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XVII1. Researches on the Geometrical Properties of Elliptic Integrals. 
By the Rev. JAMES BOOTH, LL.D., F.R.S. Jc. 

Received November 17, 1851,-Read January 22, 1852. 

SECTION Ls 
I. IN placing before the Royal Society the following researches on the geometrical 
types of elliptic integrals, which nearly complete my investigations on this interesting 
subject, I may be permitted briefly to advert to what had already been effected in 
this department of geometrical research. LEGENDRE, to whom this important branch 
of mathematical science owes so much, devised a plane curve, whose rectification 
might be effected by an elliptic integral of the first order. Since that time many 
other geometers have followed his example, in contriving similar curves, to represent, 
either by their quadrature or rectification, elliptic functions. Of those who have 
been most successful in devising curves which should possess the required properties, 
may be mentioned M. GUDERMANN, M. VERHULST of Brussels, and M. SERRET of Paris. 
These geometers however have succeeded in deriving from those curves scarcely any 
of the properties of elliptic integrals, even the most elementary. This barrenness in 
results was doubtless owing to the very artificial character of the genesis of those 
curves, devised, as they were, solely to satisfy one condition only of the general pro- 
blem *. 

In 1841 a step was taken in the right direction. MM. CATALAN and GUDERMANN, 
in the journals of Liouville and Crelle, showed how the arcs of spherical conic sec- 
tions might be represented by elliptic integrals of the third order and circular form. 
They did not, however, extend their investigations to the case of elliptic integrals of 
the third order and logarithmic form; nor even to that of the first order. These 
cases still remained, without any analogous geometrical representative, a blemish 
to the theory. 

Some years ago, when engaged in the discussion of the problem of the rotation of 
a rigid body round a fixed point, by the'help of an auxiliary ellipsoid, I had continu- 
ally brought under my notice, in the course of my investigations, the sections of a 
sphere by a concentric cone, or as they now are generally named, spherical conic 

* LEGENDRE a cherche 'a reprdsenter en general, la fonction dig. (c, p) par un are de courbe; mais Ses ten- 
tatives ne nous ont pas semble heureuses, car il n'est parvenu 'a resoudre completement le probleme, qu'en 
employant une courbe transcendante, dans laquelle lFamplitude p et l'arcs out entre eux une relation g6oM6- 
trique encore plus difficile A saisir que dans la lemnaiscate.-VERHvULST, Traite' des Jionctions Elliptiques 
p. 295. 
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sections. It accordingly became necessary that I should give especial attention to 
the nature of those curves. I succeeded in showing that the elliptic integral of the 
first order, which is merely a particular case of the circular form of elliptic integrals 
of the third order, represents a spherical conic section whose principal arcs have a cer- 
tain relation to each other. Besides, I was so fortunate as to hit upon the true geo- 
metrical representative of an elliptic integral of the third order and logarithmic form. 
I discovered it to be the curve of intersection of a right elliptic cylinder by a para- 
boloid of revolution having its axis coincident with that of the cylinder. These re- 
searches were published in the early part of the present year*. There still remained, 
without investigation, the case when the parameter is negative and greater than l. 
The geometrical representative of this peculiar form, I announced to be a curve, 
which I called the Logarithmic hyperbola. In the Theory of Elliptic Integrals, p. 1.59, 
I have said, " If a right cylinder standing on a plane hyperbola as a base, be substi- 
tuted for the elliptic cylinder, the curve of intersection may be named the logarithmic 
hyperbola. It will have four infinite branches, whose asymptote will be the infinite 
arcs of two equal plane parabolas. This curve, and not the spherical ellipse, is the 
true analogue of the conmmon hyperbola." No demonstration, however, of these pro- 
perties was given in that treatise. 

The main object of the following paper is to prove, that Elliptic Integrals of every 
order, the parameter taking any value whatever between positive and negative infinity, 

'represent the intersections of surfaces of the second order. 
To these curves may be given the appropriate name of Hyperconic sections. 
These surfaces divide themselves into two classes, of which the sphere and the 

paraboloid of revolution are the respective types; from the one arise the circular 
functions, from the other the logarithmic and exponential. The circular integral of 
the third order is derived from the sphere, while the logarithmic function of the same 
order is founded on the paraboloid of revolution. 

Although in the following pages I have, for the sake of simplicity, derived the 
properties of those curves, or of the integrals which represent them, from the inter- 
sections of these normal surfaces, - the sphere and the paraboloid,-with certain cylin- 
drical surfaces; yet the intersections so produced may be considered as the inter- 
sections of these normal, surfaces with various other surfaces of the second order. 
Let UNDO be the equation of the sphere or paraboloid, and V=O the equation of 
the cylinder. The simultaneous equations U=0, V=O give the equations of the 
curve of intersection. Let f be any abstract number whatever then U+f V=o is 
the equation of another surface of the second order passing through the curve of in- 
tersection, Let U=O be the equation of a sphere, for example. Accordingly as we 
assign suitable values to the numberf, we may make the equation U+fV=O repre- 
sent any central surface of the second order. But we cannot, by any substitution or 

* The Theory of Elliptic Integrals, and the Properties of Surfaces of the Second Order, applied to the in- 
Vestigation of the motion of a body round a fixed point. London: G. BELL, 1851. 
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rational transformation, make the equation U+fJV=O represent a non-central sur- 
face instead of a central one, or vice versd. 

Although a remarkable relation exists between the areas and lengths of some of 
these hyperconics, such as the circle and the spherical ellipse, yet more distinctly to 
show the analogy which pervades all those curves, I have not had recourse in any 
case to the method of " elliptic quadratures," as it is termed*. We cannot admit 
such a violation of the law of geometrical continuity as to suppose, that while a 
function in one state represents a curve line, in another, immediately succeeding, it 
must express an area. Such can only be taken as a conventional explanation, until 
the real one, characterized by the simplicity of truth, shall present itself. 

In the course of these investigations, it will be shown that the formulk for the 
comparison of elliptic integrals, which are given by LEGENDRE and other writers on 
this subject, follow simply as geometrical inferences from the fundamental properties 
of those curves; and that the ordinary conic sections are merely particular cases of 
those more general curves above referred to, under the name of hyperconic sections. 

It will doubtless appear not a little singular, that the principal properties of those 
functions, their classification, their transformations, the comparison of integrals of 
the third order, with conjugate or reciprocal parameters, were all investigated and 
developed before geometers had any idea of the true geometrical origin of those func- 
tions. It is as if the formule of trigonometry had been derived from an algebraical 
definition, before the geometrical conception of the circle had been admitted. As 
trigonometry may be defined, the development of the properties of circular arcs, 
whether described on a plane or on the surface of a sphere; so this higher trigono- 
metry, or the theory of elliptic integrals, may best be interpreted as the development 
of the relations which exist between the arcs of hyperconic sections. 

Indeed it may with truth be asserted, that nearly all the principal functions, on 
which the resources of analysis have chiefly been exhausted, whether they be circular, 
logarithmic, exponential or elliptic, arise out of the solution of this one general pro- 
blem, to determine the length of an arc of a hyperconic section. 

It may be said, we cannot by this method derive any properties of elliptic inte- 
grals which may not algebraically be deduced from the fundamental expressions 
appropriately assumed. But surely no one will assert that the properties of curve 
lines should be algebraically developed, without any reference to their geometrical 
types. 

We might from algebraical expressions suitably chosen, derive every known property 
of curve lines, without having in any instance a conception of the geometrical types 

* En considdrant les fonctions elliptiques comme des secteurs, dont 1angle est pr6cisnment 6gal 'a 1ampli- 
tude p, nous avons en I'avantage de justifier la denomination d'amplitude appliquee 'a 1angle 9; et me'me celli 
de fonctions elliptiques, en g6neral, puisque les courbes algdbraiques par lesquelles nous avons representes ces 
transcendantes, se construisent avec facilit6 au moyen des rayons vecteurs d'une ou de deux ellipses donn Us 
-VERxRULST, T aite den Fonction Eliptiques, p. 295. 
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which they represent. The theory of elliptic integrals was developed by a method 
the inverse of that pursued in establishing the formulae of common trigonometry. In 
the latter case, the geometrical type was given-the circle-to determine the alge- 
braical relations of its arcs. In the theory of elliptic integrals, the relations of the 
arcs of unknown curves are given, to determine the curves themselves. This is 
briefly the object of the present paper. 

The true geometrical basis of this theory would doubtless long since have been 
developed, had not geometers sought to discover the types of those functions among 
plane curves. They were beguiled into this course by observing, that in one case- 
that of the second order-the representative curve is obviously a plane ellipse. -Hence 
they were led by a seeming analogy to search for the types of the other integrals 
among plane curves also. 

The author hopes in a future communication to the Royal Society, the present 
having grown under his hands beyond the limits he anticipated, to extend his re- 
searches to elliptic integrals with imaginary parameters, and to show the true 
geometrical meaning of such expressions. It has long been known, that, by the aid 
of the imaginary transformation sin p=v-7I tang4, we may pass from the loga- 
rithmic to the circular type, and conversely; but it has not, however,, been observed 
that this transformation enables us to effect this transition, because it changes the 
algebraic expression for the arc of a parabola into that for a circular arc or area, 
and conversely. The striking analogies developed between the formulae of the 
trigonometry of the circle and that of the parabola will be found very curious and 
instructive. 

I have attempted thus to place on its true geometrical basis, a somewhat abstruse 
department of analysis, and to clear up the elementary notions from which it may, 
with the utmost simplicity, be developed. It is only in the maturity of a science, 
that the relations which bind together its cardinal ideas become simplified. An 
author, whot has himself contributed much to the progress of mathematical science, 
well observes,-" qui il est bien rare qu'une th6orie sorte sous sa forme la plus simple 
des mains de son premier auteur. Nous pensons qu'on sert peut-etre plus encore la 
science en siMplifiant, de la sorte, des theories djaj connues, qu'en l'enrichissant de 
theories nouvelles, et c'est 1 un sujet auquel on ne saurait s'appliquer avec trop de 
soin."-GERGONNE, Annales des Mathknatiques, tom. xix. p. 338. 

II. I have ventured to make some alterations in the established notation of elliptic 
integrals, I have written i for the modulus, instead of c; andj for its complement 
instead of b; so that i2+j2= 1. 

The symbol c, used by writers on this subject to designate the modulus, was 
adopted by analogy from the formula for the rectification of a plane elliptic arc by 
an integral of the second order. Although in the circular forms of the third order 
it still signifies a certain ellipticity, yet it has no longer the same signification in the 
usual formn of the first order, or in the logarithmic form of the third. 
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Instead of the usual symbol, A=0/1 c2 sin2p=V1 -i2 sinkp, s/ has been substi- 
tuted, when i is the mlodulus. Should it become necessary to designate the ampli. 
tude, the expression may be written VIN, or V/L. 

For the elliptic integrals of the first and second orders, which are usually written 

F,(p) and Ej(p), I have substituted ('- and fdv/J. The surface of revolution 

may be named the generating surface, while the intersecting surface is always a cylin- 
drical surface. The parameter, of which p is the general symbol, we shall suppose 
to vary from positive to negative infinity, and to pass through all intermediate states 
of magnitude. 

The nature of the representative curve will depend on the value assigned to the 

parameter p in the expression K - . The modulus we shall assume 
[+P mn A] V 1-P son 

to be invariable and less than 1. In this progress from +so to - oo, the parameter 
passes through thirteen distinct values, each of which will cause a variation in the 
species or properties of the hyperconic section, the representative curve of the given 
elliptic integral. 

In the following Table we may observe that the generating surface in passing from 
a sphere to a paraboloid, in its state of transition, becomes a plane. 

It is somewhat remarkable, that the common form of the elliptic integral of the 
first order does not appear in the Table, although it is implicitly contained in cases 
II. and VIII.; for in the circular form of the third order, when the parameter is 
equal to the modulus i, we can reduce the third order to the first. The reason why 
the first form of elliptic integral does not appear in the Table is this; in the thirteen 
cases given, the origin is placed at the centre, or symmetrically with respect to the 
represented curve. When the' elliptic integral of the first order is given in the usual 
form, without a parameter, it represents a spherical parabola, but the origin is non- 
symmetrical, that is, the origin is placed at a focus. See Theory of Elliptical In- 
tegrals, p. 33. 

Instead of p, the general symbol for the parameter, we may substitute for it parti- 
cular values, such as 1, m, or n, as the case may require. The quantities 1, m, n, i and 

are connected by the following equations 
i2+j2=I, bn=i2, and m-n+mn=i2, in the circular form, 1 
i2+j2=] In=i2, and m+n-mn=i '2 in the logarithmic formf (1) 

m and n may be called conjugate parameters; while I and m, or I and n may be termed 
reciprocal parameters. 

These thirteen cases are exhibited in the following Table. 
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TABLE. 

Case. Sign. Parameter. Generating surface. Cylindrical surface. Hyperconic section. 

I. + p=n=oo Sphere .Elliptic cylinder . Circular sections of 
elliptic cylinder. 

II. + p=n=i, or Sphere .................*.Elliptic cylinder . Spherical parabola. 
m~n. 

III. + p=n>-O .... Sphere .Elliptic cylinder ......... Spherical ellipse. 

IV. ? p=n=O . Plane .. Elliptic cylinder ......... Plane ellipse. 

V. - p=m= 1-. Vi-i2, Paraboloid indefinitely Circular cylinder Circular logarithmic 
or m=n. attenuated. ellipse. 

VI. p=m, orp=nvi2 ... Paraboloid .. .... Elliptic cylinder ......... Logarithmic ellipse. 

VII. - p=m=i2 ...... Plane .. Elliptic cylinder ....... Plane ellipse. 

VIII. _ p=m=i . Sphere ............. Elliptic cylinder ......... Spherical parabola. 

IX. -p=m> Sphere .=.Elliptic cylinder ......... Spherical ellipse. 
p=mn<1. 

X. p=l=l .... Plane .Hyperbolic cylinder ..Plane hyperbola. 

XI. - p = l~-I .... Paraboloid .Hyperbolic cylinder ... Logarithmic hyperbola. 

XII. _ p= 1= + Vi !-j2 Paraboloid .... Hyperbolic cylinder. Equiparametral loga- 
or m=n, rithmic hyperbola. 

X CIII.| _ | I= co .. Paraboloid ............... Vertical plane ........... Parabola. 

Cases I., IV., VII., X., XIII. give the formulae for the rectification of the ordinary 
conic sections; the generating surface in these cases being a plane. When the 
generating surface is a sphere, we get the spherical hyperconic sections; when a 
paraboloid, the logarithmic hyperconic sections result. 

SECTION I.-On the Spherical Ellipse. 

III. A spherical ellipse inay be defined as the curve of intersection of a cone of 
the second degree with a concentric sphere. 

In the spherical ellipse there are two points analogous to the foci of the plane ellipse, 
such that the sum of the arcs of the great circles drawn from those points to any point 
on the curve is constant. Let rz and 03 be the principal semiangles of the cone; 2V, and 
2(3 are therefore the principal arcs of the spherical ellipse. Let two right lines be 
drawn from the vertex of the cone in the plane of the angle 2a, making with the in- 
ternal axe of the cone equal angles a, such that 

COS 
* * COS* (2.) 

These lines are usually called focals, or thefocal lines of the cone. The points in 
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which they meet the surface of the sphere are termed the foci of the spherical 
ellipse. 

IV. Every umbilical surface of the second order has two concentric circular sections, 
whose planes, in the case of cones, pass through the greater of the external axes. Per- 
pendiculars drawn to the planes of those sections passing through the vertex,- they may 
be called the CYCLIC AXES of the cone-make with the internal axis of the cone in, the 
plane of 2( 3the plane passing through the internal and the lesser external axvis-equal 
angles a, such that 

sin3 
Cos .= Sina .(3.) 

Let a series of planes be drawn through the vertex, and perpendicular to the suc- 
cessive sides of the cone. This series of planes will envelope a second cone, which 
usually is called the supplemental cone to the former. The cones are so related, that 
the planes of the circular sections of the one are perpendicular to the focals of the 
other, and conversely. 

V. The equation of the spherical ellipse may be found as follows, from simple 
geometrical considerations. 

Let 2a and 2 be the greatest and least vertical angles of the cone; the origin of 
coordinates being placed at the common centre of the sphere and cone. Let the in- 
ternal axis of the cone meet the surface of the sphere in the point Z, which may be 
taken as the pole. Let p be an arc of a great circle drawn from the point Z to any 
point Q on the curve. 4 being the angle which the plane of this circle makes with 
the plane of 2ac, we shall have for the polar equation of the spherical ellipse, 

1 cos2,+ sin24+ 

tankp ~tank + tanki3 

Tro show this, through the point Z let a tangent plane be drawn to the sphere. This 
plane will intersect the cone in an ellipse. This ellipse may be called the plane base 
of the cone, while the portion of the surface of the sphere within the cone may be 
termed the spherical base of the cone. The plane of the great circle passing through 
Z and Q will cut the plane base of the cone in the radius vector R; and if we write 
A and B for the semniaxes of this ellipse, whose plane touches the sphere, we shall 
have, for the common polar equation of this ellipse, the centre being the pole, 

1 cos2if sink4 
RI A2+ B 

Now the radius of the sphere being k, and p, a, it, the angles subtended at the centre 
by R, A, B, we shall clearly have 

R==ktanp, A=k tang, B- ktanf; . . . e . . . . (4.) 
whence 

I cos2+4 sink2, 

tangp-tangoatan * . . . e . (5.) 
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We may write this equation in the form 
1 -si8 cosAP, s2 ___ t=9 GOS *2 SinW+ 

sinfp sini2c ( ) + si2p(l -sn ) 
or reducing, 

1 cos24 sin24, 
sin2p 7iA,<+S1-_e0* *eb***( 

Trhis is the equation of the spherical ellipse under another form, which may be ob- 
tained independently, by orthogonally projecting the spherical ellipse on the plane of 
the external axes; or by taking the spherical ellipse as the symmetrical intersection 
of a right elliptic cylinder with the sphere. 

VI. If in the major principal arc 2a of the spherical ellipse, we assume two 
points equidistant from the centre, the distance s being determn'ed by the condition 

COS 9= Cos as in (2.), the sum of the arcs of the great circles drawn from these points 

-the foci-to any point on the spherical ellipse is constant, and equal to the principal 
arc 2a. For a proof of this well-known property, the reader is referred to the 
Theory of Elliptical Integrals, p. 12. 

VII. The product of the sines of the perpendicular arcs let fall from the foci of a 
spherical ellipse on the arc of a great circle touching it, is constant. 

Let w and ml be the perpendicular arcs let fall from the foci on the tangent arc of 
a great circle; we shall have 

sinw sins' sin(+a) sin(oa-g). 
VIII. To find an expression for the length of a curve described on the surface of 

a sphere, whose radius is 1. 
Let u and u' be two consecutive points on the curve, ZQ, Fig. 1. 

ZQ' the arcs of two great circles passing through them inclined z 

to each other at the indefinitely small angle d4+. Through 
u let a plane be drawn perpendicular to OZ, and meeting the 
great circle ZQ' in v. 

Then ultimately uvu' may be taken as a right-angled tri- 
angle, whence u'2 =bV- - j2+ 2 . / * 

Now uu=do;, uv= sinp d4+, u'v=dp, whence 
do= [dp2+ sinp d4*2]1.(8.) 0 

Integrating this expression between the limits p, and ple or 4 and 0, accordingly 
as we take p or 4' for the independent variable, we get 

~=JpLl sin2p (\+ T ; or ao=j d-LV + sin2pj.(9.) 

IX. To apply this expression to find the length of an arc of a spherical ellipse. 
In this case it will be found simpler to integrate the differential expression for an 

* Theory of Elliptical Integrals, &c., p. 13. 
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arc of a curve, taking p instead of 4 as the independent variable. We may derive 
from (6.) the following expressions, 

n2, sin3 Fsin2a - sin2p 2 sin2c asin2p -sin2(I0 
sin2p 14c s' 

J 
- c = l * ( 10.) 

Differentiating the former with respect to 4 and p, and eliminating sin 4-, cos 4; 
using for this purpose the relations established in (10.), we find 

d+_ -sinot sing cosp 11 
dp sinf 4/sin2-srn2p Vsin2p sin2P . * 

Substituting this value of in the general expression for the arc; the resulting 
equation will become 

6 fdgy [t maiSn ,;COP - COS COf 1 *. * (. *) 

Vi--sinp 6(sin2p -snj~ 

an elliptic integral which may be reduced to the usual form by the following trans- 
formation: assume- 

sina cos2; + sin23 Sin2p 

c )ptan2a cos2p +tan23 sin2. *.(13.) 

The limits of integration are 0 and 2 Differentiating this expression, and intro- 

ducing into (12.) the relations assuimed in (13.), we obtain for the arc the following 
expression 

tanj3 . dp. . . (1 ) 
tan a tan )n2P.2lA _ (sin M-sine sin2 ( tan2 ax ___ ___ _ 

Let e be the eccentricity of the plane base of the cone, whose semiaxes are A and B, 
as in (V.), 

2 A2-B2 tan2a-tang23 
e = -A2 = tan2a ,ain(4.), 

sin2g-sin2g 
(3.) gives sin 2= = 

2 sin2c a~~Gj 
* * * ~~~~2, _ singa- singp and we derive from (2.) sin co 

or grouping these results together, 
tans -tan2g3 

tang c 

;i2 sinfa-si =i .(15.) 

2 sinx sinkp ,sin I=.2 

MDCMCCLII. 2 T 
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If we introduce these values into (14.), the -transformed equation will become 

tang td a 
6= S [1 e~i2] ~(16.) ?-tank ink [[leq sini A/ 1 -sin2i sin2v] 

an elliptic integral of the third order and circular form, since e2 is greater than sin 2; 
and less than 1. 

This is case IX. in the Table, page 6. 
This is one of the simplest forms to which the rectification of an arc of a spherical 

ellipse can be reduced. The parameter of the elliptic integral is the square of the 
eccentricity of the plane elliptic base, and the modulus is the sine of half the angle 
between the planes of the circular sections of the cone. 

If we write m for e2, i for sinn, and express the coefficient tang sing in terms of m tana 
and i, the expression (16.) may be transformed into 

~a (m} niLm [ 51-m sin2%] 41-i2sjn2]j. * (17.) 

It is easily shown that the coefficient tank sin3 of the elliptic integral in (16.) or its 

equal (l,>m)>/nn is the square root of the criterion of sphericity, 

For if we substitute in this expression for i, its value given in (L1) mr-n+mn=i2, we 
shall find 

-tang . I-m 
V/?tans sinp= ( m-JJ)nrn. . .* (18.) 

-AsV is manifestly real, the elliptic integral is of the circular form. 
X. We may, by the method of rectangular coordinates, derive an expression for 

the arc of a spherical ellipse. 
In this case we shall consider the spherical ellipse as the curve of intersection of a 

right elliptic cylinder by a sphere having its centre on the axis of the cylinder. 

Let + and x'+y2?z2=k2 (19.) Fig. 2. 

be the equations of the cylinder and sphere, ABCD and 
FGCD, then da being the element of an arc on the 
surface of a sphere whose radius is 1, kdoa will be the 
element of the corresponding arc on the surface of the 
sphere whose radius is k. P A if 

rience do- /d)2(dY2 + dz 2 
Hence dAa/t)+(dx)*.. . . (20.) 

Xy and z being functions of the independent variable i. 
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a4 cos2g b4 sin2N ) Assume a2cos24 
s + a2scos2X+6b2sin2 

a2(k _a2) cos2X + b2(k2 - 2) sin2,(1 z ~~~a2 cos2,% + b2 sin 24 
Differentiating these expressions, 

( dx\2 a4b4 sin2X (dy? 2 a464 coS2X 

TdXj [a cosA + b6 sin2)j' td [a2 cos2x + b2 sin2A]3 

and as xdx+ydy+zdz=0, . . e c (22.) 

/dz\ 2 A44(a2- b2)2 sin2x cos2x | 
kidy) = [aPcos24 +b 2 sin2XA]3[a2(k2- a0) cos2X+ b2(k2-b2) sin2Kf J 

Substituting these expressions in (20.), we find 

do-\2 a4b4 [a2(k1-a2) cos2A + b2(k2-b2) sin2A + (a2- b2)2sin2Xcos2X] 
k~dx) k2P[aicos2X +6b2 sirn2k]3[a2(k2-a2) cos2, ? b2(k2-b2) sin2x] * . (23.) 

The numerator of this expression may be resolved into the factors 
[a2 cos2??+b2 sin24] [(k2---a2) cos2X+ (k2- b2) sin2K], 

and the equation may now be written 

do- a22 V (k2- a2) cos2x + (k2 -2) sin29 2 
da k [a2cos2A + b6sin2X] V/a2(k2-a2) cos2) + b2(k2-b2) sinA (24.) 

Assume tan24W=Gj2 = 2tan2X. . .. . . (25.) 

Hence A/(k2l 
- a2) (k2- A) 

d4- (k2- a2) sin2+ + (k - 6) cos2+ 

(24.) may now be transformed into 

do- do- d?% A2 V (k -a2) (k2- 62) 

d4'-dx dP k[a2(k2..b2)cos4i+b2(k2 sif alcos24'+ b2 sin2, (2.+) 

If we imagine a concentric cone to pass through the mutual intersection of the 
cylinder and the sphere, we shall have 

a=ksinw, b=ksin3, 

a2 -b2 tan2a-tan2p - . . . . . (27.) 
sin!1 ' e = tan2a -10 -_ _ 

Whence (26.) may be transformed into 

tang . d+, '1 2. 
5 = tana S lfl' L [1 2e8sin2tl] V) 1 ' **n 

an expression identically the same with (16.). 
The angle 4 in this expression is identical with p in (16.). 

a4 cos2x + 6 sin2x a4+ b tan2x 
For 2+ T-a2coS24 +62 sin2A a2 +b2 tan2A' 

eliminating tan. bv (25.), 
2, +Y 2 a4(k2-b2) cos24+ + b4(k2-a2) sin24, 
~+$ + a2(k2 - b2) cos24P + 62(k2-a2e) sin2+I 

- ~2T2 
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Now a 2=k2 sin, b 2=k2 sin2g, k2- a2=k2 cos2az, k2- b22=k2 cos2f3, and X2+y2 k2 COs2fp. 

Reducing, we get 
- - ~~~~~sinusa cos2+ + sired singi 

P tan2a cos2p+ +tan2p sin2*' (29.) 

Comparing this expression with (13.), we see that 
(30.) 

XI. In the foregoing expressions (17.) and (28.) for the rectification of an arc of a 
spherical ellipse, the elliptic integrals are of the third order and circular form, with 
negative parameters. We shahl now proceed to show that the same arc may be ex- 
pressed by an elliptic integral of the third order and circular form, having a positive 
parameter. 

It is shown in most elementary treatises on the integral calculus, in its applica- 
tion to the rectification of plane curves, that if p the perpendicular let fall from a fixed 
point as pole on a tangent to the curve, makes the angle x with a fixed right line 
drawn through, the pole, t being the intercept of the tangent between the point of 
contact and the foot of the perpendicular, we shall have 

dp 
?s =Jpd +~ PI 

dp.... * .. v - * * * * v (31.) 

and t= dx J 
The signs of s to be taken as the curve is concave or convex to the pole. 

XII. To investigate an analogous formula for the rectification of a spherical curve, 
the intersection of a cone of any order with a concentric sphere. 

Let a point Z be assumed on the surface of the sphere Fig. 3. 

as pole, and through this point a tangent plane ZAQB, 
or (0), to the sphere being drawn, the cone whose ver- 
tex is at 0, the centre of the sphere, and which passes 
through the given spherical curve, will cut this tangent 
plane (0) in a plane curve AQB, whose rectification may 
be effected, when possible, by (31.). Now a tangent 
plane OQP, or (T), may be conceived as drawn touching ...\ 
the cone, and cutting the tangent plane (0) in a right a 
line QP or t, which will be a tangent to the plane curve A- ..... . . 

in (0). It will also cut the sphere in an are of a great .........2 
circle (zzm) which will touch the spherical curve in x. Let Q 

the distance QO of the point of contact of the line t 
with the plane curve from the centre of the sphere be R. Through the centre of the 
sphere let a plane OZP, or (1I), be drawn at right angles to the straight line t. Now 
this plane, as it is perpendicular to t, must be perpendicular to the planes (0) and (T) 
which pass through t. As the plane (LI) is perpendicular to the plane (0), it must 
pass through (Z) the point of contact of this plane with the sphere, and cut the plane 
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of the curve AQB in a right line ZP, or p, which passes through the pole, the point 
of contact of (0) with the sphere. This line p being in (II) must be perpendicular 
to t. The plane (H) will also cut the sphere in an arc of a great circle ZZU -=, per- 
pendicular to x-, the tangent arc to the spherical curve; for these arcs must be at 
right angles to each other, since the planes in which they lie, (H) and (T), are at 
right angles. Let P be the distance OP of the point, in which the plane (HI) cuts the 
right line t, from the centre of the sphere; r the distance ZQ of the pole of the plane 
curve to the point in which t touches it, 7 being the angle which t subtends at the 
centre of the sphere, and k its radius, 

R2= k2+r2, P2= k2+p25 t2=r2_p =R2-P2 
p=k sin-s, t=P tanr 

7 is the angle between OQ and OP. 
Let ds be the element of an arc of the plane curve between any two consecutive 

positions of R, indefinitely near to each other; kdM the corresponding element of the 
spherical curve between the same consecutive positions of R. Then the areas of the 
elementary triangles on the surface of the cone, between these consecutive positions 
of R., having their vertices at the centre of the sphere, and for bases the elements of 
the arcs of the plane and spherical curves respectively, are as their bases multiplied 
by their altitudes. Let S and S' be these areas; then 

ds dT 
s: St :: Pa : k2 , . . . . . . . . . * * . (a.) 

But the areas of triangles are also as the products of their sides into the sines of the 
contained angles, i. e. in this case as the squares of the sides, or 

8: S' :: R 2 k2, . . . . . . . . . . . . . (b.) 
do P ds 

or =fl;.() dx -R2 dx;* * * * * * * * * * * * * * (* 

putting for ds its value given in (31.), 
dT P fd2p 1 
dP= .2.d2 + *(d.) 

