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Many wildlife species are synanthropic and use structures built
by humans, creating a high-risk interface for human–wildlife
conflict and zoonotic pathogen spillover. However, studies that
investigate features of urbanizing areas that attract or repel
wildlife are currently lacking. We surveyed 85 buildings used
by bats and 172 neighbouring buildings unused by bats
(controls) in southeastern Kenya during 2021 and 2022 and
evaluated the role of microclimate and structural attributes in
building selection. We identified eight bat species using
buildings, with over 25% of building roosts used concurrently
by multiple species. Bats selected taller cement-walled
buildings with higher water vapour pressure and lower
presence of permanent human occupants. However, roost
selection criteria differed across the most common bat species:
molossids selected structures like those identified by our main
dataset whereas Cardioderma cor selected buildings with lower
presence of permanent human occupants. Our results show
that roost selection of synanthropic bat species is based on
specific buildings attributes. Further, selection criteria that
facilitate bat use of buildings are not homogeneous across
species. These results provide information on the general
mechanisms of bat–human contact in rural settings, as well as
specific information on roost selection for synanthropic bats in
urbanizing Africa.
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1. Introduction

Urbanization has a pervasive and continuing impact on wildlife species. While urbanization has led to
habitat loss for wildlife, some species use environmental conditions and structures that are products of
human presence [1–4]. Many wildlife species within the urban human–wildlife interface are known to
harbour zoonotic pathogens, and this close connectivity can facilitate pathogen spread (spillover) and
spillback of these pathogens between wildlife and humans [5–7]. Close interactions often also cause
human–wildlife conflict which can lead to human-induced wildlife mortality [8]. Information to
inform contact- and conflict-mitigation strategies is needed to improve outcomes for both groups and
is a key priority in the growing field of urban ecology.

Model systems that identify and characterize regions of high-risk human–wildlife interfaces will be
critical to efforts to reduce human–wildlife conflict and pathogen spillover. Bats are progressively
inhabiting urbanizing landscapes, with some species increasingly adapting and exploiting resources in
these regions, while others may be moving into those areas due to anthropogenic land-use changes
that destroy native habitat [9–12]. Some species are known to harbour pathogens, especially viruses,
that can spill over into humans and domestic animals [13,14]. Bats are also increasingly imperiled,
with 15% of bat species considered endangered or threatened, primarily due to anthropogenic actions
such as land-use change, hunting, persecution and urbanization [11]. They provide several critical
ecosystem services, including insect suppression, seed dispersal and pollination of many tropical
plants, and addressing their conservation needs is important to environmental function [15,16]. The
increasing use of human areas, such as buildings, connects bats to people and domestic animals
intimately, thus creating opportunities for pathogen spillover, spillback and bat mortality at this
cross-section of the human–wildlife interface [16,17].

Bats have been recorded in urban areas on all human-inhabited continents, and often roost in
human structures such as houses, schools, offices, abandoned buildings and bridges [16,18]. For
bats, human structures can provide stable shelter, breeding sites and safety from predators [19,20].
Structural attributes of buildings, such as their height, age, complexity and composition have been
reported as important for determining bat roost suitability [19,21]. However, studies on this topic
usually suffer from key limitations, often due to practical necessities while conducting research on
bats in difficult environments, including low roost sample numbers, missing or inadequate controls,
and statistical approaches that fail to account for interactions among relevant covariates (e.g.
[22,23]). These limitations ultimately impair the ability to draw inferences that can inform strategies
to mitigate human contact with wildlife. Further, the global ubiquity of synanthropic bats, their
potential to host zoonotic pathogens, and their conservation importance make them key systems to
understand how human–wildlife contact occurs and can be mitigated in rural and urbanizing
settings [13–15,24].

Accounting for interactions among relevant covariates and the mediated effect of variables is
necessary for understanding nuances of habitat selection by wildlife. Use of structural equation
models (SEMs) is a method that allows for comparison of multiple covariates, but also can identify
both direct and indirect interactions among variables [25]. This method allows for the a priori
formulation of hypothesized causal models based on previous empirical research and calculates
partial regression coefficients corresponding to predicted causal effects. By developing models using
the existing literature on roost selection, SEMs can identify covariates with direct effects on roost
selection, as well as variables that may indirectly impact (but are still important) selection criteria
through their impact on direct effects. Fine-scale identification of these features can provide a
comprehensive characterization of structures facilitating human–wildlife contact.

