Sample
Logic
Text

Open Logic Project

Sample Logic Textby OLP is licensed
under a Creative Commons Attribu-
tion 4.0 International License. It is
based on The Open Logic Text by
the Open Logic Project, used under a
Creative Commons Attribution 4.0 In-
ternational License.

®E®

http://openlogicproject.org/
https://github.com/OpenLogicProject/OpenLogic/tree/master/courses/sample
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://github.com/OpenLogicProject/OpenLogic
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://openlogicproject.org/

Contents

I Sets, Relations, Functions

1 Sets
1.1 Extensionality
1.2 Subsetsand PowerSets
1.3 SomelImportantSets L
1.4 Unions and Intersections
1.5 Pairs, Tuples, Cartesian Products
1.6 Russell’sParadox

2 Relations
2.1 RelationsasSets
2.2 Special Properties of Relations
23 Equivalence Relations
24 Orders e e e
25 Graphs.
2.6 OperationsonRelations

3 Functions

3.1
3.2
3.3
34
3.5
3.6

Basics
Kindsof Functions
FunctionsasRelations
Inversesof Functions
Composition of Functions
Partial Functions

4 The Size of Sets

4.1
4.2
4.3
44
4.5
4.6
4.7

Introduction o o
Enumerations and CountableSets
Cantor’s Zig-ZagMethod
Pairing Functionsand Codes
An Alternative Pairing Function
UncountableSets
Reduction

13
13
15
16
17
19
20

21
21
23
25
26
28
29

CONTENTS

II

ii

4.8
49

Equinumerosity L
Sets of Different Sizes, and Cantor’s Theorem

4.10 The Notion of Size, and Schroder-Bernstein

First-order Logic

Introduction to First-Order Logic

5.1
52
53
54
55
5.6
57
5.8
59

First-Order Logic
Syntax
Formulae
Satisfaction
Sentences e e e e e
Semantic Notions
Substitution
Modelsand Theories.
Soundness and Completeness

Syntax of First-Order Logic

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8

Introduction
First-Order Languages
Termsand Formulae
Unique Readability
Main operatorofa Formula.
Subformulae
Free Variables and Sentences
Substitution

Semantics of First-Order Logic

7.1
7.2
7.3
74
7.5
7.6
7.7

Introduction L o
Structures for First-order Languages
Covered Structures for First-order Languages
Satisfaction of a Formula in a Structure
Variable Assignments
Extensionality
SemanticNotions

Theories and Their Models

8.1
8.2
8.3
8.4
8.5
8.6

Introduction L L Lo
Expressing Properties of Structures
Examples of First-Order Theories
Expressing Relations in a Structure
The TheoryofSets
Expressing the Size of Structures

47

49
49
50
51
52
54
55
55
56
57

59
59
59
61
63
66
67
68
69

71
71
72
73
74
79
81
83

Contents

9 Natural Deduction 95
9.1 Introduction 95
9.2 Natural Deduction 96
9.3 Rulesand Derivations 98
9.4 Propositional Rules 98
9.5 Derivations e e e 100
9.6 Examples of Derivations 101
9.7 QuantifierRules 105
9.8 Derivations with Quantifiers 106
9.9 Proof-TheoreticNotions 110
9.10 Derivability and Consistency 112
9.11 Derivability and the Propositional Connectives 113
9.12 Derivability and the Quantifiers 114
913 Soundness. e e 115
9.14 Derivations with Identity predicate 119
9.15 Soundness with Identity predicate 121
10 The Completeness Theorem 123
10.1 Introduction 123
10.2 OutlineoftheProof 124
10.3 Complete Consistent Sets of Sentences 126
10.4 Henkin Expansion 127
10.5 Lindenbaum’sLemma. 129
10.6 ConstructionofaModel 130
10.7 Identity 132
10.8 The Completeness Theorem 135
10.9 The Compactness Theorem 135
10.10 A Direct Proof of the Compactness Theorem 137
10.11 The Lowenheim-Skolem Theorem 138
11 Beyond First-order Logic 141
11.1 Overview i i e e e e e e e e 141
11.2 Many-Sorted Logic. 142
11.3 Second-Orderlogic. 143
114 Higher-Orderlogic. 147
11.5 IntuitionisticLogic 149
11.6 ModalLogics o 153
11.7 OtherLogics 154
III' Turing Machines 157
12 Turing Machine Computations 159
12.1 Introduction 159

ii

CONTENTS

12.2 Representing Turing Machines
123 TuringMachines oL
12.4 Configurations and Computations
12.5 Unary Representation of Numbers
12.6 HaltingStates
12.7 Disciplined Machines
12.8 Combining Turing Machines
12.9 Variants of Turing Machines
12.10 The Church-Turing Thesis

13 Undecidability
13.1 Introduction
13.2 Enumerating Turing Machines
13.3 Universal Turing Machines
134 The Halting Problem
13.5 The DecisionProblem
13.6 Representing Turing Machines
13.7 Verifying the Representation
13.8 The Decision Problem is Unsolvable
13.9 Trakthenbrot’'sTheorem

IV Computability and Incompleteness

14 Recursive Functions
14.1 Introduction e
14.2 Primitive Recursion
143 Composition oo
14.4 Primitive Recursion Functions
14.5 Primitive Recursion Notations
14.6 Primitive Recursive Functions are Computable
14.7 Examples of Primitive Recursive Functions
14.8 Primitive Recursive Relations
14.9 Bounded Minimization,
14.10 Primes o e e e e e e e e
1411 Sequences
1412 Trees o o o e e e e e e
14.13 Other Recursions o v i v v i ittt e
14.14 Non-Primitive Recursive Functions
14.15 Partial Recursive Functions
14.16 The Normal Form Theorem
14.17 The Halting Problem
14.18 General Recursive Functions

iv

179
179
181
183
185
186
187
190
195
196

199

Contents

15 Arithmetization of Syntax 227
15.1 Introduction 0 L 227
152 CodingSymbols o oL 228
153 CodingTerms. 230
154 CodingFormulae. 231
155 Substitution L o L 232
15.6 Derivations in Natural Deduction 233

16 Representability in Q 239
16.1 Introduction 0 L. 239
16.2 Functions Representable in Q are Computable 241
16.3 The Beta FunctionLemma 242
16.4 Simulating Primitive Recursion 245
16.5 Basic Functions are RepresentableinQ 246
16.6 Composition is RepresentableinQ 249
16.7 Regular Minimization is RepresentableinQ 250
16.8 Computable Functions are RepresentableinQ 253
16.9 Representing Relations 254
16.10 Undecidability 255

17 Incompleteness and Provability 257
17.1 Introduction 257
17.2 The Fixed-PointLemma 258
17.3 The First Incompleteness Theorem 260
174 Rosser’'sTheorem 262
17.5 Comparison with Godel’s Original Paper 264
17.6 The Derivability Conditions for PA 264
17.7 The Second Incompleteness Theorem 265
17.8 Lob’sTheorem 267
17.9 The Undefinabilityof Truth 270

V Methods 273

A Proofs 275
Al Introduction 275
A2 StartingaProof L L L 276
A3 Using Definitions. 277
A4 InferencePatterns 278
A5 AnExample. L o L 284
A.6 Another Example 287
A.7 Proof by Contradiction 288
A8 ReadingProofs 292
A9 TICantDolt! 293

CONTENTS

D

A.10 OtherResources,
Induction

B.1 Introduction
B2 InductiononIN
B.3 StrongInduction 0 L.
B.4 Inductive Definitions
B.5 Structural Induction
B.6 Relationsand Functions
Biographies

Cl GeorgCantor,
C2 AlonzoChurch
C3 GerhardGentzen e
C4 KurtGodel e
C5 EmmyNoether,
C6 RoézsaPéter e
C.7 JuliaRobinson
C8 BertrandRussell
C9 AlfredTarski i e
C10 AlanTuring o o
C.11 ErnstZermelo i
Problems

Photo Credits

Bibliography

Vi

297
297
298
300
301
303
304

309
309
310
311
312
313
314
316
318
319
320
321

323

339

341

Part1

Sets, Relations, Functions

Chapter 1

Sets

1.1 Extensionality

A set is a collection of objects, considered as a single object. The objects making
up the set are called elements or members of the set. If x is an element of a set a,
we write x € a; if not, we write x ¢ a. The set which has no elements is called
the empty set and denoted “@”.

It does not matter how we specify the set, or how we order its elements, or
indeed how many times we count its elements. All that matters are what its
elements are. We codify this in the following principle.

Definition 1.1 (Extensionality). If A and B are sets, then A = B iff every ele-
ment of A is also an element of B, and vice versa.

Extensionality licenses some notation. In general, when we have some
objects ay, ..., a,, then {ay,...,a,} is the set whose elements are a4, . .., a,. We
emphasise the word “the”, since extensionality tells us that there can be only
one such set. Indeed, extensionality also licenses the following:

{a,a,b} = {a,b} = {b,a}.

This delivers on the point that, when we consider sets, we don’t care about
the order of their elements, or how many times they are specified.

Example 1.2. Whenever you have a bunch of objects, you can collect them
together in a set. The set of Richard’s siblings, for instance, is a set that con-
tains one person, and we could write it as S = {Ruth}. The set of positive
integers less than 4 is {1,2,3}, but it can also be written as {3,2,1} or even as
{1,2,1,2,3}. These are all the same set, by extensionality. For every element
of {1,2,3} is also an element of {3,2,1} (and of {1,2,1,2,3}), and vice versa.

Frequently we’ll specify a set by some property that its elements share.
We'll use the following shorthand notation for that: {x | ¢(x)}, where the

3

1. SETS

¢(x) stands for the property that x has to have in order to be counted among
the elements of the set.

Example 1.3. In our example, we could have specified S also as
= {x | x is a sibling of Richard}.

Example 1.4. A number is called perfect iff it is equal to the sum of its proper
divisors (i.e., numbers that evenly divide it but aren’t identical to the number).
For instance, 6 is perfect because its proper divisors are 1, 2, and 3, and 6 =
1+ 2+ 3. In fact, 6 is the only positive integer less than 10 that is perfect. So,
using extensionality, we can say:

{6} = {x | xis perfectand 0 < x < 10}

We read the notation on the right as “the set of x’s such that x is perfect and
0 < x < 10”. The identity here confirms that, when we consider sets, we don’t
care about how they are specified. And, more generally, extensionality guar-
antees that there is always only one set of x’s such that ¢(x). So, extensionality
justifies calling {x | ¢(x)} the set of x’s such that ¢(x).

Extensionality gives us a way for showing that sets are identical: to show
that A = B, show that whenever x € A then also x € B, and whenever y € B
then also y € A.

1.2 Subsets and Power Sets

We will often want to compare sets. And one obvious kind of comparison one
might make is as follows: everything in one set is in the other too. This situation
is sufficiently important for us to introduce some new notation.

Definition 1.5 (Subset). If every element of a set A is also an element of B,
then we say that A is a subset of B, and write A C B. If A is not a subset of B
we write A € B. If A C Bbut A # B, we write A C B and say that A is a
proper subset of B.

Example 1.6. Every set is a subset of itself, and @ is a subset of every set. The
set of even numbers is a subset of the set of natural numbers. Also, {a,b} C
{a,b,c}. But {a,b,e} is not a subset of {4, b, c}.

Example 1.7. The number 2 is an element of the set of integers, whereas the
set of even numbers is a subset of the set of integers. However, a set may hap-
pen to both be an element and a subset of some other set, e.g., {0} € {0,{0}}
and also {0} C {0, {0}}.

4

1.2. Subsets and Power Sets

Extensionality gives a criterion of identity for sets: A = B iff every element
of A is also an element of B and vice versa. The definition of “subset” defines
A C B precisely as the first half of this criterion: every element of A is also
an element of B. Of course the definition also applies if we switch A and B:
thatis, B C A iff every element of B is also an element of A. And that, in turn,
is exactly the “vice versa” part of extensionality. In other words, extensionality
entails that sets are equal iff they are subsets of one another.

Proposition 1.8. A = B iffboth A C Band B C A.

Now is also a good opportunity to introduce some further bits of helpful
notation. In defining when A is a subset of B we said that “every element of A
is...,” and filled the “...” with “an element of B”. But this is such a common
shape of expression that it will be helpful to introduce some formal notation
for it.

Definition 1.9. (Vx € A)¢ abbreviates Vx(x € A D ¢). Similarly, (3x € A)¢p
abbreviates Ix(x € A & ¢).

Using this notation, we can say that A C B iff (Vx € A)x € B.

Now we move on to considering a certain kind of set: the set of all subsets
of a given set.

Definition 1.10 (Power Set). The set consisting of all subsets of a set A is called
the power set of A, written p(A).

p(A)={B|BC A}
Example 1.11. What are all the possible subsets of {a, b,c}? They are: @,

{a}, {b}, {c}, {a,b}, {a,c}, {b,c}, {a,b,c}. The set of all these subsets is
p({ab,c}):

p({a,b,c}) = {D,{a}, {b},{c} {a b} {b,c} {a,c} {ab,c}}

1. SETS

1.3 Some Important Sets

Example 1.12. We will mostly be dealing with sets whose elements are math-
ematical objects. Four such sets are important enough to have specific names:

N =10,1,2,3,...}
the set of natural numbers
Z={...,-2,-1,0,1,2,...}
the set of integers
Q= {m/n|mne€Zandn #0}
the set of rationals
R = (—00,00)

the set of real numbers (the continuum)

These are all infinite sets, that is, they each have infinitely many elements.

As we move through these sets, we are adding more numbers to our stock.
Indeed, it should be clear that N € Z C Q C R: after all, every natural
number is an integer; every integer is a rational; and every rational is a real.
Equally, it should be clear that N C Z C Q, since —1 is an integer but not
a natural number, and 1/2 is rational but not integer. It is less obvious that
Q C R, i.e, that there are some real numbers which are not rational.

We'll sometimes also use the set of positive integers Z* = {1,2,3,... } and
the set containing just the first two natural numbers B = {0,1}.

Example 1.13 (Strings). Another interesting example is the set A* of finite
strings over an alphabet A: any finite sequence of elements of A is a string
over A. We include the empty string A among the strings over A, for every
alphabet A. For instance,

B* = {A,0,1,00,01,10,11,
000,001, 010,011, 100,101,110, 111,0000, . .. }.

If x = x1...x;, € A¥is a string consisting of n “letters” from A, then we say
length of the string is n and write len(x) = n.

Example 1.14 (Infinite sequences). For any set A we may also consider the
set A“ of infinite sequences of elements of A. An infinite sequence a1a2a34ay4 . ..
consists of a one-way infinite list of objects, each one of which is an element
of A.

1.4 Unions and Intersections

In section 1.1, we introduced definitions of sets by abstraction, i.e., definitions
of the form {x | ¢(x)}. Here, we invoke some property ¢, and this property

6

1.4. Unions and Intersections

-
—
)

~

Figure 1.1: The union A U B of two sets is set of elements of A together with
those of B.

can mention sets we’ve already defined. So for instance, if A and B are sets,
the set {x | x € AV x € B} consists of all those objects which are elements
of either A or B, i.e., it’s the set that combines the elements of A and B. We
can visualize this as in Figure 1.1, where the highlighted area indicates the
elements of the two sets A and B together.

This operation on sets—combining them—is very useful and common,
and so we give it a formal name and a symbol.

Definition 1.15 (Union). The union of two sets A and B, written A U B, is the
set of all things which are elements of A, B, or both.

AUB={x|x€ AVx e B}

Example 1.16. Since the multiplicity of elements doesn’t matter, the union of
two sets which have an element in common contains that element only once,
e.g.,{a,b,c}U{a,0,1} ={a,b,c,0,1}.

The union of a set and one of its subsets is just the bigger set: {a, b, c} U
{a} ={a,b,c}.

The union of a set with the empty set is identical to the set: {a,b,c} U® =
{a,b,c}.

We can also consider a “dual” operation to union. This is the operation
that forms the set of all elements that are elements of A and are also elements
of B. This operation is called intersection, and can be depicted as in Figure 1.2.

Definition 1.17 (Intersection). The intersection of two sets A and B, written
AN B, is the set of all things which are elements of both A and B.

ANB={x|x€ A&x € B}

Two sets are called disjoint if their intersection is empty. This means they have
no elements in common.

1. SETS

Figure 1.2: The intersection A N B of two sets is the set of elements they have
in common.

Example 1.18. If two sets have no elements in common, their intersection is
empty: {a,b,c} N{0,1} = Q.

If two sets do have elements in common, their intersection is the set of all
those: {a,b,c} N{a,b,d} = {a,b}.

The intersection of a set with one of its subsets is just the smaller set:
{a,b,c} Nn{a,b} = {a,b}.

The intersection of any set with the empty set is empty: {a,b,c} ND = @.

We can also form the union or intersection of more than two sets. An
elegant way of dealing with this in general is the following: suppose you
collect all the sets you want to form the union (or intersection) of into a single
set. Then we can define the union of all our original sets as the set of all objects
which belong to at least one element of the set, and the intersection as the set
of all objects which belong to every element of the set.

Definition 1.19. If A is a set of sets, then | A is the set of elements of elements
of A:

JA = {x | x belongs to an element of A}, i.e.,
= {x | thereisa B € A so that x € B}

Definition 1.20. If A is a set of sets, then (] A is the set of objects which all
elements of A have in common:

(A = {x | x belongs to every element of A}, i.e.,
={x|forallBe€ A,x € B}

Example 1.21. Suppose A = {{a,b},{a,d, e}, {a,d}}. Then JA = {a,b,d, e}
and N A = {a}.

8

1.5. Pairs, Tuples, Cartesian Products

Figure 1.3: The difference A \ B of two sets is the set of those elements of A
which are not also elements of B.

We could also do the same for a sequence of sets A1, Ay, ...

JAi = {x | x belongs to one of the A;}
i

() Ai = {x | x belongs to every A;}.
i

When we have an index of sets, i.e., some set I such that we are considering
A; for each i € I, we may also use these abbreviations:

Uai=UlAiliel}
i€l
NAi={Ailiel}
i€l
Finally, we may want to think about the set of all elements in A which are
not in B. We can depict this as in Figure 1.3.

Definition 1.22 (Difference). The set difference A\ B is the set of all elements
of A which are not also elements of B, i.e.,

A\B={x|x€ Aand x ¢ B}.

1.5 Pairs, Tuples, Cartesian Products

It follows from extensionality that sets have no order to their elements. So if
we want to represent order, we use ordered pairs (x,y). In an unordered pair
{x,y}, the order does not matter: {x,y} = {y, x}. In an ordered pair, it does:
if x # y, then (x,y) # (y, x).

How should we think about ordered pairs in set theory? Crucially, we
want to preserve the idea that ordered pairs are identical iff they share the
same first element and share the same second element, i.e.:

(a,b) = (c,d) iff botha = cand b = d.

1. SETS

We can define ordered pairs in set theory using the Wiener-Kuratowski defi-
nition.

Definition 1.23 (Ordered pair). (a,b) = {{a}, {a,b}}.

Having fixed a definition of an ordered pair, we can use it to define fur-
ther sets. For example, sometimes we also want ordered sequences of more
than two objects, e.g., triples (x,y, z), quadruples (x,y,z,u), and so on. We can
think of triples as special ordered pairs, where the first element is itself an or-
dered pair: (x,y,z) is ((x,y),z). The same is true for quadruples: (x,y,z, u) is
({({(x,y),z),u), and so on. In general, we talk of ordered n-tuples (x1,...,xn).

Certain sets of ordered pairs, or other ordered n-tuples, will be useful.

Definition 1.24 (Cartesian product). Given sets A and B, their Cartesian prod-
uct A x B is defined by

AxB={(x,y) | x€ Aandy € B}.
Example 1.25. If A = {0,1}, and B = {1, 4, b}, then their product is
A x B={(0,1),(0,a),(0,b),(1,1),(1,a), (1,b) }.

Example 1.26. If A is a set, the product of A with itself, A x A, is also writ-
ten AZ. Tt is the set of all pairs (x,y) with x,y € A. The set of all triples (x, v, z)
is A3, and so on. We can give a recursive definition:

Al =A
AL — Ak A

Proposition 1.27. If A has n elements and B has m elements, then A x B hasn - m
elements.

Proof. For every element x in A, there are m elements of the form (x,y) €
A x B. Let By = {(x,y) | vy € B}. Since whenever x1 # X, (x1,y) # (x2,),
By, N By, = @. Butif A = {x1,...,x,}, then A x B = By, U---UBy,, and so
has n - m elements.

To visualize this, arrange the elements of A x B in a grid:

By, = {(x,y1) (xu,y2) oo (XL,Ym)}
By, = {{x2,y1) (x2,y2) ... (x2,ym)}
Bo= {(xwn) (Gowa) o (onym)}

Since the x; are all different, and the yj are all different, no two of the pairs in
this grid are the same, and there are 7 - m of them. O

10

1.6. Russell’s Paradox

Example 1.28. If A is a set, a word over A is any sequence of elements of A. A
sequence can be thought of as an n-tuple of elements of A. For instance, if A =
{a,b, c}, then the sequence “bac” can be thought of as the triple (b, a, c). Words,
i.e., sequences of symbols, are of crucial importance in computer science. By
convention, we count elements of A as sequences of length 1, and @ as the
sequence of length 0. The set of all words over A then is

A*={Q}UAUAZUAU. ..

1.6 Russell’s Paradox

Extensionality licenses the notation {x | ¢(x)}, for the set of x’s such that ¢(x).
However, all that extensionality really licenses is the following thought. If
there is a set whose members are all and only the ¢’s, then there is only one
such set. Otherwise put: having fixed some ¢, the set {x | ¢(x)} is unique, if
it exists.

But this conditional is important! Crucially, not every property lends itself
to comprehension. That is, some properties do not define sets. If they all did,
then we would run into outright contradictions. The most famous example of
this is Russell’s Paradox.

Sets may be elements of other sets—for instance, the power set of a set A
is made up of sets. And so it makes sense to ask or investigate whether a set
is an element of another set. Can a set be a member of itself? Nothing about
the idea of a set seems to rule this out. For instance, if all sets form a collection
of objects, one might think that they can be collected into a single set—the set
of all sets. And it, being a set, would be an element of the set of all sets.

Russell’s Paradox arises when we consider the property of not having itself
as an element, of being non-self-membered. What if we suppose that there is a
set of all sets that do not have themselves as an element? Does

R={x|x¢&x}
exist? It turns out that we can prove that it does not.

Theorem 1.29 (Russell’s Paradox). Thereisnoset R = {x | x ¢ x}.

Proof. If R = {x | x ¢ x} exists, then R € Riff R ¢ R, which is a contradic-
tion. O

Let’s run through this proof more slowly. If R exists, it makes sense to ask
whether R € R or not. Suppose that indeed R € R. Now, R was defined as
the set of all sets that are not elements of themselves. So, if R € R, then R does
not itself have R’s defining property. But only sets that have this property are
in R, hence, R cannot be an element of R, i.e., R € R. But R can’t both be and
not be an element of R, so we have a contradiction.

11

1. SETS

Since the assumption that R € R leads to a contradiction, we have R ¢ R.
But this also leads to a contradiction! For if R ¢ R, then R itself does have R’s
defining property, and so R would be an element of R just like all the other
non-self-membered sets. And again, it can’t both not be and be an element
of R.

How do we set up a set theory which avoids falling into Russell’s Para-
dox, i.e., which avoids making the inconsistent claim that R = {x | x ¢ x}
exists? Well, we would need to lay down axioms which give us very precise
conditions for stating when sets exist (and when they don’t).

The set theory sketched in this chapter doesn’t do this. It’s genuinely naive.
It tells you only that sets obey extensionality and that, if you have some sets,
you can form their union, intersection, etc. It is possible to develop set theory
more rigorously than this.

12

Chapter 2

Relations

2.1 Relations as Sets

In section 1.3, we mentioned some important sets: IN, Z, Q, R. You will no
doubt remember some interesting relations between the elements of some of
these sets. For instance, each of these sets has a completely standard order
relation on it. There is also the relation is identical with that every object bears
to itself and to no other thing. There are many more interesting relations that
we’ll encounter, and even more possible relations. Before we review them,
though, we will start by pointing out that we can look at relations as a special
sort of set.

For this, recall two things from section 1.5. First, recall the notion of a or-
dered pair: given a and b, we can form (a, b). Importantly, the order of elements
does matter here. So if a # b then (a,b) # (b,a). (Contrast this with unordered
pairs, i.e., 2-element sets, where {a,b} = {b,a}.) Second, recall the notion of
a Cartesian product: if A and B are sets, then we can form A x B, the set of all
pairs (x,y) with x € A and y € B. In particular, A2 = A x A is the set of all
ordered pairs from A.

Now we will consider a particular relation on a set: the <-relation on the
set N of natural numbers. Consider the set of all pairs of numbers (n,m)
where n < m, i.e.,

R={(n,m)|n,meNandn < m}.

There is a close connection between n being less than m, and the pair (1, m)
being a member of R, namely:

n < miff (n,m) € R.

Indeed, without any loss of information, we can consider the set R to be the
<-relation on IN.

In the same way we can construct a subset of IN? for any relation between
numbers. Conversely, given any set of pairs of numbers S C N2, there is a

13

2. RELATIONS

corresponding relation between numbers, namely, the relationship # bears to
m if and only if (n,m) € S. This justifies the following definition:

Definition 2.1 (Binary relation). A binary relation on a set A is a subset of A2,
IfRC A%isa binary relation on A and x,y € A, we sometimes write Rxy (or
xRy) for (x,y) € R.

Example 2.2. The set IN? of pairs of natural numbers can be listed in a 2-
dimensional matrix like this:

0,00 (01) (0,2) (0,3)
L0y (1L1) (12) (13)
2,0 (1) 22 (23
(3,00 (3,1) (3,2) (3,3)

We have put the diagonal, here, in bold, since the subset of N2 consisting of
the pairs lying on the diagonal, i.e.,

{(0,0),(1,1),(2,2),...},

is the identity relation on IN. (Since the identity relation is popular, let’s define
Idy = {(x,x) | x € A} for any set A.) The subset of all pairs lying above the
diagonal, i.e.,

L=1{(0,1),(0,2),...,(1,2),(1,3),...,(2,3),(2,4),...},

is the less than relation, i.e., Lnm iff n < m. The subset of pairs below the
diagonal, i.e.,

G ={(1,0),(2,0),(2,1),(3,0),(3,1),(3,2),...},

is the greater than relation, i.e., Gnm iff n > m. The union of L with I, which
we might call K = LU I, is the less than or equal to relation: Knm iff n < m.
Similarly, H = G U I is the greater than or equal to relation. These relations L, G,
K, and H are special kinds of relations called orders. L and G have the property
that no number bears L or G to itself (i.e., for all n, neither Lnn nor Gnn).
Relations with this property are called irreflexive, and, if they also happen to
be orders, they are called strict orders.

Although orders and identity are important and natural relations, it should
be emphasized that according to our definition any subset of A? is a relation
on A, regardless of how unnatural or contrived it seems. In particular, @ is a
relation on any set (the empty relation, which no pair of elements bears), and
A? itself is a relation on A as well (one which every pair bears), called the
universal relation. But also something like E = {(n,m) | n > 50rm x n > 34}
counts as a relation.

14

2.2. Special Properties of Relations

2.2 Special Properties of Relations

Some kinds of relations turn out to be so common that they have been given
special names. For instance, < and C both relate their respective domains
(say, IN in the case of < and p(A) in the case of C) in similar ways. To get
at exactly how these relations are similar, and how they differ, we categorize
them according to some special properties that relations can have. It turns out
that (combinations of) some of these special properties are especially impor-
tant: orders and equivalence relations.

Definition 2.3 (Reflexivity). A relation R C A?is reflexive iff, for every x € A,
Rxx.

Definition 2.4 (Transitivity). A relation R C A2 is transitive iff, whenever Rxy
and Ryz, then also Rxz.

Definition 2.5 (Symmetry). A relation R C A2 is symmetric iff, whenever Rxy,
then also Ryx.

Definition 2.6 (Anti-symmetry). A relation R C A? is anti-symmetric iff, when-
ever both Rxy and Ryx, then x = y (or, in other words: if x # y then either
~Rxy or ~Ryx).

In a symmetric relation, Rxy and Ryx always hold together, or neither
holds. In an anti-symmetric relation, the only way for Rxy and Ryx to hold to-
gether is if x = y. Note that this does not require that Rxy and Ryx holds when
x = y, only that it isn’t ruled out. So an anti-symmetric relation can be reflex-
ive, but it is not the case that every anti-symmetric relation is reflexive. Also
note that being anti-symmetric and merely not being symmetric are different
conditions. In fact, a relation can be both symmetric and anti-symmetric at the
same time (e.g., the identity relation is).

Definition 2.7 (Connectivity). A relation R C A? is connected if for all x,y €
A, if x # y, then either Rxy or Ryx.

Definition 2.8 (Irreflexivity). A relation R C A? is called irreflexive if, for all
x € A, not Rxx.

Definition 2.9 (Asymmetry). A relation R C A? is called asymmetric if for no
pair x,y € A we have both Rxy and Ryx.

Note that if A # @, then no irreflexive relation on A is reflexive and every
asymmetric relation on A is also anti-symmetric. However, there are R C A2
that are not reflexive and also not irreflexive, and there are anti-symmetric
relations that are not asymmetric.

15

2. RELATIONS

2.3 Equivalence Relations

The identity relation on a set is reflexive, symmetric, and transitive. Rela-
tions R that have all three of these properties are very common.

Definition 2.10 (Equivalence relation). A relation R C A? that is reflexive,
symmetric, and transitive is called an equivalence relation. Elements x and y
of A are said to be R-equivalent if Rxy.

Equivalence relations give rise to the notion of an equivalence class. An
equivalence relation “chunks up” the domain into different partitions. Within
each partition, all the objects are related to one another; and no objects from
different partitions relate to one another. Sometimes, it’s helpful just to talk
about these partitions directly. To that end, we introduce a definition:

Definition 2.11. Let R C A2 be an equivalence relation. For each x € A, the
equivalence class of x in A is the set [x]g = {y € A | Rxy}. The quotient of A
under Ris A/gr = {[x]r | x € A}, i.e., the set of these equivalence classes.

The next result vindicates the definition of an equivalence class, in proving
that the equivalence classes are indeed the partitions of A:

Proposition 2.12. If R C A? is an equivalence relation, then Rxy iff [x]r = [y]&.

Proof. For the left-to-right direction, suppose Rxy, and let z € [x]g. By defi-
nition, then, Rxz. Since R is an equivalence relation, Ryz. (Spelling this out:
as Rxy and R is symmetric we have Ryx, and as Rxz and R is transitive we
have Ryz.) So z € [y|g. Generalising, [x]g C [y|gr. But exactly similarly,
[v]r C [x]r. So [x]r = [y]r, by extensionality.

For the right-to-left direction, suppose [x|g = [y]r. Since R is reflexive,
Ryy, soy € [y]r. Thus also y € [x]g by the assumption that [x|g = [y]r. So
Rxy. O

Example 2.13. A nice example of equivalence relations comes from modular
arithmetic. For any 4, b, and n € N, say that a =, b iff dividing a by n gives
the same remainder as dividing b by n. (Somewhat more symbolically: a =, b
iff, for some k € Z, a — b = kn.) Now, =, is an equivalence relation, for any #.
And there are exactly n distinct equivalence classes generated by =,; that is,
IN/=, has n elements. These are: the set of numbers divisible by n without
remainder, i.e., [0]=,; the set of numbers divisible by n with remainder 1, i.e.,
[1]=,;...; and the set of numbers divisible by n with remainder n — 1, i.e., [n —
1]=

ne

16

2.4. Orders

2.4 Orders

Many of our comparisons involve describing some objects as being “less than”,
“equal to”, or “greater than” other objects, in a certain respect. These involve
order relations. But there are different kinds of order relations. For instance,
some require that any two objects be comparable, others don’t. Some include
identity (like <) and some exclude it (like <). It will help us to have a taxon-
omy here.

Definition 2.14 (Preorder). A relation which is both reflexive and transitive is
called a preorder.

Definition 2.15 (Partial order). A preorder which is also anti-symmetric is called
a partial order.

Definition 2.16 (Linear order). A partial order which is also connected is called
a total order or linear order.

Example 2.17. Every linear order is also a partial order, and every partial or-
der is also a preorder, but the converses don’t hold. The universal relation
on A is a preorder, since it is reflexive and transitive. But, if A has more than
one element, the universal relation is not anti-symmetric, and so not a partial
order.

Example 2.18. Consider the no longer than relation < on B*: x < yiff len(x) <
len(y). This is a preorder (reflexive and transitive), and even connected, but
not a partial order, since it is not anti-symmetric. For instance, 01 < 10 and
10 < 01, but 01 # 10.

Example 2.19. An important partial order is the relation C on a set of sets.
This is not in general a linear order, since if 2 # b and we consider p({a,b}) =

{@,{a},{b},{a,b}}, wesee that {a} € {b} and {a} # {b} and {b} ¢ {a}.

Example 2.20. The relation of divisibility without remainder gives us a partial
order which isn’t a linear order. For integers n, m, we write n | m to mean
n (evenly) divides m, i.e., iff there is some integer k so that m = kn. On N,
this is a partial order, but not a linear order: for instance, 2 1 3 and also 3 { 2.
Considered as a relation on Z, divisibility is only a preorder since it is not
anti-symmetric: 1 | —1and —1 | 1but1 # —1.

Definition 2.21 (Strict order). A strict order is a relation which is irreflexive,
asymmetric, and transitive.

Definition 2.22 (Strict linear order). A strict order which is also connected is
called a strict linear order.

17

2. RELATIONS

Example 2.23. < is the linear order corresponding to the strict linear order <.
C is the partial order corresponding to the strict order C.

Definition 2.24 (Total order). A strict order which is also connected is called
a total order. This is also sometimes called a strict linear order.

Any strict order R on A can be turned into a partial order by adding the
diagonal Id 4, i.e., adding all the pairs (x, x). (This is called the reflexive closure
of R.) Conversely, starting from a partial order, one can get a strict order by
removing Id 4. These next two results make this precise.

Proposition 2.25. If R is a strict order on A, then Rt = RU1d 4 is a partial order.
Moreover, if R is total, then R is a linear order.

Proof. Suppose R is a strict order, i.e,, R C A% and R is irreflexive, asymmetric,
and transitive. Let RT = RUId4. We have to show that RT is reflexive,
antisymmetric, and transitive.

R is clearly reflexive, since (x,x) € Id4 C R* forallx € A.

To show R™ is antisymmetric, suppose for reductio that R xy and R*yx
but x # y. Since (x,y) € RUIdy, but (x,y) ¢ Idx, we must have (x,y) € R,
i.e.,, Rxy. Similarly, Ryx. But this contradicts the assumption that R is asym-
metric.

To establish transitivity, suppose that R*xy and R*yz. If both (x,y) € R
and (y,z) € R, then (x,z) € R since R is transitive. Otherwise, either (x,y) €
Idy,ie,x =y, or (y,z) € Idy, i.e., y = z. In the first case, we have that R yz
by assumption, x = y, hence R*xz. Similarly in the second case. In either
case, Rt xz, thus, R is also transitive.

Concerning the “moreover” clause, suppose R is a total order, i.e., that R
is connected. So for all x # y, either Rxy or Ryx, ie., either (x,y) € R or
(y,x) € R. Since R C R, this remains true of R", so R™ is connected as
well. O

Proposition 2.26. If R is a partial order on X, then R~ = R\ Idx is a strict order.
Moreover, if R is linear, then R~ is total.

Proof. This is left as an exercise. O

Example 2.27. < is the linear order corresponding to the total order <. C is
the partial order corresponding to the strict order C.

The following simple result which establishes that total orders satisfy an
extensionality-like property:

Proposition 2.28. If < totally orders A, then:

(Va,b e A)(Vx e A)(x <a=x<b)Da=0b)

18

2.5. Graphs

Proof. Suppose (Vx € A)(x <a=x <b).Ifa <b, thena < a, contradicting
the fact that < is irreflexive; so a £ b. Exactly similarly, b £ a. Soa = b, as <
is connected. O

2.5 Graphs

A graph is a diagram in which points—called “nodes” or “vertices” (plural of
“vertex”)—are connected by edges. Graphs are a ubiquitous tool in discrete
mathematics and in computer science. They are incredibly useful for repre-
senting, and visualizing, relationships and structures, from concrete things
like networks of various kinds to abstract structures such as the possible out-
comes of decisions. There are many different kinds of graphs in the literature
which differ, e.g., according to whether the edges are directed or not, have la-
bels or not, whether there can be edges from a node to the same node, multiple
edges between the same nodes, etc. Directed graphs have a special connection
to relations.

Definition 2.29 (Directed graph). A directed graph G = (V,E) is a set of ver-
tices V and a set of edges E C V2,

According to our definition, a graph just is a set together with a relation
on that set. Of course, when talking about graphs, it’s only natural to expect
that they are graphically represented: we can draw a graph by connecting two
vertices v1 and v, by an arrow iff (v,v;) € E. The only difference between a
relation by itself and a graph is that a graph specifies the set of vertices, i.e., a
graph may have isolated vertices. The important point, however, is that every
relation R on a set X can be seen as a directed graph (X, R), and conversely, a
directed graph (V, E) can be seen as a relation E C V2 with the set V explicitly
specified.

Example 2.30. The graph (V,E) with V = {1,2,3,4} and E = {(1,1),(1,2),
(1,3), (2,3) } looks like this:

®

19

2. RELATIONS

This is a different graph than (V’/, E) with V' = {1,2,3}, which looks like this:

2.6 Operations on Relations

It is often useful to modify or combine relations. In Proposition 2.25, we con-
sidered the union of relations, which is just the union of two relations consid-
ered as sets of pairs. Similarly, in Proposition 2.26, we considered the relative
difference of relations. Here are some other operations we can perform on
relations.

Definition 2.31. Let R, S be relations, and A be any set.
The inverse of Ris R~! = {(y,x) | (x,y) € R}.
The relative product of R and Sis (R | S) = {(x,z) : Jy(Rxy & Syz)}.
The restriction of R to Ais R| 4 = RN A2
The application of R to A is R[A] = {y : (Ix € A)Rxy}

Example 2.32. Let S C Z? be the successor relation on Z, i.e.,, S = {(x,y) €
Z? | x+1=y},sothat Sxyiffx+1=y.
S~1is the predecessor relation on Z, i.e., {{x,y) € Z? | x — 1 = y}.
S|Sis{(x,y) €Z? | x+2=y}
S| is the successor relation on IN.
S[{1,2,3}]is {2,3,4}.

Definition 2.33 (Transitive closure). Let R C A? be a binary relation.

The transitive closure of R is RT = |Jy-,en R", where we recursively define
R! = Rand R"*! = R" | R.

The reflexive transitive closure of R is R* = RT UId 4.

Example 2.34. Take the successor relation S C Z2. S?xy iff x + 2 = y, S3xy iff
x +3 =y, etc. So STxy iff x + n = y for some n > 1. In other words, ST xy iff
x <y,and S*xyiff x <y.

20

Chapter 3

Functions

3.1 Basics

A function is a map which sends each element of a given set to a specific ele-
ment in some (other) given set. For instance, the operation of adding 1 defines
a function: each number # is mapped to a unique number n 4 1.

More generally, functions may take pairs, triples, etc., as inputs and re-
turns some kind of output. Many functions are familiar to us from basic arith-
metic. For instance, addition and multiplication are functions. They take in
two numbers and return a third.

In this mathematical, abstract sense, a function is a black box: what matters
is only what output is paired with what input, not the method for calculating
the output.

Definition 3.1 (Function). A function f: A — B is a mapping of each element
of A to an element of B.

We call A the domain of f and B the codomain of f. The elements of A are
called inputs or arguments of f, and the element of B that is paired with an
argument x by f is called the value of f for argument x, written f(x).

The range ran(f) of f is the subset of the codomain consisting of the values
of f for some argument; ran(f) = {f(x) | x € A}.

The diagram in Figure 3.1 may help to think about functions. The ellipse
on the left represents the function’s domain; the ellipse on the right represents
the function’s codomain; and an arrow points from an argument in the domain
to the corresponding value in the codomain.

Example 3.2. Multiplication takes pairs of natural numbers as inputs and maps
them to natural numbers as outputs, so goes from IN x IN (the domain) to IN
(the codomain). As it turns out, the range is also IN, since every n € N is
nx1.

21

3. FUNCTIONS

7

Figure 3.1: A function is a mapping of each element of one set to an element of
another. An arrow points from an argument in the domain to the correspond-
ing value in the codomain.

Example 3.3. Multiplication is a function because it pairs each input—each
pair of natural numbers—with a single output: x: N> — IN. By contrast,
the square root operation applied to the domain IN is not functional, since
each positive integer n has two square roots: y/n and —/n. We can make it
functional by only returning the positive square root: v/ : N — RR.

Example 3.4. The relation that pairs each student in a class with their final
grade is a function—no student can get two different final grades in the same
class. The relation that pairs each student in a class with their parents is not a
function: students can have zero, or two, or more parents.

We can define functions by specifying in some precise way what the value
of the function is for every possible argment. Different ways of doing this are
by giving a formula, describing a method for computing the value, or listing
the values for each argument. However functions are defined, we must make
sure that for each argment we specify one, and only one, value.

Example 3.5. Let f: N — IN be defined such that f(x) = x+ 1. Thisis a
definition that specifies f as a function which takes in natural numbers and
outputs natural numbers. It tells us that, given a natural number x, f will
output its successor x + 1. In this case, the codomain IN is not the range of f,
since the natural number 0 is not the successor of any natural number. The
range of f is the set of all positive integers, Z*.

Example 3.6. Let ¢: IN — IN be defined such that g(x) = x + 2 — 1. This tells
us that g is a function which takes in natural numbers and outputs natural
numbers. Given a natural number n, g will output the predecessor of the
successor of the successor of x, i.e., x + 1.

We just considered two functions, f and g, with different definitions. How-
ever, these are the same function. After all, for any natural number 1, we have
that f(n) = n+1=n+2—1 = g(n). Otherwise put: our definitions for f

22

3.2. Kinds of Functions

»
gl

Figure 3.2: A surjective function has every element of the codomain as a value.

and g specify the same mapping by means of different equations. Implicitly,
then, we are relying upon a principle of extensionality for functions,

if Vx f(x) = g(x),then f = ¢
provided that f and g share the same domain and codomain.

Example 3.7. We can also define functions by cases. For instance, we could
define h: N — N by

P if x is even
hix) =142
() { 1 if x is odd.

Since every natural number is either even or odd, the output of this function
will always be a natural number. Just remember that if you define a function
by cases, every possible input must fall into exactly one case. In some cases,
this will require a proof that the cases are exhaustive and exclusive.

3.2 Kinds of Functions

It will be useful to introduce a kind of taxonomy for some of the kinds of
functions which we encounter most frequently.

To start, we might want to consider functions which have the property that
every member of the codomain is a value of the function. Such functions are
called surjective, and can be pictured as in Figure 3.2.

Definition 3.8 (Surjective function). A function f: A — B is surjective iff B
is also the range of f, i.e., for every y € B there is at least one x € A such
that f(x) = y, or in symbols:

(Vy € B)(Ix € A)f(x) =y.

We call such a function a surjection from A to B.

If you want to show that f is a surjection, then you need to show that every
object in f’s codomain is the value of f(x) for some input x.

23

3. FUNCTIONS

)

Figure 3.3: An injective function never maps two different arguments to the
same value.

Note that any function induces a surjection. After all, given a function
f: A — B, let f': A — ran(f) be defined by f’'(x) = f(x). Since ran(f) is
defined as { f (x) € B | x € A}, this function f’ is guaranteed to be a surjection

Now, any function maps each possible input to a unique output. But there
are also functions which never map different inputs to the same outputs. Such
functions are called injective, and can be pictured as in Figure 3.3.

Definition 3.9 (Injective function). A function f: A — B is injective iff for
each y € B there is at most one x € A such that f(x) = y. We call such a
function an injection from A to B.

If you want to show that f is an injection, you need to show that for any
elements x and y of f’s domain, if f(x) = f(y), then x = y.

Example 3.10. The constant function f: IN — IN given by f(x) = 1 is neither
injective, nor surjective.

The identity function f: N — IN given by f(x) = x is both injective and
surjective.

The successor function f: N — IN given by f(x) = x + 1 is injective but
not surjective.

The function f: IN — IN defined by:

¥ e

)3 if x is even
x) =
fx) {xgl if x is odd.

is surjective, but not injective.

Often enough, we want to consider functions which are both injective and
surjective. We call such functions bijective. They look like the function pic-
tured in Figure 3.4. Bijections are also sometimes called one-to-one correspon-
dences, since they uniquely pair elements of the codomain with elements of
the domain.

Definition 3.11 (Bijection). A function f: A — B is bijective iff it is both sur-
jective and injective. We call such a function a bijection from A to B (or be-
tween A and B).

24

3.3. Functions as Relations

=

Figure 3.4: A bijective function uniquely pairs the elements of the codomain
with those of the domain.

3.3 Functions as Relations

A function which maps elements of A to elements of B obviously defines a
relation between A and B, namely the relation which holds between x and
y iff f(x) = y. In fact, we might even—if we are interested in reducing the
building blocks of mathematics for instance—identify the function f with this
relation, i.e., with a set of pairs. This then raises the question: which relations
define functions in this way?

Definition 3.12 (Graph of a function). Let f: A — B be a function. The graph
of f is the relation R s A x B defined by

Rp={(xy) | f(x) =y}

The graph of a function is uniquely determined, by extensionality. More-
over, extensionality (on sets) will immediate vindicate the implicit principle of
extensionality for functions, whereby if f and g share a domain and codomain
then they are identical if they agree on all values.

Similarly, if a relation is “functional”, then it is the graph of a function.

Proposition 3.13. Let R C A X B be such that:
1. If Rxy and Rxz then y = z; and
2. forevery x € A there is some y € B such that (x,y) € R.
Then R is the graph of the function f: A — B defined by f(x) = y iff Rxy.

Proof. Suppose there is a y such that Rxy. If there were another z # y such
that Rxz, the condition on R would be violated. Hence, if there is a i such that
Ruxy, this y is unique, and so f is well-defined. Obviously, Rf = R. O

Every function f: A — B has a graph, i.e., a relation on A X B defined
by f(x) = y. On the other hand, every relation R C A x B with the proper-
ties given in Proposition 3.13 is the graph of a function f: A — B. Because
of this close connection between functions and their graphs, we can think of

25

3. FUNCTIONS

a function simply as its graph. In other words, functions can be identified
with certain relations, i.e., with certain sets of tuples. We can now consider
performing similar operations on functions as we performed on relations (see
section 2.6). In particular:

Definition 3.14. Let f: A — B be a function with C C A.

The restriction of f to C is the function f|c: C — B defined by (f[¢)(x) =
f(x) forall x € C. In other words, fc = {(x,y) € Ry | x € C}.

The application of f to Cis f[C] = {f(x) | x € C}. We also call this the
image of C under f.

It follows from these definition that ran(f) = f[dom(f)], for any func-
tion f. These notions are exactly as one would expect, given the definitions
in section 2.6 and our identification of functions with relations. But two other
operations—inverses and relative products—require a little more detail. We
will provide that in the section 3.4 and section 3.5.

3.4 Inverses of Functions

We think of functions as maps. An obvious question to ask about functions,
then, is whether the mapping can be “reversed.” For instance, the successor
function f(x) = x + 1 can be reversed, in the sense that the function g(y) =
y — 1 “undoes” what f does.

But we must be careful. Although the definition of g defines a function
Z — Z, it does not define a function N — IN, since g(0) ¢ IN. So even in
simple cases, it is not quite obvious whether a function can be reversed; it
may depend on the domain and codomain.

This is made more precise by the notion of an inverse of a function.

Definition 3.15. A function g: B — A is an inverse of a function f: A — B if
f(gly)) =yand g(f(x)) =xforallx € Aand y € B.

If f has an inverse g, we often write f ! instead of g.
Now we will determine when functions have inverses. A good candidate
for aninverse of f: A — Bis g: B — A “defined by”

g(y) = “the” x such that f(x) = y.

But the scare quotes around “defined by” (and “the”) suggest that this is not
a definition. At least, it will not always work, with complete generality. For,
in order for this definition to specify a function, there has to be one and only
one x such that f(x) = y—the output of g has to be uniquely specified. More-
over, it has to be specified for every y € B. If there are x1 and x, € A with
x1 # xp but f(x1) = f(x2), then ¢(y) would not be uniquely specified for
y = f(x1) = f(x2). And if there is no x at all such that f(x) = y, then g(y) is

26

3.4. Inverses of Functions

not specified at all. In other words, for g to be defined, f must be both injective
and surjective.

Let’s go slowly. We’ll divide the question into two: Given a function f: A —
B, when is there a function g: B — A so that g(f(x)) = x? Such a ¢ “undoes”
what f does, and is called a left inverse of f. Secondly, when is there a function
h: B — A so that f(h(y)) = y? Such an h is called a right inverse of f—f
“undoes” what h does.

Proposition 3.16. If f: A — B is injective, then there is a left inverse g: B — A
of f sothat g(f(x)) = x forall x € A.

Proof. Suppose that f: A — B is injective. Consider ay € B. If y € ran(f),
there is an x € A so that f(x) = y. Because f is injective, there is only one
such x € A. Then we can define: g(y) = x, i.e., g(y) is “the” x € A such that
f(x) =y.Ify ¢ ran(f), we can map it to any a € A. So, we can pick ana € A
and define g: B —+ A by:

_Jx iff(x) =y
g(]/)—{a ify ¢ ran(f).

It is defined for all y € B, since for each such y € ran(f) there is exactly one
x € A such that f(x) = y. By definition, if y = f(x), then ¢(y) = x, ie.,
8(f(x)) = x. O

Proposition 3.17. If f: A — B is surjective, then there is a right inverse h: B —
Aof fsothat f(h(y)) =y forally € B.

Proof. Suppose that f: A — B is surjective. Consider a y € B. Since f is
surjective, there is an x, € A with f(x,) = y. Then we can define: h(y) = x,,
i.e., foreach y € Bwe choose some x € A so that f(x) = y; since f is surjective
there is always at least one to choose from.! By definition, if x = h(y), then

f(x) =y, ie, foranyy € B, f(h(y)) = y. O

By combining the ideas in the previous proof, we now get that every bijec-
tion has an inverse, i.e., there is a single function which is both a left and right
inverse of f.

Proposition 3.18. If f: A — B is bijective, there is a function f~1: B — A so that
forallx € A, f~1(f(x)) =xandforally € B, f(f1(y)) = v.

ISince f is surjective, for every y € B the set {x | f(x) = y} is nonempty. Our definition
of h requires that we choose a single x from each of these sets. That this is always possible is
actually not obvious—the possibility of making these choices is simply assumed as an axiom.
In other words, this proposition assumes the so-called Axiom of Choice, an issue we will gloss
over. However, in many specific cases, e.g., when A = IN or is finite, or when f is bijective, the
Axiom of Choice is not required. (In the particular case when f is bijective, for each y € B the set
{x | f(x) =y} has exactly one element, so that there is no choice to make.)

27

3. FUNCTIONS

Proof. Exercise. O

There is a slightly more general way to extract inverses. We saw in sec-
tion 3.2 that every function f induces a surjection f': A — ran(f) by letting
f'(x) = f(x) forall x € A. Clearly, if f is injective, then f” is bijective, so that
it has a unique inverse by Proposition 3.18. By a very minor abuse of notation,
we sometimes call the inverse of f’ simply “the inverse of f.”

Proposition 3.19. Show that if f: A — B has a left inverse g and a right inverse h,
then h = g.

Proof. Exercise. O
Proposition 3.20. Every function f has at most one inverse.

Proof. Suppose g and & are both inverses of f. Then in particular g is a left
inverse of f and / is a right inverse. By Proposition 3.19, g = h. O

3.5 Composition of Functions

We saw in section 3.4 that the inverse f~! of a bijection f is itself a function.
Another operation on functions is composition: we can define a new function
by composing two functions, f and g, i.e., by first applying f and then g. Of
course, this is only possible if the ranges and domains match, i.e., the range
of f must be a subset of the domain of g. This operation on functions is the
analogue of the operation of relative product on relations from section 2.6.

A diagram might help to explain the idea of composition. In Figure 3.5, we
depict two functions f: A — B and g: B — C and their composition (g o f).
The function (go f): A — C pairs each element of A with an element of C. We
specify which element of C an element of A is paired with as follows: given
an input x € A, first apply the function f to x, which will output some f(x) =
y € B, then apply the function g to y, which will output some g(f(x)) =

g(y) =z €C.

Definition 3.21 (Composition). Let f: A — B and g: B — C be functions.
The composition of f with gis go f: A — C, where (g0 f)(x) = g(f(x)).

Example 3.22. Consider the functions f(x) = x+ 1, and g(x) = 2x. Since
(g0 f)(x) = g(f(x)), for each input x you must first take its successor, then
multiply the result by two. So their composition is given by (g o f)(x) =
2(x+1).

28

3.6. Partial Functions

Figure 3.5: The composition g o f of two functions f and g.

3.6 Partial Functions

It is sometimes useful to relax the definition of function so that it is not re-
quired that the output of the function is defined for all possible inputs. Such
mappings are called partial functions.

Definition 3.23. A partial function f: A + B is a mapping which assigns to
every element of A at most one element of B. If f assigns an element of B to
x € A, we say f(x) is defined, and otherwise undefined. If f(x) is defined, we
write f(x) |, otherwise f(x) 1. The domain of a partial function f is the subset
of A where it is defined, i.e., dom(f) = {x € A | f(x) |}.

Example 3.24. Every function f: A — B is also a partial function. Partial
functions that are defined everywhere on A—i.e., what we so far have simply
called a function—are also called total functions.

Example 3.25. The partial function f: R - R given by f(x) = 1/x is unde-
fined for x = 0, and defined everywhere else.

Definition 3.26 (Graph of a partial function). Let f: A + Bbe a partial func-
tion. The graph of f is the relation Ry C A x B defined by

Re={(x,y) | f(x) =y}

Proposition 3.27. Suppose R C A x B has the property that whenever Rxy and
Rxy’ then y = y'. Then R is the graph of the partial function f: X -» Y defined by:
if there is a y such that Rxy, then f(x) =y, otherwise f(x) 1. If R is also serial, i.e.,
foreach x € X thereisay € Y such that Rxy, then f is total.

Proof. Suppose there is a y such that Rxy. If there were another ' # y such
that Rxy/, the condition on R would be violated. Hence, if there is a y such
that Rxy, that y is unique, and so f is well-defined. Obviously, Ry = Rand f
is total if R is serial. O

29

Chapter 4

The Size of Sets

4.1 Introduction

When Georg Cantor developed set theory in the 1870s, one of his aims was
to make palatable the idea of an infinite collection—an actual infinity, as the
medievals would say. A key part of this was his treatment of the size of dif-
ferent sets. If 2, b and c are all distinct, then the set {a, b, c} is intuitively larger
than {a,b}. But what about infinite sets? Are they all as large as each other?
It turns out that they are not.

The first important idea here is that of an enumeration. We can list every
finite set by listing all its elements. For some infinite sets, we can also list
all their elements if we allow the list itself to be infinite. Such sets are called
countable. Cantor’s surprising result, which we will fully understand by the
end of this chapter, was that some infinite sets are not countable.

4.2 Enumerations and Countable Sets

We've already given examples of sets by listing their elements. Let’s discuss
in more general terms how and when we can list the elements of a set, even if
that set is infinite.

Definition 4.1 (Enumeration, informally). Informally, an enumeration of aset A
is a list (possibly infinite) of elements of A such that every element of A ap-
pears on the list at some finite position. If A has an enumeration, then A is
said to be countable.

A couple of points about enumerations:

1. We count as enumerations only lists which have a beginning and in
which every element other than the first has a single element immedi-
ately preceding it. In other words, there are only finitely many elements
between the first element of the list and any other element. In particular,

31

4. THE SIZE OF SETS

this means that every element of an enumeration has a finite position:
the first element has position 1, the second position 2, etc.

2. We can have different enumerations of the same set A which differ by
the order in which the elements appear: 4, 1, 25, 16, 9 enumerates the
(set of the) first five square numbers just as well as 1, 4, 9, 16, 25 does.

3. Redundant enumerations are still enumerations: 1,1, 2,2, 3, 3, ... enu-
merates the same setas 1,2, 3, ... does.

4. Order and redundancy do matter when we specify an enumeration: we
can enumerate the positive integers beginning with 1,2, 3, 1, ..., but the
pattern is easier to see when enumerated in the standard way as 1, 2, 3,
4,...

5. Enumerations must have a beginning: ..., 3, 2, 1 is not an enumeration
of the positive integers because it has no first element. To see how this
follows from the informal definition, ask yourself, “at what position in
the list does the number 76 appear?”

6. The following is not an enumeration of the positive integers: 1, 3, 5, ...,
2,4,6, ... The problem is that the even numbers occur at places oo + 1,
o + 2, oo + 3, rather than at finite positions.

7. The empty set is enumerable: it is enumerated by the empty list!

Proposition 4.2. If A has an enumeration, it has an enumeration without repeti-
tions.

Proof. Suppose A has an enumeration x1, Xy, ... in which each x; is an element
of A. We can remove repetitions from an enumeration by removing repeated
elements. For instance, we can turn the enumeration into a new one in which
we list x; if it is an element of A that is not among x1, ..., x;_1 or remove x;
from the list if it already appears among x1, ..., x;_1. O

The last argument shows that in order to get a good handle on enumer-
ations and countable sets and to prove things about them, we need a more
precise definition. The following provides it.

Definition 4.3 (Enumeration, formally). An enumeration of aset A # @isany
surjective function f: Z* — A.

Let’s convince ourselves that the formal definition and the informal defini-
tion using a possibly infinite list are equivalent. First, any surjective function
from Z* to a set A enumerates A. Such a function determines an enumeration
as defined informally above: the list f(1), f(2), f(3), Since f is surjective,
every element of A is guaranteed to be the value of f(n) for some n € Z™.

32

4.2. Enumerations and Countable Sets

Hence, every element of A appears at some finite position in the list. Since the
function may not be injective, the list may be redundant, but that is acceptable
(as noted above).

On the other hand, given a list that enumerates all elements of A, we can
define a surjective function f: Z* — A by letting f(n) be the nth element
of the list, or the final element of the list if there is no nth element. The only
case where this does not produce a surjective function is when A is empty,
and hence the list is empty. So, every non-empty list determines a surjective
function f: ZT — A.

Definition 4.4. A set A is countable iff it is empty or has an enumeration.

Example 4.5. A function enumerating the positive integers (Z7) is simply the
identity function given by f(n) = n. A function enumerating the natural
numbers N is the function g(n) = n — 1.

Example 4.6. The functions f: ZT — Z* and g: Z* — Z* given by

f(n) =2nand
g(n)=2n+1
enumerate the even positive integers and the odd positive integers, respec-

tively. However, neither function is an enumeration of Z™, since neither is
surjective.

Example 4.7. The function f(n) = (—1)" (%;1)1 (where [x] denotes the ceil-
ing function, which rounds x up to the nearest integer) enumerates the set of
integers Z. Notice how f generates the values of Z by “hopping” back and
forth between positive and negative integers:

f) f2) fB) f(4) f() f(6) f(7)

0 1 -1 2 -2 3
You can also think of f as defined by cases as follows:

0 ifn=1
f(n)=<n/2 if n is even
—(n—1)/2 ifnisoddand > 1

Although it is perhaps more natural when listing the elements of a set to
start counting from the 1st element, mathematicians like to use the natural
numbers IN for counting things. They talk about the Oth, 1st, 2nd, and so on,
elements of a list. Correspondingly, we can define an enumeration as a surjec-
tive function from IN to A. Of course, the two definitions are equivalent.

33

4. THE SIZE OF SETS

Proposition 4.8. There is a surjection f: Z+ — A iff there is a surjection g: N —
A.

Proof. Given a surjection f: ZT — A, we can define g(n) = f(n + 1) for
all n € IN. It is easy to see that g: N — A is surjective. Conversely, given
a surjection g: N — A, define f(n) = g(n —1). O

This gives us the following result:

Corollary 4.9. A set A is countable iff it is empty or there is a surjective function
f:IN = A

We discussed above than an list of elements of a set A can be turned into
a list without repetitions. This is also true for enumerations, but a bit harder
to formulate and prove rigorously. Any function f: Z* — A must be defined
for all n € Z*. If there are only finitely many elements in A then we clearly
cannot have a function defined on the infinitely many elements of Z* that
takes as values all the elements of A but never takes the same value twice. In
that case, i.e., in the case where the list without repetitions is finite, we must
choose a different domain for f, one with only finitely many elements. Not
having repetitions means that f must be injective. Since it is also surjective,
we are looking for a bijection between some finite set {1,...,n} or Z* and A.

Proposition 4.10. If f: Z* — A is surjective (i.e., an enumeration of A), there is
a bijection g: Z — A where Z is either Z" or {1,...,n} for somen € Z™.

Proof. We define the function g recursively: Let ¢(1) = f(1). If g(i) has al-
ready been defined, let g(i + 1) be the first value of f(1), f(2), ... not already
among ¢(1), ..., g(i), if there is one. If A has just n elements, then g(1), ...,
g(n) are all defined, and so we have defined a function g¢: {1,...,n} — A. If
A has infinitely many elements, then for any i there must be an element of A
in the enumeration f(1), f(2), ..., which is not already among g(1), ..., g(i).
In this case we have defined a funtion g: Z* — A.

The function g is surjective, since any element of A is among f(1), f(2), ...
(since f is surjective) and so will eventually be a value of g(i) for some i. It is
also injective, since if there were j < i such that g(j) = g(i), then g(i) would
already be among g(1), ..., g(i — 1), contrary to how we defined g. O

Corollary 4.11. A set A is countable iff it is empty or there is a bijection f: N — A
where either N =N or N = {0,...,n} for some n € IN.

Proof. A is countable iff A is empty or there is a surjective f: ZT — A. By
Proposition 4.10, the latter holds iff there is a bijective function f: Z — A
where Z = Z* or Z = {1,...,n} for some n € Z*. By the same argument
as in the proof of Proposition 4.8, that in turn is the case iff there is a bijection
g: N — A where either N=Nor N ={0,...,n—1}. O

34

4.3. Cantor’s Zig-Zag Method

4.3 Cantor’s Zig-Zag Method

We’ve already considered some “easy” enumerations. Now we will consider
something a bit harder. Consider the set of pairs of natural numbers, which
we defined in section 1.5 thus:

N x N = {(n,m) | n,m € N}

We can organize these ordered pairs into an array, like so:

0 1 2 3
00,0y | (0,1)](0,2) | {0,3)
1] (1,0) | (1,1) | (1,2) | (L,3)
212,00 1) | (22)] (23)
33,0 |31] (3233

Clearly, every ordered pair in IN x IN will appear exactly once in the array.
In particular, (n,m) will appear in the nth row and mth column. But how
do we organize the elements of such an array into a “one-dimensional” list?
The pattern in the array below demonstrates one way to do this (although of
course there are many other options):

0| 1|23 4
00|13 |6 |10
11247 |11
25| 8 |12
319 |13
4114

This pattern is called Cantor’s zig-zag method. It enumerates IN x IN as follows:
(0,0),(0,1),(1,0),(0,2),(1,1),(2,0),(0,3),(1,2),(2,1),(3,0), ...

And this establishes the following:

Proposition 4.12. IN x IN is countable.

Proof. Let f: N — IN x IN take each k € IN to the tuple (1,m) € IN x IN such
that k is the value of the nth row and mth column in Cantor’s zig-zag array.]

This technique also generalises rather nicely. For example, we can use it to
enumerate the set of ordered triples of natural numbers, i.e.:

IN x N x N = {(n,m, k) | n,m,k € N}

35

4. THE SIZE OF SETS

We think of N X IN x IN as the Cartesian product of IN x IN with IN, that is,
N3 = (N x N) x N = {((n,m),k) | n,m,k € N}

and thus we can enumerate IN® with an array by labelling one axis with the
enumeration of IN, and the other axis with the enumeration of IN?:

0 1 2 3
(0,0) | (0,0,0) | (0,0,1) | (0,0,2) | (0,0,3)
(0,1) [(0,1,0) | (0,1,1) | (0,1,2) | (0,1,3)
(1,0y | (1,0,0) | (1,0,1) | (1,0,2) | (1,0,3)
(0,2) [(0,2,0) | (0,2,1) | (0,2,2) | (0,2,3)

Thus, by using a method like Cantor’s zig-zag method, we may similarly ob-
tain an enumeration of N®. And we can keep going, obtaining enumerations
of N" for any natural number 7. So, we have:

Proposition 4.13. IN" is countable, for every n € IN.

4.4 Pairing Functions and Codes

Cantor’s zig-zag method makes the enumerability of N” visually evident. But
let us focus on our array depicting IN2. Following the zig-zag line in the array
and counting the places, we can check that (1,2) is associated with the num-
ber 7. However, it would be nice if we could compute this more directly. That
is, it would be nice to have to hand the inverse of the zig-zag enumeration,
¢: IN? — N, such that

8((0,0)) =0, g((0,1)) =1, g((1LO)) =2, ...,8({1,2)) =7, ...

This would enable us to calculate exactly where (1, m) will occur in our enu-
meration.

In fact, we can define g directly by making two observations. First: if the
nth row and mth column contains value v, then the (1 + 1)st row and (m — 1)st
column contains value v + 1. Second: the first row of our enumeration con-
sists of the triangular numbers, starting with 0, 1, 3, 6, etc. The kth triangular
number is the sum of the natural numbers < k, which can be computed as
k(k+ 1) /2. Putting these two observations together, consider this function:

g(mm) = (n+m+21)(n+m) n

We often just write g(n, m) rather that g((n, m)), since it is easier on the eyes.
This tells you first to determine the (1 + m)™ triangle number, and then add

36

4.5. An Alternative Pairing Function

n to it. And it populates the array in exactly the way we would like. So in
particular, the pair (1,2) is sent to 452 +1=7.

This function g is the inverse of an enumeration of a set of pairs. Such
functions are called pairing functions.

Definition 4.14 (Pairing function). A function f: A X B — IN is an arithmeti-
cal pairing function if f is injective. We also say that f encodes A x B, and that
f(x,y) is the code for (x,y).

We can use pairing functions to encode, e.g., pairs of natural numbers; or,
in other words, we can represent each pair of elements using a single number.
Using the inverse of the pairing function, we can decode the number, i.e., find
out which pair it represents.

4.5 An Alternative Pairing Function

There are other enumerations of IN? that make it easier to figure out what their
inverses are. Here is one. Instead of visualizing the enumeration in an array,
start with the list of positive integers associated with (initially) empty spaces.
Imagine filling these spaces successively with pairs (1, m) as follows. Starting
with the pairs that have 0 in the first place (i.e., pairs (0, m)), put the first (i.e.,
(0,0)) in the first empty place, then skip an empty space, put the second (i.e.,
(0,2)) in the next empty place, skip one again, and so forth. The (incomplete)
beginning of our enumeration now looks like this

1 2 3 4 5 6 7 8 9 10

(0,1) (0,2) (0,3) (0,4) (0,5)

Repeat this with pairs (1, m) for the place that still remain empty, again skip-
ping every other empty place:

1 2 3 4 5 6 7 8 9 10

(0,0) (1,0) (0,1) 0,2) (1,1y (0,3) (0,4) (1,2)

Enter pairs (2,m), (2,m), etc., in the same way. Our completed enumeration
thus starts like this:

1 2 3 4 5 6 7 8 9 10
(0,0) (1,0) (0,1) (2,0) (0,2) (1,1) (0,3) (3,0) (0,4) (1,2)

37

4. THE SIZE OF SETS

If we number the cells in the array above according to this enumeration, we
will not find a neat zig-zag line, but this arrangement:

0|12 |3|4]5
013|579 |11
1126 10|14 |18
214 |12]20 |28
318 (24|40
4|16 | 48
5132

We can see that the pairs in row 0 are in the odd numbered places of our
enumeration, i.e., pair (0, m) is in place 2m + 1; pairs in the second row, (1,m),
are in places whose number is the double of an odd number, specifically, 2 -
(2m + 1); pairs in the third row, (2,m), are in places whose number is four
times an odd number, 4 - (2m + 1); and so on. The factors of (2m + 1) for
each row, 1, 2, 4, 8, ..., are exactly the powers of 2: 1 = 202 =21 4 =22
8 =23 ... In fact, the relevant exponent is always the first member of the pair
in question. Thus, for pair (n,m) the factor is 2. This gives us the general
formula: 2" - (2m + 1). However, this is a mapping of pairs to positive integers,
i.e., (0,0) has position 1. If we want to begin at position 0 we must subtract 1
from the result. This gives us:

Example 4.15. The function h: IN?> — IN given by
h(n,m)=2"2m+1) -1

is a pairing function for the set of pairs of natural numbers IN2.

Accordingly, in our second enumeration of N2, the pair (0,0) has code
h(0,0) =2°(2-04+1)—1=0;(1,2) hascode2! - (2:2+1)—1=2-5—-1=09;
(2,6) has code 22 (2-6+1) — 1 = 51.

Sometimes it is enough to encode pairs of natural numbers IN? without
requiring that the encoding is surjective. Such encodings have inverses that
are only partial functions.

Example 4.16. The function j: N? — IN* given by
j(n,m) =2"3™
is an injective function N? — IN.

38

4.6. Uncountable Sets

4.6 Uncountable Sets

Some sets, such as the set ZT of positive integers, are infinite. So far we've
seen examples of infinite sets which were all countable. However, there are
also infinite sets which do not have this property. Such sets are called un-
countable.

First of all, it is perhaps already surprising that there are uncountable sets.
For any countable set A there is a surjective function f: ZT — A. If a set
is uncountable there is no such function. That is, no function mapping the
infinitely many elements of Z* to A can exhaust all of A. So there are “more”
elements of A than the infinitely many positive integers.

How would one prove that a set is uncountable? You have to show that
no such surjective function can exist. Equivalently, you have to show that the
elements of A cannot be enumerated in a one way infinite list. The best way
to do this is to show that every list of elements of A must leave at least one
element out; or that no function f: Z* — A can be surjective. We can do this
using Cantor’s diagonal method. Given a list of elements of A, say, x1, X2, ...,
we construct another element of A which, by its construction, cannot possibly
be on that list.

Our first example is the set B of all infinite, non-gappy sequences of 0’s
and 1’s.

Theorem 4.17. BY is uncountable.

Proof. Suppose, by way of contradiction, that B is countable, i.e., suppose
that there is a list s1, s, s3, 4, ... of all elements of B“. Each of these s; is
itself an infinite sequence of 0’s and 1’s. Let’s call the j-th element of the i-th
sequence in this list s;(j). Then the i-th sequence s; is

si(1),si(2),8:(3),. ..

We may arrange this list, and the elements of each sequence s; in it, in an
array:

1 2 3 4
1] s1(1) | 51(2) | 51(8) | s1(4)
2 | 5(1) | s2(2) | 52(3) | 52(4)
3 | s3(1) | 53(2) [s3(3) | s3(4)
4| 54(1) | 54(2) | 54(3) | s4(4)

The labels down the side give the number of the sequence in the list 51, s, .. .;
the numbers across the top label the elements of the individual sequences. For
instance, s1(1) is a name for whatever number, a 0 or a 1, is the first element
in the sequence s1, and so on.

39

4. THE SIZE OF SETS

Now we construct an infinite sequence, 5, of 0’s and 1’s which cannot pos-
sibly be on this list. The definition of 5 will depend on the list s1, s,
Any infinite list of infinite sequences of 0's and 1’s gives rise to an infinite
sequence s which is guaranteed to not appear on the list.

To define 5, we specify what all its elements are, i.e., we specify 5(n) for all
n € Z*. We do this by reading down the diagonal of the array above (hence
the name “diagonal method”) and then changing every 1 to a 0 and every 0 to
a 1. More abstractly, we define 5(n) to be 0 or 1 according to whether the n-th
element of the diagonal, s,,(n), is 1 or 0.

)1 ifsy(n)=0
s(n)_{o if s,(n) = 1.

If you like formulas better than definitions by cases, you could also define
5(n) =1—s,(n).

Clearly 5 is an infinite sequence of 0’s and 1’s, since it is just the mirror
sequence to the sequence of 0’s and 1’s that appear on the diagonal of our
array. So s is an element of B. But it cannot be on the list 51, s, ... Why not?

It can’t be the first sequence in the list, s1, because it differs from s; in the
first element. Whatever s;(1) is, we defined 5(1) to be the opposite. It can’t be
the second sequence in the list, because 5 differs from s; in the second element:
if 53(2) is 0, 5(2) is 1, and vice versa. And so on.

More precisely: if 5 were on the list, there would be some k so that 5 = s;.
Two sequences are identical iff they agree at every place, i.e., for any n,5(n) =
sg(n). So in particular, taking n = k as a special case, 5(k) = s;(k) would
have to hold. si(k) is either 0 or 1. If it is O then 5(k) must be 1—that’s how
we defined 5. But if sg(k) = 1 then, again because of the way we defined 5,
5(k) = 0. In either case 5(k) # si(k).

We started by assuming that there is a list of elements of B%, sq, sp, ...
From this list we constructed a sequence s which we proved cannot be on the
list. But it definitely is a sequence of 0’s and 1’s if all the s; are sequences of
0’sand 1’s, i.e., s € B“. This shows in particular that there can be no list of
all elements of B®, since for any such list we could also construct a sequence 5
guaranteed to not be on the list, so the assumption that there is a list of all
sequences in B leads to a contradiction. O

This proof method is called “diagonalization” because it uses the diagonal
of the array to define 5. Diagonalization need not involve the presence of an
array: we can show that sets are not countable by using a similar idea even
when no array and no actual diagonal is involved.

Theorem 4.18. o(Z™) is not countable.

40

4.7. Reduction

Proof. We proceed in the same way, by showing that for every list of subsets
of Z™ there is a subset of Z T which cannot be on the list. Suppose the follow-
ing is a given list of subsets of Z:

71,725,735, ...
We now define a set Z such that forany n € Z*,n € Ziff n ¢ Zy:
Z={neZ" |n¢Z,} O

Zis clearly a set of positive integers, since by assumption each Z, is, and thus
Z € p(Z™). But Z cannot be on the list. To show this, we’ll establish that for
eachk € Z*,Z +# Zj.

Soletk € Z* be arbitrary. We've defined Z so that foranyn € Z*,n € Z
iff n ¢ Z,. In particular, taking n = k, k € Z iff k ¢ Zj. But this shows that
Z # 7y, since k is an element of one but not the other, and so Z and Z; have
different elements. Since k was arbitrary, Z is not on the list Z;, Z5, ...

The preceding proof did not mention a diagonal, but you can think of it
as involving a diagonal if you picture it this way: Imagine the sets Z;, Z5, ...,
written in an array, where each element j € Z; is listed in the j-th column.
Say the first four sets on that list are {1,2,3,...}, {2,4,6,...}, {1,2,5}, and
{3,4,5,... }. Then the array would begin with

Zi={1, 2, 3, 4 5 6, ...}
Zo={ 2 4, 6, ...}
Zs=1{1, 2, 5 }

!

Zy={ 3, 4, 5, 6

Then Z is the set obtained by going down the diagonal, leaving out any num-
bers that appear along the diagonal and include those j where the array has a
gap in the j-th row/column. In the above case, we would leave out 1 and 2,
include 3, leave out 4, etc.

4.7 Reduction

We showed ©(Z") to be uncountable by a diagonalization argument. We
already had a proof that B%, the set of all infinite sequences of Os and 1s, is
uncountable. Here’s another way we can prove that p(Z™) is uncountable:
Show that if p(Z™) is countable then B® is also countable. Since we know B
is not countable, (Z ™) can’t be either. This is called reducing one problem
to another—in this case, we reduce the problem of enumerating B“ to the
problem of enumerating p(Z ™). A solution to the latter—an enumeration of
©(Z*)—would yield a solution to the former—an enumeration of B%.

41

4. THE SIZE OF SETS

How do we reduce the problem of enumerating a set B to that of enu-
merating a set A? We provide a way of turning an enumeration of A into an
enumeration of B. The easiest way to do that is to define a surjective function
f: A — B.If x1, xp, ... enumerates A, then f(x1), f(x2), ... would enumer-
ate B. In our case, we are looking for a surjective function f: p(Z*) — BY.

Proof of Theorem 4.18 by reduction. Suppose that o(Z") were countable, and
thus that there is an enumeration of it, Z1, Z, Z3, ...

Define the function f: p(Z*) — B® by letting f(Z) be the sequence s
such that sg(n) = 1iff n € Z, and sg(n) = 0 otherwise. This clearly defines
a function, since whenever Z C Z*, any n € Z™ either is an element of Z or
isn’t. For instance, the set 2Z" = {2,4,6,... } of positive even numbers gets
mapped to the sequence 010101..., the empty set gets mapped to 0000...
and the set Z™ itself to 1111... ..

It also is surjective: Every sequence of 0Os and 1s corresponds to some set of
positive integers, namely the one which has as its members those integers cor-
responding to the places where the sequence has 1s. More precisely, suppose
s € BY. Define Z C Z™" by:

Z={neZ"|s(n)=1}

Then f(Z) = s, as can be verified by consulting the definition of f.
Now consider the list

f(Z1), f(22), f(Z3), -

Since f is surjective, every member of B must appear as a value of f for some
argument, and so must appear on the list. This list must therefore enumerate
all of B«.

So if p(Z™1) were countable, B¢ would be countable. But B is uncount-
able (Theorem 4.17). Hence p(Z™") is uncountable. O

It is easy to be confused about the direction the reduction goes in. For
instance, a surjective function g: B“ — B does not establish that B is uncount-
able. (Consider g: BY — B defined by g(s) = s(1), the function that maps
a sequence of 0’s and 1’s to its first element. It is surjective, because some se-
quences start with 0 and some start with 1. But B is finite.) Note also that the
function f must be surjective, or otherwise the argument does not go through:
f(x1), f(x2), ... would then not be guaranteed to include all the elements of B.
For instance,

h(n) = 000...0
~—

nQ’s

defines a function h: ZT — B, but Z* is countable.

42

4.8. Equinumerosity

4.8 Equinumerosity

We have an intuitive notion of “size” of sets, which works fine for finite sets.
But what about infinite sets? If we want to come up with a formal way of
comparing the sizes of two sets of any size, it is a good idea to start by defining
when sets are the same size. Here is Frege:

If a waiter wants to be sure that he has laid exactly as many knives
as plates on the table, he does not need to count either of them, if
he simply lays a knife to the right of each plate, so that every knife
on the table lies to the right of some plate. The plates and knives
are thus uniquely correlated to each other, and indeed through that
same spatial relationship. (, , §70)

The insight of this passage can be brought out through a formal definition:

Definition 4.19. A is equinumerous with B, written A ~ B, iff there is a bijec-
tion f: A — B.

Proposition 4.20. Equinumerosity is an equivalence relation.

Proof. We must show that equinumerosity is reflexive, symmetric, and transi-
tive. Let A, B, and C be sets.

Reflexivity. The identity mapIds: A — A, whereIds(x) = xforallx € A,
is a bijection. So A ~ A.

Symmetry. Suppose A ~ B, i.e., there is a bijection f: A — B. Since f is
bijective, its inverse f~! exists and is also bijective. Hence, f~!: B — A is
a bijection, so B ~ A.

Transitivity. Suppose that A ~ B and B =~ C, i.e., there are bijections
f+A — Band g: B — C. Then the composition go f: A — C is bijective,
so that A ~ C. O

Proposition 4.21. If A = B, then A is countable if and only if B is.