Now p=P sing, P2R2- t2, and P2=k2+p2. 

whence ~~~~~dP dp dp whence P axP=pd,, and t= dx 

Substituting these values in (d.), 
do I [d2p_ dP djp 
dx= sinw+R21PdX-dx d.(e.) 

We now proceed to show that the last term of this equation is the differential of 
the arc, with respect to A, subtended at the centre of the sphere. 

This arc iP This arc being Ir, taner=p, cosr=R* 
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dr p 1 dt dP ( ) 

or as dp dr Pd2* (g.) 

Adding this equation to (e.), we get for the final result, 

?? =Jdx sins - v. 

If t dpthe formula becomfes +?=fdX sint+r.' (33.) 

Throughout these pages, to avoid circumlocution and needless repetitions, we shall 
designate as the pro jected tangent, or briefly as the protangent, that portion of a tan- 
gent to a curve, whether it be a right line, a circle, or a parabola, between its point 
of contact, and a perpendicular from a fixed point let fall upon it, whether this per- 
pendicular be a right line, or a circular, or a parabolic arc. This definition is the 
more necessary, as the protangent will continually occur in the following investiga- 
tions. The term is not inappropriate, as the pro-tangent is the projection of the radius 
vector on the tangent. 

XIII. To apply the formula (33.) to the rectification of the spherical ellipse. 
Let, as before, A and B be the semiaxes of the plane elliptic base of the cone, r the 

central radius vector drawn to the point of contact of the tangent t, p the perpen- 
dicular from the centre on this tangent, t the intercept of the tangent to the plane 
ellipse between the point of contact and the foot of the perpendicular, x the angle 
between p and A. Let as, P, p, ir, r be the angles subtended at the centre of the 
sphere, whose radius is 1, by the lines A, B. r, p, t, we shall consequently have 

A=ktan, 13=k tang, r--ktanp, p=ktanzir, and t= /k2+p2tan-r. . (34.) 

Now in the plane ellipse 
p -Al cos27X+B2 sin2, 

therefore in the spherical ellipse 
tank = tankc cos2?.+ tang sin2X; . . . . . (35.) 

whence see2 =sectz cos2X+ seC2p sin2X. 

Dividing the former by the latter, 

2M -tan2a cos2A% + tang sinA sn sec2oa c0s2A + see -ip sin2A 
1 (36.) 

Introducing this value of sinw into (32.), the general form for spherical rectification, 
the resulting equation will become 

C rtan2a cos2x + tan23 sin2Al3 s = JdALsec2~acos2x+ sec2p sin2xJ 

XIV. To reduce this expression to the usual form of an elliptic integral. 
Assume tanx= coss tan4 . . a , . . e . e e (38.) 
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We must first show that this amplitude X is equal to the amplitude p in (13.), and 
therefore to 4 in (25.), as we proved in (X.). 

In an ellipse, if 4' and X are the angles which a central radius vector, and a per- 
pendicular from the centre, on the tangent drawn through its extremity, make with 

B2 tan2I3 
the major axis, we know that tan =2tanx= tan tanx. Introducing this value of 

tan,' into (6.) and reducing, 
cos2p = cos'~ co2 

~ [n2~ z r tan2ot cos2A + tan23 sin2\ 
cos P = COS2 Cos cos 13tan2ot COOP# cos2X + tan2j3 cos2ot sin2X 

Comparing this value of cos2p with that assumed for cos2p in (13.), namely, 
sin2C cos2p + sin23 sin2p 

COS P=tan2a cos2< +tan2P sin29' 

we get, after some reductions, 

tanp =cose tab X.. (39.) 
But in (38.) we assumed tanZ=coss tank. Hence the amplitudes p, 4' and X in (13.), 
(25.), and (38.) are equal. We may accordingly write p instead of X. Substituting 
the value of tan.X, derived from the equation tanp-coss tanx, in (38.) the integral 
in (37.) becomes 

C Cosa cos3 [sinea - (sin2o1- sin2p) sin2p] dp 
J [cos2 + (sin2ac- sin23)sin2p] Vsin2ecos2p + sin23sin2p 

Cos a sin2cz - sin23 sin2fl- sinfl( Now Coss-cos,3n tan2s= 2 sin 2= s * * (40.) Cos ~~Cos a sinlca 

Making the substitutions suggested by these relations and reducing, we get 
cos __dp cosac Cos r d 

Cosa sina 1I + tan2e sin2p] VI -si sin2z sin Vi -sin 2 sin 2p . (4. 

an elliptic integral of the third order, with a positive parameter, and therefore of the 
circular form. 

This is case IX. in the Table, page 316. 
Writing n for tan s, i for sinn, and expressing sina, cosa, sing, cosj in terms of 

n and i, (41.) becomes 
(I + n) dp Si2 -(4 

n + 2[lnsn] ^-sin in9j VmnJ 1isn 

XV. To express the protangent r in terms of X and 9. We found in XII. 
t2 t2p2 (A2- B2)2 sin2X cos2X 

tnp2p2= [2 + a2 cos2x + b2 sin2K] [a2 cos2x + b2 sin2x]i 

Now A-ktanuo, B=ktanj, e2= A2 B, and sin2s= 
s _in 

e- sina sinx cosA 
whence tanr= (43.) A/I - e2 Sin2)X v/i - sin 2e sill2X. 
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To express tanr in terms of the amplitude p. 
Assume the relation established in (13.) or (25.) or (38.) or (39.), tan P= coss tan?<, 

Introducing this condition into (43.), we obtain 
e tans sing cosc 

tanr- (44.) 
V 1-sin n sin ( 

or as V/m=e, Vn=tans, i=sinn, 
the last equation becomes 

/mn sino cost tan7- (5. 
V/ 1-i2sin2r; * *..(4) 

Hence (42.) may now be written 

(1+ di -Cr d _i_ - dp c r V/mn sinfe COS 
n \ J L[i +nsin21] v/1-i2YiSj92] 

m 2 -tan L s1n n2 -i n 46 

Now this formula and (17.) represent the same arc of the spherical ellipse; they may 
therefore be equated together. Accordingly 

p _ , |d _d 

n l [1 + n sin 2] /lf- sin[p Jimsingp ] 4lsinO 

i2c dp V 1 mn SInK cosp1 
+ Kutan-1 

I-iV sin~ 'n LV1I=illsrn2p j 

This is the well-known theorem established by LEGENDRE, Traitd des Fonctions 
Elliptiques, tom. i. p. 68, for the comparison of elliptic integrals of the circular form, 
with positive and negative parameters respectively. These circular forms arise from 
treating the element of the spherical conic either as the hypothenuse of an infinitesi- 
mal right-angled triangle, or as an element of a circular arc, having the same curva- 
ture. When we adopt the former principle, we obtain for the arc an elliptic integral 
of the third order, circular form and negative parameter, When we choose the latter, 
we get a circular form of the same order, with a positive parameter. Equating these 
expressions for the same arc of the curve, the resulting relation is LEGENDRE'S theo- 
rem. We thus see how an elliptic integral with a positive parameter may be made to 
depend on another with a negative parameter less than 1 and greater than i2. 

XVI. We must not confound the angle x in the pre- Fig. 4. 
ceding article with the angle x in Art. (X.). Marking the 
latter X by a trait thusx,, to distinguish it from the former, 
we shall investigate the relation between them. Through 
ZO the axis of the cylinder, let a plane be drawn making 
the angle 4, with the plane ZOAa. Let this plane cut 
the spherical ellipse in the point z, and the plane ellipse 
the orthogonal projection of the latter in the point Q. C 

Through z draw an arc of a great circle Az touching the P 
curve, and through Q draw a right line touching the plane ellipse. F~rom Z let 
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fall the perpendicular arc Zz on the tangent arc of the circle, making the angle ? 
with the arc Za. From 0 let fall on the tangent to the plane ellipse at Q, the 
perpendicular OP making the angle X, with OA. 

Then tan -tan2 tan %P, and tanl=s .tan4. 

Hence we derive tan?'= cos2s. Whence tan ?.tanX= cos2a tanWX. tan ?x 

But we have shown in (39.) that 

tan2p= cos2s tan'. 

whence tan2( tan x tanX,, . . .(48.) 

on the tangent of the amplitude p is a mean proportional between the tangents of the 
normal angles which a point of contact z on the spherical ellipse and its projection Q 
on the plane ellipse the base of the cylinder produce. 

XVII. We may obtain, under another form, the rectification of the spherical 
ellipse. 

Assume the equations of the right cylinder and generating sphere as given in (19.), 

2+yb 1,, and x2+y2+ z2=k2 

Make x=asinO, y=bcos0;. (49.) 

hence z2=k2-a2 sin2O.b2 cos2O; 
d 2(t cos29 + S 2(k2-a2) 

and therefore k d01 = (k W+(k2-ba ) sinV0) *( 

Now 
a2(k2-b 2)=k4sin2a cos2f, b2(k2_a2) =k4sin2P cos2c, k2- h2=k2cos23, k-a 2k2 cos2a. 

Substituting these values in (50.), and integrating, 

trdOrea tan ? sin2O 1 ( 
JL Lseca cos2O + sec2 sin6 OJ. 

If we now compare this formula with (37.) and make 0O=X, we shall have 
01-at v. . . . . . . . . . . , . + . . (52.) 

H-ence we may represent the difference between two arcs of a spherical ellipse, mea- 
sured from the vertices of the major and minor arcs of the curve, by the arc r of a 
great circle which touches the curve. 

XVIII. We may thus, by thie help of the foregoing theorems, show that when any 
elliptic integral of the third order and circular form is given, whether the parameter 
be positive or negative, we may always obtain the elements of the spherical ellipse, 
of whose arc the given function is the representative. 

Let the parameter be negative. 
tang - tang . sing - singP As e2= tan-tai- m, and sin28n sinc -=i2I 

MvVcccLH. 2 uJ 
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we shall have tan mii tan2= . ? . . . (53.) 

In order that these values of tank, tang may be real, we must have m> >2 and m < 1. 
Let the parameter be positive. 

sin2e-si2 sin23 2sing Now tan - =n, and sin28- Si 5 I 9 

hence tan 2%4, tan 1+n. . . . . . (54a) 

There is "in this case no restriction on the magnitude of n. 
XIX. To determine the value of the expression 

n Os/ U ln sin2<)71-~i~2 
when n is infinite. 

As m-n+mn=i2, or (l-m)(1 +n)=I-i2=1 2 

when n is infinite, m= 1 

Resuming the expression given in (47.), 
? n \- __ _ ___c _____ Vir 7i sine cos- i 

" n Jo/ J(I+? n sin2;) V 1 - Itan- V1--i2sin29 

we find that when n is infinite, a is a right angle. 
2=sin2a - sin2,837 For n=tan22= coss A= 0, therefore =- 

Now ' being the angle between the spherical radius vector drawn to the extremity 
of the arc, and the major principal arc, we have 

tan2p3 cosa tan3 sin3 
t a n;4.. t tank, and tan p=cs tan?, or tan4=tan si tang tan'$= tanX an ~ =tna in 

Hence 44 is indefinitely less than I, when n is infinite, or when M is a right angle. In 
this case therefore a=O, and we get, when n is infinite, and p not 0, 

(1+n ,-eF __ 

( n rnL(l + n sin2g) VI -ifsin!PJ 2' 

We might have derived this theorem directly from (47.), by the transformllation 
Vn sing= tank. 

This is case I. in the Table, p. 316. 

SECTION II.-On the Spherical Parabola. 

XX. It remains now to exhibit a class of spherical conic sections whose rectifica- 
tion may be effected by elliptic integrals of the first order. 

The curve which is the gnomonic projection of a plane parabola on the surface of 
a sphere, the focus being the pole, may be rectified by an elliptic integral of the first 
order. 
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Let a sphere be described touching the plane of the parabola at its focus. The 
spherical curve which is the intersection of the sphere with a cone, whose vertex is at 
its centre, and whose base is the parabola, may be called the spherical parabola. 

To find the polar equation of this curve. 
The polar equation of the parabola, the focus being the pole, is r4- 2_g being 

the parameter of the parabola. Let y be the angle which g subtends at the centre of 
the sphere, and p the angle subtended by r, then 

2 tany 
tanp coSW 

Let p be the perpendicular from the focus on a tangent to the parabola, 1 the angle 

which this perpendicular makes with the axis of the parabola; p g Whence in the 

spherical curve, as p==k tans, g=k tanr, 

tanv=r tany 
ntcosts Qe**** o 

siny w hence si -- - - (57 

Introduce this expression into the general form for spherical rectification, =fsinMdp, +s 

given in (32.), we use the positive sign with a, since t= 

Now as r, z and p are the sides and an angle of a right- Fig. 5. 

angled spherical triangle, since 2pj,=&, we get, by NAPIER'S 

rules, tanr=sinvtany., whence, by substitution, 
~~~~d 

sin+ian' y~ tari7P 
ff-sm2 s/lcosty sininp an /-CO82,y sin 2p,. ( 

When the sphere becomes indefinitely great the spherical At 
parabola approaches in its contour indefinitely near to the 
plane parabola. k being the radius of the sphere, 

siny= tanuy-=' 

since y in this case is indefinitely small, whence cos2y= 1. In this manner, since soko, 

* The expression for a perpendicular arc of a great circle let fall from the focus of a spherical ellipse on an 

are of a great circle a tangent to this curve, is 
2 sinka costs cos ' + (sinkz-sinkE) cos2es Sin; coss costs Vsint'2ac-sin22e sink4 

(1 -sin22e sinpD) 

aX being the principal major arc, E the focal distance, and pj the angle which wr makes with a. 

When the curve is the spherical parabola, a+E= X-E=rY 2E=2--r. andtheprecedingexpression,when 

we introduce these relations, will take the very simple form, sin=-V- l = , or sinq 1, as we take 

the sign - or +m See Theory of Elliptic Integrals, p. 31. 

2 u 2 
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(58.) may be transformed into 
rdp, sinp. 

8-9COSp+gCOS 2PI 

the well-known formula for the rectification of a plane parabola. When, on the other 
hand, the sphere becomes indefinitely small compared with the parabola, r approxi- 
mates to a right angle, and (58.) becomes 

s=p + tan-'(tanp) 2p, 
as it should be, since 2p is the angle which the radius vector p makes with the axis. 

We shall find the notice of these extreme cases useful. 
XXI. Although we have called this curve the spherical parabola, as indicating its 

mode of generation, it is in fact a closed curve, like all other curves which are the 
intersections of cones of the second degree with concentric spheres. It is a spherical 
ellipse, and we shall now proceed to determine its principal arcs. 

Let ADG be a parabola, F its focus, 0 being Fig. 6. 
the centre of the sphere which touches the plane 
of the parabola at F. and being also the vertex of 
the obtuse-angled cone, of which the parabola 
ADG is a section parallel to the side of the cone 
OB. Let the angle AOF or the arc Fa be y, oa 
and (3 being the principal semiangles of the cone, 

whence tan2z=lsin/ 

To determine the angle 3, or the arc Cb. Bisect 
the vertical angle AOB of the cone by the line ? 

OD, and draw DG an ordinate of the parabola. Then tan23=(O). As AOD is an 
OF -isosceles triangle, AD--AO=C ; and 

OF 01? 
OD =- ?. =- 

sina sin +en 

We have also, as DG is an ordinate of the parabola, 
OF PFsiny 

DG2%=4AFxAID_=40F.tanryx =-4 COS-7 Cos2~ 

Hence substituting, tan23= 12 sin 

We may therefore announce the following important theorem 
The spherical ellipse, whose principal arcs are given by the equations 

tan2- I+ si tan2sn 2 sin ee 
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y being any arbitrary angle, may be rectified by an elliptic function of the first order. 
Write x for tano, y for tang, and eliminate siny froin the preceding equations, 

tans -tan's=x2-y'=1,.. . . (59= ) 
the equation of an equilateral hyperbola. We thus obtain the following theorem:- 

Any spherical conic section, the tangents of whose principal semiarcs can be the ordi- 
nates of an equilateral hyperbola, whose transverse semi-axis is 1, may be rect/fied by 
an elliptic integral of thefirst order. 

XXII. When we take the complete function, and integrate between the limits 

O and we get, not the length of a quadrant of the spherical parabola, as we do 

when we take the centre as origin, but the length of two quadrants or half the 
ellipse. We derive also this other remarkable result, that when p is a right angle, 
the spherical triangle whose sides are the radius vector, the perpendicular arc on the 
tangent, and the intercept of the tangent arc between the point of contact and the 

foot of the perpendicular, is a quadrantal equilateral triangle. For when =_ 
P 2' t 2' T 2 ~ ~ ~ i 2 

It may also easily be shown, that the arc of a great circle which touches the spherical 
parabola, intercepted between the perpendicular arcs let fall upon it fromr the foci, is 
in every position constant, and equal to a quadrant. See Theory of Elliptic Integrals, 
p. 35. 

Hence the spherical parabola is the envelope of a quadrantal arc of a great circle, 
which always has its extremities on two fixed great circles of the sphere, the angle 

between the planes of these circles being +Y. 

Resuming the equations given in (59.), which express the tangents of the principal 
semiarcs of the spherical parabola in terms of siny, namely, 

I1?siny 2 siny tan2-s= +siny' tan2j3 =1 Sin' 

writing i for cosy, andj for sinry, we get 
1-j 2-. _ 

tan21 e2= +J sin + 

whence tan2s=e2 =sinm=cos231. (60.) 

Now n=tan2s, m=e2; hence n=m=i. J 
XXIII. We shall now proceed to the rectification of an arc of the spherical para.- 

bola, the centre being the pole. By this method we shall obtain certain geometrical 
results which have hitherto appeared as mere analytical expressions. In (14.) or (28.) 
we found for an arc of a spherical ellipse measured from the major principal arc, the 
following expression, the centre being the pole, 

tang _ __ d_ 
-0'= tanax slnPJJ(1 e2 sin2) V/ 1- sins sin24 
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or substituting the values of the constants given by the preceding equations, 

J[ (L +j sin2+1/ , ).s(1* 
But when the focus is the pole, we found for the arc the following expression in (58.), 

S 
~tan [+ta 

j Equating those values of a9, we get the resulting equation, 

__ 

a _ 
__ S2r do 

(+tan (62.) I -- -- r-l-JS y s-i-n2pA L7- Psin-Fj* * 
J L-Cosi fJ8\1-1Q+)2sinm __ 

XXIV. We shall now show that the amplitudes 4 and p in the preceding formula 
are connected by the equation 

tan (-) =j tan, ... . . . . . . .. (63.) 
a relation established by LAGRANGE. 

Let v and v1 be the perpendicular arcs from the centre and focus of the spherical 
parabola on the tangent arc to the curve. Let x and t be the angles which these per- 
pendicular arcs make with the major principal arc. The distance between the centre 
and focus of the spherical parabola, with the complements of those perpendiculars, 
constitute the sides of a spherical triangle. We shall therefore have 

sin2X=sin2pir s.. ... . (64.) 

Now sec2,a=sec2z cos2x+sec2I sin2X, as in (35.); or writing for secs, seep their par- 
ticular values in the spherical parabola, given in (59.), 

2 
sec 2la= _iysin,27. *..... .. (65. 

Again, as tang'= -tan' 

2 tany I+ COSTO sece C= 2 - 

reducing (64.), the result is 

tan~~k 2 (1 + siinr) tan A(Cotf-ik e tao> * 7 (66.) 

In the case of the spherical parabola, 

COS26=1+2 if whence (66.) becomes 

I + sin7 tanp + sine tang 
cosa tan -cotp- sinry tanp-Q or cosItan=- siny tan.tan.*' 

The second member of this equation is manifestly the expression for the tangent 
of the sum of two arcs p and v, if we make tanv=siny tang. 
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Hence coss tan?= tan(pi+V). 
In (25.), or (38.) or (39.), we assumed tan4'= coss tanX. 
Hence = + o Or tan(4A- p)=tanV=sin7 tanP. 

A geometrical interpretation of LAGRANGE'S theorem tan(4 - ) siny tanD mesay be 
given by the aid of the spherical parabola. 

Let DRB be the great circle, the base of the Fig. 7. 

hemisphere, whose pole is F. Let BQA be a sphe- 
rical parabola, touching the great circle at B, and 
baving one of its foci at F the pole of the hemisphere 
whose base is the circle DRJB. Let RQ be an arc 
of a great circle, a tangent to the curve at Q. From A F V ' B 

F let fall upon it the perpendicular arc FR. The 
point R is in the great circle AR which touches the 
curve at its vertex A. The pole of this circle is the 7 
second focus F,; for AF,=FB=2. Let the arcs 

RF, RF, make the angles p and v with the transverse arc AB. Hence ARYv. In 
the spherical triangle FAR, right-angled at A, we have sinAF~tany cots. Now as 
AF=-, sinAF=siny=j; and if p=,x+>, v=p-p, or reducing, tan(p-p) j tants ; 
whence we infer that while the original amplitude is the angle p at the focus F, 
the derived amplitude p is the sum of the angles p and v at the foci F and F,. 

When the function is complete, orp4r, R will coincide with R, the pole of the 

great circle AB, whence v is also =2, and as p=p-+j, p=z. This shows, that when 

the function is complete, or the amplitude is a right angle, the amplitude of the 
derived function will be two right angles. 

When the spherical parabola approximates to a great circle of the sphere, the 
second focus F, will approach to F the irnmnoveable focus. The arc RF, will, there- 
fore, approach to coincidence with the arc RF, or the angle v will approximate to fi', 
so that p.p+P=2p nearly. 

This is the geometrical explanation of the analytical fact observed in this theory, 
that when the modulus diminishes, or the spherical parabola approximates to a great 
circle of the sphere, the ratio of any two successive amplitudes approximates to that 
of two to one. 

When the transverse arc of the spherical parabola is a right angle and a half, 

siny7- , and if C be its circumference, C= -+sr. But two qua- 

drants 2s, or the loop of a lemniscate, are = /2. Hence 2s_(C-z. 
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Or the loop of a lemniscate is equal to the difference between the circumference of 
371- the spherical parabola whose transverse arc is 2, and a semicircle. 

When a quadrant of the spherical parabola is taken or when the point of contact Q 

coincides with the extremity of the principal minor arc of the curve, we shall have 

Since in this case RQ=PQ, FV=FV, therefore Fig. 8. 

p=OFV=OFV, orRFV=P+v. AsVis the pole of 
RP, and F, is the pole of AR, the point R is the pole 
of VF,. HenceRFVisa right anglebut' +v=RFV, 

whence =-=. As tan(p.-t)=j tanks when q 

1 . jtanp D ; o A" - 

tans= I - f in the expression tanr= A i2 

given in (58.), we substitute this value of tanp, we, 

shall get tanr= 1, or = X 

Hence as two quadrants of a spherical parabola 

are together double of one, we shall have, writing the integral f1 2 in the 

abbreviated form 

+ 2=2j (i + 2K, or = 2 ) (68.) 

Now when i is nearly 1, f=log (Ic?sfl) Taking this expression between 

the limits X4=0, and pj=tan (/.),we shall have, since sin=,u- + costh- and 

neglectingj and its powers when added to lj being very small, 
?+sinp 2 whence lan()2d 

Therefore (68.) gives =log G)* e . i (69P) 
XXV. To show that 

C____ 1 C_____ 
j 4x1 -j2 sifl2^4l+J 1 :( a) 

the amplitudes 4 and (4 being connected as before, by the equation tan(4-P.) =j tang. 
1+ siny 1+j Since tani= = I . co= -j+ta co i-sny tanp. cotp -j tang 

. ".cc r'sultat fort remarquable, dWjh signal' par LEGENDRE; mais nous ignorons comment il y est 
parvenu."-VERHULST, Trait6 Elementairo, des Fonctions Elliptiques, p. 158. 
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Differentiating this expression with respect to 4 and pi, 
(1i+;) dP cos2 sin2(70 

We have also tan2k,,-(1 +j)2 sin2p COS2.) We av alo an (COs2P-j Sin2~)2(71.) 

Whence, after some reductions, sinN.= (1 ?j) sin2$ COSLA. (72.) 

Multiplying this expression bvy (1fj), and reducing, 

1 ,t,/ VI i2 sin2 (3. 
a\,/l-(ll/ i ncos2p,+j sin2p,'** 

***.(7 

Multiplying together the left-hand members of the equations (70.), (72.) and (73.), 
and also the right-hand members together, we get, after some obvious reductions, and 
integrating, 

~~~~ ___ ~~~~~~~~~~~~~~(7 4.) 
=/i Q jl22( -i2sin2f7 

This is the well-known relation between two elliptic integrals of the first order whose 
Il-j 1-b 

moduli are i and j +, or in the common notation, whose moduli are c and 

XXVI. Let fl be the arc whose tangent is jtans- 

then tan2-=2 Si7COS/1-i S75) 
cos4p -i sin4. 

and combining (71.) and (73.), we shall find 
tan, .(I +j) sinp, cosp Vl-i2 sin2. * 

____-(1 jj) since Cos4(-I2 Sin4p.. (76.) 
2j tan4 

Dividing (75.) by (76.), the result becomes tan2Tr- - 2. . . . (77.) 
Av/ 1- +2j)sn 

We are thus enabled to express r, the portion of the tangent arc between the point 
of contact and the foot of the perpendicular arc on it, in terms of .4. instead of P. 

If we introduce this value of r' into (62.) and combine with it the relations esta- 
blisbed in (74.), the resulting equation will become 

V sin2 ]\V/_(1f )2+ dv1 , (78.) 

+ (!2j) tan-[' / I tai) ] ) 

AMDCCCLI-I. 2 X 
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Adopting for the moment the ordinary notation of elliptic integrals, 
1-i m= -c1+j) 'whence i+c=i7K 

Introducing this notation, the last formula will become 
(1 -rlC) tan+n 2II,^(- c, @ Fj(@ + +ctan .. . *(79.) 

In the Trait6 des Fonctions Elliptiques, tom. i. p. 68, we meet with the formula 

]lc(n, 4) +H1(1, ) Fj(4) + - tan [ V n ] . (80.) 
Now when n=- c, this formula becomes 

2IIC,(- c, O=FCjO + + +Ctan[ ** *.( ) 

whence (79.) and (80.) are identical. 
XXVII. Let us now proceed to rectify the spherical parabola by the formula for 

rectification given in (47.), the centre being the pole. For this purpose, resuming 
the formula for rectification established in (41.), and deducing the values of the para- 
meter, modulus and coefficients in that expression from, the given relations, 

I + sinY- +j 2siny 2j 
tan2-1-sin t; an'3 siny 

- 
I (82.) 

we get 
The parameter, tan2e=' +- 

The modulus, sinI=j j 

____________. eosocosf3 1-,j * (83.) 
The coefficient hcos3 2 the coefficient sinc-= (83.) sinaCcosa I +j in' 

and etan=s - 

Making these substitutions in (41.), the resulting equation will become 
2= d+ ) 

(l<,)[+(___si ___1(lj 

sin,. 

(1-j) dP . -tar (i j) sin cosf . . (84.) 
(_ __ __ =sin j+J 

( )j1+ _s)2sn2+ 

But froxn (58.), the focus being the po~le, we derive yJ 4/l-53 sin tan [7~~ sin^AJ/ . . . * (84.) 

In (74.) we showed that 

J{ d, s fin~ 1+i2 d/( 

dp, t/|ja n I 
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Introducing this relation into the last formula, and equating together the equivalent 
expressions for the arcs in (84.) and (85.), we get for the resulting equation, 

wn l+a~sn2jV l J'V2 sin) 2 sin2qp 

+ (I + i G tnn + (1+j) tan [ 86., 

Ll~rizi) si24 VI -i2sin2JJ 

We shall now proceed to show that the common formula for the comparison of 
elliptic integrals having the same modulus and amplitude but reciprocal parameters, 
is, in this particular case, identical with the geometrical theorem just established. 

The formula is, in the ordinary notation, 

2IIH (c, ) = Fc() + tan [ tn-- j. * * *(87.) 

2S ~ ~ 1 +j We must accordingly show that, c being tan2 , and therefore I +c= 2 

(I1+1) tan [ _ + (1 +j) tan K~ 
-2t tan ~a II . . .(88.) 

(I+) -IF (FItane)tan41 = 2 tan V < _ 

If we write Xr, T and ? for these angles respectively, we have to show that 

Q=2('+Y).(89.) 
'+?' is the arc of the great circle, which touches the spherical parabola, intercepted 
between the perpendicular arcs let fall from the centre and focus upon it. 

We must, in the first place, by the help of LAGRANGE'S equation between the ampli- 
tudes, established on geometrical principles in XXIV., reduce these angles to a single 
variable. pi is taken as the independent variable instead of 4o as the trigonometrical 
function of 4' in terms of P is in the first power only. 

We have, therefore, 

tan?= 2 tan'.~. 

( +j) I / - sin2+ 

Gansi) sin. cos. . .(9.) 
tanur = 1 -A( 2i) 

ta = ~ 2tafxf 

2 

41 -i2 Sin2fA 
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The equation between the amplitudes 4. and A, 
tan(, -piA) _j tanpi, gives 
(1 +j) sinp, cosph 

tan4' = Co~s -hj i2. *(91.) 

Eliminating 4 by the help of this equation, from the value of tan7 given in the pre- 
ceding group, 

a (1-y) sins cost cosp +j sinep 

Using this transformation and reducing, 

tan (fl+')tanp\/I-_ sin .e X (92.) 

a simple expression for the length of the tangent arc to the spherical parabola be- 
tween the perpendicular arcs let fall from the centre and focus upon it. 

Froin the last equation we may derive 

tan2(7b+r)= 2 sin cos VI -i si (93.) 

Using the preceding transformations, we may show that 

tanO-2 sinp. cos A/ _-i2 sinsn 
cos4 -j2 sin4lk 

Hence ) 2(r+r'). , , (94.) 
Therefore (86.) becomes 

___ ___ --- =-(1 +j) 2 (I +j) (r+Yr). (95.) 
1 
[ (1 +j) ] )o sin2+ 0_3 sin+3 

We have thus shown that in the particular case of the general formula for com. 
paring elliptic functions of the third order with reciprocal parameters, when the 
parameter is positive and equal to the modulus, the circular arc in the formula- of com- 
parison (87.) is equal to twice the arc of the great circle touching the curve and inter- 
cepted between the perpendicular arcs let fall from the centre and focus upon it. 

