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XVIII. Researches on the Geometrical Properties of Elliptic Integrals.
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Section 1.

L IN placing before the Royal Society the following researches on the geometrical
types of elliptic integrals, which nearly complete my investigations on this interesting
subject, I may be permitted briefly to advert to what had already been effected in
this department of geometrical research. LEeGENDRE, to whom this important branch
of mathematical science owes so much, devised a plane curve, whose rectification
might be effected by an elliptic integral of the first order. Since that time many
other geometers have followed his example, in contriving similar curves, to represent,
either by their quadrature or rectification, elliptic functions. Of those who have
been most successful in devising curves which should possess the required properties,
may be mentioned M. Gupermann, M. VeruuLst of Brussels, and M. SErreT of Paris.
These geometers however have succeeded in deriving from those curves scarcely any
of the properties of elliptic integrals, even the most elementary. This barrenness in
results was doubtless owing to the very artificial character of the genesis of those
curves, devised, as they were, solely to satisfy one condition only of the general pro-
blem *,

In 1841 a step was taken in the right direction. MM. CaTaran and GUDERMANN,
in the journals of Liouville and Crelle, showed how the arcs of spherical conic sec-
tions might be represented by elliptic integrals of the third order and circular form.
They did not, however, extend their investigations to the case of elliptic integrals of
the third order and logarithmic form; nor even to that of the first order. These
cases still remained, without any analogous geometrical representative, a blemish
to the theory.

Some years ago, when engaged in the discussion of the problem of the rotation of
a rigid body round a fixed point, by the help of an auxiliary ellipsoid, I had continu-
ally brought under my notice, in the course of my investigations, the sections of a
sphere by a concentric cone, or as they now are generally named, spherical conic

* LeexnDrE a cherché & représenter en général, la fonction dig. (¢, ¢) par un arc de courbe; mais ses ten-
tatives ne nous ont pas semblé heureuses, car il n’est parvenu 2 resoudre completément le probléme, qu'en
employant une courbe transcendante, dans laquelle ’amplitude ¢ et I'arcs ont entre eux une relation géomé-

trique encore plus difficile & saisir que dans la lemniscate.—Veruuist, Treité des Fonctions Elliptiques,
p. 295.
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sections. It accordingly became necessary that I should give especial attention to
the nature of those curves. I succeeded in showing that the elliptic integral of the
first order, which is merely a particular case of the circular form of elliptic integrals
of the third order, represents a spherical conic section whose principal arcs have a cer-
tain relation to each other. Besides, I was so fortunate as to hit upon the true geo-
metrical representative of an elliptic integral of the third order and logarithmic form.
I discovered it to be the curve of intersection of a right elliptic cylinder by a para-
boloid of revolution having its axis coincident with that of the cylinder. These re-
searches were published in the early part of the present year*. There still remained,
without investigation, the case when the parameter is negative and greater than 1.
The geometrical representative of this peculiar form, I announced to be a curve,
which I called the Logarithmic hyperbola. In the Theory of Elliptic Integrals, p. 159,
I have said, ““If a right cylinder standing on a plane hyperbola as a base, be substi-
tuted for the elliptic cylinder, the curve of intersection may be named the logarithmic
hyperbola. It will have four infinite branches, whose asymptots will be the infinite
arcs of two equal plane parabolas. This curve, and not the spherical ellipse, is the
true analogue of the common hyperbola.” No demonstration, however, of these pro-
perties was given in that treatise.

The main object of the following paper is to prove, that Elliptic Integrals of every
order, the parameter takmg any value whatever between positive and negative infinity,
represent the intersections of surfaces of the second order.

To these curves may be given the appropriate name of Hyperconic sections.

These surfaces divide themselves into two classes, of which the sphere and the
paraboloid of revolution are the respective types; from the one arise the circular
functions, from the other the logarithmic and exponential. The circular integral of
the third order is derived from the sphere, while the logarithmic function of the same
order is founded on the paraboloid of revolution.

Although in the following pages I have, for the sake of simplicity, derived the
properties of those curves, or of the integrals which represent them, from the inter-
sections of these normal surfaces,—the sphere and the paraboloid,—with certain cylin-
drical surfaces; yet the intersections so produced may be considered as the inter-
sections of these normal surfaces with various other surfaces of the second order.
Let U=0 be the equation of the sphere or paraboloid, and V=0 the equation of
the cylinder. The simultaneous equations U=0, V=0 give the equations of the
curve of intersection. Let f be any abstract number whatever; then U4fV=0 is
the equation of another surface of the second order passing through the curve of in-
tersection. Let U=0 be the equation of a sphere, for example. Accordingly as we
assign suitable values to the number /, we may make the equation U/ V=0 repre-
sent any central surface of the second order. But we cannot, by any substitution or

* The Theory of Elliptic Integrals, and the Properties of Surfaces of the Second Order, applied to the in-
vestigation of the motion of a body round a fixed point. London: G. Briz, 1851.
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rational transformation, make the equation U+fV=0 represent a non-central sur-
face instead of a central one, or vice versd.

Although a remarkable relation exists between the areas and lengths of some of
these hyperconics, such as the circle and the spherical ellipse, yet more distinctly to
show the analogy which pervades all those curves, I have not had recourse in any
case to the method of “elliptic quadratures,” as it is termed*, We cannot admit
such a violation of the law of geometrical continuity as to suppose, that while a
function in one state represents a curve line, in another, immediately succeeding, it
must express an area. Such can only be taken as a conventional explanation, until
the real one, characterized by the simplicity of truth, shall present itself.

In the course of these investigations, it will be shown that the formule for the
comparison of elliptic integrals, which are given by LeEcenpre and other writers on
this subject, follow simply as geometrical inferences from the fundamental properties
of those curves; and that the ordinary conic sections are merely particular cases of
those more general curves above referred to, under the name of hyperconic sections.

It will doubtless appear not a little singular, that the principal properties of those
functions, their classification, their transformations, the comparison of integrals of
the third order, with conjugate or reciprocal parameters; were all investigated and
- developed before geometers had any idea of the true geometrical origin of those func-
tions. It is as if the formulee of trigonometry had been derived from an algebraical
definition, before the geometrical conception of the circle had been admitted. As
trigonometry may be defined, the development of the properties of circular arcs,
whether described on a plane or on the surface of a sphere; so this higher trigono-
metry, or the theory of elliptic integrals, may best be interpreted as the development
of the relations which exist between the arcs of hyperconic sections,

Indeed it may with truth be asserted, that nearly all the principal functions, on
which the resources of analysis have chiefly been exhausted, whether they be circular,
logarithmic, exponential or elliptic, arise out of the solution of this one general pro-
blem, to determine the length of an arc of a hyperconic section.

It may be said, we cannot by this method derive any properties of elliptic inte-
grals which may not algebraically be deduced from the fundamental expressions
appropriately assumed. But surely no one will assert that the properties of curve
lines should be algebraically developed, without any reference to their geometrical
types. ’

We might from algebraical expressions suitably chosen, derive every known property
of curve lines, without having in any instance a conception of the geometrical types

* En considérant les fonctions elliptiqﬁes comme des secteurs, dont I'angle est précisément égal & 'ampli-
tude @, nous avons en ’avantage deé justifier la dénomination d’amplitude appliquée & 'angle ¢; et méme celle
de fonctions elliptiques, en général, puisque les courbes algébraiques par lesquelles nous avons représentés ces
transcendantes, se construisent avec facilité au moyen des rayons vecteurs d’'une ou de deux ellipses données,
—VeruuLst, Traité des Fonctions Elliptiques, p. 295.
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which they represent. The theory of elliptic integrals was developed by a method
the inverse of that pursued in establishing the formule of common trigonometry. In
the latter case, the geometrical type was given—the circle—to determine the alge-
braical relations of its arcs. In the theory of elliptic integrals, the relations of the
arcs of unknown curves are given, to determine the curves themselves. This is
_ briefly the object of the present paper.

