槍無相當之速度,不足以遠擲。故跑之距離宜大,而速度亦宜較大。跑道溼而滑,速度雞於加大。煤屑路上,可得大速度。

跑之距離尋常為 15-20 米。(若跑十四步,前八步當跑 9.40 米,後六步跑 8.6 米) 自起點至離擲出點六步前,須漸漸加高,達最高之速度。末數步保持以前之速度。在末六步上,應有石灰線,右脚着此線,右手即開始向後伸。

(一)末六步之步法 末數步,最忌用單足跳,以其停止向前 之速度也。接踵步法,不免減慢跑之速度,亦不適用。<u>瑞典芬蘭</u> 德意志諸邦之標槍名手,都通用交叉騰步法。常人不知其用意, 頗忽視之。茲為引起學者特別注意起見,將單足跳,接踵步法, 交叉步法三者與速度之關係,分析比較於下。

肌肉之收縮放鬆,需一定之反應時間,(reaction time) 其速 度有一定限度。人之跑步,左腿放鬆,右腿收縮,左右兩步所費 之時間, 即單足跳一步之時間, 亦等於接踵步所費之時間。單足 跳之距離, 苟等於接踵步之半, 則速度小一半。然而實際上, 在 擲槍之時,單足跳之距離,至多不得過60糎,而接踵步兩左足間 之距離, 可達 150 糎。可見單足跳之速度, 與接踵步之速度比為 2:5。故單足跳時, 槍之前進速度, 為接踵步時之五分之二。


單足跳與交叉騰步比較,則所差更遠。右足單足跳一次之距離,不過60糎左右,而交叉騰步可得300糎。其比例為1:5,二者相差更遠。吾國之習擲槍者,對於未數步,大都忽略。視一百四十九圖,即可以明其利害。

(二)末六步長短之分配 尋常跑之步長,宜為 120 糎。末第 六第五步各為 130 糎,末四步宜增長至 150 糎,一所以使速度保持。一所以使身體易向右傾,與擲出之速度,均有直接關係。

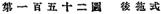
[丙]鄉前數步臂之動作 共有三種方法。

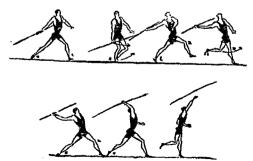
- (一)後拖式 右手按上述之方法握槍,跑時,右臂向後下斜伸,腕向內轉,掌向上,至左脚(右手擲)末第二步着地時,(參觀第一百五十圖 2,3,4 a)右手向外轉,身體向右轉八分之一,同時身體向右後傾。槍尖向 30°-35°。至左脚末一步將着地時,即行擲出。擲出之後,受屈體之影響,再向前一短步。此法最易於學習,而右臂後伸平均不易維持,前跑不便,加速度難,其缺點一。握槍之一臂,無後伸之動作,胸大肌等無向前之反動力,其缺點二。槍已在後伸之部位,騰步不便,其缺點三。瑞典芬蘭德意志所有之擲槍名手,都少用此法,只便於初學者練習而已。
- (二)後伸式 右手以同法握槍,應人舉槍高等頭頂,<u>芬蘭</u>人 瑞典人以小臂向後斜伸,直達肩上,腕節內屈。其優點在槍身穩 固,便於前跑。槍尖與眼等高,正對眉心。右臂向後伸之動作, 有主張左脚末第二步着地時行之者,有在左脚末第三步者,究以

练一百五十國 後伸式及其宋八步之分配

1. 表握槍之方法,體角,及身體之波動。 2. 丟身體之醬切面,铅體軸面旋轉之角度。 臀時風時伸,而槍 指路出之方向仍不改變。 8. 表脚步, 40 及 50 時, 80 交叉聯步, 即有旋轉之動作。 4. 装跑之路線, 卷 幅左方。第三步以後,步伐故是。

何者爲最合理,宜根據槍之向前速度及胸大肌等之反動力而定。 第一種後伸太遲,後伸之速度非快不可,槍向前之速度完全對消。 且因太快之故, 後伸不得充分, 反動力有時亦大, 結果得不償失。 麥克樂氏在體育季刊上所登之擲槍方法, 主張在末第三步(即左 脚末步二步)行伸臂之動作,恐有不妥之處。按作者研究所得, 右臂後伸之動作,以右脚末第四步 (R_1) 着地時行之爲最妥。如 第一百五十圖 1,3, 所示。第一步右脚 (R_1) 着地之時,右手向後 伸, 肩放鬆, 右小臂內轉, 腕節屈。第三步(R₈)着地時, 身體向

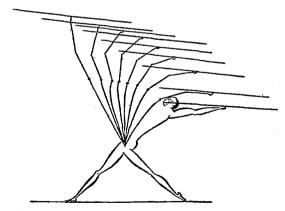



一百五十一

此圖爲瑞典擲槍名手 Lindström。曾保持世界成績多年。1924 在巴 黎鄉 59.92 米。1926 年鄉66.62米。所堪注意者左脚落地時,先以輝著 地,其交叉膣步極大而輕快,右肩雖仍留向後轉90°之姿勢,而臀部得 以伸直。其頭之向左傾向右扭轉,肩之向前扭轉,所以補助右肩向後 之動作也。是等皆其技術特長之處。

右轉約八分之一,右臂下降,完全後伸。第四步(L₄)着地時,身體向右下頃,同時臀部向前移,使重心向前行,作右脚交叉腾步之準備。第五步(R_{5a})為騰步,即右脚從左脚前向左速踏一步。着地時,右踵向左前方,身體更向右轉。此後右脚尖即向前指,身體亦向前轉,回至向右轉八分之一之部位而止。(第一百五十一圖5b)同時左臂左腿向左擺動,愈多愈妙。右臂亦十分伸直,準備擲出。左脚末一步着地時,槍即擲出。以後即同上法,右脚向前跨一步。此外應注意者,槍後伸之時,須在一直線上向後流動。在 R₈ L₄ 兩步時,槍停在掌上,握槍較鬆,至 R_{5a} 時則緊握。