We investigated the features of buildings that contribute to bat roost use in rural southeastern Kenya
to identify the traits of anthropogenic structures that bats select. This region has several bat species
known to host a variety of pathogens and that roost in buildings with humans and domestic animals
[10,26–28]. By understanding building characteristics key for bat roost selection, we can better
characterize hotspots of human–wildlife contact in urbanizing areas and provide information to help
target measures that mitigate contact between bats and humans. We applied SEMs to understand the
direct and indirect interactions among building features, microclimate, and bat use. These data
contribute important information in an area of the Global South where human contact with bats and
disease risks are high, but where data are scarce. More broadly, we fill a need for information on bat
roost selection globally and provide a model system for understanding human–wildlife contact in
progressively urbanizing areas.
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2. Methods

2.1. Study area
This study was conducted in Taita-Taveta County, in rural Kenya, during August–October 2021 and
January–April 2022 (electronic supplementary material, figure S1). The region covers an approximate
area of 17 000 km2 and is characterized by high diversity of wildlife, with patches of isolated cloud
forest between 1400 and 2200 m above sea level surrounded by lower-elevation (400 to 1400 m above
sea level) grasslands and woodlands, all distributed amongst rural villages and smallholder farms
[29,30]. The climate is semi-arid and has an average annual temperature of 23°C [31,32]. Typically, there
have been two rainy seasons, March to May/June and October to December, with an average yearly
rainfall of 150 to 600 mm in the lowlands and 800 to 1200 mm in the highlands [31,32]. However, an
ongoing drought has reduced the rains since 2019 [33]. Urbanization has dramatically increased over
recent decades in Taita-Taveta County, with over 95% of original forest cover cleared and a 700%
increase in development landcover [34,35]. Bat diversity is high here, with over 30 species recorded in
the county [36] and humans often have bats living in their buildings (electronic supplementary material,
figure S2). The region has also been identified as a hotspot for zoonotic disease emergence and
numerous bat species in the area are known to host a diversity of pathogens [27,28,37].

2.2. Data collection
We identified buildings used by bats via word-of-mouth conversations with community members
throughout the study area. Roost coordinates and elevation were recorded using a handheld GPS unit
(model: GPSMAP 64sx; Garmin International Ltd, Olathe, KS, USA), and upon permission from
homeowners and care takers, we entered buildings to confirm active bat presence and species identity.
Bats were captured from buildings using hand nets at roosts or mist nets placed at exit points and
identified to species level based on Patterson & Webala [38]. We identified slit-faced bats (Family:
Nycteridae) to genus only because the taxonomy of this genus is complicated and requires revision,
reducing our ability to correctly identify to species [18,39].

For every bat-occupied building,we selected at least two of the closest accessible buildings that had both
no sustained (greater than 1 night/day) bat usewithin the homeowner’s memory and no physical evidence
of bat use (e.g. guano deposits, urine staining, bat-associated smells), as controls for microclimate and
structural attribute comparison. We collected the following information from each roost type (used and
unused by bats): (1) maximum daily light (lux), maximum daily temperature (°C) and maximum daily
relative humidity (rH) (measured with an Enviro-Meter, ThermoFisher Scientific, Watham, MA); (2)
building height from base to peak of the structure (m); (3) building aspect (cardinal direction of bat entry
into building); (4) roof material; (5) wall material (categorized as cement, mud or other (metal, stone,
unknown brick type)); (6) presence or absence of compartment above ceiling of the main living area
(i.e. attic); and (7) presence/absence of permanent human occupants in the building (electronic
supplementary material, S2). Microclimate data were collected between 11.00 and 17.00 based on
preliminary data collection showing the highest daily temperatures during this period (electronic
supplementary material, table S1). Microclimate characteristics and building aspect were measured at the
roost in bat-occupied buildings; in control buildings, these characteristics were measured at equivalent
roost positions (i.e. where bats were roosting in similar structures) [40].

