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Molecular motors are responsible for intracellular transport of
a variety of biological cargo. We consider the collective
behaviour of a finite number of motors attached on a cargo.
We extend previous analytical work on processive motors to
the case of non-processive motors, which stochastically bind
on and off cytoskeletal filaments with a limited number of
binding sites available. Physically, motors attached to a cargo
cannot bind anywhere along the filaments, so the number of
accessible binding sites on the filament should be limited.
Thus, we analytically study the distribution and the velocity
of a cluster of non-processive motors with limited number
of binding sites. To validate our analytical results and to
go beyond the level of detail possible analytically, we
perform Monte Carlo latticed based stochastic simulations.
In particular, in our simulations, we include sequence
preservation of motors performing stepping and binding
obeying a simple exclusion process. We find that limiting
the number of binding sites reduces the probability of non-
processive motors binding but has a relatively small effect
on force–velocity relations. Our analytical and stochastic
simulation results compare well to published data from
in vitro and in vivo experiments.
1. Introduction
Molecular motors that facilitate intracellular transport can move
cargoes such as vesicles, lipid droplets or mitochondria [1–7].
Motors bound to cargo can work either alone or cooperatively.
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Transport by a single molecular motor has been widely studied both in experiments [8–12] and theory

[2,4,13–17]. However, experiments in vivo, have revealed, by electron microscopy and by tracking of
cargoes with optical methods, that in cells cargoes are generally transported by several motors
[3,4,10,18–21]. Many studies have demonstrated that the number of molecular motors influences cargo
transport, affecting the velocity, direction and persistence of cargoes [3,10,22–24].

In general,molecularmotors can be classified according to their processivity, which refers to the distance
that they can move along a filament before detaching [2,25]. Processive motors can individually interact
with a filament for long times performing a large number of steps before detaching, i.e. they rarely
unbind from the filament. Examples of processive motors include kinesin, which moves towards the
plus-ends of microtubules (anterograde direction) and dynein, which moves towards the minus-ends of
microtubules (retrograde direction) [25]. By contrast, non-processive motors will often unbind [2],
remaining on a filament for only a short time and moving only a short distance. An example of a non-
processive motor is myosin, which moves along actin filaments. In experimental biology, the distinction
between processive and non-processive is often defined as between rare and common unbinding of
motors respectively. However, in this paper, we use a purer definition of processive and non-processive
motors to align with the qualitative difference between theoretical models. We assume ‘processive’
motors never unbind during the time frame under study whereas ‘non-processive’ motors are able to
unbind and rebind to a filament within the time frame of the study. Feng et al. [26] show that
reattachment kinetics play a dominant role in multimotor cargo transport by studying pairs of motors
joined with DNA. While at first glance it may seem that processive motors are better, there may be
considerable advantages of non-processive motors. For example, by considering hydrodynamics,
Argentini & Lowe [27] suggest it could be energetically favourable for some fraction of motors to detach
and be advected by fluid flow generated by bound motors.

Motors pulling on a cargo often pull against a force which affects their velocity. The force may be just
the drag force caused by the cargo moving through the viscous medium or there may be additional
external forces. For example, in vitro experiments can exert an external force on the cargo using optical
tweezers or a magnetic field [10,28,29]. Various mathematical models have been introduced to explain
the dynamics of collective motors pulling against a force from different perspectives [2,4,14,30–33].
In particular, two different models for the way force affects collective motors published in [2–4,14]
have both been widely used, but confusion exists in the literature in applying these models. The
former [2] introduced the leading motor model in which all the load force from the cargo is exerted
on the leading motor which seems to be supported by some experiments [10,29]. By contrast, the
latter [3,4,14], used a mean-field theory, assuming that all motors share the force equally, to
analytically calculate the velocity of a cluster of motors moving along a cytoskeletal filament and
seems supported by other experiments [34–36]. We discuss these two models in more detail in §2.1.
The collective behaviour and cooperativity of multiple motors simultaneously pulling on a cargo is
not yet fully understood and interesting research questions remain.

In this work, we model molecular motors moving along cytoskeleton filaments by using analytical
expressions and Monte Carlo simulations. We compare our simulation results with mathematical
models for a fixed number of motors on a single track. Campàs et al. [2] derived the analytical result
for the velocity against force for a cluster of such processive motors. We extend this leading motor
model to obtain an analytical expression for the case of non-processive motors using a similar method
to that used in [4] for their mean field model. In addition, we mathematically and computationally
study the case of a finite number of available binding sites on the filament and include the sequence
preserving effects of simple exclusion in our simulations. Finally, we compare our analytical and
simulation results to published experimental data [10,37].
2. Processive motors
2.1. Mathematical description of transport by collective processive motors
The standard model for multiple motor transport is based on the asymmetric simple exclusion process
(ASEP) model [38–41]. The basic principle is to consider a filament as a one-dimensional lattice of
sites that motors can occupy. Over time a motor can step forwards or backwards with specified rates
but cannot move to an already occupied site. The stepping rates simplify the kinetics of the enzyme
cycle producing a step into a single rate parameter. A more detailed study [32] of Michaelis–Menton
kinetics of the enzyme cycle reveals a substrate dependence and enhanced velocity due to activation
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Figure 1. Sketch showing three motors (blue circles) attached to a cargo. The cargo moves with velocity v and the force F is shared
equally by all three motors [14].
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of motors before the next site is available. Using a single rate parameter as we do assumes the activation
is immediate corresponding to high substrate/energy availability, i.e. we assume the ATP concentration is
not limiting.

Over the past decade theoretical investigations of transport by multiple molecular motors under a
load force have resulted in two widely used theoretical models for how force affects the motors,
namely a mean-field theory [4] and a leading motor model [2]. However, which of these two models
is more appropriate in particular applications remains ambiguous. Below we clarify the difference
between these models and the assumptions made by them.