Proof. Suppose A = B, so there is some bijection f: A — B, and suppose that
A is countable. Then either A = @ or there is a surjective function g: Z* —
A. If A =0, then B = @ also (otherwise there would be an element y € B but
no x € A with g(x) = y). If, on the other hand, ¢: Z* — A is surjective, then
fog: Z" — Bissurjective. To see this, let y € B. Since f is surjective, there
isan x € A such that f(x) = y. Since g is surjective, there isan n € Z" such
that g(n) = x. Hence,

(fog)(n) = f(g(n)) = f(x) =y

and thus f o g is surjective. We have that f o ¢ is an enumeration of B, and so
B is countable.

If B is countable, we obtain that A is countable by repeating the argument
with the bijection f~1: B — A instead of f. O

43

4. THE SIZE OF SETS

4.9 Sets of Different Sizes, and Cantor’s Theorem

We have offered a precise statement of the idea that two sets have the same
size. We can also offer a precise statement of the idea that one set is smaller
than another. Our definition of “is smaller than (or equinumerous)” will re-
quire, instead of a bijection between the sets, an injection from the first set to
the second. If such a function exists, the size of the first set is less than or
equal to the size of the second. Intuitively, an injection from one set to another
guarantees that the range of the function has at least as many elements as the
domain, since no two elements of the domain map to the same element of the
range.

Definition 4.22. A is no larger than B, written A =< B, iff there is an injection
f:A—B.

It is clear that this is a reflexive and transitive relation, but that it is not
symmetric (this is left as an exercise). We can also introduce a notion, which
states that one set is (strictly) smaller than another.

Definition 4.23. A is smaller than B, written A < B, iff there is an injection f: A —
B but no bijection g: A — B,ie, A X Band A # B.

It is clear that this relation is irreflexive and transitive. (This is left as an
exercise.) Using this notation, we can say that a set A is countable iff A < IN,
and that A is uncountable iff N < A. This allows us to restate Theorem 4.18
as the observation that Z" < o(Z"). In fact, (1892) proved that this
last point is perfectly general:

Theorem 4.24 (Cantor). A < p(A), for any set A.

Proof. The map f(x) = {x} is an injection f: A — @(A), since if x # y,
then also {x} # {y} by extensionality, and so f(x) # f(y). So we have that
A= p(A).

We will now show that there cannot be a surjective function g: A — p(A),
let alone a bijective one, and hence that A % ©(A). For suppose that g: A —
©(A). Since g is total, every x € A is mapped to a subset g(x) C A. We can
show that g cannot be surjective. To do this, we define a subset A C A which
by definition cannot be in the range of g. Let

A={xeAlx¢g(x)}

Since g(x) is defined for all x € A, A is clearly a well-defined subset of A.
But, it cannot be in the range of §g. Let x € A be arbitrary, we will show
that A # g(x). If x € g(x), then it does not satisfy x ¢ ¢(x), and so by the
definition of A, we have x ¢ A. If x € A, it must satisfy the defining property
of A,ie., x € Aand x ¢ g(x). Since x was arbitrary, this shows that for each

44

4.10. The Notion of Size, and Schroder-Bernstein

x € A, x € g(x)iffx ¢ A, and so g(x) # A. In other words, A cannot be in
the range of g, contradicting the assumption that g is surjective. O

It’s instructive to compare the proof of Theorem 4.24 to that of Theorem 4.18.
There we showed that for any list Z1, Z, ..., of subsets of Z™ one can con-
struct a set Z of numbers guaranteed not to be on the list. It was guaranteed
not to be on the list because, for every n € Z*, n € Z, iff n ¢ Z. This way,
there is always some number that is an element of one of Z, or Z but not the
other. We follow the same idea here, except the indices n are now elements
of A instead of Z". The set B is defined so that it is different from g(x) for
each x € A, because x € g(x) iff x ¢ B. Again, there is always an element
of A which is an element of one of ¢(x) and B but not the other. And just as Z
therefore cannot be on the list Z1, Zj, ..., B cannot be in the range of g.

The proof is also worth comparing with the proof of Russell’s Paradox,
Theorem 1.29. Indeed, Cantor’s Theorem was the inspiration for Russell’s
own paradox.

410 The Notion of Size, and Schroder-Bernstein

Here is an intuitive thought: if A is no larger than B and B is no larger than A,
then A and B are equinumerous. To be honest, if this thought were wrong, then
we could scarcely justify the thought that our defined notion of equinumeros-
ity has anything to do with comparisons of “sizes” between sets! Fortunately,
though, the intuitive thought is correct. This is justified by the Schroder-
Bernstein Theorem.

Theorem 4.25 (Schréder-Bernstein). If A < Band B < A, then A = B.

In other words, if there is an injection from A to B, and an injection from B
to A, then there is a bijection from A to B.

This result, however, is really rather difficult to prove. Indeed, although
Cantor stated the result, others proved it.! For now, you can (and must) take
it on trust.

Fortunately, Schroder-Bernstein is correct, and it vindicates our thinking of
the relations we defined, i.e., A = B and A < B, as having something to do
with “size”. Moreover, Schroder-Bernstein is very useful. It can be difficult to
think of a bijection between two equinumerous sets. The Schroder-Bernstein
Theorem allows us to break the comparison down into cases so we only have
to think of an injection from the first to the second, and vice-versa.

1For more on the history, see e.g., (, Pp- 165-6).

45

Part 11

First-order Logic

47

Chapter 5

Introduction to First-Order Logic

5.1 First-Order Logic

You are probably familiar with first-order logic from your first introduction
to formal logic.! You may know it as “quantificational logic” or “predicate
logic.” First-order logic, first of all, is a formal language. That means, it has
a certain vocabulary, and its expressions are strings from this vocabulary. But
not every string is permitted. There are different kinds of permitted expres-
sions: terms, formulae, and sentences. We are mainly interested in sentences
of first-order logic: they provide us with a formal analogue of sentences of
English, and about them we can ask the questions a logician typically is inter-
ested in. For instance:

¢ Does 1 follow from ¢ logically?
¢ Is ¢ logically true, logically false, or contingent?
* Are ¢ and ¢ equivalent?

These questions are primarily questions about the “meaning” of sentences
of first-order logic. For instance, a philosopher would analyze the question
of whether ¢ follows logically from ¢ as asking: is there a case where ¢ is
true but ¢ is false (i doesn’t follow from ¢), or does every case that makes ¢
true also make ¢ true (¢ does follow from ¢)? But we haven’t been told yet
what a “case” is—that is the job of semantics. The semantics of first-order logic
provides a mathematically precise model of the philosopher’s intuitive idea
of “case,” and also—and this is important—of what it is for a sentence ¢ to be
true in a case. We call the mathematically precise model that we will develop
a structure. The relation which makes “true in” precise, is called the relation
of satisfaction. So what we will define is “¢ is satisfied in 9" (in symbols:

n fact, we more or less assume you are! If you're not, you could review a more elementary
textbook, such as forall x (,).

49

5. INTRODUCTION TO FIRST-ORDER LOGIC

9 E @) for sentences ¢ and structures 1. Once this is done, we can also give
precise definitions of the other semantical terms such as “follows from” or “is
logically true.” These definitions will make it possible to settle, again with
mathematical precision, whether, e.g., Vx (¢(x) D ¥(x)), Ix ¢(x) E Ixp(x).
The answer will, of course, be “yes.” If you've already been trained to symbol-
ize sentences of English in first-order logic, you will recognize this as, e.g., the
symbolizations of, say, “All ants are insects, there are ants, therefore there are
insects.” That is obviously a valid argument, and so our mathematical model
of “follows from” for our formal language should give the same answer.

Another topic you probably remember from your first introduction to for-
mal logic is that there are derivations. If you have taken a first formal logic
course, your instructor will have made you practice finding such derivations,
perhaps even a derivation that shows that the above entailment holds. There
are many different ways to give derivations: you may have done something
called “natural deduction” or “truth trees,” but there are many others. The
purpose of derivation systems is to provide tools using which the logicians’
questions above can be answered: e.g., a natural deduction derivation in which
Vx (¢(x) D ¢(x)) and Ix ¢(x) are premises and 3x ¢(x) is the conclusion (last
line) verifies that 3x (x) logically follows from Vx (¢(x) D 1 (x)) and Ix ¢(x).

But why is that? On the face of it, derivation systems have nothing to do
with semantics: giving a formal derivation merely involves arranging sym-
bols in certain rule-governed ways; they don’t mention “cases” or “true in” at
all. The connection between derivation systems and semantics has to be estab-
lished by a meta-logical investigation. What’s needed is a mathematical proof,
e.g., that a formal derivation of 3x ¢(x) from premises Vx (¢(x) D ¢(x)) and
Jx ¢(x) is possible, if, and only if, Vx (¢(x) D 1(x)) and Ix ¢(x) together en-
tails 3x (x). Before this can be done, however, a lot of painstaking work has
to be carried out to get the definitions of syntax and semantics correct.

5.2 Syntax

We first must make precise what strings of symbols count as sentences of first-
order logic. We'll do this later; for now we’ll just proceed by example. The
basic building blocks—the vocabulary—of first-order logic divides into two
parts. The first part is the symbols we use to say specific things or to pick out
specific things. We pick out things using constant symbols, and we say stuff
about the things we pick out using predicate symbols. E.g, we might use a as
a constant symbol to pick out a single thing, and then say something about
it using the sentence P(a). If you have meanings for “a” and “P” in mind,
you can read P(a) as a sentence of English (and you probably have done so
when you first learned formal logic). Once you have such simple sentences
of first-order logic, you can build more complex ones using the second part
of the vocabulary: the logical symbols (connectives and quantifiers). So, for

50

5.3. Formulae

instance, we can form expressions like (P(a) & Q(b)) or Ix P(x).

In order to provide the precise definitions of semantics and the rules of
our derivation systems required for rigorous meta-logical study, we first of
all have to give a precise definition of what counts as a sentence of first-order
logic. The basic idea is easy enough to understand: there are some simple sen-
tences we can form from just predicate symbols and constant symbols, such
as P(a). And then from these we form more complex ones using the connec-
tives and quantifiers. But what exactly are the rules by which we are allowed
to form more complex sentences? These must be specified, otherwise we have
not defined “sentence of first-order logic” precisely enough. There are a few
issues. The first one is to get the right strings to count as sentences. The sec-
ond one is to do this in such a way that we can give mathematical proofs about
all sentences. Finally, we'll have to also give precise definitions of some rudi-
mentary operations with sentences, such as “replace every x in ¢ by b.” The
trouble is that the quantifiers and variables we have in first-order logic make
it not entirely obvious how this should be done. E.g., should 3x P(a) count as
a sentence? What about 3x 3x P(x)? What should the result of “replace x by b
in (P(x) & 3x P(x))” be?

5.3 Formulae

Here is the approach we will use to rigorously specify sentences of first-order
logic and to deal with the issues arising from the use of variables. We first
define a different set of expressions: formulae. Once we’ve done that, we can
consider the role variables play in them—and on the basis of some other ideas,
namely those of “free” and “bound” variables, we can define what a sentence
is (namely, a formula without free variables). We do this not just because it
makes the definition of “sentence” more manageable, but also because it will
be crucial to the way we define the semantic notion of satisfaction.

Let’s define “formula” for a simple first-order language, one containing
only a single predicate symbol P and a single constant symbol a, and only the
logical symbols ~, &, and 3. Our full definitions will be much more general:
we’ll allow infinitely many predicate symbols and constant symbols. In fact,
we will also consider function symbols which can be combined with constant
symbols and variables to form “terms.” For now, a and the variables will be
our only terms. We do need infinitely many variables. We'll officially use the
symbols v, v, ..., as variables.

Definition 5.1. The set of formulae Frm is defined as follows:
1. P(a) and P(v;) are formulae (i € N).
2. If ¢ is a formula, then ~¢ is formula.

3. If ¢ and 1 are formulae, then (¢ & ¢) is a formula.

51

5. INTRODUCTION TO FIRST-ORDER LOGIC

4. If ¢ is a formula and x is a variable, then Jx ¢ is a formula.

5. Nothing else is a formula.

(1) tell us that P(a) and P(v;) are formulae, for any i € IN. These are the
so-called atomic formulae. They give us something to start from. The other
clauses give us ways of forming new formulae from ones we have already
formed. So for instance, we get that ~P(v2) is a formula, since P(v,) is already
a formula by (1), and then we get that 3v ~P(v,) is another formula, and so
on. (5) tells us that only strings we can form in this way count as formulae. In
particular, 3vy P(a) and Jvy Jvy P(a) do count as formulae, and (~P(a)) does
not.

This way of defining formulae is called an inductive definition, and it allows
us to prove things about formulae using a version of proof by induction called
structural induction. These are discussed in a general way in appendix B.4 and
appendix B.5, which you should review before delving into the proofs later
on. Basically, the idea is that if you want to give a proof that something is true
for all formulae you show first that it is true for the atomic formulae, and then
that if it’s true for any formula ¢ (and @), it’s also true for ~¢, (¢ &), and
Jx ¢. For instance, this proves that it’s true for v, ~P (v,): from the first part
you know that it’s true for the atomic formula P(v,). Then you get that it’s
true for ~P(v,) by the second part, and then again that it’s true for 3v, ~P(v,)
itself. Since all formulae are inductively generated from atomic formulae, this
works for any of them.

5.4 Satisfaction

We can already skip ahead to the semantics of first-order logic once we know
what formulae are: here, the basic definition is that of a structure. For our
simple language, a structure 9t has just three components: a non-empty set
|90t| called the domain, what a picks out in 90, and what P is true of in 9.
The object picked out by a is denoted a™ and the set of things P is true of
by P™. A structure 9% consists of just these three things: |9%|, a™ € |9
and P C |9|. The general case will be more complicated, since there will
be many predicate symbols and constant symbols, the constant symbols can
have more than one place, and there will also be function symbols.

This is enough to give a definition of satisfaction for formulae that don’t
contain variables. The idea is to give an inductive definition that mirrors the
way we have defined formulae. We specify when an atomic formula is satis-
fied in 91, and then when, e.g., ~¢ is satisfied in 97 on the basis of whether or
not ¢ is satisfied in M. E.g., we could define:

1. P(a) is satisfied in 9 iff 2™ € P™,

2. ~¢ is satisfied in M iff ¢ is not satisfied in M.

52

5.4. Satisfaction

3. (¢ &) is satisfied in M iff ¢ is satisfied in M, and ¢ is satisfied in M as
well.

Let’s say that 9| = {0,1,2}, ™ = 1, and P™ = {1,2}. This definition
would tell us that P(a) is satisfied in 9t (since a™ = 1 € {1,2} = P™). It
tells us further that ~P(a) is not satisfied in 9, and that in turn that ~~P(a)
is and (~P(a) & P(a)) is not satisfied, and so on.

The trouble comes when we want to give a definition for the quantifiers:
we’d like to say something like, “3vp P(v) is satisfied iff P(vy) is satisfied.”
But the structure 9t doesn’t tell us what to do about variables. What we ac-
tually want to say is that P(v) is satisfied for some value of vp. To make this
precise we need a way to assign elements of |9t| not just to a but also to vy. To
this end, we introduce variable assignments. A variable assignment is simply
a function s that maps variables to elements of 91| (in our example, to one
of 1, 2, or 3). Since we don’t know beforehand which variables might appear
in a formula we can’t limit which variables s assigns values to. The simple
solution is to require that s assigns values to all variables v, v, ... We'll just
use only the ones we need.

Instead of defining satisfaction of formulae just relative to a structure, we’ll
define it relative to a structure 9t and a variable assignment s, and write 2, s
@ for short. Our definition will now include an additional clause to deal with
atomic formulae containing variables:

1. M,s k= P(a) iff 2™ € PP,

2. M, s E P(v;) iff s(v;) € PP,

3. M, s E ~piff not M,s E ¢.

4. M,sF (¢ &) iff M,s E ¢ and M, s E .

Ok, this solves one problem: we can now say when 901 satisfies P(vp) for the
value s(v). To get the definition right for Jvy P(v) we have to do one more
thing: We want to have that M, s £ 3y P(v) iff M, s’ E P(vy) for some way
s’ of assigning a value to vp. But the value assigned to vy does not necessarily
have to be the value that s(v) picks out. We’ll introduce a notation for that:
if m € |9M|, then we let s[m/] be the assignment that is just like s (for all
variables other than vp), except to v it assigns m. Now our definition can be:

5. M,s E v; ¢ iff M, s[m/v;] E ¢ for some m € |9M|.

Does it work out? Let’s say we let s(v;) = 0 for alli € IN. M, s F vy P(v) iff
there is an m € |91 so that 9, s[m/vy] F P(v). And there is: we can choose
m =1 or m = 2. Note that this is true even if the value s(v) assigned to vy by
s itself—in this case, 0—doesn’t do the job. We have M,s[1/v] E P(v) but
not M, s E P(v).

53

5. INTRODUCTION TO FIRST-ORDER LOGIC

If this looks confusing and cumbersome: it is. But the added complexity is
required to give a precise, inductive definition of satisfaction for all formulae,
and we need something like it to precisely define the semantic notions. There
are other ways of doing it, but they are all equally (in)elegant.

5.5 Sentences

Ok, now we have a (sketch of a) definition of satisfaction (“true in”) for struc-
tures and formulae. But it needs this additional bit—a variable assignment—
and what we wanted is a definition of sentences. How do we get rid of as-
signments, and what are sentences?

You probably remember a discussion in your first introduction to formal
logic about the relation between variables and quantifiers. A quantifier is al-
ways followed by a variable, and then in the part of the sentence to which that
quantifier applies (its “scope”), we understand that the variable is “bound”
by that quantifier. In formulae it was not required that every variable has a
matching quantifier, and variables without matching quantifiers are “free” or
“unbound.” We will take sentences to be all those formulae that have no free
variables.

Again, the intuitive idea of when an occurrence of a variable in a formula ¢
is bound, which quantifier binds it, and when it is free, is not difficult to get.
You may have learned a method for testing this, perhaps involving counting
parentheses. We have to insist on a precise definition—and because we have
defined formulae by induction, we can give a definition of the free and bound
occurrences of a variable x in a formula ¢ also by induction. E.g., it might look
like this for our simplified language:

1. If ¢ is atomic, all occurrences of x in it are free (that is, the occurrence of
xin P(x) is free).

2. If ¢ is of the form ~1, then an occurrence of x in ~1 is free iff the cor-
responding occurrence of x is free in ¥ (that is, the free occurrences of
variables in ¢ are exactly the corresponding occurrences in ~1p).

3. If ¢ is of the form (¢ & x), then an occurrence of x in (¢ & x) is free iff
the corresponding occurrence of x is free in ¢ or in yx.

4. If ¢ is of the form 3x ¢, then no occurrence of x in ¢ is free; if it is of the
form Jy i where y is a different variable than x, then an occurrence of x
in Jy ¢ is free iff the corresponding occurrence of x is free in 1.

Once we have a precise definition of free and bound occurrences of vari-
ables, we can simply say: a sentence is any formula without free occurrences
of variables.

54

5.6. Semantic Notions

5.6 Semantic Notions

We mentioned above that when we consider whether 91, s = ¢ holds, we (for
convenience) let s assign values to all variables, but only the values it assigns
to variables in ¢ are used. In fact, it’s only the values of free variables in ¢
that matter. Of course, because we're careful, we are going to prove this fact.
Since sentences have no free variables, s doesn’t matter at all when it comes
to whether or not they are satisfied in a structure. So, when ¢ is a sentence we
can define 9 F ¢ to mean “9, s = ¢ for all 5,” which as it happens is true iff
9, s E @ for at least one s. We need to introduce variable assignments to get a
working definition of satisfaction for formulae, but for sentences, satisfaction
is independent of the variable assignments.

Once we have a definition of “9t E ¢,” we know what “case” and “true
in” mean as far as sentences of first-order logic are concerned. On the basis of
the definition of 9 F ¢ for sentences we can then define the basic semantic
notions of validity, entailment, and satisfiability. A sentence is valid, F ¢,
if every structure satisfies it. It is entailed by a set of sentences, I' F ¢, if
every structure that satisfies all the sentences in I also satisfies ¢. And a set of
sentences is satisfiable if some structure satisfies all sentences in it at the same
time.

Because formulae are inductively defined, and satisfaction is in turn de-
fined by induction on the structure of formulae, we can use induction to prove
properties of our semantics and to relate the semantic notions defined. We’ll
collect and prove some of these properties, partly because they are individu-
ally interesting, but mainly because many of them will come in handy when
we go on to investigate the relation between semantics and derivation sys-
tems. In order to do so, we’ll also have to define (precisely, i.e., by induction)
some syntactic notions and operations we haven’t mentioned yet.

5.7 Substitution

We'll discuss an example to illustrate how things hang together, and how the
development of syntax and semantics lays the foundation for our more ad-
vanced investigations later. Our derivation systems should let us derive P(a)
from Vvy P(vp). Maybe we even want to state this as a rule of inference. How-
ever, to do so, we must be able to state it in the most general terms: not just
for P, a, and vy, but for any formula ¢, and term f, and variable x. (Recall
that constant symbols are terms, but we’ll consider also more complicated
terms built from constant symbols and function symbols.) So we want to be
able to say something like, “whenever you have derived Vx ¢(x) you are jus-
tified in inferring ¢(t)—the result of removing Vx and replacing x by t.” But
what exactly does “replacing x by ” mean? What is the relation between ¢(x)
and ¢(t)? Does this always work?

55

5. INTRODUCTION TO FIRST-ORDER LOGIC

To make this precise, we define the operation of substitution. Substitution
is actually tricky, because we can’t just replace all x’s in ¢ by t, and not every ¢
can be substituted for any x. We’ll deal with this, again, using inductive defi-
nitions. But once this is done, specifying an inference rule as “infer ¢(t) from
Vx ¢(x)” becomes a precise definition. Moreover, we'll be able to show that
this is a good inference rule in the sense that Vx ¢(x) entails ¢(t). But to prove
this, we have to again prove something that may at first glance prompt you to
ask “why are we doing this?” That Vx ¢(x) entails ¢(t) relies on the fact that
whether or not 9 = ¢(t) holds depends only on the value of the term ¢, i.e.,
if we let m be whatever element of |91| is picked out by t, then 9, s & ¢(t) iff
M, s[m/x] E ¢(x). This holds even when t contains variables, but we’ll have
to be careful with how exactly we state the result.

5.8 Models and Theories

Once we've defined the syntax and semantics of first-order logic, we can get
to work investigating the properties of structures, of the semantic notions, we
can define derivation systems, and investigate those. For a set of sentences,
we can ask: what structures make all the sentences in that set true? Given a set
of sentences I', a structure 91 that satisfies them is called a model of I'. We might
start from I' and try find its models—what do they look like? How big or small
do they have to be? But we might also start with a single structure or collection
of structures and ask: what sentences are true in them? Are there sentences
that characterize these structures in the sense that they, and only they, are true
in them? These kinds of questions are the domain of model theory. They also
underlie the axiomatic method: describing a collection of structures by a set of
sentences, the axioms of a theory. This is made possible by the observation
that exactly those sentences entailed in first-order logic by the axioms are true
in all models of the axioms.

As a very simple example, consider preorders. A preorder is a relation R
on some set A which is both reflexive and transitive. A set A with a two-place
relation R € A x A on it is exactly what we would need to give a structure for
a first-order language with a single two-place relation symbol P: we would
set |M| = A and P™ = R. Since R is a preorder, it is reflexive and transitive,
and we can find a set I' of sentences of first-order logic that say this:

VVQ P(V(), Vo)
Yy Vv Vva ((P(vo, v1) & P(vy, v2)) D P(w, v2))

These sentences are just the symbolizations of “for any x, Rxx” (R is reflexive)
and “whenever Rxy and Ryz then also Rxz” (R is transitive). We see that
a structure 9 is a model of these two sentences T iff R (i.e., P™), is a preorder
on A (i.e., |9]). In other words, the models of I are exactly the preorders. Any
property of all preorders that can be expressed in the first-order language with

56

5.9. Soundness and Completeness

just P as predicate symbol (like reflexivity and transitivity above), is entailed
by the two sentences in I' and vice versa. So anything we can prove about
models of I' we have proved about all preorders.

For any particular theory and class of models (such as I" and all preorders),
there will be interesting questions about what can be expressed in the cor-
responding first-order language, and what cannot be expressed. There are
some properties of structures that are interesting for all languages and classes
of models, namely those concerning the size of the domain. One can al-
ways express, for instance, that the domain contains exactly n elements, for
any n € Z*. One can also express, using a set of infinitely many sentences,
that the domain is infinite. But one cannot express that the domain is fi-
nite, or that the domain is uncountable. These results about the limitations of
first-order languages are consequences of the compactness and Lowenheim-
Skolem theorems.

5.9 Soundness and Completeness

We'll also introduce derivation systems for first-order logic. There are many
derivation systems that logicians have developed, but they all define the same
derivability relation between sentences. We say that I' derives ¢, I' = ¢, if
there is a derivation of a certain precisely defined sort. Derivations are always
finite arrangements of symbols—perhaps a list of sentences, or some more
complicated structure. The purpose of derivation systems is to provide a tool
to determine if a sentence is entailed by some set I'. In order to serve that
purpose, it must be true that I' F ¢ if, and only if, I' - ¢.

IfT' = @ butnotI' & ¢, our derivation system would be too strong, prove
too much. The property that if I' - ¢ then I' F ¢ is called soundness, and it
is a minimal requirement on any good derivation system. On the other hand,
ifI' E @ but not I' = ¢, then our derivation system is too weak, it doesn’t
prove enough. The property thatif I' £ ¢ then I' - ¢ is called completeness.
Soundness is usually relatively easy to prove (by induction on the structure of
derivations, which are inductively defined). Completeness is harder to prove.

Soundness and completeness have a number of important consequences.
If a set of sentences I' derives a contradiction (such as ¢ & ~¢) it is called
inconsistent. Inconsistent I's cannot have any models, they are unsatisfiable.
From completeness the converse follows: any I' that is not inconsistent—or,
as we will say, consistent—has a model. In fact, this is equivalent to complete-
ness, and is the form of completeness we will actually prove. It is a deep and
perhaps surprising result: just because you cannot prove ¢ & ~¢ from I' guar-
antees that there is a structure that is as I' describes it. So completeness gives
an answer to the question: which sets of sentences have models? Answer: all
and only consistent sets do.

The soundness and completeness theorems have two important conse-

57

5. INTRODUCTION TO FIRST-ORDER LOGIC

quences: the compactness and the Lowenheim-Skolem theorem. These are
important results in the theory of models, and can be used to establish many
interesting results. We’ve already mentioned two: first-order logic cannot ex-
press that the domain of a structure is finite or that it is uncountable.

Historically, all of this—how to define syntax and semantics of first-order
logic, how to define good derivation systems, how to prove that they are
sound and complete, getting clear about what can and cannot be expressed
in first-order languages—took a long time to figure out and get right. We now
know how to do it, but going through all the details can still be confusing
and tedious. But it’s also important, because the methods developed here for
the formal language of first-order logic are applied all over the place in logic,
computer science, and linguistics. So working through the details pays off in
the long run.

58

Chapter 6

Syntax of First-Order Logic

6.1 Introduction

In order to develop the theory and metatheory of first-order logic, we must
first define the syntax and semantics of its expressions. The expressions of
first-order logic are terms and formulae. Terms are formed from variables,
constant symbols, and function symbols. Formulae, in turn, are formed from
predicate symbols together with terms (these form the smallest, “atomic” for-
mulae), and then from atomic formulae we can form more complex ones us-
ing logical connectives and quantifiers. There are many different ways to set
down the formation rules; we give just one possible one. Other systems will
chose different symbols, will select different sets of connectives as primitive,
will use parentheses differently (or even not at all, as in the case of so-called
Polish notation). What all approaches have in common, though, is that the
formation rules define the set of terms and formulae inductively. If done prop-
erly, every expression can result essentially in only one way according to the
formation rules. The inductive definition resulting in expressions that are
uniquely readable means we can give meanings to these expressions using the
same method—inductive definition.

6.2 First-Order Languages

Expressions of first-order logic are built up from a basic vocabulary containing
variables, constant symbols, predicate symbols and sometimes function symbols.
From them, together with logical connectives, quantifiers, and punctuation
symbols such as parentheses and commas, terms and formulae are formed.
Informally, predicate symbols are names for properties and relations, con-
stant symbols are names for individual objects, and function symbols are names
for mappings. These, except for the identity predicate =, are the non-logical
symbols and together make up a language. Any first-order language L is de-

59

6. SYNTAX OF FIRST-ORDER LOGIC

termined by its non-logical symbols. In the most general case, £ contains
infinitely many symbols of each kind.

In the general case, we make use of the following symbols in first-order
logic:

1. Logical symbols
a) Logical connectives: ~ (negation), & (conjunction), V (disjunction),
D (conditional), V (universal quantifier), 3 (existential quantifier).
b) The propositional constant for falsity L.
¢) The two-place identity predicate =.

d) A countably infinite set of variables: vy, vi, v, ...
2. Non-logical symbols, making up the standard language of first-order logic

a) A countably infinite set of n-place predicate symbols for each n > 0:
A, Al AL
0r 1 e
b) A countably infinite set of constant symbols: ¢, ¢1, o, ...

¢) A countably infinite set of n-place function symbols for each n > 0:
i, 1
0orts 2y

3. Punctuation marks: (,), and the comma.

Most of our definitions and results will be formulated for the full standard
language of first-order logic. However, depending on the application, we may
also restrict the language to only a few predicate symbols, constant symbols,
and function symbols.

Example 6.1. The language £ 4 of arithmetic contains a single two-place pred-
icate symbol <, a single constant symbol o, one one-place function symbol /,
and two two-place function symbols + and x.

Example 6.2. The language of set theory L7 contains only the single two-
place predicate symbol €.

Example 6.3. The language of orders L< contains only the two-place predi-
cate symbol <.

Again, these are conventions: officially, these are just aliases, e.g., <, €,
and < are aliases for A%, o for ¢, ! for fol, + for 2, x for flz.

In addition to the primitive connectives and quantifiers introduced above,
we also use the following defined symbols: = (biconditional), truth T

A defined symbol is not officially part of the language, but is introduced
as an informal abbreviation: it allows us to abbreviate formulas which would,

60

6.3. Terms and Formulae

if we only used primitive symbols, get quite long. This is obviously an ad-
vantage. The bigger advantage, however, is that proofs become shorter. If a
symbol is primitive, it has to be treated separately in proofs. The more primi-
tive symbols, therefore, the longer our proofs.

You may be familiar with different terminology and symbols than the ones
we use above. Logic texts (and teachers) commonly use either ~, -, and ! for
“negation”, A, -, and & for “conjunction”. Commonly used symbols for the
“conditional” or “implication” are —, =, and D. Symbols for “biconditional,”
“bi-implication,” or “(material) equivalence” are <+, <, and =. The L sym-
bol is variously called “falsity,” “falsum,”, “absurdity,”, or “bottom.” The T
symbol is variously called “truth,” “verum,”, or “top.”

It is conventional to use lower case letters (e.g., a, b, c) from the begin-
ning of the Latin alphabet for constant symbols (sometimes called names),
and lower case letters from the end (e.g., x, y, z) for variables. Quantifiers
combine with variables, e.g., x; notational variations include Vx, (Vx), (x),
ITx, A\, for the universal quantifier and Jx, (3x), (Ex), Zx, \/, for the existen-
tial quantifier.

We might treat all the propositional operators and both quantifiers as prim-
itive symbols of the language. We might instead choose a smaller stock of
primitive symbols and treat the other logical operators as defined. “Truth
functionally complete” sets of Boolean operators include {~, V}, {~, &}, and
{~, D}—these can be combined with either quantifier for an expressively
complete first-order language.

You may be familiar with two other logical operators: the Sheffer stroke |
(named after Henry Sheffer), and Peirce’s arrow |, also known as Quine’s
dagger. When given their usual readings of “nand” and “nor” (respectively),
these operators are truth functionally complete by themselves.

6.3 Terms and Formulae

Once a first-order language L is given, we can define expressions built up
from the basic vocabulary of L. These include in particular terms and formulae.

Definition 6.4 (Terms). The set of terms Trm(L) of L is defined inductively
by:

1. Every variable is a term.
2. Every constant symbol of £ is a term.

3. If f isan n-place function symbol and t1, .. ., t,, are terms, then f(t1, ..., ;)
is a term.

4. Nothing else is a term.

A term containing no variables is a closed term.

61

6. SYNTAX OF FIRST-ORDER LOGIC

The constant symbols appear in our specification of the language and the
terms as a separate category of symbols, but they could instead have been in-
cluded as zero-place function symbols. We could then do without the second
clause in the definition of terms. We just have to understand f(t4,...,t,) as
just f by itself if n = 0.

Definition 6.5 (Formula). The set of formulae Frm(L) of the language L is de-
fined inductively as follows:

1. L is an atomic formula.

2. If R is an n-place predicate symbol of £ and ¢4, ..., t, are terms of L,
then R(fy,...,t,) is an atomic formula.

If t; and ¢, are terms of £, then =(t4, t,) is an atomic formula.
If ¢ is a formula, then ~¢ is formula.

If ¢ and 1 are formulae, then (¢ & ¢) is a formula.

If ¢ and 1 are formulae, then (¢ V) is a formula.

If ¢ and 1 are formulae, then (¢ D ¢) is a formula.

If ¢ is a formula and x is a variable, then Vx ¢ is a formula.

Y ® N o O &~ W

If ¢ is a formula and x is a variable, then 3x ¢ is a formula.
10. Nothing else is a formula.

The definitions of the set of terms and that of formulae are inductive defini-
tions. Essentially, we construct the set of formulae in infinitely many stages. In
the initial stage, we pronounce all atomic formulas to be formulas; this corre-
sponds to the first few cases of the definition, i.e., the cases for L, R(ty,...,t,)
and =(t1,t). “Atomic formula” thus means any formula of this form.

The other cases of the definition give rules for constructing new formu-
lae out of formulae already constructed. At the second stage, we can use
them to construct formulae out of atomic formulae. At the third stage, we
construct new formulas from the atomic formulas and those obtained in the
second stage, and so on. A formula is anything that is eventually constructed
at such a stage, and nothing else.

By convention, we write = between its arguments and leave out the paren-
theses: t; = f; is an abbreviation for =(t1,t,). Moreover, ~=(f1,t;) is abbre-
viated as t; # tp. When writing a formula (¢ * x) constructed from 1, x
using a two-place connective *, we will often leave out the outermost pair of
parentheses and write simply ¢ * x.

Some logic texts require that the variable x must occur in ¢ in order for
Jdx ¢ and Vx ¢ to count as formulae. Nothing bad happens if you don’t require
this, and it makes things easier.

62

6.4. Unique Readability

Definition 6.6. Formulas constructed using the defined operators are to be
understood as follows:

1. T abbreviates ~_L.
2. ¢ = 1p abbreviates (¢ D ¢) & (P D ¢).

If we work in a language for a specific application, we will often write two-
place predicate symbols and function symbols between the respective terms,
e.g, 1 < tp and (# + tp) in the language of arithmetic and t; € t; in the
language of set theory. The successor function in the language of arithmetic
is even written conventionally after its argument: t. Officially, however, these
are just conventional abbreviations for A3(t1, t2), f7(t1,t2), A3(t1, t2) and £{ (t),
respectively.

Definition 6.7 (Syntactic identity). The symbol = expresses syntactic iden-
tity between strings of symbols, i.e., ¢ = ¢ iff ¢ and p are strings of symbols
of the same length and which contain the same symbol in each place.

The = symbol may be flanked by strings obtained by concatenation, e.g.,
¢ = (¢ V x) means: the string of symbols ¢ is the same string as the one
obtained by concatenating an opening parenthesis, the string ¢, the V symbol,
the string x, and a closing parenthesis, in this order. If this is the case, then we
know that the first symbol of ¢ is an opening parenthesis, ¢ contains ¢ as a
substring (starting at the second symbol), that substring is followed by V, etc.

6.4 Unique Readability

The way we defined formulae guarantees that every formula has a unique read-
ing, i.e., there is essentially only one way of constructing it according to our
formation rules for formulae and only one way of “interpreting” it. If this
were not so, we would have ambiguous formulae, i.e., formulae that have
more than one reading or intepretation—and that is clearly something we
want to avoid. But more importantly, without this property, most of the defi-
nitions and proofs we are going to give will not go through.

Perhaps the best way to make this clear is to see what would happen if we
had given bad rules for forming formulae that would not guarantee unique
readability. For instance, we could have forgotten the parentheses in the for-
mation rules for connectives, e.g., we might have allowed this:

If ¢ and are formulae, then sois ¢ D .

Starting from an atomic formula 6, this would allow us to form 6 D 6. From
this, together with 6, we would get 8 D 6 D 0. But there are two ways to do
this:

63

6. SYNTAX OF FIRST-ORDER LOGIC

1. We take 6 to be ¢ and 6 D 0 to be 9.
2. Wetake ¢ tobe 6 D 6 and ¢ is 6.

Correspondingly, there are two ways to “read” the formula 8 D 0 D 6. It is of
the form ¢ D x where ¢ is 8 and x is § D 0, but it is also of the form ¢ D x
with ¢ being 6 D 0 and x being 6.

If this happens, our definitions will not always work. For instance, when
we define the main operator of a formula, we say: in a formula of the form
¢ D x, the main operator is the indicated occurrence of D. But if we can match
the formula @ D 6 D 0 with ¢ D x in the two different ways mentioned above,
then in one case we get the first occurrence of O as the main operator, and in
the second case the second occurrence. But we intend the main operator to
be a function of the formula, i.e., every formula must have exactly one main
operator occurrence.

Lemma 6.8. The number of left and right parentheses in a formula @ are equal.

Proof. We prove this by induction on the way ¢ is constructed. This requires
two things: (a) We have to prove first that all atomic formulas have the prop-
erty in question (the induction basis). (b) Then we have to prove that when
we construct new formulas out of given formulas, the new formulas have the
property provided the old ones do.

Let I(¢) be the number of left parentheses, and r(¢) the number of right
parentheses in ¢, and [(f) and r(t) similarly the number of left and right
parentheses in a term t. We leave the proof that for any term ¢, I(t) = r(t)
as an exercise.

1. ¢ = L: @ has 0 left and 0 right parentheses.

2.9 =R(ty,...,tn): @) =1+1(t)+--+1(ty) = 14+rt1)+---+
r(tn) = r(¢). Here we make use of the fact, left as an exercise, that
I(t) = r(t) for any term .

3. o=t =ty o) =1(h) + 1) =r(ty) +r(kr) =r(g).

4. ¢ = ~¢: By induction hypothesis, () = r(¢). Thus I(¢) = I(¢) =
() =r(9).

5. ¢ = (p*x): By induction hypothesis, [() = r(¢) and I(x) = r(x).
Thus [(¢) = 1+1(p) +1(x) =1+ () +r(x) = r(9).

6. ¢ = Vxi: By induction hypothesis, [(¢) = r(i). Thus, I(¢) = () =
r(y) =r(e).

7. ¢ = dx1p: Similarly. O

—~~

-

=

64

6.4. Unique Readability

Definition 6.9 (Proper prefix). A string of symbols i is a proper prefix of a
string of symbols ¢ if concatenating i and a non-empty string of symbols
yields ¢.

Lemma 6.10. If ¢ is a formula, and is a proper prefix of ¢, then 1 is not a formula.
Proof. Exercise. O

Proposition 6.11. If ¢ is an atomic formula, then it satisfes one, and only one of the
following conditions.

1. o= 1.

2. ¢ = R(ty,...,tn) where R is an n-place predicate symbol, t1, ..., t, are terms,
and each of R, t1, ..., t, is uniquely determined.

3. ¢ =ty = tp where t1 and t; are uniquely determined terms.
Proof. Exercise. O

Proposition 6.12 (Unique Readability). Every formula satisfies one, and only one
of the following conditions.

1. ¢ is atomic.

2. @ is of the form ~.

3. @ is of the form (P & x).
4. ¢ is of the form (P V x).
5. @ is of the form (¢ D x).
6. @ is of the form Vx .

7. @ is of the form Jx 1.

Moreover, in each case 1, or 1 and x, are uniquely determined. This means that, e.g.,
there are no different pairs ¢, x and ¢, x' so that ¢ is both of the form (¢ D x) and
@' > X))
Proof. The formation rules require that if a formula is not atomic, it must start
with an opening parenthesis (, ~, or with a quantifier. On the other hand,
every formula that starts with one of the following symbols must be atomic:
a predicate symbol, a function symbol, a constant symbol, L.

So we really only have to show that if ¢ is of the form (¢ * x) and also of
the form (¢’ " '), then p = ¢/, x = x/, and * = «'.

So suppose both ¢ = (¥ * x) and ¢ = (¢’ " x'). Then either ¢ = ¢’ or not.
If it is, clearly * = " and x = x/, since they then are substrings of ¢ that begin
in the same place and are of the same length. The other case is i # 3’. Since
p and ¢’ are both substrings of ¢ that begin at the same place, one must be a
proper prefix of the other. But this is impossible by Lemma 6.10. O

65

6. SYNTAX OF FIRST-ORDER LOGIC

6.5 Main operator of a Formula

It is often useful to talk about the last operator used in constructing a for-
mula ¢. This operator is called the main operator of ¢. Intuitively, it is the
“outermost” operator of ¢. For example, the main operator of ~¢ is ~, the
main operator of (¢ V ¢) is V, etc.

Definition 6.13 (Main operator). The main operator of a formula ¢ is defined
as follows:

1. @ is atomic: @ has no main operator.

2. ¢ = ~1: the main operator of ¢ is ~.

3. ¢ = (p & x): the main operator of ¢ is &.

4. ¢ = (¢ V x): the main operator of ¢ is V.

5. ¢ = (¢ D x): the main operator of ¢ is D.
6. @ = Vx1: the main operator of ¢ is V.

7. @ = Jx1: the main operator of ¢ is 3.

In each case, we intend the specific indicated occurrence of the main oper-
ator in the formula. For instance, since the formula ((f D «) D (a D 0)) is of
the form (¢ D x) where ¢ is (6 D «) and x is (& D), the second occurrence
of D is the main operator.

This is a recursive definition of a function which maps all non-atomic for-
mulae to their main operator occurrence. Because of the way formulae are de-
fined inductively, every formula ¢ satisfies one of the cases in Definition 6.13.
This guarantees that for each non-atomic formula ¢ a main operator exists.
Because each formula satisfies only one of these conditions, and because the
smaller formulae from which ¢ is constructed are uniquely determined in
each case, the main operator occurrence of ¢ is unique, and so we have de-
fined a function.

We call formulae by the following names depending on which symbol
their main operator is:

Main operator Type of formula Example
none atomic (formula) L, R(t1,...,th), t1 =t
~ negation ~@
& conjunction (&)
v disjunction (V)
D conditional (D)
v universal (formula) Vx ¢
3 existential (formula) dx ¢

66

6.6. Subformulae

6.6 Subformulae

It is often useful to talk about the formulae that “make up” a given formula.
We call these its subformulae. Any formula counts as a subformula of itself; a
subformula of ¢ other than ¢ itself is a proper subformula.

Definition 6.14 (Immediate Subformula). If ¢ is a formula, the immediate sub-
formulae of ¢ are defined inductively as follows:

1. Atomic formulae have no immediate subformulae.
2. ¢ = ~y: The only immediate subformula of ¢ is .

3. ¢ = (¢ * x): The immediate subformulae of ¢ are ¢ and) (* is any one
of the two-place connectives).

4. ¢ = Vxp: The only immediate subformula of ¢ is .
5. ¢ = Ix¢p: The only immediate subformula of ¢ is .

Definition 6.15 (Proper Subformula). If ¢ is a formula, the proper subformulae
of ¢ are recursively as follows:

1. Atomic formulae have no proper subformulae.

2. ¢ = ~y: The proper subformulae of ¢ are ¢ together with all proper
subformulae of .

3. ¢ = (P xx): The proper subformulae of ¢ are ¢, x, together with all
proper subformulae of i and those of x.

4. ¢ = Vx1p: The proper subformulae of ¢ are ¢ together with all proper
subformulae of 1.

5. ¢ = Jdx¢: The proper subformulae of ¢ are ¢ together with all proper
subformulae of .

Definition 6.16 (Subformula). The subformulae of ¢ are ¢ itself together with
all its proper subformulae.

Note the subtle difference in how we have defined immediate subformulae
and proper subformulae. In the first case, we have directly defined the imme-
diate subformulae of a formula ¢ for each possible form of ¢. It is an explicit
definition by cases, and the cases mirror the inductive definition of the set
of formulae. In the second case, we have also mirrored the way the set of all
formulae is defined, but in each case we have also included the proper subfor-
mulae of the smaller formulae ¢, x in addition to these formulae themselves.
This makes the definition recursive. In general, a definition of a function on an
inductively defined set (in our case, formulae) is recursive if the cases in the

67

6. SYNTAX OF FIRST-ORDER LOGIC

definition of the function make use of the function itself. To be well defined,
we must make sure, however, that we only ever use the values of the function
for arguments that come “before” the one we are defining—in our case, when
defining “proper subformula” for (¢ * x) we only use the proper subformulae
of the “earlier” formulae ¢ and .

6.7 Free Variables and Sentences

Definition 6.17 (Free occurrences of a variable). The free occurrences of a vari-
able in a formula are defined inductively as follows:

1. ¢is atomic: all variable occurrences in ¢ are free.
2. ¢ = ~: the free variable occurrences of ¢ are exactly those of 1.

3. ¢ = (P xx): the free variable occurrences of ¢ are those in ¢ together
with those in .

4. ¢ = Vx: the free variable occurrences in ¢ are all of those in 1 except
for occurrences of x.

5. ¢ = dx ¢ the free variable occurrences in ¢ are all of those in ¢ except
for occurrences of x.

Definition 6.18 (Bound Variables). An occurrence of a variable in a formula ¢
is bound if it is not free.

Definition 6.19 (Scope). If Vx ¢ is an occurrence of a subformula in a for-
mula ¢, then the corresponding occurrence of ¢ in ¢ is called the scope of
the corresponding occurrence of Vx. Similarly for Jx.

If ¢ is the scope of a quantifier occurrence Vx or dx in ¢, then the free oc-
currences of x in ¢ are bound in Vx ¢ and Jx 1. We say that these occurrences
are bound by the mentioned quantifier occurrence.

Example 6.20. Consider the following formula:

E|V0 A%(Vo, Vl)
~—

N—

¥

P represents the scope of Jv. The quantifier binds the occurence of v in ¢,
but does not bind the occurence of v;. So v; is a free variable in this case.
We can now see how this might work in a more complicated formula ¢:
0
—_——
Yvy (A%)(Vo) D A%(Vo, Vl)) D dy (A%(Vo, Vl) V Vv NA%(VQ))

14 X

68

6.8. Substitution

1 is the scope of the first Vvy, x is the scope of Jv;, and 8 is the scope of the
second Vvp. The first Vv binds the occurrences of v in ¢, 3v; the occurrence of
vy in x, and the second Vv binds the occurrence of v in 6. The first occurrence
of v; and the fourth occurrence of v are free in ¢. The last occurrence of v is
free in 6, but bound in x and ¢.

Definition 6.21 (Sentence). A formula ¢ is a sentence iff it contains no free
occurrences of variables.
6.8 Substitution

Definition 6.22 (Substitution in a term). We define s[t/x], the result of sub-
stituting t for every occurrence of x in s, recursively:

1. s =c: s[t/x]isjusts.

2.8

y: s[t/x]is alsojusts, provided y is a variable and y # x.
3. s=ux: s[t/x]ist.
4. s=f(ty,...,tn): s[t/x]is f(t1[t/x], ... tu[t/x]).

Definition 6.23. A term ¢ is free for x in ¢ if none of the free occurrences of x
in @ occur in the scope of a quantifier that binds a variable in ¢.

Example 6.24.
1. vgis free for v; in Fv3A2(v3, 1)
2. f2(v1, vp) is not free for vy in Vo A3 (v, v2)

Definition 6.25 (Substitution in a formula). If ¢ is a formula, x is a variable,
and t is a term free for x in ¢, then ¢[t/x] is the result of substituting ¢ for all
free occurrences of x in ¢.

1. g = L1: @[t/x]is L.
2. 9 =P(ty,...,tn): @t/x]is P(t1[t/x],..., ta[t/x]).

3. 9=t =ty @[t/x]isti[t/x] = ta[t/x].

¢ =~y g[t/x]is ~p[t/x].
9= (p&x): o[t/x]is (p[t/x] & x[t/x]).
6. 9= (pVx) olt/x]is (p[t/x]V x[t/x]).
¢ = (¢ Dx): olt/x]is (p[t/x] D x[t/x]).

69

6. SYNTAX OF FIRST-ORDER LOGIC

8. ¢ = Yyy: ¢[t/x]is Yy y[t/x], provided y is a variable other than x;
otherwise @[t/ x] is just ¢.

9. ¢ = Jyy: @[t/x]is Jy[t/x], provided y is a variable other than x;
otherwise ¢[t/x] is just ¢.

Note that substitution may be vacuous: If x does not occur in ¢ at all, then
@[t/ x] isjust ¢.

The restriction that t must be free for x in ¢ is necessary to exclude cases
like the following. If ¢ = Jyx < y and t = y, then ¢[t/x] would be Jyy <
y. In this case the free variable y is “captured” by the quantifier 3y upon
substitution, and that is undesirable. For instance, we would like it to be the
case that whenever Vx ¢ holds, so does [t/ x]. But consider Vx Jy x < y (here
¥ is Jyx < y). It is sentence that is true about, e.g., the natural numbers:
for every number x there is a number y greater than it. If we allowed y as a
possible substitution for x, we would end up with ¢[y/x] = Jyy < y, which
is false. We prevent this by requiring that none of the free variables in ¢t would
end up being bound by a quantifier in ¢.

We often use the following convention to avoid cumbersome notation: If
¢ is a formula which may contain the variable x free, we also write ¢(x) to
indicate this. When it is clear which ¢ and x we have in mind, and f is a term
(assumed to be free for x in ¢(x)), then we write ¢(t) as short for ¢[t/x]. So
for instance, we might say, “we call ¢(t) an instance of Vx A(x).” By this we
mean that if ¢ is any formula, x a variable, and t a term that’s free for x in ¢,
then @[t/ x] is an instance of Vx ¢.

70

Chapter 7

Semantics of First-Order Logic

7.1 Introduction

Giving the meaning of expressions is the domain of semantics. The central
concept in semantics is that of satisfaction in a structure. A structure gives
meaning to the building blocks of the language: a domain is a non-empty
set of objects. The quantifiers are interpreted as ranging over this domain,
constant symbols are assigned elements in the domain, function symbols are
assigned functions from the domain to itself, and predicate symbols are as-
signed relations on the domain. The domain together with assignments to the
basic vocabulary constitutes a structure. Variables may appear in formulae,
and in order to give a semantics, we also have to assign elements of the do-
main to them—this is a variable assignment. The satisfaction relation, finally,
brings these together. A formula may be satisfied in a structure 9t relative to
a variable assignment s, written as 9,s = ¢. This relation is also defined by
induction on the structure of ¢, using the truth tables for the logical connec-
tives to define, say, satisfaction of (¢ & 1) in terms of satisfaction (or not) of ¢
and . It then turns out that the variable assignment is irrelevant if the for-
mula ¢ is a sentence, i.e., has no free variables, and so we can talk of sentences
being simply satisfied (or not) in structures.

On the basis of the satisfaction relation 91 F ¢ for sentences we can then
define the basic semantic notions of validity, entailment, and satisfiability.
A sentence is valid, F ¢, if every structure satisfies it. It is entailed by a set
of sentences, I' F ¢, if every structure that satisfies all the sentences in I also
satisfies ¢. And a set of sentences is satisfiable if some structure satisfies all
sentences in it at the same time. Because formulae are inductively defined,
and satisfaction is in turn defined by induction on the structure of formulae,
we can use induction to prove properties of our semantics and to relate the
semantic notions defined.

71

7. SEMANTICS OF FIRST-ORDER LOGIC

7.2 Structures for First-order Languages

First-order languages are, by themselves, uninterpreted: the constant symbols,
function symbols, and predicate symbols have no specific meaning attached
to them. Meanings are given by specifying a structure. It specifies the domain,
i.e., the objects which the constant symbols pick out, the function symbols
operate on, and the quantifiers range over. In addition, it specifies which con-
stant symbols pick out which objects, how a function symbol maps objects
to objects, and which objects the predicate symbols apply to. Structures are
the basis for semantic notions in logic, e.g., the notion of consequence, valid-
ity, satisfiablity. They are variously called “structures,” “interpretations,” or
“models” in the literature.

Definition 7.1 (Structures). A structure 9, for alanguage L of first-order logic
consists of the following elements:

1. Domain: a non-empty set, ||

2. Interpretation of constant symbols: for each constant symbol c of £, an ele-
ment ™ € |9

3. Interpretation of predicate symbols: for each n-place predicate symbol R of
L (other than =), an n-place relation RM C |om|"

4. Interpretation of function symbols: for each n-place function symbol f of
L, an n-place function f™: |M|" — ||

Example 7.2. A structure 91 for the language of arithmetic consists of a set,
an element of |9, 0™, as interpretation of the constant symbol o, a one-place
function /™ |9| — |M], two two-place functions +™ and x™, both |M|? —
|7, and a two-place relation <™ C |92,

An obvious example of such a structure is the following:

L9 =N

2.0M=0

3. M(n) =n+1foralln € N

4. +M(n,m) =n+mforalln,m € N

5. xm(n,m) =n-mforalln,m € N
6. <M ={(n,m)|n € N,meN,n<m}

The structure 91 for £4 so defined is called the standard model of arithmetic,
because it interprets the non-logical constants of £, exactly how you would
expect.

72

7.3. Covered Structures for First-order Languages

However, there are many other possible structures for £ 4. For instance,
we might take as the domain the set Z of integers instead of IN, and define the
interpretations of o, /, +, X, < accordingly. But we can also define structures
for £ 4 which have nothing even remotely to do with numbers.

Example 7.3. A structure 91 for the language L7 of set theory requires just a
set and a single-two place relation. So technically, e.g., the set of people plus
the relation “x is older than y” could be used as a structure for £z, as well as
N together with n > m for n,m € IN.

A particularly interesting structure for £z in which the elements of the
domain are actually sets, and the interpretation of € actually is the relation “x
is an element of y” is the structure HF of hereditarily finite sets:

L 93] = QU p(@) U p(p(D)) Up(p(p(@)))U...;
2. €98 = {(x,y) | x,y € |9F],x € y}.

The stipulations we make as to what counts as a structure impact our logic.
For example, the choice to prevent empty domains ensures, given the usual
account of satisfaction (or truth) for quantified sentences, that 3x (¢(x) V ~¢(x))
is valid—that is, a logical truth. And the stipulation that all constant symbols
must refer to an object in the domain ensures that the existential generaliza-
tion is a sound pattern of inference: ¢(a), therefore 3x ¢(x). If we allowed
names to refer outside the domain, or to not refer, then we would be on our
way to a free logic, in which existential generalization requires an additional
premise: ¢(a) and 3x x = a, therefore Jx ¢(x).

7.3 Covered Structures for First-order Languages

Recall that a term is closed if it contains no variables.

Definition 7.4 (Value of closed terms). If t is a closed term of the language £
and 9M is a structure for £, the value Val™ (t) is defined as follows:

1. If t is just the constant symbol ¢, then Val™ (¢c) = ¢™".

2. If t is of the form f(t1,...,t,), then

Val™' (t) = f™(Val™ (11),..., Val™ (t,)).

Definition 7.5 (Covered structure). A structure is covered if every element of
the domain is the value of some closed term.

Example 7.6. Let L be the language with constant symbols zero, one, two,
..., the binary predicate symbol <, and the binary function symbols + and
x. Then a structure 9 for £ is the one with domain [9| = {0,1,2,...} and

73

7. SEMANTICS OF FIRST-ORDER LOGIC

m N

assignments zero~" = 0, one™" =1, two™ = 2, and so forth. For the binary
relation symbol <, the set <™ is the set of all pairs (c1,c;) € |9|* such that
c1 is less than cy: for example, (1,3) € <™ but (2,2) ¢ <™. For the binary
function symbol +, define +”" in the usual way—for example, +7*(2,3) maps
to 5, and similarly for the binary function symbol x. Hence, the value of
four is just 4, and the value of x(two,+(three, zero)) (or in infix notation,
two X (three + zero)) is

Val™ (x (two, +(three, zero)) =
= x(Val™ (two), Val™ (+(three, zero)))

7.4 Satisfaction of a Formula in a Structure

The basic notion that relates expressions such as terms and formulae, on the
one hand, and structures on the other, are those of value of a term and satisfac-
tion of a formula. Informally, the value of a term is an element of a structure—
if the term is just a constant, its value is the object assigned to the constant
by the structure, and if it is built up using function symbols, the value is com-
puted from the values of constants and the functions assigned to the functions
in the term. A formula is satisfied in a structure if the interpretation given to
the predicates makes the formula true in the domain of the structure. This
notion of satisfaction is specified inductively: the specification of the struc-
ture directly states when atomic formulae are satisfied, and we define when a
complex formula is satisfied depending on the main connective or quantifier
and whether or not the immediate subformulae are satisfied.

The case of the quantifiers here is a bit tricky, as the immediate subformula
of a quantified formula has a free variable, and structures don’t specify the val-
ues of variables. In order to deal with this difficulty, we also introduce variable
assignments and define satisfaction not with respect to a structure alone, but
with respect to a structure plus a variable assignment.

Definition 7.7 (Variable Assignment). A variable assignment s for a structure 91
is a function which maps each variable to an element of |2, i.e., s: Var —

A structure assigns a value to each constant symbol, and a variable assign-
ment to each variable. But we want to use terms built up from them to also

74

7.4. Satisfaction of a Formula in a Structure

name elements of the domain. For this we define the value of terms induc-
tively. For constant symbols and variables the value is just as the structure or
the variable assignment specifies it; for more complex terms it is computed
recursively using the functions the structure assigns to the function symbols.

Definition 7.8 (Value of Terms). If is a term of the language £, 9 is a struc-
ture for £, and s is a variable assignment for 91, the value Val>" (t) is defined
as follows:

1. t=c ValP'(t) = M.
2. t=x: ValP'(t) = s(x).
3. t= f(t,... ta):
ValZt (t) = fP(ValP* (ty),..., Va2t (t,)).
Definition 7.9 (x-Variant). If s is a variable assignment for a structure i, then

any variable assignment s’ for M which differs from s at most in what it as-
signs to x is called an x-variant of s. If s’ is an x-variant of s we write s’ ~ s.

Note that an x-variant of an assignment s does not have to assign something
different to x. In fact, every assignment counts as an x-variant of itself.

Definition 7.10. If s is a variable assignment for a structure 9 and m € ||,
then the assignment s[m/ x| is the variable assignment defined by

s[m/x](y):{m ify=x

s(y) otherwise.

In other words, s[m/x] is the particular x-variant of s which assigns the
domain element m to x, and assigns the same things to variables other than x
that s does.

Definition 7.11 (Satisfaction). Satisfaction of a formula ¢ in a structure 9t rel-
ative to a variable assignment s, in symbols: 9, s F ¢, is defined recursively
as follows. (We write 91,5 ¢ to mean “not M, s = ¢.”)

1Lo=1: MsFo.

9 =R(t,...,t;): M,skE @iff (Val?'(t1),...,Val?' (t,)) € R™.
¢ =1t =ty M,skE iff Val?' (1) = Val?* (t).

@ =~ M,sE @iff M,s .

p= &) Msk iff M,sE pand M, s F x.

S S

p=(PVyx): Msk @iff M,sE porM,s E x (or both).

75

7. SEMANTICS OF FIRST-ORDER LOGIC

7. 9= (P D x): MsE @iff M,s ¥ p or M, s E x (or both).
8. ¢ =Vxiy: M,sE ¢iff for every element m € ||, M, s[m /x| E .

9. ¢ = Ixyp: M, s E ¢ iff for at least one element m € |M|, M, s[m /x| E .

The variable assignments are important in the last two clauses. We cannot
define satisfaction of Vx ¢(x) by “for all m € 9|, M E ¢(m).” We cannot
define satisfaction of 3x ¢(x) by “for at least one m € ||, M F ¢(m).” The
reason is that if m € |91, it is not symbol of the language, and so ¢(a) is
not a formula (that is, ¢[m/x] is undefined). We also cannot assume that we
have constant symbols or terms available that name every element of 91, since
there is nothing in the definition of structures that requires it. In the standard
language, the set of constant symbols is countably infinite, so if |9| is not
countable there aren’t even enough constant symbols to name every object.

We solve this problem by introducing variable assignments, which allow
us to link variables directly with elements of the domain. Then instead of
saying that, e.g., 3x (x) is satisfied in 9t iff for at least one m € |91|, we say
it is satisfied in O relative to s iff 1p(x) is satisfied relative to s[m /x| for at least
onem € |9M).

Example 7.12. Let £ = {a,b, f, R} where a and b are constant symbols, f is a
two-place function symbol, and R is a two-place predicate symbol. Consider
the structure Mt defined by:

1 || = {1,2,3,4}

2.aM =1

3. M =2

4. f7(x,y) = x +yif x +y < 3 and = 3 otherwise.
5. R™ = {(1,1),(1,2),(2,3),(2,4)}

The function s(x) = 1 that assigns 1 € |9 to every variable is a variable
assignment for 1.
Then

Val™ (f(a,b)) = f™ (Val™ (a), Val?™ (b)).

Since a and b are constant symbols, Val?* (a) = a™ = 1 and Val?* (b) = b™ =
2. 50

Val' (f(a,b)) = f™(1,2) =142 =3.

76

7.4. Satisfaction of a Formula in a Structure

To compute the value of f(f(a,b),a) we have to consider
ValY" (f(f(a,b),a)) = f™(ValY" (f(a,b)), ValI" (a)) = 7 (3,1) =33,
since 341 > 3. Since s(x) = 1 and Val?" (x) = s(x), we also have

ValY" (f(f(a,b),x)) = f7 (Val” (f(a, b)), Val" (x)) = 7 (3,1) =33,

An atomic formula R(ty, ;) is satisfied if the tuple of values of its ar-
guments, i.e., (Val?'(t;), ValZ (t,)), is an element of R™. So, e.g., we have
M,s = R(b, f(a, b)) since (Val™ (b), Val™ (f(a,b))) = (2,3) € R™, but M, s ¥
R(x, f(a, b)) since (1,3) ¢ R™[s].

To determine if a non-atomic formula ¢ is satisfied, you apply the clauses
in the inductive definition that applies to the main connective. For instance,
the main connective in R(a,a4) D (R(b, x) V R(x, b)) is the D, and

M,s E R(a,a) D (R(b,x) V R(x,b)) iff
M, s R(a,a) or M,s ER(b,x)V R(x,b)
Since M, s = R(a,a) (because (1,1) € R™) we can’t yet determine the answer
and must first figure out if M, s = R(b, x) V R(x, b):

M, s E R(b,x) VR(x,b) iff
M, s E R(b,x) or M,s E R(x,b)

And this is the case, since M, s F R(x,b) (because (1,2) € R™).

Recall that an x-variant of s is a variable assignment that differs from s at
most in what it assigns to x. For every element of |91|, there is an x-variant
of s:

s1 =s[1/x], sy =s[2/x],

s3 =s[3/x], sq = s[4/x].
So, e.g., s2(x) = 2 and sp(y) = s(y) = 1 for all variables y other than x. These
are all the x-variants of s for the structure 9, since || = {1,2,3,4}. Note, in
particular, that s; = s (s is always an x-variant of itself).

To determine if an existentially quantified formula 3x ¢(x) is satisfied, we
have to determine if 9, s[m /x| E ¢(x) for at least one m € |9]. So,

M, s = Ix (R(b,x) V R(x,b)),

77

7. SEMANTICS OF FIRST-ORDER LOGIC

since M, s[1/x] £ R(b, x) V R(x,b) (s[3/x] would also fit the bill). But,
M, s ¥ Ix (R(b,x) & R(x,b))

since, whichever m € |9| we pick, M, s[m/x] ¥ R(b, x) & R(x, b).
To determine if a universally quantified formula Vx ¢(x) is satisfied, we
have to determine if 9, s[m /x| E ¢(x) for all m € |9M|. So,

M, s EVx (R(x,a) D R(a,x)),

since M, s[m/x] E R(x,a) D R(a,x) for all m € |9M|. For m = 1, we have
9, s[1/x] £ R(a,x) so the consequent is true; for m = 2, 3, and 4, we have
9, s[m/x] ¥ R(x,a), so the antecedent is false. But,

M, s ¥ Vx (R(a,x) D R(x,a))

since M, s[2/x] ¥ R(a,x) D R(x,a) (because M, s[2/x] F R(a, x) and M, s[2/ x| ¥
R(x,a)).
For a more complicated case, consider

Vx (R(a,x) D 3y R(x,y)).

Since M, s[3/x| ¥ R(a, x) and 9, s[4/x] ¥ R(a, x), the interesting cases where
we have to worry about the consequent of the conditional are only m = 1
and = 2. Does M,s[1/x] F JyR(x,y) hold? It does if there is at least one
n € |M| so that M, s[1/x|[n/y] F R(x,y). In fact, if we take n = 1, we have
s[1/x][n/y] = s[1/y] = s. Since s(x) = 1, s(y) = 1, and (1,1) € R™, the
answer is yes.

To determine if M, s[2/x] E Jy R(x,y), we have to look at the variable as-
signments s[2/x][n/y]. Here, for n = 1, this assignment is s, = s[2/x|, which
does not satisfy R(x,y) (s2(x) = 2, s2(y) = 1, and (2,1) ¢ R™). However,
consider s[2/x][3/y] = s2[3/y]. M,s2[3/y] E R(x,y) since (2,3) € R™, and
so M, sy F JyR(x,y).

So, for all n € |9, either M, s[m/x] ¥ R(a, x) (if m = 3, 4) or M,s[m/x]
JyR(x,y) (if m =1, 2), and so

M, s EVx(R(a,x) D IyR(x,y)).
On the other hand,
M, s ¥ Ix (R(a,x) &VyR(x,y)).

We have 9,s[m/x] E R(a,x) only for m = 1 and m = 2. But for both
of these values of m, there is in turn an n € ||, namely n = 4, so that
M, s[m/x|[n/y] ¥ R(x,y) and so M, s[m/x] # Yy R(x,y) form =1 and m = 2.
In sum, there is no m € |M| such that M, s[m /x| E R(a, x) & Yy R(x,y).

78

7.5. Variable Assignments

7.5 Variable Assignments

A variable assignment s provides a value for every variable—and there are
infinitely many of them. This is of course not necessary. We require variable
assignments to assign values to all variables simply because it makes things a
lot easier. The value of a term ¢, and whether or not a formula ¢ is satisfied
in a structure with respect to s, only depend on the assignments s makes to
the variables in f and the free variables of ¢. This is the content of the next
two propositions. To make the idea of “depends on” precise, we show that
any two variable assignments that agree on all the variables in ¢ give the same
value, and that ¢ is satisfied relative to one iff it is satisfied relative to the other
if two variable assignments agree on all free variables of ¢.

Proposition 7.13. If the variables in a term t are among x1, ..., X, and s1(x;) =
so(x;) fori=1,...,n, then Val??ln(t) = Val??(t).

Proof. By induction on the complexity of ¢. For the base case, t can be a con-
stant symbol or one of the variables x1, ..., x,. If t = ¢, then Valgfz(t) =M=

Valgt(t). If t = x;, 51(x;) = s2(x;) by the hypothesis of the proposition, and so
Valg?(t) =s51(x;) = s2(x) = Valggt(t).
For the inductive step, assume that t = f(t;,...,#) and that the claim
holds for tq, ..., t;. Then
Val2l (t) = Valg (f(t, ..., tk)) =
= fM(ValPt (t), ..., Vall' (t))
Forj=1,...,k, the variables of tj are among x1, ..., Xs. By induction hypoth-
esis, Val??t(tj) = Val?f(t]«). So,
Val?t (t) = Val2 (f(t, ... 1)) =
= f(Vallt (1), ..., Vali (t)) =

= f(Valll (1), ..., Vali (t)) =
= Valld (f(t1, ...,) = Valoi (). O

Proposition 7.14. If the free variables in ¢ are among x1, ..., Xn, and s1(x;) =
so(x;) fori=1,...,n, then M,s1 £ @ iff M, sp E ¢.

Proof. We use induction on the complexity of ¢. For the base case, where ¢ is
atomic, ¢ canbe: L, R(ty,..., ;) for a k-place predicate R and terms t1, ..., f,
or t; = t, for terms t1 and #5.

1. ¢ = L: both M, s; ¥ @ and M, s, # ¢.

79

7. SEMANTICS OF FIRST-ORDER LOGIC

2. 9 =R(ty,...,t): letM,s1 F ¢. Then
(ValZ' (t1),..., Val* (t)) € R™.

Fori=1,...,k Val??(ti) = Valggt(ti) by Proposition 7.13. So we also
have <Va1?gz(ti),. ..,Valgf(tk» € R™.

3. ¢ =t] = tp: suppose M, s1 E ¢. Then Val?ft(tl) = Val?{t(tz). So,

Valgt (t1) = Valgfl)t (t1) (by Proposition 7.13)
= Valg:ln(tz) (since M,s1 E £ = to)
= Valgf (t2) (by Proposition 7.13),

soIM, sy F t = ty.

Now assume M, s1 F ¢ iff M, s, F ¢ for all formulae 3P less complex than ¢.
The induction step proceeds by cases determined by the main operator of ¢.
In each case, we only demonstrate the forward direction of the biconditional;
the proof of the reverse direction is symmetrical. In all cases except those for
the quantifiers, we apply the induction hypothesis to sub-formulae ¢ of ¢.
The free variables of ¢ are among those of ¢. Thus, if s; and s, agree on the
free variables of ¢, they also agree on those of i, and the induction hypothesis
applies to .

1. ¢ =~y if M, 51 F @, then M, 51 ¥ ¢, so by the induction hypothesis,
M, sp ¥ P, hence M, s, = ¢.

2. p =9 &x: if M, 51 F @, then M, s; F ¢ and M, 51 F x, so by induction
hypothesis, 9, s, E ¢ and 9, s, = x. Hence, M, 55 F ¢.

3.9 =y9Vx ifMs F @ then M,51 F P or M,s; F x. By induction
hypothesis, M, sy E P or M, 52 F x, s0 M, s F @.

4. ¢ =9 D x: exercise.

5. ¢ = Ixy: if M,s1 F ¢, there is an m € M| so that M, s1[m/x]| F . Let
s] = si[m/x] and s, = sy[m/x]. The free variables of ¢ are among x1,
..., Xy, and x. sy (x;) = s5(x;), since s and s} are x-variants of s; and s,
respectively, and by hypothesis s1(x;) = s(x;). sj(x) = sh(x) = m
by the way we have defined s} and s}. Then the induction hypothesis
applies to i and s}, s}, so M, s} = 1. Hence, since s, = sy[m/x], there is
anm € |9M| such that M, sy[m/x] E ¢, and so M, sp E ¢.

6. ¢ = Vx1: exercise.

By induction, we get that 9,51 F ¢ iff M, s, F ¢ whenever the free variables
in ¢ are among x1, ..., X, and s1(x;) = sp(x;) fori =1, ..., n. O

80

7.6. Extensionality

Sentences have no free variables, so any two variable assignments assign
the same things to all the (zero) free variables of any sentence. The proposition
just proved then means that whether or not a sentence is satisfied in a structure
relative to a variable assignment is completely independent of the assignment.
We'll record this fact. It justifies the definition of satisfaction of a sentence in
a structure (without mentioning a variable assignment) that follows.

Corollary 7.15. If ¢ is a sentence and s a variable assignment, then M, s E ¢ iff
M, s E ¢ for every variable assignment s'.

Proof. Let s’ be any variable assignment. Since ¢ is a sentence, it has no free
variables, and so every variable assignment s’ trivially assigns the same things
to all free variables of ¢ as does s. So the condition of Proposition 7.14 is
satisfied, and we have 9, s E ¢ iff M, s’ E ¢. O

Definition 7.16. If ¢ is a sentence, we say that a structure 9t satisfies ¢, M E ¢,
iff M, s = ¢ for all variable assignments s.

If M E @, we also simply say that ¢ is true in 9.

Proposition 7.17. Let 9 be a structure, ¢ be a sentence, and s a variable assign-
ment. ME @ iff M, s E ¢.

Proof. Exercise. O

Proposition 7.18. Suppose ¢(x) only contains x free, and O is a structure. Then:
1. ME Ix (x) iff M, s E ¢(x) for at least one variable assignment s.

2. MEVx @(x) iff M, s = @(x) for all variable assignments s.

Proof. Exercise. O

7.6 Extensionality

Extensionality, sometimes called relevance, can be expressed informally as fol-
lows: the only factors that bears upon the satisfaction of formula ¢ in a struc-
ture 91 relative to a variable assignment s, are the size of the domain and the
assignments made by 9t and s to the elements of the language that actually
appear in ¢.

One immediate consequence of extensionality is that where two struc-
tures M and M’ agree on all the elements of the language appearing in a sen-
tence ¢ and have the same domain, 9t and 9t must also agree on whether or
not ¢ itself is true.

81

7. SEMANTICS OF FIRST-ORDER LOGIC

Proposition 7.19 (Extensionality). Let ¢ be a formula, and 9ty and 90 be struc-
tures with |9y | = |My|, and s a variable assignment on |My| = |y |. If ™ =
M2, R = R and f7 = 7 for every constant symbol c, relation symbol R,
and function symbol f occurring in @, then My, s E @ iff My, s E ¢.

Proof. First prove (by induction on t) that for every term, Val2 ! (£) = Val?®2(¢).
Then prove the proposition by induction on ¢, making use of the claim just
proved for the induction basis (where ¢ is atomic). O

Corollary 7.20 (Extensionality for Sentences). Let ¢ be a sentence and 9ty, My
as in Proposition 7.19. Then MMy E ¢ iff Ny E ¢.

Proof. Follows from Proposition 7.19 by Corollary 7.15. O

Moreover, the value of a term, and whether or not a structure satisfies
a formula, only depends on the values of its subterms.

Proposition 7.21. Let 9 be a structure, t and t' terms, and s a variable assignment.

Then Valém(t[t//x]) = Valg?lalgn(t/)/x] (t)

Proof. By induction on ¢.
1. If t is a constant, say, t = ¢, then t['/x] = ¢, and Val?'(c) = ™ =
Valgfz/algﬁ(t/)/x] ().
2. If t is a variable other than x, say, t = y, then t[t'/x] = y, and Val> (y) =

Val??/algn(t’)/x] (y) since s ~ s[Val™* (') / x].

3. Ift = x, then t[t'/x] = t'. But Val?ftwgw)/x} (x) = ValZ'(#') by definition
of s[ValZ! (') / x].

4. Ift = f(tq,...,tn) then we have:

Valt (¢t /x]) =
= Val' (f(1[t' /x], ..., talt'/x]))
by definition of #[t'/x]
— P NVaIZ ([/x), . ValZ (/)
by definition of Val?* (f(...))

My m
= 7 (Valgam gy g (B - Val o gy g (En)

by induction hypothesis

= Valgfzfalgn(/4 (t) by definition of Val?fz/alim (#)/] (f...)) O

82

7.7. Semantic Notions

Proposition 7.22. Let 9 be a structure, ¢ a formula, t' a term, and s a variable
assignment. Then M, s = [t' /x] iff M, s[Val?* (') /x] E ¢.

Proof. Exercise. O

The point of Propositions 7.21 and 7.22 is the following. Suppose we have
a term t or a formula ¢ and some term t/, and we want to know the value
of t[t'/x] or whether or not ¢[t'/x] is satisfied in a structure 90 relative to
a variable assignment s. Then we can either perform the substitution first
and then consider the value or satisfaction relative to 9t and s, or we can first
determine the value m = Val?' (#') of ¢ in 9 relative to s, change the variable
assignment to s[m/x] and then consider the value of ¢ in 9t and s[m/x], or
whether 9, s[m/x] E ¢. Propositions 7.21 and 7.22 guarantee that the answer
will be the same, whichever way we do it.

7.7 Semantic Notions

Give the definition of structures for first-order languages, we can define some
basic semantic properties of and relationships between sentences. The sim-
plest of these is the notion of wvalidity of a sentence. A sentence is valid if it is
satisfied in every structure. Valid sentences are those that are satisfied regard-
less of how the non-logical symbols in it are interpreted. Valid sentences are
therefore also called logical truths—they are true, i.e., satisfied, in any struc-
ture and hence their truth depends only on the logical symbols occurring in
them and their syntactic structure, but not on the non-logical symbols or their
interpretation.

Definition 7.23 (Validity). A sentence ¢ is valid, F ¢, iff M = ¢ for every
structure 9.

Definition 7.24 (Entailment). A set of sentences I entails a sentence ¢, I' = ¢,
iff for every structure M with M ET, M E ¢.

Definition 7.25 (Satisfiability). A set of sentences I' is satisfiable if 9t = T for
some structure 9. If I' is not satisfiable it is called unsatisfiable.

Proposition 7.26. A sentence ¢ is valid iff T & ¢ for every set of sentences I'.

Proof. For the forward direction, let ¢ be valid, and let I be a set of sentences.
Let 9t be a structure so that 9t = I'. Since ¢ is valid, M = ¢, hence I = ¢.

For the contrapositive of the reverse direction, let ¢ be invalid, so there is
a structure M with M ¥ ¢. WhenI' = {T}, since T is valid, M F I'. Hence,
there is a structure 9 so that M = I' but M ¥ ¢, hence I' does not entail ¢. [

Proposition 7.27. T F ¢ iff T U {~¢} is unsatisfiable.

83

7. SEMANTICS OF FIRST-ORDER LOGIC

Proof. For the forward direction, suppose I F ¢ and suppose to the contrary
that there is a structure 9 so that M = I'U {~¢}. Since M E T and T F ¢,
M E ¢. Also, since M E T'U{~¢p}, M E ~¢, so we have both M F ¢ and
M ¥ ¢, a contradiction. Hence, there can be no such structure M, soT' U {~¢}
is unsatisfiable.

For the reverse direction, suppose I' U {~¢} is unsatisfiable. So for every
structure 9, either M ¥ I' or M = ¢. Hence, for every structure M with M E T,
ME@,sol F ¢ O

Proposition 7.28. IfT C ' and T E ¢, then T’ £ ¢.

Proof. Suppose thatT C I" and I E ¢. Let 9 be a structure such that 0 F I”;
then M E T, and since I' F ¢, we get that M F ¢. Hence, whenever 9 F I”,
ME @, s0l’ E . O

Theorem 7.29 (Semantic Deduction Theorem). T U {¢} F ¢ iff T F ¢ D 9.

Proof. For the forward direction, let ' U {¢} F 3 and let 9 be a structure so
that M ET. If M E ¢, then M = T U {¢}, so since I' U {p} entails ¢, we get
M E . Therefore, ME ¢ D P, sol'F ¢ D .

For the reverse direction, let I' F ¢ D ¢ and 2 be a structure so that
METU{¢}. ThenMET,s0ME ¢ D ¢, and since M E ¢, M E . Hence,
whenever MET U {¢}, ME ¢, soTU{p} E . O

Proposition 7.30. Let O be a structure, and ¢(x) a formula with one free variable x,
and t a closed term. Then:

1. @(t) F 3x @(x)
2. Vxg(x) E @(t)

Proof. 1. Suppose M F ¢(t). Let s be a variable assignment with s(x) =
Val™ (). Then 0, s & ¢(t) since ¢(t) is a sentence. By Proposition 7.22,
M, s £ ¢(x). By Proposition 7.18, M F Ix ¢(x).