Building variables were assessed for collinearity using Spearman’s correlation coefficient, although
we detected no correlation among numeric variables (‘corr’ in ‘survival’ R package [41]). Two
variables, roof material and ceiling presence, showed no variation among surveyed buildings (greater
than 80% of surveyed buildings had the same characteristic) and were dropped from analyses
(electronic supplementary material, table S2). Aspect was not included in analyses due to most
buildings having multiple entry points used by bats (electronic supplementary material, table S2).
Instead of using raw relative humidity levels, due to the inherent relationship with temperature [42],
we used humidity and temperature data collected at buildings to calculate water vapour pressure
(WVP; kPa) and used this as a measurement for moisture content at roosts [43,44].

2.3. Statistical analyses
Prior to analysis we tested whether the grouping of sites (i.e. selection of one occupied building and the
two closest non-occupied buildings as controls) had any effect on building selection (‘lme4’ R package)
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Figure 1. We used a pre-conceived conceptual model containing all measured structural and microclimate features to guide
structural equation model (SEM) development for assessing variables important to building roost selection by bats. Pathways
were conceived based on knowledge of bat ecology, the impacts of different structural features on microclimate, and building
construction limitations.
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[45]. Groupings did not have a significant effect on results, and so were not included in model structures
(electronic supplementary material, table S3). We used SEMs to evaluate direct and indirect effects of
building features on bat roost selection (‘lavaan’ R package) [46]. Direct effects are covariates with an
unmediated impact on response variables whereas indirect effects are covariates mediated through
another covariate. Model structure was guided by a pre-conceived conceptual model containing all
measured building features (figure 1). To understand the importance of different factors to bat species,
we further divided our main dataset into two groups: buildings used by co-roosting molossid bats
(Mops condylurus and M. pumilus, formerly Chaerephon pumilus) and those used by the regionally
endemic megadermatid, Cardioderma cor. We used SEMs to evaluate buildings used by molossids;
however, due to fewer data points, we used different methods to analyse building roost selection by
C. cor (described below).

For our all species and molossid datasets, analysed via SEMs, we used diagonally weighted least-
squares (DWLS) estimation, with a Bollen-stine bootstrap resampling procedure to estimate standard
errors (1000 bootstrap samples). This approach is robust to non-continuous response variables [25,47].
Model fit was evaluated using the χ2 statistic, comparative fit index (CFI) and the root mean square error
of approximation (RMSEA) [25]. Both the χ2 statistic and RMSEA values are absolute fit indices which
determine how well the a priori model structure fits the data. A non-significant (p > 0.05) χ2 statistic and
significant RMSEA ( p≤ 0.05) indicate good model fit. CFI is a relative fit index, which assesses the
relative improvement in fit of the a priori model structure compared to a baseline model, with CFI≥ 0.9
indicating acceptable fit. Only models that fitted sufficiently proceeded to further interpretation. The
final SEMs for our main dataset included direct effects on bat roost selection from maximum daily
light (lux), WVP, temperature, the presence or absence of permanent human occupants, and building
height, and indirect effects from wall material moderated through its influence on building height.

As a general guide, an SEM requires at least five rows of data per path coefficient [48], meaning at least
40 buildingswere required per species for our model structure.We identified fewer buildings used byC. cor
(n = 18 used buildings, 36 associated control buildings), which prohibited the use of SEMs. Therefore, for
this species we used generalized linear models (GLMs) with a binomial error structure and logit link
function to assess the role of microclimate and structural attributes in building selection (‘glm’ in R base
package). The GLM structures were guided by the pre-conceived conceptual model, as in SEMs, with a
stepwise regression approach to identify important variables from the main covariates: building height,
human occupancy, lux, temperature, WVP, and wall material. Model fit of GLMs was checked with χ2

goodness-of-fit tests [49]. We identified the best performing model(s) with Akaike information criterion
corrected for small sample size (AICc) scores. Models within 2 AICc units were considered competitive,
and the weighted averages of coefficients were calculated for equally competitive models (R package
‘MuMIn’) [50]. All analyses were conducted in RStudio v. 2022.7.1 + 554.



