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The persistence of homological features in simplicial complex
representations of big datasets in Rn resulting from Vietoris–
Rips or Čech filtrations is commonly used to probe the
topological structure of such datasets. In this paper, the notion
of homological persistence in simplicial complexes obtained
from power filtrations of graphs is introduced. Specifically,
the rth complex, r ≥ 1, in such a power filtration is the clique
complex of the rth power Gr of a simple graph G. Because
the graph distance in G is the relevant proximity parameter,
unlike a Euclidean filtration of a dataset where regional scale
differences can be an issue, persistence in power filtrations
provides a scale-free insight into the topology of G. It is shown
that for a power filtration of G, the girth of G defines an r range
over which the homology of the complexes in the filtration are
guaranteed to persist in all dimensions. The role of chordal
graphs as trivial homology delimiters in power filtrations is
also discussed and the related notions of ‘persistent triviality’,
‘transient noise’ and ‘persistent periodicity’ in power filtrations
are introduced.

1. Introduction
Topological data analysis is concerned with determining the
topological structure of data [1]. One such approach to analysing
large sets of discrete data points in Rn is to convert the dataset
into a global topological object by replacing the dataset with a
simplicial complex indexed by a Euclidean distance proximity
parameter that defines the simplices of the complex. The powerful
mathematical machinery of algebraic topology, e.g. [2], can then be
applied to the complex in order to understand the fundamental
topological properties of the dataset in terms of the topologically
invariant homology groups associated with the data’s simplicial
complex representation. When combined with persistence theory
and barcode theory, e.g. [3], these homology groups can often
provide valuable insights about the underlying phenomena
represented by the data. These methods have been used to
study such diverse areas as sensor network coverage [4], random
graphs and complex networks [5], shape analysis [6], brain
topology [7], the evolution of viruses [8] and ancestral genetic
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history [9]. The intrinsic mathematical appeal of these methods has also prompted mathematicians to
further formalize their description and extend their utility (e.g. [10,11]).

Traditional persistence theory typically uses Vietoris–Rips (Rips for short) or Čech Euclidean
filtrations of Rn datasets to generate a series of Rips or Čech simplicial complexes, each associated with a
different value of the varying Euclidean distance proximity parameter. This paper introduces a variant to
this persistence approach to topological analysis that is based upon the power filtration of a simple graph
G. It uses the graph distance r ≥ 1 in G as the associated proximity parameter and generates the filtration
by increasing the value of r. The rth complex in the filtration is the clique complex of the rth power Gr of G
(such a filtration is called an r filtration and each complex in the filtration is called an r complex: note that an
r complex is a Rips complex whose simplices are subsets of the vertices of G that are a distance of at most r
from each other in the discrete metric space defined by G). Although persistent homology in a Euclidean
filtration yields information about a dataset’s topology in Rn from the perspective of a one-parameter
family of complexes whose vertices are the data points and whose simplices are defined by varying
the Euclidean distance proximity parameter in Rn, persistent homology in a power filtration of a graph
provides topological insights about the graph from complexes whose vertices are those of the graph and
whose simplices are defined using graph distance within the graph as the variable proximity parameter.
Thus, unlike Euclidean filtrations where regional scale differences can be an issue, power filtrations can
provide scale-free insights into graph topology. In both Euclidean and r filtrations, persistent homology
features are considered to reflect important topological properties. Homology features which do not
persist are generally regarded as relatively unimportant ‘topological noise’.

Because of the increasing interest in topological data analysis, much recent attention has been devoted
to the development of software packages which can perform persistent homology computations with
relative efficiency, e.g. [12–14] (it is interesting to note that a quantum mechanical algorithm has recently
been developed that will exponentially speed up these computations—but alas—the quantum computers
required to execute the algorithm do not yet exist [15]). It is shown below that in certain cases the girth
of G can be used to reduce or eliminate such computations for r filtrations of G by defining not only a
range �r of r index values for which all of the homology features in all dimensions of the associated r
complexes remain unchanged, but also a lower bound for the persistence lifetimes of every such feature.
Although quantifying the girth of G can also place demands on computational resources, its evaluation
can be cost-effective when compared with the resources required to compute all of the homology groups
for each r complex in the �r range (as noted below—the easily computed Randić index can be used to
bound girth).

