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People tend to align their use of language to the linguistic
behaviour of their own ingroup and to simultaneously diverge
from the language use of outgroups. This paper proposes
to model this phenomenon of sociolinguistic identity
maintenance as an evolutionary game in which individuals
play the field and the dynamics are supplied by a multi-
population extension of the replicator–mutator equation.
Using linearization, the stabilities of all dynamic equilibria of
the game in its fully symmetric two-population special case are
found. The model is then applied to an empirical test case
from adolescent sociolinguistic behaviour. It is found that
the empirically attested population state corresponds to one
of a number of stable equilibria of the game under an
independently plausible value of a parameter controlling the
rate of linguistic mutations. An asymmetric three-population
extension of the game, explored with numerical solution
methods, furthermore predicts to which specific equilibrium
the system converges.
1. Introduction
Most mathematical models of linguistic variation and change fall
into one of two classes: (i) those that study homogeneous
populations of speakers in frameworks that admit an analytical
exploration of the model’s dynamics [1–3], and (ii) those that
aim to elucidate complex interactions of language learning and
use in social networks through agent-based simulations [4–6]. The
former class is usually characterized by the use of continuous-
time dynamics in infinite populations; such significant idealizing
assumptions often limit the range of empirical application
of these models. On the other hand, models in the latter class
are characterized by more microscopic attention to detail, and
perhaps better empirical applicability, but at the expense of
increasingly complex parameter spaces and a concomitant loss of
analytical tractability outside of special cases (although sometimes
considerable progress can be made by considering suitable
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reductions of full models, such as continuous-time limits; see e.g. [7]). This motivates the search for a

modelling paradigm that falls somewhere between the two extremes.
Outside of modelling, the use of macrosocial categories such as socioeconomic class and gender is

well established within the broad field of sociolinguistics [8]. This basic insight remains underexploited
in the literature on mathematical models of linguistic variation and change, however, where attention
ordinarily focuses on individual speakers and their interactions. Macroscopic multi-population
modelling is not uncommon in evolutionary biology [9], epidemiology [10] and economics [11], where it
often supplies analytical results which approximate empirical reality and provide useful Archimedean
points which may assist in the analysis of more complex microscopic models. It may be expected to
perform a similar role in elucidating processes of variation and change in the domain of language.

In this paper, I explore a macroscopic model of language dynamics whose inspiration is taken
from a well-established empirical observation: that speakers tend to converge in their use of language to
that of their immediate social group, and diverge from language use in other, possibly polarly opposed,
social groups [12–15]. These processes together contribute to the construction and maintenance of
sociolinguistic identity: as different social groups diverge in their use of language, those contrasting
linguistic behaviours take on the function of indexing group identity. The model is thus put forward
both as a mathematical formalization of linguistic identity dynamics, mediated through convergence and
divergence, and as an exploration of what sorts of benefits may be reaped from the study of structured
populations at a high level of abstraction. The model assumes a distinction between a number of social
groups but treats individual speakers within each group identically—putting, in the spirit of the earliest
sociolinguistic traditions, the community before the individual [16, p. 7]. Indeed, the model assumes
continuous-time dynamics operating in a compartmentalized infinite population with fully random
mixing within and across compartments. Nevertheless, it is rich enough to predict an empirically
attested sociolinguistic pattern and to suggest additional predictions for further empirical testing.

A lively debate now exists about how many and what ingredients are minimally needed in a
mathematical model of linguistic variation and change, with proposals ranging from neutral or near-
neutral models [17–19] to models incorporating intrinsic biases acting on competing linguistic variants
[4,20]. The crucial issue is whether simple frequency matching in an environment characterized by
various accidental asymmetries and stochastic noise is sufficient to give rise to classical patterns of
variation and change, such as the S-curve [21], or whether stronger assumptions about deterministic
biases are needed (see [22] for pertinent discussion and a useful taxonomy of modelling approaches).
The results presented in this paper suggest that classical patterns of variation and change can arise
from an intuitively plausible source, but nevertheless one that has not received much attention in the
modelling literature—the opposing forces arising from the dynamics of subpopulations which lie, in
one sense or another, in an antagonistic relation to each other. In such a setting, said patterns may
arise even in the absence of directed biases acting on the linguistic variants themselves, that is to say,
variation and change may in these cases be largely externally, more particularly socially, governed.

The main contribution of the present paper, however, is in showing that linguistic identity dynamics,
and the ensuing social stratification of linguistic variants, can be usefully modelled using tools from
the mathematical theory of evolutionary games [23,24]. A formal investigation of this model reveals
that the ‘convergence–divergence game’, as I shall call it below, has a number of stable equilibria
depending on a combination of global parameters, namely, parameters describing the strength of ingroup
social convergence and outgroup divergence on the one hand, and parameters describing the linguistic
mutation (innovation or mistransmission) dynamics of competing variants, on the other. Empirically, one
of these stable equilibria is found to correspond to data on sociolinguistic stratification in adolescents [25]
for an independently estimated value of the relevant mutation rate parameter. This result, derived from a
simple instance of the game which is analytically tractable, lends a degree of empirical plausibility to the
mathematical model. Consideration of the minutiae of real-life linguistic and social dynamics requires,
however, certain relaxations of idealizing assumptions in the simple model, motivating the numerical
exploration of a somewhat more complex instance of the model, as will be discussed at length below.

A number of applications of evolutionary game-theoretic (EGT) modelling are now available in the
literature on language dynamics [26–35]. These will be briefly discussed in §2 in order to contextualize
the contribution of the present paper. In §3, the convergence–divergence game is defined on a general,
abstract level. In the language of EGT, the game incorporates nonlinear fitness and thus falls among the
class of the so-called playing-the-field games [36]. The practical consequence of this is that the
mathematical analysis of the game is non-trivial, as existing results for games with linear fitness (matrix
games; [37]) are not available. Nevertheless, in §4, I show that the dynamic equilibria of the nonlinear
convergence–divergence game can be solved in the case of two strategies competing in two populations,
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if the effects of social alignment and mutation are symmetric in a sense to be discussed below. Armed with

these analytical results, in §5 I proceed to compare one of the stable equilibria with Eckert’s [25] data on the
backing of the STRUT vowel /ʌ/ in two contrasting but interacting adolescent social groups, ‘jocks’ and
‘burnouts’. Crucially, the mutation rate can be estimated in this case from available literature on the
confusability of speech sounds [38]. Given this estimate, it is found that the sociolinguistic data are
predicted by the formal game, in the sense that the empirical data point falls in a phase of the game in
which a number of relevant stable equilibria are available. In §6, I explore an extension of the game for
multiple (more than two) populations, taking note of the crucial role that the population of adults plays
in the empirical situation. Although analytical tractability is lost, numerical solutions of the multi-
population model show that the model again aligns with empirical data. Importantly, the extension
explains why one rather than another equilibrium is attained in this particular situation. These findings
have implications for the mathematical modelling of language dynamics as well as the empirical study
of sociolinguistics; they will be discussed in §7.
R.Soc.Open
Sci.7:201682
2. Evolutionary games and language dynamics
At the most abstract level, an evolutionary game is a formal representation of frequency-dependent
selection (and possibly mutation) in a population of interacting players. Each player has access to
some set of strategies, and upon meeting other players in a sequence of contests, chooses one of these.
The outcome of a contest is a pay-off to each interacting party. Classically, pay-offs are assumed to be
fixed functions of the strategies involved in the contest, and can be represented in a matrix if contests
are pairwise [37]. In such a game, the pay-offs determine the fitness of each strategy and, together
with the game’s dynamic (see below) also the evolutionary fate of the population, such as what
strategies, or perhaps mixes of strategies, are stable.

Since its emergence in the 1970s [36,39,40], EGT has reached a level of maturity in the fields of
mathematical biology and economics. As several authors have noted, however, this framework is also
applicable to the modelling of language dynamics, if its ingredients are suitably interpreted [26–35]. In
general, it is possible to equate strategies with linguistic variants, i.e. the values of a linguistic variable
[31], or with entire grammars [26]. Similarly, contests can be interpreted either as events of linguistic
interaction [34], or as an abstract cumulative representation of the extended process of language
acquisition in childhood [28]. The interpretation of pay-offs and fitness also varies from application to
application. In [31], for example, the fitness of strategies (competing form–meaning mappings) results
from a combination of communicative success and formal linguistic economy. In [33], on the other hand,
strategies constitute competing stress placements on lexical items (the ‘players’ of the game) and fitness
results from eurhythmicity (or lack thereof) at the level of entire phrases. It should be noted that the
notion of fitness is by no means new to linguistics, but rather, the above interpretations are related in
obvious ways to traditional accounts of the differential adaptedness of linguistic variants, ranging from
communicative function and contrast maintenance [41,42] through prestige and other kinds of social
biases [20,43] to parsing advantage [44,45] and economy of computation, perception or articulation [46,47].

