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As social media replace traditional communication channels, we
are often exposed to too much information to process. The
presence of too many participants, for example, can turn online
public spaces into noisy, overcrowded fora where no
meaningful conversation can be held. Here, we analyse a large
dataset of public chat logs from Twitch, a popular video-
streaming platform, in order to examine how information
overload affects online group communication. We measure
structural and textual features of conversations such as user
output, interaction and information content per message across
a wide range of information loads. Our analysis reveals the
existence of a transition from a conversational state to a
cacophony—a state with lower per capita participation, more
repetition and less information per message. This study
provides a quantitative basis for further studies of the social
effects of information overload, and may guide the design of
more resilient online conversation systems.
1. Introduction
Social media enable people to access a virtually unlimited quantity
of information from a virtually unlimited set of sources. This often
results in our continuous exposure to a barrage of text messages,
videos and sound. The information-processing capacity of
humans is, however, limited. The size of the working memory,
for example, corresponds to approximately seven discrete
items [1]. Likewise, physical constraints in the visual and
cognitive system limit our processing speed of written texts [2,3].
The effect of cognitive limits on information processing is
certainly not a recent discovery but, with the recent rise of digital
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communication technologies, its broader implications on interpersonal communication are less

well understood.
Information overload can be defined as the state in which one cannot make sense or act upon additional

stimuli. Scholars from different fields—neuroscience, cognitive science, information science, management
science and computer science—have looked at the issue of information overload from different
perspectives. Despite its considerable breadth, the literature on information overload usually focuses on
the individual level, and often takes the perspective of the consumption of information. Our work brings
two important elements of novelty to this literature: a group-level and production-focused analysis.

Although a large literature on the effect of information overload at the individual level exists [4–9],
group-level analyses are rare. It is known for example that the number of interpersonal ties an
individual can manage, both offline [10] and online [11,12], is limited, suggesting the existence of
active mechanisms to cope with overload at the individual level. At the group level, however, our
understanding of information overload is more sparse.

Recent studies on social contagion and e-mail communication have mainly explored information
overload from the perspective of information consumption and, to some extent, information
production, for example looking at the rate of replies to e-mails and tweets [13–15]. However, there
are still many open questions related to information production. For example, both the structure and
the textual contents of a conversation may be affected by a higher information load, potentially
degrading the overall production of new information.

In this work, we estimate the effects of overload on information production in the groups
conversations that take place on a large social media platform.

Social media are an excellent setting to understand how information overload affects collective
consumption and production of information. Social media offer an environment for virtual public
discussion [16], with the key difference—with respect to offline world—that a potentially limitless
number of people can join a single online conversation. This new scale of mass interaction may result
in levels of information overload in individuals never explored before [4,14,17].

Overload in computer-mediated communication has been previously studied in legacy media such as
newsgroups [18] and Internet Relay Chat (IRC) systems [19]. As the number of messages increases, chat
participants cannot consume any more information, and their chances of writing new messages
decreases—for example, because replying to earlier messages becomes harder. Thus, even though the
total number of messages increases, the number of messages per user should actually decrease.
Assuming that users tend to avoid this kind of situation by leaving the conversation, it was predicted
that the overall group size would reach an equilibrium [18,19].

Empirical observations are consistent with these predictions. Indeed, it has been found that IRC
rooms are typically functional with crowds of up to 300 participants, with a maximum of about 40 of
them actively talking [19]. Similar observations hold for Usenet [18], and recent ethnographic studies
are in support of these conclusions too [20].

Some evidence also suggests that information overload can reshape the structure and dynamics of the
discourse [21]. For example, overloaded individuals may only reply to certain topics, or reply in a shorter
and simpler manner [18,22,23].

Even though previous studies show evidence that information overload has macroscopic effects on
group communication, it is not clear how the structure and content of these conversations changes,
especially over the full spectrum of information loads achievable by modern communication
platforms. Unfortunately, the systems studied in the literature on overload do not generally attain
such high data loads; samples from IRC or Usenet do not generally reach the scale required to draw
strong statistical claims. Overcoming these limitations, here we analyse a large dataset of chat logs
from Twitch (http://www.twitch.tv/), a popular video sharing and streaming platform (see Methods
for more information about data).