It will also be shown that chordal graphs—which have homologically trivial clique complexes—serve
several important functions in r filtrations. As the power filtration of a connected graph G stabilizes
at some power rs (G) (or rs when the graph referenced is clear) as a complete graph (which is a
chordal graph), the associated filtration of r complexes stabilizes at the stabilization distance rs (G) as a
homologically trivial simplex. In addition, if—in a power filtration of a connected graph G – Grc(G) ≡
Grc , 1< rc < rs, is a chordal graph, then—until the stabilization distance rs is reached—the complexes
associated with (Grc )2j+1, j ≥ 1, are all homologically trivial. This is a persistent periodic homology feature
peculiar to r filtrations that can also induce persistent periodicity in transient noise, i.e. ‘topological noise’
having the smallest possible lifetime in an r filtration. It can also be the case that all of the complexes
associated with (Grc )j, j ≥ 1, are homologically trivial (when Grc contains no sunflower subgraph—see
the next section). If this occurs the filtration exhibits persistent trivial homology when r ≥ rc. For the
general extreme case where the complex associated with Gr is homologically trivial for 1 ≤ r ≤ rS, then
the filtration is said to exhibit persistent triviality.

In order to make this paper relatively self-contained, relevant definitions and terminology are
summarized in the next section. The theory of persistent homology in r filtrations (i.e. r persistence) is
introduced in §3. Required preliminary lemmas are stated in §4 and the main results are developed in
§5. Illustrative examples are presented in §6 and closing remarks comprise the paper’s final section.

2. Definitions and terminology
A simple graph G is a pair (V(G), E(G)), where V(G) is a finite non-empty set of vertices and E(G) is either
a set of doubleton subsets of V(G) called edges or the empty set. The order of G is the cardinality |V(G)| of
its vertex set and the size of G is the cardinality |E(G)| of its edge set. Two vertices u, v ∈ V(G) are adjacent
vertices when e = {u, v} ∈ E(G), in which case e is said to join u and v while u and e and v and e are said to
be incident. Two distinct edges in G are adjacent edges if they have a common vertex. The degree degG(u)
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of vertex u ∈ V(G) is the number of edges incident to u and the sum

∑
{u,v}∈E(G) [deg(u)deg(v)]−1/2 is the

Randić index R(G) of G. A graph is regular if each of its vertices has the same degree. Graphs G and F are
isomorphic graphs (denoted ′G ∼= F′) if there is a bijective map θ : V(G) → V(F) such that {θ (u), θ (v)} ∈ E(F)
when {u, v} ∈ E(G).

A u − v walk is an alternating sequence of vertices and edges beginning with u and ending with v such
that every edge joins the vertices immediately preceding and following it. A u − v path is a u − v walk
in which no vertex is repeated and the number of edges it contains is its length. In this case, u is said to
be connected to v. G is connected if its order is one or if every two vertices in G are connected. The graph
distance d(u, v) between u, v ∈ V(G) is the minimum length of all u − v paths and the diameter diam(G) of
G is maxu,v∈V(G)d(u, v). Clearly, rs(G) = diam(G). A u − v path for which u = v and which contains at least
three edges is a cycle. The graph Cn is the cycle graph on n vertices. The length of a cycle is the number of
edges contained within it and the shortest cycle of G is the girth g(G) of G. A chord of a cycle is an edge
between non-consecutive vertices in the cycle.

The rth power Gr, r ≥ 1, of G is the graph with vertex set V(Gr) = V(G) and for which {u, v} ∈ E(Gr) if,
and only if, the distance between u and v in G is at most r. A graph is a chordal graph if every cycle of length
of at least four has a chord. A graph Kn is a complete graph on n vertices when n = |V(G)| = 1 or every two
of its vertices are adjacent. A graph F is a subgraph of G, denoted F ⊆ G, if V(F) ⊆ V(G) and E(F) ⊆ E(G).
If U(G) ⊂ V(G), then the subgraph of G induced by U(G) is the graph (U(G), E(G)), where {u, v} ∈ E(G) ⊂
E(G) if, and only if, {u, v} ⊂ U(G). A cycle Cn in G is a chordal cycle if the subgraph induced by Cn is chordal.
A sunflower is the graph Sn, n ≥ 3, consisting of a chordal cycle Cn = (v1, v2, . . . , vn) and n independent
vertices {u1, u2, . . . , un} such that for i ∈ {1, 2, . . . , n}, ui is adjacent to only vi and vj, j = i − 1 mod n. Sn is
suspended if there is a vertex w /∈ Sn that is adjacent to at least one vertex pair uj, uk, j �= k ± 1 mod n. If
G1, G2, . . . , Gk are not induced subgraphs of G, then G is (G1, G2, . . . , Gn)-free. A clique in G is either a
vertex or a complete subgraph of G.

