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Periodic rhythms are ubiquitous phenomena that illuminate
the underlying mechanism of cyclic activities in biological
systems, which can be represented by cyclic attractors of the
related biological network. Disorders of periodic rhythms are
detrimental to the natural behaviours of living organisms.
Previous studies have shown that the state transition from one
to another attractor can be accomplished by regulating external
signals. However, most of these studies until now have mainly
focused on point attractors while ignoring cyclic ones. The aim
of this study is to investigate an approach for reconciling
abnormal periodic rhythms, such as diminished circadian
amplitude and phase delay, to the regular rhythms of complex
biological networks. For this purpose, we formulate and
solve a mixed-integer nonlinear dynamic optimization problem
simultaneously to identify regulation variables and to
determine optimal control strategies for state transition and
adjustment of periodic rhythms. Numerical experiments are
implemented in three examples including a chaotic system, a
mammalian circadian rhythm system and a gastric cancer gene
regulatory network. The results show that regulating a small
number of biochemical molecules in the network is sufficient to
successfully drive the system to the target cyclic attractor by
implementing an optimal control strategy.
1. Introduction
Periodic rhythms are regular behaviours in biological systems [1].
For instance, the circadian clock helps regulate sleep schedule,
body temperature, hormone levels in a daily cycle [2]; monthly
rhythms are reflected in reproductive cycles of many marine
plants and animals [3]; annual rhythms are expressed in flowering,
migration, hibernation or the reproduction and growth of most
terrestrial plants and animals in temperate zones [4]. If the natural
biological rhythms are disturbed, disorders of the organisms may
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arise, e.g. sleep disorders for human beings [5]. All these disorders may result in daytime sleepiness,

depression, arrhythmogenesis and even cancer [6–9]. In general, the organism can find itself a way to
adjust the disturbed rhythms to the regular ones in the new environment. But this recovery process
usually takes too much time for the biological system to suffer from. Therefore, an external intervention
can be used to assist the biological system to accelerate the recovery process. For this purpose,
investigations onwhere and how to intervene in the biological system under consideration have to bemade.

Multiple steady states of a biological network can be represented by attractors, generally in the form
of point attractors, cyclic attractors, chaotic attractors and the like [10,11]. Multi-stability plays a crucial
role in biochemical networks at many levels from genes, cells, tissues to organs, exhibiting different
kinds of phenotypes or various functions [12,13]. Point attractors represent steady states of different
cell types, for example, megakaryocytes, erythrocytes, granulocytes and monocytes proliferated and
differentiated by a common myeloid progenitor in haematopoiesis [14]. Chaotic attractors are
hypothesized to associate with patterns in odour recognition [15]. Cyclic attractors describe oscillatory
behaviours like walking or chewing governed by neurons in animals and circadian rhythms caused
by day and night changes. Therefore, periodic rhythms can be considered as cyclic attractors of the
related biological system [1]. Based on the concept of attractors, a biological system is either working
around an attractor or transferring from an attractor to another one, which can be regulated by some
species or regulatory interaction strengths in the network [16]. Indeed, the past decade has witnessed
extensive studies in the controllability of biological systems and shed light on the underlying
mechanism of state transitions [17–20]. However, in most of these studies approaches were proposed
to identify driver nodes aiming at state transitions between point attractors [21–26], while cyclic
attractors have been ignored.

To hold the regular periodic rhythms of a biological system, it is necessary to keep the amplitudes
and phases of the state variables at the desired cyclic attractor. More importantly, if the system is
working at an abnormal attractor, a state transition between cyclic attractors or other types of
attractors is required. It means that a measure of intervention is needed. For such a purpose, we need
at first to identify some proper regulators (i.e. intervention or control variables) inside the network
and then to determine control profiles for the intervention. Several approaches have been developed
to control cyclic rhythms. Slaby et al. [27] and Shaik et al. [28] applied model-based optimal control to
find appropriate strength and timing of light stimulus to suppress or restore the circadian rhythms of
the Drosophila model. In these studies, light-sensitive parameters were taken as control variables a
priori, i.e. they only determined the profiles of the control variables. Based on the graph theory,
Fiedler et al. [29] and Mochizuki et al. [30] developed a method to identify a set of state variables in a
network, a so-called feedback vertex set. The feedback vertex sets are prescribed and the remaining
state variables are obtained by the model equations to follow the trajectories of a target attractor.
However, the application of this method can be limited since directly forcing a set of state variables
with prescribed trajectories may be unrealistic in clinical trials. Model predictive control was applied
to manipulate the mammalian circadian clock by Abel & Doyle [31] for phase resetting. Moreover, Jin
et al. [32] proposed a two-step solution strategy, i.e. identifying the driver nodes at first and then
designing a closed-loop controller for steering the system towards the desired attractor.