運

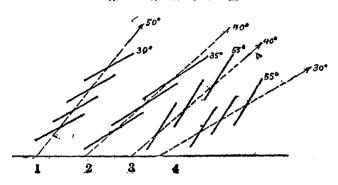


第一百五十三圖 棒球式

從1至4臂作前繞之動作。槍身不變方向,直至身體後仰時,(如4)槍尖始向前上方。 第一百五十四圖

從此圖可以表際槍動作一部份純是圓運動。以號關節為轉輸,上肢與上 體一致,角圓牛徑。最重要者財罰節勿伸太早。閩中表明者極合理。

指以下三指須放鬆,主要以大拇指及食指握槍。否則槍身不得保持在原來之平面上。及左脚跳起,右脚騰步落地時,已至第二法預備之部位。此時手指緊握,槍托掌上,腕節過伸,使其工作距離大。槍身與地成 30°-35°,擦出之方法,詳於下,茲不贅。


是式有三難點: 1. 手向前繞環時, 手之方向, 刻刻變換, 而槍與地面所成之角, 難固定不變。 2. 由預備姿勢所經之路太多,途中多槍身搖動之機會。 3. 握槍之時鬆時緊,支配難當。 槍身亦易搖擺。苟手繞環時,槍身能在一左右平面上運動, 同時保持與地面所成之角度,則方法得矣。

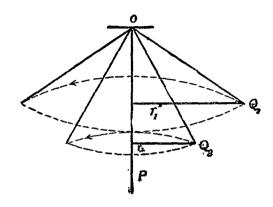
【丁】鄉出之動作 擲前,臂之動作,不論用何方式,右臂皆 須十分向後伸直,右手內轉,以免肘屈。槍與地面成 30°-35°。 同時身體向右傾,與地面成 45°角。使工作距離增長。(working distance)(參觀第一編二十五節)其時背部及肩關節十分伸直,與上體成一體。蓋鄉槍之動作,在身體上為一種圓運動,而其軸心在腰部。(觀第一百五十四圖)肩背後伸,均足以使圓半徑增長。槍以手上之線速度而鄉出,當然與此圓半徑有正的比例。鄉出之時,腹肌卽起收縮,使身體向左轉,向前屈,再加以下諸力: 1.大臂前擺之力,(宜向前上擺。) 2.伸肘節之力,(小臂宜保持後伸之姿勢,愈大愈妙。伸肘太早,則全臂之動作,成推之動作,槍不能挿地。) 3.屈腕之力。(鄉出時,手掌由向上而變為向前,腕關節由內轉而至外轉,由伸而至屈。)鄉出而槍不能挿地者,腹肌之力未用到,及屈腕伸肘之動作太早為之也。

【戊】槍出之方向 槍出之時,有兩種角度: 1.為槍之重心所走之路,與地面所成之角,名曰槍流角。 2.為槍身與地面所成之角,曰槍傾角。按拋物線之理,二者皆為 45°最好。然槍擲出之後,槍尖務須插地。傾角太大,插地不易。依<u>芬蘭德意志</u>諸擲槍名手經驗所得,槍之流角以 50°-55°為最合式。傾角以 30°-35°為最合式。在此二種角度範圍之內,流角愈大,傾角可愈小。此二種角度大小之關鍵,在屈腕放手之時間,及槍尖與槍重心之距離。大抵放手早,則流角大。(最好臂垂直之時放手) 遲則小。屈腕節早,則傾角大。遲則小。讀第一百五十六圖之註解,可以明瞭。又重心離槍愈近,則傾角愈大。傾角愈大,則流

角愈小。因之槍尖不能插地。

流角與傾角 流角愈大,傾角愈小。 1. 芬蘭人 Myyrhā 鄉增之流 角質 50°, 傾角質 80°。 2. 德國鄉馆者之平均數,流角鶯 40°,傾角 質35°。 3.—4. 風腕太早,故傾角大。槍放太遲,故流角小。

十七 擲鐵餅


【甲】力學之根據 擲鐵餅,純係圓運動,力學中最有關係之公式,莫如離心力。 $\left(F = \frac{mv^2}{r}\right)$ 擲出之距離,與離心力為正比例。同時與鐵餅之速度之平方為正比例。即速度從兩個單位加到四個單位,而距離則從四個單位到十六個單位。 $\left(16F = \frac{m(4v)^2}{r}\right)$ 速度增加一點,距離增加甚大。故欲擲鐵餅成績增加,須使速度增加。又據上編十九節圓運動之公式 $v = \omega r$, ω 為角度,r 為半徑。 (即身體之旋轉軸,與餅心間之距離)可知欲速度增加,有兩方法: 1. 增加角速度,即轉體之時速度宜大。 2. 增加旋轉半徑,即轉體

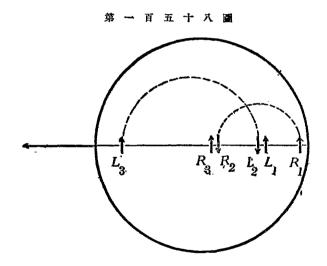
之時右臂宜伸直,肩節宜後張,擲出之時,宜以左肩為中心,即此用意。然二法之中,尤以角速度為最重要,其故有二: 1. 依上編十六節之公式(第三十一面) $F=m\omega^2r$ 。即角速度與離心力之比為平方比。角速度由一個單位增至兩個單位,則離心力可由兩個單位加至四個單位。可知角速度增一點,離心力加許多。而半徑與離心力則為1與1之比。 2. 人之神經肌肉反應迅速,運動經驗豐富者,角速度可無限增加,而半徑之長短,則受天然之限制,無法增長也。