The true geometrical basis of this theory would doubtless long since have been
developed, had not geometers sought to discover the types of those functions among
plane curves. They were beguiled into this course by observing, that in one case—
that of the second order—the representative curve is obviously a plane ellipse. -Hence
they were led by a seeming analogy to search for the types of the other integrals
among plane curves also. '

The author hopes in a future communication to the Royal Society, the present
having grown under his hands beyond the limits he anticipated, to extend his re-
searches to elliptic integrals with imaginary parameters, and to show the true
geometrical meaning of such expressions. It has long been known, that, by the aid
of the imaginary transformation sin p=+/—1 tany, we may pass from the loga-
rithmic to the circular type, and conversely; but it has not, however, been observed
that this transformation enables us to effect this transition, because it changes the
algebraic expression for the arc of a parabola into that for a circular arc or area,
and conversely. The striking analogies developed between the formula of the
trigonometry of the circle and that of the parabola will be found very curious and
instructive. ' _

I have attempted thas to place on its true geometrical basis, a somewhat abstruse
department of analysis, and to clear up the elementary notions from which it may,
with the utmost simplicity, be developed. It is only in the maturity of a science,
that the relations which bind together its cardinal ideas become simplified. An
author, who has himself contributed much to the progress of mathematical science,
well observes,—* qui il est bien rare qu'une théorie sorte sous sa forme la plus simple
des mains de son premier auteur. Nous pensons qu’on sert peut-&tre plus encore la
science en simplifiant, de la sorte, des théories déja connues, qu’en I'enrichissant de
théories nouvelles, et c’est 1a un sujet auquel on ne saurait s'appliquer avec trop de
soin.”—GERGONNE, Annales des Mathématiques, tom. xix. p. 338.

II. I bave ventured to make some alterations in the established notation of élliptic
integrals. I have written ¢ for the modulus, instead of ¢; and j for its complement
instead of &; so that *4y*=1.

The symbol ¢, used by writers on this subject to designate the modulus, was
adopted by analogy from the formula for the rectification of a plane elliptic arc by
an integral of the second order. Although in the circular forms of the third order
it still signifies a certain ellipticity, yet it has no longer the same signification in the
usual form of the first order, or in the logarithmic form of the third.
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Instead of the usual symbol, A=+/1—¢* sin®p=+/1—7 sin’p, /T has been substi-
tuted, when ¢ is the modulus. Should it become necessary to designate the ampli-
tude, the expression may be written o/ Ty, or o/,L.

For the elliptic integrals of the first and second orders, which are usually written

F.(¢) and E,¢), I have substituted y—f% and fdpa/I. The surface of revolution

may be named the generating surface, while the intersecting surface is always a cylin-
drical surface. The parameter, of which p is the general symbol, we shall suppose
to vary from positive to negative infinity, and to pass through all intermediate states
of magnitude.

The nature of the representative curve will depend on the value assigned to the

de
$] v/ 1—i*sin%’
to be invariable and less than 1. In this progress from 4o to — oo, the parameter
passes through thirteen distinct values, each of which will cause a variation in the
species or properties of the hyperconic section, the representative curve of the given
elliptic integral.

In the following Table we may observe that the generating surface in passing from
a sphere to a paraboloid, in its state of transition, becomes a plane.

It is somewhat remarkable, that the common form of the elliptic integral of the
first order does not appear in the Table, although it is implicitly contained in cases
II. and VIIL.; for in the circular form of the third order, when the parameter is
equal to the modulus 7, we can reduce the third order to the first. The reason why
the first form of elliptic integral does not appear in the Table is this; in the thirteen
cases given, the origin is placed at the centre, or symmetrically with respect to the
represented curve. When the elliptic integral of the first ovder is given in the usual
form, without a parameter, it represents a spherical parabola, but the origin is non-
symmetrical, that is, the origin is placed at a focus. See Theory of Elliptical In-
tegrals, p. 33.

Instead of p, the general symbol for the parameter, we may substitute for it parti-
cular values, such as/, m, or n, as the case may require. The quantities Z, m, », 7 and
J, are connected by the following equations :—

parameter p in the expression Ky[ Tt - The modulus we shall assume

#45*=1, Im=7, and m—n+mn==, in the circular form, 1
P4y*=1, =7, and m4-n—mn=7>, in the logarithmic form,/ = =~ ° (1)
m and 2 may be called conjugate parameters ; while land m, or / and » may be termed
reciprocal parameters.

These thirteen cases are exhibited in the following Table.
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TABLE.
Case. |Sign. Parameter. Generating surface. Cylindrical surface. Hyperconic section.
L|+ p=n=oo...... Sphere ...........coeoen e [Elliptic eylinder .........[Circular sections of
elliptic cylinder.
IL | + p=n=i, or Sphere.........co.......... [Elliptic eylinder ......... Spherical parabola.
m=n.
IIL. | + p=n=>0...... Sphere......................|Elliptic cylinder ......... Spherical ellipse.
V.| + p=n=0.......Plane ...... cccoocrrrrn... Elliptic cylinder ......... Plane ellipse.
V.| — | p=m=1—1—2,Paraboloid iimdeﬁnitely Circular cylinder......... Circular logarithmic
or m=mn. attenuated. ellipse.
VI.| — |p=m, or p=n< ...|Paraboloid ...............|Elliptic cylinder ......... Logarithmic ellipse.
VIL | — p=m=2......[Plane .....................|Elliptic cylinder -........ Plane ellipse.
VIIL | — p=m=i......\Sphere .....................|Elliptic cylinder ......... Spherical parabola.
IX.| — p=m=>i Sphere ..o.ovunieinnnenn, Elliptie eylinder ......... Spherical ellipse.
p=m<l.
X — p=i=1......Plane ...................../Hyperbolic cylinder .../Plane hyperbola.
XL | — p=l=1..... Paraboloid ............... Hyperbolic cylinder ... Logarithmic hyperbola.
XIL. | — p=Il=1+ ¥ 1=, Paraboloid ............... Hyperbolic cylinder.  |Equiparametral loga-
or m=n. rithmic hyperbola.
XL | — p=l=ow...... Paraboloid ............... Vertical plane ............|Parabola.

Cases I., IV., VIL, X., XIII. give the formule for the rectification of the ordinary
conic sections; the generating surface in these cases being a plane. When the
generating surface is a sphere, we get the spherical hyperconic sections; when a
paraboloid, the logarithmic hyperconic sections result.

SectioN II.—On the Spherical Ellipse.

ITI. A spherical ellipse may be defined as the curve of intersection of a cone of
the second degree with a concentric sphere.

In the spherical ellipse there are two points analogous to the foci of the plane ellipse,
such that the sum of the arcs of the great circles drawn from those points to any point
on the curve is constant. Let o and 8 be the principal semiangles of the cone ; 2« and
23 are therefore the principal arcs of the spherical ellipse. Let two right lines be
drawn from the vertex of the cone in the plane of the angle 2«, making with the in-
ternal axe of the cone equal angles ¢, such that

cosa
cose—w......,..‘...(&)

These lines are usually called focals, or the focal lines of the cone. The points in
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which they meet the surface of the sphere are termed the foci of the spherical
ellipse.

IV. Every umbilical surface of the second order has two concentric circular sections,
whose planes, in the case of cones, pass through the greater of the external axes. - Per-
pendiculars drawn to the planes of those sections, passing through the vertex,—they may
be called the cycric axes of the cone—make with the internal axis of the cone in the
plane of 28—the plane passing through the internal and the lesser external avis—equal
angles 7, such that ) ‘

cosn=§i%§..............(3.)
Let a series of planes be drawn through the vertex, and perpendicular to the suc-
cessive sides of the cone. This series of planes will envelope a second cone, which
usually is called the supplemental cone to the former. The cones are so related, that
the planes of the circular sections of the one are perpendicular to the focals of the
other, and conversely.

V. The equation of the spherical ellipse may be found as follows, from simple
geometrical considerations. '

Let 2 and 28 be the greatest and least vertical angles of the cone; the origin of
coordinates being placed at the common centre of the sphere and cone. Let the in-
ternal axis of the cone meet the surface of the sphere in the point Z, which may be
taken as the pole. Let p be an arc of a great circle drawn from the point Z to any
point Q on the curve. ) being the angle which the plane of this circle makes with
the plane of 2w, we shall have for the polar equation of the spherical ellipse,

1 __cos% sin?y
tan — tan’a ' tan’g’

'To show this, through the point Z let a tangent plane be drawn to the sphere. This
plane will intersect the cone in an ellipse. This ellipse may be called the plane base
of the cone, while the portion of the surface of the sphere within the cone may be
termed the spherical base of the cone. The plane of the great circle passing through
Z and Q will cut the plane base of the cone in the radius vector R ; and if we write
A and B for the semiaxes of this ellipse, whose plane touches the sphere, we shall
have, for the common polar equation of this ellipse, the centre being the pole,

1 cos?y  sin?y

RT AT TR
Now the radius of the sphere.being %, and p, «, 3, the angles subtended at the centre
by R, A, B, we shall clearly have

R=Fktanp, A=ktane, B=ktanB; . . . . . . . . (4)

whence )
1 cos’y  sin*P
tan® ™ tan® ' tan®g’ °

(5.)
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We may write this equation in the form

1—sin% cos? . sin%y .
sin% = sin%a (1—sin’)+ singﬁ(l —sin’g) ;

or reducing,
1 cos™ . sin% A
’ ﬁ:m Sin,__g_ﬁ-. . ° . . . . . . . o . (6.)
This is the equation of the spherical ellipse under another form, which may be ob-
tained independently, by orthogonally projecting the spherical ellipse on the plane of
the external axes; or by taking the spherical ellipse as the symmetrical intersection
of a right elliptic cylinder with the sphere.
VL. If in the major principal arc 2« of the spherical ellipse, we assume two
points equidistant from the centre, the distance ¢ being determined by the condition

cos e=$~§%, as in (2.), the sum of the arcs of the great circles drawn from these points

—the foci—to any point on the spherical ellipse is constant, and equal to the principal
arc 2e. For a proof of this well-known property, the reader is referred to the
Theory of Elliptical Integrals, p. 12.