Although these existing methods can help to optimally identify control variables and determine their
profiles for state transition, no method is available to simultaneously optimize both, especially for the
purpose of reconciling periodic rhythms of large-scale biological networks. Obviously, control variable
identification and profile determination should be considered simultaneously, so that the coupling effect
of both tasks involved in the optimization problem can be taken into account. In a recent study,
we proposed an optimization approach to simultaneously identify regulatory variables and determine
their profiles for state transition of biological networks [33]. A mixed-integer nonlinear dynamic
programming (MINDP) problem is solvedwith the purpose to steer the system to a desired point attractor.

In the current study, we extend the method in [33] to investigate an optimal control approach for the
reconciliation of periodic rhythms. To elaborate cyclic trajectories of state variables for a state transition,
we define three time periods to describe the optimization process. The first time period portrays the state
of the initial periodic rhythms, the second one relates to the regulation process and the third one is used
to validate the qualification of the state trajectories at the target attractor. It means that we require
the system to arrive at the desired cyclic attractor in the third time period. In our approach, the
identification of the control variables is associated with the binary variables and the profiles of such
decision variables are time-dependent intervention strategies. Both binary variables and the profiles of
control variables will be optimized simultaneously by solving a MINDP problem. In addition,
the regulation time which corresponds to the second time period will be determined based on the
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Figure 1. Schematic description using a simple system.
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operating condition specified by intervention restrictions. Furthermore, our approach allows finding out
a minimum number of control variables for the intervention. Three case studies including a chaotic
system, a mammalian circadian system and a gastric cancer system are implemented to verify the
effectiveness of the proposed approach.
 n
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2. Material and methods
2.1. Problem description
In general, the dynamics of a biological network can be expressed as a set of N-coupled ordinary
differentiable equations (ODEs):

dxi
dt

¼ fi(x1, x2 , � � � , xN , p)� kixi, xi � 0, i ¼ 1, . . . ,N, ð2:1Þ

where xi is the ith state variable, fi is the continuously differentiable function describing the interaction
between the state variables, N is the number of biological components, p is the parameter set. The state
variables correspond to the concentrations of the components in the biological network which are
mutually interacting, exhibiting activation or inhibition, with coupling interaction parameters. In
equation (2.1), kixi is the self-degradation term of the biological component, where ki is the degradation rate.

According to Gardner et al. [34], the injection of drugs in the cell-growth environment assists in
controlling the fate of the cells by adjusting the interaction parameters. In addition, from the work of
Li & Wang [35], changing the strength of an activation or repression regulation parameter in the gene
regulatory network helps the realization of a state transition. In such cases, it is assumed that these
parameters can be regulated by a kind of external intervention through the application of repressive
or inductive drugs as made in the work of Wang et al. [20]. Therefore, the strength of the interaction
can be considered as a control variable. Figure 1 shows a simple system with three components,
where the black arrow-head edges and the black bar-head edges mean the activation regulation and
the inhibition regulation from the source node to target node, respectively; u1, u2 and u3 are the
interaction strengths from x3 to x1, from x1 to x2 and from x2 to x3, respectively. The blue curve
arrows indicate that an intervention can be implemented by adjusting the values of u1, u2 or u3 for the
control of this system.

In this study, we take the average interaction strength of a component with the other components as a
candidate for a control variable. As a result, we extend equation (2.1) to

dxi
dt

¼ uifi(x1, x2 , � � � , xN , p)� kixi, xi � 0, i ¼ 1, . . . ,N, ð2:2Þ

where ui represents the average interaction strength from the other components to the target component i.
Equation (2.2) means that ui includes its own feedback regulation but does not contain the degradation
reaction. Since only a few can be selected as control variables for an intervention, we need to decide
which ones should be selected. Comparing with equation (2.1), it can be seen from that, if the ith
component is selected as a control variable, then ui≠ 1.0, i.e. an action will be performed to change
the average interaction strength. If it is not selected, then ui = 1.0, i.e. the average interaction strength
remains its regular value. Also, the control variables defined in this way are time-dependent, since an
intervention strategy in a time period is needed. In addition, in comparison to equation (2.1), the
nominal value of all control variables is 1.0. Therefore, for performing an intervention, the initial
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value of all the control variables is 1.0, and after the intervention, it should return to this value to ensure
the stability of the system.

