
Calhoun: The NPS Institutional Archive

DSpace Repository

Theses and Dissertations 1. Thesis and Dissertation Collection, all items

2019-09

IDENTIFYING HONEYPOTS SIMULATING

INTERNET-CONNECTED INDUSTRIAL-CONTROL

SYSTEM DEVICES

Brown, Justin C.

Monterey, CA; Naval Postgraduate School

http://hdl.handle.net/10945/63438

Downloaded from NPS Archive: Calhoun



 

NAVAL 
POSTGRADUATE 

SCHOOL 

MONTEREY, CALIFORNIA 

THESIS 
 

IDENTIFYING HONEYPOTS SIMULATING 
INTERNET-CONNECTED INDUSTRIAL-CONTROL 

SYSTEM DEVICES 

by 

Justin C. Brown 

September 2019 

Thesis Advisor: Neil C. Rowe 
Second Reader: Robert Beverly 

 

Approved for public release. Distribution is unlimited. 



THIS PAGE INTENTIONALLY LEFT BLANK 



 REPORT DOCUMENTATION PAGE  Form Approved OMB 
No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing 
instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of 
information.  Send comments regarding this burden estimate or any other aspect of this collection of information, including 
suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215 
Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction 
Project (0704-0188) Washington, DC 20503.

1. AGENCY USE ONLY
(Leave blank)

2. REPORT DATE
September 2019

3. REPORT TYPE AND DATES COVERED
Master's thesis

4. TITLE AND SUBTITLE
IDENTIFYING HONEYPOTS SIMULATING INTERNET-CONNECTED 
INDUSTRIAL-CONTROL SYSTEM DEVICES

5. FUNDING NUMBERS

6. AUTHOR(S) Justin C. Brown

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School 
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT 
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND
ADDRESS(ES) 
N/A

10. SPONSORING /
MONITORING AGENCY 
REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government.

12a. DISTRIBUTION / AVAILABILITY STATEMENT 
Approved for public release. Distribution is unlimited.

12b. DISTRIBUTION CODE 
A

13. ABSTRACT (maximum 200 words)
 Heuristic analysis can reveal honeypots (decoy computer systems doing intelligence gathering) among 
Internet-connected industrial-control sites. Detectability of honeypots is undesirable, as it enables a 
careful adversary to avoid them, thus inhibiting valuable intelligence. However, counting honeypots is 
crucial to cyber-security policy and planning activities. Using a data set that includes industrial-control 
sites and industrial-control honeypots on the public Internet, we tested three heuristics for their 
ability to detect instances of the Conpot honeypot. The heuristics searched for sites containing 
keywords from Conpot, for services on combinations of port numbers matching Conpot, and for 
industrial-control sites located in a public cloud service provider. Performance of each heuristic was 
tested by manual inspection of data returned by hosts to Shodan's probes, which we used to assess each 
host's status as an instance of Conpot or not. Testing showed mixed success of the three heuristics, 
highlighting presence of honeypots simulating Siemens STEP 7 devices. We also tested Honeyscore, 
a commercial product which tries to identify honeypots, and found it had good success but was not 
perfect. We show that no single tool detected all honeypots, and that multiple tools can be 
complementary. Suggestions are offered for increasing detection rates, as well as potential additional 
heuristics to test. 

14. SUBJECT TERMS
honeypot, cybersecurity, cyber-deception, industrial-control

15. NUMBER OF
PAGES 

85
16. PRICE CODE

17. SECURITY
CLASSIFICATION OF 
REPORT 
Unclassified

18. SECURITY
CLASSIFICATION OF THIS 
PAGE 
Unclassified

19. SECURITY
CLASSIFICATION OF 
ABSTRACT 
Unclassified

20. LIMITATION OF
ABSTRACT 

UU

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) 
Prescribed by ANSI Std. 239-18

i 



THIS PAGE INTENTIONALLY LEFT BLANK 

ii 



Approved for public release. Distribution is unlimited. 

IDENTIFYING HONEYPOTS SIMULATING INTERNET-CONNECTED 
INDUSTRIAL-CONTROL SYSTEM DEVICES 

Justin C. Brown 
Civilian, Department of the Navy 

BS, Colorado Technical University, 2013 

Submitted in partial fulfillment of the 
requirements for the degree of 

MASTER OF SCIENCE IN COMPUTER SCIENCE 

from the 

NAVAL POSTGRADUATE SCHOOL 
September 2019 

Approved by: Neil C. Rowe 
Advisor 

Robert Beverly 
Second Reader 

Peter J. Denning 
Chair, Department of Computer Science 

iii 



THIS PAGE INTENTIONALLY LEFT BLANK 

iv 



ABSTRACT 

Heuristic analysis can reveal honeypots (decoy computer systems doing 

intelligence gathering) among Internet-connected industrial-control sites. Detectability 

of honeypots is undesirable, as it enables a careful adversary to avoid them, thus 

inhibiting valuable intelligence. However, counting honeypots is crucial to cyber-

security policy and planning activities. Using a data set that includes industrial-

control sites and industrial-control honeypots on the public Internet, we tested three 

heuristics for their ability to detect instances of the Conpot honeypot. The 

heuristics searched for sites containing keywords from Conpot, for services on 

combinations of port numbers matching Conpot, and for industrial-control sites 

located in a public cloud service provider. Performance of each heuristic was tested 

by manual inspection of data returned by hosts to Shodan's probes, which we used to 

assess each host’s status as an instance of Conpot or not. Testing showed mixed 

success of the three heuristics, highlighting presence of honeypots simulating 

Siemens STEP 7 devices. We also tested Honeyscore, a commercial product which tries 

to identify honeypots, and found it had good success but was not perfect. We show that 

no single tool detected all honeypots, and that multiple tools can be complementary. 

Suggestions are offered for increasing detection rates, as well as potential additional 

heuristics to test. 
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CHAPTER 1:
Introduction

Efforts to identify and characterize industrial-control system devices connected to the In-
ternet have been undertaken for roughly the last decade [1]–[4]. Work of this nature often
aggregates data collected from open-source intelligence (OSINT) sources such as the public
scan databases Shodan.io and Censys.io, which compile scans of industrial-control system
devices across the IPv4 Internet. The data needed for counting can otherwise be generated
by actively probing remote hosts to identify industrial-control system services, as was done
in [1].

Industrial-control system devices on networks receive attention from adversaries and de-
fenders alike because they could enable inputs from the cyber domain to effect kinetic
changes in the physical domain [5]–[7]. Examples of such effects include moving a robotic
arm, adjusting the flow rate of a fluid, or powering off a system. Some industrial-control
system devices critically lack built-in security controls, which increases the potential for
an adversary to identify and exploit a vulnerability. Statistics show that the number of
industrial-control system devices directly reachable via the Internet is increasing [1]–[4].

Accurately characterizing a remote network device poses technical challenges. For example,
during an Internet-wide survey, if a device being characterized changes its Internet Protocol
(IP) address during counting, it may be counted twice or not counted at all. Counting
the same device additional times may also occur when it uses multiple IP addresses, as
no convention limits the quantity of addresses on a device. Intermediate network nodes
such as firewalls, network address translation (NAT) devices, port address translation (PAT)
devices, and network proxies may alter IP packet header data between the remote network
device and the sensor, for both deceptive [8], [9] and benign purposes [10]. Such devices
potentially affect characterization because they can make targets unreachable for scanning
databases such as Shodan, which is discussed in Section 2.5. Intermediate nodes can also
aggregate network services into a single Internet address [11]. From an industrial-control
perspective, we generally do not expect a controller to change its address because doing
so will affect its integrations with other systems. Nor do we expect a controller to have
multiple network interfaces and IP addresses as they might have physical size constraints.
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Industrial-control system devices are particularly difficult to identify via operating system
fingerprinting, because it does not typically find programmable logic controllers (PLCs) and
remote terminal units (RTUs), important subtypes of industrial-control system devices. The
difficulty of differentiating between control-device fingerprints and those of other devices
is great enough that machine learning is believed to be necessary for producing meaningful
findings [12]. Therefore, honeypots designed to masquerade as legitimate devices can fool
efforts to characterize industrial-control devices [9], [10].

Cyber-security planning activities recommended by the Industrial Control Systems Cy-
ber Emergency Response Team (ICS-CERT) require accurate counts of industrial-control
systems [13], [14], and it is therefore necessary to distinguish legitimate devices from
honeypots. While Project SHINE mentions the problem of double-counting devices on
different IP addresses [3], surveys of Internet-connected industrial-control system devices
often do not identify honeypots [2]–[4]. However, results from [1] found that honeypots
comprised 5% of the Siemens S7 services and 0.5% of the Modbus services identified.

Terms such as those searched in [4] aid in identifying industrial-control devices in the
Shodan database, and this can also identify honeypots. This study investigates the ability to
identify instances of the industrial-control honeypot Conpot using the searching technique
in [4] and similar techniques. The use of Shodan means that the work is repeatable at scale
without excessively impacting legitimate industrial-control devices. Specific goals of the
current research included:

• Discover detectable properties and behaviors of industrial-control system honeypots
using Conpot as a model.

• Test ability of tools to detect instances of Conpot by searching a large-scale scanning
database.

The contributions offered by this research include the following:

• Validation of the ability of three heuristic tools to count instances of the Conpot
honeypot.

• Improving characterization of legitimate industrial-control devices by better recog-
nizing honeypots.

• Suggesting additional behaviors to improve efforts to count honeypots.
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1.1 Thesis Structure
The following topics are discussed in the chapters ahead:

• 2: Background
– Motivators for counting industrial-control system devices, including targeting
and vulnerabilities

– High-level overview of cyber-deception
– Examples of honeypots simulating industrial-control systems
– Considerations when choosing between using active scanning and network scan
databases as the data source

– An example study that counted industrial-control devices by protocol using data
from Shodan

• 3: Design and Methodology
– Notes from tests probing industrial-control honeypot services using Conpot as
a model

– Scope and limitations of this work
– Components of three hypotheses: H1, H2, and H3
– The services and corresponding port numbers of probe responses to search in
Shodan data

– Querying Shodan for IP addresses whose responses matched the port numbers
– Querying Shodan for all responses to probes by an IP address, and itsHoneyscore
– Reduction of the byte count of the data
– Steps to generate a 8,127-host sample data set from the 122,678-host sample
data set

– Populating the analysis environment using Splunk
– Steps used to identify honeypots via manual inspection
– Country location of hosts in the data samples

• 4: Testing
– Steps to measure the performance of each of H1, H2, H3, and Honeyscores 0.5,
0.8, and 1.0

– Findings from a system of water and sewage-processing service honeypots
– Performance, error sources, and lessons learned from H1, H2, H3, and Hon-
eyscore
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– Agreement and disagreement of detections between the detection methods
– Challenges encountered in our methodology

• 5: Summary and Potential Improvements
– Performance metrics for each of H1, H2, H3, and Honeyscores greater than zero
– Performance metrics for combinations of H1, H2, H3
– Performance for a combination that maximized recall
– Indicators that could be added to H1, H2, and H3 to increase detections

• 6: Conclusion and Future Work
– Review of the goals and findings
– Contributions made by this study
– Percentage of honeypots identified by manual inspection
– Opportunities for future work to broaden scope, compare data sources, validate
detections, and add more heuristics

4



CHAPTER 2:
Background

This study draws upon National Institute of Standards and Technology (NIST) definitions
for industrial-control systems [15] and Supervisory Control and Data Acquisition (SCADA)
systems [16], which are as follows:

Industrial Control System (ICS)
An information system used to control industrial processes such as manufactur-
ing, product handling, production, and distribution. Industrial control systems
include supervisory control and data acquisition systems used to control geo-
graphically dispersed assets, as well as distributed control systems and smaller
control systems using programmable logic controllers to control localized pro-
cesses.