If we take the parameter with a negative sign, the circular arc X in (62.) will re- 
present the tangent arc between the point of contact and the. foot of the focal perpen- 
dicular. 

The spherical parabola, like any other spherical ellipse, may be considered as the 
intersection of an elliptic cylinder with a sphere whose centre is on the axis of the 
cylinder. 

Let a and b be the semiaxes of the base of the cylinder, and k the radius of the 
sphere, a and j being the principal semiarcs of the spherical parabola, 

tan -=k2a2' tanf23k2b2; 

but in (59*.) we found tan2a- tan23= I ; hence substituting, 
*k2 =a2(l Ji). e e e e e . * i . (96.) 
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XXVIII. The foregoing investigations furnish us with the geometrical interpreta- 
tion of the transformations of LAGRANGE. Let the successive amplitudes p, ., X of 
the derived functions, be connected by the equations 

tanp - p)=j tang, tan(4+-A p) =j, tan@, tan(z- )=j,, tan,. . . .. (97.) 

We may imagine a series of confocal parabolas having Fig. 9. 

a common axis, described on a plane in contact with 
a sphere at their common focus. These parabolas will 
generate a series of confocal spherical parabolas on the / - 

surface of the sphere, BCA, BC'A', 13C"A", BC"'A"', 
which will all mutually touch at the vertex B remote 
from the common focus F. Let the distances between 
the common focus F and the vertices of the plane para- 
bolas subtend at the centre of the sphere, angles ty ry, r' 
&c*, whose cosines i, I,, It, &c. are connected by the 
equations 

4/ 
1 

~~ii + V/1- i 2 r I /i-i 2)rrs 

it is plain that at-FA, y=FA', 7"FA", It/FA"', &c. 
We may repeat this construction successively, until the parameter of the last of the 

applied tangent plane parabolas shall become so indefinitely small, compared wIith 
the radius of the sphere, that it may ultimnately be taken to coincide with its projec- 
tion. We shall in this way reduce, at least geometrically, the calculation of an 
elliptic integral of the first order to the rectification of an arc of a parabola, that is, to 
a logarithm, as in XX. If, on the contrary, the inoduli i, i,, ills &c. proceed in a de- 
scending series, the angles 7, ye r1,, continually increase, the magnitudes of the con- 
focal applied parabolas increase, till at length their parameters become so large, com- 
pared with the radius of the sphere, that their central projections pass into great 
circles of the sphere. The evaluation of the elliptic integral will therefore ultimately 
be reduced to the rectification of a circular arc. These are the well-known results 
of the modular transformation of LAGRANGE. 

The formulae established in (58.) for the rectification of the spherical parabola, give 

r dp - -1 sinytanF 
o.=sinySJ 1 9 i 

Coysin+ LP1-cos2y j 

or writing i for cosfyj for sine, and V/ for s/l-i' sins 

o1 and r' being the corresponding quantities for the next derived spherical parabola, 

0!_T 
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*2 Vf Ad. P pdo 
Nowjt= ?2+, and (/I-1 fi as in (98.) and (74.), 

whence 2(?-ar) = 7j(o --.r), (99.) 
Thus a simple ratio exists between the arcs, diminished by the protangents, of two 

consecutive confocal spherical parabolas. 
When the functions are complete, p is taken between 0 and 2; p therefore, as in 

article XXIV., must be taken between 0 and r; but when the amplitude is taken 
between 0 and X the function is doubled. Moreover, when the functions are comn- 
plete, the point Q coincides with B; so that in this case the complete function 
represents, not one, but two quadrants of the spherical parabola, the focus being the 

pole. Hence as T= i=-Z. 