Table 1. Eight bat species were found roosting in human buildings during surveys throughout communities in Taita-Taveta
County, Kenya, 2021–2022. The number of other species sharing roosts refers to the number of other bat species a focal species
was found roosting with across all shared buildings. All species except Hipposideros caffer were documented sharing buildings
with at least one other bat species.

species
total no. of
building roosts

no. of roosts shared
with other species

no. of other species
sharing roosts

Cardioderma cor 18 4 2

Epomophorus wahlbergi 1 1 1

Hipposideros caffer 1 0 0

Mops condylurus 13 13 1

Mops pumilus 65 21 6

Nycteris sp. 4 1 1

Rhinolophus cf. lobatus 3 3 2

Scotophilus andrewrebori 3 2 1
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3. Results
We identified 85 buildings used by bats and 172 nearby control buildings. Bats inhabited homes with
humans (n = 31), abandoned buildings (n = 15), schools (n = 11), offices (n = 6), storage buildings (n = 5),
staff lodging buildings (n = 5), isolated kitchen buildings (n = 3), medical dispensaries (n = 2), guest
houses (n = 2) and conference buildings (n = 2). We also found bats roosting in one boma (a fortified
livestock enclosure), one church, and one shop. Bats roosted inside buildings, mostly at the junction of
the walls and roof (n = 37), the seam of the roof (n = 30), along roof structural support beams (n = 23), or
under furniture (n = 2). Roost elevation ranged from 536 m a.s.l. to 1439 m a.s.l. (x = 952.42 ± 20.09 m
a.s.l.) and we present the first records of C. cor presence above 940 m a.s.l. (902.72 ± 52.24 m a.s.l.; range:
536–1135 m a.s.l.).

Eight bat species were found roosting inside human structures (table 1). Over 25% of bat-occupied
buildings contained more than one bat species roosting within the building (n = 22; table 1). Mops
pumilus, the most frequently encountered species (n roosts = 65), co-roosted with six different species
including Epomophorus wahlbergi (n = 1); C. cor (n = 2); M. condylurus (n = 13); Nycteris sp. (n = 1),
Rhinolophus cf. lobatus (n = 2); and Scotophilus andrewreborii (n = 2) (table 1). One building contained
three species co-roosting together (C. cor, M. pumilus and R. landeri). Nonvolant young of C. cor were
observed in roosts in October and March–April, whereas young of M. pumilus and M. condylurus were
observed during February–April. Nonvolant young of a slit-faced bat (Nycteris sp.) were observed in
February. Nonvolant young of the other species were not observed.

3.1. Buildings used by any bat species
In our all-species SEM, model fit was validated by all but one metric (χ2= 0.06, CFI = 0.99, RMSEA=0.06, R2 =
0.99). Themodel showed thatheightandWVPhadsignificant, directpositive effectsonbat selectionofbuildings,
with bats selecting taller buildingswith higherWVPcompared to controls (p< 0.01). Thepresence of permanent
human occupants had a significant, direct negative effect, with bats selecting buildings without permanent
human occupants compared to controls (p≤ 0.03; figures 2a and 3; electronic supplementary material, tables
S4 and S5). Wall material had a significant indirect effect mediated through building height (p< 0.01;
figure 2a), with cement-walled buildings being taller (mean= 4.79 ± 0.09 m) than mud (mean = 3.67 ± 0.18 m)
or other material buildings (mean= 4.25 ± 0.45 m), having a positive impact on bat presence.

