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Stream grazers have a major impact on food web structure
and the productivity of stream ecosystems; however, studies on
the longitudinal (upstream versus downstream) and temporal
changes in their drift dynamics and resulting distributions
remain limited. Here, we investigated the longitudinal and
temporal distributions and drift propensity of a trichopteran
grazer, the caddisfly, Micrasema quadriloba, during its life cycle
in a Japanese stream. The distribution of larvae significantly
shifted downstream during the fifth instar larval stage during
late winter; with periphyton abundance (i.e. their food source)
showing similar shifts downstream. Therefore, our results
show that the drift dispersal the caddisfly occurs in response to
decline in available food resources (i.e. food-resource scarcity)
and an increase in food requirements by growing individuals.
Furthermore, our results show that this observed longitudinal
shift in larval distribution varies through their life cycle,
because the drift dispersal of fifth instar larvae was greater than
that of immature larvae. The correlation between periphyton
abundance and drift propensity of fourth instar larvae was
not statistically significant, whereas that of fifth instar larvae
was significantly negative. In conclusion, we detected an
ontogenetic shift in drift propensity, which might explain the
longitudinal and temporal distributions of this species.
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1. Introduction
One of the unique characteristics of stream ecosystems is the unidirectional transport of materials,
forming the basis of the river continuum concept [1]. Because this transport of materials includes
organisms [2,3], the drift of benthic invertebrates has received considerable attention from stream
ecologists [3–5]. Further, the dispersal of species is essential to maintain gene flow and genetic diversity
of invertebrate populations, as well as for the colonization and re-colonization of habitats [6,7].
Ephemeroptera, Diptera, Plecoptera and Trichoptera are common drift taxa, with baetid nymphs
(Ephemeroptera) constituting the major component [8–11].

Drift dispersal by organisms is be categorized into three types: catastrophic, constant and
behavioural [12], with behavioural drifts being the most prevalent. The behavioural drift of invertebrates
is mainly driven by the presence of predators [11,13–16] and food availability [17–19]. Indeed, drift
is a function of per capita food demand, rather than interference or the density of individuals [19,20].
Consequently, drift results from increased searching activity for resources when available resources are
low [21]. Kohler [22] hypothesized that individuals tend to aggregate in habitats where habitat quality
(e.g. food resource abundance) is high. Experiments testing this hypothesis [23–26] found that drift
and habitat-use behaviours are induced by resource availability. However, descriptions of longitudinal
and temporal changes in drift and habitat quality remain limited in natural conditions, except for
baetid nymphs [18,20]. Trichopteran grazers have a major impact on periphyton abundance and their
communities, which, in turn, affects the whole food web of stream ecosystems [27–30]. However,
longitudinal and temporal changes in the drift and subsequent distribution of these grazers require
investigation in the natural environment.

Ontogenetic changes in dispersal behaviour and species distribution have been recorded for many
organisms, resulting in ecologists recognizing their importance in the life cycles of certain species, habitat
use and population dynamics [31]. In fact, many studies suggest that ontogenetic shifts contribute to
the structure and dynamics of populations by adjusting the requirements of a species to the spatial
and temporal dynamics of environmental and resource conditions [32,33]. However, studies on drift
behaviour of stream invertebrates have not considered ontogenetic effects, even though ontogenetic
changes in drift behaviour probably occur.

In this study, we investigated the longitudinal and temporal distribution and drift dispersal of a
trichopteran grazer species, Micrasema quadriloba, in a Japanese stream in relation to the availability of
their food resource (periphyton) and the increase in resource requirements of maturing individuals in
natural streams. This objective was achieved by comparing the longitudinal and temporal distributions
of M. quadriloba larvae and periphyton abundance each month throughout the life cycle of the larvae.
In parallel, we evaluated ontogenetic shift in drift behaviour of successive instars with increasing food
requirements. This objective was achieved by comparing the drift propensities of the fourth and fifth
instar stages in relation to resource levels.

2. Material and methods
2.1. Study organism
Our study species was a case-bearing caddisfly M. quadriloba Martynov (Brachycentridae). The larvae
are low-mobility grazers that are widely distributed in the mountain streams of central Honshu,
Japan [29]. This species is univoltine, hatching in June, pupating in March of the following year, and
emerging in May [34]. Adult females fly upstream of the emergence sites, where they lay their eggs [35].
The eggs hatch in early summer (mainly June). The larvae graze on periphyton, which grow on the
substrata [36].