Whence putting C, ct, C"I C"', &c. for the circumferences of the successive confocal 
spherical parabolas, derived by the preceding law, we may write 

* ~~~~C z =I- (Cwv) 

C,-7r=Vi1 (CII-X) I 
C 7r?= (X- ) . . . . . . . . . (I100.) C1 ..~Vj,,(CII-I'r .(0. 
C,, M=(CIV , 

CIV ?= 4,TV(Cv -Z) 

Multiplying successively by the square roots of j1 im' &c., adding and stopping 
at the fifth derived parabola, 

Let this coefficient be ./Q, and we shall have C-r= VQ(C- r). . . (101.) 
Now we may extend this series, until the last of the derived spherical parabolas 

shall differ as little as we please from a great circle of the sphere. Let the circum- 
ference of this last derived spherical parabola be C,. Then C0=2-r and (101.) becomes 

(102.) 
Hence'calculating the quantity Q', we may express the circumference of a spherical 

parabola by the circumference of a circle. 
When all the spherical parabolas are nearly great circles of the sphere, 

i='ia=7;1=i 8/-O. nearly; andujg =g, = 1,neary Whence ,nea ly; or 
C=2 *.(103.) 

When the spherical parabolas are indefinitely diminished, 
zi,=Z' 1 nearly, and j=j,=j,,=j,,,=0, therefore Q'=0 nearly; 

or. --.. (104.) 
Hence the circumferences of all spherical parabolas lie between two and four 

quadrants of a great circle of the sphere. 
XXIX. Denoting the angles at the centre of the sphere, subtended by the halves 

of the semiparameters of the applied confocal parabolas, by a, r, / &c.) we have 
cos7=i, cosr'=i1, cosr"=i,> co>sr"'i, and siny=j, sin7/=j,, sin7'=j,,, sin/l=,11. 
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We inay, using successively the equation i,= . VI -j_, determine in terms of j thse 
V1- 

successive values of i, , i,,, i, and of j,,j,,,j111, &c., as follows 
e -j F [ (I 2nJ . F(1?j) -21/412 - F1?j2 2IT(I ?j)AJ l21 
^'}-l~~~j611-Ll~~~~j2 ~i-l j2 2- )4 

2 
lV L jiw --4- + 4j8 W l 2 / V[( 122__ ?J ' L(1?j) ? + i)2-2 L1? ?2 2 (1?j)i 

- (1 +j) ? 22-2j4+ 2*22(1 (I?j12) (I (j)0) 

Hence we may derive the successive values ofj,,j,,,j,,, in terms off 

wFor *2_ 2 j *2 _ 222 j2 (1+ j) *22_ 22_22 (I j)-? (l +j)2 
(+ j) 311 (1 +j)4 e [(1+j) 2 I2 2j 4 

2 22212324(1 +j2)(I +j)-j8[(1 +j) ?2k2 

-j~~~~~~~] ~~~~(106.) ?+) 2(1 +j~i~i{(i j>~)? [(I+j) 8]2-2(I +j)}j r2 

92_ (2221212) ( 1 [( ?)-j2 I+It+ [(I 2-j 1 + ? '+j4 J) 3 

[(1 +j)1+ +2}4 2 2'(1+j)lo~j 
We may express the coefficient Q, or the continued product ofj,,jjgjjp,311 &c., in 

terms ofj, the complement of the original modulus. Including in our approximation 
the fifth derived modulus, we get 

(2) 1. (2) 1+ 2-.(2) 1+-l+l -(2) 1 +1+-4 .() + --- -1f -;--8 1 
(1 +j)T1U( Ijl) 4[(l +j)' + 2j4 5[(1 +j) + 2i24 (1 +j)Tj1][(i- +j)' + 2 j! + 2 2i2 (1 +j+) k(1 +j) ijO/ 

XXSX. It may not be out of place here to show, although the investigation mrore 
properly belongs to another part of the subject, that the arc of a spherical parabola 
may be represented as the sum of two elliptic integrals of the third order, having 
imaginary parameters; or in other words, that every elliptic integral of the ,frst 
order may be exhibited as the sum of two elliptic integrals of the third order, hav7inc 
imaginary reciprocal parameters. 

Assume the expression given in (58.) for an arc of the spherical parabola, the focis 
being the pole, and p the angle which the perpendicular arc from the focus, on tile 
tangent arc of a great circle to the curve, makes with the principal transverse arce 

d_ 'f siny tanp 2 

ffsl ̂+w tan S2- 
J 
4 

1-,CO2,y sir2p l */ cosy sin p, 

Let cosy=i, sinr-j, and to preserve uniformity in the notation, write p for 
Then differentiating the preceding equation, it becomes after some reductions, 

j [I-i2 sin2 + cos2qSj2 sin 2] 

d- [cos2 - i2 Sin29 cos2 +j2 sin2] P sin2 1 ' ' * (a.) 

Now the numerator is equivalent to 2j(1 -2 sin2@), and the denominator may be 
written in the form I -2i sin2s+i'Sin4 . But 2=i2(i2+j=), hence this last expression 

may be put under the form 1-i2 sin' +i4sin4p+i 2sin4 . This expression is tlhe 
sum of two squares. Resolving this sum into its constituent factors, we get 

d1 [1-i(i+, V-i) sino:p [1-i i- V-) sin '] V1i=,2*n 
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Now this product may be resolved into the sum of two terms. Let 
das P 

+ 
Q2 (C.) 

dv[1_ii(i+j V-i1) sin2p] V 1ii sin2 - [ V 

Or reducing these expressions to a common denominator, 
do- (P +Q) - (P + Q)i2 sinp + V-1 (P-Q)ij sin2p 
dp [1-i(i j v-i) sin2(p] [i1-i(i--j v-i) sin2<p] Vi-i2sin29p *^ ** ) 

Hence P+Q=2j, P-Q=0; P=j, Q=j. ..(e.) 
Integrating (c.), we get 

-i(i+j i) sin2 /I -P sin2 i(/1-i2sin 108.) 

Now if we multiply together the imaginary parameters 
(i2+ijV -l) and (i2J-jV ), 

their product is i2, or the parameters are reciprocal. 
Since the parameters are each affected with a negative sign, and one is equal to 

i2 + a certain quantity, while the other is equal to i2- a certain quantity, the 
former parameter is of the circular form, while the other is of the logarithmic form. 

It is very remarkable, that although the spherical parabola is a spherical conic, 
the imaginary parameters satisfy the criterion of conjugation which belongs to 
the logarithmic form, and not that which belongs to the circular form. Let 
m i i(i-iV21), n=i(i+jV _T). These values of m and n satisfy the equation 
of logarithmic conjugation, m+n- mn- il and not nn-n+mnn-i2, the equation of 
circular conjugation. 

On Spherical Conic Sections with Reciprocal Parameters. 
xz2 ,2 

XXXI. Let a2+b1= 1 be the equation of an ellipse, the base of an elliptic cylinder. 

Let two spheres be described, having their centres at the centre of this elliptic base, 
and intersecting the cylinder in two spherical conic sections. These sections will 
have reciprocal parameters, if k, k', the radii of the spheres, are connected by the 
equation 

(k2_ a2)(k'2-a 2)=a4i2 . . . . (109.) 

a2 -b2 
i2 being, as before, equal to-a2 

When k and k' are equal, we get k2=a2(1 +i). This value of k agrees with that 
found for k in (96.), or, in other words, when the two spheres coincide, the section 
of the elliptic cylinder by the sphere is a spherical parabola. Hence also the spherical 
parabola always lies between two spherical conic sections with reciprocal parameters. 

Let e2 and e'2 be the parameters of those sections of the cylinder made by the 
spheres. Then, as shown in (J12.), 

_9sinj%-sin213 (a20-2)k2 k2i2 
-siescosly- a(k_ b)k2 a 2 + a~2 
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but the equation of condition (109.) gives 

-k2= i2, hence e2l (a). a~~~~~~~aI' 

In the same manner the spherical conic, whose radius is k', gives 
2 2(V2.82) 2 (2eg )(kc2-a2) 

e= aik2 9 *d= a,4 =2=lm . . . v( 10.) 

or el and e2 are reciprocal parameters. 

To compute in this case the value of the coefficient t sing in the expression given 

in (16.) for rectification, 
tang SH I dp 
itan I Se2 [ in pu V'V 1 i2 siW 

Since ~ ~ ~ ~ b2all b 
Since tan2p=- P2, tana= -72, sinf3=k; 

we obtain by substitution, tas2i sin2P= hk2-a2) Pa2k2(kc2....a+a 2) 

but the equation of condition (109.) gives 
a4i2 tanu2 . b"(k- a2) (ki2 - a2) 

k2-a21-2 k 2h 
tan2j- a4i2k2/d2 3/2kI2* 

As this expression is symmetrical, we shall have for the spherical conic section, 

whose radius is R', 
tang3' *f , b2 
tanned 51fl3-jk *77.***. ...(11 1.) 

Hence tang .,gtanfA'., ** 
Hence Si~tnz 1ptanoSi10&" (1 12.) 

or the coefficients of the elliptic integrals, which determine the arcs- of two spherical 
conic sections, having reciprocal parameters, are equal, 

Let X be the criterion of sphericity; then as 

.s~t * e * * * * * * * * * v v v (113.) 

XXXII. To determine the values of the angles A and A' which correspond to the 
same angle P in the expressions for the arcs of spherical conic sections having reci- 
procal parameters. 

Since coes= 2COS-a 12 k2 -2-a2 Ua~a~ww avvs-cosink2 I -k2_ a2+}a i2* 

Introducing the equation of condition (k -a2)(k'2-a2)=a4i2, we get cose=2,; but 

hi' k 
tan p = coss tan X, as in (39.) ; hence tanX = - tan'p, and tank' =- tanp, 

therefore k tan?~k =tan4',. (114.) 

or the tangent of the angle X which the perpendicular arc from the centre of -the 
IDcCCGLII. 2 Y 
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spherical conic, on the arc of a great circle touching it, makes with the principal 
major arc, is inversely as the radius of the sphere. 

A simple geometrical construction will give the magnitude Fig. 10. 
of those angles X and X'. Let the ellipse OAB be the base of 
the cylinder; OC', ODD' being the bases of the hemispheres 
whose intersections with the cylinders give the spherical 
conic sections with reciprocal parameters. Erect the equal 
tangents DP, CQ, and join PO, QO. The angles AOP, AOQ e 
are x. and ?\. 

When DP=CQ=0, X,=4'=0; when DP=CQ=oo, 

4='=-. The condition (109.) shows that when k=a), D A 

k'=oo. Now as k' tan'X'=a tanX, is finite always, so long as A is not absolutely =7 

in order that its equal k' tank' may be finite also, we must have A' always equal to 0, 
for every finite value of tanX. 

XXXIII. The tangent of the principal arc of a spherical parabola is a mean pro- 
portional between the tangents of the principal arcs of two spherical conies with 
reciprocal parameters; the three curves being the sections of the same elliptic 
cylinder by three concentric spheres. 

a2 a2 a4 
Since tana=k2a2, tan2T =k,2 tan% tana-= _ 

Introducing the equation of condition (k2 a2)(k'2-a2)=a4i2 (109.), we get 

tano tana'-L1.. 

Let kId be the radius of the sphere whose intersection with the cylinder gives the 
spherical parabola; then k 2=a2(i +i). See (96.) 

Hence k&2-a2=a2a; and tan2c" a 1 therefore 

tang tansa= tan%2"f. . (1 16.) 
The altitudes of the vertices of the three principal Fig. 11. 

major arcs of the two spherical conies with recipro- R CAL 
cal parameters, and of the spherical parabola, above 
the plane of the elliptic base of the cylinder, are in / 
geometrical progression. Let AQ be the altitude 
of the vertex of the major arc of the spherical para- 
bola. AP, AR the corresponding altitudes of the l -. 

vertices of the major arcs of the spherical ellipses. 
Then APv2ka2, AR=Vk 2_a2, AQ=V/k(2-a2=aVi. The equation of con- 
dition gives, as in (109.), APXAR=AQ2. 

We shall give, further on, an expression for the sum of the arcs of two spherical 
conic sections having the same amplitude, but reciprocal parameters. 
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XXXIV. The projections of supplemental spherical ellipses on the plane of xy are 
confocal plane ellipses. 

* * *, a2~~-b a12_b,20- 0-b, a_ 
For sin; sins', S =sins. Hence a2 -,267 a2- a2-b2 a k2-b,2 a12~2b 

This gives as the resulting value k2=a2+b,2=aA2+b2 or a.-b2=a72- b12. 
Two supplemental cones are cut by a plane at right angles to their common 

internal axe. The sections are concentric similar ellipses, having the major and the 
minor axes of the one, coinciding with the ininor and major axes of the other. 

tan2a - tan e n e2 tan2 - tan 2p' cota - cotsa tan2a _ tan2 / 
For =e.2 and e2 

P orv ePe tan2a -' I tan~oa' COOP~ tau2a r e 

SECTION IV.-On the Logarithmic Ellipse. 
XXXV. The logarithmic ellipse is the curve of symmetrical intersection of a para- 

boloid of revolution with an elliptic cylinder. This section of the cylinder by the 
paraboloid is analogous to the section of the cone by the concentric sphere in IX., 
for this cylinder may be viewed as a cone, having its vertex at the centre of the para- 
boloid, i. e. at an infinite distance. 

Let the axes of the paraboloid and cylinder Fig. 12. 

coincide with the axis of Z; the vertex of the z 
paraboloid being supposed to touch the plane \ 

of xy at the origin .0. 
Let k be the semiparameter of the para- . 11' 

boloid Gab, and let a andeb be the semiaxes f i di? / 
of the base of the elliptic cylinder ACB; then 
the equations of these surfaces, and con-b 
sequently of the curve in which they inter- 

2~~~~~~~~ X 2 

sect, 2=2kz. and ;P2+y :1. (I (17.) ijl~ ii x 

Let di1 be an element of the required curve,I1 
then 1 

x, y and z being dependent variables on a fourth independent variable 0. 
Assume x=a cos0, y= b sinO, then a2 cos20+ b2 si2=2kz. (11I9.) 
Differentiating and substituting,, 

2 2cos20+ (a2b22 =a sin'0+b62 siw 0 cos20. .....(120.) 

To reduce this expression to a form suited for integration, it may be written, 

= bk+ (2- b) Ek+ a- b] sin 0 - (a2-. b2) sin40. ....(2. 
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This expression may be reduced as follows: 
Let P=b2k' Q=(a -b2)[k +a2-b2], R=-(a -bk); . . . . . (122.) 
and the preceding equation will become 

k:~fd0V/P+Q sinWf+ [. .(123.) 
Let this trinomial be put under the form of a product of two quadratic factors, 

(A+B sin20)(C-.-B sin20) =AC+B(C-A) sin220 B' sin40. . e (124.) 
Comparing this expression with the preceding in (121.), we get 

AC=b2k2, C-A=k2+a'- b , B=a b2 . (125.) 
A+B 

To integrate (123.): assume tan2p= A tan20. ..... . (126.) 

The limits of integration of the complete functions will continue as before. Making 
the substitutions indicated by the preceding transformations, the integral will now 
become 

,VC(A+B) [1-C sin p 

AC B . 2/ B A+C.(127.) 
JI [A+Bsin2 A C (A+Bsi) p 

B B (A?C) ,A?C i' 
Let A?+B=n C (A+B)')=2 C =n N=1-nsin'p, I=1-isin' * * (128.) 
and the preceding expression may be written 

[2n-i'-n( d1 P . . * * (129.) 

It will presently be shown that A and C must always have the same sign, whence i2>n, 
A 

1+iC As i2= -A' and as C is always greater than B, i2< 1. From (125.) we may derive 
1+iB 

a2 (A+B)(C-B) 62 AC 
T2 (C ..A"-B)2 k2- (C-A-B )2* 

Now, that the values of a and b may be real, we must have C>B, while A and C 
must be of the same sign; but as B is essentially positive, C, and therefore A, must 
be positive. 

Since A+B~n, and C =, as in (128.) 

we may eliminate A, B, C from the values of the semiaxes of the base of the elliptic 
cylinder, and express a, b and k, in term s of i and n. We may thus obtain 

Ia2_n(li _2) (j2-n) b2? n(j2 - ) (1n)- 13 
k2[2n -i2 _ 12~ V k- L2n _j2_n]2 * *** e 1a} 

In order that these values of a and b may be real, we must have n positive, i2>n, 
and 1>i2. 

This is Case VI. in the Table, p. 316. 
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If we put c for the eccentricity of the plane elliptic base of the cylinder, we shall 
have after some obvious reductions, writingf for the complement of c, 

(1-i2)(l-c2)=(l-n)2, orfj=I-n.. (131,) 

Now this simple equation between n, i and c enables us with great ease to deter- 
mine the eccentricity c of the base of the elliptic cylinder, whose section with the 
paraboloid gives the logarithmic ellipse, when wve know the parameter n, and the 
modulus i, of the given elliptic integral. 

If we reduce this equation, it becomes c2j2=2n-n2-i2, the denominator of (130.). 
XXXVI. To integrate the expression given in (127.), we must assume 

siscospA I~ -i sin2p 

[I-n sin * * .(132.) 
Differentiate this expression with respect to p, and we shall have 

d(, 1-2(1 ?i2) sinlp + 3 sin4< 2n (sin2 - sin4?) (-i2 sin2k) 
n sin2 sin [n-sin.2p21-si. df [1-n sin2p] 4/1-i - 

i29 [1-+i23 
1_t sn9***...s 

Let 1-n sin2-=N, 1 -i2 sin2p=I, as before. 
Separating the numerators of the preceding expression into their component parts, 

and attaching to each their respective denominators, we shall have 
1 1 2(I?+i2)sin2p 2(1+i2) (l-nsin2p-1) 2(1+i2) 2(1+i2) 

NV NVI' (b,) and- NV- n NV - n VI nNVI (c ) 

The next term gives 
3j2 sin4P 3j2 (1-nsin2p-1) sin-__ 3i2sin2< 3i sin2 
N VI n NV/I n A/ I nN V.I**( 

Now these two terms may be still further resolved; for 
3j2 sin2cp 3 (1-i 2sin2p-1) 3 A/i 3 , and n V/1 -n A/i n n V 1I 

3i2sin2< 3i2 (1-nsin2<-) 3V2 32 
nN NI f NVI WnQV n/ N VI9 

VI sin 4P 34V/j 3 3i 3i2 
whence (d.) becomes NVJ /+ .. (e.) 

Combining the expressions in (b.), (c.), (d.) or (e.), the first term of the second 
member of (a.) may be written 
[1-2(l. + j) sin2 + 3io-sin 4<] 3^/ VI 2 V_3 3n 1 r 2 .2 3i5 1 

[1-nsinp]7l-2nsin 2;-5 in4~ Vl~I/> l /~lntt)X2N/ 
The second term, (1- sin2,Vj of (a.) may be thus developed, 

2nsin244/ t 2n (1-nsin2cp-1)4/7 21 21 
N2 n N2 N/+I N2V1; ' * (g) 

and these two latter expressions may be written 
21 2(1-i2sin2X) 2 2i2 (1-nsin2--1) 2i2 1 2i2 1 2 

N4/I- NV/I N! NVn NV N+i 
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whence (g.) becomes 2n sinpI 
IV 

_ 2 ( I-- 1 21 
N2 - nV1 n KflJ~/J+ N2V, (Ii" 

2n sir~pl 
The term- N2V/Ti may be written 

2nI sin 4 21 1 2n sin21 + n2 sin4pp-2 + 2n sin2q - 1 21 41 21 
N2A/V -- N2v'Jn. 1 2/In.N4I n.N21/ () 

Now n1 /2 Vi 

41 4(1_i2sin2p) 4 4i2 (1-nsin2-1) and - +_- _ 

7_ ___ and ~~nNVJ- nNVJ/ nhNAVI n NV! 
41 4i2 (i2-n) 1 

whence nN- i^I4 Nv *. . ..rn nN VLnV4 N2 NVI'(n. 
Combining (k.) with (mi.), we shall have 

2n1 sin4P 2 4I 4i2 4 .2 1 2I 
N2I - + _ 

. . .2._nn.) N24VI n -+.v n2VT_ n )NVI-nN24/I-; *o**( 

adding (n.) to (h.), 
N2V' - V(j2 V2 -2 j2 2n(sin2 -sin42) I 4 2i2) 1 2 4 4 1 
N27 n iPn n nI+ -2nn2Nt-27aJ2/X n NW 

adding (f.) and (p.) together, we get as the final result, 
d(Fn 4/i(i-n\ 1 1 1/1-n\I 

,.~ ,~ )~+ [2n -n-2 i2] Nv2~nNv;(. 
or multiplying by n, transposing and integrating, 

2 ( 1 ,S 4T-n)% nn+fdp VI + (#)S + = ] T ) 

But we have shown in (129.) that 
2 [2n-i P - e] =2 1nf *Id 

Vn(j2-n)(I-n) k~21~nj~j 

whence 2[2n-i2-n2] _+d + (i2 nXfAdf r (133.) 
Vn. (i2-n)(l--n) k- + n2 - L _T 3 

Hence, an arc of a logarithmic ellipse may be expressed by a line In, and in terms 
of elliptic integrals of the first, second and third orders; the latter being of the 
logarithmic form (127.) may be written in the form 

Y-5 b2 9 [1-i2 sin29] 

kVO(z(A?+ B),J [1-n sin2p] 2V 1-i2 sin2p..* (134.) 

XXXVII. When the cylinder and the paraboloid are given, we may determine the 
parameter, modulus and constants of the functions which represent the curve of inter- 
section of these surfaces, in the terms of the constants a, b and k. 

The modulus parameter, coefficients and criterion of sphericity may be expressed, as 
linear products of constants, having simple relations with those of the given surfaces. 

Resuming the equations given in (125.), 
-AC=b2k',, CC-A-k2+a2-b 2 Ba2 -b2 
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we find (A+C)2= (k2+ a2- b2)2+4b2k2. 

Assume 4p2= k2+ (a+b)2 4q2 =k2+(a-b)2, . . . . . . (135.) 

we shall then have the following equations: 

A+C=4pq, B=(a+b)(a-b) I 
A+B= (a+p-q)(a+q-p); C-B=(p+q+a)(p+q-a) . (136.) 

A=(b+p-q)(b+q-p); C=(p+q+b)(p+q-b) 

ab=(p+q)(p-q), k2 a2+b=22(p2+q2) 

Substituting these values in (129.) we obtain the resulting expressions 

i2=. , 4(a+ b)(a-b)pq 
(p+q+b)(p+q-b)(a+p-q)(a+q-P) } . . (137.) 

(a+b)(a-b) (a+b) (a--b) 
(13 

T(a+p-q)(a+q-p)' m=(p+q+b)(p~q-b) 

and if we denote by z the criterion of sphericity, 

-b 4 + l) p + 7q+ b) (p +q 2- 'X=(pq2 pqi)2(138.) 

we may express the parameters and modulus of the elliptic integral of the third order 

and logarithmic form by a geometrical construction of remarkable simplicity when 

the intersecting surfaces are given, or when a, b, and k are given. 
Take BA=a, BD-b, and from 0 the point of Fig. 13. 

bisection of AD, erect the perpendicular OC== = 

Then (135.) gives p=BG, q=AC, and putting P 
and Q for the angles BAC and ABC, a+ b = 2p cosQ, r 
a-b=2q cos P. As p, q, b are the sides of the 
triangle, BCD, and the angle BCD=P-Q. 

cs P 2Q) (b +p +q) (p +q-b) .1 q 

again as a, p, q are the sides of the triangle ABC, and. 

Cos_2 (a+p-q)(a+ q-p) 
cos2(P~ o.) 

Substituting these values in (137.), we get 

cos P cos Q cos P cos Q cos P cos Q 
j2= --p+ 5\z_~2 n== - p M=--K , ** (139.) 

LCos 2/Cos Cos Cos 
[ 2 2 2 t2 2 

and if c be the eccentricity of the elliptic base of the cylinder, 
sin 2P.sin 2Q 
sin2 (P + Q)(140.) 

These are expressions remarkable for their simplicity. 
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We also find for the criterion of sphericity z, 

r sin2(PQ z=[(;+ Q~~~~~~~ ]2 ~~(141.) ; = ~P + Qe P Q j*eeeeee(11* 
Cos 2 )cos 2 

As is the altitude of a triangle whose sides are a, p, q, 

a2k2=(a+p+ q)(p+q-a)(a+q-p)(a+p-q). 

XXXVIII. In the preceding investigations the element Fig. 14. 
of the curve has been taken as a side of a limiting recti- 
linear polygon inscribed within it. We may however 
effect the rectification of the curve, starting from other VI 
elementary principles. Let APB be the plane base of the x 
elliptic cylinder, and let a series of normal planes PP'Yv' 
ss'vv' be drawn to the cylinder, indefinitely near to each 
other, and parallel to its axis. We may conceive of every 
element Pw of this plane ellipse between the normal 
planes as the projection of the corresponding element sw' 
of the logarithmic ellipse. LetX be the inclination of the 

,A_______ 

element dE of the logarithmic ellipse to the correspond- 
ing element ds of the plane ellipse. We shall have, dk 
being the elementary angle between the planes PP'vv' and 

r'vv' 
d= sec. -, *. . . (142.) 

Now (31.) gives a- =P+dX2 

and therefore j=COST dx+f -"Jsecr.d.. (143.) 

In the plane ellipse p2=a2 cos2X+h2 sin2X, whence d 2=(a- 2)(a2os4A-b2sin4X) (144.) (aO cos2),%+ 62 sin2?X)i' 

We have now to express cosT in terms of a. 
From (1 19.) combined with (120.) we may derive 

2 d2 b2,24- (a2 - b2) [k2 + a2 _ 62] sin0-(a2_ 2)2sinW se =dx2+dy2 k2(aksnO(a bcos2O)-( -2)1 i (145.) see~~~~~~~~ -- - --2k(VW sin2O 4. b Cos 2 0)----- e iJ 

Eliminating - between the equations tanX~= Y - and Z-=tanO, we shall have 

tanged~ tang O ..... (I146.) 

If we eliminate tanG by the help of this equation from (145.), we shall obtain 

2 k2(a2 coS2X + b2 sin2A) (147\ cos r= a2k2+ (a2-b2)L[a2-b2-k-1 sin2] -(at-b2)2sin4A, ...?*)X 
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Substituting this value of cost in (143.), and writing PI, Q', R' for the coefficients of 
powers of sinX, the resulting equation will become 

kI>=Sd;kVP'+Q'sin 4+R sin _(a2_b2)f dx(a2 cos4X -b2 2 ) *i * (148.) 
kWa cos2A + b si2A) cos; . (48. 

As the first of these integrals is precisely similar in form to the integral in (123.), 
we may in the same manner reduce the expression into factors. Accordingly let 

P'+Q' sin2X+R' sin4X=( +( sin2x)(r-0 sin2A). (149.) 

Writing z, 3, y instead of A, B, C, and following step by step the investigation in 
Art. XXXV., we shall have, as in (126.) and (128.), 4, m, and i, being the amplitude, 
parameter and modulus, 

tan2'= +tan2X, m=, i= ( ). . . . (150.) 

As cy=a2k2, P3=a2-b2,andy--a=a2_b2-k2, (151.) 

we shall have the following relations between the constants an, 3, y, m, in and A, B, C, n, i, 
in (150.) and (128.), 

P=B, a=C-B, yrA+B, z+7=A+C, I 
y-j=A, m+f3=C, y-cx-P+C-A-B=0,.(152.) 

~(c4+ey) B(A+C) *2 * B 
i,-7^(a+p)-(A+B)C- Ior i,=z, m~+ C 

Hence the moduli are the same in the two forms of integration, and the parameters 
m and n will be found to be connected by the equation m+n-mn=i2; . . (153.) 
m and n are, therefore, conjugate parameters, as they fulfil the condition assumed in (1.). 

The amplitudes p and 4' are equal. 
A+B 

In (126.) we assumed, tan2p= A tan2O; and in (150.) tan 24P= a- tan2A&, but 

tan?,=b tanO as in (146.), whence taab (A+jIB)c tan2P. 

In (152.) we have found tz+P=C, and A+B=y, 
a2A 

whence tan24'2 
aAC 

tan2p But AC= b2k2, and cy=a2h2, 

as shown in (125.) and (151.), whence 

;=p 
* . @ .......... * 

~~(154.) 
We shall now proceed to find the value of the second integral in (148.). 

2 = (a2 -b2)2 si2 COS2x 
From (147.) we may derive tan2'r k2(a2cos2,+?b2sin' *). (155.) 

Differentiating this expression, reducing, dividing by cosr, and integrating, we 
finally obtain 

(2b2Cda2 cos4 - 
U 

sin4x) 
C 2 2. (156.) MDCCCLII. k 28,r (a bi 
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(148.) may now be written 

k0=fch.P'+Q sinX+R sin . * (157.) 

if we measure the are of the logarithmnic ellipse fromn the minor principal axe, or 
from, the parabolic arc which is projected into b, instead of placing the origin at the 
vertex of the major axe as in (1 19.), we must put 

XHa sin, My=b cos2;.(158.) 
and following the steps indicated in that article, we shall obtain 

kS= dSVP' +Q' sin2a+ B! sin4.. (159.) 
If we now make SA=, and subtract the two latter equations, one from the other, 

the resulting equation will become 

:S-E-S. . (160.) 

But this integral is, we know, the expression for an arc of a common parabola, 
whose semi-parameter is k, measured from the vertex of the curve, to a point on it, 
where its tangent makes the angle l with the ordinate. 

Thus the difference between two elliptic arcs measured from the vertices of the 
curve, which in the plane ellipse may, as we know, be expressed by a right line; and 
in the spherical ellipse by an arc of a circle, as shown in Art. XV.; will in the 
logarithmic ellipse be expressed by an arc of a parabola. As a parabolic arc can be 
rectified only by a logarithm, we may hence see the propriety of the term logarithmic, 
by which this function is designated. 

XXXIX. If from the vertex A of a paraboloid, an arc of a parabola be drawn, at 
right angles to a parabolic section of the paraboloid, it will meet this parabolic sec- 
tion at its vertex. Let the arc AQ be drawn at right angles Fig. 15. 
to the parabolic section Qv of the paraboloid, the point Q 
is the vertex of the parabola Qv. A 

Draw QT and Qt tangents to the arcs QA and Qv. Then 
QT and Qt are at right angles. As QT is a tangent to a 
principal section passing through the axis of the paraboloid, 
it will meet this axis in a point T;. and as Qt is a tangent to' 
the surface of the paraboloid, it will be perpendicular to the \ 

normal to the surface QN. Now as Qt is perpendicular to 
QT and to QN, it is perpendicular to the plane QTN which 
passes through them, and therefore to every line in this 7? 

plane, and therefore to the axis AN, or to any line parallel to it, as the diameter 
Qn. Hence, as the tangent Qt to the parabola Qv is perpendicular to the diameter 
Qn, Q is the vertex of the parabola. 

Hence in the logarithmic ellipse, one extremity of the protangent arc is always the 
vertex of the parabola which touches the logarithmic ellipse at its other extremity. 
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This is a very important theorem, as the protangents are arcs of equal parabolas, 
all measured from the vertices of the parabolas. Hence also the length of the protan- 
gent arc depends solelv on its normal angle. 

As an arc of a circle may be expressed by the notation s=sin '(), y being the ordi-. 

nate and k the radius, so in like manner an arc of a parabola may be designated by 

the form s-tan Q'); y being the ordinate and k the semiparameter. To distinguish 

the parabolic arc from the circular arc, the former may be written s=,rm'l(). Again, 

as we say, in the case of the circle, the angle w and the arc kw, w being the angle con- 
tained between the normals to the curve at the extremities of the arc: so in the para- 
bola, we may write o for the angle between the normals, and (k.o) for the corre- 
sponding parabolic arc. In the case of the parabola the are is always supposed to 
be measured from the vertex; in the circle the arc may be measured from any point, 
as every point is a vertex. 

XL. Resuming the equation (157.), O= d7VP+lsi'+R'sin4-k2 We 

shall now proceed to develope the first integral of the second side of this equation. 
As the integral is precisely the same in form as (123.), and the amplitude +-=P as 
also the modulus i,=i-, we may substitute ot, 3, y for A, B, C, m for n, (D. for O., 
retaining the modulus and amplitude, which continue unchanged, as we have esta- 
blished in (152.) and (154.); or substituting for a, P, y their values in m and i, we get 

2 [i2 + - 2m] E; _ [i2 + mo-2m] c d_ 1 
A/M(j2_M)(l-m) k- m m J-1SiA2<] /l-2 Sin2,g (6 

[i2-m] dp 2 [i2+m_-2m]2 ('ch-J 
-4 +Un Vm(i2_ m)(1-m)ico&T) 

If we eliminate i from the coefficients of (133.) and (161.), putting M for (1 -im sin2p), 
and N for (1-n sin2p), as also jT for Vi- i2sn (133.) will becoen 

2(nz-m) , +(I-n)(n-m)f d; m d r 
Vn(X n 

+ N VT+n(1_) nS I+Sd/In . . (162.) 

and (161.) will be transformed into 
2(n-m) 5 ~ (1-m)(n-m)V dw n r 2(n-m)rd 
2(n-m) M + 0 (163.) ,V- k M j Vm 

If we compare together (162.) and (163.), which are expressions for the same arc of 
the logarithmic ellipse, and make the obvious reductions, putting for (I:,, and &Pm their 

sing cos VI sin and/I.COSV. values N and M , we shall get the following resulting equation of 

comparison, 
(1-n'r dv (-m\ &p dp i_ fdp 2 UTd sinpCospVI 

( n})JINV7I+% mn /J^MV/ImnJ2^a VV ZjcoA MN . . (164.) 
2z2 
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4/mn sinp coso From (155.) we may deduce sin.- .(165.) 

we shall therefore have tanr secvr= mn.sinf cos * *(166.) 

It may easily he shown that tanr secr represents the portion of a tangent to a parabola 
intercepted between the point of contact and the perpendicular from the focus. 

Hence tanr secr=2fdV -.C?S.. . (167.) )COS3T 
- 

COST' 

Combining (164.), (166.) and (167.), and using the ordinarynotation of elliptic integrals, 
1-n 

~ ~ ~ ~ (; mn c 4ncos 

r Ad[/smn sinp cosp 
dr dsinv 1 Cdr 1 d[ Vniui2 -J or as (168) cos l7-s2'T Vmnu cosv mn 1_ - `[nsinp cos pj 

we have therefore 

y}ll01(n, P)+ He P) =-~F (P) .(169.) d r n /mnsinc cosfl 

This is the expression given by LEGENDRE, Traitd des Fonctions Eliptiques, tomn. i. 
p. 68. Written in the notation adopted in this paper, the formula would be 

(I -nrdf Il-Mx df i2 du) 1 LdT ( )n fJ + (' m 4)i /= /7I7 vCOSTv (170.) 
XLI. We may express a and b, the semiaxes of the elliptic base of the cylinder, in 

terms of m and n, the conjugate parameters of the elliptic integrals in the preceding 
equations. From the equation of condition mn+n-mn= i2, and (130.) we may elimi- 
nate i2, and get 

a2l mn(I-rn) , 2mn(l- n) 
k2- (n-m)2 k= (n-)2 * . * 

. . 
* (171.) 

r 1 ~~~b /-n (-)-r) /-i j ITherefore ,4/ ) )V = a V1-m (1 .,M) 1-r 1-m 

Hence the ratio of the axes of the elliptic base of the cylinder is a function of the 
modulus and parameter. 

.The ratio of the corresponding quantities in the case of the spherical ellipse may 
be derived from the equation 

a2b-,2 .2 bj. 
a,2 -.2; or-= =j. 

This ratio is therefore independent of the parameter. There is then an important 
difference in the two cases. In the one case, the ratio of the axes is independent of 
the parameter, and will continue invariable, while the parameter passes through every 
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stage of magnitude. But in the logarithmic ellipse the vertical cylinder will change 
its base with the change of the parameter. We shall see the importance of this 
remark presently. 

These ratios are- 

In the sphere b=j. In the paraboloid a1m. (172.) 

XLII. Resuming equation (157.) and developing it by a process similar to that 
applied to (127.), we get 

>= y [1-i-sinkgdr * * * * *(173.) 

Now (151.) and (152.) give 

2 
_ 2 P k2Vmn k2mn(-m) 

a =m, oay=a kn, A/r(oc+P)= and a,2= k n(-m) a~~~~p (n ~~~~~~~(n-rn)2 

Making these substitutions, we get 
C [-i2 sin 2p] dp C __7 

al( -VI M Sjn2p] 2V ~i2 Sinkp co3 (174.) 

Now let m-0 then (165.) gives r=O, and we shall have 

Y. =ay@ l _-i 2 sin2p. 

This is the common expression for the rectification of a plane ellipse, whose greater 
semiaxis is a, and eccentricity i. This is case IV. of the Table, p. 316. 