根據上述各公式, 可得數條關於擲鐵餅之基本法則。

- (一)旋轉愈快,離心力愈大,即向心力亦愈大,而脚所占之 地位愈小。
- (二)身體愈小,兩臂愈短,欲離心力之增加,祇有增加角速 度之一法。故身體愈矮小者,旋轉愈宜速。
- (三)體格愈高大,鐵餠之速度愈有增加之機會。但兩脚所占 之面積愈大, 擲出之時, 欲不出圈愈難。故體格高大者, 最初所 立之地點, 宜切鐵圈之後內緣, 使地位經濟。
- (四)旋轉之末第二步,愈近鐵圈前緣,則最後交叉跳之空間 愈少。伸腿之動作宜多用,使向上跳多,向前跳少。
- (五)鐵餅與身體之轉軸間之水平距離愈大,則右臂所迴轉而 成之圓錐形面愈近平面,鐵餅所走之路愈遠,即鐵餅之速度愈大。 而肩關節愈能伸張。工作距離亦愈大。

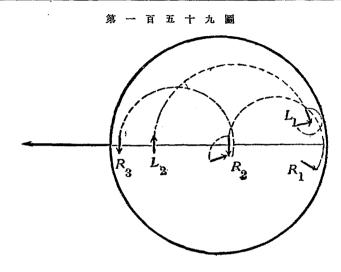
第一百五十七圓

OP 為轉軸。 $n_1 n_2$ 假定為幾件與身體轉軸間之距離, n_1 大於 n_2 ,故 OQ_1 以 OP 軸迴轉之圓錐形面積(除其底)較 OQ_2 迴轉所成之而積,近於平面。


【乙】速度之分析 擲鐵餅之速度,可分爲以下種種。

- (→)旋轉之速度 旋轉之速度,宜應用加速度之理。譬如以 背心法旋轉,其旋轉角度,共一周有半。第一半周宜慢,第二半 周稍快,第三半周須極快。若有停頓,則加速度之意義全失。停 頓以前之速度,完全打消。
 - (二)身體各部力量所加之速度。
 - (1)預備擲出時,身體向左扭轉之速度。
 - (2)旋轉將畢時,兩脚跳起之速度。
 - (3)右臂上擺之速度。
 - (4) 鐵餅脫手之前, 手腕向外稍屈, 手指用力撥餅之速度。

(卽增加向心力發生離心力之理。)


以上(甲)(乙)兩項速度,層層增加,方得最大之距離。

【丙】旋轉步法 旋轉步法,有側向背向兩種。前者左脚在圓 直徑之上,在圓心後半米。右脚靠近鐵圈後邊。(如第一百五十 八圖)後者背擲出之方向,右脚尖緊靠圈邊,左足尖距圈邊約十 五糎。其步法大概相同。惟第二種旣易學習,又多效力。學者宜 用之。

【丁】握餅方法 亦有三種如下。

- (一)手掌小而指力不大者,握餅之時,手指不可分開,並以 第二指節扣餅。
 - (二)手掌較大,指力充足者,用手指張開握餅,並以第一指

節扣餅邊。

(三)伸指握法,第一指節微屈,幾近伸直。

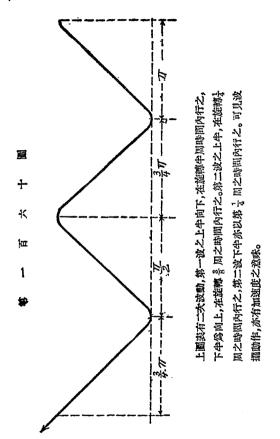
以上三種握餅法,餅心與手心,均不宜在一直線上,餅心宜 向母指一方移開一糎之譜,則擲出之時,餅易旋轉,且方向一直 向前。

屈指肌肉,與全臂屈肌有相感之作用。倘用第一第二法,而 握餅太緊,則全臂屈肌均相應收縮。擲之動作,為之僵硬,肌肉 之彈性,不能完全利用。成績減少。

【戊】擺動方法 擺動方法, 視擲法而異。茲分述於下。

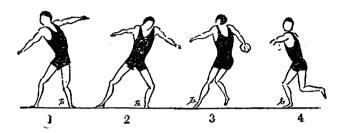
(一)轉體獅法之擺臂方法 握餅之臂,向右下後斜擺。上體 隨之轉動,肘肩二關節,完全伸直,左踵稍起,右踵落地。至最 後方,則再向前上斜擺,同時用左手扶餅,兩臂可屈可直,右踵 稍起,左踵着地。

- (二)波形擺動擲法之擺臂法 此種擲法在旋轉之時,餅作上下之波形,擺臂動作,須與之一致,方有意味。其擺法與前法同,惟前法擺至後方時,臂後斜平舉,而此則後上斜舉也。前法擺至前方之時,臂左上斜舉,而此則左下斜舉也。
- (三)螺旋擲法之擺臂方法 臂擺至前方時,與第一法同。至 後方時,則身體前屈,擺臂在背上後平屈,掌向後上方。(如上編 第三十一圖)

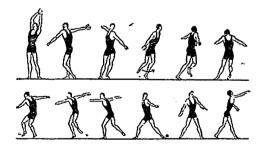

以上三種擺臂方法. 執優執劣,從其本身,無法辨別。且俟 下節,詳細批評。惟與其共同目的,則在旋轉之時,鐵餅得在身 體左右平面之後,使工作距離增大。

【己】旋轉之方法 共有三法如下。

(一)轉體擲法 旋轉動作,由右臂向後擺動終了之時起。兩 臂微屈,重心移在左脚上,右臂極力向後伸張。(使工作距離大) 此後身體即向左轉,以左足尖,為旋轉中心。(左脚不可向後退 移)至右脚繞達擲餅之方向,而兩脚相距八十糎時,右脚尖落地。 以右脚尖為中心,再向左轉半圈。至左脚達擲餅之方向,而距右 脚約一米之時,兩脚均落地上,重量在右脚上。旋轉之時,應注 意者,一脚固定,他脚須循圓弧而繞動,與上體及臂之動作一致。 若步法類似跨步或踏步,則旋轉之動作受影響。旋轉之速度亦減


