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The photodegradation of benzothiazole (BTH) in wastewater
with the coexistence of iron oxides and oxalic acid under UV
light irradiation was investigated. Results revealed that an
effective heterogeneous photo-Fenton-like system could be set
up for BTH abatement in wastewater under UV irradiation
without additional H2O2, and 88.1% BTH was removed
with the addition of 2.0 mmol l−1 oxalic acid and 0.2 g l−1

α-Fe2O3 using a 500 W high-pressure mercury lamp (365 nm).
The degradation of BTH in the photo-Fenton-like system
followed the first-order kinetic model. The photoproduction of
hydroxyl radicals (·OH) in different systems was determined
by high-performance liquid chromatography. Identification
of transformation products by using liquid chromatography
coupled with high resolution tandem mass spectrometry
provided information about six transformation products
formed during the photodegradation of BTH. Further insight
was obtained by monitoring concentrations of the sulfate ion
(SO4

2−) and nitrate ion (NO3
−), which demonstrated that the

intermediate products of BTH could be decomposed ultimately.
Based on the results, the potential photodegradation pathway
of BTH was also proposed.

1. Introduction
Benzothiazoles (BTHs), a group of xenobiotic compounds
consisting of a five-membered 1,3-thiazole ring attached to
a benzene ring by a common C−C bond, are used in a
variety of industry products and processes. For example, BTHs
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are used as slimicides in the paper and pulp industry [1], as fungicides in lumber and leather production
[2], as vulcanization accelerators in the manufacture of rubber products and tyres [3], and as stabilizers
in the photo industry [4].

Owing to the widespread use and poor elimination of BTHs by conventional wastewater treatment
processes [5], sewage is considered as their main pathway to the aquatic environment [6]. An additional
source of BTHs in water includes street runoff containing abrasion residues of tyres [7]. An average
concentration of BTHs in an effluent from a Greek wastewater treatment plant was 254 ng l−1 [6],
and a survey done in China revealed that the occurrence of BTHs in river water was in the range of
158–473 ng l−1 [8].

It was found that most of BTHs not only inhibited the activity of microorganisms [9] but also showed
toxic effects to mammals. The advanced oxidation processes (AOP), such as H2O2/UV, photo-Fenton
and ozone, have been used to oxidize benzothiazole compounds [10–14], suggesting that AOP can be
efficient for elimination of BTHs.

Oxalic acid is ubiquitous in water and soil [15]. Iron is the fourth most abundant element of the
Earth’s crust (5.1 mass%). Major iron oxides in the natural environment include goethite (α-FeOOH),
hematite (α-Fe2O3), maghemite (γ-Fe2O3), lepidocrocite (γ-FeOOH) and magnetite (Fe3O4). In recent
years, development of heterogeneous photo-Fenton process has caused increasing research interest. And
solid iron hydroxides/oxides such as hydroxyl-Fe [16], hematite [17], maghemite [18], goethite [19],
magnetite [20,21], Fe3O4@γ-Fe2O3 [22], and Fe3O4/multiwall carbon nanotubes/polyhydroquinone
[23] have been used as catalysts in heterogeneous photo-Fenton process. A so-called photo-Fenton-
like system under light irradiation can be set up when iron oxides and oxalic acid coexist [15,24,25].
It has been reported that 2-mercaptobenzothiazole can be oxidized by photo-Fenton-like techniques, and
degradation efficiency could be greatly accelerated with the co-presence of iron oxides and oxalate [26].

Here, we aim to investigate the photodegradation behaviour of BTH and define the best conditions
to improve the BTH degradation in a heterogeneous system composed of iron oxides and oxalic acid.
Meanwhile, based on the data obtained from high-performance liquid chromatography coupled with
quadrupole time-of-flight mass spectrometry (HPLC-QTOF-MS) analysis and the calculation of the
frontier electron density of BTH, the initial steps of degradation of BTH and its resulting transformation
products were proposed.