2. Exercise. O

84

Chapter 8

Theories and Their Models

8.1 Introduction

The development of the axiomatic method is a significant achievement in the
history of science, and is of special importance in the history of mathemat-
ics. An axiomatic development of a field involves the clarification of many
questions: What is the field about? What are the most fundamental concepts?
How are they related? Can all the concepts of the field be defined in terms of
these fundamental concepts? What laws do, and must, these concepts obey?

The axiomatic method and logic were made for each other. Formal logic
provides the tools for formulating axiomatic theories, for proving theorems
from the axioms of the theory in a precisely specified way, for studying the
properties of all systems satisfying the axioms in a systematic way.

Definition 8.1. A set of sentences I is closed iff, whenever I' F ¢ then ¢ € I
The closure of a set of sentences I'is {¢ | I' F ¢}.
We say that I' is axiomatized by a set of sentences A if I' is the closure of A.

We can think of an axiomatic theory as the set of sentences that is axiom-
atized by its set of axioms A. In other words, when we have a first-order lan-
guage which contains non-logical symbols for the primitives of the axiomat-
ically developed science we wish to study, together with a set of sentences
that express the fundamental laws of the science, we can think of the theory
as represented by all the sentences in this language that are entailed by the
axioms. This ranges from simple examples with only a single primitive and
simple axioms, such as the theory of partial orders, to complex theories such
as Newtonian mechanics.

The important logical facts that make this formal approach to the axiomatic
method so important are the following. Suppose I' is an axiom system for a
theory, i.e., a set of sentences.

85

8. THEORIES AND THEIR MODELS

86

. We can state precisely when an axiom system captures an intended class

of structures. That is, if we are interested in a certain class of structures,
we will successfully capture that class by an axiom system I' iff the struc-
tures are exactly those 9t such that M =T

. We may fail in this respect because there are 91 such that 9t F I, but 91

is not one of the structures we intend. This may lead us to add axioms
which are not true in 1.

. If we are successful at least in the respect that I' is true in all the intended

structures, then a sentence ¢ is true in all intended structures whenever
I' E ¢. Thus we can use logical tools (such as derivation methods) to
show that sentences are true in all intended structures simply by show-
ing that they are entailed by the axioms.

. Sometimes we don’t have intended structures in mind, but instead start

from the axioms themselves: we begin with some primitives that we
want to satisfy certain laws which we codify in an axiom system. One
thing that we would like to verify right away is that the axioms do not
contradict each other: if they do, there can be no concepts that obey
these laws, and we have tried to set up an incoherent theory. We can
verify that this doesn’t happen by finding a model of I'. And if there are
models of our theory, we can use logical methods to investigate them,
and we can also use logical methods to construct models.

. The independence of the axioms is likewise an important question. It

may happen that one of the axioms is actually a consequence of the oth-
ers, and so is redundant. We can prove that an axiom ¢ in I' is redundant
by proving I' \ {¢} F ¢. We can also prove that an axiom is not redun-
dant by showing that (I'\ {¢}) U {~¢} is satisfiable. For instance, this is
how it was shown that the parallel postulate is independent of the other
axioms of geometry.

. Another important question is that of definability of concepts in a the-

ory: The choice of the language determines what the models of a theory
consists of. But not every aspect of a theory must be represented sep-
arately in its models. For instance, every ordering < determines a cor-
responding strict ordering <—given one, we can define the other. So it
is not necessary that a model of a theory involving such an order must
also contain the corresponding strict ordering. When is it the case, in
general, that one relation can be defined in terms of others? When is it
impossible to define a relation in terms of other (and hence must add it
to the primitives of the language)?

8.2. Expressing Properties of Structures

8.2 Expressing Properties of Structures

It is often useful and important to express conditions on functions and rela-
tions, or more generally, that the functions and relations in a structure satisfy
these conditions. For instance, we would like to have ways of distinguishing
those structures for a language which “capture” what we want the predicate
symbols to “mean” from those that do not. Of course we're completely free
to specify which structures we “intend,” e.g., we can specify that the inter-
pretation of the predicate symbol < must be an ordering, or that we are only
interested in interpretations of £ in which the domain consists of sets and €
is interpreted by the “is an element of” relation. But can we do this with sen-
tences of the language? In other words, which conditions on a structure 9t can
we express by a sentence (or perhaps a set of sentences) in the language of 9t?
There are some conditions that we will not be able to express. For instance,
there is no sentence of £, which is only true in a structure 9t if || = IN.
We cannot express “the domain contains only natural numbers.” But there
are “structural properties” of structures that we perhaps can express. Which
properties of structures can we express by sentences? Or, to put it another
way, which collections of structures can we describe as those making a sen-
tence (or set of sentences) true?

Definition 8.2 (Model of a set). Let I' be a set of sentences in a language L.
We say that a structure 9t is a model of T if M F ¢ forall ¢ € T

Example 8.3. The sentence Vx x < x is true in 9 iff <M s a reflexive relation.
The sentence VxVy ((x < y&y < x) D x = y) is true in M iff <™ is anti-
symmetric. The sentence VxVyVz ((x < y&y < z) D x < z) is true in 9 iff
<M i3 transitive. Thus, the models of
{ Vxx<x,

Vavy((x <y&y <x) Dx=y),

VaVyVz (x <y&y<z)Dx<z) }
are exactly those structures in which <™ is reflexive, anti-symmetric, and

transitive, i.e., a partial order. Hence, we can take them as axioms for the
first-order theory of partial orders.

8.3 Examples of First-Order Theories

Example 8.4. The theory of strict linear orders in the language £ is axioma-
tized by the set

Vx~x < x,
VaVy((x <yVy<x)Vx=y),
VaVyVz ((x <y&y <z)Dx<z)

87

8. THEORIES AND THEIR MODELS

It completely captures the intended structures: every strict linear order is a
model of this axiom system, and vice versa, if R is a linear order on a set X,
then the structure 9t with |91 = X and <™ = R is a model of this theory.

Example 8.5. The theory of groups in the language 1 (constant symbol),
(two-place function symbol) is axiomatized by

Vx(x-1)=x

VaWyVz(x-(y-2)) = ((x-y) 2)

Vxdy(x-y) =1

Example 8.6. The theory of Peano arithmetic is axiomatized by the following
sentences in the language of arithmetic £ 4.

VaVy (x' =y Dx=1y)

Vxo # x/

Vx(x+o0)=x

VxVy (x+y') = (x +y)’

Vx(x x0)=o0

YWy (x xy') = ((x x y) +x)
VaVy(x <y=3z(Z +x) =y))

plus all sentences of the form

(¢(0) & Vx (¢(x) D 9(x'))) D Vx g(x)

Since there are infinitely many sentences of the latter form, this axiom sys-
tem is infinite. The latter form is called the induction schema. (Actually, the
induction schema is a bit more complicated than we let on here.)

The last axiom is an explicit definition of <.

Example 8.7. The theory of pure sets plays an important role in the founda-
tions (and in the philosophy) of mathematics. A set is pure if all its elements
are also pure sets. The empty set counts therefore as pure, but a set that has
something as an element that is not a set would not be pure. So the pure sets
are those that are formed just from the empty set and no “urelements,” i.e.,
objects that are not themselves sets.

The following might be considered as an axiom system for a theory of pure
sets:

Jx~3Jyy € x
VxVy(Vz(zex=z€y) Dx=y)
VxVyIzVu(uez=(u=xVu=y))
Vx3JyVz(zey=3u(z € u&u € x))

88

8.3. Examples of First-Order Theories

plus all sentences of the form

IxVy (y € x = 9(y))

The first axiom says that there is a set with no elements (i.e., @ exists); the
second says that sets are extensional; the third that for any sets X and Y, the
set {X, Y} exists; the fourth that for any set X, the set UX exists, where UX is
the union of all the elements of X.

The sentences mentioned last are collectively called the naive comprehension
scheme. It essentially says that for every ¢(x), the set {x | ¢(x)} exists—so
at first glance a true, useful, and perhaps even necessary axiom. It is called
“naive” because, as it turns out, it makes this theory unsatisfiable: if you take
¢(y) tobe ~y € y, you get the sentence

IxVy(y e x =~y €y)
and this sentence is not satisfied in any structure.

Example 8.8. In the area of mereology, the relation of parthood is a fundamental
relation. Just like theories of sets, there are theories of parthood that axioma-
tize various conceptions (sometimes conflicting) of this relation.

The language of mereology contains a single two-place predicate sym-
bol P, and P(x,y) “means” that x is a part of y. When we have this inter-
pretation in mind, a structure for this language is called a parthood structure.
Of course, not every structure for a single two-place predicate will really de-
serve this name. To have a chance of capturing “parthood,” P must satisfy
some conditions, which we can lay down as axioms for a theory of parthood.
For instance, parthood is a partial order on objects: every object is a part (al-
beit an improper part) of itself; no two different objects can be parts of each
other; a part of a part of an object is itself part of that object. Note that in this
sense “is a part of” resembles “is a subset of,” but does not resemble “is an
element of” which is neither reflexive nor transitive.

Vx P(x, x),
Vx Vy ((P(x,y) & P(y,x)) D x =y),
VxVyVz ((P(x,y) & P(y,z)) D P(x,z)),

Moreover, any two objects have a mereological sum (an object that has these
two objects as parts, and is minimal in this respect).

VxVy 3zVu (P(z,u) = (P(x,u) & P(y,u)))

These are only some of the basic principles of parthood considered by meta-
physicians. Further principles, however, quickly become hard to formulate or
write down without first introducing some defined relations. For instance,

89

8. THEORIES AND THEIR MODELS

most metaphysicians interested in mereology also view the following as a
valid principle: whenever an object x has a proper part y, it also has a part z
that has no parts in common with y, and so that the fusion of y and z is x.

8.4 Expressing Relations in a Structure

One main use formulae can be put to is to express properties and relations in
a structure 9 in terms of the primitives of the language £ of M. By this we
mean the following: the domain of 91 is a set of objects. The constant symbols,
function symbols, and predicate symbols are interpreted in 9t by some objects
in|91|, functions on [9|, and relations on |9|. For instance, if A3 is in £, then

9 assigns to it a relation R = A%m. Then the formula A3 (v, v») expresses that
very relation, in the following sense: if a variable assignment s maps v; to
a € |9M|and v, to b € |M|, then

Rab iff 9M,sE A3(v, va).

Note that we have to involve variable assignments here: we can’t just say “Rab
iff M = AZ(a,b)” because a and b are not symbols of our language: they are
elements of |9M].

Since we don’t just have atomic formulae, but can combine them using the
logical connectives and the quantifiers, more complex formulae can define
other relations which aren’t directly built into 9. We're interested in how to
do that, and specifically, which relations we can define in a structure.

Definition 8.9. Let ¢(vy,..., ;) be a formula of £ in which only vj,..., v,
occur free, and let M be a structure for £. ¢(vy, . .., v) expresses the relation R C
|om|" iff

Ray...ay iff 9M,sE@(v,...,)

for any variable assignment s withs(v;) = a; (i =1,...,n).

Example 8.10. In the standard model of arithmetic 9, the formula vj < v V
vi = v expresses the < relation on IN. The formula v, = v{ expresses the suc-
cessor relation, i.e., the relation R C IN?2 where Rnm holds if m is the successor
of n. The formula v; = vj expresses the predecessor relation. The formulae
dv3(v3 # o0& vy = (v +v3)) and Jv3 (v + v3') = v, both express the < re-
lation. This means that the predicate symbol < is actually superfluous in the
language of arithmetic; it can be defined.

This idea is not just interesting in specific structures, but generally when-
ever we use a language to describe an intended model or models, i.e., when
we consider theories. These theories often only contain a few predicate sym-
bols as basic symbols, but in the domain they are used to describe often many

90

8.5. The Theory of Sets

other relations play an important role. If these other relations can be system-
atically expressed by the relations that interpret the basic predicate symbols
of the language, we say we can define them in the language.

8.5 The Theory of Sets

Almost all of mathematics can be developed in the theory of sets. Developing
mathematics in this theory involves a number of things. First, it requires a set
of axioms for the relation €. A number of different axiom systems have been
developed, sometimes with conflicting properties of €. The axiom system
known as ZFC, Zermelo-Fraenkel set theory with the axiom of choice stands
out: it is by far the most widely used and studied, because it turns out that its
axioms suffice to prove almost all the things mathematicians expect to be able
to prove. But before that can be established, it first is necessary to make clear
how we can even express all the things mathematicians would like to express.
For starters, the language contains no constant symbols or function symbols,
so it seems at first glance unclear that we can talk about particular sets (such as
@ or IN), can talk about operations on sets (such as X U Y and p(X)), let alone
other constructions which involve things other than sets, such as relations and
functions.

To begin with, “is an element of” is not the only relation we are interested
in: “is a subset of” seems almost as important. But we can define “is a subset
of” in terms of “is an element of.” To do this, we have to find a formula ¢(x, y)
in the language of set theory which is satisfied by a pair of sets (X, Y) iff X C
Y. But X is a subset of Y just in case all elements of X are also elements of Y.
So we can define C by the formula

Vz(zexDzey)

Now, whenever we want to use the relation C in a formula, we could instead
use that formula (with x and y suitably replaced, and the bound variable z
renamed if necessary). For instance, extensionality of sets means that if any
sets x and y are contained in each other, then x and y must be the same set.
This can be expressed by VxVy ((x C y &y C x) D x = y), or, if we replace C
by the above definition, by

VxVy((Vz(zexDzey)&Vz(zeyDdzex)) Dx=y).

This is in fact one of the axioms of ZFC, the “axiom of extensionality.”

There is no constant symbol for @, but we can express “x is empty” by
~3Jyy € x. Then “@ exists” becomes the sentence Ix ~3Jyy € x. This is an-
other axiom of ZFC. (Note that the axiom of extensionality implies that there
is only one empty set.) Whenever we want to talk about @ in the language of
set theory, we would write this as “there is a set that’s empty and ...” As an

91

8. THEORIES AND THEIR MODELS

example, to express the fact that @ is a subset of every set, we could write
Ix(~Jyy € x&Vzx C z)

where, of course, x C z would in turn have to be replaced by its definition.

To talk about operations on sets, such has X UY and p(X), we have to use
a similar trick. There are no function symbols in the language of set theory,
but we can express the functional relations X UY = Z and p(X) = Y by

Vu((uexVuey)=ucz)
Vu(uCx=ucy)

since the elements of X UY are exactly the sets that are either elements of X or
elements of Y, and the elements of p(X) are exactly the subsets of X. However,
this doesn’t allow us to use x Uy or p(x) as if they were terms: we can only
use the entire formulae that define the relations X UY = Z and p(X) =Y.
In fact, we do not know that these relations are ever satisfied, i.e., we do not
know that unions and power sets always exist. For instance, the sentence
Vx 3y p(x) = y is another axiom of ZFC (the power set axiom).

Now what about talk of ordered pairs or functions? Here we have to ex-
plain how we can think of ordered pairs and functions as special kinds of sets.
One way to define the ordered pair (x,y) is as the set {{x}, {x,y}}. But like
before, we cannot introduce a function symbol that names this set; we can
only define the relation (x,y) = z,ie., {{x}, {x, y}} =z

Vuluez=Wweu=v=x)VVo(veu=(v=xVov=y))))

This says that the elements u of z are exactly those sets which either have x
as its only element or have x and y as its only elements (in other words, those
sets that are either identical to {x} or identical to {x,y}). Once we have this,
we can say further things, e.g., that X x Y = Z:

Vz(zeZ=3xJy(x e X&y Y& (x,y) =2z2))

A function f: X — Y can be thought of as the relation f(x) = y, ie., as
the set of pairs {(x,y) | f(x) = y}. We can then say that a set f is a function
from X to Y if (a) it is a relation C X x Y, (b) it is total, i.e., for all x € X
there is some y € Y such that (x,y) € f and (c) it is functional, i.e., whenever
(x,y),(x,y') € f,y =y (because values of functions must be unique). So “f
is a function from X to Y” can be written as:

Vu(ue fOIxTy(xeX&yeY&(xy) =u)) &
Vx(x e XD (Jy(y € Y&maps(f,x,y)) &
(Vy vy’ ((maps(f, x,y) &maps(f,x,y')) Dy =y')))

92

8.6. Expressing the Size of Structures

where maps(f,x,y) abbreviates Jv (v € f & (x,y) = v) (this formula ex-
presses “f(x) = y”).

It is now also not hard to express that f: X — Y is injective, for instance:

firX—=>Y&VxVr (x€ X&Y' € X&

Ty (maps(f, x,y) &maps(f,x',y))) > x = x')
A function f: X — Y is injective iff, whenever f maps x,x’ € X to a single y,
x = x'. If we abbreviate this formula as inj(f, X, Y), we're already in a position
to state in the language of set theory something as non-trivial as Cantor’s
theorem: there is no injective function from p(X) to X:
VXVY (p(X) =Y D ~3finj(f,Y, X))

One might think that set theory requires another axiom that guarantees
the existence of a set for every defining property. If ¢(x) is a formula of set
theory with the variable x free, we can consider the sentence

JyVx (x ey = @(x)).
This sentence states that there is a set y whose elements are all and only those
x that satisfy ¢(x). This schema is called the “comprehension principle.” It
looks very useful; unfortunately it is inconsistent. Take ¢(x) = ~x € x, then
the comprehension principle states

JyVx(xey=x¢&x),

i.e., it states the existence of a set of all sets that are not elements of them-
selves. No such set can exist—this is Russell’s Paradox. ZFC, in fact, contains
a restricted—and consistent—version of this principle, the separation princi-

ple:
VzIyVx(x ey = (x € z& ¢(x)).

8.6 Expressing the Size of Structures

There are some properties of structures we can express even without using
the non-logical symbols of a language. For instance, there are sentences which
are true in a structure iff the domain of the structure has at least, at most, or
exactly a certain number n of elements.

Proposition 8.11. The sentence

@>p = 3Ix; Ixp ... Txy
(xl #xz&xl#x3&x17&x4&---&x1 #xn&
Xo Fx3& X A Xy & &xy Fxy &

Xp_1 # xn)

93

8. THEORIES AND THEIR MODELS

is true in a structure M iff || contains at least n elements. Consequently, M E
~@>ut1 Iff || contains at most n elements.

Proposition 8.12. The sentence

Q—p = 3xy dxp ... Ixy
(x1 £xp&x1 Zx3&x] x4 & &1 £ x, &
Xo £ x3&xo £ xy& & £Fxy &

Xpo1 # Xn &
YWwy=x1V---Vy=2x,))

is true in a structure M iff | M| contains exactly n elements.

Proposition 8.13. A structure is infinite iff it is a model of

{9>1, 952, 9>3,... }.

There is no single purely logical sentence which is true in 9t iff |91| is
infinite. However, one can give sentences with non-logical predicate symbols
which only have infinite models (although not every infinite structure is a
model of them). The property of being a finite structure, and the property of
being a uncountable structure cannot even be expressed with an infinite set of
sentences. These facts follow from the compactness and Lowenheim-Skolem
theorems.

94

Chapter 9

Natural Deduction

9.1 Introduction

Logics commonly have both a semantics and a derivation system. The seman-
tics concerns concepts such as truth, satisfiability, validity, and entailment.
The purpose of derivation systems is to provide a purely syntactic method
of establishing entailment and validity. They are purely syntactic in the sense
that a derivation in such a system is a finite syntactic object, usually a sequence
(or other finite arrangement) of sentences or formulae. Good derivation sys-
tems have the property that any given sequence or arrangement of sentences
or formulae can be verified mechanically to be “correct.”

The simplest (and historically first) derivation systems for first-order logic
were axiomatic. A sequence of formulae counts as a derivation in such a sys-
tem if each individual formula in it is either among a fixed set of “axioms”
or follows from formulae coming before it in the sequence by one of a fixed
number of “inference rules”—and it can be mechanically verified if a formula
is an axiom and whether it follows correctly from other formulae by one of the
inference rules. Axiomatic derivation systems are easy to describe—and also
easy to handle meta-theoretically—but derivations in them are hard to read
and understand, and are also hard to produce.

Other derivation systems have been developed with the aim of making it
easier to construct derivations or easier to understand derivations once they
are complete. Examples are natural deduction, truth trees, also known as
tableaux proofs, and the sequent calculus. Some derivation systems are de-
signed especially with mechanization in mind, e.g., the resolution method is
easy to implement in software (but its derivations are essentially impossible
to understand). Most of these other derivation systems represent derivations
as trees of formulae rather than sequences. This makes it easier to see which
parts of a derivation depend on which other parts.

So for a given logic, such as first-order logic, the different derivation sys-
tems will give different explications of what it is for a sentence to be a theorem

95

9. NATURAL DEDUCTION

and what it means for a sentence to be derivable from some others. However
that is done (via axiomatic derivations, natural deductions, sequent deriva-
tions, truth trees, resolution refutations), we want these relations to match the
semantic notions of validity and entailment. Let’s write - ¢ for “¢ is a theo-
rem” and “I" - ¢” for “¢ is derivable from I'.” However |- is defined, we want
it to match up with F, that is:

1. - ¢@ifand only if F ¢
2. T'-gifandonlyifI' F ¢

The “only if” direction of the above is called soundness. A derivation system is
sound if derivability guarantees entailment (or validity). Every decent deriva-
tion system has to be sound; unsound derivation systems are not useful at all.
After all, the entire purpose of a derivation is to provide a syntactic guarantee
of validity or entailment. We'll prove soundness for the derivation systems
we present.

The converse “if” direction is also important: it is called completeness. A
complete derivation system is strong enough to show that ¢ is a theorem
whenever ¢ is valid, and that I' - ¢ whenever I' F ¢. Completeness is harder
to establish, and some logics have no complete derivation systems. First-order
logic does. Kurt Godel was the first one to prove completeness for a derivation
system of first-order logic in his 1929 dissertation.

Another concept that is connected to derivation systems is that of consis-
tency. A set of sentences is called inconsistent if anything whatsoever can be
derived from it, and consistent otherwise. Inconsistency is the syntactic coun-
terpart to unsatisfiablity: like unsatisfiable sets, inconsistent sets of sentences
do not make good theories, they are defective in a fundamental way. Con-
sistent sets of sentences may not be true or useful, but at least they pass that
minimal threshold of logical usefulness. For different derivation systems the
specific definition of consistency of sets of sentences might differ, but like -,
we want consistency to coincide with its semantic counterpart, satisfiability.
We want it to always be the case that I is consistent if and only if it is satis-
fiable. Here, the “if” direction amounts to completeness (consistency guaran-
tees satisfiability), and the “only if” direction amounts to soundness (satisfi-
ability guarantees consistency). In fact, for classical first-order logic, the two
versions of soundness and completeness are equivalent.

9.2 Natural Deduction

Natural deduction is a derivation system intended to mirror actual reasoning
(especially the kind of regimented reasoning employed by mathematicians).
Actual reasoning proceeds by a number of “natural” patterns. For instance,
proof by cases allows us to establish a conclusion on the basis of a disjunc-
tive premise, by establishing that the conclusion follows from either of the

96

9.2. Natural Deduction

disjuncts. Indirect proof allows us to establish a conclusion by showing that
its negation leads to a contradiction. Conditional proof establishes a condi-
tional claim “if ...then ...” by showing that the consequent follows from
the antecedent. Natural deduction is a formalization of some of these nat-
ural inferences. Each of the logical connectives and quantifiers comes with
two rules, an introduction and an elimination rule, and they each correspond
to one such natural inference pattern. For instance, DIntro corresponds to
conditional proof, and VElim to proof by cases. A particularly simple rule is
&Elim which allows the inference from ¢ & ¢ to ¢ (or).

One feature that distinguishes natural deduction from other derivation
systems is its use of assumptions. A derivation in natural deduction is a tree
of formulae. A single formula stands at the root of the tree of formulae, and
the “leaves” of the tree are formulae from which the conclusion is derived.
In natural deduction, some leaf formulae play a role inside the derivation but
are “used up” by the time the derivation reaches the conclusion. This corre-
sponds to the practice, in actual reasoning, of introducing hypotheses which
only remain in effect for a short while. For instance, in a proof by cases, we
assume the truth of each of the disjuncts; in conditional proof, we assume the
truth of the antecedent; in indirect proof, we assume the truth of the nega-
tion of the conclusion. This way of introducing hypothetical assumptions
and then doing away with them in the service of establishing an intermedi-
ate step is a hallmark of natural deduction. The formulas at the leaves of a
natural deduction derivation are called assumptions, and some of the rules of
inference may “discharge” them. For instance, if we have a derivation of ¢
from some assumptions which include ¢, then the DIntro rule allows us to
infer ¢ D ¥ and discharge any assumption of the form ¢. (To keep track of
which assumptions are discharged at which inferences, we label the inference
and the assumptions it discharges with a number.) The assumptions that re-
main undischarged at the end of the derivation are together sufficient for the
truth of the conclusion, and so a derivation establishes that its undischarged
assumptions entail its conclusion.

The relation I' - ¢ based on natural deduction holds iff there is a deriva-
tion in which ¢ is the last sentence in the tree, and every leaf which is undis-
charged isin I'. ¢ is a theorem in natural deduction iff there is a derivation in
which ¢ is the last sentence and all assumptions are discharged. For instance,
here is a derivation that shows that - (¢ & 1) D ¢:

1
M &Elim

%
1 —— DIntro
(p&yp) Do

The label 1 indicates that the assumption ¢ & ¥ is discharged at the DIntro
inference.

97

9. NATURAL DEDUCTION

A set T is inconsistent iff I' - | in natural deduction. The rule 1 ; makes it
so that from an inconsistent set, any sentence can be derived.

Natural deduction systems were developed by Gerhard Gentzen and Sta-
nistaw Jaskowski in the 1930s, and later developed by Dag Prawitz and Fred-
eric Fitch. Because its inferences mirror natural methods of proof, it is favored
by philosophers. The versions developed by Fitch are often used in introduc-
tory logic textbooks. In the philosophy of logic, the rules of natural deduc-
tion have sometimes been taken to give the meanings of the logical operators
(“proof-theoretic semantics”).

9.3 Rules and Derivations

Natural deduction systems are meant to closely parallel the informal reason-
ing used in mathematical proof (hence it is somewhat “natural”). Natural
deduction proofs begin with assumptions. Inference rules are then applied.
Assumptions are “discharged” by the ~Intro, DIntro, VElim and JElim in-
ference rules, and the label of the discharged assumption is placed beside the
inference for clarity.

Definition 9.1 (Assumption). An assumption is any sentence in the topmost
position of any branch.

Derivations in natural deduction are certain trees of sentences, where the
topmost sentences are assumptions, and if a sentence stands below one, two,
or three other sequents, it must follow correctly by a rule of inference. The sen-
tences at the top of the inference are called the premises and the sentence below
the conclusion of the inference. The rules come in pairs, an introduction and
an elimination rule for each logical operator. They introduce a logical opera-
tor in the conclusion or remove a logical operator from a premise of the rule.
Some of the rules allow an assumption of a certain type to be discharged. To
indicate which assumption is discharged by which inference, we also assign
labels to both the assumption and the inference. This is indicated by writing
the assumption as “[¢]".”

It is customary to consider rules for all the logical operators &, V, D, ~,
and 1, even if some of those are defined.

9.4 Propositional Rules

Rules for &

98

9.4. Propositional Rules

P&y

? &Elim
u &Intro
&y &y .
&Elim
Y
Rules for Vv
. [p]" [p]"
ntro .
VY :
VInt v : X
vy O AL XX X \/Elim
Rules for D
[p]"
: >
: P2% ? him
J (4
n 9o Dlntro
Rules for ~
[o]"
: ~Q .
T ~Elim
1
~ ~Intro
Rules for |

99

9. NATURAL DEDUCTION

1
— 1
7 I

Note that ~Intro and L ¢ are very similar: The difference is that ~Intro derives
a negated sentence ~¢ but L ¢ a positive sentence ¢.

Whenever a rule indicates that some assumption may be discharged, we
take this to be a permission, but not a requirement. E.g., in the DIntro rule, we
may discharge any number of assumptions of the form ¢ in the derivation of
the premise 1, including zero.

9.5 Derivations

We've said what an assumption is, and we’ve given the rules of inference.
Derivations in natural deduction are inductively generated from these: each
derivation either is an assumption on its own, or consists of one, two, or three
derivations followed by a correct inference.

Definition 9.2 (Derivation). A derivation of a sentence ¢ from assumptions I
is a finite tree of sentences satisfying the following conditions:

1. The topmost sentences of the tree are either in I or are discharged by an
inference in the tree.

2. The bottommost sentence of the tree is ¢.

3. Every sentence in the tree except the sentence ¢ at the bottom is a premise
of a correct application of an inference rule whose conclusion stands di-
rectly below that sentence in the tree.

We then say that ¢ is the conclusion of the derivation and I' its undischarged
assumptions.

If a derivation of ¢ from I exists, we say that ¢ is derivable from I', or in
symbols: I' - ¢. If there is a derivation of ¢ in which every assumption is
discharged, we write - ¢.

Example 9.3. Every assumption on its own is a derivation. So, e.g., x by itself
is a derivation, and so is 6 by itself. We can obtain a new derivation from these
by applying, say, the &Intro rule,

4 4

&Intro
P&y

100

9.6. Examples of Derivations

These rules are meant to be general: we can replace the ¢ and ¥ in it with any
sentences, e.g., by x and 6. Then the conclusion would be x & 6, and so

X
&0 &Intro
is a correct derivation. Of course, we can also switch the assumptions, so that
6 plays the role of ¢ and x that of ¢. Thus,

0

X
0 & 1 &Intro

is also a correct derivation.

We can now apply another rule, say, DIntro, which allows us to conclude
a conditional and allows us to discharge any assumption that is identical to
the antecedent of that conditional. So both of the following would be correct
derivations:

1 0 91
L &Intro u &Intro
1& It 1& It
X O (x&0) Dlintro 6> (x&0) Dlintro

They show, respectively, that 0 - x D (x & 60) and x -6 D (x & 90).
Remember that discharging of assumptions is a permission, not a require-
ment: we don’t have to discharge the assumptions. In particular, we can apply
a rule even if the assumptions are not present in the derivation. For instance,
the following is legal, even though there is no assumption ¢ to be discharged:

1 Dlntro

POy

9.6 Examples of Derivations

Example 9.4. Let’s give a derivation of the sentence (¢ & 1) D ¢.
We begin by writing the desired conclusion at the bottom of the derivation.

(p&y) D9

Next, we need to figure out what kind of inference could result in a sen-
tence of this form. The main operator of the conclusion is D, so we'll try to
arrive at the conclusion using the DIntro rule. It is best to write down the as-
sumptions involved and label the inference rules as you progress, so it is easy
to see whether all assumptions have been discharged at the end of the proof.

101

9. NATURAL DEDUCTION

[¢§¢P

p
1—————— Dlntro
(p&y) D¢
We now need to fill in the steps from the assumption ¢ & ¥ to ¢. Since we
only have one connective to deal with, &, we must use the & elim rule. This
gives us the following proof:

1
M &Elim

%
1 —— DlIntro
(p&y) Do

We now have a correct derivation of (¢ & ¢) D ¢.

Example 9.5. Now let’s give a derivation of (~¢ V) D (¢ D).
We begin by writing the desired conclusion at the bottom of the derivation.

(~eV) D (e D)

To find a logical rule that could give us this conclusion, we look at the logical
connectives in the conclusion: ~, V, and D. We only care at the moment about
the first occurence of D because it is the main operator of the sentence in the
end-sequent, while ~, V and the second occurence of O are inside the scope
of another connective, so we will take care of those later. We therefore start
with the DIntro rule. A correct application must look like this:

[~¢Y¢P

=X
(~eV)D(pDY)

Dlntro

This leaves us with two possibilities to continue. Either we can keep working
from the bottom up and look for another application of the DIntro rule, or we
can work from the top down and apply a VElim rule. Let us apply the latter.
We will use the assumption ~¢ V ¢ as the leftmost premise of VElim. For a
valid application of VElim, the other two premises must be identical to the
conclusion ¢ D 1, but each may be derived in turn from another assumption,
namely the two disjuncts of ~¢ V 1. So our derivation will look like this:

102

9.6. Examples of Derivations

N 1 : :
, VYl 9oy eo¢ L

D
poY Dlntro
(~eVy) D (92 9)
In each of the two branches on the right, we want to derive ¢ D 1, which
is best done using DlIntro.

[~¢]% (9] [¢), [o]*
[N€0v¢]1 3% DIntro 4 " z m Z)In'tro
2 Sy VElim
L Dlntro

(~eVY) D (e DY)

For the two missing parts of the derivation, we need derivations of i from
~¢@ and ¢ in the middle, and from ¢ and ¢ on the left. Let’s take the former
first. ~¢@ and ¢ are the two premises of ~Elim:

[~ol? e
T ~Elim
Y
By using L ;, we can obtain 1 as a conclusion and complete the branch.
]2 o)
2 3 :
adl 9! LIntro
L
p 1
[~g V]! 374) Sy DlIntro 4 Y. DIn'tro
2 9o VElim
DlIntro

N YOEICELD

Let’s now look at the rightmost branch. Here it’s important to realize that
the definition of derivation allows assumptions to be discharged but does not re-
quire them to be. In other words, if we can derive ¢ from one of the assump-
tions ¢ and ¢ without using the other, that’s ok. And to derive ¢ from 1 is
trivial: ¥ by itself is such a derivation, and no inferences are needed. So we
can simply delete the assumption ¢.

103

9. NATURAL DEDUCTION

]2 3
[~¢]] - Elim
1
Ty [y]2
[~V I,U]l 3 m DlIntro m :)In‘tro
2 9o VElim
Dlntro

(~eVY) D (¢ DY)

Note that in the finished derivation, the rightmost DIntro inference does not
actually discharge any assumptions.

Example 9.6. So far we have not needed the L rule. It is special in that it al-
lows us to discharge an assumption that isn’t a sub-formula of the conclusion
of the rule. It is closely related to the L rule. In fact, the _L; rule is a special
case of the L ¢ rule—there is a logic called “intuitionistic logic” in which only
1y is allowed. The L rule is a last resort when nothing else works. For in-
stance, suppose we want to derive ¢ V ~¢. Our usual strategy would be to
attempt to derive ¢ V ~¢ using VIntro. But this would require us to derive
either ¢ or ~¢ from no assumptions, and this can’t be done. L ¢ to the rescue!

[~(pV ~p))!
1
1 74) Y, Nq) J—C

Now we're looking for a derivation of L from ~(¢ V ~¢). Since L is the
conclusion of ~Elim we might try that:

[~(¢ v ~o)t [~(e v ~)]!

~Q

1

T ~Elim

— |
pVegp €

Our strategy for finding a derivation of ~¢ calls for an application of ~Intro:

[~(pV~)], [¢]? 1
: [~(pV ~o¢)]
2 fj‘ ~Intro
% .
~Elim
1 # J—C
Ve

104

9.7. Quantifier Rules

Here, we can get L easily by applying ~Elim to the assumption ~(¢ V ~¢)
and ¢ V ~¢ which follows from our new assumption ¢ by VIntro:

[g]2 [~(pV~e)!
[~V rg)]' Tpv~g Vinto ;
~Elim
L
2 ——— ~Intro
9 .
~Elim
1 # J—C
PV~
On the right side we use the same strategy, except we get ¢ by L¢:
[g]? [~9)
MoVt Vg VIO [(pvng))l TpVag VMO
T ~Elim T ~Elim
2 ~Intro 3—1c
~9 9 .
~Elim
1 # J—C
PV~
9.7 Quantifier Rules
Rules for V
¢(a) Vx p(x) :
Vx (%) VIntro o(t) VElim

In the rules for V, ¢ is a closed term (a term that does not contain any variables),
and a is a constant symbol which does not occur in the conclusion Vx ¢(x), or
in any assumption which is undischarged in the derivation ending with the
premise ¢(a). We call a the eigenvariable of the VIntro inference.'

Rules for 3
[p(a)]"
t
EI;P(()x) dIntro :
? g(x) X o
n X JElim

1We use the term “eigenvariable” even though a in the above rule is a constant. This has
historical reasons.

105

9. NATURAL DEDUCTION

Again, t is a closed term, and a is a constant which does not occur in the
premise 3x ¢(x), in the conclusion yx, or any assumption which is undischarged
in the derivations ending with the two premises (other than the assumptions
¢(a)). We call a the eigenvariable of the JElim inference.

The condition that an eigenvariable neither occur in the premises nor in
any assumption that is undischarged in the derivations leading to the premises
for the VIntro or JElim inference is called the eigenvariable condition.

Recall the convention that when ¢ is a formula with the variable x free, we
indicate this by writing ¢(x). In the same context, ¢(t) then is short for ¢[t/x].
So we could also write the JIntro rule as:

@[t/ x]

o dIntro

Note that t may already occur in ¢, e.g., ¢ might be P(t,x). Thus, inferring
dx P(t,x) from P(t,t) is a correct application of JIntro—you may “replace”
one or more, and not necessarily all, occurrences of ¢ in the premise by the
bound variable x. However, the eigenvariable conditions in VIntro and JElim
require that the constant symbol a does not occur in ¢. So, you cannot cor-
rectly infer Vx P(a, x) from P(a,a) using VIntro.

In JIntro and VElim there are no restrictions, and the term ¢ can be any-
thing, so we do not have to worry about any conditions. On the other hand,
in the JElim and VIntro rules, the eigenvariable condition requires that the
constant symbol a does not occur anywhere in the conclusion or in an undis-
charged assumption. The condition is necessary to ensure that the system
is sound, i.e., only derives sentences from undischarged assumptions from
which they follow. Without this condition, the following would be allowed:

*VIntro

dx o (x Vx o(x
¢(x) ¢(x) “Elim

Vx (x)

However, 3x ¢(x) ¥ Vx ¢(x).

As the elimination rules for quantifiers only allow substituting closed terms
for variables, it follows that any formula that can be derived from a set of sen-
tences is itself a sentence.

9.8 Derivations with Quantifiers

Example 9.7. When dealing with quantifiers, we have to make sure not to
violate the eigenvariable condition, and sometimes this requires us to play
around with the order of carrying out certain inferences. In general, it helps
to try and take care of rules subject to the eigenvariable condition first (they
will be lower down in the finished proof).

106

9.8. Derivations with Quantifiers

Let’s see how we’d give a derivation of the formula 3x ~¢(x) D ~Vx ¢(x).
Starting as usual, we write

dx ~¢(x) D ~Vx ¢(x)

We start by writing down what it would take to justify that last step using the
Dlntro rule.

[HxN?(x)]l

~Yx ()
dx ~¢(x) D ~Vx ¢(x)

Dlntro

Since there is no obvious rule to apply to ~Vx ¢(x), we will proceed by setting
up the derivation so we can use the JElim rule. Here we must pay attention
to the eigenvariable condition, and choose a constant that does not appear in
Jx ¢(x) or any assumptions that it depends on. (Since no constant symbols
appear, however, any choice will do fine.)

[~g(a)]?

Fx~p()]' ~Vrg(x)
~Vx 9(x)
Ix ~p(x) D ~Vx ¢(x)

JElim
Dlntro

In order to derive ~Vx ¢(x), we will attempt to use the ~Intro rule: this re-
quires that we derive a contradiction, possibly using Vx ¢(x) as an additional
assumption. Of course, this contradiction may involve the assumption ~¢(a)
which will be discharged by the JElim inference. We can set it up as follows:

[~g(a))?, [Vx p(x))?

[Bx ~(x))! ~Yxg(x) _
2 Vxg(x) JElim

dx ~@(x) D ~Vx @(x)

It looks like we are close to getting a contradiction. The easiest rule to apply is
the VElim, which has no eigenvariable conditions. Since we can use any term
we want to replace the universally quantified x, it makes the most sense to
continue using 2 so we can reach a contradiction.

107

9. NATURAL DEDUCTION

Y 3

N 5 7[x9(x) VElim

[~¢(a)] ¢(a) .
T ~Elim
3 —————— ~Intro
| Bxp)! ~xglx) T
~V
xgo(x) Dlntro

Ix ~p(x) D ~Vx p(x)

It is important, especially when dealing with quantifiers, to double check
at this point that the eigenvariable condition has not been violated. Since the
only rule we applied that is subject to the eigenvariable condition was JElim,
and the eigenvariable a does not occur in any assumptions it depends on, this
is a correct derivation.

Example 9.8. Sometimes we may derive a formula from other formulae. In
these cases, we may have undischarged assumptions. It is important to keep
track of our assumptions as well as the end goal.

Let’s see how we’d give a derivation of the formula 3x x(x,b) from the
assumptions 3x (¢(x) & P(x)) and Vx (p(x) D x(x,b)). Starting as usual, we
write the conclusion at the bottom.

Ix x(x,b)

We have two premises to work with. To use the first, i.e., try to find
a derivation of 3x x(x, b) from Jx (¢(x) & P(x)) we would use the JElim rule.
Since it has an eigenvariable condition, we will apply that rule first. We get
the following:

(p(a) & p(a)"

e &px) Fxx(xb)
Ix x(x,b)

JElim

The two assumptions we are working with share 1. It may be useful at this
point to apply &Elim to separate out (a).

[p(a) &p(a)]!
lp() &Elim
3x (9(x) & p(x)) 3x x(x,b) —_

108

9.8. Derivations with Quantifiers

The second assumption we have to work with is Vx ((x) D x(x,b)). Since
there is no eigenvariable condition we can instantiate x with the constant sym-
bol 2 using VElim to get (a) D x(a,b). We now have both (a) D x(a,b) and
{(a). Our next move should be a straightforward application of the DElim
rule.

Vx (p(x) O x(x,b)) [p(a) &y(a)]! .
$(a) > x(a,b) VElim —lp(a) DEli::Ehm
x(a,b)
Selp &y Ialnb)
1 Jxx(x,0) JElim

We are so close! One application of JIntro and we have reached our goal.

HODOXED) o @SV
p(@) o xab) @) El.&Ehm
L’b) DElim
@))
Ix x(x,b)

JIntro
JElim

Since we ensured at each step that the eigenvariable conditions were not vio-
lated, we can be confident that this is a correct derivation.

Example 9.9. Give a derivation of the formula ~Vx ¢(x) from the assump-
tions Vx ¢(x) D Jy¥(y) and ~TJy ¢(y). Starting as usual, we write the target
formula at the bottom.

~Vx g(x)

The last line of the derivation is a negation, so let’s try using ~Intro. This will
require that we figure out how to derive a contradiction.

¥ (]!

1

1 TQD(X) ~Intro

So far so good. We can use VElim but it’s not obvious if that will help us get
to our goal. Instead, let’s use one of our assumptions. Vx ¢(x) D Jy¢(y)
together with Vx ¢(x) will allow us to use the DElim rule.

109

9. NATURAL DEDUCTION

Vxo(x) D Iyply) [Vxe(x))!
3ylf’(y)

DElim

L
1 - .
~Vx ¢ (x) Intro
We now have one final assumption to work with, and it looks like this will
help us reach a contradiction by using ~Elim.

Vxo(x) D Iyply) [Vxe(x)]!

~3yp(y) Jyp(y)

1
1 Nqu)(x) ~Intro

DOFElim

~Elim

9.9 Proof-Theoretic Notions

Just as we’ve defined a number of important semantic notions (validity, entail-
ment, satisfiabilty), we now define corresponding proof-theoretic notions. These
are not defined by appeal to satisfaction of sentences in structures, but by ap-
peal to the derivability or non-derivability of certain sentences from others. It
was an important discovery that these notions coincide. That they do is the
content of the soundness and completeness theorems.

Definition 9.10 (Theorems). A sentence ¢ is a theorem if there is a derivation
of ¢ in natural deduction in which all assumptions are discharged. We write
F ¢ if @ is a theorem and ¥ ¢ if it is not.

Definition 9.11 (Derivability). A sentence ¢ is derivable from a set of sentences I,
I' - ¢, if there is a derivation with conclusion ¢ and in which every assump-
tion is either discharged or is in I'. If ¢ is not derivable from I we write I' ¥ ¢.

Definition 9.12 (Consistency). A set of sentences I' is inconsistent iff I' = L. If
I' is not inconsistent, i.e., if I' ¥ L, we say it is consistent.

Proposition 9.13 (Reflexivity). If ¢ € I, then I |- ¢.

Proof. The assumption ¢ by itself is a derivation of ¢ where every undis-
charged assumption (i.e., ¢) isin I’ O

Proposition 9.14 (Monotony). If T C Aand T + ¢, then A - ¢.
Proof. Any derivation of ¢ from I' is also a derivation of ¢ from A. O

Proposition 9.15 (Transitivity). If T - ¢ and {9} UAF ¢, thenTUA F ¢.

110

9.9. Proof-Theoretic Notions

Proof. IfT' I @, there is a derivation Jy of ¢ with all undischarged assumptions
inT. If {¢} UA I ¢, then there is a derivation 1 of ¢ with all undischarged
assumptions in {¢} U A. Now consider:

A,]!
-5 F
. 1(5
¥ 10
1 Dlntro
=k .
m DElim

The undischarged assumptions are now all among I' U A, so this shows ' U A -

P. O

WhenT = {¢1,¢2,..., ¢} is a finite set we may use the simplified nota-
tion ¢1, @2, ..., ¢ F P for I' - 1, in particular ¢ - 1 means that {¢} F 9.

Note thatif I' - ¢ and ¢ - ¢, then T I . It follows also that if ¢1,..., ¢, I
pand I' - ¢; for each i, thenT F .
Proposition 9.16. The following are equivalent.

1. T is inconsistent.

2. T = ¢ for every sentence ¢.

3. '+ @andT F ~¢ for some sentence .
Proof. Exercise. O

Proposition 9.17 (Compactness). 1. IfI' = ¢ then there is a finite subset Iy C
I' such that Ty F ¢.

2. If every finite subset of I is consistent, then I' is consistent.

Proof. 1. If T - ¢, then there is a derivation of ¢ from I'. Let I'g be the set
of undischarged assumptions of 4. Since any derivation is finite, I'y can
only contain finitely many sentences. So, J is a derivation of ¢ from a
finite 'y C T

2. This is the contrapositive of (1) for the special case ¢ = L. O

111

9. NATURAL DEDUCTION

9.10 Derivability and Consistency

We will now establish a number of properties of the derivability relation. They
are independently interesting, but each will play a role in the proof of the
completeness theorem.

Proposition 9.18. IfT' - @ and I U { ¢} is inconsistent, then T is inconsistent.

Proof. Let the derivation of ¢ from I be 6; and the derivation of L from I' U
{9} be 5. We can then derive:

L, (9] !

: T
%3 :

o

1 ~Intro

1

L
~¢

~Elim

In the new derivation, the assumption ¢ is discharged, so it is a derivation
fromT. O

Proposition 9.19. T F ¢ iff T U {~¢} is inconsistent.

Proof. FirstsupposeI I g, i.e., there is a derivation dg of ¢ from undischarged
assumptions I'. We obtain a derivation of L from I' U {~¢} as follows:

T
= 5o

~p

T ~Elim

Now assume I' U {~¢} is inconsistent, and let J; be the corresponding
derivation of L from undischarged assumptions in T U {~¢}. We obtain
a derivation of ¢ from I" alone by using L ¢:

L [~ql!
6
1
K O
Proposition 9.20. IfT - ¢ and ~¢ € T, then T is inconsistent.

Proof. Suppose I' F ¢ and ~¢ & I'. Then there is a derivation J of ¢ from I'.
Consider this simple application of the ~Elim rule:

112

9.11. Derivability and the Propositional Connectives

r
)

~e 9
T ~Elim
Since ~¢ € T, all undischarged assumptions are in I', this shows that I' = L.[J

Proposition 9.21. If T U {¢} and T U {~¢} are both inconsistent, then T is incon-
sistent.

Proof. There are derivations 61 and & of L fromT'U{¢}and L fromTU{~¢},
respectively. We can then derive

T, [~ L, [g]!
(52 51
2 L ~Intro 1 L ~Intro
NNq) Nq) X
T ~Elim

Since the assumptions ¢ and ~¢ are discharged, this is a derivation of L
from T alone. Hence I is inconsistent. O

9.11 Derivability and the Propositional Connectives

We establish that the derivability relation - of natural deduction is strong
enough to establish some basic facts involving the propositional connectives,
such as that p& ¢ - ¢ and ¢, ¢ D ¢ - ¢ (modus ponens). These facts are
needed for the proof of the completeness theorem.

Proposition 9.22. 1. Botho & ¢ gand &P - ¢
2. 99 &
Proof. 1. We can derive both

&
<p§;¢ - Gf)lpll’ <Eli
2. We can derive:
I
o &y &Intro 0

Proposition 9.23. 1. ¢V ¢, ~¢, ~ is inconsistent.

113

9. NATURAL DEDUCTION

2. BothotoVypandp @ V.

Proof. 1. Consider the following derivation:

~¢ o] . ~po [y)! .

1 T VElim

This is a derivation of L from undischarged assumptions ¢ V i, ~¢, and
Nll).
2. We can derive both

% 4
PV VIntro oV VIntro 0

Proposition9.24. 1. ¢, ¢ D ¢ 1.
2. Both~pF @D ¢pandp - ¢ D 1.
Proof. 1. We can derive:

oY 4

m DElim

2. This is shown by the following two derivations:

-~ 1
Bt AN o) ~Elim
il
p ¥
1 Y Dlntro 9o v Dlntro

Note that DIntro may, but does not have to, discharge the assumption ¢.
O

9.12 Derivability and the Quantifiers

The completeness theorem also requires that the natural deduction rules yield
the facts about I~ established in this section.

Theorem 9.25. If c is a constant not occurring in T or ¢(x) and T F ¢(c), then
It Vxg(x).

114

9.13. Soundness

Proof. Let 6 be a derivation of ¢(c) from I'. By adding a VIntro inference,
we obtain a derivation of Vx ¢(x). Since ¢ does not occur in I' or ¢(x), the
eigenvariable condition is satisfied. O

Proposition 9.26. 1. ¢(t) - Jx ¢(x).
2. Vxg(x) = o(t).
Proof. 1. The following is a derivation of Jx ¢(x) from ¢(t):

o(t)

W JIntro

2. The following is a derivation of ¢(t) from Vx ¢(x):

Vxg(x)
W VElim 0

9.13 Soundness

A derivation system, such as natural deduction, is sound if it cannot derive
things that do not actually follow. Soundness is thus a kind of guaranteed
safety property for derivation systems. Depending on which proof theoretic
property is in question, we would like to know for instance, that

1. every derivable sentence is valid;

2. if a sentence is derivable from some others, it is also a consequence of
them;

3. if a set of sentences is inconsistent, it is unsatisfiable.

These are important properties of a derivation system. If any of them do not
hold, the derivation system is deficient—it would derive too much. Conse-
quently, establishing the soundness of a derivation system is of the utmost
importance.

Theorem 9.27 (Soundness). If ¢ is derivable from the undischarged assumptions
I, thenT E ¢.

Proof. Let é be a derivation of ¢. We proceed by induction on the number of
inferences in d.

For the induction basis we show the claim if the number of inferences is 0.
In this case, J consists only of a single sentence ¢, i.e., an assumption. That
assumption is undischarged, since assumptions can only be discharged by

115

9. NATURAL DEDUCTION

inferences, and there are no inferences. So, any structure 9t that satisfies all of
the undischarged assumptions of the proof also satisfies g.

Now for the inductive step. Suppose that § contains # inferences. The
premise(s) of the lowermost inference are derived using sub-derivations, each
of which contains fewer than 7 inferences. We assume the induction hypothe-
sis: The premises of the lowermost inference follow from the undischarged as-
sumptions of the sub-derivations ending in those premises. We have to show
that the conclusion ¢ follows from the undischarged assumptions of the entire
proof.

We distinguish cases according to the type of the lowermost inference.
First, we consider the possible inferences with only one premise.

1. Suppose that the last inference is ~Intro: The derivation has the form
L [g]"
6

n L ~Intro

~Q
By inductive hypothesis, L follows from the undischarged assumptions
I'U{¢} of §;. Consider a structure M. We need to show that, if M E T,
then MM F ~¢. Suppose for reductio that M = I', but M ¥~ ~g, ie.,

MM E ¢. This would mean that M F T'U {¢}. This is contrary to our
inductive hypothesis. So, M F ~¢.

2. The last inference is &Elim: There are two variants: ¢ or ¢ may be in-
ferred from the premise ¢ & 1. Consider the first case. The derivation &
looks like this:

r

-8
P&

¢

&Elim

By inductive hypothesis, ¢ & i follows from the undischarged assump-
tions I of é;. Consider a structure 991. We need to show that, if 9t E T,
then M = ¢. Suppose M E I'. By our inductive hypothesis (I' F ¢ &),
we know that M F ¢ & ¢. By definition, M F ¢ & ¢ iff M F ¢ and
M E . (The case where ¢ is inferred from ¢ & ¥ is handled similarly.)

3. The last inference is VIntro: There are two variants: ¢ V ¢ may be in-
ferred from the premise ¢ or the premise . Consider the first case. The
derivation has the form

116

9.13. Soundness

r
- 01
4
——— VIntro
pVY
By inductive hypothesis, ¢ follows from the undischarged assumptions I
of 4;. Consider a structure 9. We need to show that, if 9t = T, then
M E @ V. Suppose M E I; then M F ¢ since I' F ¢ (the inductive

hypothesis). So it must also be the case that Dt E ¢ V . (The case where
@ V ¢ is inferred from 1 is handled similarly.)

4. The last inference is DIntro: ¢ D ¢ is inferred from a subproof with
assumption ¢ and conclusion ¥, i.e.,

I, [_(P]”
o
P

PO

n

Dlntro

By inductive hypothesis, { follows from the undischarged assumptions
of 41, i.e, TU {9} F . Consider a structure M. The undischarged
assumptions of é are just I, since ¢ is discharged at the last inference.
So we need to show that I' = ¢ D . For reductio, suppose that for
some structure M, M F T'but M ¥ ¢ O ¢. So, M F ¢ and M ¥ ¢. But
by hypothesis, i is a consequence of I' U {¢}, i.e, M FE ¢, which is a
contradiction. So, I' E ¢ D .

5. The last inference is | j: Here, § ends in
r
1oy
L
— 1
q) I

By induction hypothesis, I' F L. We have to show that I F ¢. Suppose
not; then for some M we have M F I and M ¥ ¢. But we always
have M ¥ L, so this would mean that I' # L, contrary to the induction
hypothesis.

6. The last inference is | : Exercise.

7. The last inference is VIntro: Then ¢ has the form

117

9. NATURAL DEDUCTION

¢(a)

Vx (%) VIntro
The premise ¢(a) is a consequence of the undischarged assumptions I'
by induction hypothesis. Consider some structure, 9, such that 9t = I'.
We need to show that 9t £ Vx ¢(x). Since Vx ¢(x) is a sentence, this
means we have to show that for every variable assignment s, M1, s = ¢(x)
(Proposition 7.18). Since I consists entirely of sentences, 9, s E ¢ for all
¢ € T by Definition 7.11. Let 90 be like 9 except that a™ = s(x).
Since a does not occur in T, M’ & T by Corollary 7.20. Since T F ¢(a),
M E ¢(a). Since ¢(a) is a sentence, M, s F ¢(a) by Proposition 7.17.
M, s E ¢(x) iff M’ E ¢(a) by Proposition 7.22 (recall that ¢(a) is just
@(x)[a/x]). So, M, s E ¢(x). Since a does not occur in ¢(x), by Propo-
sition 7.19, M, s E ¢(x). But s was an arbitrary variable assignment, so
M E Vx p(x).

8. The last inference is JIntro: Exercise.

9. The last inference is VElim: Exercise.

Now let’s consider the possible inferences with several premises: VElim,
&Intro, DElim, and JElim.

1. The last inference is &Intro. ¢ & 1 is inferred from the premises ¢ and ¢

118

and ¢ has the form
Fl I
(51 (52
¢y
———— &Intro
p&y
By induction hypothesis, ¢ follows from the undischarged assumptions I'y
of 1 and ¢ follows from the undischarged assumptions I'; of d;. The
undischarged assumptions of J are I'1 U T, so we have to show that
I't Uz E ¢ & 4. Consider a structure 9t with M E I'y UT,. Since M E Iy,

it must be the case that 9t = ¢ as I'1 F ¢, and since M = I'y, M & ¢ since
I'; E 4. Together, M F ¢ & 1.

The last inference is VElim: Exercise.

The last inference is DElim. ¥ is inferred from the premises ¢ O and ¢.
The derivation J looks like this:

9.14. Derivations with Identity predicate

rl 1"2
51 (52

POy ¢

DElim
[

By induction hypothesis, ¢ D ¢ follows from the undischarged assump-
tions I'; of 41 and ¢ follows from the undischarged assumptions I'; of ;.
Consider a structure 91. We need to show that, if 9t E I'; UT', then
M E . Suppose M = I'1 UT. SinceI'1 F ¢ D ¢, M E ¢ D . Since
I' E ¢, we have 9 E ¢. This means that 9 F ¢ (For if 9T # ¢, since
M E @, we'd have M E ¢ D ¢, contradicting M = ¢ D).

4. The last inference is ~Elim: Exercise.

5. The last inference is JElim: Exercise. O

Corollary 9.28. If - ¢, then ¢ is valid.
Corollary 9.29. IfT is satisfiable, then it is consistent.

Proof. We prove the contrapositive. Suppose that I' is not consistent. Then
I' = 1, i.e, there is a derivation of L from undischarged assumptions in I'. By
Theorem 9.27, any structure 9t that satisfies I' must satisfy L. Since 9t ¥ L
for every structure 97, no Mt can satisfy I, i.e., I is not satisfiable. O

9.14 Derivations with Identity predicate

Derivations with identity predicate require additional inference rules.

1=t t
1 2 t @(t) —Elim
rp— =Intro ¢(t2)
h=t olt2) =Elim
o(t)

In the above rules, ¢, t1, and t, are closed terms. The =Intro rule allows us
to derive any identity statement of the form ¢ = ¢ outright, from no assump-
tions.

Example 9.30. If s and ¢ are closed terms, then ¢(s),s = t - ¢():

s=t ¢(s)
@(t)

=Elim

119

9. NATURAL DEDUCTION

This may be familiar as the “principle of substitutability of identicals,” or Leib-
niz’ Law.

Example 9.31. We derive the sentence

VaVy ((p(x) &(y)) D x

|
<
~—

from the sentence

IxVy (¢(y) Dy =x)

We develop the derivation backwards:

IxVy (¢(y) Dy :_x) [p(a) & ¢(b)]!

) a;b

((p(a) & (b)) Da=Db)
vy ((p(a) & o(y)) Da=y)
VxVy ((p(x) & @(y)) D x=y)

We'll now have to use the main assumption: since it is an existential formula,
we use JElim to derive the intermediary conclusion a = b.

Dlntro
VIntro
VIntro

Ixv Sy = =b
, oW oy =x) a=b o

<< @& g®) Sa=p) SO

Wy (e &gly) Sa=y) "0
Yy ((p(x) & (y)) D x =)

The sub-derivation on the top right is completed by using its assumptions
to show that @ = c and b = c. This requires two separate derivations. The
derivation for a = c is as follows:

a==¢c

From a = cand b = c we derive a = b by =Elim.

120

9.15. Soundness with Identity predicate

9.15 Soundness with Identity predicate
Proposition 9.32. Natural deduction with rules for = is sound.

Proof. Any formula of the form t = ¢ is valid, since for every structure i,
M E t = t. (Note that we assume the term ¢ to be closed, i.e., it contains no
variables, so variable assignments are irrelevant).

Suppose the last inference in a derivation is =Elim, i.e., the derivation has
the following form:

1"1 FZ
51 52
h=t gt
=Elim
@(t2)

The premises t; = tp and ¢(t1) are derived from undischarged assumptions I'y
and Ty, respectively. We want to show that ¢(t;) follows from I'y UT5. Con-
sider a structure 9t with 9t F T'; UT,. By induction hypothesis, M F ¢(t1)
and M E t; = t,. Therefore, Val™ (t;) = Val™'(t,). Let s be any variable
assignment, and m = Val™ (t;) = Val™ (t,). By Proposition 7.22, M, s E ¢(t;)
iff M, s[m/x] E ¢(x) iff M, s E ¢(t2). Since M E ¢(t1), we have M E ¢(tp). O

121

Chapter 10

The Completeness Theorem

10.1 Introduction

The completeness theorem is one of the most fundamental results about logic.
It comes in two formulations, the equivalence of which we’ll prove. In its first
formulation it says something fundamental about the relationship between
semantic consequence and our derivation system: if a sentence ¢ follows from
some sentences I, then there is also a derivation that establishes I' - ¢. Thus,
the derivation system is as strong as it can possibly be without proving things
that don’t actually follow.

In its second formulation, it can be stated as a model existence result: ev-
ery consistent set of sentences is satisfiable. Consistency is a proof-theoretic
notion: it says that our derivation system is unable to produce certain deriva-
tions. But who's to say that just because there are no derivations of a certain
sort from I, it's guaranteed that there is a structure 91? Before the complete-
ness theorem was first proved—in fact before we had the derivation systems
we now do—the great German mathematician David Hilbert held the view
that consistency of mathematical theories guarantees the existence of the ob-
jects they are about. He put it as follows in a letter to Gottlob Frege:

If the arbitrarily given axioms do not contradict one another with
all their consequences, then they are true and the things defined by
the axioms exist. This is for me the criterion of truth and existence.

Frege vehemently disagreed. The second formulation of the completeness the-
orem shows that Hilbert was right in at least the sense that if the axioms are
consistent, then some structure exists that makes them all true.

These aren’t the only reasons the completeness theorem—or rather, its
proof—is important. It has a number of important consequences, some of
which we’ll discuss separately. For instance, since any derivation that shows
I' = ¢ is finite and so can only use finitely many of the sentences in T, it fol-
lows by the completeness theorem that if ¢ is a consequence of T, it is already

123

10. THE COMPLETENESS THEOREM

a consequence of a finite subset of I'. This is called compactness. Equivalently,
if every finite subset of I' is consistent, then I itself must be consistent.

Although the compactness theorem follows from the completeness theo-
rem via the detour through derivations, it is also possible to use the the proof
of the completeness theorem to establish it directly. For what the proof does is
take a set of sentences with a certain property—consistency—and constructs
a structure out of this set that has certain properties (in this case, that it satisfies
the set). Almost the very same construction can be used to directly establish
compactness, by starting from “finitely satisfiable” sets of sentences instead
of consistent ones. The construction also yields other consequences, e.g., that
any satisfiable set of sentences has a finite or countably infinite model. (This
result is called the Lowenheim-Skolem theorem.) In general, the construction
of structures from sets of sentences is used often in logic, and sometimes even
in philosophy.

10.2 Outline of the Proof

The proof of the completeness theorem is a bit complex, and upon first reading
it, it is easy to get lost. So let us outline the proof. The first step is a shift of
perspective, that allows us to see a route to a proof. When completeness is
thought of as “whenever I' = ¢ then I' - ¢,” it may be hard to even come
up with an idea: for to show that I' - ¢ we have to find a derivation, and
it does not look like the hypothesis that I' = ¢ helps us for this in any way.
For some proof systems it is possible to directly construct a derivation, but we
will take a slightly different approach. The shift in perspective required is this:
completeness can also be formulated as: “if T is consistent, it is satisfiable.”
Perhaps we can use the information in I' together with the hypothesis that it is
consistent to construct a structure that satisfies every sentence in I'. After all,
we know what kind of structure we are looking for: one that is as I' describes
it!

If T’ contains only atomic sentences, it is easy to construct a model for it.
Suppose the atomic sentences are all of the form P(ay,...,a,) where the g;
are constant symbols. All we have to do is come up with a domain || and
an assignment for P so that 9 E P(ay,...,a,). But that’s not very hard: put
9] = N, cl-Sjt = i, and for every P(ay,...,a,) € I, put the tuple (kq,..., k)
into P, where k; is the index of the constant symbol g; (i.e., a; =).

Now suppose I' contains some formula ~1p, with 1 atomic. We might
worry that the construction of 9t interferes with the possibility of making ~
true. But here’s where the consistency of I comes in: if ~¢p € I', then ¢ € T, or
else I' would be inconsistent. And if ¢y ¢ I, then according to our construction
of M, M ¥ ¢, so M E ~1p. So far so good.

What if I' contains complex, non-atomic formulas? Say it contains ¢ & .
To make that true, we should proceed as if both ¢ and ¢ were in I'. And if

124

10.2. Outline of the Proof

¢V ¢ € T, then we will have to make at least one of them true, i.e., proceed as
if one of them was in I'.

This suggests the following idea: we add additional formulae to I' so as to
(a) keep the resulting set consistent and (b) make sure that for every possible
atomic sentence ¢, either ¢ is in the resulting set, or ~¢ is, and (c) such that,
whenever ¢ & ¢ is in the set, so are both ¢ and ¢, if ¢ V ¢ is in the set, at least
one of ¢ or ¢ is also, etc. We keep doing this (potentially forever). Call the set
of all formulae so added I'*. Then our construction above would provide us
with a structure 9t for which we could prove, by induction, that it satisfies all
sentences in I'*, and hence also all sentence in I" since I' C I'*. It turns out that
guaranteeing (a) and (b) is enough. A set of sentences for which (b) holds is
called complete. So our task will be to extend the consistent set I to a consistent
and complete set I'*.

There is one wrinkle in this plan: if 3x ¢(x) € T we would hope to be able
to pick some constant symbol ¢ and add ¢(c) in this process. But how do we
know we can always do that? Perhaps we only have a few constant symbols
in our language, and for each one of them we have ~¢(c) € I'. We can’t also
add ¢(c), since this would make the set inconsistent, and we wouldn’t know
whether 91 has to make ¢(c) or ~¢(c) true. Moreover, it might happen that I'
contains only sentences in a language that has no constant symbols at all (e.g.,
the language of set theory).

The solution to this problem is to simply add infinitely many constants at
the beginning, plus sentences that connect them with the quantifiers in the
right way. (Of course, we have to verify that this cannot introduce an incon-
sistency.)

Our original construction works well if we only have constant symbols in
the atomic sentences. But the language might also contain function symbols.
In that case, it might be tricky to find the right functions on IN to assign to
these function symbols to make everything work. So here’s another trick: in-
stead of using 7 to interpret ¢, just take the set of constant symbols itself as
the domain. Then 9t can assign every constant symbol to itself: ¢ = ¢;. But
why not go all the way: let |9t| be all terms of the language! If we do this,
there is an obvious assignment of functions (that take terms as arguments and
have terms as values) to function symbols: we assign to the function sym-
bol /" the function which, given n terms ty, ..., t,; as input, produces the term
fI'(t1, ..., ty) as value.

The last piece of the puzzle is what to do with =. The predicate symbol =
has a fixed interpretation: 0 k t = t' iff Val™ (t) = Val™ (#'). Now if we set
things up so that the value of a term t is t itself, then this structure will make
no sentence of the form t = ' true unless t and t' are one and the same term.
And of course this is a problem, since basically every interesting theory in a
language with function symbols will have as theorems sentences t = ' where
t and #' are not the same term (e.g., in theories of arithmetic: (0 4+ 0) = 0). To

125

10. THE COMPLETENESS THEOREM

solve this problem, we change the domain of Mt: instead of using terms as the
objects in |91|, we use sets of terms, and each set is so that it contains all those
terms which the sentences in I' require to be equal. So, e.g., if I is a theory of
arithmetic, one of these sets will contain: o, (0 + 0), (0 x 0), etc. This will be
the set we assign to o0, and it will turn out that this set is also the value of all
the terms in it, e.g., also of (0 + o). Therefore, the sentence (0 + 0) = o will be
true in this revised structure.

So here’s what we’ll do. First we investigate the properties of complete
consistent sets, in particular we prove that a complete consistent set contains
@ & ¢ iff it contains both ¢ and ¥, ¢ V ¢ iff it contains at least one of them,
etc. (Proposition 10.2). Then we define and investigate “saturated” sets of
sentences. A saturated set is one which contains conditionals that link each
quantified sentence to instances of it (Definition 10.5). We show that any con-
sistent set I can always be extended to a saturated set I” (Lemma 10.6). If a set
is consistent, saturated, and complete it also has the property that it contains
dx ¢(x) iff it contains ¢() for some closed term t and Vx ¢(x) iff it contains
¢(t) for all closed terms t (Proposition 10.7). We’ll then take the saturated con-
sistent set I'” and show that it can be extended to a saturated, consistent, and
complete set I'* (Lemma 10.8). This set I'* is what we’ll use to define our term
model 9(T*). The term model has the set of closed terms as its domain, and
the interpretation of its predicate symbols is given by the atomic sentences
in I'* (Definition 10.9). We’ll use the properties of saturated, complete con-
sistent sets to show that indeed M(I'™*) E ¢ iff ¢ € T* (Lemma 10.12), and
thus in particular, 9(I'*) F I'. Finally, we’ll consider how to define a term
model if T’ contains = as well (Definition 10.16) and show that it satisfies I'*
(Lemma 10.19).

10.3 Complete Consistent Sets of Sentences

Definition 10.1 (Complete set). A set I of sentences is complete iff for any sen-
tence ¢, either ¢ € 'or ~¢ €T

Complete sets of sentences leave no questions unanswered. For any sen-
tence ¢, I “says” if ¢ is true or false. The importance of complete sets extends
beyond the proof of the completeness theorem. A theory which is complete
and axiomatizable, for instance, is always decidable.

Complete consistent sets are important in the completeness proof since we
can guarantee that every consistent set of sentences I' is contained in a com-
plete consistent set I'*. A complete consistent set contains, for each sentence ¢,
either ¢ or its negation ~¢, but not both. This is true in particular for atomic
sentences, so from a complete consistent set in a language suitably expanded
by constant symbols, we can construct a structure where the interpretation of
predicate symbols is defined according to which atomic sentences are in I'*.
This structure can then be shown to make all sentences in I'* (and hence also

126

10.4. Henkin Expansion

all those in I') true. The proof of this latter fact requires that ~¢ € I'* iff
pgT*, (pVy)eT iff p € [*orp € T*, etc.

In what follows, we will often tacitly use the properties of reflexivity, mono-
tonicity, and transitivity of - (see section 9.9).

Proposition 10.2. Suppose I is complete and consistent. Then:
1. If T+ @, then ¢ € T.
2. p&p cTiffbothg cTandp €T.
3. oV eliffeither p € Toryp €T.
4. ¢ D eTiffeithero g Toryp €T.
Proof. Let us suppose for all of the following that I is complete and consistent.

1. T+ ¢, theng € T.

Suppose that I' - ¢. Suppose to the contrary that ¢ ¢ I'. Since I' is com-
plete, ~¢ € I'. By Proposition 9.20, I is inconsistent. This contradicts the
assumption that I is consistent. Hence, it cannot be the case that ¢ ¢ T,
sop el

2. p&p cTiff bothgp € T'and ¢ € I':

For the forward direction, suppose ¢ & i € I'. Then by Proposition 9.22,
item (1), gand I' = 3. By (1), ¢ € I"and ¢ € I, as required.

For the reverse direction, let ¢ € I' and ¢ € I'. By Proposition 9.22,
item (2),I'F 9& . By (1), p&p € T.

3. First we show that if ¢ V ¢ € T, then either ¢ € T or ¢ € I'. Suppose
eV € I'but ¢ € I'and ¢ ¢ I'. Since I' is complete, ~¢ € I' and
~1 € I'. By Proposition 9.23, item (1), I is inconsistent, a contradiction.
Hence, either p € T'or p € I'.

For the reverse direction, suppose that ¢ € I' or ¢ € I'. By Proposi-
tion 9.23,item (2), I' = ¢ V 4. By (1), ¢ V ¢ € T, as required.

4. Exercise. O

10.4 Henkin Expansion

Part of the challenge in proving the completeness theorem is that the model
we construct from a complete consistent set I' must make all the quantified
formulae in T’ true. In order to guarantee this, we use a trick due to Leon
Henkin. In essence, the trick consists in expanding the language by infinitely
many constant symbols and adding, for each formula with one free variable

127

10. THE COMPLETENESS THEOREM

¢(x) a formula of the form 3x ¢(x) D ¢(c), where ¢ is one of the new constant
symbols. When we construct the structure satisfying I', this will guarantee
that each true existential sentence has a witness among the new constants.

Proposition 10.3. If T is consistent in L and L' is obtained from L by adding
a countably infinite set of new constant symbols dy, dy, ..., then T is consistent
in L.

Definition 10.4 (Saturated set). A set I' of formulae of a language L is satu-
rated iff for each formula ¢(x) € Frm(L) with one free variable x there is
a constant symbol ¢ € £ such that Ix ¢(x) D ¢(c) € T.

The following definition will be used in the proof of the next theorem.

Definition 10.5. Let £’ be as in Proposition 10.3. Fix an enumeration ¢q(xp),
¢1(x1), ...of all formulae ¢;(x;) of £ in which one variable (x;) occurs free.
We define the sentences 6, by induction on .

Let cg be the first constant symbol among the d; we added to £ which does
not occur in ¢o(xp). Assuming that 6y, ..., 6,1 have already been defined,
let ¢, be the first among the new constant symbols d; that occurs neither in 6y,
eoe, 01 norin @, (xy,).

Now let 0, be the formula 3x, @ (xy) D @u(cn).

Lemma 10.6. Every consistent set I' can be extended to a saturated consistent set I”.

Proof. Given a consistent set of sentences I' in a language £, expand the lan-
guage by adding a countably infinite set of new constant symbols to form £'.
By Proposition 10.3, I’ is still consistent in the richer language. Further, let 0;
be as in Definition 10.5. Let

Io=T
Fl’l-‘,—l - Fn U {9;1}

ie, Ty =TU{by,...,0,},and letI" = {J, Tyy. I is clearly saturated.

If I’ were inconsistent, then for some #, I';, would be inconsistent (Exercise:
explain why). So to show that I"" is consistent it suffices to show, by induction
on 1, that each set I, is consistent.

The induction basis is simply the claim that I'y = T’ is consistent, which
is the hypothesis of the theorem. For the induction step, suppose that Iy, is
consistent butI';, 1 = I', U {6, } is inconsistent. Recall that 6, is 3x,, ¢, (x,) D
@n(cn), where ¢, (x,) is a formula of £’ with only the variable x,, free. By the
way we’ve chosen the ¢, (see Definition 10.5), ¢, does not occur in ¢, (x,) nor
in I[',.

IfT,, U{6,} is inconsistent, then T';, F ~6,, and hence both of the following
hold:

Ty F 3xy @n(xn) Iy b ~@u(cn)

128

10.5. Lindenbaum’s Lemma

Since ¢, does not occur in I', or in ¢, (x,), Theorem 9.25 applies. From T,
~@n(cn), weobtain Ty, - Vx, ~¢,(x,). Thus we have thatboth T, - 3x,, ¢, (xy)
and 'y, - Vx, ~¢n(xy), so T, itself is inconsistent. (Note that Vx, ~¢, (x,)
~3xy ¢n(x,).) Contradiction: T', was supposed to be consistent. Hence T', U
{6} is consistent. O

We'll now show that complete, consistent sets which are saturated have the
property that it contains a universally quantified sentence iff it contains all its
instances and it contains an existentially quantified sentence iff it contains at
least one instance. We'll use this to show that the structure we’ll generate from
a complete, consistent, saturated set makes all its quantified sentences true.

Proposition 10.7. Suppose I is complete, consistent, and saturated.
1. 3x ¢(x) € T iff o(t) € T for at least one closed term t.
2. Vx¢(x) € Tiff (t) € T for all closed terms t.

Proof. 1. Firstsuppose that 3x ¢(x) € I'. Because I'is saturated, (3x ¢(x) D
¢(c)) €T for some constant symbol c. By Proposition 9.24, item (1), and
Proposition 10.2(1), ¢(c) € T.

For the other direction, saturation is not necessary: Suppose ¢(t) € T.
Then I' - 3x ¢(x) by Proposition 9.26, item (1). By Proposition 10.2(1),
Ixp(x) €T.

2. Exercise. U

10.5 Lindenbaum’s Lemma

We now prove a lemma that shows that any consistent set of sentences is con-
tained in some set of sentences which is not just consistent, but also complete.
The proof works by adding one sentence at a time, guaranteeing at each step
that the set remains consistent. We do this so that for every ¢, either ¢ or ~¢
gets added at some stage. The union of all stages in that construction then
contains either @ or its negation ~¢ and is thus complete. It is also consistent,
since we made sure at each stage not to introduce an inconsistency.

Lemma 10.8 (Lindenbaum’s Lemma). Every consistent set I' in a language L can
be extended to a complete and consistent set I'*.

Proof. Let I be consistent. Let @p, ¢1, ... be an enumeration of all the sen-
tences of L. Define 'y =T, and

T U{en} if T,y U{¢n} is consistent;
i I'yU{~¢,} otherwise.

129

10. THE COMPLETENESS THEOREM

Let I = Uy>oTn-

Each Ty, is consistent: T is consistent by definition. If T, 1 = T', U {¢@u},
this is because the latter is consistent. If it isn’t, [, 1 = I, U {~¢, }. We have
to verify that ', U {~¢, } is consistent. Suppose it’s not. Then both T, U { ¢, }
and I', U {~¢,} are inconsistent. This means that I', would be inconsistent
by Proposition 9.21, contrary to the induction hypothesis.

For every n and every i < n, I'; C I';. This follows by a simple induction
on n. For n = 0, there are no i < 0, so the claim holds automatically. For
the inductive step, suppose it is true for n. We have I';;1 = I'y U {¢,} or
= I'y U {~¢u} by construction. SoT', C T,4q. If i < n, then; C T, by
inductive hypothesis, and so C I',;;1 by transitivity of C.

From this it follows that every finite subset of I'* is a subset of I';, for
some 1, since each ¢ € I'* not already in I'g is added at some stage i. If n
is the last one of these, then all ¥ in the finite subset are in I';;. So, every finite
subset of I'* is consistent. By Proposition 9.17, I'* is consistent.

Every sentence of Frm (L) appears on the list used to define I'*. If ¢,, ¢ I'*,
then that is because I';, U { ¢, } was inconsistent. But then ~¢, € I'*, so I'* is
complete. O

10.6 Construction of a Model

Right now we are not concerned about =, i.e., we only want to show that a
consistent set I' of sentences not containing = is satisfiable. We first extend I'
to a consistent, complete, and saturated set I'*. In this case, the definition of a
model M(T*) is simple: We take the set of closed terms of £’ as the domain.
We assign every constant symbol to itself, and make sure that more generally,
for every closed term ¢, Val™ (™) (t) = t. The predicate symbols are assigned
extensions in such a way that an atomic sentence is true in 9(I'™*) iff it is in I'*.
This will obviously make all the atomic sentences in T'* true in 9t(I'*). The rest
are true provided the I'* we start with is consistent, complete, and saturated.

Definition 10.9 (Term model). Let I'* be a complete and consistent, saturated
set of sentences in a language £. The term model 9M(I'*) of I'* is the structure
defined as follows:

1. The domain |M(T*)| is the set of all closed terms of L.

2. The interpretation of a constant symbol ¢ is ¢ itself: ¢™ (") = ¢,

3. The function symbol f is assigned the function which, given as argu-
ments the closed terms t4, .. ., t,, has as value the closed term f (1, ..., t,):

FRE) (b,) = f(t, . t)

130

10.6. Construction of a Model

4. If R is an n-place predicate symbol, then

(t1,...,tn) € RV R(t, ..., t,) € T*.

We will now check that we indeed have Val™ (") (¢) = t.