小。成績減色矣。

運


(二)波形擺動擲法 旋轉之步法及轉動之方向等,均與上法 同。惟在此旋轉進行之右臂,作兩次上下波擺。(如第一百六十 及第一百六十二屬)即旋轉之動作,由右臂向後擺動終了,而臂

第一百六十一圖 背向旋轉法

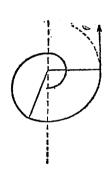
是與第一百五十九圖並行。 1. 為背向而立之預備姿勢。 2. 以左脚為中心,已旋轉四分之一周,尚須繼續轉中周。 3. 為已轉過中周後之姿勢。此時右脚將落地,左脚尚未提起。 4. 承 3. 後之姿勢,右脚着地,左脚舉起。

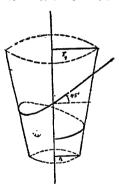
第一百六十二圈 波形攝動擬法

是由背向法開始轉動。由上列之左面數起第二 圖開始,群在後上方,至上列第四圖,則旋轉已 二分之一周,群在下後方。再至下列左面數起第 二圖,則已旋轉一周共姿勢與上列第二圖相仿。 至下列由左面數起第五圖,則臂叉下降。從此部 位,向前上撥出。

45

比為面向法鄉出之順序圖: 1. 先兩脚切圈之後緣而立。擺動至身體向右旋轉時,左 右脚已在 地上畫中國,至其第二脚及之部位。此後將以右脚雖部爲中心,而左脚向左後方繞中 5. 寫日露出乙数勢。石臂向前華 6. 被那六 8. 已至預備鄉出之部位。上體向後粗轉,同時向前屈。重 a. 自盆骨伸直身體, 期向左出一小步。於是卽以左足蹠部為中心而旋轉。其時右臂在監後。 2. 助,掌水平,指屈, 蓋撥餅之結果也。身體在左腿上伸直, 左腳穩立地上。 心在右膝上。握餅之臂枚鬆,向後遠伸。 4. 開始擲出之姿勢: 後,立右脚上。上體向前傾。足尖向左指,以免出圈之外。 右腿伸直。 b. 右肩急向前移。 c. 左臂向後振。 圆,至其第三脚几。之部位。


後上舉時(其時背向擲出之方向)開始旋轉。至旋轉半周之時,(其 時面向擲出之方向)右臂下降。與地成45°。至達八分之七周時, (其時以背向擲出之方向)右臂更上後舉。至一又八分之一周時,

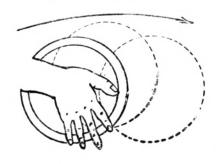

臂又低降, 與地成 45°, 終繞八分之二周擲出。此種波擺, 繩以力學, 毫無利益。從心理方面講, 則多費腦力。從生理方面講, 則多用肌力, 並不足法。

(三)螺旋擲法 螺旋之名,據作者所見,有兩種意義。 1. 手由後平屈之部位,而至擲出之時,鐵餅所走之路,投射於水平 而上,確成一螺旋線。(如一百六十四圖)又據研究所得,開始旋 轉之時,身體宜下蹲,(如一百六十六圖)餅之地位宜低,由開始 旋轉之時而至擲出之際,亦成一螺旋線。(如一百六十五圖)名以

第一百六十四圖

第一百六十五圖

螺旋擲法,確有根據。此種方法,最近發明,繩以力學,極有根據。其一,臂在後平屈之部位,足使惰性矩減小,旋轉速度易大。且旋轉過一周之後,右臂依然伸直。按離心力之公式 $F=m\omega^2r$ 中, ω 為角速度,r 為半徑。角速度增加,半徑不變,離心力當然增加。其二,鐵餅在極後之部位,工作距離較大。有此兩種利


益, 其地位當然最高。

【庚】鄉出之方法 用以上任何擺法,擺至距鄉出之方向,尚有八分之三周時,宜繼續增加擺之速度,同時須增加轉體之速度,右臂向上擺之速度,及右臂撥餅之速度。(如第一百六十七圖)欲此三速度,完全加於旋轉之速度,宜在距鄉出之方八分之三周時行三動作: 1.全體向左轉,兩膝同時用力挺直,重心向鄉出之

第一百六十六圖



方向移動,右臂極力向前上斜摔動。其方向宜由外向上,不可由下向上,所以與旋轉之速度一致也。右臂之摔動,以左肩為中心,宜在兩脚未跳起以前。鐵餅離手之時,宜正在兩脚離地之前。2. 鐵餅離手之時,腕不宜伸,伸則餅面不得與擲出之拋物線相切。3.餅離手時,手指宜向內撥。然後餅向右旋轉而出,(如第一百六十七圖)速度增加。

【辛】鄭之方向 按抛物線之公式,擲出之方向,宜成45°。故不論何種擲法,旋轉之螺旋由下向上傾斜,亦宜成 45°。 波式擲法,上下波動至末了八分之二周時,餅所走之路,亦宜與地面成40°-45°之角。 螺旋擲法之開始旋轉時, 鐵餅之位置宜低,以40°-45°之角,螺旋而上。皆所以使擲出之角與地面成40°-45°也。

鄉出時,鐵餅之面,宜與抛物線相切。(如第一百六十八圖 a,b)且其自轉之軸,宜與面成正交。萬不可與拋物線成正交,增 加空氣之阻力。(如第一百六十八圖 c,d)

普通之誤點

【甲】關於旋轉時者

- (一)旋轉之初,左脚先向後退一步,則旋轉之度數,因以減少,有損成績。
- (二)平均之不良,因旋轉之脚,不成半圓形,故上下肢之動 作不能調和也。
 - (三) 旋轉時雙足跳起,支點無着,不能應用身體之力量。
- (四)旋轉時旋步之長度不足,失向前進之速度,尙屬小事。 末一步,右足離鐵圈太遠,有害成績。
- (五)旋轉之速度不依加速度之方法,尋常因起初太快,後反 減慢為之也。應漸漸加快,中間毫無停頓。
- (六)旋轉時,右臂不向後伸張,由旋轉之初,至身體已轉向 鄉出之方向而雙膝挺直時,右臂宜始終保持向後伸張之部位。否 則工作距離不大。

