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Camera traps have become a ubiquitous tool in ecology and

conservation. They are routinely deployed in wildlife survey

and monitoring work, and are being advocated as a tool for

planetary-scale biodiversity monitoring. The camera trap’s

widespread adoption is predicated on the assumption of its

effectiveness, but the evidence base for this is lacking. Using

104 past studies, we recorded the qualitative overall

recommendations made by study authors (for or against

camera traps, or ambiguous), together with quantitative data

on the effectiveness of camera traps (e.g. number of species

detected or detection probabilities) relative to 22 other methods.

Most studies recommended the use of camera traps overall and

they were 39% more effective based on the quantitative data.

They were significantly more effective compared with live traps

(88%) and were otherwise comparable in effectiveness to other

methods. Camera traps were significantly more effective than

other methods at detecting a large number of species (31%

more) and for generating detections of species (91% more). This

makes camera traps particularly suitable for broad-spectrum

biodiversity surveys. Film camera traps were found to be far

less effective than digital models, which has led to an increase

in camera trap effectiveness over time. There was also evidence

from the authors that the use of attractants with camera traps

reduced their effectiveness (counter to their intended effect),

while the quantitative data indicated that camera traps were

more effective in closed than open habitats. Camera traps are a

highly effective wildlife survey tool and their performance will

only improve with future technological advances. The images

they produce also have a range of other benefits, for example as

digital voucher specimens and as visual aids for outreach. The

evidence-base supports the increasing use of camera traps and

underlines their suitability for meeting the challenges of global-

scale biodiversity monitoring.
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1. Introduction

Camera traps have come a long way from their beginnings in wildlife photography more than 100 years

ago and are now a ubiquitous tool in ecology and conservation, with several hundred scientific studies

now published each year using them [1]. The last decade, in particular, has seen the camera trap move

from being a niche tool primarily for monitoring big cats (e.g. [2–4]), to taking centre stage in broad-

spectrum surveys of whole communities of mammals (e.g. [5–7]). The camera trap has now been

adopted by a number of large-scale biodiversity monitoring programmes (e.g. [8,9]) and underpins

the Wildlife Picture Index [10], which informs progress towards the Convention on Biological

Diversity’s Aichi Target 12 (https://www.bipindicators.net/indicators/wildlife-picture-index).

The camera trap’s widespread adoption is predicated on an assumption of its effectiveness. Certainly,

a number of methodological case studies have found them to compare favourably with other methods for

surveying species richness [11–13], species distributions [14–16], relative abundance [17–19] and animal

density [20–22]. The key strength of the modern camera trap is its ability to remain in the field for

protracted periods of times (on the order of months at a time, if needed), continuously registering

detections day and night, with relatively little input from human operators required. This means that

even the rarest events, such as nest predation or the passage of an apex predator through an area, can

be quantified and studied. Camera traps also facilitate this without significant disturbance to study

animals, except for the emission of sound and light [23].

However, a comprehensive assessment of the effectiveness of camera traps compared with alternative

methods has never been done. For example, a number of studies have found that camera traps can

sometimes be outperformed by other survey methods in certain contexts (e.g. [24–26]). Camera traps

are certainly no panacea for surveying wildlife and suffer from a number of limitations in their

current form [27], most importantly their relatively high initial cost (typically $200–500 per unit) and

the relatively small area that they monitor (notional detection zones of camera traps are typically less

than 2 � 1024 km2). A critical appraisal of camera traps, as has already been done for other

technologies (e.g. GPS telemetry: [28]), is now long overdue.

We here draw upon the substantial body of evidence that has accumulated on the effectiveness of

camera traps to ask: (i) which sampling methods do camera traps compare most favourably with, and

(ii) can we identify the specific study contexts in which camera traps are most effective relative to

other methods? In particular, we expected camera trap effectiveness to depend strongly on study

objectives, but we also tested specific hypotheses related to the equipment and protocol used, the

species under study, and the habitat and location of the study. Ours is the first global assessment of

camera trap effectiveness to date, and offers broad insights into when and where this technology can

be most effectively deployed.
2. Material and methods
2.1. Literature search
We searched the scientific literature for studies which have compared camera traps with other ecological

survey methods, focusing on peer-reviewed journal articles. To do this, on 29 January 2018, we searched

the Core Collection of the Web of Science (http://webofknowledge.com) with the query ‘camera trap*’

OR ‘camera-trap*’ OR ‘game camera*’ OR ‘trail camera*’ OR ‘scouting camera*’ OR (‘remote camera*’

AND ‘wildlife’) OR (‘automatic camera*’ AND ‘wildlife’) OR (‘automatic photograph*’ AND

‘wildlife’) for the period 1969–2017. This generated a list of titles and abstracts (n ¼ 1981) which we

scanned for suitable studies.