Supervisory Control and Data Acquisition (SCADA)
A generic name for a computerized system that is capable of gathering and
processing data and applying operational controls over long distances. Typ-
ical uses include power transmission and distribution and pipeline systems.
SCADA was designed for the unique communication challenges (e.g., delays,
data integrity) posed by the various media that must be used, such as phone
lines, microwave, and satellite. Usually shared rather than dedicated.

2.1 Industrial-Control System Targets
When industrial-control systems are extended to allow remote access, the security controls
used to appropriately restrict access should be increased. Failing to sufficiently secure ac-
cess to critical systems allows attackers to cause harm, as was illustrated famously by attacks
using the Stuxnet malware on centrifuges at nuclear enrichment facilities [17]. Later attacks
using the CrashOverride malware against a Kiev electrical power transmission station [18]
offer additional examples of targeting industrial-control system (ICS) devices. Responses to
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such attacks included advice from ICS-CERT that Internet-connected SCADA, distributed-
control-system, and human-machine-interface devices have their access restricted, espe-
cially since such devices are often operated with default or unchangeable username and
password combinations [19].

Research has tested the security of controllers, including Beresford’s [20] analysis of
vulnerabilities related to session handling, authentication bypass, memory access, and
Transmission Control Protocol (TCP) replay in implementations of the STEP 7 Communi-
cations (S7Comm) protocol in the S7-300 and S7-1200 models of the SIMATIC S7 family
of controllers. The work in [20] produced exploit modules for Metasploit Framework
penetration-testing platform. To an adversary, the possibility of remote exploitation of a
SIMATIC S7 device enhances the attractiveness of any S7 service, and the presence of
vulnerable targets on the Internet amplifies opportunities for a successful attack. Therefore,
accurately identifying controllers exposed to the Internet is needed to create a realistic view
of an organization’s security posture.

2.2 Cyber Deception
Cyber deception is a deception using cyberspace. The purpose of cyber deception varies
depending on the motivations of the deceiver, who is either offensive or defensive in nature,
and attempts to alter behavior to achieve a perceived good or prevent a perceived harm [21].
An example is the common practice of requesting a password at the logon prompt, even
when the provided user-name is known to be invalid; this deception is desirable because
it complicates password guessing. Cyber deception simulates nonexistent resources and
conceals true resources, emphasizes “desired observables” and de-emphasizes “undesired
observables” [22]. Cyber deception strategically facilitates adversary misperceptions to
degrade their effectiveness and enhances detection and analysis on the part of the defender.

One type of cyber deception is network deception, which simulates the presence of network
resources [23]. A motivation for network deception can be altering the target selection from
an adversary’s reconnaissance phase [23]. The LaBrea tarpit is an example that affects target
selection by occupying 100% of the unused portion of the IP address space and delaying
its response to probes [24]. A recent tarpit called Greasy modifies TCP window sizes and
types to reduce the tarpit’s susceptibility to fingerprinting tools such as Degreaser [9] while
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enabling variable occupancy of available IP address and port resources, increasing the cost
to discern real networks from fake ones [25]. The DeTracer project introduced a network-
topological deception which returns traces of fake network infrastructure topologies of
arbitrary size and complexity when probed via traceroute [26].

Another type of cyber deception is a honeypot. Its purpose is to appear to be an interesting
and useful target for attack [27]. They also “induce signals to cause the attacker to find false
targets,” a diversion effect [28]. Honeypots can be built with personal-computer, mobile-
device, Web-application, electronic-mail, and terminal (e.g., secure shell) designs among
others. A honeypot offers network defenders better malicious-activity detection [29]–[31],
malicious-binary capture [32], intrusion-detection-system signature generation [33], [34],
better steering of adversary behavior [35], [36], and better capture of IP addresses for
ingestion by distributed IP reputation systems [37]–[39].

2.3 Embedded and Industrial-Control System Honeypots
Honeypots resembling embedded, industrial-control system, and SCADA host-devices are
starting to appear [40]–[46]. Benefits provided by embedded and ICS honeypots include
malicious activity detection and malicious binary capture [40], [41], [47], [48]. Such
honeypots allow industrial-control network defenders to be proactive.

A feature differentiating an industrial-control system honeypot from other honeypots is the
incorporation of a real or emulated programmable logic controller. While using real hard-
ware controllers to complement a software honeypot can be costly [10], proxy devices can
operate hybrid hardware/software honeypots [8], [10], [48], [49], following the architecture
used in the Honeynet Project, which separates externally-facing services and monitoring
services onto different hosts [50]. The Winn honeypot used a network proxy to make a
single physical controller to appear as 75 different physical controllers [10]. A hybridized
technique was proposed to model the physical effects of honeypot interactions in [51],
tracking the physical state of a notional valve or relay in the emulation. Emulating changes
in state indicators on industrial-control system could extend the CryPLH honeypot [44]
discussed in Section 2.3.7.

Software-only honeypots can be cheaper than hardware honeypots, and may run in a virtu-
alized environment, adding benefits of scalability, portability, and virtualization functions
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such as virtual hardware, virtual networks, cloning, and virtual machine (VM) snapshots.
Virtualization and cloud computing facilitate honeypots such as [42]–[46], so that networks
composed of industrial-control system honeypots can be deployed rapidly [52] at large
scale [41]. Public cloud infrastructure can increase a honeypot’s geographical distribu-
tion [41], [48].

An ICS honeypot may appear different from a legitimate device in several ways. For
example, unlike a hardware PLC, a honeypot usually runs on a general-purpose computer
which provides network interface virtualization and allows numerous network interfaces
and IP addresses. Therefore, the likelihood an ICS service is a honeypot increases with
every secondary address it uses. An ICS honeypot is also not necessarily constrained by the
same processing and memory limits as a hardware controller, and may respond to probes
more quickly than a hardware controller.

2.3.1 RUGGEDTRAX
An extension of project SHINE summarized in Section 2.5 called RUGGEDTRAX sought
to find threats to critical infrastructure by remote adversaries [11] seeking vulnerable targets.
A Siemens RuggedCom RS910 was configured with the software of a water pump plugged
directly to the Internet as a hardware honeypot, andmonitored for threemonths. It responded
to requests to Secure Shell (SSH) (TCP 22), the Hyper Text Transfer Protocol (HTTP) (TCP
80), secure HTTP (HTTPS) (TCP 443), and Distributed Network Protocol (DNP3) (TCP
20000) services. Its Modbus, Telnet, Trivial File Transfer Protocol (TFTP), Remote Shell
(RSH), and Simple Network Management Protocol (SNMP) listeners were disabled [11].
The device firmware name and version were displayed on its HTTPS Web page, alongside
a fictitious system name indicative of a water well in Geneva, Illinois, U.S. The firmware
produces a variant of the GoAhead embedded Web-server banner. Some of the honeypot’s
services were indexed by Shodan on October 15, two days after being directly connected to
Internet [3].

While RUGGEDTRAX was online it received 140,403 SSH authentication attempts which
were geolocated to six primary countries: China, France, United States, Germany, Korea,
and Singapore [11]. While some services were disabled during configuration and after the
factory reset [11], it was unstated whether the or not the project left the default usernames
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in use. The data showed 3% of attempts to authenticate used the default accounts in the
Rugged operating system by default [53], [54], which implies that some of the attackers
might have used insights from the Web services to identify the operating system in their
attempts to gain access [11].

2.3.2 Bodenheim
Another experiment tested Shodan’s ability to identify Internet-connected industrial-control
system devices [8]. For 55 days, four Allen-Bradley ControlLogix 1756-L61 hardware pro-
grammable logic controllers were connected to the Internet as honeypots. The controllers
hosted HTTP (TCP 80) and Ethernet/IP (TCP 44818) services, though TCP 44818 was not
scanned since Shodan did not scan this port at the time of the experiment [8]. Two con-
trollers connected with an unmodified “Standard” HTTP banner, one with an “Obfuscated”
HTTP banner (replacing the usual Server: GoAhead-Webs header string with Server:
KCCo2013_$h09mo]), and one with an “Advertised” HTTP banner (replacing the header
string with Server: Allen Bradley ControlLogix 1756). The controllers had the
Connection: Close string removed from their HTTP banners [8]. The banner modifi-
cations were performed by an inline proxy which rewrote packets in transit.

After roughly one day of deployment, the obfuscated controllers and one standard controller
each received a probe from Shodan despite having never provided their IP addresses to
Shodan for scanning [8]. All controllers were probed within four days of deployment, and
data from all four was visible on the Shodan website within 19 days of deployment, with
the earliest appearance within four days of deployment. This demonstrates that Shodan
can quickly find a controller upon connection to the Internet [8]. However, it was unclear
whether Shodan had data from prior historical interactions with the IP addresses used.

The Bodenheim project also investigated the relative difficulty of discovering the standard,
obfuscated and advertised controllers via crafted keyword searches on Shodan [8]. Queries
were created by a researcher uninformed of the banner modifications from two sets of
search terms related to basic knowledge of Allen-Bradley ControlLogix controllers (i.e.,
Allen, or Bradley, or ControlLogix, or controllers, or port:80), and terms related
to specific knowledge of the controllers (i.e., GoAhead-Webs, or Connection: Close,
or index.html). Querying Shodan with combinations of the basic knowledge search
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terms in most cases found the advertised controller, and in several cases, only the advertised
controller [8]. The only search termwhich returned both standard and obfuscated controllers
was port:80, and it returned more than 170 million devices. Querying Shodan with
combinations of the specific knowledge search terms, in all cases, returned the standard
and advertised controllers, with the broadest search returning 102 million devices and the
narrowest search returning 490 devices. The only search term that returned the obfuscated
device was index.html, and it returned more than one million devices. We conclude that
an adversary using a keyword search to identify instances of a specific make and model
controller will likely miss an obfuscated device.