【乙】關於擲出時者

- (一)身體向左彎,誤用彎體之力,使餅出之方向改變也。
- (二) 擲出時以右肩或脊柱為中心,旋轉之半徑縮短,離心力 減小。
- (三)右脚離地太早,擲時若脚不在地上,即無用力之支點。 故餅擲出之後,脚方可跳起。
 - (四) 擲出後, 餅在空中擺動, 或其面與抛物線不切。因受空

氣之阻力太多, 餅不易遠。

渾

十八 推鉛球

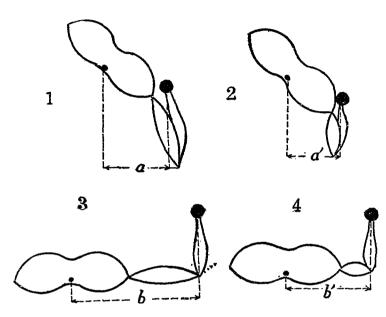
推鉛球一項運動,大部應用加速度之理,已如上編第五節所述。本節所討論者,為各部動作之做法,及達到最大效果之方法。
茲分析而詳論於下。

【甲】預備動作 與成績間接發生關係,不可忽視。

- (一)預立地點 推者立後半圈之內,推出之方向與前進之方向,均在圈之直徑上。身體之重量載右脚上,左脚前伸,以脚尖輕點地上。上體微向右前傾,(如第一百七十圖) 視線向下。
- (二)執球之麥勢 球托手中,着力之點在五指第三指骨下端。中三指併合,用拇小二指維持球之內外平衡。(如第一百七十圖之執球麥勢)腕關節宜向後過伸,伸之程度愈大,則屈腕肌肉用力於球之機會愈多。如第一百六十九圖所示,比較其伸之程度,即可知其機械的利益之多少。運動員腕力薄弱,不能作最合理之執法者,則當注意發達屈腕節之肌肉。自預備之時至起推之際,執球之手臂肩各部肌肉,宜盡量放鬆。球托鎖骨外半之前,勿支持於鎖骨之上。
- (三) 屈肘之姿勢 屈肘之後, 球須接近鎖骨外半之前, 否則 犯規。但同在此部位, 而肘有向下向側之分。何種較為適宜, 本 節應加討論。鉛球推出, 固屬直線運動。分析其速度, 則一部份

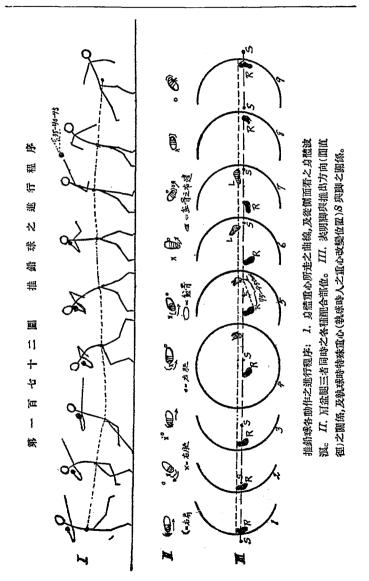
第一百六十九圖

第一百七十圖


- a. 表明膀笥渦伸,其工作距離大。
- b. 表明少伸之度少,其工作距離少。

由圓運動而來也。按圓運動公式 $v=\omega r$, 即角速度相等時,線速度之大小視圓半徑之大小而定。肘向側舉時半徑大,(如第一百七十一圖 1,2)肘向下,則圓半徑小。(如同圖 3,4)

(四)原地擺動 推鉛球向圈前進以前,有預備之活動,則前 進之速度大。此種動作,始於左腿及左臂之側舉,同時上體微向 前扭轉,右臂微向前迴轉。為平均起見,右臀向右移動,重心微 上升,身體向右成弓形。擺動終了,則回至原狀。


第一百七十一圖

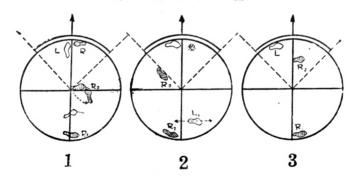
運

上圖中呈蠶繭形者, 鶯身體之撬切面。其餘為大小 臂與鉛球。 aa'及 bb'為脊柱與球間之橫距離。 1,2, 表明財向側之姿勢, 其脊柱與球間之橫距離 大。 3,4,為財向下之姿勢, a'小於 a,b'小於 b。

【乙】前進之動作 此動作,始於上節之最後一擺動之動作, (如第一百七十三圖)繼即左腿向右腿後重振。左臂前舉,可達 右肩前,上體微向右扭轉,左臀與重心均向左移動,右肩下落。 此時身體向左成弓形,(如一百七十四圖)與上節適相反。此後 右脚向外轉,髁關節伸直,膝關節仍屈。於是重心向左移動,上

第一百七十三屬

第一百七十四圆



體向右扭轉,循圓圈之直徑而向左流動。右脚尖向右,從地上流滑,同時右膝伸直,(如一百七十五圖及一百七十二圖之 I. 3)

第一百七十五圖

第一百七十六關

推鉛球之前進步伐: 1. 合式之方法。 2. 擺動一腿所至之方向,極為不利, R_2 向左前方去太遠,阻礙交叉號之動作。 8. R_2 落地太近圈前邊, L_2 向側邊太遠。