An abstract simplicial complex S on a finite set A is a family of sets {σ ∈ S : σ ⊆ A} such that: (i) {a} ∈ S
for all a ∈ A and (ii) if σ ∈ S, then so is every subset of σ . The elements of A are the vertices S(0) of S and
each k-simplex σ = {a0, a1, . . . , ak} is a k-dimensional face of S. The clique complex C�(G) of a graph G is the
abstract simplicial complex whose faces are the cliques of G. Associated with each complex S is a chain
complex of abelian groups Γk(S) and homomorphisms ∂k+1 : Γk+1(S) → Γk(S), k ≥ 0, where ker ∂k are the
k-cycles in S and im∂k+1 are the k-boundaries in S. If ρk(S) is the number of k-simplices in S, then Γk(S)
is isomorphic to (denoted ‘≈‘) the direct sum ‘⊕’ of ρk(S) copies of the additive group of integers Z. The
kth homology group of S is the quotient group Hk(S) = ker ∂k/im∂k+1 which captures equivalence classes of
non-bounding k-cycles by factoring out boundary cycles. If S is comprised of m connected components,
then H0(S) ≈ Z ⊕ Z ⊕ · · · ⊕ Z (m copies of Z) and if S is of dimension δ, then it has δ + 1 homology groups.
S is homologically trivial when H0(S) ≈ Z and Hk(S) ≈ 0, k ≥ 1.

If S and T are abstract simplicial complexes, then a simplicial map ϕ : S → T is a map ϕ : S(0) → T(0) such
that whenever {a0, a1, . . . , ak} is a simplex in S, then {ϕ(a0),ϕ(a1), . . . ,ϕ(ak)} is a simplex in T. The simplicial
map ϕ : S → T induces homomorphisms ϕ∗ : Hk(S) → Hk(T) between the homology groups of S and T.
Complexes S and T are homotopy equivalent (denoted ′S ∼ T′) if there are maps f : S → T and h : T → S such
that h ◦ f � iS and f ◦ h � iT (here ‘◦’ denotes ‘composition of maps’, ‘�’ denotes ‘homotopy of maps’, and
iS(T) is the identity map on S(T)). If S and T are homotopy equivalent, then Hk(S) ≈ Hk(T), k ≥ 0.

3. Persistent homology theory for power filtrations of graphs
When applied to a complex, homology detects the presence of connected components, holes and voids
in the complex. Rather than use the homology of a single complex as a description of the topology of
a graph, it can be preferable to describe a graph’s topology by identifying topological features detected
by the homology that persist in a filtration of the graph. As already mentioned, persistent homological
features can indicate potentially important topological properties of a graph, whereas features which do
not persist can generally be regarded as relatively unimportant ‘topological noise’.

Useful insights into the topology of a simple graph G can be obtained from an understanding of the
homology of clique complexes derived from the rth powers Gr of G (e.g. if G is connected and diam(G) is
known, r can provide a measure of how close G is to being a homologically trivial simplex). To this end,
let r vary over an appropriate distance range 1 ≤ r ≤ p within G to produce the r filtration and induced
homology sequence given by the diagrams

C�(G)
i1−→ C�(G2)

i2−→ · · · ip−1−→ C�(Gp) (3.1)
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and

Hk(C�(G))
ϕ∗1−→ Hk(C�(G2))

ϕ∗2−→ · · · ϕ∗p−1−→ Hk(C�(Gp)), k ≥ 0, (3.2)

where ‘
ij→’ and ‘

ϕ∗j→’ denote simplicial inclusion maps and group homomorphisms, respectively. As
already noted in §1, if G is connected, then the filtration stabilizes with the homologically trivial simplex
C�(Grs ). In this case, the homology sequence for k> 0 can be extended to include the groups

Hk(C�(Gp))
ϕ∗p−→· · · ϕ∗rs−2−→ Hk(C�(Grs−1))