We defined suitable studies as those which presented quantitative data comparing camera traps to

one or more other survey methods and which drew explicit conclusions about their relative

effectiveness. This included purely methodological studies, as well as ecological studies which also

offered explicit comparisons of multiple survey methods as a secondary component of the paper. We

only included studies using triggered camera traps, as opposed to time-lapse cameras. Where we were

not sure if a study was suitable based on the title and abstract, we downloaded the full text to check

the main body of text. We also followed the literature trail; if studies we read in turn cited other

studies of potential interest, we assessed their suitability for inclusion as well.

This process yielded 100 peer-reviewed studies, as well as four unpublished technical reports that

were cited by other studies, from which we attempted to extract data.

https://www.bipindicators.net/indicators/wildlife-picture-index
https://www.bipindicators.net/indicators/wildlife-picture-index
http://webofknowledge.com
http://webofknowledge.com
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Figure 1. Locations of primary studies used in this study. The base map displays a measure of overall camera-trapping publishing
output (the number of camera trap studies per country published between 2008 and 2014, from [47]).
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2.2. Data extraction
For each of the 104 studies (figure 1) we identified from the literature search, we attempted to extract both

qualitative and quantitative data on the effectiveness of camera traps relative to other survey methods.

First, we made an overall qualitative assessment of whether the authors of the study had concluded

that camera traps were the superior method for achieving the aims of the study. Author conclusions

have previously been used to distil the findings of complex studies involving many variables

(e.g. [29]). Although this is a coarse measure of camera trap effectiveness, subject to the attitudes and

value systems of the authors of each study, we hypothesized that it would capture information not

present in the quantitative data presented in each paper, in particular better capturing the authors’

practical experiences of implementing each method.

To qualitatively assess author recommendations, we read each paper, focusing on concluding

remarks in the Abstract and Discussion sections. We were able to categorize the author conclusions in

most studies (61%) as either ‘In support of camera traps’ or ‘In support of another method’ on this

basis. If camera traps were equal in performance to another survey method, then we scored the study

as ‘Ambiguous’ (39% of studies). This category was also used if the authors presented heavily

caveated conclusions (typically, concluding that one or other survey method was best in specific

circumstances, such as particular weather conditions, or for specific species). Given the subjectivity

inherent to this scoring, one of us (O.R.W.) did all the scoring in a consistent manner.

In addition to scoring the qualitative author conclusions, we also extracted quantitative data on the

effectiveness of camera traps relative to other survey methods, which we fed into a meta-analysis.

Suitable quantitative data included comparisons of the following metrics: (i) the number of species

detected; (ii) detection rates (per sampling occasion, i.e. per trap night or as defined in the study); (iii)

latencies to detection (the sampling effort required to register the first detection); (iv) detection

probabilities (species or individual detection probabilities, estimated from occupancy or capture–

recapture models, respectively); (v) the number of individuals detected (only possible in cases where

individuals could be identified); (vi) the accuracy of state variable estimates (measured in percentage bias

from a benchmark, such as a true abundance count); (vii) the precision of state variable estimates

(measured using the coefficient of variation); (viii) implementation efforts (measured in person hours of

labour), and (ix) costs. For costs, we took account of as many costs as the authors provided information

for, typically including equipment, labour and associated field costs, but sometimes also including

training, data entry and equipment repair costs. Costs were standardized in different ways across

studies, in most cases per survey (e.g. the cost of obtaining a single-session abundance estimate) but in

some cases per unit area sampled or per animal detection. If a study presented costs separately for

successive sessions of sampling (e.g. costs for years 1–5), then we took the costs for the first session.

Survey methods being compared with camera traps were grouped into broad classes (see electronic

supplementary material, table S1.1 in appendix S1 for definitions). Each study used a different

experimental design to compare methods, depending on the specific objectives and methods involved,
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but most studies attempted to spatially and temporally match the deployment of each survey method

(e.g. co-deploying methods at the same sampling points). Where this was obviously not the case, we

limited comparisons to metrics that we considered would still be valid. For example, if the temporal

extents differed, we only considered metrics that are invariant to sampling effort (detection rate,

latency to detection, detection probabilities and percentage bias).