2.3.3 Conpot
Conpot [55] uses the framework developed for the Honeynet Project to provide a free open-
source software industrial-control system honeypot requiring no specialized equipment and
little manual configuration, and supporting customizable templates and extensibility [45].
Conpot is primarily written in Python and provides network interactions intended to emulate
real devices. Responses to remote probes are configured via templates defined in Extensible
Markup Language (XML) configuration files.

The default template of Conpot activates several protocol emulators for S7Comm (TCP 102)
and HTTP (TCP 80) mimicking a Siemens SIMATIC S7-200 controller and its embedded
Web server [45]. At the application layer, Conpot provides a banner string via HTTP, and
a basic web user-interface. Conpot is a low-interaction honeypot since its emulation is not
deep.

However, it does emulateModbus (TCP502), BACnet (UDP47808), SNMP (UDP161), and
Intelligent PlatformManagement Interface (IPMI) (UDP 623) services. The IPMI emulator
mimics a baseboard management controller (BMC), supporting functions such as “chassis
status” and “user list,” and can be interacted with via the utility ipmitool [56], [57]. The
IPMI emulator also permits manipulation of system power via the virtual BMC [56]. A
tarpit feature in Conpot delays responses to remote requests, feigning the limited processing
that a real-time device may provide to non-realtime services, such as SNMP [58]. Conpot’s
tarpit option is different from network tarpits such as LaBrea, which forges replies from a
nonexistent system [24], [50].
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2.3.4 GasPot/guardian_ast
GasPot is a honeypot intended to emulate the Veeder-Root Guardian aboveground storage
tank (AST) monitoring system [59]. Its release follows recent attention given to liquid-fuel
tank monitoring devices found on the Internet, which were counted in 2015 to be roughly
5,800. Most devices are of the Veeder-Root brand, and over 5,300 are IP-geolocated to
United States cities [60]. Veeder-Root tank monitors accessible via the Internet have been
identified and targeted by remote attackers [47]. Logs from GasPot revealed unauthorized
reads and writes, defacement, and denial of service attacks. Operators of a GasPot instance
can tune the temperature standard and range, station name, and other parameters to reflect
a realistic configuration.

GasPot was subsequently integrated into Conpot as the guardian_ast template [42],
providing an emulated automatic tank gauge (ATG) service on TCP 10001. A test instance
the service was generated for this study, as described in Section 3.1.

2.3.5 Smart Meter/kamstrup_382
The kamstrup_382 template provided by Conpot mimics a Kamstrup model 382 smart
electrical meter [43] that provides an electrical power metering service on TCP port 1025
and a management service on port 50100. The Kamstrup 382 hardware on which this
template is based measures electrical circuits up to three-phase. It allows remote access
for TCP/IP networking over Wi-Fi, the Global System for Mobile Communication (GSM),
and General Packet Radio Service (GPRS) connectivity, and enables local interaction via
optional serial and infrared interfaces [61]. We analyzed properties of this template and
suggest some possible heuristics for detection in Section 3.1.

2.3.6 The SOY Honeynet
Other research deployed a multi-region distributed industrial-control system network of
honeypots for threat research [62]. Their architecture used geographically dispersed nodes
hosted on Amazon Elastic Cloud Compute (EC2), with emulation for the protocols DNP3,
the Inter-control Center Communications Protocol (ICCP), the International Electrotech-
nical Commission 60870-5-104 (IEC-104), Modbus, SNMP, TFTP, and the Extensible
Messaging and Presence Protocol (XMPP) [63]. Each node was configured to emulate
some subset of these protocols. The TFTP and XMPP protocols functioned less to mimic
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controllers and more to provide a set of general “control” services. The honeypot performed
event logging, avoiding the need for a proxy for logging.

The SOYHoneynet [62] tried to measure unsolicited interaction after connecting industrial-
control system devices to the Internet. The researchers observed that the Shodan search
performed unsolicited interactions with five of the six honeypots comprising their honeynet,
and that follow-on interactions from new sources began only after each honeypot was listed
on Shodan. This suggests that deeper interactions are always preceded by reconnaissance
via Shodan [41]. This suggests that requests for industrial-control services result from the
presence of some desirable target protocol rather than some combination of protocols. For
example, the SNMP services, particularly version 2c and version 1, were targeted during
initial reconnaissance more than the industrial-control system services [41]. This further
suggests that the Shodan search engine could be proactively monitored by defenders as an
early warning of unintended visibility of critical systems to adversaries via the Internet.

2.3.7 CryPLH
CryPLH is a honeypot developed and deployed in 2014 for identifying malicious activities
against a Siemens S7Comm 300 controller [44]. It accepts authentication attempts for
the protected functions on its http (TCP 80), https (TCP 443), and S7Comm (TCP 102)
services, and rejects all credentials. Parameters in /proc/sys/ipv4 are modified to mirror
the controller’s nmap operating-system fingerprint, appearing to succeed in being matched
to the fingerprint of the reference controller when scanned from a remote network, but not
matching the controller when scanned from a host on the same local area network [44].

CryPLH initially was deployed in an Internet-facing university IP address space over eight
days and then 30 days. In the first deployment, remote probes searched for vulnerable SSH,
closed-circuit television (CCTV), and proxy services, but yielded no observable industrial-
control interactions [44]. The second deployment saw interactions with the honeypot’s
S7Comm service (TCP 102), which were attributed to the Shodan search engine. A third
deployment of 12 days saw results similar to the first deployment [64]. However, the
experimenters were unable to discover it in the Shodan database, which may have meant
reduced honeypot exposure to passive reconnaissance activities such as those later observed
in [41].
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2.3.8 Digital Bond’s SCADA Honeynet
The Digital Bond SCADA Honeynet is a system emulating Modicon Quantum controller
and a “Honeywall” proxy that logs remote interactions [46]. Logging included network-
packet capture, network statistics, remote operating-system fingerprinting, and intrusion
detection, enabled by an installation of Snort intrusion-detection system with Digital Bond
QuickDraw signatures [46].

Default configuration emulates Modbus (TCP 502), SNMP (UDP 161), HTTP (TCP 80),
Telnet (TCP 23), and File Transfer Protocol (FTP) (TCP 21) services. While Modbus
is the only industrial-control system service on the controller, the remaining services are
customized to appear as part of the same controller [46]. From a controller perspective, the
service’s low-interaction property is cited by [44] as limiting the potential for adversarial
interest. An experimental Internet-facing SCADA Honeynet deployment found results
consistent with this belief, as attacks detected against the emulated controller were aimed
strictly at non-industrial-control system vulnerabilities [52].

2.4 Active Network Scanning
Network scanning is necessary for asset tracking and detecting misconfiguration. Active
scanning techniques are performed by sending a probe, often using the Transmission Control
Protocol (TCP) and User Datagram Protocol (UDP) protocols. Tools for active scanning
may include transport-layer scanners and protocol-layer scanners. A transport scan sends
Internet Protocol (IP) packets to test communications. If the transport scan finds that
communications are possible, a protocol scan may then test whether or not meaningful
communications can be performed. A network scan database can subsequently store, query,
and copy the results of each scan for purposes of research or reconnaissance.

When planning active scanning, one must consider adverse effects against the targets. If the
targets are industrial controllers, then the consequences from adverse effects of scanning
can be substantial since controllers interact with the physical domain under time constraints.
A strategy employed in [1] to reduce load on the target was to probe two of Siemens’s six
source and destination address combinations possible for the STEP 7 SZL command. The
result was believed to provide less responses than a complete set of probes as is employed
by Shodan.
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A transport-layer scanner sends some combination of TCP, UDP, and Internet Control
Message Protocol (ICMP) packets to a remote host, and waits an assigned timeout length
for responses. No response could mean the host is powered off, is not accepting incoming
connections, is unreachable (e.g., behind a firewall), or does not exist at that address. A
variety of transport-layer scanners exist, with two popular examples being netcat and Nmap.
Like many transport-layer scanners, netcat and Nmap can also be used as a protocol scanner,
with different intended use cases.

Protocol scanners build on the capabilities of transport layer scan engines by interacting
with hosts via application-specific protocols. Without the protocol scanner such interactions
would require substantial subject matter expertise with the application. The Nmap Scripting
Engine (NSE), for example, is a library which enables active protocol scanning, and can
be extended to interact with new applications. Digital Bond’s Redpoint scripts use NSE to
probe industrial controllers [65]. For example, the s7-info.nse script probes Siemens S7
devices over TCP 102 [66]. Another script, shodan-api.nse, allows Nmap to interface
with Shodan [67] to learn about a remote target without being noticed by the target.

2.5 Network Scan Databases
Network scan databases provide data from scans of Internet address spaces. These scans
may be narrow and leverage a specific protocol, as with the Carna Botnet which performed
a net-wide scan of approximately 660 million IP addresses using nmap TCP "syn" scans
from hosts compromised via default telnet credentials [68]. Others network-scan databases
obtain data by a slower and more continuous horizontal method of scanning. One example,
ZoomEye, obtains IPv4 host data from both continuous active probes and third-party data
sets [69], [70]. Censys and Shodan appear to use address selection and scanning algorithms
instead of the derivative data points ingested by ZoomEye [71], [72]. For attackers, scan
databases are very useful as they collect large amounts of data in one place. Defenders can
benefit from scanning databases by inspecting their own resources from the same external
vantage point available to adversaries.

Censys
Censys [71] is a scanning database that provides a Web-based interface to search an IPv4
Internet-wide data set. It started with the Zmap project and is now continuously updated.
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Zmap used single-packet probes to survey a single port across the IPv4 Internet, achieving
better than 97% coverage even with no possibility of retransmission. By randomizing
the order of destination addresses to probe, along with transmitting directly to Ethernet
(bypassing the TCP/IP stack), its scans completed IPv4 Internet-wide surveys in under
one hour [73]. Additional insights are provided by ZGrab, ZTag, and ZDNS which are
maintained as open-source tools by the ZMap project [74].

Shodan
The Shodan search engine is a popular tool for scanning Internet devices [75]–[77]. Shodan
performs continuous scanning of Internet-connected hosts, and provides results via Web
interface and an application programming interface (API). Shodan’s scanning captures
data from known hosts in the IPv4 and IPv6 address spaces, and also probes for new hosts
by selecting IP addresses randomly [8], [41], which is a viable algorithm only in the IPv4
address space. It is unclear if there is a host discovery algorithm for IPv6, though Shodan can
enumerate some IPv6 hosts [78]. The Shodan interface enables user requests for Shodan to
scan an arbitrary IP address or CIDR block [79]. Shodan provides free access to its primary
data set and API for academic use.