ϕ∗rs−1−→ Hk(C�(Grs )) ≈ 0, k> 0, (3.3)

where ϕ∗rs−1 is obviously a zero homomorphism.
A non-zero homology class [c] ∈ Hk(C�(Gj)), k ≥ 0, represented by the cycle c is ‘born’ at C�(Gj) if [c] is

not in the image of ϕ∗t for t< j. It ‘dies’ at C�(Gl) if l> j is the smallest integer such that the image of [c]
is 0 in Hk(C�(Gl)), i.e. if

ψ([c]) ≡ ϕ∗l−2 ◦ · · · ◦ ϕ∗j([c]) �= 0, (3.4)

but

ϕ∗l−1 ◦ ψ([c]) = 0, (3.5)

where ‘◦’ denotes ‘composition of homomorphisms’. The r persistence lifetime of c is then λ(c) = l − j and
is represented by the lifetime interval [j, l]. A non-zero homology class [c] that is ‘born’ at C�(G) and
‘dies’ at C�(Grs ) has a lifetime λ(c) = rs(G) − 1 and is said to be an rs(G) survivor. Transient noise is a class
0 �= [c] ∈ Hk(C�(Gj)), k> 0, such that [c] is not in the image of ϕ∗j−1 but ϕ∗j([c]) = 0, i.e. it is ‘born’ at C�(Gj)
and ‘dies’ at C�(Gj+1). The lifetime of transient noise is λ(c) = 1 and is represented by the lifetime interval
[j, j + 1]. Note that transient noise corresponds to the smallest possible non-zero lifetime that can exist in
an r filtration.

A visualization of a complete r persistence analysis of G is given by the complete r persistence barcode
for G which is a graphical representation of the multiset of all lifetime intervals for finite k. The binary r
persistence barcode for G is a binary string β(G) of length rs(G) where the rth entry corresponds to C�(Gr)
and is 0(1) if Hk(C�(Gr)) ≈ 0, k> 0 ( �≈ 0 for some k> 0). For example, if β(G) is a string of rS zeros, then G
exhibits persistent triviality which indicates that the topology of G is effectively homologically featureless
(and possibly uninteresting) for all powers of G. However, if 010 is a substring of β(G), then for the r
corresponding to the position of the 1 in β(G), the complex C�(Gr) generates transient noise in at least
one dimension k> 0. This indicates that relationships exist in subsets of G’s vertices that are manifested
as short-lived (but possibly interesting) topological features in C�(Gr).

4. Preliminary lemmas
Results needed to prove or discuss the main results of this paper are presented in this section for
the reader’s convenience. The following lemmas have been established elsewhere and are stated here
without proof.

Lemma 4.1 ([16]). If g(G) ≥ 3l + 1, l> 2, then C�(Gr−1) ∼ C�(Gr) when 2 ≤ r ≤ l.

Lemma 4.2 ([17,18]). If G is a connected graph of order at least 3 with Randić index R(G) and girth g(G), then
R(G) − (1/2)|V(G)| + 3 ≤ g(G) ≤ R(G) + (1/2)|V(G)|, where equality applies on the left (right) if and only if G is
a regular graph with a triangle (G ≈ C|V(G)|).

Lemma 4.3 ([19]). If G is a connected chordal graph, then C�(G) is homologically trivial.

Lemma 4.4 ([20]). If G is a chordal graph with no sunflower, then Gr is chordal for all r ≥ 1.

Lemma 4.5 ([21]). If G is a chordal graph, then so is G2j+1 for any j ≥ 1.

Lemma 4.6 ([20]). If G chordal and G2 is not chordal, then G has at least one sunflower Sn, n ≥ 4, which is not
suspended in G.
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5. Main results
In what follows, it is assumed that G is a simple graph. However, before continuing—for completeness—
the above observations concerning r filtration stabilization are generalized as the following theorem.
Since the consequence of the theorem is obvious, the theorem is stated without proof.

Theorem 5.1. If G comprises m connected components G1, G2, . . . , Gm, then rs(G) = maxj=1,2,...m rs(Gj).

5.1. Persistent homology in r filtrations
The last theorem suggests the following persistent homology theorem for r filtrations:

Theorem 5.2. If G has m ≥ 1 connected components, then the m non-zero homology classes of

H0(C�(G)) ≈ Z ⊕ Z ⊕ · · · ⊕ Z(m copies of Z), (5.1)

are rs(G) survivors.