2.1.1. Mean-field model

Klumpp & Lipowsky [4] proposed a mathematical model for a cargo transported by n molecular motors
along a filament, assuming that the external load force F, is applied equally to the n bound motors, such
that an individual motor experiences a force F/n (figure 1). Klumpp & Lipowsky [4] assume the velocity
is a linear function of force and later Kunwar & Mogilner [14] extended the linear force–velocity relation
to a more general nonlinear form with an exponent w, namely

Vn(F) ¼ v 1� F
Fsn

� �w� �
, (2:1)

where v is the velocity when no load is applied and Fs is the stall force of a single motor (the force for
which the cargo stops) [1,14,29,42–45].

This theoretical model is suitable to apply to experiments in which the external force is exerted in
such a way that all the motors share it equally. However, in many scenarios, such as in a cell, motor
transport is resisted by an internal viscous drag force on the cargo from a fluid medium such as the
cytoplasm. Such a force may be all experienced by the leading motor with motors following behind
force free. Optical trap force measurements on kinesin-1 by Furuta et al. [10] using a polystyrene bead
stuck to the motor assembly imply that one kinesin bears all the load. In the next section, we
therefore review the leading motor model developed by Campàs et al. [2] which is more appropriate
for such scenarios.

2.1.2. The leading motor model

Campàs et al. [2] developed an asymmetric simple exclusion process (ASEP) [38–41] for cargo
dynamics driven by processive molecular motors. As illustrated in figure 2, each motor is able
to move stochastically with specified forward, p, and backward, q, rates, similar to classical
Brownian ratchet models [46–48]. The hopping rates for the leading motor are dependent on the force,
[49], by a Boltzmann weighting; p1 = pe−fδ and q1 = qef (1−δ), where f is the dimensionless force
exerted by the cargo such that the load force F = fkBT/dx where dx is the motor step size. The
dimensionless parameter, δ, varies from 0 to 1 and determines how much the forward versus
backward stepping rates are affected by the load force. The forward and backward rates of all the
motors following the leading motor are equal and independent of force, i.e. pμ = p and vμ = v for μ > 1
[2,40]. The analytical expression derived by Campàs et al. [2] for the average velocity of a cluster of n
motors is given by

Vn ¼ p
(1� ef (q=p)n)(1� q=p)

e fd(1� q=p)þ ef (q=p� (q=p)n)
: (2:2)
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Figure 2. Possible motor transitions and associated rates. Motor tails are attached to a cargo whereas motor heads (blue circles) are
attached to a filament. The boxes represent a one-dimensional lattice of binding sites on the filament [2].
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In the simple case of unidirectional motors for which q = 0, equation (2.2) reduces to Vn = pe−fδ. For small
forces, this can be expanded to reproduce the linear version of the mean-field theory in equation (2.1)
with ω = 1. We also note that a rough approximation of equation (2.2) can be obtained to describe the
behaviour of multiple motors with a simpler model of a single motor with modified backwards
stepping rates (see electronic supplementary material, appendix E). However, the validity of this
approximation does not hold well for the parameter regions we are interested in.

Campàs et al. [2] also consider attractive and repulsive interactions between motors. Despite a small
amount of evidence suggesting very weak attractive interactions [50], it is not yet clear what interactions
are present experimentally. We therefore focus on the neutral case of no interactions between motors for
our analysis.

As noted above, the leading motor model is suitable for situations such as a viscous drag force of a
cargo in vivo, for which the total force is experienced by the leading motor. In addition, this model can
easily be extended to other forms of unequal loading and as such is more general than the mean-field
model, with the latter being a limiting case of the leading motor model. Kunwar et al. [1] present a
more detailed model of motors as springs which results in motors sharing the force equally when at
the same position and the leading motor experiencing most of the force when it is ahead. In our
model, we consider simple exclusion and therefore do not allow multiple motors at the same site, so
the leading motor is the most appropriate model for us to use. Therefore, in this work, we use this
leading motor model to compare to in vivo experimental data [37].

We first simulate fully processive motors with the assumption that the leading motor experiences all
the force. Then in §3, we extend this model to include motor attachment and detachment to study the
case of non-processive motors. Campàs et al. [51] studied this extension to non-processive motors
using simulations but did not do the analytical extension which we do in §3.

2.2. Simulations of processive motors
We first simulate the model of N processive motors which do not unbind from the filament. We model
the filament as an one-dimensional lattice with lattice spacing equal to the motor step size, dx. We
initialize the simulation by randomly placing N motors within the width of cargo. We choose the
initial cargo width to be 10 lattice sites for N < 10 and (N + 10) lattice sites for N≥ 10. To check this
choice of initial conditions does not influence our results, we varied the width of the cargo between
10 and 100 and found that our results are insensitive to the chosen initial cargo width.

The simple exclusion rule dictates that each site may be either occupied or empty but cannot be
occupied by more than one motor. Motors can thus move to a neighbouring site only if the new site
is unoccupied. In the simulation, an individual motor moves forward with a rate pm and backward
with a rate, qm, where the subscript represents the motor μ (figure 2).

For consistency throughout this manuscript, we present results from our simulations using a discrete
fixed time-step Monte Carlo method. However, since continuous-time discrete-state Markov processes
such as the ones we study here are often stochastically simulated with the well-known event-driven
approach of Gillespie [52], we checked our method against this. We found that our results using the
fixed time-step and Gillespie algorithm methods are equivalent within the error bars (see results
presented in electronic supplementary material, appendix A). We use our fixed time-step method for
our full study since it is 10 times faster than the Gillespie algorithm for our non-processive motors
case. In our fixed time-step method, at each time-step, dt, forward and backward steps are attempted
with the probabilities Pf ¼ pm dt and Pb ¼ qm dt, respectively. If motor μ meets the condition for
moving to a neighbouring site, the position of the motor xm is updated to xm + dx for motion
forwards (+) or backwards (−) along the track, where dx is the motor step size.
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Figure 3. Force–velocity curves of processive motors from Monte Carlo simulations (symbols) for different number of motors N = 1
(blue), 2 (green), 5 (red) and 20 (black) compared with the analytical solution (lines) given by equation (2.2) with parameters p =
100 s−1, q = 10 s−1, δ = 0.5 [2,9,10]. The force on the x-axis is the dimensionless force f = Fdx/kBT, where F is the physical force
and dx = 8 nm is the step size.
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2.3. Results for processive motors
Here, we present our results for fully processive motors, which do not unbind from the track and may
move bidirectionally with the rates p and q. The case of unidirectional motors is easily obtained by setting
q = 0. Our models can be applied to a variety of different molecular motors. The simulation results we
show here are for parameter values p = 100 s−1 and q = 10 s−1 corresponding to experimental values for
processive kinesin-1 [9,10] and the assumption that the ratio of forward to backward rates is 10 [53,54].