One advantage of EGT-based modelling over other approaches, such as agent-based simulations, is
that analytical results can often be obtained if the assumptions entering the game’s definition are suitably
abstract. This renders EGT models transparent [33], as the complete phase space of the model can be
succinctly characterized, along with any possible bifurcations the system may undergo in response to
variation in its control parameters. Even when analytical tractability is lost, macro-level dynamical-
systems modelling has the advantage that the numerical solution of the relevant differential equations
is considerably less resource-intensive than the computer simulation of corresponding agent-based
models. This fact is exploited in §6, when the convergence–divergence game is generalized for more
than two interacting populations.

In addition to specifying how pay-offs result from contests, an application of EGT needs to specify a
dynamic for evolving the population; this encodes assumptions about how strategies replicate in the
population and, possibly, how new strategies may emerge. A canonical dynamic is the continuous-
time replicator equation [23,39], which for two strategies (the case discussed in the present paper) reads

_x ¼ x (1� x)[f(x)� ~f(x)]: (2:1)

Here, x (0≤ x≤ 1) represents the frequency of one of the strategies in the population, _x is its time
derivative, f(x) its fitness, and ~f(x) the fitness of the competing strategy (the frequency of the competing
strategy is, of course, 1− x). In very general terms, the shape of equation (2.1) implies that the usage of a
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strategy increases (decreases) whenever its fitness is greater (lower) than that of its competitor. The
replicator equation can thus serve as a basic formalization of Darwinian selection [37], but crucially for
applications in cultural evolution, it can also be interpreted as describing the differential replication of
non-biologically transmitted variants [33,34]. As a continuous-time differential equation, it formally
describes the evolution of strategies in a hypothetical infinite, fully mixing population. However, and
again crucially from the point of view of applications in cultural evolution, the equation can be derived
as the continuous limit of a stochastic imitation dynamic in which players imitate each others’ strategies
in relation to their fitnesses [24].

It is important to stress that the fitness terms f(x) and ~f(x) in equation (2.1) are functions of the
population state x. Hence, the fitness of a strategy is never static (except in mathematically degenerate,
trivial games), but rather evolves as the population evolves. This fact guarantees that the dynamics can
display a number of interesting behaviours ranging from simple point attractors to cycles and
bifurcations [23]. But it also highlights the philosophically important observation that in the dynamics of
language, too, the evolutionary success of a strategy (such as a particular variant of a sociolinguistic
variable) must depend on what other strategies are in use in the population, and at what frequencies.
These facts will be discussed in more depth in the following section.
pen
Sci.7:201682
3. A game of convergence and divergence
A considerable body of evidence suggests that people tend to accommodate their use of language to the
linguistic behaviour of those they feel close to or view in positive terms, and to distance their use of
language from the behaviour of those who are distant or negatively assessed [12–15]. These findings have
been systematized under the umbrella of communication accommodation theory [13], which identifies two
principal mechanisms of accommodation: convergence and divergence. Broadly speaking, the goal of
linguistically convergent behaviour is to decrease the social distance between the interlocuting parties,
whereas divergent behaviour (such as choosing different pronunciations, different registers, different speech
rates) tends to increase that social distance and to contribute to the upkeep of socially defined identities. The
processes of linguistic convergence and divergence may be to some extent automatic [48] and, even though
possibly deeply rooted, may not always be conscious. For example, a study exploring the extent to which
speakers of New Zealand English accommodated to a speaker of Australian English who was instructed to
either insult or flatter the former [14] presented nuanced findings. Even though the experimental condition
(insult versus flattery) did not predict the degree of convergence or divergence (measured in terms of the
similarity or dissimilarity of vowel sounds), the results of an implicit association task [49] showed that those
New Zealand speakers who scored high for implicit pro-Australian biases also attested significantly more
linguistic convergence to the Australian speaker than those who scored lower for such biases.

A number of possible interpretations of fitness in the context of linguistic variation and change were
discussed in §2. In most of these cases, fitness is intrinsic to linguistic strategies, in the sense that it is
determined by the functional, formal or, broadly speaking, ‘purely linguistic’ properties of those
strategies. For example, in the game explored in [33], the fitness of a particular stress placement on
polysyllables results from the configuration of the rest of the linguistic system, namely, how frequent
monosyllables are in the language (which turns out to determine phrase-level rhythmicity when
polysyllabic and monosyllabic words combine to form phrases). Clearly, however, the fitness of a
variant may also be socially accrued. In particular, the dual processes of linguistic convergence and
divergence may be (partly) responsible for fitness: for me, the fitness of a strategy increases the more
those in my own social group (my ingroup) use this strategy but also decreases the more those in
other groups (outgroups) use it. I shall call this sort of fitness extrinsic.

Although previous studies have modelled accommodation to community behaviour by way of
various mechanisms of frequency matching [6,18,19,22,50], extrinsic fitness has rarely, if ever, been
included as an explicit macro-level term in mathematical models of language dynamics. The proposal
here is to consider, initially, two population substrata, which could be thought to correspond to two
socioeconomic classes, two subgroups of an age cohort, two age cohorts in a single community, or in
general any two subpopulations of a speech community whose members are inclined to converge
toward the speech patterns of those in their own subpopulation but diverge from the usage of those
in the other subpopulation.1 The crucial assumption is that the two groups be unambiguously
1In the real world, processes of convergence and divergence are much more nuanced than this simple set-up would suggest. These
complexities will be further discussed in §7.
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distinguishable in terms of non-linguistic markers, so that the group membership of most speakers in the

community is not in doubt for members of either subcommunity. This can normally be assumed to be the
case, as socially salient group distinctions tend to be indicated by various, visible extra-linguistic semiotic
practices, such as choice of clothing and fashion [51].

Generalizing directly from the discussion in §2, let x1 and x2 denote the frequency of use of a strategy
in two interacting populations; for symbolic ease, these are often collected in a vector x = (x1, x2) in what
follows. Intuitively, the fitness of this strategy in the two populations should depend, firstly, on how
frequently the two populations interact. Secondly, it should depend on how strong the tendencies to
converge to ingroup behaviour and to diverge from outgroup behaviour are. To formalize these ideas, let

P ¼ p11 p12
p21 p22

� �
(3:1)

be a row-stochastic matrix of interaction rates, such that cell pij gives the probability of an individual from
population i interacting with an individual from population j. Similarly, let

A ¼ a11 a12
a21 a22

� �
(3:2)

be a matrix of real numbers. Here, a11 and a22 supply, for want of a better term, the ‘strength’ of
convergence to ingroup norm for the two populations, while a12 and a21 supply the concomitant
strengths of divergence from outgroup norm. The matrix A is not required to be row-stochastic, but in
view of the intended interpretation, we require its elements to be positive.2

The fitness of one of two competing strategies in the two populations can now be defined as follows:

f1(x) ¼ p11a11x1 þ p12a12(1� x2)x1
and f2(x) ¼ p22a22x2 þ p21a21(1� x1)x2

�
(3:3)

(to be explained in detail shortly). For the fitness of the competing strategy we similarly have

~f1(x) ¼ p11~a11(1� x1)þ p12~a12x2(1� x1)

and ~f2(x) ¼ p22~a22(1� x2)þ p21~a21x1(1� x2)

)
(3:4)

for another convergence/divergence matrix ~A ¼ [~aij]. In each of these equations, the first term on the
right-hand side accounts for intra-group interactions, the second for inter-group interactions. Thus,
from the first term, the fitness of the strategy increases the more intra-group interactions take place,
the more important convergence to ingroup norm is judged to be, and the more the strategy is
employed in the ingroup. Conversely, from the second term, the fitness of the strategy increases the
more inter-group interactions take place, the more important divergence from outgroup norm is
judged to be, and the more the strategy is not used in the outgroup. The second term also includes
the ingroup frequency as a factor. This potentially puzzling choice can be explained as follows: the
status of the strategy qua identity marker depends on how widespread it is in the ingroup; a strategy
can demarcate one group from another only to the extent it is an established norm in the ingroup.
The practical consequence of this choice is that fitness is a nonlinear function of the population state
x = (x1, x2). Consequently, the model belongs to the class of playing-the-field games, and formal results
established for matrix (linear fitness) games do not necessarily apply.