2.2. Study area
The survey was conducted in the Shigo-gawa Stream (stream width: 2–18 m, mean gradient: 2.2%),
which is a second-order mountain stream in Higashi-yoshino, Japan (34°22.7′ N, 136°1.0′ E, figure 1).
Nine survey stations were established along an 11.7 km stretch, which was 0.4–12.4 km upstream from
the starting station of the third-order stream (figure 1). The substrates of the streambed were mainly
boulders and cobbles [29,36]. The riparian zone of this stretch was dominated by artificial forests of
Japanese cedar, Cryptomeria japonica.
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Figure 1. Map of the nine sampling stations in the Shigo-gawa Stream, Japan. The large arrow shows the station where the tributary
flows into the stream.

2.3. Investigation of longitudinal and temporal distributions
We conducted the field surveys every month from November 2001 to February 2003 at the nine stations
(figure 1). Sampling dates were 15 November and 17 December 2001; 23 January, 22 February, 26 March,
25 April, 16 May, 27 June, 27 July, 28 August, 30 September, 29 October, 29 November and 27 December
2002; and 27 January and 27 February 2003. On each sampling date, water temperature and electrical
conductivity (EC) were measured at each station at midday using a thermometer and an EC metre (CM-
14P, TOA Electronics Ltd., Tokyo, Japan). Precipitation data for the region were obtained from the nearest
meteorological observatory to the nine stations, Nara Local Meteorological Observatory (34°29.3′ N,
135°55.9′ E).

To measure the benthic density of M. quadriloba larvae, 20 points were established with the same
intervals on two lines across the stream width (1 m apart) in a riffle at each station. At each point,
the maximum number of M. quadriloba in 25 cm2 (5 × 5 cm quadrat) on a cobble was counted and
collected. The collected larvae were immediately preserved in 5% buffered formalin solution, and species
identification was confirmed with a binocular microscope in the laboratory.

To identify the amount of periphyton at each station, the amount of chlorophyll a was measured on
10 cobbles along a downstream line across the stream where the number of M. quadriloba individuals
was counted. The periphyton on a cobble were wiped using an acrylic fibre cloth in a circle of 3 cm in
diameter according to the acrylic fibre sampler method [37]. The fibre clothes were placed into vials
containing 10 ml of 99.5% ethanol. After preservation in the dark at 4°C for 24 h, the extracted pigment
was measured using a spectrophotometer (Model MPS-2000, Shimadzu, Tokyo, Japan). Chlorophyll a
was determined according to SCOR-UNESCO [38].

2.4. Drift and benthic sampling and environmental factors
Drifting insects were collected on 19 and 20 December 2002 and on 7 and 8 February 2003, using a
drift-net (mesh of 300 µm, mouth opening of 15 × 15 cm, net length of 0.5 m) at the riffles of four stations
(stations 2, 4, 6 and 8; figure 1). At each sampling station, four drift nets were placed across the stream for
1 h from 13.00 to 14.00 and from 14.00 to 15.00. Therefore, eight replicates of drift sampling at each station
were collected. Current velocities, water temperature and electric conductivity at the net openings were
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measured using a current metre (CR-11, Cosmo-Riken, Osaka, Japan), a thermometer and an EC metre
(CM-14P, TOA Electronics Ltd.), respectively.

To measure the benthic density of M. quadriloba larvae and to examine the species composition of
invertebrates, the four benthic samples were collected using a server-net sampler (25 × 25 cm quadrat,
mesh size: 0.5 mm) at 1 m upstream of each station on the same days as the drift sampling. Both the
drift and benthic samples were immediately preserved in 5% buffered formalin solution, and were
subsequently examined with a binocular microscope in the laboratory. The number of drift and benthic
M. quadriloba larval individuals was used to calculate the drift and benthic density, respectively. Drift
density was expressed as the number of M. quadriloba larvae in 100 m3 water [13]. Benthic density
was expressed as the number of M. quadriloba larvae per square metre. We subsequently estimated
the drift propensity of larvae (unit: 1/100 m) at each sampling station and period, by dividing the
mean drift density with mean benthic density [14]. An increase in the drift propensity index means
reflects an increase in the number of drift individuals compared with benthic individuals. The calculated
drift propensities in December and February reflected the drift propensity of fourth and fifth instars,
respectively, because these larvae stages dominated the samples at these respective time points (see
Results section).