1.1. Live streaming and information overload
On Twitch, people can broadcast a stream—usually a video feed of their screen—to other users, and share
videos of past broadcasts (figure 1a). These users are informally called streamers. Both the audience and the
streamer can write messages into an interactive and real-time chat room displayed prominently on the side of
the stream. As a result, users are exposed to a live flow of messages, as in a traditional IRC channel.

Motivated by the prior research discussed above, our research question is twofold. First, the flow of
messages exerts on chat participants an information load that needs to be processed to take an active part in
the conversation (figure 1b). At low information loads, an increase in the load will correspond to an
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Figure 1. Study settings. (a) User interface of a Twitch stream. (b) Schematic illustration of the information overload in a live-streaming
platform. Chat messages are information stimuli presented to the user at a certain rate (information load). A user participates in the
conversation by writing messages into the chat at a certain rate (user activity). (c) Signature of information overload: user activity follows
an inverted U-shape curve as a function of information load. This identifies two regimes, namely ‘conversational’ and ‘overloaded’
(shaded area). (d ) Two excerpts of chat logs: (i) users chatting and (ii) a situation with high repetition and disproportionate usage
of emotes (ii). In the overloaded regime messages will resemble more the latter than the former case.
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increase in individual user activity. For example, more incomingmessages will elicit more replies. We call this
the conversation regime. In the conversation regime, as the frequency of messages in the stream increases
(higher load), so will the frequency of messages per user (higher activity). If the frequency of messages
keeps increasing, participants cannot handle the increased information load indefinitely, and so we expect
that, past a certain threshold, an increase in information load will correspond to a decrease in user activity.
We call this the overload regime. Therefore, according to our theory, we expect to see that user activity, in
the form of the frequency of messages per user, will follow an inverted U-shape as a function of the
information load, as shown in figure 1c. In other words our theory predicts the existence of a threshold in
the information load, past which the positive trend of user activity is inverted and becomes negative.

The second part of our research question is that the written language of the conversations will reflect
the information load experienced by participants. In the conversation regime, load is manageable and it
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Figure 2. A typical time series of the volume of chat messages in a stream. We sampled the number of messages posted in the
stream every 5 min. Here, peak activity corresponds to roughly 32.8 messages s−1. We infer the periods when a live broadcast took
place (shaded areas) from sudden shifts in activity (see Methods for details about broadcast detection).
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will allow participants to sustain actual conversations with replies and discourse markers (figure 1d ).
Following the flow of messages becomes harder as the information load increases, and users will
resort to short cuts such as more simplified and stereotyped expressions, repetition, copy-pasting and
non-textual markers, like emoticons.

This twofold question should hold for any situation in which a flow of stimuli creates an information
load that needs to be processed in order to perform some kind of activity (in this case, produce additional
messages). To the extent that large enough loads could be produced, one could in principle use data from
any communication system to test this question. Why then is a platform like Twitch suited to do so as
opposed to, say, traditional group communication systems like IRC or E-mail?

Unlike those systems, popular Twitch streams are often watched by massive audiences ranging in the
hundreds of thousands of viewers [24], resulting in unprecedented rates of message production. In figure 2,
for example, we show the rate at which messages are posted in the chat window of a stream in our dataset,
sampled with a 5min frequency, over a period of a few days. In the shaded areas, which roughly
correspond to the time of live broadcasts, the peak activity reaches approximately 9845 messages
(approx. 32.8messages s−1).

Of course, chat activity rates do vary dramatically on Twitch, both within individual streams, and
among different streams. Like in other social media platforms, the large majority of streams are
watched by only a few users, while a few streams attract a huge number of viewers.1 In these popular
streams, chat activity typically spans several orders of magnitude, depending on the time of the day
and on whether there is a live broadcast or not.

In summary, using Twitch data we can examine user behaviour across a wide range of conditions—
from times when messages are posted very slowly and by a handful of people, to times when a huge
volume of messages is pounding the chat window. To be noted: streamers typically stream live only
for a few hours a day, and for the rest of the time the stream is inactive. But, users can still log into
the chat while the streamer is offline. Of course, video is an extra source of information which may
cause an additional information load. Our observations could thus be affected by this. We take
advantage of the fact that chats may occur also during periods of video inactivity to make sure that
our results are robust against the presence of video in the stream.