To close the definition of the convergence–divergence game, we need to consider a dynamic for
evolving the two populations. Although there is precedent for using the replicator equation (e.g. [33]),
this has the downside that pure replicator dynamics lack a mutation term and thus can account for
neither the emergence of strategies not already present in the population, nor for the effects of
mistransmission. To include these aspects in the game, I consider the replicator–mutator equation [52].
For two strategies in two populations, it reads (see appendix A.1):

_x1 ¼ (~x1 � ~m1)x1f1(x)� (x1 �m1)~x1~f1(x)

and _x2 ¼ (~x2 � ~m2)x2f2(x)� (x2 �m2)~x2~f2(x),

)
(3:5)

where I write ~xi ¼ 1� xi for convenience, and ~mi (mi) is the rate with which the first (second) strategy
mutates into the second (first) in population i. The replicator dynamics are recovered as the special
2Unless otherwise noted, I assume throughout that the matrices P and A do not contain zeroes. A zero element means that either
interaction or convergence/divergence vanishes completely; these degenerate cases are of technical mathematical interest only.
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case ~m1 ¼ m1 ¼ ~m2 ¼ m2 ¼ 0. The mutation rates can also usefully be collected in matrices:

M1 ¼ 1� ~m1 ~m1

m1 1�m1

� �
and M2 ¼ 1� ~m2 ~m2

m2 1�m2

� �
: (3:6)

We note that the phase space of the system is the unit square [0, 1]2 = {(x1, x2)∈R2 : 0≤ x1, x2≤ 1}.
The inclusion of the mutation rate parameters in equation (3.5) is intended to model the fact that

linguistic ‘mutations’—misarticulations, misperceptions, misparsings, external borrowings, proper
innovations, etc.—occur in language continuously, even though much of the time they fall below
some threshold and fail to actuate a change [53,54]. From a conceptual point of view, it is important
to note that while mutations must eventually show up in linguistic production, their distal causes
may be perceptual, and nothing about equation (3.5) precludes mutations from arising from the
listener (cf. [46]). The population-level effects of misproduction and misparsing (or failure to apply
reconstructive rules, as in [46]) may very well be identical, and the simple model here studied makes
no ontological distinction between the two sources of mutation.

Before proceeding to a detailed study of the properties of this game, I point out that notation can be
further simplified if the interaction and convergence/divergence matrices are folded together. Writing S
for the elementwise product of P and A, and ~S for that of P and ~A (i.e. sij = pijaij and ~sij ¼ pij~aij), and taking
advantage of the convention ~xi ¼ 1� xi, we have

f1(x) ¼ s11x1 þ s12~x2x1,
f2(x) ¼ s22x2 þ s21~x1x2,
~f1(x) ¼ ~s11~x1 þ ~s12x2~x1

and ~f2(x) ¼ ~s22~x2 þ ~s21x1~x2

9>>>=
>>>;

(3:7)

for the fitnesses. In what follows, I will refer to S and ~S as social alignment matrices and to their elements
as social alignment parameters.

Although not much can be said about the behaviour of this system without imposing further
restrictions on the social alignment and mutation rate parameters, the following general result will be
useful later.3

Proposition 3.1. The number of equilibria of the two-strategy, two-population convergence–divergence game
is at least one and at most nine.
4. Symmetry
Rigorous mathematical analysis of replicator–mutator dynamics is challenging, even when fitness is linear
[26,27,55,56]. In the nonlinear case here considered, progress can be made if rather strong symmetry
conditions are imposed on the social alignment and mutation matrices, thereby reducing the number of
free parameters of the system. Given these assumptions about symmetry, it turns out that it is possible to
find the game’s dynamic equilibria and their stabilities analytically, as well as to delineate how these
depend on the model parameters. This allows for a complete specification of the possible behaviours of the
system, which will aid us in comparing the model’s predictions with empirical data in the sections to follow.

There is some reason to think that the model, as above defined, is in fact too general. Thus consider
the fact that we have two mutation matrices M1 and M2 instead of one: this allows for the possibility that
the mutation rates of strategies differ from one population to the next. Insofar as linguistic mutations arise
from universal principles of (mis)perception, (mis)articulation or (mis)computation [46,47], this
generality may be superfluous, or in other words, we may just as well assume M1 =M2 without much
worry. On the other hand, the inclusion of four free parameters in each of the social alignment
matrices S and ~S may seem superfluous. In particular, this allows for the possibility that the effects of
convergence and divergence are different in the two populations (this occurs if s11≠ s22 and/or s12≠
s21 in the case of the first strategy, and similarly with the tilde’ed parameters for the second strategy,
i.e. if S and ~S are not bisymmetric matrices). But in the absence of evidence for such between-
population differences, we may assume the populations to be equivalent in this respect and thus
impose the restriction that the matrices S and ~S be bisymmetric. If it is the case that both (i) M1 =M2

and (ii) S and ~S are bisymmetric, then the two populations are interchangeable from the point of view
of each strategy, and I will call this configuration population symmetry in what follows.
3Proofs of all formal results are collected in appendix A.2.
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Conversely, we may imagine a situation in which m1 ¼ ~m1 and m2 ¼ ~m2, i.e. the matrices M1 and M2

are bisymmetric, so that mutations between the two strategies are equally likely in each direction. If,
moreover, S ¼ ~S, each strategy responds to convergence and divergence identically within each
population. Whenever (i) M1 and M2 are bisymmetric and (ii) S ¼ ~S, I shall say that the configuration
exhibits strategy symmetry. Finally, whenever a system exhibits both population symmetry and strategy
symmetry—that is to say, whenever (i) M : =M1 =M2, (ii) S ¼ ~S, and (iii) M and S are bisymmetric
matrices—I shall say it exhibits full symmetry.

Full symmetry leads to a significant reduction in the number of free parameters of the game, thereby
facilitating its analysis. Since S ¼ ~S and the matrix is assumed bisymmetric, the fitnesses (3.7) now read

f1(x) ¼ s11x1 þ s12x1~x2,
f2(x) ¼ s11x2 þ s12x2~x1,
~f1(x) ¼ s11~x1 þ s12~x1x2

and ~f2(x) ¼ s11~x2 þ s12~x2x1:

9>>>=
>>>;

(4:1)

Assuming s11≠ 0 and writing σ = s12/s11, (4.1) can be further reduced to the following representation:

f1(x) ¼ x1 þ sx1~x2,
f2(x) ¼ x2 þ sx2~x1,
~f1(x) ¼ ~x1 þ s~x1x2

and ~f2(x) ¼ ~x2 þ s~x2x1:

9>>>=
>>>;

(4:2)

The equivalence of (4.1) and (4.2) is guaranteed by the following result on the topological equivalence of
the two dynamical systems:

Proposition 4.1. The games defined by (4.1) and (4.2) share the same orbits, and in particular the same
equilibria, under the dynamic (3.5).

Writing m ¼ m1 ¼ ~m1 ¼ m2 ¼ ~m2 for the common mutation parameter, the study of the fully
symmetric convergence–divergence game thus reduces to a study of the system

_x1 ¼ (~x1 � m)x1f1(x)� (x1 � m)~x1~f1(x)

and _x2 ¼ (~x2 � m)x2f2(x)� (x2 � m)~x2~f2(x)

)
(4:3)

with fitnesses (4.2).
By proposition 3.1, this game has between one and nine equilibria; in other words, the number of

possible long-term outcomes of the population dynamics must fall within these bounds. The mutation
rate parameter μ turns out to play a decisive role in determining the number of equilibria and their
stabilities. Using linearization [57], it is possible to establish that this parameter has three critical values,
μ1, μ2 and μ3, which separate four qualitatively distinct phases and satisfy the following relationship for
any σ > 0:

0 , m1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2s2 þ 4sþ 4

p � s� 2
s2 , m2 ¼

1
sþ 4

, m3 ¼
sþ 1
3sþ 4

, 1: (4:4)

As μ passes any of these critical boundaries, one or more equilibria undergo a bifurcation, and the system’s
phase space is reconfigured. As demonstrated in appendix A.2, this behaviour is summarized by the
following statements:

I. If μ > μ3, the game has one equilibrium, the uniform state (1/2, 1/2). It is stable (a sink, i.e. stable in
both dimensions).