In this study, we use the method of optimal control to simultaneously select proper control variables
and determine their control profiles. The objective function is defined as the minimization of the
deviation from the desired attractor integrated over a period of intervention time, as follows:

min
ð
½xðtÞ � xdesðtÞ�2dtþ

ð
dxðtÞ
dt

� dxdes(t)
dt

� �2
dt, ð2:3Þ

where x(t) is the state vector corresponding to the abundance/activity of the biochemical components in
the biological network, while dx(t)/dt represents the time derivative of the state variables. xdes(t) and
dxdes(t)=dt are the state and time derivative vector of the desired attractor, respectively. It is to note
that the minimization of the deviation of the time derivatives has not been considered in previous
studies on state transition. In this study, we introduce this term in the objective function, since
dynamic behaviours corresponding to the desired periodic rhythms are to be followed.

According to equation (2.3), both the trajectories of the state variables xdes(t) and their derivatives
dxdes(t)=dt at the desired attractor have to be known. To achieve such trajectories, we need to identify
the attractors of the biological network. For this purpose, one can solve the model equations (i.e.
equation (2.1)) with randomly sampled initial conditions [21,36]. With a large number of samplings
and as time t is long enough, the stable behaviours at the attractors can be identified and the
trajectories of xdes(t) and dxdes(t)=dt obtained. In addition, the periodic lengths corresponding to the
cyclic attractors are also determined.

2.2. Definition of time periods
Considering the complexity of state transition from an initial cyclic state into an attractor with desired
periodic rhythms, we define the optimization process in three time periods, as illustrated in figure 2.

As shown in figure 2, the time horizon for the optimization is defined as [t0, tf ]. The first time period
[t0, t1] is used to express the initial state where t0 is the initial time point of the optimization process. The
length of this time period should be higher than the periodic length of the initial rhythm T1, so that
the initial state of the system can be clearly recognized. The second time period [t1, t2] is the epoch of
the intervention T, i.e. the control variables will be activated in this time period. [t2, tf ] is the time
period where the system is driven into the desired trajectories of the target state and the intervention
is withdrawn. tf is the end time point of the whole optimization process. Therefore, the time period
[t2, tf ] should cover at least one periodic length of the target attractor T2. As a result, the whole time
period [t0, tf ] can be specified as tf− t0≥ T1 + T + T2. From the state transition point of view, the epoch
of the intervention T should be as short as possible. However, if it is specified too short, a much
stronger action of the control variables will be required. In this study, we initialize a relatively large
intervention epoch T and define the integration time in equation (2.3) as [t1, tf ]. Since the desired state
will be followed in [t2, tf ] after the intervention, we can determine the optimized intervention epoch T
from the optimization approach.

2.3. Identification of control variables
As discussed in §2.1, among N candidates in equation (2.2), we need to identify a set of control variables
on which the intervention should be implemented. For this purpose, we introduce binary decision
variables y. yj = 1 means that the corresponding interaction strength uj will be chosen as a control
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variable uj(t); yj = 0 means that uj will be a constant, i.e. uj0 = 1. As a result, the relationship between yj

and control uj is expressed as

ujðtÞ ¼ ujðtÞ, if yj ¼ 1
ujðtÞ ¼ u j0, if yj ¼ 0:

�
ð2:4Þ

To integrate this relationship in the optimal control problem, we reformulate equation (2.4) as

ujðtÞ � u j0 þ ðujðtÞmin � u j0Þ � yj
ujðtÞ � u j0 þ ðujðtÞmax � u j0Þ � yj:

ð2:5Þ

From equation (2.5), yj = 1 leads to uj(t)min≤ uj(t)≤ uj(t)max, and u(t)min and u(t)max are the boundaries
for the strength of the control variables u(t), while yj = 0 leads to uj(t) = 1.0.