Lemma 10.10. Let 9(I'™*) be the term model of Definition 10.9, then Val™ (") (t) =
t.

Proof. The proof is by induction on t, where the base case, when t is a con-
stant symbol, follows directly from the definition of the term model. For the
induction step assume t4,...,t, are closed terms such that Val™t (") (t) =t
and that f is an n-ary function symbol. Then

ValP') (£(ty,. ., 1)) = I (Val™) (1), .., val™ T (1)
= I,)
= f(t1,...,ta),

and so by induction this holds for every closed term ¢. O

A structure 9 may make an existentially quantified sentence Jx ¢(x) true
without there being an instance ¢(t) that it makes true. A structure 9t may
make all instances ¢(t) of a universally quantified sentence Vx ¢(x) true, with-
out making Vx ¢(x) true. This is because in general not every element of ||
is the value of a closed term (9t may not be covered). This is the reason the sat-
isfaction relation is defined via variable assignments. However, for our term
model M(T™*) this wouldn’t be necessary—because it is covered. This is the
content of the next result.

Proposition 10.11. Let 9(I'™*) be the term model of Definition 10.9.
1. M(T™) E Ix o(x) iff M(IT™) E ¢(t) for at least one term t.
2. M(T*) E Vx @(x) iff M(T*) E @(t) for all terms t.

Proof. 1. By Proposition 7.18, MM(I'*) E Jx ¢(x) iff for at least one vari-
able assignment s, M(I'*),s E ¢(x). As [M(T™*)| consists of the closed
terms of L, this is the case iff there is at least one closed term t such that
s(x) = tand M(I*),s E ¢(x). By Proposition 7.22, M(I™*),s E ¢(x) iff
M(IC*),s E ¢(t), where s(x) = t. By Proposition 7.17, M(T™), s E ¢(t) iff
M(T*) E @(t), since ¢(t) is a sentence.

2. Exercise. O

Lemma 10.12 (Truth Lemma). Suppose ¢ does not contain =. Then M(T*) E ¢
iff o € T

131

10. THE COMPLETENESS THEOREM

Proof. We prove both directions simultaneously, and by induction on ¢.

1.

¢ = L: M(T*) ¥ L by definition of satisfaction. On the other hand,
1 ¢ T'* since I'* is consistent.

¢ = R(ty,...,ty): IMT*) E R(ty, ..., t) iff (t,...,t;) € RT) (by
the definition of satisfaction) iff R(ty,...,t,) € I'* (by the construction
of M(T™)).

¢ =~ MIT*) F @ iff M(IT*) ¥ ¢ (by definition of satisfaction). By
induction hypothesis, M(T™*) ¥ ¢ iff ¢ ¢ T'*. Since I'* is consistent and
complete, p & I'* iff ~p € T,

=9 &x: M) E ¢iff we have both M(T™*) F ¢ and M(I*) E x (by
definition of satisfaction) iff both iy € I'* and x € I'* (by the induction
hypothesis). By Proposition 10.2(2), this is the case iff (1 & x) € I'".

p=9pVyx MIT*) E ¢iff M(IT*) E ¢ or M(I*) E x (by definition of
satisfaction) iff € I'* or x € I'* (by induction hypothesis). This is the
case iff (p V x) € I'* (by Proposition 10.2(3)).

@ =19 D x: exercise.

@ =Vxy(x): exercise.

¢ = Ixyp(x): M) E ¢ iff MT*) E ¢(t) for at least one term ¢
(Proposition 10.11). By induction hypothesis, this is the case iff ¢(t) € T*
for at least one term t. By Proposition 10.7, this in turn is the case iff
Ixy(x) e T 0O

10.7 Identity

The construction of the term model given in the preceding section is enough
to establish completeness for first-order logic for sets I' that do not contain =.
The term model satisfies every ¢ € I'* which does not contain = (and hence
all ¢ € I). It does not work, however, if = is present. The reason is that I'*
then may contain a sentence t = #, but in the term model the value of any
term is that term itself. Hence, if t and #' are different terms, their values in
the term model—i.e., t and #/, respectively—are different, and so t = ¢t is false.
We can fix this, however, using a construction known as “factoring.”

Definition 10.13. Let I'* be a consistent and complete set of sentences in L.
We define the relation ~ on the set of closed terms of £ by

t~t iff t=+eTl*

Proposition 10.14. The relation ~ has the following properties:

132

10.7. Identity

L

~ is reflexive.
/2 is symmetric.
~2 is transitive.

Ift = ', f is a function symbol, and t, ..., t; 1, tiy1, ..., tn arve terms, then
f(tl,. e tizg, b by, .,tn) ~ f(tl,. . -/ti—l/t//ti—o—l/- . .,tn).

Ift ~ t', R is a predicate symbol, and t, ..., t; 1, tiyq, ..., ty are terms, then

R(tl,...,ti_l,t,ti+1,...,tn) er* iff
R(tl,. . .,ti_l,f/, tl'+1,. . .,tn> eI,

Proof. Since I'* is consistent and complete, t = ' € T* iff * - t = /. Thus it
is enough to show the following;:

1.

2
3.
4

I'*+t =t for all terms ¢.

Tt =+t thenT* -t =t

UI*+Ft=tandT*Ft =t' thenT* Ft =1t".

.IT* -t =+, then

F* }_f(tlf-'-/tifl/t/tH*l//"'/tn) :f(tlf-'-/tifl/t//tH»l/"-/tn)

for every n-place function symbol f and terms t1, ..., t;i_1, ti11, ..., ty.

LT Et=+andT* - R(ty, ..., ti1,ttiv1, .., tn), thenT* = R(ty, ... ti_q,t tigq, ...

for every n-place predicate symbol R and terms t1, ..., t;_1, tiy1, ..., tu.
O

Definition 10.15. Suppose I'* is a consistent and complete set in a language £,
tis a term, and ~ as in the previous definition. Then:

[t ={t' |t € TTm(L),t =~ t'}

and Trm(L)/~ = {[t]~ | t € Trm(L)}.

Definition 10.16. Let 9t = 9i(T*) be the term model for T'*. Then M/~ is the
following structure:

1.
2.
3.

[M/~| = Trm(L) /~.

M~ =[]~

(s [talw) = [f(f -)]s

133

/tl’l)

10. THE COMPLETENESS THEOREM

4. (H]~ .-, [tn]) € RV~ AEME R(t, ..., ty).

Note that we have defined f™/~ and R™/~ for elements of Trm(L)/~ by
referring to them as [t]~, i.e., via representatives t € [t]~. We have to make sure
that these definitions do not depend on the choice of these representatives, i.e.,
that for some other choices t’ which determine the same equivalence classes
([t]~ = [t']~), the definitions yield the same result. For instance, if R is a one-
place predicate symbol, the last clause of the definition says that [t~ € R™/~
iff M E R(t). If for some other term ' with t ~ #/, 9 ¥ R(t), then the definition
would require [t']~ ¢ R™/~.Ift ~ ', then [t]~ = [']~, but we can’t have both
[t]~ € R/~ and [t]~ ¢ R™/~. However, Proposition 10.14 guarantees that
this cannot happen.

Proposition 10.17. 9/~ is well defined, i.e., if t1, ..., ty,], ..., t}, are terms, and
ti /= t! then

Lo [f(ty, . tn)]e = [f(t], ... 1))~ de.,
flt, oo tn) & f(H], .)
and
2. MER(t, ... ty) SffMER(H,, ... 1), e,
R(ty,... tn) € T*iff R(t},...,t,) € T".
Proof. Follows from Proposition 10.14 by induction on 7. O

As in the case of the term model, before proving the truth lemma we need
the following lemma.

Lemma 10.18. Let M = M(T*), then Val™/~(t) = [f]~
Proof. The proof is similar to that of Lemma 10.10. O
Lemma 10.19. M/~ F ¢ iff ¢ € I'* for all sentences ¢.

Proof. By induction on ¢, just as in the proof of Lemma 10.12. The only case
that needs additional attention is when ¢ =t =t

M/~ E t =t iff |~ = [']~ (by definition of 90/~)
iff t ~ t' (by definition of [t]~)
iff t = ¢’ € T* (by definition of =). O
Note that while 9t(I'™*) is always countable and infinite, 9/~ may be fi-
nite, since it may turn out that there are only finitely many classes [t]~. This is
to be expected, since I' may contain sentences which require any structure in
which they are true to be finite. For instance, Vx Vy x = y is a consistent sen-

tence, but is satisfied only in structures with a domain that contains exactly
one element.

134

10.8. The Completeness Theorem

10.8 The Completeness Theorem
Let’s combine our results: we arrive at the completeness theorem.

Theorem 10.20 (Completeness Theorem). Let I be a set of sentences. If I is con-
sistent, it is satisfiable.

Proof. Suppose I' is consistent. By Lemma 10.6, there is a saturated consistent
set I O I'. By Lemma 10.8, there is a I'* O I” which is consistent and com-
plete. Since I’ C T*, for each formula ¢(x), I'* contains a sentence of the
form 3x ¢(x) D ¢(c) and so I'* is saturated. If I does not contain =, then by
Lemma 10.12, M(T*) F ¢ iff ¢ € T'*. From this it follows in particular that
forall 9 € T, M(I'*) E ¢, so T is satisfiable. If T' does contain =, then by
Lemma 10.19, for all sentences ¢, M/~ F ¢ iff ¢ € I'*. In particular, M/~ F ¢
forall ¢ €T, soI is satisfiable. O

Corollary 10.21 (Completeness Theorem, Second Version). For all I' and sen-
tences @: if I' E @ then T = ¢.

Proof. Note that the I'’s in Corollary 10.21 and Theorem 10.20 are universally
quantified. To make sure we do not confuse ourselves, let us restate Theo-
rem 10.20 using a different variable: for any set of sentences A, if A is consis-
tent, it is satisfiable. By contraposition, if A is not satisfiable, then A is incon-
sistent. We will use this to prove the corollary.

Suppose that T £ ¢. Then I' U {~¢} is unsatisfiable by Proposition 7.27.
Taking I'U {~¢} as our A, the previous version of Theorem 10.20 gives us that
I'U {~¢} is inconsistent. By Proposition 9.19, T I ¢. O

10.9 The Compactness Theorem

One important consequence of the completeness theorem is the compactness
theorem. The compactness theorem states that if each finite subset of a set
of sentences is satisfiable, the entire set is satisfiable—even if the set itself is
infinite. This is far from obvious. There is nothing that seems to rule out,
at first glance at least, the possibility of there being infinite sets of sentences
which are contradictory, but the contradiction only arises, so to speak, from
the infinite number. The compactness theorem says that such a scenario can
be ruled out: there are no unsatisfiable infinite sets of sentences each finite
subset of which is satisfiable. Like the completeness theorem, it has a version
related to entailment: if an infinite set of sentences entails something, already
a finite subset does.

Definition 10.22. A setI of formulae is finitely satisfiable iff every finite 'y C T
is satisfiable.

135

10. THE COMPLETENESS THEOREM

Theorem 10.23 (Compactness Theorem). The following hold for any sentences I
and ¢:

1. T & ¢ iff there is a finite Ty C I such that T'y E ¢.
2. T is satisfiable iff it is finitely satisfiable.

Proof. We prove (2). If I is satisfiable, then there is a structure 9t such that
M E @ forall ¢ € I'. Of course, this MM also satisfies every finite subset of I', so
I is finitely satisfiable.

Now suppose that I' is finitely satisfiable. Then every finite subset I'y C I’
is satisfiable. By soundness (Corollary 9.29), every finite subset is consistent.
Then T itself must be consistent by Proposition 9.17. By completeness (Theo-
rem 10.20), since I is consistent, it is satisfiable. O]

Example 10.24. In every model 9t of a theory I', each term ¢ of course picks
out an element of |91|. Can we guarantee that it is also true that every element
of || is picked out by some term or other? In other words, are there theo-
ries I" all models of which are covered? The compactness theorem shows that
this is not the case if I' has infinite models. Here’s how to see this: Let 9t be
an infinite model of I, and let ¢ be a constant symbol not in the language of I'.
Let A be the set of all sentences ¢ # ¢ for ¢ a term in the language £ of T, i.e.,

A={c#t|teTm(L)}.

A finite subset of I' U A can be written as I’ UA’, with I’ C T'and A’ C A. Since
A’ is finite, it can contain only finitely many terms. Let a € |90 be an element
of |97 not picked out by any of them, and let M’ be the structure that is just
like 97, but also <™ = 4. Since a + Valm(t) for all t occuring in A/, M E A'.
Since M F T, I’ C T, and ¢ does not occur in T, also M’ E I". Together,
M E I" U A for every finite subset I’ U A" of T UA. So every finite subset
of I' U A is satisfiable. By compactness, I' U A itself is satisfiable. So there are
models M E I'UA. Every such 91 is a model of I', but is not covered, since
Val™ (c) # Val™(t) for all terms ¢ of L.

Example 10.25. Consider a language £ containing the predicate symbol <,
constant symbols o, 1, and function symbols +, X, —, <. Let I' be the set
of all sentences in this language true in) with domain Q and the obvious
interpretations. I' is the set of all sentences of £ true about the rational num-
bers. Of course, in Q (and even in R), there are no numbers which are greater
than 0 but less than 1/k for all k € Z*. Such a number, if it existed, would
be an infinitesimal: non-zero, but infinitely small. The compactness theorem
shows that there are models of T' in which infinitesimals exist: Let A be {0 <
cdU{c< (1+k) | ke z} (wherek = (1+ (14 -+ (1+1)...)) with
k 1’s). For any finite subset Ay of A there is a K such that all the sentences

136

10.10. A Direct Proof of the Compactness Theorem

¢ < (1+k)in Ag have k < K. If we expand Q to 9’ with ¢?' = 1/K we have
that Q" F T U Ay, and so T U A is finitely satisfiable (Exercise: prove this in
detail). By compactness, I' U A is satisfiable. Any model & of I' U A contains
an infinitesimal, namely c®.

Example 10.26. We know that first-order logic with identity predicate can ex-
press that the size of the domain must have some minimal size: The sen-
tence @>, (which says “there are at least n distinct objects”) is true only in
structures where || has at least 1 objects. So if we take

A={g>n|n=>1}

then any model of A must be infinite. Thus, we can guarantee that a theory
only has infinite models by adding A to it: the models of I' U A are all and only
the infinite models of I'.

So first-order logic can express infinitude. The compactness theorem shows
that it cannot express finitude, however. For suppose some set of sentences A
were satisfied in all and only finite structures. Then A U A is finitely satisfiable.
Why? Suppose A’ UA’ C AU A is finite with A’ C Aand A’ C A. Let n be the
largest number such that ¢>, € A’. A, being satisfied in all finite structures,
has a model O with finitely many but > n elements. But then M E A’ U A’
By compactness, A U A has an infinite model, contradicting the assumption
that A is satisfied only in finite structures.

10.10 A Direct Proof of the Compactness Theorem

We can prove the Compactness Theorem directly, without appealing to the
Completeness Theorem, using the same ideas as in the proof of the complete-
ness theorem. In the proof of the Completeness Theorem we started with a
consistent set I' of sentences, expanded it to a consistent, saturated, and com-
plete set T'* of sentences, and then showed that in the term model 9t(I'™*) con-
structed from I'*, all sentences of I are true, so I’ is satisfiable.

We can use the same method to show that a finitely satisfiable set of sen-
tences is satisfiable. We just have to prove the corresponding versions of
the results leading to the truth lemma where we replace “consistent” with
“finitely satisfiable.”

Proposition 10.27. Suppose T is complete and finitely satisfiable. Then:
1. (p&) €Tiffbothp € Tand p € T.
2. (p V) € Tiffeither p € T orp € T.
3. (9 D) eTiffeither p ¢ Toryp € T.

Lemma 10.28. Every finitely satisfiable set I' can be extended to a saturated finitely
satisfiable set T".

137

10. THE COMPLETENESS THEOREM

Proposition 10.29. Suppose T is complete, finitely satisfiable, and saturated.
1. 3x ¢(x) € Tiff (t) €T for at least one closed term t.
2. Vx¢(x) € Tiff (t) € T for all closed terms t.

Lemma 10.30. Every finitely satisfiable set T' can be extended to a complete and
finitely satisfiable set T'*.

Theorem 10.31 (Compactness). I is satisfiable if and only if it is finitely satisfi-
able.

Proof. If T is satisfiable, then there is a structure 91 such that 9t F ¢ for all
¢ € I'. Of course, this 91 also satisfies every finite subset of I, so I’ is finitely
satisfiable.

Now suppose that I' is finitely satisfiable. By Lemma 10.28, there is a
finitely satisfiable, saturated set I’ O T. By Lemma 10.30, I can be extended
to a complete and finitely satisfiable set I'*, and I'* is still saturated. Construct
the term model 91(I'*) as in Definition 10.9. Note that Proposition 10.11 did
not rely on the fact that I'* is consistent (or complete or saturated, for that mat-
ter), but just on the fact that 91(I'*) is covered. The proof of the Truth Lemma
(Lemma 10.12) goes through if we replace references to Proposition 10.2 and
Proposition 10.7 by references to Proposition 10.27 and Proposition 10.29 [

10.11 The Lowenheim-Skolem Theorem

The Lowenheim-Skolem Theorem says that if a theory has an infinite model,
then it also has a model that is at most countably infinite. An immediate con-
sequence of this fact is that first-order logic cannot express that the size of
a structure is uncountable: any sentence or set of sentences satisfied in all
uncountable structures is also satisfied in some countable structure.

Theorem 10.32. If I is consistent then it has a countable model, i.e., it is satisfiable
in a structure whose domain is either finite or countably infinite.

Proof. If T is consistent, the structure 2t delivered by the proof of the com-
pleteness theorem has a domain 91| that is no larger than the set of the terms
of the language L. So 91 is at most countably infinite. O

Theorem 10.33. If T is a consistent set of sentences in the language of first-order
logic without identity, then it has a countably infinite model, i.e., it is satisfiable in
a structure whose domain is infinite and countable.

Proof. If T is consistent and contains no sentences in which identity appears,
then the structure 9t delivered by the proof of the completness theorem has a
domain |01 identical to the set of terms of the language £’. So 91 is countably
infinite, since Trm(L’) is. O

138

10.11. The Lowenheim-Skolem Theorem

Example 10.34 (Skolem’s Paradox). Zermelo-Fraenkel set theory ZFC is a very
powerful framework in which practically all mathematical statements can be
expressed, including facts about the sizes of sets. So for instance, ZFC can
prove that the set R of real numbers is uncountable, it can prove Cantor’s
Theorem that the power set of any set is larger than the set itself, etc. If ZFC is
consistent, its models are all infinite, and moreover, they all contain elements
about which the theory says that they are uncountable, such as the element
that makes true the theorem of ZFC that the power set of the natural numbers
exists. By the Lowenheim-Skolem Theorem, ZFC also has countable models—
models that contain “uncountable” sets but which themselves are countable.

139

Chapter 11

Beyond First-order Logic

11.1 Overview

First-order logic is not the only system of logic of interest: there are many ex-
tensions and variations of first-order logic. A logic typically consists of the
formal specification of a language, usually, but not always, a deductive sys-
tem, and usually, but not always, an intended semantics. But the technical use
of the term raises an obvious question: what do logics that are not first-order
logic have to do with the word “logic,” used in the intuitive or philosophical
sense? All of the systems described below are designed to model reasoning of
some form or another; can we say what makes them logical?

No easy answers are forthcoming. The word “logic” is used in different
ways and in different contexts, and the notion, like that of “truth,” has been
analyzed from numerous philosophical stances. For example, one might take
the goal of logical reasoning to be the determination of which statements are
necessarily true, true a priori, true independent of the interpretation of the
nonlogical terms, true by virtue of their form, or true by linguistic convention;
and each of these conceptions requires a good deal of clarification. Even if one
restricts one’s attention to the kind of logic used in mathematics, there is little
agreement as to its scope. For example, in the Principia Mathematica, Russell
and Whitehead tried to develop mathematics on the basis of logic, in the logi-
cist tradition begun by Frege. Their system of logic was a form of higher-type
logic similar to the one described below. In the end they were forced to intro-
duce axioms which, by most standards, do not seem purely logical (notably,
the axiom of infinity, and the axiom of reducibility), but one might nonetheless
hold that some forms of higher-order reasoning should be accepted as logical.
In contrast, Quine, whose ontology does not admit “propositions” as legiti-
mate objects of discourse, argues that second-order and higher-order logic are
really manifestations of set theory in sheep’s clothing; in other words, systems
involving quantification over predicates are not purely logical.

For now, it is best to leave such philosophical issues for a rainy day, and

141

11. BEYOND FIRST-ORDER LOGIC

simply think of the systems below as formal idealizations of various kinds of
reasoning, logical or otherwise.

11.2 Many-Sorted Logic

In first-order logic, variables and quantifiers range over a single domain. But
it is often useful to have multiple (disjoint) domains: for example, you might
want to have a domain of numbers, a domain of geometric objects, a domain
of functions from numbers to numbers, a domain of abelian groups, and so
on.

Many-sorted logic provides this kind of framework. One starts with a list
of “sorts”—the “sort” of an object indicates the “domain” it is supposed to
inhabit. One then has variables and quantifiers for each sort, and (usually)
an identity predicate for each sort. Functions and relations are also “typed”
by the sorts of objects they can take as arguments. Otherwise, one keeps the
usual rules of first-order logic, with versions of the quantifier-rules repeated
for each sort.

For example, to study international relations we might choose a language
with two sorts of objects, French citizens and German citizens. We might have
a unary relation, “drinks wine,” for objects of the first sort; another unary
relation, “eats wurst,” for objects of the second sort; and a binary relation,
“forms a multinational married couple,” which takes two arguments, where
the first argument is of the first sort and the second argument is of the second
sort. If we use variables 4, b, c to range over French citizens and x, y, z to range
over German citizens, then

VaVx[(MarriedTo(a,x) D (DrinksWine(a) V ~EatsWurst(x))]]

asserts that if any French person is married to a German, either the French
person drinks wine or the German doesn’t eat wurst.

Many-sorted logic can be embedded in first-order logic in a natural way,
by lumping all the objects of the many-sorted domains together into one first-
order domain, using unary predicate symbols to keep track of the sorts, and
relativizing quantifiers. For example, the first-order language corresponding
to the example above would have unary predicate symbols “German” and
“French,” in addition to the other relations described, with the sort require-
ments erased. A sorted quantifier Vx ¢, where x is a variable of the German
sort, translates to

Vx (German(x) D ¢).

We need to add axioms that insure that the sorts are separate—e.g., Vx ~(German(x) &
French(x))—as well as axioms that guarantee that “drinks wine” only holds
of objects satisfying the predicate French(x), etc. With these conventions and
axioms, it is not difficult to show that many-sorted sentences translate to first-
order sentences, and many-sorted derivations translate to first-order deriva-

142

11.3. Second-Order logic

tions. Also, many-sorted structures “translate” to corresponding first-order
structures and vice-versa, so we also have a completeness theorem for many-
sorted logic.

11.3 Second-Order logic

The language of second-order logic allows one to quantify not just over a do-
main of individuals, but over relations on that domain as well. Given a first-
order language £, for each k one adds variables R which range over k-ary
relations, and allows quantification over those variables. If R is a variable for
a k-ary relation, and #, ..., f; are ordinary (first-order) terms, R(ty,...,t) is
an atomic formula. Otherwise, the set of formulae is defined just as in the
case of first-order logic, with additional clauses for second-order quantifica-
tion. Note that we only have the identity predicate for first-order terms: if R
and S are relation variables of the same arity k, we can define R = S to be an
abbreviation for

‘v’x1 ka (R(xl,...,xk) = S(xl,...,xk)).

The rules for second-order logic simply extend the quantifier rules to the
new second order variables. Here, however, one has to be a little bit careful
to explain how these variables interact with the predicate symbols of £, and
with formulae of £ more generally. At the bare minimum, relation variables
count as terms, so one has inferences of the form

@(R) - 3R ¢(R)

But if £ is the language of arithmetic with a constant relation symbol <, one
would also expect the following inference to be valid:

x <y F 3RR(x,y)
or for a given formula ¢,
@(x1,...,x¢) F IRR(xq,...,xx)
More generally, we might want to allow inferences of the form
p[AX.p(X)/R] 3R ¢

where ¢[AX. (X)/R] denotes the result of replacing every atomic formula of
the form Rty,...,t in ¢ by ¢(t1, ..., t;). This last rule is equivalent to having
a comprehension schema, i.e., an axiom of the form

IRVxy, ..., xk (p(x1,..., %) = R(xq,...,x¢)),

143

11. BEYOND FIRST-ORDER LOGIC

one for each formula ¢ in the second-order language, in which R is not a free
variable. (Exercise: show that if R is allowed to occur in ¢, this schema is
inconsistent!)

When logicians refer to the “axioms of second-order logic” they usually
mean the minimal extension of first-order logic by second-order quantifier
rules together with the comprehension schema. But it is often interesting to
study weaker subsystems of these axioms and rules. For example, note that
in its full generality the axiom schema of comprehension is impredicative: it
allows one to assert the existence of a relation R(x1, ..., x;) that is “defined”
by a formula with second-order quantifiers; and these quantifiers range over
the set of all such relations—a set which includes R itself! Around the turn of
the twentieth century, a common reaction to Russell’s paradox was to lay the
blame on such definitions, and to avoid them in developing the foundations
of mathematics. If one prohibits the use of second-order quantifiers in the
formula ¢, one has a predicative form of comprehension, which is somewhat
weaker.

From the semantic point of view, one can think of a second-order structure
as consisting of a first-order structure for the language, coupled with a set of
relations on the domain over which the second-order quantifiers range (more
precisely, for each k there is a set of relations of arity k). Of course, if com-
prehension is included in the derivation system, then we have the added re-
quirement that there are enough relations in the “second-order part” to satisfy
the comprehension axioms—otherwise the derivation system is not sound!
One easy way to insure that there are enough relations around is to take the
second-order part to consist of all the relations on the first-order part. Such
a structure is called full, and, in a sense, is really the “intended structure” for
the language. If we restrict our attention to full structures we have what is
known as the full second-order semantics. In that case, specifying a structure
boils down to specifying the first-order part, since the contents of the second-
order part follow from that implicitly.

To summarize, there is some ambiguity when talking about second-order
logic. In terms of the derivation system, one might have in mind either

1. A “minimal” second-order derivation system, together with some com-
prehension axioms.

2. The “standard” second-order derivation system, with full comprehen-
sion.

In terms of the semantics, one might be interested in either
1. The “weak” semantics, where a structure consists of a first-order part,
together with a second-order part big enough to satisfy the comprehen-

sion axioms.

144

11.3. Second-Order logic

2. The “standard” second-order semantics, in which one considers full struc-
tures only.

When logicians do not specify the derivation system or the semantics they
have in mind, they are usually refering to the second item on each list. The
advantage to using this semantics is that, as we will see, it gives us categorical
descriptions of many natural mathematical structures; at the same time, the
derivation system is quite strong, and sound for this semantics. The drawback
is that the derivation system is not complete for the semantics; in fact, no effec-
tively given derivation system is complete for the full second-order semantics.
On the other hand, we will see that the derivation system is complete for the
weakened semantics; this implies that if a sentence is not provable, then there
is some structure, not necessarily the full one, in which it is false.

The language of second-order logic is quite rich. One can identify unary
relations with subsets of the domain, and so in particular you can quantify
over these sets; for example, one can express induction for the natural num-
bers with a single axiom

VR ((R(0) & Vx (R(x) D R(x"))) D Vx R(x)).

If one takes the language of arithmetic to have symbols o,/, +, x and <, one
can add the following axioms to describe their behavior:

1. Vx~x' =0

2. VaVy (s(x) =s(y) Dx=1y)

3. Vx(x+o0)=x

4. VxVy (x+y) = (x+y)

5 Vx(xxo0)=o0

6. VxVy (x xy') = ((x x y) + x)
7.VxVy(x <y=3zy = (x+72))

It is not difficult to show that these axioms, together with the axiom of induc-
tion above, provide a categorical description of the structure 1, the standard
model of arithmetic, provided we are using the full second-order semantics.
Given any structure 9t in which these axioms are true, define a function f
from IN to the domain of 9 using ordinary recursion on IN, so that f(0) = o™
and f(x+1) = /™ (f(x)). Using ordinary induction on IN and the fact that ax-
ioms (1) and (2) hold in 9, we see that f is injective. To see that f is surjective,
let P be the set of elements of | 91| that are in the range of f. Since M is full, P is
in the second-order domain. By the construction of f, we know that o™Misin P,
and that P is closed under /™. The fact that the induction axiom holds in 9t

145

11. BEYOND FIRST-ORDER LOGIC

(in particular, for P) guarantees that P is equal to the entire first-order domain
of M. This shows that f is a bijection. Showing that f is a homomorphism is
no more difficult, using ordinary induction on IN repeatedly.

In set-theoretic terms, a function is just a special kind of relation; for ex-
ample, a unary function f can be identified with a binary relation R satisfying
Vx 3ly R(x, y). As a result, one can quantify over functions too. Using the full
semantics, one can then define the class of infinite structures to be the class of
structures 9 for which there is an injective function from the domain of 9t to
a proper subset of itself:

f (VxVy (f(x) = f(y) Dx=y) &Iy Vx f(x) #y).

The negation of this sentence then defines the class of finite structures.
In addition, one can define the class of well-orderings, by adding the fol-
lowing to the definition of a linear ordering:

VP (3xP(x) D Ix (P(x) &Yy (y < x D ~P(y))))-

This asserts that every non-empty set has a least element, modulo the iden-
tification of “set” with “one-place relation”. For another example, one can
express the notion of connectedness for graphs, by saying that there is no non-
trivial separation of the vertices into disconnected parts:

~3A (Ix A(x) & Ty ~A(y) &VwVz ((A(w) & ~A(z)) D ~R(w,z))).

For yet another example, you might try as an exercise to define the class of
finite structures whose domain has even size. More strikingly, one can pro-
vide a categorical description of the real numbers as a complete ordered field
containing the rationals.

In short, second-order logic is much more expressive than first-order logic.
That’s the good news; now for the bad. We have already mentioned that there
is no effective derivation system that is complete for the full second-order
semantics. For better or for worse, many of the properties of first-order logic
are absent, including compactness and the Lowenheim-Skolem theorems.

On the other hand, if one is willing to give up the full second-order se-
mantics in terms of the weaker one, then the minimal second-order derivation
system is complete for this semantics. In other words, if we read I~ as “proves
in the minimal system” and F as “logically implies in the weaker semantics”,
we can show that whenever I' F ¢ then I' I ¢. If one wants to include spe-
cific comprehension axioms in the derivation system, one has to restrict the
semantics to second-order structures that satisfy these axioms: for example, if
A consists of a set of comprehension axioms (possibly all of them), we have
thatif TUA F ¢, thenTUA F ¢. In particular, if ¢ is not provable using
the comprehension axioms we are considering, then there is a model of ~¢ in
which these comprehension axioms nonetheless hold.

146

11.4. Higher-Order logic

The easiest way to see that the completeness theorem holds for the weaker
semantics is to think of second-order logic as a many-sorted logic, as follows.
One sort is interpreted as the ordinary “first-order” domain, and then for each
k we have a domain of “relations of arity k.” We take the language to have
built-in relation symbols “truex(R, x1,...,xx)” which is meant to assert that
Rholds of x1, ..., x, where R is a variable of the sort “k-ary relation” and x1,
..., X are objects of the first-order sort.

With this identification, the weak second-order semantics is essentially the
usual semantics for many-sorted logic; and we have already observed that
many-sorted logic can be embedded in first-order logic. Modulo the trans-
lations back and forth, then, the weaker conception of second-order logic is
really a form of first-order logic in disguise, where the domain contains both
“objects” and “relations” governed by the appropriate axioms.

11.4 Higher-Order logic

Passing from first-order logic to second-order logic enabled us to talk about
sets of objects in the first-order domain, within the formal language. Why stop
there? For example, third-order logic should enable us to deal with sets of sets
of objects, or perhaps even sets which contain both objects and sets of objects.
And fourth-order logic will let us talk about sets of objects of that kind. As
you may have guessed, one can iterate this idea arbitrarily.

In practice, higher-order logic is often formulated in terms of functions
instead of relations. (Modulo the natural identifications, this difference is
inessential.) Given some basic “sorts” A, B, C, ...(which we will now call
“types”), we can create new ones by stipulating

If o and 7 are finite types then so is o — 7.

Think of types as syntactic “labels,” which classify the objects we want in our
domain; o — T describes those objects that are functions which take objects of
type o to objects of type 7. For example, we might want to have a type () of
truth values, “true” and “false,” and a type IN of natural numbers. In that case,
you can think of objects of type IN — () as unary relations, or subsets of IN;
objects of type N — IN are functions from natural numers to natural numbers;
and objects of type (N — IN) — IN are “functionals,” that is, higher-type
functions that take functions to numbers.

As in the case of second-order logic, one can think of higher-order logic as
a kind of many-sorted logic, where there is a sort for each type of object we
want to consider. But it is usually clearer just to define the syntax of higher-
type logic from the ground up. For example, we can define a set of finite types
inductively, as follows:

1. N is a finite type.

147

11. BEYOND FIRST-ORDER LOGIC

2. If o and T are finite types, then sois ¢ — .
3. If o and T are finite types, sois ¢ X T.

Intuitively, N denotes the type of the natural numbers, ¢ — T denotes the
type of functions from o to T, and ¢ x T denotes the type of pairs of objects,
one from ¢ and one from 7. We can then define a set of terms inductively, as
follows:

1. For each type o, there is a stock of variables x, y, z, ... of type o
0 is a term of type N

S (successor) is a term of type N — IN

=W N

If s is a term of type ¢, and ¢ is a term of type N — (0 — 0), then Ry is
a term of type N — o

5. If s is a term of type T — ¢ and t is a term of type T, then s(t) is a term
of type o

6. If s is a term of type o and x is a variable of type T, then Ax.s is a term of
type T — 0.

7. If s is a term of type o and t is a term of type 7, then (s, t) is a term of
type o X T.

8. If s is a term of type ¢ X T then p;(s) is a term of type ¢ and p,(s) is a
term of type T.

Intuitively, Rst denotes the function defined recursively by

(s, t) denotes the pair whose first component is s and whose second compo-
nent is ¢, and p1(s) and po(s) denote the first and second elements (“projec-
tions”) of s. Finally, Ax.s denotes the function f defined by

flx)=s

for any x of type o; so item (6) gives us a form of comprehension, enabling us
to define functions using terms. Formulae are built up from identity predicate
statements s = t between terms of the same type, the usual propositional
connectives, and higher-type quantification. One can then take the axioms
of the system to be the basic equations governing the terms defined above,
together with the usual rules of logic with quantifiers and identity predicate.
If one augments the finite type system with a type) of truth values, one
has to include axioms which govern its use as well. In fact, if one is clever, one

148

11.5. Intuitionistic Logic

can get rid of complex formulae entirely, replacing them with terms of type (!
The proof system can then be modified accordingly. The result is essentially
the simple theory of types set forth by Alonzo Church in the 1930s.

As in the case of second-order logic, there are different versions of higher-
type semantics that one might want to use. In the full version, variables of
type ¢ — T range over the set of all functions from the objects of type ¢ to
objects of type T. As you might expect, this semantics is too strong to ad-
mit a complete, effective derivation system. But one can consider a weaker
semantics, in which a structure consists of sets of elements T: for each type
T, together with appropriate operations for application, projection, etc. If the
details are carried out correctly, one can obtain completeness theorems for the
kinds of derivation systems described above.

Higher-type logic is attractive because it provides a framework in which
we can embed a good deal of mathematics in a natural way: starting with IN,
one can define real numbers, continuous functions, and so on. It is also partic-
ularly attractive in the context of intuitionistic logic, since the types have clear
“constructive” intepretations. In fact, one can develop constructive versions
of higher-type semantics (based on intuitionistic, rather than classical logic)
that clarify these constructive interpretations quite nicely, and are, in many
ways, more interesting than the classical counterparts.

11.5 Intuitionistic Logic

In constrast to second-order and higher-order logic, intuitionistic first-order
logic represents a restriction of the classical version, intended to model a more
“constructive” kind of reasoning. The following examples may serve to illus-
trate some of the underlying motivations.

Suppose someone came up to you one day and announced that they had
determined a natural number x, with the property that if x is prime, the Rie-
mann hypothesis is true, and if x is composite, the Riemann hypothesis is
false. Great news! Whether the Riemann hypothesis is true or not is one of
the big open questions of mathematics, and here they seem to have reduced
the problem to one of calculation, that is, to the determination of whether a
specific number is prime or not.

What is the magic value of x? They describe it as follows: x is the natural
number that is equal to 7 if the Riemann hypothesis is true, and 9 otherwise.

Angrily, you demand your money back. From a classical point of view, the
description above does in fact determine a unique value of x; but what you
really want is a value of x that is given explicitly.

To take another, perhaps less contrived example, consider the following
question. We know that it is possible to raise an irrational number to a rational

. 2 .
power, and get a rational result. For example, V2° = 2. What is less clear
is whether or not it is possible to raise an irrational number to an irrational

149

11. BEYOND FIRST-ORDER LOGIC

power, and get a rational result. The following theorem answers this in the
affirmative:

Theorem 11.1. There are irrational numbers a and b such that a® is rational.

. 2 .. .
Proof. Consider ﬁf If this is rational, we are done: we can leta = b = /2.
Otherwise, it is irrational. Then we have

(V2R YR o,

which is certainly rational. So, in this case, let a be ﬁﬁ, and let bbe v2. O

Does this constitute a valid proof? Most mathematicians feel that it does.
But again, there is something a little bit unsatisfying here: we have proved the
existence of a pair of real numbers with a certain property, without being able
to say which pair of numbers it is. It is possible to prove the same result, but in
such a way that the pair a, b is given in the proof: take 2 = v/3 and b = log, 4.
Then

ab _ \/glog34 _ 31/2~10g34 _ (310g34)1/2 _ 41/2 =2,

since 31°83 % = x.

Intuitionistic logic is designed to model a kind of reasoning where moves
like the one in the first proof are disallowed. Proving the existence of an x
satisfying ¢(x) means that you have to give a specific x, and a proof that it
satisfies @, like in the second proof. Proving that ¢ or ¢ holds requires that
you can prove one or the other.

Formally speaking, intuitionistic first-order logic is what you get if you
omit restrict a derivation system for first-order logic in a certain way. Sim-
ilarly, there are intuitionistic versions of second-order or higher-order logic.
From the mathematical point of view, these are just formal deductive systems,
but, as already noted, they are intended to model a kind of mathematical rea-
soning. One can take this to be the kind of reasoning that is justified on a
certain philosophical view of mathematics (such as Brouwer’s intuitionism);
one can take it to be a kind of mathematical reasoning which is more “con-
crete” and satisfying (along the lines of Bishop’s constructivism); and one can
argue about whether or not the formal description captures the informal mo-
tivation. But whatever philosophical positions we may hold, we can study
intuitionistic logic as a formally presented logic; and for whatever reasons,
many mathematical logicians find it interesting to do so.

There is an informal constructive interpretation of the intuitionist connec-
tives, usually known as the BHK interpretation (named after Brouwer, Heyt-
ing, and Kolmogorov). It runs as follows: a proof of ¢ & i consists of a proof
of ¢ paired with a proof of ¢; a proof of ¢ V ¢ consists of either a proof of ¢,
or a proof of 1, where we have explicit information as to which is the case;

150

11.5. Intuitionistic Logic

a proof of ¢ D 1 consists of a procedure, which transforms a proof of ¢ to a
proof of ; a proof of Vx ¢(x) consists of a procedure which returns a proof
of ¢(x) for any value of x; and a proof of Jx ¢(x) consists of a value of x,
together with a proof that this value satisfies ¢. One can describe the interpre-
tation in computational terms known as the “Curry-Howard isomorphism”
or the “formulae-as-types paradigm”: think of a formula as specifying a cer-
tain kind of data type, and proofs as computational objects of these data types
that enable us to see that the corresponding formula is true.

Intuitionistic logic is often thought of as being classical logic “minus” the
law of the excluded middle. This following theorem makes this more precise.

Theorem 11.2. Intuitionistically, the following axiom schemata are equivalent:
1. (¢ D L)D~og.
2. oV~
3.~ D g

Obtaining instances of one schema from either of the others is a good exercise
in intuitionistic logic.

The first deductive systems for intuitionistic propositional logic, put forth
as formalizations of Brouwer’s intuitionism, are due, independently, to Kol-
mogorov, Glivenko, and Heyting. The first formalization of intuitionistic first-
order logic (and parts of intuitionist mathematics) is due to Heyting. Though
a number of classically valid schemata are not intuitionistically valid, many
are.

The double-negation translation describes an important relationship between
classical and intuitionist logic. It is defined inductively follows (think of ¢V
as the “intuitionist” translation of the classical formula ¢):

AN = ~~¢ for atomic formulae ¢
N = (o & yt)
(V)N = ~~(@™ v yl)
(@ >N = (" > 9)
)
)

s
&

<

Z
Il

Kolmogorov and Glivenko had versions of this translation for propositional
logic; for predicate logic, it is due to Godel and Gentzen, independently. We
have

Theorem 11.3. 1. ¢ = ¢ is provable classically

151

11. BEYOND FIRST-ORDER LOGIC

2. If @ is provable classically, then @V is provable intuitionistically.

We can now envision the following dialogue. Classical mathematician:
“I've proved ¢!” Intuitionist mathematician: “Your proof isn’t valid. What
you've really proved is ¢".” Classical mathematician: “Fine by me!” As far as
the classical mathematician is concerned, the intuitionist is just splitting hairs,
since the two are equivalent. But the intuitionist insists there is a difference.

Note that the above translation concerns pure logic only; it does not ad-
dress the question as to what the appropriate nonlogical axioms are for classi-
cal and intuitionistic mathematics, or what the relationship is between them.
But the following slight extension of the theorem above provides some useful
information:

Theorem 11.4. If T proves ¢ classically, TN proves ¢V intuitionistically.

In other words, if ¢ is provable from some hypotheses classically, then ¢~
is provable from their double-negation translations.

To show that a sentence or propositional formula is intuitionistically valid,
all you have to do is provide a proof. But how can you show that it is not
valid? For that purpose, we need a semantics that is sound, and preferrably
complete. A semantics due to Kripke nicely fits the bill.

We can play the same game we did for classical logic: define the semantics,
and prove soundness and completeness. It is worthwhile, however, to note
the following distinction. In the case of classical logic, the semantics was the
“obvious” one, in a sense implicit in the meaning of the connectives. Though
one can provide some intuitive motivation for Kripke semantics, the latter
does not offer the same feeling of inevitability. In addition, the notion of a
classical structure is a natural mathematical one, so we can either take the
notion of a structure to be a tool for studying classical first-order logic, or take
classical first-order logic to be a tool for studying mathematical structures.
In contrast, Kripke structures can only be viewed as a logical construct; they
don’t seem to have independent mathematical interest.

A Kripke structure 9t = (W, R, V) for a propositional language consists
of a set W, partial order R on W with a least element, and an “monotone” as-
signment of propositional variables to the elements of W. The intuition is that
the elements of W represent “worlds,” or “states of knowledge”; an element
v > u represents a “possible future state” of #; and the propositional variables
assigned to u are the propositions that are known to be true in state u. The
forcing relation 9, w I ¢ then extends this relationship to arbitrary formulae
in the language; read M, w I+ ¢ as “¢ is true in state w.” The relationship is
defined inductively, as follows:

1. 9, w |- p; iff p; is one of the propositional variables assigned to w.

2. Mw ¥ L.

152

11.6. Modal Logics

3. Mwlk (¢ &) iff M, w Ik ¢ and M, w Ik p.
4. Mwlk (@ Vy)iff M wlk ¢ or M, w - .
5. M, wlk (¢ D) iff, whenever w’ > w and M, w' I ¢, then M, w’ I+ .

It is a good exercise to try to show that ~(p & g) D (~p V ~q) is not intuition-
istically valid, by cooking up a Kripke structure that provides a counterexam-

ple.

11.6 Modal Logics

Consider the following example of a conditional sentence:

If Jeremy is alone in that room, then he is drunk and naked and
dancing on the chairs.

This is an example of a conditional assertion that may be materially true but
nonetheless misleading, since it seems to suggest that there is a stronger link
between the antecedent and conclusion other than simply that either the an-
tecedent is false or the consequent true. That is, the wording suggests that the
claim is not only true in this particular world (where it may be trivially true,
because Jeremy is not alone in the room), but that, moreover, the conclusion
would have been true had the antecedent been true. In other words, one can
take the assertion to mean that the claim is true not just in this world, but in
any “possible” world; or that it is necessarily true, as opposed to just true in
this particular world.

Modal logic was designed to make sense of this kind of necessity. One ob-
tains modal propositional logic from ordinary propositional logic by adding a
box operator; which is to say, if ¢ is a formula, so is O¢. Intuitively, ¢ asserts
that ¢ is necessarily true, or true in any possible world. ¢¢ is usually taken to
be an abbreviation for ~O~¢, and can be read as asserting that ¢ is possibly
true. Of course, modality can be added to predicate logic as well.

Kripke structures can be used to provide a semantics for modal logic; in
fact, Kripke first designed this semantics with modal logic in mind. Rather
than restricting to partial orders, more generally one has a set of “possible
worlds,” P, and a binary “accessibility” relation R(x,y) between worlds. In-
tuitively, R(p, q) asserts that the world g is compatible with p; i.e., if we are
“in” world p, we have to entertain the possibility that the world could have
been like 4.

Modal logic is sometimes called an “intensional” logic, as opposed to an
“extensional” one. The intended semantics for an extensional logic, like clas-
sical logic, will only refer to a single world, the “actual” one; while the seman-
tics for an “intensional” logic relies on a more elaborate ontology. In addition
to structureing necessity, one can use modality to structure other linguistic

153

11. BEYOND FIRST-ORDER LOGIC

constructions, reinterpreting [J and ¢ according to the application. For exam-

ple:

1. In provability logic, O¢ is read “¢ is provable” and ¢¢ is read “¢ is
consistent.”

2. In epistemic logic, one might read O¢ as “I know ¢” or “I believe ¢.”

3. In temporal logic, one can read Ug¢ as “¢ is always true” and O¢ as “¢ is
sometimes true.”

One would like to augment logic with rules and axioms dealing with modal-
ity. For example, the system S4 consists of the ordinary axioms and rules of
propositional logic, together with the following axioms:

O(e D ¢) D (O D Oy)
Ue D¢
Oe D O0¢

as well as a rule, “from ¢ conclude g.” S5 adds the following axiom:

Op D O0e

Variations of these axioms may be suitable for different applications; for ex-
ample, S5 is usually taken to characterize the notion of logical necessity. And
the nice thing is that one can usually find a semantics for which the derivation
system is sound and complete by restricting the accessibility relation in the
Kripke structures in natural ways. For example, S4 corresponds to the class
of Kripke structures in which the accessibility relation is reflexive and transi-
tive. §5 corresponds to the class of Kripke structures in which the accessibility
relation is universal, which is to say that every world is accessible from every
other; so Og¢ holds if and only if ¢ holds in every world.

11.7 Other Logics

As you may have gathered by now, it is not hard to design a new logic. You
too can create your own a syntax, make up a deductive system, and fashion
a semantics to go with it. You might have to be a bit clever if you want the
derivation system to be complete for the semantics, and it might take some
effort to convince the world at large that your logic is truly interesting. But, in
return, you can enjoy hours of good, clean fun, exploring your logic’s mathe-
matical and computational properties.
Recent decades have witnessed a veritable explosion of formal logics. Fuzzy

logic is designed to model reasoning about vague properties. Probabilistic
logic is designed to model reasoning about uncertainty. Default logics and

154

11.7. Other Logics

nonmonotonic logics are designed to model defeasible forms of reasoning,
which is to say, “reasonable” inferences that can later be overturned in the face
of new information. There are epistemic logics, designed to model reasoning
about knowledge; causal logics, designed to model reasoning about causal re-
lationships; and even “deontic” logics, which are designed to model reason-
ing about moral and ethical obligations. Depending on whether the primary
motivation for introducing these systems is philosophical, mathematical, or
computational, you may find such creatures studies under the rubric of math-
ematical logic, philosophical logic, artificial intelligence, cognitive science, or
elsewhere.

The list goes on and on, and the possibilities seem endless. We may never
attain Leibniz’ dream of reducing all of human reason to calculation—but that
can’t stop us from trying.

155

Part 111

Turing Machines

157

Chapter 12

Turing Machine Computations

12.1 Introduction

What does it mean for a function, say, from IN to IN to be computable? Among
the first answers, and the most well known one, is that a function is com-
putable if it can be computed by a Turing machine. This notion was set out
by Alan Turing in 1936. Turing machines are an example of a model of compu-
tation—they are a mathematically precise way of defining the idea of a “com-
putational procedure.” What exactly that means is debated, but it is widely
agreed that Turing machines are one way of specifying computational proce-
dures. Even though the term “Turing machine” evokes the image of a physi-
cal machine with moving parts, strictly speaking a Turing machine is a purely
mathematical construct, and as such it idealizes the idea of a computational
procedure. For instance, we place no restriction on either the time or memory
requirements of a Turing machine: Turing machines can compute something
even if the computation would require more storage space or more steps than
there are atoms in the universe.

It is perhaps best to think of a Turing machine as a program for a spe-
cial kind of imaginary mechanism. This mechanism consists of a fape and a
read-write head. In our version of Turing machines, the tape is infinite in one
direction (to the right), and it is divided into squares, each of which may con-
tain a symbol from a finite alphabet. Such alphabets can contain any number of
different symbols, but we will mainly make do with three: >, 0, and 1. When
the mechanism is started, the tape is empty (i.e., each square contains the sym-
bol 0) except for the leftmost square, which contains >, and a finite number of
squares which contain the input. At any time, the mechanism is in one of a
finite number of states. At the outset, the head scans the leftmost square and
in a specified initial state. At each step of the mechanism’s run, the content
of the square currently scanned together with the state the mechanism is in
and the Turing machine program determine what happens next. The Turing
machine program is given by a partial function which takes as input a state g

159

12. TURING MACHINE COMPUTATIONS

Dl gifofafafe]s] 3
q

S ERCEN] EY B EN E I
)

PP ljogijofufafefa] ¢

3

Figure 12.1: A Turing machine executing its program.

and a symbol ¢ and outputs a triple (q’, ¢/, D). Whenever the mechanism is in
state g and reads symbol o, it replaces the symbol on the current square with
o', the head moves left, right, or stays put according to whether D is L, R, or
N, and the mechanism goes into state 4.

For instance, consider the situation in Figure 12.1. The visible part of the
tape of the Turing machine contains the end-of-tape symbol > on the leftmost
square, followed by three 1’s, a 0, and four more 1’s. The head is reading
the third square from the left, which contains a 1, and is in state g;—we say
“the machine is reading a 1 in state g;.” If the program of the Turing machine
returns, for input (g7, 1), the triple (42,0, N), the machine would now replace
the 1 on the third square with a 0, leave the read /write head where it is, and
switch to state g,. If then the program returns (g3,0, R) for input (g»,0), the
machine would now overwrite the 0 with another 0 (effectively, leaving the
content of the tape under the read/write head unchanged), move one square
to the right, and enter state 3. And so on.

We say that the machine halts when it encounters some state, g, and sym-
bol, o such that there is no instruction for (g,,0), i.e., the transition function
for input (g, o) is undefined. In other words, the machine has no instruction
to carry out, and at that point, it ceases operation. Halting is sometimes repre-
sented by a specific halt state h. This will be demonstrated in more detail later
on.

The beauty of Turing’s paper, “On computable numbers,” is that he presents
not only a formal definition, but also an argument that the definition captures
the intuitive notion of computability. From the definition, it should be clear
that any function computable by a Turing machine is computable in the in-
tuitive sense. Turing offers three types of argument that the converse is true,
i.e., that any function that we would naturally regard as computable is com-
putable by such a machine. They are (in Turing’s words):

1. A direct appeal to intuition.

2. A proof of the equivalence of two definitions (in case the new definition
has a greater intuitive appeal).

160

12.2. Representing Turing Machines

3. Giving examples of large classes of numbers which are computable.

Our goal is to try to define the notion of computability “in principle,” i.e.,
without taking into account practical limitations of time and space. Of course,
with the broadest definition of computability in place, one can then go on
to consider computation with bounded resources; this forms the heart of the
subject known as “computational complexity.”

Historical Remarks Alan Turing invented Turing machines in 1936. While
his interest at the time was the decidability of first-order logic, the paper has
been described as a definitive paper on the foundations of computer design.
In the paper, Turing focuses on computable real numbers, i.e., real numbers
whose decimal expansions are computable; but he notes that it is not hard to
adapt his notions to computable functions on the natural numbers, and so on.
Notice that this was a full five years before the first working general purpose
computer was built in 1941 (by the German Konrad Zuse in his parent’s living
room), seven years before Turing and his colleagues at Bletchley Park built the
code-breaking Colossus (1943), nine years before the American ENIAC (1945),
twelve years before the first British general purpose computer—the Manch-
ester Small-Scale Experimental Machine—was built in Manchester (1948), and
thirteen years before the Americans first tested the BINAC (1949). The Manch-
ester SSEM has the distinction of being the first stored-program computer—
previous machines had to be rewired by hand for each new task.

12.2 Representing Turing Machines

Turing machines can be represented visually by state diagrams. The diagrams
are composed of state cells connected by arrows. Unsurprisingly, each state
cell represents a state of the machine. Each arrow represents an instruction
that can be carried out from that state, with the specifics of the instruction
written above or below the appropriate arrow. Consider the following ma-
chine, which has only two internal states, g9 and 41, and one instruction:

start —

Recall that the Turing machine has a read/write head and a tape with the
input written on it. The instruction can be read as if reading a 0 in state qq, write
a 1, move right, and move to state q1. This is equivalent to the transition function

mapping (qo,0) to (41,1, R).

Example 12.1. Even Machine: The following Turing machine halts if, and only
if, there are an even number of 1’s on the tape (under the assumption that all

161

12. TURING MACHINE COMPUTATIONS

1’s come before the first 0 on the tape).

0,0,R
1,1,R

start _)
1,1,R

The state diagram corresponds to the following transition function:

5(‘10/1) = <‘71/1/R>/
5(‘71/1) = <q0r 1rR>/
5(‘11/ 0) = <q1101 R>

The above machine halts only when the input is an even number of strokes.
Otherwise, the machine (theoretically) continues to operate indefinitely. For
any machine and input, it is possible to trace through the configurations of the
machine in order to determine the output. We will give a formal definition
of configurations later. For now, we can intuitively think of configurations
as a series of diagrams showing the state of the machine at any point in time
during operation. Configurations show the content of the tape, the state of the
machine and the location of the read /write head.

Let us trace through the configurations of the even machine if it is started
with an input of four 1’s. In this case, we expect that the machine will halt.
We will then run the machine on an input of three 1’s, where the machine will
run forever.

The machine starts in state gg, scanning the leftmost 1. We can represent
the initial state of the machine as follows:

5191110. ..

The above configuration is straightforward. As can be seen, the machine starts
in state one, scanning the leftmost 1. This is represented by a subscript of the
state name on the first 1. The applicable instruction at this point is §(qp, 1) =
(91,1, R), and so the machine moves right on the tape and changes to state 7.

>11;110. ..

Since the machine is now in state g1 scanning a 1, we have to “follow” the
instruction 6(gq1,1) = (g0, 1, R). This results in the configuration

>111510. ..

As the machine continues, the rules are applied again in the same order, re-
sulting in the following two configurations:

>111140. ..

162

12.2. Representing Turing Machines

>11110; . . .

The machine is now in state gg scanning a 0. Based on the transition diagram,
we can easily see that there is no instruction to be carried out, and thus the
machine has halted. This means that the input has been accepted.

Suppose next we start the machine with an input of three 1’s. The first few
configurations are similar, as the same instructions are carried out, with only
a small difference of the tape input:

>10110. ..

>11,10. ..
>11140. ..
>1110; ...

The machine has now traversed past all the 1’s, and is reading a 0 in state 4.
As shown in the diagram, there is an instruction of the form é(g1,0) = (g1,0, R).
Since the tape is filled with 0 indefinitely to the right, the machine will con-
tinue to execute this instruction forever, staying in state q; and moving ever
further to the right. The machine will never halt, and does not accept the
input.

It is important to note that not all machines will halt. If halting means that
the machine runs out of instructions to execute, then we can create a machine
that never halts simply by ensuring that there is an outgoing arrow for each
symbol at each state. The even machine can be modified to run indefinitely
by adding an instruction for scanning a 0 at gp.

Example 12.2.
0,0,R 0,0,R
1,1,R
start —>
1,1,R

Machine tables are another way of representing Turing machines. Machine
tables have the tape alphabet displayed on the x-axis, and the set of machine
states across the y-axis. Inside the table, at the intersection of each state and
symbol, is written the rest of the instruction—the new state, new symbol, and
direction of movement. Machine tables make it easy to determine in what
state, and for what symbol, the machine halts. Whenever there is a gap in the
table is a possible point for the machine to halt. Unlike state diagrams and
instruction sets, where the points at which the machine halts are not always
immediately obvious, any halting points are quickly identified by finding the
gaps in the machine table.

163

12. TURING MACHINE COMPUTATIONS

cart g 1,0,R % 0,0,R g
start —(4o \-1/ 2

0,0,R 0,1,R
q5 @ q3
0,0,L h/ 1,1,L
1,1,L 1,1,L 0,1,L

Figure 12.2: A doubler machine

Example 12.3. The machine table for the even machine is:

0 1 >
q0 LQLR
q1 0/ q1, R 1r qo, R

As we can see, the machine halts when scanning a 0 in state go.

So far we have only considered machines that read and accept input. How-
ever, Turing machines have the capacity to both read and write. An example
of such a machine (although there are many, many examples) is a doubler. A
doubler, when started with a block of # 1’s on the tape, outputs a block of 2n
1’s.

Example 12.4. Before building a doubler machine, it is important to come up
with a strategy for solving the problem. Since the machine (as we have formu-
lated it) cannot remember how many 1’s it has read, we need to come up with
a way to keep track of all the 1’s on the tape. One such way is to separate the
output from the input with a 0. The machine can then erase the first 1 from
the input, traverse over the rest of the input, leave a 0, and write two new 1’s.
The machine will then go back and find the second 1 in the input, and double
that one as well. For each one 1 of input, it will write two 1’s of output. By
erasing the input as the machine goes, we can guarantee that no 1 is missed
or doubled twice. When the entire input is erased, there will be 2n 1’s left
on the tape. The state diagram of the resulting Turing machine is depicted in
Figure 12.2.

164

12.3. Turing Machines

12.3 Turing Machines

The formal definition of what constitutes a Turing machine looks abstract,
but is actually simple: it merely packs into one mathematical structure all
the information needed to specify the workings of a Turing machine. This
includes (1) which states the machine can be in, (2) which symbols are allowed
to be on the tape, (3) which state the machine should start in, and (4) what the
instruction set of the machine is.

Definition 12.5 (Turing machine). A Turing machine M is a tuple (Q, %, 4o,)
consisting of

1. a finite set of states Q,

2. a finite alphabet X which includes > and 0,

3. aninitial state qo € Q,

4. afinite instruction set 6: Q x ¥+ Q x £ x {L,R,N}.

The partial function ¢ is also called the transition function of M.

We assume that the tape is infinite in one direction only. For this reason
it is useful to designate a special symbol > as a marker for the left end of the
tape. This makes it easier for Turing machine programs to tell when they’re
“in danger” of running off the tape. We could assume that this symbol is never
overwritten, i.e., that (q,>) = (¢/,>,x) if §(q,>) is defined. Some textbooks
do this, we do not. You can simply be careful when constructing your Turing
machine that it never overwrites >. Moreover, there are cases where allowing
such overwriting provides some convenient flexibility.

Example 12.6. Even Machine: The even machine is formally the quadruple
(Q,Z,q0,6) where

Q= {q0,q1}

¥ ={r01},
5(q0,1) = (q1, 1, R),
5(‘71’1 <‘70/ 1/ R>/

) =
5(‘71/ 0) = <‘71, Or R>

12.4 Configurations and Computations

Recall tracing through the configurations of the even machine earlier. The
imaginary mechanism consisting of tape, read/write head, and Turing ma-
chine program is really just an intuitive way of visualizing what a Turing ma-
chine computation is. Formally, we can define the computation of a Turing

165

12. TURING MACHINE COMPUTATIONS

machine on a given input as a sequence of configurations—and a configuration
in turn is a sequence of symbols (corresponding to the contents of the tape
at a given point in the computation), a number indicating the position of the
read/write head, and a state. Using these, we can define what the Turing
machine M computes on a given input.

Definition 12.7 (Configuration). A configuration of Turing machine M = (Q, %, qo,)
is a triple (C, m, q) where

1. C € ¥* is a finite sequence of symbols from %,

2. m € N is a number < len(C), and

3.9€Q

Intuitively, the sequence C is the content of the tape (symbols of all squares
from the leftmost square to the last non-blank or previously visited square),
m is the number of the square the read/write head is scanning (beginning
with 0 being the number of the leftmost square), and g is the current state of
the machine.

The potential input for a Turing machine is a sequence of symbols, usually
a sequence that encodes a number in some form. The initial configuration of
the Turing machine is that configuration in which we start the Turing machine
to work on that input: the tape contains the tape end marker immediately
followed by the input written on the squares to the right, the read /write head
is scanning the leftmost square of the input (i.e., the square to the right of the
left end marker), and the mechanism is in the designated start state go.

Definition 12.8 (Initial configuration). The initial configuration of M for input
IeX*is
<[> ~ 1,1, l](])

The —~ symbol is for concatenation—the input string begins immediately to
the left end marker.

Definition 12.9. We say that a configuration (C,m,q) yields the configuration
(C',m’,q") in one step (according to M), iff

1. the m-th symbol of Cis o,
2. the instruction set of M specifies §(q,0) = (¢/,¢’, D),
3. the m-th symbol of C’ is ¢’, and

4. a) D=Landm' =m—1if m > 0, otherwise m' = 0, or
b) D=Randm =m+1,or
c¢) D= Nand m' =m,

166

12.5. Unary Representation of Numbers

5. if m" = len(C), then len(C’) = len(C) + 1 and the m'-th symbol of C’
is 0. Otherwise len(C") = len(C).

6. for all i such thati < len(C) and i # m, C'(i) = C(i),

Definition 12.10. A run of M on input I is a sequence C; of configurations of
M, where Cj is the initial configuration of M for input I, and each C; yields
Ci41 in one step.

We say that M halts on input I after k steps if Cy = (C, m, q), the mth symbol
of Cis o, and (g, o) is undefined. In that case, the output of M for input I is O,
where O is a string of symbols not ending in 0 such that C = > —~ O ~ 0/ for
somei,j € IN.

According to this definition, the output O of M always ends in a symbol
other than 0, or, if at time k the entire tape is filled with 0 (except for the
leftmost i), O is the empty string.

12.5 Unary Representation of Numbers

Turing machines work on sequences of symbols written on their tape. De-
pending on the alphabet a Turing machine uses, these sequences of symbols
can represent various inputs and outputs. Of particular interest, of course, are
Turing machines which compute arithmetical functions, i.e., functions of natu-
ral numbers. A simple way to represent positive integers is by coding them
as sequences of a single symbol 1. If n € IN, let 1" be the empty sequence if
n = 0, and otherwise the sequence consisting of exactly n 1’s.

Definition 12.11 (Computation). A Turing machine M computes the function
f: NF — IN iff M halts on input

1"101™0...01"™%
with output 1 (n1emy)

Example 12.12. Addition: Let’s build a machine that computes the function
f(n,m) = n+ m. This requires a machine that starts with two blocks of 1’s of
length n and m on the tape, and halts with one block consisting of n + m 1’s.
The two input blocks of 1’s are separated by a 0, so one method would be to
write a stroke on the square containing the 0, and erase the last 1.

In Example 12.4, we gave an example of a Turing machine that takes as
input a sequence of 1’s and halts with a sequence of twice as many 1’s on
the tape—the doubler machine. However, because the output contains 0’s to
the left of the doubled block of 1’s, it does not actually compute the function
f(x) = 2x, as you might have assumed. We’ll describe two ways of fixing
that.

167

12. TURING MACHINE COMPUTATIONS

1,LR 1, 1,0,N

0,1,N A 0,0,L
q0 \11-1/ q2

Figure 12.3: A machine computing f(x,y) = x+y

—_
!

start —

1,1,R 1,1,L
0,1,L
qz q3
(=
0,0,R 0,0,L .~
Q¢
0,1,R
1,1,R C@D 64
@D:) 1,1,R
1,0,R 1,1,L
0,0,L

tart 0 5
1,1,L

Figure 12.4: A machine computing f(x) = 2x

Example 12.13. The machine in Figure 12.4 computes the function f(x) = 2x.
Instead of erasing the input and writing two 1’s at the far right for every 1 in
the input as the machine from Example 12.4 does, this machine adds a single 1
to the right for every 1 in the input. It has to keep track of where the input
ends, so it leaves a 0 between the input and the added strokes, which it fills
with a 1 at the very end. And we have to “remember” where we are in the

input, so we temporarily replace a 1 in the input block by a 0.

Example 12.14. A second possibility for computing f(x) = 2x is to keep the
original doubler machine, but add states and instructions at the end which

168

12.5. Unary Representation of Numbers

cart g 0,0,R % 1,1,R g
start —(46 _7/ 8

q14

Figure 12.5: Moving a block of 1’s to the left

move the doubled block of strokes to the far left of the tape. The machine
in Figure 12.5 does just this last part: started on a tape consisting of a block
of 0’s followed by a block of 1’s (and the head positioned anywhere in the
block of 0’s), it erases the 1’s one at a time and writes them at the beginning
of the tape. In order to be able to tell when it is done, it first marks the end
of the block of 1’s with a > symbol, which gets deleted at the end. We've
started numbering the states at g4, so they can be added to the doubler ma-
chine. All you’ll need is an additional instruction 6(g5,0) = (g¢,0, N), i.e., an
arrow from g5 to g labelled 0,0, N. (There is one subtle problem: the resulting
machine does not work for input x = 0. We'll leave this as an exercise.)

Definition 12.15. A Turing machine M computes the partial function f: N +
N iff,

1. Mhaltsoninput1”™ ~0 ~ ... ~0 —~ 1" with output 1" if f(ny,...,n;) =
m.

2. M does not halt at all, or with an output that is not a single block of 1’s
if f(ny,...,ng) is undefined.

169

12. TURING MACHINE COMPUTATIONS

12.6 Halting States

Although we have defined our machines to halt only when there is no in-
struction to carry out, common representations of Turing machines have a
dedicated halting state h, such that h € Q.

The idea behind a halting state is simple: when the machine has finished
operation (it is ready to accept input, or has finished writing the output), it
goes into a state 1 where it halts. Some machines have two halting states, one
that accepts input and one that rejects input.

Example 12.16. Halting States. To elucidate this concept, let us begin with an
alteration of the even machine. Instead of having the machine halt in state g if
the input is even, we can add an instruction to send the machine into a halting
state.
0,0,R
1,R

1,
start — @ e

1,1,R
0,0,N

O,

Let us further expand the example. When the machine determines that the
input is odd, it never halts. We can alter the machine to include a reject state
by replacing the looping instruction with an instruction to go to a reject state r.

1,1,R
SEOEBO
1,1,R
0,0,N 0,0,N

ONENO

Adding a dedicated halting state can be advantageous in cases like this,
where it makes explicit when the machine accepts/rejects certain inputs. How-
ever, it is important to note that no computing power is gained by adding a
dedicated halting state. Similarly, a less formal notion of halting has its own

170

12.7. Disciplined Machines

advantages. The definition of halting used so far in this chapter makes the
proof of the Halting Problem intuitive and easy to demonstrate. For this rea-
son, we continue with our original definition.

12.7 Disciplined Machines

In section section 12.6, we considered Turing machines that have a single, des-
ignated halting state h—such machines are guaranteed to halt, if they halt at
all, in state h. In this way, machines with a single halting state are more “dis-
ciplined” than we allow Turing machines in general to be. There are other
restrictions we might impose on the behavior of Turing machines. For in-
stance, we also have not prohibited Turing machines from ever erasing the
tape-end marker on square 0, or to attempt to move left from square 0. (Our
definition states that the head simply stays on square 0 in this case; other def-
initions have the machine halt.) It is likewise sometimes desirable to be able
to assume that a Turing machine, if it halts at all, halts on square 1.

Definition 12.17. A Turing machine M is disciplined iff
1. it has a designated single halting state &,
2. it halts, if it halts at all, while scanning square 1,
3. it never erases the > symbol on square 0, and

4. it never attempts to move left from square 0.

We have already discussed that any Turing machine can be changed into
one with the same behavior but with a designated halting state. This is done
simply by adding a new state /1, and adding an instruction é(gq,0) = (h, 0, N)
for any pair (g,0) where the original ¢ is undefined. It is true, although te-
dious to prove, that any Turing machine M can be turned into a disciplined
Turing machine M’ which halts on the same inputs and produces the same
output. For instance, if the Turing machine halts and is not on square 1, we
can add some instructions to make the head move left until it finds the tape-
end marker, then move one square to the right, then halt. We’ll leave you to
think about how the other conditions can be dealt with.

Example 12.18. In Figure 12.6, we turn the addition machine from Example 12.12
into a disciplined machine.

Proposition 12.19. For every Turing machine M, there is a disciplined Turing ma-
chine M which halts with output O if M halts with output O, and does not halt if
M does not halt. In particular, any function f: IN" — IN computable by a Turing
machine is also computable by a disciplined Turing machine.

171

12. TURING MACHINE COMPUTATIONS

()=
start —

1,1,R

L

0,0,L
1,1,
1,0,L
@ >, >, R e

Figure 12.6: A disciplined addition machine

1,1,R

12.8 Combining Turing Machines

The examples of Turing machines we have seen so far have been fairly simple
in nature. But in fact, any problem that can be solved with any modern pro-
gramming language can also be solved with Turing machines. To build more
complex Turing machines, it is important to convince ourselves that we can
combine them, so we can build machines to solve more complex problems by
breaking the procedure into simpler parts. If we can find a natural way to
break a complex problem down into constituent parts, we can tackle the prob-
lem in several stages, creating several simple Turing machines and combining
them into one machine that can solve the problem. This point is especially
important when tackling the Halting Problem in the next section.

How do we combine Turing machines M = (Q, %, qo,6) and M' = (Q', X/, q;,6")?
We now use the configuration of the tape after M has halted as the input con-
figuration of a run of machine M’'. To get a single Turing machine M —~ M’
that does this, do the following:

1. Renumber (or relabel) all the states Q' of M’ so that M and M’ have no
states in common (Q N Q' =).

2. The statesof M ~ M’ are QU Q.
3. The tape alphabet is X UX/.

4. The start state is go.

172

12.8. Combining Turing Machines

5. The transition function is the function 6 given by:

d(q,0) ifgeQ
8"(q,0) = {8'(q,0) ifqeQ
(q5,0,N) if g € Q and 6(g, o) is undefined

The resulting machine uses the instructions of M when it is in a state g € Q,
the instructions of M’ when it is in a state ¢ € Q'. When it is in a state g € Q
and is scanning a symbol ¢ for which M has no transition (i.e., M would have
halted), it enters the start state of M’ (and leaves the tape contents and head
position as it is).

Note that unless the machine M is disciplined, we don’t know where the
tape head is when M halts, so the halting configuration of M need not have
the head scanning square 1. When combining machines, it’s important to keep
this in mind.

Example 12.20. Combining Machines: We'll design a machine which, when
started on input consisting of two blocks of 1’s of length n and m, halts with
a single block of 2(m + 1) 1’s on the tape. In order to build this machine, we
can combine two machines we are already familiar with: the addition ma-
chine, and the doubler. We begin by drawing a state diagram for the addition
machine.

1,1,R 1, 1,0,N

start —(9o q q2

N

—_
=

Instead of halting in state 4o, we want to continue operation in order to double
the output. Recall that the doubler machine erases the first stroke in the input
and writes two strokes in a separate output. Let’s add an instruction to make
sure the tape head is reading the first stroke of the output of the addition

173

12. TURING MACHINE COMPUTATIONS

machine.

1,1,R 1,1,R

tart g 0,1,N % 0,0,L 4
start —(40 w 2

It is now easy to double the input—all we have to do is connect the doubler
machine onto state g4. This requires renaming the states of the doubler ma-
chine so that they start at g4 instead of gp—this way we don’t end up with two
starting states. The final diagram should look as in Figure 12.7.

Proposition 12.21. If M and M’ are disciplined and compute the functions f: NF —
Nand f': N — N, respectively, then M ~ M’ is disciplined and computes f' o f.

Proof. Since M is disciplined, when it halts with output f (11, ..., 1) = m, the
head is scanning square 1. If we now enter the start state of M’, the machine
will halt with output f/(m), again scanning square 1. The other conditions of
Definition 12.17 are also satisfied. O

12.9 Variants of Turing Machines

There are in fact many possible ways to define Turing machines, of which
ours is only one. In some ways, our definition is more liberal than others.
We allow arbitrary finite alphabets, a more restricted definition might allow
only two tape symbols, 1 and 0. We allow the machine to write a symbol to
the tape and move at the same time, other definitions allow either writing or
moving. We allow the possibility of writing without moving the tape head,
other definitions leave out the N “instruction.” In other ways, our definition
is more restrictive. We assumed that the tape is infinite in one direction only,
other definitions allow the tape to be infinite both to the left and the right. In
fact, one can even allow any number of separate tapes, or even an infinite grid
of squares. We represent the instruction set of the Turing machine by a tran-
sition function; other definitions use a transition relation where the machine
has more than one possible instruction in any given situation.

174

12.9. Variants of Turing Machines

1,1,R 1,1,R

cart g 0,1,N % 0,0,L g
start —(4o \-1/ 2

0,0, R 0,1,R
79 @ q7
0,0,L h/ 1,1,L
1,1,L 1,1,L 0,1,L

Figure 12.7: Combining adder and doubler machines

This last relaxation of the definition is particularly interesting. In our def-
inition, when the machine is in state g reading symbol ¢, 6(g,0) determines
what the new symbol, state, and tape head position is. But if we allow the
instruction set to be a relation between current state-symbol pairs (g,) and
new state-symbol-direction triples (q’,0’, D), the action of the Turing machine
may not be uniquely determined—the instruction relation may contain both
(g,0,9',0',D) and (gq,0,9”,0”,D’). In this case we have a non-deterministic
Turing machine. These play an important role in computational complexity
theory.

There are also different conventions for when a Turing machine halts: we
say it halts when the transition function is undefined, other definitions require
the machine to be in a special designated halting state. We have explained in
section 12.6 why requiring a designated halting state is not a restriction which
impacts what Turing machines can compute. Since the tapes of our Turing
machines are infinite in one direction only, there are cases where a Turing
machine can’t properly carry out an instruction: if it reads the leftmost square

175

12. TURING MACHINE COMPUTATIONS

and is supposed to move left. According to our definition, it just stays put
instead of “falling off”, but we could have defined it so that it halts when that
happens. This definition is also equivalent: we could simulate the behavior
of a Turing machine that halts when it attempts to move left from square 0
by deleting every transition 6(g,>) = (g, o, L)—then instead of attempting to
move left on > the machine halts.!

There are also different ways of representing numbers (and hence the input-
output function computed by a Turing machine): we use unary representa-
tion, but you can also use binary representation. This requires two symbols in
addition to 0 and >.

Now here is an interesting fact: none of these variations matters as to
which functions are Turing computable. If a function is Turing computable ac-
cording to one definition, it is Turing computable according to all of them.

We won't go into the details of verifying this. Here’s just one example:
we gain no additional computing power by allowing a tape that is infinite
in both directions, or multiple tapes. The reason is, roughly, that a Turing
machine with a single one-way infinite tape can simulate multiple or two-way
infinite tapes. E.g., using additional states and instructions, we can “translate”
a program for a machine with multiple tapes or two-way infinite tape into
one with a single one-way infinite tape. The translated machine can use the
even squares for the squares of tape 1 (or the “positive” squares of a two-way
infinite tape) and the odd squares for the squares of tape 2 (or the “negative”
squares).

12.10 The Church-Turing Thesis

Turing machines are supposed to be a precise replacement for the concept of
an effective procedure. Turing thought that anyone who grasped both the
concept of an effective procedure and the concept of a Turing machine would
have the intuition that anything that could be done via an effective procedure
could be done by Turing machine. This claim is given support by the fact
that all the other proposed precise replacements for the concept of an effective
procedure turn out to be extensionally equivalent to the concept of a Turing
machine —that is, they can compute exactly the same set of functions. This
claim is called the Church-Turing thesis.

Definition 12.22 (Church-Turing thesis). The Church-Turing Thesis states that
anything computable via an effective procedure is Turing computable.

The Church-Turing thesis is appealed to in two ways. The first kind of
use of the Church-Turing thesis is an excuse for laziness. Suppose we have a

IThis doesn’t quite work, since nothing prevents us from writing and reading > on squares
other than square 0 (see Example 12.14). We can get around that by adding a second >’ symbol to
use instead for such a purpose.

176

12.10. The Church-Turing Thesis

description of an effective procedure to compute something, say, in “pseudo-
code.” Then we can invoke the Church-Turing thesis to justify the claim that
the same function is computed by some Turing machine, even if we have not
in fact constructed it.

The other use of the Church-Turing thesis is more philosophically interest-
ing. It can be shown that there are functions which cannot be computed by
Turing machines. From this, using the Church-Turing thesis, one can conclude
that it cannot be effectively computed, using any procedure whatsoever. For
if there were such a procedure, by the Church-Turing thesis, it would follow
that there would be a Turing machine for it. So if we can prove that there is
no Turing machine that computes it, there also can’t be an effective procedure.
In particular, the Church-Turing thesis is invoked to claim that the so-called
halting problem not only cannot be solved by Turing machines, it cannot be
effectively solved at all.

177

Chapter 13

Undecidability

13.1 Introduction

It might seem obvious that not every function, even every arithmetical func-
tion, can be computable. There are just too many, whose behavior is too
complicated. Functions defined from the decay of radioactive particles, for
instance, or other chaotic or random behavior. Suppose we start counting 1-
second intervals from a given time, and define the function f(n) as the num-
ber of particles in the universe that decay in the n-th 1-second interval after
that initial moment. This seems like a candidate for a function we cannot ever
hope to compute.

But it is one thing to not be able to imagine how one would compute such
functions, and quite another to actually prove that they are uncomputable.
In fact, even functions that seem hopelessly complicated may, in an abstract
sense, be computable. For instance, suppose the universe is finite in time—
some day, in the very distant future the universe will contract into a single
point, as some cosmological theories predict. Then there is only a finite (but
incredibly large) number of seconds from that initial moment for which f(n)
is defined. And any function which is defined for only finitely many inputs is
computable: we could list the outputs in one big table, or code it in one very
big Turing machine state transition diagram.

We are often interested in special cases of functions whose values give the
answers to yes/no questions. For instance, the question “is n a prime num-
ber?” is associated with the function

isprime(n) = {

1 if nis prime

0 otherwise.

We say that a yes/no question can be effectively decided, if the associated 1/0-
valued function is effectively computable.

To prove mathematically that there are functions which cannot be effec-
tively computed, or problems that cannot effectively decided, it is essential to

179

13. UNDECIDABILITY

fix a specific model of computation, and show that there are functions it can-
not compute or problems it cannot decide. We can show, for instance, that not
every function can be computed by Turing machines, and not every problem
can be decided by Turing machines. We can then appeal to the Church-Turing
thesis to conclude that not only are Turing machines not powerful enough to
compute every function, but no effective procedure can.