II. If μ2 < μ < μ3, the game has three equilibria: the uniform state (1/2, 1/2), which is unstable (a
saddle, i.e. unstable in one dimension), and two internal equilibria satisfying x1 ¼ ~x2 (and
hence also ~x1 ¼ x2). These are stable (sinks).

III. If μ1 < μ < μ2, the game has five equilibria: the above-mentioned three rest points as well as
two further equilibria satisfying x1 = x2. The uniform state is unstable (a source, i.e. unstable in
both dimensions), the equilibria satisfying x1 ¼ ~x2 are stable (sinks) and the equilibria satisfying
x1 = x2 are unstable (saddles).

IV. If μ < μ1, the game has nine equilibria: the above-mentioned five equilibria, as well as four further
rest points. The uniform state is unstable (a source), the diagonal equilibria (i.e. those satisfying
either x1 ¼ ~x2 or x1 = x2) are stable (sinks), and the four new equilibria are unstable (saddles).

Figure 1 illustrates the bifurcation sequence.
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In particular, evolutionarily stable states of the fully symmetric convergence–divergence gamewith two
strategies and two populations can assume one of three configurations. For high mutation rates (phase I),
only the uniform state (1/2, 1/2), in which each population uses each variant at equal frequencies, is stable.
For slightly more moderate mutation rates (phase II), two non-uniform states are stable. Each of these
satisfies x1 ¼ ~x2 (and hence also ~x1 ¼ x2), and could be termed a ‘stable divergent state’, since population
1 employs strategy 1 with the frequency with which population 2 employs strategy 2. In other words, in
a stable divergent state, the two populations tend to adopt phenotypes that separate the populations to
the greatest extent possible given the value of the mutation rate μ (higher mutation rates tending to lead
to overall greater mixing). Phase III serves as a transition to phase IV, the phase of very low mutation
rates, in which two more stable states appear. These satisfy x1 = x2 (and hence also ~x1 ¼ ~x2), and could be
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termed ‘stable convergent states’, as the two populations converge on the same frequencies with respect to

both strategies. However, in phase IV the stable divergent states continue to be available, too.
To summarize, the qualitative behaviour of the two-strategy two-population convergence–divergence

game can be characterized completely, if the effects of both social alignment and mutation are symmetric.
The game has either one, two or four stable equilibria depending on the values of the social alignment
and mutation rate parameters σ and μ. If real-life speech communities play such a game, and play it for
long enough, they are then predicted to fall in one of these theoretically established stable rest points
(modulo stochastic effects not explicitly modelled by the deterministic game). It is to this question of
empirical adequacy that we next turn.
/journal/rsos
R.Soc.Open

Sci.7:201682
5. Jock and burnout identity dynamics
Convergence, divergence and identity dynamics are exhibited particularly clearly in adolescent
sociolinguistic behaviour. Adolescence marks a sharp qualitative transition from childhood, where
linguistic role models mostly come from the immediate family, to a new kind of social order dominated
by peer-to-peer interactions [25]. A split typically occurs at this point whereby adolescents
overwhelmingly identify with one of two social groups, often called ‘jocks’ and ‘burnouts’ in the North
American context [51]. The social life of the prototypical jock is centred around school activities, while
the prototypical burnout displays an aversion to school. These contrasting behaviours have been argued
to represent different social adaptations to different needs, expectations and opportunities, considering
that jocks are overwhelmingly destined for middle-class and burnouts for working-class trajectories [25].
Importantly, this social stratification coexists with a corresponding stratification in language use, with
burnouts attesting innovative linguistic variants at higher frequencies than jocks. In other words, the two
social groups exhibit socially motivated linguistic divergence.

In a detailed sociophonetic study, Eckert [25] explored the realization of the STRUT vowel /ʌ/ (found in
words such as cup, but and strut) in jock and burnout groups in a Michigan high school in the 1980s. This
vowel was undergoing backing (retraction in phonetic space) at the time as part of the wider sound
change known as the Northern Cities Shift [58], with backed variants of the vowel considered innovative.
As suggested above, burnouts were then expected to show higher rates of /ʌ/ backing than jocks, given
their tendency to eschew conventional norms.4 This is exactly what was found: Eckert [25, p. 201] reports
the probability of backing of /ʌ/ in burnouts at 0.59, while in jocks the figure is only 0.43; a difference
that was found statistically significant. This profile, e = (0.43, 0.59) (for Eckert), is satisfyingly close to the
state em = (0.42, 0.58) (for ‘Eckert modelled’), which by the results in §4 is a stable equilibrium of the fully
symmetric convergence–divergence game for some combination of the social alignment and mutation rate
parameters σ and μ. In the terminology introduced in §4, this is a stable divergent state.

One reason for choosing Eckert’s [25] study as our empirical test case is that here it is possible
to estimate the value of the mutation rate parameter μ using independent empirical evidence.
Table 1 displays a subset of the phonetic confusion matrices for American listeners presented in [38].
Of interest is the total probability of confusing [ʌ] with any of [ɑ], [ɔ] and [ʊ], which are the
vowels Eckert [25] considers backed variants of /ʌ/. From these data, we can compute the probability
of the mutation ʌ ! {ɑ, ɔ, ʊ} as follows, treating initial and final occurrences of the vowels as
equally likely:

0:5 � (0:125þ 0:083þ 0:012)þ 0:5 � (0:114þ 0:111þ 0:09) � 0:23: (5:1)

In other words, experimental data on the confusability of vowels in American English by native listeners
suggests setting μ = 0.23 as a realistic value of the mutation rate parameter.

In §4, it was established that stable divergent states exist in each of the phases II–IV of the fully
symmetric convergence–divergence game, but not in phase I. Furthermore, in phases II and III these
kinds of states are the system’s only stable equilibria. Revisiting figure 1, we find that the empirically
estimated value of the mutation rate, μ = 0.23, never cuts into phase I of the game, for any value of the
social alignment parameter σ. Moreover, for sufficiently high values of σ, the system necessarily lands in
either phase II or phase III given this value of μ, and hence stable divergence is absolutely predicted.

Since the backing of /ʌ/ was part of an ongoing sound change, is it not misguided to model its
empirical profile in jocks and burnouts as a stable equilibrium of the formal game? While this may
seem genuinely problematic at first sight, closer examination of the timescales involved helps to
4Those conventional norms are, of course, largely set by adults. This point will be revisited in detail in §6.



Table 1. Confusion probabilities (as percentages) for four vowels of American English in native listeners, in initial (VC) and final
(CV) positions, pooled across participants and across consonant contexts. From ([38], tables III–IV).

response (VC position) response (CV position)

stimulus ʌ ɑ ɔ ʊ ʌ ɑ ɔ ʊ

ʌ 64.9 12.5 8.3 1.2 65.3 11.4 11.1 0.9

ɑ 12.5 42.3 26.8 0.0 24.4 33.5 27.0 0.3

ɔ 4.5 36.3 47.3 1.2 3.7 23.9 65.3 0.6

ʊ 14.0 2.1 2.1 63.7 21.6 2.0 0.6 68.2
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dissolve the worry. Even the most conservative estimates of the duration of the Northern Cities Shift
measure it at the scale of speaker generations, and there is evidence that the earliest stages of the
chain shift were already in operation in around 1900 [59]. Viewed against this backdrop of
population-level diachronic change, processes of acquisition and use at the level of individuals are
short-term, and the population itself appears to be, for all intents and purposes, at equilibrium.5 In
fact, it is natural to view the effects of the Northern Cities Shift on /ʌ/ not as a particular historical
trajectory of the relevant speech community from some historical initial condition toward a point
attractor, but rather as the movement of that point attractor itself in the system’s phase space. This
movement, in turn, can be construed as resulting from a change in the relevant mutation rate
parameters, as I will argue in the immediately following section.

The results are thus encouraging: an empirically attested frequency profile corresponds to a stable
equilibrium of the model for an independently plausible estimate of the relevant mutation rate
parameter. Two residual problems remain, however. Firstly, the non-trivial equilibria of the fully
symmetric game, i.e. equilibria other than the uniform state (1/2, 1/2), always appear in pairs. In
phases II and III, for instance, not only one but two stable divergent states are available. The question
then arises whether it is possible to explain to which one of these equilibria the empirical system
converges, and why. Secondly, the validity of some of the strict symmetry assumptions employed
above may be legitimately questioned. These problems will be addressed in the next section.
6. Adults and asymmetries
The above results illustrate, on an abstract level, an amount of agreement between a rather simple
mathematical model and an empirically attested sociolinguistic pattern. The analysis so far is limited,
however, in at least two respects. First, it is incontestable on empirical grounds that burnouts lead
jocks in the backing of /ʌ/; not only is this what the data show, it is also expected given what is
known about the social dynamics in this particular case [25]. As explained above, however, the model
predicts two stable equilibria, one in which burnouts do lead, but also another in which the frequency
profile is exactly reversed, with jocks showing the most backing. Furthermore, for sufficiently low
mutation rates, stable states in which the two populations agree in their variant use are available. In
an ideal situation, the model would predict not just the existence of these stable states, but also to
which equilibrium the real-life system is expected to converge.