In order to determine the total number of control variables to be selected, let
P

yj ¼ NCON, i.e. NCON

is the sum of the binary variables which is a prescribed number. At the beginning, one can define
NCON = 1 in the problem formulation. If the resulting solution can drive the system to the desired
attractor, it means that one intervention variable is enough to realize the state transition. Otherwise,
NCON needs to be increased by one with which the optimal control problem will be solve once again.
This procedure proceeds until the target attractor is achieved and allows determining a minimum
number of control variables for the intervention. To check if the system is driven into the desired
attractor, the time period of one cycle of the target attractor before time point tf is taken. Inside this
periodic length, the value of the integrated deviation in equation (2.3) will be evaluated and should
be less than a predefined threshold.
2.4. Formulation of the optimal control problem
Based on the above analysis, to simultaneously identify a set of optimal control variables and determine
their profile, we define the followingmixed-integer nonlinear dynamic programming (MINLDP) problem:

min
XN
i¼1

ðtf
t1
ai � [xiðtÞ � xdesi (t)]

2
dt

� �
þ
XN
i¼1

ðtf
t1
bi �

dxiðtÞ
dt

� dxdesi (t)
dt

� �2
dt

 !
þ
XM
j¼1

ðtf
t1
gj � [uj(t)� u j0]

2dt
� �

subject to equation ð2:2Þ
equation ð2:5Þ
XM
j¼1

yj ¼ NCON

y [ {0,1}

xðtÞ ¼ xinitðtÞ, t0 � t � t1
xðtÞmin � xðtÞ � xðtÞmax

uðtÞmin � uðtÞ � uðtÞmax

t0 � t � tf , ð2:6Þ

where N is the number of state variables or biochemical components, M is the total number of regulatory
factors among which NCON will be identified as control variables, u0 = 1.0 is the initial average interaction
strength, and xinit is the initial state for the biological networks, respectively. x(t)min and x(t)max are the
boundary values of the abundance or activity of biochemical components x(t).

In the objective function, the aim of the first two terms
PN

i¼1

Ð f
t1
ai�[xiðtÞ � xdesi ðtÞ]2dt

� �
andPN

i¼1

Ð tf
t1
bi � [ð dxiðtÞ=dtÞ � ðdxdesi ðtÞ=dtÞ]2dt

� �
is to make sure that the desired trajectories of the target

state be approached, i.e. the deviation between the target and realized trajectories should be
minimized in the time period [t1, tf ]. It is noted that there exist bifurcation points in a multi-stable
system [20]. Therefore, once the intervention is large enough to steer the system to go through
bifurcation points, the initial steady state will lose its stability. As a result, the system will be steered

to the desired state [15]. The third term in the objective function
PM

j¼1

Ð tf
t1
gj � [ujðtÞ � u j0]

2dt
� �

avoids

excessive control actions so as to ensure physically meaningful profiles of the intervention variables. α,
β and γ are weighting factors which can be tuned to obtained expected optimization results. α and β
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can be tuned to make sure to follow the trajectory of the desired steady state, while γ is associated with
the dosage strategy of the drug. The selection of values for different parameters including the weighting
factors in our work is listed in electronic supplementary material, data 1.

There have been several methods of solving MINLDP problem. Without loss of generality, we
discretize the dynamic system with ODEs into a set of algebraic equations by the collocation method
[37,38]. After the discretization, the MINLDP problem is transformed into a mixed-integer nonlinear
programming (MINLP) problem. In this study we use the solver SBB [39] in GAMS [40] to solve this
problem. GAMS is known as a high-level modelling system for mathematical programming and
optimization. SBB combines the standard branch and bound method with some of the NLP solvers,
which have been proved to be able to solve many problems very effectively [41]. To better understand
the proposed optimization approach, the GAMS codes of the three case studies from different models
are provided in electronic supplementary material.

The whole algorithm for reconciling periodic rhythms of biological networks by optimal control is
illustrated in figure 3. It is assumed that the biological network has different attractors A1, A2, A3
and so on. Herein the transition from A1 to A2 is taken as an example to explain the process. As
mentioned in §2.3, NCON needs to be increased one by one until the optimal solution is found or the
state transition is judged to fail.
3. Results
3.1. A chaotic system
We first take a chaotic system [42] as a simple example to demonstrate the effectiveness of our method.
The system is described as the following ODEs:

_x1 ¼u1 � x2 � x3 þ 0:01,

_x2 ¼u2 � ðx21 � x2Þ
and _x3 ¼1� 4 � u3 � x1,

9>>=
>>; ð3:1Þ
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where u1, u2 and u3 are the average regulatory interaction strength, and x1, x2 and x3 are the states of the
biochemical components, respectively. The initial values of u1, u2 and u3 are defined as 1.0. This system
has three different types of attractors, one cyclic attractor, one chaotic attractor and one point attractor,
denoted as CYA, CHA and POA, respectively. These attractors are shown in figure 4. As mentioned
in §2.2, the time horizon for the optimization [t0, tf ] should be defined as longer than the sum of the
periodic length of the initial attractor, the periodic length of the target attractor and the epoch of the
intervention. The periodic length of CYA is 19.2, and thus we define t0 = 0, tf = 80. The state transitions
between POA, CYA and CHA are accomplished using our optimization approach. The resulting
optimal transitions from CHA to POA and from CHA to CYA are shown in figure 5.

The transition from CHA to POA is illustrated in figure 5a. The initial trajectories of the state variables
at CHA are shown in the time period [0, 32] in the top of figure 5a. During this time period, there is no
intervention and hence the values of the control variable remains at 1.0, as seen in the middle of figure 5a.
From time t1 = 32 the control variable u3 is active and its profile is determined by the optimization
approach. After a time period of intervention between time t1 = 32 and time t2 = 46.4, the system is
driven into the attractor POA as shown in the time period [46.4, 80], in which the control variable u3
restores to its original value, i.e. u3 = 1.0.

Figure 5b shows the state transition from CHA to CYA. The initial state CHA is shown by the solid
line in the first time period [0, 32] in the top. In this scenario, when the control is on from time t1 = 32, the
intervention determined by the optimization method is performed by manipulating u1. The epoch of
intervention is between time t1 = 32 and time t2 = 42.4. Then, the system is driven into the cyclic
attractor CYA. It can be seen from the top of figure 5b, in the time period [42.4, 80] the trajectories of
state variables coincide with those of the desired cyclic attractor denoted by the dashed lines. Again,
the control variable u1 restores to its original value after the intervention. At the solution, the integral
value of equation (2.3) in the time period [60.8, 80] (i.e. one periodic length of CYA before tf ) is
0.0064, which is less than the predefined threshold 0.01. It means that the initial state CHA is indeed
steered into the desired state CYA.

From this example, it can be seen that, although a long time horizon (i.e. 80) is defined for the
optimization, the resulting intervention time is short, e.g. 14.4 and 10.4 for the two cases shown in
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figure 5, respectively. It means that the results will not be dependent on the length of the time horizon, if
it is defined long enough. It should be noted that among the values of t0, t1, t2 and tf, only t2 is
determined by the optimization approach.

In addition to the above two cases shown, the optimal control strategies for the transition from CYA
to CHA, from CYA to POA, from POA to CYA and from POA to CHA are illustrated in electronic
supplementary material, data 2. In all these cases, our method is able to identify the control variables
and their profiles simultaneously. It can be seen that one single control variable is enough to realize
the state transitions in the chaotic system. Taking the state transition from CHA to POA as an
example, to study the effect of different parameter sets on the results of the proposed method, we
took ten sets of different guess values of state variables and control variables (see electronic
supplementary material, data 2) in the optimization approach. The results obtained are the same
as the one shown in figure 5a, which means that our approach for identifying the control variables
is robust.

3.2. Mammalian circadian rhythms
Circadian rhythm is a very common phenomenon in the biological activities, exhibiting an endogenous
24 h oscillation in behaviour, physiology and metabolism [43]. It plays an important role in a lot of
biological processes and physiological functions including mammalian blood pressure and body
temperature, sleep/wake cycles, the movement of leaves and the opening of flowers, and the like [44].
Disruptions of a normal circadian clock will result in metabolic dysregulation which is related to
disease behaviours [45,46]. In that case, the identification of regulatory variables and performing an
intervention to the circadian system so that it returns to the regular state are necessary. Mathematical
models of circadian rhythms have been developed for understanding of the underlying mechanism
and designing the manipulation of the system in silico [47].