The key to proving such negative results is the fact that we can assign
numbers to Turing machines themselves. The easiest way to do this is to enu-
merate them, perhaps by fixing a specific way to write down Turing machines
and their programs, and then listing them in a systematic fashion. Once we
see that this can be done, then the existence of Turing-uncomputable func-
tions follows by simple cardinality considerations: the set of functions from
N to IN (in fact, even just from IN to {0, 1}) are uncountable, but since we can
enumerate all the Turing machines, the set of Turing-computable functions is
only countably infinite.

We can also define specific functions and problems which we can prove
to be uncomputable and undecidable, respectively. One such problem is the
so-called Halting Problem. Turing machines can be finitely described by list-
ing their instructions. Such a description of a Turing machine, i.e., a Turing
machine program, can of course be used as input to another Turing machine.
So we can consider Turing machines that decide questions about other Tur-
ing machines. One particularly interesting question is this: “Does the given
Turing machine eventually halt when started on input n?” It would be nice if
there were a Turing machine that could decide this question: think of it as a
quality-control Turing machine which ensures that Turing machines don’t get
caught in infinite loops and such. The interesting fact, which Turing proved,
is that there cannot be such a Turing machine. There cannot be a single Turing
machine which, when started on input consisting of a description of a Turing
machine M and some number n, will always halt with either output 1 or 0
according to whether M machine would have halted when started on input n
or not.

Once we have examples of specific undecidable problems we can use them
to show that other problems are undecidable, too. For instance, one celebrated
undecidable problem is the question, “Is the first-order formula ¢ valid?”.
There is no Turing machine which, given as input a first-order formula ¢, is
guaranteed to halt with output 1 or 0 according to whether ¢ is valid or not.
Historically, the question of finding a procedure to effectively solve this prob-
lem was called simply “the” decision problem; and so we say that the decision
problem is unsolvable. Turing and Church proved this result independently
at around the same time, so it is also called the Church-Turing Theorem.

180

13.2. Enumerating Turing Machines

0,0,R
1,1,R

start —>
1,1,R

0,0,R
A, AR
start %@/_\
A,A R

Figure 13.1: Variants of the Even machine

13.2 Enumerating Turing Machines

We can show that the set of all Turing machines is countable. This follows
from the fact that each Turing machine can be finitely described. The set of
states and the tape vocabulary are finite sets. The transition function is a par-
tial function from Q x X to Q x X x {L,R, N}, and so likewise can be speci-
fied by listing its values for the finitely many argument pairs for which it is
defined.

This is true as far as it goes, but there is a subtle difference. The definition
of Turing machines made no resriction on what elements the set of states and
tape alphabet can have. So, e.g., for every real number, there technically is
a Turing machine that uses that number as a state. However, the behavior
of the Turing machine is independent of which objects serve as states and
vocabulary. Consider the two Turing machines in Figure 13.1. These two
diagrams correspond to two machines, M with the tape alphabet ¥ = {>,0,1}
and set of states {qo, 41 }, and M’ with alphabet ¥’ = {>,0, A} and states {s, h}.
But their instructions are otherwise the same: M will halt on a sequence of n
1’s iff n is even, and M’ will halt on a sequence of n A’s iff n is even. All
we’ve done is rename 1 to A, gg to s, and g; to h. This example generalizes:
we can think of Turing machines as the same as long as one results from the
other by such a renaming of symbols and states. In fact, we can simply think
of the symbols and states of a Turing machine as positive integers: instead of
0p think 1, instead of oy think 2, etc.; > is 1, 0 is 2, etc. In this way, the Even
machine becomes the machine depicted in Figure 13.2. We might call a Turing
machine with states and symbols that are positive integers a standard machine,
and only consider standard machines from now on.!

1The terminology “standard machine” is not standard.

181

13. UNDECIDABILITY

2,2,R
3,3,R
start _>Q>/—\
3,3,R

Figure 13.2: A standard Even machine

We wanted to show that the set of Turing machines is countable, and with
the above considerations in mind, it is enough to show that the set of stan-
dard Turing machines is countable. Suppose we are given a standard Turing
machine M = (Q, %, qo,6). How could we describe it using a finite string of
positive integers? We'll first list the number of states, the states themselves,
the number of symbols, the symbols themselves, and the starting state. (Re-
member, all of these are positive integers, since M is a standard machine.)
What about 6? The set of possible arguments, i.e., pairs (g,0), is finite, since
Q and X are finite. So the information in ¢ is simply the finite list of all 5-
tuples (q,0,q',0',d) where 6(q,0) = (¢q/,0’, D), and d is a number that codes
the direction D (say, 1 for L, 2 for R, and 3 for N).

In this way, every standard Turing machine can be described by a finite list
of positive integers, i.e., as a sequence sy; € (Z™)*. For instance, the standard
Even machine is coded by the sequence

5 6(22)=(22.R)

—~ ——
2,1,2,3,1,2,3,1, 1,3,2,3,2, 2,2,2,2,2, 2,3,1,3,2 .
~—~— ——— N———

Q 5(1,3)=(23,R) 5(23)=(13,R)

Theorem 13.1. There are functions from IN to IN which are not Turing computable.

Proof. We know that the set of finite sequences of positive integers (Z1)* is
countable (problem 4.7). This gives us that the set of descriptions of standard
Turing machines, as a subset of (Z1)*, is itself enumerable. Every Turing
computable function IN to IN is computed by some (in fact, many) Turing ma-
chines. By renaming its states and symbols to positive integers (in particular,
>as 1,0as 2, and 1 as 3) we can see that every Turing computable function is
computed by a standard Turing machine. This means that the set of all Turing
computable functions from IN to IN is also enumerable.

On the other hand, the set of all functions from IN to IN is not countable
(problem 4.21). If all functions were computable by some Turing machine,
we could enumerate the set of all functions by listing all the descriptions of

182

13.3. Universal Turing Machines

Turing machines that compute them. So there are some functions that are not
Turing computable. O

13.3 Universal Turing Machines

In section 13.2 we discussed how every Turing machine can be described by
a finite sequence of integers. This sequence encodes the states, alphabet, start
state, and instructions of the Turing machine. We also pointed out that the
set of all of these descriptions is countable. Since the set of such descriptions
is countably infinite, this means that there is a surjective function from IN to
these descriptions. Such a surjective function can be obtained, for instance,
using Cantor’s zig-zag method. It gives us a way of enumerating all (descrip-
tions) of Turing machines. If we fix one such enumeration, it now makes sense
to talk of the 1st, 2nd, ..., eth Turing machine. These numbers are called in-
dices.

Definition 13.2. If M is the eth Turing machine (in our fixed enumeration), we
say that e is an index of M. We write M, for the eth Turing machine.

A machine may have more than one index, e.g., two descriptions of M
may differ in the order in which we list its instructions, and these different
descriptions will have different indices.

Importantly, it is possible to give the enumeration of Turing machine de-
scriptions in such a way that we can effectively compute the description of M
from its index, and to effectively compute an index of a machine M from its
description. By the Church-Turing thesis, it is then possible to find a Turing
machine which recovers the description of the Turing machine with index e
and writes the corresponding description on its tape as output. The descrip-
tion would be a sequence of blocks of 1’s (representing the positive integers in
the sequence describing Me).

Given this, it now becomes natural to ask: what functions of Turing ma-
chine indices are themselves computable by Turing machines? What proper-
ties of Turing machine indices can be decided by Turing machines? An ex-
ample: the function that maps an index e to the number of states the Turing
machine with index e has, is computable by a Turing machine. Here’s what
such a Turing machine would do: started on a tape containing a single block
of e 1’s, it would first decode e into its description. The description is now
represented by a sequence of blocks of 1’s on the tape. Since the first element
in this sequence is the number of states. So all that has to be done now is to
erase everything but the first block of 1’s and then halt.

A remarkable result is the following:

Theorem 13.3. There is a universal Turing machine U which, when started on
input (e, n)

183

13. UNDECIDABILITY

1. halts iff M, halts on input n, and
2. if M, halts with output m, so does U.

U thus computes the function f: IN x N -+ IN given by f(e,n) = m if M, started
on input n halts with output m, and undefined otherwise.

Proof. To actually produce U is basically impossible, since it is an extremely
complicated machine. But we can describe in outline how it works, and then
invoke the Church-Turing thesis. When it starts, U’s tape contains a block of e
1’s followed by a block of n 1’s. It first “decodes” the index e to the right of the
input n. This produces a list of numbers (i.e., blocks of 1’s separated by 0’s)
that describes the instructions of machine M,. U then writes the number of the
start state of M, and the number 1 on the tape to the right of the description
of M,. (Again, these are represented in unary, as blocks of 1’s.) Next, it copies
the input (block of 1 1’s) to the right—but it replaces each 1 by a block of three
1’s (remember, the number of the 1 symbol is 3, 1 being the number of > and
2 being the number of 0). At the left end of this sequence of blocks (separated
by 0 symbols on the tape of U), it writes a single 1, the code for >.

U now has on its tape: the index e, the number 7, the code number of the
start state (the “current state”), the number of the initial head position 1 (the
“current head position”), and the initial contents of the “tape” (a sequence
of blocks of 1’s representing the code numbers of the symbols of M.—the
“symbols”—separated by 0’s).

It now simulates what M, would do if started on input #n, by doing the
following:

1. Find the number k of the “current head position” (at the beginning,
that’s 1),

2. Move to the kth block in the “tape” to see what the “symbol” there is,
3. Find the instruction matching the current “state” and “symbol,”

4. Move back to the kth block on the “tape” and replace the “symbol” there
with the code number of the symbol M, would write,

5. Move the head to where it records the current “state” and replace the
number there with the number of the new state,

6. Move to the place where it records the “tape position” and erase a 1 or
add a 1 (if the instruction says to move left or right, respectively).

7. Repeat.”

2We're glossing over some subtle difficulties here. E.g., U may need some extra space when
it increases the counter where it keeps track of the “current head position”—in that case it will
have to move the entire “tape” to the right.

184

13.4. The Halting Problem

If M, started on input 1 never halts, then U also never halts, so its output is
undefined.

If in step (3) it turns out that the description of M, contains no instruction
for the current “state” /“symbol” pair, then M, would halt. If this happens, U
erases the part of its tape to the left of the “tape.” For each block of three 1's
(representing a 1 on M,’s tape), it writes a 1 on the left end of its own tape, and
successively erases the “tape.” When this is done, U’s tape contains a single
block of 1’s of length m.

If U encounters something other than a block of three 1’s on the “tape,” it
immediately halts. Since U’s tape in this case does not contain a single block
of 1’s, its output is not a natural number, i.e., f (e, n) is undefined in this case.C]

13.4 The Halting Problem

Assume we have fixed some enumeration of Turing machine descriptions.
Each Turing machine thus receives an index: its place in the enumeration M,
My, M3, ... of Turing machine descriptions.

We know that there must be non-Turing-computable functions: the set
of Turing machine descriptions—and hence the set of Turing machines—is
countable, but the set of all functions from IN to IN is not. But we can find
specific examples of non-computable functions as well. One such function is
the halting function.

Definition 13.4 (Halting function). The halting function h is defined as

h(e,n) = 0 if machine M, does not halt for input n
"7 11 if machine M, halts for input n

Definition 13.5 (Halting problem). The Halting Problem is the problem of de-
termining (for any e,) whether the Turing machine M, halts for an input of n
strokes.

We show that / is not Turing-computable by showing that a related func-
tion, s, is not Turing-computable. This proof relies on the fact that anything
that can be computed by a Turing machine can be computed by a disciplined
Turing machine (section 12.7), and the fact that two Turing machines can be
hooked together to create a single machine (section 12.8).

Definition 13.6. The function s is defined as

s(e) = 0 if machine M, does not halt for input e
1 if machine M, halts for input e

Lemma 13.7. The function s is not Turing computable.

185

13. UNDECIDABILITY

Proof. We suppose, for contradiction, that the function s is Turing computable.
Then there would be a Turing machine S that computes s. We may assume,
without loss of generality, that when S halts, it does so while scanning the
first square (i.e., that it is disciplined). This machine can be “hooked up” to
another machine J, which halts if it is started on input O (i.e., if it reads 0 in the
initial state while scanning the square to the right of the end-of-tape symbol),
and otherwise wanders off to the right, never halting. S —~ |, the machine
created by hooking S to J, is a Turing machine, so it is M, for some ¢ (i.e., it
appears somewhere in the enumeration). Start M, on an input of e¢ 1s. There
are two possibilities: either M, halts or it does not halt.

1. Suppose M, halts for an input of e 1s. Then s(e) = 1. So S, when started
on e, halts with a single 1 as output on the tape. Then | starts with a 1
on the tape. In that case | does not halt. But M, is the machine S —~ J,
so it should do exactly what S followed by | would do (i.e., in this case,
wander off to the right and never halt). So M, cannot halt for an input
of e 1’s.

2. Now suppose M, does not halt for an input of e 1s. Then s(e) = 0, and
S, when started on input e, halts with a blank tape. |, when started on
a blank tape, immediately halts. Again, M, does what S followed by |
would do, so M, must halt for an input of e 1’s.

In each case we arrive at a contradiction with our assumption. This shows
there cannot be a Turing machine S: s is not Turing computable. O

Theorem 13.8 (Unsolvability of the Halting Problem). The halting problem is
unsolvable, i.e., the function h is not Turing computable.

Proof. Suppose h were Turing computable, say, by a Turing machine H. We
could use H to build a Turing machine that computes s: First, make a copy
of the input (separated by a 0 symbol). Then move back to the beginning,
and run H. We can clearly make a machine that does the former (see prob-
lem 12.13), and if H existed, we would be able to “hook it up” to such a copier
machine to get a new machine which would determine if M, halts on inpute,
i.e.,, computes s. But we’ve already shown that no such machine can exist.
Hence, & is also not Turing computable. O

13.5 The Decision Problem

We say that first-order logic is decidable iff there is an effective method for
determining whether or not a given sentence is valid. As it turns out, there is
no such method: the problem of deciding validity of first-order sentences is
unsolvable.

186

13.6. Representing Turing Machines

In order to establish this important negative result, we prove that the de-
cision problem cannot be solved by a Turing machine. That is, we show that
there is no Turing machine which, whenever it is started on a tape that con-
tains a first-order sentence, eventually halts and outputs either 1 or 0 depend-
ing on whether the sentence is valid or not. By the Church-Turing thesis, every
function which is computable is Turing computable. So if this “validity func-
tion” were effectively computable at all, it would be Turing computable. If it
isn’t Turing computable, then, it also cannot be effectively computable.

Our strategy for proving that the decision problem is unsolvable is to re-
duce the halting problem to it. This means the following: We have proved that
the function h(e, w) that halts with output 1 if the Turing machine described
by e halts on input w and outputs 0 otherwise, is not Turing computable. We
will show that if there were a Turing machine that decides validity of first-
order sentences, then there is also Turing machine that computes k. Since h
cannot be computed by a Turing machine, there cannot be a Turing machine
that decides validity either.

The first step in this strategy is to show that for every input w and a Turing
machine M, we can effectively describe a sentence 7(M, w) representing the
instruction set of M and the input w and a sentence a(M, w) expressing “M
eventually halts” such that:

F1(M,w) D a(M,w) iff M halts for input w.

The bulk of our proof will consist in describing these sentences T(M, w) and a (M, w)
and in verifying that (M, w) D a(M, w) is valid iff M halts on input w.

13.6 Representing Turing Machines

In order to represent Turing machines and their behavior by a sentence of
first-order logic, we have to define a suitable language. The language consists
of two parts: predicate symbols for describing configurations of the machine,
and expressions for numbering execution steps (“moments”) and positions on
the tape.

We introduce two kinds of predicate symbols, both of them 2-place: For
each state g, a predicate symbol Q,, and for each tape symbol ¢, a predicate
symbol Si. The former allow us to describe the state of M and the position of
its tape head, the latter allow us to describe the contents of the tape.

In order to express the positions of the tape head and the number of steps
executed, we need a way to express numbers. This is done using a constant
symbol o, and a 1-place function /, the successor function. By convention it
is written after its argument (and we leave out the parentheses). So o names
the leftmost position on the tape as well as the time before the first execution
step (the initial configuration), o’ names the square to the right of the leftmost
square, and the time after the first execution step, and so on. We also introduce

187

13. UNDECIDABILITY

a predicate symbol < to express both the ordering of tape positions (when it
means “to the left of”) and execution steps (then it means “before”).

Once we have the language in place, we list the “axioms” of T(M, w), i.e.,
the sentences which, taken together, describe the behavior of M when run on
input w. There will be sentences which lay down conditions on o, /, and <,
sentences that describes the input configuration, and sentences that describe
what the configuration of M is after it executes a particular instruction.

Definition 13.9. Given a Turing machine M = (Q, %, qo, 6), the language L
consists of:

1. A two-place predicate symbol Q,(x,y) for every state 4 € Q. Intu-
itively, Qq(,7) expresses “after n steps, M is in state g scanning the
mth square.”

2. A two-place predicate symbol Sy (x,y) for every symbol ¢ € . Intu-
itively, S, (71, 7) expresses “after n steps, the mth square contains sym-
bol 0.”

3. A constant symbol o
4. A one-place function symbol /

5. A two-place predicate symbol <

For each number 7n there is a canonical term 71, the numeral for n, which
represents it in £). 0is 0, 1is 0/, 2 is 0”, and so on. More formally:

The sentences describing the operation of the Turing machine M on input
w = 0;, ...0; are the following:

1. Axioms describing numbers and <:

a) A sentence that says that every number is less than its successor:
Vxx < x'
b) A sentence that ensures that < is transitive:
VaVyVz ((x <y&y <z) Dx<z)
2. Axioms describing the input configuration:

a) After 0 steps—before the machine starts—M is in the inital state gy,
scanning square 1:

qu (T, 6)

188

13.6. Representing Turing Machines

b)

c)

The first k + 1 squares contain the symbols >, 0; , ..., 0;,:
55(0,0) & S, (1,0) & - - & S, (k,0)
Otherwise, the tape is empty:

Vx (k < x D Sp(x,0))

3. Axioms describing the transition from one configuration to the next:

For the following, let ¢(x,y) be the conjunction of all sentences of the
form

Vz(((z < xVx<z)&Ss(z,y)) D Se(zy))

where o € Y. We use ¢(71,7) to express “other than at square m, the
tape after n + 1 steps is the same as after n steps.”

a)

For every instruction d(q;, o) = (g;,0", R), the sentence:

Vx Wy ((Qq (%, ¥) & Se(x,y)) D
(Qq; (¥) &S (x,y') & 9(x,1)))

This says that if, after y steps, the machine is in state g; scanning
square x which contains symbol ¢, then after y + 1 steps it is scan-
ning square x + 1, is in state ¢;, square x now contains ¢’, and every
square other than x contains the same symbol as it did after y steps.

For every instruction d(q;, o) = (q;,0", L), the sentence:

Yy ((Qq (x', y) & So(x',y)) D
(Qq;(x,y") &S (',) & 9(x,y))) &
vy ((Qq,(0,y) & Sy (0,¥)) D
(Qq;(0,y") &Sy (0,y') & 9(0,)))

Take a moment to think about how this works: now we don't start
with “if scanning square x ...” but: “if scanning squarex +1...” A
move to the left means that in the next step the machine is scanning
square x. But the square that is written on is x + 1. We do it this
way since we don’t have subtraction or a predecessor function.

Note that numbers of the form x + 1 are 1, 2, ..., i.e., this doesn’t
cover the case where the machine is scanning square 0 and is sup-
posed to move left (which of course it can’t—it just stays put). That
special case is covered by the second conjunction: it says that if, af-
ter y steps, the machine is scanning square 0 in state g; and square 0
contains symbol o, then after y + 1 steps it’s still scanning square 0,
is now in state gq;, the symbol on square 0 is ¢’, and the squares
other than square 0 contain the same symbols they contained ofter

Yy steps.

189

13. UNDECIDABILITY

c) For every instruction §(q;, o) = (q;,0’, N), the sentence:

Vx Yy ((Qg (%, ¥) & Se(x,y)) D
(Qq;(x,y) &Sy (x,y) & 9(x,y)))

Let 7(M, w) be the conjunction of all the above sentences for Turing machine M
and input w.

In order to express that M eventually halts, we have to find a sentence that
says “after some number of steps, the transition function will be undefined.”
Let X be the set of all pairs (g,0) such that §(g,0) is undefined. Let a(M,w)
then be the sentence

I3y (V (Qlxy) &Ss(x,y)))
(g.0)€X

If we use a Turing machine with a designated halting state £, it is even
easier: then the sentence a(M, w)

Fx Iy Qu(x, y)
expresses that the machine eventually halts.

Proposition 13.10. If m < k, then T(M,w) Fm < k

Proof. Exercise. O

13.7 Verifying the Representation

In order to verify that our representation works, we have to prove two things.
First, we have to show that if M halts on input w, then T(M, w) D a(M, w) is
valid. Then, we have to show the converse, i.e., that if T(M,w) D a(M, w) is
valid, then M does in fact eventually halt when run on input w.

The strategy for proving these is very different. For the first result, we have
to show that a sentence of first-order logic (namely, (M, w) D a(M,w)) is
valid. The easiest way to do this is to give a derivation. Our proof is supposed
to work for all M and w, though, so there isn’t really a single sentence for
which we have to give a derivation, but infinitely many. So the best we can do
is to prove by induction that, whatever M and w look like, and however many
steps it takes M to halt on input w, there will be a derivation of T(M,w) D
a(M,w).

Naturally, our induction will proceed on the number of steps M takes be-
fore it reaches a halting configuration. In our inductive proof, we’ll estab-
lish that for each step n of the run of M on input w, T(M,w) F x(M,w,n),
where x (M, w, n) correctly describes the configuration of M run on w after n
steps. Now if M halts on input w after, say, n steps, x (M, w, n) will describe

190

13.7. Verifying the Representation

a halting configuration. We'll also show that x(M,w,n) E a(M,w), when-
ever x(M,w,n) describes a halting configuration. So, if M halts on input w,
then for some n, M will be in a halting configuration after n steps. Hence,
(M, w) E x(M,w,n) where x(M, w, n) describes a halting configuration, and
since in that case x(M, w,n) £ a(M, w), we get that T(M, w) F a(M,w), i.e.,
that F (M, w) D a(M,w).

The strategy for the converse is very different. Here we assume that F
(M, w) D a(M,w) and have to prove that M halts on input w. From the hy-
pothesis we get that T(M, w) F (M, w), i.e., a(M,w) is true in every structure
in which T(M, w) is true. So we’ll describe a structure 91 in which (M, w)
is true: its domain will be IN, and the interpretation of all the Qg and S,
will be given by the configurations of M during a run on input w. So, e.g.,
M E Qq(m,n) iff T, when run on input w for n steps, is in state g and scan-
ning square m. Now since T(M, w) F a(M, w) by hypothesis, and since M F
T(M, w) by construction, M F a(M,w). But M F a(M,w) iff there is some
n € |M| = N so that M, run on input w, is in a halting configuration after n
steps.

Definition 13.11. Let x (M, w, n) be the sentence
Qq(7,7) & Sy (0,7) & - - - & Sy, (k,) & Vx (k < x D So(x,7))

where g is the state of M at time 1, M is scanning square m at time 7, square i
contains symbol o; at time n for 0 < i < k and k is the right-most non-blank
square of the tape at time 0, or the right-most square the tape head has visited
after n steps, whichever is greater.

Lemma 13.12. If M run on input w is in a halting configuration after n steps, then
xX(M,w,n) Fa(M,w).

Proof. Suppose that M halts for input w after n steps. There is some state g,
square m, and symbol ¢ such that:

1. After n steps, M is in state g scanning square m on which ¢ appears.
2. The transition function (g, o) is undefined.

X(M,w,n) is the description of this configuration and will include the clauses
Qq(m, 1) and S, (71, 7). These clauses together imply a (M, w):

3y (V (Qq(xy) & Se(x,y)))
(g.0)eX

since Q (11, 1) & S, (1, 71) & /(g yex (Qq (11, 7) & S (111, 7)), as (¢',0”) € X.OI

So if M halts for input w, then there is some n such that x(M,w,n) F
a(M, w). We will now show that for any time n, (M, w) £ x(M, w, n).

191

13. UNDECIDABILITY

Lemma 13.13. For each n, if M has not halted after n steps, (M, w) E x (M, w, n).

Proof. Induction basis: If n = 0, then the conjuncts of x(M, w,0) are also con-
juncts of T(M, w), so entailed by it.

Inductive hypothesis: If M has not halted before the nth step, then (M, w)
X(M,w,n). We have to show that (unless x(M, w, n) describes a halting con-
figuration), (M, w) F x(M,w,n+1).

Suppose n > 0 and after n steps, M started on w is in state g scanning
square m. Since M does not halt after n steps, there must be an instruction of
one of the following three forms in the program of M:

1. 4(q,0) = {q',0",R)
2. 6(q,0) = {q',0",L)
3. 6(q,0) =(q,0',N)
We will consider each of these three cases in turn.

1. Suppose there is an instruction of the form (1). By Definition 13.9(3a),
this means that

VaVy ((Qq(x,y) & Se(x,

x,¥)) D
(@ (1) & S (3,

)& 9(x,y)))

is a conjunct of T(M, w). This entails the following sentence (universal
instantiation, 7 for x and 7 for y):

y
Y

(Qq(m, 1) & Sy (m, 7)) D
(Qq (', 71') & Sp (11, 7) & (11, 7)).

By induction hypothesis, T(M, w) F x(M,w,n), ie.,

Qq(7,7) & Siy (0,7) & - - - & Sy, (k,) &
Vx (k < x D So(x,7))

Since after n steps, tape square m contains o, the corresponding conjunct
is Sy (7, 7), so this entails:

Qq(m,7) & Sy (71, 71)
We now get
Qy (i, ') & Sy (71, 71') &
Sey(0,7) & - & Sy (k,7) &

n
Vx (k < x D So(x, 7))

192

13.7. Verifying the Representation

as follows: The first line comes directly from the consequent of the pre-
ceding conditional, by modus ponens. Each conjunct in the middle
line—which excludes Sy, (71, @’)—follows from the corresponding con-
junct in x (M, w, n) together with ¢ (7, 7).

If m < k, (M, w) + m < k (Proposition 13.10) and by transitivity of <,
we have Vx (k < x D < x). If m = k, then Vx (k < x D m < x) by
logic alone. The last line then follows from the corresponding conjunct
in x(M,w,n),Vx (k < x D m < x),and ¢(m,7). If m < k, this already is
xX(M,w,n+1).

Now suppose m = k. In that case, after n + 1 steps, the tape head has
also visited square k + 1, which now is the right-most square visited.

So x(M,w,n + 1) has a new conjunct, Sy (E’,ﬁ’), and the last conjuct is

Vx (E/ < x D Sp(x,7')). We have to verify that these two sentences are
also implied.

We already have Vx (k < x D So(x,7')). In particular, this gives us
k < ¥ o Sy(k, 7). From the axiom Vx x < x’ we getk < K. By modus
ponens, Sy(k, ') follows.

Also, since T(M,w) - k < k', the axiom for transitivity of < gives us
Vx (El < x D So(x,7)). (We leave the verification of this as an exercise.)

. Suppose there is an instruction of the form (2). Then, by Definition 13.9(3b),

Va vy (Qq(x',y) & Se(x',y)) D
(Qy(x,y) &Sy (¥, y) & (x,y))) &
Vy ((Qq;(0,y) & Se(0,y)) O
(Qq;(0,y') &Sy (0,y') & 9(0,y)))

is a conjunct of T(M,w). If m > 0, thenlet! = m —1 (e, m = 1+ 1).
The first conjunct of the above sentence entails the following;:

(Qu(T,70) & Sy (I, 7)) D
(Qy(L7) &Sy (I,) & (1, 7))

Otherwise, let | = m = 0 and consider the following sentence entailed
by the second conjunct:

((Qq, (0, 7) & S¢(0,7)) D
(Qq(0,7") & Sg(0,7) & (0, 7)))

193

13. UNDECIDABILITY

Either sentence implies
Qu(L7) & Sy (1, 7') &
Soy(0,7) & -+ - & Sy (k,71') &
Vx (k < x D So(x, 7))

as before. (Note that in the first case, I' =T+1 = m and in the second
case | = o.) But thisjustis x(M,w,n +1).

3. Case (3) is left as an exercise.
We have shown that for any n, T(M, w) F x(M, w, n). O
Lemma 13.14. If M halts on input w, then T(M,w) D a(M, w) is valid.

Proof. By Lemma 13.13, we know that, for any time n, the description x (M, w, n)
of the configuration of M at time 7 is entailed by 7(M, w). Suppose M halts af-
ter k steps. At that point, it will be scanning square m, for some m € IN. Then
X(M,w, k) describes a halting configuration of M, i.e., it contains as conjuncts
both Q,(77,k) and S, (7, k) with 6(g,0) undefined. Thus, by Lemma 13.12,
x(M,w, k) E a(M,w). But since T(M,w) £ x(M,w,k), we have T(M,w) F
a(M,w) and therefore T(M,w) D a(M, w) is valid. O

To complete the verification of our claim, we also have to establish the
reverse direction: if T(M,w) D a(M,w) is valid, then M does in fact halt
when started on input w.

Lemma 13.15. IfE ©(M,w) D a(M,w), then M halts on input w.

Proof. Consider the £-structure 9t with domain IN which interprets o as 0,
/ as the successor function, and < as the less-than relation, and the predicates
Qg and S as follows:

m started on w, after n steps,
Q" = {lmm) | M is in state g scanning square m }
started on w, after n steps,
St = {(mm) | ")

square m of M contains symbol o

In other words, we construct the structure 9t so that it describes what M
started on input w actually does, step by step. Clearly, M F (M, w). If
ET(M,w) D a(M,w), then also M F a(M, w), i.e.,

MEIxTy(V (Qxy) &Se(x,1)))-
(g0)eX

As || = N, there must be m, n € IN so that M F Q,(m,7) & Sy (m,7) for
some g and ¢ such that §(g, 0) is undefined. By the definition of 91, this means
that M started on input w after n steps is in state g and reading symbol ¢, and
the transition function is undefined, i.e., M has halted. O

194

13.8. The Decision Problem is Unsolvable

13.8 The Decision Problem is Unsolvable

Theorem 13.16. The decision problem is unsolvable: There is no Turing machine D,
which when started on a tape that contains a sentence of first-order logic as input,
D eventually halts, and outputs 1 iff ¢ is valid and 0 otherwise.

Proof. Suppose the decision problem were solvable, i.e., suppose there were
a Turing machine D. Then we could solve the halting problem as follows.
We construct a Turing machine E that, given as input the number e of Turing
machine M, and input w, computes the corresponding sentence 7(M,, w) D
a(M,,w) and halts, scanning the leftmost square on the tape. The machine
E —~ D would then, given input e and w, first compute T(M,, w) D a(M,, w)
and then run the decision problem machine D on that input. D halts with out-
put 1iff T(M,, w) D a(M,, w) is valid and outputs 0 otherwise. By Lemma 13.15
and Lemma 13.14, T(M,, w) D a(M,, w) is valid iff M, halts on input w. Thus,
E ~ D, given input e and w halts with output 1 iff M, halts on input w and
halts with output 0 otherwise. In other words, E ~ D would solve the halting
problem. But we know, by Theorem 13.8, that no such Turing machine can
exist. O

Corollary 13.17. It is undecidable if an arbitrary sentence of first-order logic is sat-
isfiable.

Proof. Suppose satisfiability were decidable by a Turing machine S. Then we
could solve the decision problem as follows: Given a sentence B as input,
move 1 to the right one square. Return to square 1 and write the symbol ~.

Now run the Turing machine S. It eventually halts with output either 1
(if ~v is satisfiable) or 0 (if ~ is unsatisfiable) on the tape. If there is a 1 on
square 1, erase it; if square 1 is empty, write a 1, then halt.

This Turing machine always halts, and its output is 1 iff ~ is unsatisfiable
and 0 otherwise. Since ¢ is valid iff ~¢ is unsatisfiable, the machine outputs 1
iff ¢ is valid, and 0 otherwise, i.e., it would solve the decision problem. O

So there is no Turing machine which always gives a correct “yes” or “no”
answer to the question “Is i a valid sentence of first-order logic?” However,
there is a Turing machine that always gives a correct “yes” answer—but sim-
ply does not halt if the answer is “no.” This follows from the soundness and
completeness theorem of first-order logic, and the fact that derivations can be
effectively enumerated.

Theorem 13.18. Validity of first-order sentences is semi-decidable: There is a Turing
machine E, which when started on a tape that contains a sentence § of first-order logic
as input, E eventually halts and outputs 1 iff ¢ is valid, but does not halt otherwise.

195

13. UNDECIDABILITY

Proof. All possible derivations of first-order logic can be generated, one after
another, by an effective algorithm. The machine E does this, and when it finds
a derivation that shows that - 1, it halts with output 1. By the soundness
theorem, if E halts with output 1, it's because F . By the completeness the-
orem, if F ¢ there is a derivation that shows that I~ ¢. Since E systematically
generates all possible derivations, it will eventually find one that shows I~ v,
so will eventually halt with output 1. O

13.9 Trakthenbrot’s Theorem

In section 13.6 we defined sentences T(M, w) and a(M, w) for a Turing ma-
chine M and input string w. Then we showed in Lemma 13.14 and Lemma 13.15
that T(M,w) D a(M,w) is valid iff M, started on input w, eventually halts.
Since the Halting Problem is undecidable, this implies that validity and satisfi-
ability of sentences of first-order logic is undecidable (Theorem 13.16 and Corol-
lary 13.17).

But validity and satisfiability of sentences is defined for arbitrary struc-
tures, finite or infinite. You might suspect that it is easier to decide if a sen-
tence is satisfiable in a finite structure (or valid in all finite structures). We can
adapt the proof of the unsolvability of the decision problem so that it shows
this is not the case.

First, if you go back to the proof of Lemma 13.15, you'll see that what
we did there is produce a model 9 of T(M, w) which describes exactly what
machine M does when started on input w. The domain of that model was NN,
i.e., infinite. But if M actually halts on input w, we can build a finite model 9/
in the same way. Suppose M started on input w halts after k steps. Take as
domain |9V| the set {0, ...,n}, where n is the larger of k and the length of w,
and let

lim/(x): {x—l—l ifx<mn

n otherwise,

and (x,y) € <™ iff x < y or x = y = n. Otherwise M’ is defined just like 9.
By the definition of 9V, just like in the proof of Lemma 13.15, ' £ 7(M, w).
And since we assumed that M halts on input w, M’ & a(M,w). So, M is a
finite model of T(M, w) & «(M, w) (note that we've replaced D with &).

We are halfway to a proof: we’ve shown that if M halts on input w, then
T(M, e) & a(M, w) has a finite model. Unfortunately, the “only if” direction
does not hold. For instance, if M after n steps is in state 4 and reads a sym-
bol o, and é(g,0) = (g, 0, N), then the configuration after n + 1 steps is exactly
the same as the configuration after n steps (same state, same head position,
same tape contents). But the machine never halts; it’s in an infinite loop. The
corresponding structure 9 above satisfies (M, w) but not a(M, w). (In it,
the values of nn + [are all the same, so it is finite). But by changing (M, w) in
a suitable way we can rule out structures like this.

196

13.9. Trakthenbrot’s Theorem

Consider the sentences describing the operation of the Turing machine M

oninputw = 0j, ...05:

1. Axioms describing numbers and < (just like in the definition of T(M, w)
in section 13.6).

2. Axioms describing the input configuration: just like in the definition
of (M, w).

3. Axioms describing the transition from one configuration to the next:

For the following, let ¢(x,y) be as before, and let

P(y) =Vx(x<ydx#y).

a) For every instruction §(g;,0) = (qj,0", R), the sentence:

Vx Wy ((Qg (%, ¥) & Se(x,y)) D
(Qq; (", y) & Spr(x,y) & (x,y) &Y (y')))

b) For every instruction §(g;, o) = (q;,0’, L), the sentence
VxVy ((qu(x’,y) & Sy(x',y)) D
(Qq;(x,y) &S (2,) & 9(x,y))) &
vy ((Qq;(0,y) & Se(0,y)) D
(Qq;(0,y") &Sy (0,y') & 9(0,y) &Y(y')))

c) For every instruction §(q;, o) = (g;,0’, N), the sentence:

Vx vy ((Qq(x,y) & Se(x,y)) 2
(Qq;(x,) & Spr(x,y) & 9(x,y) &Y (y')))
As you can see, the sentences describing the transitions of M are the
same as the corresponding sentence in T(M, w), except we add (') at

the end. (') ensures that the number i of the “next” configuration is
different from all previous numbers o, 0/,

Let 7/(M, w) be the conjunction of all the above sentences for Turing ma-
chine M and input w.

Lemma 13.19. If M started on input w halts, then T/ (M, w) & a(M, w) has a finite
model.

197

13. UNDECIDABILITY

Proof. Let M’ be as in the proof of Lemma 13.15, except
|| =A{0,...,n},

/ 1 ifx<
! (x) = x+1 1tx n
n otherwise,

(x,y) € <Miffx <yorx=y=n,

where n = max(k,len(w)) and k is the least number such that M started on
input w has halted after k steps. We leave the verification that 0’ F (M, w) &
E(M,w) as an exercise. O

Lemma 13.20. If (M, w) & a(M, w) has a finite model, then M started on input w
halts.

Proof. We show the contrapositive. Suppose that M started on w does not
halt. If (M, w) & a(M, w) has no model at all, we are done. So assume 901 is
a model of T(M, w) & a(M, w). We have to show that it cannot be finite.

We can prove, just like in Lemma 13.13, that if M, started on input w, has
not halted after n steps, then ©/(M,w) E x(M,w,n) & (7). Since M started
on input w does not halt, T (M, w) £ x(M,w,n) & ¢(7) for all n € IN. Note
that by Proposition 13.10, T/(M,w) F k < i forall k < n. Also y(7) Fk <7 D
k # 7. So, MEk #7nforallk < n,ie., the infinitely many terms k must all
have different values in 9. But this requires that |9| be infinite, so 9t cannot
be a finite model of T/ (M, w) & a(M, w). O

Theorem 13.21 (Trakthenbrot’s Theorem). It is undecidable if an arbitrary sen-
tence of first-order logic has a finite model (i.e., is finitely satisfiable).

Proof. Suppose there were a Turing machine F that decides the finite satisfi-
ability problem. Then given any Turing machine M and input w, we could
compute the sentence v/ (M, w) & a(M, w), and use F to decide if it has a finite
model. By Lemmata 13.19 and 13.20, it does iff M started on input w halts. So
we could use F to solve the halting problem, which we know is unsolvable.[]

Corollary 13.22. There can be no derivation system that is sound and complete for
finite validity, i.e., a derivation system which has & v iff 9 &= ¢ for every finite
structure 9.

Proof. Exercise. O

198

Part IV

Computability and Incompleteness

199

Chapter 14

Recursive Functions

14.1 Introduction

In order to develop a mathematical theory of computability, one has to, first
of all, develop a model of computability. We now think of computability as the
kind of thing that computers do, and computers work with symbols. But at
the beginning of the development of theories of computability, the paradig-
matic example of computation was numerical computation. Mathematicians
were always interested in number-theoretic functions, i.e., functions f: IN" —
IN that can be computed. So it is not surprising that at the beginning of the
theory of computability, it was such functions that were studied. The most
familiar examples of computable numerical functions, such as addition, mul-
tiplication, exponentiation (of natural numbers) share an interesting feature:
they can be defined recursively. It is thus quite natural to attempt a general
definition of computable function on the basis of recursive definitions. Among
the many possible ways to define number-theoretic functions recursively, one
particularly simple pattern of definition here becomes central: so-called prim-
itive recursion.

In addition to computable functions, we might be interested in computable
sets and relations. A set is computable if we can compute the answer to
whether or not a given number is an element of the set, and a relation is com-
putable iff we can compute whether or not a tuple (ny, ..., 1) is an element
of the relation. By considering the characteristic function of a set or relation,
discussion of computable sets and relations can be subsumed under that of
computable functions. Thus we can define primitive recursive relations as
well, e.g., the relation “n evenly divides m” is a primitive recursive relation.

Primitive recursive functions—those that can be defined using just primi-
tive recursion—are not, however, the only computable number-theoretic func-
tions. Many generalizations of primitive recursion have been considered, but
the most powerful and widely-accepted additional way of computing func-
tions is by unbounded search. This leads to the definition of partial recur-

201

14. RECURSIVE FUNCTIONS

sive functions, and a related definition to general recursive functions. General
recursive functions are computable and total, and the definition character-
izes exactly the partial recursive functions that happen to be total. Recursive
functions can simulate every other model of computation (Turing machines,
lambda calculus, etc.) and so represent one of the many accepted models of
computation.

14.2 Primitive Recursion

A characteristic of the natural numbers is that every natural number can be
reached from 0 by applying the successor operation +1 finitely many times—
any natural number is either 0 or the successor of ... the successor of 0. One
way to specify a function 1: IN — IN that makes use of this fact is this: (a) spec-
ify what the value of / is for argument 0, and (b) also specify how to, given
the value of hi(x), compute the value of h(x + 1). For (a) tells us directly what
h(0) is, so h is defined for 0. Now, using the instruction given by (b) for x = 0,
we can compute h(1) = h(0+ 1) from h(0). Using the same instructions for
x = 1, we compute h(2) = h(1+ 1) from k(1), and so on. For every natural
number x, we'll eventually reach the step where we define h(x) from h(x +1),
and so h(x) is defined for all x € IN.

For instance, suppose we specify h: IN — IN by the following two equa-
tions:

h(0) =1
h(x+1)=2-h(x)
If we already know how to multiply, then these equations give us the infor-

mation required for (a) and (b) above. By successively applying the second
equation, we get that

h(1) =2-h(0) =2,
h(2) =2-h(1) =2-2,
h(3)=2-h(2)=2-2-2,

We see that the function & we have specified is h(x) = 2*.

The characteristic feature of the natural numbers guarantees that there is
only one function / that meets these two criteria. A pair of equations like
these is called a definition by primitive recursion of the function h. It is so-called
because we define I “recursively,” i.e., the definition, specifically the second
equation, involves itself on the right-hand-side. It is “primitive” because in
defining h(x + 1) we only use the value h(x), i.e., the immediately preceding
value. This is the simplest way of defining a function on IN recursively.

202

14.2. Primitive Recursion

We can define even more fundamental functions like addition and mul-
tiplication by primitive recursion. In these cases, however, the functions in
question are 2-place. We fix one of the argument places, and use the other for
the recursion. E.g, to define add(x,y) we can fix x and define the value first
for y = 0 and then for y + 1 in terms of y. Since x is fixed, it will appear on the
left and on the right side of the defining equations.

add(x,0) = x
add(x,y+1) = add(x,y) +1

These equations specify the value of add for all x and y. To find add (2, 3), for
instance, we apply the defining equations for x = 2, using the first to find
add(2,0) = 2, then using the second to successively find add(2,1) =2+1 =
3,add(2,2) =3+1=4,add(2,3) =4+1=5.

In the definition of add we used + on the right-hand-side of the second
equation, but only to add 1. In other words, we used the successor func-
tion succ(z) = z + 1 and applied it to the previous value add(x, y) to define
add(x,y + 1). So we can think of the recursive definition as given in terms of
a single function which we apply to the previous value. However, it doesn’t
hurt—and sometimes is necessary—to allow the function to depend not just
on the previous value but also on x and y. Consider:

mult(x,0) =0
mult(x, y + 1) = add(mult(x, y), x)

This is a primitive recursive definition of a function mult by applying the func-

tion add to both the preceding value mult(x,y) and the first argument x. It

also defines the function mult(x, y) for all arguments x and y. For instance,
mult(2, 3) is determined by successively computing mult(2,0), mult(2, 1), mult(2,2),
and mult(2, 3):

mult

mult

The general pattern then is this: to give a primitive recursive definition of
a function h(xo, ..., x¢_1,y), we provide two equations. The first defines the
value of h(xy, ..., x;_1,0) without reference to h. The second defines the value
of h(xg,...,x¢_1,y + 1) in terms of h(xo, ..., xx_1,Y), the other arguments xo,
..., Xk—1, and y. Only the immediately preceding value of i may be used in
that second equation. If we think of the operations given by the right-hand-
sides of these two equations as themselves being functions f and g, then the

203

14. RECURSIVE FUNCTIONS

general pattern to define a new function h by primitive recursion is this:

]’l(XO, .. ~/xk—110) = f(xo,. . .,xk_l)
h(xo, ..., xe_1,y+1)=g(x0,...,xk_1,4,h(x0,...,Xk_1,¥))

In the case of add, we have k = 1 and f(xp) = xg (the identity function), and
2(x0,y,z) = z + 1 (the 3-place function that returns the successor of its third
argument):

add(xo, 0) = f(X()) = Xq
add(xo,y +1) = g(xo,y,add(xo, y)) = succ(add(xo, y))

In the case of mult, we have f(xg) = 0 (the constant function always return-
ing 0) and g(xo,y,z) = add(z, xg) (the 3-place function that returns the sum
of its last and first argument):

mult(xp,0) = f(x9) =0
mult(xg,y + 1) = g(xo,y, mult(xo,y)) = add(mult(xg,y), xo0)

14.3 Composition

If f and g are two one-place functions of natural numbers, we can compose
them: h(x) = g(f(x)). The new function h(x) is then defined by composition
from the functions f and g. We’d like to generalize this to functions of more
than one argument.

Here’s one way of doing this: suppose f is a k-place function, and gy, ...,
gx—1 are k functions which are all n-place. Then we can define a new n-place
function / as follows:

h(xo,..., %n—1) = f(go(x0, -+, Xn—1),---, 8k—1(X0,- .-, Xn—1))

If f and all g; are computable, so is h: To compute h(x, ..., x,_1), first com-
pute the values y; = g;(xp,...,x,-1) foreachi =0, ..., k — 1. Then feed these
values into f to compute h(xg, ..., xx_1) = f(Yo, -, Yk_1)-

This may seem like an overly restrictive characterization of what happens
when we compute a new function using some existing ones. For one thing,
sometimes we do not use all the arguments of a function, as when we de-
fined g(x,y,z) = succ(z) for use in the primitive recursive definition of add.
Suppose we are allowed use of the following functions:

Pl (xg, ..., Xp—1) = X;

The functions P¥ are called projection functions: P!" is an n-place function. Then
g can be defined by

g(x,y,z) = succ(PS’(x, ¥,2)).

204

14.4. Primitive Recursion Functions

Here the role of f is played by the 1-place function succ, so k = 1. And we
have one 3-place function P§ which plays the role of g. The result is a 3-place
function that returns the successor of the third argument.

The projection functions also allow us to define new functions by reorder-
ing or identifying arguments. For instance, the function /#(x) = add(x, x) can
be defined by

h(xo) = add (P (xo), Py (x0))-

Here k = 2, n = 1, therole of f(yo,y1) is played by add, and the roles of go(x¢)
and g1 (xo) are both played by P}(x¢), the one-place projection function (aka
the identity function).

If f(yo,y1) is a function we already have, we can define the function h(xg, x1) =

f(x1,x0) by
h(xo,x1) = f(Pf(x0,x1), P (x0,x1)).

Here k = 2, n = 2, and the roles of gy and g are played by P? and P3, respec-
tively.

You may also worry that gg, ..., gx—1 are all required to have the same
arity n. (Remember that the arity of a function is the number of arguments;
an n-place function has arity n.) But adding the projection functions provides
the desired flexibility. For example, suppose f and g are 3-place functions and
h is the 2-place function defined by

h(x,y) = f(x,8(x,x,y),y).
The definition of / can be rewritten with the projection functions, as
h(x,y) = f(P5(x,y), 8(P5 (%, y), P§(x,y), PF (x,)), P (x,)).
Then & is the composition of f with Pg—, [, and Pf-, where
I(x,y) = §(P5(x,y), B3 (x,y), P (x,y)),

i.e., I is the composition of ¢ with P2, POZ, and Plz.

14.4 Primitive Recursion Functions

Let us record again how we can define new functions from existing ones using
primitive recursion and composition.

Definition 14.1. Suppose f is a k-place function (k > 1) and g is a (k + 2)-
place function. The function defined by primitive recursion from f and g is the
(k + 1)-place function & defined by the equations

h(XO, .. .,xk_l,O) = f(xo, .. .,xk_l)
h(xo, ..., %1,y +1)=g(x0,...,xk_1,¥,h(x0,...,Xk_1,Y))

205

14. RECURSIVE FUNCTIONS

Definition 14.2. Suppose f is a k-place function, and gy, ..., gx—1 are k func-
tions which are all n-place. The function defined by composition from f and g,
..., §k—1 is the n-place function h defined by

h(xo,...,xp—1) = f(go(x0, .-, Xn—1), -, Qk—1(X0, - - -, Xp—1))-
In addition to succ and the projection functions
Pl (xg,...,Xy—1) = X;,

for each natural number n and i < n, we will include among the primitive
recursive functions the function zero(x) = 0.

Definition 14.3. The set of primitive recursive functions is the set of functions
from IN” to IN, defined inductively by the following clauses:

1. zero is primitive recursive.
2. succ is primitive recursive.
3. Each projection function P is primitive recursive.

4. If f is a k-place primitive recursive function and go, ..., gx_1 are n-
place primitive recursive functions, then the composition of f with gy,
..., §k—1 is primitive recursive.

5. If f is a k-place primitive recursive function and g is a k + 2-place primi-
tive recursive function, then the function defined by primitive recursion
from f and g is primitive recursive.

Put more concisely, the set of primitive recursive functions is the smallest
set containing zero, succ, and the projection functions P]-”, and which is closed
under composition and primitive recursion.

Another way of describing the set of primitive recursive functions is by
defining it in terms of “stages.” Let Sg denote the set of starting functions:
zero, succ, and the projections. These are the primitive recursive functions of
stage 0. Once a stage S; has been defined, let S; ;1 be the set of all functions
you get by applying a single instance of composition or primitive recursion to
functions already in S;. Then

S=1JSi

ieN
is the set of all primitive recursive functions
Let us verify that add is a primitive recursive function.

Proposition 14.4. The addition function add(x,y) = x + y is primitive recursive.

206

14.4. Primitive Recursion Functions

Proof. We already have a primitive recursive definition of add in terms of two
functions f and g which matches the format of Definition 14.1:

add(xg,0) = f(x0) = xp
add(xg,y + 1) = g(x0,y,add(xo,y)) = succ(add(xp, y))
So add is primitive recursive provided f and g are as well. f(xp) = xo =
P} (xp), and the projection functions count as primitive recursive, so f is prim-
itive recursive. The function g is the three-place function g(xo,y,z) defined
by
<(x0,y,2) = succ(z).
This does not yet tell us that g is primitive recursive, since g and succ are not
quite the same function: succ is one-place, and g has to be three-place. But we
can define g “officially” by composition as
g(xo,y,2) = suce(P(x0,y,7))
Since succ and P35 count as primitive recursive functions, g does as well, since

it can be defined by composition from primitive recursive functions. O

Proposition 14.5. The multiplication function mult(x,y) = x -y is primitive re-
cursive.

Proof. Exercise. O

Example 14.6. Here’s our very first example of a primitive recursive defini-
tion:

h(0) =1
h(y +1) =2-h(y).

This function cannot fit into the form required by Definition 14.1, since k = 0.
The definition also involves the constants 1 and 2. To get around the first
problem, let’s introduce a dummy argument and define the function h':

h/(X(], 0) = f(X()) =1
H (x0,y +1) = g(xo0,y, 1 (x0,¥)) = 2- 1 (x0,¥)-

The function f(xp) = 1 can be defined from succ and zero by composition:
f(xg) = succ(zero(xp)). The function g can be defined by composition from
¢'(z) = 2z and projections:

8(x0,y,2) = §'(P3 (x0,4,2))
and ¢’ in turn can be defined by composition as

§'(z) = mult(g"(2), Py (2))

207

14. RECURSIVE FUNCTIONS

and

§"(z) = suce(f(2)),

where f is as above: f(z) = succ(zero(z)). Now that we have /', we can
use composition again to let (y) = H (P (y), P(y)). This shows that h can
be defined from the basic functions using a sequence of compositions and
primitive recursions, so / is primitive recursive.

14.5 Primitive Recursion Notations

One advantage to having the precise inductive description of the primitive re-
cursive functions is that we can be systematic in describing them. For exam-
ple, we can assign a “notation” to each such function, as follows. Use symbols
zero, succ, and P} for zero, successor, and the projections. Now suppose & is
defined by composition from a k-place function f and n-place functions go,
..., §k—1, and we have assigned notations F, Gy, ..., Gx_1 to the latter func-
tions. Then, using a new symbol Comp, ,, we can denote the function h by
Compy , [F,Go,...,Gr 1]

For functions defined by primitive recursion, we can use analogous no-
tations. Suppose the (k + 1)-ary function & is defined by primitive recursion
from the k-ary function f and the (k + 2)-ary function g, and the notations
assigned to f and g are F and G, respectively. Then the notation assigned to i
is Recy[F, G].

Recall that the addition function is defined by primitive recursion as

add(xg,0) = P (xq) = xo
add(xg,y + 1) = succ(P3(xo,y,add(xo,v))) = add(xp,y) + 1

Here the role of f is played by P}, and the role of g is played by succ(P (xo, ¥, z)),
which is assigned the notation Comp, ;[succ, P] as it is the result of defining

a function by composition from the 1-ary function succ and the 3-ary func-
tion P3. With this setup, we can denote the addition function by

Rec P2, Comp; 3[succ, Pl

Having these notations sometimes proves useful, e.g., when enumerating prim-
itive recursive functions.

14.6 Primitive Recursive Functions are Computable

Suppose a function & is defined by primitive recursion

h(%,0) = f(%)
hWXy+1) = gXyh(Xy))

208

14.7. Examples of Primitive Recursive Functions

and suppose the functions f and g are computable. (We use ¥ to abbreviate xo,
..., X¢_1.) Then h(%,0) can obviously be computed, since it is just f(X) which
we assume is computable. (¥, 1) can then also be computed, since 1 = 0+ 1
and so h(X,1) is just

h(x,2) = ¢(%,1,h(%,1)) = 8(%,1,8(%,0, (%))
h(x,3) = §(%,2,h(%,2)) = (¥,2,8(%,1,8(%,0, f(¥))))
h(x,4) = g(¥,3,h(%,3)) = g(%,3,8(%,2,8(x,1,8(%,0, f(¥)))))

Thus, to compute h(X,y) in general, successively compute h(X,0), h(X,1), ...,
until we reach h(%,y).

Thus, a primitive recursive definition yields a new computable function if
the functions f and g are computable. Composition of functions also results
in a computable function if the functions f and g; are computable.

Since the basic functions zero, succ, and P}' are computable, and compo-
sition and primitive recursion yield computable functions from computable
functions, this means that every primitive recursive function is computable.

14.7 Examples of Primitive Recursive Functions

We already have some examples of primitive recursive functions: the addition
and multiplication functions add and mult. The identity function id(x) = x
is primitive recursive, since it is just Pol. The constant functions const, (x) = n
are primitive recursive since they can be defined from zero and succ by suc-
cessive composition. This is useful when we want to use constants in primi-
tive recursive definitions, e.g., if we want to define the function f(x) = 2 - x
can obtain it by composition from const,(x) and multiplication as f(x) =
mult(const; (x), P} (x)). We'll make use of this trick from now on.

Proposition 14.7. The exponentiation function exp(x,y) = x¥ is primitive recur-
sive.

Proof. We can define exp primitive recursively as

exp(x,0) =1
exp(x,y + 1) = mult(x, exp(x,vy)).

209

14. RECURSIVE FUNCTIONS

Strictly speaking, this is not a recursive definition from primitive recursive
functions. Officially, though, we have:

exp(x,0) = f(x)
exp(x,y +1) = g(x,y,exp(x,)).
where
f(x) = succ(zero(x)) =1
§(,y,2) = mult(B(x,y,2), P (,9,2)) = -2

and so f and g are defined from primitive recursive functions by composi-
tion. O

Proposition 14.8. The predecessor function pred(y) defined by

0 ify=0

y—1 otherwise

pred(y) = {

is primitive recursive.

Proof. Note that
pred(0) = 0 and
pred(y+1) =y.

This is almost a primitive recursive definition. It does not, strictly speaking, fit
into the pattern of definition by primitive recursion, since that pattern requires
at least one extra argument x. It is also odd in that it does not actually use
pred(y) in the definition of pred(y + 1). But we can first define pred’(x,y) by

pred’(x,0) = zero(x) =0,
pred’(x,y +1) = P} (x,y,pred’ (x,y)) = y.

and then define pred from it by composition, e.g., as pred(x) = pred’(zero(x), P} (x)).00

Proposition 14.9. The factorial function fac(x) = x!=1-2-3----- x is primitive
recursive.

Proof. The obvious primitive recursive definition is

fac(0) =1
fac(y +1) = fac(y) - (y +1).

210

14.7. Examples of Primitive Recursive Functions

Officially, we have to first define a two-place function h

h(x,0) = consty (x)
h(x,y+1) =g(x,y,h(x,y))

where g(x,,z) = mult(P3(x,y, z), succ(P?(x,y,z))) and then let

fac(y) = h(P3 (y), B3 (v)) = h(y,y).

From now on we'll be a bit more laissez-faire and not give the official defini-
tions by composition and primitive recursion. O

Proposition 14.10. Truncated subtraction, x — y, defined by

x;y:{o ifx <y

X —y otherwise
is primitive recursive.
Proof. We have:
x—0=x
x—(y+1) =pred(x —y) O
Proposition 14.11. The distance between x and y, |x — y|, is primitive recursive.

Proof. We have |x —y| = (x —y) + (y — x), so the distance can be defined by
composition from + and —, which are primitive recursive. O

Proposition 14.12. The maximum of x and y, max(x, y), is primitive recursive.
Proof. We can define max(x, y) by composition from + and — by
max(x,y) = x+ (y — x).

If x is the maximum, i.e.,, x >y, theny —x =0,s0x+ (y —x) = x+ 0 =x. If
y is the maximum, theny —x =y —x,andsox+ (y —x) = x+ (y — x) = y.

Proposition 14.13. The minimum of x and y, min(x, y), is primitive recursive.
Proof. Exercise. O

Proposition 14.14. The set of primitive recursive functions is closed under the fol-
lowing two operations:

211

14. RECURSIVE FUNCTIONS

1. Finite sums: if f(X,z) is primitive recursive, then so is the function
¥

g(Xy) =) f(Z2).

z=0

2. Finite products: if f (X, z) is primitive recursive, then so is the function
Y
h(xy) =[1f(%2).

z=0

Proof. For example, finite sums are defined recursively by the equations

14.8 Primitive Recursive Relations

Definition 14.15. A relation R(X) is said to be primitive recursive if its char-
acteristic function,
- 1 if R(X)
X) = .
AR (%) { 0 otherwise
is primitive recursive.

In other words, when one speaks of a primitive recursive relation R(¥X),
one is referring to a relation of the form xg(X¥) = 1, where xr is a primitive
recursive function which, on any input, returns either 1 or 0. For example,
the relation IsZero(x), which holds if and only if x = 0, corresponds to the
function x1szero, defined using primitive recursion by

XIsZero(O) =1,
XIsZero(x + 1) =0.

It should be clear that one can compose relations with other primitive re-
cursive functions. So the following are also primitive recursive:

1. The equality relation, x = y, defined by IsZero(|x — y|)
2. The less-than relation, x < y, defined by IsZero(x — y)

Proposition 14.16. The set of primitive recursive relations is closed under Boolean
operations, that is, if P(X) and Q(X) are primitive recursive, so are

1. ~P(%)
2. P(%) & Q(%)

212

14.8. Primitive Recursive Relations

3. P(X) Vv Q(X)
4. P(X) D Q(¥)
Proof. Suppose P(X) and Q(X) are primitive recursive, i.e., their characteristic

functions xp and xg are. We have to show that the characteristic functions of
~P(X), etc., are also primitive recursive.

0 ifxp(¥) =1
1 otherwise

X~p(X) = {
We can define x.p(¥) as 1 — xp(%).

1 ifxp(¥) = xo(¥) =1

‘)(" =
XP&Q() 0 otherwise

=U

We can define xpg(X) as xp(

xpvo (%)
XPDQ(f)

) - xo(X) or as min(xp(X), xo(X)). Similarly,

max(xp(X), xo(¥))) and
max(1 = xp(¥), xo(X))- H

Proposition 14.17. The set of primitive recursive relations is closed under bounded
quantification, i.e., if R(X, z) is a primitive recursive relation, then so are the relations

(Vz <y) R(X,z) and
(3z < y) R(X,z).

(Vz < y) R(X, z) holds of X and y if and only if R(X, z) holds for every z less than y,
and similarly for (3z < y) R(X, z).

Proof. By convention, we take (Vz < 0) R(X, z) to be true (for the trivial reason
that there are no z less than 0) and (3z < 0) R(X,z) to be false. A bounded
universal quantifier functions just like a finite product or iterated minimum,
ie., if P(%,y) < (Vz <y) R(¥,z) then xp(¥,y) can be defined by

xp(X,0) =1
xp(%,y+1) = min(xp(%,y), xr(¥,y)))

Bounded existential quantification can similarly be defined using max. Al-
ternatively, it can be defined from bounded universal quantification, using
the equivalence (3z < y) R(¥,z) = ~(Vz < y) ~R(X,z). Note that, for ex-
ample, a bounded quantifier of the form (Ix < y) ...x... is equivalent to
Gx<y+1) ...x.... O

213

14. RECURSIVE FUNCTIONS

Another useful primitive recursive function is the conditional function,
cond(x, y,z), defined by

cond(x,y,z) = y #x=0
Y z otherwise.

This is defined recursively by

cond(0,y,z) =y,
cond(x+1,y,z) = z.

One can use this to justify definitions of primitive recursive functions by cases
from primitive recursive relations:

Proposition 14.18. If go(X), ..., gm(X) are primitive recursive functions, and Ro(X),
..., Ryy—1(X) are primitive recursive relations, then the function f defined by

Sm—1(X) if Ryy—1(X) and none of the previous hold

am(X) otherwise
is also primitive recursive.

Proof. When m = 1, this is just the function defined by

f(%) = cond(x~ry (X), 80(¥), g1(%))-

For m greater than 1, one can just compose definitions of this form. O

14.9 Bounded Minimization

It is often useful to define a function as the least number satisfying some prop-
erty or relation P. If P is decidable, we can compute this function simply by
trying out all the possible numbers, 0, 1, 2, ..., until we find the least one satis-
fying P. This kind of unbounded search takes us out of the realm of primitive
recursive functions. However, if we're only interested in the least number
less than some independently given bound, we stay primitive recursive. In other
words, and a bit more generally, suppose we have a primitive recursive rela-
tion R(x,z). Consider the function that maps x and y to the least z < y such
that R(x,z). It, too, can be computed, by testing whether R(x,0), R(x,1), ...,
R(x,y — 1). But why is it primitive recursive?

214

14.10. Primes

Proposition 14.19. If R(X,z) is primitive recursive, so is the function mg(X,y)
which returns the least z less than y such that R(X,z) holds, if there is one, and y
otherwise. We will write the function mp as

(min z < y) R(%, z),

Proof. Note than there can be no z < 0 such that R(¥X, z) since there isnoz < 0
at all. So mg(¥,0) = 0.
In case the bound is of the form y + 1 we have three cases:

1. Thereisaz < ysuch that R(¥,z), in which case mg(X,y + 1) = mg(X,y).
2. There is no such z < y but R(X, y) holds, then mg (X,y +1) = y.
3. Thereisno z < y + 1 such that R(%,z), then mg(Z,y +1) =y + 1.
So we can define mg (¥, 0) by primitive recursion as follows:
mgr(%,0) =0
mg(%,y) ifmg(%y) #y

mr(X,y+1) =<y if mg(X,y) = yand R(X,y)
y+1 otherwise.

Note that there is a z < y such that R(¥, z) iff mg(X,y) # . O

14.10 Primes

Bounded quantification and bounded minimization provide us with a good
deal of machinery to show that natural functions and relations are primitive
recursive. For example, consider the relation “x divides y”, written x | y. The
relation x | y holds if division of y by x is possible without remainder, i.e.,
if y is an integer multiple of x. (If it doesn’t hold, i.e., the remainder when
dividing x by y is > 0, we write x { y.) In other words, x | y iff for some z,
x -z = y. Obviously, any such z, if it exists, must be < y. So, we have that
x | y iff for some z < y, x - z = y. We can define the relation x | y by bounded
existential quantification from = and multiplication by

x|lye (Fz<y) (x-z)=y.

We've thus shown that x | y is primitive recursive.

A natural number x is prime if it is neither 0 nor 1 and is only divisible by
1 and itself. In other words, prime numbers are such that, whenever y | x,
either y = 1 or y = x. To test if x is prime, we only have to check if y | x for
all y < x, since if y > x, then automatically y { x. So, the relation Prime(x),
which holds iff x is prime, can be defined by

Prime(x) © x>2& (Vy<x) (y|x Dy=1Vy=x)

215

14. RECURSIVE FUNCTIONS

and is thus primitive recursive.

The primes are 2, 3,5, 7, 11, etc. Consider the function p(x) which returns
the xth prime in that sequence, i.e., p(0) = 2, p(1) = 3, p(2) = 5, etc. (For
convenience we will often write p(x) as px (po = 2, p1 = 3, etc.)

If we had a function nextPrime(x), which returns the first prime number
larger than x, p can be easily defined using primitive recursion:

p(0) =2
p(x +1) = nextPrime(p(x))

Since nextPrime(x) is the least y such that y > x and y is prime, it can be
easily computed by unbounded search. But it can also be defined by bounded
minimization, thanks to a result due to Euclid: there is always a prime number
between x and x !+ 1.

nextPrime(x) = (miny < x!+1) (y > x & Prime(y)).

This shows, that nextPrime(x) and hence p(x) are (not just computable but)
primitive recursive.

(If you're curious, here’s a quick proof of Euclid’s theorem. Suppose p;
is the largest prime < x and consider the product p = po-p1----- pn of all
primes < x. Either p + 1 is prime or there is a prime between x and p + 1.
Why? Suppose p + 1 is not prime. Then some prime number g | p + 1 where
g < p+ 1. None of the primes < x divide p 4+ 1. (By definition of p, each
of the primes p; < x divides p, i.e., with remainder 0. So, each of the primes
pi < x divides p + 1 with remainder 1, and so p; 1 p + 1.) Hence, g is a prime
>xand < p+ 1. And p < x/, so there is a prime > x and < x!+1.)

14.11 Sequences

The set of primitive recursive functions is remarkably robust. But we will be
able to do even more once we have developed a adequate means of handling
sequences. We will identify finite sequences of natural numbers with natural
numbers in the following way: the sequence (ag, a1, 4y, . .., ax) corresponds to
the number
pgo-‘rl . ptlllJrl . P;z-‘rl _____ P]u(k+1-

We add one to the exponents to guarantee that, for example, the sequences
(2,7,3) and (2,7,3,0,0) have distinct numeric codes. We can take both 0 and 1
to code the empty sequence; for concreteness, let A denote 0.

The reason that this coding of sequences works is the so-called Fundamen-
tal Theorem of Arithmetic: every natural number #n > 2 can be written in one
and only one way in the form

— 70 a a
n_po.pl pk

216

14.11. Sequences

with a; > 1. This guarantees that the mapping () (ag, ..., ax) = {(ag, ..., a) is
injective: different sequences are mapped to different numbers; to each num-
ber only at most one sequence corresponds.

We’ll now show that the operations of determining the length of a se-
quence, determining its ith element, appending an element to a sequence, and
concatenating two sequences, are all primitive recursive.

Proposition 14.20. The function len(s), which returns the length of the sequence s,
is primitive recursive.

Proof. Let R(i,s) be the relation defined by
R(i,s)iff p;i [s & pit11s.

R is clearly primitive recursive. Whenever s is the code of a non-empty se-

quence, i.e.,
ap+1 a+1
S —_— po pk ,

R(i,s) holds if p; is the largest prime such that p; | s, i.e., i = k. The length of
s thus is i 4 1 iff p; is the largest prime that divides s, so we can let

len(s) = 0 ifs=0o0rs=1
"~ |1+ (mini <s)R(i,s) otherwise

We can use bounded minimization, since there is only one i that satisfies R(s, 1)
when s is a code of a sequence, and if i exists it is less than s itself. O

Proposition 14.21. The function append (s, a), which returns the result of append-
ing a to the sequence s, is primitive recursive.

Proof. append can be defined by:

d()_ 2a+1 ifS:OOI‘S:1
append(s,a) =4 pfeﬁs) otherwise. O

Proposition 14.22. The function element(s, i), which returns the ith element of s
(where the initial element is called the Oth), or O if i is greater than or equal to the
length of s, is primitive recursive.

Proof. Note that a is the ith element of s iff p?“ is the largest power of p; that

divides s, i.e, p?™ | sbut p?*2 {s. So

. 0 ifi > len(s)
element(s, i) =) 42 i
(mina <s) (p{™"ts) otherwise. O

217

14. RECURSIVE FUNCTIONS

Instead of using the official names for the functions defined above, we
introduce a more compact notation. We will use (s); instead of element(s, i),
and (sg, ...,si) to abbreviate

append (append(...append(A,sg) ...), s)-
Note that if s has length k, the elements of s are (s)o, ..., (5)x_1-

Proposition 14.23. The function concat(s, t), which concatenates two sequences, is
primitive recursive.

Proof. We want a function concat with the property that

concat({ag, ..., ar), {(by,..., b)) = {ag,...,a by, ..., b).

We'll use a “helper” function hconcat(s, t,n) which concatenates the first n
symbols of ¢ to s. This function can be defined by primitive recursion as fol-
lows:

hconcat(s, t,0) =
hconcat(s, t, n + 1) = append (hconcat(s, t, 1), (t),)

Then we can define concat by
concat(s, t) = hconcat(s, t,len(t)). O

We will write s —~ t instead of concat(s, t).

It will be useful for us to be able to bound the numeric code of a sequence
in terms of its length and its largest element. Suppose s is a sequence of
length k, each element of which is less than or equal to some number x. Then
s has at most k prime factors, each at most p_1, and each raised to at most
x + 1 in the prime factorization of s. In other words, if we define

k-(x+1)
sequenceBound(x, k) = p, 7" 7,
then the numeric code of the sequence s described above is at most sequenceBound (x, k).

Having such a bound on sequences gives us a way of defining new func-
tions using bounded search. For example, we can define concat using bounded
search. All we need to do is write down a primitive recursive specification of
the object (number of the concatenated sequence) we are looking for, and a
bound on how far to look. The following works:

concat(s, t) = (min v < sequenceBound (s +
(len(v) =len(s) +len(t) &

(Vi <len(s)) ((v); = (s)i) &

(Vj <len(t)) ((0)ien(s)+j = (£)}))

t,len(s) +len(t)))

218

14.12. Trees

Proposition 14.24. The function subseq(s, i, n) which returns the subsequence of s
of length n beginning at the ith element, is primitive recursive.

Proof. Exercise. O

14.12 Trees

Sometimes it is useful to represent trees as natural numbers, just like we can
represent sequences by numbers and properties of and operations on them by
primitive recursive relations and functions on their codes. We’ll use sequences
and their codes to do this. A tree can be either a single node (possibly with a
label) or else a node (possibly with a label) connected to a number of subtrees.
The node is called the root of the tree, and the subtrees it is connected to its
immediate subtrees.

We code trees recursively as a sequence (k,dq, ..., dx), where k is the num-
ber of immediate subtrees and dj, ..., d; the codes of the immediate subtrees.
If the nodes have labels, they can be included after the immediate subtrees. So
a tree consisting just of a single node with label I would be coded by (0, 1), and
a tree consisting of a root (labelled /1) connected to two single nodes (labelled
I, I3) would be coded by (2, (0,13),(0,13),11).

Proposition 14.25. The function SubtreeSeq(t), which returns the code of a se-
quence the elements of which are the codes of all subtrees of the tree with code t, is
primitive recursive.

Proof. First note that ISubtrees(t) = subseq(t,1, (t)o) is primitive recursive
and returns the codes of the immediate subtrees of a tree . Now we can
define a helper function hSubtreeSeq(t, n) which computes the sequence of all
subtrees which are n nodes removed from the root. The sequence of subtrees
of t which is 0 nodes removed from the root—in other words, begins at the root
of t—is the sequence consisting just of t. To obtain a sequence of all level n + 1
subtrees of f, we concatenate the level 1 subtrees with a sequence consisting
of all immediate subtrees of the level n subtrees. To get a list of all these, note
that if f(x) is a primitive recursive function returning codes of sequences, then
gr(s,k) = f((s)o) —~ ... — f((s)x) is also primitive recursive:

8(5,0) = f((s)o)
8(s,k+1) = g(s,k) ~ f((s)k+1)

For instance, if s is a sequence of trees, then /(s) = gisubtrees (S, len(s)) gives
the sequence of the immediate subtrees of the elements of s. We can use it to
define hSubtreeSeq by

hSubtreeSeq(t,0) = (t)
hSubtreeSeq(t,n + 1) = hSubtreeSeq(t, n) —~ h(hSubtreeSeq(t,n)).

219

14. RECURSIVE FUNCTIONS

The maximum level of subtrees in a tree coded by t, i.e., the maximum dis-
tance between the root and a leaf node, is bounded by the code t. So a se-
quence of codes of all subtrees of the tree coded by t is given by hSubtreeSeq(¢, t).[]

14.13 Other Recursions

Using pairing and sequencing, we can justify more exotic (and useful) forms
of primitive recursion. For example, it is often useful to define two functions
simultaneously, such as in the following definition:

ho(¥,0) = fo(X)

hi(%,0) = f1(X)
ho(¥,y +1) = go(X,y, ho(X,y), h1 (X, y))
h(%,y+1) = g1(Xy,ho(X,y), hi(X,y))

This is an instance of simultaneous recursion. Another useful way of defining
functions is to give the value of h(¥,y + 1) in terms of all the values h(%,0),
..., h(%,y), as in the following definition:

h(%,0) = (%)
h(Zy+1) =g(%,y, (h(X,0),..., h(%y))).

The following schema captures this idea more succinctly:

h(¥%,y) = g(¥,y, (h(%,0),...,h(Z,y —1)))

with the understanding that the last argument to g is just the empty sequence
when y is 0. In either formulation, the idea is that in computing the “successor
step,” the function & can make use of the entire sequence of values computed
so far. This is known as a course-of-values recursion. For a particular example,
it can be used to justify the following type of definition:

- 8%y, h(Xk(X,y))) ifk(X,y) <y
hZy) =37 - .
f(%) otherwise
In other words, the value of & at ¥ can be computed in terms of the value of i
at any previous value, given by k.
You should think about how to obtain these functions using ordinary prim-

itive recursion. One final version of primitive recursion is more flexible in that
one is allowed to change the parameters (side values) along the way:

h(x,0) = f(X)
WXy +1) =Xy, h(k(X),y))

This, too, can be simulated with ordinary primitive recursion. (Doing so is
tricky. For a hint, try unwinding the computation by hand.)

220

14.14. Non-Primitive Recursive Functions

14.14 Non-Primitive Recursive Functions

The primitive recursive functions do not exhaust the intuitively computable
functions. It should be intuitively clear that we can make a list of all the unary
primitive recursive functions, fo, f1, f2, ...such that we can effectively com-
pute the value of f on input y; in other words, the function g(x,y), defined

by
8l y) = fx(v)
is computable. But then so is the function

h(x) = g(x,x)+1
=) +1

For each primitive recursive function f;, the value of h and f; differ at i. So h
is computable, but not primitive recursive; and one can say the same about g.
This is an “effective” version of Cantor’s diagonalization argument.

One can provide more explicit examples of computable functions that are
not primitive recursive. For example, let the notation ¢" (x) denote ¢(g(. .. g(x))),
with n ¢’s in all; and define a sequence go, 1, - - . of functions by

go(x) = x+1
gnt1(x) = gu(x)

You can confirm that each function g, is primitive recursive. Each successive
function grows much faster than the one before; ¢1(x) is equal to 2x, g2 (x) is
equal to 2* - x, and g3(x) grows roughly like an exponential stack of x 2’s. The
Ackermann-Péter function is essentially the function G(x) = gx(x), and one
can show that this grows faster than any primitive recursive function.

Let us return to the issue of enumerating the primitive recursive functions.
Remember that we have assigned symbolic notations to each primitive recur-
sive function; so it suffices to enumerate notations. We can assign a natural
number #(F) to each notation F, recursively, as follows:

#0) = (0)
#S) = (1)
#(F') = (2ni)
#(Compy,[H,Go, ..., Ge1]) = 3,k #(H),#(Go),..., #(Gr_1))
#(Req)[G,H]) = (4,1, #(G) #(H))

Here we are using the fact that every sequence of numbers can be viewed as
a natural number, using the codes from the last section. The upshot is that
every code is assigned a natural number. Of course, some sequences (and
hence some numbers) do not correspond to notations; but we can let f; be the
unary primitive recursive function with notation coded as i, if i codes such a

221

14. RECURSIVE FUNCTIONS

notation; and the constant 0 function otherwise. The net result is that we have
an explicit way of enumerating the unary primitive recursive functions.

(In fact, some functions, like the constant zero function, will appear more
than once on the list. This is not just an artifact of our coding, but also a result
of the fact that the constant zero function has more than one notation. We will
later see that one can not computably avoid these repetitions; for example,
there is no computable function that decides whether or not a given notation
represents the constant zero function.)

We can now take the function g(x,y) to be given by fy(y), where fy refers
to the enumeration we have just described. How do we know that g(x,) is
computable? Intuitively, this is clear: to compute g(x, y), first “unpack” x, and
see if it is a notation for a unary function. If it is, compute the value of that
function on input y.

You may already be convinced that (with some work!) one can write
a program (say, in Java or C++) that does this; and now we can appeal to
the Church-Turing thesis, which says that anything that, intuitively, is com-
putable can be computed by a Turing machine.

Of course, a more direct way to show that g¢(x,y) is computable is to de-
scribe a Turing machine that computes it, explicitly. This would, in particular,
avoid the Church-Turing thesis and appeals to intuition. Soon we will have
built up enough machinery to show that g(x, y) is computable, appealing to a
model of computation that can be simulated on a Turing machine: namely, the
recursive functions.

14.15 Partial Recursive Functions

To motivate the definition of the recursive functions, note that our proof that
there are computable functions that are not primitive recursive actually estab-
lishes much more. The argument was simple: all we used was the fact that it
is possible to enumerate functions fy, f1, ... such that, as a function of x and y,
fx(y) is computable. So the argument applies to any class of functions that can be
enumerated in such a way. This puts us in a bind: we would like to describe the
computable functions explicitly; but any explicit description of a collection of
computable functions cannot be exhaustive!

The way out is to allow partial functions to come into play. We will see
that it is possible to enumerate the partial computable functions. In fact, we
already pretty much know that this is the case, since it is possible to enumerate
Turing machines in a systematic way. We will come back to our diagonal
argument later, and explore why it does not go through when partial functions
are included.