To compare with the analytical solution, equation (2.2), we calculate the steady-state velocity of the
leading motor from our simulation results, Vsim = (x1(T )− x1(ts))/(T− ts), where x1(t) is the position
of the leading motor at time t, T is the total simulation time and ts is the time we start measuring
from once the system has reached steady state. We find that running our simulations for T = 5 × 106

time-steps of dt = 1.0 × 10−3 s is long enough to ensure that the results are not dependent on specific
initial conditions chosen. We choose ts = 1000 steps by which time all cases have reached steady state
(checked by plotting trajectories, not shown). We ran each simulation 100 times and plot the standard
deviation as error bars in the results graphs.

The leading motor’s velocity for different numbers, N, of bound motors is shown in figure 3 using our
fixed time-step Monte Carlo method. It is clear that the velocities for different number of motors N
decrease rapidly with force as also seen in [2,33]. The force at which the velocity reaches zero (hits the
x-axis in figure 3) is known as the stall force. For large N and dimensionless force, f, the motors form
a dense cluster which moves very slowly. Furthermore, these results imply that the force–velocity
curves for multiple motors (N > 5) are almost indistinguishable.

To clarify the effect of number of motors N on the velocity of the collection of motors, we plot the
velocity against the number of processive motors under different loads in figure 4. The figure shows
the leading motor’s velocity versus different total numbers of motors N from 1 to 10 for different
loads (various values of dimensionless force f = 0, 2 and 4). The results in this figure confirm that the
velocities of collections of N > 1 motors pulling the same force, f, are almost independent of the exact
number of motors N. However, for N∼ 1 and finite force, the velocity is dependent on the number of
motors and for large forces the velocity may be backwards (negative).
3. Non-processive motors
We now extend the theory and simulations described above to the case of non-processive motors. We
allow motors to bind on and off the filament with rates kon and koff, respectively, as illustrated in
figure 5. Including the dynamics of motor binding and unbinding means that, unlike the processive
motor case, the number of motors bound to a filament changes over time.
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Figure 5. Cartoon showing motors bind to and unbind from a filament with rates kon and koff, respectively.
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3.1. Mathematical description of collective transport by non-processive motors
Since including stochastic binding and unbinding of motors (with rates kon and koff ) means the number of
bound motors changes over time, we need to know the probability distribution of the number of bound
motors. The average velocity of a cluster of motors capable of binding and unbinding can be calculated in
terms of the probability, Pn of having n motors bound [4];

�V ¼
XN
n¼1

PnVn

1� P0
, (3:1)

where Vn is the velocity when there are n motors bound given by equation (2.1) or (2.2) and N is the
total number of motors in the system. In using this equation, we assume that each cluster of n motors
travels with its steady-state velocity Vn. This assumption is valid as long as stepping is fast enough
compared to (un)binding. In our work, we use equation (3.1), to calculate the average velocity of a
cluster of non-processive motors and we calculate the probability distribution, Pn, as detailed in
the following.

Initially, we assume that the number of binding sites available is unlimited such that the binding rate
of a single motor, kon, is constant. We write down a discrete master equation for the probability, Pn, that
there are n motors bound at time t;

@Pn

@t
¼ (N � nþ 1)konPn�1 þ (nþ 1)koffPnþ1

� (N � n)konPn � nkoffPn, (3:2)

where N is the total number of motors in the system (bound plus unbound motors). This master equation
is equivalent to that used by Klumpp & Lipowsky [4].
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At steady state, ∂Pn/∂t = 0, we obtain the detailed balance condition that the binding and unbinding

processes occur with equal probability such that

(N � nþ 1)konPn�1 ¼ nkoffPn: (3:3)

The probability, Pn, of being in a state with n bound motors can therefore be written in terms of the
binding rates kon and koff and the total number of motors, N. Using equation (3.3) and the
normalization

PN
n¼0 Pn(N) ¼ 1, we obtain

Pn(N) ¼ N!

n!(N � n)!
kon
koff

� �n

P0, (3:4)

where P0 is the normalization constant. If kon < koff this can be written as a convergent series, P0 = (1 + (kon/
koff ))

−N, and themaximumnumber of boundmotors,N, can be infinitely large. The opposite case of kon > koff
will become incompatible with the initial assumption of constant kon as this will break down as the filament
becomes saturated with motors. For that case, the finite number of binding sites available needs to be
addressed by limiting the binding sites, as addressed in the next paragraph. The distribution (3.4) is the
binomial distribution used in [55,56] and understood from considering the stochastic binding and
unbinding of each motor when the maximum number of motors that can bind is N.