We also extracted the sample sizes and variances associated with each data point, where these were

presented or could be calculated from available information. However, this was only possible in a

minority of cases (39% of data points). Where data were presented in figures, rather than in the main

text or tables, we extracted the values using the open source tool ‘Engauge Digitizer’ (http://

markummitchell.github.io/engauge-digitizer).

2.3. Quantifying relative camera trap effectiveness
For each pair of data points—one for camera-trapping and one for the other survey method—we

calculated an effect size to capture the magnitude of the difference in performance between methods.

We used the log response ratio [30,31] as our measure of effect size, which is appropriate when

combining information across values measured on very different scales. It also has the practical

benefit in our case of not requiring sample sizes or variances, which were unavailable in most cases.

We calculated the log response ratio as: lnðMetriccamera trap=Metricother sampling methodÞ, using the values we

extracted in one of the nine categories of metric outlined above. For metrics in which lower values indicate

better performance (latency to detection, percentage bias, coefficient of variation, implementation effort and

cost), we instead took Metriccamera trap as the denominator. Larger effect size values in this paper therefore

always indicate that camera traps outperformed the survey method they were compared with. Log response

ratios cannot be calculated when either the numerator or denominator is zero. This issue was mostly

confined to the comparison of detection rates, and in practice means that the comparison is of detection

rates when both methods detected the given species at least once. In total, we obtained 662 quantitative

comparisons across 97 of the 104 studies in our sample.

To obtain the median effect sizes for each type of metric and for each survey method comparison,

including estimates of uncertainty, we used a stratified bootstrapping approach (e.g. [32]). This

approach deals effectively with the lack of independence between multiple comparisons provided by

a single study, because in each bootstrap, only a single comparison per study (selected at random) is

chosen. Bootstrap sampling with replacement (n ¼ 10 000) was done separately for each metric and

each method with more than 15 comparisons available in the data. We were also a priori interested in

effect sizes according to three other factors—the type of camera trap used ( film or digital), whether

baits or lures were used or not with the camera traps (attractant or no attractant), and the openness of

the habitat (closed forested habitats or open shrubland, grassland and desert habitats)—and calculated

bootstrapped median effect sizes in the same way as for the metrics and survey methods. We

calculated 95% confidence intervals for the bootstrapped effect sizes from the quantiles of the

distribution of bootstraps and judged effect sizes to be significant if the intervals did not overlap zero.

For comparing across effect size estimates, we used post hoc pairwise Wald tests [33] and judged

significant differences using an error rate (a) of 0.05.

We could not weight the effect size for each comparison by its precision because the required data for

this were not presented in most studies. This means that the precision of our overall effect size estimates

may be reduced, but does not necessarily mean that the estimates are biased [34].

2.4. Hypothesis testing
We modelled the author recommendations and the effect sizes separately but tested a similar set of

hypotheses. In particular, we hypothesized that studies which used digital instead of film camera

traps, used an attractant with the camera traps and were done in closed instead of open habitats

would be more effective. Habitat openness was thought to be important on the basis of anecdotal

information that the most common type of camera trap sensor—the passive infrared (PIR) sensor—

suffers from misfires and missed detections in open habitat, due to denser ground vegetation and

higher temperatures, respectively [1]. We also hypothesized that studies which included small-sized

animals (i.e. animals with a weaker infrared signal) would be less effective and modelled this using

the minimum of the body weights of the focal species in a given study. The absolute latitude of the

study area was also included to test if studies done in the tropics were less effective than those at

higher latitudes, due to higher temperatures and possibly greater rates of equipment failure [1].

http://markummitchell.github.io/engauge-digitizer
http://markummitchell.github.io/engauge-digitizer
http://markummitchell.github.io/engauge-digitizer
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Figure 2. Author recommendations over time and the proportion of studies using digital camera traps over the same period. The
proportion of studies using digital camera traps (dashed line) was predicted using a generalized linear model with a binomial
response. This was based on the year fieldwork began, rather than the publication date, owing to the substantial lag between
the two in some studies.
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For the models of effect sizes, we also included covariates for the metric used and the comparison

survey method used, but we could not include these covariates in the models of the author

recommendations, because each study typically involved multiple metrics and/or methods. We tested

for collinearity among the covariates using variance inflation factors, which provided no cause for

concern (all factors less than 3; [35]).