Proof. This is an obvious consequence of theorem 5.1 and the fact that since r is a graph distance in G
and the number of connected components remains invariant in Gr, r ≥ 1. �

Hereafter, for the sake of simplicity and without loss of generality, it will be assumed that G is a
connected graph.

The next result shows that the girth of G defines a power index range over which non-zero homology
classes of C�(G) are guaranteed to persist.

Theorem 5.3. For some counting number l> 2, let g(G) ≥ 3l + 1. If 0 �= [c] ∈ Hk(C�(G)), k> 0, then λ(c) ≥ l.

Proof. Lemma 4.1 implies that C�(Gr−1) and C�(Gr) are homotopy equivalent complexes for 2 ≤ r ≤ l.
Consequently, their homology groups are isomorphic for k> 0 and the sequence

Hk(C�(G))
i∗1−→ Hk(C�(G2))

i∗2−→ · · · i∗l−1−→ Hk(C�(Gl))
ϕ∗l−→ Hk(C�(Gl+1))

ϕ∗l+1−→ · · · ϕ∗rs−1−→ Hk(C�(Grs )) ≈ 0, k> 0,
(5.2)

of homology groups and induced homomorphisms exists, where each i∗j is an isomorphism. If 0 �= [c] ∈
Hk(C�(G)), then—since each i∗j in the sequence is an isomorphism—it must be the case that

Φ([c]) ≡ i∗l−1 ◦ i∗l−2 ◦ · · · ◦ i∗1([c]) �= 0. (5.3)

Now let q ∈ {l, l + 1, l + 2, . . . , rs − 1} be the smallest integer such that ϕ∗q ◦ ϕ∗q−1 ◦ · · · ◦ ϕ∗l ◦Φ([c]) = 0,
in which case λ(c) = q + 1 − 1 = q ≥ l. �

It is clear that theorem 5.3 only applies when g(G) ≥ 10 and is most useful for graphs with extremely
large girths. Lemma 4.2 provides a relatively straightforward and quick method for determining if g(G)
is large enough to apply theorem 5.3.

The importance of chordal graphs as delimiters for persistent trivial homology in r filtrations is
expressed in the next theorem. Chordal graphs have been studied extensively over the last several
decades and efficient algorithms have been developed which can recognize when a graph is chordal
(e.g. [22]).

Theorem 5.4. Suppose that Grc is an (Sn)-free chordal graph. Then λ(c) ≤ rc − 1 for every 0 �= [c] ∈
Hk(C�(Gr)), k> 0, r < rc.

Proof. Since Grc is a chordal graph with no sunflower, then (Grc )j is chordal for all j ≥ 1 (lemma 4.4).
Consequently, C�((Grc )j), j ≥ 1, are homologically trivial complexes so that Hk(C�((Grc )j)) ≈ 0, k> 0, for
j ≥ 1 (lemma 4.3). It must therefore be the case that for k> 0, all non-zero homology classes [c] are ‘born’
and ‘die’ in C�(Gr) with r< rc. Since r = 1 is the smallest power index for which [c] �= 0 can be ‘born’ and
r = rc is the largest power index for which [c] �= 0 can ‘die’, then the persistence lifetime of c can be no
greater than rc − 1 when k> 0. �
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5.2. Persistent periodicity and transient noise in r filtrations
While it is the case that all chordal graphs are not closed under powers [23] (a situation for which closure
occurs (lemma 4.4) has been applied in theorem 5.4), it is nonetheless true that every odd power of a
chordal graph G is also chordal (lemma 4.5). Thus, the presence of a chordal graph at rc(G)< rs(G) in an r
filtration—at a minimum—guarantees that at least a periodic homological triviality persists in the associated
complexes in the filtration. In what follows, it will be assumed that all power indices do not exceed the
stabilization distance rs(G).

Theorem 5.5. If Grc is a chordal graph, then Hk(C�((Grc )2j+1)) ≈ 0, k> 0, j ≥ 0.