VII. The product of the sines of the perpendicular arcs let fall from the foci of a
spherical ellipse on the arc of a great circle touching it, is constant.

Let = and »' be the perpendicular arcs let fall from the foci on the tangent arc of
a great circle; we shall have

sinw sine'=sin(z+:¢) sin(e—e). . . . . . . . . (7)*
VIII. To find an expression for the length of a curve described on the surface of
a sphere, whose radius is 1.
Let » and «' be two consecutive points on the curve, ZQ, Fig. 1.
ZQ the arcs of two great circles passing through them inclined z
to each other at the indefinitely small angle dy. Through ‘
u let a plane be drawn perpendicular to OZ, and meetmg the
great circle ZQ' in v.
Then ultimately wvu' may be taken as a right-angled tri-
angle, whence uu”="wuv>+ uv’.
Now uw'=do, uv= sinp d+}, w'v=dp, whence ~
do= [dp2+ sinfpd?]E. . . . . 0 L L (8) “LO ‘
Integrating this expression between the limits p, and p,, or 4 and 0, accordingly
as we take p or + for the independent variable, we get

._jvq,o[1+ sin p( or a—yd\]/[(dq,) + sin p] . (9)

IX. To apply this expression to find the length of an arc of a spherical ellipse.
In this case it will be found simpler to integrate the differential expression for an
* Theory of Elliptical Integrals, &c., p. 13,
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arc of a curve, taking p instead of +/ as the independent variable. We may derive
from (6.) the following expressions,

sinty = sinB [ sinx— sin% . sin® [sin®p —sin?3
~sin% | sin%x— sm% o8*= sin’% | sin®z—sin*3

(10.)
Differentiating the former with respect to + and p, and eliminating sin }, cos + ;
using for this purpose the relations established in (10.), we find

dy —sina sinf cosp
dp ™ sinp +/sin% —sin% 4/sin% —sin?3

... (L)

Substituting this value of %% in the general expression for the arc; the resulting
equation will become

_ sinp 4/ cos? — cos®« cos*B 12
g yd v (sinfa—sin?%)(sinp—sin®g)4> °~ * T (12.)

an elliptic integral which may be reduced to the usual form by the following trans-

formation : assume—

sin% cos?p + sinB sin%p 13

tanQa cosg¢+tan2’3 Sin2¢. . . . . - . . . . . . . ( ;)

2
COS"p=

The limits of integration are 0 and —. Differentiating this ex ression, and intro-
g 2 g p

ducing into (12.) the relations assnmed in (13.), we obtain for the arc the following
expression :—

tanB . : :
" =tana °'" tan®a -—tan% sm%c—-sm% N (14,
I:l - ( " tan®x Sm ¢] 1 _ "~ sinfe ) sm’g

Let e be the eccentricjty of the plane base of the cone, whose semiaxes are A and B,
as in (V.),

A?2—B? tan%a—tan?B

=t =, asin (4),
. o Sin®z—sin®B
(3.) gives sin'n="—% "
e . o _ sin’a—sin®3
and we derive from (2.) sine=—_ceg

or grouping these resnlts together,

tan%x — tan?@

=

tan®x
‘o - .
. sin®¢—sin?g .
2 M2
Sinp=-—cp—=0. . . . . . . . . (15)
in% — sin®x— sin?B
I I — cos’B —=n,

MDCCCLII. 2T
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If we introduce these values into (14.), the transformed equation will become

a—t_éﬁ; Smpj[[l % 5in%p 4/1-—sm " sm%] .- (16

an elliptic integral of the third order and circular form, since €* is greater than sin%,
and less than 1.

This is case IX. in the Table, page 6.

This is one of the simplest forms to which the rectification of an arc of a spherical
ellipse can be reduced. The parameter of the elliptic integral is the square of the
eccentricity of the plane elliptic base, and the modulus is the sine of half the angle
between the planes of the circular sections of the cone.

. . . . t. . .
If we write m for ¢, ¢ for sing, and express the coeflicient E:—gg sin3 in terms of m
and 7, the expression (16.) may be transformed into

--m
o'_.. \/mnj‘ [1—m sm“’go] 4/1—z9 sm%] - (17

It is easily shown that the coefficient 228 ta o smﬁ of the elliptic integral in (16.) or its

1 —_— .. -
equal (—#)\/ mn is the square root of the criterion of sphericity,

z:(l—-m)(l——g).

For if we substitute in this expression for 7, 1ts value given in (1.) m—n+-mn=4, we

shall find
1—
'\/”'_t“an sin ( m)Jmn T B

As\/%z is manifestly real, the elliptic integral is of the circular form.

X. We may, by the method of rectangular coordinates, derive an expression for
the arc of a spherical ellipse.

In this case we shall consider the spherical ellipse as the curve of intersection of a
right elliptic cylinder by a sphere having its centre on the axis of the cylinder.

Let §§+%§=1, and 24y +22=F . . . (19.) b

be the equations of the cylinder and sphere, ABCD and ¢l Ny
FGCD, then de being the element of an arc on the ~——
surface of a sphere whose radius is 1, £ds will be the |

element of the corresponding arc on the surface of the N
sphere whose radius is . ¥ AL B G

Hence lc~——'—<\/( ( ()3(20)

x, y and = being functions of the independent variable A.



DR. BOOTH ON THE GEOMETRICAL PROPERTIES OF ELLIPTIC INTEGRALS. 321
at cos?A b* sin?A
a? cos?A + b2 sin®A\? v T a® cos?A -+ b2 sin®A

N - A
__0*(k%—a?) cos®A + B*(A*— %) sin®;
- @ cos®» + b2 sin?x )

Assume PP=

Differentiating these expressions,

dz\?_ b sin®a dy\? a*b* cos®A
(d).) = [@® cos?» 4 b?sin?A 3’ (dh) T [a®cos®A+ 8% sin?A )3

and as xdx+ydy-+=zdz=0, e e e (22)
da\? a*b*(a®— b%)? sin®A cos?A
dh) T [a®cos®s + b sinA]3[a3(k%— a?) cos?A + B2 (k2 — %) sinA]

Substituting these expressions in (20.), we find

do\?__ a0 [a®(k°—a?) cos®A + b%(A* —b?) sinA - (2% —b%)*sin?A cos?A]
dA) =K [dcosh 1 P AP [~ ) cos + PRt smA] ¢ ¢+ - (23)

The numerator of this expression may be resolved into the factors
[@® cos™n+b* sin’p ] [ (K*—a®) cos®h+- (B*— D) sin®2],
and the equation may now be written

do _ a?? ¥/ (k2 — a®) cos®A+ (k% — b?) sin?A

L= .. (24,
da  k[a®cos®r 4 b%sin®A] &/ a®(k?—a?) cos®A + b%(h* — %) sin®A (24.)
J2—p2
Assume tan®) = (m)tanﬁ?\. R 18
da ViE=a? (' - “ba“)
Hence ap= (k2— a?)sin®P + (42— %) cos™
(24.) may now be transformed into
de  doda a2 v (K —a®) (k®— b7 (26.)
W= AAA Tk [a? (k2 —b2) cos? + B2 (k2 — a?) sin®P] 4/ a®cos™Y + b2sin%y )

If we imagine a concentric cone to pass through the mutual intersection of the
cylinder and the sphere, we shall have

a=ksing, b=ksinp,
. a?—b? tan?a—tan?  k%(a®>—5?) (27.)
2, — 2 —
SNy = Z = tanta =z = b*)

Whence (26.) may be transformed into

= t_an_ai SIHBJ" [[1 ¢? sin*)] 4/ 1—sin% sm%] <. (28)

an expression identically the same with (16.).
The angle / in this expression is identical with ¢ in (16.).