Considering the case of multiple motors attached to the same cargo we expect the number of filament
binding sites accessible to thosemotors to be limited by the size of themotors and cargo.We therefore study
the effects of limiting the number of binding sites. However, we do this without going into the level of detail
of modelling motors as springs as some authors have done [1,14]. Instead we simply limit the binding sites
accessible to the motors. If the number of binding sites on the filament is limited to M, which can be
considered as the width of cargo, then kon(M, n) ¼ (M� n)kson where the superscript s refers to the
binding rate per site, obtained by dividing the unlimited binding rate by M, i.e. kson ¼ kon=M. Equation
(3.2) can be extended by including the limited number of binding sites, M as follows:

@Pn

@t
¼ (N � nþ 1)(M� nþ 1)ksonPn�1 þ (nþ 1)koffPnþ1

� (N � n)(M� n)ksonPn � nkoffPn: (3:5)

The distribution of bound motors in this case is given by

Pn(N, M) ¼ N!M!

n!(N � n)!(M� n)!
kson
koff

� �n

P0, (3:6)

where P0 is the normalization constant given by
PN

n¼0 Pn(N, M) ¼ 1.
The average velocity of N non-processive motors is then obtained by substituting equations (2.2) and

(3.4) into equation (3.1) for unlimited binding sites giving

�V ¼
XN
n¼1

N!

n!(N � n)!
P0

1� P0

kon
koff

� �n

p
(1� ef (q= p)n)(1� (q= p))

e fd(1� (q= p))þ ef (q= p� (q= p)n)

� �
: (3:7)

For the case of limited binding sites, the equivalent expression is obtained by substituting equations (2.2)
and (3.6) into equation (3.1).
3.2. Simulations of non-processive motors
We extend the fixed time-step Monte Carlo algorithm we used for processive motors (described in §2.2)
to the system of N non-processive motors (drawn in figure 5) and validate the results and efficiency
against a Gillespie algorithm as shown in electronic supplementary material, appendix B.

We consider N motors attached to a cargo, thus the number, n, of motors bound on the filament at
time t varies between zero and N. We choose an initial condition with all the motors unbound from
the filament. Then, at subsequent time-steps, each motor is allowed to attach to the filament track
with the attachment probability Pon = kon dt.

In each time-step of the simulation, we visit each of the N motors to consider their possible states and
positions. Each motor is allowed to either bind to and unbind from the track according to the relevant
probability, Pon = kon dt or Poff = koff dt, respectively. After that, the bound motors are allowed to move
along the track with the forward/backwards stepping probabilities and the constraints of the simple
exclusion process in the same way as for the simulation of processive motors described in §2.2.
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Figure 6. Flow chart of our fixed time-step Monte Carlo simulations for non-processive motors.
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Therefore, the motors cannot overtake each other when stepping along the track. We summarize our
procedure for simulating non-processive motors in a schematic in figure 6.
3.3. Results for non-processive motors
We now present the results of our fixed time-step Monte Carlo simulations for the stepping of a cluster of N
motors including the ability of binding on and off the filaments (kon and koff ). Since we are interested in
motor clusters we study strongly binding molecular motors for which the binding rate, kon, is higher than
the unbinding rate, koff [4,10,57,58]. We choose Ncd (kinesin-14) as an example of a non-processive motor
which unbinds often [10,59]. In our simulation, we use koff = 10 s−1 as measured experimentally [10,59,60].
kon is more difficult to measure experimentally, but, since we are interested in the case kon . koff, we choose
kon = 20 s−1. We run our simulations for 5 × 107 time-steps with a time-step of 1.0 × 10−3 s. This is longer
than required for processive motors because non-processive motors take longer to reach steady state due to
the binding dynamics. For non-processive motors, we set ts = 2500 steps and ts = 25 000 steps by which time
all cases have reached steady state for N≤ 10 and N = 100, respectively. In the following, we first present
the distribution of the number of bound motors and then the average velocity, stall force and run length.
3.3.1. Probability distribution of bound motors

We consider the effect of number of binding sites in two scenarios. First, the number of binding sites is
fixed in scenario A. Second, the number of binding sites is variable in scenario B and the sequence of
motors is preserved on binding.

Scenario A: Fixed number of binding sites. We first assume that the number of binding sites accessible by
the motors is fixed to M lattice sites as illustrated in figure 7a. In this scenario, the motors are only able to
bind within these M sites, which can be considered to correspond to the cargo width. In this scenario, we
allow an unbound motor to bind onto any of the unoccupied sites within the M sites. This means that the
sequence of motors may change during rebinding. In other words, in the simulation of this scenario
motors are allowed to swap positions on rebinding. In figure 7b, we plot the probability distribution
of bound motors, Pn(N, M ) for N = 10 and various different number of binding sites M. We choose
N = 10 here to highlight the differences between limited and unlimited binomial distributions which
are smaller for N≤ 10. The dark blue solid line is the analytical distribution for unlimited binding
sites (equation (3.4)) and the dashed lines are the analytical distributions for the number of binding
sites limited to M (equation (3.6)) where the different colours represent different values of M. The
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Figure 7. (a) Cartoon showing scenario A in which motors may bind only to unoccupied sites within a fixed limited number M of
binding sites but they may swap positions on rebinding. (b) Probability distribution of non-processive motors attached on the same
cargo for various fixed number of binding sites (M = 20, 30, 100 for red, green, blue, respectively) from simulation results ( points)
and equation (3.4) (dark blue line) and equation (3.6) (dashed lines). The parameter values are kon = 20 s−1, koff = 10 s−1

[10,59,60], p = 22 s−1 [10], q = 2.2 s−1, δ = 0.5, f = 0 and N = 10.
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Figure 8. (a) Cartoon showing scenario B (variable number of binding sites and sequence preservation) in which motors may bind
only to unoccupied sites between neighbouring motors such that the sequence is preserved. (b) Probability distribution of non-
processive motors with no exerted force and variable number of binding sites, M(t), from simulation results ( points) comparing
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whole simulation. The parameter values used are kon = 20 s−1, koff = 10 s−1 [10,59,60], p = 22 s−1 [10], q = 2.2 s−1, δ = 0.5,
f = 0 and N = 10.
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coloured points are results from Monte Carlo simulations of scenario A (fixed M binding sites) allowing
the motors to swap positions on rebinding. The simulation results match the relevant analytical
expressions (equation (3.6)) within the error bars. For M≫N, the simulations and analytical
distribution for the limited case (equation (3.6)) approach that of the unlimited case (equation (3.4)) as
expected. Consequently, if the cargo size as defined by M is large enough then we can describe the
probability distribution of bound motors by the unlimited binomial distribution.