We collected chat log dumps from Twitch for several days in 2014 (see Methods for more information
about data). We computed the number of messages posted in the chat of any given stream, and the
number of users who produced them, at any given time within our data window. Regarding the first
part of our research question, we take the number of messages in the chat as a proxy for the
information load, and the messages per capita as a proxy for user activity. For the second part, we
consider a number of metrics of the written language of the chat (see Methods). Armed with these
measures, we can formalize our research question into the following four operational hypotheses:

H1. Can we identify qualitatively different regimes in the way Twitch chat conversations unfold?
H2. Does a high number of messages correspond to decreased messages per capita, and to decreased

information content, i.e. the number of bits needed to encode a message?
1On Twitch each user has a stream, but the majority of streams do not feature any content, and presumably are not watched by
anybody. Since we have only access to the logs of chat messages, we do not have any data about these streams.
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Figure 3. User activity (messages per capita M) as a function of information load (number of messages V). The grey shaded area
indicates the regime of overload—for a comparison, cf. figure 1c. We include only streams with at least 1000 messages and at least
100 users observed during the full observation window overall (N = 43 969). To compute M, we average across chunks of messages
sampled every Δt = 5 min. To mitigate fluctuations due to undetected bots, we estimate the average using the median instead of
the sample average, and consider only chunks with number of users U > 1. Error bars represent standard error of the mean.
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H3. Does the language of the chat display visible changes when the number of messages in the chat
exceeds the overload threshold?

H4. Does the transition from the conversation regime to the overload regime as a function of the
information load happen abruptly (i.e. discontinuous transition), or is there a more gradual
deterioration?

2. Results
To measure information load and user activity, we aggregate our data into chunks of Δt = 5 min. We
define Vc(t) and Uc(t) (t = nΔt, n = 0, 1, 2,… ) as the number of messages posted and the number of
users who posted messages in the interval (t, t + Δt), respectively. We finally define M(V ) = 〈Vc(t)/
Uc(t)〉V, the average of Vc(t) and Uc(t) across all streams and times such that Vc(t) =V. That is, M(V )
measures the average user posting activity at a given information load value V.

Chat patterns in a stream may potentially change in response to the fact that the chat is, or is not,
happening during a broadcast, rather than a simple increase in overall activity. We want, therefore, to
consider only data collected during broadcasts. This poses a challenge, as the explicit information
about the starting and ending of broadcasts is not available in our data. Streamers typically stream
only for a few hours a day, but the chat room is available without interruption. As a result, messaging
activity in a stream exhibits surges, interspersed between long periods of little or no activity, as shown
in figure 2. Since communication is more likely to occur during broadcasts, we filter out periods of
inactivity, using a simple clustering heuristic (see Methods for more information about broadcast
detection).

A second challenge has to do with the presence of messages generated by non-human accounts, or
bots. It is common for streamers to automate the management of their stream. Indeed, our preliminary
manual inspection revealed an abundance of bot-generated messages. It is unlikely that bots suffer
from information overload, and they could skew the estimates of our metrics. At the same time, bot
activity contributes to the information load of a stream as much as human activity does. Therefore,
while we do not remove the contributions from bots in computing the number of messages, we
remove bots from the user activity—the y-axis of figure 1c. To compute all other metrics we filter out
bot-generated messages in a similar manner.

We detect bots in our dataset using a simple heuristic based on the compressibility ρ of the text of the
messages (see Methods for more information about bot detection).
2.1. The case for overload and alternative scenarios
Figure 3 shows M, the average number of messages posted by a user, as a function of the information
load V. The plot shows an inverted U-shape: M initially increases, peaks at V*≃ 40 messages every
5min (about one message every 7.5 s) and then decreases. The decay is at first abrupt, then around
V = 200 messages every 5min (equivalent to one message every 0.67 s), more steady.
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This observation is consistent with our model of overload of figure 1c. A number of alternative
explanations may, however, be considered.