An empirically reasonable hypothesis is that burnouts’ greater innovativeness may result from their
greater desire to diverge from a third social group, namely, that of adults. If adults, in turn, should be
conservative and attest only a limited degree of /ʌ/ backing, then the greater opposition that obtains
between burnouts and adults (as opposed to the more amicable relationship between jocks and
adults; see [25] for extended discussion) would lead us to expect that burnouts should, indeed, show
a greater degree of innovativeness, and hence of /ʌ/ backing, than jocks. Although quantitative data
on the frequency of /ʌ/ backing in the adult population is unfortunately not available, the
assumption that adults represent the most conservative group is a reasonable position to hold in view
of the general observation that adolescents tend to lead in the use of innovative linguistic forms [61].
5This position accrues further support from the empirical observation that people are rarely, if ever, aware of ongoing large-scale
rotations of the vowel space, such as the Northern Cities Shift, even if they participate in them [60].
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From a modelling point of view, the question then arises how to generalize the notion of extrinsic

fitness—which above has been defined with two populations in mind—for multiple populations.
Proceeding with the intuition that all social groups other than one’s own ought to be treated as
outgroups, and hence something to diverge from, we can generalize (3.7) for N populations as follows:

fi(x) ¼ siixi þ
XN

j¼1,j=i

sij~x jxi

~f i(x) ¼ ~sii~xi þ
XN

j¼1,j=i

~sijx j~xi

9>>>>>=
>>>>>;

(x [ [0, 1]N ; i ¼ 1, . . . , N), (6:1)

where the interpretation of the social alignment matrices S = [sij] and ~S ¼ [~sij] (now of size N ×N) remains
as before. For N = 3 groups in particular, one has

f1(x) ¼ s11x1 þ s12~x2x1 þ s13~x3x1,
f2(x) ¼ s22x2 þ s21~x1x2 þ s23~x3x2

and f3(x) ¼ s33x3 þ s31~x1x3 þ s32~x2x3

9=
; (6:2)

for the fitnesses fi (and mutatis mutandis for the complementary fitnesses ~f i).
In the specific case of jocks, burnouts and adults, we also need to ask what shape the social alignment

matrices should assume. With no evidence to the contrary, I will continue to assume S ¼ ~S, i.e. that the
strength of convergence/divergence does not depend on the identity of the linguistic variant. Writing x1
for the frequency of /ʌ/ backing in jocks, x2 for that in burnouts and x3 for that in adults, a reasonable
form for the matrix S is then

S ¼
1 s t1
s 1 t2
y y 1

0
@

1
A, (6:3)

where the diagonal is set to unity with the help of proposition A.2 (appendix A.2). To interpret this, note
that σ remains to denote the strength of divergence between jocks and burnouts (assumed symmetric for
simplicity). The new τ1 and τ2 parameters supply the strength of divergence of the jock and burnout
populations from the adult population, respectively, while υ gives the tendency of adults to diverge
from the adolescent populations (assumed equal for both adolescent populations, given no evidence
to the contrary). The empirically interesting scenario concerns the subset of the parameter space where
τ1 < τ2.

6

Returning now to the second problem identified above, we may ask whether it is reasonable to
assume strict strategy symmetry to hold in this particular empirical situation. The mutation rate
parameters in the replicator–mutator equation (3.5) were intended to model all kinds of sources of
linguistic mutation not attributable to the (social) dynamics of convergence and divergence. But is it
reasonable to assume that, setting those social motivations aside, the probability of backing /ʌ/
equals the probability of fronting its backed variants? As was mentioned in §5, the particular variable
here tracked took part in a chain shift whose various subprocesses stand in a complex relation of
dependencies, as is well-known [58]. In other words, there was a system-internal pressure for /ʌ/ to
retract in phonetic space, and this fact ought to be reflected in our model as a higher rate for the
mutation ʌ ! {ɑ, ɔ, ʊ} compared to the corresponding back-mutation {ɑ, ɔ, ʊ}! ʌ (moreover, this
system-internal pressure ought to increase over time as the chain shift progresses). Recall that the
empirical frequency profile was e = (0.43, 0.59), i.e. the probability of /ʌ/ backing in jocks was 0.43
and in burnouts 0.59. While this is close to the prediction derived from the fully symmetric model,
em = (0.42, 0.58), the difference is precisely in the expected direction: the empirical populations back
/ʌ/ more than the model populations.

Perhaps even more importantly, however, there turns out to be good reasons for thinking that the
reverse mutation {ɑ, ɔ, ʊ}! ʌ is less likely than the mutation ʌ! {ɑ, ɔ, ʊ} even in the absence of
system-internal pressures such as the contribution of interacting changes in a chain shift. From table 1,
6For simplicity, I gloss over the effects of potential asymmetries and differences in the interaction rates within and among the different
populations, assuming interaction rates to be equal. The elements of S then directly encode the strength of convergence/divergence.
Although some differences in interaction rates are to be expected, the particular social setting in this case (high school) ensures that all
groups interact to a considerable extent. Moreover, since quantitative estimates of the strength of convergence/divergence parameters
are not available, it is always possible to adjust these parameters to account for differences in interaction rates in the elements of the
aggregate matrix S. More discussion of these complications follows in §7.



Table 2. Interpretation of model parameters, together with the values used to obtain numerical solutions.

parameter meaning value(s)

k skewing factor 1/5,…, 5

σ adolescents-to-adolescents social alignment 1/5,…, 5

τ1 jocks-to-adults social alignment k−1 σ

τ2 burnouts-to-adults social alignment kσ

υ adults-to-adolescents social alignment 1/5, 1, 5

m probability of backing mutation ʌ! {ɑ, ɔ, ʊ} 0.23

~m probability of fronting mutation {ɑ, ɔ, ʊ} ! ʌ 0.13
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we can compute the probability of the fronting mutation (again assuming initial and final occurrences of
the vowels to be equally likely) to be only

0:5 � 0:125þ 0:045þ 0:140
3

þ 0:5 � 0:244þ 0:037þ 0:216
3

� 0:13: (6:4)

Although an overall decrease in the mutation rate is not predicted to take the system away from the
phases in which the relevant stable equilibria are attested (cf. figure 1), it is not intuitively clear how
an asymmetry like this will affect the system’s overall phase portrait.

Extending the convergence–divergence game with an additional population and relaxing the strict
strategy symmetry assumption leads to a dynamical system which is potentially better able to account
for the empirical facts, but also one that is analytically intractable. A partial understanding of its
behaviour can, however, be gained using numerical solution methods. To this end, I next assume that
υ, the adults-to-adolescents social alignment parameter (see again the matrix in (6.3)), can take one of
the values υ = 1/5, υ = 1 and υ = 5, and that the adolescents-to-adults social alignment parameters τ1
and τ2 satisfy τ1 = k−1σ and τ2 = kσ for some k > 0. For k > 1, burnouts then tend to diverge more from
the adults than jocks do, corresponding to the case τ1 < τ2 which above was identified as the
empirically pertinent scenario. To explore systematically the dependence of the dynamics on the
values of these parameters, I vary σ and k in equally spaced steps from 1/5 to 5. The mutation
parameters are set at m = 0.23 for the backing mutation ʌ! {ɑ, ɔ, ʊ} and at ~m ¼ 0:13 for the fronting
mutation {ɑ, ɔ, ʊ}! ʌ in each of the three populations. Table 2 summarizes the interpretation of all
model parameters, as well as the values used to obtain the numerical solutions.

For each parameter combination, the system was set in a random initial state x(0) = (x1(0), x2(0), x3(0))
where the frequencies of /ʌ/ backing in the jock and burnout populations (x1(0) and x2(0), respectively)
were drawn uniformly at random from the interval [0, 1], while the corresponding frequency in the adult
population, x3(0), was drawn uniformly from the restricted interval [0, 1/4]. This corresponds to the
assumption that, in the historically attested initial condition, adults were conservative and attested
lower frequencies of the innovation, while placing no restrictions on the potential starting points of
the adolescent populations. The differential equations were then solved using the Dormand–Prince
method [62] for 100 such randomly drawn initial states (for each individual parameter combination)
until a stable equilibrium was reached.