However, in vivo, due to steric hindrance, the molecular motors may preserve their sequence on
rebinding. In this case, the number of accessible binding sites would change over time according to
the positions of the leading and last motors. We consider this scenario in the following.

Scenario B: Variable number of binding sites with sequence preservation. Here, we present a second, more
realistic, scenario in which the motor sequence is preserved on rebinding and the number of binding sites
M is no longer fixed. To preserve the sequence, a motor can only bind to unoccupied sites between its
neighbouring motors. The number of accessible binding sites changes over time following the first
and last motors’ positions. Additionally, we allow one more site in front/behind the position of the
leading/back motors to be accessible to stepping and binding. This latter accommodation allows for a
motor to stretch to reach the adjacent site. At the end of each time-step, after motors have had the
chance to bind and move, the number of binding sites M is changed following the bound/moved
leading and last motor positions. In the case that all motors are detached, M is determined from the
positions of leading/back motors when they were last attached. The number of binding sites M(t) in
this scenario is thus updated each time-step. In the case we consider, without interactions between
motors, M is limited to the steady-state cluster size plus 2.

The simulation results for P(n) shown in figure 8 fit better with limited binomial distribution (equation
(3.6)) than unlimited binomial distribution (equation (3.4)). However, the simulation results are shifted
slightly lower than the analytical distribution because of the sequence preservation on motor rebinding
in the simulation which is not included in the analytical expression. Electronic supplementary material,
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figure S18 in appendix C shows that the results of this variable number of binding sites case without
sequence preservation on rebinding do coincide with the analytical limited binomial distribution.

To date, there is no clear experimental evidence showing whether motors swap position or preserve
their sequence during rebinding. However, most literature models use the assumption that the sequence
of motors is preserved on binding [2,4,44,61]. Also, many of these studies do not support the assumption
that motors are restricted to bind within a fixed determined space as is the case in our scenario
A. We suggest that our scenario B (variable number of binding sites with sequence preservation) is
more realistic for intracellular transport. We therefore choose scenario B to study further the velocity
of a cluster of non-processive motors in the following section.

3.3.2. Average velocity

We compute the velocity of the motor cluster from the simulation by averaging the leading motor’s
velocity when at least one motor is bound on the track. The average velocity is then calculated by
Vsim = 〈(x(t2)− x(t1))/(t2− t1)〉 where x(t1) is the leading motor’s position when it becomes the leading
motor (due to it binding or the previous leading motor unbinding) and x(t2) is the leading motor’s
position when it stops being the leading motor (as it unbinds from the track or another motor binds
in front of it). During the course of the simulation which motor is the leading motor will change
according to the binding and unbinding of motors. The leading motor is the bound motor with
the forwardmost position at that point in time, i.e. the largest xμ(t). We calculate the velocity over the
time that an individual motor acts as the leading motor (t = t1 to t2) and then calculate the velocity of
the next motor that acts as the leading motor. We then average over all these velocities.

In order to obtain the force–velocity relation for non-processive motors, we first consider the
appropriate steady-state probability distribution for the number of bound motors P(n) at different
forces and then consider the velocity at different forces. Figure 9 shows P(n) from simulations and
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analytical expressions (equations (3.4) and (3.6)) for (a) zero force, f = 0, and (b) the stall force, f = fs (the

force for which the velocity is zero) for small numbers of total motors N = 2, 3 and 5. We choose values
kon = 20 s−1, koff = 10 s−1, such that kon > koff to study motor clusters. As discussed in the previous section,
the analytical expression for the distribution of bound motors with limited number of binding sites,
equation (3.6), is a better approximation to the simulation results than the unlimited binomial
distribution, particularly at larger force. This is because the leading motor is more likely to move
backwards at larger force, further reducing the number of accessible binding sites. Consequently, the
probability distribution of motors bound on the track is shifted to smaller numbers of motors than the
case assuming unlimited binding sites (equation (3.4)), as is evident in figure 9b2 and b3. The case of
N = 2, shown in figure 9a1 and b1, is well described by the unlimited binding sites expression
(equation (3.4)). This is because our model allows binding to one site in front/behind the leading/
back motor which means for N = 2 there are always available sites to bind. For N = 3, figure 9a2, the
simulation points are between that of the limited and unlimited curves due to the extra freedom
provided by the end sites. However, by N = 5, figure 9a3 we see a good agreement with the limited
analytical expression. Note for N = 10 in figure 8b, the simulation points are shifted to smaller n than
the limited analytical expression. This is caused by the restrictions imposed in the simulations to
ensure sequence preservation, which is not captured by the analytical expressions.

Figure 9c1–c3 shows the velocity as a function of force calculated from simulations and analytical
calculations (equation (3.1)) for small numbers of total non-processive motors N = 2, 3 and 5. The
processive motor case, equation (2.2), is plotted on the same graph for comparison. The parameter
values used are those for Ncd for the non-processive case and kon = koff = 0 for the processive case
(black line). See figure 9 caption for the full list of parameters. As expected from our studies of the
probability distributions for the number of bound motors (figure 9a,b), the velocity for the case of
limited number of binding sites is a closer approximation than that of unlimited binding sites.
However, the effect on the velocity of limiting the number of binding sites is slight for small number
of motors up to N = 3 (figure 9c2) with both analytical cases falling within the error bars of the
simulations for almost the entire range of forces f = 0 to f = fs. However, clear discrepancies develop for
the N = 5 case (figure 9c3) at larger forces. Although the limited number of binding sites case is closer
to the simulation results, even this is outside of the error bars for N = 5 at larger forces. This may be
partly due to the larger forces decreasing the stepping rate such that the validity of steady-state
assumption of equation (3.1) is weakened, resulting in the analytical solution overestimating the
velocity. The discrepancy seen in figure 9c3 also reflects the influence of sequence preservation that is
included in the simulations but not in the analytical results. This effect is more pronounced for larger
clusters of motors and larger forces (see electronic supplementary material, figure S10 and appendix C).