The first is that the above result could be a mere artefact of aggregating together streams with
dramatically different activity levels. Streams with less users, and thus lower activity, could be
responsible for the initial increase, while streams with more users, and thus higher activity, for the
subsequent decrease. To rule out such an alternative explanation we group streams in four separate
groups, each corresponding to a quartile of the stream popularity distribution of figure 8b, and repeat
the analysis of figure 3 in each group. Despite increased fluctuations due to smaller sample sizes,
figure 4 shows that the pattern still holds even when we restrict to streams with small or intermediate
popularity levels.

The second alternative scenario is that the inverted U-shape is the by-product of grouping together
individuals whose behaviour is actually independent of information overload. A famous example of
this is the Simpson’s paradox [25], which is not rare in the realm of the social sciences [26]. In other
words, we seek to quantify the extent to which an inverted U-shape relation between V and M,
similar to that observed in figure 3, holds in our population of Twitch users when we consider users
at the individual level.

To do so, we compute Mu, the number of messages posted by each user (averaged across all time
blocks with the same V) and we regress it against V. We fit a multi-level model to the data, which lets
us account for variation among users. We use, in particular, a generalized linear model for count data,
in which both slopes and intercepts may vary by individual. Specifically, we model the ith
observation of the jth individual as:

M(i)
u ¼ b j[i] þ a j[i]Vi, (2:1)

where α and β both vary by individual j, and thus are indexed with the notation j[i] to denote that
observations are grouped by individual. We fit two distinct models, respectively, for the sub- and
supra-threshold regimes (V* = 40 messages every 5min).

In the sub-threshold regime (V <V*), the intercept is 1.94 (s.e. 0.03) messages every 5min, and the
slope is 0.03 (s.e. 0.00). In the supra-threshold regime (V >V*), the intercept is 3.31 (s.e. 0.04) messages
every 5min, and the slope is −0.02 (s.e. 0.00). The signs of the slopes—positive in the sub-threshold
regime and negative in the supra-threshold regime—are consistent with an inverted U-shape relation.

To get a better sense of the overall variation in the population, we also perform a visualization
exercise in which, instead of the multi-level model described above, we fit a simple linear regression
line to each user (and each regime). We compute slopes αsub and αsup of the two regression lines for
both the sub- and supra-threshold regimes, and visualize their joint distribution. To compare values
across different users, we standardize the data before the regression. We expect to find four groups of
users based on the sign of the slopes of two regions. In figure 5, we show the distribution of users in
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the αsub × αsup space for V* = 40 messages every 5min. The coefficient αsup was estimated using data
chunks whose value of V was in the range V* <V < 200 messages every 5min, since for V > 200
estimates of M tend to be affected by too much statistical noise. In line with the multi-level fit,
contour lines show that the majority (50%) of users have a behaviour consistent with the inverted
U-shape curve model of information overload.

Finally, the last alternative scenario consistent with the observations in figure 3 is that the presence of
events in the video stream may drive participation to the chat. A particularly virtuoso play, for example,
may elicit praise in the chat.

Our data, lacking any video information, do not allow the direct detection of this kind of exogenous
events. However, if patterns consistent with information overload were present also in the absence of a
video broadcast, it would provide evidence that this alternative explanation cannot explain the observed
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patterns. Indeed, since broadcasts require the streamer to be online, there are plenty of periods during
which the video of a stream is inactive. During these periods, the chat is still available, but the screen
is either blank or set to a still image.2

We repeated the analysis of figure 3, this time we used only data from inactive periods (the not-
shaded areas in figure 2), and observe that our main finding—the inverted U-shape relation between
information load and user activity—does holds, albeit in qualitative fashion (figure 6). Because the
video feed is inactive, we can assume that the information load experienced by users is only coming
from the chat, and thus V must be the driver of information overload.

2.2. Characterizing the conversational and overload regimes
We then characterize the content of messages produced in the two regimes. We use several structural and
textual metrics to do so (see Methods for more information about textual and structural metrics).