左腿速向左重振。在此向前進行之程中,身體之姿勢,時時變化, 決非固定。上體和肩,與左右平面及水平面,均改變關係。即全 體所成之弓形,亦由向後弓而變為向前弓,(如第一百七十二圖 I,1,2)由左傾而變為右傾,(如同圖 I,3,4)重心由下降而 至上升,至為複雜。初學者往往不知其用意,任意跳動,效力全 無。對於此種動作,須注意六點: 1.其目的向前動多,向上動 少。身體勿可跳起。交叉騰步,前跳太遠等弊,(如第一百七十 六圖 2,3)均應避免。 2.此前進動作未終了之時,即須繼續做 下數動作,稍事停頓,則停頓以前之速度,全失效能。 3.利用

第一百七十七日

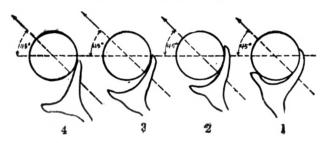
左腿前擺之惰性,以前進身體。若專用右脚單足跳之力量而前進, 則向前之速度必大減少。 4. 落地時宜在右脚上,重心在右脚以 前,上體向右傾。然後繼以左脚落地之動作。上體以向左繞半圓 之動作前進。若兩脚同時落地,則呈停頓之現象,前進之動作, 全失效能。 5. 兩脚着地之時,左膝微屈,右膝深屈,令重心载 右脚上,準備跳起。(如第一百七十七圖) 6. 因腕節過伸,前 進之時,鉛球受惰性作用,往往向後脫落,屈腕節諸肌,宜注意 防止之。

【丙】推之動作

- (一)下體與下肢之動作 身體向推之方向流動,至右脚離圈 後緣約 80 糎時,右脚停止前進,以全蹠着落於圓徑(前後徑)之稍右方。隨即以右踵外轉,至尖向左而止。(如第一百七十六圖 1, R₂)左脚尖左指,切近圓之前後徑而落於前緣之內。左右脚相距 90 糎。此時兩膝多屈,惟右膝向內轉,膝不過脚尖。臀亦深屈,上體前傾。同時向右扭轉成螺旋狀。肩臂均向右移,肘向後張。在此部位,胸肌十分伸張,工作距離奇大。從此開始行推之動作,先以盆骨速向左扭轉,(此霎時間,上體受惰性之作用,向右扭轉之度益多,球向前之速度可益大。)加以膝髁髋三關節伸直之動作,則下體及下肢對於球之力量,完全用到。
- (二)肩與臂之動作 肩臂常保向右扭轉之部位,已如上述。 其用意在使屈肩伸肘諸肌過分伸張,俾其工作距離增加。此時上

臂及肩,宜作一平面上之圓運動,而其面與推出之方向一致。左肩之圓運動較小,因身體之轉軸偏在左脚上也。左臂在推之行程中,肘節微屈,減短其惰性矩,使轉體之動作,不致減慢。及面對推出方向之時,左臂向後重振,與推之動作平衡。伸右臂之方向,與推出之方向一致,成35°-45°之角。左脚尖向前,全脚着地。伸腿之時,右髁關節先左髁關節而伸直。球將脫手之時,左髁關節開始伸直。

頭將轉向推出之方向時,視線偏向左方,俾右肩得向推之方 向前進。(如第一百七十八圖及第一百七十九圖)

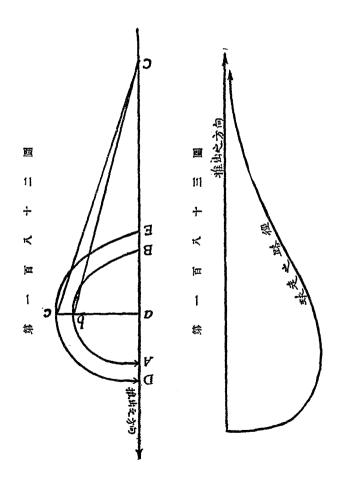

(三) 屈腕之動作 此種動作在推出將了之時行之。尋常不甚

第一百七十八圖

注意,實際上大有出入。但行之太早則球向下而高度不足。太遲 則推太高而成績益減少,二者均不適宜。脫手之時,球向後迴轉, 保持 45°而前進。(如第一百七十九圖) 若球不旋轉,則推出之 方向必低,有損於成績。

第一百七十九圖

第一百八十圖

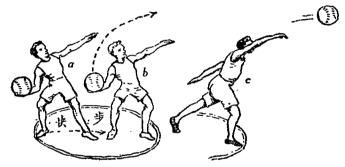


(四)推出後身體之姿勢 頭向左後仰,上體向前傾,左臂側 舉,右臂前平舉,左臂後平舉,右脚單足立。此種部位,雖與成 績無關, 然足以察出其用力之當否。若轉體屈體及伸臂之動作得 當,則受惰性之作用,非到此種部位不可。非然者,即身體力量 未用到之證也。

(五)推球動作之重要械作用 身體之動作,一為轉體,一為 屈體, 兩者混合舉行, 尋常莫不明了。然此二動作混合舉行之後。 若上體仍在前後平面上運動,則力學上之利益,未能利用。蓋身 體前進,兩脚落地,上體前傾。預備推出。若從此部位,由右而 前,由前而左,作一圓運動,則身體所經之路,為ABC半圓錐

面積,而球走之路,(如球永置肩前)必為 BA 弧。如右肘伸直, 與身體成直角,則球走之路又必為 BD 弧。(如一百八十二圖)且 BD 弧之半徑,必為此半圓錐形底之半徑 ab; 與球至體軸間之距

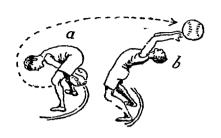
mbc之和。按圓運動之公式: $v=\omega r$ 。圓半徑增加,角速度不變, 線速度自然增加。此種圓運動之結果, 在水平面上則如第一百八 十三圖。從實地上觀察, 則第一百八十一圖, 可以證明。即推至 終了之時, 球不在體軸之前, 而在體旁。可見球走弧線前進。學 者宜注意。


第一百八十四圖

十九 籃球擲遠

是項運動為新輸入運動項目,作女子運動比賽節目,最為適 宜。擲法普通有三種,如下:

【甲】單手擲法


- (一)預備動作 立七呎直徑圈之後方,以右手托球,肘微屈。 若擲者為籃球,臂可完全伸直。上體向右微彎,右腿屈,左腿伸 直,與鉛球相仿,如第一百八十五圖 a。
 - (二)擲出之動作 應用加速度之理,欲使球於擲出之前,帶 第 一 頁 八 十 五 圖

有若干速度,宜採用快速接踵步法,向前移動一步。然後繼續行舉臂轉體之動作,將球擲出。臂所走之路徑,若在前後平面上,則全身之肌肉能助其工作者,只有左方之腰肌,力量薄弱。且球出之角度難及 45°。故球走之路徑,宜為與地平面成 45°之弧線,如第一百八十三圖。同時利用轉體之動作,使圓半徑增大以增加球之速度。在球將脫手之時,加行屈腕之動作,加上若干速度。同時兩脚前後交叉跳,至第一百八十五圖 c 之部位。

【乙】雙手過頂擲法 是項擲法,不能十分利用向前進之速度, 故立之地點,不在圈後而在圈中。或以石灰線代圈,而立於線後 二三尺之處預備。

第一百八十六圖

- (一)預備動作 兩腿開立,雙手過頂舉珠,上體向前下彎, 球向腿間擺動,上下三次,至第一百八十六圖 b 之部位。此時宜 注意者,肘關節宜微屈,小臂向後上斜伸,上體向後傾,膝屈, 使工作距離增大。
- (二) 擲出之方向 此與成績大有關係,按拋物線之公式,擲 出以 45°之角為最遠。欲擲出時有如此之角,宜注視上前方,視 線與地而成 45°之角。
- (三) 擲出之動作 第一百八十六圖為向後擲之圖。但此種擲法,始於是圖之 b, 即 a b 皆為雙手過頂擲法之預備動作也。擲之動作,始於伸髁關節,同時兩臂做向前下降之動作,將球擲出。上體向前屈,與降臂及跳起之動作一致, 庶符加速度之意味。

【丙】雙手向後擲法

(一)預備動作 兩脚開立圈之遠邊,背向擲出之方向。預備 時,上體向前上向前下彎,球向腿間擺動,至第一百八十六圖 a 之部位。

(二)鄉出之動作 從 a 之部位, 上體急向後上擡起, 同時兩 臂向上後舉, 膝向前更屈, 竭力挺胸, 腕關節向後屈, 以增加速 度。

附錄

運

拖拉式跑法

跑有兩式:其一專用之於短程者,曰踏步式 (trittstil);。 其二用之於各種距離者,曰拖拉式 [zugstil (pulling style)]。 利用後一式,最有成效者,莫如德國配爾采 (Dr. Peltzer)氏。 氏於一九二〇年,得全省中程跑錦標。一九二二年得全國錦標。一九二六年及一九二七年,得世界錦標。其八百米成績 為一分五十六秒又十分之六。一千五百米之成績為三分五十 一秒。一九二九年十二月上旬來南京等處表演,果見氏有獨 到之處。後中大體育科學生,照法練習,覺極輕快,知大有 可取之處。爰就其演講及其所著田徑運動訓練法一書所述, 摘要書出。更由作者繩以力學定律,此式之優點益顯。

古人巢居穴處, 茹毛飲血, 非跑無以得食。古代草木暢茂, 禽獸逼人, 非跑不能逃生。跑之一事, 為古人之普通技術。及社 會進化, 衣有布帛, 居有宮室, 食得自耕稼, 不待田獵; 於是跑 之機會去, 衣服之束縛甚, 跑之技術因之退化。在工商發達之社 會, 則尤甚焉。然幼年時期, 衣服薄少, 遊戲之機會多, 不論追 趕逃避, 在在有練跑之機會, 故兒童之快跑方式, 反較成人自然。 足證跑之技術, 為天然之賜品。 令人不察, 反意造不自然之方 法,身體板滯, 肌肉偏用, 俾去自然之方式更遠。所謂長時跑, (deuerlauf) 專為練習體態。又所謂定位跑, (stillauf) 為踏步式之戀相, 皆屬不自然之方法。

自然之方式有三原則: (一)全身之肌肉,祇有作向前活動之肌肉收縮,餘均放鬆。 (二)所有動作之範圍須相稱。(即上肢與下肢運動之範圍須相等) (三)所有動作,須放鬆而流,繼續進行。配爾采氏之拖拉式,全依此三原則而發明。

身體各部之姿勢 上體不可向前傾斜太多, 多則背與醫部之 肌肉枉費力量。跑者受其壓泊, 全體易受疲乏。日脚離地之後, 易於速向前踏地,步伐為之縮短。蓋不如是快做、身體必致傾倒。 腹肌須發達,所以使拖腿向前之動作快而有力也。頭勿向後傾, 宜微直。兩臂隨身體之轉動而擺動。大腿不向水平之部位前上舉, 乃向前急拖。小腿放鬆,隨自然之擺動而向前,伸腿之肌肉,不 有意收縮。脚向前踏地, 腓骨肌肉十分緊張。脚平着地, 身體之 重量,大部分負於蹠部。髁關節伸直,於是向後推。脚須與跑之 方向並行, 脚尖宜微向內, 勿向外。在脚後推之後, 身體在正當 之姿勢時, 小腿向後遠振, 並非失敗, 乃是成功。(參觀第一百 八十七圖之右腿可以證明)因小腿之重量,足以促輕輕向前之擺 動也。其擺動固賴大腿前部各肌之收縮,但又不可如室內運動之 過縮,又不可如上體向前過傾時之不縮。腿之向前擺動心,多賴 屈大腿之肌,少用伸小腿之肌。其向後拖屯,多用屈小腿之肌, 少用伸臀之肌,因伸肌多半負荷體重,易於疲乏也。總之跑之主