Figure 10a1 and b1 shows the probability distribution of bound motors, P(n), at no force, f = 0, and the
stall force, f = fs, for a larger motor cluster of N = 10. As expected, we see that the case of limited binding
sites fits better than for unlimited binding sites for both extremes of the force range. In figure 10b1, we can
see that the simulation points are shifted towards smaller number of bound motors compared to the
analytical limited binding sites case. This is even more pronounced for the N = 100 case shown in
figure 10a2 and b2. This is due to the effect of sequence preservation, which has a greater impact for
larger clusters and larger forces. Electronic supplementary material, figure S18 in appendix C shows
that without sequence preservation on rebinding the probability distributions of the number of bound
motors follow that of the analytical expression for limited binding sites.

In figure 10c1, we show the velocity of a cluster of N = 10 non-processive motors with parameters for
Ncd. We compare our simulation results against the analytical results for the cases of unlimited and
limited binding sites as well as the case of 10 processive motors with kon = koff = 0. As can be seen in
figure 10c1, all three analytical curves collapse onto that of the processive motor case for N = 10
indicating that for N = 10 there are enough motors in the cluster that they behave as processive
motors. This processive behaviour of large clusters of non-processive motors can be justified
analytically. Consider approximating the average velocity given by equation (3.1) by the velocity for
the number of bound motors at the peak of the probability distribution for the number of bound
motors. For unlimited number of binding sites, the peak of the relevant binomial distribution is at
n ¼ Nkon=kon þ koff. We see from figure 4 that for large number of motors the velocity is independent
from the number of motors. Therefore, if Nkon/(kon + koff )≫ 1 then �V � VNkon=(konþkoff ) � VN .
Approximating the average velocity by that for the peak of the distribution for the number of bound
motors is valid as long as the bulk of the probability distribution is for n≫ 1 bound motors since Vn

is independent of n for n≫ 1. Figure 10a1 shows that this is already the case for N = 10. For N = 100,
figure 10c2 shows that within the errors the velocity of N = 100 non-processive motors is as fast as that
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of processive motors. This is because for N = 100 there is almost always at least one motor bound so, since
the velocity of a cluster is limited by the leading motor, the effect of detachment is negligible. Therefore,
we can approximate the velocity of a cluster of large enough numbers of non-processive motors as
equivalent to the velocity of processive motors with the same number of motors.

In summary, our simulation results show that it is better to approximate the distribution of number of
bound motors with equation (3.6) including the limited number of binding sites. This expression does not
fit exactly because the simulation includes sequence preservation which is not included in the analytical
theory. However, when we calculate the velocity of a cluster of N < 10 motors, both limited and unlimited
analytical distributions can similarly approximate the velocity of a simulated motor cluster, see figure
9c1–c3. Therefore, when investigating the velocity, it is not crucial which distribution we use for small
N. The distribution with unlimited number of binding sites has the advantage that it requires fewer
parameters such that we only need to know the total number of motors N and we do not need to
know the size of the cargo nor number of binding sites M. This case of small N < 10 motor clusters
bound to a single cargo has been shown to be relevant in vivo [18,62,63]. For large motor clusters N >
10, however, the distribution with unlimited number of binding sites is not a good approximation for
the probability distribution of bound motors due to sequence preservation. However, since large
clusters of N > 10 rarely have all motors unbound they behave like processive motors and the force–
velocity curve can be described by that for processive motors.

For completeness, in figure 11a, we plot the velocity against the number of non-processive motors
from simulations and analytical calculations using the unlimited binomial distribution. This is the
non-processive motor equivalent of figure 4, which is for processive motors. Note that the values for
the velocities are different for these cases due to the different forward and backward stepping rates
used to mimic the molecular motors kinesin and Ncd. For comparison, we therefore also plot the case
of processive motors (with kon = 0 s−1, koff = 0 s−1) and other parameters for Ncd on figure 11a for
simulation (cross symbols) and analytical expression, equation (2.2) (dashed lines). This comparison
clearly supports the point that non-processive motors behave as processive motors for larger N = 10,
consistent with figure 10c1. Figure 11a shows the velocity increases with the maximum number of
motors, N, but tends to a plateau for N > 5, suggesting that for N > 5 the binding of additional motors
makes little difference to the velocity. This is similar to the case for processive motors (figure 4) except
that for those the plateau is reached for N > 1. We also plot the distribution of these velocities for N =
2 with different forces in figure 11b. Discrepancies between the simulation and analytical results can
be seen for the larger force f = 4, shown in light blue in figure 11a. This is due to sequence
preservation included in the simulation but not in the analytical results. As expected, sequence
preservation has a larger effect at larger forces. This can be seen by comparing figure 10a1 and b1
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with electronic supplementary material, figure S18 in appendix C for N = 10 at f = 0 and f = fs with and
without sequence preservation on rebinding.
3.3.3. Stall force against number of motors

The stall force is the force at which the cargo stops moving because the team of motors is no longer able
to pull it against the load force. We can calculate the stall force, Fs, by substituting V = 0 into equation
(2.2) for processive motors. For non-processive motors, we calculate the stall force from the force–
velocity relations by setting equation (3.1) to zero using the unlimited binomial distribution and
limited binomial distribution.

For processive motors, equation (2.2) can be solved analytically for the stall force giving Fs(N ) =
NFs(1) where Fs(1) is the stall force of a single motor, i.e. for processive motors the stall force increases
linearly with the number of motors. In dimensionless form, the stall force for a single motor is given
by fs(1) = ln( p/q) and is the same for both kinesin-1 and Ncd with the parameters we use for these
different motors. We plot this in figure 12 along with the stall force for kinesin-1 extracted from our
simulations displayed in figure 3. We use a threshold of jVfs=Vf0 j � 10�5 to determine the stall force
from our simulations.