The question is now this: what do we need to add to the primitive recur-
sive functions to obtain all the partial recursive functions? We need to do two
things:

222

14.15. Partial Recursive Functions

1. Modify our definition of the primitive recursive functions to allow for
partial functions as well.

2. Add something to the definition, so that some new partial functions are
included.

The first is easy. As before, we will start with zero, successor, and projec-
tions, and close under composition and primitive recursion. The only differ-
ence is that we have to modify the definitions of composition and primitive
recursion to allow for the possibility that some of the terms in the definition
are not defined. If f and g are partial functions, we will write f(x) | to mean
that f is defined at x, i.e., x is in the domain of f; and f(x) 1 to mean the
opposite, i.e., that f is not defined at x. We will use f(x) ~ g(x) to mean that
either f(x) and g(x) are both undefined, or they are both defined and equal.
We will use these notations for more complicated terms as well. We will adopt
the convention that if & and gy, ..., gx all are partial functions, then

h(go(%), - -, k(%))

is defined if and only if each g; is defined at X, and is defined at go(%),
..., 8(X). With this understanding, the definitions of composition and prim-
itive recursion for partial functions is just as above, except that we have to
replace “=" by “~".

What we will add to the definition of the primitive recursive functions to
obtain partial functions is the unbounded search operator. If f(x,Z) is any partial
function on the natural numbers, define ux f(x,z) to be

the least x such that f(0,Z), f(1,Z),..., f(x,Z) are all defined, and
f(x,Z) = 0, if such an x exists

with the understanding that px f(x,Z) is undefined otherwise. This defines
ux f(x,Z) uniquely.

Note that our definition makes no reference to Turing machines, or algo-
rithms, or any specific computational model. But like composition and prim-
itive recursion, there is an operational, computational intuition behind un-
bounded search. When it comes to the computability of a partial function,
arguments where the function is undefined correspond to inputs for which
the computation does not halt. The procedure for computing ux f(x,Z) will
amount to this: compute f(0,Z), f(1,Z), f(2,Z) until a value of 0 is returned. If
any of the intermediate computations do not halt, however, neither does the
computation of ux f(x,Z).

If R(x,Z) is any relation, pux R(x,Z) is defined to be ux (1 — xr(x,2)). In
other words, px R(x, Z) returns the least value of x such that R(x,Z) holds. So,
if f(x,Z) is a total function, ux f(x,Z) is the same as ux (f(x,Z) = 0). But note
that our original definition is more general, since it allows for the possibility

223

14. RECURSIVE FUNCTIONS

that f(x, Z) is not everywhere defined (whereas, in contrast, the characteristic
function of a relation is always total).

Definition 14.26. The set of partial recursive functions is the smallest set of par-
tial functions from the natural numbers to the natural numbers (of various
arities) containing zero, successor, and projections, and closed under compo-
sition, primitive recursion, and unbounded search.

Of course, some of the partial recursive functions will happen to be total,
i.e., defined for every argument.

Definition 14.27. The set of recursive functions is the set of partial recursive
functions that are total.

A recursive function is sometimes called “total recursive” to emphasize
that it is defined everywhere.

14.16 The Normal Form Theorem

Theorem 14.28 (Kleene’s Normal Form Theorem). There is a primitive recur-
sive relation T (e, x,s) and a primitive recursive function U(s), with the following
property: if f is any partial recursive function, then for some e,

f(x) ~U(us T(e, x,s))

for every x.

The proof of the normal form theorem is involved, but the basic idea is
simple. Every partial recursive function has an index e, intuitively, a number
coding its program or definition. If f(x) |, the computation can be recorded
systematically and coded by some number s, and the fact that s codes the
computation of f on input x can be checked primitive recursively using only
x and the definition e. Consequently, the relation T, “the function with index e
has a computation for input x, and s codes this computation,” is primitive
recursive. Given the full record of the computation s, the “upshot” of s is the
value of f(x), and it can be obtained from s primitive recursively as well.

The normal form theorem shows that only a single unbounded search is
required for the definition of any partial recursive function. Basically, we can
search through all numbers until we find one that codes a computation of
the function with index e for input x. We can use the numbers e as “names”
of partial recursive functions, and write @, for the function f defined by the
equation in the theorem. Note that any partial recursive function can have
more than one index—in fact, every partial recursive function has infinitely
many indices.

224

14.17. The Halting Problem

14.17 The Halting Problem

The halting problem in general is the problem of deciding, given the specifica-
tion e (e.g., program) of a computable function and a number 1, whether the
computation of the function on input n halts, i.e., produces a result. Famously,
Alan Turing proved that this problem itself cannot be solved by a computable
function, i.e., the function

(e, n) = {1 if computation e halts on input n

0 otherwise,

is not computable.

In the context of partial recursive functions, the role of the specification
of a program may be played by the index e given in Kleene’s normal form
theorem. If f is a partial recursive function, any e for which the equation in
the normal form theorem holds, is an index of f. Given a number e, the normal
form theorem states that

@e(x) =~ U(us T(e, x,s))

is partial recursive, and for every partial recursive f: N — IN, there is an
e € N such that g.(x) ~ f(x) for all x € N. In fact, for each such f there is
not just one, but infinitely many such e. The halting function h is defined by

he,x) = {1 if @ (x) |

0 otherwise.

Note that h(e, x) = 0 if ¢.(x) T, but also when e is not the index of a partial
recursive function at all.

Theorem 14.29. The halting function h is not partial recursive.

Proof. 1f h were partial recursive, we could define

1 ith(y,y) =0
a(y) = { (v.9)
ux x # x otherwise.

Since no number x satisfies x # x, there is no pux x # x, and so d(y) 1 iff
h(y,y) # 0. From this definition it follows that

1. d(y) | iff @, (y) 1 or y is not the index of a partial recursive function.

2. d(y) 1iff gy (y) I

If h were partial recursive, then d would be partial recursive as well. Thus,
by the Kleene normal form theorem, it has an index ¢;. Consider the value of
h(eg,e4). There are two possible cases, 0 and 1.

225

14. RECURSIVE FUNCTIONS

1. If h(ez,eq) = 1 then ¢e,(ez) . But ¢, ~ d, and d(e;) is defined iff
h(es,eq) =0.So h(ey, eq) # 1.

2. If h(eyg,e4) = 0 then either e; is not the index of a partial recursive func-
tion, or it is and ¢, (e4) 1. But again, ¢,, ~ d, and d(e;) is undefined iff
Pe,(ed) I

The upshot is that e; cannot, after all, be the index of a partial recursive func-
tion. But if & were partial recursive, d would be too, and so our definition of
e; as an index of it would be admissible. We must conclude that /i cannot be
partial recursive. O

14.18 General Recursive Functions

There is another way to obtain a set of total functions. Say a total function
f(x,2) is reqular if for every sequence of natural numbers Z, there is an x such
that f(x,Z) = 0. In other words, the regular functions are exactly those func-
tions to which one can apply unbounded search, and end up with a total func-
tion. One can, conservatively, restrict unbounded search to regular functions:

Definition 14.30. The set of general recursive functions is the smallest set of
functions from the natural numbers to the natural numbers (of various ari-
ties) containing zero, successor, and projections, and closed under composi-
tion, primitive recursion, and unbounded search applied to regular functions.

Clearly every general recursive function is total. The difference between
Definition 14.30 and Definition 14.27 is that in the latter one is allowed to
use partial recursive functions along the way; the only requirement is that
the function you end up with at the end is total. So the word “general,” a
historic relic, is a misnomer; on the surface, Definition 14.30 is less general
than Definition 14.27. But, fortunately, the difference is illusory; though the
definitions are different, the set of general recursive functions and the set of
recursive functions are one and the same.

226

Chapter 15

Arithmetization of Syntax

15.1 Introduction

In order to connect computability and logic, we need a way to talk about the
objects of logic (symbols, terms, formulae, derivations), operations on them,
and their properties and relations, in a way amenable to computational treat-
ment. We can do this directly, by considering computable functions and re-
lations on symbols, sequences of symbols, and other objects built from them.
Since the objects of logical syntax are all finite and built from a countable sets
of symbols, this is possible for some models of computation. But other models
of computation—such as the recursive functions—-are restricted to numbers,
their relations and functions. Moreover, ultimately we also want to be able to
deal with syntax within certain theories, specifically, in theories formulated in
the language of arithmetic. In these cases it is necessary to arithmetize syntax,
i.e., to represent syntactic objects, operations on them, and their relations, as
numbers, arithmetical functions, and arithmetical relations, respectively. The
idea, which goes back to Leibniz, is to assign numbers to syntactic objects.

Itis relatively straightforward to assign numbers to symbols as their “codes.

Some symbols pose a bit of a challenge, since, e.g., there are infinitely many
variables, and even infinitely many function symbols of each arity n. But of
course it’s possible to assign numbers to symbols systematically in such a way
that, say, v» and v3 are assigned different codes. Sequences of symbols (such
as terms and formulae) are a bigger challenge. But if we can deal with se-
quences of numbers purely arithmetically (e.g., by the powers-of-primes cod-
ing of sequences), we can extend the coding of individual symbols to coding
of sequences of symbols, and then further to sequences or other arrangements
of formulae, such as derivations. This extended coding is called “Godel num-
bering.” Every term, formula, and derivation is assigned a Godel number.

By coding sequences of symbols as sequences of their codes, and by chos-
ing a system of coding sequences that can be dealt with using computable
functions, we can then also deal with Gédel numbers using computable func-

227

”

15. ARITHMETIZATION OF SYNTAX

tions. In practice, all the relevant functions will be primitive recursive. For
instance, computing the length of a sequence and computing the i-th element
of a sequence from the code of the sequence are both primitive recursive. If
the number coding the sequence is, e.g., the Godel number of a formula ¢,
we immediately see that the length of a formula and the (code of the) i-th
symbol in a formula can also be computed from the Godel number of ¢. It
is a bit harder to prove that, e.g., the property of being the Godel number of
a correctly formed term or of a correct derivation is primitive recursive. It
is nevertheless possible, because the sequences of interest (terms, formulae,
derivations) are inductively defined.

As an example, consider the operation of substitution. If ¢ is a formula,
x a variable, and t a term, then ¢[t/x] is the result of replacing every free
occurrence of x in ¢ by t. Now suppose we have assigned Godel numbers to ¢,
x, t—say, k, |, and m, respectively. The same scheme assigns a Godel number
to ¢[t/x], say, n. This mapping—of k, I, and m to n—is the arithmetical analog
of the substitution operation. When the substitution operation maps ¢, x, t to
@[t/ x], the arithmetized substitution functions maps the Godel numbers k, I,
m to the Godel number n. We will see that this function is primitive recursive.

Arithmetization of syntax is not just of abstract interest, although it was
originally a non-trivial insight that languages like the language of arithmetic,
which do not come with mechanisms for “talking about” languages can, after
all, formalize complex properties of expressions. It is then just a small step to
ask what a theory in this language, such as Peano arithmetic, can prove about
its own language (including, e.g., whether sentences are provable or true).
This leads us to the famous limitative theorems of Godel (about unprovability)
and Tarski (the undefinability of truth). But the trick of arithmetizing syntax
is also important in order to prove some important results in computability
theory, e.g., about the computational power of theories or the relationship be-
tween different models of computability. The arithmetization of syntax serves
as a model for arithmetizing other objects and properties. For instance, it is
similarly possible to arithmetize configurations and computations (say, of Tur-
ing machines). This makes it possible to simulate computations in one model
(e.g., Turing machines) in another (e.g., recursive functions).

15.2 Coding Symbols
The basic language L of first order logic makes use of the symbols

together with countable sets of variables and constant symbols, and countable
sets of function symbols and predicate symbols of arbitrary arity. We can as-
sign codes to each of these symbols in such a way that every symbol is assigned
a unique number as its code, and no two different symbols are assigned the

228

15.2. Coding Symbols

same number. We know that this is possible since the set of all symbols is
countable and so there is a bijection between it and the set of natural num-
bers. But we want to make sure that we can recover the symbol (as well as
some information about it, e.g., the arity of a function symbol) from its code
in a computable way. There are many possible ways of doing this, of course.
Here is one such way, which uses primitive recursive functions. (Recall that
(ng, ..., ng) is the number coding the sequence of numbers ny, ..., 1.)

Definition 15.1. If s is a symbol of £, let the symbol code cs be defined as fol-
lows:

1. If s is among the logical symbols, ¢ is given by the following table:

1 ~ \% & > v
(0,0) (0,1) (0,2) (0,3) (0,4) (0,5

3 = () ,
(0,6) (0,7) (0,8) (0,9) (0,10)

2. If s is the i-th variable v;, then ¢s = (1,1).
3. If s is the i-th constant symbol ¢;, then ¢; = (2,1).
4. If s is the i-th n-ary function symbol £, then ¢s = (3,n,1).

5. If s is the i-th n-ary predicate symbol P!, then cs = (4, n,1).

Proposition 15.2. The following relations are primitive recursive:

1. Fn(x,n) iff x is the code of £/ for some i, i.e., x is the code of an n-ary function
symbol.

2. Pred(x,n) iff x is the code of P]" for some i or x is the code of = and n = 2,
i.e., x is the code of an n-ary predicate symbol.

Definition 15.3. If sp,...,s,_1 is a sequence of symbols, its Godel number is

(Csgr---rCsy 1)

Note that codes and Godel numbers are different things. For instance, the
variable v5 has a code ¢y, = (1,5) = 22 - 3°. But the variable v5 considered as
a term is also a sequence of symbols (of length 1). The Gddel number *vs* of the
term vs is {cyg) = 25571 = 022341,

Example 15.4. Recall that if ko, ..., k,,_1 is a sequence of numbers, then the
code of the sequence (ky, ..., k,_1) in the power-of-primes coding is

ko+1 nki+1 kn_1
2%0 NG 140 S pn’Ll,

229

15. ARITHMETIZATION OF SYNTAX

where p; is the i-th prime (starting with py = 2). So for instance, the formula
vp = 0, or, more explicitly, =(v, ¢p), has the Godel number

<c:,c(,cvo,c,, cco,c)>.
Here, c— is (0,7) = 20%1.37=1 ¢, is (1,0) = 21*1. 30+ etc. So *= (v, ¢)* is

2C:+l X 3C(+1 X 5CVO+1 . 7C,+1 . 11CCO+1 X 13C)+1 _

0213841 9213741 5223141 o2l3M41 19233141 32031041 _

713123 339367 13 354295 1125 13118099

15.3 Coding Terms

A term is simply a certain kind of sequence of symbols: it is built up induc-
tively from constants and variables according to the formation rules for terms.
Since sequences of symbols can be coded as numbers—using a coding scheme
for the symbols plus a way to code sequences of numbers—assigning Godel
numbers to terms is not difficult. The challenge is rather to show that the
property a number has if it is the Godel number of a correctly formed term is
computable, or in fact primitive recursive.

Variables and constant symbols are the simplest terms, and testing whether
x is the Godel number of such a term is easy: Var(x) holds if x is *v;* for some i.
In other words, x is a sequence of length 1 and its single element (x) is the
code of some variable v;, i.e., x is ((1,1)) for some i. Similarly, Const(x) holds
if x is *¢;* for some i. Both of these relations are primitive recursive, since if
such an 7 exists, it must be < x:

Var(x) & (3i < x) x = ((1,1))
Const(x) & (Ji < x) x = ((2,1))

Proposition 15.5. The relations Term(x) and ClTerm(x) which hold iff x is the
Godel number of a term or a closed term, respectively, are primitive recursive.

Proof. A sequence of symbols s is a term iff there is a sequence s, ..., sx_1 =5
of terms which records how the term s was formed from constant symbols
and variables according to the formation rules for terms. To express that such
a putative formation sequence follows the formation rules it has to be the case
that, for each i < k, either

1. s;is a variable v;, or
2. s; is a constant symbol ¢;, or

3. s; is built from # terms ¢4, ..., t; occurring prior to place i using an n-
place function symbol f]-”.

230

15.4. Coding Formulae

To show that the corresponding relation on Gédel numbers is primitive re-
cursive, we have to express this condition primitive recursively, i.e., using
primitive recursive functions, relations, and bounded quantification.

Suppose y is the number that codes the sequence s, ..., sx_1, i.e, y =
(*so*,...,"sx_1"). It codes a formation sequence for the term with Gédel num-
ber x iff for all i < k:

1. Var((y);), or
2. Const((y);), or

3. there is an n and a number z = (z,...,z,) such that each z; is equal to
some (y); fori’ < iand
(y)i =" (" ~ flatten(z) ~)",
and moreover (y);_1 = x. (The function flatten(z) turns the sequence (*t1*,...,%,")
into %t1,...,t," and is primitive recursive.)

The indices j, n, the Godel numbers z; of the terms t;, and the code z of the
sequence (z1,...,zy,), in (3) are all less than y. We can replace k above with
len(y). Hence we can express “y is the code of a formation sequence of the
term with Godel number x” in a way that shows that this relation is primitive
recursive.

We now just have to convince ourselves that there is a primitive recursive
bound on y. But if x is the Gédel number of a term, it must have a formation
sequence with at most len(x) terms (since every term in the formation se-
quence of s must start at some place in s, and no two subterms can start at the

same place). The Godel number of each subterm of s is of course < x. Hence,

there always is a formation sequence with code < p’;(_x;r 1), where k = len(x).

For ClTerm, simply leave out the clause for variables. O
Proposition 15.6. The function num(n) = *n" is primitive recursive.
Proof. We define num(n) by primitive recursion:

num(0) = *o*

num(n +1) = *(* ~ num(n) ~ *)*. O

154 Coding Formulae

Proposition 15.7. The relation Atom(x) which holds iff x is the Godel number of
an atomic formula, is primitive recursive.

Proof. The number x is the Gdel number of an atomic formula iff one of the
following holds:

231

15. ARITHMETIZATION OF SYNTAX

1. There are 1, j < x, and z < x such that for each i < n, Term((z);) and
X =
P (* ~ flatten(z) ~)"

2. There are z1,zy < x such that Term(z;), Term(z;), and x =

®

:<#/\Zl/\ P /\22/\#)#'

3. x="*1% O

Proposition 15.8. The relation Frm(x) which holds iff x is the Godel number of
a formula is primitive recursive.

Proof. A sequence of symbols s is a formula iff there is formation sequence s,
..., 8k_1 = s of formula which records how s was formed from atomic formu-
lae according to the formation rules. The code for each s; (and indeed of the
code of the sequence (s, . ..,sk_1)) is less than the code x of s. O

Proposition 15.9. The relation FreeOcc(x, z, i), which holds iff the i-th symbol of
the formula with Godel number x is a free occurrence of the variable with Godel num-
ber z, is primitive recursive.

Proof. Exercise. O

Proposition 15.10. The property Sent(x) which holds iff x is the Godel number of
a sentence is primitive recursive.

Proof. A sentence is a formula without free occurrences of variables. So Sent(x)
holds iff

(Vi <len(x)) (Vz < x)
((3j < z) z="vj" D ~FreeOcc(x,z,i)). O

15.5 Substitution

Recall that substitution is the operation of replacing all free occurrences of
a variable u in a formula ¢ by a term ¢, written ¢[t/u]. This operation, when
carried out on Godel numbers of variables, formulae, and terms, is primitive
recursive.

Proposition 15.11. There is a primitive recursive function Subst(x,y,z) with the
property that
Subst(*¢", *t*,*u") = o[t /u]’.

232

15.6. Derivations in Natural Deduction

Proof. We can then define a function hSubst by primitive recursion as follows:

hSubst(x,y,z,0) = A

hSubst(x,y,z,i+1) =
hSubst(x,y,z,i) ~y if FreeOcc(x, z, 1)
append (hSubst(x,y,z,i), (x);) otherwise.
Subst(x, y,z) can now be defined as hSubst(x, y, z,len(x)). O

Proposition 15.12. The relation FreeFor(x,y, z), which holds iff the term with Godel
number y is free for the variable with Godel number z in the formula with Godel num-
ber x, is primitive recursive.

Proof. Exercise. O

15.6 Derivations in Natural Deduction

In order to arithmetize derivations, we must represent derivations as num-
bers. Since derivations are trees of formulae where each inference carries one
or two labels, a recursive representation is the most obvious approach: we
represent a derivation as a tuple, the components of which are the number of
immediate sub-derivations leading to the premises of the last inference, the
representations of these sub-derivations, and the end-formula, the discharge
label of the last inference, and a number indicating the type of the last infer-
ence.

Definition 15.13. If J is a derivation in natural deduction, then *6* is defined
inductively as follows:

1. If § consists only of the assumption ¢, then ** is (0, *¢*, n). The num-
ber n is 0 if it is an undischarged assumption, and the numerical label
otherwise.

2. If § ends in an inference with one, two, or three premises, then *5* is

(1,%01%,%¢", n, k),

(2,%01%,%%","¢", m, k), or

(3,%1",%5", 55", ¢", m, k),
respectively. Here 81, 62, d3 are the sub-derivations ending in the premise(s)
of the last inference in &, ¢ is the conclusion of the last inference in J, n
is the discharge label of the last inference (0 if the inference does not dis-

charge any assumptions), and k is given by the following table according
to which rule was used in the last inference.

233

15. ARITHMETIZATION OF SYNTAX

Rule: &Intro &Elim VIntro VELIm

k: 1 2 3 4
Rule: DIntro DElim ~Intro ~FElim
k: 5 6 7 8
Rule: i dc Vintro VElim
k: 9 10 11 12

Rule: dIntro dJElim =Intro =Elim
k: 13 14 15 16

Example 15.14. Consider the very simple derivation

1
M &Elim

2
1 —— DIntro
(p&y) D¢

The Godel number of the assumption would be dy = (0,%*¢ & ¢*,1). The
Godel number of the derivation ending in the conclusion of &Elim would
be di = (1,dp,*¢*0,2) (1 since &Elim has one premise, the Godel num-
ber of conclusion ¢, 0 because no assumption is discharged, and 2 is the
number coding &Elim). The Godel number of the entire derivation then is

(1,d1, (9 &) D @)F,1,5), ie.,
(L(1,(0,* (¢ &9)",1),"9",0,2), (¢ &) D 9)",1,5).

Having settled on a representation of derivations, we must also show that
we can manipulate Godel numbers of such derivations primitive recursively,
and express their essential properties and relations. Some operations are sim-
ple: e.g., given a Godel number d of a derivation, EndFmla(d) = (d)(4),+1
gives us the Godel number of its end-formula, DischargeLabel(d) = (d) 4,2
gives us the discharge label and LastRule(d) = (d) 4),+3 the number indicat-
ing the type of the last inference. Some are much harder. We’ll at least sketch
how to do this. The goal is to show that the relation “J is a derivation of ¢
from I'” is a primitive recursive relation of the Godel numbers of § and ¢.

Proposition 15.15. The following relations are primitive recursive:
1. @ occurs as an assumption in § with label n.

2. All assumptions in 6 with label n are of the form ¢ (i.e., we can discharge the
assumption ¢ using label n in J).

Proof. We have to show that the corresponding relations between Godel num-
bers of formulae and Godel numbers of derivations are primitive recursive.

234

15.6. Derivations in Natural Deduction

1. We want to show that Assum(x, d, n), which holds if x is the G6del num-
ber of an assumption of the derivation with Godel number 4 labelled 7,
is primitive recursive. This is the case if the derivation with Godel num-
ber (0, x, n) is a sub-derivation of d. Note that the way we code deriva-
tions is a special case of the coding of trees introduced in section 14.12,
so the primitive recursive function SubtreeSeq(d) gives a sequence of
Godel numbers of all sub-derivations of d (of length a most d). So we
can define

Assum(x,d,n) < (3i < d) (SubtreeSeq(d)); = (0,x,n).

2. We want to show that Discharge(x, d,), which holds if all assumptions
with label 7 in the derivation with Godel number d all are the formula
with Godel number x. But this relation holds iff (Vy < d) (Assum(y,d, n) D
y = x). O

Proposition 15.16. The property Correct(d) which holds iff the last inference in the
derivation § with Godel number d is correct, is primitive recursive.

Proof. Here we have to show that for each rule of inference R the relation
FollowsByy (d) is primitive recursive, where FollowsBy(d) holds iff d is the
Godel number of derivation J, and the end-formula of § follows by a correct
application of R from the immediate sub-derivations of ¢.

A simple case is that of the &Intro rule. If § ends in a correct &Intro infer-
ence, it looks like this:

3 53

¢ 9
P&y

Then the Godel number d of § is (2,dq, dp, *(¢ & ¢)*, 0, k) where EndFmla(d;)

¢, EndFmla(d,) = *B*,n = 0,and k = 1. So we can define FollowsBy ... (4)
as

&Intro

(d)p = 2 & DischargeLabel(d) = 0 & LastRule(d) = 1 &
EndFmla(d) = *(* —~ EndFmla((d);) — *&" —~ EndFmla((d);) —~ *)*.
Another simple example if the =Intro rule. Here the premise is an empty
derivation, i.e., (d); = 0, and no discharge label, i.e., n = 0. However, ¢ must

be of the form t = t, for a closed term ¢. Here, a primitive recursive definition
is

(d)o =1& (d); = 0 & DischargeLabel(d) = 0 &
(3t < d) (ClTerm(t) & EndFmla(d) =*=(* ~t ~** ~t ~ %))

235

15. ARITHMETIZATION OF SYNTAX

For a more complicated example, FollowsBy— . .(d) holds iff the end-
formula of J is of the form (¢ O ¢), where the end-formula of ¢; is ¥, and
any assumption in § labelled 7 is of the form ¢. We can express this primitive
recursively by

(d)o=1&
(Ja < d) (Discharge(a, (d)1, DischargeLabel(d)) &
EndFmla(d) = (*(* ~a —~ *>" ~ EndFmla((d);) —~ *)%))

(Think of a as the Godel number of ¢).

For another example, consider JIntro. Here, the last inference in ¢ is correct
iff there is a formula ¢, a closed term t and a variable x such that ¢[t/x] is
the end-formula of the derivation J; and Jx ¢ is the conclusion of the last
inference. So, FollowsBy<, ... (d) holds iff

(d)o = 1 & DischargeLabel(d) = 0 &
(Ja < d) (Ix < d) (3t < d) (ClTerm(t) & Var(x) &
Subst(a,t, x) = EndFmla((d);) & EndFmla(d) = (*3* —~ x —~a)).

We then define Correct(d) as

Sent(EndFmla(d)) &
(LastRule(d) = 1 & FollowsBy,g 0 (d)) V -+ V
(LastRule(d) = 16 & FollowsBy_p. . (d)) V
(In < d) (3x <d) (d=1(0,x,n)).

The first line ensures that the end-formula of d is a sentence. The last line
covers the case where d is just an assumption. O

Proposition 15.17. The relation Deriv(d) which holds if d is the Godel number of a
correct derivation d, is primitive recursive.

Proof. A derivation ¢ is correct if every one of its inferences is a correct ap-
plication of a rule, i.e., if every one of its sub-derivations ends in a correct
inference. So, Deriv(d) iff

(Vi < len(SubtreeSeq(d))) Correct((SubtreeSeq(d));) O

Proposition 15.18. The relation OpenAssum(z, d) that holds if z is the Gidel num-
ber of an undischarged assumption ¢ of the derivation § with Godel number d, is
primitive recursive.

236

15.6. Derivations in Natural Deduction

Proof. An occurrence of an assumption is discharged if it occurs with label n
in a sub-derivation of ¢ that ends in a rule with discharge label n. So ¢ is
an undischarged assumption of ¢ if at least one of its occurrences is not dis-
charged in §. We must be careful: § may contain both discharged and undis-
charged occurrences of ¢.

Consider a sequence dy, ..., where 6y = 6, J; is the assumption [¢]" (for
some 1), and J;,1 is an immediate sub-derivation of ;. If such a sequence
exists in which no ¢; ends in an inference with discharge label 7, then ¢ is
an undischarged assumption of 4.

The primitive recursive function SubtreeSeq(d) provides us with a sequence
of Godel numbers of all sub-derivations of 6. Any sequence of Gdel numbers
of sub-derivations of § is a subsequence of it. Being a subsequence of is a prim-
itive recursive relation: Subseq(s, s’) holds iff (Vi < len(s)) 3j < len(s’) (s); =
(s);. Being an immediate sub-derivation is as well: Subderiv(d,d’) iff (3j <
(d")o) d = (d');. So we can define OpenAssum(z,d) by

(ds < SubtreeSeq(d)) (Subseq(s, SubtreeSeq(d)) & (s)o = d &
(In < d) ((S)len(s)él =(0,z,n) &
(Vi < (len(s) = 1)) (Subderiv((s);11,(s);)] &
DischargeLabel((s);+1) #n))). O

Proposition 15.19. Suppose T is a primitive recursive set of sentences. Then the
relation Prir(x, y) expressing “x is the code of a derivation & of ¢ from undischarged
assumptions in I and y is the Godel number of ¢” is primitive recursive.

Proof. Suppose “y € T'” is given by the primitive recursive predicate Rr(y).
We have to show that Prfr(x,y) which holds iff y is the Godel number of
a sentence ¢ and x is the code of a natural deduction derivation with end
formula ¢ and all undischarged assumptions in I is primitive recursive.

By Proposition 15.17, the property Deriv(x) which holds iff x is the Godel
number of a correct derivation ¢ in natural deduction is primitive recursive.
Thus we can define Prfr(x, y) by

Prfr(x,y) < Deriv(x) & EndFmla(x) =y &
(Vz < x) (OpenAssum(z, x) D Rr(z)). O

237

Chapter 16

Representability in Q

16.1 Introduction

The incompleteness theorems apply to theories in which basic facts about
computable functions can be expressed and proved. We will describe a very
minimal such theory called “Q” (or, sometimes, “Robinson’s Q,” after Raphael
Robinson). We will say what it means for a function to be representable in Q,
and then we will prove the following:

A function is representable in Q if and only if it is computable.

For one thing, this provides us with another model of computability. But we
will also use it to show that the set {¢ | Q F ¢} is not decidable, by reducing
the halting problem to it. By the time we are done, we will have proved much
stronger things than this.

The language of Q is the language of arithmetic; Q consists of the fol-
lowing axioms (to be used in conjunction with the other axioms and rules of
first-order logic with identity predicate):

Vavy (x' =y Dx=y) Q1)
Vxo # x’ (Q2)
Vx(x=oV3iyx=y') (Qa)
Vx(x+o0)=x (Q4)
Vavy (x+y') = (x +y)’ (Qs)
Vx(xxo0)=o0 (Qe)
VaWy (x xy') = ((x xy) +x) (Q7)
VaVy(x <y=3z(Z +x) =y) (Qg)

For each natural number 7, define the numeral 7 to be the term 0"~/ where

there are n tick marks in all. So, 0 is the constant symbol o by itself, 1 is o/,2is
1

0", etc.

239

16. REPRESENTABILITY IN Q

As a theory of arithmetic, Q is extremely weak; for example, you can’t even
prove very simple facts like Vx x # x’ or Vx Vy (x +y) = (y + x). But we will
see that much of the reason that Q is so interesting is because it is so weak. In
fact, it is just barely strong enough for the incompleteness theorem to hold.
Another reason Q is interesting is because it has a finite set of axioms.

A stronger theory than Q (called Peano arithmetic PA) is obtained by adding
a schema of induction to Q:

(9(0) & Vx (9(x) O 9(x'))) D Vx p(x)

where ¢(x) is any formula. If ¢(x) contains free variables other than x, we add
universal quantifiers to the front to bind all of them (so that the corresponding
instance of the induction schema is a sentence). For instance, if ¢(x,y) also
contains the variable y free, the corresponding instance is

vy ((¢(0) & Vx (¢(x) D ¢(x'))) D Vx 9(x))

Using instances of the induction schema, one can prove much more from the
axioms of PA than from those of Q. In fact, it takes a good deal of work to
find “natural” statements about the natural numbers that can’t be proved in
Peano arithmetic!

Definition 16.1. A function f(xo, ..., xx) from the natural numbers to the nat-
ural numbers is said to be representable in Q if there is a formula ¢ ¢ (xo, . . ., X, ¥)
such that whenever f(ny,...,n;) = m, Q proves

1. @f(%, . .,Wk,ﬁ)
2. Yy (¢s (7, ..., 7k, y) D =y).

There are other ways of stating the definition; for example, we could equiv-
alently require that Q proves Vy (¢ (7g, . .., i, y) =y = m).

Theorem 16.2. A function is representable in Q if and only if it is computable.

There are two directions to proving the theorem. The left-to-right direction
is fairly straightforward once arithmetization of syntax is in place. The other
direction requires more work. Here is the basic idea: we pick “general recur-
sive” as a way of making “computable” precise, and show that every general
recursive function is representable in Q. Recall that a function is general re-
cursive if it can be defined from zero, the successor function succ, and the
projection functions P/, using composition, primitive recursion, and regular
minimization. So one way of showing that every general recursive function is
representable in Q is to show that the basic functions are representable, and
whenever some functions are representable, then so are the functions defined
from them using composition, primitive recursion, and regular minimization.

240

16.2. Functions Representable in Q are Computable

In other words, we might show that the basic functions are representable, and
that the representable functions are “closed under” composition, primitive
recursion, and regular minimization. This guarantees that every general re-
cursive function is representable.

It turns out that the step where we would show that representable func-
tions are closed under primitive recursion is hard. In order to avoid this step,
we show first that in fact we can do without primitive recursion. That is, we
show that every general recursive function can be defined from basic func-
tions using composition and regular minimization alone. To do this, we show
that primitive recursion can actually be done by a specific regular minimiza-
tion. However, for this to work, we have to add some additional basic func-
tions: addition, multiplication, and the characteristic function of the identity
relation y—. Then, we can prove the theorem by showing that all of these basic
functions are representable in Q, and the representable functions are closed
under composition and regular minimization.

16.2 Functions Representable in Q are Computable

We'll prove that every function that is representable in Q is computable. We
first have to establish a lemma about functions representable in Q.

Lemma 16.3. If f(xo, ..., X) is representable in Q, there is a formula ¢(xo, . .., Xk,)
such that

Qr Qf(%//ﬁk/ﬁ) lff m:f(i’l(),...,nk).

Proof. The “if” part is Definition 16.1(1). The “only if” part is seen as follows:
Suppose Q = ¢f(7y, ..., 7, m) but m # f(ng,...,n). Letk = f(no,...,).
By Definition 16.1(1), Q I~ ¢f (110, - - -, Tig, k). By Definition 16.1(2), Vy ((pf (fig, ..., Mg, y) D
k = y). Using logic and the assumption that Q & ¢(7q, . . ., Tig, 7i), we get that
Q + k = m. On the other hand, by Lemma 16.14, Q - k # m. So Q is incon-
sistent. But that is impossible, since Q is satisfied by the standard model (see
??), M E Q, and satisfiable theories are always consistent by the Soundness
Theorem (Corollary 9.29). O

Lemma 16.4. Every function that is representable in Q is computable.

Proof. Let’s first give the intuitive idea for why this is true. To compute f, we
do the following. List all the possible derivations ¢ in the language of arith-
metic. This is possible to do mechanically. For each one, check if it is a deriva-
tion of a formula of the form ¢ 7 (1o, . .., 7, 1) (the formula representing f in Q
from Lemma 16.3). If itis, m = f(ny, ..., nx) by Lemma 16.3, and we’ve found
the value of f. The search terminates because Q + @f (g, ..., 7, f(no, ..., 1g)),
so eventually we find a § of the right sort.

241

16. REPRESENTABILITY IN Q

This is not quite precise because our procedure operates on derivations
and formulae instead of just on numbers, and we haven’t explained exactly
why “listing all possible derivations” is mechanically possible. But as we’ve
seen, it is possible to code terms, formulae, and derivations by Godel num-
bers. We’ve also introduced a precise model of computation, the general re-
cursive functions. And we’ve seen that the relation Prfg(d,y), which holds
iff d is the Godel number of a derivation of the formula with Godel num-
ber y from the axioms of Q, is (primitive) recursive. Other primitive recursive
functions we’ll need are num (Proposition 15.6) and Subst (Proposition 15.11).
From these, it is possible to define f by minimization; thus, f is recursive.

First, define

A(Ylo, .. .,nk,m) =
Subst(Subst(. .. Subst(*¢ ", num(ng), *xo*),

...),num(ng), *x*), num(m), *y*)

This looks complicated, butit’s just the function A(ny, ..., ng, m) = *¢ f(nT), g, m)E

Now, consider the relation R(ny, ..., n,s) which holds if (s)g is the Godel
number of a derivation from Q of ¢¢ (7, . .., 7ir, (s)1):

R(no,...,ng,s) iff Prfg((s)o, A(ng, ..., ng, (s)1))

If we can find an s such that R(ny,...,ng,s) hold, we have found a pair of
numbers—(s)p and (s1)—such that (s)g is the Gédel number of a derivation
of A¢(ng, ..., 7ir, (s)1). So looking for s is like looking for the pair d and m
in the informal proof. And a computable function that “looks for” such an
s can be defined by regular minimization. Note that R is regular: for ev-
ery n, ..., 1y, there is a derivation ¢ of Q & ¢¢(ng, ..., 7, f(no, ..., nk)), s0
R(ng, ..., ng,s) holds fors = (*¢*, f(np,...,ny)). So, we can write f as

f(n(Jr'-'/nk) = (]/lS R(”O/'“/”krs))l']

16.3 The Beta Function Lemma

In order to show that we can carry out primitive recursion if addition, multi-
plication, and x— are available, we need to develop functions that handle se-
quences. (If we had exponentiation as well, our task would be easier.) When
we had primitive recursion, we could define things like the “n-th prime,”
and pick a fairly straightforward coding. But here we do not have primitive
recursion—in fact we want to show that we can do primitive recursion using
minimization—so we need to be more clever.

Lemma 16.5. There is a function B(d, i) such that for every sequence ay, ..., a, there
is a number d, such that for every i < n, p(d,i) = a;. Moreover, B can be defined
from the basic functions using just composition and regular minimization.

242

16.3. The Beta Function Lemma

Think of d as coding the sequence (ay,...,a,), and B(d,i) returning the
i-th element. (Note that this “coding” does not use the power-of-primes cod-
ing we're already familiar with!). The lemma is fairly minimal; it doesn’t say
we can concatenate sequences or append elements, or even that we can com-
pute d from ay, ..., a, using functions definable by composition and regular
minimization. All it says is that there is a “decoding” function such that every
sequence is “coded.”

The use of the notation § is Godel’s. To repeat, the hard part of proving
the lemma is defining a suitable § using the seemingly restricted resources,
i.e., using just composition and minimization—however, we're allowed to use
addition, multiplication, and x—. There are various ways to prove this lemma,
but one of the cleanest is still Godel’s original method, which used a number-
theoretic fact called the Chinese Remainder theorem.

Definition 16.6. Two natural numbers a and b are relatively prime iff their great-
est common divisor is 1; in other words, they have no other divisors in com-
mon.

Definition 16.7. Natural numbers a and b are congruent moduloc,a = b mod c,
iffc | (a —D),1ie., aand b have the same remainder when divided by c.

Here is the Chinese Remainder theorem:

Theorem 16.8. Suppose xo, ..., x, are (pairwise) relatively prime. Let yo, ..., yn be
any numbers. Then there is a number z such that

z=1yp mod xg
z=1y; mod x;

z=Y, mod xy.

Here is how we will use the Chinese Remainder theorem: if xg, ..., x,, are
bigger than vy, ..., y, respectively, then we can take z to code the sequence
(Yo, ---,Yn). To recover y;, we need only divide z by x; and take the remainder.
To use this coding, we will need to find suitable values for x, ..., x;.

A couple of observations will help us in this regard. Given vy, ..., yu, let

j = maX(]’l,yO,. . ,yn) + 1/

243

16. REPRESENTABILITY IN Q

and let
X0:1+j!
x1=14+2-j!
xp=14+3-j!

xp =14+ (n+1)-j!
Then two things are true:
1. xq, ..., x, are relatively prime.
2. For each i, y; < x;.

To see that (1) is true, note that if p is a prime number and p | x; and p | xy,
thenp |1+ (i+1)jland p | 1+ (k+1)j!. But then p divides their difference,

A+GE+1)jH) - A+ (k+1)j!)=(i—k)j.

Since p divides 1+ (i + 1)j!, it can’t divide j! as well (otherwise, the first
division would leave a remainder of 1). So p divides i — k, since p divides
(i —k)j!. But |i — k| is at most 1, and we have chosen j > #, so this implies
that p | j!, again a contradiction. So there is no prime number dividing both
x; and x¢. Clause (2) is easy: we have y; < j <j! < x;.

Now let us prove the § function lemma. Remember that we can use 0,
successor, plus, times, x—, projections, and any function defined from them
using composition and minimization applied to regular functions. We can
also use a relation if its characteristic function is so definable. As before we
can show that these relations are closed under Boolean combinations and
bounded quantification; for example:

not(x) = x=(x,0)
(min x < z) R(x,y) = ux (R(x,y) Vx = z)
(Ix < z) R(x,y) < R((min x < z) R(x,y),y)

We can then show that all of the following are also definable without primitive
recursion:

1. The pairing function, J(x,y) = 3[(x +y)(x +y + 1)] + x;
2. the projection functions

K(z) = (min ¥ < 2) (3y < 2) 2 = J(x,y),
L(z) = (miny <z) (Ix <z)z=](x,y);

244

16.4. Simulating Primitive Recursion

3. the less-than relation x < y;
4. the divisibility relation x | y;

5. the function rem(x, y) which returns the remainder when y is divided
by x.

Now define
B*(dy,d1,i) = rem(1 + (i 4+ 1)dy,dpy) and
p(d,i) = p*(K(d), L(d),1).
This is the function we want. Given ay, ..., a, as above, let
j=max(n,ag,...,a,)+1,

and letd; = j!. By (1) above, we know that 1 +dy, 1 +2dq,..., 14+ (n+1)d;
are relatively prime, and by (2) that all are greater than ap, ..., a,. By the
Chinese Remainder theorem there is a value d such that for each i,

do=a; mod (1+ (i+1)dy)
and so (because d; is greater than a;),
a; = rem(1+ (i +1)dy, dp).
Letd = J(dy,dq). Then for each i < n, we have

B(d,i) = B*(do,dq,1)
=rem(1+ (i+1)dy,dp)
= g

which is what we need. This completes the proof of the S-function lemma.

16.4 Simulating Primitive Recursion

Now we can show that definition by primitive recursion can be “simulated”
by regular minimization using the beta function. Suppose we have f(¥) and
g(¥,y,z). Then the function h(x,Z) defined from f and g by primitive recur-
sion is

h(%,0) = f(2)
h(%y+1) = g(X,y,h(Zy)).

We need to show that /i can be defined from f and g using just composition
and regular minimization, using the basic functions and functions defined
from them using composition and regular minimization (such as g).

245

16. REPRESENTABILITY IN Q

Lemma 16.9. If hh can be defined from f and g using primitive recursion, it can be
defined from f, g, the functions zero, succ, P/', add, mult, x—, using composition
and regular minimization.

Proof. First, define an auxiliary function /1(X,y) which returns the least num-
ber d such that d codes a sequence which satisfies

1. (d)o = f(7), and
2. foreachi <y, (d)iy1 = ¢(%,i,(d);),

where now (d); is short for f(d,i). In other words, /i returns the sequence
(h(%,0),h(%,1),...,h(% y)). We can write /1 as

h(E,y) = pd (B(d,0) = F(2) & (Vi < y) B(d,i+1) = g(%,i, B(d,).

Note: no primitive recursion is needed here, just minimization. The function
we minimize is regular because of the beta function lemma Lemma 16.5.
But now we have

h(%,y) = B(h(Zy),y),

so h can be defined from the basic functions using just composition and regu-
lar minimization. O

16.5 Basic Functions are Representable in Q

First we have to show that all the basic functions are representable in Q. In the
end, we need to show how to assign to each k-ary basic function f(xo, ..., xx_1)
a formula @ (xo, ..., X;_1,y) that represents it.

We will be able to represent zero, successor, plus, times, the characteristic
function for equality, and projections. In each case, the appropriate represent-
ing function is entirely straightforward; for example, zero is represented by
the formula y = o, successor is represented by the formula x{, = y, and addi-
tion is represented by the formula (xp + x1) = y. The work involves showing
that Q can prove the relevant sentences; for example, saying that addition
is represented by the formula above involves showing that for every pair of
natural numbers m and n, Q proves

n+m=n+mand
Vy((m+m)=yDy=n+m).

Proposition 16.10. The zero function zero(x) = 0 is represented in Q by @ ero (X, y) =
y=o.

Proposition 16.11. The successor function succ(x) = x + 1 is represented in Q by
Psucc(X,y) =y = X'

246

16.5. Basic Functions are Representable in Q

Proposition 16.12. The projection function P!'(xo,...,x,—1) = X; is represented
in Q by
(pr(xof-~-/xn71ry) =Yy =X

Proposition 16.13. The characteristic function of =,

1 ifxg=x
X—(XO/xl):{ f 0 1

0 otherwise
is represented in Q by
@x_(x0,x1,y) = (xo =21 &y =1) V (xg # x1 &y = 0).
The proof requires the following lemma.

Lemma 16.14. Given natural numbers n and m, if n % m, then Q =7 # m.

Proof. Use induction on 1 to show that for every m, if n # m, then Q - 1 # m.

In the base case, n = 0. If m is not equal to 0, then m = k + 1 for some
natural number k. We have an axiom that says Vx0 # x’. By a quantifier
axiom, replacing x by k, we can conclude 0 # K. Butk is just m.

In the induction step, we can assume the claim is true for n, and consider
n + 1. Let m be any natural number. There are two possibilities: either m = 0
or for some k we have m = k 4 1. The first case is handled as above. In the
second case, suppose 11 + 1 # k + 1. Then n # k. By the induction hypothesis
for n we have Q I 71 # k. We have an axiom that says VxVyx' =y’ D x = y.
Using a quantifier axiom, we have 7’ = Kon=rk Using propositional
logic, we can conclude, in Q, 77 # kon # k. Using modus ponens, we can
conclude 77’ # ?, which is what we want, since k is 7. O]

Note that the lemma does not say much: in essence it says that Q can
prove that different numerals denote different objects. For example, Q proves
0" # 0. But showing that this holds in general requires some care. Note also
that although we are using induction, it is induction outside of Q.

Proof of Proposition 16.13. If n = m, then 7 and m are the same term, and
X=(n,m)=1.ButQF (7 =mé&1 = 1), so it proves ¢—(7,7,1). If n # m,
then x—(n,m) = 0. By Lemma 16.14, Q - 71 # i and so also (7 # 7 & 0 = 0).
Thus Q + ¢—(7,7,0).

For the second part, we also have two cases. If n = m, we have to show
that Q - Vy (¢=(7,7,y) D y = 1). Arguing informally, suppose ¢— (7,71, y),
ie,

A=n&y=1)V([@#£n&y=0)

The left disjunct implies y = 1 by logic; the right contradicts 7 = 7 which is
provable by logic.

247

16. REPRESENTABILITY IN Q

Suppose, on the other hand, that n # m. Then ¢ (71, m,y) is
m=m&y=1)V (@A #m&y=0)

Here, the left disjunct contradicts 7 # 71, which is provable in Q by Lemma 16.14;
the right disjunct entails y = 0. O

Proposition 16.15. The addition function add(xo,x1) = xo + x1 is represented
in Q by
Padd (%0, x1,¥) =y = (x0 + x71).

Lemma16.16. QF (n+m) =n+m

Proof. We prove this by induction on m. If m = 0, the claim is that Q - (77 +
0) = 7. This follows by axiom Q4. Now suppose the claim for m; let’s prove
the claim for m + 1, i.e., prove that Q - (7 +m+1) = n+ m + 1. Note that
m+1isjust 71, and 1+ m + 1 is just n + m'. By axiom Qs, Q I (71 +7') =
(7 + ﬁ/)’ . By induction hypothesis, Q - (T +7) =n+m. SoQ (m+ ') =
n+m. O

Proof of Proposition 16.15. The formula @,44 (X0, X1,y) representing add is y =
(xo + x1). First we show that if add(n,m) = k, then Q - @.qq(7,71,k), i.e.,
Q - k = (7 +m). But since k = n + m, k just is n + m, and we’ve shown in
Lemma 16.16 that Q - (7 +) = n + m.

We also have to show that if add(n, m) = k, then

Q= ¥y (Paaa (71, 7,y) Dy = k).
Suppose we have (77 +) = y. Since
QF (i+7) =n+m,
we can replace the left side with n +m and get n + m = y, for arbitrary y. [

Proposition 16.17. The multiplication function mult(xg,x1) = xo - X1 is repre-
sented in Q by

Pmuie(%0, %1, Y) =y = (x0 X x7).
Proof. Exercise. L)
Lemma16.18. QF (i xm) =n-m
Proof. Exercise. L)

248

16.6. Composition is Representable in Q

Recall that we use x for the function symbol of the language of arith-
metic, and - for the ordinary multiplication operation on numbers. So - can
appear between expressions for numbers (such as in m - n) while x appears
only between terms of the language of arithmetic (such as in (7 x 7)). Even
more confusingly, + is used for both the function symbol and the addition
operation. When it appears between terms—e.g., in (7 + 1)—it is the 2-place
function symbol of the language of arithmetic, and when it appears between
numbers—e.g., in n + m—it is the addition operation. This includes the case
n + m: this is the standard numeral corresponding to the number n + m.

16.6 Composition is Representable in Q
Suppose h is defined by

h(xo, ..., x1-1) = f(go(x0, -, X1-1), -, §k—1 (X0, - - -, X1—1))-

where we have already found formulae ¢y, g, ..., ¢g,_, representing the
functions f, and g, ..., §k—1, respectively. We have to find a formula ¢, rep-
resenting h.

Let’s start with a simple case, where all functions are 1-place, i.e., consider
h(x) = f(g(x)). If ¢f(y,z) represents f, and @g(x,y) represents g, we need
a formula ¢y, (x,z) that represents h. Note that h(x) = z iff there is a y such
that both z = f(y) and y = g(x). (If h(x) = z, then g(x) is such a y; if such a
y exists, then since y = g(x) and z = f(y), z = f(g(x)).) This suggests that
Ty (pg(x,y) & ¢ (y,2)) is a good candidate for ¢y (x, z). We just have to verify
that Q proves the relevant formulae.

Proposition 16.19. If h(n) = m, then Q - ¢y, (71,).
Proof. Suppose h(n) = m, i.e., f(g(n)) = m. Letk = g(n). Then
Q- gg(7, k)
since ¢ represents ¢, and
Q+ ¢s(k,m)
since ¢ represents f. Thus,
Q - g (71, k) & ¢ (k, 771)
and consequently also
Q F 3y (9511, y) & ¢ (y, 1)),
ie., QF ¢y(n,m). O

249

16. REPRESENTABILITY IN Q

Proposition 16.20. If h(n) = m, then Q - Vz (¢ (71,z) D z = m).
Proof. Suppose h(n) = m, i.e., f(g(n)) = m. Letk = g(n). Then
Q- Vy(gs(fy) Dy =k)

since ¢, represents g, and
QF Vz(¢s(k,z) Dz =7i)

since ¢ represents f. Using just a little bit of logic, we can show that also

QFvz(Jy (911 y) & ¢sly,z)) Dz =Tm).
ie, QF Yy (¢y(n,y) Dy =m). O

The same idea works in the more complex case where f and g; have arity
greater than 1.

Proposition 16.21. If p¢(yo, - - -, Yx—1,2) represents f(yo, - ., Yxk—1) in Q, and @g,(xo, - .., X1-1,Y)
represents g;(xo,...,x;_1) in Q, then

Fyo--- k-1 (pgo(x0, - x1-1,y0) & &
!Agk—l (xOI .. ~/xl—1/yk—1) & q)f(y()/ .o '/yk—l/z))
represents
h(XO, .- -/xlfl) = f(gO(XO/ .- '/xlfl)r' . '/gkfl(xor .- -/xlfl))‘

Proof. Exercise. O

16.7 Regular Minimization is Representable in Q

Let’s consider unbounded search. Suppose g(x, z) is regular and representable
in Q, say by the formula @g¢(x,z,y). Let f be defined by f(z) = px [g(x,z) =
0]. We would like to find a formula ¢¢(z,y) representing f. The value of f(z)
is that number x which (a) satisfies g(x,z) = 0 and (b) is the least such, i.e.,
for any w < x, g(w, z) # 0. So the following is a natural choice:

97(2,9) = py(y,2,0) &V (w < y > ~qg(w,7,0)).

In the general case, of course, we would have to replace z with zy, ..., z.
The proof, again, will involve some lemmas about things Q is strong enough
to prove.

250

16.7. Regular Minimization is Representable in Q

Lemma 16.22. For every constant symbol a and every natural number n,
QF (d+7)=(a+mn).

Proof. The proof is, as usual, by induction on n. In the base case, n = 0, we
need to show that Q proves (4’ +0) = (a4 + 0)’. But we have:

QF (d+0)=4d" byaxiom Qq (16.1)
Q F(a+4+0) =a byaxiom Qq (16.2)
F(a+0) =d byeq.(16.2) (16.3)
Q F(a"+0)=(a+0) byeq.(16.1) and eq. (16.3)
In the induction step, we can assume that we have shown that Q - (a' +7) =
(a+7)’. Since n + 1is 7, we need to show that Q proves (¢’ +7') = (a+7')'.
We have:
Qt (a'+7) = (ad +7) byaxiom Qs (16.4)
QF (d +7) = (a+7) inductive hypothesis (16.5)
QF (' +7) = (a+7) byeq. (16.4) and eq. (16.5). O

It is again worth mentioning that this is weaker than saying that Q proves
VxVy (x' +y) = (x+y)'. Although this sentence is true in 0N, Q does not
prove it.

Lemma 16.23. Q - Vx ~x < o.

Proof. We give the proof informally (i.e., only giving hints as to how to con-
struct the formal derivation).

We have to prove ~a < o for an arbitrary a. By the definition of <, we
need to prove ~3Jy (y' +a) = 0in Q. We'llassume Jy (' +a) = o and prove a
contradiction. Suppose (b’ +a) = o. Using Q3, we have thata = oV 3ya =y
We distinguish cases.

Case 1: a = o holds. From (V' 4+ a) = o, we have (' 4+ 0) = 0. By axiom Q4
of Q, we have (V' + 0) = b/, and hence b’ = 0. But by axiom Q; we also have
b’ # o, a contradiction.

Case 2: For some ¢, 2 = ¢’. But then we have (V' + ¢’) = o. By axiom Qs,
we have (V' 4 ¢)’ = o, again contradicting axiom Q. O

Lemma 16.24. For every natural number n,
QFVx(x<n+1D(x=o0V---Vx=n)).

Proof. We use induction on n. Let us consider the base case, when n = 0. In
that case, we need to show a < 1 D a = o, for arbitrary a. Suppose a < 1.
Then by the defining axiom for <, we have Jy (' + a) = o’ (since 1 = 0).

251

16. REPRESENTABILITY IN Q

Suppose b has that property, i.e., we have (b’ +a) = o’. We need to show
a = 0. By axiom Q3, we have either a = o or that there is a ¢ such thata = ¢’.
In the former case, there is nothing to show. So suppose a = ¢’. Then we have
(b’ + ') = 0. By axiom Qs of Q, we have (V' +¢)’ = o’. By axiom Qq, we
have (b’ 4+ ¢) = o. But this means, by axiom Qs, that ¢ < o, contradicting
Lemma 16.23.

Now for the inductive step. We prove the case for n 4 1, assuming the case
for n. So suppose a < n+ 2. Again using Q3 we can distinguish two cases:
a = o and for some b, a = ¢’. In the first case,a = oV ---Va = n + 1 follows
trivially. In the second case, we have ¢’ < n+2,i.e., ¢ < m’. By axiom Qg,
for some d, (& +c') = n+ 1. By axiom Qs, (d' 4+ ¢)' = n+ 1. By axiom Qj,
(d+c¢) =n+1, and so ¢ < n+ 1 by axiom Qg. By inductive hypothesis,
c=o0V---Vc =T From this, we get¢’ = o’V --- V¢’ =7 by logic, and so
a=1V---Va=n+1sincea=c" O

Lemma 16.25. For every natural number m,
QFYy((y<mVvm<y)Vy=m).

Proof. By induction on m. First, consider the case m = 0. Q - Vy(y = oV
Jzy = 2’) by Q3. Let a be arbitrary. Then either a = o or for some b, a = V'.
In the former case, we also have (¢ < oVo < a)Va = o. Butifa =V,
then (V' + 0) = (a + o) by the logic of =. By Q4, (a4 0) = 4, so we have
(b’ 4+ 0) = a, and hence 3z (z' 4+ 0) = a. By the definition of < in Qg, 0 < a. If
0 <a,thenalso (0 <aVa<o)Va=o.

Now suppose we have

QrFYy((y<mvVvm<y)Vy=in)
and we want to show

QFY(y<m+1vm+1<y)Vy=m+1)

Let a be arbitrary. By Q3, either 2 = o or for some b, a = V. In the first case,
we have i’ +a = m + 1by Qq, and so a < m + 1 by Qs.

Now consider the second case, 2 = b'. By the induction hypothesis, (b <
TN < b)Vb=Ti.

The first disjunct b < 7 is equivalent (by Qs) to 3z (z' + b) = 7. Suppose
c has this property. If (¢’ + b) =, then also (¢/ +b)’ =m’. By Qs, (¢ +b)’ =
(c"+ V). Hence, (¢’ +b') = m'. We get Ju (1’ +') = m + 1 by existentially
generalizing on ¢’ and keeping in mind that m = m + 1. Hence, if b < 71 then
bV <m+Tlandsoa <m+1.

Now suppose 7 < b, i.e., 3z (z' +m) = b. Suppose c is such a z, ie.,
(¢ 4+) = b. By logic, (¢/ +m) =b'. By Qs, (¢’ + ') = b'. Since a = b’ and
m=m+1,(’+m+1)=a.ByQs,m+1<a.

252

16.8. Computable Functions are Representable in Q

Finally, assume b = 7. Then, by logic, b’ = 7', and so a = m + 1.

Hence, from each disjunct of the case for m and b, we can obtain the corre-
sponding disjunct for for m 4+ 1 and a. O
Proposition 16.26. If ¢, (x,z,y) represents g(x,z) in Q, then

07z y) = y(1,2,0) & Yoo (0 < y D ~gy (,2,0))
represents f(z) = ux [g(x,z) = 0].
Proof. First we show thatif f(n) = m, then Q - ¢((77,m), i.e.,
QF ¢q(m,7,0) & Vw (w < M D ~¢pg(w,1,0)).
Since @q(x,z,y) represents g(x,z) and g(m,n) = 0if f(n) = m, we have
Qr gog(ﬁ,ﬁ,o).

If f(n) = m, then for every k < m, g(k,n) # 0. So

QFr Ngog(,7,0).
We get that

QFVw(w <m D ~¢pg(w,7,0)). (16.6)

by Lemma 16.23 in case m = 0 and by Lemma 16.24 otherwise.

Now let’s show that if f(n) = m, then Q - Vy (¢f(7,y) D y = m). We
again sketch the argument informally, leaving the formalization to the reader.

Suppose ¢f(7,b). From this we get (a) ¢q(b,7,0) and (b) Vw (w < b D
~@¢(w,7,0)). By Lemma 16.25, (b < mVm < b) Vb = m. We'll show that
both b < m and m < b leads to a contradiction.

If m < b, then ~@¢(m,7,0) from (b). But m = f(n), so g(m,n) = 0, and so
Q F ¢4 (m,7,0) since @, represents g. So we have a contradiction.

Now suppose b < 7. Then since Q - Vw (w < m D ~g@¢(w,7,0)) by
eq. (16.6), we get ~@¢(b,1,0). This again contradicts (a). O

16.8 Computable Functions are Representable in Q

Theorem 16.27. Every computable function is representable in Q.

Proof. For definiteness, and using the Church-Turing Thesis, let’s say that a
function is computable iff it is general recursive. The general recursive func-
tions are those which can be defined from the zero function zero, the successor

253

16. REPRESENTABILITY IN Q

function succ, and the projection function P/" using composition, primitive re-
cursion, and regular minimization. By Lemma 16.9, any function & that can
be defined from f and g can also be defined using composition and regular
minimization from f, ¢, and zero, succ, P/, add, mult, x—. Consequently, a
function is general recursive iff it can be defined from zero, succ, P/, add,
mult, x— using composition and regular minimization.

We’ve furthermore shown that the basic functions in question are rep-
resentable in Q (Propositions 16.10 to 16.13, 16.15 and 16.17), and that any
function defined from representable functions by composition or regular min-
imization (Proposition 16.21, Proposition 16.26) is also representable. Thus
every general recursive function is representable in Q. O

We have shown that the set of computable functions can be characterized
as the set of functions representable in Q. In fact, the proof is more general.
From the definition of representability, it is not hard to see that any theory
extending Q (or in which one can interpret Q) can represent the computable
functions. But, conversely, in any derivation system in which the notion of
derivation is computable, every representable function is computable. So,
for example, the set of computable functions can be characterized as the set
of functions representable in Peano arithmetic, or even Zermelo-Fraenkel set
theory. As Godel noted, this is somewhat surprising. We will see that when
it comes to provability, questions are very sensitive to which theory you con-
sider; roughly, the stronger the axioms, the more you can prove. But across a
wide range of axiomatic theories, the representable functions are exactly the
computable ones; stronger theories do not represent more functions as long as
they are axiomatizable.

16.9 Representing Relations

Let us say what it means for a relation to be representable.

Definition 16.28. A relation R(xy, ..., x;) on the natural numbers is representable
in Q if there is a formula ¢g(xo, ..., xx) such that whenever R(ny, ..., ny) is
true, Q proves ¢ (7o, ..., M), and whenever R(ny, ..., n) is false, Q proves

~@r (70, - -,).
Theorem 16.29. A relation is representable in Q if and only if it is computable.

Proof. For the forwards direction, suppose R(x, ..., xx) is represented by the
formula ¢g(xp,...,xx). Here is an algorithm for computing R: on input ny,
.., Ny, simultaneously search for a proof of ¢g(7y,..., ;) and a proof of
~@Rr(p, ..., 7x). By our hypothesis, the search is bound to find one or the
other; if it is the first, report “yes,” and otherwise, report “no.”
In the other direction, suppose R(xy, ..., x;) is computable. By definition,
this means that the function xg(xo, ..., x;) is computable. By Theorem 16.2,

254

16.10. Undecidability

XR is represented by a formula, say @y (xo,..., Xk y). Let r(xo,...,x;) be

the formula ¢, (xo, ..., X, 1). Then for any ny, ..., ny, if R(no, ..., ny) is true,
then xr(no,...,ng) = 1, in which case Q proves ¢, (7o, ..., 7, 1), and so
Q proves ¢g (7, ..., 7). On the other hand, if R(ny,...,ny) is false, then

Xr(no,...,ng) = 0. This means that Q proves

Yy (¢xg (710, - - ., ik, y) Dy =0).

Since Q proves 0 # 1, Q proves ~¢y (7, . . ., iy, 1), and so it proves ~ ¢ (g, . . .

16.10 Undecidability

We call a theory T undecidable if there is no computational procedure which, af-
ter finitely many steps and unfailingly, provides a correct answer to the ques-
tion “does T prove ¢?” for any sentence ¢ in the language of T. So Q would
be decidable iff there were a computational procedure which decides, given a
sentence ¢ in the language of arithmetic, whether Q I ¢ or not. We can make
this more precise by asking: Is the relation Provg(y), which holds of y iff y is
the Godel number of a sentence provable in Q, recursive? The answer is: no.

Theorem 16.30. Q is undecidable, i.e., the relation
Provg(y) < Sent(y) & Ix Prig(x,)

is not recursive.

Proof. Suppose it were. Then we could solve the halting problem as follows:
Given e and 1, we know that ¢, (1) | iff there is an s such that T(e, 1, s), where
T is Kleene’s predicate from Theorem 14.28. Since T is primitive recursive it
is representable in Q by a formula ¢, thatis, Q F ¢r(e,7,5) iff T(e,n,s). If
Q F y¢r(e,n,53) then also Q + Jyyr(e,n,y). If no such s exists, then Q +
~yr(e,7,5) for every s. But Q is w-consistent, i.e., if Q - ~¢(7) for every n €
N, then Q ¥ 3y ¢(y). We know this because the axioms of Q are true in the
standard model M. So, Q ¥ 3y ¥r(e, 7, y). In other words, Q - Iy Pr(e, 7, y)
iff there is an s such that T(e, n,s), i.e., iff g.(n) |. From e and n we can
compute *3y (e, 7,y)*, let g(e, n) be the primitive recursive function which
does that. So
he,m) = {1 if Provg(g(e, 1))

0 otherwise.

This would show that / is recursive if Provg is. But & is not recursive, by
Theorem 14.29, so Provg cannot be either. O]

Corollary 16.31. First-order logic is undecidable.

Proof. If first-order logic were decidable, provability in Q would be as well,
since Q F ¢ iff - w D ¢, where w is the conjunction of the axioms of Q. O

255

)0

Chapter 17

Incompleteness and Provability

17.1 Introduction

Hilbert thought that a system of axioms for a mathematical structure, such
as the natural numbers, is inadequate unless it allows one to derive all true
statements about the structure. Combined with his later interest in formal
systems of deduction, this suggests that he thought that we should guarantee
that, say, the formal systems we are using to reason about the natural numbers
is not only consistent, but also complete, i.e., every statement in its language
is either derivable or its negation is. Godel’s first incompleteness theorem
shows that no such system of axioms exists: there is no complete, consistent,
axiomatizable formal system for arithmetic. In fact, no “sufficiently strong,”
consistent, axiomatizable mathematical theory is complete.

A more important goal of Hilbert’s, the centerpiece of his program for the
justification of modern (“classical”) mathematics, was to find finitary consis-
tency proofs for formal systems representing classical reasoning. With regard
to Hilbert’s program, then, Godel’s second incompleteness theorem was a
much bigger blow. The second incompleteness theorem can be stated in vague
terms, like the first incompleteness theorem. Roughly speaking, it says that no
sufficiently strong theory of arithmetic can prove its own consistency. We will
have to take “sufficiently strong” to include a little bit more than Q.

The idea behind Godel’s original proof of the incompleteness theorem can
be found in the Epimenides paradox. Epimenides, a Cretan, asserted that all
Cretans are liars; a more direct form of the paradox is the assertion “this sen-
tence is false.” Essentially, by replacing truth with derivability, Godel was
able to formalize a sentence which, in a roundabout way, asserts that it it-
self is not derivable. If that sentence were derivable, the theory would then
be inconsistent. Godel showed that the negation of that sentence is also not
derivable from the system of axioms he was considering. (For this second
part, Godel had to assume that the theory T is what’s called “w-consistent.”

257

17. INCOMPLETENESS AND PROVABILITY

w-Consistency is related to consistency, but is a stronger property.! A few
years after Godel, Rosser showed that assuming simple consistency of T is
enough.)

The first challenge is to understand how one can construct a sentence that
refers to itself. For every formula ¢ in the language of Q, let "¢ denote the
numeral corresponding to *¢*. Think about what this means: ¢ is a formula in
the language of Q, *¢* is a natural number, and "¢ is a term in the language
of Q. So every formula ¢ in the language of Q has a name, "¢, which is a
term in the language of Q; this provides us with a conceptual framework in
which formulae in the language of Q can “say” things about other formulae.
The following lemma is known as the fixed-point lemma.

Lemma 17.1. Let T be any theory extending Q, and let (x) be any formula with
only the variable x free. Then there is a sentence ¢ such that T+ ¢ = (T ¢™).

The lemma asserts that given any property §(x), there is a sentence ¢ that
asserts “i(x) is true of me,” and T “knows” this.

How can we construct such a sentence? Consider the following version of
the Epimenides paradox, due to Quine:

“Yields falsehood when preceded by its quotation” yields false-
hood when preceded by its quotation.

This sentence is not directly self-referential. It simply makes an assertion
about the syntactic objects between quotes, and, in doing so, it is on par with
sentences like

1. “Robert” is a nice name.
2. “Iran.” is a short sentence.
3. “Has three words” has three words.

But what happens when one takes the phrase “yields falsehood when pre-
ceded by its quotation,” and precedes it with a quoted version of itself? Then
one has the original sentence! In short, the sentence asserts that it is false.

17.2 The Fixed-Point Lemma

The fixed-point lemma says that for any formula ¢(x), there is a sentence ¢
such that T - ¢ = ("¢™), provided T extends Q. In the case of the liar sen-
tence, we’d want ¢ to be equivalent (provably in T) to “" ¢ is false,” i.e., the
statement that *¢* is the Godel number of a false sentence. To understand the
idea of the proof, it will be useful to compare it with Quine’s informal gloss

IThat is, any w-consistent theory is consistent, but not vice versa.

258

17.2. The Fixed-Point Lemma

of ¢ as, “yields a falsehood when preceded by its own quotation’ yields a
falsehood when preceded by its own quotation.” The operation of taking an
expression, and then forming a sentence by preceding this expression by its
own quotation may be called diagonalizing the expression, and the result its
diagonalization. So, the diagonalization of ‘yields a falsehood when preceded
by its own quotation’ is ““yields a falsehood when preceded by its own quo-
tation” yields a falsehood when preceded by its own quotation.” Now note
that Quine’s liar sentence is not the diagonalization of ‘yields a falsehood” but
of ‘yields a falsehood when preceded by its own quotation.” So the property
being diagonalized to yield the liar sentence itself involves diagonalization!

In the language of arithmetic, we form quotations of a formula with one
free variable by computing its Godel numbers and then substituting the stan-
dard numeral for that Godel number into the free variable. The diagonal-
ization of a(x) is a(7#), where n = *a(x)*. (From now on, let’s abbreviate
o(x) as "a(x)) So if (x) is “is a falsehood,” then “yields a falsehood if
preceded by its own quotation,” would be “yields a falsehood when applied
to the Godel number of its diagonalization.” If we had a symbol diag for the
function diag(n) which computes the Godel number of the diagonalization of
the formula with Godel number 1, we could write a(x) as y(diag(x)). And
Quine’s version of the liar sentence would then be the diagonalization of it,
ie, a("a(x)") or ¢(diag("¢(diag(x))")). Of course, P(x) could now be any
other property, and the same construction would work. For the incomplete-
ness theorem, we'll take 1(x) to be “x is not derivable in T.” Then a(x) would
be “yields a sentence not derivable in T when applied to the Godel number of
its diagonalization.”

To formalize this in T, we have to find a way to formalize diag. The func-
tion diag(n) is computable, in fact, it is primitive recursive: if n is the Godel
number of a formula «(x), diag(n) returns the Gédel number of a("a(x)").
(Recall, "a(x)" is the standard numeral of the Gédel number of a(x), i.e.,
o(x)). If diag were a function symbol in T representing the function diag,
we could take ¢ to be the formula y(diag("¥(diag(x))")). Notice that

diag(*p(diag(x))") ="y (diag("y(diag(x)) "))’

:q)'

Assuming T can derive
diag("y(diag(x))") = "¢,

it can derive (diag("y(diag(x)) ")) = (" ¢™7). But the left hand side is, by
definition, ¢.

Of course, diag will in general not be a function symbol of T, and cer-
tainly is not one of Q. But, since diag is computable, it is representable in Q
by some formula 6g;,6(x,). So instead of writing y(diag(x)) we can write

259

17. INCOMPLETENESS AND PROVABILITY

Jy (Odiag (¥, y) & P(y)). Otherwise, the proof sketched above goes through,
and in fact, it goes through already in Q.

Lemma 17.2. Let {(x) be any formula with one free variable x. Then there is a
sentence ¢ such that Q = ¢ = p("¢™).

Proof. Given ¢(x), let a(x) be the formula 3y (0giag (¥, y) & ¢(y)) and let ¢ be
its diagonalization, i.e., the formula a("a(x)).
Since f4;ag represents diag, and diag(*x(x)*) = *¢*, Q can derive

Diiag ("e(%) ", "7) (17.1)
VY (Ogiag("a(x) L y) Dy ="¢7). (17.2)

Now we show that Q - ¢ = ¥("¢"). We argue informally, using just logic
and facts derivable in Q.

First, suppose ¢, i.e., a("a(x)"). Going back to the definition of a(x), we
see that a("a(x) ") justis

Fy (Baiag ("2 (x) y) & P(y)).

Consider such a y. Since Ogiaq (" (x) ', ¥), by eq. (17.2), y = "¢™. So, from ¢ (y)
we have ¢("¢7).
Now suppose ¢("¢7). By eq. (17.1), we have

Dyjag("a(x) ", "¢7) & p("¢7).
It follows that

Y (Otiag ("a(x) ",) & P(y))-
But that's just a("a(x)), i.e., ¢. O

You should compare this to the proof of the fixed-point lemma in com-
putability theory. The difference is that here we want to define a statement in
terms of itself, whereas there we wanted to define a function in terms of itself;
this difference aside, it is really the same idea.

17.3 The First Incompleteness Theorem

We can now describe Godel’s original proof of the first incompleteness theo-
rem. Let T be any computably axiomatized theory in a language extending
the language of arithmetic, such that T includes the axioms of Q. This means
that, in particular, T represents computable functions and relations.

We have argued that, given a reasonable coding of formulas and proofs
as numbers, the relation Prfr(x,y) is computable, where Prfr(x,y) holds if

260

17.3. The First Incompleteness Theorem

and only if x is the Godel number of a derivation of the formula with Godel
number y in T. In fact, for the particular theory that Gédel had in mind, Godel
was able to show that this relation is primitive recursive, using the list of 45
functions and relations in his paper. The 45th relation, xBy, is just Prfr(x,y)
for his particular choice of T. Remember that where Godel uses the word
“recursive” in his paper, we would now use the phrase “primitive recursive.”

Since Prfr(x, y) is computable, it is representable in T. We will use Prfr(x, y)
to refer to the formula that represents it. Let Provr(y) be the formula 3x Prfr(x, y).
This describes the 46th relation, Bew (y), on Godel’s list. As Godel notes, this
is the only relation that “cannot be asserted to be recursive.” What he proba-
bly meant is this: from the definition, it is not clear that it is computable; and
later developments, in fact, show that it isn’t.

Let T be an axiomatizable theory containing Q. Then Prfr(x,y) is decid-
able, hence representable in Q by a formula Prfr(x,y). Let Provr(y) be the
formula we described above. By the fixed-point lemma, there is a formula T
such that Q (and hence T) derives

YT = NPrOVT('_’)/T—‘). (173)
Note that 7yt says, in essence, “7yt is not derivable in T.”

Lemma 17.3. If T is a consistent, axiomatizable theory extending Q, then T ¥ 7.

Proof. Suppose T derives yt. Then there is a derivation, and so, for some
number m, the relation Prfr(m, *y1") holds. But then Q derives the sentence
Prfr (7, "1 ™). So Q derives 3x Prf(x, "yt "), which is, by definition, Provy (Tt ™).
By eq. (17.3), Q derives ~7t, and since T extends Q, so does T. We have
shown that if T derives T, then it also derives ~T, and hence it would be
inconsistent. O

Definition 17.4. A theory T is w-consistent if the following holds: if Jx ¢(x) is
any sentence and T derives ~¢(0), ~¢(1), ~¢(2), ...then T does not prove

Ix ¢(x).

Note that every w-consistent theory is also consistent. This follows simply
from the fact that if T is inconsistent, then T I ¢ for every ¢. In particular, if T
is inconsistent, it derives both ~¢(7) for every n and also derives 3x ¢(x). So,
if T is inconsistent, it is w-inconsistent. By contraposition, if T is w-consistent,
it must be consistent.

Lemma 17.5. If T is an w-consistent, axiomatizable theory extending Q, then T ¥
~T-

Proof. We show that if T derives ~<y, then it is w-inconsistent. Suppose T
derives ~vr. If T is inconsistent, it is w-inconsistent, and we are done. Oth-
erwise, T is consistent, so it does not derive y1 by Lemma 17.3. Since there is

261

17. INCOMPLETENESS AND PROVABILITY

no derivation of y1 in T, Q derives
~Prfr(0," 1), NPrfT(T, 1), ~Prfr (2,717, ...

and so does T. On the other hand, by eq. (17.3), ~7 is equivalent to 3x Prfr(x, "y1 7).
So T is w-inconsistent. O

Theorem 17.6. Let T be any w-consistent, axiomatizable theory extending Q. Then
T is not complete.

Proof. If T is w-consistent, it is consistent, so T ¥ o1 by Lemma 17.3. By
Lemma 17.5, T ¥ ~<t. This means that T is incomplete, since it derives nei-
ther yt nor ~7r. O

17.4 Rosser’s Theorem

Can we modify Godel’s proof to get a stronger result, replacing “w-consistent”
with simply “consistent”? The answer is “yes,” using a trick discovered by
Rosser. Rosser’s trick is to use a “modified” derivability predicate RProvr(y)
instead of Provy(y).

Theorem 17.7. Let T be any consistent, axiomatizable theory extending Q. Then T
is not complete.

Proof. Recall that Provr(y) is defined as 3x Prfr(x,y), where Prfr(x,y) repre-
sents the decidable relation which holds iff x is the Godel number of a deriva-
tion of the sentence with Godel number y. The relation that holds between x
and y if x is the Godel number of a refutation of the sentence with Gédel num-
ber y is also decidable. Let not(x) be the primitive recursive function which
does the following: if x is the code of a formula ¢, not(x) is a code of ~¢.
Then Refr(x,y) holds iff Prfr(x,not(y)). Let Refr(x,y) represent it. Then, if
T F ~¢ and ¢ is a corresponding derivation, Q - Refr("67,"¢™). We define
RProvr(y) as

Ix (Prfp(x,y) & Vz (z < x D ~Refr(z,1))).

Roughly, RProvr(y) says “there is a proof of y in T, and there is no shorter
refutation of y.” Assuming T is consistent, RProvr(y) is true of the same
numbers as Provr(y); but from the point of view of provability in T (and we
now know that there is a difference between truth and provability!) the two
have different properties. If T is inconsistent, then the two do not hold of the
same numbers! (RProvy(y) is often read as “y is Rosser provable.” Since, as
just discussed, Rosser provability is not some special kind of provability—
in inconsistent theories, there are sentences that are provable but not Rosser
provable—this may be confusing. To avoid the confusion, you could instead
read it as “y is shmovable.”)

262

17.4. Rosser’s Theorem

By the fixed-point lemma, there is a formula pt such that
Q I pr = ~RProvr(Tpr ™). (17.4)

In contrast to the proof of Theorem 17.6, here we claim that if T is consistent,
T doesn’t derive pt, and T also doesn’t derive ~pr. (In other words, we don’t
need the assumption of w-consistency.)

First, let’s show that T ¥ pr. Suppose it did, so there is a derivation of pr
from T; let n be its Godel number. Then Q F Prfr (7, o7 ™), since Prfr repre-
sents Prfr in Q. Also, for each k < n, k is not the Godel number of a deriva-
tion of ~pr, since T is consistent. So for each k < 1, Q - ~Refr(k, pr ™). By
Lemma 16.24, Q F Vz (z < 71 D ~Refr(z,"pr™)). Thus,

QF Ix (Prfr(x,"pr") & Vz (z < x D ~Refr(z,"pr ™)),

but that’s just RProvy("pr ™). By eq. (17.4), Q F ~pr. Since T extends Q, also
T F ~pr. We've assumed that T I p7, so T would be inconsistent, contrary to
the assumption of the theorem.

Now, let’s show that T ¥ ~pr. Again, suppose it did, and suppose # is
the Godel number of a derivation of ~pr. Then Refr (1, *o7*) holds, and since
Refr represents Refr in Q, Q F Refr (7, "pr ™). We'll again show that T would
then be inconsistent because it would also derive pr. Since

Q F pr = ~RProvr(Tp7™),
and since T extends Q, it suffices to show that
Q F ~RProvy(Tpr™).
The sentence ~RProvr("pr™), i.e.,
~3x (Prfr(x,"pr") & Vz (z < x D ~Refr(z,"p7™))),
is logically equivalent to

Vx (Prfr(x, ") 3z (z < x & Refr(z "o))).