2. Material and methods
2.1. Reagents
BTH (technical grade, 96%) and oxalic acid (AR, 98%) were purchased from Shanghai Aladdin
Biochemical Technology Co., Ltd, China. α-Fe2O3 (99.5%, 30 nm) was obtained from Shanghai Ziyi
Reagent Co., Ltd, China. Other analytical-grade chemicals were purchased from Sinopharm Chemical
Reagent Co., Ltd, China. Methyl alcohol (HPLC grade) was used for HPLC analysis. Chromatographic-
grade methyl alcohol was purchased from Tedia Company, USA. All chemicals were used without
further purification and all solutions were prepared using double-distilled water.

2.2. Experiments of benzothiazole photodegradation
The photodegradation experiments of BTH were carried out in an XPA-7 photochemical reactor (Xujiang
Electromechanical Plant, Nanjing, China). Throughout the experiments, the experimental solution
temperature was maintained at 20 ± 1°C by cooling water circulation. The irradiation source was a 500 W
high-pressure mercury lamp with a maximum light intensity output at 365 nm. The lamp was placed into
a hollow quartz trap located at the centre of the reactor. The light intensity at quartz tube positions was
measured to be 8.96 × 102 mW cm−2 by a UV irradiation meter (UV-A, Beijing Normal University, China),
and illumination to be 7.9 × 104 lx by a lux meter (AS-813, Smart Sensor, China). Before irradiation,
the suspension was sealed and agitated for 30 min to reach adsorption equilibrium. The initial pH of
reaction solutions was regulated with sulfuric acid solution (with hydrochloric acid when acid ions were
measured) and sodium hydroxide solution, and the final solution volume was adjusted to 50 ml with
double-distilled water. Then, the solution was placed into the photochemical reactor and stirred with
magnetic stirrers. At fixed time points, analytical samples were withdrawn from the suspension with a
pipette, immediately centrifuged at 10 000 r.p.m. and then filtered by using a syringe equipped with a
0.45 µm membrane filter for further analysis.
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2.3. Analysis methods
The concentrations of BTH during the experiments were quantified by a PerkinElmer HPLC equipped
with a SPHERI-5RP-18 column (4.6 × 150 mm, 5 µm) at a wavelength of 254 nm, and the retention time
of BTH was 6.4 min. The mobile phase was methanol–water (90 : 10, v/v), and the flow rate was set as
0.6 ml min−1.

Identification of transformation products (TPs) in the solution was performed by employing a Waters
Acquity G2 Q-TOF LC-MS instrument, which was composed of a Waters Acquity ultra-performance
liquid chromatography (UPLC) system coupled to a QTOF mass spectrometer. Analytes were eluted
with a gradient programme using MeOH (A) and water (B), both acidified with 0.1% formic acid. And
the gradient programme was: held at 15% A for 0–2 min; 2.0–16.0 min, linear increase 15–95% A; 16.0–
21.0 min, held at 95% A; 21.0–21.1 min, immediately reduced to 15% A to equilibrate the column [11].
All samples were kept refrigerated at 10°C in the UPLC auto sampler, and a 1.0 µl injection volume
was used with a total flow rate of 0.2 ml min−1 over a total run time of 12 min. Mass spectrometry was
performed on a Waters Synapt G2S Q-TOF (Micro mass MS Technologies, Manchester, UK) equipped
with an electrospray ionization source operating both in positive and negative modes. The high-purity
nitrogen as the nebulization gas was set at 800 l h−1 at a temperature of 500°C, and the cone gas was set
at 50 l h−1. The capillary voltages under positive and negative modes were set at 5.0 kV and −4.5 kV,
respectively. Argon was used as the collision gas. The cone voltages were both set at 35 V, but the
energies for collision-induced dissociation in positive and negative ion modes were set at 5.0 eV and
7.0 eV respectively for the fragmentation information.

Scavenging of ·OH by excess benzene was introduced into different reaction systems to determine the
·OH quantum yield under irradiation of a 500 W Hg lamp. Phenol produced from the reaction of benzene
and ·OH was detected at 254 nm by HPLC, in which 25% (v/v) acetonitrile was used as a mobile phase
at a flowing rate of 1.0 ml min−1 under isocratic conditions at 25°C. Samples of 10 µl were injected into
the column through the sample loop for analysis [25].