Proof. As Grc = (Grc )1 is a chordal graph, then so are the graphs (Grc )2j+1, j ≥ 1 (lemma 4.5). The fact
that the homology of the clique complexes of these graphs is trivial follows from lemma 4.3. �

Thus, every entry corresponding to C�((Grc )2j+1), j ≥ 0, in the associated β(G) binary barcode is 0,
i.e. these 0 entries repeat in β(G) with a period of 2.

As indicated by lemma 4.6, it can be the case that G2 is not chordal even though G is (however, if G2

is chordal, then all powers 1 ≤ r< rs of G are necessarily chordal [20] and G exhibits persistent triviality).
This situation can produce transient ‘topological noise’ that is a feature peculiar to r filtrations and is
described by the following corollary. Because this result is an obvious consequence of the last theorem, it
is stated without proof.

Corollary 5.6. Assume that G is a chordal graph and G2 is not a chordal graph. Then every non-zero homology
class [c] ∈ Hk(C�(G2j)), k> 0, j ≥ 1, is transient noise.

A special case of this—persistent periodic transient noise—arises when every C�(G2j), j ≥ 1, has at
least one non-zero homology class in some non-zero dimension. In this case, the entries in the binary
barcode β(G) corresponding to C�(G2j), j ≥ 1, are 1 (i.e. 1 repeats with period 2) and those corresponding
to C�(G2j+1), j ≥ 1, are 0 (i.e. 0 repeats with period 2). Thus, beginning with the first location which
corresponds to C�(G) the pattern 01 is repeated for the remainder of the string (of course, the rsth and
final entry in β(G) is 0). Note that even if Hk(C�(G2)) ≈ 0, k> 0, the fact that G2 is not chordal signals a
structural change in the relationships between subsets of vertices of G that may provide useful insights
into the properties of G (e.g. see the sunflower graph example in the next section).

It is interesting to note (lemmas 4.4 and 4.6) the significance of sunflower subgraphs Sn in determining
the persistence and periodicity of homological triviality in r filtrations. Obviously, if Sn�G and G is
chordal, then G is closed under powers, the clique complexes of all powers of G (through its stabilization
distance) are homologically trivial, and G exhibits persistent triviality. Perhaps not so obvious is the case
where a sunflower subgraph in a chordal graph G prevents G2 from being chordal. However, with a little
reflection, it is easily seen that consecutive pairs of the independent vertices {u1, u2, . . . , un} for each Sn ⊆
G are separated by a graph distance of two and are therefore adjacent in G2. This forms chordless cycles
Cn in G2, thereby rendering it non-chordal and producing non-zero homology classes in H1(C�(G2)).
Clearly, when Sn, n ≥ 4, is suspended in G, then G cannot be chordal because the suspension itself induces
chordless cycles in G. Consequently, C�(G) exhibits a non-trivial homology because these cycles generate
non-zero homology classes in H1(C�(G)).

6. Examples
It is worthwhile to illustrate several of the theorems developed above using graphs of relatively
small order. As a first example consider the cycle graph C11 and note that there is a counting
number l = 3> 2 such that 3l + 1 = 3 · 3 + 1 = 10< g(C11) = 11. As the cycle C11 clearly induces the
non-zero homology class [c] ∈ H1(C�(C11)) ≈ Z, then—from theorem 5.3—it must be the case that
λ(c) ≥ 3. In order to verify this, note that λ(c)< 5 because diam(C11) = 5 = rs(C11) so that C5

11
∼= K11

and H1(C�(C5
11)) ≈ 0. When r = 2(3){4} then every three (four) {five} consecutive vertices in C11 forms

eleven 2(3){4}—simplices in C�(Cr
11)—each of which contracts to a point and yields C�(C11) as

the resulting complex. Consequently, H1(C�(C11)) ≈ H1(C�(C2
11)) ≈ H1(C�(C3

11)) ≈ H1(C�(C4
11)) ≈ Z and

λ(c) = 4 ≥ 3, thereby confirming the assertion of theorem 5.3. The associated binary r persistence barcode
is the string β(C11) = 11110.

This example also illustrates theorem 5.4. In particular, as H1(C�(C4
11)) ≈ Z, then C4

11 is not chordal
(via contrapositive of lemma 4.3 because C4

11 is connected). It follows that rc(C11) = rs(C11) = 5 and that
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Figure 1. S4 (dark edges) andS2
4 (dark and light edges).