We cannot arrive at this limiting expression by making e2=m=O in (53.) for this 
supposition would render i=O, which, throughout these investigations, is assumed to 
be invariable. 

XLIII. If, as in the case of the spherical parabola, we make n=m, or n=1- /1- 

the values of a and k become infinite. What, then, is the meaning of the elliptic in- 

tegral of the logarithmic form of the third order, when n=m, or n= I1- i2? In 
the circular form of the third order, when m=n, n=i, and the spherical ellipse be- 
comes the spherical parabola, which, as we know, may be rectified by an elliptic 
0 ~~~~~~~b 

integral of the first order. Not only do the ratios la k become infinite, but they be- 

h2 1-n 
come equal, for I= 1, when m=n. What, then, does the integral in this case 

signify? It does not become imaginary or change its species. 
Resuming the equation established in (133.), 

2[2n-i2-n2] _ [2n-i 2 dS2 d_ n22 n d 
Vn( -n)(i2_-n) k n + A n 4- 
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If we now introduce the relation given in (130.) A= n -i2) we shall have by k 2n-i2-n2 
substitution 

22 1_ . 5 s2-i -n2\ do ::2-ned 
V'l-n X )j + _ )j +jdPV . (175.) 

If we now suppose m=n, or n=1-N/V1 _2, or 2n-i2-n2=0, the last equation 
will become 

2Vj3 a fVd!V-nD, * * * * . (176.) 
In this case - ~tang VT In this case l +jtan. . (177.) 

This is the expression for the length of an arc of a logarithmic ellipse, the intersec- 
tion of a cylinder, now become circular, with a paraboloid whose semiparameter k=0 - 
therefore the dimensions of the paraboloid being indefinitely diminished in magni- 
tude, this intersection of a finite circular cylinder by a paraboloid indefinitely atte- 
nuated, must take place at an infinite altitude. We naturally should suppose that 
the section of a cylinder which indefinitely approaches in its limit to a circular cylinder, 
by a paraboloid of revolution, would be a circle; yet the fact is not so. The inter- 
section of these surfaces, instead of being a circle, is a logarithmic ellipse, whose 
rectification may be effected by an elliptic integral of the second order, as we shall 
now proceed to show. 

In the first place let us conceive the paraboloid as of definite magnitude, and the 
cylinder to be elliptical; its semiaxes as before being a and b. Then as a and b are 
the ordinates of a parabola, at the points where the elliptic cylinder meets the para- 
boloid, at its greatest and least distances from the axis of the surfaces, we shall have 

a2-=2kz' b2=2kz ".(178.) 
Hence a2-b2=2k(z'-z"). Let z'-z"=h, then h is the thickness or height of that 
portion of the cylinder within which the logarithmic ellipse is contained. 

k2mn kmn 
Now (171.) gives a -b =nm, *2hn=X_ 

and we have also ad V4/mn(l -in), hence h=a */inn 
n-m 2 /1-rM 

Now when n=m, a=b, k=0, while we get for h 
a n h=a2.X- (179.) 

We thus arrive at this most remarkable result, that though the cylinder changes from 
elliptic to circular, while the parameter of the paraboloid approximates to its limiting 
value 0, yet the thickness of the zone, that is k, does not also indefinitely diminish, but 
assumes the limiting value given above. 

Now if we cut this circular cylinder, the radius of whose base is a, by a plane 
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making with the plane of the circular section, or with the plane of xy, an angle whose 

tangent is h, the semiaxes A and B of this plane section will manifestly be 

B=a, and A=/a2+h2 or A= a(2n) 80.) 

If we denote the eccentricity of this plane ellipse by 
1~~4/1~~~ic2 

____ecej 2-n 1+ Vi-p 
. or writingj for V-i2r iLri H (8 

It is shown in every treatise on elliptic integrals, (see HYMBR'S Integral Calculus, 
p. 220,) that if c and c, are two inoduli connected by the equation 

1-^/i =0 1-b 1 C vl2=F#' . . .(182.) 

and p and 4 two angles related, as in (63.), so that 

tan(;,-p)=btanp,. (183.) 

we shall have (1+c,)E,())=E,,(4)+c,sinP-. b2F",(4,). 

Now 1 +c, 2 b2=4_c2= 14b . hence 
( (+b)E (I)+ + )i-lb)2 +) 
(J)=1?h-) ECQ i+(lbsinn,.- Fe(4,), .(184.) 

and, using the common notation for the present, (74.) gives 

Wjp) = 1%+b Fj,(4). Adding these equations, we get 

EC(p)+b FC(p)= 2 
( 
EI,(b)+ 2 )sin,4, . ... . . (185.) 

or, using the notation adopted in this paper, 

Sd @AvI+jfdXI= (i)jld4/vI,+ 4,sin+, .(186.) 

since n= 1 -b= 1-j. 
Substituting the value of the first member of this equation in (176.), the resulting 

equation will become 

(I +j siin;ll cos~p V/I 
2,/a- 2 )j3i.'r cn s c+,sI.. . . .s. (187.) 

Having put for ( its value in this case, namely, 
<> sinp cos 4/I 

cosP +j sing 

we must now combine the last two members of this equation. Adding, they become 
i f.1 _2 sing cosp 7(I8 2I * . -* e* 4 * . 0 * (I88.) 
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From this expression we must eliminate the functions of p. 

Now (73.) gives .,.,... . . (189.) 

writing p for 4. 
Substituting this value of VI in the preceding expression, for which we put t, we get 

t=sn sinc 2 sinp cosp I (90.) 

From this equation we must eliminate sinp, cosp. 
If we solve the preceding equation (189.) we shall obtain the resulting expressions 

2 sin2 I= 1- II cos, +i, sin*4,9 .. .~~~~~( (9 1.) 
2 cos29= 1+ VI, cos--i, sin24j 

Multiplying these equations together, and recollecting that 2 1--i sin24+, we find 
4 cos2p sin2p=sin24i[I1+2 VIi, cosP+i2 cos2e]. . . . . (192.) 

Now the second member of this equation is a perfect square, 

whence 2 sinp cosP= sini[ ,V/,+i, cosPj. (193.) 
Substituting this value of 2 sinp cosp in (190.),, we get 

t= sin4 [il- V+z Hi;cos?] - fn i, sinw4s cos4; t=-sinq/ I- ~~~~~~~~~~~(194.) 

As n=1-j, and iz,+j , n2+ i,, equation (187.) may now be written 

2 a= I /+.7C pj ai2 Sin~pcos% 
2 kVJ: V j ?V . . . . . (195.) 

Now as a~~~~ (2 -n) a (I +j) . 2 Now as A=2 ^/V-n=2 <J and li +j5 

we get ultimately 22=A ~d4.. VJ,-A-L'Sin.2COs . (196.) 

The second term of the last member of this equation is evidently the common 
expression for a portion of a tangent to a plane ellipse between the point of contact 

and the foot of a perpendicular on it from the centre; while A d4 sVI, or 

AJdk Vi i,2 sin2_, is the expression for the arc of a plane ellipse whose semitrans- 

verse axis is A, and eccentricity i1. 
When the function is complete, = and +=X. See (183.) 

Hence as 3d;i ,VI=2j d'4 VI,, 
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z therefore, in this case, is equal to a quadrant of the plane ellipse whose principal 
semiaxis A, and eccentricity i, are given by the equations 

A=Va2+h', and i.- (198.*) 

To distinguish this variety of the curve, we may call it the circular logarithmic 
ellipse, as it is a section of a circular cylinder. Accordingly, in the two forms of 
the third order, when the conjugate parameters are equal, or m=n, the representative 
curves of those forms become the spherical parabola, and the circular logarithmic 
ellipse. 

This is Case V. in the Table, p. 316. The results of the preceding investigation will 
reappear in the d emonstration of the theorem, that quadrants of the spherical or 
logarithmic ellipse may be expressed by the help of integrals of the first and second 
orders. 

XLIV. It is not difficult to show that this particular case of the logarithmic form, 
when the parameters m and n are equal, represents the curve of intersection of a 
circular cylinder, by a paraboloid whose principal sections are unequal. 

-2 2 
Let x2+y2 =a2, and + =2z .(199.) 

be the equations of the circular cylinder and of the paraboloid. 
Assume x=a cosO, y=a sinO. (200.) 

r ___ sin2Ol Then 2z=a2{ +? 

dx' dy dz/1 \ 
and asinOin=a cosO .=a .sinO COO. (201.) 

Hence Lc a +a k, )sin2ocos20] (2029) 

Now we may reduce this expression by two different methods to the form of anl 
elliptic integral. 

By the first method, eliminating cos20, this expression becomes 

dE T a2Ja4(l -k sin2 0-a4( --k) sin4O. (203.) 

We, may, as in (124.), reduce this expression to the form of a product of two 
quadratic factors, 

(A+B sin2) (C-B sin2=) AC+B(C-A) sin2O-B2 sin4O. . . . (204.) 

Comparing this expression with the preceding, 

AC=a2, B=a2Q ) C-A= or C=A+B, and AC=A2+AB=a2. (205.) 

* Professor STOKES of Cambridge has pointed out to me, that this curve, like the plane ellipse, when the 
cylinder is developed on a plane, becomes a curve of sines. 

MDCCCLII. 3 A 
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Let us now, as in (126.), assume tan2O=A?B tan2;. (206.) 

and following the steps there indicated, we shall have 

B(2A + i B) B2+) i i- A +B)i ]1~+ ~(207.) 

an expression of the same form as (127.). 

Let ~~ ~~B B(2A?B) i Let ~ ~nA?B- (A?B)2 .(208.) 

therefore - and 1 A2 . and1 l (A?B)2(209.1) 
Hence 1 -n= V1-i2, or n=m j 

If we develope this integral by the method indicated in XXXVI., the coefficient 

2n-i-- of the integral C -n in the result will be 0, and the re- n 1 j ni sin')V -2si2p 

duced integral will become, as 

+B =In B=-n and B=a2 ---i (210.) 

=2 (1-as) -n~d P/+ n +D (2 1) 1.-)> 

Let z' and z" be the altitudes of the points above the plane of xy, in which the 
principal-sections of the paraboloid meet the circular cylinder. Then z" - Z' is the 
height or thickness of the zone of the cylinder on which the curve is traced. 

Now a2=2kz', a2=2kzt', whence z"-Z'= (k- ) 

Let this altitude or thickness of the zone be put h, and we shall have 

3=[-Sdp /Vl+( n )f> (D] * *.(212.) 

Hence the are of this species of logarithmic ellipse may be expressed by integrals 
of the first and second orders. 

It is not a little remarkable that whether the integrals of the third order be circular 
or logarithmic, or, looking to their geometrical origin, spherical or parabolic, when 
the conjugate parameters are equal, or m-n, we may express the arcs of the hyper- 
conic sections thus represented, in terms of integrals of the first and second orders 
only; the integral of the third order being in this case eliminated. 

If we now resume equation (202.) and make, 

20= ++) * * * ) . . . . . . . (213.) 
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sin 20=2 sinO cosO= cos,', and 20=d,4'. Therefore (202.) will become 
4dY2 2 a- 1 2\ 
4d52=Gr2+a (1,-}k) cos24, (214.) 

hence as h= - we shall have 2=- Va2+h d V,/1 - s2sin24. (215.) 

This is the common form for the rectification of a plane ellipse, whose principal semi- 
axes are V/a2+h2 and a. Let i, be the eccentricity of this plane ellipse, 

h B n 1- v/I-i2 
Va ?h22A+B 2-n 1+ Vill 72 .216) 

and the relation between p and 4 is given by the equations 

-24' A 20=+- , tan2O=A+ Btan2p, or tanO=vl-n tanp. 
Hence 1~~~~~~I+ sinqi tnp 

Hence l+_-in (l -n) tan2;. (217.) 

When 4'=O, tang a=+; when 4=2' p=2; when 4= -j =0. Hence 4 is measured 

from the perpendicular on the tangent to the ellipse, at the point which divides the 
elliptic quadrant into two segments whose difference. is equal to a - b, as will be 
shown further on: while ; is measured from the semitransverse axe a. Thus while 

4 varies from - (that is from the position at right angles to this perpendicular, and 

below it,) to 0, that is to the perpendicular itself, p varies from 0 to tan.- and 

while %p varies from 0 to varies from tan'-, to 2. Thus while 4 passes over 

two right angles, p passes over one right angle. 
We may now equate the two expressions (211.) and (215.), 

p ~~~~~2h rlr - n(_f)r 
Sd4' 1*i/sin24'=V?a2 +[fd vI+ n . H * * (2 18) 

or we may express an elliptic integral of the first order by means of two elliptic in- 
tegrals of the second order. Thus we obtain the geometrical origin of this well-known 
theorem. 

When the functions are complete, since 

'Vlj 1-in1 _j22 sin2_, we get 

5?d4'V1-i2 sin24'=teifs+Q n )57/]2.(219) 

which agrees with (186.). 
3A2 



362 DR. BOOTH ON THE GEOMETRICAL PROPERTIES OF ELLIPTIC INTEGRALS. 

SECTION V.-On, the Logarithmic Hyperbola. 
XLV. The Logarithmic hyperbola may be defined as the curve of symmetrical in- 

tersection of a paraboloid of revolution with a right cylinder standing on a plane 
hyperbola as a base. 

Let Oxx, be a paraboloid of revolu- Fig. 16. 
tion, whose vertex is at 0, and whose z 

axis is OZ. Let ACB be an hyperbola 
in the plane of xy, whose vertex is at A, 
whose asymptots are the lines OX, ' 
OY, and whose axis is the right line \ 
OAD. Let the planes ZOX, ZOD, \\ 
ZOY cut the paraboloid in the plane 
parabolas Ox, Od, Gy, and let cab be 
the curve on the surface of the para-> 
boloid whose orthogonal projection on _____x 

the plane of xsy is the plane hyperbola 
ABC. Then acb is the logarithmic 
hyperbola. 

As OX is an asymptot to the hyper- 
bolic arc AB, it is manifest that the 
parabolic arc Ox is a curvilinear 
asymptot to the arc ab of the loga- 
rithmic hyperbola. 

Let we -=-l, and S2+y2= 2kz.(220.) 

be the equations of the hyperbolic cylinder and of the paraboloid of revolution, and 
consequently of the curve in which they intersect. Let T be an arc of this curve, 

(I r4\2 'd\2 2dz It 
then T=jd i.[(d ) + + dAJJ.(221.) 

x, y, z being functions of a fourth independent variable A. 

Assume x2 a4cos2A b 4 sin2A * .2.(222.) a cos2A-.-b2sin2A' a2 cos2A-b2siu2AX 
It is manifest that these assumptions are compatible with the first of equation (220.), 
anthe second of that group gives 

a'1 cos2 + bM sinX 
2os-/2 s 22kz. 

* We might, by the help of the imaginary transformation sinO= V-I tanG, pass at once from the elliptic 
cylinder to the hyperbolic cylinder. Let tanO'=u, and the resulting equation will be of the form 

dY a+gu S+YU4 
duV AA+Bu +Cu4+Du6 

an expression which, on trial, it would be found very difficult to reduce. The difficulty is eluded by making 
the transformation pointed out and adopted in the text. 
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Differentiating (222.), we get 

/dX\2 Oa4b4 sin2X (dy 2 a4b4 cos2A (dZ 2 (a2 + b2)2a4b4 sin2x cos2X 

dx (a cos2- b2 sin2A)3' dX (a2 cos2X -2 sin2)3' dA -k2(a2 cos2X-b2 sin2X)4 (223.) 
Hence k dT [a2k2 + (a2 + b2) (a2 + b2_ k2) sin2X- (a2 + b2)2 sin4X]2 

Hb2 dx (a2 cX- b2 sin2X)2 
* * * 

. . 
( 

Let this radical be put=V'V. 

Assume V= (A+B sin2)(C-B sin2) =AC+B(C-A) sin2X-B2 sin4X, . . (225.) 

hence AC c2k2, B-a2+b2 C-Aka2+62 -.(226.) 

Let us now assume sinp such, that 

sn2 AC Sjn2p 
Sin2-AB+BCCOS2 ,.(227.) 

then A+B Sin2X=AC(A COS2, C-B sin 2= A+C cos2CS 

and a2 cos2X-b2 sin2 =a2 - (a2+ b2)AC sin2p 
and a Cos b sin. =a ~B(A+Ccos2p) 

or as a2+b2=B, AC=a2k2, C+k 2=A+B, 

we ge t ,;e2 2?-b 2 2A = A2 (A +c ) F 1-A +Csi21 
we get ~ a Cos - b sinX=A+CCO.2, -+CiL 
Hk dT VXAC.[A+Ccos2p]cosP.(228 Hence aabq dx a"(A+C)[1-Isin2p]2 

Making l=A+BC. (229.) 

sin2X=AC sin2p 
Differentiating the equation si 12~x=AB + BC c.P ..(230.) 

dx ak VA+?Ccosp (231.) we get d 1C'A+?B 2 
C C'S 1-- C) 

or as d-,p- ddxd making 2 (A+B) (232.) 
or as ing d9- d dp1 B(A?C)' 

T 62 C COS2;dp we get, finally, V ? cos2(]2 (233.) 

XLVI. We may develope another formula for the rectification of an arc of the 
logarithmic hyperbola. 

Assuming the principles established in Sect. XXXVIII., we may put 

T=-y sec vd- sec vd.(234.) 

In this formula p is the perpendicular from the axis of the hyperbolic cylinder let 
fall on a tangent plane to it, passing through the element of the curve; and v is the 



364 DR. BOOTH ON THE GEOMETRICAL PROPERTIES OF ELLIPTIC INTEGRALS. 

angle which a tangent to this element makes with the plane of the base. v in this 
equation is analogous to r in the last section. 
. In the above expression, the negative sign is used as the curve is convex towards 
the origin. 

dz 

Now =2a2 cos2X - b sin2?4, and tanv= h ~ dy2 We must substitute for these 
/(d) 2MO 2* 

differentials, their values given in (223.), and introduce the value of @ assumed in 
(2 2 7.), wh en ce s v = k2 [A +C (A+C)2AC cos** (227.), = . . . . . * (235.) 

p ,ec % /AC (A+ C) cos; p v k [A?+C cos2p].(236.) 

But (231.) gives do VA+C kosci 
d~ VBl[A?+C cos% ] v1i si2p' 

whence p secvd4= a2k 2os2pd. (237.) 
VRB(A + C) I1-A X(: sin2w /-~i2 

We must now determine the value of the second integral in (234.), namely, 

fA secvd&, 

=-psecv= (a2 + b2) [a2 cos4x 
+ 

62 sin4x] secudx since p%=a2 cos2k-db2 sin2X 2 (a2 cos2x-b2 sin2)V 
. . (238.) 

Now we may derive from (223.) tanv= (a2 cos 2) sinBx) * * (239) 

Differentiating this expression, then multiplying by secv, and integrating, we obtain 
Cdos ([2 Co?2 2 ] secudx 
kj-S3 (2+ b)j(2cs-6 j2).... (2 40.) 

Comparing this expression with (238.), and introducing into (234.) the values found 
in (237.) and (240.), we obtain 

T_ ('do a2 _ cos2pd; 
k icos3o VB(A+ C)J [1-m sin2p] 2 t/1 _ii sin2p.(241.) 

C 
making m-A?C* . . (242.) 

A+B 2CA?B ill C 
since I-A+C' and z =B A?C), assume n-== .(243.) 

and we shall have m and n connected by the equation of condition, defined in (1.), 
m+n-mn= i2. 

The three parameters 1, m, n, and the modulus i are connected by the equations 
ln-i2, m+n-mn=i2. .(244.) 



DR. BOOTH ON THE GEOMETRICAL PROPERTIES OF ELLIPTIC INTEGRALS. 365 

I and n are reciprocal parameters, the reader will recollect, while m and n are con- 
jugate parameters. 

XLVII. It was shown in- (226.), that C-A=a2+b2-k2, B=a2+b2, k2=A+B-C, 
and a'k2=AC, whence 

a2 AC b2 (A+B)(B-C) 
k2 (A+B-C)2' k2 (A+B-C)2 (245.) 

In order that these values of a and b may be real, we must have B > C, and A of the 
same sign with C, both positive, otherwise </V in (225.) will be imaginary. As 

1= A+B1> 1; here the parameter I is greater than 1, while m and n are each less 
than 1. 

We may express the semniaxes of the hyperbola, the base of the hyperbolic cylinder, 
in terms of the modulus i and the parameter 1; for by the equations immediately 
preceding we may eliminate A, B and C in (243.). We thus find 

a2 1i2(1l1)(1 i2) b2 (1-1)(l-i2)2 

X2 [2 + i2_ 26i2]' c2=[12+2-21i22.) 
therefore ~~~B a2?h2 1(1-i1) therefore B~a 2 12 ? i2 li2 (247.) 

We may express the semiaxes in terms of the conjugate parameters rn and n, 
a2 n2rm(1-m) b2 m(l-n)(n+m--mn) 
k-[n+m-2mn]2' k2 (n+m-2mn)2 (248.) 

hence B a+b and l/B(A+C)= n(249 k2 k2 (m + n-2mn) (m+n-2mn) 

or we may express a and b more simply in terms of I and m. Eliminating n and i2, 
a2 m(l-m) b2 1(1-1) we get k= (l-m)2' k2(1-m)2 *.(250.) 

Let c, be the eccentricity of the hyperbolic base of the cylinder, we shall easily 
discover the following equation between cp, i and 1, analogous to (131.), 

(c -2 1 )ij2= (I-i2)2.. (25 1.) 
Hence when i and I are given, c, may easily be found. 

XLVIII. If we equate together the values found for Y, the arc of the logarithmic 
hyperbola, in (233.) and (241.), we shall have 

Y2 co2;]21 i i +a M in co2d A/ _/B (A+ - 3252. 
b2C Isin2] 241-i2 J[1 sin2]21 

For brevityA put 

L= lsin M= 1-rnsin N=1 in2, 1 i2sin2p. . e (253.) 
The preceding equation may now be written 

b2 vJ + a 2 = p /B (Af C) c .(254.) 
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or, if we substitute for the coefficients of this equation their values given in (246.), 
we shall lhave 

( 
2 Osf ,'2 .2)ycos2pdp [12I + -2 -2i2A]Vl-i2 du 

(- )^ Lv' +2 ( 1 M2 Vl(l-) Jcos3u * (255.) 

siflp coscp sinc p Sf cosp Let 8 = r2+ i2- 2li2, J 
'% M2+ i2- 2mi2 tP1= i m ( (256.) 

Now the process given in XXXVJ. will enable us to develope the integrals 

Ccos9~df Ccos2edf j L2-VI and , as follows:- 

2(1- i2)fCO =i'(l-i21-(1-i2)Sd I+ (liQ)y + . f ) 

and 

)M I (i2c d -m2)i~ n+m I i--m j.d - + m m(i2-m)J MVI (2 ) 

Tle equations of condition In= i2, and m+n-mn =i2, give 

j2-M =I-i, and (i + - 1(-l) (259.) 

We have also, since M = 
j2 

-1) I(1- _2)Il- (i2_m) (rn= LM -. . (260.) 

Making these substitutions, adding together (257.) and (258.), the coefficient of 

Jfd VI vanishes, and we shall have 

2~~~O (ti),C2pdg 028(1- 2;d 8 sinp cosp A/T 
8(I-i P) + 

d 
( 

a 
i d) a1-X/I j2m JdL 2(-j2)2J'O +2ij2(1 _j2)f (I ilPco~V (l1J~ jLV mJ 4/ 

but os~~~~~~~~82d ~ .Cc Os 21;d; d 
but (255.) gives (l Ii2)2fC + 2( 1 _ 2 ( du 

Combining this equation with the preceding, 

mt M(+1_ 2j LM =2 1dt a1_ *2 r dp 1-i) dp a(l-i2)d + sinp/cosVII-)J (261.) l( )L AlI m JM VTII) VI+- LM _2ZV (_1))JCOOS. 26 
Now t'=m2+i2-2mi2= i(li) a and as m= 2(1_1), (l-i2) (I-i2)a 

(i-ij2)2' i-i2 m - (1- 1) 

In the last equation, substituting this value of Y, and then dividing by S, we get 
sin p cos V/I (I-)fdp ,Sl-i2) dp (I - _)A d /ie_ _ dv P - - 1 *. 1 _ _sWAn 

LM ?lffi 1(1-1) j 1 JLVI (I- 1) Md- V(1 l)Jcos * 

__d Cdu LM 
Now 2 =tanv secv+ and cos2v. (263.) ~0 _S3t)and co co$2.(6. 

as may be shown by combining (226.) with (235.). 

Hence sin v= tan V,. (264.) 



DR. BOOTH ON THE GEOMETRICAL PROPERTIES OF ELLIPTIC INTEGRALS. 367 

1l( - I sinp coq V/I and therefore tanv secvv ( Sif CS? *265.) 

Substituting this value in the preceding equation, we get 
1-i d_ (I_-__) d_ + _____C -2 966 

1 . JL /Ii (I- 1 i- (1_) /I-A= 1(- I cosu (266.) 
In (170.) we showed that, m and n being conjugate parameters connected by the 

equation m+n-inn=i2, 

_-n d___ +(i-m)ld_ rdo 1 d 
\n/jN 4I m JM VI- rnj VI IVnjCOS 

1-n\ i/i-2\ /1-M\111-i2\i21/l-i2 _ __/___ Now -T r )=~ p )- ( and 
(n )i( ) m it1 ) mn~i2G1 an I-=i2 1(1 

Substituting these values in the preceding equation, and dividing by i, we get 

t_28 df+ i2> f K-2cf ( r(6 
____ 

l___ JJN - (I -1J d1 CO T')267 

If we add this equation to (266.), the coefficient of the integral5 ,$I will vanish, and 

the resulting equation will become 

dp dp d A/7 Fdu Cdv 
-L I V+(l-1) (li2) [cosu- O (268.) 

We shall now proceed to show that may be put under the form 

Cdv V Vctanp 
cs if we make the assumption sinv'=- .(269.) 

z' being equal to (1-n) n I 

Now cos~~~~~v=( (1r siin2p)(l -lsin2p) 'Now c081v=( Co~s~f )-,as in (263.). 

Hence /li2iSdv Sdf [j [1-i2 sink-i2 sink . . . (270.) 

but we derive from (165.) and (166.) the value / - i2 dT 
r=dv 

[ncoslo-nsinll;+nillsin4<] (27 1(1-ICosT JI MN . . . 
. (271.) 

o r subtracting, 

)L\Vd i 3/T 1 + LM LL sNij dp 0 jJ s p d. . . (272.) 
These two latter integrals may be combined into the single integral, 

-i2 sin2 -n cos2pj [1-i2 sin4 ]d2 
LMNVY.(273.) 
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Now as m+n-mn==i2, the first factor of the numerator becomes (1 -n)(I - m sin2p) 
=(1 - n)M, and therefore V i-i2 dv Cdl; (i-i2\ (y1._illsin4] 

1 -~v \(JI ) LNV.(274.) 

Substituting the second member of this equation for the last in (268.), we find 

fo +j 1-s/=['/]..(275.) 

Now, since we have assumed in (269.) 

*sin_' vxi tang LN dot V/7[1-i2 sin4;] dp si> Cos 2VI =Ico~v hence 276.LN. ) 

and consequently +d , +G C * * (2771) 

This formula is usually written 

c______ _ d_ 
+__ 

d _F _+ I d _/_Ftan;)dp. (278.) 
[I 1-n sing 01 V1 _c2 si-ni2 0[ i~ ~ ~i ~ vtn) 

We have thus shown that from the comparison of two expressions for the same 
arc of the logarithmic hyperbola, we may derive the well-known equation which 
connects two elliptic integrals of the third order, and of the logarithmic form, whose 
parameters are reciprocal*. 

Hence also it follows that if v, ar and v' are three normal angles, which normals 
to a parabola make with the axis, and if their angles are connected by the equations 

ML . 

costv= 2 2 sinv= - tang All, 

Cos2' M MN sin=e m sin; cosp (279.) costs = I - n ifl VF i@*(7 

cos2v' -J , sinv'= -(1I-n)t , 

we shall have 
Cduc du L dv 
JCMsu Jcost+ cOST' . T . . . v (280.) 

* We might by the aid of the imaginary transformation sinfp 1V i tank have passed from this theorem, 
connecting integrals with reciprocal parameters, to the corresponding theorem in the circular form. It seems 
better to give an independent proof of this theorem by the method of differentiating under the sign of integra- 
tion, as we shall do further on.- Although these theorems have algebraically the same form, their geometrical 
significations are entirely different. In the logarithmic form, the theorem results from the comparison of two 
expressions for the same arc of the logarithmic hyperbola. But in the circular form, the theorem represents 
the sum of the arcs of two different spherical conic sections described on the same cylinder by two concentric 
spheres, or on the same sphere by two cylinders having their axes coincident. 
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SECTION VI. 

XLIX. The difference between an arc of a logarithmic hyperbola, and the corre- 
sponding arc of the tangent parabola, may be expressed by the arcs of a plane, a spherical 
and a logarithmic ellipse. 

Resuming the equation (241.), fS V- 1- V/B(A+c)SM2VI' 

and combining (248.) with (249.), we may easily show that 
a2 n(l-m) Vnm 

V/B(A+C) m+n-2nm.(2) 

and from (258.) we deduce that 

2n(I - m) MVT= M(I ), + msI- t(D m ) (m n Jr-m)M IV/ 

Let G=-(l -m)f T+SdPVI-m m. .(282.) 

Substituting this value of -s2p d in the preceding equation we get, after some ob- 
vious reductions, 

Cdu 2T A/ n( -m)C dp 2 p cos~v m G-- 7=--G- 
Jcos L~ km+n-2mn vmn Omvv 

Now a, and b, being the semiaxes of the base of an elliptic cylinder whose curve of 
section with the paraboloid is a logarithmic ellipse, let, as in (171.), 

a, mn(1-m) b2 mn(t1-n) 
72j (n-m)2 

' k2 - (n-m).2 (283.) 

and if we put I for an arc of this logarithmic ellipse, we shall have, as in (163.), 
2 Vmn ( - lm) dp ('dr 

7 - .- ._ ,[ 
M V! c_- o 

, 
O- 
- X n-m Vmn JMVJCOSQ5 

Subtracting this equation from the preceding, and replacing G by its value in (282.), 
we finally obtain 

T=kS ke _7XX dV _N+4Vmn(l-n)mk G 
cos3v 3 cos3- (n-m)(m+n-2nm) 

We may express the arc T by the help of one parabolic arc only, if we introduce the 

equation established in (160.), S=: +kj00S33 hence 

T=kf du S+Vrn(1I-n)mlk [n(l )dsmSdv4 cos u (n-rn)(n+m-2mn) r . (285.) 

When sin@= /1 v=, , and the are of the logarithmic hyperbola becomes infinite, the 

arc of the parabola also becomes infinite, and an asymptot to the logarithmic hyper- 
3 B2 
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bola; the difference, however, between these infinite quantities is finite, and equal to 

V'rnn(1-n)mk G-S, integrated between the limits p=o, and p=sin-'h--. 
(n-rm) (n + m - 2rmn) 

It is needless here to dwell on the analogy which this property bears to the finite 
difference between the infinite arc of the common hyperbola and its asymptot. When 
n=m, the above expression becomes illusory. We shall, however, in the next article 
find a remarkable value for the arc of the logarithmic hyperbola, when m=n. 

We may express the above formula somewhat more simply. 

As in (248.) = i4/ad(2-n) 6 n-rn n(l-nem k m+n-2mn' n-m k ^Vm (n-rm) (n +m-2mrn) 

The equation given in (285.) now becomes 
dA/mrn 

T=k o___-8+ . G- . * * * * * * (286.) 
The ratio between the axes of the original hyperbolic cylinder, and of the derived 

elliptic cylinder, may easily be determined; for 
62 I (-rn) 62 -rn 
a2n=, (l,) (a.) and '2 1-n' (b.). 

Let c, be the eccentricity of the hyperbolic base, and c that of the elliptic base, then 
n'(c2.-1) =i(l -c2). 

Comparing (a.) with (b.), Vn b=V1 -=l + n(Im). 

This equation gives at once the ratio between the axes of the hyperbolic and elliptic 
cylinders. 

When the paraboloid becomes a plane, or when its parameter is infinite, m=0, 

S becomes an arc of a plane ellipse, kf is changed into a rectilinear asymptot, and 

the expression in (286.) is now transformed into kf~ 1,=S; or the difference 

between the infinite branch of an hyperbola and its asymptot may be represented 
by an arc of a plane ellipse. 

L. On the rectification of the logarithmic hyperbola when the conjugate parameters 
are equal, or m=n. 

We have shown in XLII. that when m=n, the arc of the logarithmic ellipse is 
equivalent to an arc of a plane ellipse; so when m=n, the arc of a logarithmic hyper- 
bola may be represented by an arc of a parabola, and an arc of a plane hyperbola. 

In (262.), if we make m n, or 1=1 +j, n= 1-j, we shall have, writing N for M, 
dp 2 4d _ 2 sinn cosVI _ ,d _ do( 

JL VJf NVI1 LN '2J ICos3t, .(. 

and in (170.), if we make m=n, and M=N, 

(1 n" I= (2-n) ( n M co (b ) 
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Adding these equations together, as I -n-j, we get 
adf 1 p . Sd rdo drS sinp Coss VI [n 2] 

1LV I,-(-) /+ JC S3 - JCOST+ N ANFL 
Now the arc of the logarithmic hyperbola, as in (233.), is 

T b2 Ccos2pdd 
k VB(A+C)j L2I.d- (.) 

In tis case, the coefficient B(A+c)2' as may be shown by putting in the general 

value for this expression, given in (249.), nan; hence 

Now (257.) gives 2(1-.I P = (f) 

and the general value of b being 12+i2- 21i2, as in (256.), s-21(1 -n)2, 1=2-n, and 
1-i2-=(1-n), since ln=z2. 

The last equation may now be written, combining (e.) with it, 
4T I d ~ ~ Ie L4 dp 
k~I~Y I 1njQ@vA~rjVIm2j.LvI * .(287.) 

Adding this equation to (c.), 
4T f dv 'dr .Cdp lfd/ I) sinp oos( n 2 

Al 2 F+Jv~' (DI N L LI ..(288.) k =4CSV2coS +JXIjdJIy N sN L 

Now AJ'z..._ (1 j)sinp cosp VJI tanp v/ tan; 4V 
Now , . . ___ _ .,+ .. 

jL L 

Combining this value of cD, with the preceding equation, we get 
4T (dt (dr ! j aonosp2co~ 

~4jS _2jS Ltanpaj i N ] LNtanpL2' (28 

and this latter term, in this case, may be reduced to-;tan 

ab mn~ 
But, a and b being the semiaxes of the hyperbolic cylinder, (248.) gives.= (m ? n- 2mm)2' 

2Vab Ic or in this case, as m=n, = -; 

Now is the distance from the centre to the focus of an hyperbola, the squares 

of whose semiaxes are ab and 2 ab, hence 

2N[an@>/T-;d@ +j~f 

represents an arc of an hyperbola the squares of whose semiaxes are ab and 4 ab. 
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k 
Introduce this value of , and divide by 2, 

J2cos3TJ k0s3T+ itanpV/I-3dP/Iifj2 j kj tanxp . (290.) 

Now when this equation is integrated between the limits p=0, and p=sin-'/1 , or, 

taking the corresponding values, between T=O, and T=sin-'(l+ 9, or between v=0, 

and v2' T is infinite, and the arc of the asymptotic parabola is also infinite, 

but twice the difference A between those infinite quantities is finite. Let sin2-, 

SiTthen A-k( kyi ?kJ' 1 . (291.) 

Hence the difference between the two infinite arcs of the equilateral logarithmic 
hyperbola, and the corresponding infinite arcs of the asymptotic parabola, is equal to 
a light line + an arc of a plane parabola - an arc of a plane hyperbola. 

LI. On the logarithmic hyperbola, when b=oo. Case XII., p. 316. 
T V. r Cos 2; d 

Resume (233.), or k VB(A2+ C)2 I-Isin6 C Vi2 2 Si 

Now as In-i2, and as i is finite, while 1=so, n=O. 
The equation of condition m+n-mnri2, gives therefore m=i2. Equations (248.) 

and (249.) give a=-0, b k. 
BVn- 62 k2VrnVT 

And as B/B(A+/C)= , we get VB(A+C) = V :z =/I, since m=i2=ni; 

hence Tk qfIcCso2s2 l .2.d. . * (a.) 

Let I sin2p= sin24, therefore /I cospdp= cos4'd+p, [ -I sin2p]2= cost44a 

] i-i2 --sin= jf N/i -n sin24', and cosp=x/1 - S-14 

Making these substitutions in the preceding equation, we get 

-= _1& + - . When =0,=0 -=0, n=O; hence T JkCO,34, (292.) k A / V i-n sin W 1=oo, 
or the logarithmic hyperbola in this case becomes a common parabola. 

As a=0, buk, the hyperbolic cylinder becomes a vertical plane, at right angles to 
the transverse axis. 

Hlence, coMparing this result with (XIX.), we find that when the parameters are 
either +oc or -co, the corresponding hyperconic section is a plane principal section 
of the generating surface, i. e. either a circle or a parabola. 