a* cos®A b sin®A a*+ b4 tan®A |
. 2 D

For +y2 " a? cos® -+ b%sin®A T a2+ b tanQA

eliminating tana by (25.),

P b= aA (k2 —0°) cos™ + b*(k%—0?) s?n%.
Y =21 cos™ + B3 (P —a?) sin
2T2
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Now &’=Fsine, b*=Fsin’8, k*—a*=Fk cos’s, k*— b=k cos’B, and 2*+y>=F* cos’p.
Reducing, we get
sin%x cos™Y + sin?B sin%y 5
tanZx COSQ\IJ i tangﬁ sin“’\b\' . . . . . . . . . . (ag)

2
COS"p=

Comparing this expression with (13.), we see that
¢:’gl/..................‘(30.)‘

XI. In the foregoing expressions (17.) and (28.) for the rectification of an arc of a
spherical ellipse, the elliptic integrals are of the third order and circular form, with
negative parameters. We shall now proceed to show that the same arc may be ex-
pressed by an elliptic integral of the third order and circular form, having a positive
parameter. v

It is shown in most elementary treatises on the integral calculus, in its applica-
tion to the rectification of plane curves, that if p the perpendicular let fall from a fixed
point as pole on a tangent to the curve, makes the angle A with a fixed right line
drawn through the pole, ¢ being the intercept of the tangent between the point of
contact and the foot of the perpendicular, we shall have

d
ts=/pdar +a}£—

(31.)
dp
and t=“37\

The signs of s to beé taken as the curve is concave or convex to the pole.
XII. To investigate an analogous formula for the rectification of a spherical curve,
the intersection of a cone of any order with a concentric sphere.

Let a point Z be assumed on the surface of the sphere Fig. 3.
]

as pole, and through this point a tangent plane ZAQB,
or (0), to the sphere being drawn, the cone whose ver-
tex is at O, the centre of the sphere, and which passes
through the given spherical curve, will cut this tangent
plane (®) in a plane curve AQB, whose rectification may
be effected, when possible, by (31.). Now a tangent
plane OQP, or (T), may be conceived as drawn touching
the cone, and cutting the tangent plane (®) in a right
line QP or ¢, which will be a tangent to the plane curve a
in (©). It will also cut the sphere in an arc of a great
circle (z=) which will touch the spherical curve in z. Let
the distance QO of the point of contactof the line #
with the plane curve from the centre of the sphere be R. Through the centre of the
sphere let a plane OZP, or (II), be drawn at right angles to the straight line £. Now
this plane, as it is perpendicular to ¢, must be perpendicular to the planes (®) and (T)
which pass through z  As the plane (II) is perpendicular to the plane (©), it must
pass through (Z) the point of contact of this plane with the sphere, and cut the plane
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of the curve AQB in a right line ZP, or p, which passes through the pole, the point
of contact of (®) with the sphere. This line p being in (IT) must be perpendicular
to ¢.  The plane (IT) will also cut the sphere in an arc of a great circle Zs ===, per-
pendicular to zw, the tangent arc to the spherical curve; for these arcs must be at
right angles to each other, since the planes in which they lie, (IT) and (T), are at
right angles. Let Pbe the distance OP of the point, in which the plane (IT) cuts the
right line #, from the centre of the sphere; r the distance ZQ of the pole of the plane
curve to the point in which ¢ touches it, = being the angle which ¢ subtends at the
centre of the sphere, and £ its radius,

R2=k2+r2’ P2=k2+p2, t2=,’.2_p2=R2_P2}

=k sinw, {=DP tans (32)

7 is the angle between OQ and OP.

Let ds be the element of an arc of the plane curve between any two consecutive
positions of R, indefinitely near to each other; kds the corresponding element of the
spherical curve between the same consecutive positions of R. Then the areas of the
elementary triangles on the surface of the cone, between these consecutive positions
of R, having their vertices at the centre of the sphere, and for bases the elements of
the arcs of the plane and spherical curves respectively, are as their bases multiplied
by their altitudes. Let S and S' be these areas; then

S:8 PR L L )

But the areas of triangles are also as the products of their sides into the sines of the
contained angles, 7. e. in this case as the squares of the sides, or

S:N:: R, . . . 0 000 L0 0L (b))
de P ds '

putting for ds its value given in (31.),

d d?

d:\ Rz{d)\};—l‘[l} e e e .. e e e .. . (d.)
Now p=P sinw, P’=R’—#, and P*=F-p*;
whence Paxng{, and t=—g£°

Substituting these values in (d.),

dp dp dp}

do |
O —S‘n""*‘m{ DT q (e.)

We now proceed to show that the last term of this equation is the differential of
the arc, with respect to A, subtended at the centre of the sphere.

. B ¢ P
This arc being 7, tanr=p, cosT=g-
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dr 1(,d¢ dP :
‘K:W{Pﬁ—tﬁ}, T 73
_ dp dr 1 (d% dpdP
or as t———a;t’ (TX_—R—Q{PW—& EX} o e e e e e (g)

Adding this equation to (e.), we get for the final result,
+o=/dAr sine— fr.}

If t=%\g, the formula becomes +¢=/dA sinz+7. (33.)

Throughout these pages, to avoid circumlocution and needless repetitions, we shall
designate as the pro-jected tangent, or briefly as the protangent, that portion of a tan-
gent to a curve, whether it be a right line, a circle, or a parabola, between its point
of contact, and a perpendicular from a fixed point let fall upon it, whether this per-
pendicular be a right line, or a circular, or a parabolic arc. This definition is the
more necessary, as the protangent will continually occur in the following investiga-
tions. The term is not inappropriate, as the pro-tangent is the projection of the radius
vector on the tangent.

XIII. To apply the formula (33.) to the rectification of the spherical ellipse.

Let, as before, A and B be the semijaxes of the plane elliptic base of the cone, r the
central radius vector drawn to the point of contact of the tangent ¢, p the perpen-
dicular from the centre on this tangent, ¢ the intercept of the tangent to the plane
ellipse between the point of contact and the foot of the perpendicular, A the angle
between p and A. Let «, 3, p, », * be the angles subtended at the centre of the
sphere, whose radius is 1, by the lines A, B, r, p, ¢, we shall consequently have

A=Fktane, B=Fktang, r=Fktanp, p=F tanw, and t_—:\/mtanr. . . (34)
Now in the plane ellipse
p*=A?cos’r+B?sin?,
therefore in the spherical ellipse
tan’s = tane cos’» - tan*Bsin®A; . . . . . . (35.)
whence sec’m =sec’x cos’\-} sec’3 sin’A.

Dividing the former by the latter,

tan% cos®A + tan?B sin®A
sec®xcos’a+sectBsin?Ac 0 0 T 0 (36.)

siner

Introducing this value of sinw into (32.), the general form for spherical rectification,
the resulting equation will become

) 2 28 sin2i- 1
azyd}\[tanacos)\+tanﬁSInA:lr_T'. .G

sec®x cos®A -+ sec?B sinA

XIV. To reduce this expression to the usual form of an elliptic integral.
Assume tany=cosetanr . . . , . . . . . . . (38)
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We must first show that this amplitude y is equal to the amplitude ¢ in (13.), and
therefore to 4 in (25.), as we proved in (X.).

In an ellipse, if +) and A are the angles which a central radius vector, and a per-
pendicular from the centre, on the tangent drawn through its extremity, make with
an ﬁ

B . . .
the major axis, we know that tan J=-7; tan 7\._ —tanA.  Introducing this value of

tan+) into (6.) and reducing,

T . tan®x cos?A + tan?B sin®A
cos’p=cos’ cos’l [tan“a cos?B cos®r + tan®B cos® sin®A |

Comparing this value of cos® with that assumed for cos’e in (13.), namely,

sin®a cos®p + sin?B sin’p
tan® cos®¢ + tan®B sinp’

2
COS"p=

we get, after some reductions, ,
tanp=cosstanr. . . . . . . . . . . . (39)

But in (38.) we assumed tany=cos¢ tanA. Hence the amplitudes ¢, J and y; in (13.),
(25.), and (388.) are equal. We may accordingly write ¢ instead of %. Substituting
the value of tana, derived from the equation tang@=coss tan, in (38.) the mtegral
in (87.) becomes

cosa cosP [sin®a — (sin%x —sin?B) sin’p]dg
[cos? + (sin%xz— sin®B)sin%p] 4/sin%acos®p +sin®Bsin®p’

__cosa o, sin*z—sin®8 . ,  sin’xz—sin’B
Now cose=; g tan’s=—__— sin’=—5—— ‘ (40.)
Making the substitutions suggested by these relations and reducing, we get
cosﬁ de cosa cosB(® de a1)
= Cosa sina [[1 + tan% sin®p] +/1 —sin% sianb] sine J ~'1—sin%; sin%p - (L

an elliptic integral of the third order, with a positive parameter, and therefore of the
circular form.