To identify the propensity to entertain conversations, we plot the frequency of mentions p@. In
Twitch, like in Twitter, the ‘@’ symbol is used to mention other users. The number of mentions per
time interval, as function of the number of messages V, is shown in figure 7a. The figure shows a
2At the time of the collection of our data, if the streamer was offline the video would just show a blank screen or a still image with
information about the next scheduled broadcast. Nowadays, users can also choose to play a video on demand of a past broadcast.
In that case, the chat of the event would be replayed accordingly. At the time our data were collected, neither feature was available
on Twitch, so people would simply chat without a video stream.
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qualitative behaviour similar to that of M and is amenable to similar interpretation. We control for

alternative scenarios using the following strategy. The more popular a user is—for example—the more
likely it is that they will be mentioned when they are not present in the chat or when, if present, they
are not taking part to any conversation. Thus, counting individual @-mentions may lead us to assume
a breakdown in conversation behaviour when no actual conversation had occurred in the first place.
To control for any potential bias due to popular users we repeat the analysis, this time counting the
number of mentioned individuals rather than @-mentions. We find no qualitative difference with the
plot of figure 7a.

Question marks are another signal compatible with conversation or at least with the expectation to be
noted, listened to, and possibly answered by the user population at large. The frequency of questions p?
(figure 7b) remains approximately constant for the whole conversation regime and part of the overload
regime and drops dramatically around V = 200 messages every 5min. Aside from peaking earlier than p?,
the frequency of discourse markers pd shows a qualitatively similar behaviour, decreasing steadily in both
regimes (figure 7c).

The amount of information, expressed as a compression ratio ρ (see Methods section about metrics), is
uniformly decreasing, indicating higher compressibility (figure 7d). This implies that, as the overall activity
increases, the content becomes more repetitive, both within messages (e.g. emoticons repeated several
times) and across messages, possibly due to increased use of copy-and-paste. In figure 7e, we plot the
message length lm, and observe that messages get shorter as activity increases. When we estimate the
frequency of emoticons and emotes p☺, we observe that, at the same time as messages become shorter,
users resort to more emoticons and emotes (figure 7f). In the conversation regime, p☺ actually decreases,
reaching its lowest approximately at the onset of the overload regime (as predicted by M).

2.3. Limitations
We acknowledge the following limitations in our methodology. The first has to do with text. Some of our
textual features are based on English, like the list of discourse markers that we use to compute pd. Of course,
there are plenty of non-English speakers on Twitch, and we do not filter out their messages in our data.
Different discourse conventions from non-English speaking cultures may thus introduce bias in the
results for pd, and perhaps even of p?. In part to mitigate for these assumptions, we apply content-
agnostic features such as the compression ratio ρ. In the future, we plan to use language detection
techniques to select only a subset of languages, and use language-specific lists of discourse markers.

The second is about the lack of metadata about the structure of the conversation. Because of the nature
of the system, we cannot reconstruct actual conversation threads or reply sequences, as is possible for
example, with Twitter data. We do mitigate for this by looking at markers of conversation, like the use
of @-mentions, question marks and discourse markers. We also take care to exclude bots from our data
when computing overload, and take into account other potential confounding factors.

Finally, it is worth mentioning that our dataset was collected in 2014; Twitch has undoubtedly
changed a lot in the meantime. Because our main findings (e.g. figure 3) do not rely on any particular
feature of the Twitch chat, we expect that analyses on more recent data would produce results
consistent with ours. It is reasonable to expect that results related to bot detection and other features
that strongly rely on the Twitch platform may be different from those we present here.
3. Discussion
The popularity of social media, combined with the pervasiveness of mobile devices, keeps an increasing
number of people under a constant barrage of text, videos and audio inputs. This affects their ability to
properly filter, comprehend, consume and ultimately act upon information. Such phenomenon is
informally referred to as ‘information overload’. Prior work on information overload has highlighted
effects at the individual level, and quantified the extent to which the ability to consume information is
impacted by overload. The effect on the production of information taking place in a group setting has
been devoted less attention. Leveraging Twitch chat conversations, we find strong evidence of two
regimes of activity in online group interactions—a conversation and an overload regime (H1). The
average number of messages per capita M follows an inverted U-shape relation with the total number
of messages V that flow through the chat, suggesting an increase in participation during the
conversation regime, and a decrease in the overload regime (H2). This is consistent with previous
accounts of information overload focused on information consumption [15].



royalsocietypublishing.org/journal/rsos
R.Soc.open

sci.6:191412
10
The transition between the two regimes is associated with strong, visible changes in the nature of the

conversations (H3). The regime of low information load is marked by several characteristics that betray
the presence of ongoing conversations: messages are long and varied; users interact with each other
by means of questions and direct mentions; the usage of emoticons is kept to a minimum. The other
phase is radically different: messages become shorter and more stereotypical, as evidenced by their
higher text compressibility; conversation markers disappear, replaced by an increase of emoticons;
users stop interacting with each other. Such a regime is more akin to a cacophony—a discordant
mixture of distinct voices overlapping each other.