Analyses of sulfate ion and nitrate ion were performed according to standard methods proposed by
PRC State Environmental Protection Administration [27].

2.4. Kinetic study
The kinetic description of BTH degradation processes through the pseudo-first-order approach was
made, and the first-order rate constants of phototransformation (k[s−1]) of the investigated compound
were obtained by linear regression of the natural logarithmic relative residual concentration over
irradiation time t[s], which is described by the following equation:

kt = ln
(

C0

Ct

)
, (2.1)

where Ct is the concentration of BTH at given time, C0 is the initial concentration, and k is the rate
constant.

2.5. Calculation of the frontier electron density of benzothiazole
By means of the calculation of BTH at the B3LYP/6-311G** level with the density functional theory
method, the frontier electron densities (FEDs) of the highest occupied molecular orbital (HOMO) and
the lowest unoccupied molecular orbital (LUMO) were both obtained. For the purpose of predicting the
reaction sites for hydroxyl addition, values of FED2

HOMO + FED2
LUMO were also calculated.

3. Results and discussion
3.1. Photodegradation of benzothiazole in different systems under UV light irradiation
The photodegradation of BTH in different systems is shown in figure 1a. With the absence of oxalic acid
and α-Fe2O3, the photodegradation rate was only 8.8% under UV light (500 W, Hg lamp) in 60 min.
While the removal percentage of BTH dropped to 3.0% when 0.2 g l−1 α-Fe2O3 was added under
the otherwise same conditions, and the removal of BTH increased up to 11.5% when just oxalic acid
(2.0 mmol l−1) was added under UV light. However, when 2.0 mmol l−1 oxalic acid and 0.2 g l−1 α-Fe2O3
were simultaneously added into the reaction system under UV irradiation, the removal percentage of
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Figure 1. Photodegradation of 100 mg l−1 benzothiazole under UV irradiation in 50 ml solutions (pH= 2 ) (a) and the production of
hydroxyl radicals (·OH) in different reaction systems under UV irradiation (500 W, Hg lamp, pH= 2) (b).
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Figure 2. Potential pathway of the photochemical reaction inα-Fe2O3/oxalate complex system.

BTH significantly increased up to 88.1%. Therefore, with only α-Fe2O3 or only oxalic acid, the reaction
system shows low photocatalytic activities for BTH degradation. While BTH can be efficiently degraded
with the synergistic effect of iron oxides and oxalate under UV light irradiation, for the reason of a
heterogeneous photochemical Fenton-like system being set up. It is reported that fenuron [17] and
mesotrione [25] can be efficiently photodegraded in such a system.

3.2. Production of hydroxyl radicals in different reaction systems
The generation of hydroxyl radicals (·OH) in photochemical reactions with high oxidation potential is
critical to the degradation of organic pollutants. Particularly, yield of ·OH could be an indicator for
photochemical degradation in the α-Fe2O3/oxalate system. Therefore, the concentration of ·OH was
detected during the photochemical reaction process in the present study. The concentration of ·OH in the
reaction system depends on the rates of generation and consumption. As shown in figure 1b, the yield
of ·OH produced in the system of α-Fe2O3 or oxalate alone is much lower than that with coexistence
of α-Fe2O3 and oxalate system. The ·OH was generated quickly in the initial 10 min, and the maximum
·OH concentration detected was about 6 μmol l−1 after 10 min.