The Shodan website links to a service called Honeyscore [80], which uses an unpublished
algorithm to rate honeypot likelihoods. Honeyscore’s capabilities and its use are described
more in Section 3.6.3.

Project SHINE
Project SHINE sought to investigate whether industrial-control systems are directly exposed
to the Internet using data from Shodan. It queried Shodan for 20 months, starting its search
process with manufacturer names picked up in trade magazines, and adding search terms
from findings discovered in the previous results [3], [81]. Table 2.1 shows counts of their
host discovery.
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Table 2.1. Quantities of industrial-control hosts counted during SHINE.

Protocol Port Quantity Hosts Discovered
Siemens SIMATIC / ICCP TCP 102 3,477
DNP3 TCP 20000 625
BACnet UDP 47808 11,553
MODBUS/TCP TCP 502 16,066
Ethernet/IP TCP 44818 4,522

Eventually SHINE sampled 2,186,971 devices, from which they obtained 578 terms for
traditional industrial-control system devices and 349 terms for “non-traditional” industrial-
control system devices—those suggesting physical controls, such as building-automation,
building-environmental, and serial-ethernet-adapter-devices. The protocols and ports in-
vestigated were S7Comm (TCP 102), Modbus (TCP 502), DNP3 (TCP 20000), Ethernet/IP
(TCP 44818), and BACnet (UDP 47808). SHINE’s counting methodology was to search
for all hosts containing a matching search term, track the results, and optionally follow links
to Web services on matching hosts. To deduplicate, the team used a reverse DNS lookup
to identify hosts having a single domain name and multiple addresses. A weakness of this
methodology is that it can count a duplicate host in the case that the reverse DNS record of
the previous and current addresses do not resolve to the same forward DNS record. Except-
ing the RUGGEDTRAX honeypot, which is discussed in Section 2.3.1, industrial-control
system honeypots were not explained in findings from SHINE.
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CHAPTER 3:
Design and Methodology

From a high-level perspective our test had four parts:

1. Obtain and evaluate a honeypot, noting behaviors and properties observed.
2. Hypothesize behaviors or properties which distinguish the honeypot from real sys-

tems.
3. Obtain data on interactionswith Internet-facing industrial-control services, and search

for interactions which allow us to test our hypotheses.
4. For each interaction which is consistent with a hypothesis, inspect services on the

device, gather data on the same IP address, and judge whether or not the device is a
honeypot.

3.1 Honeypot Overviews
Several industrial-control honeypots are available for use, including Digital Bond Honeynet
and Conpot. An initial walk through of deployment of Conpot illustrated that it was easy to
deploy and required only a single virtual machine or Docker container. Selecting Conpot as
the object of this study appeared to support our first goal of discovering detectable properties
of a subject honeypot.

We elected to study a single honeypotmodel ofConpot to keep the project scopemanageable.
That means that when inspecting a controller to find it as a honeypot or a non-honeypot, we
judged whether it was an instance of Conpot. Future work could study other ICS honeypot
models.

We interacted with each of Conpot’s basic industrial-control emulators to discover their
functionality. This included the S7Comm, Modbus, GasPot, and Kamstrup services, which
are the Conpot control services for which we could find functioning clients. For testing, we
installed Conpot version 0.5.1 from its Github.com repository atop a basic virtual machine
running Debian Linux 3.16.0-4-amd64 (jessie) with Python version 2.7.9.

We used PLCscan [82] to probe the S7Comm service (TCP 102) on the default template
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of our Conpot installation. The response returned by Conpot showed the strings illustrated
in Figure 3.1, which reflected emulated registers from the S7 service on a Siemens S7-200
Micro PLC. The values assigned to these emulated registers are configurable by the Conpot
operator. However, with real PLCs some of the registers may be configurable, such as the
names, and some like Serial Number are not [83]. Some registers returned a null value,
indicating that Conpot was not intended to be probed for those registers, suggesting that
Conpot is designed for a limited number of scanners. Among the non-null values returned,
the PLC name, Plant identification, and Serial number were curious in that they are static
values set by the developers of Conpot, and Conpot’s installation script made no mention
that custom values should be assigned to these registers.

user@honey-debian ~ % python plcscan/plcscan.py --ports=102 192.168.214.10

Scan start...

192.168.214.10:102 S7comm (src_tsap=0x100, dst_tsap=0x102)

Module : v.0.0

Name of the PLC : Technodrome

Name of the module : Siemens, SIMATIC, S7-200

Plant identification : Mouser Factory

Copyright : Original Siemens Equipment

Serial number of module : 88111222

Module type name : IM151-8 PN/DP CPU

OEM ID of a module :

Location designation of a module:

Scan complete

user@honey-debian ~ %

Figure 3.1. Output from the S7Comm service (TCP 102) of default tem-
plate in Conpot.

We probed the Modbus service (TCP 502) of the default template of Conpot with PLCscan,
using a command line switch which instructed the client to exhaustively search all the
28 − 9 (247) Modbus Unit numbers. Response from the probe revealed two notional
units occupying Unit IDs 1 and 2 containing operator-configurable strings, illustrated in
Figure 3.2. RemainingUnit numbers through 247 returnedDevice info error: SLAVE
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DEVICE FAILURE. These were good clues for this honeypot.

user@honey-debian ~ % python plcscan/plcscan.py --ports=502 --brute-uid

192.168.214.10 2>/dev/null | head -n 12

192.168.214.10:502 Modbus/TCP

Unit ID: 255

Device info error: SLAVE DEVICE FAILURE

Unit ID: 1

Device: Siemens SIMATIC S7-200

Unit ID: 2

Device: Siemens SIMATIC S7-200

Unit ID: 3

Device info error: SLAVE DEVICE FAILURE

Unit ID: 4

Device info error: SLAVE DEVICE FAILURE

Unit ID: 5

user@honey-debian ~ %

Figure 3.2. Output from the Modbus service (TCP 502) of default tem-
plate in Conpot.

We probed the AST service of the guardian_ast template on our Conpot host via the Dig-
ital Bond ATG-info script for NSE [65], and obtained output containing user-configurable
strings for station identification, tank configuration, and product name, as illustrated in
Figure 3.3. These values match the defaults provided by Conpot, though some are not
static. Also returned were randomized Volume, TC Volume, Ullage, Height, Water, and
Temp values. A review of the configuration for this template shows that the station name of
STATOIL STATION is a value which is statically assigned and therefore a likely indication
of a Gaspot instance. The names and order of the product selection of SUPER, UNLEAD,
DIESEL, and PREMIUM was another good clue.
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user@honey-debian ~ % sudo nmap -Pn --script atg-info.nse -sT -p10001

-oN atg-info 192.168.214.10

Starting Nmap 7.40 ( https://nmap.org ) at 2019-09-03 06:26 PDT

Nmap scan report for 192.168.214.10

Host is up (0.00031s latency).

PORT STATE SERVICE

10001/tcp open Guardian AST

| atg-info: I20100

| 07/18/2016 05:13

|

| STATOIL STATION

|

|

|

| IN-TANK INVENTORY

|

| TANK PRODUCT VOLUME TC VOLUME ULLAGE HEIGHT WATER TEMP

| 1 SUPER 5656 5734 3172 52.62 9.01 57.63

| 2 UNLEAD 3205 3215 6761 67.25 8.21 58.95

| 3 DIESEL 4937 5011 7506 52.52 2.69 50.57

|_ 4 PREMIUM 3114 3142 7506 51.08 7.37 55.14

Nmap done: 1 IP address (1 host up) scanned in 1.39 seconds

user@honey-debian ~ %

Figure 3.3. Output from the ATG service (TCP 10001) of guardian_ast
template in Conpot.

We probed the electrical-metering service of the kamstrup_382 template on our Con-
pot host using the Kamstrup Meter Protocol (KMP) with a TCP-enabled variant of the
PyKamstrup client [84]. The response provided static numeric values representing electri-
cal measurements on a meter (including Voltage, Current, and Power) at each electrical
phase. Also provided were values representing power input and output, as depicted in
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Figure 3.4.

Energy in 7183.5 kWh

Energy out 0.0 kWh

Energy in hi-res 7183.5887 kWh

Energy out hi-res 0.0 kWh

Voltage p1 228.0 V

Voltage p2 229.0 V

Voltage p3 224.0 V

Current p1 5.11 A

Current p2 4.22 A

Current p3 1.44 A

Power p1 1.0 kW

Power p2 5.499 kW

Power p3 0.895 kW

Figure 3.4. Output from the metering service (TCP 1025) of kamstrup_382
template in Conpot.

Some of the emulated registers in the kamstrup_382 suffer from partial implementation,
for example date and time. Two additional registers 0x3ea (1002) and 0x03eb (1003) give
the current time and date on the device according to KMP specification [85]. However,
when probed the returned values 203513.0 and 140727.0 indicated a time in the past
(08:35:13 PM, 2014 July 27). A second probe after a delay of several minutes returned the
same time, revealing that this is a hard-coded value.

We concluded that the default template of Conpot seemed a useful object to probe for
generating indicators of honeypots. Its S7Comm service in particular had distinctive default
system name, plant ID, and serial number values.

3.2 Scope and Limitations
This study examines only on Conpot, and for analysis derives its data from Shodan. These
choices dictate that we could not see hosts and services that were missed by Shodan, and
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that our manual inspection will likely miss honeypots which responded to probes from
Shodan differently than Conpot. Shodan’s data, as with data from any third-party data
source, may be incomplete or have errors. By not actively scanning objects, this study
could not distinguish a probe not being sent from a probe being sent and a response not
being received. This study analyzed data that is 3+ years old, hence a refresh of the data
set is needed for a current count of industrial-control honeypots. Finally, we did not derive
ground truth from the operator of each device on its status as a honeypot or not, which could
have affirmed or negated our findings even if only for a subset of the honeypots.

3.3 Hypotheses
Based in these preliminary experiments, we tested three clues to industrial-control system
honeypots. The clues could increase the accuracy of counting of ICS devices in network
scans without needing a proprietary tool like Honeyscore.

We developed the following hypotheses, whichwe call H1, H2, andH3. All three hypotheses
are applicable to the Conpot honeypot, and H3 is applicable to honeypots other than Conpot.
A fourth clue was considered, that a host running both an embedded system service and a
general-purpose service is a honeypot; but this appeared to require active scanning, unlike
the other three hypotheses, which we judged to exceed the conditions of our goals.