We treated author recommendations as an ordinal response and used proportional odd models

implemented in the ordinal package in R [36]. We fit the model Recommendation � Camera type þ Use of
attractants þ Habitat openness þ Latitude þMinimum weight, as well as all nested versions of this model

(for a total of 32 models), using the MuMIn package in R [37]. The continuous covariates, Latitude and

Minimum weight, were centred at their mean and scaled by twice their standard deviation [38]. We took

the natural logarithm of the minimum body weights (before standardization), owing to the strong

positive skew in these data. We did not consider interactions among variables, owing to a lack of data.

Important variables were those that appeared in the set of ‘best’ models based on information-

theoretic criteria (i.e. models for which DAICc , 2 [39]). The relative importance of each variable was

assessed using the standardized parameter estimates [40] and by summing the Akaike weights of the

models in which each variable appeared [39,41]. We calculated model-averaged parameter estimates

(using ‘natural averaging’, to avoid shrinkage of estimates towards zero) and 95% confidence

intervals, which incorporate model uncertainty as well as parameter uncertainty ([39,42], but see [43,44]).

We modelled effect sizes, i.e. log response ratios, using linear mixed-effects models in the lme4
package in R [45]. The saturated model in this case was ln(Response ratio) � Camera type þ Use of
attractants þ Habitat openness þ Latitude þMinimum weight þMetric þ Comparison survey method, as well

as a random intercept for Study to account for the lack of independence among multiple measures

made from the same study. As for the author recommendations, we fit all nested versions of this

model (for a total of 128 models), assessed the relative importance of variables using the standardized

parameter estimates and sums of Akaike weights, and calculated model-averaged parameter estimates

and 95% confidence intervals.

We made all calculations and fit the models in R v. 3.4.1. [46].
3. Results
Studies took place in 32 countries, on all continents except Antarctica, with most studies occurring in the

USA (n ¼ 33), Brazil (n ¼ 9) and Australia (n ¼ 8). This reflects broader geographical trends in camera-

trapping publishing output ([47]; figure 1). Studies spanned the period 1990–2017, with fieldwork

conducted from the late 1980s to 2016. Across this period, film camera traps were gradually replaced

by digital camera traps, with the latter becoming more commonly used from 2007 onwards (figure 2).

Camera-trapping was compared with a wide range of other survey methods (n ¼ 22 methods),



Table 1. The set of ‘best’ models for the author recommendations and effect sizes (log response ratios), as identified using
information-theoretic criteria (DAICc , 2). Models of effect sizes all included a random effects term for Study.

model parameters
log-
likelihood DAICc

Akaike
weight

author recommendations—proportional odds model

Camera type þ Use of attractants 4 298.42 0 0.30

Camera type þ Use of attractants þ Habitat

openness

5 297.93 1.23 0.16

Camera type þ Use of attractants þ Latitude 5 298.31 1.99 0.11

effect sizes—linear mixed-effects model

Camera type þ Habitat openness

þ Metric þ Comparison survey method

17 21022.24 0 0.27

Camera type þ Metric þ Comparison survey method 16 21023.95 1.29 0.14

film camera, attractants

digital camera, attractants

digital camera, no attractants

percentage
100 50 0 50 100

author recommendation
another survey method
ambiguous
camera traps

film camera, no attractants

Figure 3. Author recommendations according to the type of camera used (film or digital) and whether attractants (i.e. baits or
lures) were used or not. The percentage of studies has been calculated separately within each factor level combination.
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including methods as disparate as acoustic recording, eDNA, radio-tracking and local ecological

knowledge (a full list of the methods is provided in electronic supplementary material, appendix S2).
3.1. Author recommendations
Most studies recommended the use of camera traps overall (n ¼ 46), though many studies also found

that other survey methods were equal in performance or presented caveated support for camera traps

(i.e. ‘Ambiguous’; n ¼ 41). A minority of studies supported the use of other survey methods overall (n ¼
17). Three models were identified as the ‘best’ at explaining the variation in author recommendations

(table 1). These contained the variables Camera type (importance ¼ 0.99; model-averaged estimate of the

difference between factor levels, with digital as the reference level ¼ 21.42; 95% CI: 22.24 to 20.61), Use
of attractants (importance¼ 0.84; estimate ¼ 20.94; 95% CI: 21.74 to 20.14), Habitat openness
(importance ¼ 0.34; estimate¼ 20.40; 95% CI: 21.21 to 0.40) and Latitude (importance ¼ 0.27; estimate¼

0.20; 95% CI of the slope: 20.67 to 1.07). Digital camera traps were 4.1 times more likely to result in an

affirmative author recommendation than film camera traps, in support of our hypothesis (figure 3).