Here, a mathematical model proposed by Mirsky et al. [44] with the parameter values from the work of
Mochizuki et al. [30] is chosen. The model of biological network has 21 state variables and 132 parameters
(see electronic supplementary material, data 3). In particular, we consider the phase delay induced by jet
lag or shift work which is to be compensated by state transition using our optimal control method. At
first, four attractors are identified by simulation, including two stable cyclic attractors (CYA1 and
CYA2), one unstable cyclic attractor (CYA) and one unstable point attractor (POA), which is consistent
with the finding of Mochizuki et al. [30]. For the unstable attractors, they may remain stable for a
while, but when the time is long enough, they will eventually evolve into a stable attractor. Figure 6
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shows the trajectories of three state variables (x2 = Per2, x11 =CRY1, x13 =REV− ERBα) to illustrate the
four different attractors. In addition, the periodic length of CYA1, CYA2 and CYA is 23.25, 21.75 and
20.25 h, respectively.

According to Abel & Doyle [31], high amplitude of biochemical components is preferable for
enhanced metabolic health. Diminished circadian amplitude due to diet or age in mice is found to
cause diseases including metabolic syndrome and diabetes [48–50]. In addition, sleep disorders from
jet lag or shift work relate to abnormal cell growth and cancer formation [5,51]. In this example, we
study the state transition from CYA2 to CYA1 to illustrate the acquisition of high-amplitude metabolic
behaviour and choose CYA1 to demonstrate phase resetting to ease the effects of shifting circadian
timing or amplitude after jet lag or shift work. Results are shown in figure 7.

As shown on the top of figure 7a, the dashed lines represent the trajectories with high-amplitude at
the desired attractor CYA1, and the states in solid lines with initial low-amplitude at CYA2 are plotted in
the first time period [0, 30 h]. After the optimal control, the trajectories of the state variables (solid lines)



Table 1. Impact of different weighting factors on state transition from CYA2 to CYA1.

α = β γ state transition UL UU epoch of intervention

1 1 success 0.149 2.662 [30 h, 57 h]

1 2 success 0.311 2.662 [30 h, 57 h]

1 4 success 0.472 2.662 [30 h, 57 h]

1 10 success 0.678 2.414 [30 h, 57 h]

1 50 success 0.900 1.782 [30 h, 57 h]

1 100 success 0.940 1.549 [30 h, 57 h]

1 200 success 0.929 1.361 [30 h, 57 h]

1 500 fail — — —
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are consistent with the desired CYA1 (dashed lines), demonstrating the realization of the state transition.
The control variable u21 (i.e. the average regulatory interaction strength from the other components to
CLK/BMAL1) is identified and the profile of u21, as shown at the bottom of figure 7a, is determined.

The recovery from a phase delay is shown in figure 7b,c. The trajectory of the state variable x2 in
attractor CYA1 is shown to illuminate the optimization results. The scenario in figure 7b associates
with a 6 h time difference due to a flight from China to Germany and that in figure 7c corresponds to
a shift work with 12 h. On the top plot of figure 7b,c, the black solid lines in the first time period
[0, 47.25 h] represent the trajectory of original biological clock and the red dashed lines are the desired
trajectory in the new environment. It can be seen that, after the optimal control, the dynamic system is
successfully adjusted to adapt to the new environment. In these two scenarios, two control variables
u18 (the average regulatory interaction strength from the other components to PER2/CRY1) and u21 are
identified and their corresponding profiles are obtained, as shown in the bottom plot of figure 7b and
c, respectively. This result reflects the important role of PER2/CRY1 and CLK/BMAL1 in the
mammalian circadian rhythms as illustrated in the work of Mirsky et al. [44].

To study the impact of the weighting factors on the optimization results, several numerical
experiments with different α, β and γ values for the state transition from CYA2 to stable CYA1 are
performed and the results are shown in table 1. In the objective function in equation (2.6), the first
two terms evaluate the deviation between the trajectories of state variables and those of the target
state variables, while the third term assesses the deviation of the control variables from their initial
value. Therefore, we increase the value of the weighting factor γ to investigate its impact on the
control profile for the intervention. Also, considering the same physical meaning, α is prescribed to be
equal to β. In table 1, UU and UL are the maximum and minimum value of the profile of U21 resulted
by our optimization, respectively. It can be seen that, as the γ value increases, UL is increasing and
UU is decreasing, i.e. the magnitude of change of U21 is reduced for the intervention. However, if γ is
too large, the state transition will fail (γ = 500 in this case study), it means that the control action is too
weak to trigger the state transition. In addition, different combinations of weighting factors have little
impact on the epoch of intervention. Therefore, weighting factors mainly influence the control profiles
of the identified decision variables.