A potential benefit of H1 and H2 for detecting honeypots is they are not limited to publicly
visible Internet sites. H1 and H2 can be tested on the local network, making them suitable
for honeypots that are developed or modified after initial use, a use that is not enabled by
H3 and Honeyscore.

3.3.1 H1
A service responding via the S7Comm protocol on TCP 102 to probes of its System Name, 
Plant Identification, and Serial Number with the terms “Technodrome,” “Mouser 
Factory,” or “88111222,” is a Conpot instance.

The likelihood of the default S7 System Name and Plant ID values being returned from
probes of a Conpot instance is high because services probed by Shodan need only to be
visible on the Internet for a few days to be picked up by Shodan, as was found in [3] and [8].
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The default serial number “88111222” is likely to be seen in responses from Conpot, and
is unlikely to be seen in responses from a production controller because Siemens assigns
STEP 7 serial numbers only once and does not allow assigning a custom value [83]. Unless
an installation of Conpot is customized prior to responding to probes on the IPv4 Internet,
these values will be present in its responses.

3.3.2 H2
A device providing the same industrial-control services as Conpot’s default template is
running a Conpot instance. Additional services beyond the services of Conpot do not
lessen this finding, and neither does absence of additional services increase the finding.

Conpot’s default template listens with services on six ports, as mentioned in Section
2.3.3: HTTP tcp/80, S7Comm tcp/102, SNMP udp/161, Modbus tcp/502, IPMI udp/623,
and BACnet udp/47808. It is unusual to see these services running together on the same
device. As an exception, tcp/80 is discounted as it is not strictly a control protocol, and it
is common to see HTTP as it provides many network services.

3.3.3 H3
A device providing industrial-control services from a public cloud location is running a
honeypot.

Hardware industrial-control system devices such as programmable logic controllers interact
with the physical domain [5]–[7] and are thus need a location supportive of this hardware.
Public cloud-computing rarely provides the resources necessary to run industrial-control
systems [86].

We identified 29 public cloud locations (Table 3.1) from the three sources, those selling
infrastructure-as-a-service and platform-as-a-service hosting:

1. Provider names discovered by sampling the provider name of hosts matching H1 in
the data captured from Shodan described in Section 3.6. The source for the data is
the internet service provider name given by Shodan at the time of query.

2. Provider names in our Shodan database having the keywords “cloud” or “hosting.”
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3. Provider names on a “Most Reliable Hosting Company Sites” page at Netcraft.com
[87].

Table 3.1. Cloud Internet service provider (ISP) list, used to identify hosts
in the database matching H3.

Alibaba InMotion Hosting

Amazon Iomart

Atlantic.net Kattare Internet Services

Choopa Kvchosting.com LLC

Cloud Builders KW Datacenter

CloudRadium Linode

CloudVPS LiquidNet US LLC

Codero OVH Hosting

Datapipe Rackspace

DigitalOcean Reliablehosting.com

Digital Ocean SimplerCloud

DinaHosting S.L. TheNebulaCloud

EGIHosting UOL Cloud Computing

GMO Cloud Windstream Hosted

GoDaddy

The names were extended to variants found in our data set, e.g., for DigitalOcean and
Digital Ocean. Suffixes which were not necessary to identify the provider, such as US,
LLC, LTD, Services, Data, and Hosting, were removed for searching, since some providers
applied the suffixes inconsistently. For example, our query for Amazon within our sample is
"Amazon*", and it returns data from hosts whose ISP names are any of AMAZON, Amazon
Data Services Ireland Ltd, Amazon Technologies, andAmazon.com. An exceptionwemade
was OVH Hosting since removing "Hosting" from its query found also "OVH SAS" which
appears to be a traditional Internet service instead of a cloud provider.
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Acoming problemwithH3 is that there are efforts underway to develop integrations between
PLCs and cloud-hosted SCADA systems like those studied in [88]. Similarly, cloud services
may provide industrial-control system data in historian nodes and event management nodes
for auditing and automation purposes.

3.4 Internet-Facing Industrial-Control Services
To test our hypotheses, we needed to obtain data regarding interactions with Internet-facing
industrial-control services. Use of the Shodan scanning database enabled us to obtain the
needed data in a standardized way without our actively scanning targets.

We needed to figure out what information to request from Shodan. Searching all of the
protocols simulated by Conpot is difficult, as needed for testing H1 and H2, as the SNMP
(tcp/161) and HTTP (tcp/80) protocols simulated by Conpot represented a large amount of
data in our testing.

Another approach considered was to search for protocols which can be probed manually
with readily available tools. Digital Bond’s Redpoint [65] can probe S7Comm and Modbus
services. The industrial-control protocols supported by Redpoint, which include the pro-
tocols used by Conpot, ultimately inspired the list of services to search in Shodan. These
services and the port numbers associated with them are shown in Table 3.2.

Table 3.2. Industrial-control protocols supported by Digital Bond's Redpoint.

Name Port
S7Comm TCP/102
Modbus TCP/502
CODESYS TCP/1200
Niagara Fox TCP/1911
PCWorx TCP/1962
OMRON FINS UDP,TCP/9600
ProconOS TCP/20547
Ethernet/IP TCP/44818
BACnet UDP/47808
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3.5 Shodan Functionality
Shodan offers three search methods which were useful to us: count, search, and host.
Shodan’s count function searches Shodan’s database and returns the number of devices
matching a query [89]. Table 3.3 shows examples from April 7, 2016, which include
nine port numbers that are searchable via Shodan. It is notable that the numbers of hosts
responding to Shodan over industrial-control port numbers increased over the 2014 numbers
found by Project SHINE.

Table 3.3. Quantities of hosts per Shodan count function, compared with
SHINE.

Query via api.count Response via api.count Quantity prev. reported by SHINE
port:102 3,537 3,447
port:502 16,340 16,066
port:1200 28,792 n/a
port:1911 19,981 n/a
port:1962 15,040 n/a
port:9600 27,622 n/a
port:20547 23,499 n/a
port:44818 4,663 4,522
port:47808 11,815 11,553

Shodan’s search function provides summary information about hosts [79]. Search does
not return all of data about a host. For example, Shodan’s database may contain responses
to multiple probes at an IP address over port 102, and some additional probing over 502,
but the search returns only the latest probe of port 102. We thus use the search function to
discover relevant IP addresses.

In contrast, Shodan’s host function searches Shodan’s database for more complete device
data on each address. It provides the responses made by all services with which Shodan
interacted, aswell as the date-time stamp, autonomous system number (ASN), port numbers,
and approximate geolocation, the source for which is not documented publicly. It also
provides an ISP name, which Shodan appears to have derived from Whois. Table 3.4 lists
the 21 primary fields returned by the host function.
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Table 3.4. Data �elds returned via Shodan's host function.

area_code dma_code longitude

asn hostnames org

city ip os

country_code ip_str ports

country_code3 isp postal_code

country_name last_update region_code

data latitude tags

The data field has a set of fields that varies based on the application protocol Shodan used
to probe each service. The protocol used in a given probe is tracked in the host or search data
as data{}._shodan.module. Example protocols include s7 and modbus. The protocol
specified by Shodan was not used to perform this study, as the port number was used instead.

3.6 Building the Database
The database was established using the following procedure.

1. For each port number in the list to be given in Section 3.6.1, query Shodan for a list
of the IP addresses with a service responding on that port.

2. Combine all the IP addresses found into a set.
3. For each address in the set, query Shodan for the data returned from interactions with

services at that address.

The data capture environment was built via Python version 3.4.3 on 64-bit Ubuntu Linux,
with 3.9 GB random access memory (RAM) and dual-core processor. Python was extended
with the Shodan software development kit via the setup.py script provided onGitHub.com
and all prerequisite packages [90]. Notes from steps 1, 2, and 3 above are as follows.

3.6.1 IP Address Discovery
The port numbers used in Step 1 were generated by combining the numbers for services in
the default template of Conpot (102, 502, and 47808) with those of additional services used
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by Digital Bond’s Redpoint (1200, 1911, 1962, 9600, 20547, 44818). The combined list of
nine port numbers used is as follows:

• 102
• 502
• 1200
• 1911
• 1962
• 9600
• 20547
• 44818
• 47808

The query syntax usedwith Shodan’s software development kit in Step 1was: api.search(
"port:%d" % ( port_number ) ). Initial results from the search function were limited
by Shodan to 100 results, but more could be obtained by incrementing to the next “page”
of 100 results, until we had obtained all the results.

3.6.2 Host Data Query
Using these addresses we queried data from each host individually with Shodan. The
history option for the host function was assigned to true. A few errors occurred during
queries. The errors were printed to stdout, and thanks to some error handling logic the jobs
continued. An alarm was assigned at a duration of 5 seconds to assist with what seemed like
very long timeout conditions, terminating the request if not completed in 5 seconds. Basic
error checking was enabled in the handler via Python’s try and except logic, enabling a
single retry in case of exceptions such as Unable to parse JSON response(address)

or No information available for that IP. If data for the host was not captured
after one retry the host was skipped. The query syntax used in Step 3 was api.host(
ip_address, history = True).

In total, data was captured for 122,678 IPv4 hosts. Additional hosts were found in IPv6
address spaces, but the data for them was not helpful for our hypotheses. Additionally, our
experiments extracted Honeyscore values, and Honeyscore did not appear to be scanning
IPv6 at the time of the experiments. The date of discovery of the IP addresses of relevant
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hosts from Shodan was April 14, 2016. The dates of collecting host data for each IP
addresses were April 17, 2016, through April 20, 2016. The number of sites Shodan
returned, based on the port number of the service, is as follows in Table 3.5:

Table 3.5. Shodan host queries used, and quantities of data returned.

Query term Count
port:102 3638
port:502 16301
port:1200 30387
port:1911 20052
port:1962 17682
port:9600 31120
port:20547 26487
port:44818 7436
port:47808 12100

The services with which Shodan interacted on these port numbers are not all industrial
control services. Inspecting the data on each service was necessary to establish that the
service responded to Shodan’s probe in a manner consistent with an industrial-control
service.

Capture of the 122,678-host data sample from Shodan enabled summarization of the loca-
tions of the hosts by country_name, based on IP geolocation captured by Shodan. The top
locations from total 232 countries are as follows, in Table 3.6:
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Table 3.6. Distribution of countries in which host from our 122,678-host
data set were located.