The question of interest concerns what regions of the parameter space support not only the existence
of a stable divergent state with the property x1 < 1/2 < x2 (burnouts attesting more backing of /ʌ/ than
jocks), but also the necessary convergence of the metapopulation into such a stable state. In other words:
what proportion of the 100 solutions converged to a state satisfying x1 < 1/2 < x2 for any given
combination of σ and k? Figure 2 answers this question. Specifically, we find that if both σ and k have
values roughly larger than 3, most or all instances of the system converge to the desired stable state.
The adults-to-adolescents divergence parameter υ plays only a minor role, although it can be said that
of the three values examined, υ = 1 guarantees the widest convergence to the desired stable state. We
can thus summarize these results as follows: if, and only if, jocks tend to diverge from adults less
than they diverge from burnouts, and burnouts tend to diverge from adults more than they diverge
from jocks, the system is guaranteed to converge to a stable divergent state in which burnouts attest
more use of the innovative variant than jocks. This is fully in line with the empirical expectation.
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7. Discussion
I have suggested that classical, macrosociolinguistic theory can usefully be complemented by a simple
mathematical modelling paradigm in which structured but well-mixing populations interact and the
fate of linguistic strategies depends, in part at least, on these social dynamics (extrinsic fitness).
In particular, convergence to ingroup and divergence from outgroup linguistic behaviour can be
modelled as an evolutionary game played by two or more populations, in which the fitness of a
strategy is a nonlinear function of its usage frequencies in the populations on the one hand, and
parameters controlling the strength of interaction and convergence/divergence within and between
populations on the other (§§2 and 3). Section 4 demonstrated how the behaviour of this model can be
fully analysed if strong symmetry assumptions are made. Application of the model to empirical data
showed qualitative agreement (§5), in the sense that the empirically attested sociolinguistic pattern
was found to correspond to a stable equilibrium of the model for an independently estimated value of
the relevant mutation rate parameter. Section 6 additionally illustrated how the model’s predictions
can be sharpened through numerical exploration of an asymmetric multi-population extension of the
game. In this concluding section, I discuss some of the remaining challenges, as well as prospects for
future work along the above established lines.

Even in its simplest, symmetric two-population instantiation, application of the convergence–
divergence game to empirical data requires the estimation of two parameters, a mutation rate parameter
μ and a social alignment parameter σ. In the specific application here, it was possible to calibrate μ, but
data on σ are lacking. It is important to be clear about what manner of corroboration may be expected in
this sort of empirical application scenario, however. Given the very idealized character of the model, the
expectation is not that it should predict the exact numbers of an empirical data point, but rather the
general form of the data point, and hopefully to do this robustly over a range of possible model
parameter values, so that the prediction does not depend on ad hoc values of the parameters. Thus,
what from the point of view of modelling is intriguing about Eckert’s [25] empirical frequency profile
e = (0.43, 0.59) is not so much the fact that it comprises these particular frequencies, but that it is what
above I have called a divergent state, i.e. it satisfies e1 < 1/2 < e2. The crucial question then is whether this
nature of the empirical data point is predicted by the model (it is), as well as whether the prediction
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remains robust over a range of the model’s parameter space (it does). It would in principle be possible to
obtain estimates of a quantity such as σ, as an existing empirical literature on social biases demonstrates
[63]. The practical challenges of conducting an experiment in which (i) the frequencies of use of a
variable of interest in a number of populations, (ii) relevant parameters of the linguistic dynamics, such
as the mutation rate, and (iii) social alignment parameters such as ingroup and outgroup biases can all
be measured at the same time, are however considerable.

It is also possible to consider stricter, quantitative forms of empirical evaluation and to try to
triangulate the value of the social alignment parameter σ. From equation (A 7) in appendix A.2, it is
possible to deduce, in the fully symmetric special case, an envelope of values for σ in which a given
on-diagonal equilibrium x� ¼ (x�1, x

�
2) exists for any given pair of mutation rate μ and displacement

d ¼ d~D, the latter defined as d ¼ j0:5� x�1j (equivalently, d ¼ j0:5� x�2j). In the above case study of /ʌ/
backing, where x� = em = (0.42, 0.58) and consequently δ = 0.08, it turns out that the modelled
equilibrium in fact falls somewhat outside this envelope, assuming the above-estimated value μ = 0.23
for the mutation rate parameter (figure 3). The empirical displacement does fall, however, within the
envelope for μ = 0.25. This predicts a value of σ of the order of 10−1, implying that convergence to
ingroup norm is roughly an order of magnitude stronger than divergence from outgroup norm in the
specific case of jocks and burnouts (again assuming uniform interaction rates within and between the
two groups). This accords well, in principle, with the results of empirical studies of intra- and inter-
group cooperation which have found ingroup favouritism to result from a pro-ingroup rather than an
anti-outgroup bias [63]. It is important to bear in mind, however, the uncertainty inherent in empirical
data points such as the frequency profile em or the estimate of the mutation rate μ. For one, Eckert’s
[25] data include a considerable amount of inter-individual variability within each population; this,
together with the small size of the populations, implies that some amount of noise in em (and,
consequently, in the displacement δ) is to be expected. Similarly, the phoneme confusion probabilities
reported in [38] are averages over participants and presentations of vowel tokens, and so involve
some unknown amount of uncertainty. In connection with further empirical testing, it would also be
important to consider other sociolinguistic variables (such as those reported in [64] for jocks and
burnouts), but also other speech communities so as not to overfit the model to the specifics of one
particular sociolinguistic situation.
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Apart from the above empirical considerations, it would be possible to explore various formal

extensions and refinements of the modelling approach adopted in this paper. One of these concerns
the resolution at which populations are approached—for technical reasons, I have here assumed
infinite, homogeneous well-mixing populations. As noted above, Eckert’s [25] data, in fact, show an
amount of inter-individual variability within each social group; the assumption of homogeneous
populations makes modelling this aspect of the data impossible. Established techniques exist,
however, for studying evolutionary games in finite and inhomogeneous populations [65]; within-
population variability may also be modelled using stochastic dynamics instead of the deterministic
setting here assumed [66]. Conceptually straightforward ways also exist of generalizing the
convergence–divergence game for multiple strategies, so that modelling the dynamics of more than
two linguistic variants in a number of populations becomes possible. Other promising avenues for
future work include analytical treatments of near-symmetric variations of the game, i.e. models in
which one aspect of the symmetry (such as mutation symmetry) is relaxed but others kept in place,
and an exploration of possible ways of interpreting the population-level results here reported from the
vantage point of individual-level models, perhaps along the lines of [67].

In this paper, I have suggested that the identity dynamics of linguistic strategies in stratified but
interacting populations of speakers can be illuminated by a formal model of linguistic convergence
and divergence, couched in evolutionary game theory. In reality, processes of convergence and
divergence attest a number of nuanced characteristics which the simple model here studied is unable
to account for. Where the simple model assumes that an aggregate population-level frequency (such
as the frequency of backing the vowel /ʌ/) is a useful proxy of individual-level linguistic behaviour,
the real-life situation is far more complex than this. Notably, linguistic accommodation operates on
multiple (time)scales and is responsible not just for large-scale regularities such as the population-level
opposition observed between jock and burnout language use, but also for the ways in which people
temporarily adjust and attune their linguistic choices, as demonstrated by the phenomenon of style
shifting [13]. The model here proposed could naturally be extended to cater for these complexities for
instance via the inclusion of socially motivated production biases [68]. Although analytical tractability
is almost certainly lost, pursuing such extensions in future work is likely to lead to additional insights
into the complex relationship that obtains between the dynamics of linguistic variants and the social
dynamics of populations.