To understand the photochemical reaction process of BTH degradation in such a α-Fe2O3/oxalate
complex system, the interaction of α-Fe2O3 and oxalate under UV light irradiation was discussed
in detail [26] (figure 2). Firstly, oxalic acid was adsorbed on the surface of α-Fe2O3 particles, which
accelerates the formation of α-Fe2O3/oxalate complexes, [≡FeIII(C2O4)n]3−2n, and a part of these
complexes are dissolved in the solution. [≡FeIII(C2O4)n]3−2n on the α-Fe2O3 particle surface and in
the solution both possessed high photochemical activity, which is easy to be excited to generate oxalate
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Figure 3. Effect ofα-Fe2O3 dosage (a), initial concentration of oxalate (b) and pH value (c) on the photodegradation of 100 mg l−1 BTH
under UV irradiation (500 W, Hg lamp). (Insets present the dependence of k.)

radicals (C2O4)•− and transferred into carbon-centred radicals (CO2)•−. The excited electrons were
transferred from CO2

• − to the adsorbed oxygen forming superoxide ion (O2
• −), which reacted with

Fe3+ to form O2 and Fe2+. In the acidic solution, O2
• − reacted with Fe2+ to form H2O2 and Fe3+. Thus,

·OH could be formed through the reaction of H2O2 with Fe2+. At the same time, Fe3+ also formed.
Finally, BTH was oxidized by ·OH with strong oxidation potential. As reported by Balmer & Sulzberger
[28], when the oxalate concentration was more than 0.18 mmol l−1 in the Fe3+/oxalate system, Fe(III)
mainly existed as Fe(C2O4)2

_ and Fe(C2O4)3
3−, both of which could be more efficiently photolysed than

other Fe(III) species. Therefore, the BTH photodegradation was improved significantly in the system of
oxalic acid and α-Fe2O3.

Radical quenching experiments are very useful methods for proving the effect of hydroxyl radical.
Chen et al. [25] selected benzene as the hydroxyl radical scavenger to show that ·OH produced from the
photocatalysis was the key to lead the degradation of organics.

3.3. Effect of the dosage ofα-Fe2O3 on benzothiazole photodegradation
As shown in figure 3a, the effect of α-Fe2O3 dosage on BTH photodegradation was investigated in the
presence of oxalic acid with an initial concentration of 2.0 mmol l−1 under irradiation of a 500 W high-
pressure mercury lamp.

With the absence of α-Fe2O3, the degradation of BTH was very slow, and the degradation rate
was only 12.3% (curve 0.0 g l−1). Nevertheless, the degradation of BTH was obviously accelerated after
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adding α-Fe2O3 in the reaction system, indicating that α-Fe2O3 was an effective photocatalyst for BTH
degradation with the assistance of oxalic acid. The removal percentage of BTH rose up to 92.88% when
the concentration of α-Fe2O3 was increased to 0.2 g l−1. However, the removal percentage declined
slightly when the dosage of α-Fe2O3 increased from 0.2 to 0.6 g l−1, because the excessive amount of
α-Fe2O3 might restrain the UV light scattering in the reaction suspension and reduce the generation
of ·OH.

The kinetics of the reaction process was also studied. The photodegradation of BTH in the
α-Fe2O3/oxalate system under UV irradiation was in accordance with first-order kinetics. The first-order
kinetic constants (k) were calculated to be 0.5 × 10−2, 6.8 × 10−2, 5.9 × 10−2 and 5.3 × 10−2 min−1 with 0.0,
0.2, 0.4 and 0.6 g l−1 α-Fe2O3, respectively. The changes of k versus α-Fe2O3 dosage (figure 3a inset) reveal
that the optimum concentration of α-Fe2O3 was 0.2 g l−1 in the proposed α-Fe2O3/oxalate system for the
best BTH photodegradation performance. As a heterogeneous photocatalyst, α-Fe2O3 could remarkably
accelerate the generation of [≡Fe(C2O4)n]3−2n. Under UV irradiation, ·OH could be produced more with
more [≡Fe(C2O4)n]3−2n generated during the photochemical reaction. However, excessive dosage of α-
Fe2O3 might restrict the penetration of UV light in the solution and decrease UV light intensity, which is
confirmed by Wu et al. [29].