The transition (H4) between the two phases is gradual rather than abrupt. It is marked by two turning
points. The first corresponds to the peak of user participation, around V = 40 messages every Δt = 5min.
The second one, located around V = 200 messages per Δt, is relative to changes in the textual structure of
the messages. Around this point, the frequency of user mentions p@ peaks and the frequency of questions
p? starts dropping dramatically: the interactions become less and less one-to-one, or one-to-few.

These findings, which have been first revealed in the aggregate, considering averages over many
conversations from many streams, are supported also at the individual level, and are not affected by
Simpson’s paradox. We quantify the variation of behaviour by fitting a multi-level model, finding that
per-user output Mu follows an inverted U-shape curve as a function of information rate V, similarly to
what happens for corresponding average quantity M; see figure 3. We rule out several explanations
competing with the overload effect. Our observations cannot be explained in terms of heterogeneous
stream popularity—similar patterns are visible also when we break down the data by stream
popularity (figure 4)—nor by exogenous increases of U—for example, due to a particularly good or
entertaining move in the game—because any increase in U must correspond to an increase in V, due
to the fact that our data do not include non-chatting viewers. Finally, they cannot be due to salient
events in the video itself, since they hold also when the video stream is inactive (figure 6).

Beside offering an unprecedented source of data for measuring overload at very high information
loads, it should also be noted that Twitch conversations could be an important subject of investigation
in their own right. The Twitch chat is indeed a powerful community-building tool [20], and by
engaging with their viewers through the chat, streamers build rapport with their audience, especially
when the scale of the audience is not too large. Knowing when a conversation may tip into overload
could thus be a useful parameter for platform operators and streamers alike.

More generally, Twitch chat conversations offer a useful environment for understanding the limits of
information processing in interpersonal communication. The present findings could find application in
other contexts, such as social media feeds, collaborative environments and intelligent systems with
humans in the loop.

In conclusion, we studied the dynamics of Twitch chat conversations. To our knowledge, this is the first
time a large systematic sample of logs from the Twitch chat has been analysed. We provide quantitative
measurements for the onset of information overload at both the collective and individual level, and
describe its effects on the overall structure and dynamic of the group. Our finding may inform designers of
social media user interfaces (UIs). For example, it could be beneficial to introduce an automatic detector of
possible overload based on the rate of messages, or visual aids for users to cope with overload.
4. Methods
4.1. Twitch
Twitch started in 2007 as a ‘social TV’ experiment under the name of Justin.tv, giving users the capacity to
broadcast their own video streams. With the rise of popularity of electronic sports, or eSports, it has
rapidly become one of the most popular live-streaming platforms on the Internet [27,28]. The majority
of streams on Twitch are about video games, played by both amateur and professional players [20].
According to in-house statistics, Twitch rivals with traditional television networks (e.g. CNN) in terms
of viewership, with 100 million monthly viewers in 2015. It also accounts for 1.8% of the overall peak-
time Internet traffic, ranking behind only to Netflix, Google and Apple [29].

4.2. Data
Our data include all messages posted to any public Twitch stream in the period 26 August–10 November
2014 (76 days). We counted a total number of 1 275 396 751 messages, posted in 927 247 streams (average:
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1375 messages per stream) by 6 716 014 users (average: 190 messages per user). Among all streams,
532 094 were active for at least 2 days, 319 451 had only one active user, and 166 870 had more than
100 messages. Among all users, 4 930 052 were active for at least 2 days, 5 015 079 participated in at
least two streams, and 1 032 766 posted at least 100 messages.