Data accessibility. This article has no additional data. Numerical solutions of the asymmetric three-population game in §6
were obtained using the Dormand–Prince method [62] implemented in Julia [69], v. 1.4.2. The Jacobian of the fully
symmetric game, and its eigenvalues, were symbolically calculated using the Maxima Computer Algebra System.
All code is available at https://doi.org/10.5281/zenodo.4034829.
Competing interests. I declare I have no competing interests.
Funding. The research here reported was funded by the Federal Ministry of Education and Research (BMBF) and the
Baden-Württemberg Ministry of Science as part of the Excellence Strategy of the German Federal and State
Governments.
Acknowledgements. I am grateful to Ricardo Bermúdez-Otero, George Walkden and the referees for comments.
Appendix A
A.1. The replicator–mutator equation
The n-strategy one-population continuous-time replicator–mutator equation [52] reads7

_xi ¼
Xn
j¼1

x jm jif j(x)� xif(x) (A 1)

for the ith strategy, whereM = [mij] is a row-stochastic n × nmatrix supplying the mutation rates from one
strategy to another, and ϕ(x) is average fitness, defined as

f(x) ¼
Xn
i¼1

xifi(x): (A 2)
7Note that here, in contrast to the rest of this paper, the subscripts index strategies instead of populations.

https://doi.org/10.5281/zenodo.4034829
https://doi.org/10.5281/zenodo.4034829
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For two strategies (n = 2), the mutation matrix has only two free parameters:

M ¼ m11 m12

m21 m22

� �
¼ 1�m12 m12

m21 1�m21

� �
: (A 3)

Writing x = x1, ~x ¼ x2, f = f1 and ~f ¼ f2 as above, and noting that the average fitness equals
f(x) ¼ xf(x)þ ~x~f(x), equation (A 1) becomes

_x ¼ xm11f(x)þ ~xm21
~f(x)� x[xf(x)þ ~x~f(x)]

¼ (1�m12 � x)xf(x)þ (m21 � x)~x~f(x)

¼ (1� x�m12)xf(x)� (x�m21)~x~f(x)

¼ (~x�m12)xf(x)� (x�m21)~x~f(x):

(A 4)

Writing ~m for m12 and m for m21 recovers the form used in the main body of the paper.
.Soc.Open
Sci.7:201682
A.2. Proofs
This appendix provides proofs of propositions 3.1 and 4.1. Proposition 3.1 is reproduced below as
proposition A.1; proposition 4.1 follows from the more general result stated as proposition A.2.
Finally, the bifurcation sequence of the fully symmetric game is stated and proved as proposition A.5.

Proposition A.1. The number of equilibria of the two-strategy, two-population convergence–divergence game
is at least one and at most nine.

Proof. The existence of at least one rest point follows from Brouwer’s fixed point theorem.
For the upper bound, plugging the fitnesses (3.7) into (3.5) shows that _x1 and _x2 are cubic in x1 and x2.

In particular, each nullcline is a cubic curve in the x1x2 plane. By Bézout’s theorem, the number of
nullcline intersections, and hence of equilibria, is then at most nine. ▪

Proposition A.2. Let S ¼ ~S be an N ×N social alignment matrix without zeroes. Then the elements of S can
always be rescaled so that the diagonal of S is 1, without affecting the orbits of the resulting dynamical system
under fitnesses (6.1) and the dynamic (3.5).

Proof. Assume fitnesses fi and ~f i with S ¼ ~S, and let Fi(x) = αfi(x) and ~Fi(x) ¼ a~f i(x) where α = 1/sii.
Consider the differential equations

_xi ¼ hi(x) and _xi ¼ Hi(x),

where

hi(x) ¼ (~xi � ~mi)xifi(x)� (xi �mi)~xi~f i(x)

and

Hi(x) ¼ (~xi � ~mi)xiFi(x)� (xi �mi)~xi~Fi(x):

Then

Hi(x) ¼ a[(~xi � ~mi)xifi(x)� (xi �mi)~xi~f i(x)] ¼ ahi(x),

i.e. use of Hi instead of hi amounts to nothing but a rescaling of time by a factor of α. ▪

To prove proposition A.5 on the bifurcation sequence of the fully symmetric game, I make use of the
following two lemmas.

Lemma A.3. Under full symmetry, the uniform state (x1, x2) = (1/2, 1/2) is an equilibrium of the two-
strategy, two-population convergence–divergence game for any combination of μ and σ.

Proof. First, note that ~x1 ¼ x1 and ~x2 ¼ x2 if (x1, x2) = (1/2, 1/2). Hence fi(x) ¼ ~f i(x) from (4.2), and
consequently _xi ¼ (~xi � m)xifi(x)� (xi � m)~xi~f i(x) ¼ 0. ▪

Lemma A.4. Assume full symmetry. Then the following are equivalent in the two-strategy, two-population
convergence–divergence game:

(i) (x1, x2) is an equilibrium.
(ii) (x2, x1) is an equilibrium.
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(iii) (~x2, ~x1) is an equilibrium.

(iv) (~x1, ~x2) is an equilibrium.
oyalsocietypublishing.org/journal/rsos
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Proof. That (x1, x2) is an equilibrium if and only if (x2, x1) is an equilibrium follows immediately with
the change of variables x1↔ x2. It then suffices to show that (x1, x2) is an equilibrium if and only if
(~x1, ~x2) ¼ (1� x1, 1� x2) is an equilibrium. For this, notice that ~~xi ¼ 1� (1� xi) ¼ xi and that
~f i(x) ¼ fi(~x) and fi(x) ¼ ~f i(~x), where ~x ¼ (~x1, ~x2). Thus _xi ¼ 0 if and only if
(~xi � m)xifi(x) ¼ (xi � m)~xi~f i(x) if and only if (~xi � m)~~xi~f i(~x) ¼ (~~xi � m)~xifi(~x) if and only if _~xi ¼ 0. Hence
(x1, x2) is an equilibrium if and only if (~x1, ~x2) is. ▪

We can now state and prove proposition A.5.

Proposition A.5. A two-strategy, two-population convergence–divergence game with full symmetry has either
1, 3, 5 or 9 equilibria depending on the value of the mutation rate and social alignment parameters μ and σ. These
phases are separated by three critical values of μ—μ1, μ2 and μ3—satisfying the following relationship for any σ > 0:

0 , m1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2s2 þ 4sþ 4

p � s� 2
s2 , m2 ¼

1
sþ 4

, m3 ¼
sþ 1
3sþ 4

, 1: (A 5)

At each of these critical boundaries, one or two equilibria of the system are non-hyperbolic and undergo a bifurcation,
giving rise to the following four phases:

I. For μ > μ3, the system has one equilibrium, the uniform state (1/2, 1/2), which is stable (a sink). In the
transition from phase I to phase II, the uniform state undergoes a bifurcation, giving rise to two further
equilibria:

II. For μ2 < μ < μ3, the system has three equilibria, the uniform state (1/2, 1/2), which is unstable (a saddle),
and two equilibria on the diagonal

~D :¼ {(x1, x2) [ [0, 1]2 : x1 ¼ ~x2}, (A 6)

which are both stable (sinks). The on-diagonal equilibria are (x1, x2) ¼ (1=2þ d~D, 1=2� d~D) and
(x1, x2) ¼ (1=2� d~D, 1=2þ d~D) with the displacement from 1/2 given by

d~D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�(3s2 þ 4s)m2 � 2(s2 þ 3sþ 2)mþ (sþ 1)2

q
2(smþ sþ 1)

: (A 7)

In the transition from phase II to phase III, the uniform state (1/2, 1/2) undergoes a second bifurcation,
giving rise to two equilibria on the other diagonal:

III. For μ1 < μ < μ2, the system has five equilibria, the above-mentioned uniform state and ~D-equilibria, as well
as two further equilibria on the diagonal

D :¼ {(x1, x2) [ [0, 1]2 : x1 ¼ x2}, (A 8)

namely (x1, x2) = (1/2 + δD, 1/2 + δD) and (x1, x2) = (1/2− δD, 1/2− δD) with displacement

dD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(s2 þ 4s)m2 � 2(sþ 2)mþ 1

p
2(sm� 1)

: (A 9)

The uniform state is unstable (now a source), the ~D-equilibria are stable (sinks) and the D-equilibria are
unstable (saddles). In the transition from phase III to phase IV, both D-equilibria undergo a bifurcation,
giving rise to four further rest points:

IV. For μ < μ1, the system has nine equilibria, the above-mentioned uniform state, ~D-equilibria and D-
equilibria, as well as four off-diagonal equilibria whose values are too complicated to calculate (except in
the border case μ = 0). The uniform state is unstable (a source), the ~D-equilibria are stable (sinks), the
D-equilibria are stable (sinks) and the off-diagonal equilibria are unstable (saddles).

Proof. For notational convenience, I shall write x = x1, y = x2, f = f1 and g = f2 and omit the arguments
on the fitnesses in what follows.