3.4. Dependence of the benzothiazole photodegradation on the oxalate initial concentration
In order to survey the effect of the oxalate initial concentration (C0

ox) on the photodegradation of BTH,
experiments were carried out with the initial BTH of 100 mg l−1 and α-Fe2O3 dosage of 0.2 g l−1 under
UV irradiation (500 W Hg lamp). The results are shown in figure 3b. In the absence of oxalate, BTH was
degraded slowly and the concentration of BTH almost unchanged under the irradiation for 60 min (curve
0.0 mmol l−1). However, The rate of BTH photodegradation was improved markedly as a consequence
of oxalate increase in the suspension of α-Fe2O3/oxalate. However, the degradation rate of BTH is not
always increased with the initial oxalate concentration, which means excessive oxalate could inhibit the
degradation of BTH. The excessive oxalate would lead to the occupation of the adsorbed sites on the iron
oxide surface. Besides, the excessive oxalate also can result in a lower pH at the beginning, so a large
amount of Fe3+ would form [26,30].

The photodegradation of BTH in the α-Fe2O3/oxalate system was fitted with first-order kinetics
and the first-order kinetic constants (k) versus C0

ox are shown in figure 3b (inset). When the initial
concentrations of oxalic acid were 0.0, 1.0, 2.0, 3.0 and 4.0 mmol l−1, the k values of BTH degradation
were calculated to be 0.5 × 10−2, 1.9 × 10−2, 6.7 × 10−2, 2.7 × 10−2 and 2.6 × 10−2, respectively. The results
revealed that the BTH photodegradation rate increased with initial oxalic acid concentration increase
firstly, but reached maximum value when the initial concentration of oxalic acid was increased to
2.0 mmol l−1. Therefore, it is necessary to control the concentrations of α-Fe2O3 and oxalate for BTH
photodegradation, because excessive oxalic acid would overwhelmingly occupy the active sites on the
surface of α-Fe2O3 and facilitate the competitive reaction with the generated ·OH, while less oxalic acid
would lead to incomplete reaction.

3.5. Effect of the initial pH value on benzothiazole photodegradation
To study the effect of the initial pH value on BTH photodegradation, a series of experiments were carried
out in this study. Initial pH of the solution was adjusted by NaOH or H2SO4 before reaction. And the
initial concentration of BTH is 100 mg l−1 with the presence of 0.2 g l−1 α-Fe2O3 and 2.0 mmol l−1 oxalic
acid under UV irradiation (500 W Hg lamp). At pH = 7.0, the degradation efficiency of BTH changes less.
When the pH value was decreased, the degradation efficiency is gradually improved. Especially, when
pH value reaches 2.0, the degradation efficiency is increased to maximum value of 90.57% (figure 3c).
The first-order kinetic constants (k) were 6.7 × 10−2, 2.1 × 10−2, 0.4 × 10−2, 0.2 × 10−2 when the initial
pH values were 2.0, 3.0, 5.0, 7.0, respectively. In system of α-Fe2O3/oxalate/UV, a high concentration of
[≡Fe(C2O4)n]3−2n with high photocatalytic activity might appear at a lower pH value.

3.6. Identification of the photodegradation intermediates and products
Various TPs are often produced in advanced oxidation processes, because the reaction between ·OH and
organic pollutants is non-selective. Degradation intermediates were determined by UPLC and QTOF
analysis. And the chromatographic retention time, relative molecular weight and ion information of the
intermediates were comprehensively analysed using the method of extracting mass spectrometry. Based
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Table 1. FED2HOMO + FED2LUMO values of BTH atoms calculated at the B3LYP/6-311G** level using Gaussian 09 program.

number (atom)a FED2HOMO + FED2LUMO number (atom) FED2HOMO + FED2LUMO
1S 0.294443 6Cb 0.205303

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2Cb 0.315164 7C 0.0045209
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3N 0.148739 8Cb 0.167837
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4C 0.076377 9Cb 0.184021
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5C 0.032246
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

aSee figure 2 for atom numbering.
bAtoms in italics means these atoms have the highest FED2HOMO + FED2LUMO values, thus are more likely to be attacked by hydroxyl radical.

on the comparison of the mass spectra of the photodegradation solution at 0 min and 50 min during the
reaction process, a host of new peaks appeared (figure 4). The major TPs included such hydroxylation
products as the mono-hydroxylated BTH with mass–charge ratio (m/z) of 150.02, di-hydroxylated BTH
at m/z 166.01 and tri-hydroxylated BTH at m/z 182.00, among which the peaks at m/z 150.02 might also
correspond to benzothiazol-2(3H)-one.