We argue informally using logic, making use of facts about what Q derives.
Suppose x is arbitrary and Prfr(x,"p7r"). We already know that T ¥ pr, and
so for every k, Q - ~Prfr(k,"pr 7). Thus, for every k it follows that x # k.
In particular, we have (a) that x # 7. We also have ~(x = 0Vx = 1V
---Vx = n—1) and so by Lemma 16.24, (b) ~(x < 7). By Lemma 16.25,
7 < x. Since Q - Refr (7, "pr "), we have 71 < x & Refr (7, "pr™), and from that
3z (z < x & Refr(z,"pr™)). Since x was arbitrary we get, as required, that

Vi (Prfr(x, "pr) 3z (z < x &Refr(z "o))). O

263

17. INCOMPLETENESS AND PROVABILITY

17.5 Comparison with Godel’s Original Paper

It is worthwhile to spend some time with Godel’s 1931 paper. The introduc-
tion sketches the ideas we have just discussed. Even if you just skim through
the paper, it is easy to see what is going on at each stage: first Godel describes
the formal system P (syntax, axioms, proof rules); then he defines the prim-
itive recursive functions and relations; then he shows that xBy is primitive
recursive, and argues that the primitive recursive functions and relations are
represented in P. He then goes on to prove the incompleteness theorem, as
above. In Section 3, he shows that one can take the unprovable assertion to
be a sentence in the language of arithmetic. This is the origin of the f-lemma,
which is what we also used to handle sequences in showing that the recursive
functions are representable in Q. Godel doesn’t go so far to isolate a minimal
set of axioms that suffice, but we now know that Q will do the trick. Finally,
in Section 4, he sketches a proof of the second incompleteness theorem.

17.6 The Derivability Conditions for PA

Peano arithmetic, or PA, is the theory extending Q with induction axioms for
all formulae. In other words, one adds to Q axioms of the form

((0) & Vx (¢(x) D ¢(x'))) D Vx g(x)

for every formula ¢. Notice that this is really a schema, which is to say, in-
finitely many axioms (and it turns out that PA is not finitely axiomatizable).
But since one can effectively determine whether or not a string of symbols is
an instance of an induction axiom, the set of axioms for PA is computable. PA
is a much more robust theory than Q. For example, one can easily prove that
addition and multiplication are commutative, using induction in the usual
way. In fact, most finitary number-theoretic and combinatorial arguments can
be carried out in PA.

Since PA is computably axiomatized, the derivability predicate Prfpa (x, y)
is computable and hence represented in Q (and so, in PA). As before, we will
take Prfpa (x, 1) to denote the formula representing the relation. Let Provpa (i)
be the formula 3x Prfpa (x,y), which, intuitively says, “y is derivable from the
axioms of PA.” The reason we need a little bit more than the axioms of Q is
we need to know that the theory we are using is strong enough to derive a
few basic facts about this derivability predicate. In fact, what we need are the
following facts:

P1. If PA F ¢, then PA I Provps ("¢™).

P2. For all formulae ¢ and 1,
PA F Provpa ("¢ D ¢7) D (Provpa(T¢™) D Provpa(T¢7)).

264

17.7. The Second Incompleteness Theorem

P3. For every formula ¢,

PA I~ Provpa (T¢™) D Provpa ("Provpa(Te™)7).

The only way to verify that these three properties hold is to describe the for-
mula Provpa (y) carefully and use the axioms of PA to describe the relevant
formal derivations. Conditions (1) and (2) are easy; it is really condition (3)
that requires work. (Think about what kind of work it entails ...) Carrying
out the details would be tedious and uninteresting, so here we will ask you
to take it on faith that PA has the three properties listed above. A reasonable
choice of Provpa (v) will also satisfy

P4. If PA - Provpa("¢™), then PA | ¢.

But we will not need this fact.

Incidentally, Godel was lazy in the same way we are being now. At the
end of the 1931 paper, he sketches the proof of the second incompleteness
theorem, and promises the details in a later paper. He never got around to it;
since everyone who understood the argument believed that it could be carried
out (he did not need to fill in the details.)

17.7 The Second Incompleteness Theorem

How can we express the assertion that PA doesn’t prove its own consistency?
Saying PA is inconsistent amounts to saying that PA - 0 = 1. So we can take
the consistency statement Conpp to be the sentence ~Provpa ("0 =17), and
then the following theorem does the job:

Theorem 17.8. Assuming PA is consistent, then PA does not derive Conpa.

It is important to note that the theorem depends on the particular represen-
tation of Conpp (i.e., the particular representation of Provpa (v)). All we will
use is that the representation of Provpa (1) satisfies the three derivability con-
ditions, so the theorem generalizes to any theory with a derivability predicate
having these properties.

It is informative to read Godel’s sketch of an argument, since the theorem
follows like a good punch line. It goes like this. Let ypa be the Godel sentence
that we constructed in the proof of Theorem 17.6. We have shown “If PA is
consistent, then PA does not derive ypa.” If we formalize this in PA, we have
a proof of

Conpa D ~Provpa (Typa™).

Now suppose PA derives Conpa. Then it derives ~Provpa ("ypa). But since
Ypa is a Godel sentence, this is equivalent to ypa. So PA derives ypa.

But: we know that if PA is consistent, it doesn’t derive ypa! So if PA is
consistent, it can’t derive Conpa.

265

17. INCOMPLETENESS AND PROVABILITY

To make the argument more precise, we will let yps be the Godel sentence
for PA and use the derivability conditions (P1)—(P3) to show that PA derives
Conpp D 7ypa- This will show that PA doesn’t derive Conpa. Here is a sketch
of the proof, in PA. (For simplicity, we drop the PA subscripts.)

IG = ~Prov(™y") (17.5)
v is a Godel sentence

!IG D ~Prov(T™y7) (17.6)
from eq. (17.5)

!G D (Prov("™y™) D 1) (17.7)
from eq. (17.6) by logic

Prov("y D (Prov("™y7) D L)) (17.8)
by from eq. (17.7) by condition P1

Prov("y™) D Prov(" (Prov("y™) D L)) (17.9)
from eq. (17.8) by condition P2

Prov("™y™) D (Prov("Prov("y™)") D Prov("L™)) (17.10)
from eq. (17.9) by condition P2 and logic

Prov("y™) D Prov("Prov("y™) ") (17.11)
by P3

Prov("y™) D Prov(" L") (17.12)
from eq. (17.10) and eq. (17.11) by logic

Con D ~Prov("y7) (17.13)

contraposition of eq. (17.12) and Con = ~Prov(" L")
Con D v
from eq. (17.5) and eq. (17.13) by logic

The use of logic in the above just elementary facts from propositional logic,
e.g., eq. (17.7)uses - ~¢ = (¢ D L) and eq. (17.12) uses ¢ D (Y D x), ¢ D
¢ F ¢ D x. The use of condition P2 in eq. (17.9) and eq. (17.10) relies on
instances of P2, Prov("¢ D ¢™) D (Prov("¢") D Prov("¢")). In the first one,
¢ =vyand ¢ = Prov("y") D L;in the second, ¢ = Prov("G") and ¢ = L.

The more abstract version of the second incompleteness theorem is as fol-
lows:

Theorem 17.9. Let T be any consistent, axiomatized theory extending Q and let
Provr(y) be any formula satisfying derivability conditions P1-P3 for T. Then T
does not derive Conr.

The moral of the story is that no “reasonable” consistent theory for math-
ematics can derive its own consistency statement. Suppose T is a theory of

266

17.8. Lob’s Theorem

mathematics that includes Q and Hilbert’s “finitary” reasoning (whatever that
may be). Then, the whole of T cannot derive the consistency statement of T,
and so, a fortiori, the finitary fragment can’t derive the consistency statement
of T either. In that sense, there cannot be a finitary consistency proof for “all
of mathematics.”

There is some leeway in interpreting the term “finitary,” and Godel, in the
1931 paper, grants the possibility that something we may consider “finitary”
may lie outside the kinds of mathematics Hilbert wanted to formalize. But
Godel was being charitable; today, it is hard to see how we might find some-
thing that can reasonably be called finitary but is not formalizable in, say, ZFC,
Zermelo-Fraenkel set theory with the axiom of choice.

17.8 Lob’s Theorem

The Godel sentence for a theory T is a fixed point of ~Provy(y), i.e., a sen-
tence y such that
T ~Provr("y7) = 7.

It is not derivable, because if T «, (a) by derivability condition (1), T
Provr("7), and (b) T - 7 together with T F ~Provp("y7) = v gives T I
~Provr(Ty™), and so T would be inconsistent. Now it is natural to ask about
the status of a fixed point of Provr(y), i.e., a sentence ¢ such that

T+ Provp(T67) = 6.

If it were derivable, T F Provy(747) by condition (1), but the same conclusion
follows if we apply modus ponens to the equivalence above. Hence, we don’t
get that T is inconsistent, at least not by the same argument as in the case of
the Godel sentence. This of course does not show that T does derive .

We can make headway on this question if we generalize it a bit. The left-to-
right direction of the fixed point equivalence, Provy("67) D J, is an instance
of a general schema called a reflection principle: Provy(T¢™) D ¢. It is called
that because it expresses, in a sense, that T can “reflect” about what it can
derive; basically it says, “If T can derive ¢, then ¢ is true,” for any ¢. This is
true for sound theories only, of course, and this suggests that theories will in
general not derive every instance of it. So which instances can a theory (strong
enough, and satisfying the derivability conditions) derive? Certainly all those
where ¢ itself is derivable. And that’s it, as the next result shows.

Theorem 17.10. Let T be an axiomatizable theory extending Q, and suppose Provr(y)
is a formula satisfying conditions P1-P3 from section 17.7. If T derives Provr ("¢ ™) D
@, then in fact T derives ¢.

Put differently, if T ¥ ¢, then T ¥ Provy("¢™) D ¢. This result is known as
Lob’s theorem.

267

17. INCOMPLETENESS AND PROVABILITY

The heuristic for the proof of Lob’s theorem is a clever proof that Santa
Claus exists. (If you don't like that conclusion, you are free to substitute any
other conclusion you would like.) Here it is:

1. Let X be the sentence, “If X is true, then Santa Claus exists.”

2. Suppose X is true.

3. Then what it says holds; i.e., we have: if X is true, then Santa Claus
exists.

4. Since we are assuming X is true, we can conclude that Santa Claus exists,
by modus ponens from (2) and (3).

5. We have succeeded in deriving (4), “Santa Claus exists,” from the as-
sumption (2), “X is true.” By conditional proof, we have shown: “If X is
true, then Santa Claus exists.”

6. But this is just the sentence X. So we have shown that X is true.

7. But then, by the argument (2)—(4) above, Santa Claus exists.

A formalization of this idea, replacing “is true” with “is derivable,” and “Santa
Claus exists” with ¢, yields the proof of Lob’s theorem. The trick is to apply
the fixed-point lemma to the formula Provy(y) O ¢. The fixed point of that
corresponds to the sentence X in the preceding sketch.

Proof of Theorem 17.10. Suppose ¢ is a sentence such that T derives Provr("¢™) D
¢. Let ¢(y) be the formula Provr(y) O ¢, and use the fixed-point lemma to
find a sentence 60 such that T derives 6 = 1("67"). Then each of the following

268

17.8. Lob’s Theorem

is derivable in T:

!D = (Provr(767) D ¢) (17.14)
6 is a fixed point of ¢(y)

'D D (Provy(T67) D ¢) (17.15)
from eq. (17.14)

Provr ("0 O (Provr("67) D ¢) ") (17.16)
from eq. (17.15) by condition P1

Provr(707) D Provr("Provr(T67) D ¢) (17.17)
from eq. (17.16) using condition P2

Provr(767) D (Provy("Provr(767) ") D Provy(T¢T)) (17.18)
from eq. (17.17) using P2 again

Provr(707) D Provr("Provr(767)) (17.19)
by derivability condition P3

Provr("67) D Provr(T¢™) (17.20)
from eq. (17.18) and eq. (17.19)

Provr(T9™) D ¢ (17.21)
by assumption of the theorem

Provr("07) D ¢ (17.22)
from eq. (17.20) and eq. (17.21)

(Provp("67) D) D0 (17.23)
from eq. (17.14)

'D (17.24)
from eq. (17.22) and eq. (17.23)

Provr(707) (17.25)
from eq. (17.24) by condition P1

1A from eq. (17.21) and eq. (17.25) O

With Lob’s theorem in hand, there is a short proof of the second incom-
pleteness theorem (for theories having a derivability predicate satisfying con-
ditions P1-P3): if T - Provy("L™") D L, then T F L. If T is consistent, T ¥ L.
So, T ¥ Provy("L7) D L, ie, T ¥ Cont. We can also apply it to show that 4,
the fixed point of Provr(x), is derivable. For since

T+ Provp("67) =46
in particular

Tk Provp("67) D 6
and so by Lob’s theorem, T - 6.

269

17. INCOMPLETENESS AND PROVABILITY

17.9 The Undefinability of Truth

The notion of definability depends on having a formal semantics for the lan-
guage of arithmetic. We have described a set of formulas and sentences in
the language of arithmetic. The “intended interpretation” is to read such sen-
tences as making assertions about the natural numbers, and such an assertion
can be true or false. Let 91 be the structure with domain IN and the standard in-
terpretation for the symbols in the language of arithmetic. Then 9t = ¢ means
“@ is true in the standard interpretation.”

Definition 17.11. A relation R(xq, ..., x;) of natural numbers is definable in N
if and only if there is a formula ¢(xy,...,x;) in the language of arithmetic
such that for every ny,...,ng, R(ny, ..., ng) if and only if M E ¢(7, ..., 7).

Put differently, a relation is definable in 9 if and only if it is representable
in the theory TA, where TA = {¢ | M E ¢} is the set of true sentences of
arithmetic. (If this is not immediately clear to you, you should go back and
check the definitions and convince yourself that this is the case.)

Lemma 17.12. Every computable relation is definable in 1.

Proof. 1t is easy to check that the formula representing a relation in Q defines
the same relation in 9. O

Now one can ask, is the converse also true? That is, is every relation defin-
able in 9 computable? The answer is no. For example:

Lemma 17.13. The halting relation is definable in 1.
Proof. Let H be the halting relation, i.e.,
H={{e,x) | 3IsT(e,x,s)}.
Let 01 define T in N. Then
H={(e,x) | ME3sOr(e,%,s)},
so 3s07(z, x,s) defines H in 1. O

What about TA itself? Is it definable in arithmetic? That is: is the set
{*¢* | M E ¢} definable in arithmetic? Tarski’s theorem answers this in the
negative.

Theorem 17.14. The set of true sentences of arithmetic is not definable in arithmetic.

Proof. Suppose 6(x) defined it, i.e., 9 E ¢ iff 91 E 6("¢™). By the fixed-point
lemma, there is a formula ¢ such that Q - ¢ = ~8("¢™), and hence N kE ¢ =
~0("¢™). But then M F ¢ if and only if 9N F ~6("¢™), which contradicts the
fact that 6(y) is supposed to define the set of true statements of arithmetic. [J

270

17.9. The Undefinability of Truth

Tarski applied this analysis to a more general philosophical notion of truth.
Given any language L, Tarski argued that an adequate notion of truth for L
would have to satisfy, for each sentence X,

‘X’ is true if and only if X.
Tarski’s oft-quoted example, for English, is the sentence
‘Snow is white’ is true if and only if snow is white.

However, for any language strong enough to represent the diagonal function,
and any linguistic predicate T(x), we can construct a sentence X satisfying
“X if and only if not T(‘X").” Given that we do not want a truth predicate
to declare some sentences to be both true and false, Tarski concluded that
one cannot specify a truth predicate for all sentences in a language without,
somehow, stepping outside the bounds of the language. In other words, a the
truth predicate for a language cannot be defined in the language itself.

271

Part V

Methods

273

Appendix A

Proofs

A.1 Introduction

Based on your experiences in introductory logic, you might be comfortable
with a derivation system—probably a natural deduction or Fitch style deriva-
tion system, or perhaps a proof-tree system. You probably remember doing
proofs in these systems, either proving a formula or show that a given argu-
ment is valid. In order to do this, you applied the rules of the system un-
til you got the desired end result. In reasoning about logic, we also prove
things, but in most cases we are not using a derivation system. In fact, most
of the proofs we consider are done in English (perhaps, with some symbolic
language thrown in) rather than entirely in the language of first-order logic.
When constructing such proofs, you might at first be at a loss—how do I prove
something without a derivation system? How do I start? How do I know if
my proof is correct?

Before attempting a proof, it's important to know what a proof is and how
to construct one. As implied by the name, a proof is meant to show that some-
thing is true. You might think of this in terms of a dialogue—someone asks
you if something is true, say, if every prime other than two is an odd number.
To answer “yes” is not enough; they might want to know why. In this case,
you’'d give them a proof.

In everyday discourse, it might be enough to gesture at an answer, or give
an incomplete answer. In logic and mathematics, however, we want rigorous
proof—we want to show that something is true beyond any doubt. This means
that every step in our proof must be justified, and the justification must be
cogent (i.e., the assumption you're using is actually assumed in the statement
of the theorem you're proving, the definitions you apply must be correctly
applied, the justifications appealed to must be correct inferences, etc.).

Usually, we’re proving some statement. We call the statements we’re prov-
ing by various names: propositions, theorems, lemmas, or corollaries. A
proposition is a basic proof-worthy statement: important enough to record,

275

A. PROOFS

but perhaps not particularly deep nor applied often. A theorem is a signifi-
cant, important proposition. Its proof often is broken into several steps, and
sometimes it is named after the person who first proved it (e.g., Cantor’s The-
orem, the Lowenheim-Skolem theorem) or after the fact it concerns (e.g., the
completeness theorem). A lemma is a proposition or theorem that is used
in the proof of a more important result. Confusingly, sometimes lemmas are
important results in themselves, and also named after the person who intro-
duced them (e.g., Zorn’s Lemma). A corollary is a result that easily follows
from another one.

A statement to be proved often contains assumptions that clarify which
kinds of things we’re proving something about. It might begin with “Let ¢
be a formula of the form ¢ D x” or “Suppose I' = ¢” or something of the
sort. These are hypotheses of the proposition, theorem, or lemma, and you may
assume these to be true in your proof. They restrict what we’re proving, and
also introduce some names for the objects we're talking about. For instance, if
your proposition begins with “Let ¢ be a formula of the form ¢ D x,” you're
proving something about all formulas of a certain sort only (namely, condi-
tionals), and it’s understood that ¢ D yx is an arbitrary conditional that your
proof will talk about.

A.2 Starting a Proof

But where do you even start?

You've been given something to prove, so this should be the last thing that
is mentioned in the proof (you can, obviously, announce that you're going to
prove it at the beginning, but you don’t want to use it as an assumption). Write
what you are trying to prove at the bottom of a fresh sheet of paper—this way
you don’t lose sight of your goal.

Next, you may have some assumptions that you are able to use (this will
be made clearer when we talk about the type of proof you are doing in the next
section). Write these at the top of the page and make sure to flag that they are
assumptions (i.e., if you are assuming p, write “assume that p,” or “suppose
that p”). Finally, there might be some definitions in the question that you
need to know. You might be told to use a specific definition, or there might
be various definitions in the assumptions or conclusion that you are working
towards. Write these down and ensure that you understand what they mean.

How you set up your proof will also be dependent upon the form of the
question. The next section provides details on how to set up your proof based
on the type of sentence.

276

A.3. Using Definitions

A.3 Using Definitions

We mentioned that you must be familiar with all definitions that may be used
in the proof, and that you can properly apply them. This is a really impor-
tant point, and it is worth looking at in a bit more detail. Definitions are used
to abbreviate properties and relations so we can talk about them more suc-
cinctly. The introduced abbreviation is called the definiendum, and what it
abbreviates is the definiens. In proofs, we often have to go back to how the
definiendum was introduced, because we have to exploit the logical structure
of the definiens (the long version of which the defined term is the abbrevia-
tion) to get through our proof. By unpacking definitions, you're ensuring that
you're getting to the heart of where the logical action is.
We'll start with an example. Suppose you want to prove the following:

Proposition A.1. For any sets Aand B, AUB = BU A.

In order to even start the proof, we need to know what it means for two sets
to be identical; i.e., we need to know what the “="in that equation means for
sets. Sets are defined to be identical whenever they have the same elements.
So the definition we have to unpack is:

Definition A.2. Sets A and B are identical, A = B, iff every element of A is
an element of B, and vice versa.

This definition uses A and B as placeholders for arbitrary sets. What it
defines—the definiendum—is the expression “A = B” by giving the condition
under which A = B is true. This condition—"every element of A is an element
of B, and vice versa”—is the definiens.! The definition specifies that A = B is
true if, and only if (we abbreviate this to “iff”) the condition holds.

When you apply the definition, you have to match the A and B in the
definition to the case you're dealing with. In our case, it means that in order
for AUB = BU A to be true, each z € A U B must also be in BU A, and
vice versa. The expression A U B in the proposition plays the role of A in the
definition, and B U A that of B. Since A and B are used both in the definition
and in the statement of the proposition we’re proving, but in different uses,
you have to be careful to make sure you don’t mix up the two. For instance, it
would be a mistake to think that you could prove the proposition by showing
that every element of A is an element of B, and vice versa—that would show
that A = B, not that AUB = BU A. (Also, since A and B may be any two
sets, you won't get very far, because if nothing is assumed about A and B they
may well be different sets.)

n this particular case—and very confusingly!—when A = B, the sets A and B are just one
and the same set, even though we use different letters for it on the left and the right side. But the
ways in which that set is picked out may be different, and that makes the definition non-trivial.

277

A. PROOFS

Within the proof we are dealing with set-theoretic notions such as union,
and so we must also know the meanings of the symbol U in order to under-
stand how the proof should proceed. And sometimes, unpacking the defini-
tion gives rise to further definitions to unpack. For instance, A U B is defined
as {z | z € Aorz € B}. So if you want to prove that x € A U B, unpacking
the definition of U tells you that you have to prove x € {z | z € Aorz € B}.
Now you also have to remember that x € {z | ...z...} iff ...x.... So, further
unpacking the definition of the {z | ...z...} notation, what you have to show
is: x € Aorx € B. So, “every element of AU B is also an element of BU A”
really means: “for every x,if x € Aorx € B,thenx € Borx € A.” If we fully
unpack the definitions in the proposition, we see that what we have to show
is this:

Proposition A.3. For any sets A and B: (a) for every x, if x € A or x € B, then
x € Borx € A, and (b) for every x,if x € Borx € A, then x € Aorx € B.

What's important is that unpacking definitions is a necessary part of con-
structing a proof. Properly doing it is sometimes difficult: you must be careful
to distinguish and match the variables in the definition and the terms in the
claim you're proving. In order to be successful, you must know what the
question is asking and what all the terms used in the question mean—you
will often need to unpack more than one definition. In simple proofs such as
the ones below, the solution follows almost immediately from the definitions
themselves. Of course, it won’t always be this simple.

A.4 Inference Patterns

Proofs are composed of individual inferences. When we make an inference,
we typically indicate that by using a word like “so,” “thus,” or “therefore.”
The inference often relies on one or two facts we already have available in our
proof—it may be something we have assumed, or something that we’ve con-
cluded by an inference already. To be clear, we may label these things, and in
the inference we indicate what other statements we’re using in the inference.
An inference will often also contain an explanation of why our new conclusion
follows from the things that come before it. There are some common patterns
of inference that are used very often in proofs; we’ll go through some below.
Some patterns of inference, like proofs by induction, are more involved (and
will be discussed later).

We've already discussed one pattern of inference: unpacking, or applying,
a definition. When we unpack a definition, we just restate something that
involves the definiendum by using the definiens. For instance, suppose that
we have already established in the course of a proof that D = E (a). Then we
may apply the definition of = for sets and infer: “Thus, by definition from (a),
every element of D is an element of E and vice versa.”

278

A.4. Inference Patterns

Somewhat confusingly, we often do not write the justification of an in-
ference when we actually make it, but before. Suppose we haven’t already
proved that D = E, but we want to. If D = E is the conclusion we aim for,
then we can restate this aim also by applying the definition: to prove D = E
we have to prove that every element of D is an element of E and vice versa. So
our proof will have the form: (a) prove that every element of D is an element
of E; (b) every element of E is an element of D; (c) therefore, from (a) and (b)
by definition of =, D = E. But we would usually not write it this way. Instead
we might write something like,

We want to show D = E. By definition of =, this amounts to
showing that every element of D is an element of E and vice versa.

(@) ... (a proof that every element of D is an element of E) ...

(b) ... (a proof that every element of E is an element of D) ...

Using a Conjunction

Perhaps the simplest inference pattern is that of drawing as conclusion one of
the conjuncts of a conjunction. In other words: if we have assumed or already
proved that p and g, then we’re entitled to infer that p (and also that g). This is
such a basic inference that it is often not mentioned. For instance, once we’ve
unpacked the definition of D = E we’ve established that every element of D is
an element of E and vice versa. From this we can conclude that every element
of E is an element of D (that’s the “vice versa” part).

Proving a Conjunction

Sometimes what you'll be asked to prove will have the form of a conjunc-
tion; you will be asked to “prove p and 4.” In this case, you simply have
to do two things: prove p, and then prove 4. You could divide your proof
into two sections, and for clarity, label them. When you’re making your first
notes, you might write “(1) Prove p” at the top of the page, and “(2) Prove q”
in the middle of the page. (Of course, you might not be explicitly asked to
prove a conjunction but find that your proof requires that you prove a con-
junction. For instance, if you're asked to prove that D = E you will find that,
after unpacking the definition of =, you have to prove: every element of D is
an element of E and every element of E is an element of D).

Proving a Disjunction

When what you are proving takes the form of a disjunction (i.e., it is an state-
ment of the form “p or g”), it is enough to show that one of the disjuncts is true.
However, it basically never happens that either disjunct just follows from the
assumptions of your theorem. More often, the assumptions of your theorem

279

A. PROOFS

are themselves disjunctive, or you're showing that all things of a certain kind
have one of two properties, but some of the things have the one and others
have the other property. This is where proof by cases is useful (see below).

Conditional Proof

Many theorems you will encounter are in conditional form (i.e., show that if
p holds, then g is also true). These cases are nice and easy to set up—simply
assume the antecedent of the conditional (in this case, p) and prove the con-
clusion g from it. So if your theorem reads, “If p then g,” you start your proof
with “assume p” and at the end you should have proved g.

Conditionals may be stated in different ways. So instead of “If p then gq,”
a theorem may state that “p only if q,” “q if p,” or “g, provided p.” These all
mean the same and require assuming p and proving q from that assumption.
Recall that a biconditional (“p if and only if (iff) 4”) is really two conditionals
put together: if p then g, and if g then p. All you have to do, then, is two
instances of conditional proof: one for the first conditional and another one
for the second. Sometimes, however, it is possible to prove an “iff” statement
by chaining together a bunch of other “iff” statements so that you start with
“p” an end with “q”—but in that case you have to make sure that each step
really is an “iff.”

Universal Claims

Using a universal claim is simple: if something is true for anything, it’s true
for each particular thing. So if, say, the hypothesis of your proofis A C B, that
means (unpacking the definition of C), that, for every x € A, x € B. Thus, if
you already know that z € A, you can conclude z € B.

Proving a universal claim may seem a little bit tricky. Usually these state-
ments take the following form: “If x has P, then it has Q” or “All Ps are Qs.”
Of course, it might not fit this form perfectly, and it takes a bit of practice to
figure out what you're asked to prove exactly. But: we often have to prove
that all objects with some property have a certain other property.

The way to prove a universal claim is to introduce names or variables, for
the things that have the one property and then show that they also have the
other property. We might put this by saying that to prove something for all Ps
you have to prove it for an arbitrary P. And the name introduced is a name
for an arbitrary P. We typically use single letters as these names for arbitrary
things, and the letters usually follow conventions: e.g., we use n for natural
numbers, ¢ for formulae, A for sets, f for functions, etc.

The trick is to maintain generality throughout the proof. You start by as-
suming that an arbitrary object (“x”) has the property P, and show (based only
on definitions or what you are allowed to assume) that x has the property Q.
Because you have not stipulated what x is specifically, other that it has the

280

A.4. Inference Patterns

property P, then you can assert that all every P has the property Q. In short,
x is a stand-in for all things with property P.

Proposition A.4. Forall sets Aand B, A C AUB.

Proof. Let A and B be arbitrary sets. We want to show that A C AU B. By
definition of C, this amounts to: for every x, if x € A then x € AU B. So let
x € A be an arbitrary element of A. We have to show that x € A U B. Since
x€ A x€ Aorx € B. Thus, x € {x | x € AV x € B}. But that, by definition
of U, means x € AU B. O

Proof by Cases

Suppose you have a disjunction as an assumption or as an already established
conclusion—you have assumed or proved that p or g is true. You want to
prove r. You do this in two steps: first you assume that p is true, and prove r,
then you assume that g is true and prove r again. This works because we
assume or know that one of the two alternatives holds. The two steps establish
that either one is sufficient for the truth of r. (If both are true, we have not one
but two reasons for why r is true. It is not necessary to separately prove that
r is true assuming both p and 4.) To indicate what we’re doing, we announce
that we “distinguish cases.” For instance, suppose we know that x € BUC.
BUC is defined as {x | x € Bor x € C}. In other words, by definition, x € B
or x € C. We would prove that x € A from this by first assuming that x € B,
and proving x € A from this assumption, and then assume x € C, and again
prove x € A from this. You would write “We distinguish cases” under the
assumption, then “Case (1): x € B” underneath, and “Case (2): x € C halfway
down the page. Then you'd proceed to fill in the top half and the bottom half
of the page.

Proof by cases is especially useful if what you're proving is itself disjunc-
tive. Here’s a simple example:

Proposition A.5. Suppose B C D and C C E. Then BUC C DUE.

Proof. Assume (a) that B C D and (b) C C E. By definition, any x € B is also
€ D (c)and any x € Cisalso € E (d). To show that BUC C D UE, we have to
show thatif x € BUC then x € D U E (by definition of C). x € BUCiff x € B
or x € C (by definition of U). Similarly, x € DUE iff x € D or x € E. So, we
have to show: forany x,if x € Borx € C,thenx € Dorx € E.

So far we’ve only unpacked definitions! We’ve reformulated our
proposition without C and U and are left with trying to prove a
universal conditional claim. By what we’ve discussed above, this
is done by assuming that x is something about which we assume
the “if” part is true, and we’ll go on to show that the “then” part is

281

A. PROOFS

true as well. In other words, we'll assume that x € Bor x € C and
show that x € Dor x € E2

Suppose that x € B or x € C. We have to show that x € D or x € E. We
distinguish cases.

Case 1: x € B. By (c), x € D. Thus, x € D or x € E. (Here we've made the
inference discussed in the preceding subsection!)

Case2: x € C.By (d),x € E. Thus,x € Dorx € E. O

Proving an Existence Claim

When asked to prove an existence claim, the question will usually be of the
form “prove that there is an x such that ...x...”, i.e., that some object that
has the property described by “...x...”. In this case you'll have to identify a
suitable object show that is has the required property. This sounds straightfor-
ward, but a proof of this kind can be tricky. Typically it involves constructing
or defining an object and proving that the object so defined has the required
property. Finding the right object may be hard, proving that it has the re-
quired property may be hard, and sometimes it’s even tricky to show that
you've succeeded in defining an object at all!

Generally, you'd write this out by specifying the object, e.g., “let x be ...”
(where ... specifies which object you have in mind), possibly proving that . ..
in fact describes an object that exists, and then go on to show that x has the
property Q. Here’s a simple example.

Proposition A.6. Suppose that x € B. Then there is an A such that A C B and
A#Q.

Proof. Assume x € B. Let A = {x}.

Here we’ve defined the set A by enumerating its elements. Since
we assume that x is an object, and we can always form a set by
enumerating its elements, we don’t have to show that we’ve suc-
ceeded in defining a set A here. However, we still have to show
that A has the properties required by the proposition. The proof
isn’t complete without that!

Sincex € A, A # Q.

This relies on the definition of A as {x} and the obvious facts that
x € {x}and x ¢ @.

Since x is the only element of {x}, and x € B, every element of A is also
an element of B. By definition of C, A C B. O

2This paragraph just explains what we’re doing—it’s not part of the proof, and you don’t
have to go into all this detail when you write down your own proofs.

282

A.4. Inference Patterns

Using Existence Claims

Suppose you know that some existence claim is true (you've proved it, or it’s
a hypothesis you can use), say, “for some x, x € A” or “thereisan x € A.” If
you want to use it in your proof, you can just pretend that you have a name
for one of the things which your hypothesis says exist. Since A contains at
least one thing, there are things to which that name might refer. You might of
course not be able to pick one out or describe it further (other than that it is
€ A). But for the purpose of the proof, you can pretend that you have picked
it out and give a name to it. It's important to pick a name that you haven’t
already used (or that appears in your hypotheses), otherwise things can go
wrong. In your proof, you indicate this by going from “for some x, x € A” to
“Leta € A.” Now you can reason about 4, use some other hypotheses, etc.,
until you come to a conclusion, p. If p no longer mentions 4, p is independent
of the asusmption that a € A, and you’ve shown that it follows just from the
assumption “for some x, x € A.”

Proposition A.7. If A # @, then AUB # @.

Proof. Suppose A # @. So for some x, x € A.

Here we first just restated the hypothesis of the proposition. This
hypothesis, i.e., A # @, hides an existential claim, which you get
to only by unpacking a few definitions. The definition of = tells
us that A = @ iff every x € A is also € @ and every x € @ is also
€ A. Negating both sides, we get: A # @ iff either some x € A
is ¢ @ or some x € @ is ¢ A. Since nothing is € @, the second
disjunct can never be true, and “x € A and x ¢ @” reduces to just
x € A. So x # Q iff for some x, x € A. That’s an existence claim.
Now we use that existence claim by introducing a name for one of
the elements of A:

Leta € A.

Now we’ve introduced a name for one of the things €¢ A. We'll
continue to argue about a, but we’ll be careful to only assume that
a € A and nothing else:

Sincea € A, a € AU B, by definition of U. So for some x, x € AUB, ie.,
AUB # Q.

In that last step, we went from “a € AU B” to “for some x, x €
A UB.” That doesn’t mention a anymore, so we know that “for
some x, x € AU B” follows from “for some x, x € A alone.” But
that means that AU B # Q. O

283

A. PROOFS

“",o

It's maybe good practice to keep bound variables like “x” separate from
hypothetical names like g, like we did. In practice, however, we often don’t
and just use x, like so:

Suppose A # @, i.e., thereis an x € A. By definition of U, x €
AUB.So AUB # @.

However, when you do this, you have to be extra careful that you use different
x’s and y’s for different existential claims. For instance, the following is not a
correct proof of “If A # @ and B # @ then AN B # @” (which is not true).

Suppose A # @ and B # @. So for some x, x € A and also for
some x, x € B. Sincex € Aand x € B, x € AN B, by definition
of N.So ANB # Q.

Can you spot where the incorrect step occurs and explain why the result does
not hold?

A.5 An Example

Our first example is the following simple fact about unions and intersections
of sets. It will illustrate unpacking definitions, proofs of conjunctions, of uni-
versal claims, and proof by cases.

Proposition A.8. Forany sets A, B,and C, AU(BNC) = (AUB)N(AUCQC)

Let’s prove it!

Proof. We want to show that for any sets A, B,and C, AU (BNC) = (AUB)N
(AUC)

7)

First we unpack the definition of “=" in the statement of the propo-
sition. Recall that proving sets identical means showing that the
sets have the same elements. That is, all elements of AU (BN C)
are also elements of (AU B) N (A UC), and vice versa. The “vice
versa” means that also every element of (A U B) N (A UC) must
be an element of AU (BN C). So in unpacking the definition, we
see that we have to prove a conjunction. Let’s record this:

By definition, AU(BNC) = (AUB)N(AUCQ) iff every element of AU (BNC)
is also an element of (AU B) N (AUC), and every elementof (AUB) N (AUC)
is an element of AU (BN C).

Since this is a conjunction, we must prove each conjunct separately.
Lets start with the first: let’s prove that every element of AU (BN
C) is also an element of (AUB) N (AUC).

284

A.5. An Example

This is a universal claim, and so we consider an arbitrary element
of AU (BNC) and show that it must also be an element of (A U
B) N (AUC). We'll pick a variable to call this arbitrary element by,
say, z. Our proof continues:

First, we prove that every element of A U (BN C) is also an element of (AU
B)N(AUC). Letz € AU(BNC). Wehave to show thatz € (AUB)N(AUC).

Now it is time to unpack the definition of U and N. For instance,
the definition of Uis: AUB = {z | z € Aorz € B}. When we
apply the definition to “A U (BN C),” the role of the “B” in the
definition is now played by “BNC,” so AU (BNC) = {z |z €
Aorz € BNC}. So our assumption that z € AU (BN C) amounts
to:ze{z|ze Aorze BNC}. Andze {z|...z...}iff ...z...,
i.e.,in this case,z € Aorz € BNC.

By the definition of U, eitherz € Aorz € BNC.

Since this is a disjunction, it will be useful to apply proof by cases.
We take the two cases, and show that in each one, the conclusion
we're aiming for (namely, “z € (AU B) N (AUC)”) obtains.

Case 1: Suppose that z € A.

There’s not much more to work from based on our assumptions.
So let’s look at what we have to work with in the conclusion. We
want to show thatz € (AU B) N (AUC). Based on the definition
of N, if we want to show thatz € (AU B) N (AU C), we have to
show that it’s in both (AUB) and (AUC). Butz € AUBIiffz € A
or z € B, and we already have (as the assumption of case 1) that
z € A. By the same reasoning—switching C for B—z € AUC.
This argument went in the reverse direction, so let’s record our
reasoning in the direction needed in our proof.

Sincez € A,z € A or z € B, and hence, by definition of U, z € AU B.
Similarly, z € A U C. But this means that z € (AU B) N (A U C), by definition
of N.

This completes the first case of the proof by cases. Now we want
to derive the conclusion in the second case, where z € BN C.

Case 2: Suppose thatz € BN C.

Again, we are working with the intersection of two sets. Let’s ap-
ply the definition of N:

Since z € BN C, z must be an element of both B and C, by definition of N.

285

A. PROOFS

It’s time to look at our conclusion again. We have to show that z is
inboth (AUB) and (AUC). And again, the solution is immediate.

Sincez € B,z € (AUB). Sincez € C,alsoz € (AUC). So,z € (AUB)N
(AUC).

Here we applied the definitions of U and N again, but since we’ve
already recalled those definitions, and already showed that if z is
in one of two sets it is in their union, we don’t have to be as explicit
in what we’ve done.

We’ve completed the second case of the proof by cases, so now we
can assert our first conclusion.

So,ifz€ AU(BNC)thenze (AUB)N(AUCQC).

Now we just want to show the other direction, that every element
of (AUB)N (AUC) is an element of AU (BN C). As before, we
prove this universal claim by assuming we have an arbitrary ele-
ment of the first set and show it must be in the second set. Let’s
state what we’re about to do.

Now, assume thatz € (AU B) N (AU C). We want to show thatz € AU (BN
C).

We are now working from the hypothesis thatz € (AUB) N (AU
C). Ithopefully isn’t too confusing that we're using the same z here
as in the first part of the proof. When we finished that part, all the
assumptions we’ve made there are no longer in effect, so now we
can make new assumptions about what z is. If that is confusing to
you, just replace z with a different variable in what follows.

We know that z is in both AU B and A U C, by definition of N. And
by the definition of U, we can further unpack this to: either z € A
or z € B, and also either z € A or z € C. This looks like a proof
by cases again—except the “and” makes it confusing. You might
think that this amounts to there being three possibilities: z is either
in A, B or C. But that would be a mistake. We have to be careful,
so let’s consider each disjunction in turn.

By definition of N,z € AUB and z € AU C. By definition of U, z € A or
z € B. We distinguish cases.

Since we’re focusing on the first disjunction, we haven’t gotten our
second disjunction (from unpacking A U C) yet. In fact, we don't
need it yet. The first case is z € A, and an element of a set is also
an element of the union of that set with any other. So case 1 is easy:

Case 1: Suppose that z € A. It follows thatz € AU (BN C).

286

A.6. Another Example

Now for the second case, z € B. Here we’ll unpack the second U
and do another proof-by-cases:

Case 2: Suppose that z € B. Sincez € AUC, eitherz €¢ Aorz € C. We
distinguish cases further:
Case 2a: z € A. Then, again, z € AU (BNC).

Ok, this was a bit weird. We didn’t actually need the assumption
that z € B for this case, but that’s ok.

Case2b: z € C. Thenz € Band z € C, so z € BN C, and consequently,
ze AU(BNC).

This concludes both proofs-by-cases and so we're done with the
second half.

So,ifz€ (AUB)N(AUC) thenz € AU(BNC). O

A.6 Another Example
Proposition A.9. If A C C, then AU (C\ A) =C.

Proof. Suppose that A C C. We want to show that AU (C\ A) = C.

We begin by observing that this is a conditional statement. It is
tacitly universally quantified: the proposition holds for all sets A
and C. So A and C are variables for arbitrary sets. To prove such a
statement, we assume the antecedent and prove the consequent.

We continue by using the assumption that A C C. Let’s unpack
the definition of C: the assumption means that all elements of A
are also elements of C. Let’s write this down—it’s an important
fact that we’ll use throughout the proof.

By the definition of C, since A C C, forall z,if z € A, thenz € C.

We’ve unpacked all the definitions that are given to us in the as-
sumption. Now we can move onto the conclusion. We want to
show that AU (C\ A) = C, and so we set up a proof similarly
to the last example: we show that every element of AU (C\ A) is
also an element of C and, conversely, every element of C is an ele-
ment of AU (C\ A). We can shorten this to: AU (C\ A) C Cand
C C AU(C\ A). (Here we're doing the opposite of unpacking a
definition, but it makes the proof a bit easier to read.) Since this is
a conjunction, we have to prove both parts. To show the first part,
i.e., that every element of AU (C \ A) is also an element of C, we
assume thatz € AU (C\ A) for an arbitrary z and show thatz € C.
By the definition of U, we can conclude thatz € Aorz € C\ A
fromz € AU(C\ A). You should now be getting the hang of this.

287

A. PROOFS

AU(C\A) =Ciff AU(C\A) CCand C C (AU (C\ A). First we prove
that AU(C\A) CC.Letze AU(C\ A).So, eitherz € Aorz € (C\ A).

We've arrived at a disjunction, and from it we want to prove that
z € C. We do this using proof by cases.

Casel:z € A.Sinceforallz,ifz € A,z € C, we have that z € C.

Here we’ve used the fact recorded earlier which followed from the
hypothesis of the proposition that A C C. The first case is com-
plete, and we turn to the second case, z € (C\ A). Recall that
C \ A denotes the difference of the two sets, i.e., the set of all ele-
ments of C which are not elements of A. But any element of C not
in A is in particular an element of C.

Case2: z € (C\ A). This means thatz € C and z ¢ A. So, in particular, z € C.

Great, we've proved the first direction. Now for the second direc-
tion. Here we prove that C C AU (C\ A). So we assume that
z € Cand prove thatz € AU (C\ A).

Now let z € C. We want to show thatz € Aorz € C\ A.

Since all elements of A are also elements of C, and C \ A is the set of
all things that are elements of C but not A, it follows that z is either
in A or in C\ A. This may be a bit unclear if you don’t already
know why the result is true. It would be better to prove it step-by-
step. It will help to use a simple fact which we can state without
proof: z € A orz ¢ A. This is called the “principle of excluded
middle:” for any statement p, either p is true or its negation is true.
(Here, p is the statement that z € A.) Since this is a disjunction, we
can again use proof-by-cases.

Eitherz € Aorz ¢ A. In the former case, z € AU (C\ A). In the latter case,
zeCandz ¢ A,soz€ C\ A. Butthenz€ AU(C\ A).

Our proof is complete: we have shown that AU (C\ A) = C. 0O

A.7 Proof by Contradiction

In the first instance, proof by contradiction is an inference pattern that is used
to prove negative claims. Suppose you want to show that some claim p is false,
i.e., you want to show ~p. The most promising strategy is to (a) suppose that
p is true, and (b) show that this assumption leads to something you know to
be false. “Something known to be false” may be a result that conflicts with—
contradicts—p itself, or some other hypothesis of the overall claim you are

288

A.7. Proof by Contradiction

considering. For instance, a proof of “if g4 then ~p” involves assuming that
g is true and proving ~p from it. If you prove ~p by contradiction, that means
assuming p in addition to g. If you can prove ~q from p, you have shown that
the assumption p leads to something that contradicts your other assumption g,
since g and ~g cannot both be true. Of course, you have to use other inference
patterns in your proof of the contradiction, as well as unpacking definitions.
Let’s consider an example.

Proposition A.10. If A C Band B = @, then A has no elements.

Proof. Suppose A C B and B = @. We want to show that A has no elements.

Since this is a conditional claim, we assume the antecedent and
want to prove the consequent. The consequent is: A has no ele-
ments. We can make that a bit more explicit: it's not the case that
thereisan x € A.

A has no elements iff it’s not the case that there is an x such that x € A.

So we’ve determined that what we want to prove is really a nega-
tive claim ~p, namely: it’s not the case that there is an x € A. To
use proof by contradiction, we have to assume the corresponding
positive claim p, i.e., there is an x € A, and prove a contradiction
from it. We indicate that we’re doing a proof by contradiction by
writing “by way of contradiction, assume” or even just “suppose
not,” and then state the assumption p.

Suppose not: there is an x € A.

This is now the new assumption we’ll use to obtain a contradic-
tion. We have two more assumptions: that A C B and that B = @.
The first gives us that x € B:

Since A C B, x € B.

But since B = @, every element of B (e.g., x) must also be an ele-
ment of @.

Since B = @, x € @. This is a contradiction, since by definition @ has no
elements.

This already completes the proof: we’ve arrived at what we need
(a contradiction) from the assumptions we’ve set up, and this means
that the assumptions can’t all be true. Since the first two assump-
tions (A C B and B =) are not contested, it must be the last
assumption introduced (there is an x € A) that must be false. But
if we want to be thorough, we can spell this out.

289

A. PROOFS

Thus, our assumption that there is an x € A must be false, hence, A has no
elements by proof by contradiction. O

Every positive claim is trivially equivalent to a negative claim: p iff ~~p.
So proofs by contradiction can also be used to establish positive claims “indi-
rectly,” as follows: To prove p, read it as the negative claim ~~p. If we can
prove a contradiction from ~p, we’ve established ~~p by proof by contradic-
tion, and hence p.

In the last example, we aimed to prove a negative claim, namely that A
has no elements, and so the assumption we made for the purpose of proof
by contradiction (i.e., that there is an x € A) was a positive claim. It gave
us something to work with, namely the hypothetical x € A about which we
continued to reason until we got to x € @.

When proving a positive claim indirectly, the assumption you’d make for
the purpose of proof by contradiction would be negative. But very often you
can easily reformulate a positive claim as a negative claim, and a negative
claim as a positive claim. Our previous proof would have been essentially the
same had we proved “A = ©” instead of the negative consequent “A has no
elements.” (By definition of =, “A = ©” is a general claim, since it unpacks to
“every element of A is an element of @ and vice versa”.) But it is easily seen
to be equivalent to the negative claim “not: thereisan x € A.”

So it is sometimes easier to work with ~p as an assumption than it is to
prove p directly. Even when a direct proof is just as simple or even simpler
(as in the next examples), some people prefer to proceed indirectly. If the dou-
ble negation confuses you, think of a proof by contradiction of some claim as
a proof of a contradiction from the opposite claim. So, a proof by contradic-
tion of ~p is a proof of a contradiction from the assumption p; and proof by
contradiction of p is a proof of a contradiction from ~p.

Proposition A.11. A C AUB.

Proof. We want to show that A C AU B.

On the face of it, this is a positive claim: every x € A is also in
A U B. The negation of that is: some x € Ais ¢ AU B. So we can
prove the claim indirectly by assuming this negated claim, and
showing that it leads to a contradiction.

Suppose not, i.e., A ¢ AUB.

We have a definition of A C AU B: every x € Aisalso € AUB.
To understand what A g A U B means, we have to use some ele-
mentary logical manipulation on the unpacked definition: it’s false
that every x € A is also € A U B iff there is some x € A that is
¢ C. (This is a place where you want to be very careful: many stu-
dents’ attempted proofs by contradiction fail because they analyze

290

A.7. Proof by Contradiction

the negation of a claim like “all As are Bs” incorrectly.) In other
words, A Q A U B iff thereis an x such that x € Aand x € AU B.
From then on, it’s easy.

So, there is an x € A such that x ¢ A U B. By definition of U, x € AUB
iff x € Aorx € B. Since x € A, we have x € A U B. This contradicts the
assumption that x ¢ A U B. O

Proposition A.12. If A C Band B C C then A C C.

Proof. Suppose A C Band B C C. We want to show A C C.

Let’s proceed indirectly: we assume the negation of what we want
to etablish.

Suppose not, i.e., A Z C.

As before, we reason that A ¢ C iff not every x € A is also € C,
ie, some x € Ais ¢ C. Don’t worry, with practice you won’t have
to think hard anymore to unpack negations like this.

In other words, there is an x such that x € A and x ¢ C.

Now we can use this to get to our contradiction. Of course, we’ll
have to use the other two assumptions to do it.

Since A C B, x € B. Since B C C, x € C. But this contradicts x ¢ C. O
Proposition A.13. f AUB = AN B then A = B.

Proof. Suppose AU B = AN B. We want to show that A = B.
The beginning is now routine:
Assume, by way of contradiction, that A # B.

Our assumption for the proof by contradiction is that A # B. Since
A=Biff ACBanB C A, wegetthat A # Biff AZ Bor B¢ A.
(Note how important it is to be careful when manipulating nega-
tions!) To prove a contradiction from this disjunction, we use a
proof by cases and show that in each case, a contradiction follows.

A # Biff A¢ Bor B¢ A. We distinguish cases.

In the first case, we assume A ¢ B, i.e., for some x, x € A but ¢ B.
A N B is defined as those elements that A and B have in common,
so if something isn’t in one of them, it’s not in the intersection.
AU B is A together with B, so anything in either is also in the
union. This tells us that x € A U B but x ¢ A N B, and hence that
ANB# AUB.

291

A. PROOFS

Case 1: A ¢ B. Then for some x, x € A but x ¢ B. Since x ¢ B, then
x ¢ ANB. Sincex € A, x € AUB. So, ANB # AU B, contradicting the
assumption that ANB = AUB.

Case 2: B ¢ A. Then for some y, y € Bbuty ¢ A. As before, we have
y€ AUBbuty ¢ ANB,andso ANB # AU B, again contradicting AN B =
AUB. O

A.8 Reading Proofs

Proofs you find in textbooks and articles very seldom give all the details we
have so far included in our examples. Authors often do not draw attention
to when they distinguish cases, when they give an indirect proof, or don’t
mention that they use a definition. So when you read a proof in a textbook,
you will often have to fill in those details for yourself in order to understand
the proof. Doing this is also good practice to get the hang of the various moves
you have to make in a proof. Let’s look at an example.

Proposition A.14 (Absorption). For all sets A, B,
AN(AUB)=A

Proof. If z € AN(AUB), thenz € A, s0o AN(AUB) C A. Now suppose
z € A. Then also z € AU B, and therefore alsoz € AN (AU B). O

The preceding proof of the absorption law is very condensed. There is no
mention of any definitions used, no “we have to prove that” before we prove
it, etc. Let’s unpack it. The proposition proved is a general claim about any
sets A and B, and when the proof mentions A or B, these are variables for
arbitrary sets. The general claims the proof establishes is what’s required to
prove identity of sets, i.e., that every element of the left side of the identity is
an element of the right and vice versa.

“Ifz€ AN(AUB), thenz € A,s0 AN (AUB) C A

This is the first half of the proof of the identity: it estabishes that if an
arbitrary z is an element of the left side, it is also an element of the right, i.e.,
AN(AUB) C A. Assume that z € AN (AU B). Since z is an element of
the intersection of two sets iff it is an element of both sets, we can conclude
that z € A and also z € AU B. In particular, z € A, which is what we
wanted to show. Since that’s all that has to be done for the first half, we know
that the rest of the proof must be a proof of the second half, i.e., a proof that
ACAN(AUB).

“Now suppose z € A. Then also z € A U B, and therefore also
z€ AN(AUB).”

292

A9. ICan’t Do It!

We start by assuming that z € A, since we are showing that, for any z, if
z € Athenz € AN (AUB). To show that z € AN (AU B), we have to show
(by definition of “N”) that (i) z € A and also (ii) z € A U B. Here (i) is just
our assumption, so there is nothing further to prove, and that’s why the proof
does not mention it again. For (ii), recall that z is an element of a union of sets
iff it is an element of at least one of those sets. Since z € A, and A U B is the
union of A and B, this is the case here. So z € A U B. We've shown both (i)
z € Aand (ii) z € A U B, hence, by definition of “N,” z € AN (AU B). The
proof doesn’t mention those definitions; it’s assumed the reader has already
internalized them. If you haven’t, you'll have to go back and remind yourself
what they are. Then you'll also have to recognize why it follows from z € A
thatz € AUB,and fromz € Aandz € AUB thatz € AN(AUB).

Here’s another version of the proof above, with everything made explicit:

Proof. [By definition of = for sets, AN (AUB) = A we have to show (a)
AN(AUB) C Aand (b) AN (AUB) C A. (a): By definition of C, we have
to show thatif z € AN(AUB), thenz € A] Ifz € AN (AUB), then
z € A [since by definitionof N,z € AN(AUB)iffz € Aandz € AUB],
so AN (AUB) C A. [(b): By definition of C, we have to show thatifz € A,
thenz € AN (AUB).] Now suppose [(1)] z € A. Then also [(2)]z € AUB
[since by (1) z € A or z € B, which by definition of U means z € AU B], and
therefore also z € AN (A U B) [since the definition of N requires that z € A,
ie, (1),and z € AUB),i.e., (2)]. O

A9 ICan’t Do It!

We all get to a point where we feel like giving up. But you can do it. Your
instructor and teaching assistant, as well as your fellow students, can help.
Ask them for help! Here are a few tips to help you avoid a crisis, and what to
do if you feel like giving up.

To make sure you can solve problems successfully, do the following;:

1. Start as far in advance as possible. We get busy throughout the semester
and many of us struggle with procrastination, one of the best things you
can do is to start your homework assignments early. That way, if you're
stuck, you have time to look for a solution (that isn’t crying).

2. Talk to your classmates. You are not alone. Others in the class may also
struggle—but the may struggle with different things. Talking it out with
your peers can give you a different perspective on the problem that
might lead to a breakthrough. Of course, don't just copy their solution:
ask them for a hint, or explain where you get stuck and ask them for the
next step. And when you do get it, reciprocate. Helping someone else
along, and explaining things will help you understand better, too.

293

A. PROOFS

3. Ask for help. You have many resources available to you—your instructor
and teaching assistant are there for you and want you to succeed. They
should be able to help you work out a problem and identify where in
the process you're struggling.

4. Take a break. If you're stuck, it might be because you've been staring at the
problem for too long. Take a short break, have a cup of tea, or work on
a different problem for a while, then return to the problem with a fresh
mind. Sleep on it.

Notice how these strategies require that you've started to work on the
proof well in advance? If you've started the proof at 2am the day before it’s
due, these might not be so helpful.

This might sound like doom and gloom, but solving a proof is a challenge
that pays off in the end. Some people do this as a career—so there must be
something to enjoy about it. Like basically everything, solving problems and
doing proofs is something that requires practice. You might see classmates
who find this easy: they’ve probably just had lots of practice already. Try not
to give in too easily.

If you do run out of time (or patience) on a particular problem: that’s ok. It
doesn’t mean you're stupid or that you will never get it. Find out (from your
instructor or another student) how it is done, and identify where you went
wrong or got stuck, so you can avoid doing that the next time you encounter
a similar issue. Then try to do it without looking at the solution. And next
time, start (and ask for help) earlier.

A.10 Other Resources

There are many books on how to do proofs in mathematics which may be
useful. Check out How to Read and do Proofs: An Introduction to Mathemati-
cal Thought Processes (,) and How to Prove It: A Structured Approach
(,) in particular. The Book of Proof (,) and Math-
ematical Reasoning (,) are books on proof that are freely avail-
able online. Philosophers might find More Precisely: The Math you need to do
Philosophy (,) to be a good primer on mathematical reasoning.

There are also various shorter guides to proofs available on the internet;
e.g., “Introduction to Mathematical Arguments” (,) and “How
to write proofs” (,).

Motivational Videos

Feel like you have no motivation to do your homework? Feeling down? These
videos might help!

® https://www.youtube.com/watch?v=ZXsQAXx_ao0

294

http://www.people.vcu.edu/~rhammack/BookOfProof/BookOfProof.pdf
https://scholarworks.gvsu.edu/books/7/
https://scholarworks.gvsu.edu/books/7/
https://math.berkeley.edu/~hutching/teach/proofs.pdf
http://http://eugeniacheng.com/wp-content/uploads/2017/02/cheng-proofguide.pdf
http://http://eugeniacheng.com/wp-content/uploads/2017/02/cheng-proofguide.pdf
https://www.youtube.com/watch?v=ZXsQAXx_ao0

A.10. Other Resources

® https://www.youtube.com/watch?v=BQ4yd2W50No

® https://www.youtube.com/watch?v=StTqXEQ21-Y

295

https://www.youtube.com/watch?v=BQ4yd2W50No
https://www.youtube.com/watch?v=StTqXEQ2l-Y

Appendix B

Induction

B.1 Introduction

Induction is an important proof technique which is used, in different forms,
in almost all areas of logic, theoretical computer science, and mathematics. It
is needed to prove many of the results in logic.

Induction is often contrasted with deduction, and characterized as the in-
ference from the particular to the general. For instance, if we observe many
green emeralds, and nothing that we would call an emerald that’s not green,
we might conclude that all emeralds are green. This is an inductive inference,
in that it proceeds from many particlar cases (this emerald is green, that emer-
ald is green, etc.) to a general claim (all emeralds are green). Mathematical
induction is also an inference that concludes a general claim, but it is of a very
different kind than this “simple induction.”

Very roughly, an inductive proof in mathematics concludes that all math-
ematical objects of a certain sort have a certain property. In the simplest case,
the mathematical objects an inductive proof is concerned with are natural
numbers. In that case an inductive proof is used to establish that all natural
numbers have some property, and it does this by showing that

1. 0 has the property, and
2. whenever a number k has the property, so does k + 1.

Induction on natural numbers can then also often be used to prove general
claims about mathematical objects that can be assigned numbers. For instance,
finite sets each have a finite number 7 of elements, and if we can use induction
to show that every number # has the property “all finite sets of size n are ...”
then we will have shown something about all finite sets.

Induction can also be generalized to mathematical objects that are induc-
tively defined. For instance, expressions of a formal language such as those of
first-order logic are defined inductively. Structural induction is a way to prove

297

B. INDUCTION

results about all such expressions. Structural induction, in particular, is very
useful—and widely used—in logic.

B.2 Induction on N

In its simplest form, induction is a technique used to prove results for all nat-
ural numbers. It uses the fact that by starting from 0 and repeatedly adding 1
we eventually reach every natural number. So to prove that something is true
for every number, we can (1) establish that it is true for 0 and (2) show that
whenever it is true for a number #, it is also true for the next number n + 1. If
we abbreviate “number n has property P” by P(n) (and “number k has prop-
erty P” by P(k), etc.), then a proof by induction that P(n) for all n € IN consists
of:

1. a proof of P(0), and
2. a proof that, for any k, if P(k) then P(k + 1).

To make this crystal clear, suppose we have both (1) and (2). Then (1) tells us
that P(0) is true. If we also have (2), we know in particular that if P(0) then
P(0+1),i.e., P(1). This follows from the general statement “for any k, if P(k)
then P(k + 1)” by putting 0 for k. So by modus ponens, we have that P(1).
From (2) again, now taking 1 for n, we have: if P(1) then P(2). Since we've
just established P(1), by modus ponens, we have P(2). And so on. For any
number 1, after doing this n times, we eventually arrive at P(n). So (1) and (2)
together establish P(n) for any n € IN.

Let’s look at an example. Suppose we want to find out how many different
sums we can throw with n dice. Although it might seem silly, let’s start with
0 dice. If you have no dice there’s only one possible sum you can “throw”:
no dots at all, which sums to 0. So the number of different possible throws
is 1. If you have only one die, i.e,, n = 1, there are six possible values, 1
through 6. With two dice, we can throw any sum from 2 through 12, that’s
11 possibilities. With three dice, we can throw any number from 3 to 18, i.e,,
16 different possibilities. 1, 6, 11, 16: looks like a pattern: maybe the answer
is 5n + 1? Of course, 51 + 1 is the maximum possible, because there are only
51 + 1 numbers between 7, the lowest value you can throw with n dice (all
1’s) and 6n, the highest you can throw (all 6’s).

Theorem B.1. With n dice one can throw all 5n + 1 possible values between n and
6n.

Proof. Let P(n) be the claim: “It is possible to throw any number between n
and 6n using n dice.” To use induction, we prove:

1. The induction basis P(1), i.e., with just one die, you can throw any num-
ber between 1 and 6.

298

B.2. Induction on IN

2. The induction step, for all k, if P(k) then P(k + 1).

(1) Is proved by inspecting a 6-sided die. It has all 6 sides, and every num-
ber between 1 and 6 shows up one on of the sides. So it is possible to throw
any number between 1 and 6 using a single die.

To prove (2), we assume the antecedent of the conditional, i.e., P(k). This
assumption is called the inductive hypothesis. We use it to prove P(k + 1). The
hard part is to find a way of thinking about the possible values of a throw of
k + 1 dice in terms of the possible values of throws of k dice plus of throws of
the extra k + 1-st die—this is what we have to do, though, if we want to use
the inductive hypothesis.

The inductive hypothesis says we can get any number between k and 6k
using k dice. If we throw a 1 with our (k + 1)-st die, this adds 1 to the total.
So we can throw any value between k + 1 and 6k + 1 by throwing k dice and
then rolling a 1 with the (k + 1)-st die. What's left? The values 6k + 2 through
6k + 6. We can get these by rolling k 6s and then a number between 2 and 6
with our (k + 1)-st die. Together, this means that with k + 1 dice we can throw
any of the numbers between k + 1 and 6(k + 1), i.e., we've proved P(k + 1)
using the assumption P(k), the inductive hypothesis. O

Very often we use induction when we want to prove something about a
series of objects (numbers, sets, etc.) that is itself defined “inductively,” i.e.,
by defining the (n + 1)-st object in terms of the n-th. For instance, we can
define the sum s, of the natural numbers up to n by

50:0
Sn+1:Sn+(7’l+1)

This definition gives:

so =0,

51 =sp+1 =1,

Sp =51+2 =1+2=3
s3=25,+3 =1424+3 =6, etc.

Now we can prove, by induction, that s, = n(n+1)/2.

Proposition B.2. s, = n(n+1)/2.

Proof. We have to prove (1) that so = 0- (0+1)/2 and (2) if s = k(k+1)/2
then sg1 = (k+1)(k+2)/2. (1) is obvious. To prove (2), we assume the
inductive hypothesis: sy = k(k + 1)/2. Using it, we have to show that s, 1 =
(k+1)(k+2)/2.

299

B. INDUCTION

What is s1? By the definition, sy 1 = s; + (k + 1). By inductive hypoth-
esis, sy = k(k+1)/2. We can substitute this into the previous equation, and
then just need a bit of arithmetic of fractions:

k(k+1
5k+1:%+(k+1):

k(k+1) 2(k+1)

2 2
k(k4+1) +2(k+1)

2

:(k+2)2(k+1). -

The important lesson here is that if you're proving something about some
inductively defined sequence a,, induction is the obvious way to go. And
even if it isn’t (as in the case of the possibilities of dice throws), you can use
induction if you can somehow relate the case for k + 1 to the case for k.

B.3 Strong Induction

In the principle of induction discussed above, we prove P(0) and also if P(k),
then P(k + 1). In the second part, we assume that P(k) is true and use this
assumption to prove P(k + 1). Equivalently, of course, we could assume P (k —
1) and use it to prove P(k)—the important part is that we be able to carry out
the inference from any number to its successor; that we can prove the claim in
question for any number under the assumption it holds for its predecessor.

There is a variant of the principle of induction in which we don’t just as-
sume that the claim holds for the predecessor k — 1 of k, but for all numbers
smaller than k, and use this assumption to establish the claim for k. This also
gives us the claim P(n) for all n € IN. For once we have established P(0), we
have thereby established that P holds for all numbers less than 1. And if we
know that if P() for all I < k, then P(k), we know this in particular for k = 1.
So we can conclude P(1). With this we have proved P(0) and P(1), i.e., P(I)
for all I < 2, and since we have also the conditional, if P(I) for all I < 2, then
P(2), we can conclude P(2), and so on.

In fact, if we can establish the general conditional “for all k, if P(I) for all
I < k, then P(k),” we do not have to establish P(0) anymore, since it follows
from it. For remember that a general claim like “for all | < k, P(I)” is true if
there are no | < k. This is a case of vacuous quantification: “all As are Bs” is
true if there are no As, Vx (¢(x) D ¥(x)) is true if no x satisfies ¢(x). In this
case, the formalized version would be “VI (I < k D P(l))”"—and that is true if
there areno | < k. And if k = 0 that’s exactly the case: no ! < 0, hence “for all
1 <0, P(0)” is true, whatever P is. A proof of “if P(I) for all I < k, then P(k)”
thus automatically establishes P(0).

300

B.4. Inductive Definitions

This variant is useful if establishing the claim for k can’t be made to just
rely on the claim for k — 1 but may require the assumption that it is true for
one or more | < k.

B.4 Inductive Definitions

In logic we very often define kinds of objects inductively, i.e., by specifying
rules for what counts as an object of the kind to be defined which explain how
to get new objects of that kind from old objects of that kind. For instance,
we often define special kinds of sequences of symbols, such as the terms and
formulae of a language, by induction. For a simple example, consider strings
of consisting of letters a, b, ¢, d, the symbol o, and brackets [and], such
as “[[cod][”, “[a[]o]”, “a” or “[[aob] od]”. You probably feel that there’s
something “wrong” with the first two strings: the brackets don’t “balance” at
all in the first, and you might feel that the “o” should “connect” expressions
that themselves make sense. The third and fourth string look better: for every
“[” there’s a closing “]” (if there are any at all), and for any o we can find “nice”
expressions on either side, surrounded by a pair of parentheses.

We would like to precisely specify what counts as a “nice term.” First of
all, every letter by itself is nice. Anything that’s notjust a letter by itself should
be of the form “[t 0 s]” where s and t are themselves nice. Conversely, if t and
s are nice, then we can form a new nice term by putting a o between them and
surround them by a pair of brackets. We might use these operations to define
the set of nice terms. This is an inductive definition.

Definition B.3 (Nice terms). The set of nice terms is inductively defined as fol-
lows:

1. Any letter a, b, ¢, d is a nice term.
2. If 51 and s, are nice terms, then so is [s1 0 Sp].

3. Nothing else is a nice term.

This definition tells us that something counts as a nice term iff it can be
constructed according to the two conditions (1) and (2) in some finite number
of steps. In the first step, we construct all nice terms just consisting of letters
by themselves, i.e.,

a,b,c,d

In the second step, we apply (2) to the terms we’ve constructed. We'll get
[aca],[aob],[boa],...,[dod]

for all combinations of two letters. In the third step, we apply (2) again, to any
two nice terms we’ve constructed so far. We get new nice term such as [ao[ao

301

B. INDUCTION

a]]—where t is a from step 1 and s is [a o a] from step 2—and [[b o ¢] o [d o b]]
constructed out of the two terms [b o ¢] and [d o b] from step 2. And so on.
Clause (3) rules out that anything not constructed in this way sneaks into the
set of nice terms.

Note that we have not yet proved that every sequence of symbols that
“feels” nice is nice according to this definition. However, it should be clear
that everything we can construct does in fact “feel nice”: brackets are bal-
anced, and o connects parts that are themselves nice.

The key feature of inductive definitions is that if you want to prove some-
thing about all nice terms, the definition tells you which cases you must con-
sider. For instance, if you are told that ¢ is a nice term, the inductive definition
tells you what ¢ can look like: ¢ can be a letter, or it can be [s; o s;] for some pair
of nice terms s; and s,. Because of clause (3), those are the only possibilities.

When proving claims about all of an inductively defined set, the strong
form of induction becomes particularly important. For instance, suppose we
want to prove that for every nice term of length 1, the number of [in it is <
n/2. This can be seen as a claim about all n: for every n, the number of | in
any nice term of length nis < n/2.

Proposition B.4. For any n, the number of [in a nice term of length n is < n/2.

Proof. To prove this result by (strong) induction, we have to show that the
following conditional claim is true:

If for every I < k, any nice term of length [has < /2 [’s, then any
nice term of length k has < k/2 [’s.

To show this conditional, assume that its antecedent is true, i.e., assume that
for any I < k, nice terms of length I contain < [/2 ['s. We call this assumption
the inductive hypothesis. We want to show the same is true for nice terms of
length k.

So suppose t is a nice term of length k. Because nice terms are inductively
defined, we have two cases: (1) t is a letter by itself, or (2) ¢ is [s1 o 5] for some
nice terms s1 and sp.

1. tis aletter. Then k = 1, and the number of [in ¢ is 0. Since 0 < 1/2, the
claim holds.

2. tis [s1 o sp| for some nice terms s; and sp. Let’s let /1 be the length of s;
and /5 be the length of sp. Then the length k of ¢ is I; + I + 3 (the lengths
of s1 and s, plus three symbols [, o,]). Since I; + I, + 3 is always greater
than;, I; < k. Similarly, I, < k. That means that the induction hypothe-
sis applies to the terms s; and sp: the number m; of [in sy is < I;/2, and
the number m; of [in sy is < Ip/2.

302

B.5. Structural Induction

The number of [in ¢ is the number of [in s, plus the number of [in s,
plus1,i.e., itis my 4+ my + 1. Since my < I3 /2 and my < I /2 we have:

1 1 Lh+L+2 1L1+1+3
mi4my+l<dyp2 g2t Atnd

2 2 2 2 =k/2

In each case, we’ve shown that the number of [in tis < k/2 (on the basis of
the inductive hypothesis). By strong induction, the proposition follows. [

B.5 Structural Induction

So far we have used induction to establish results about all natural numbers.
But a corresponding principle can be used directly to prove results about all
elements of an inductively defined set. This often called structural induction,
because it depends on the structure of the inductively defined objects.

Generally, an inductive definition is given by (a) a list of “initial” elements
of the set and (b) a list of operations which produce new elements of the set
from old ones. In the case of nice terms, for instance, the initial objects are the
letters. We only have one operation: the operations are

0(s1,82) =[s1052]

You can even think of the natural numbers IN themselves as being given by an
inductive definition: the initial object is 0, and the operation is the successor
function x + 1.

In order to prove something about all elements of an inductively defined
set, i.e., that every element of the set has a property P, we must:

1. Prove that the initial objects have P

2. Prove that for each operation o, if the arguments have P, so does the
result.

For instance, in order to prove something about all nice terms, we would
prove that it is true about all letters, and that it is true about [s; o sp| provided
it is true of 51 and s, individually.

Proposition B.5. The number of [equals the number of | in any nice term t.

Proof. We use structural induction. Nice terms are inductively defined, with
letters as initial objects and the operation o for constructing new nice terms
out of old ones.

1. The claim is true for every letter, since the number of [in a letter by itself
is 0 and the number of | in it is also 0.

303

B. INDUCTION

2. Suppose the number of [in s; equals the number of |, and the same is
true for s;. The number of [in 0(sy, s2), i.e., in [s1 0 s3], is the sum of the
number of [in s; and s, plus one. The number of | in 0(s1, s) is the sum
of the number of | in 51 and s, plus one. Thus, the number of [in 0(s1,s,)
equals the number of | in 0(s1, 52). O

Let’s give another proof by structural induction: a proper initial segment
of a string t of symbols is any string s that agrees with ¢ symbol by symbol,
read from the left, but ¢ is longer. So, e.g., [a o is a proper initial segment of
[a o b], but neither are [bo (they disagree at the second symbol) nor [a o b]
(they are the same length).

Proposition B.6. Every proper initial segment of a nice term t has more ['s than |’s.

Proof. By induction on ¢:
1. tis a letter by itself: Then ¢ has no proper initial segments.

2. t = [s1 0 5] for some nice terms sq and s,. If 7 is a proper initial segment
of ¢, there are a number of possibilities:

a) risjust [: Then r has one more [than it does |.

b) ris [r; where rq is a proper initial segment of s1: Since sy is a nice
term, by induction hypothesis, ; has more | than] and the same is
true for [r;.

c) ris [s1 or [s; o: By the previous result, the number of [and | in 51
are equal; so the number of [in [s; or [s; o is one more than the
number of |.

d) ris [s] o ry where r; is a proper initial segment of s,: By induction
hypothesis, r; contains more | than |. By the previous result, the
number of [and of | in s1 are equal. So the number of [in [s1 o 77 is
greater than the number of |.

e) r1is [s1 o sp: By the previous result, the number of [and] in s; are
equal, and the same for sy. So there is one more [in [s1 o sp than
there are |. O

B.6 Relations and Functions

When we have defined a set of objects (such as the natural numbers or the nice
terms) inductively, we can also define relations on these objects by induction.
For instance, consider the following idea: a nice term #; is a subterm of a nice
term f, if it occurs as a part of it. Let’s use a symbol for it: t; T t,. Every nice
term is a subterm of itself, of course: ¢t C t. We can give an inductive definition
of this relation as follows:

304

B.6. Relations and Functions

Definition B.7. The relation of a nice term #; being a subterm of 5, t; C f;, is
defined by induction on ¢, as follows:

1. If t; is a letter, then t; C t, iff £, = t5.
2. Iftyis [sy 0sy], thenty Tty iff t; =y, £1 51, 0r 7 C sp.

This definition, for instance, will tell us that a C [b o a]. For (2) says that
alC [boa]iffa = [boal,ora C b, ora C a. The first two are false: a
clearly isn’t identical to [b o a], and by (1), a C b iff a = b, which is also false.
However, also by (1), a C aiff a = a, which is true.

It's important to note that the success of this definition depends on a fact
that we haven’t proved yet: every nice term ¢ is either a letter by itself, or there
are uniquely determined nice terms s; and s, such that t = [s1 0 55]. “Uniquely
determined” here means that if = [sq 0 sp] itisn’talso = [ry o rp] with s # rq
or sp # rp. If this were the case, then clause (2) may come in conflict with
itself: reading t; as [s1 o sp| we might get t; T £, but if we read t; as [r] o 3]
we might get not t; T t,. Before we prove that this can’t happen, let’s look at
an example where it can happen.

Definition B.8. Define bracketless terms inductively by
1. Every letter is a bracketless term.
2. If s; and s; are bracketless terms, then sq o s; is a bracketless term.

3. Nothing else is a bracketless term.

Bracketless terms are, e.g., a, bod, b oaob. Now if we defined “subterm”
for bracketless terms the way we did above, the second clause would read

If tp = 8108y, then t1 Ety iff t1 =tp, 1 L sy, 0rt C sp.
Now b o a o b is of the form s; o s, with

s1 = band Sp =aob.
It is also of the form r; o rp, with

rp =boaand rp =b.

Now is aob a subterm of b oaob? The answer is yes if we go by the first
reading, and no if we go by the second.

The property that the way a nice term is built up from other nice terms is
unique is called unique readability. Since inductive definitions of relations for
such inductively defined objects are important, we have to prove that it holds.

Proposition B.9. Suppose t is a nice term. Then either t is a letter by itself, or there
are uniquely determined nice terms sq, sy such that t = [s1 0 sp].

305

B. INDUCTION

Proof. If t is a letter by itself, the condition is satisfied. So assume f isn’t a letter
by itself. We can tell from the inductive definition that then t must be of the
form [s1 o sp] for some nice terms s; and s. It remains to show that these are
uniquely determined, i.e., if t = [ry o 73], then s; = r; and s, = 15.

So suppose t = [s1 0 sp] and also = [r1 o ;] for nice terms s1, s, 71, r2. We
have to show that s; = r; and s, = r;. First, s; and r; must be identical, for
otherwise one is a proper initial segment of the other. But by Proposition B.6,
that is impossible if s; and r; are both nice terms. But if s; = rq, then clearly
also sp = 7. O

We can also define functions inductively: e.g., we can define the function f
that maps any nice term to the maximum depth of nested [.. .] in it as follows:

Definition B.10. The depth of a nice term, f(t), is defined inductively as fol-

lows:
0 if t is a letter
o= {maX(f(sl),f(sZ)) +1 ift=[s;0sy).
For instance
f(laob]) = max(f(a), f(b)) +1=
=max(0,0)+1=1, and
(

f(llaeb]oc]) = max(f([aob]), f(c)) +1 =
=max(1,0)+1=2.

Here, of course, we assume that s; an s, are nice terms, and make use
of the fact that every nice term is either a letter or of the form [s; o sp]. It
is again important that it can be of this form in only one way. To see why,
consider again the bracketless terms we defined earlier. The corresponding
“definition” would be:

(1) = 0 if t is a letter
§ max(g(s1),g(s2)) +1 ift =sjo0sp.

Now consider the bracketless term aob o cod. It can be read in more than
one way, e.g., as 51 © sp with

s; = aand s =bocod,
or as rq o rp with
rp =aoband rp =cod.
Calculating g according to the first way of reading it would give
g(s108p) = max(g(a),g(bocod))+1=
=max(0,2)+1=3

306

B.6. Relations and Functions

while according to the other reading we get

g(r1orp) = max(g(aob),g(cod))+1=
=max(1,1)+1=2

But a function must always yield a unique value; so our “definition” of g
doesn’t define a function at all.

307

Appendix C

Biographies

C.1 Georg Cantor

An early biography of Georg Cantor
(GAY-org KAHN-tor) claimed that he was
born and found on a ship that was sail-
ing for Saint Petersburg, Russia, and that
his parents were unknown. This, how-
ever, is not true; although he was born
in Saint Petersburg in 1845.

Cantor received his doctorate in
mathematics at the University of Berlin
in 1867. He is known for his work in
set theory, and is credited with found-
ing set theory as a distinctive research
discipline. He was the first to prove
that there are infinite sets of different
sizes. His theories, and especially his
theory of infinities, caused much debate
among mathematicians at the time, and
his work was controversial.

Cantor’s religious beliefs and his
mathematical work were inextricably

Figure C.1: Georg Cantor

tied; he even claimed that the theory of transfinite numbers had been com-
municated to him directly by God. In later life, Cantor suffered from mental
illness. Beginning in 1894, and more frequently towards his later years, Can-
tor was hospitalized. The heavy criticism of his work, including a falling out
with the mathematician Leopold Kronecker, led to depression and a lack of
interest in mathematics. During depressive episodes, Cantor would turn to
philosophy and literature, and even published a theory that Francis Bacon

was the author of Shakespeare’s plays.

309

C. BIOGRAPHIES

Cantor died on January 6, 1918, in a sanatorium in Halle.

Further Reading For full biographies of Cantor, see () and

(). Cantor’s radical views are also described in the BBC Radio 4
program A Brief History of Mathematics (,). If you'd like to hear
about Cantor’s theories in rap form, see ().