This is case IX. in the Table, page 316.

Writing » for tan’, i for sins, and expressing sine, cosx, sin@, cosf in terms of
n and ¢, (41.) becomes

1+n — de )
=(— )V e e e 2.
d ( n mn‘f[ [1+nsin%] /11— sm%] v mny v l—z sin%p =T (42.)
XV. To express the protangent = in terms of A and ¢. We found in XII.
_ P (A2—B?)2sin?A cos?A
tan's= P2 P2p2— [£%+ a® cos®A + 6% sin’A] [@® cos®A+ 0% sin®A]"
A%2—B? . sin%z —sin?B
Now A=k tane, B=FktanB, €=—x—, and Sln2€=W ’
¢® sina sinA cosa )
whence tanr= Jem—mm T, - (43.)
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To express tans in terms of the amplitude ¢.
Assume the relation established in (13.) or (25.) or (38.) or (39.), tang@=coss tanA.
Introducing this condition into (43.), we obtain

etane sing cosg

S L L, . . e e e .. (44
tans= » 1—sin’ysin’p’ (44.)
‘or as N m=e, «/n=tan:, i=sinz,
the last equation becomes
Vmn sing cose
=, 45.
tans V=7 sin (45.)

Hence (42.) may now be written

14n - @ do v mn sxgcpﬁtgs@
6_< >Jmn5[[1 +n sm%p] «/l—-z‘ sm%] T Wmn) V1 —z'Q*s-i'n%—-tan [ ¥ 1—4sin%p :\ (46.)
Now this formula and (17.) represent the same arc of the spherical ellipse ; they may
therefore be equated together. Accordingly

(1 +")f [1 +n sm“’cp] «/1 —? sxn%] >§|: [1—m 51.n qjiif/l —Eﬁ@] }

) B Lo (ar)
_# de 1 _,[ V/mn sing cosp
—mn) 41— sin® ¢+ v mn tan [ V' 1—4*sin%p ] ]

This is the well-known theorem established by Lecenpre, Traité des Fonctions
LElliptiques, tom. i. p. 68, for the comparison of elliptic integrals of the circular form,
with positive and negative parameters respectively. These circular forms arise from
treating the element of the spherical conic either as the hypothenuse of an infinitesi-
mal right-angled triangle, or as an element of a circular arc, having the same curva-
ture. When we adopt the former principle, we obtain for the arc an elliptic integral
of the third order, circular form and negative parameter, When we choose the latter,
we get a circular form of the same order, with a positive parameter. Equating these
expressions for the same arc of the curve, the resulting relation is LEGENDRE’S theo-
rem. We thus see how an elliptic integral with a positive parameter may be made to
depend on another with a negative parameter less than 1 and greater than .
XVI. We must not confound the angle A in the pre- Fig. 4.

ceding article with the angle A in Art. (X.). Marking the
latter A by a trait thus,A , to distinguish it from the former,
we shall investigate the relation between them. Through
Z0 the axis of the cylinder, let a plane be drawn making
the angle +) with the plane ZOAa. Let this plane cut
the spherical ellipse in the point %, and the plane ellipse n 5
the orthogonal projection of the latter in the point Q. o ' /
Through = draw an arc of a great circle z# touching the P\
curve, and through Q draw a right line touching the plane ellipse. From Z let
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fall the perpendicular arc Z# on the tangent arc of the circle, making the angle &
with the arc Za. From O let fall on the tangent to the plane ellipse at Q, the
perpendicular OP making the angle A, with OA.

tan?« sin®x
Then tani=g =g tan+/, and tan x,:m tan .
. tana, 9 R R
Hence we derive tan, = cos’e. Whence tan.tani, = cos’s tan’).

But we have shown in (39.) that
tan’p= cos’s tan’A,
whence tan’p=tanitanx, . . . . . . . . . (48)

on the tangent of the amplitude ¢ is a mean proportional between the tangents of the
normal angles which a point of contact = on the spherical ellipse and its projection Q
on the plane ellipse the base of the cylinder produce.

XVII. We may obtain, under another form, the rectification of the spherical
ellipse.

A\]

Assume the equations of the right cylinder and generating sphere as given in (19.),

12‘2 yQ
= +E=1 and £ +y*+*=F.

Make x=asin, y=bcosd; . . . . . . . . . . (49)
hence P=k—a’sin’0—1* cos®0 ;

i do' _ ra®(A*—10%)cos®d 4 b2 (k> —a?)sin®6 %
and therefOIe« ka_o‘—— (kg__bq) COSQG—I— (]CQ—-'tZQ) sin20 o e e P . (50.)
Now

(B2 —b*) =k sin’e cos’B, b*(k*—a’)=Fk'sin’B cos’n, k*—b*=Fk* cos’B, K'—a’=F’ cos’e.
Substituting these values in (50.), and integrating,

tan®« cos?d + tan?B sin%0 %
| —
e "'yde[sec‘la cos?0+sec?Bsin® | - - - 7 (51.)

If we now compare this formula with (37.) and make 0=A, we shall have
O—0=7. . . . . . e . e e .. (52)

Hence we may represent the difference between two arcs of a spherical ellipse, mea-
sured from the vertices of the major and minor arcs of the curve, by the arc = of a
great circle which touches the curve.

XVIII. We may thus, by the help of the foregoing theorems, show that when any
elliptic integral of the third order and circular form is given, whether the parameter
be positive or negative, we may always obtain the elements of the spherical ellipse,
of whose arc the given function is the representative.

Let the parameter be negative.

tan?« —tan? .
As 62=M‘WE='=m, and sm2n=

MDCCCLII. 2vu

s g o
sin‘z—sin ﬁ_iz
sinx ?
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2 2

. . 2 . M—V 23 M
we shall have tan “=ET ) tan’S= 2

(53.)

In order that these values of tane, tanf may be real, we must have m > and m<1.
Let the parameter be positive.
sin%z —sin?B
cos?u

sin®z —sin?p
sin%x

2

Now tan’ = =n, and sin’= =7,

l_Q
hence tanoc_ne, tan’® —;@(1+Zn). Coe o .. (54

There is in this case no restriction _oh the magnitude of n.
XIX. To determine the value of the expression

1+n e de ~
( n ) \/mn;f[(l +nsin%p) /1 —72 sin%:‘ ’
when 7 is infinite. :

As m—n+mn=2, or (1—m)(14n)=1—2"=j",
when 7 is infinite, m=1.
Resuming the expression given in (47.),

1+n ¢ do _ &/mnsm@ cosg
\/ Aﬂ:(l +n sin®p 4/1—79?5%] anJ ¥/ 1—2sin% —tan [ v 1—17%sin% ]

we find that when » is infinite, « is a right angle.

sin%x —sin?B

o J— P
Foru n=tan’s=— o

w
= o, therefore =4

Now +J being the angle between the spherical radius Vector drawn to the extremity
of the arc, and the major principal arc, we have

up tang sing

tane sine o0 ¢

tam,_b:

ﬁ * tana, or tand=—-

Hence + is indefinitely less than ¢, when = is infinite, or when « is a right angle. In
this case therefore ¢=0, and we get, when # is infinite, and ¢ not 0,

+n \/mn ] _7 (55
(1 +n sin®p) 4/1_1251}1% =g e e e e )

We might have derived this theorem directly from (47.), by the transformation

Vnsing= tana.
This is case I. in the Table, p. 316.

 SectioN II1.—On the Spherical Parabola.

XX. It remains now to exhibit a class of spherical conic sections whose rectifica-
tion may be effected by elliptic integrals of the first order.

The curve which is the gnomonic projection of a plane parabola on the surface of
a sphere, the focus being the pole, may be rectified by an elliptic integral of the first
order.
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Let a sphere be described touching the plane of the parabola at its focus. The
spherical curve which is the intersection of the sphere with a cone, whose vertex is at
its centre, and whose base is the parabola, may be called the spherical parabola.

To find the polar equation of this curve.

The polar equation of the parabola, the focus being the pole, is r—ffcosw’ 4g being

the parameter of the parabola. Let y be the angle which g subtends at the centre of
the sphere, and p the angle subtended by », then

2tany

tanp =1 ¥cosw 1+ cosw’

Let p be the perpendicular from the focus on a tangent to the parabola, w the angle

which this perpendicular makes with the axis of the parabola; p—-cos“ Whence in the
spherical curve, as p=Fk tanw, g=F tany,
tany -
tanzv__govs;; o e e e e e e e e e e . (.’)b.)

siny
¥ 1 —cos’y sin%

whence sinw= oo . (B7%)

Introduce this expression into the general form for spherical rectification,e=/sinwdp -7,
d

given in (32.), we use the positive sign with 7, since /= dp

Now as =, w and w are the sides and an angle of a right- Fig. 5.
angled spherical triangle, since 2u=w, we get, by NAPIER’S
rules, tanr=sin= tang, whence, by substitution,

_ dpe - siny y tang B P
r=sing} et [ T 68

—cos?y sin?