For non-processive motors, N is the maximum number of motors that can attach to the filament, so
the number of attached motors at a particular time can vary from zero to N. Consequently, our numerical
calculation of the stall force from the analytical result (equation (3.1)) for the stall force in the case of non-
processive Ncd motors is lower than that of processive motors at the total number of motors N, as shown
in figure 12. The numerical result for non-processive motors with unlimited number of binding sites
increases linearly for large number of motors (N > 10) with the same gradient as that for processive
motors (see electronic supplementary material, appendix D). This is also the case for binding sites
limited to the average found in simulations. This is to be expected from our observations (§3.3.2) that
clusters of N non-processive motors behave like processive motors for large N > 10. In other words,
once the number of motors is large enough, the stochasticity of (un)binding is effectively averaged out
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and no longer significantly affects the strength of the motor cluster. We therefore conclude that the larger
the number of motors, N, bound to a cargo, the larger the load forces that can be overcome by the motors
to transport a cargo for both processive and non-processive motors. Note that the stall force scales with
the number of motors for cargoes such as beads [10] or filaments in motility assays [6,64], but that for
fluid like cargo such as vesicles [23] or membrane tubes [51,60,65] it does not, since these cargo do
not experience tangential forces [51].

Figure 12 shows that for small number of motors the stall forces for non-processive Ncds extracted
from our simulations (black circles) correspond well with those numerically calculated from the
analytical solutions with the number of binding sites unlimited (green crosses) and limited (light blue
crosses). However, for N > 3, the results from our simulations are lower than those obtained from the
analytical expressions and remain lower for N > 10, see electronic supplementary material, appendix
D. This is due to the significant restrictions on binding due to the sequence preservation included in
the simulations but not in the analytical results, as discussed in §3.3.2 and electronic supplementary
material, appendix C.
3.3.4. Run length

We also examine the run length defined as the distance that the cargo moves until all the motors have
detached from the filament. To find the average run length, we record the position, x1, of the first
motor to bind to the filament at time t1 and the position, x2, where the last remaining motor unbinds
at time t2. The difference between these positions gives the run length of the cargo. We take the
average over all the periods when the cargo is bound to the filament. Mathematically we calculate this
by 〈x〉 = 〈x2(t2)− x1(t1)〉. We found from our simulations that the larger the team of motors pulling the
cargo the longer the average run length before the cargo detaches from the filament, as shown in
figure 13a. Moreover, we plot histograms of the distributions of run length for different values of N in
figure 13b. For a few motors N = 1, 2 and 3, we see that the cargo often moves backwards in addition
to the preferred forwards direction whereas the cargo with N = 10 motors in figure 13b almost always
moves in the positive direction. For multiple motors, the run length appears to be roughly exponential
in the number of motors, which corresponds with the conclusion of [4,14].

Recently Wilson et al. [66] have reported that cargo diffusion shortens the run length for single
kinesin-1 leading to a non-monotonic relationship with increasing cargo viscous drag in simulations.
This effect is due to load dependence of off rates such that at low viscous drag cargo diffusion can
assist the motor direction whereas at high viscous drag the run length is shortened because of the
viscous drag of the load. Assuming the viscosity in cytoplasm is more than 10 times that of water and
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the cargo size is more than 0.1 μm this low viscosity cargo diffusion effect is not important. Another
suggestion of non-monotonic run length is given by Wang & Kolomeisky [67] who use first passage
time calculations and Monte Carlo simulations to find the run length for two motors coupled by a
spring. This spring coupling is a different scenario from what we study so not directly comparable.
4. Comparison with experimental results
In this section, we compare our theoretical and computational results with literature experimental data
from two different systems.

4.1. In vitro experiment
First we compare our results with the in vitro experiments by Furuta et al. [10], who measured collective
transport by processive kinesin-1 and non-processive Ncd motors. They constructed DNA–motor
assemblies with a set number of motors varying from 1 to 4. They linked the motors with defined
spacing by their DNA scaffold. They track the movement of the assemblies along microtubules by
observing a fluorescent dye attached to the DNA scaffold using total internal reflection fluorescence
microscopy. In their system there is no cargo, apart from the DNA linking the motors together, and
we therefore assume the load force, f, is zero. To compare their experimental results with our model
we ran simulations using parameters for kinesin-1 and Ncd as observed in the experiment (see below
for details). We also compared the results with the analytical solution of equations (2.2) and (3.7) for
processive and non-processive motors, respectively.

For the processive motor kinesin-1, the step length is 8 nm and the forward minus backwards
stepping rate is found from the measured velocity to be p− q = 98 ± 0.6 s−1 for one motor and p− q =
89 ± 0.8 s−1 for multiple motors [10]. For no load, f = 0, the velocity given by equation (2.2) is
independent from the motor number N. However, the experimental results of the velocity for kinesin-1
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in [10] show a slight decrease in velocity with increased number of motors. Furuta et al. [10] suggest that
the motors in their assemblies slightly interfere with each other. The motors in their assemblies are
coupled with DNA fragments so the motors are likely to experience attractive interactions at
separations in which the elasticity of the linking DNA becomes important. This unknown interaction
effect is not captured by our simple model. We therefore use different stepping rates for N = 1 and N >
1. Assuming p = 10q [9], we use p = 110 s−1 for N = 1 and p = 100 s−1 for N > 1 in the plot in figure 14.