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LII. By giving a double rectification of the common hyperbola, we shall the 
more readily discover the striking analogy which exists between this curve and the 
logarithmic hyperbola. 

Let U be an arc of a common hyperbola, whose equation is 
W--2= 

1 

a4 cos2X b4 sin2 
a a2cos2X-b2sinn2 Y a2cos2-b2Sin2 .(a) 

Differentiating these expressions, and substituting, we get 
dU b 2 Aa2+b2 a2 dU 

h~~2 S.Assume sina si X.2 and let a2=2 2 
'a [i a2+b 2 .n 2 Aab 

&x dU dU dx Finding from this equation the value of C,, as d x = ,d. we shall finally obtain, 

b2 a(l-i2) U (1-i2)f d( 
since 42b= i'iJlSin2p] V1i2 Sin p2 *** C 

(3 1.) gives-U U=$Pdx + 2 d, or U =-..pd p.-d. . * * * * * * . . (d.) 

Now as p2=a2 cos27-b2 sin2X, d- (a2-- os2,+-b 2 Si24 
X 
andCasXsin=a2?b2sin2X, (e.) 

dp Va2?+b2V1Visin2p I henep 2/ j2 
dA- a cos i (f.) hence d=-"a2+b2tanp 1-i2sin2p; . . (g.) 

a2 Cos2p dp a { 1 + iP--iV sirn2; -1 and as p=a cos~p, pd& ~~..(. 

a'(a2+b2) A/1.i2sin2,p i V1-z2sinp 

a an(Pv-J~v-I--k j2)S.(k. whence, finally, -U = tan pvId "I- I 

This is the expression for an arc of an hyperbola referred to in (XLIX.). 

_ _ _ _ _ _ _ _ _ sin= cosp The integral [I-P i 20 (1 j2) %1/4I 1 _i..2 VT. 

See HYMER'S Integral Calculus, p. 195. Adding this integral to (k), 

i. IC_ j2 Cdd i2 sinp cosp 
a U+ ( - ) =( l-_ 2 )J s/I+ tan ; _iincsf a 

tnIV V I 
.. (n. 

but tanpN/i - i2 sin cos (1- i2) tanp 
Vr 

~VT 
Hence dividing by (1 -.i2), i ) ?SV -+Sd.(n) 

but (c.) gives iU 
d__ _ _ __ _ _ _ a(( - i2) [1 - sin2p] V.-i2sin2; 

Eliminating U from these equations, we obtain 

C-sin2.p dp _+r d _ ,_ rd_-i- tanp (293.) 
J1 F1 -sin ] - ill2+S sinei2 _p] - i2 sin2 ] ii2A' d sinp ../..i2 sin2- 
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See HYMER'S Integral Calculus, p. 245. The parameters are reciprocal in this equa- 
tion, being 1 and i2. 

Now this is the extreme case of the formula for the comparison of elliptic integrals 
of the third order and logarithmic form. We perceive that this formula results from 
the comparison of two expressions for the same are of a common hyperbola. We 
may also see that it is the limiting case of the general formula for the comparison of 
elliptic integrals of the third order having reciprocal parameters; a formula which in 
like manner has been deduced from the comparison of two expressions for the same 

are of the logarithmic hyperbola. It is also evident that j2 tan being the difference 

between tan q!,/I and s it is the difference between tangents, one drawn to 

the hyperbola, the other to the plane ellipse, for tanpV/I denotes the portion of a 
tangent to a hyperbola between the point of contact and the perpendicular on it 

from the centre; and CiO2 f denotes a similar quantity in an ellipse; this differ- 

ence is precisely analogous to the expression which occurs in (284.) cos3u djcosT' 

which denotes the difference between two parabolic arcs, one drawn a tangent to the 
logarithmic hyperbola, the other a tangent to the logarithmic ellipse. 

SECTION VIL.-On the Values of complete Elliptic Integrals of the third order. 
LIII. We have hitherto investigated the properties and lengths of elliptic curves, on 

the supposition that the generating surface, whether sphere or paraboloid, was inva- 
riable, and that the lengths of the curves were made up by the summation of the 
elements produced by the successive values given to the amplitude p between certain 

limits, 0 and 2 suppose, if the arcs are to be quadrants. Thus the length of the 

quadrant is obtained, by adding together the successive increments which result from 
the successive additions, indefinitely small, which are made to the amplitude. We 
may, however, proceed on another principle to effect the rectification of those curves. 
If, to fix our ideas, we want to determine the length of a quadrant of the spherical 
ellipse, we may imagine the vertical cylinder, which we shall suppose invariable, to 
be successively intersected by a series of all possible concentric spheres. Every 
quadrant will differ in length from the one immediately preceding it in the series, 
by an infinitesimal quantity; and if we take the least of these quadrants, and add to 
it the successive elements, by which one quadrant differs from the next immediately 
preceding, we shall thus obtain the length of a quadrant of the required spherical 
ellipse, equal to the least quadrant which can be described on the elliptic cylinder, 
plus the sum of all the elements between the least quadrant and the required one. 
Thus, for example, the least quadrant which can be drawn on an elliptic vertical 
cylinder, is its section by an horizontal plane, or a quadrant of the plane ellipse, 
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whose semiaxes are a and b. In this case the radius of the sphere is infinite. The 
least sphere is that whose radius is a, and which cuts the cylinder in its circular 
sections. Hence the greatest spherical elliptic quadrant is the quadrant of the circle 
whose radius is a. All the spherical elliptic quadrants will therefore be comprised 
between the quadrants of an ellipse, and of a circle whose radius is a. Any quadrant 
therefore of a given spherical ellipse is equal to a quadrant of a plane ellipse, 
plus a certain increment; or to a quadrant of a circle, minus a certain decrement. 

The same reasoning will hold as well when we take any other limits, besides 0 and 2- 
2 

These considerations- naturally lead to the process of differentiation under the sign 
of integration? because we cannot express, under a finite known form, the arc of a 
spherical or logarithmic ellipse, and then differentiate the expression so found, with 
respect to a quantity which hitherto has been taken as a constant. 

We may conceive the generation of successive curves of this kind to take place in 
another manner. Let us imagine an invariable sphere! to be cut by a succession of 
concentric cylinders indefinitely near to each other, and generated after a given law. 
These cylinders will cut the sphere in a series of spherical ellipses, any- one of which 
will differ from the one immediately preceding, by an indefinitely small quantity. If 
we sum all these indefinitely small quantities, or in other words, integrate; the ex- 
pression so found, we shall discover the finite difference between any two curves of 
the series separated by a finite interval. One of the limits being a known curve, the 
other may thus be determined. 

To apply this reasoning. 
In the following investigations we shall assume the generating sphere to be invarii- 

able, and the modulus i, with the'amplitude p to be constant. 'The intersecting 
cylinder we shall suppose to vary from curve to curve on the surface of the sphere. 

a2- bA But i is constant, and i2= - , see (27.). Now a and b being the semiaxes of the 

base of the cylinder, it follows that the bases of all the varying cylinders are con- 
centric and similar ellipses. Hence in the elliptic integral of the third order, which 
represents the spherical ellipse, the parameter e2 or m, and the criterion of sphericity 

Vzwill vary. 
In (17.) we found for a quadrant of a spherical hyperconic section, the expression 

22 ~~dp 
Jo1en sinu] 1- sin' ; 

Let k be the radius of the sphere. 
k2i2 

Since e2=k j2a2, e will vary, as being a function of a the transverse semiaxe of 

the variable cylinder. We have also 

e2McIe2)(e2 3)c 
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Hence' . . (294.) 

and if, as before, we write M for I - m sin2p, or 1-e2 sin2p, we shall have 

=VzJ MA/I. 
Differentiating this expression on the hypothesis that i and p are constant, while e s 
variable, we shall have 

do- -d4"-idp V~ rC d d__ X~~~~~~~~~~~~~~~~( _9_ _ 

de=2ZdejoM 2I+e2 L M2 jM V/Tj * * (295.) 

Multiplying this equation by and recollecting that d=-2e Ie-)' we shall have 

v/'x do i2 \?2 df 2x4L dp 2,xc2 dp 4/J M~~ejo M2 v'ie, MV (296.) je =e t1 e4i MV1 e09 M2Vj M20 A/Ie* 

But (see HYMER'S Integral Calculus, p. 195) 

e-EJO 1W /I- [e( 1+ --4G /-);1+e2 do>l* (2V7-) 2x Td 
e~~ 

' 
e 
CJJ0M (e-24jdV 

e2 M21 L0 01 i 

Introducing this value into the preceding equation, the coefficient of 
d 

will 0 M V 
vanish, and we shall have 

e&dcl (e24i2 )tdp 1 C2 d@/I . . . . . (298.) 
e d e~ e v 

Dividing by , and integrating on the hypothesis that p and i'are constant, e 

Fr e -Y I de Fei dp 1de(e 2-_i2) +cntn O[-Li d@,, ]eV7 LJVfj 3V + const~ant; 

or as eVz=V(1 -e 2) (e2 j2), we shall have 

d L dvi (1 de (e2 2) Li VI fre-\/l + Constant. . (299,) 
We must recollect that the definite integrals within the brackets are functions, not 

of , but of i2, 0, and 2 They are therefore constants. 

It is not a little remarkable that the coefficients of the definite elliptic integrals are 
themselves also elliptic integrals of the first and second orders. To show this, assume 

e2= cos20+i2 sin 20. (300.) 
Therefore 1 -e2=j2 sin20, and e2 _2=j2 cos20; we have also ede= -j2 sinO cosOdO. 

if I-j2 .20Je ~de C d 0d Hence, if 1j2 Sin 20=JV 2)( _) * * * (301.) 

j2 sinG cosO and 1- j2 sn20 . . . . . . (302.) 
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In the same manner we may show that 
SV7 de Sd j2 dO ji w de+ A1-y sPn20].(303.) 

__ __ __ sinO coso but ljl-j2sin20WjdoVl-.j2 sin20-J2 (304.) 
e2_-__ de C,- dO sinG cosO 

Hlence 4V;2222 de .j. (305.) 

Substituting these values in (141.), we obtain 

F2?dp]F'd0C-s + inO cos01 2 ]dO 
=Li0AiLY7jidoVJ+J 
l 

j- d 'I d ! +constant. (306.) 
To determine this constant. We must not suppose i= 0, in this case, as is generally 

done, to determine the constant. This would be to violate the supposition on which 
we have all along proceeded, namely, that the variable cylinders are all similar, and 
therefore that i mnust be constant. We must determine the constant from other 
considerations. 

Since e2=' 2 2, when a-0. e2=i2. But e2=cos20+i2 sin20, therefore 0=-. As 

a, the tmajor semiaxe of the base of the cylinder, is supposed to vanish, the curve 
diminishes to a point, and therefore o-=0. 

When a-k, e2-1, and 0=0. We have in this case (=2; for the sections of a 

sphere by an elliptic cylinder, whose greater axis is equal to the diameter of the 
sphere, are two semicircles of a great circle of the sphere. Hence, when 0=0, 

a=2- sinO=O,=0 d0VJ=CdJ=0; therefore the constant is equal to c, when 0=0. 
2 )~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~i 

But when 0=0, o=2' or the constant is equal to 

The formula now becomes 

F2 -ldO -i dp] rdO _____CO 

? =2- d / 
d + Xi +j sinG c * (307.) 

When 0=-, e=i, and a=0, as the variable cylinder is in this case diminished to a 

right line; therefore the preceding formula will become, using the ordinary notation 
of elliptic integrals, 

2-EiFj+ EFi F.. . (308.) 
Hence we obtain the true geometriccal meaning of this curious formula of verifica- 
tion discovered by LEGENDRE. In its general form (307.), it represents the djffrence 
between the quadrants of a great circle and of a spherical ellipse. When the sphe- 
rical ellipse vanishes to a point, this expression must represent, as in (308.), the 
quadrant of a circle. 

LIV. If we nowr apply the preceding invrestigationls to the curtve described one 
3 c 2 
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the same sphere by the reciprocal cylinder, or by the cylinder which gives a function 
having a reciprocal parameter, we shall find 

=-[J d;vI]S i2)|(l-e') [li/2 42 +constant.. . (309.) 

But by the conditions of the question, as 

t_ * tS i2 r de' dO ee =i e ~ ~ ~ e2i2( -'~ '1.(310.) 

and x _j2j sin2OdO 402 d _j2 sin20. 
an J 0 

e1-2 21-j2sin20 Vi -2sin20 -V 

Substituting these values of the integrals in (309.), 

['= 1V [ +constant. (311.) 
We shall now show that the constant =0. 

When 0=0, e-1, and therefore e'=i. Since ej-i, and of is a quadrant of the 
vanishing spherical ellipse whose principal arcs, O=-, = 0 , we shall have 5=o. 

Hence also Sdo7J=, 0, -jd=O therefore the constant is 0. When 0=2 e'= 1, 
and (309.) becomes 

2 [JO- d[Cd ]FC ,d/j] Fed s/I]g VJ' (312.) 

or, in the common notation, 2-EjFj+EjFj-FjFj, 

a formula already established in (308.). 

If we add together (307.) and (312.), we shall have, since JZ= sin r'cs 

VT [iu /I] * ' * * .(313.) 

/1 -mX dp 1* dp Nowol _____n 
_j S 90, 

(l- 1',e_______ k m I [1-m sin2p] Vi-i2sin2c' k= m [ m, sinm A/ i-sin2- 
in which mm' =i2. 

Whence, as (im)V (mnirnmni)v'mn=v?, as we have shown in (113.), 

02 dp _ 2 df p X dp 3 

~ ~ ? (314.) mo t-sin2p]A/I s1inSlI*2 [ sin"~v Vf-iPsinp 
J Vi-i sin2p 2 ( 

The reader will observe how very different are the geometrical origins of two alge- 
braical formule apparently similar. In the logarithmic form of the elliptic integral, 
the formula for the comparison of elliptic integrals, with reciprocal parameters (one 
of which is greater, whtile the other is less than 1), resulted from1 pultting in equationl 
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two algebraical expressions for the same arc of the one logarithmic hyperbola. See 
Art. XLVIII. In the preceding case, that of the spherical ellipse, the analogous 
formula expresses the sum of the arcs of two inverse spherical ellipses, whose ampli- 
tudes are the same. 

LV. We shall use the term inverse spherical ellipses to denote curves whose 
representative elliptic integrals have reciprocal parameters. The terms reciprocal 
and supplemental have long since been appropriated to curves otherwise related. 

Let a and 3, a, and 3, denote the principal semiarcs of two such curves. Since 
the modulus i is the same in both integrals, the orthogonal projections of these 
curves, on the base of the hemisphere, are similar ellipses. (15.) gives 

2 ~~~ ~~~~~~~~2 2 2 e =i'sec2p, e'=:i sec2f3,, and we assume e e =i2. 
Hence secp secp31i= 1. . (315.) 
Again, as tan2M(1 -e2) tan2= sec2p -1 and tayl2a,(1 2)I tan2p,= sec2f1-1; 

multiplying these expressions together, and introducing the relation in (315.), 

tanga tan21S i2 s - + i2 _1 (316.) l- i2(sec2p + sec2pt) 

H-lence the principal arcs of the inverse spherical ellipses are connected by the 
symmetrical relations 

tang tancg i= l, and secp seq3,i= 1. (317.) 
When the inverse curves coincide, Ma=,, P=P,, and the last equations may be 

reduced to tana- tan2= 1. Now we have shown in (59.) that when the principal 
arcs of a spherical hyperconic section are so related, the curve is the spherical 
parabola, or when the curve becomes its own inverse, it is the spherical parabola. 

sinlL - sin~j Sill3 sin1S 
We have shown in (15.) that i2= sjn-ct2 but (3.) gives cos_= s 

being the angle between the cyclic arcs of the spherical ellipse. Hence i=sinn, but 
i is constant. Therefore all inverse spherical ellipses have the same cyclic arcs. 

That portion of the surface of a sphere which lies between the cyclic circles may be 
called the clyclic area. 

The spherical parabola divides the cyclic area into two regions. In the one, between 
the pole and the spherical parabola, lie all the inverse curves, whose parameters range 
from, i2 to i. In the other, between the spherical parabola and the cyclic circles, lie 
all the conjugate inverse curves, whose parameters range from i to 1. 

Let acb, adb be the cyclic circles, the inter- Fig. 17. 
section of the sphere by an elliptic cylinder, 
whose transverse axe is equal to the diameter -/ --- 
of the sphere, and whose rmnor axe is 2j. Let ---------- 
a series of concyclic spherical ellipses be de- / / 
scribed within this cyclic area, whose semi-t i 

transverse arcs are 01, 02, 04, 05, and let 03 
be the spherical parabola of the series. For 
every curve, 01, or 02, within the spherical pa- 
-rabola, there may be found another without it,d 
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05, 1or 04, such that their principal arcs are connected by the equations 
tan& tan&c i= 1, secp secfi= l. 

The algebraic expressions for the arcs of these curves, having the same amplitude, 
give elliptic integrals with reciprocal parameters. 

The concyclic spherical ellipses will be ortho- Fig. 18. 

gonally projected on the base of the hemisphere 
into as many concentric and similar plane ellipses, 
whose semiaxes are 01, 02, 04, 05. The cyclic 
area will be projected into the plane ellipse, and ---------- 

the spherical parabola into the area of the plane 

ellipse, whose transverse semiaxe is1 Let '- 

E be the area of the plane ellipse, the projection 
of the cyclic area, and H the area of the plane 
ellipse, the projection of the spherical parabola. 

. ~~Ir E-IT .\ 
Then Eb=j, and = I+i whence o1 = 

the ellipse, the projection of the spherical para- 
bola, divides the area of the ellipse, the projection of the cyclic area, into two por0 
tions, such that the outer is to the inner as i: 1. 

The reader must have observed the importance of this curve, the spherical para- 
bola, in the discussion of the geometrical theory of elliptic integrals. 

We may determine the principal arcs of two inverse spherical ellipses by a simple 
geometrical construction. Let AZB be a vertical section of the hemisphere, on which 

Fig. 19. 

the curves are to be described. Let F be the focus of the elliptic base of the maxi- 
mum cylinder, whose principal transverse axis is accordingly equal to the diameter 
of the sphere. Join OZ, FZ, and draw ZC at right angles to ZF, meeting the line 
AO in C. Produce ZO until OD=AC, and on OD as diameter describe a circle. 
We are required, give one principal arc Za, to determine the corresponding prin- 
cipal arc Za' of the inverse hyperconic. Draw the tangent ZG. Through a draw 
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the line GOu. Through D draw the line DuG,. Join OG,, it will cut the sphere in 
p,, the vertex of the principal are Za, Let OZ=k, then ZG=ktanca, and as CZF 

is a right-angled triangle, CO=ZD= Ick9 k and B being the serniaxes of the 
B~~~~~~~~~ k2-B-2 a2-b 2 maximum cylinder. As all the bases of the cylinders are similar, -- a-I2. 

Now as ZOG and ZDG' are similar triangles, ZG: ZO: ZD : ZG', or 

k tangs: k:: z.: ZG', or ZG'=tjjj. But ZG'=k tana,, hence tana tanai=1, or the 

arcs a and a, are connected by the equation established in (317.). 
When we require to know which of these successive curves on this sphere is the 

spherical parabola, the same construction will enable us to determine it. Draw 
ZT, a tangent to the circle on OD, take ZT' ZT"-ZT, and join T' and T" with 0 
cutting the sphere in c and c'. Zc=Zc' is the principal semitransverse arc of the 

2 2a= k~~I2 12 spherical parabola, for ZT'=k2 tan =OZ.ZD=y , or tan2s- 

As zTr > zo, cZc' > 7, or the principal arc of a spherical parabola is always greater 

than a right angle. Since in the spherical parabola y+2E=-, the angle COT'=2g, or 

COT' is equal to the distance between the foci of the curve. 
LVI. If we revert to the general formula (307.) and take 6 as the quadrant of a 

spherical parabola, the integrations with respect to 0 must take place between 0=0, 

and 0=tan-1 for e2 i, in (300.) gives tanO= - Hence 

4=+ L ] ? ]L - [f dei' 10V/J]+ (1 i) L S 22} (318.) 

Since IJo _ SiO1S (1-i), when tanO=(4V 

Putting the sum of these integrals = A, we shall have 62- A. .~~~~~~~~~~~~ 
But (68.) gives for the quadrant of the spherical parabola 

_ 2 rip dp 
(I (+i)2\ l 4 

Comparing these expressions for the same arc 5, 

J ~+A&~. . (319.) 
4(+i2 \/1 (i~)2 Sifl(J) 

p being taken between the limits px=0, and pj,=tan'( e). 
It is easy to show that the integrals of the first order in Art. LIII. may be represented 
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by two confocal spherical parabolas, having one common focus, and the nearer vertex 
of the one curve on the focus of the other. Thus Fig. 20. 

let F be the pole of the hemisphere ABD. Let BCf 
and ACF, denote two spherical parabolas having 
one com Mon focus at F; F} andf being the other foci. 

Let Ff=y, and therefore FF=2-r. Hence the mto- 

dular angles of the two curves are r, and and , 

if we rnake cos y=i, cos t/ 

Thus while the arc of the one is given by the 
.~dp integralj- Vi the arc of the other depends 

on the integral i 

LVII. On the value of the complete elliptic integral (f the third order and 
logarithmieform. 

Let ,pn 4 V 
JO [1-nsin2p1] /I-i2,sin2pJ NA/V 

Assume z the criterion of sphericity=(l -n) (n-.), 

then d 1 2d; _ {-i dP 0 d (32 then S~~~~~~]=~~S~~N2v j~nV. (32 1.) dn JONv^i j n N /IIoN I** ** * 

~dfgi d~ 2x~~ dp 2x 
Multiply by 2x, then 2zdnj N4IJ nJoNVInJ0NVI(322.) 

But (see HYMER'S Integral Calculus, p. 195) 

2x___ dp 2 (Ij2\ 3i2 js di t-n \i dp C2 n^O N24I [1 n~l+l )+2] NI- n ) /I d I .. (323 , 
an nN2N/I n n 02~ NV 0 i 

and 2~j2~ [--J--+2]SN . 

Introducing the substitutions suggested by the two latter equations into (322.), 

d F d_ 1 2 dp i2 2 34 1 2 

2dnLJ NVTJ .JONVI ( n2,)Jo . . 
* * (324ON 

dx i 
Now.= (n-- .-')2 whence 

d -2-X d~ 2 d_ dx , -i2-X d 1p2 j 2z + 1 d/ c = i2 -n\O dpVI . * * . (325.) dflL I] V A/vijd~=. Vdp 
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If we divide this equation by 2Vz, the first member will be the differential of 

v'/L5NvJi Integrating this equation, 

dVzj2 = - dp (i2-n)dn Li2 dV jdn 2 dpV! ~~2 -(326.) 

1 N Lin2 20 Assume n=i2 sin20, then z=l t-sin dn=2i2 sinO cosOdO. (327.) 

Hence J- Jtan2OV1 _2sin2O.(328.) 

We must nzow integrate this expression, 

v'1 -i2 sin2O ('dO~~~__ _,____ 

jtan20 V1 d O sjn2d sin2 V1 -i2 sinP S 
dO coto i2 cos2OdO 

Jsin2O V 1i2 sin2O V1-z2 sn20OJ V(1i2 sin2O) S cos~~~~dO 5 dO j2)f dO ~~~~~~(329.) r icos2OdO do . d 
J(l-i2 sin2O)i /ii2 - 

J J(l-i2 sin2O)i *2C dO i~~~~~~~sin~~~cosOC,~~* 

-(1 i )$-i2 sin2O)!= vit1&7ll3dO 1-i2 sin2s; 

adding these equations, 
do Pi2 sinO coso coto 2 Sin20 

5tan2OVY-i2 sin20 - P siniO 41 - sinV0 J O (3 ) 

do .2 205d+v 
*5Jtan2OVl i2 sin2O cotO/l-i2 sin2o+fdo 1-2. sin2O (299.). 

We have next to compute the value of the integral 5,-. 
_dn r dO (dO 

Now V 1 - jsjn2O Sj " 

Substituting these values of the integrals in (326.), 

- d rCdp ird, l i' dO i J 30 cotov'ol+jdOvoI- L0dpVIjy (331.) 

If we now substitute this value of S in the equation given in (175.) for a 

quadrant of the logarithmic ellipse, namely, 

24/1-i25 [2n~~~~-i2n2 -i d p (i2-n) 2 fr 
V'-fn a n J N/+ nO i 

since 2n -i2'n2 =(1 -i2 sin20) - cot2O, we shall obtain the resulting equation, 

DCCCLII. 3 D 
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2_ _P _ 2_Ct 

12V1-i d + (l-(o) L2db/i+ j IH ) ]+ constant, . 332.) 

t~~~~~~~~~o~~2d 

writing H for LV )jAs% dpv/V ]fj, (333.) 

or in the ordinary notation, 
HL FiEi(0) - EiFi(O). 

When we require to determine the constant, we must not suppose 0=0, for this 
would render n=O, and so change the nature of the curve. Neither should we be 
justified in making i=O, (as some writers do), for this would be to violate the original 
supposition-and all the conclusions derived from it-namely, that i is constant, and 
less than 1. Moreover, since m+nu-mn=i2-O, on this hypothesis, mn+n=mn; or m 

and n would each be greater than 1, which is inconsistent with the possible values of 
those quantities. 

We have now to determine the value of the constant. In these investigations we 
have all along supposed n > m. The least value n can have is n=m. Were we 
to suppose n to be, less than rn, it would be nothing more than to write m for n, since 
m and n are connected bv the equation m+n-nn=i2. Hence if m is not equal to 
n, one of them must be the greater, and this one we agree to call n, writing m for 
the lesser. To determine the constant, let us assume n=m. 

Now nei2 sin20, -and n, when equal to m, is = I / i2, (10) = I-i2 sin20= 

cot2OV'I -'-i2, and tan 0= ( Hence the coefficient of H in the last equation, 
V (16) cow4 
cot o wj becomes 0, since in this case cotO=,/1_i2 ; and as n=mn, the curve is 

the circular logarithmic ellipse. See Art. XLIII. 
The last equation now becomes 

Y U, /i?2 
xI i2 d?4 

2V1 _ia = dv+,Vl SVMI constant. . (334.) 

Now if we turn to (176.), we shall find this, without the constant, to be the ex- 
pression for the quadrant of a circular logarithmic ellipse, or the curve in which a 
circular cylinder, the radius of whose base is a, intersects at an infinite distance a 
paraboloid indefinitely attenuated. Hence the constant is 0. 

To determine the value of the above integral, when 0= 

In this case, as H=FtEt-EFg, 1 H-1O. And as cotO=O, and V/Io=/I-i2, the 
equation (332.) will assume the form 

a~= [j1d~vi] / (i+ T(Ip i2) + * / i2.(335.) 

How are we to interpret tis expression ? 
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H 0 
To determine the value of the fraction which appears under the form of 

wvhen O=2, we must take the first differentials of the numerator and denominator of 

this fraction. Now, as in (333.) 

FS2AI-]SdOs/l -i2 sin2O-. 2d@VISvi dO 
A/i 0 

e 
~-isin2O.(. 

di Ff2fJ1 d -_ i2 sinL20) - dv] ado 1 
Therefor dO -41-i2 sin2 ,d do-- sin20' (b.) 

dH wheni ( )( 1 _i2) (2d)vi 
Hence, when -2 dcot cotO- -( 

_. . 

Accordingly 
H 0 or2 ~Cdt (l i2 rot _ 

..t~v i2 sin2O=-x/1 -i2__ J - I(I -i2)+ (S dpI), when O=. . (336.) 

Substituting this value in (332.), we get I=af 2dpVl - i2 sin2p, . . . . (337.) 

the common expression for a quadrant of a plane ellipse, whose major axis is a, and 

eccentricity i. As it should he, for when 0=2r or n=i2, the section of the cylinder is 

a plane ellipse, as shown in Case VII. p. 316. In the spherical form, the limits of 0 

are 0 and 2 while in the paraboloidal form, the limits of 0 are tan-' (D and 

SECTION VIII.- On Conjugate Arcs of Hyperconic Sections. 
LVIII. Conjugate arcs of hyperconic sections may be defined, as arcs whose ampli- 

tudes p, X, o are connected by the equation 
cosX-=coss cosz-sinp sinll _-i2 sin' . (338.) 

This is a fundamental theorem in the theory of elliptic integrals. 
The angles A, XZ, may be called conjugate amplitudes. 
When the hyperconic section is a circle, i=O, and. cosw=cospcosz-sinpsinX,, 

whence 0='p+Z, or the conjugate amplitudes are p+y, p and X The development 
of this expression is the foundation of circular trigonometry. 

On the Trigonometry of the Parabola. 

When the hyperconic section is a parabola, i 1, and (338.) may be reduced to 
tanw= tanp secZ+tanX secp. . (339.) 

If we make the imaginary transformations, 
tanas= V/-1 sing, tan= V/-l sin@', tanZ= V/-i sing', sec@=cos0', secX=cosx'.(340.) 

3nD2 
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The preceding formula will become, on substituting these values, and dividing by V-i 
sin'fsin cosZ'+5sin' cosP', 

the well-known trigonometrical expression for the sine of the sum of two circular arcs. 
Hence, by the aid of imaginary transformations, we may interchangeablypermute the 

formul of the trigonometry of the circle with those of the trigonometry of the parabola. 
In the trigonometry of the circle, w=p+X, and in the trigonometry of the parabola a is 
such a function of the angles p and X, as will render tan[(p,X)]=tanp secy+tany secp. 
We must adopt some appropriate notation to represent this function. Let the func- 
tion (., X) be written FIX, so that tan(;-LX)=tanpsecX+tan secp. This must 
be taken as the definition of the function p-'-z. 

In like manner, we may represent by tan(p-ry,) the function tang secy- tanysece. 
In applying the imaginary transformations, or while tang is changed into/-i sin@, 

secp into cosp, and cots into -4/-1 cosecp, - must be changed into + and -r into-. 
-I and -- may be called logarithmic plus and minus. As examples of the analogy 

which exists between the trigonometry of the parabola and that of the circle, we give 
the following expressions in parallel columns; premising that the formula, marked 
by corresponding letters, may be derived singly, one fiom the other, by the help of 
the preceding imaginary transformations. 

Trigonometry of the Parabola. Trigonometry of the Circle. (341.) 

tan(pl-X))=tanp secon+tanX secp. . . . (os.) sin (P+X) = sinp cosZ+ siny cosp. (a.) 
tan(p- X))=tanp secX-tanX secp. . . . (p3.) sin(p-X) =sinp cosz-sinz cost . . . (b.) 
sec(pLX)=secp secX?tan tan, . . . (y.) cos(p?X)=cosp cosZFsinp sinz . . . (c.) 

sinp + sinx tanp + tan% 
sn X)Il +sinp sind tan(p+X)I -tap tanX.(d.) 

sinp-sinx tan -tanX 
Sln(@vX)=l~s-i9Sins * * * (s - tan(I-) =+ tanX.. (e.) 

Let p=Z- Let p=y, 
tan(p- I)-)=2tanp sec.p . . (7.) sin2p=2singpcosp. (.) 
sec(p -- p) = secp + tan'p. . . cos2p= cos2p-sin'p. (th.) 

sinp-L)) 2 sinp (. a2 2tan; 
-@ @) SIt '' '' (:.) s tan2 I=l tan. . (i.) 

ef0cZ+ec+s n ef-osP-ec os ) c epV,+e@V~i n &P4-'e-v (k 
secp= - 2 tar -- 2 , sinp 2 1 

1+1- 1tan(p -)=(secpsv-itanp)2. (X.) I +sin2p=(cosp+sin)2..(1.) 

y 2 =sec(p--)-1 1 I -cos2p 
tan 0 2 -. * h. sin (n2.) 

Let the amplitudes be p-L- and p-TX Let the amplitudes be o0-X and o-X- 

tan (l: -X)tan(p-rz) = tangp - tanl2>. . *. (vim) sin (I +X) sin(p - ) =sin2 - sin2X. . . . (n.) 
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Since sec(p-'-p) =sec2p+tan2p, and tan(pL- p)=2tanp secp, 
sec(p--) + tan( -I- ) = (sec p+ tanp)2. 

AgainD, as sec(p-1-4-Lp)=sec(p--Lp) secp+tan(p-JL p) tanp, 
and tan(p p @-I- p) =tan (J I p) sec@ + sec (p -L p) tan p, 
it follows that sec(p-I- p -L) +tan(7L-P-'-p) =(secp+tanp)', 
and so on to any number of angles. Hence 

seC(PLP P... to np)+ tan (Pp - P. to np)=(sece tan . . . . (342.) 

Introduce into the last expression the 'imaginary transformation, tamp=v/-I sinp, 
and we get DEMOIVRE'S imaginary theorem for the circle, 

cosnmp+V- I sinnp= (cosp+V- sinp)f. 
Let 

- 
be conjugate to 4 and , while w, as before, is conjugate to p and X, Then 

we shall have tan-W=tan(p--L-L), or 

tan(p -1-X ) =ttan sec% sec +tanX sec4 sec +tan4 secp secX+tanp tan. tan4,, . . . (wv) 

sec(4 x -'-4) = secp secX sec4 + secp tanX tan4, + secX tan4 tanp + sec4 tanm tanX, . . (p.) 

sinfl + sinX+ + sin4, + simn sinX sin,( and sin as -I X 1- +) = * . (T.) 1 + sinx sin+ + sin+ sinp + sinp sinX 

whence, in the trigonometry of the circle, 
sin(p +X + 4,) = sinp cosx cosii + sinX cos4 cosp + sinm cosp cosX - sinm sin< sinm, (p.) 

cos(p + + 4) = cosp cosX cos4-cosp sinp sins -cosX sinn sinp-cos4 sinp sinX, . . . (r.) 

tanp + tanX + tan%,-tanp tang tan4, 
1-tanlX tanl4-tan4 tanm-tanm tanX 

LIX. Let (k.w), (k.p), (k.y) denote three parabolic arcs measured from the vertex 
of the parabola whose pararueter is k. 

The normal angles of these arcs are w, @, and X; , p and X being conjugate ampli- 
tudes. Then 

2(k.p)=k tan p secp+kj'd,, 2(k.-) =k tanysecX+{ (k.w)=k tan= w sec 

when~e, since dw adAdo -o because w, p, and X are conjugate amplitudes, 

(k.w)((k*@)-(k.)=ktanwtanptany,. (343.) 

Let y, y', y'` be the ordinates of the arcs (k.p), (k.y,), and (k.w). Then y=k tamp, 
y' k tan , y" =k tanw, and the last expression becomes 

(k. ) -_(k__.(k.X) . (344.) 

If we call an arc measured from the vertex of a parabola an apsidal arc, to 
distinguish it fornm an arc taken anywhere along the parabola, the preceding theorem 
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will enable us to express an arc of a parabola, taken anywhere along the curve, as the 
sum or difference of an apsidal arc and a right line. 

Thus let ACD be a parabola, 0 its focus Fig. 21. 
and A its vertex. Let AB=(k.p), AC=(k.h), 

AD=(k.a) andYY--Y =h. Then(343.)showsthattlhe 