C.2 Alonzo Church

Alonzo Church was born in Washing- ™
ton, DC on June 14, 1903. In early ; .
childhood, an air gun incident left
Church blind in one eye. He finished
preparatory school in Connecticut in
1920 and began his university education
at Princeton that same year. He com-
pleted his doctoral studies in 1927. After
a couple years abroad, Church returned
to Princeton. Church was known ex-
ceedingly polite and careful. His black-
board writing was immaculate, and he
would preserve important papers by
carefully covering them in Duco cement
(a clear glue). Outside of his academic Figure C.2: Alonzo Church
pursuits, he enjoyed reading science fic-

tion magazines and was not afraid to write to the editors if he spotted any
inaccuracies in the writing.

Church’s academic achievements were great. Together with his students
Stephen Kleene and Barkley Rosser, he developed a theory of effective calcu-
lability, the lambda calculus, independently of Alan Turing’s development of
the Turing machine. The two definitions of computability are equivalent, and
give rise to what is now known as the Church-Turing Thesis, that a function of
the natural numbers is effectively computable if and only if it is computable
via Turing machine (or lambda calculus). He also proved what is now known
as Church’s Theorem: The decision problem for the validity of first-order for-
mulas is unsolvable.

Church continued his work into old age. In 1967 he left Princeton for
UCLA, where he was professor until his retirement in 1990. Church passed
away on August 1, 1995 at the age of 92.

Further Reading For abrief biography of Church, see (). Church’s
original writings on the lambda calculus and the Entscheidungsproblem (Church’s
Thesis) are (,b). () records an interview with Church

310

C.3. Gerhard Gentzen

about the Princeton mathematics community in the 1930s. Church wrote a se-
ries of book reviews of the Journal of Symbolic Logic from 1936 until 1979. They
are all archived on John MacFarlane’s website (,).

C.3 Gerhard Gentzen

Gerhard Gentzen is known primarily
as the creator of structural proof the-
ory, and specifically the creation of the
natural deduction and sequent calculus
derivation systems. He was born on
November 24, 1909 in Greifswald, Ger-
many. Gerhard was homeschooled for
three years before attending preparatory
school, where he was behind most of his
classmates in terms of education. De-
spite this, he was a brilliant student and
showed a strong aptitude for mathematics. His interests were varied, and he,
for instance, also write poems for his mother and plays for the school theatre.

Figure C.3: Gerhard Gentzen

Gentzen began his university studies at the University of Greifswald, but
moved around to Géttingen, Munich, and Berlin. He received his doctorate in
1933 from the University of Gottingen under Hermann Weyl. (Paul Bernays
supervised most of his work, but was dismissed from the university by the
Nazis.) In 1934, Gentzen began work as an assistant to David Hilbert. That
same year he developed the sequent calculus and natural deduction deriva-
tion systems, in his papers Untersuchungen iiber das logische Schlieffen I-II [In-
vestigations Into Logical Deduction I-1I]. He proved the consistency of the Peano
axioms in 1936.

Gentzen'’s relationship with the Nazis is complicated. At the same time his
mentor Bernays was forced to leave Germany, Gentzen joined the university
branch of the SA, the Nazi paramilitary organization. Like many Germans, he
was a member of the Nazi party. During the war, he served as a telecommuni-
cations officer for the air intelligence unit. However, in 1942 he was released
from duty due to a nervous breakdown. It is unclear whether or not Gentzen'’s
loyalties lay with the Nazi party, or whether he joined the party in order to en-
sure academic success.

In 1943, Gentzen was offered an academic position at the Mathematical
Institute of the German University of Prague, which he accepted. However, in
1945 the citizens of Prague revolted against German occupation. Soviet forces
arrived in the city and arrested all the professors at the university. Because of
his membership in Nazi organizations, Gentzen was taken to a forced labour
camp. He died of malnutrition while in his cell on August 4, 1945 at the age
of 35.

311

C. BIOGRAPHIES

Further Reading For a full biography of Gentzen, see Menzler-Trott (2007).
An interesting read about mathematicians under Nazi rule, which gives a brief
note about Gentzen’s life, is given by Segal (2014). Gentzen's papers on logical
deduction are available in the original german (Gentzen, 1935a,b). English
translations of Gentzen’s papers have been collected in a single volume by
Szabo (1969), which also includes a biographical sketch.

C4 Kurt Godel

Kurt Godel (GER-dle) was born on
April 28, 1906 in Briinn in the Austro-
Hungarian empire (now Brno in the
Czech Republic). Due to his inquisitive
and bright nature, young Kurtele was
often called “Der kleine Herr Warum”
(Little Mr. Why) by his family. He ex-
celled in academics from primary school
onward, where he got less than the high-
est grade only in mathematics. Godel
was often absent from school due to
poor health and was exempt from phys-
ical education. He was diagnosed with
rheumatic fever during his childhood.
Throughout his life, he believed this per-
manently affected his heart despite med-
ical assessment saying otherwise.

Godel began studying at the Univer- Figure C.4: Kurt Godel
sity of Vienna in 1924 and completed his
doctoral studies in 1929. He first intended to study physics, but his interests
soon moved to mathematics and especially logic, in part due to the influence
of the philosopher Rudolf Carnap. His dissertation, written under the super-
vision of Hans Hahn, proved the completeness theorem of first-order predi-
cate logic with identity (Godel, 1929). Only a year later, he obtained his most
famous results—the first and second incompleteness theorems (published in
Godel 1931). During his time in Vienna, Godel was heavily involved with
the Vienna Circle, a group of scientifically-minded philosophers that included
Carnap, whose work was especially influenced by Godel’s results.

In 1938, Godel married Adele Nimbursky. His parents were not pleased:
not only was she six years older than him and already divorced, but she
worked as a dancer in a nightclub. Social pressures did not affect Godel, how-
ever, and they remained happily married until his death.

After Nazi Germany annexed Austria in 1938, Godel and Adele emigrated
to the United States, where he took up a position at the Institute for Advanced

312

C.5. Emmy Noether

Study in Princeton, New Jersey. Despite his introversion and eccentric nature,
Godel’s time at Princeton was collaborative and fruitful. He published essays
in set theory, philosophy and physics. Notably, he struck up a particularly
strong friendship with his colleague at the IAS, Albert Einstein.

In his later years, Godel’s mental health deteriorated. His wife’s hospi-
talization in 1977 meant she was no longer able to cook his meals for him.
Having suffered from mental health issues throughout his life, he succumbed
to paranoia. Deathly afraid of being poisoned, Godel refused to eat. He died
of starvation on January 14, 1978, in Princeton.

Further Reading For a complete biography of Godel’s life is available, see
(). For further biographical pieces, as well as essays about

Godel’s contributions to logic and philosophy, see (),
(011), (2003), and (2007).

Godel’s PhD thesis is available in the original German (,). The
original text of the incompleteness theorems is (,). All of Godel’s
published and unpublished writings, as well as a selection of correspondence,
are available in English in his Collected Papers (,).

For a detailed treatment of Godel’s incompleteness theorems, see
(2013). For an informal, philosophical discussion of Godel’s theorems, see
Mark Linsenmayer’s podcast (,)-

C.5 Emmy Noether

Emmy Noether (NER-ter) was born in Erlangen, Germany, on March 23, 1882,
to an upper-middle class scholarly family. Hailed as the “mother of modern
algebra,” Noether made groundbreaking contributions to both mathematics
and physics, despite significant barriers to women’s education. In Germany at
the time, young girls were meant to be educated in arts and were not allowed
to attend college preparatory schools. However, after auditing classes at the
Universities of Gottingen and Erlangen (where her father was professor of
mathematics), Noether was eventually able to enroll as a student at Erlangen
in 1904, when their policy was updated to allow female students. She received
her doctorate in mathematics in 1907.

Despite her qualifications, Noether experienced much resistance during
her career. From 1908-1915, she taught at Erlangen without pay. During this
time, she caught the attention of David Hilbert, one of the world’s foremost
mathematicians of the time, who invited her to Gottingen. However, women
were prohibited from obtaining professorships, and she was only able to lec-
ture under Hilbert’s name, again without pay. During this time she proved
what is now known as Noether’s theorem, which is still used in theoretical
physics today. Noether was finally granted the right to teach in 1919. Hilbert’s

313

C. BIOGRAPHIES

response to continued resistance of his university colleagues reportedly was:
“Gentlemen, the faculty senate is not a bathhouse.”

In the later 1920s, she concentrated
on work in abstract algebra, and her con-
tributions revolutionized the field. In
her proofs she often made use of the so-
called ascending chain condition, which
states that there is no infinite strictly in-
creasing chain of certain sets. For in-
stance, certain algebraic structures now
known as Noetherian rings have the
property that there are no infinite se-
quences of ideals [y C I, € The
condition can be generalized to any par-
tial order (in algebra, it concerns the spe-
cial case of ideals ordered by the subset
relation), and we can also consider the
dual descending chain condition, where
every strictly decreasing sequence in a
partial order eventually ends. If a par-
tial order satisfies the descending chain
condition, it is possible to use induction along this order in a similar way in
which we can use induction along the < order on IN. Such orders are called
well-founded or Noetherian, and the corresponding proof principle Noetherian
induction.

Noether was Jewish, and when the Nazis came to power in 1933, she was
dismissed from her position. Luckily, Noether was able to emigrate to the
United States for a temporary position at Bryn Mawr, Pennsylvania. During
her time there she also lectured at Princeton, although she found the univer-
sity to be unwelcoming to women (Dick, 1981, 81). In 1935, Noether under-
went an operation to remove a uterine tumour. She died from an infection as
a result of the surgery, and was buried at Bryn Mawr.

Figure C.5: Emmy Noether

Further Reading For a biography of Noether, see Dick (1981). The Perime-
ter Institute for Theoretical Physics has their lectures on Noether’s life and
influence available online (Institute, 2015). If you're tired of reading, Stuff You
Missed in History Class has a podcast on Noether’s life and influence (Frey and
Wilson, 2015). The collected works of Noether are available in the original
German (Jacobson, 1983).

C.6 Rozsa Péter

314

C.6. Rozsa Péter

Roézsa Péter was born Résza Politzer, in Budapest, Hungary, on February 17,
1905. She is best known for her work on recursive functions, which was es-
sential for the creation of the field of recursion theory.

Péter was raised during harsh polit-
ical times—WWI raged when she was
a teenager—but was able to attend the
affluent Maria Terezia Girls” School in
Budapest, from where she graduated
in 1922. She then studied at Pazmany
Péter University (later renamed Lorand
Eotvos University) in Budapest. She
began studying chemistry at the insis-
tence of her father, but later switched
to mathematics, and graduated in 1927.
Although she had the credentials to
teach high school mathematics, the eco-
nomic situation at the time was dire as
the Great Depression affected the world
economy. During this time, Péter took
odd jobs as a tutor and private teacher
of mathematics. She eventually returned to university to take up graduate
studies in mathematics. She had originally planned to work in number the-
ory, but after finding out that her results had already been proven, she almost
gave up on mathematics altogether. She was encouraged to work on Godel’s
incompleteness theorems, and unknowingly proved several of his results in
different ways. This restored her confidence, and Péter went on to write her
first papers on recursion theory, inspired by David Hilbert’s foundational pro-
gram. She received her PhD in 1935, and in 1937 she became an editor for the
Journal of Symbolic Logic.

Figure C.6: R6zsa Péter

Péter’s early papers are widely credited as founding contributions to the
field of recursive function theory. In Péter (1935a), she investigated the rela-
tionship between different kinds of recursion. In Péter (1935b), she showed
that a certain recursively defined function is not primitive recursive. This
simplified an earlier result due to Wilhelm Ackermann. Péter’s simplified
function is what’s now often called the Ackermann function—and sometimes,
more properly, the Ackermann—Péter function. She wrote the first book on re-
cursive function theory (Péter, 1951).

Despite the importance and influence of her work, Péter did not obtain a
full-time teaching position until 1945. During the Nazi occupation of Hungary
during World War II, Péter was not allowed to teach due to anti-Semitic laws.
In 1944 the government created a Jewish ghetto in Budapest; the ghetto was
cut off from the rest of the city and attended by armed guards. Péter was
forced to live in the ghetto until 1945 when it was liberated. She then went on

315

C. BIOGRAPHIES

to teach at the Budapest Teachers Training College, and from 1955 onward at
E6tvos Lorand University. She was the first female Hungarian mathematician
to become an Academic Doctor of Mathematics, and the first woman to be
elected to the Hungarian Academy of Sciences.

Péter was known as a passionate teacher of mathematics, who preferred
to explore the nature and beauty of mathematical problems with her students
rather than to merely lecture. As a result, she was affectionately called “Aunt
Rosa” by her students. Péter died in 1977 at the age of 71.

Further Reading For more biographical reading, see (O’Connor and Robert-
son, 2014) and (Andrasfai, 1986). Tamassy (1994) conducted a brief interview
with Péter. For a fun read about mathematics, see Péter’s book Playing With
Infinity (Péter, 2010).

C.7 Julia Robinson

Julia Bowman Robinson was an Amer-
ican mathematician. ~ She is known
mainly for her work on decision prob-
lems, and most famously for her con-
tributions to the solution of Hilbert’s
tenth problem. Robinson was born in
St. Louis, Missouri, on December 8,
1919. Robinson recalls being intrigued
by numbers already as a child (Reid,
1986, 4). At age nine she contracted scar-
let fever and suffered from several re-
current bouts of rheumatic fever. This
forced her to spend much of her time
in bed, putting her behind in her educa-
tion. Although she was able to catch up
with the help of private tutors, the phys-
ical effects of her illness had a lasting im-
pact on her life.

Despite her childhood struggles, Robinson graduated high school with
several awards in mathematics and the sciences. She started her university
career at San Diego State College, and transferred to the University of Cali-
fornia, Berkeley, as a senior. There she was influenced by the mathematician
Raphael Robinson. They became good friends, and married in 1941. As a
spouse of a faculty member, Robinson was barred from teaching in the math-
ematics department at Berkeley. Although she continued to audit mathemat-
ics classes, she hoped to leave university and start a family. Not long after
her wedding, however, Robinson contracted pneumonia. She was told that

Figure C.7: Julia Robinson

316

C.7. Julia Robinson

there was substantial scar tissue build up on her heart due to the rheumatic
fever she suffered as a child. Due to the severity of the scar tissue, the doctor
predicted that she would not live past forty and she was advised not to have
children (, , 13).

Robinson was depressed for a long time, but eventually decided to con-
tinue studying mathematics. She returned to Berkeley and completed her PhD
in 1948 under the supervision of Alfred Tarski. The first-order theory of the
real numbers had been shown to be decidable by Tarski, and from Gédel’s
work it followed that the first-order theory of the natural numbers is unde-
cidable. It was a major open problem whether the first-order theory of the
rationals is decidable or not. In her thesis (), Robinson proved that it was
not.

Interested in decision problems, Robinson next attempted to find a solu-
tion to Hilbert’s tenth problem. This problem was one of a famous list of
23 mathematical problems posed by David Hilbert in 1900. The tenth prob-
lem asks whether there is an algorithm that will answer, in a finite amount of
time, whether or not a polynomial equation with integer coefficients, such as
3x2 — 2y + 3 = 0, has a solution in the integers. Such questions are known as
Diophantine problems. After some initial successes, Robinson joined forces with
Martin Davis and Hilary Putnam, who were also working on the problem.
They succeeded in showing that exponential Diophantine problems (where
the unknowns may also appear as exponents) are undecidable, and showed
that a certain conjecture (later called “J.R.”) implies that Hilbert’s tenth prob-
lem is undecidable (,). Robinson continued to work on the
problem throughout the 1960s. In 1970, the young Russian mathematician
Yuri Matijasevich finally proved the]J.R. hypothesis. The combined result
is now called the Matijasevich-Robinson-Davis-Putnam theorem, or MRDP
theorem for short. Matijasevich and Robinson became friends and collabo-
rated on several papers. In a letter to Matijasevich, Robinson once wrote that
“actually I am very pleased that working together (thousands of miles apart)
we are obviously making more progress than either one of us could alone”
(, ,45).

Robinson was the first female president of the American Mathematical So-
ciety, and the first woman to be elected to the National Academy of Science.
She died on July 30, 1985 at the age of 65 after being diagnosed with leukemia.

Further Reading Robinson’s mathematical papers are available in her Col-
lected Works (,), which also includes a reprint of her National
Academy of Sciences biographical memoir (,). Robinson’s older
sister Constance Reid published an “Autobiography of Julia,” based on inter-
views (,), as well as a full memoir (,)- A short documentary
about Robinson and Hilbert’s tenth problem was directed by George Csicsery
(,). For a brief memoir about Yuri Matijasevich’s collaborations

317

C. BIOGRAPHIES

with Robinson, and her influence on his work, see (Matijasevich, 1992).

C.8 Bertrand Russell

Bertrand Russell is hailed as one of the
founders of modern analytic philoso-
phy. Born May 18, 1872, Russell was
not only known for his work in philoso-
phy and logic, but wrote many popular
books in various subject areas. He was
also an ardent political activist through-
out his life.

Russell was born in Trellech, Mon-
mouthshire, Wales. His parents were
members of the British nobility. They
were free-thinkers, and even made
friends with the radicals in Boston at the
time. Unfortunately, Russell’s parents
died when he was young, and Russell
was sent to live with his grandparents.
There, he was given a religious upbring-
ing (something his parents had wanted
to avoid at all costs). His grandmother
was very strict in all matters of morality. During adolescence he was mostly
homeschooled by private tutors.

Figure C.8: Bertrand Russell

Russell’s influence in analytic philosophy, and especially logic, is tremen-
dous. He studied mathematics and philosophy at Trinity College, Cambridge,
where he was influenced by the mathematician and philosopher Alfred North
Whitehead. In 1910, Russell and Whitehead published the first volume of
Principia Mathematica, where they championed the view that mathematics is
reducible to logic. He went on to publish hundreds of books, essays and po-
litical pamphlets. In 1950, he won the Nobel Prize for literature.

Russell’s was deeply entrenched in politics and social activism. During
World War I he was arrested and sent to prison for six months due to pacifist
activities and protest. While in prison, he was able to write and read, and
claims to have found the experience “quite agreeable.” He remained a pacifist
throughout his life, and was again incarcerated for attending a nuclear disar-
mament rally in 1961. He also survived a plane crash in 1948, where the only
survivors were those sitting in the smoking section. As such, Russell claimed
that he owed his life to smoking. Russell was married four times, but had a
reputation for carrying on extra-marital affairs. He died on February 2, 1970
at the age of 97 in Penrhyndeudraeth, Wales.

318

C.9. Alfred Tarski

Further Reading Russell wrote an autobiography in three parts, spanning
his life from 1872-1967 (Russell, 1967, 1968, 1969). The Bertrand Russell Re-
search Centre at McMaster University is home of the Bertrand Russell archives.
See their website at Duncan (2015), for information on the volumes of his col-
lected works (including searchable indexes), and archival projects. Russell’s
paper On Denoting (Russell, 1905) is a classic of 20th century analytic philoso-
phy.

The Stanford Encyclopedia of Philosophy entry on Russell (Irvine, 2015)
has sound clips of Russell speaking on Desire and Political theory. Many video
interviews with Russell are available online. To see him talk about smoking
and being involved in a plane crash, e.g., see Russell (n.d.). Some of Russell’s
works, including his Introduction to Mathematical Philosophy are available as
free audiobooks on LibriVox (n.d.).

C.9 Alfred Tarski

Alfred Tarski was born on January 14,
1901 in Warsaw, Poland (then part of
the Russian Empire). Described as
“Napoleonic,” Tarski was boisterous,
talkative, and intense. His energy was
often reflected in his lectures—he once
set fire to a wastebasket while disposing
of a cigarette during a lecture, and was
forbidden from lecturing in that build-
ing again.

Tarski had a thirst for knowledge
from a young age. Although later in
life he would tell students that he stud-
ied logic because it was the only class in
which he got a B, his high school records
show that he got A’s across the board—
even in logic. He studied at the Univert Figure C.9: Alfred Tarski
sity of Warsaw from 1918 to 1924. Tarski
first intended to study biology, but became interested in mathematics, philos-
ophy, and logic, as the university was the center of the Warsaw School of Logic
and Philosophy. Tarski earned his doctorate in 1924 under the supervision of
Stanistaw Les$niewski.

Before emigrating to the United States in 1939, Tarski completed some of
his most important work while working as a secondary school teacher in War-
saw. His work on logical consequence and logical truth were written during
this time. In 1939, Tarski was visiting the United States for a lecture tour. Dur-
ing his visit, Germany invaded Poland, and because of his Jewish heritage,

319

C. BIOGRAPHIES

Tarski could not return. His wife and children remained in Poland until the
end of the war, but were then able to emigrate to the United States as well.
Tarski taught at Harvard, the College of the City of New York, and the Insti-
tute for Advanced Study at Princeton, and finally the University of California,
Berkeley. There he founded the multidisciplinary program in Logic and the
Methodology of Science. Tarski died on October 26, 1983 at the age of 82.

Further Reading For more on Tarski’s life, see the biography Alfred Tarski:
Life and Logic (Feferman and Feferman, 2004). Tarski’s seminal works on logi-
cal consequence and truth are available in English in (Corcoran, 1983). All of
Tarski’s original works have been collected into a four volume series, (Tarski,
1981).

C.10 Alan Turing

Alan Turing was born in Maida Vale, London, on June 23, 1912. He is consid-
ered the father of theoretical computer science. Turing’s interest in the phys-
ical sciences and mathematics started at a young age. However, as a boy his
interests were not represented well in his schools, where emphasis was placed
on literature and classics. Consequently, he did poorly in school and was rep-
rimanded by many of his teachers.

Turing attended King’s College, Cam-
bridge as an undergraduate, where he
studied mathematics. In 1936 Turing de-
veloped (what is now called) the Turing
machine as an attempt to precisely de-
fine the notion of a computable function
and to prove the undecidability of the
decision problem. He was beaten to the
result by Alonzo Church, who proved
the result via his own lambda calculus.
Turing’s paper was still published with
reference to Church’s result. Church
invited Turing to Princeton, where he
spent 1936-1938, and obtained a doctor-
ate under Church.

Despite his interest in logic, Turing’s Figure C.10: Alan Turing
earlier interests in physical sciences re-
mained prevalent. His practical skills were put to work during his service
with the British cryptanalytic department at Bletchley Park during World
War II. Turing was a central figure in cracking the cypher used by German
Naval communications—the Enigma code. Turing’s expertise in statistics and
cryptography, together with the introduction of electronic machinery, gave

320

C.11. Ernst Zermelo

the team the ability to crack the code by creating a de-crypting machine called
a “bombe.” His ideas also helped in the creation of the world’s first pro-
grammable electronic computer, the Colossus, also used at Bletchley park to
break the German Lorenz cypher.

Turing was gay. Nevertheless, in 1942 he proposed to Joan Clarke, one
of his teammates at Bletchley Park, but later broke off the engagement and
confessed to her that he was homosexual. He had several lovers throughout
his lifetime, although homosexual acts were then criminal offences in the UK.
In 1952, Turing’s house was burgled by a friend of his lover at the time, and
when filing a police report, Turing admitted to having a homosexual relation-
ship, under the impression that the government was on their way to legalizing
homosexual acts. This was not true, and he was charged with gross indecency.
Instead of going to prison, Turing opted for a hormone treatment that reduced
libido. Turing was found dead on June 8, 1954, of a cyanide overdose—most
likely suicide. He was given a royal pardon by Queen Elizabeth II in 2013.

Further Reading For a comprehensive biography of Alan Turing, see

(). Turing’s life and work inspired a play, Breaking the Code, which was
produced in 1996 for TV starring Derek Jacobi as Turing. The Imitation Game,
an Academy Award nominated film starring Bendict Cumberbatch and Kiera
Knightley, is also loosely based on Alan Turing’s life and time at Bletchley
Park (,).

() has several podcasts on Turing’s life and work. BBC Hori-
zon’s documentary The Strange Life and Death of Dr. Turing is available to watch
online (,). (,) is a short video of a working LEGO Tur-
ing Machine—made to honour Turing’s centenary in 2012.

Turing’s original paper on Turing machines and the decision problem is

(1957).

C.11 Ernst Zermelo

Ernst Zermelo was born on July 27, 1871 in Berlin, Germany. He had five
sisters, though his family suffered from poor health and only three survived
to adulthood. His parents also passed away when he was young, leaving
him and his siblings orphans when he was seventeen. Zermelo had a deep
interest in the arts, and especially in poetry. He was known for being sharp,
witty, and critical. His most celebrated mathematical achievements include
the introduction of the axiom of choice (in 1904), and his axiomatization of set
theory (in 1908).

Zermelo’s interests at university were varied. He took courses in physics,
mathematics, and philosophy. Under the supervision of Hermann Schwarz,
Zermelo completed his dissertation Investigations in the Calculus of Variations
in 1894 at the University of Berlin. In 1897, he decided to pursue more studies

321

C. BIOGRAPHIES

at the University of Gottigen, where he was heavily influenced by the foun-
dational work of David Hilbert. In 1899 he became eligible for professorship,
but did not get one until eleven years later—possibly due to his strange de-

meanour and “nervous haste.”

Zermelo finally received a paid pro-
fessorship at the University of Zurich in
1910, but was forced to retire in 1916 due
to tuberculosis. After his recovery, he
was given an honourary professorship
at the University of Freiburg in 1921.
During this time he worked on founda-
tional mathematics. He became irritated
with the works of Thoralf Skolem and
Kurt Godel, and publicly criticized their
approaches in his papers. He was dis-
missed from his position at Freiburg in
1935, due to his unpopularity and his
opposition to Hitler’s rise to power in
Germany.

The later years of Zermelo's life were
marked by isolation. After his dismissal
in 1935, he abandoned mathematics. He
moved to the country where he lived

Figure C.11: Ernst Zermelo

modestly. He married in 1944, and became completely dependent on his wife
as he was going blind. Zermelo lost his sight completely by 1951. He passed
away in Giinterstal, Germany, on May 21, 1953.

Further Reading For a full biography of Zermelo, see Ebbinghaus (2015).
Zermelo’s seminal 1904 and 1908 papers are available to read in the original
German (Zermelo, 1904, 1908). Zermelo’s collected works, including his writ-
ing on physics, are available in English translation in (Ebbinghaus et al., 2010;

Ebbinghaus and Kanamori, 2013).

322

Appendix D

Problems

Problems for Chapter 1

Problem 1.1. Prove that there is at most one empty set, i.e., show that if A and
B are sets without elements, then A = B.

Problem 1.2. List all subsets of {4, b,c,d}.

Problem 1.3. Show that if A has n elements, then p(A) has 2" elements.
Problem 1.4. Prove thatif A C B, then AU B = B.

Problem 1.5. Prove rigorously thatif A C B, then AN B = A.

Problem 1.6. Show thatif Aisasetand A € B, then A C |JB.

Problem 1.7. Prove thatif A C B, then B\ A # Q.

Problem 1.8. Using Definition 1.23, prove that (a,b) = (c,d) iff botha = ¢
and b =d.

Problem 1.9. List all elements of {1,2,3}3.

Problem 1.10. Show, by induction on k, that for all kK > 1, if A has # elements,
then AX has n¥ elements.

Problems for Chapter 2

Problem 2.1. List the elements of the relation C on the set p({a,b,c}).

Problem 2.2. Give examples of relations that are (a) reflexive and symmetric
but not transitive, (b) reflexive and anti-symmetric, (c) anti-symmetric, transi-
tive, but not reflexive, and (d) reflexive, symmetric, and transitive. Do not use
relations on numbers or sets.

323

D. PROBLEMS

Problem 2.3. Show that =, is an equivalence relation, for any n € IN, and
that IN /=, has exactly n members.

Problem 2.4. Give a proof of Proposition 2.26.

Problem 2.5. Consider the less-than-or-equal-to relation < on the set {1,2,3,4}
as a graph and draw the corresponding diagram.

Problem 2.6. Show that the transitive closure of R is in fact transitive.

Problems for Chapter 3
Problem 3.1. Show thatif f: A — B has a left inverse g, then f is injective.
Problem 3.2. Show thatif f: A — B has a right inverse h, then f is surjective.

Problem 3.3. Prove Proposition 3.18. You have to define f~!, show that it
is a function, and show that it is an inverse of f, i.e., f~1(f(x)) = x and
f(f 1(y)) =yforallx € Aandy € B.

Problem 3.4. Prove Proposition 3.19.

Problem 3.5. Show thatif f: A — B and g: B — C are both injective, then
go f: A — Cisinjective.

Problem 3.6. Show thatif f: A — B and g: B — C are both surjective, then
go f: A — Cissurjective.

Problem 3.7. Suppose f: A — Band g: B — C. Show that the graph of go f
is Rf [Rg.

Problem 3.8. Given f: A + B, define the partial function g: B -+ A by: for
any y € B, if there is a unique x € A such that f(x) = y, then g(y) = x;
otherwise ¢(y) 1. Show that if f is injective, then g(f(x)) = x for all x €

dom(f), and f(g(y)) =y forall y € ran(f).

Problems for Chapter 4

Problem 4.1. Define an enumeration of the positive squares 1, 4, 9, 16, ...

Problem 4.2. Show that if A and B are countable, so is A U B. To do this,
suppose there are surjective functions f: Z* — Aand g: Z* — B, and define
a surjective function h: Z* — A U B and prove that it is surjective. Also
consider the cases where A or B = @.

324

Problem 4.3. Show that if B C A and A is countable, so is B. To do this,
suppose there is a surjective function f: Z* — A. Define a surjective func-
tion ¢: Z* — B and prove that it is surjective. What happens if B = @?

Problem 4.4. Show by induction on # that if A, Ay, ..., A, are all countable,
so is AjU---UA,. You may assume the fact that if two sets A and B are
countable, so is A U B.

Problem 4.5. According to Definition 4.4, a set A is enumerable iff A = @ or
there is a surjective f: ZT — A. It is also possible to define “countable set”
precisely by: a set is enumerable iff there is an injective function g: A — Z™.
Show that the definitions are equivalent, i.e., show that there is an injective
function g: A — Z7 iff either A = @ or there is a surjective f: ZT — A.

Problem 4.6. Show that (Z1)" is countable, for every n € IN.
Problem 4.7. Show that (Z1)* is countable. You may assume problem 4.6.

Problem 4.8. Give an enumeration of the set of all non-negative rational num-
bers.

Problem 4.9. Show that Q is countable. Recall that any rational number can
be written as a fraction z/m withz € Z, m € NT.

Problem 4.10. Define an enumeration of B*.

Problem 4.11. Recall from your introductory logic course that each possible
truth table expresses a truth function. In other words, the truth functions are
all functions from B¥ — B for some k. Prove that the set of all truth functions
is enumerable.

Problem 4.12. Show that the set of all finite subsets of an arbitrary infinite
countable set is countable.

Problem 4.13. A subset of N is said to be cofinite iff it is the complement of
a finite set IN; that is, A C N is cofinite iff N \ A is finite. Let I be the set
whose elements are exactly the finite and cofinite subsets of IN. Show that I is
countable.

Problem 4.14. Show that the countable union of countable sets is countable.
That is, whenever A, Ay, ... are sets, and each A; is countable, then the union
U2, A; of all of them is also countable. [NB: this is hard!]

Problem 4.15. Let f: A X B — IN be an arbitrary pairing function. Show that
the inverse of f is an enumeration of A x B.

325

D. PROBLEMS

Problem 4.16. Specify a function that encodes IN®.
Problem 4.17. Show that p(IN) is uncountable by a diagonal argument.

Problem 4.18. Show that the set of functions f: Z* — Z* is uncountable
by an explicit diagonal argument. That is, show that if f1, f>, ..., is a list of
functions and each f;: Z* — Z™, then there is some f: Z" — Z" not on this
list.

Problem 4.19. Show that if there is an injective function g: B — A, and B is
uncountable, then so is A. Do this by showing how you can use g to turn an
enumeration of A into one of B.

Problem 4.20. Show that the set of all sets of pairs of positive integers is un-
countable by a reduction argument.

Problem 4.21. Show that the set X of all functions f: N — IN is uncountable
by a reduction argument (Hint: give a surjective function from X to B%.)

Problem 4.22. Show that N“, the set of infinite sequences of natural numbers,
is uncountable by a reduction argument.

Problem 4.23. Let P be the set of functions from the set of positive integers
to the set {0}, and let Q be the set of partial functions from the set of positive
integers to the set {0}. Show that P is countable and Q is not. (Hint: reduce
the problem of enumerating B“ to enumerating Q).

Problem 4.24. Let S be the set of all surjective functions from the set of posi-
tive integers to the set {0,1}, i.e., S consists of all surjective f: Z™ — B. Show
that S is uncountable.

Problem 4.25. Show that the set R of all real numbers is uncountable.

Problem 4.26. Show thatif A~ Cand B~ D,and ANB=CND = @, then
AUB~CUD.

Problem 4.27. Show that if A is infinite and countable, then A ~ IN.

Problem 4.28. Show that there cannot be an injection g: p(A) — A, for any
set A. Hint: Suppose g¢: p(A) — A is injective. Consider D = {g(B) | B C
Aand g(B) ¢ B}. Let x = g(D). Use the fact that g is injective to derive a
contradiction.

326

Problems for Chapter 6
Problem 6.1. Prove Lemma 6.10.

Problem 6.2. Prove Proposition 6.11 (Hint: Formulate and prove a version of
Lemma 6.10 for terms.)

Problem 6.3. Give an inductive definition of the bound variable occurrences
along the lines of Definition 6.17.

Problems for Chapter 7
Problem 7.1. Is 0, the standard model of arithmetic, covered? Explain.

Problem 7.2. Let £ = {c, f, A} with one constant symbol, one one-place func-
tion symbol and one two-place predicate symbol, and let the structure 9t be
given by

1. |m| = {1,2,3}

2. cM=3

3. fM(1) =2, f™(2) =3, M(3) =2
4. A = {(1,2),(2,3),(3,3)}

(a) Let s(v) = 1 for all variables v. Find out whether

M, s = 3x (A(f(2),¢) D Vy (Aly, x) V A(f(y),x)))

Explain why or why not.
(b) Give a different structure and variable assignment in which the formula
is not satisfied.

Problem 7.3. Complete the proof of Proposition 7.14.
Problem 7.4. Prove Proposition 7.17
Problem 7.5. Prove Proposition 7.18.

Problem 7.6. Suppose L is a language without function symbols. Given a
structure 9, ¢ a constant symbol and a € M|, define M[a/c] to be the struc-
ture that is just like 90, except that ¢™%/<] = 4. Define MM ||= ¢ for sentences ¢

by:
1. p = L: notM ||= ¢.
2. 9 =R(dy,...,dyn): M| @iff (d7,...,d7%) € R

327

D. PROBLEMS

3. p=dy =dy: M| @iffd?t =dy".

4. ¢ =~y M |= @iff not M |= 1.

5. 9= (p&x): M| @iff M = pand M |- x.

6. = (PpVyx): M|E @iff M ||= or M ||= x (or both).

7. 9= (¢ D x): M|E @iff not M = ¢ or M ||= x (or both).

8. ¢ =Vxy: M| giffforalla € M|, Mla/c] |E ¢[c/x], if c does not
occur in .

9. ¢ = Jxy: M |[= ¢ iff there is an a € |M| such that M[a/c] |= P[c/x],
if ¢ does not occur in .

Let x1, ..., x, be all free variables in ¢, ¢y, ..., ¢; constant symbols not in ¢,
ay, ..., ap € M|, and s(x;) = a;.

Show that M, s F @ iff M[ay/c1,...,an/cnl] ||= @lc1/x1] ... [cn/ xn].

(This problem shows that it is possible to give a semantics for first-order
logic that makes do without variable assignments.)

Problem 7.7. Suppose that f is a function symbol not in ¢(x,y). Show that
there is a structure 91 such that 9 E Vx 3y ¢(x, y) iff there is an M’ such that
M E Vx g(x, f(x)).

(This problem is a special case of what’s known as Skolem’s Theorem;
Vx ¢(x, f(x)) is called a Skolem normal form of ¥x 3y ¢(x,y).)

Problem 7.8. Carry out the proof of Proposition 7.19 in detail.
Problem 7.9. Prove Proposition 7.22

Problem 7.10. 1. Show thatT = L iff T is unsatisfiable.
2. Show thatT U {¢} F LiffT F ~¢.

3. Suppose ¢ does not occur in ¢ or I'. Show thatT' F Vx @ iff T = ¢[c/x].

Problem 7.11. Complete the proof of Proposition 7.30.

Problems for Chapter 8
Problem 8.1. Find formulae in £ 4 which define the following relations:
1. nis between i and j;

2. n evenly divides m (i.e., m is a multiple of n);

328

3. n is a prime number (i.e., no number other than 1 and n evenly di-
vides n).

Problem 8.2. Suppose the formula ¢(vy, v) expresses the relation R C |9]?
in a structure M. Find formulas that express the following relations:

1. the inverse R~1 of R;
2. the relative product R | R;

Can you find a way to express R, the transitive closure of R?

Problem 8.3. Let £ be the language containing a 2-place predicate symbol <
only (no other constant symbols, function symbols or predicate symbols—
except of course =). Let 91 be the structure such that [91] = N, and <™ =
{{n,m) | n < m}. Prove the following;:

1. {0} is definable in 91;
. {1} is definable in ;
. {2} is definable in ;

2
3
4. for each n € N, the set {n} is definable in O;
5. every finite subset of |91| is definable in 9;

6

. every co-finite subset of |91] is definable in 91 (where X C IN is co-finite
iff IN'\ X is finite).

Problem 8.4. Show that the comprehension principle is inconsistent by giving
a derivation that shows

JyVx(xey=x¢x)F L.

It may help to first show (A D ~A) & (~A D A)F L.

Problems for Chapter 9
Problem 9.1. Give derivations that show the following:
Lo&(p&x)t (p&y)&x.
2.V (pVX)E(pVy)Vx.
3. 92O X)FyD(pDx).
4. ¢ ~~o.

Problem 9.2. Give derivations that show the following:

329

D. PROBLEMS

—_

(V) DxteDx
(eo2X)&WOX)F(eVy)Dx
E (g & ~p).
POk ~p D~y

F (9D ~g) D ~g.
(9D 9) D~y

9O xE ~(p&~y).

P& ~x - ~(¢ D x).
PV~ 9.

~oV PR~ (p&y).

- E(~p&~y) D ~(p V).
12. E~(¢p V) O (~p&~).

v N Uk » DN

_
_ O

Problem 9.3. Give derivations that show the following:
-~(pD9) k.

(&Y gV g

LoD P~V

—_

2
3

4. F~~p Do

5. D¢, ~p DY
6. (p&P) D xF (@D Xx)V(PDX).
7.(¢2>¢) Dok g

8. F(pD9) V(Y Dx).

(These all require the ¢ rule.)

Problem 9.4. Give derivations that show the following:
L = (Vxo(x) &Vyy(y)) O Vz (p(z) & (2)).
2. F (Fxo(x) VIyy(y)) D Iz (e(z) V().
3. Vx(p(x) D) F Iy ey) D¢
4. Vx~g(x) F ~3x g(x).

330

5. F ~Jx p(x) D Vx~g(x).

6. F~3xvy ((9(x,y) D ~¢(y,y)) & (~o(y,y) D ¢(x,y)))-
Problem 9.5. Give derivations that show the following:

1. F ~Vx ¢(x) D Ix ~¢(x).

2. (Yxo(x) D 9) -3y (e(y) 2 9).

3. F 3x(e(x) >y ¢(y))-

(These all require the 1 ¢ rule.)

Problem 9.6. Prove Proposition 9.16

Problem 9.7. Prove that T - ~¢ iff [U {¢} is inconsistent.
Problem 9.8. Complete the proof of Theorem 9.27.

Problem 9.9. Prove that = is both symmetric and transitive, i.e., give deriva-
tionsof VxVy (x =y Dy =x)and VxVyVz((x =y &y =2) D x =2z)

Problem 9.10. Give derivations of the following formulae:

L VxVy ((x =y & ¢(x)) D ¢(y))

2. 3;C)fp(vf) &Vy vz ((¢(y) & ¢(z)) Dy =12) D Ix(p(x) &Vy (p(y) Dy =

Problems for Chapter 10

Problem 10.1. Complete the proof of Proposition 10.2.
Problem 10.2. Complete the proof of Proposition 10.11.
Problem 10.3. Complete the proof of Lemma 10.12.
Problem 10.4. Complete the proof of Proposition 10.14.
Problem 10.5. Complete the proof of Lemma 10.18.

Problem 10.6. Use Corollary 10.21 to prove Theorem 10.20, thus showing that
the two formulations of the completeness theorem are equivalent.

331

D. PROBLEMS

Problem 10.7. In order for a derivation system to be complete, its rules must
be strong enough to prove every unsatisfiable set inconsistent. Which of the
rules of derivation were necessary to prove completeness? Are any of these
rules not used anywhere in the proof? In order to answer these questions,
make a list or diagram that shows which of the rules of derivation were used
in which results that lead up to the proof of Theorem 10.20. Be sure to note
any tacit uses of rules in these proofs.

Problem 10.8. Prove (1) of Theorem 10.23.

Problem 10.9. In the standard model of arithmetic 0N, there is no element k €
|91] which satisfies every formula 7 < x (where 7 is o' with n r’s). Use
the compactness theorem to show that the set of sentences in the language of
arithmetic which are true in the standard model of arithmetic 91 are also true
in a structure 9 that contains an element which does satisfy every formula
n < x.

Problem 10.10. Prove Proposition 10.27. Avoid the use of -.

Problem 10.11. Prove Lemma 10.28. (Hint: The crucial step is to show that if
I', is finitely satisfiable, so is I', U {6, }, without any appeal to derivations or
consistency:.)

Problem 10.12. Prove Proposition 10.29.

Problem 10.13. Prove Lemma 10.30. (Hint: the crucial step is to show that if
T, is finitely satisfiable, then either I', U {¢, } or I';; U {~¢, } is finitely satisfi-
able.)

Problem 10.14. Write out the complete proof of the Truth Lemma (Lemma 10.12)
in the version required for the proof of Theorem 10.31.

Problems for Chapter 12

Problem 12.1. Choose an arbitary input and trace through the configurations
of the doubler machine in Example 12.4.

Problem 12.2. Design a Turing-machine with alphabet {>,0, A, B} that accepts,
i.e., halts on, any string of A’s and B’s where the number of A’s is the same as
the number of B’s and all the A’s precede all the B’s, and rejects, i.e., does not
halt on, any string where the number of A’s is not equal to the number of B’s
or the A’s do not precede all the B’s. (E.g., the machine should accept AABB,
and AAABBB, but reject both AAB and AABBAABB.)

332

Problem 12.3. Design a Turing-machine with alphabet {,0, A, B} that takes
as input any string & of A’s and B’s and duplicates them to produce an output
of the form aa. (E.g. input ABBA should result in output ABBAABBA).

Problem 12.4. Alphabetical?: Design a Turing-machine with alphabet {>,0, A, B
that when given as input a finite sequence of A’s and B’s checks to see if all
the A’s appear to the left of all the B’s or not. The machine should leave the
input string on the tape, and either halt if the string is “alphabetical”, or loop
forever if the string is not.

Problem 12.5. Alphabetizer: Design a Turing-machine with alphabet {,0, A, B}
that takes as input a finite sequence of A’s and B’s rearranges them so that all
the A’s are to the left of all the B’s. (e.g., the sequence BABAA should be-
come the sequence AAABB, and the sequence ABBABB should become the
sequence AABBBB).

Problem 12.6. Give a definition for when a Turing machine M computes the
function f: N — IN™.

Problem 12.7. Trace through the configurations of the machine from Exam-
ple 12.12 for input (3,2). What happens if the machine computes 0 + 0?

Problem 12.8. In Example 12.14 we described a machine consisting of a com-
bination of the doubler machine from Figure 12.4 and the mover machine from
Figure 12.5. What happens if you start this combined machine on input x = 0,
i.e., on an empty tape? How would you fix the machine so that in this case the
machine halts with output 2x = 0? (You should be able to do this by adding
one state and one transition.)

Problem 12.9. Subtraction: Design a Turing machine that when given an input
of two non-empty strings of strokes of length n and m, where n > m, computes
the function f(n,m) = n — m.

Problem 12.10. Equality: Design a Turing machine to compute the following
function:
1 ifn=m

equality(n, m) = {0 1 £ m

where nand m € Z+.

Problem 12.11. Design a Turing machine to compute the function min(x, y)
where x and y are positive integers represented on the tape by strings of 1’s
separated by a 0. You may use additional symbols in the alphabet of the ma-
chine.

The function min selects the smallest value from its arguments, so min(3,5)
3, min(20,16) = 16, and min(4,4) = 4, and so on.

333

}

D. PROBLEMS

Problem 12.12. Give a disciplined machine that computes f(x) = x + 1.

Problem 12.13. Find a disciplined machine which, when started on input 1”
produces output 1" ~ 0 ~ 1"

Problem 12.14. Give a disciplined Turing machine computing f(x) = x +2
by taking the machine M from problem 12.12 and construct M —~ M.

Problems for Chapter 13

Problem 13.1. Can you think of a way to describe Turing machines that does
not require that the states and alphabet symbols are explicitly listed? You may
define your own notion of “standard” machine, but say something about why
every Turing machine can be computed by a “standard” machine in your new
sense.

Problem 13.2. The Three Halting (3-Halt) problem is the problem of giving a
decision procedure to determine whether or not an arbitrarily chosen Turing
Machine halts for an input of three 1’s on an otherwise blank tape. Prove that
the 3-Halt problem is unsolvable.

Problem 13.3. Show that if the halting problem is solvable for Turing machine
and input pairs M, and n where e # n, then it is also solvable for the cases
where e = n.

Problem 13.4. We proved that the halting problem is unsolvable if the input
is a number ¢, which identifies a Turing machine M, via an enumaration of all
Turing machines. What if we allow the description of Turing machines from
section 13.2 directly as input? Can there be a Turing machine which decides
the halting problem but takes as input descriptions of Turing machines rather
than indices? Explain why or why not.

Problem 13.5. Show that the partial function s’ is defined as

s'(e) =

1 if machine M, halts for input e
undefined if machine M, does not halt for input e
is Turing computable.
Problem 13.6. Prove Proposition 13.10. (Hint: use induction on k — m).

Problem 13.7. Complete case (3) of the proof of Lemma 13.13.

Problem 13.8. Give a derivation of S, (i,7') from Sy, (i,7) and ¢(m,n) (as-
suming i # m, i.e., either i < m or m <).

334

Problem 13.9. Give a derivation of Vx (E’ < x D So(x,7')) from Vx (k < x D
So(x, 7)), Vxx < x/,and VxVyVz (x <y &y < z) D x < z).)

Problem 13.10. Complete the proof of Lemma 13.19 by proving that 9 E
(M, w) & E(M,w).

Problem 13.11. Complete the proof of Lemma 13.20 by proving that if M,
started on input w, has not halted after n steps, then v/ (M, w) E (7).

Problem 13.12. Prove Corollary 13.22. Observe that ¢ is satisfied in every
finite structure iff ~1 is not finitely satisfiable. Explain why finite satisfiability
is semi-decidable in the sense of Theorem 13.18. Use this to argue that if there
were a derivation system for finite validity, then finite satisfiability would be
decidable.

Problems for Chapter 14

Problem 14.1. Prove Proposition 14.5 by showing that the primitive recursive
definition of mult is can be put into the form required by Definition 14.1 and
showing that the corresponding functions f and g are primitive recursive.

Problem 14.2. Give the complete primitive recursive notation for mult.
Problem 14.3. Prove Proposition 14.13.

Problem 14.4. Show that

2x
oy =22 oS
is primitive recursive.

Problem 14.5. Show thatinteger divisiond(x,y) = |x/y] (i.e., division, where
you disregard everything after the decimal point) is primitive recursive. When
y = 0, we stipulate d(x, y) = 0. Give an explicit definition of d using primitive
recursion and composition.

Problem 14.6. Show that the three place relation x = y mod n (congruence
modulo 1) is primitive recursive.

Problem 14.7. Suppose R(¥, z) is primitive recursive. Define the function m} (¥,y)
which returns the least z less than y such that R(¥, z) holds, if there is one, and
0 otherwise, by primitive recursion from xr.

Problem 14.8. Define integer division d(x, y) using bounded minimization.

335

D. PROBLEMS

Problem 14.9. Show that there is a primitive recursive function sconcat(s)
with the property that

sconcat({sg,...,Sk)) =89 — ... — S.

Problem 14.10. Show that there is a primitive recursive function tail(s) with
the property that

tail(A) = 0 and
tail({sg,...,sk)) = (s1,---,Sk)-
Problem 14.11. Prove Proposition 14.24.

Problem 14.12. The definition of hSubtreeSeq in the proof of Proposition 14.25
in general includes repetitions. Give an alternative definition which guaran-
tees that the code of a subtree occurs only once in the resulting list.

Problem 14.13. Define the remainder function r(x,y) by course-of-values re-
cursion. (If x, y are natural numbers and y > 0, r(x,y) is the number less
than y such that x = z x y + r(x,y) for some z. For definiteness, let’s say that
ify=0,r(x,0) =0.)

Problems for Chapter 15

Problem 15.1. Show that the function flatten(z), which turns the sequence
(*t1%,...,%,") into *t1, ..., t,", is primitive recursive.

Problem 15.2. Give a detailed proof of Proposition 15.8 along the lines of the
first proof of Proposition 15.5.

Problem 15.3. Prove Proposition 15.9. You may make use of the fact that any
substring of a formula which is a formula is a sub-formula of it.

Problem 15.4. Prove Proposition 15.12
Problem 15.5. Define the following properties as in Proposition 15.16:
1. FollowsBy— gy, (d),
),
),

4. FollowsBy .. (d).

(d
2. FollowsBy _p.,, (4
(d

3. FollowsBy, gim,

For the last one, you will have to also show that you can test primitive recur-
sively if the last inference of the derivation with Gédel number d satisfies the
eigenvariable condition, i.e., the eigenvariable a of the VIntro inference occurs
neither in the end-formula of d nor in an open assumption of d. You may use
the primitive recursive predicate OpenAssum from Proposition 15.18 for this.

336

Problems for Chapter 16

Problem 16.1. Show that the relations x < y, x | y, and the function rem(x, y)
can be defined without primitive recursion. You may use 0, successor, plus,
times, x—, projections, and bounded minimization and quantification.

Problem 16.2. Prove that y = o, y = ¥, and y = x; represent zero, succ, and
Pf', respectively.

Problem 16.3. Prove Lemma 16.18.
Problem 16.4. Use Lemma 16.18 to prove Proposition 16.17.

Problem 16.5. Using the proofs of Proposition 16.20 and Proposition 16.20 as
a guide, carry out the proof of Proposition 16.21 in detail.

Problem 16.6. Show that if R is representable in Q, so is xr.

Problems for Chapter 17

Problem 17.1. A formula ¢(x) is a truth definition if Q - ¢ = ¢("¢7) for all
sentences . Show that no formula is a truth definition by using the fixed-
point lemma.

Problem 17.2. Every w-consistent theory is consistent. Show that the con-
verse does not hold, i.e., that there are consistent but w-inconsistent theories.
Do this by showing that Q U {~7q} is consistent but w-inconsistent.

Problem 17.3. Two sets A and B of natural numbers are said to be computably
inseparable if there is no decidable set X such that A C X and B C X (X is the
complement, N \ X, of X). Let T be a consistent axiomatizable extension of
Q. Suppose A is the set of Godel numbers of sentences provable in T and B
the set of Godel numbers of sentences refutable in T. Prove that A and B are
computably inseparable.

Problem 17.4. Show that PA derives ypa O Conpa.

Problem 17.5. Let T be a computably axiomatized theory, and let Provt be
a derivability predicate for T. Consider the following four statements:

1. f T+ ¢, then T = Provy(T¢7).
2. TF ¢ D Provy(T¢7).
3. If T+ Provr("¢7), then T - ¢.
4. TH Provr(T¢7) D ¢

337

D. PROBLEMS

Under what conditions are each of these statements true?

Problem 17.6. Show that Q(n) < n € {*¢* | Q F ¢} is definable in arith-
metic.

Problem 17.7. Suppose you are asked to prove that AN B # @. Unpack all
the definitions occuring here, i.e., restate this in a way that does not mention
//ﬂ//, I/=II, O]_‘ /l@l/‘

Problem 17.8. Prove indirectly that ANB C A.

Problem 17.9. Expand the following proof of AU (AN B) = A, where you
mention all the inference patterns used, why each step follows from assump-
tions or claims established before it, and where we have to appeal to which
definitions.

Proof. If z€ AU(ANB)thenz € Aorze ANB. Ifz€ ANB,z € A. Any
z € Aisalsoe AU(ANB). O

Problem 17.10. Define the set of supernice terms by
1. Any letter a, b, ¢, d is a supernice term.
2. If s is a supernice term, then so is [s].
3. If s; and s, are supernice terms, then so is [s1 © s5].
4. Nothing else is a supernice term.

Show that the number of [in a supernice term t of length nis < n/2+ 1.
Problem 17.11. Prove by structural induction that no nice term starts with].

Problem 17.12. Give an inductive definition of the function /, where [(f) is the
number of symbols in the nice term ¢.

Problem 17.13. Prove by structural induction on nice terms f that f(t) < I(t)
(where I(t) is the number of symbols in t and f(t) is the depth of t as defined
in Definition B.10).

338

Photo Credits

Georg Cantor, p. 309: Portrait of Georg Cantor by Otto Zeth courtesy of the
Universitdtsarchiv, Martin-Luther Universitdt Halle-Wittenberg. UAHW Rep. 40-
VI, Nr. 3 Bild 102.

Alonzo Church, p. 310: Portrait of Alonzo Church, undated, photogra-
pher unknown. Alonzo Church Papers; 1924-1995, (C0948) Box 60, Folder 3.
Manuscripts Division, Department of Rare Books and Special Collections, Prince-
ton University Library. © Princeton University. The Open Logic Project has
obtained permission to use this image for inclusion in non-commercial OLP-
derived materials. Permission from Princeton University is required for any
other use.

Gerhard Gentzen, p. 311: Portrait of Gerhard Gentzen playing ping-pong
courtesy of Ekhart Mentzler-Trott.

Kurt Godel, p. 312: Portrait of Kurt Godel, ca. 1925, photographer un-
known. From the Shelby White and Leon Levy Archives Center, Institute for
Advanced Study, Princeton, NJ, USA, on deposit at Princeton University Li-
brary, Manuscript Division, Department of Rare Books and Special Collec-
tions, Kurt Godel Papers, (C0282), Box 14b, #110000. The Open Logic Project
has obtained permission from the Institute’s Archives Center to use this image
for inclusion in non-commercial OLP-derived materials. Permission from the
Archives Center is required for any other use.

Emmy Noether, p. 314: Portrait of Emmy Noether, ca. 1922, courtesy of the
Abteilung fiir Handschriften und Seltene Drucke, Niedersédchsische Staats-
und Universitdtsbibliothek Goéttingen, Cod. Ms. D. Hilbert 754, Bl. 14 Nr. 73.
Restored from an original scan by Joel Fuller.

Roézsa Péter, p. 315: Portrait of Rézsa Péter, undated, photographer un-
known. Courtesy of Béla Andrésfai.

Julia Robinson, p. 316: Portrait of Julia Robinson, unknown photographer,
courtesy of Neil D. Reid. The Open Logic Project has obtained permission to
use this image for inclusion in non-commercial OLP-derived materials. Per-
mission is required for any other use.

Bertrand Russell, p. 318: Portrait of Bertrand Russell, ca. 1907, courtesy of
the William Ready Division of Archives and Research Collections, McMaster
University Library. Bertrand Russell Archives, Box 2, £. 4.

339

http://www.archiv.uni-halle.de/
http://rbsc.princeton.edu/divisions/manuscripts-division
http://rbsc.princeton.edu/divisions/manuscripts-division
https://library.ias.edu/archives
https://library.ias.edu/archives
http://rbsc.princeton.edu/divisions/manuscripts-division
http://rbsc.princeton.edu/divisions/manuscripts-division
http://www.sub.uni-goettingen.de/en/contact/departments-a-z/departmental-and-unit-details/abteilunggruppe/handschriften-und-seltene-drucke/
http://www.sub.uni-goettingen.de/en/contact/departments-a-z/departmental-and-unit-details/abteilunggruppe/handschriften-und-seltene-drucke/
http://www.mcmaster.ca/russdocs/russell.htm

PHOTO CREDITS

Alfred Tarski, p. 319: Passport photo of Alfred Tarski, 1939. Cropped and
restored from a scan of Tarski’s passport by Joel Fuller. Original courtesy
of Bancroft Library, University of California, Berkeley. Alfred Tarski Papers,
Banc MSS 84/49. The Open Logic Project has obtained permission to use this
image for inclusion in non-commercial OLP-derived materials. Permission
from Bancroft Library is required for any other use.

Alan Turing, p. 320: Portrait of Alan Mathison Turing by Elliott & Fry, 29
March 1951, NPG x82217, © National Portrait Gallery, London. Used under a
Creative Commons BY-NC-ND 3.0 license.

Ernst Zermelo, p. 322: Portrait of Ernst Zermelo, ca. 1922, courtesy of the
Abteilung ftir Handschriften und Seltene Drucke, Niedersédchsische Staats-
und Universitdtsbibliothek Gottingen, Cod. Ms. D. Hilbert 754, Bl. 6 Nr. 25.

340

http://www.lib.berkeley.edu/libraries/bancroft-library
http://www.npg.org.uk/collections/search/portrait/mw63680/Alan-Mathison-Turing?
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.sub.uni-goettingen.de/en/contact/departments-a-z/departmental-and-unit-details/abteilunggruppe/handschriften-und-seltene-drucke/
http://www.sub.uni-goettingen.de/en/contact/departments-a-z/departmental-and-unit-details/abteilunggruppe/handschriften-und-seltene-drucke/

Bibliography

Andrasfai, Béla. 1986. Rézsa (Rosa) Péter. Periodica Polytechnica Electrical Engi-
neering 30(2-3): 139-145. URL http://www.pp.bme.hu/ee/article/view/
4651.

Aspray, William. 1984. The Princeton mathematics community in the 1930s:
Alonzo Church. URL http://www.princeton.edu/mudd/finding_aids/
mathoral/pmc05.htm. Interview.

Baaz, Matthias, Christos H. Papadimitriou, Hilary W. Putnam, Dana S. Scott,
and Charles L. Harper Jr. 2011. Kurt Godel and the Foundations of Mathematics:
Horizons of Truth. Cambridge: Cambridge University Press.

Cantor, Georg. 1892. Uber eine elementare Frage der Mannigfaltigkeitslehre.
Jahresbericht der deutschen Mathematiker-Vereinigung 1: 75-8.

Cheng, Eugenia. 2004. How to write proofs: A quick quide.
URL http://http://eugeniacheng.com/wp-content/uploads/2017/02/
cheng-proofguide.pdf.

Church, Alonzo. 1936a. A note on the Entscheidungsproblem. Journal of Sym-
bolic Logic 1: 40-41.

Church, Alonzo. 1936b. An unsolvable problem of elementary number theory.
American Journal of Mathematics 58: 345-363.

Corcoran, John. 1983. Logic, Semantics, Metamathematics. Indianapolis: Hack-
ett, 2nd ed.

Csicsery, George. 2016. Zala films: Julia Robinson and Hilbert’s tenth problem.
URL http://www.zalafilms.com/films/juliarobinson.html.

Dauben, Joseph. 1990. Georg Cantor: His Mathematics and Philosophy of the Infi-
nite. Princeton: Princeton University Press.

Davis, Martin, Hilary Putnam, and Julia Robinson. 1961. The decision prob-
lem for exponential Diophantine equations. Annals of Mathematics 74(3):
425-436. URL http://www. jstor.org/stable/1970289.

341

http://www.pp.bme.hu/ee/article/view/4651
http://www.pp.bme.hu/ee/article/view/4651
http://www.princeton.edu/mudd/finding_aids/mathoral/pmc05.htm
http://www.princeton.edu/mudd/finding_aids/mathoral/pmc05.htm
http://http://eugeniacheng.com/wp-content/uploads/2017/02/cheng-proofguide.pdf
http://http://eugeniacheng.com/wp-content/uploads/2017/02/cheng-proofguide.pdf
http://www.zalafilms.com/films/juliarobinson.html
http://www.jstor.org/stable/1970289

BIBLIOGRAPHY

Dick, Auguste. 1981. Emmy Noether 1882-1935. Boston: Birkhduser.

du Sautoy, Marcus. 2014. A brief history of mathematics: Georg Cantor. URL
http://www.bbc.co.uk/programmes/b00ss1j0. Audio Recording.

Duncan, Arlene. 2015. The Bertrand Russell Research Centre. URL http:
//russell .mcmaster.ca/.

Ebbinghaus, Heinz-Dieter. 2015. Ernst Zermelo: An Approach to his Life and
Work. Berlin: Springer-Verlag.

Ebbinghaus, Heinz-Dieter, Craig G. Fraser, and Akihiro Kanamori. 2010. Ernst
Zermelo. Collected Works, vol. 1. Berlin: Springer-Verlag.

Ebbinghaus, Heinz-Dieter and Akihiro Kanamori. 2013. Erust Zermelo: Col-
lected Works, vol. 2. Berlin: Springer-Verlag.

Enderton, Herbert B. 2019. Alonzo Church: Life and Work. In The Collected
Works of Alonzo Church, eds. Tyler Burge and Herbert B. Enderton. Cam-
bridge, MA: MIT Press.

Feferman, Anita and Solomon Feferman. 2004. Alfred Tarski: Life and Logic.
Cambridge: Cambridge University Press.

Feferman, Solomon. 1994. Julia Bowman Robinson 1919-1985. Bio-
graphical Memoirs of the National Academy of Sciences 63: 1-28. URL
http://www.nasonline.org/publications/biographical-memoirs/
memoir-pdfs/robinson-julia.pdf.

Feferman, Solomon, John W. Dawson Jr.,, Stephen C. Kleene, Gregory H.
Moore, Robert M. Solovay, and Jean van Heijenoort. 1986. Kurt Godel: Col-
lected Works. Vol. 1: Publications 1929-1936. Oxford: Oxford University Press.

Feferman, Solomon, John W. Dawson Jr.,, Stephen C. Kleene, Gregory H.
Moore, Robert M. Solovay, and Jean van Heijenoort. 1990. Kurt Godel: Col-
lected Works. Vol. 2: Publications 1938-1974. Oxford: Oxford University Press.

Frege, Gottlob. 1884. Die Grundlagen der Arithmetik: Eine logisch mathematische
Untersuchung iiber den Begriff der Zahl. Breslau: Wilhelm Koebner. Transla-
tion in (.

Frege, Gottlob. 1953. Foundations of Arithmetic, ed. J. L. Austin. Oxford: Basil
Blackwell & Mott, 2nd ed.

Frey, Holly and Tracy V. Wilson. 2015. Stuff you missed in history class:
Emmy Noether, mathematics trailblazer. URL https://www.iheart.
com/podcast/stuff-you-missed-in-history-cl-21124503/episode/
emmy-noether-mathematics-trailblazer-30207491/. Podcast audio.

342

http://www.bbc.co.uk/programmes/b00ss1j0
http://russell.mcmaster.ca/
http://russell.mcmaster.ca/
http://www.nasonline.org/publications/biographical-memoirs/memoir-pdfs/robinson-julia.pdf
http://www.nasonline.org/publications/biographical-memoirs/memoir-pdfs/robinson-julia.pdf
https://www.iheart.com/podcast/stuff-you-missed-in-history-cl-21124503/episode/emmy-noether-mathematics-trailblazer-30207491/
https://www.iheart.com/podcast/stuff-you-missed-in-history-cl-21124503/episode/emmy-noether-mathematics-trailblazer-30207491/
https://www.iheart.com/podcast/stuff-you-missed-in-history-cl-21124503/episode/emmy-noether-mathematics-trailblazer-30207491/

Bibliography

Gentzen, Gerhard. 1935a. Untersuchungen tiber das logische Schliefien I.
Mathematische Zeitschrift 39: 176-210. English translation in ()
pp. 68-131.

Gentzen, Gerhard. 1935b. Untersuchungen tiber das logische SchliefSen II.
Mathematische Zeitschrift 39: 176-210, 405-431. English translation in
(), pp- 68-131.

Godel, Kurt. 1929. Uber die Vollstandigkeit des Logikkalkiils [On the com-
pleteness of the calculus of logic]. Dissertation, Universitdt Wien. Reprinted
and translated in (), pp- 60-101.

Godel, Kurt. 1931. tber formal unentscheidbare Sétze der Principia Mathe-
matica und verwandter Systeme I [On formally undecidable propositions
of Principia Mathematica and related systems I]. Monatshefte fiir Mathematik
und Physik 38: 173-198. Reprinted and translated in (),
pp. 144-195.

Grattan-Guinness, Ivor. 1971. Towards a biography of Georg Cantor. Annals
of Science 27(4): 345-391.

Hammack, Richard. 2013. Book of Proof. Richmond, VA: Virginia Com-
monwealth University. URL http://wuw.people.vcu.edu/~rhammack/
Book0fProof /Book0fProof . pdf.

Hodges, Andrew. 2014. Alan Turing: The Enigma. London: Vintage.

Hutchings, Michael. 2003. Introduction to mathematical arguments. URL
https://math.berkeley.edu/~hutching/teach/proofs.pdf.

Institute, Perimeter. 2015. Emmy Noether: Her life, work, and influence. URL
https://wuw.youtube.com/watch?v=tNNyAyMRsgE. Video Lecture.

Irvine, Andrew David. 2015. Sound clips of Bertrand Russell speaking. URL
http://plato.stanford.edu/entries/russell/russell-soundclips.
html.

Jacobson, Nathan. 1983. Emmy Noether: Gesammelte Abhandlungen—Collected
Papers. Berlin: Springer-Verlag.

John Dawson, Jr. 1997. Logical Dilemmas: The Life and Work of Kurt Godel. Boca
Raton: CRC Press.

LibriVox. n.d. Bertrand Russell. URL https://librivox.org/author/15087
primary_key=1508&search_category=author&search_page=1&search_
form=get_results. Collection of public domain audiobooks.

343

http://www.people.vcu.edu/~rhammack/BookOfProof/BookOfProof.pdf
http://www.people.vcu.edu/~rhammack/BookOfProof/BookOfProof.pdf
https://math.berkeley.edu/~hutching/teach/proofs.pdf
https://www.youtube.com/watch?v=tNNyAyMRsgE
http://plato.stanford.edu/entries/russell/russell-soundclips.html
http://plato.stanford.edu/entries/russell/russell-soundclips.html
https://librivox.org/author/1508?primary_key=1508&search_category=author&search_page=1&search_form=get_results
https://librivox.org/author/1508?primary_key=1508&search_category=author&search_page=1&search_form=get_results
https://librivox.org/author/1508?primary_key=1508&search_category=author&search_page=1&search_form=get_results

BIBLIOGRAPHY

Linsenmayer, Mark. 2014. The partially examined life: Godel on
math. URL http://www.partiallyexaminedlife.com/2014/06/16/
ep95-godel/. Podcast audio.

MacFarlane, John. 2015. Alonzo Church’s JSL reviews. URL http://
johnmacfarlane.net/church.html.

Magnus, P. D., Tim Button, J. Robert Loftis, Aaron Thomas-Bolduc, Robert
Trueman, and Richard Zach. 2021. Forall x: Calgary. An Introduction to For-
mal Logic. Calgary: Open Logic Project, 21 ed. URL https://forallx.
openlogicproject.org/

Matijasevich, Yuri. 1992. My collaboration with Julia Robinson. The Mathemat-
ical Intelligencer 14(4): 38-45.

Menzler-Trott, Eckart. 2007. Logic’s Lost Genius: The Life of Gerhard Gentzen.
Providence: American Mathematical Society.

O’Connor, John J. and Edmund F. Robertson. 2014. Rézsa Péter. URL http:
//www-groups.dcs.st-and.ac.uk/~history/Biographies/Peter.html.

Péter, Rozsa. 1935a. Uber den Zusammenhang der verschiedenen Begriffe der
rekursiven Funktion. Mathematische Annalen 110: 612-632.

Péter, R6zsa. 1935b. Konstruktion nichtrekursiver Funktionen. Mathematische
Annalen 111: 42-60.

Péter, Rézsa. 1951. Rekursive Funktionen. Budapest: Akademiai Kiado. English
translation in (,).

Péter, R6zsa. 1967. Recursive Functions. New York: Academic Press.

Péter, Roézsa. 2010. Playing with Infinity. New York: Dover.
URL https://books.google.ca/books?id=6V3wNsduv_4C&lpg=PP1&ots=
BkQZaHcR99&1r&pg=PP1#v=onepage&q&f=false.

Potter, Michael. 2004. Set Theory and its Philosophy. Oxford: Oxford University
Press.

Radiolab. 2012. The Turing problem. URL http://www.radiolab.org/story/
193037-turing-problem/. Podcast audio.

Reid, Constance. 1986. The autobiography of Julia Robinson. The College Math-
ematics Journal 17: 3-21.

Reid, Constance. 1996. Julia: A Life in Mathematics. Cambridge: Cam-
bridge University Press. = URL https://books.google.ca/books?id=
1RtSzQyHf9UC&1lpg=PP1l&pg=PP1#v=onepage&q&f=false

344

http://www.partiallyexaminedlife.com/2014/06/16/ep95-godel/
http://www.partiallyexaminedlife.com/2014/06/16/ep95-godel/
http://johnmacfarlane.net/church.html
http://johnmacfarlane.net/church.html
https://forallx.openlogicproject.org/
https://forallx.openlogicproject.org/
http://www-groups.dcs.st-and.ac.uk/~history/Biographies/Peter.html
http://www-groups.dcs.st-and.ac.uk/~history/Biographies/Peter.html
https://books.google.ca/books?id=6V3wNs4uv_4C&lpg=PP1&ots=BkQZaHcR99&lr&pg=PP1#v=onepage&q&f=false
https://books.google.ca/books?id=6V3wNs4uv_4C&lpg=PP1&ots=BkQZaHcR99&lr&pg=PP1#v=onepage&q&f=false
http://www.radiolab.org/story/193037-turing-problem/
http://www.radiolab.org/story/193037-turing-problem/
https://books.google.ca/books?id=lRtSzQyHf9UC&lpg=PP1&pg=PP1#v=onepage&q&f=false
https://books.google.ca/books?id=lRtSzQyHf9UC&lpg=PP1&pg=PP1#v=onepage&q&f=false

Bibliography

Robinson, Julia. 1949. Definability and decision problems in arithmetic. Jour-
nal of Symbolic Logic 14(2): 98-114. URL http://www.jstor.org/stable/
2266510.

Robinson, Julia. 1996. The Collected Works of Julia Robinson. Providence: Amer-
ican Mathematical Society.

Rose, Daniel. 2012. A song about Georg Cantor. URL https://www.youtube.
com/watch?v=QUP5Z4Fb5k4. Audio Recording.

Russell, Bertrand. 1905. On denoting. Mind 14: 479-493.

Russell, Bertrand. 1967. The Autobiography of Bertrand Russell, vol. 1. London:
Allen and Unwin.

Russell, Bertrand. 1968. The Autobiography of Bertrand Russell, vol. 2. London:
Allen and Unwin.

Russell, Bertrand. 1969. The Autobiography of Bertrand Russell, vol. 3. London:
Allen and Unwin.

Russell, Bertrand. n.d. Bertrand Russell on smoking. URL https://wuw.
youtube.com/watch?v=800LTiVW_lc. Video Interview.

Sandstrum, Ted. 2019. Mathematical Reasoning: Writing and Proof. Allendale,
MI: Grand Valley State University. URL https://scholarworks.gvsu.edu/
books/7/.

Segal, Sanford L. 2014. Mathematicians under the Nazis. Princeton: Princeton
University Press.

Sigmund, Karl, John Dawson, Kurt Miihlberger, Hans Magnus Enzensberger,
and Juliette Kennedy. 2007. Kurt Godel: Das Album-The Album. The Math-
ematical Intelligencer 29(3): 73-76.

Smith, Peter. 2013. An Introduction to Godel’s Theorems. Cambridge: Cambridge
University Press.

Solow, Daniel. 2013. How to Read and Do Proofs. Hoboken, NJ: Wiley.

Steinhart, Eric. 2018. More Precisely: The Math You Need to Do Philosophy. Pe-
terborough, ON: Broadview, 2nd ed.

Sykes, Christopher. 1992. BBC Horizon: The strange life and death of Dr. Tur-
ing. URL https://www.youtube.com/watch?v=gyusnGbBSHE.

Szabo, Manfred E. 1969. The Collected Papers of Gerhard Gentzen. Amsterdam:
North-Holland.

345

http://www.jstor.org/stable/2266510
http://www.jstor.org/stable/2266510
https://www.youtube.com/watch?v=QUP5Z4Fb5k4
https://www.youtube.com/watch?v=QUP5Z4Fb5k4
https://www.youtube.com/watch?v=80oLTiVW_lc
https://www.youtube.com/watch?v=80oLTiVW_lc
https://scholarworks.gvsu.edu/books/7/
https://scholarworks.gvsu.edu/books/7/
https://www.youtube.com/watch?v=gyusnGbBSHE

BIBLIOGRAPHY

Takeuti, Gaisi, Nicholas Passell, and Mariko Yasugi. 2003. Memoirs of a Proof
Theorist: Godel and Other Logicians. Singapore: World Scientific.

Tamassy, Istvan. 1994. Interview with Réza Péter. Modern Logic 4(3): 277-280.

Tarski, Alfred. 1981. The Collected Works of Alfred Tarski, vol. I-IV. Basel:
Birkhduser.

Theelen, Andre. 2012. Lego turing machine. URL https://www.youtube.
com/watch?v=FTSAiFOAHN4.

Turing, Alan M. 1937. On computable numbers, with an application to the
“Entscheidungsproblem”. Proceedings of the London Mathematical Society, 2nd
Series 42: 230-265.

Tyldum, Morten. 2014. The imitation game. Motion picture.

Velleman, Daniel J. 2019. How to Prove It: A Structured Approach. Cambridge:
Cambridge University Press, 3rd ed.

Wang, Hao. 1990. Reflections on Kurt Godel. Cambridge: MIT Press.

Zermelo, Ernst. 1904. Beweis, dafs jede Menge wohlgeordnet werden kann.
Mathematische Annalen 59: 514-516. English translation in (
, , pp- 115-119).

Zermelo, Ernst. 1908. Untersuchungen {iiber die Grundlagen der Mengen-
lehre 1. Mathematische Annalen 65(2): 261-281. English translation in
(, , pp- 189-229).

346

https://www.youtube.com/watch?v=FTSAiF9AHN4
https://www.youtube.com/watch?v=FTSAiF9AHN4

	Sets, Relations, Functions
	Sets
	Extensionality
	Subsets and Power Sets
	Some Important Sets
	Unions and Intersections
	Pairs, Tuples, Cartesian Products
	Russell's Paradox

	Relations
	Relations as Sets
	Special Properties of Relations
	Equivalence Relations
	Orders
	Graphs
	Operations on Relations

	Functions
	Basics
	Kinds of Functions
	Functions as Relations
	Inverses of Functions
	Composition of Functions
	Partial Functions

	The Size of Sets
	Introduction
	Enumerations and Countable Sets
	Cantor's Zig-Zag Method
	Pairing Functions and Codes
	An Alternative Pairing Function
	Uncountable Sets
	Reduction
	Equinumerosity
	Sets of Different Sizes, and Cantor's Theorem
	The Notion of Size, and Schröder-Bernstein

	First-order Logic
	Introduction to First-Order Logic
	First-Order Logic
	Syntax
	Formulae
	Satisfaction
	Sentences
	Semantic Notions
	Substitution
	Models and Theories
	Soundness and Completeness

	Syntax of First-Order Logic
	Introduction
	First-Order Languages
	Terms and Formulae
	Unique Readability
	Main operator of a Formula
	Subformulae
	Free Variables and Sentences
	Substitution

	Semantics of First-Order Logic
	Introduction
	Structures for First-order Languages
	Covered Structures for First-order Languages
	Satisfaction of a Formula in a Structure
	Variable Assignments
	Extensionality
	Semantic Notions

	Theories and Their Models
	Introduction
	Expressing Properties of Structures
	Examples of First-Order Theories
	Expressing Relations in a Structure
	The Theory of Sets
	Expressing the Size of Structures

	Natural Deduction
	Introduction
	Natural Deduction
	Rules and Derivations
	Propositional Rules
	Derivations
	Examples of Derivations
	Quantifier Rules
	Derivations with Quantifiers
	Proof-Theoretic Notions
	Derivability and Consistency
	Derivability and the Propositional Connectives
	Derivability and the Quantifiers
	Soundness
	Derivations with Identity predicate
	Soundness with Identity predicate

	The Completeness Theorem
	Introduction
	Outline of the Proof
	Complete Consistent Sets of Sentences
	Henkin Expansion
	Lindenbaum's Lemma
	Construction of a Model
	Identity
	The Completeness Theorem
	The Compactness Theorem
	A Direct Proof of the Compactness Theorem
	The Löwenheim-Skolem Theorem

	Beyond First-order Logic
	Overview
	Many-Sorted Logic
	Second-Order logic
	Higher-Order logic
	Intuitionistic Logic
	Modal Logics
	Other Logics

	Turing Machines
	Turing Machine Computations
	Introduction
	Representing Turing Machines
	Turing Machines
	Configurations and Computations
	Unary Representation of Numbers
	Halting States
	Disciplined Machines
	Combining Turing Machines
	Variants of Turing Machines
	The Church-Turing Thesis

	Undecidability
	Introduction
	Enumerating Turing Machines
	Universal Turing Machines
	The Halting Problem
	The Decision Problem
	Representing Turing Machines
	Verifying the Representation
	The Decision Problem is Unsolvable
	Trakthenbrot's Theorem

	Computability and Incompleteness
	Recursive Functions
	Introduction
	Primitive Recursion
	Composition
	Primitive Recursion Functions
	Primitive Recursion Notations
	Primitive Recursive Functions are Computable
	Examples of Primitive Recursive Functions
	Primitive Recursive Relations
	Bounded Minimization
	Primes
	Sequences
	Trees
	Other Recursions
	Non-Primitive Recursive Functions
	Partial Recursive Functions
	The Normal Form Theorem
	The Halting Problem
	General Recursive Functions

	Arithmetization of Syntax
	Introduction
	Coding Symbols
	Coding Terms
	Coding Formulae
	Substitution
	Derivations in Natural Deduction

	Representability in Q
	Introduction
	Functions Representable in Q are Computable
	The Beta Function Lemma
	Simulating Primitive Recursion
	Basic Functions are Representable in Q
	Composition is Representable in Q
	Regular Minimization is Representable in Q
	Computable Functions are Representable in Q
	Representing Relations
	Undecidability

	Incompleteness and Provability
	Introduction
	The Fixed-Point Lemma
	The First Incompleteness Theorem
	Rosser's Theorem
	Comparison with Gödel's Original Paper
	The Derivability Conditions for PA
	The Second Incompleteness Theorem
	Löb's Theorem
	The Undefinability of Truth

	Methods
	Proofs
	Introduction
	Starting a Proof
	Using Definitions
	Inference Patterns
	An Example
	Another Example
	Proof by Contradiction
	Reading Proofs
	I Can't Do It!
	Other Resources

	Induction
	Introduction
	Induction on N
	Strong Induction
	Inductive Definitions
	Structural Induction
	Relations and Functions

	Biographies
	Georg Cantor
	Alonzo Church
	Gerhard Gentzen
	Kurt Gödel
	Emmy Noether
	Rózsa Péter
	Julia Robinson
	Bertrand Russell
	Alfred Tarski
	Alan Turing
	Ernst Zermelo

	Problems
	Photo Credits
	Bibliography