To quantify the amount of periphyton at each station, chlorophyll a was measured in a cobble per
quadrat at the same time as the benthic sampling (n = 4). Chlorophyll a was determined according to the
method described above.

2.5. Statistical analysis
Temporal changes in longitudinal distribution were analysed using a general additive model (GAM)
with the loss smooth function and Gaussian error distribution. A generalized linear model (GLM) with
Gaussian error distribution and log-link function was used to analyse the correlation between the mean
benthic density of larvae and the mean amount of periphyton on all dates, except from March to May
2003. We also performed a GLM (log-link function) for the relationships between the drift propensity and
periphyton abundance at each instar stage. The normality of values was tested with the Shapiro–Wilk’s
normality test (α = 0.05). For all statistical tests, log10 (x + 1) transformations for exact values were made
to standardize variance and improve normality. All statistical and graphical analyses were performed
using R v. 3.2.2 [39].

3. Results
3.1. Environmental conditions and longitudinal distribution ofMicrasema quadriloba larvae
Water temperature gradually increased downstream on each given sampling date, and was the highest in
July and the lowest in January (electronic supplementary material, figure S1). By contrast, EC was highest
at station 4 throughout the entire field survey period (electronic supplementary material, figure S1).
Precipitation was highest in July and August 2002 and January 2003 (electronic supplementary material,
figure S1). Disturbance by floods was likely, although the discharge of the stream was not measured.

Temporal and longitudinal changes in periphyton abundance (Chl-a) and the density of M. quadriloba
larvae are shown in figure 2. Micrasema quadriloba pupated from March to May 2002 and hatched in
June 2002. Subsequently, the first instar larvae appeared in the stream. In the other sampling months,
M. quadriloba larvae were distributed along the entire stream section.

Periphyton abundance (Chl-a) tended to be low at the stations where the greatest number of
M. quadriloba larvae were found, irrespective of month (figure 2). For example, when larvae occurred
along the investigated stretch of the river (November 2001–February 2002 and June 2002–February 2003),
periphyton abundance increased downstream. However, in spring, when M. quadriloba developed from
larvae to pupae, adults and egg masses, the winter distribution pattern in periphyton disappeared.

Temporal change in the mean distribution distance of larvae was unimodal pattern fitted by GAM
(F = 151.0, p < 0.001, GCV = 0.135, R2 = 0.832; figure 3). The longitudinal distribution of the larvae shifted
from upstream to downstream after juveniles appeared upstream. A clear peak in distribution in the
upper reaches was shown for the longitudinal distribution of larvae from June (hatching) to December
(larvae were mainly fourth instar). From early winter to before pupation in February (all larvae were
fifth instar, see below), larvae were evenly distributed along the stream (i.e. no peak), indicating that
their distribution shifted downstream homogeneously.
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Figure 2. Distribution ofMicrasemaquadriloba larvae (black circle) and periphytic chlorophyll a (Chl-a, red) in the stream fromNovember
2000 (11/2000) to February 2003 (2/2003). The distance from the tributary inflowon the x-axiswas ordered fromupstream todownstream.
Numbers of pupae and egg masses are not shown. Note: In March and April 2002, the larvae changed to pupae gradually. In May 2002,
egg masses were found downstream.
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Figure 3. Mean longitudinal distributions ofMicrasema quadriloba larvae in the sampling periods. In May 2002, the distance indicated
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Figure 4. The relationship between the number ofMicrasema quadriloba larval individuals and periphytic chlorophyll a (Chl-a), except
for March, April and May 2002. The line indicates a significant linear regression (log function) with± 95% CI.

During the sampling period, periphyton was abundant at station 4, except for where larvae
were present. In total, the amount of periphyton significantly decreased with increasing numbers of
M. quadriloba larvae (LM with log-link, R2 = 0.12, p < 0.001; figure 4).

3.2. Ontogenetic shift in drift propensity
The relationship between drift propensity and periphyton abundance (Chl-a) was not significant for
fourth instar larvae (LM with log-link, R2 = 0.003, p = 0.753; figure 5), but was significantly negative for
fifth instar larvae (R2 = 0.215, p < 0.001; figure 5). The slopes of the GLMs differed for fourth and fifth
instar larvae, respectively (0.0022 and −0.045; figure 5).