Studies which did not use attractants during camera-trapping were 2.5 times more likely to result in an

affirmative author recommendation than those that did use attractants (figure 3), which is counter to our

hypothesis that attractants would make camera traps more effective. This effect appears to have been

driven, at least in part, by a cluster of studies on North American forest carnivores (e.g. [24,25,48]), which

routinely baited their camera traps and found them to be less effective than other survey methods.
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Figure 4. Bootstrapped effect sizes for each metric and survey method, with the distribution of bootstrap estimates shown in each
case with a violin plot. Asterisks after the labels indicate cases in which camera traps were significantly more effective than the
methods they were compared with. Points and error bars indicate medians and standard errors. Sample sizes are the number of
effect sizes extracted from the primary literature, with non-independence among effect sizes from the same study accounted for with
stratification during each bootstrap. The red vertical dashed line at zero indicates no difference in effectiveness.
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3.2. Relative camera trap effectiveness
The bootstrapped effect size over the studies in the sample was 0.33, which corresponds to a 39% (95%

CI: 22% to 100%) higher effectiveness of camera traps relative to the methods they were compared with.

Digital camera traps, which have now completely superseded film-based models (figure 2), were 65%

(95% CI: 2–169%) more effective than other methods. The effect sizes per metric and method showed

that in no case were camera traps significantly inferior to other survey methods (figure 4; electronic

supplementary material, tables S2.1 and S2.2 in appendix S2). On the contrary, camera traps were

significantly more effective than other methods at detecting a higher number of species (31% higher

effectiveness for species richness; 95% CI: 11–60%) and at quickly generating a large number of

detections for individual species (91% higher effectiveness for detection rate; 95% CI: 29–192%).

Similarly, camera traps were significantly more effective than live traps (88%; 95% CI: 1–239%).

In contrast with the author recommendations, the bootstrapped effect sizes calculated from the

quantitative data in the same studies did not show a difference in camera trap effectiveness according

to whether attractants were used (z ¼ 0.05; p ¼ 0.96; figure 5). Effect sizes were larger for studies using

digital rather than film camera traps, and for studies in closed rather than open habitats, but the

differences were not significant, given the large sampling variances (Camera type: z ¼ 1.45; p ¼ 0.15;

Habitat openness: z ¼ 0.88; p ¼ 0.38; figure 5).

Mixed-effects modelling identified two models that were ‘best’ at explaining the variation in effect sizes

(table 1). These models contained the variables Metric (importance ¼ 0.930; see electronic supplementary

material, table S2.3 in appendix S2 for estimates and 95% CIs), Camera type (importance ¼ 0.928; model-

averaged estimate of the difference between factor levels ¼ 20.55; 95% CI: 20.91 to 20.18), Comparison
survey method (importance ¼ 0.89; see electronic supplementary material, table S2.4 in appendix S2 for

estimates and 95% CIs) and Habitat openness (importance ¼ 0.66; estimate ¼ 20.41; 95% CI: 20.77 to

20.05). There was no support for the importance of Use of attractants, Latitude or Minimum weight. The

lack of support for any effect of attractants again contrasts with the author recommendations.
4. Discussion
We found that studies comparing camera traps to other survey methods, in general, support the notion that

camera traps are a highly effective wildlife survey tool. This was confirmed by the recommendations made

by study authors as well as the quantitative data underlying the studies. The quantitative data showed that

camera traps were effective across a range of different metrics, but were especially effective at detecting a

wide range of species and at recording a large number of detections of focal species. This makes camera



Camera type

Use of attractants

Habitat openness

relative camera trap effectiveness (log response ratio)

0 1–1

closed (n = 445)*

open (n = 217)

no attractant (n = 270)

attractant (n = 392)

digital (n = 449)*

film (n = 213)

Figure 5. Bootstrapped effect size according to camera trap type, whether attractants were used and habitat openness. Asterisks
after the labels indicate cases in which camera traps were significantly more effective than the methods they were compared with.
Points and error bars indicate medians and standard errors. Sample sizes are the number of effect sizes extracted from the primary
literature, with non-independence among effect sizes from the same study accounted for with stratification during each bootstrap.
The red vertical dashed line at zero indicates no difference in effectiveness.
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traps ideally suited for broad-spectrum biodiversity surveys of the kind often required for research or

management purposes. Camera traps performed significantly better than live traps and were otherwise

comparable in performance to other survey methods. Confirming a widely held belief, the transition to

digital camera traps over the last 15 years has substantially increased the effectiveness of the method.