The dataset was collected as a dump of the chat logs of all Twitch streams, and included only
minimal metadata. We have very little structured information; it is impossible, for example, to track
actual conversation threads without any additional pre-processing. A user (resp. stream) is logged in
our dump only if they sent (received) a message. Therefore, users (or streams) who did not post
anything during the observation window are not included in our data dump. The above figures,
therefore, may not reflect the total activity of all users—viewers or streamers—on Twitch.

In figure 8, we plot the distributions of messages and users. The number of messages produced in a
stream (figure 8a) spans several orders of magnitude, with a median of seven messages. The same
happens for the number of users posting in a stream (figure 8b), a rough proxy of its popularity, and
for the message count of each user (figure 8a). Some users have written more than one million
messages, while most only a few.

4.3. Broadcast detection
Let us consider a stream c. To detect broadcast periods, we sample the volume of messages Vc(t), t = nΔt,
n = 0, 1, 2,… , at intervals of Δt = 5min. We then consider the time average of the message volume
V ¼ hVc(t)it and define a symbolic sequence Sc(t) where:

Sc(t) ¼ A if Vc(t) � V,
I if Vc(t) , V:

�

Examining Sc(t), we noticed that sub-sequences AIA and IAI, i.e. below- or above-average spikes
shorter than Δt, would sometimes occur within longer sequences of As or Is, respectively. We
replaced these fluctuations with AAA, and III respectively, assuming that a broadcast would not stop
for such a very brief period. Finally, we defined the sequence IIA as the beginning of a broadcast,
and AAI as the ending, and recorded the respective timestamps. If two consecutive broadcasts were
separated by less than 60min, we merged them together, assuming that consecutive broadcasts
separated by such a short period would be highly unlikely. Figure 2 shows, as grey shaded areas, the
detected broadcast periods for the example stream in our data.

4.4. Bot detection
Automated accounts, or bots, are known to be present in live-streaming services like Twitch. There are
many types of bots operating on Twitch. Some report the status of the game or ranking of players,
some post advertisements on behalf of the streamers, and some greet those who log into the stream.
Some bots generate messages in several streams, while others are active only in one. Bots can be used
either for abuse or for legitimate purposes. Abuse include spamming, trolling, or inflation of viewing
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statistics of videos (view bot). Since view bots do not normally post messages, our results cannot be
affected by them, but could be still affected by the presence of bots that do post messages. Bots are
known to produce messages at a rate higher than what is ‘normal’ for a human; and it is reasonable
to expect that these messages will be also more repetitive. Based on this intuition, to detect bots in the
chat log data we adopted two revealing features: the average inter-message time τ, and the
compression ratio ρ. The compression ratio is defined as r ¼ Ŝ=S, where S is the length (in bytes) of
the string obtained by concatenating all messages by the same user, and Ŝ is the length (in bytes) of
the string obtained by compressing S with an off-the-shelf compression algorithm.3 The compression
ratio estimates the information content of the messages of a user. In using this approach, we are
motivated by the notion of Kolmogorov complexity [31].

When estimating τ, we need to take into account the fact that neither bots nor humans are active at all
times. We, therefore, compute the average inter-message time only during ‘active’ periods: a user is
considered in an active period if she has produced at least one message in the previous hour. If not,
the inter-time is discarded and a new active session begins with the next message. The average τ is
then estimated across all sessions with at least two messages.

We then considered all users who had been active more than one day and produced at least 10
messages (865 551 users). Note that we restrict to this subset of users for the one and only purpose
described in this paragraph; all the other results of the manuscript are obtained on the full sample of
users. We used a stratified sampling approach on τ and ρ to randomly selected 256 users from this
population. Finally, we manually inspected all their messages, and labelled them with one of the
following categories: bot, human, copy-paster, non-English, and ambiguous. The ‘copy-paster’ label is
meant to capture users whose complete production consists only of one or more brief, fast sequences
composed by the same, copy-pasted, message. Out of 256 users, we identify 49 bots, 92 humans and
59 copy-pasters. The remaining users were either ‘ambiguous’ (i.e. we could not determine whether it
was a human or a bot) or ‘non-English’. We discarded these latter two groups from the bot detection
analysis of this section.