3.3. Gastric cancer gene regulatory network
Not only are the periodic rhythms present within individual cells and at the tissue and organismal levels,
but also they are common from the aspect of genetic level and even associated with cancer development.
Here, we use the gastric cancer gene regulatory network constructed by Li et al. [52] to demonstrate the
adjustment of periodic rhythms by optimal control. This molecular network has a relatively complex
structure with 48 components and 215 regulation edges as shown in figure 8a. The model of the
dynamic system with 48 ODEs is given in electronic supplementary material, data 3. By simulation,
seven attractors are figured out, including six point attractors and one cyclic attractor (CYA) as shown
in figures 8b,c. Among the seven attractors, POA1, POA2 and POA3 are known as cell cycle arrest of
the normal cells, POA4 and POA5 are related to stress response, POA6 is regarded as the proliferation
of cancer cells and cyclic attractor CYA indicates cell death. The detailed values of these attractors are
listed in electronic supplementary material, data 4. These specific cellular phenotypes found by our
simulation study coincide with the previous findings by Li et al. [52].
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The aim of this example is to illustrate the efficacy of optimal control to prevent the cancer occurrence
or transform the initial cancerous state back to the normal state. Thus, we study the transition from the
gastric cancer attractor (POA6) to the apoptosis attractor (CYA) and from the gastric cancer attractor
(POA6) to the normal gastric epithelial attractor (POA1) and the results are shown in figure 9. In
figure 9a, three state variables (x18, x36 and x43) are shown in the top plot. It can be seen that the
system is steered from the initial cancerous attractor POA6 into the trajectories of the cyclic apoptosis
attractor CYA, by implementing the control profiles of u19 (average regulatory interaction strength
from the other components to PI3 K/Akt) and u41 (the average regulatory interaction strength from

http://www.omicshare.com/tools
http://www.omicshare.com/tools
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the other components to TGF-β) as shown in the bottom plot. Using five state variables (x1, x4, x7, x18 and

x36), the top plot of figure 9b shows the realization of the state transition from the cancer attractor (POA6)
to the normal gastric epithelial attractor (POA1). This is achieved by manipulating only one control
variable u19 and its profile is shown in the bottom plot of figure 9b. It is noted that u19 is identified as
a control variable in both scenarios, which is consistent with the result that gastric cancer can be
transformed to the apoptosis attractor and the normal gastric epithelial attractor by consistently
inhibiting the PI3 K/Akt activity [52].
ing.org/journal/rsos
R.Soc.open
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4. Conclusion
Abnormal periodic rhythms lead to disorders of functionality of biological systems. In this study, we
present an optimal control approach to reconciliating periodic rhythms to mitigate the effects of
disorders. For this purpose, it is necessary to define an adequate intervention strategy. In this study, we
consider this task as a state transition problem which is addressed by a mixed integer nonlinear
dynamic programming approach. Our approach allows simultaneously identifying control variables
and determining their profiles for intervention. In addition, our approach is able to determine the
minimum number of control variables. Moreover, the control variables for intervention are constrained
in allowable regions in the problem formulation, which can avoid excessive control actions and
maintain the stability of biological systems. These features are of importance in the sense of clinical practice.

The results of three examples demonstrate the applicability of our approach. From a biological point
of view, our optimal control approach explores the underlying mechanisms of state transition and phase
resetting for biological networks on the system level. For instance, we reveal the key regulatory
parameters to genes PER2/CRY1 and CLK/BMAL1 in mammalian circadian rhythms, which play an
important role in regulating the dynamics when the system undergoes lower amplitude or a phase
delay of circadian rhythms due to diet or time lag, respectively. Our results show that it is sufficient
to nudge the undesired attractor into the target one by imposing intervention on the key regulatory
parameters. In addition, the proposed approach can drive the gastric cancer attractor into the normal
gastric epithelial attractor or apoptosis attractor for the gastric cancer gene regulatory network. This
provides hints for alleviating gastric cancer. On the other hand, life processes are inherently stochastic,
in which noises play an important role in biological systems from the aspect of single cell or at the
molecular level [53]. Some studies have found that noises can help inducing the state transition [23].
Thus, consideration of noises and disturbances will be an important aspect in our future work. All in
all, our work can be extended based on the studies on network description and analysis at the system
level for understanding drug actions [54,55]. The application of the results of these studies will make
our work a promising approach to improving the efficiency of drug design.
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