There was also evidence that camera trap studies done in open habitats are less effective. Other

characteristics of studies—the use of baits and lures, the body size of focal taxa and latitude—were not

found to have a strong overall bearing on the effectiveness of camera traps, although this does not

discount the fact they are likely to be important considerations in specific cases.

4.1. How do camera traps compare with other survey methods?
There was substantial variation in camera trap effectiveness depending on the method they were compared

with, as evidenced by the bootstrapped effect sizes (figure 4) and the mixed-effects model results (table 1).

Camera traps were most effective in comparison to live traps and hair traps, and least effective in

comparison to detector dogs, although the difference was only significant in the case of live-trapping

(see electronic supplementary material, appendix S3 for discussion of hair traps and detector dogs). Live

traps performed poorly compared with camera traps in part because they are typically ‘single-catch’

traps, i.e. they require manual resetting after each capture, while camera traps are ‘multi-catch’ traps (e.g.

[15,49,50]). Live traps also require an animal to be attracted by a bait or lure, interact with a foreign

object in the environment (i.e. the trap) and be physically caught successfully. This sequence of events,

which may fail for a wide range of reasons, contrasts with camera-trapping, which only requires an

animal to enter the camera detection zone and trigger the sensor. As a result, live-trapping methods are

typically optimized for a relatively narrow set of species (e.g. [50,51]). A major benefit of live-trapping,

however, is that animals are physically caught, meaning that samples can be taken from animals, they

can be marked for the purposes of studying population dynamics and they can be GPS- or radio-tagged.

4.2. Camera trap effectiveness depends strongly on study objectives
The most important predictor identified in the mixed-effects models was Metric (table 1), indicating that

camera trap effectiveness varied widely depending on the type of measurement made (figure 4). Camera



royalsocietypublishing.org/journa
9
traps were especially effective at detecting a large number of species, owing to the relatively low

specificity of most camera trap sensors. The PIR sensors typical of commercial camera traps are

known to be effective for any endothermic species larger than 100 g [1], and it is possible to detect

even smaller species (including ectothermic species) at distances less than 1 m using specialized

protocols [52–54]. Camera traps were also effective at making a large number of detections of focal

species, owing to their capacity to record multiple detections without requiring maintenance. While

this was less true of film camera traps, which were limited to a single roll of film, modern digital

camera traps are now capable of recording more than 10 000 images on a single set of batteries.

Camera traps were less effective than other methods at detecting species quickly (for example, in a

rapid assessment survey) and cheaply, though in neither case was this difference significant (figure 4;

see electronic supplementary material, appendix S3 for additional discussion).
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4.3. Differences in camera trap effectiveness according to equipment and habitat
The type of camera trap used—film or digital—had the most important bearing on camera trap

effectiveness (table 1), with film camera traps being much less effective (figures 3 and 5). In fact, after

removing film camera traps from the sample, camera traps were overall significantly more effective

than other methods. As well as the limited number of images that film camera traps could store, they

were often paired with active infrared sensors, which have much smaller detection zones (they require

animals to cross a beam of infrared) compared with PIR sensors, further limiting their effectiveness.

Improvements in camera trap performance must be accounted for when making inferences about

wildlife population changes over long time-frames from camera trap data (e.g. by accounting for

detection probabilities). In addition, it suggests that next-generation camera trap technology (e.g.

replacing PIR sensors with pixel-based change detection algorithms) might lead to similarly dramatic

improvements in camera trap effectiveness [27].

Mixed-effects modelling of the effect sizes identified habitat openness as an important variable

(table 1), with camera traps being more effective in closed habitats. Authors were not, however, more

likely to recommend using camera traps in closed habitats. Most camera trap studies are done in

closed habitats [27,55], perhaps because of their greater effectiveness in this habitat. We hypothesized

that this is because PIR sensors are more effective in closed habitats, but it might also be because

researchers have a more limited set of survey methods available to them in dense forest habitat (for

example, aerial surveys of terrestrial animals are not possible) or because certain survey methods are

less effective (e.g. line transects). Either way, it underlines the importance of applying best-practice

methods to help address the potentially large number of problems that open environments can pose [1].
4.4. Limitations: experimental design and representativeness
During this review, we identified a number of shortcomings across studies. In particular, some studies

suffered from poor spatial or temporal matching across the sampling methods being compared. We

limited the impacts of this by comparing metrics that would be sensitive to this only across similar

spatial or temporal extents. However, we did include studies which sampled over the same overlapping

area, albeit not at exactly the same spatial point locations (this was necessary to compare sampling

methods which are not point-based, such as line transects and plot surveys), and we also included

studies which used the methods at different times (for example, in different months or different years).