To correctly characterize the positions of hydroxylation in mono-hydroxylated compounds, the FEDs
of BTH were calculated to predict the reaction sites for ·OH attack. The results are summarized in table 1.
According to the frontier orbital theory, the prior ·OH addition probably occurs on the atom with the
highest FED2

HOMO + FED2
LUMO value [31], which has been testified to be reasonable by published

work [32]. As shown in table 1, 6C, 8C and 9C sites in phenyl ring and 2C in thiazole had the highest
FED2

HOMO + FED2
LUMO value, suggesting benzene was likely to be attacked by ·OH, thus resulting in

the generation of mono-hydroxylation products. However, it should be noted that the possibility for ·OH
addition to thiazole moiety is much higher than addition to phenyl moiety.
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Figure 5. Concentration curve of benzothiazol-2(3H)-one (a), and concentrations of NO3− and SO42− (b). (Reaction conditions:
100 mg l−1 BTH under UV irradiation in presence of 0.2 g l−1 Fe2O3, 2 mmol l−1 oxalate and pH= 2.)

m/z 200.00m/z 150.02 m/z 166.01 m/z 182.00 m/z 171.97

m/z 150.02 m/z 206.00m/z 166.01 m/z 182.00

Figure 6. Possible photodegradation pathway of BTH in UV irradiated α-Fe2O3/oxalate system (TPs marked with dashed frame were
detected in none of the samples, but Borowska et al. [11] had detected 1© and 2©).

The concentration change of benzothiazol-2(3H)-one, one of the intermediates, was determined by
liquid chromatography (LC), as shown in figure 5a. As seen, the concentration of benzothiazol-2(3H)-
one increased with time during 20–70 min followed by a gradual decay, indicating that the formation
and transformation of benzothiazol-2(3H)-one were accompanied with the degradation of BTH.

The concentration change of inorganic ions during the BTH photocatalysis process is depicted in
figure 5b. As clearly seen, the sulfur atom and nitrogen atom in the thiazole structure could be converted
to sulfate ions (SO4

2−) and nitrate (NO3
−), respectively. Thus it was illustrated that intermediates can be

decomposed ultimately.
Data obtained above were used to propose a schematic pathway of BTH degradation by

α-Fe2O3/oxalate (figure 6). The degradation of BTH starts with the hydroxylation, and then produces
mono-, di- or tri-hydroxylated BTH. However, hydroxylation of the aromatic ring makes it more unstable
and prone to ring opening. The oxidation products of tri-hydroxylated BTH may be found at m/z 200.00
or 171.97 (neither of them has been detected in the samples, but reported in the literature [11]), and the
latter corresponds to the loss of one atom of carbon and gain of four atoms of oxygen, which suggests
the benzene ring opening and subsequent decarboxylation [33].

4. Conclusion
The photocatalytic degradation of BTH has been investigated in UV irradiated α-Fe2O3/oxalate system
in this study, as a photo-Fenton-like system without additional H2O2. The optimum degradation
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conditions were found to be: initial pH 2.0, α-Fe2O3 dosage 0.2 g l−1 and initial oxalate concentration
2.0 mmol l−1 under 500 W of UV light irradiation (Hg lamp). Photocatalysis reactions followed
pseudo-first-order kinetics. Organic transformation products were identified by LC–MS analysis, and
the major photoproducts included hydroxylated products, benzene ring cleavage compounds and
phenylimidazolecarboxylic derivatives. The calculation of FEDs predicted that the benzene in BTH
was likely to be attacked by ·OH, resulting in the formation of mono-hydroxylation products. Sulfur
atom of BTH was converted to a sulfate ion while nitrogen atom was released as nitrate, implying that
intermediates can be decomposed further after a certain irradiation time. The results obtained in this
study are helpful to understand the environmental fates of BTH, and also can provide a viable technology
for BTH removal from water.
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