要工作,不在伸直微彎之腿及脚,而在後拉前振及前伸之腿也。 故屈肌宜注意發達之。此點為一般指導員所不注意,此跑之活動 所以終不得自然也。或謂推體之工作不能早做,須俟重心移至前 方後行之。其實不然。尋常行走之動作,主要在脚着地後之向後

第一百八十七圖

上圖為德國配爾采氏於 1924 在英國倫敦世界運動中之攝影。程長八百八十碼,成體為 1:56,6 分。造成世界新成體。

拉動,全由屈肌而實現也。最錯誤之點在將此屈腿之工作除去, 專用伸腿之肌肉促體前進。因之伸肌在最短時間,達疲乏境,而 步長亦不能達天然之程度。所謂踏步式者,即犯此病。所謂拖拉 式者,其優點即在此也。

身體欲從靜止之部位,快到運動之狀態,須注意有力而快之 前衝。踏步式可以達此目的。在起跑之後,須採用之。然踏步式 鮮有達極大之速度者,因各前衝之間,停頓太久,每次用力蹬地, 增加之速度屢被消失也。反之若腿向前擺動,踏地之後,行拉地 之動作,腿至後方時,繼以顯然推之動作,以增速度。則用力之 機會多停頓之時間少,速度自大矣。倘與一善跑而純用踏步式者 比賽,三十米以後用拖拉式,則定操勝券。

腿之用力方法, 視距離之長短而異。短跑起跑之後, 三十米 內, 用踏步式, 伸腿及髁節之動作, 須十分用力。中程賽跑, 屈 腿之肌肉多用。長程賽跑, 專用脚滾之動作, 後腿伸直之動作放 棄。因各伸肌已負載體重之責任, 早已疲乏。

拖拉式,每步間重心之上下移動少,可免力之浪費。踏步式, 重心在推力之前,其力之方向雖合式,然重心向上下移動,致耗 力量。

跑時脚與地面之角度,猶大腿與小腿間之角度,非無關係者。 脚之角度愈小,需肌力愈多。用力之機會雖多,而速度則低減。 但尋常脚與腿伸直之時,角勿太大,免得力量向上。上體勿下降 太多,因前傾之姿勢,不利於跑也。髁關節勿屈太多,致伸**張太** 慢。

是圖寫 Dr. Peltzer 1925 在德國柏林運動 場所攝,距離為 1500 米,時間 4:00,2 分。

肌肉使用之次數愈多,則愈易疲乏。步伐過長,腿與地面所 成之角太小,肌肉之槓杆太短,耗費力量。尤以長跑時為尤甚, 因重心距負重之伸肌(臀肌)太遠,每步間之時間太長也。

凡田徑運動,力量及速度之增加,其適當與否,大有出入。 無數運動員,不問其動作之似眞與否,其速度不及名手者,因何 時用力,何肌用力,何時力加至最高點等,腦中無一種感覺也。 故發達肌肉之外,培養精細之肌肉感覺,當為先務。此者錯誤, 則所謂訓練者,乃疲乏其肌肉耳。身體疲乏,神經之意力受打擊, 肌肉之
咸覺失去, 速度毫無把握矣。

按配爾采氏之表演及演講,則其式之優點有數端:

【甲】力不虛耗 賽跑時,全體之平衡問題,從中左右跑之格勢。步伐愈長,上肢之擺動須愈大。然腿之粗長,遠勝於臂,左腿向前之運動量,必遠大於左臂向後擺之運動量。按平衡之理,運動時身體重心(在臍下一寸之處)上下之運動量相等,方得平衡。臂之運動量既不足,勢不得不藉兩肩及上體之轉動以補充之,以達平衡之目的。故上體及兩肩之轉動,實受地心吸力之驅使,不可制止者。一般運動員,用背肌停止其轉動之動作,力量虛耗,出諸無謂。配爾采氏聽其自然,任身體轉動,(如一百八十八圖)背肌毫不用力,結力減省,確其優點。

【乙】肌肉之利用極適當 全身肌肉分屈肌及伸肌兩組, 屈肌 往往強於伸肌, 拖拉式利用屈肌多, 利用伸肌少。填是避弱就強, 乃其優點。

【丙】重心上下移動少 重心上下移動,所走之路延長,即費時費力之證。拖拉式重心上下移動旣少,重心所走之路必短,肌力之效果必大。

【丁】腿用力之時間多 踏步式,專用伸肌,脚踏地至離地之時間太短,身體騰空之時間多,用力之時間少。拖拉式,從脚前伸之後着地,即用力後拖,至離地之時間頗長,加以時時用力,故身體騰空之時間極短,用力之時間頗長。

参考書籍

I. Carhart: College Physics

運

- II. Duff: Physics
- III. Otto Peltzer: Das Traings Buch des Leichtathleten
- IV. Mag, L; Lauf: Sprung und Wurf
- V. Albert B. Wegener: Track and field Athletic
- VI. Hjertberg: Theory and Practice of Athletics
- VII. Hoke: Die Athetischen Wurfeubugen

借書到期表

. Date Due			
J. WAY			
	a a 1 -		
1. JUL	-		
1 4. MAY			
AADEA	2.0		
14 O. DEC			
1 2. CCT.			
1 2 JAN	~ B3		
1-13.	,		
·		4	
•			
			
		. مصوبي	
			•
	1.	1	j

國立北平圖書館 NATIONAL LIBRARY OF PEIPING PEIPING

登錄號20273分類號 436 Acc, No. Class No. 436

運 動 學

此書有著作權翻印必究

中華民國十九年三月初版 回每册定價大洋貳元

回 毋 册 定 價 大 件 貳 兀 外埠酌加運費匯費

著作者 吳 蘊 瑞

發行兼 上海寶山路 商務印書館

發行所 直務印書館

ATHLETICS

B_y WU YUN SHUI

WO TON BRION

lst ed., Mar., 1930

Price: \$2.00, postage extra
THE COMMERCIAL PRESS, LTD., SHANGHAI

All Rights Reserved

B11五○自