We anticipate that this will introduce additional noise into our data, but not undermine our main results.

We also included studies that did not standardize financial costs across the methods being

compared (and instead we measured any cost differences as an effect size). This was because financial

costs are one of several possible resources that might be a limiting factor for any given research team

carrying out a camera trap survey, for example the time taken to complete a survey in the case of a

rapid survey, or field labour in the case of a team which has limited personnel. Although many

studies explicitly acknowledged the resource that they had matched across sampling methods (e.g.

[12,49]), others did not, and in these cases the resources allocated to each sampling method were

probably determined by accepted ‘best-practice’ (e.g. [19,22]), or by logistical factors external to the

study. We only made comparisons across methods where it was sensible to do so, for example using

a metric that was insensitive to resources (e.g. detection rate). However, it remains the case that our

overall results are reflective of the resources allocated to each sampling method across the studies in

our sample.
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The set of studies in our sample reflects broader biases in where camera-trapping is done and what it

is used for [27,47,55]. Therefore, studies from the USA, and on mammalian carnivores, are more common

in our dataset than other types of study. If we are to make more general conclusions about the

effectiveness of camera-trapping, irrespective of current geographical and taxonomic biases, then we

would ideally have access to a much more balanced dataset. This will only be possible if steps are

taken to address the broader geographical biases in conservation research [56].

4.5. An evidence-base for more effective wildlife surveys
More than a decade ago, Rowcliffe & Carbone [57] asked whether camera traps might have a bright

future in ecological monitoring. We have established the evidence-base to show that they do. Across a

range of metrics, camera traps are either comparable to or outperform existing alternative methods,

and their performance is only likely to improve with future advances in camera trap technology

(outlined in [27]). In addition, we have not considered here the considerable value that camera trap

images and videos have as digital museum voucher specimens, and as powerful visual aids for

outreach, science communication, lobbying and community engagement. The raw data recorded by

other methods are typically much less rich in information (with the exception of DNA sequences) and

usually do not provide information on group size, behaviour or other natural history details.

Camera traps have recently been advocated as a key component of a proposed global biodiversity

monitoring network [58]. Camera traps are prime candidates because they allow for highly

standardized data collection, they minimally disturb wildlife, and they generate data that can be up-

scaled to regional or global scales while accounting for imperfect observation. Adding to this, we

have here shown that they are also highly effective relative to other methods. We anticipate that the

coming decade will be even brighter for camera-trapping than the last.

Data accessibility. All of the raw data used in this publication, including the author recommendations and calculated effect

sizes, are available online in the Zenodo repository [59].

Authors’ contributions. O.R.W. conceived and designed the study, analysed the data and led the manuscript writing. Both

authors collected the data, edited the manuscript and gave final approval for publication.

Competing interests. We declare that we have no competing interests.

Funding. Primary funding for this study was provided by WWF-UK. O.R.W. was also supported by an AXA Research

Fellowship during this work.

Acknowledgements. We thank all of the authors of the primary research we drew upon. We have included in the reference

list those studies not cited in the main text [60–140]. We also thank Joanna Burgar and an anonymous reviewer for

their constructive comments on the manuscript.
References

1. Wearn OR, Glover-Kapfer P. 2017 Camera-

trapping for conservation: a guide to best-
practices. WWF Conservation Technology Series
1(1). Woking, UK: WWF-UK, 180 p.

2. Karanth KU, Nichols JD. 1998 Estimation of tiger
densities in India using photographic captures
and recaptures. Ecology 79, 2852 – 2862.
(doi:10.1890/0012-9658(1998)079[2852:EOTDII]
2.0.CO;2)

3. Silver SC, Ostro LET, Marsh LK, Maffei L, Noss AJ,
Kelly MJ, Wallace RB, Gómez H, Ayala G. 2004
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138. Torrents-Ticó M, Rich L, McNutt JW, Nthomiwa M,
Mothala M, Motsamai G, Jordan NR. 2017 On the
right track? Comparing concurrent spoor and
camera-trap surveys in Botswana. Afr. J. Wildl.
Res. 47, 128 – 137. (doi:10.3957/056.047.0128)