For the non-processive motor Ncd, the step length is also 8 nm and the forward stepping rate is 12.6 ±
2.0 s−1 or 18.75 ± 1.5 s−1 from the measured value for the velocity of one motor or two coupled. The
results for the velocity from simulations and the analytical solution are plotted in figure 14 along with
experimental data from [10] for both processive kinesin-1 and non-processive Ncd. Note that Furuta
et al. [10] suggest that single Ncd has a lower forward stepping rate than when it is linked to other
Ncd motors due to the unbound motors being kept close to the microtubule in the latter case. Our
simulated and analytical results using the leading motor model in equation (3.7) match (within error
bars) with their experimental data.
4.2. In vivo experiment
A significant practical problem of any motor transport experiment in vivo is to identify the numbers and
types of motor proteins on the cargo. Therefore, comparing theoretical results with in vivo experimental
data is more challenging because of the difficulty in determining the number of motors on the cargo,
particularly in the case of non-processive motors. Several studies have indicated that many cellular
cargoes in vivo are moved by a moderate number of motors ranging between one to five and the force
exerted by the kinesin and dynein motors are mostly reported as about 1 pN [68–70].

To compare our results with an in vivo experiment, we used data from Pilling et al. [37], who tracked
mitochondria in the axons of live Drosophila neurons. They tracked the movement of GFP-labelled
mitochondria using scanning confocal fluorescence microscopy. They report that the mean ± s.d. of
the net velocity of anterograde mitochondria (assumed to be moved by kinesin-1) was 0.26 ±
0.10 μms−1. They found the mean ± s.d. run length for anterograde mitochondria was 1.82 ± 1.19 μm. It
is difficult to know in vivo how many motors are attached to a cargo such as a mitochodrion.
However, using our model, we can predict the expected number of kinesin-1 motors carrying the
axonal mitrochondria in Pilling et al.’s [37] experiment. We use the same stepping rate parameters for
kinesin-1 that we use in earlier parts of this paper, i.e. p = 100 s−1 and q = 10 s−1. However, as is seen
in trajectories in [37], axonal kinesin-1 is slightly non-processive so we use kon = 5 s−1 and koff = 1 s−1 as
proposed in [4]. We used f = 2 in our simulation corresponding to F = fkBT/dx = 1.1 pN. We calculate
the distribution of velocity and run length from our model for different number of motors. Figure 15a
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shows that our simulations display almost always positive velocity when N≥ 3. The histograms plotted
in figure 15 indicate that our model for N = 3 (velocity = 0.21 ± 0.06 μm s−1, run length = 2.48 ± 2.73 μm)
corresponds best with the experimental measurements from [37] (velocity = 0.26 ± 0.10 μm s−1, run length
= 1.82 ± 1.19 μm). Therefore, our simulation predicts that the expected number of motors carrying axonal
mitochondria in [37] is three kinesin-1.
5. Conclusion
In this work, we have shown by analytical modelling and stochastic simulations that the velocity of cargo
pulled by a cluster of molecular motors is insensitive to the number of motors N bound to the cargo for
N > 1 for processive motors and N > 5 for non-processive motors. Therefore, a cell investing in more than
a handful of molecular motors on a cargo will not result in faster cargo transport. However, we find that
the stall force is linear with the number of motors in the cluster for processive motors and also for large
(N > 10) clusters of non-processive motors. Therefore, if a cargo is subjected to large forces, investing in
more than a handful of molecular motors will enable a cell to overcome larger forces.

As expected, we find that the average velocity of cargoes pulled by small (N < 5) clusters of non-
processive motors is significantly less than the velocity of the same number of processive motors.
However, significantly, we show that for large number of motors, N > 5, clusters of non-processive
motors approach the same velocity as those of clusters of processive motors (figure 11). For cargoes
pulled by large, N > 5, clusters of non-processive motors the average velocity is insensitive to the
detachment of motors since there is almost always at least one motor bound and therefore large non-
processive motor clusters have the same velocity as for processive motors (figure 10). Therefore,
according to our model and parameters used, a cluster of N = 5 non-processive motors is as fast
at pulling a cargo as two processive motors. This is a clear indication of the effectiveness of
non-processive motors for cellular transport.

A natural extension to our work would be to include force dependence in the unbinding rate koff as
has been done in [1,14,51] and recently by Ucar & Lipowsky [71]. We would expect that including this
effect would increase the force sensitivity, increase the time taken to reach steady state, decrease the stall
force and decrease the mean velocity due to the zipper effect of successive leading motors experiencing
the force-dependent unbinding.

We have extended the analytical model to the novel case of non-processive motors with limited
number of binding sites, since for motors bound to a cargo the number of binding sites they can
access on a filament may be severely limited by the cargo size. Limiting the number of binding sites
M decreases the number of non-processive motors bound to the filament. Our analytical expression
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for the probability distribution of number of bound motors with limited binding sites correctly

reproduces that for unlimited binding sites for M≫N. We find that if the number of binding sites are
limited, despite the clear shift in the probability distribution to smaller number of bound motors, the
velocity is insensitive to this difference in probability distributions for small N (figure 9). For large N,
the velocity of a cluster of non-processive motors with limited binding sites approaches that of a
cluster of processive motors. Our simulation results of the distribution of number bound motors fit
better with the analytical distribution for limited number of binding sites than that for unlimited
binding sites. However, since for small clusters the effect of limiting number of binding sites makes
only a small difference to the average velocity, the distribution with unlimited number of binding sites
is sufficient for calculating the average velocity of small clusters of non-processive motors and it has
the advantage of one fewer parameters.

Our run length studies show that for small N the cargo can move backwards as well as forwards but
for N≥ 10 it almost always moves forwards. These findings may be of significant importance in
interpreting in vivo experiments when assumptions are made about the identity of molecular motor
types based on the observed direction of cargo. Enough data should be obtained to make a
judgement based on statistically significant values given the stochasticity of the system.

Our simulations show the effect of sequence preservation which shifts the probability of bound
motors to lower number of motors and decreases the stall force. This effect is larger for larger forces
and larger clusters.

Finally, our model fits well with in vitro experiments by Furuta et al. [10] and predicts N = 3 as the
most likely number of kinesin-1 motors bound to axonal mitochondria in vivo in the experiments by
Pilling et al. [37].
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