3.2. Buildings used by molossid bats
We identified 65 buildings used by molossids and surveyed 130 associated control buildings. For our
molossid-only SEM (χ2 = 0.29, CFI = 0.99, RMSEA = 0.04, R2 = 0.98), building height and WVP had
similarly significant direct positive effects on bat use of buildings, whereas presence of permanent
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Figure 3. Comparison of microclimate and structural attributes that contributed to selection of buildings as roosts by any bat
species: (a) building height; (b) human occupancy; (c) building temperature; (d ) building water vapour pressure; (e)
illumination; ( f ) wall material. Asterisk (�) and alveolar clicks (≠) denote statistically significant (i.e. p < 0.05) direct and
indirect effects, respectively, of covariates on bat roost selection identified via structural equation models. Dots and bars inside
violins represent mean and standard deviation of the raw data, respectively.
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Figure 4. Comparison of microclimate and structural attributes that contributed to selection of buildings as roosts by molossid bat
species: (a) building height; (b) human occupancy; (c) building temperature; (d ) building water vapour pressure; (e) illumination;
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royalsocietypublishing.org/journal/rsos
R.Soc.Open

Sci.10:230578
6

human occupants had a significant direct negative effect ( p≤ 0.03; figures 2b and 4; electronic
supplementary material, tables S6 and S7). Wall material had a significant indirect effect, mediated
through building height ( p < 0.01; figure 2b; electronic supplementary material, table S6), with cement-
walled buildings being taller (mean = 4.71 ± 0.18 m) than mud (mean = 3.87 ± 0.31 m) or other material
buildings (mean = 4.25 ± 0.46 m), having a positive impact on bat presence.



Table 2. Rank of generalized linear models used to investigate the impacts of six covariates on roost selection of buildings by
Cardioderma cor. Models were selected for comparison based on Aikake’s information criterion corrected for small sample sizes
(AICc) score and models within 2 ΔAICc units were considered competitive, with the weighted averages (Wi) of coefficients
calculated for equally competitive models. We present the number of coefficients in each model (k) and results from χ-square
goodness-of-fit-tests (χ2).

model AICc ΔAICc Wi k χ2

building height + human occupancy + lux 48.78 0 0.30 4 0.84

human occupancy + lux 49.72 0.94 0.19 3 0.92

building height + human occupancy + lux + temperature +

water vapour pressure + wall material

50.34 1.55 0.14 7 0.83

building height + lux + human occupancy + water vapour

pressure

50.47 1.68 0.13 5 0.84

building height + human occupancy + wall material 50.57 1.78 0.12 4 0.84

building height + human occupancy + lux + temperature 50.78 2.00 0.11 5 0.77
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Figure 5. Comparison of microclimate and structural attributes that contributed to selection of buildings as roosts by Cardioderma
cor: (a) building height; (b) human occupancy; (c) building temperature; (d ) building water vapour pressure; (e) illumination; ( f )
wall material. Asterisk (�) denotes statistically significant differences (i.e. p < 0.05) based on generalized linear models used to
analyse data. Dots and bars inside violins represent mean and standard deviation of the raw data, respectively.
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3.3. Buildings used by Cardioderma cor
We identified 18 buildings used by Cardioderma cor and surveyed 36 associated control buildings. We derived
six equally ranked GLMs explaining building roost selection by C. cor (table 2). Averaged models showed
C. cor selected buildings that were less likely to have permanent human occupants (β =−2.80; p< 0.01)
when compared to control buildings (figure 5; electronic supplementary material, table S8).
4. Discussion
We use bats, highly pervasive taxa in anthropogenic environments, as a model system to understand
features of urban settings that attract and repel wildlife species. Our study demonstrates that building
roosts of synanthropic bats in rural East Africa are associated with specific microclimate and structural
attributes. Bats in general selected buildings that were taller, had higher WVP, and had lower presence
of permanent human occupants compared to control buildings. Building roost selection was
moderated by the effect of wall material on building height, with cement-walled buildings being taller
than buildings made with other materials. However, our models had trouble incorporating data from
the two disparate taxa into one model. When separated by taxonomic group, molossids selected
building roosts based on reduced presence of permanent human occupants, building height, WVP,
and wall material moderated by building height. By contrast, although our Cardioderma cor sample
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size was smaller than ideal, we found that this species focused on the absence of permanent human

occupants in their selection criteria. These results provide valuable general information on
synanthropic bat roost selection and help characterize contact between humans and bats in an
urbanizing region of the Global South.