Country Count Country Count
United States 48696 Netherlands 2412
Russian Federation 15690 Spain 2359
China 12919 Italy 1911
Canada 5127 Poland 1684
France 3292 Hong Kong 1531
Korea, Republic of 2723 Australia 1278
United Kingdom 2458 Other < 1% 18125
Germany 2419

3.6.3 Honeyscore Data Query
In addition to capturing data from interactions with each host in step 4, we also
captured the host’s Honeyscore to enable testing it along with H1, H2, and H3.
We queried Honeyscore using its Web interface in the Shodan API. We used
the HTTP GET method in the Python Requests library against the generated URL
"https://api.shodan.io/labs/honeyscore/%s?key=%s" % (ip, apikey). Hon-
eyscore returned a floating-point value between 0.0 and 1.0, which Shodan claims is the
“probability that an IP is a honeypot” [91]. However, the derivation of each of Honeyscore’s
six values is undocumented. We suppose that a checklist of indicators was generated,
and that each indicator is mapped to some classification and score. Out of 122,678 host
records we successfully collected a Honeyscore for 122,554. Ten of the remaining 124
cases returned an error No information available for that IP, and 114 returned a
502 Bad Gateway message.

3.6.4 Data Storage
Data received from the Shodan host function and from Shodan’s Honeyscore were merged
into a single data set using Python dictionary notation. The data was broken into pages of
100 hosts, and each page was committed to the file system, which was found to be necessary
to prevent crashing the Python interpreter. Pickle was used to flush data from memory onto
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the file system.

3.6.5 Data Reduction
The data set collected fromShodanwas originally over 25 gigabytes, whichwas troublesome
in our initial test environment in the Python interpreter. The data took several minutes to
load, and then took several minutes to respond to our validation attempts, sometimes halting
the interpreter instead. We looked at possible ways to reduce the size of the data set without
negating its usefulness. We found that Shodan’s data field often contained many values
due to our use of Shodan’s history option. The data can be useful, since a change in
a site’s responses can provide a clue to a honeypot. However, we opted for removal of
the additional values, reasoning that sites with an industrial-control honeypot would likely
continue to indicate honeypot throughout their lifecycle. A side benefit of its removal is
that manually inspecting a host can be easier.

After elimination of data with these duplicate values, the data set became roughly 1.83
GB. The basic analysis functions then completed in a few seconds and never crashed the
interpreter.

3.6.6 Data Sampling
Due to the number of hosts in the data set, a manual inspection of all hosts was impractical.
Instead, we created a sample from the hosts. We use P to denote the primary data set
containing 122,678 hosts and S for the sample data set. The procedure used to generate S

from P is as follows:

1. From P, select randomly at 1 percent for roughly 1,200 hosts. Add the data from the
selected hosts in P to S.

2. From P, identify hosts found by H1 and add them to S.
3. From P, identify hosts found by H2 and add them to S.
4. From P, identify hosts found by H3 and add them to S.
5. From P, identify hosts with Honeyscore of 0.5, 0.8, or 1.0, and add them to S.
6. Deduplicate contents of S on the IP address.

S is believed to be diverse enough to enable finding honeypots which were not identified
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as a honeypot by H1, H2, H3 or Honeyscore. S is not random. However, S is complete
in terms containing all detections from all available detection tools with the exception of
Honeyscore 0.3, which they numbered 34,991, and was more than one out of every four
hosts in our data set. When hosts from all selection methods were combined, and 74 hosts
overlapping between methods were de-duplicated, the sample size was 8,127. The counts
of each selection are as follows in Table 3.7.

Table 3.7. Counts from each source used in the sample data set.

Selection Count
Random 1,190
H1 146
H2 2,456
H3 4,523
Honeyscore (0.5) 232
Honeyscore (0.8) 88
Honeyscore (1.0) 743

3.7 Analysis Environment
Analysis required inspection of host data captured by Shodan, and comparing values for
hosts produced from H1, H2, H3, and Honeyscore with the host’s manual inspection. The
Python environment used to capture our data set was cumbersome for analysis because
every search of the data would require that a different function to be developed. Instead,
a data capture and analysis tool called Splunk was used. Its service was created inside
a Docker container instance using the free Community Edition of Docker on a graphical
Debian virtual machine. The Debian machine was installed on an instance of the trial
VMware license on aWindows 10 laptop, and was provisioned with four virtual processors,
2 GB RAM, and a 30 GB storage partition on a solid-state drive.

3.7.1 Using Splunk
Data from the capture process was encoded to JavaScript Object Notation (JSON) and
shipped to Splunk via requests.post, borrowing an example from the pyHEC function
[92]. At the receiving end the Splunk interface was an HTTP Endpoint Connector on the
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Splunk server. The data set indexed by Splunk is searchable via Splunk’s Search Processing
Language syntax.

The trial license for Splunk limits ingest of data to 500megabytes per day, whichwe exceeded
while transferring the data set into Splunk. However, at the time of use Splunk allowed
up to three license violations in a rolling 30-day window before any enforcement [93],
which was permissive enough for this use case. We checked that that the number of records
in Splunk was equal to the number of original records. Data shipped into Splunk was
stored in an index called shodan_host. The base search for all hosts in our data set was
index=shodan_host AND earliest=1.

We also used the spath command which creates a data structure which can be more readily
queried via search [94]. We checked whether or not fields in the JSON data appeared to
be appropriately returned via search, and otherwise executed spath and piped the results
into a search command.

Some data was initially found to be incomplete. Its size was 10,000 bytes, the default limit
in Splunk. Since the largest data point was 5,997,986 bytes, the argument TRUNCATE =

6000000 was added to configuration for _json sourcetype. The data set was re-ingested
with this new byte limit, and a review showed that the largest value was present in its
entirety.

3.8 Manual Inspection
Manual inspection of data from the sample data set S was used to assess whether sites were
consistent with Conpot. The procedure we followed for each host continuing until the host
was labeled, was:

1. Read the data available from all Shodan’s interactions with the host’s services.
2. For each controller service, parse a list of keywords. If one or more keywords present

in the controller service are also present in keywords found in the Conpot model
honeypot, and they are not a legitimate product identification (such as Siemens or
S7-200 or SIMATIC) then label the host HONEYPOT.

3. For each controller service, if there is evidence of non-uniqueness in its control
services, for example a serial number which is duplicated among more than two sites,
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then label the host HONEYPOT.
4. If the host runs an industrial-control service and a non-control (e.g., FTP) honeypot,

then label the host HONEYPOT.
5. If a host running an industrial-control service provides an SSH fingerprint which is

duplicated among other hosts, and if one ormore hosts duplicating the SSHfingerprint
is a honeypot, then label the host HONEYPOT.

6. If a host provides implausible values, for example 0.0 in S7 Module version, or a
serial number which matches a spare part model, then label the host HONEYPOT.

7. If none of the above behaviors were identified then label the host NOT HONEYPOT.

Manual inspection of the 8,127 hosts in S produced a list of 749 hosts labeled HONEYPOT,
and 7,378 hosts labeled NOT HONEYPOT, which enabled a view of countries in which
honeypot and non-honeypot devices in S were IP-geolocated at the time of Shodan’s probe.

Honeypot locations are summarized as follows, in Figure 3.8:

Table 3.8. Distribution of countries in which 749 honeypots were located.

Country Count Country Count Country Count
Poland 563 Korea, Republic of 5 Czech Republic 1
United States 51 Taiwan 5 Iran, Islamic Republic of 1
Japan 38 China 4 Ireland 1
Singapore 18 Australia 2 Italy 1
Canada 16 Hong Kong 2 New Zealand 1
Germany 11 India 2 Norway 1
Netherlands 9 Russian Federation 2 Romania 1
United Kingdom 7 Brazil 1
France 5 Chile 1

Hosts in S which were not honeypots were located across 83 countries, as follows in Figure
3.9:
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Table 3.9. Distribution of countries in which 7,378 non-honeypots were
located.

Country Count Country Count
United States 4563 Italy 84
Canada 462 Malaysia 82
China 337 Czech Republic 81
Russian Federation 202 United Kingdom 77
Korea, Republic of 163 Germany 75
France 135 Poland 75
Spain 99 Other < 1% 848
Taiwan 94

When comparing locations based on status, Poland’s presence in S was more visible in
the honeypots than in the non-honeypots. A similar increase in visibility in the honeypots
is evident for hosts in Japan, Singapore, Taiwan, versus non-honeypots. Distribution of
countries among non-honeypots in S appeared to be similar to those of P.
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CHAPTER 4:
Testing

This chapter covers the testing of our detection tools against the host data in the sample data
set. The process used for testing was to compare findings of each of the detection tools:
H1, H2, H3, and Honeyscore. Except as otherwise noted, a positive Honeyscore means 0.5,
0.8, or 1.0, excluding Honeyscore 0.3 for the reason provided in Section 3.6.6. Detection
of a honeypot by a given tool is denoted as True or False, e.g., H1=True. The correctness
of the detection is compared against the host’s status by manual inspection, as described in
Section 3.8. For each test, performance is measured by the following values:

• Quantity of honeypots detected as honeypots (True Positives)
• Quantity of honeypots not detected as honeypots (False Negatives)
• Quantity of non-honeypots detected as honeypots (False Positives)
• Quantity of non-honeypots not detected as honeypots (True Negatives)
• Precision as: True positives / ( True Positives + False Positives )
• Recall as: True positives / ( True Positives + False Negatives )
• F-score as: 2 * ( Precision * Recall ) / ( Precision + Recall )

Finally, number of hosts indicated as a honeypot by each of H1, H2, H3, and Honeyscore is
compared with the number of hosts indicated by the other methods.

4.1 Estimated Number of Honeypots
The number of honeypots (positives) found in our sample data set S (8,127 hosts), for each
of our tools, is provided in Table 4.1.
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Table 4.1. Estimated number of honeypots based on each tool.

Tools Count
H1 146
H2 2456
H3 4523
Honeyscore 0.5 232
Honeyscore 0.8 88
Honeyscore 1.0 743

The numbers of hosts having each Honeyscore are provided in Table 4.2.

Table 4.2. Number of hosts having each Honeyscore.

Honeyscore Count
0.0 3108
0.3 3950
0.5 232
0.8 88
1.0 743
not captured 6
Total 8127

4.2 Czajka Replicas
Duringmanual inspection a duplicatedS7 serial number stood out, 6ES7 216-2AD23-0XB0,
whose usage spanned 554 S7 controllers, indicating that they are inauthentic. Of hosts using
the duplicated serial number, 516 returned a duplicated SSH fingerprint. An SSH finger-
print is a hash of the public certificate, and its duplication suggests that some services on
the host are copied from a common source. Thirty-eight hosts returned the duplicated S7
serial number and no SSH fingerprint. These replicas were labeled as “Czajka”, from their
S7 PLC name. We labeled the Czajka replicas that had empty responses to Shodan’s S7
probes as honeypots, because they presented the same SSH fingerprint as a honeypot.