When the sphere becomes indefinitely great the spherical * &
parabola approaches in its contour indefinitely near to the
plane parabola. % being the radius of the sphere,

siny=tany =’%a
since y in this case is indefinitely small, whence cos’»=1. In this manner, since s=£ks,

* The expression for a perpendicular arc of a great circle let fall from the focus of a spherical ellipse on an
arc of a great circle a tangent to this curve, is

2 sin% cos’ cos? 4 (sin?e —sin%) cos2e + sine cose cosw ¥ sin®za —sin?2e sin’w
== )

sin?w =
(1—sin%2s sin%w)

a being the principal major arc, & the focal distance, and y the angle which = makes with a.

‘When the curve is the spherical parabola, ac+s—1—;, a—s=ry, 25=g—7, and the preceding expression, when
. . . . . siny .,
we introduce these relations, will take the very simple form, sinw=-—=——-====, or sinw=1, as we take
1 —cos¥y sin®w

the sign — or +. See Theory of Elliptic Integrals, p. 31.
2u2
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(58.) may be transformed into
11,

5=¢& cosy,+gcsosg’ ’
the well-known formula for the rectification of a plane parabola. When, on the other
hand, the sphere becomes indefinitely small compared with the parabola, ¢ approxi-
mates to a right angle, and (58.) becomes

s=w-+tan~'(tanw) =2u,

as it should be, since 2y is the angle which the radius vector p makes with the axis.

We shall find the notice of these extreme cases useful.

XXI. Although we have called this curve the spherical parabola, as indicating its
mode of generation, it is in fact a closed curve, like all other curves which are the
intersections of cones of the second degree with concentric spheres. It is a spherical
ellipse, and we shall now proceed to determine its principal arcs.

Let ADG be a parabola, F its focus, O being Fig. 6.
the centre of the sphere which touches the plane
of the parabola at F, and being also the vertex of
the obtuse-angled cone, of which the parabola
ADG is a section parallel to the side of the cone
OB. Let the angle AOF or the arc Fa be v, «
and 3 being the principal semiangles of the cone,

2w=g+y= AOB,

7|,
whence tan’s i +siny, &
—siny’ -
To determme the angle 3, or thearc Cb. Bisect

LU B

the vertical angle AOB of the cone by the line
OD, and draw DG an ordinate of the parabola. Then tanzﬁ.—.-.(g—%)?. As AOD is an

isosceles triangle, AD=AO=—— cos]jy, and
oD=2%—_ OF

"]

We have also, as DG is an ordinate of the parabola,

A OF  OFsiny
DG —4AF X AD =40F. tany X COS')/ *-E)—S-Z)-;—.
Hence substituting, tan’B= 12—?15?1?7'

We may therefore announce the following important theorem :—
The spherical ellipse, whose principal arcs are given by the equations

__14siny . 2 siny
tan‘e 1 —siny’ tanﬁ_le—sin'y’ S 1
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y being any arbitrary angle, may be rectified by an elliptic function of the first order.
Write x for tane, y for tan@, and eliminate siny from the preceding equations,
tan’e —tan’B=a’—2y’=1,. . . . e e (9%
the equation of an equilateral hyperbola. We thus obtam the following theorem :—
Any spherical conic section, the tangents of whose principal semiarcs can be the ordi-
nates of an equilateral hyperbola, whose transverse semi-axis is 1, may be rectified by
an elliptic integral of the first order.
XXII. When we take the complete function, and integrate between the limits

0 and %, we get, not the length of a quadrant of the spherical parabola, as we do

when we take the centre as origin, but the length of two quadrants or half the
ellipse. We derive also this other remarkable result, that when w is a right angle,
the spherical triangle whose sides are the radius vector, the perpendicular arc on the
tangent, and the intercept of the tangent arc between the point of contact and the

foot of the perpendicular, is a quadrantal equilateral triangle. For when (.oz-g,

: 3 K3 W

P=yp T=Ep T=y
It may also easily be shown, that the arc of a great circle which touches the spherical
parabola, intercepted between the perpendicular arcs let fall upon it from the foci, is
in every position constant, and equal to a quadrant. See Theory of Elliptic Integrals,
p. 35. '

Hence the spherical parabola is the envelope of a quadrantal arc of a great circle,

which always has its extremities on two fixed great circles of the sphere, the angle

between the planes of these circles being g+'y.

Resuming the equations given in (59.), which express the tangents of the principal
semiarcs of the spherical parabola in terms of siny, namely,

1+siny . 2 sm'y
1—siny’ an’f= —siny’

tan’e=
writing ¢ for cosy, and j for siny, we get

1— j —
=14/ e—1+/sm” <1+J l

whence tan’s=e’=siny=cos’g. J

(60.)

Now n=tan%, m=e*; hence n=m=i.

XXIII. We shall now proceed to the rectification of an arc of the spherical para-
bola, the centre being the pole. By this method we shall obtain certain geometrical
results which have hitherto appeared as mere analytical expressions. In (14.) or (28.)
we found for an arc of a spherical ellipse measured from the major principal arc, the
following expression, the centre being the pole,

b o dy

= tane 510 J (1—¢?sin%P) ¥/ 1—sin% sm%
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or substituting the values of the constants given by the preceding equations,

27 .
=1 +]S[1 smﬁ\p] \/ 1— 1 + sm%

But when the focus is the pole, we found for the arc the following expression in (58.),

. dp - J tanp
6_J§V1 —4? sinfl,,«._l_tan V1—7 singp.] ’
Equating those values of ¢, we get the resulting equation,

( dp . _-Lt_ﬂ‘_: 6
1+])[ ( sme\p]\/l_ oy ) VI sy +tan Vl—igsingp.] . (62)

XXIV. We shall now show that the amplitudes + and w in the preceding formula
are connected by the equation

tan(y—pw)=jtanw, . . . . ... . . . . . . . (63.)
a relation established by LAGrANGE.

Let = and #' be the perpendicular arcs from the centre and focus of the spherical
parabola on the tangent arc to the curve. Let A and x be the angles which these per-
pendicular arcs make with the major principal arc. The distance between the centre
and focus of the spherical parabola, with the complements of those perpendiculars,
constitute the sides of a spherical triangle. We shall therefore have

(61.)

sec%-
sec’w’

sin’A=sin’ (64.)

Now sec’z=sec’» cos’»+sec’3 sin’;, as in (35.) ; or writing for secx,sec@ their par-
ticular values in the spherical parabola, given in (59.),

2 .
2 — 2
seC’w = 5 —sin 7 (1
. tanry
|
Again, as tana' =0
, tan2y 4 cos?
2 I Y .
seC’s = o
reducing (64.), the result is
. 2(1 +siny)
tan A_(cotp.—smytan,u,)g' . s e« . . . (66,
In the case of the spherical parabola,
1 +sin
cos”e:—Tl, whence (66.) becomes
1+ siny tanu + siny tanp
cosg tanA= = oty —siny tanp> OF €OS¢ tanl_l_siny fang fang . . (67)

The second member of this equation is manifestly the expression for the tangent
of the sum of two arcs 4 and v, if we make tanv=siny tangu.



DR. BOOTH ON THE GEOMETRICAL PROPERTIES OF ELLIPTIC INTEGRALS. 333

Hence cose tanA=tan(w-v).
In (25.), or (38.) or (39.), we assumed tan,= cosz tani.
Hence J=wp+r, or tan( —p)=tany=siny tany.

A geometrical interpretation of LacranGE’s theorem tan(y —w)=siny tany may be
given by the aid of the spherical parabola. N

Let DRB be the great circle, the base of the e 7.
hemisphere, whose pole is F. Let BQA be a sphe-
rical parabola, touching the great circle at B, and
having one of its foci at F' the pole of the hemisphere
whose base is the circle DRB. Let RQ be an arc
of a great circle, a tangent to the curve at Q. From
F let fall upon it the perpendicular arc FR. The
point R is in the great circle AR which touches the
curve at its vertex A. The pole of this circle is the

second focus F,; for AF,:FB:g. Let the arcs

RF, RF, make the angles 4 and » with the transverse arc AB. Hence AR=y. Iu
the spherical triangle FAR, right-angled at A, we have sinAF=tanv cotu. Now as
AF=y, sinAF=siny=j; and if p=w+v, v=0—p, or reducing, tan(p—uw)=y7 tany;
whence we infer that while the original amplitude is the angle w at the focus F,
the derived amplitude ¢ is the sum of the angles » and » at the foci F and F,

When the function is complete, or p:%, R will coincide with R, the pole of the

great circle AB, whence » is also =g, and as p=p -+, p==. This shows, that when

the function is complete, or the amplitude is a right angle, the amplitude of the
derived function will be two right angles.