At each station, the fourth and fifth instar larvae of M. quadriloba were dominant in December and
February, respectively, representing more than 96% of all larvae. Mean benthic densities of M. quadriloba
larvae and the mean amount of periphyton at each station ranged from 0.03 to 1.10 individuals cm−2

and from 0.50 to 6.95 µg Chl-a cm−2, respectively. Micrasema quadriloba larvae at each station represented
50–90% of all benthic invertebrate individuals.

4. Discussion
This study demonstrated that the longitudinal distribution of M. quadriloba clearly shifts downstream
over the larval stages of their life cycle, before adults fly back upstream to lay eggs. We also showed
that this shift in distribution might influence the longitudinal distribution of periphyton abundance,
because of their feeding habits. The drift behaviour of certain stream invertebrates has been extensively
reported for baetid nymphs [8,15,16]. However, few studies have demonstrated both drift dispersal and
a downstream shift in their longitudinal distributions. Of note, periphyton abundance was depleted in
the sampling stations where the greatest number of larvae was found, regardless of their growth stages.

The larvae of M. quadriloba were the dominant benthic invertebrate grazers during late winter, which
significantly increased their drift propensity with the depletion of periphyton abundance (i.e. their food
resource). This observation was with the findings of studies on baetid nymphs [18,20]. Kohler [22]
suggested baetid nymphs abandon a habitat by drift at a certain threshold level of habitat quality.
Nymphs are highly mobile, allowing them to migrate to alternative, resource-rich periphyton patches. By
contrast, case-bearing M. quadriloba larvae are only able to crawl, resulting in their having comparatively
lower mobility than baetid larvae. Thus, M. quadriloba larvae might continue to graze in the local
neighbourhood, rather than move to other periphyton patches. Therefore, if M. quadriloba has an assumed
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Figure 5. Relationship between the drift propensity of Micrasema quadriloba and periphytic chlorophyll a (Chl-a) for different instars;
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threshold level to abandon a habitat, the level of resource abundance would be lower than that of baetid
nymphs. This low threshold level might reflect the low drift propensity of fourth instar larvae. The
maximum drift propensity of fifth instar larvae was approximately two times greater than that of fourth
instar larvae, for which drift propensity was not correlated with periphyton abundance. This difference
might be due to an increase in food requirements as they grow, which drives individuals to actively
drift downstream. In winter, increasing food requirements of fifth instar larvae and depleted periphyton
abundance might have exceeded the assumed threshold level, leading to their drifting.

Despite the scarcity of resources, the longitudinal distribution of M. quadriloba larvae did not shift
downstream until late summer. The restricted longitudinal distribution might be passively affected by
higher water temperatures in the downstream reaches (greater than 20°C). Water temperature is an
important determinant of the longitudinal distribution of aquatic insects [11,40–41]. The absence of
M. quadriloba larvae in the downstream reaches might be a result of ineffective dispersal (i.e. high
mortality with high water temperatures) from June to late summer, because the larvae were found
in mountain streams with higher currents and show a non-active period during the summer [42].
By contrast, from mid- to late winter, when M. quadriloba were fifth instar larvae, their longitudinal
distribution shifted downstream, reflecting that also observed for blepharocerid larvae during
winter [43]. In parallel, the sampling stations were depleted of periphyton, which were more abundant
downstream. The food requirement of fifth instar larvae could not be met by low periphyton abundance
in the local neighbourhood; thus, the larvae might alter their strategy and migrate to a new foraging
habitat (i.e. increase the extent of their foraging area). Such movement might cause drift dispersal,
resulting in the longitudinal distribution of fifth instars expanding downstream in winter.

In conclusion, the longitudinal and temporal distributions of the larvae of the caddisfly grazer,
M. quadriloba might be regulated by their drift behaviours, which, in turn, might be driven by their
resource requirements, changes in ontogeny and periphyton (resource) abundance. Resources and
ontogeny might represent important factors in determining the longitudinal and temporal distribution
of drifting stream invertebrates, with the drift dynamics of abundant grazers potentially shaping stream
food webs, as well as ecosystem production and functioning through changes in the distribution in
microorganisms (periphytic) involved in primary production.

Ethics. This study was approved by the Higashi-yoshino Fisheries Cooperative. Field sampling permits in the river
were not needed for macroinvertebrates and periphyton species.
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