To make a start, let us consider the zero-mutation special case μ = 0. The system (4.3) then reduces to
the pair of replicator equations

_x ¼ x~x(f �~f)
and _y ¼ y~y(g� ~g):

�
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From this, it is obvious that each vertex of the unit square [0, 1]2 is an equilibrium in addition to the

uniform equilibrium (1/2, 1/2) guaranteed by lemma A.3. Further equilibria exist if f ¼ ~f or g ¼ ~g or
both. From (4.2), solving f ¼ ~f for x yields

x ¼ 1þ sy
2þ s

:

In particular,

xjy¼0 ¼
1

2þ s
¼: j0 and xjy¼1 ¼

1þ s

2þ s
¼: j1,

so (ξ0, 0) and (ξ1, 1) are rest points. Symmetrically,

yjx¼0 ¼
1

2þ s
¼: y0 and yjx¼1 ¼

1þ s

2þ s
¼: y1

are solutions of g ¼ ~g. Hence (0, υ0) and (1, υ1) are also equilibria. By proposition 3.1, there are no further
equilibria.

To find out the stabilities of these rest points, we study the system’s linearization around each of them.
For general μ, the Jacobian of (4.3) with fitnesses (4.2) is8

J ¼ f[2(~x� m)� x]þ ~f[2(x� m)� ~x] �s[~x2(x� m)þ x2(~x� m)]
�s[~y2(y� m)þ y2(~y� m)] g[2(~y� m)� y]þ ~g[2(y� m)� ~y]

� �
:

With μ = 0, its eigenvalues at the above nine rest points are as follows:

(i) At (0, 0) and (1, 1): −1 (repeated)
(ii) At (0, 1) and (1, 0): −(1 + σ) (repeated)
(iii) At (1/2, 1/2): 1/2 and (1 + σ)/2
(iv) At (ξ0, 0), (ξ1, 1), (0, υ0) and (1, υ1): (1 + σ)/(2 + σ) and −2(1 + σ)/(2 + σ).

Bearing in mind that σ > 0, we thus find that the vertex rest points are all sinks, that the uniform state
(1/2, 1/2) is a source, and that the remaining four rest points on the edges of the unit cube are saddles.

As the value of the mutation rate parameter μ is increased, the expectation is that these equilibria will
gradually vanish, so that at the limit of maximal mutation only the uniform equilibrium remains (cf.
similar treatments of replicator–mutator dynamics with linear fitness in [26,27,55,56]). To study this
bifurcation scenario in detail, I next assume that, under full symmetry, it is reasonable to expect at
least some of these equilibria to fall on the diagonals of the unit square,

D ¼ {(x, y) [ [0, 1]2 : x ¼ y} and ~D ¼ {(x, y) [ [0, 1]2 : x ¼ ~y}:

Note that the existence of an on-diagonal equilibrium (x, y) [ (D< ~D) n {(1=2, 1=2)} which is not the
uniform state (1/2, 1/2) implies the existence of one further equilibrium (namely, its reflection about
the other diagonal), and that the existence of an off-diagonal equilibrium (x, y) [ [0, 1]2 n (D< ~D)
implies the existence of three further equilibria (its reflections about each diagonal) by lemma A.4.
Since the number of equilibria is between 1 and 9 by proposition 3.1, it follows that the number of
equilibria for any combination of μ and σ has to be either 1, 3, 5, 7 or 9. This suggests a sequence of
pitchfork bifurcations as μ decreases from 1 towards 0.

On-diagonal equilibria are not difficult to find algebraically. Upon the relevant substitutions in (4.3),
direct mechanical application of the cubic formula yields non-trivial roots x±D = 1/2 ± δD for _xjy¼x with

dD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(s2 þ 4s)m2 � 2(sþ 2)mþ 1

p
2(sm� 1)

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A(s, m)

p
2(sm� 1)

,

where I write A(σ, μ) for the argument of the square root. Due to symmetry, _yjx¼y has the same roots.
Hence there are a maximum of two non-trivial (δD ≠ 0) rest points on the D-diagonal, and these are
d1 : = (x+D, y+D) and d2 : = (x−D, y−D) provided that the roots exist in the reals and in particular in the
8I omit details of purely mechanical calculation, such as the computation of the Jacobian and its eigenvalues. A symbolic
implementation of these calculations is available (see ‘Data accessibility’).
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Figure 4. (a) The eigenvalues λD(u) and λ~D(u) of the Jacobian, evaluated at the uniform rest point u = (1/2, 1/2), as a function of
mutation rate μ. (b) The eigenvalues λ1(d1) and λ2(d1) of the Jacobian, evaluated at the diagonal rest point d1 (see text), as a
function of mutation rate μ.
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interval [0, 1]. On the other diagonal, the solutions are x+~D ¼ y+~D ¼ 1=2+ d~D with

d~D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�(3s2 þ 4s)m2 � 2(s2 þ 3sþ 2)mþ (sþ 1)2

q
2(smþ sþ 1)

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~A(s, m)

q
2(smþ sþ 1)

:

It follows that the ~D-diagonal equilibria are ~d1 :¼ (xþ~D, y�~D) and ~d2 :¼ (x�~D, yþ~D).

The non-trivial D-equilibria exist whenever A(σ, μ) > 0 and δD satisfies |δD|≤ 1/2. It is easy to verify
that |δD|≤ 1/2 if and only if μ < 1/σ. On the other hand, A(σ, μ) is an upward-opening parabola in μ,
and has roots μ1 = 1/(σ + 4) > 0 and μ2 = 1/σ > μ1 as can easily be verified. Thus, the D-equilibria d1

and d2 exist whenever μ < 1/(σ + 4). A similar argument concerning d~D and ~A(s, m) shows that the
~D-equilibria ~d1 and ~d2 exist whenever μ < (σ + 1)/(3σ + 4). We have thus identified two critical values
of the mutation parameter μ,

mD :¼ 1
sþ 4

and m~D :¼ sþ 1
3sþ 4

,

supplying upper bounds for the existence of non-trivial on-diagonal equilibria. Since

1
sþ 4

,
sþ 1
3sþ 4

for any σ > 0, the existence of the D-equilibria implies the existence of the ~D-equilibria.
The pairs of on-diagonal equilibria (d1 and d2, ~d1 and ~d2) bifurcate from the uniform equilibrium

u = (1/2, 1/2). To see this, consider the eigenvalues of the Jacobian evaluated at the uniform
equilibrium u. In the fully symmetric case, these are easy enough to solve and are found to be

lD(u) :¼ �sþ 4
2

mþ 1
2

and l~D(u) :¼ � 3sþ 4
2

mþ 1þ s

2
:

For fixed σ, each eigenvalue is thus affine in μ, with roots

1
sþ 4

¼ mD and
sþ 1
3sþ 4

¼ m~D,

respectively (figure 4a). For μ < μD, both eigenvalues are positive and u is a source. For mD , m , m~D,
λ~D(u) is positive and λD(u) negative, and u is a saddle. For m~D , m, both eigenvalues are negative,
and u is a sink.
The existence of the (unstable) side-of-the-square equilibria (ξ0, 0), (ξ1, 1), (0, υ0) and (1, υ1) in the zero-
mutation μ = 0 case suggests that off-diagonal equilibria should exist in the μ > 0 case too, possibly
bifurcating from the equilibria on the D-diagonal as these approach the vertices as μ tends to zero.
This is, indeed, the case. While it has not been possible to find an explicit solution of these equilibria,
the bifurcation points can be identified relatively easily by evaluating the eigenvalues of the Jacobian
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at the D-equilibria d1 and d2. Due to symmetry, it suffices to consider d1 only. The eigenvalues are found
to be

l1(d1) ¼ (sþ 4)m� 1 and l2(d1) ¼ s2m2 þ 2(sþ 2)m� 1
1� sm

:

Thus, λ1(d1) is affine in μ with a root at μ = 1/(σ + 4) = μD. As the D-equilibria only exist when μ < μD,
it thus suffices to consider values of μ less than 1/(σ + 4), which also takes care of the singularity
μ = 1/σ for λ2(d1). On the other hand, λ2(d1) has roots at

m� :¼ �(sþ 2)� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2s2 þ 4sþ 4

p

s2 and mþ :¼ �(sþ 2)þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2s2 þ 4sþ 4

p

s2 :

Of these, μ− is always negative while μ+ is always positive with μ+≤ μD. The D-diagonal equilibrium
undergoes a subcritical pitchfork bifurcation at μ+ as the second eigenvalue λ2(d1) changes sign as the
value of μ is decreased (figure 4b). Consequently, this μ+ is the third critical value of the mutation
parameter. Writing μ1 = μ+, μ2 = μD and m3 ¼ m~D, we are done. ▪
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