Crc
11 = C5

11
∼= K11 is a sunflower free chordal graph. This—when combined with the discussion in the last

paragraph—validates theorem 5.4 because λ(c) = 4 = rs(C11) − 1.
Now consider the sunflower graph S4 (dark edges) and S2

4 (dark and light edges) shown in figure 1.
Although S4 is chordal so that rc(S4) = 1, S2

4 is not because the four cycle c = (1683) does not have a
chord. However, C�(S2

4 ) is homologically trivial as c can be contracted through the four 2—simplices
corresponding to the petals of the sunflower onto the central square defined by the vertices 2,4,5 and
7. In addition, it is easily determined by inspection that diam(S4) = 3 = rS(S4) so that S3

4
∼= K8. Thus,

H1(C�(S4)) ≈ H1(C�(S2
4 )) ≈ H1(C�(S3

4 )) ≈ 0 and S4 exhibits persistent triviality. The associated persistence
binary barcode is β(S4) = 000.

Because there are no non-zero homology classes in H1(C�(S2
4 )) and therefore no transient noise, these

results are consistent with corollary 5.6. Also—as per the discussion in the last section—the fact that S4
is chordal and S2

4 is not chordal could indicate potentially useful insights into the properties of S4 (e.g.
although vertices 1,6,8 and 3 are unrelated in S4, the vertices in the vertex pairs 13,38,68 and 16 are close
enough in S4 to be related by a single unit change in r).

Both Rips filtrations and Čech filtrations are used in the analysis of large datasets in Rn. Recall that the
Čech complex associated with a finite collection Σ of data points in Rn is the abstract simplicial complex
whose k-simplices are those subsets of k + 1 data points inΣ whose closed ball neighbourhoods of radius
β have a common point of intersection, whereas points in the simplices in the associated Rips complex
are pairwise within a distance ε. A Čech (Rips) filtration of Σ is performed by varying the value of the
ball radius β (the value of ε) and constructing a Čech (Rips) complex for each β (ε) value of interest.

In what follows, a Čech filtration of a datasetΣ of 30 points in Rn is used to construct a series of graphs
for Čech complex representations of Σ . For the purpose of comparison, an r filtration of an associated
relative neighbourhood graph R representation of Σ is used to highlight several advantages that can be
obtained by using power filtrations instead of Euclidean filtrations in the analysis of large datasets.

The graphs of four Čech complexes obtained from a Čech filtration of the 30 point dataset Σ are
shown in figure 2 for ball radius values β = 0.22, 0.41, 0.55 and 0.71. As can be seen in the figure, the
disconnected components do not persist: the graph of the initial complex Č0.22 at β = 0.22 is highly
disconnected and the distribution of connected components of the graph of Č0.22 in the figure is
‘circular’. As β increases, the number of connected components in the graphs of the associated complexes
decreases until the graph of the complex Č0.71 is completely connected around a ‘large one-dimensional
hole’ γ at β = 0.71. Although the homology group sequence H0(Č0.22) ≈ Z ⊕ Z ⊕ · · · ⊕ Z (14 copies of
Z), H0(Č0.41) ≈ Z ⊕ Z ⊕ Z ⊕ Z ⊕ Z, H0(Č0.55) ≈ Z ⊕ Z and H0(Č0.71) ≈ Z of the four complexes cannot
explicitly detect γ , the lack of persistence in zero dimensional homology and the β range over which
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b = 0.22 b = 0.41

b = 0.55 b = 0.71

Figure 2. Graphs of Čech complexes obtained from a Čech filtration of datasetΣ .

r = 2

r = 3 r = 4

Figure 3. The relative neighbourhood graphR and its first three powers for datasetΣ .

the rank of the zero-dimensional homology groups decreases from 14 to 1 provides a good description
of the Euclidean compactness of Σ in Rn (the presence of γ would be detected by H1(Č0.71)).

A relative neighbourhood graph [24] on a dataset X has X as its vertex set with an edge between xi, xj ∈
X if and only if X ∩ B(xi, dij) ∩ B(xj, dij) = ∅. Here, B(x, ρ) is the open ball in Rn of radius ρ and centre x,
and dij = d(xi, xj) is the Euclidean distance between xi and xj. The importance of a relative neighbourhood
graph of X is that it provides a single graph representation of X that serves as a ‘primal sketch’ of its
topological features.