When the spherical parabola approximates to a great circle of the sphere, the
second focus F, will approach to F the immoveable focus. The arc RF, will, there-
fore, approach to coincidence with the arc RF, or the angle » will approximate to p,
so that =u-+»=2u nearly. ’

This is the geometrical explanation of the analytical fact observed in this theory,
that when the modulus diminishes, or the spherical parabola approximates to a great
circle of the sphere, the ratio of any two successive amplitudes approximates to that
of two to one.

When the transverse arc of the spherical parabola is a right angle and a half,

x

1 . . . —(*3
sin7=7/—§a and if C be its circumference, C= v 2S 27::—~~»+7r, But two qua-
1—= sin?u

0

. 3 d
drants 2s, or the loop of a lemniscate, are = v/ 2527%—; Hence 2s=C—=.
1——sin%x

0
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Or the loop of a lemniscate is equal to the difference between the circumference of
the spherical parabola whose transverse arc is 3—275, and a semicircle.

When a quadrant of the spherical parabola is taken, or when the point of contact Q
coincides with the extremity of the principal minor arc of the curve, we shall have @:%.

Since in this case RQ=PQ, FV=FV, therefore Fig. 8.
pw=O0FV=0FYV, or RFV=p+». - As Vis the pole of
RP, and F, is the pole of AR, the point R is the pole
of VF,. Hence RF,Visaright angle, butu+»=RF YV,

whence §o=g. As tan(p—p)=j tanpm, when qo:-;f,

1 . . 't
tanw=—- If in the expression tanr=——-Z—ote__ P
» v p v'1—sinu

given in (58.), we substitute this value of tanw, we

shall get tans=1, or r:Z.

Hence as two quadrants of a spherical parabola

are together double of one, we shall have, writing the integral ym in the
V1= sin%u

abbreviated formj‘ T

S ' (7)! e e _ (=) dn

o +2_.2f ch2f o =tV (e

Now when ¢ is nearly 1, =log 1+ sing Taki hi i
y 4/-__ ( cosk ) aking this expression between

the limits =0, and {b:ta;l (—)i we shall have s{nce sinp=-—== L cosp=—t_ vi and:

) J D ) 4/1_'_ ERra) o= 4/1 9
neglecting j and its powers when added to 1, 7 being very small,

J p J g very
l4sinp 2 (_1( ) dp
o =7 whenc i=lo (‘—)

| ivei S 4
Therefore (68.) gives 1} vf_log (j)* Coe e e e e s, (89)

XXYV. To show that

St ol iy

the amplitudes  and p» being connected as before, by the equation tan(y— p)=j; tanp.

1+ siny 145
cotu—siny tanw ™~ cotw—; tanp”

Since tany =

oo, “résultat fort remarquable, déjd signalé par LrernDRE; mais nous ignorons comment il y est
parvenu,”—Veruvrsy, Traité Elémentaire des Fonctions Elliptiques, p. 158.
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Differentiating this expression with respect to +J and pw,

14h d o 1o
(+])_i/___cos;»+js1;xlk.. e e e (70.)

sin®y dp ™ cos%u sin’p

(1+7)2 sin%z cos®u

‘ 2
We have also tan* )= (Cotu—ysimu)? ** ¢ et (71.)

(1+/)? sin?%x cos?x
1—é?sin’w

Whence, after some reductions, sin*}=

Ce L (72)

Multiplying this expression by (—ig)z, and reducing,

_ V1—Fsin%u Ce e e .. (78)

2 cos%—}-j sin%u’
\/ (1+ sin®y

Multiplying together the left-hand members of the equations (70.), (72.) and (73.),
and also the right-hand members together, we get, after some obvious reductions, and
integrating,

dy 5‘
Wit
1+
This is the Well-known relation between two elliptic integrals of the first order whose
—b
moduli are ¢ and 1= , or in the common notation, whose moduli are ¢ and
1+; +7 1 +b
. Jtanp
XXVI. Let 7 be the arc whose tangent is Vg o
, __2jsinp cosp A/ 1—sin’p |
then | tan2r= cost — s N D
and combining (71.) and (73.), we shall find
tany — (1+) sing cosp /1 —¢ smgp,
= R e e . .. (76)
\/1_( ) sin%y cos— 72 sinp
14y
Y
1—: tal’l\!l

Dividing (75.) by (76.), the result becomes tan2s= v (77.)
A= ()

We are thus enabled to express =, the portion of the tangent arc between the point
of contact and the foot of the perpendicular arc on it, in terms of +J instead of w.

If we introduce this value of = into (62.) and combine with it the relations esta-
blished in (74.), the resulting equation will become

dy 7
25[1—(—}-%) sin%] \/1—-—@— sin2y S\/l —-_:‘7« sm%

27
1o 7 tands

1 +,] -1
( )tan \/ 1— ( sin%

MDCCCLII. 2 X

... (78)
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Adopting for the moment the ordinary notation of elliptic integrals,

m=——c=-1—jé, whence 1+c=i~_i—j-
Introducing this notation, the last formula Will become ~
(1+¢) tany
211 (——C, '4/)-——F ('4’)+1+ "/i“m . . . . . . . (79.)
In the Traité des Fonctions Elliptiques, tom. i. p. 68, we meet with the formula
-1 v atand
TG, )+ ) =R +=tan [ ]. L (80)
Now when 2= —¢, this formula becomes
(1 +¢) tany
2nc( 1) '4’) F ('4/) +1 +c ta &/1 2 SlIIQ\tJ s (81 ')

whence (79.) and (80.) are identical.

XXVII. Let us now proceed to rectify the spherical parabola by the formula for
rectification given in (47.), the centre being the pole. For this purpose, resuming
the formula for rectification established in (41.), and deducing the values of the para-
meter, modulus and coeflicients in that expression from the given relations,

_l+4siny 145 . 2 smy 27
tan’e = sy =1 8=y Tsny—1-p (82.)
we get
_l *
The parameter, tan’s=7 i
\ ) 1—;
The modulus, sinn=17;
cosf3 cosacosB__ 1—j (83.)
) . o -
The coefficient — coss = T35 the coefficient ————=7 T
and | e tane=——
14y )
Making these substitutions in (41.), the resulting equation will become
= 2 “ ‘I’ s s
"‘(1+j)3 AT 1—7\% .
[1 +(1 +]> sin ‘I/] \/1 "‘(i‘r) San\Il
(11— . (1 j)smdz cost - .. (84)
—Q + -————*~- —tan L+
J \/ ( sm% —-j
145 \/1— ——-—— sm%
But from (58.), the focus being the pole, we derive
(. de “lr jtanp )
=N ramten | osan) (85.)

In (74.) we showed that _
k ¢ dp 21 dy
J V1 —ZQSIDQ[.L 1+jg —

\/ (1 T ) sm%
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Introducing this relation into the last formula, and equating together the equivalent
expressions for the arcs in (84.) and (85.), we get for the resulting equation,

dy I

dy _
25[1-}-(5%)&&4}]\/ 1— ]1—_!- 2s,inQ\I; S\/ 1— (1 +j sm%

(1 —])Sln\b cosx!/ P e s . (86.)
—1 1 +.7 tan[.o
+(1+4y) tan \/1 Qsm% +(147) tan [ 172 smgf.o]

-

We shall now proceed to show that the common formula for the comparison of
elliptic integrals having the same modulus and amplitude but reciprocal parameters,
is, in this particular case, identical with the geometrical theorem just established.