Figure 9 shows the distribution of labelled examples in the (τ, ρ) plane and, as a reference, the general
population distribution used for sampling. It suggests that, while ρ offers discriminating power,
surprisingly, τ does not.
3To perform the compression, we use the DEFLATE algorithm, as implemented in the zlib library v.1.2.6 [30].
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Conservatively, we retained only users with ρ≥ 0.44, which corresponds to the maximum value of ρ

observed for a bot among our 256 user sample. The total number of users removed turned out to be only
43 026 (0.5% of the reference population). The drastic filtering criterion adopted here is simple, but
removes the great majority of bots at a relatively low price in terms of population reduction. This is
important, since lacking a hold-out set, we cannot evaluate the precision of the method, and thus any
potential impact due to classification mistakes should be mitigated by the small amount of users
removed in this way.

4.5. Texual and structural metrics
In addition to M, to characterize the shift from the conversation to the overload regime, we compute the
following textual and lexical features: the message length lm; the frequency of questions p?, measured by
counting messages ending with a question mark sign; the frequency p@ with which users address each
other with an @-mention; pd, the relative frequency of discourse markers, i.e. colloquial expressions such
as ‘oh’, ‘well’ or ‘of course’ [32] (see electronic supplementary materials for the list of discourse markers);
the fraction of emoticons and emotes p☺; and the average block compression ratio ρ. The quantities above
have been chosen to help reveal the presence of conversations (p@, p?, pd), or a state of overload (the
necessity of succinctness, lm, the (lack of) information exchanged ρ, the excessive use of emoticons p☺).

Frequencies p? and p@ were computed at the level of messages, while pd was computed at the level of
words, breaking tokens in correspondence of white spaces, after transforming all text to lower case.

To compute p☺, we used the following approach. In Twitch, beside standard emoticons such as ‘:-)’
and ‘:-(’, it is also customary to use emotes—short text codes associated with small images that are
rendered automatically in-line within the text. The Twitch software recognizes a list of approximately
190 standard emotes. Moreover, streamers can define additional emotes for their stream, which are
available to viewers who pay a small monthly subscription fee.

We collected both kinds of emotes from the most comprehensive online resource that we could find.4

We found 16 763 subscription emotes, with no guarantee to have exhausted their list. To compute the
probability of occurrence of these emoticons/emotes in a message, we first need to parse the text of the
messages for their occurence. To do so, we break messages into short sub-strings of varying size called
k-shingles [33]. We opted for shingling over a more common word tokenization strategy because emotes
are often copied and pasted in sequence without separating white spaces. The maximum length of
emotes in our list is 24, thus, we varied the value of k accordingly. For each value k we created a bag of
shingles. We then merged all the bags, obtaining a total of N distinct shingles. Finally, we defined
p☺=N☺/N, where N☺ was the number of shingles that matched any of the emotes in our list.

Similarly to what was done for the bot detection step, we quantify the information content of each
message block with compression. For each stream and 5min interval (chunk), we first collect and
concatenate all the messages occurring in the chunk, and then compute the compression ratio for the
concatenation.We finally compute ρ(V ) as the average ratio across chunkswith the same information loadV.

Ethics. This study was reviewed by the IRB of Indiana University (protocol no. 1410552242). Since the identity of users
on Twitch (i.e. the user name) is not relevant to our analysis and may pose unnecessary risk to the users, we first
anonymized all data using a non-cryptographic hash function5; all results presented in the paper are obtained from
this anonymized dataset.
Data accessibility. A subset of the chat logs dump from Twitch used in this work is provided, to help replicate the central
findings of this work (https://doi.org/10.5281/zenodo.1182793). Data are aggregated and include the number of
messages posted in each channel and the number of users posting them, sampled at intervals of 5 min. To protect
the identity of the users in this data collection, message contents and user names are not included in this dataset.
Stream names have been replaced with numeric IDs. No additional filtering or data cleaning operation has been
applied to this data. Replication code is publicly available (https://doi.org/10.5281/zenodo.3369263).
Authors’ contributions. A.N., G.L.C., A.F. and Y.A. designed the research; A.N. and G.L.C. performed experiments,
analysed the data and wrote the manuscript; all authors reviewed the manuscript.
Competing interests. The authors declare that they have no competing interests.
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partial support from the Swiss National Science Foundation (fellowship PBTIP2_142353).
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