The relative neighbourhood graph R and its first three powers for the 30 element datasetΣ are shown
in figure 3. Observe that: (i) R immediately exhibits the connected cyclic structure of Σ that eventually
emerged in the Čech filtration ofΣ at a sufficiently large β value; and (ii) the cyclic structure ofΣ persists
in Rr, 1 ≤ r ≤ 4. Because C�(R) is connected and if c is the cycle in R so that 0 �= [c] ∈ H1(C�(R)), then—by
inspection—H0(C�(R)) ≈ Z ≈ H1(C�(R)) and Hk(C�(R)) ≈ 0, k> 1. However, more can be deduced about
the persistence of homological features in C�(Rr) by first noting that g(R) = 29 and then by applying
lemma 4.1, theorems 5.2 and 5.3. In particular, when l = 9> 2, then 3l + 1 = 28< 29 = g(R) in which
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b = 0.15(a) (b)

(c) (d)b = 0.31 b = 0.62

Figure 4. (a–d) Comparison ofΓ with graphs of Čech complexes obtained from a Čech filtration ofΨ .

case Hk(C�(R)) ≈ Hk(C�(R2)) ≈ · · · ≈ Hk(C�(R9)), k ≥ 0. Thus, H0(C�(Rr)) ≈ Z, 1 ≤ r ≤ rs(R), H1(C�(Rr)) ≈
Z, 1 ≤ r ≤ 9 so that λ(c) ≥ 9, and Hk(C�(Rr)) ≈ 0, 1 ≤ r ≤ 9, k> 1.

As a final example, consider the relative neighbourhood graph Γ representation of another dataset
Ψ �=Σ consisting of 40 data points in Rn shown in figure 4a. Observe that the single graph Γ immediately
discerns three cycles (at different scales), whereas they only gradually emerge from a Čech filtration of
Ψ as β increases. The power filtration of Γ provides essentially the same information about Ψ as the
Čech filtration but—unlike the Čech filtration—it has the advantage that (in this case) it provides this
information with a single graphical representation of Ψ so that Ψ is accessed only once to compute Γ .
It is easy to see from theorem 5.2 that H0(C�(Γ r)) ≈ Z, 1 ≤ r ≤ rs. However, observe that as g(Γ ) = 5< 10,
theorem 5.3 cannot be applied to the filtration of Γ .

7. Closing remarks
This paper has introduced the notion of using homological persistence in simplicial complexes obtained
from power filtrations of simple graphs as an approach to probing their topological structure. This
method is especially useful when applied to graphs with girths greater than 10. In these cases, the
homologies of complexes in the filtration remain isomorphic and persist over a range of power indices
that increases with increasing girth. An interesting feature of power filtrations of graphs is the fact that
the emergence of a pre-stabilization chordal graph in a filtration signals the presence of trivial or periodic
homology which persists for the remainder of the filtration.

Using as examples datasets in Rn, it is also suggested that: (i) for those cases where a data-derived
graph is designed to elicit information of interest and the graph can be computed efficiently, power
filtration provides an alternative approach to persistent homology analysis while providing information
comparable to that obtained from Čech or Rips filtrations and (ii) because it requires only an initial
single graph representation of a dataset, power filtrations tend to reduce ‘topological noise’ in many
practical applications.

In closing, it is important to note that the results of this paper can be applied directly to such cases
as physical network and social network analysis where the data are naturally represented as a simple
graph. In addition, in manifold learning a single simple graph is constructed and used to produce a
data embedding into a lower dimensional space. The results of this paper provide a mechanism for
understanding the topology of this graph along with the potential for producing additional information
relevant to the associated embedding [25].

Data accessibility. The following R code was used to generate the example 30 point dataset Σ in §6:

set.seed(435243)
N <- 30
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................................................
theta <- seq(0,2*pi,length=N+1)[-1]
z <- cbind(cos(theta)+rnorm(N,0,.1),sin(theta)+rnorm(N,0,.1))

The following R code was used to append datasetΣ with 10 additional points to produce the example 40 point dataset
Ψ in §6:

set.seed(89820)
r <- .1
n <- 10
thetar <- seq(0,2*pi,length=n+1)[-1]
x <- cbind(r*cos(thetar)+rnorm(n,0,.1*r),r*(sin(thetar)+rnorm(n,0,.1*r))
y <- rbind(z,x)
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