Building features that increase the likelihood of bat use can have major ramifications for human–
wildlife contact and conflict. We identified direct and indirect pathways influencing bat building use,
with models showing direct positive effects of building height and WVP and direct negative effects of
presence of human occupants on bat use of buildings. Height is important for wildlife to avoid
ground-based predators and also bat species that must take off from tall roosts to become airborne
[51,52]. Avoidance of buildings with permanent human occupants is a likely result of reduced
disturbance and predation risk since many homeowners in this region have reported killing bats in
their residence [53]. We also identified a significant indirect effect of wall material on bat use of
buildings, mediated through the significant effect of building height. Although this has not been cited
previously as an important characteristic in building roost selection by bats, wall material is a crucial
factor in building height as certain materials, like cement, provide structural integrity to increase
building height. While previous studies may have missed the effects of wall material due to
counteracting impacts, SEMs have the power to identify these intricacies and will be important for
future research on similar questions [25].

Our large dataset enabled us to compare building preferences between taxa, whereas previous
investigations of building roost selection by bats have only focused on a single species or have
grouped multiple species together [19,40]. Our results highlight the limitation of combining disparate
bat species in analyses, showing that not all synanthropic species are homogeneous in their roost
preferences and that they may present different risks for contact with humans. For example, within
our dataset most buildings selected by C. cor had no permanent human occupants. In comparison,
almost half of buildings selected by molossids had permanent human occupants, which could put
them at higher risk for contact with humans. Moreover, given that bats are present on all human-
inhabited continents and have been recorded roosting in buildings throughout the world [16], this
principle is likely to be relevant in other settings.

We observed numerous cases of roost sharing by multiple bat species. While roost use by multiple
species is not uncommon in bats, large multi-species aggregations may play an important role in viral
evolution and diversity within bat populations [54–58]. Currently, bat species documented to roost in
multi-species assemblages have largely been described to co-roost with 2–3 other bat species [59,60].
We found that M. pumilus roosted with at least six other bat species in anthropogenic roosts,
indicating great potential for multi-species interactions. In this region, M. pumilus hosts a high
diversity of viruses, including coronaviruses, flaviviruses, adenoviruses and potentially filoviruses
[26,28,58,61]. Several of these viral families are highly capable of recombination, meaning that these
diverse roosts may facilitate viral evolution in anthropogenic environments [62]. Given that M.
pumilus regularly roosts with other species in buildings, including bat genera like Rhinolophus, which
are also known to host high-risk pathogens, these areas may be important hotspots within the
wildlife–human urban interface for human exposure to viruses with zoonotic potential [63].

Understanding features of the urban–wildland interface that attract and repel wildlife is important for
mitigating human–wildlife conflict that can lead to wildlife mortality. Mass mortality events of bats are
generally human-caused, and most species are unable to recover quickly due to low reproductive output
[64]. Risk of spillback of zoonotic pathogens from humans to synanthropic bat populations may also
exist, with additional negative ramifications for bat health [65]. Bats provide critical ecosystem
services, ranging from insect suppression that benefits local agriculture and forestry, to seed dispersal
and pollination of many tropical plants, and reducing their mortality directly benefits humans on
many levels [15,16]. Thus, our results can help inform the development of methods to reduce bat use
of buildings. For example, our study indicates that construction of buildings under four metres in
height and with venting to decrease water vapour pressure are likely to reduce bat use. Further, while
structural changes are not possible for many existing buildings, emphasis can be placed on sealing
entry points so that bats are unable to enter [66]; such actions are especially important for existing tall
cement structures.

Ultimately, our results help characterize environmental conditions that can lead to human–bat
contact. By identifying microclimate and structural attributes important to building roost selection, we
can better understand characteristics that may increase the chance of human–bat interactions, with
implications for human–wildlife conflict, pathogen transmission within synanthropic wildlife
communities, and potential exposure risk for humans. Efforts to mitigate these interactions are useful
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in reducing human exposure to pathogens and anthropogenic mortality of bats. Our results show that it

can be possible to identify hotspots of human–wildlife interactions in the human–wildland interface,
which can help target where measures mitigating contact in urbanizing areas should be applied,
especially in the Global South where resources are patchily distributed and may be limited.
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