139. Villette P, Krebs CJ, Jung TS. 2017 Evaluating
camera traps as an alternative to live trapping
for estimating the density of snowshoe hares
(Lepus americanus) and red squirrels
(Tamiasciurus hudsonicus). Eur. J. Wildl. Res. 63,
1 – 9. (doi:10.1007/s10344-016-1064-3)

140. Zak AA, Riley EP. 2017 Comparing the use of
camera traps and farmer reports to study crop
feeding behavior of moor macaques (Macaca
maura). Int. J. Primatol. 38, 224 – 242. (doi:10.
1007/s10764-016-9945-6)

http://dx.doi.org/10.1371/journal.pone.0106194
http://dx.doi.org/10.1371/journal.pone.0106194
http://dx.doi.org/10.1007/s10344-013-0780-1
http://dx.doi.org/10.1177/194008291400700408
http://dx.doi.org/10.1002/wsb.502
http://dx.doi.org/10.3398/064.075.0409
http://dx.doi.org/10.3955/046.089.0406
http://dx.doi.org/10.1016/j.mambio.2014.11.003
http://dx.doi.org/10.1007/s10344-015-0936-2
http://dx.doi.org/10.1002/rse2.35
http://dx.doi.org/10.1002/rse2.35
http://dx.doi.org/10.1590/1678-4766e2016005
http://dx.doi.org/10.1590/1678-4766e2016005
http://dx.doi.org/10.1016/j.ecolind.2016.01.039
http://dx.doi.org/10.1016/j.ecolind.2016.01.039
http://dx.doi.org/10.1002/wsb.715
http://dx.doi.org/10.1111/aje.12277
http://dx.doi.org/10.1080/03014223.2015.1103761
http://dx.doi.org/10.1080/03014223.2015.1103761
http://dx.doi.org/10.3996/082015-JFWM-080
http://dx.doi.org/10.1111/aje.12301
http://dx.doi.org/10.1139/gen-2015-0193
http://dx.doi.org/10.1139/gen-2015-0193
http://dx.doi.org/10.1371/journal.pone.0146142
http://dx.doi.org/10.1371/journal.pone.0146142
http://dx.doi.org/10.2981/wlb.00129
http://dx.doi.org/10.2981/wlb.00129
http://dx.doi.org/10.1080/03946975.2016.1199763
http://dx.doi.org/10.1890/15-1363
http://dx.doi.org/10.1177/194008291600900208
http://dx.doi.org/10.1017/S0030605315001192
http://dx.doi.org/10.1017/S0030605315001192
http://dx.doi.org/10.2981/wlb.00178
http://dx.doi.org/10.2981/wlb.00178
http://dx.doi.org/10.1002/ajp.22647
http://dx.doi.org/10.1002/ajp.22647
http://dx.doi.org/10.1016/j.ecolind.2017.01.041
http://dx.doi.org/10.1016/j.ecolind.2017.01.041
http://dx.doi.org/10.1071/WR17012
http://dx.doi.org/10.1016/j.biocon.2017.04.023
http://dx.doi.org/10.1016/j.biocon.2017.04.023
http://dx.doi.org/10.1017/S0030605315001003
http://dx.doi.org/10.1007/s10530-016-1312-1
http://dx.doi.org/10.1590/1678-4766e2017041
http://dx.doi.org/10.1002/rse2.67
http://dx.doi.org/10.2981/wlb.00253
http://dx.doi.org/10.1111/1755-0998.12701
http://dx.doi.org/10.1071/WR16159
http://dx.doi.org/10.2981/wlb.00230
http://dx.doi.org/10.3957/056.047.0128
http://dx.doi.org/10.1007/s10344-016-1064-3
http://dx.doi.org/10.1007/s10764-016-9945-6
http://dx.doi.org/10.1007/s10764-016-9945-6

	Snap happy: camera traps are an effective sampling tool when compared with alternative methods
	Introduction
	Material and methods
	Literature search
	Data extraction
	Quantifying relative camera trap effectiveness
	Hypothesis testing

	Results
	Author recommendations
	Relative camera trap effectiveness

	Discussion
	How do camera traps compare with other survey methods?
	Camera trap effectiveness depends strongly on study objectives
	Differences in camera trap effectiveness according to equipment and habitat
	Limitations: experimental design and representativeness
	An evidence-base for more effective wildlife surveys
	Data accessibility
	Authors’ contributions
	Competing interests
	Funding

	Acknowledgements
	References