parabolic arc (AC+AB)=apsidal are AD-h; 
and the parabolic arc (AD-AB)=BD=apsidal 
arc AC+h. When the arcs AC', AB' together 
constitute a focal arc, or an arc whose cord 

passes through the focus, pl+X=- and h is the 

ordinate of the conjugate arc AD. Hence we 
derive this theorem, 

Anyfocal arc of a parabola is equal to the dif- 
ference between the conjugate apsidal arc and its 
ordinate. 

The relation between the amplitudes p and w in this case is sin2p=1 Thus 

when the focal cord makes an angle of 300 with the axis, we get cost=I, or y=5k. 

H-ere therefore the ordinate of the conjugate arc is five times the semiparameter. 
LX. We m ay, in all cases, represent by a simple geometrical construction, the 

ordinates of the conjugate parabolic arcs, whose amplitudes are p, X and w. 

Let ABC be a parabola whose focus is Fig. 22. 
k 

0,andwhosevertexisA. LetAOG 
moreover let AB be the arc whose am- 
plitude is p, and AC the arc whose 
amplitude is X. At the points A, B, C 
ddraw tangents to the parabola, they \ 
will form a triangle circumscribing the A 
parabola, whose sides represent the 
semi-ordinates of the conjugate arcs, 
AB, AC, AD. 

We know that the circle, circum- 
scribing this triangle, passes through 
the focus of the parabola. 

Now Abzg tang, Ac=g tanX, bd=g tanp secX, cd=g tanX sec; 
hence bd+ cd=g (tan p see X + tan X see p), therefore g tan = bd+ cd. 

When AB, AC together constitute a focal arc, the angle bdc is a right angle. 
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The diameter of this circle is gsecp secX. 
The demonstration of these properties follows obviously from the figure. 
LXI. In the trigonometry of the circle, we find the formula 

tan3.~ tan5.~ tan7.5 a tanS 3 +-5 7- +&c ........ . (a.) 
and if we develop, by common division, the expression 

1 cos0 c 
cO=l .-sin2O cos0(l+sin20+sin40+sin60+ .... &c.) and integrate, 
Cdo sin'l30 sinW0 sin7O 
ossin0+3 +- +- +...&c. (b.) 

If we now inquire, what, in the circle, is the arc which differs from its protangent, 
by the distance between the vertex and its focus; or, as the protangent is 0 in the 
circle, and the focus is the centre; the question may be changed into what is the 
trigonometrical tangent of the are of a circle equal to the radius. This question is 
answered by putting I for a in (a.), and reverting the series 

1 = ~tan ( 
3 

a(l) __tan,5(1) _tan7 (l) +&. 

we should get, in functions of the numbers of BERNOUILLI, the value of tan(l), as 
is shown in most treatises on trigonometry. 

Let us now make a like inquiry in the case of the parabola, and ask what is the 
value of the amplitude which will give the difference, between the arc of the parabola 
and its protangent, equal to the distance between the focus and the vertex of the 
parabola. Now if 0 be this angle, we must have (k . 0)-g see 0 tan 0=g. But in 

general, (k. 0) -g sec 0 tan 0=gyC.. Hence we must have, in this case, .,= 1. If 

we now revert the series (b.), putting I for Jo A we shall get from this particular 
value of the series, 

sin3O sin50 sin7O 
h=sinO+ 5 7 

an arithmetical value for sin0. This will be found to be, sin0=' +e-1 e being the 

base of the Napierian logarithms. hence seco+ tan0=e, or if we write e for this 
particular value of 0 to distinguish it from every other, and call it the angle of the base, 

sece+ tan c=e. (345.) 
We are thus (for the first time it is believed) put in possession of the geometrical 

origin of that quantity, so familiarly known to mathematicians, the Napierian base. 
From the above equations we may derive 

el +e-1 el-e-l sece= 2 ,tanse 2 (346.) 

or tane=1V175203015, whence e=*8657606, or e=490. 36'. 15". 

The corresponding arc of the parabola will be (k.0)=k[1 + +j -45 +&c.]. (347.) 
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If we assume the theory of logarithms as known, we may at once arrive at this value, 

for in general , log (sec0+ tan 0); 

and as this is to be 1, we mnust have sec0+ tan0=e, as before. 
LXII. If we now extend this inquiry, and ask, what is the magnitude of the 

amplitude of the arc of the parabola which shall render the difference between the 
parabolic arc and its protangent equal to n times the distance between the focus and 
the vertex; we shall have, as before, by the terms of the question, 

(k. 0)-g secO tanO=ng. (348.) 

But in general (k. 0) -g secO tano-gJ' dO 

hence we must have n =J,0o=iog(sec0+tanG), 

or sec0+ tanO=e". (349.) 

Now we may solve this equation in two ways; either by mAking n a given number, 
and then determine the value of sec0+tan0, which may be called the base. Or 
we may assign an arbitrary value to sec0+tanO, and then derive the value of n. 
Taking the latter course, let, for example, 

sec0+tan0= 10. Then n=loglO, 
orI is the modulus of the second system of logarithms. Hence, if we assume any 

number of systems of logarithms on the same parabola, and take their bases 
g(sec0+ tanG), g(sec0' + tanl'), g(secG"+ tan0"), .. .&c. 

the moduli of these successive systems will be the ratios of hayf the semiparameter to the 
successive differences between the base parabolic arcs and their protangents. 

In the Napierian system, g the distance from the focus to the vertex of the para- 
bola, is taken as 1. The difference between the parabolic arc and its protangent, when 
equal to g, gives g(sec0+tanO)=eg. In the decimal system g(sec0,+tan0,)- log, 
and the difference between the corresponding parabolic arc and its protangent being 
ng, if we make this difference ng equal to the arithmetical unit, we shall have ng= 1, 

or g=-=modulus of the system. Hence in every system of logarithms whatever, g 
the distance between the focus and the vertex of the parabola, is the modulus of the 
system. Every system of logarithms may be derived from the same parabola, but 
the Napierian system, in which the focal distance of the vertex is itself taken as the 
unit, may justly be taken as the natural system. In the same way we may consider 
that to be the natural system of circular trigonometry, in which the radius is taken 
as the unit. The modulus, in the trigonometry of the parabola, corresponds with the 
radius in the trigonometry of the circle. But while in the trigonometry of the parabola 
the base is real, in the circle it is 'imaginary. In the parabola, the angle of the base 
is given by the equation sec0+tan0=e. In1 tie circle coAs+VI- sin &LV1, and 
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making Y=1, we get cos(1)+V--1 sin(1)=eV=1. Hence while el is the para- 
bolic base, e"'= is the circular base. Or as [sece+ tane] is the Napierian base, 
[cos(lI)+ "-l sin(l)] is the circular or imaginary base. Thus 

[Cos(l) +N/- Sin(].)?=co~s5+N/- I sin5. 

Hence, speaking more precisely, imaginary numbers have real logarithms, but an 
imaginary base. We may always pass from the real logarithms of the parabola, to 
the imaginary logarithms of the circle, by changing tanO into /-1 sini, secO into 
cosa, and el into ewl. 

As in the parabola the angle 0 is non-periodic, its limit being+, while in the circle 

a has no limit, it follows that while a number can have only one real or parabolic 
logarithm, it may have innumerable imaginary or circular logarithms. 

In the parabola we thus can shiow the geometrical origin of the magnitudes known 
as the base and the modulus. We might too form systems of circular trigonometry 
analogous to different systems of logarithms. We might refer the arc of a circle not 
to the radius, but to some other arbitrary fixed line, the diameter or any other sup- 
pose. Let the circumference be referred to the diameter, then X will signify a whole 

circumference instead of a semicircle, and 4 will represent a right angle. Having 

on this system, or any similar one, found the lengths of the arcs which correspond to 
certain functions, such as given sines or tangents, we should multiply the results by 
some fixed number, which we might call a modulus (2 in this example), to reduce 
them to the standard system; but such systems would obviously be useless. 

If e be the angle which gives the difference between the parabolic arc and its pro- 

tangent equal to g= k; (ew-e) is the angle which will give this difference equal to 2g, 
(e-L -) is the angle which will give this difference equal to 3g, and so on to any 
number of angles. Hence, in the circle, if 5 be the angle which gives the circular 
arc equal to the radius, 25 is the angle which will give an arc equal to twice the 
radius, and so on for any number of angles. This is of course self-evident in the 
case of the circle, but it is instructive to point out the complete analogy which holds 
in the trigonometries of the circle and of the parabola. 

LXIII. The geometrical origin of the exponential theorem may thus be shown. 
Assume two known logarithmic bases (secov+tano), and (sec!3+tanf3), and let us 

investigate the ratio of the differences of the corresponding parabolic arcs and their 
protangents. 

Let sece+ tane be the Napierian base, and let one difference be xvg and the other yg. 

The ratio of these differences is therefore =z, if we make y-As. Hence 

secz+tan%=(sece+tane)xtex, and (seci3+tanf3)=eY. Therefore 
(seco +tan)Y=e+Y=(secf+tanf)*. 

Or, as y=xz, (secoc+tans)z= secs +tan03. 
MDCCCLII.3 
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Let A be the first base, and B the second. Then B=.AM. This is the exponential 
theorem. 

Let A be the Napierian base, then x=l, and A=e. Hence B=e-. 
LXIV. Given the number to find its logarithm, may be exhibited by the following 

geometrical construction. 
Let OAP be a parabola. Through the focus Odraw Fig. 23. 

the perpendicular OQ to the axis AO. Through A let a 
tangent of indefinite length be drawn. On this tangent Q 
take the line AN to represent the given number. Join 
NO, and make the angle NOT always equal to the angle T / 
NOQ. Draw TP at right angles to TO. This line will 
touch the parabola in the point P, and the arc of the A 
parabola AP-PT will be the logarithm of AN. A-O 

When AN'=AO=the unit g, the angle N'OQ is equal T 
to half a right angle. Hence the point T in this case will 
coincide with A. The parabolic arc therefore vanishes, 
or the logarithm of 1 is 0. When sec0+ tan0=l, 0=0. 

When the number is less than 1, the point N will fall 
below N' in the position n. Hence nOQ is greater than half a right angle. There- 
fore T will fall below the axis in the point T'I; and if we draw through T' a tangent rT 
it will give the negative arc of the parabola T'p, corresponding to the number An. 
Fractional numbers, or numbers between +1 and 0, must therefore be represented 
by the expression g(sec0- tan 0), since tanG changes its sign. 

When the number is 0, n coincides with A, and the angle NOQ in this case is a 
right angle. Therefore the point T' will be the intersection of AT' and OQ. Hence 
Tr' is at an infinite distance below the axis, and therefore the logarithm of +0 is -o 

Hence negative numbers have no logarithms, at least no real ones; and imaginary 
ones can only be educed by the transformation so often referred to, and this leads us 
to seek them among the properties of the circle. For as 0 always lies between 0 and 
a right angle, or between 0 and the half of +, sec0+tan0 is altwlays positive; hence 
negative numbers can have no real or parabolic logarithms, but they may have ima- 
ginary or circular logarithms; for in the expression log (cos+V:-1 sina) =V/-1 

- 

we may maake a= (2n+ I ) , and we shall get log (- 1 )= (2n+ 1 )zvT - 1. 
hence also, as the length of the parabolic arc TP, without reference to the sign, 

depends solely on the amplitude 0, it follows that the logarithm of sec0- tanO is equal 
to the logarithm of sec0+ tan 0. As (sec 0+ tan0)(sec0- tan0)= 1, we may hence 
infer, that the logarithm of any number is equal to the logarithm. of its reciprocal> 
with the sign changed. 

When 0 is very large, sec0+tan0=2 tang, nearly. Hence if we represent a large 
number by an ordinate of a parabola whose focal distance to the vertex is 1, the differ- 
ence between the corresponding arc and its protangents will represent its logarithm. 

Aloneg the tangent to the vertex of the parabola, as in the preceding figure, draws, 
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measured from the vertex, a series of lines in geometrical progression, 
g (secO+ tanO), g (secO+ tanO)2, g (secO+ tanO)3 ...... g (secO+ tanO)f. 

Join N, the general representative of the extremities of these right lines, with the 
focus 0. Erect the perpendicular OQ, and make the angle NOT always equal to 
the angle NOQ. The line QT will be =g sec, the line OT,=g see (OJL O), the line 
OT,=g see (OLO OL0), &c., and we shall likewise have 

AT=-getanO, AT,=g tan (O0-), AT,,=g tan (0--L0--0), &c. 
This follows immediately from (342.); for any integral power of (secO+ tanO) may 

be exhibited as a linear function of see 0+ tan ?, if (D=O-O-0 ..O. &c., 

since see (OLG10.O-L.O 0 &c. to nO)+tan (0OL-O I1O-.O &c. to nO) =(sec0+tanO) . 

Hence the parabola enables us to give a graphical construction for the angle 
(O-LO.I&c.) as the circle does for the angle nO. 

The analogous theorem in the circle may Fig. 24. 
be developed as follows:-In the circle OBA, - 

(fig.24)takethearcsAB=BB =B B =B B 
* ...&e.=2. Letthe diameter be G. Then 
OB = G cosS, OB, =G cos2, OB,, G cos3i*/. 
&c. and AB =Gsina, AB,=G sin2aAB, G 

Now as the lines in the second group are 
always at right angles to those in the first, A 
and as such a change is denoted bythe symbol 

1/ we-get OB+BA=G (cosY+V/- I sins), 
OB,+BA=G (cos2+VZ-1 sin22)=G (cosa+ V-I sin )2; 

OBII+BJIA=G(cos3+?V- I sin3) =G(cosa+V/-1 sina)3&c. 
LXV. The known theorem, that a parabola is the reciprocal polar of a circle, 

whose circumference passes through the focus, suggests a transformation, which will 
exhibit a much closer analogy between the forinuiae for the rectification of the para- 
bola and the circle, than when the centre of the latter curve is taken as the origin. 

Let OBA be a semicircle, let the origin be placed at 0, let the angle AOB=5, and 
let G, as before, be the diameter of the circle. Through B draw the tangent BP; let 
fall on this tangent the perpendicular OP=p, and let BP the protangent be equal to t. 

Now as p=G cos'2, and t=G sina costs, as also the angle AOP=2a, if we apply to 
the circle the formula for rectification in (33.), we shall have the arc 

AB=s=2Gjcos2'da-.G sinscosa. 

Make the imaginary transformations cos5= sec0, and sin=V/- I tan0, and we 
_____ j dO 

shall have (- =2tfcg -_se 0 tanO. 

The expression for an arc of a parabola, diminished by its protangent. 
3 E 2 
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The protangent to the circle, which is exhibited in this formula, disappears in the 
actual process of integration; while in the parabola, the protangent which is involved 
in the differential, is evolved by the process of integration. 

As in the parabola, the perpendicular, from the focus on the tangent, bisects the 
angle between the radius vector and the axis of the curve; so in the circle, the 
radius vector OB drawn from the extremity of the diameter, bisects the angle 
between the perpendicular OP and the diameter OA. 

There are somne curious analogies between the parabola and the circle, considered 
under this point of view. 

In the parabola, the points T, T,, T,,, which divide the lines 
g (secO+ tan0), g [sec(0-L0)+tan(04L0)], &c. 

into their component parts, are upon tangents to the parabola. The corresponding 
points B, B,, X,, in the circle, are on the circumference of the circle. 

In the parabola the extremities of the lines g (secO+ tanO) are on a right line AN; 
in the circle, the extremities of the bent lines G (cos2+4V-I sins) are all in the 
point A. 

The locus of the point T, the intersections of the tangents to the parabola with the 
perpendiculars from the focus, is a right line; or in other words, while one end of a 
protangent rests on the parabola, the other end rests on a right line. So in the circle, 
while one end of the protangent rests on the circle, the other end rests on a cardioide, 
whose diameter is equal to that of the circle, and whose cusp is at 0. OPP,A is the 
cardioide. 

The length of the tangent AT to any point T is g tanO. The length of the cardioide. 
is 2G sins. 

It is singular that the imaginary formulae in trigonometry have long been disco- 
vered, while the corresponding real expressions have escaped notice. Indeed, it was 
long ago observed by LAMBERT, and by other geometers-the remark has been 
repeated in almost every treatise on the subject since-that the ordinates of an equi- 
lateral hyperbola might be expressed by real exponentials, whose exponents are 
sectors of the hyperbola; but the analogv, being illusory, never led to any useful 
results. And the analogy was illusory from this, that it so happens the length and 
area of a circle are expressed by the same function, while the area of an equilateral 
hyperbola is a function of an are of a parabola. The true analogue of the circle is 
the parabola. 

LXV1. Let W be the conjugate amplitude of w and 4, while a is the conjugate am- 
plitude, as before, of p and X. 

rd- f do I}dt C do 11 dot - dX Then as _=f + and C -j Ll+jd JOSO) JCOSW cost, WCSW Jcoss Jcosx 
we shall have y d0i dCdS dCdcC di. 
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and if (k.w), (k.p), (k.X) and (k.4) are four corresponding parabolic arcs, 

(k. (k.)-(k. X)-(k.0=ktan (P x) tan(t--,m) tan(-,). . . (350.) 
which gives a simple relation between four conjugate parabolic arcs. 

Let, in the preceding formula, @=X=4, and we shall have 
(k.3) - 3(k.p) ktan3Q -)=8k tan3p sec'p. e v e . . . (351.) 

We are thus enabled to assign the difference between an arc of a parabola and three 
times another arc, e 

If in (m) (341.) we make p=4', tanw=4 tan'@+ tan@. 
Introduce into this expression, the imaginary transformation tan =V-i sin 0, and 

we shall get sin3O= -4 sin30+ sinG, which is the known formula for the trisection of 
a circular are. (351.) may therefore be taken as the formula which gives the trisec- 
tion of an arc of a parabola. 

When there are five parabolic arcs, whose normal angles P. , As v, f are related 
as above, namely, 

we get the following relation, 

(k.fl) - (k. )-(k.X)-(k .0)-k(k.v) =k tan(p xL yJv) tan(, Al~ -Lv) tan(-1- p -v), (352.) 
a formula which connects five parabolic arcs, whose amplitudes are derived by the 
given law. 

We might pursue this subject very much further; but enough has been done to 
show the analogy which exists between the trigonometry of the circle and that of the 
parabola. As the calculus of angular magnitude has always been referred to the 
circle as its type, so the calculus of logarithms may, in precisely the same way, be 
referred to the parabola as its type. 

The obscurities, which hitherto have hung over the geometrical theory of loga- 
rithms, have it is hoped been now removed. It is possible to represent logarithms, 
as elliptic integrals usually have been represented, by curves devised to exhibit some 
special property only; and accordingly, such curves, while they place before us the 
properties they have been constructed to represent, fail generally to carry us any 
further. The close analogies which connect the theory of logarithms with the pro- 
perties of the circle will no longer appear inexplicable*. 

* The views above developed, on the trigonometry of the parabola, throw much light on a controversy long 
carried on between LEIBNlTz and J. BERNOULLI on the subject of the logarithms of negative numbers. LEIB- 

NITZ insisted they were imaginary, while BERNOULLI argued they were real, and the same as the logarithms 
of equal positive numbers. EULER espoused the side of the former, while D'ALEMBERT coincided with the views 
of BERNOULLI. Indeed, if we derive the theory of logarithms from the properties of the hyperbola (as geo- 
meters always have done), it will not be easy satisfactorily to answer the argument of BERNOULLI-that as an 
hyperbolic area represents the logarithm of a positive number, denoted by the positive abscissa + x, so a negative 
number, according to conventional usage, being represented by the. negative abscissa -x, the corresponding 
hyperbolic area should denote its logarithm also. All this obscurity is cleared up by the theory developed in 
the te~xt, which completely establishes the correctness of the views of LEXBNITZ and EULER. 
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On Conjugate Arcs of a Spherical Parabola. 

LXVII. The well-known relations between elliptic integrals of the first order, 
whose amplitudes are conjugate, develope some very elegant geometrical theorems. 

Thus in fig. (25.), since the arc AQ jd +QR, and the arc BQ -+QR', 

the arcs AQ+BQ=j[S+] ++QR+QR'... . . . (a) 

Now AQ+BQ= two quadrants of the spherical Fig. 25. 

parabola, and QR+QR'=N, whence half the cir- 

cumference, or AQB=j[S ! A / / 

In XXII. it has been shown that the complete | 
integral represents the semicircumference, whence A 

AQB==i('2dw I ..(b.) 

Comparing these equations (a.) and (b.) together, we get 

P-i dw dd rdX 

Now as the triangle RR'P is a quadrantal right-angled triangle, the relation 
between the angles AFR, BER', or p and X, is easily discovered. Since FPE is a 

spherical triangle right-angled at P. and FE=2e=2-y, we getj tang tanX= I. 

When AQ=BQ, P=X, and tan@= He 

The locus of the point P is a spherical ellipse, supplemental to the former, having 
the extremities of its principal minor arc, in the foci F, E of the former. 

LXVIII. Let ,, ',, CH be three arcs of a spherical parabola, corresponding to the con- 
jugate amplitudes p, X, w. Then successively substituting these amplitudes in (58.), 
the resulting equation becomes 

a,+l In6X =J a+ <- t f+- 

But as the amplitudes p, y,, X are conjugate, the sum of these integrals of the first 
order is 0, whence 

a.+ ?XC, = +XX (3 5 3.) 
Or, when the amplitudes of three arcs in the spherical parabola are conjugate ampli- 
tudes, the sum of the arcs is equal to the sum of the protangents. We use the word 
sum in its algebraic sense. 
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On Conjugate Arcs of a Spherical Ellipse. 

LXIX. If, in (42.), we substitute successively A X, x, and add the resulting equa- 
tions we shall have 

?+er-cX=(n NA/mn[ D N+ f=V" 

v I_ + I. I .(354.) 

Now the conjugate relation between A X and c renders the sum of the integrals of 
the first order=O0 and the sum of the integrals of the third order equal to a circular 
arc A, which is given by the equation 

tan?y V Amnu sine silnX siflW (355.) 
n 

COSt COSX COS0 

Hence a+ i'1=0-,r--Ir~r *.(356.) 

Or, when the amplitudes are conjugate, the sum of three arcs of a spherical ellipse may 
be expressed as the sum offour circular arcs. 

When one of the amplitudes w is a right angle, o011 becomes a quadrant of the sphe- 
rical ellipse=-a. ,=Q, and ?='rfl=, as we shall show presently, whence 

(s) -a=,r, which agrees with (52.). 
Or the difference between two arcs of a spherical ellipse, measured from the vertices 
of the curve, may be expressed by a circular arc. In (45.) we found 

4mn sinp cosp V/mn sinX cosX tansr= , tans = = 
Ai-z isin2 l /1-sn2 

Now when0=2, (338.) gives sinu= 4oi _S sinp= 1 S ineX' 

x e s/m~n sired cosp _ mnd si'nX cosX whence V/mn sinp sinX= - I- -i n 
h/V hi 3ne?p A!/ _2 slin2X 

or == r,,when r,,0O, or w=-2 

LXX. When we take the negative parameter m instead of the positive n, (17.) gives 

Now the sum of these arcs is equal to a circular arc-?,, which may be determined 
by the expression 

tan? 0 Snfln S1in Sifl... (358.) 
1+m 

coss cosX cosM 
I-rn 

whence ?04d-?\1=- 1-. (3-.9.) 

If we compare together (356.) and (359.), wie shall have the following simple rela- 
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tion between the five circular arcs ?, ?,, r, 'r,, v,,, 

.D+@,fl~rfj,. . . # . . .(360.) 
We may give an independent proof of this remarkable theorem. 

The primary theorem (338.) cosw= cosp cosX- sing sinxv'LI 
sinw cosco sinf sinX silnw CoScw 

gives= 
^T< 4/Iuit ~~~~~co"f coSX- cosw 

and cos2p+cos2X+cos2w= 1 +2 cos~ cosX cosW-i2 sin2p sin2X sin2c. 
Let sinD SinX sin =U, cosP cos cosC=V. (361.) 

Now tanTA/mn sintw= cosc 
- /mnUcos20 

VN - i2Sin2W coe s2-V 

4/mn U A/ mn Ucos2X- whence tanir 2U1cos2P., tanfr Vcos2X. Cos2 -Y ' ' Sco - V 

tanr + tanT, - tanr,, + tanr tanT1 tanz-, 
I + tanr, tani, - tan tan1 -tanr, tan- 

wbence 
- r cos2p cos2x cos2Cj mnU2; cos cos2 1 

tan(,r+r,~r) m7U Lcos2l - Y+ cosx - V+cos2w - V-(cos2 - V) (cos2x- V) (cos2_ - V)J 
- CoS x2 COS2W COS2co) Cos -COS COOSX 

1 -mnU2 L(cosX-V) (co Ow - V)+ (cos20 -V) (cos2- ='V) (cos2 -Y)(cox-V) 

If we reduce this expression, we shall have, on introducing the relations 
cos2p+cos2X+cos2w= 1 +2V-PU2, . 

(362.) 
and cos C cos2X+cos2p cos2W+cos2X cos2p =V2+2V+j2U2,J 

tan ~ 7) E2J2( mn)V] VmnU tan~ _r,,) =j+ ?(i2 + mn-mnV(Y2 +j2U2). (363.) 

If we now combine the values of tanO and tan?,, given in (355.) and (358.), we 
shall have 

[2j2+ (i2+ mn) V] Vm~nU tan(+ ,) = . 
+.+ mn)Vmn(YU) ' . - * *(364.) 

whence + I, +, ,,, 
as is evident from an inspection of the preceding forrnulk. 

On Conjugate Arcs of a Logarithmic Ellipse. 
LXXI. In (162.) substitute X and w successively for p. Let 
-= (1 n)V_ n sin costI/ X sinX cosX/I a siicmi 4 (365.) 
V- n 1 -nfsin2 1-nsin2X nsinc 3 

we shall have, adding the three resulting equations together, and dividing by , m 

2 n-rn L np] n@+nX-nf2- pvfo-+ dG/x WVI 
m (1-n),-rFd CdX fw ,. _ -d d _ dX _ rb d- 

_(nm)VnmnLJVI jVI L VJi (366.) 
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Now as , X, and w are conjugate amplitudes, 

ed-+ed --0 and d /I d/Iedw/ i2sinpsinsinw. 

See HYMER'S Integral Calculus, p. 206. 

Whence k [] = Vmn [nP)+nX-nf-i2 sinp siny sincd 

-Cd~ d~ dwl 
ZLJ3N, I+J JNSVIi.** . . (367.) 

We have now to compute the sum of I1+X-fQ. 
Since -/'L= cosocosx-cosw sinwcosw V_ sin2w (cos2o - V) Since f/Il-~~ sinfsin% ' -nl2w == N , if we make, as 

before, cosp cosy cosw=V, and sinp siny sinw=U. Finding similar expressions for 
D and X, we shall have 

n sinX co0X sin2w cos2w] V n slnw n sn ] sin (6. 
n(D+nX-nf-U=L N, + N;; N^,JU N& + NX + N# (368.) 

n sin2p cos2p cos2+(I n sin2p-. 1) COS2p COS2p Now UN = NU NU U 

COS2t 1 +fn-n sin2-1 1 ( 1-n) 
and NU nNU TnU nNU' 

n sin2p cos2p I cos2p (1-n) Vn sin2 V V whence NU =nU- U - n and_-NU-U=N 

Finding similar expressions for the functions of w and X, and recollecting that, as 
in (362.), cos2p+ cos2s+ cos2o=1 +2V- I2U2, we shall have, making W= 1 -n+nV., 

nU(n4P+nX-n2) =3-n+nV+ni2U2-W I 
+N + ] 

Now pvf/1 +SdA --5dcWV/,=i2U, whence 

nU nW-+nX-nfl.=2-W I (369.) [n~?nX-n~- (jVJ?$dVI-fd0V1)] 

We shall find, after some complicated calculations, NoNxN.=W2-n2xU2, . (370.) 
and NxN.+NN0+NN;=W2+2W-n(1-n) (i2+M)U2. . . . . (371.) 

Substituting the values hence derived, the whole expression becomes divisible by 
nU2 and we shall obtain, finally, the following expression, 

V n-m pD+nX-n-fl 2U]- V/YWU 2mnO 4xUV ( 
LnJ W W2 _nJ 2+ (n_..m)(W2-nPdJ2) ....(7. 

It may easily be shown, that 
-rd r d l dg [1-n+nV+nv'4U 

- J-log L ?nv-n v' (373.) 
MDCCCLII. 3 F 
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or writing, as before, W for 1-n+nV, and multiplying numerator and denominator 
by the numerator, 

A/X dwl = log [+V I(374-) 

Now let sinE, (375.) 
and the preceding logarithm becomies log(sec}+ tant), which is, we know, the integral 

of d Ost 

Now n /XWU - secM tanE; and as 2Cd---_=sectant+ W2-n'xU- Jcosa~z Cos~J~ 

we shall have, dividing by 2, 
d 

krnn2 VnUY 2w-l- =koZ (n-m)(W2-n2xU2). (376.) 

Hence the sum of three arcs of a logarithmic ellipse may be expressed by an arc of a 
parabola and a right line. 

When one of the arcs Z, is a qucadrant, V=0, and the equation becomes 

:z-E gE~A .. ... (377.) 
which coincides with (160.). 

If we apply to (163.) the same process, step by step, and make sin~=m rXJU. in 
which W,=1 -m+mV, we shall have 

~-~-- ;= -kf~~+ krn uv,/X UV 1d r dr - ? dr,1. 37 
IIJCOS3 (n-M)(W,2-m2.cU2) m co C3S371 jCos3T .3 

If we subtract this equation from (376.), we shall have 

rdt +d dT +d,_d; +mn U M mV/X/ / C__ 
+'d'(d 

dr edr, u nVc u-V- 1 - (379.) j cos8+ COS3g cos3r ?jcos3rj COS3T/ n-m LW2IMXnU2 W2-9uXU2J ( 

Now this last term is divisible by (n-m), and may be reduced to the expression 
mun V/mnUV[V2+j2mnU2-j2( -V)2] 380 

[W-~U2] [W~~2_,2].38. 
If in (170.), which gives the relation between conjugate elliptic integrals of the 

third order, we substitute successively p, X and w, and add the equations thence 
resulting, we shall have 

0C d cos~ dT d8r, ___II ,%CS ?5.AAS ....(381.) 
in which 

sin= 4/vmn sing sinX sinw A/ 4/mn sing sinX sinw 
n m I 

I+1 nCOS<CO8XCOSU? 1+r COS'COSXCOSW j (382.) 
/mn sinp cos - Vmn sin cos% - Vmn sinw cosw 

sinTr~ V1j2Sin2 Slnr= _ sinr,=-____ 



DR. BOOTH ON THE GEOMETRICAL PROPERTIES OF ELLIPTIC INTEGRALS. 401 

If, in these equations, we change n into -n, and therefore sin, into S/-I tan@, 
sint into Vf-I tan?', 

sinu into V'-1 tans, sinr, into I-I tanrs and sin*, into If-1 tanr,,, 
the preceding equations will become 

tadm Vmn sing sin% sinw ta( V mn sinp sin% siinw 
n mr 1-- + Cosp COSx COSW 1 +- _ cosq COSX cosW * 1 +n 1~~~~~~-rn j. .(383. 

A/mn sinp coss V/mn sin% cosX A/min sinam coas tanr= , tang = -l_ Sifl i tanr - * ,V/I- i2Sin~p V I-_i2si~ " V1-2 Sirn2W 

and @+?1='+?l-fish as in (360.), values which coincide with those found in LXIX. 
for the circular form. Or we may pass fiorm the logarithmic to the circular form, or 
from the paraboloid to the sphere, or inversely, by the imaginary transformations above 
referred to. 

We shall find on trial, that the angles v, v' and r in (279.) fulfil the condition of 
conjugate amplitudes. 

SECTION IX.-On the Maximum Protangent Ar cs of Iyperconic Sections. 
LXXIIL Since the protangents vanish at the suimmits of these curves, there must 

be some intermediate position at which they attain their maximum. When the curve 
has but one summit, as is the case in the parabola, the hyperbola, the logarithmic 
parabola, and the logarithmic hyperbola, there evidently can be no maximum*. 

ai2 sine cosp In the plane ellipse, the protangent t If we differ entiate this expres- 
dt sion with respect to p, and make the differential coefficient d-=O we shall get 

tan@=. (384.) 

Substituting this value of tanp in the preceding expression, 
t .a-b. (385.) 

In this case, the arcs drawn from the- vertices of the curve, and which are compared 
together, have a common extremity, or they together constitute the quadrant. 

The coordinates x, y of the are measured from the vertex of the minor axis 

are x=a sin2, y=b cos2, therefore ya cot=j cots, since ja-b. If we now make 

cota Y- Again, as tan = 2 ,, ,=jptanX; or making A-ortan4 

* The investigation of these particular values of those portions of the tangent arcs to the curves, which lie 
between the points of contact and the perpendicular arcs from the origin upon them-or as they have been 
termed in this paper, protangent arcs-is of importance; because, as we shall show in the next section, in the 
different series of derived hyperconic sections, the maximum protangent are of any curve in the series, becomes 