These SSH fingerprints and the above S7 serial number were present in 563 hosts in our
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sample data set S, and in 592 hosts in our primary data set P. The 29 replicas that were
not detected by any tool returned no S7 data, but had some FTP, SIP, MySQL, PortMapper,
and Web services. Their services returned banners identical to those of the other hosts,
except one FTP service which returned an indicator of Nepenthes honeypot, �freeFTPd
1.0�warFTPd 1.65�. Shodan reported 463 of the replicas being vulnerable to CVE-2015-
0204 (FREAK) and CVE-2014-0160 (Heartbleed).

For Czajka replicas that returned S7 responses their responses were identical, and returned
Module v.0.0 consistent with Conpot. Responses from port 502 (Modbus) were identical.
The replicas used 44 ISPs in Poland, and gave a water and sewage-processing company
name in the S7 Plant identification. Honeyscore >= 0.5 detected 561 of the replicas, and
H2 detected 549. Since H1, H2, and H3 do not look for duplicated S7 serial numbers or
duplicated SSH fingerprints, additional heuristics are needed to detect them all.

4.3 H1 Performance
As described in Section 3.3.1, H1 looks for Mouser ∨ Technodrome ∨ 88111222 in
response to the probe of the S7Comm service. Results for H1 against our sample data set
are given in Table 4.3.

Table 4.3. H1 test performance compared with manual inspection.

H1 Manual Inspection Count
False HONEYPOT 603
False NOT HONEYPOT 7378
True HONEYPOT 146
True NOT HONEYPOT 0

Total 8127

Findings from H1 include 146 true positives, 0 false positives, and 603 false negatives.
Precision is the quantity of true positives divided by the count in H1, which is 1. Recall is
the ratio of true positives to honeypots in the sample, which is 0.2. The true positives in H1
suggested the honeypot customization was incomplete.

A term that was present in the Czajka replica S7 services, and is also present in Conpot’s
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S7 service, is the S7 Module version v.0.0. This v.0.0 was present in 586 of the 603
false negatives produced by H1, and is the greatest source of error in H1. A term present in
Conpot that H1 is missing is the default IPMI banner, which caused 23 false negatives. The
banner matches the data from port 623 in the Conpot instance shown in Figure 4.2. These
should be added to H1 as recommended in Section 5.2.

One of the hosts missed by H1 was an instance of the Gaspot service in Conpot. The
honeypot was also missed by H3 and Honeyscore, only being detected by H2. Its indicator
as a Conpot system is the default IPMI banner from Conpot. Its S7 service is customized,
and on its own would have fooled manual inspection. The “Product” values in its ATG
services are assigned dynamically, as shown in Figure 4.1. This shows that potential exists
for a heuristic to identify an implausible product in automatic tank gauge (ATG) responses,
as suggested in Section 6.2.

I20100

04/07/2016 07:50

STATOIL STATION

IN-TANK INVENTORY

TANK PRODUCT VOLUME TC VOLUME ULLAGE HEIGHT WATER TEMP

1 fbe9417a841df85fde91f06c5d8deb578857 8960 3244 29.85 2.07

55.34

2 2016-04-07T09:50:47+02001114 1197 8068 50.81 9.32 57.34

3 DIESEL 7540 7587 3520 73.84 6.93 55.03

4 PREMIUM 5000 5097 3520 43.25 6.21 53.32

Figure 4.1. An instance of Gaspot which was not detected by H1.
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4.4 H2 Performance
As described in Section 3.3.2, H2 compares the port numbers of Conpot’s emulated
industrial-control services (102, 502, 623, 161, and 47808) to the ports listed in Shodan’s
ports for each host. When all ports in the above list had to be present on a host, no
matching hosts were found in our full set of 122,678 hosts. But, requiring that all but one
of the port numbers needed to be present, 3 hosts were identified out of 122,678 hosts. “All
but three” seemed the best choice. Comparison of three variants of H2 by their F-score are
as shown in Table 4.4:

Table 4.4. Performance of three variations in quantity of port matches of
H2.

Detection
Mechanism

True
Positives

False
Pos.

False
Neg.

Precision Recall F-1 Score

H2 “all but one” 3 0 746 1 0.0040 0.0080
H2 “all but two” 92 102 657 0.47 0.12 0.20
H2 “all but three” 687 1769 62 0.28 0.92 0.43

The “all but three” variation was selected by F-score, and results from it against S are as
follows in Table 4.5:

Table 4.5. H2 �all but three ports� test performance compared with manual
inspection.

H2 Manual Inspection Count
False HONEYPOT 62
False NOT HONEYPOT 5609
True HONEYPOT 687
True NOT HONEYPOT 1769

Total 8127

H2 had 687 true positives, 1769 false positives, and 62 false negatives. Precision is the
quantity of true positives divided by the count in H2, which is 0.28. Recall is the ratio of
true positives to honeypots in the sample, which is 0.92.

41



4.5 H3 Performance
H3 looks at whether or not the ISP of a host matches any of the names on our Cloud ISP
list in Table 3.1. The results are shown in Table 4.6.

Table 4.6. H3 test performance compared with manual inspection.

H3 Manual Inspection Count
False HONEYPOT 645
False NOT HONEYPOT 2959
True HONEYPOT 104
True NOT HONEYPOT 4419

Total 8127

Findings from H3 include 104 true positives, 4419 false positives, and 645 false negatives.
Precision is the quantity of true positives divided by the count in H3, which is 0.02. Recall
is the ratio of true positives to honeypots in the sample, which is 0.14.

Among the False Negative results in H3, the ISPs of hosts include some that appear to
specialize in infrastructure-as-a-service and platform-as-a-service. These included the
following names:

• ColoCrossing
• Host Sailor Ltd.
• Liquid Web
• PhoenixNAP LLC
• SingleHop
• Total Server Solutions L.L.C.
• Zappie Host LLC

These ISPs should be added to the Cloud ISP List to improve detection in any future iteration
of H3.

4.6 Honeyscore Performance
Findings from Honeyscore were checked against manual inspection in the sample data set
S as summarized in Table 4.7.
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Table 4.7. Honeyscore test performance compared with manual inspection.

Honeyscore Manual Inspection Count
0 HONEYPOT 5
0.3 HONEYPOT 6
0.5 HONEYPOT 1
0.8 HONEYPOT 1
1 HONEYPOT 734
not captured HONEYPOT 1
0 NOT HONEYPOT 3103
0.3 NOT HONEYPOT 3944
0.5 NOT HONEYPOT 231
0.8 NOT HONEYPOT 87
1 NOT HONEYPOT 9
not captured NOT HONEYPOT 5

Total 8127

Honeyscore was good at detecting Conpot, with only 11 instances of Conpot in S having a
Honeyscore less than 0.5. The 11 which were missed by Honeyscore 0.5/0.8/1.0 are indeed
instances of Conpot, and one example host instance is illustrated in Figure 4.2, in which
data from the host’s non-ICS services has been removed to simplify it.
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>>> pprint(conhost)

[{’asn’: ’AS46652’,

’data’: [ [...] {’asn’: ’AS46652’,/

’data’: ’Location designation of a module: \n’

’Copyright: Original Siemens Equipment\n’

’Module type: IM151-8 PN/DP CPU\n’

’PLC name: Technodrome\n’

’Module: v.0.0\n’

’Plant identification: Mouser Factory\n’

’OEM ID of a module: \n’

’Module name: Siemens, SIMATIC, S7-200\n’

’Serial number of module: 88111222\n’,

’port’: 102,

’timestamp’: ’2016-04-08T03:16:46.697920’},

{’asn’: ’AS46652’,

’data’: ’Siemens, SIMATIC, S7-200’,

’port’: 161,

’timestamp’: ’2016-04-04T18:20:34.112566’},

{’asn’: ’AS46652’,

’data’: ’\\x06\\x00\\xff\\x07\\x00\\x00\\x00\\x00\\x00\\x00\\

x00\\x00\\x00\\x10\\x81\\x1cc ’

’\\x008\\x00\\x01\\x80\\x04\\x02\\x00\\x00\\x00\\x00

!’,

’port’: 623,

’timestamp’: ’2016-02-25T11:52:48.129997’},

[...] ],

’honeyscore’: ’0.0’,

’ip_str’: ’82.196.4.78’,

’isp’: ’Digital Ocean’,

’last_update’: ’2016-04-15T16:42:02.248095’,

’ports’: [22, 80, 102, 161, 623, 443, 11211]}]

>>>

Figure 4.2. An instance of Conpot which was not detected by Honeyscore.
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Without knowing how Honeyscore’s detection mechanism works, we can only guess about
what went wrong detecting the above instance of Conpot. Perhaps the indicators used by
Honeyscorewere incomplete at the time of testing this particular host, andwere subsequently
updated to detect similar hosts without updating prior results. This host is unique because
it was detected by H1, H2, and H3, but not by Honeyscore. It appears that no single tool
can be guaranteed to detect all honeypots.

4.7 Comparison of Tools
Comparing detections by Honeyscore with detections from our tools was tricky when
Honeyscore’s values were split six ways due to the many combinations. To remedy this, we
grouped hosts with Honeyscores 0.5, 0.8, or 1.0 together. The detections by our tools, and
their agreements and disagreements with Honeyscore, are shown in Table 4.8.
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Table 4.8. Results of tests from all tools with results from all others.

H1 H2 H3 Honeyscore >= 0.5 Manual Inspection Count
False False False False NOT HONEYPOT 1115
False False False True HONEYPOT 15
False False False True NOT HONEYPOT 82
False False False not captured NOT HONEYPOT 1
False False True False HONEYPOT 1
False False True False NOT HONEYPOT 4174
False False True True NOT HONEYPOT 234
False False True not captured NOT HONEYPOT 3
False True False False HONEYPOT 4
False True False False NOT HONEYPOT 1758
False True False True HONEYPOT 564
False True False True NOT HONEYPOT 2
False True False not captured HONEYPOT 1
False True False not captured NOT HONEYPOT 1
False True True False HONEYPOT 1
False True True True HONEYPOT 17
False True True True NOT HONEYPOT 8
True False False False HONEYPOT 2
True False False True HONEYPOT 41
True False True True HONEYPOT 3
True True False False HONEYPOT 2
True True False True HONEYPOT 16
True True True False HONEYPOT 1
True True True True HONEYPOT 81

Total 8127

Fifteen honeypots were detected by Honeyscore and not by H1, H2, or H3. Among them,
12 had an implausible S7 Module Version v0.0, 12 had a duplicate S7 Serial Number, and
10 had an SSH fingerprint which overlapped with the SSH fingerprint of a host running a
honeypot. These would all be good heuristics to add.
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One honeypot was detected by H3 only. Four honeypots were detected by H2 only. One
honeypot was detected by H1, H2, and H3, but not Honeyscore. The highest-numbered
agreement between tools about honeypots exists between H2 and Honeyscore, which both
identified 564 honeypots. All honeypots in S were identified by some tool.