a parameter in the integral of the curve immediately succeeding. 

3 F 
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7 or -Y. Therefore the arcs have a common extremity. We have also 

tan2x= This property of the plane ellipse, called FAGNAN07S theorem, may be found 

in any elementary treatise on elliptic functions. See HYMEp's Integral Calculus, 
p. 209. 

On the Maximum Protangent Arc in the Spherical Hyperconic Section. 
LXXIII. If we assume the expression found for this arc r in (45.), 

tan*= (386.)O 
V/iz2sin2~p.(8} 

and differentiate it, as in the last article, and make -0, we shall find, as, before, 

tan@= . . . . . . (387.) 

If we substitute this value of tan p in the preceding expression, we shall obtain 
tans_ tana secp-tanj sec, . . . . 3 . . (388.} 

writing l to denote the maximum protangent. 
Now if we turn to Art. LVIII., we shall there find that this equation connects the 

amplitudes of three conjugate arcs of a plane parabola. Or if as, A, and a are made 
the three normal angles of a plane parabola, and (k.:), (k.3), (k.a) the three corre- 
sponding arcs of the parabola, we shall have 

(ken)-(k.4)-((.,r) =k tanoa tanf3 tanv. 

If in (386.) we substitute for sinp and cos; their values U-. and the ex- 
4/1 +] 

pression will become 
tans= V .. (389.) 

(I1+j).(8. 

We shall see the importance of this value of l in the next section. 

the spherical parabola, as m=nin tan2T= +i-ir 

Precisely in the same manner as in the plane ellipse, we may show that when tanr 
has the preceding value, the arcs drawn from the vertices of the curve have a common 
extremity. This will be shown by proving that the vector arcs, drawn from the 
centre of the curve to the extremities of the compared arcs, have the same inclination 
to the principal arc 2. Now 4 and ' being these inclinations, as in XIV., we find 

tan 4c% 2, tan2X=ta4k tan4 

and (3tR.) shows that tanp,= cose tank. Hence reducing, 

2_ tan2g sin2. tan 4' - t.-u2- -,-2 tan2p. . . (a.) 
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Again, (49.) shows, when we measure the arc from the minor principal arc, that 

coto=- Y ; or cotO=sina tan+'. Now in order that we may compare these arcs 

together, we must have 0=x. Hence 

tan21=t2.antan2 I(b.) 

When we substitute for p any particular value, (a.) and (b.) will give the correspond- 

ing values of tani and tan4'; but when we make tan2P=---- ,the values of 4 and 

4/ become equal, or the compared arcs together constitute the quadrant. 
LXXIV. To determine the inclination, to the horizontal plane, of the tangent 

drawn to any point of the spherical ellipse. The spherical ellipse being taken as the 
curve of intersection of a cylinder by a sphere as in (X.), through a side Rr of the 
cylinder let a plane be drawn, it will cut the sphere in a small circle, which will touch 
the spherical ellipse in the point r, and will cut the base of the hemisphere in the right 
line RP, which touches the base of the cylinder at the Fig. 26. 

point R. Let 0 be the centre of the sphere and Z the Z 
centre of the spherical hyperconic. Through the line OZ 
let a plane be drawn at right angles to the plane of theA 
small circle RrrP, it will cut the sphere in 'the arc of a 
great circle Zsr at right angles to the arc r'r; and as the 
three planes, namely, the horizontal plane, the plane of 
the small circle, and the plane of the great circle Z0P/r, 
are mutually at right angles, the right lines in which 
they intersect PR, Px, PO are mutually at right angles, 
therefore P is the foot of the perpendicular drawn from the centre 0 of the base of 
the cylinder, to the tangent RP which touches the curve. P is also the centre of 
the small circle Armr, since AB is a cord of the sphere. Hence AT is a quadrant, 
and therefore, rx or v is the inclination of the element of the spherical ellipse at 
r to the base of the hemisphere. Now ZO is the radius of the sphere, and Pr that 
of the small circle. RPO is a right angle, and therefore OR'=0P2+PR2. Hence 
Rrr2=Or2.02. Now for the moment putting A and B for the semniaxes of the base 
of the cylinder, OP2=A2 cosX+B2sinX, and 

2-= (A2- B2)2 sin2X, cos2x - 2 A4 cos2x, + B4 
sin2X R P =A2 Cos2X+ B2 n. Whence R =A2 cos2X- B2 sin2?'* . . * (a.) 

-A4 cos~x, ? B4 sin2x, and therefore Rr2= Or2'-A2 CoS2X?+B2sin2Ai Let Or=1, A=sina, B=sinD3, . (b.) 

2vRPta2 (sin2a - sin2g)2 sin2.1 cos2x 
and as t -n ys t j co2 COS2, + o v11u 

wP taA t ' >2 > tv11 
t-sin2P cos2A O2X sineCSE i2 
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Cosa 
Let, as in (25.), tanX= cost tanp=Wj~ tanp. Substituting, we get the expression 

sine sins sin; cosp tan= 4/(1-Si sin2,). * . (390.) 

In supplemental spherical ellipses, since sinn and sins* are respectively equal to 
sins' and sinn', we infer, therefore, that in supplemental spherical ellipses the inclina- 
tions to the plane of xy of the tangents to the curves are the same, when the ampli- 
tudes p are the sarne. 

If we now differentiate this expression, and make d; = w0 e shall find that 

tan'o tane3 If we substitute this value of tan p in (390.), we shall get ta2ttano. 
tany=tan (Q-3), or v=a-3. (391.) 

Hence the maximijum inclination to the plane of ay of the tangent to the spherical 
ellipse is equal to the difference between the principal semiarcs. It is remarkable 
that the point of the curve which gives the maximum difference between the arcs, 
which together constitute the quadrant of the spherical ellipse, is not the point of 

greatest inclination. For this point is found by making tan2'=tan ; while the point 

of maxillmum difference is obtained by putting tan2p=s-i. This is the more worthy 

9f notice, as we shall find the two points-the point of maximum division, and the 
point of greatest inclination-to coincide in the logarithmic ellipse. 

If we take the two plane ellipses which are the projections of the spherical ellipse, 
one being the perspective, and the other the orthogonal projection, and seek on 
these plane ellipses their points of maximum division, we shall find that the angles, 
which the perpendiculars on the tangents, through these points of maximum division 
of those plane curves, make with the principal are, are the values which must be 
assigned to the amplitude p, to determine the point where the tangent to the curve 
has the greatest inclination to the plane of xy, and the point which divides the 
quadrant into two parts, such that their difference shall be a maximum. This is 
plain; for the semniaxes of one ellipse are k tang k tanj; while the serniaxes of the 
other are-k sins and k sinj. And these angles are given by the equations 

tan2k-=tanc ; and tan2X=z sing 

On the Maximum Protangent in the Logarithmic Ellipse. 
LXXV. If we follow the steps previously indicated, and differentiate the expression 

found in (165), 
sinr= VmnSiDo . .. (a.) 

v 1-i2 sink a- . 

* Theory of Elliptic Integrals, p. 19. 
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v- being the normal angle of the tangent parabolic arc to the logarithmic ellipse, 
this, evidently, will be a maximum when the parabolic arc is a maximum. Put the 

differential coefficient -,=O. This gives, as before, tanl= - Substituting this ex- 

pression in (a.), we get 

(1+)). (392.) 
We shall find the importance of this expression in the next section. 

From (392.) we derive tan2os= mn 
(1 +j)2r-mn 

Now (1+j)2=2+2j-i2=2+2j-.m-n+mn. Hence as 

s(1 M)( I )(I1 +j)2_ mn- Is/ _M-,-n]2 

Whence we get tans-= Multiply this equation, numerator and de- 
V/1-m+ 4/1-n 

nominator, by V,/I -m-/1 -n, and the last expression will become 

tan'r= mn A/1- M mn -n 
n-m n-rn 

In (171.) we found for the serinxes of the cylinder, whose intersection with tile 
* * . . a s/~~mn Al/1-m b /mn I-71 

paraboloid is the logarithmic ellipse, a-m 6 V= -_ 

Hence tanr= k-) . .(393.) 

This gives a simple expression for the tangent of the maximum parabolic are, ana- 
logous to (385.) and (391.). We have only to take in the parabola, whose semi- 
parameter is k, an arc whose ordinate is a-b, to determine the maximum protangent 
parabolic arc. 

The value tanp= /, which fixes the position and magnitude of the maximnum. 

protangent arc to the logarithmic ellipse, renders tan2X=b. For (150.) gives 

tan p= -+--tan 2. But (152.) gives C-B and C- 
l 

tanl~x 
hence tangs 1-m. If we now make 

tan2@P= 1 tanX= V1_n a 

as we may infer from (171.). Now substituting this value of tan'X in (155.), we 
shall get 

a-b 
tanr=- 

Again, if we differentiate the values of x, y, z given in (158.), the coordinates of the 
extremity of the arc measured fr om the minor axis, and substitute thema in the general 
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expression for the tangent of the inclination of any curve to the plane of xy, namely, 
dz 

'VL- d 9' and make S=X, we shall get, as before, putting for tan2X=tan2S, the value 
a dz a-b 

1Vd~ 2-+dy2= k . Hence the arcs have a common extremity, since they have the 

same inclination to the plane of xy. As "=tan2X is the value of tan2X, which gives 
the maximum protangent =a-b in the plane ellipse, the base of the cylinder; it 
follows that the point of maximum division on the logarithmic ellipse is orthogonally 
projected into the point of maximum division on the plane ellipse; and the corre- 
sponding protangent in the latter a-b is the ordinate of the parabolic arc, which 
expresses the difference between the corresponding arcs of the former. Thus, while 
the arcs which together constitute the quadrant on the plane ellipse, differ by the 
difference of the semiaxes a-b, the corresponding arcs of the logarithmic ellipse 
will differ by an arc of a parabola whose ordinate is a-b. 

LXXVI. When the amplitude p is given by the equation tanp= . or when the 
protangent is a maximum, the corresponding arc of the spherical ellipse, or of the 
logarithmic ellipse, may be expressed by functions of the first and second orders 
only. This may be shown as follows. When tanp=> the arcs a and a, of the 

spherical ellipse, or the arcs z and S of the logarithmic ellipse, together make up the 
quadrant C. Hence o'+cr,=C, or :+S=C. But we have also a' - 6a=7, as in (52.), 
and S- ='r, as in (160.). Therefore 

C-T C+r C+T' C-T 

=2 2t= 2 2 

Or a' and a',, or I and S may be expressed as simple functions of C and a. Now C, 
the quadrant, as we have shown in the last section, may be expressed by functions 
of the first and second orders onlv, while r is an arc either of a circle or of a parabola. 
Hence an elliptic integral of the third order, whose amplitude p= tan-'( may 
be expressed by functions of the first and second orders only. 

SECTION X.-On Derivative H yperconic Sections. 

LXXVII. We shall now proceed to show that, when a hyperconic section is given, 
whether it be spherical or paraboloidal, we may frorn it derive a series of curves, whose 
moduli and parameters shall decrease or increase according to a certain law; so that 
ultimately the rectification of these curves may be reduced to the calculation of 
circular or parabolic arcs, or in other words, to circular functions or logarithms. 
We shall also show that all these derived curves, together with the original curve, 
may be traced on the same generating surface, i. e. on the same sphere or paran 
boloid. 
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In (186.) we have shown that the rectification of a plane ellipse whose semiaxes are 
a and b, may be reduced to the rectification of another plane ellipse whose semiaxes 
a, b, are given by the equations a,=a+b, b,=2Vab, of which the eccentricity is less 
than that of the former. a+b is that portion of the tangent, drawn through the point 
of maximum division, which lies between the axes; and N/ab is the perpendicular 
from the centre on it. 

We have shown in (63.) and (74.), that if p and 4, are connected by the equation 

tan(4,-p)=jtanp; while i and ij are so related, that i,= + 
we shall have 

r df ~(I + i,) dA (1 ,)dq/ 

Svpi_2s 2 '1-?smn4i 2 JVf2 

Let Us pow introduce this suggested transformation into the elliptic integral of 
the third order, circular form and negative parameter. In (191.) we found 

2 sin2p= 1 +i, sin24s - cos4,IV. 

Now SdpS -[ Sin 
MV! - MSin%] IV/ ii 

Or replacing p by its equivalent functions in 41, and recollecting that m-n+mn=i2, 
since m and n are conjugate parameters, we shall find 

SM vI( +i f)[ m mi Si2- OS I] (394.) m~ijj2 -rnmi1 sin&4 + m cos4V$j+ b 

We may eliminate the radical m cos4,VI1, from the denominator of this expression, 
by treating it as the sum of two terms. 

Multiplying and dividing the function by their difference, since I+i,=J+j, 

4(1 nz)J - i= (1 i)Sd-[ m siAn i- e . . O.# , (395.) 
+ I *) 2 81n 4 I 1 

Now it is truly remarkable that whether the parameter of the original function we 
start from be positive or negative, the parameter of the first derived integral will 
always be positive. Indeed it is necessary that this should be the case, because -the 
parameters of the derived functions, increasing or diminishing as they do, must at 
length pass from between the limits 1 and i2. Should they do so, the integral would 
be no longer of the circular form, but of the logarithmic. Now we cannot pass from one 
of these forms to the other by any but an imaginary transformation. This objection 
does not hold when the parameter is positive, because the limits of the positive para- 
meter are 0 and xo. It is, too, worthy of remark, that the first derived parameter is 
always the same, whether we transform from positive or negative parameters. Write 

mu 
nI= ( +j) .(396.) 

n, is the first derived parameter. 
MDCCCLII. 3 G 
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We may transform (395.) into 

4(1 1-..m)Sffi=( 1 4 < +n si+- 1) -m+cosV/ I] 
+ n, sin24+] 4A/1 

Now ~~~~~~mil1 2 mm+n 
Now mntl=t 1 and 2-m+T- =.(397.) 

Hence 
(l-m)(' dp (mn+n) V/ d4 (1 +?i) -2J d+ (1?+ il) 2 inJiI inVin[1nsn4]VI ~c~.- tan '(N/-nsinii4} (398.) 

Vmn sirl cos V 4(9 
We shall now show that = s i n . (399. 

If we revert to (189.) and (193.), we there find 

2 sinp cosp-=sijn4L/I,+i, cos4j, and 2Vi (1 +j)M[I,+i, cos,$4. 

'V -n _n +. Mn $in P coss 
(396.) gives v/=V;(1 +j; therefore - -n sions4v*. 

If we replace (I+ i) 
d 

in the preceding equation by its valtef d and p Nt N, for 

I +n, si114, . a 

1-m_ C df (mrnn) f r d4 i Cdf 1 V/7s eosfl 
2 C-A- i__ __ _ tan-' mnin cs (400.) 2 M mn JMV/LI mn V mnJNVI mn,/I Vmn L /I J 

Now the common formula for comparing circular integrals with conjugate para- 
meters is we know, see (47.), 

11+n~i' do _Iz-Ma d #d -rwnifot ~~ )S ~~~~Sd~~~ + Lta;11- V/nSinfC0co8f 
t n o0NvI t ,n MV/Imn 4/I V/mn [VVT2 im 

Adding these equations we obtain this new formula 
zl~nX -r df t1-mX -r df fm~n d+ z J nn. % .1/m-n2M Itm 4 N^1 (4 0l 1) 

By the help of this important formula we may establish a simple relation between 
the sum of the original conjugate functions of the third order, and the first derived 
function of this order. 

LXXVIII. If ao be the arc of a spherical ellipse, it is shown in (46.) that 

t1 NI d tan-' mn sinf costl 
n. NV/ I A /-mnJ 'P--a sin 

and in (17.) that ____ 

Adding these equations together, and introducing the relation just now established, 
m (+ nI) - d4+ rdCf _ ta r Vmn sinp cos(e1 

in2V- ~ 7NV/JV'nJV/J L V/i-a 71j2-J (402.) 

Now as m-n=i~m, (m~n)2=i4 -2snn+m An2+4rn2n 
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We have also mn=n(?j)2, i+, and i2=(1-j)(1+j), hence 

mr+n,=(1+j)2(1+n,)m . . . . (403.) 

and therefore (m+n )VW n= (1 ?n) /n,. (404.) 

It is worthy of especial remark that this coefficient offw d1 is precisely the same 

in form as the coefficient ofj0'$1. 

Trhe preceding equation (402.) may now be written, 
1+nl \ r d4 i2 Cdp _Vr sin9 cos 

2o,= n, N/mjn N ,x-%-JtItan L40I ) 

Let o,, n,, i,, b be analogous quantities for the derived spherical ellipse 6,, 
zl~~n, r d+ ill pd, lrv/minfsi'n+cos+ V -}XmJystc-fJ^Itan- t 406.) 

.2 2 

Let q, q,, q,,, q,,,, &cL denote , i &c., and put r, r,, r,,, r,,,, &c. for 

(lj), (l+j)(l+j,), (1+j)('?j,)('?j,,), (l+j)(1?j,)(l+jl,)(I +j,,,), &c. Let also 
Qi. T, IF,, 'T,,, &c. denote the arcs, whose tangents are 

Vmn sinp cosp V'mn, sin' cos4 Vm,,n,, sin, cos4, &c 
4/ 1-2 sil2< 1-i2sin2i ? -2 sin2i, 

Making these substitutions, and writing Q, Q,, Q,,, &c. for the coefficients of 

VI' N1 y NF'I, (405.) and (406.) become 

2! Q r Iq ~ (a.) 1= Q _qr' .*) I 
NJ I J~~~~~~. NIAI S 

Traking the derivatives of these expressions, we may write 

2 = - J Id4, - q (cb) 0.11,=Q4 ,-dip fd* 

2o,- Q, qV I,=, 'Y./I-* (N,) a,=Qi q,,,r,, 1 - ,-,. * * (c,.) 

Subtract (a,.) from (a.), (b,.) from. (b.), and (c,.) from (c.), the integrals of the third 
order disappear, and we shall have 

26-6?=(qjr q)JI - 
It?, Aq, /q~ d 

2a~ - 61,= (qjlrI - q,,r,)?+ X m **** *(0 (407.) 
201,- 0f,,fl = (q,,,r,, q,,r,) ,, 'F, 

3 G2 
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If we add these equations together, 

0.+0,+0~,,+0,,,+ (6-o,,,,) = (q,,11r,,,i - q + .(408.) 

If we multiply the first of (407.) by 2', the second by 22, the third by 2, and the 
fourth by 20, and add the results, 

2'o?- o',,,,= (q,,,,r,,+ q,,r,,+ 2q,,r, + 4q r-8q) - + (h,+ + 2T4,+44FS-f8), . (409.) 

an integral which enables us to approximate with ease to the value of the integral of 
the third order and circular form, in terms of an integral of the first order. 

We have shown in XXVIII. how the integral of the first order may be reduced. 
The above expressions may be reduced to simpler forms, when the functions are 

complete. In this case f1=0, -T=0, 3!,=0, f,,=0, &c.; and when a. is a quadrant, 6 , 
will be two quadrants, ,, will be four quadrants, 0.1,, will be eight quadrants, and so on; 
the preceding expression may now be written, denoting a quadrant by the symbol 5, 

t~~~~ 

16(5- 5,,,,) = (qr,,qq,,,r,,+ 2q,,r,+ 4qr- 8q)J f1d . (410.) 

In (396.) we found for the parameter of the derived integral of the third order, the 
mn expression n,=( +)2. Or, referring to the geometrical representatives of these ex- 

pressions, we found for the focal distance it of this derived curve, the expression 

n,= tan 2,=(l+I)n; but if we turn to (389.) we shall see that this is the expression 

for the maximum protangent to the original spherical ellipse, which is given by the 

equation tan (1+2. We thus arrive at this curious relation between the curves 

successively derived, that the maximum protangent of any one of the spherical ellipses 
becomes the focal distance of the one immediately succeeding in the series. 

LXXIX. Given m, n and i, we may determine in,, n, and i, 
1-j mu 

for i,= ni - (L j)2. Substituting these values of i, and n, in the equation which 

connects the pararmeters, m,-n,+mn,=i, 

in, /1+n+ V ].-M) 

Hence given m, n and i, we can easily compute the values of m,, n, and i,, and then of 
Mi,, nfi and i,,; and so on as far as we please. 

Given the semiaxes a and b of the elliptic cylinder, whose intersection with the 
sphere is the original spherical ellipse, to determine the setniaxes a, and b, of the 
cylinder, whose intersection with the sphere shall be the first derived spherical ellipse. 

We may derive from (53.) and (54.) the values of a and b in terms of , n and i, 
or eliminating i, in terms of m and n only. Now 

a 2 'm Hence a' u - i 2u,(1->mI) 
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Or substituting the values of m, and n, in terms of m and n, and therefore of a and b, 
a+b b2,v/a as= ab' b=' ab. (412.) 

When the radius of the sphere is infinite, or the derived curve is a plane ellipse, 
a,=a+b, b,=2Vs$b, as in LXXVII. 

When m=n=i; m,=n,=ip, or when the given curve is a spherical parabola, the 
derived curve will also be a spherical parabola. Hence all the curves of the series 
will be spherical parabolas. 

If we take the corresponding integral of the third order with a reciprocal para- 
meter 1, such that Im=i2, and derive by the foregoing process the first derived 
function of the third order, we shall find the parameter 1, of this function to be 
positive also, and reciprocal to n,, so that 1, n,=i> 

Hence, if we deduce a series of derived functions from two primitive functions of 
the third order and circular form, having either positive or negative reciprocal para- 
meters, the parameters of all the -derived functions 1,,, II,, 1,1, n,, n,,1, news, will be positive, 
and reciprocal in pairs, so that 1,n=i> i11n,1=i2, ln111=i2,, &c. 

LXXX. We may apply the same method of proceeding to the logarithmic ellipse, 
or to the logarithmic integral of the third order, 

fr1 msin)df in which i2>m. 
J 1-msingf) V jis sing 

If on this function we perform the operations effected on the similar integral in 
(394.), we shall have, after like reductions, 

ed~ (1 +i1) d4{2-m-mi, sin 24'-M cosajVI 
JM M (I 4 - m)j m-ml sin2k'] Vo,.(413.) 

We must recollect that 
_mi 

M= 1-rm sin2p, M,= 1-I, sin24i, 1= 1 -i2sin2p, I,=1 _il sii24j, and m,_=(1 ?)2. (414.) 
We may reduce this expression. 

The numerator may be put under the form 

2-+m{1-m, sin m cos4VI,.. 

Now 2_ - m mi=(n-r) and m" We have also /i, 1 
it M, it ~+j 

1lence, inaking the necessary transformations, 
2(1-m)C d_ (n-r) ViiC d4' +i/i4d4 svi4cositd4i 

2 ----- 
m 

i- 
i 

-d,+ 
z / di 

mJMVI mn JMVI, mJ ,I i M 

If into this expression we introduce the relation given in (74.) +2)d 

we shall have 2( m dcp (-) /i ,f dl iCd Vzco4! . (415.) 
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Now in (399.) it has been shown tlat \/m sin4= m , and as Vmn= V m,( I +j), 

thle last term of the preceding equation may be written 

1 (%[ld 
Vmnd mn sinpcosf 

Substitutingth'is valuein the precedingequation and comparing it with (169.) or(170.), 
we shall find 

I_-m_ df (1-n\C d9 _(n-rm) VIC d4 
(1mrjMn n V1nrniJM, I * * (416.) 

This equation is analogous to (401.). By the help of it and the last equation we can 
always express 

& df or df in terms of MV 

mnn 
Since mi=(1 ?j)2 is symmetrical with respect to n and m, we should have obtained the 

di dC same value for the derived parameter had it been deduced from I- instead ofl' NVJ 

Since nmn (1-j)2-mn Vi-m- Vn Since'(1j n fl(+i ~ n~ or n= -V-n v l (417.) F~~lnce( 7 
(+i)21 =(I +j) 2-mn) I- _VL^I-m+VI/-nJ 

LXXXI. We may express m1 and n, simnply, in terms of a and b, the semiaxes of 
the base of the elliptic cylinder, whose curve of section with the paraboloid is the 
logarithmic ellipse. 

In (171.) we have found the valuies of m and n in terms of a, b and k, namely, 
a Vnn(1-mr) b V/mn(1-n) 

'-. 
7 = (, *(a.) X n-m fs n-m 

Hence ab+ V n1=1 Or assumirg the value of n., in (417.) n,= (abM 

Now n-m=( 1-nm)-( 1-n)= -m+V 1---ms/ViZJ4 

Or as m =+) 1-ml (I+j)2 (1+j)f 

. ~~~~a-h 4VM 
and (a.) gives a-b =__ _ V-+___ k -n 

____refole I-m_ ____________Hencrd (a-b)2 thcrefore r _ _ . Hence reducing, m-k+ (a-b)2 

If we now compare together these expressions for m, and n,, namely, 
(a-b)2 a-b 2 

m k+ (a-b)2 a+ b) ' (418.) 

we shall find that n,>m,, so long as k>2v/ab; that when k=2VaIb, mb =n,1; 
and that when k<2Vab, n,<m,. 
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To determine the axes of the base of the cylinder, whose intersection with the 
paraboloid gives the derived logarithmic ellipse. 

Since a. mjn1(1-m,) b mln,(I-n,) as we may infer fromn (171.), 

we shall have, substituting the preceding values of rn, anti n,, 
a2_ (a +b)2k2 b52 4abFk2+ (a - b)f j2_ = a-b 2 Fk+?(a +b)1 
k2 [k2-4abr' k2V [2-4ab]2 and Vkab Lk2+ (a- b)2 (419) 

When k=oo, or when the paraboloid is a plane, a,=(a+b), b,=2Vab, which are 

isa-b 1-. v/1-i2 the values of the sermiaxes of a plane ellipse, whose eccentricity is a?61+ Vl-a' 

as we should have anticipated, for these are the values found in LXXVII. and LXXIX. 
for the axes of the derived plane ellipse. 

mn2 
When m=n=l-j, m=(l+J)2=Kl?)=i2, and n,=0. 

Hence, when the original logarithmic ellipse is of the circular foatrmn, the first (leriveed 
ellipse is a plane ellipse. 

When k2=4ab, (418.) shows that m,=n,, o0 kak b ?1 as in XLIII.; but ni1=n,, is 

equivalent to n=m(Vl +j+VJ)2. 
Whenever therefore this relation exists between the parameters and modulus of 

the original integral, the first derived integral will represent the circular logarithmic 
ellipse, which may be integrated by functions of the first and second orders. Accord- 
ingly whenever the above relation exists between the parameters, the integral of the 
third order may be redluced to others of the first and second orders. 

If in the second, third, or any other of the (leIived logarithmnic ellipses, we can 
make the parameters equal, this derived ellipse will be of the circular form, and its 
lrectification tmay be effected by integrals of the first and second orders only; accord- 
ingly the rectification of all the ellipses which precede it in the scale, may be 
effected by integrals of the first and second orders only. 

We may repeat the remiark made in LXXIX. T-he (eirived ftunctions of two 
integrals of the logarithmic form with reciprocal parameters, have themselves reci- 
procal parameters. 

LXXXII. If we now add together (162.) and (163.), we shall have 

4 (n-m) 2 F[e+i4p + + FjJ2] 
mn k Llhri Lmni 

(Il-M) d I -n ~JI -) . (420.) 
(n 

l +24 As 
pV-1x 2V1 A} I (-ai 

)L m JVI Vn, JN A,/ 2 L<I ,/mn OS-T_ 

We must now reduce this equation into functions of 4 instead of ; ,1 antd o being 
connected', as before, by the fundamental equation 

tan (4;-.) =j tangp 
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The elements of these transformations are given at page 358, namely, 

* 2 * * - 4S/~.mn sing cosf 2 sin'p= 1 +i/ sin4 and V-S-fl- OS9=/W sin 4k. 

Fromn this last equation we derive (1-n sin2p)(I -m sin2p)=I(1-m,sin24i). 

Now as ( il.CO.V= we shall have ncD-= V/msin[i -2m (421.) 
1 -ns ,e 2 Vmn L1-msI s in2+ 

Or putting for sin2@ its value, nqP- VmMs inj [2n nm-nmi Isin24 mm cos . VI,] 
2Vn n[1msi24](422.) 

In the same manner, we may find 

V/M1 sin4, [2rn - mn-mini, sin24 + mn Cos+ VT1 
mOrm 2 Vrm [2 -m ns. . . . . (423.) 

Adding those equations together, and recollecting that m+n-mn=i, we shall get 

n(.+m(.= V'I4V/ + [1-m, sin 2] (424.) 

Now as i2= (I+j)(I -j), and Vmn=NM,(l+j) 

{n~Fn~m~Jr } = -(1 -j) sin;- (I +j)m' sinf cos, V1, n(D.+m1%} (I -j)(1-msin24,) (I.(425.) 

In (186.) we found 

2jdpVL =(I +j)4d_/ /iVf +(I -j) sin41. (426.) 

Adding this expression to the preceding, the terms involving sin-4 will disappear. 

We must now compute the sum of the coefficients of 5+ 

2 -+ + -2(l 
'I 

Since (I+i) this coefficient becomes -+T-2(1+j) 

Or as m+n=i2+mn, this coefficient may be written [m-p+i2-2(I +j)] (+ 

Or as mn=m,(I +j)2, it becomes finally, + . . . . . . . (427.) 

Hence [+n-2(1 +j)] (2 ii)5-=+. * , ij . j... (428.) 

-m\ d9 (1 -n) df (n-m) (n-m) 1 r d4 And (n-m) mmn (I-+j-___429 Lk rnjM VL flN IiVm Vrm( Iji - m, siu24] V7 (49. 

Now as n+m=i2-mn, (n+m)2_i4-2mni2+m2n2. 

Hence (n-m)2=i4+2mni2+m2n2-4mn, 

and as i4=(l+j)2(1-j)2, mn=m,(l+j)2, substituting 
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therefore (n m)2 ( ?+j)4F(+ +2m( +m2_ 4m ] 

and as (1+j)2= (+i,)2, the expression will finally become 

n-m= (1 +j)2(l-M,)Vn~, hence - ( n mn,. (430.) 

If now we add together (420.), (425.), (426.), (428.) and (429.), we shall have, 

dividing by (n-m) "Vmn 

4nj4 + ml 
k (-rn)n ,(-n)4 

n, 
j 

-5 =->(' X')VmfM2 +V+f-2fZT (1-m ). . . . (431.) (1- dqlny dI d4; 2coa 
Let us now take the logarithmic ellipse whose equation contains m,, n,, i,, 4 instead 

of M, n, Z and A, we shall have from (163.), 
22.' mdi, __ _ 

,_ _ _ __ _ d 4 , Ail 
-rnm1n (1-rna)v'-n nSN 

d; 

.-m ml n-m CS .(432.) 
If we now subtract these equations one from the other, combining together like 
integrals, the integral of the third order will vanish and we shall have, 

25, 4E; r,(1 -n,) Vrn^n1 F& /IV+fl(l M d) - + 2 ] f433 
k - 

n,(n,-m,)(1-rn) LI Os C (43. 

Hence, as we may express an arc of a plane ellipse by an arc of a derived ellipse, an 
integral of the first order, and a right line-a known theorem-so we may extend 
this analogy and express an arc of a logarithmic ellipse by an arc of a derived loga- 
rithmic ellipse, by functions of the first and second orders, by an arc of a parabola 
and by a right line. The relations between the moduli and amplitudes are the same 
in both cases, 

l+ and tan( -p) =j tanp. 

Let m,, nh, i,,, 4y be derived from m,, n,, i,, 4' by the same law as these latter are 
derived from m, n, Z, P, namely, 

i,=zji, tan(4-) =jtanp, M-= _+___, n , = 

and derive an arc of a third logarithmic ellipse, we shall have, putting A, B, C, D for 
the coefficients of the integrals, and II for the parabolic arc, 

2%, 4~ dC+_ 
2E'_2 -~d+I,+B5$A-CE+DTIn 

MDCCCLI'=. 3HB C-T+DI. MDCCCLII.~~ 3 k 
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Multiply the first of these equations by 2 and add them, I will be eliminated. In this 
way we may successively eliminate I,, s,,, Bla), until ultimately we shall have 

kX2'+1' vE+vF+vE4>H. 
being the number of operations, and denoting by F and E, the sum of the integrals 

of the first and second orders, by T the sum of the right lines, and by LI the sum of 
the parabolic arcs. 

If in (401.) and (416.) we substitute the coefficients of the derived integrals as 
transformed in (404.) and (430.), the relation between the original and the derived 
integrals of the third order will be, 

( )?(l +n sinS)/l --f2 sine, -m ) (1-m sin inp1 / sjn@ (ino ___n_ si_ (4 

for the circular form or the spherical ellipse, and 
(1-m\ c do(/-2n\ c do 4 (1-m,\ _f d43 

m mj(I -m sin2p) /i -i2 sin p n (1 -n sin2p) ,Vi 2 Sinm , (1 -Mn, sin24) V1- i,2 sin2-4' 

for the logarithmic form, or the logarithmic ellipse. 
LXXXIII. There are several plane curves, whose lengths we may express by elliptic 

integrals of the third order. For example, the length of the elliptic lemniscate, or the 
locus of the intersections of central perpendiculars on tangents to an ellipse, is equal 
to that of a spherical ellipse, which is supplemental to itself, or the sum of whose prin- 
cipal arcs is equal to z. We cannot represent elliptic integrals of the third order 
generally, by the arcs of curves, whose equations in their simplest forms contain only 
two constants. Thus let a and b be the constants. We shall have two equations 
between the constants the parameter and the modulus of the function, i=f(a, b), 
n=f'(a, b). Assume a as invariable, and eliminate b, we shall have one resulting 
equation between i, n, and a, or F(a, i, n) =0; or n depends on i. 

When there are three independent constants, as in the preceding investigations, 
a, b, and k, we shall have i=f(a, b, k), n=f'(a, b, k). Eliminating successively b 
and k, we shall have two resulting equations, instead of one, F(a, k, i, n)=0, and 
F'(a, b, i, n) =0, or i and n depend on two equations, and may therefore be inde- 
pendent. 

ERRATA. 

Page 319, last line, dele n. 
- 320, line 5, for page 6 read page 316. 
- 328, line 12,for (47.) read (46.). 

- 329, line 15,for (32.) read (31.). 
1-j 331, line 7 from bottom, for n=m=i, read n~n= - 

- 338, to the last line add, i being here the eccentricity of the base of the elliptic cylinder. 
372, line 1,for Case XLI. read Case XIII. 
389, line 14,for BERNOUILLI read BERNOULLI. 