4.8 Challenges Encountered
Challenges encountered during the data capture and analysis included the following:

1. While we had access to tools such as PLCscan and Redpoint’s modicon-info.nse
and s7-enumerate.nse scripts, we could not tell which underlying tool is used
by Shodan’s S7 and Modbus probes, nor whether S7 and Modbus services generally
provide access tomemory registers thatweremissing fromShodan’s probes. Knowing
something about the limitations in the probing mechanisms could have been useful.

2. Some services in Shodan’s data responded to Shodan’s probe with a null string. We
can infer some possible causes of this, but absent a status code from the probe, we
cannot be certain why.

3. When control service data was found, parsing that data into a format which facilitates
searching and filtering was tricky. For example, Siemens SIMATIC device models
may or may not provide a serial number in their S7 service, and they may or may not
provide a serial number in their SNMP service. We used Splunk’s search-time field
extraction capability to parse fields when those fields were relevant, but automatic
parsing would have facilitated quicker and perhaps more complete analyses.
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CHAPTER 5:
Summary and Potential Improvements

5.1 Test Summary
The results of each test are summarizedwith True Positives, False Positives, False Negatives,
Precision, Recall, and F-1 Score, as follows in Table 5.1:

Table 5.1. Comparison of results of detection tools.

Detection
Mechanism

True
Positives

False
Pos.

False
Neg.

Precision Recall F-1 Score

H1 146 0 603 1 0.19 0.33
H2 687 1769 62 0.28 0.92 0.43
H3 104 4419 645 0.023 0.14 0.039

H1 or H2 733 1769 16 0.29 0.98 0.45
H1 or H3 165 4419 584 0.036 0.22 0.062
H2 or H3 691 6180 58 0.10 0.92 0.18

H1 or H2 or H3 734 6180 15 0.11 0.98 0.19
Honeyscore 0.3 6 3944 5 0.0015 0.5 0.0030
Honeyscore 0.5 1 231 11 0.0043 0.083 0.0082
Honeyscore 0.8 1 87 12 0.011 0.08 0.020
Honeyscore 1.0 735 8 13 0.99 0.98 0.99
Honeyscore>=0.3 743 4270 6 0.15 0.99 0.2
Honeyscore>=0.5 737 326 12 0.69 0.98 0.81
Honeyscore>=0.8 736 95 13 0.89 0.98 0.93
H1 or H2 or H3
or Honeyscore 1.0

749 6182 0 0.11 1 0.20

H1 provided perfect precision albeit low recall, which may make H1 a valuable heuristic
in the case that correct detection of some Conpot honeypots is prioritized over the risk
of missing most honeypots. H2 provided the broadest identification of honeypots among
H1, H2, and H3, which may make H2 desirable as a general-purpose heuristic, allowing
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for some false positives. H3 provided poor precision and low recall; however it found a
honeypot that was not detected by other tools. The best F-1 score among H1, H2, and
H3 came from combining detections from H1 or H2, making it the most useful approach
for searches that allow for trade-offs between completeness and correctness of detections.
Shodan’s Honeyscore, overall, offered near-perfect precision, and near-perfect recall. The
S7 honeypots detected by H1 or H2 or H3 were 731, which left 12 S7 honeypots undetected,
all of which returned the default S7 Module v.0.0 from Conpot. It was possible to
maximize recall from the criterion “H1 or H2 or H3 or Honeyscore 1.0”.

Since Honeyscore’s detections of instances of Conpot did not always agree with detections
from H1, H2, or H3, it appears that combining detections from Honeyscore with detections
from a heuristic should increase the detections. Using variations of these combinations can
enable a researcher to emphasize correctness of detections (H1), or near-completeness of
detections (H1 or H2), or completeness of detections with high false positives (H1 or H2 or
H3 or Honeyscore 1.0).

5.2 Improving Detection Rates
Opportunities to increase detection rates could occur by adding Conpot’s default IPMI
“banner” string as an indicator to H1, and addition of Conpot’s default S7 Module Version
v0.0 to H1, since theywere found in Conpot instances andwere not found in real controllers.
Their addition, when checked against our 8,127-host sample data set S, appear to change
H1’s F-score to 0.989, however a re-run of the data sampling must precede any test of H1’s
performance with these additions.

Other improvements to our hypotheses based on inspection of the sample data in S are:

1. H1 andH2 used the default template in Conpot as amodel, and could both be extended
to include the Gaspot template via addition of keywords and port numbers from that
template.

2. H2 could be extended to include the Smart Meter template in Conpot.
3. Hosts that responded to probes from Shodan with no attempt to look like a PLC

should be filtered from all H3. This would reduce false positives in H3 by 3,579 by
ignoring hosts with ISPs named Reliablehosting.com, EGIHosting, or CloudRadium
L.L.C., the services of which returned null responses to Shodan’s probes.
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4. Ten additional honeypots in S can be found by H3 by adding new ISPs cited in 4.5 to
the Cloud ISP List, and 66 additional hosts, which may or may not be honeypots, can
be found in P.

A non-indicator findingwhichwas notablewas aModbus SlaveDevice errorwhich appeared
to be consistent across instances of Conpot. This adds support to an indicator if present.
Contents of an example are shown in Table 5.2.

Table 5.2. Modbus error response common among Conpot �ndings in
Shodan.

Port Data

502

Unit ID: 0

-- Slave ID Data: Illegal Function (Error)

-- Device Identification: Slave Device Failure (Error)

Unit ID: 255

-- Slave ID Data: Gateway Target Device Failed To Respond (Error)

-- Device Identification: Slave Device Failure (Error)

51



THIS PAGE INTENTIONALLY LEFT BLANK

52



CHAPTER 6:
Conclusion and Future Work

6.1 Conclusions
This study aimed to determine properties and behaviors of industrial-control system honey-
pots based on the Conpot honeypot, and to test ability of heuristics to identify instances of
Conpot by searching a large-scale scanning database. Three heuristics were tested against a
sample data set from Shodan, confirming ability of the heuristics to characterize honeypots
at differing levels of precision and recall. Most of the honeypots detected were replicas in
a system of Conpot instances related by S7 serial number and SSH fingerprint.

Shodan’s Honeyscore was also tested with success, however neither our hypotheses nor
Honeyscore found all the honeypots unless detections from multiple methods were com-
bined. The study enabled identification of 743 S7 honeypots from our 8,127-host sample
data set, which is 20% of the 3,638 S7 services in our 122,678-host primary data set. The
remaining 2,895 devices were more suitable for counting as S7 controllers, because they
were not detectable Conpot instances. This appears to support [1], which found at roughly
the same time of search as this study that 5% of S7 services were honeypots. Caveats are
that detections in [1] used active scanning versus Shodan and counted less S7 services than
Shodan counted, and that the detection methods did not incorporate S7 Module, S7 Serial
number, and SSH fingerprint as potential indicators of a honeypot.

This study illustrated that a STEP 7 honeypot simulated by Conpot can be detected when a
single configurable value is left as default. Combinations of services matching Conpot were
shown to indicate instances of Conpot. Use of cloud service providers by a controller was
also shown to provide an indicator, but with errors. We showed that these heuristics could
aid in identifying as much as 20% of STEP 7 services as honeypots, potentially narrowing
STEP 7 device counts. In the big picture, this represents an incremental advancement toward
counting legitimate industrial-control devices by removing obvious honeypots. Suggestions
were made to improve the heuristics’ precision and recall, and additional heuristics were
highlighted to further improve counting.
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6.2 Future Work
The foremost aim for an industrial-control systems survey is to track legitimate industrial-
control devices open to the IPv4 internet. The answer to this could be more narrow than
the set of all of hosts listening on TCP/102 that are not an instance of a known honeypot or
otherwise fake. Using a focused methodology for counting legitimate devices would enable
a researcher to perform a longitudinal study of how this population looks now, and how it is
evolving over time, which would be valuable to all of the stakeholders of industrial-control
systems security.

Opportunities for future work based on this study include:

• Generate ground truth on hosts’ status as a honeypot or not, perhaps by reaching out
to operators of devices found by a heuristic.

• Perform a quicker analysis of the data to inspect 100% of hosts.
• Add signatures to enhance H1, H2 and H3 from those identified in Section 5.2.
• Add heuristics to complement H1, H2, H3, and Honeyscore.
• Track legitimate industrial-control devices that are exposed to the internet.

For tracking honeypots it would be useful to re-run the tests with a current refresh of the
data set retrieved from Shodan to enable detection of modifications to honeypots over time,
identification of new honeypots, or trends with Conpot. Using a second provider such as
Censys, whose scanning mechanisms are open-source, would provide a means to compare
the quantities and industrial-control application data with those of Shodan.

Among possible new heuristics, the following were made evident by this work:

1. If the serial number of a control service duplicates a serial number of a control
service in the same family (for example, S7) then at most one of the services sharing
the number is authentic, and it is possible that all are inauthentic.

2. If the SSH fingerprint of a controller duplicates the SSH fingerprint of other con-
trollers, then the status of its control service as honeypot or not is equal to that of all
of the other controllers with that SSH fingerprint.

3. If the Product returned in an automatic tank gauge (ATG) response is implausible,
then the service in an instance of Gaspot. Basic constraints could be used, for example
checking if the product name changes between probes, or if the product exceeds a
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character limit.
4. If the date and time registers (0x3ea and 0x03eb) in a Kamstrup Meter Protocol

(KMP) service do not increment between time-lapsed probes, then the service is an
instance of Conpot.

Additional industrial-control honeypots, such as alternative templates in Conpot, Digital
Bond SCADA Honeynet, and emerging ones such as Gridpot can be evaluated using our
approach, making for new findings beyond the default template in Conpot. Evaluating
the latest edition of Conpot could add new insights, such as potential findings from version
0.6.0’s Ethernet/IP emulator, which returns what appears to be a static default serial number.

Additional approaches that may add value may include new tools and addition of subject
matter expertise in the industrial-control domain. For example, use of machine-learning
tools against data sets derived similarly from public scan databases such as Shodan or Censys
may speed up analysis, and may provide additional observable indicators of honeypots.
Some probes of legitimate S7 services from programmable-logic controllers on hand could
help by providing look and feel from the perspective of interactions with real controllers.
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