The formula is, in the ordinary notation,

(1 +c) tany '
211 (C,'Lll)-—-—F (¢)+1+c m e e e e e e (87)
We must accordingly show that, ¢ being tan’, and therefore ; :_C=~1—;—-Z
1—j 7
o (1+ siny cosys &
(1+47)tan '—j“‘r_?‘e—ﬂ +(14j) tan ‘”‘*‘i““i";“‘““[f—“é‘“:]
el Py = e
14y . . . . (88)

(1 +j) (1 +tan%) tany
':\/ 11— i—i—- sm%}

If we write 7, ¥ and © for these angles respectively, we have to show that

@2(7—]—-7")...........v...(89)

7+ is the arc of the great circle, which touches the spherical parabola, intercepted
between the perpendicular arcs let fall from the centre and focus upon it. .
We must, in the first place, by the help of LacrangE’s equation between the ampli-
tudes, established on geometrical principles in XXIV., reduce these angles to a singie
variable. g is taken as the independent variable instead of +J, as the trigonometrical
function of 4 in terms of p is in the first power only.
We have, therefore,

Y

2t 7
tan®@= an;l’_.g
(1+j)\/1—<~1*;l.) sin®y
1—y
S CO :
e (1+j)1““’ sb L .. (90)
2,
r\/ (1+ sin?
f___ Jtanw
tanT = s s ]

2x2
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The equation between the amplitudes +} and p,

tan(y —p)=j tanuw, gives

(1 +/) sinp cospe

tanij/= COSQ[&—-‘]"SiIlQ[J. . E (91 .)

Eliminating « by the help of this equation, from the value of tans given in the pre-
ceding group,

¢ __(1—-j) sinp cosp  cos®u +7 sin®u

MT="01 "¢ sin%e 7 cos’u—y sin%p”

Using this transformation and reducing,

tan(¢+r’)=tan{b\/l—i2 sin’w, . . . . . . . . (92)
a simple expression for the length of the tangent arc to the spherical parabola be-
tween the perpendicular arcs let fall from the centre and focus upon it.
From the last equation we may derive

) n __ 2sinu cosp A1 — 2% sin%n
tan2(r4+)= e rr e S (93.)

Using the preceding transformations, we may show that

2 sinp cosp ¥/ 1— 7 sin’u.
cosiu—;? sintu

Hence O=2(z+7).. . . . . . . . . . . . (94)
Therefore (86.) becomes :

tan®@=

dy _ dy e ® .
25[1+<}:§)sin2¢]ﬁ(%)gsine¢ S\/l_(%fsin% (1+)z=0+)(F+7). (95

We have thus shown that in the particular case of the general formula for com-
paring elliptic functions of the third order with reciprocal parameters, when the
parameter is positive and equal to the modulus, the circular arc in the formula of com-
parison (87.) is equal to twice the arc of the great circle touching the curve and inter-
cepted between the perpendicular arcs let fall from the centre and focus upon it.

If we take the parameter with a negative sign, the circular arc + in (62.) will re-
present the tangent arc between the point of contact and the, foot of the focal perpen-
dicular.

The spherical parabola, like any other spherical ellipse, may be considered as the
intersection of an elliptic cylinder with a sphere whose centre is on the axis of the
cylinder.

Let @ and b be the semiaxes of the base of the cylinder, and % the radius of the
sphere, ¢ and 3 being the principal semiarcs of the spherical parabola,

2 a? 20— b .
tan azma tan ﬁ—m H

but in (59*.) we found tan’x—tan’3=1; hence substituting,
k2=a2(1 +i). . . . . B . . . . . B B . (96.)
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XXVIII. The foregoing investigations furnish us with the geometrical interpreta-
tion of the transformations of LaGrance. Let the successive amplitudes @, ¢, x of
the derived functions, be connected by the equations

tan(p—p)=j tanp, tan(y—¢)=j tanp, tan(x—+)=j,tany. . . . . (97.)
We may imagine a series of confocal parabolas having
a common axis, described on a plane in contact with
a sphere at their common focus. These parabolas will
generate a series of confocal spherical parabolas on the
surface of the sphere, BCA, BC'A’, BC"A", BC"A",
which will all mutually touch at the vertex B remote .y
from the common focus F. Let the distances between
the common focus F and the vertices of the plane para-
bolas subtend at the centre of the sphere, angles v, ¢/, ¢/,
&c., whose cosines i, ¢, i, &c. are connected by the

equations . .
. 1= V17 . 1= A1=3 L _1- 1= o
—_——— —l =,  &C. .. (98.
VEirvice  WTiivisi T 1y vieip ’ (98.)
it is plain that y=FA, o'=FA', ¢'=FA", o"=FA", &e.

We may repeat this construction buccesswely, until the parameter of the last of the
applied tangent plane parabolas shall become so indefinitely small, compared with
the radius of the sphere, that it may ultimately be taken to coincide with its projec-
tion. We shall in this way reduce, at least geometrically, the calculation of an
elliptic integral of the first order to the rectification of an arc of a parabola, that is, to
a logarithm, as'in XX. If, on the contrary, the moduli 7, ¢, ¢, &c. proceed in a de-
scending series, the angles ¢, ¥, v, continually increase, the magnitudes of the con-
focal applied parabolas increase, till at length their parameters become so large, com-
pared with the radius of the sphere, that their central projections pass into great
circles of the sphere. The evaluation of the elliptic integral will therefore ultimately
be reduced to the rectification of a circular arc. These are the well-known results
of the modular transformation of LacranGE.

The formulee established in (58.) for the rectification of the spherical parabola, give

. du ' siny tany )
o=S8INy\—=—————e--ta [—;/————T_] H

V1 —cos’y sin’u 1—cos®y sing.

or writing ¢ for cosy, j for siny, and AT for A/ T—7sin%,

(dr
¢=j57i,

¢ and 7 being the corresponding quantities for the next derived spherical parabola,

i (de
’“J"J«/T,'
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d,u. 1 dcp
VIo1+ ’\/I )
whence 2(c—7v)= \/J(OJ ), . ... Coe e e (99)

Thus a simple ratio exists between the arcs, diminished by the protangents, of two
consecutive confocal spherical parabolas.

as in (98.) and (74.),

When the functions are complete, w is taken between 0 and %; ¢ therefore, as in

article XXIV., must be taken between 0 and #; but when the amplitude is taken
between 0 and # the function is doubled. Moreover, when the functions are com-
plete, the point Q coincides with B; so that in this case the complete function
represents, not one, but two quadrants of the spherical parabola, the focus being the

pole. Hence as r=7—r 7=

Whence putting C, C', C", C", &c. for the circumferences of the successive confocal
spherical parabolas, derived by the preceding law, we may write
C —7=4/7 (C, —7))
C, _7r=\/jl (C, —)
C, —W:\/ju (Cp—m)
Ct/l‘“':\/j—m(cx?v—”') »
Co—7=4/7,(Cy—) J
Multiplying successively by the square roots of j j, 7,» J,» &c., adding and stopping
at the fifth derived parabola,
C—r=n/JJiJuduJw & (C;—).
Let this coefficient be »/Q, and we shall have C—7=+/Q(C,—7).. . . (101.)
Now we may extend this series, until the last of the derived spherical parabolas
shall differ as little as we please from a great circle of the sphere. Let the circum-
ference of this last derived spherical parabola be C,. Then C,=2=,and (101.) becomes
C=a(1+/Q). . . . . . . . . . . . . . (102)
Hence calculating the quantity Q', we may express the cu'cumfelence of a spherical
parabola by the circumference of a circle.
When all the spherical parabolas are nearly great circles of the sphere,
i=1,=1,=1,=0, nearly ; and j=j,=j,=j,=1, nearly. Whence Q' =1, nearly; or
C=2x . . . . .. . . .. (108)
When the spherical parabolas are mdeﬁmtely dmnnlshed
i=1%,=1i,=1, nearly, and ]_J,_J,,_J,,,_O, therefore Q'=0 nearly ;
or C=a. . . oo o . (104
Hence the circumferences of all spherlcal pa.rabolas he between two and four
quadrants of a great circle of the sphere.
XXIX. Denoting the angles at the centre of the sphere, subtended by the halves
of the semiparameters of the applied confocal parabolas, by v, ¢/, ¢, &c., we have
cosy=i, cosy'=i, cosy'=i, cosy’"=i,, and siny=j, siny'=j, siny’=j,, siny’'=j,,.

v

(100.)
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1— A/ 1—¢2 s .
———— -, determine in terms of j the
1+ V1= J e
successive values of 4, ¢, ¢,, i, and of j, 7,, 7,., &c., as follows :—

2= 1—1] s iy=[ ) 2—274] i =[Ltit=2i2ta +J>%ﬁ]2]

TR T L T Lt T Lt i)

We may, using successively the equation i,=

1. 1.1 w1 el 2 (105.)
i _[(1 +g)b oYt — 23R AP A )y g
(L+))* +22ﬁ+2"2‘ 22H(1+)1) (1+)) Y7 J
Hence we may derive the successive values of j, 7,7, in terms of ;.
For ji= 2 p=2204) a2l +)H (147 )
SO R (R T
. 201 lA %_ ¢L c_‘_]i_.Jg 2
o, = 22BN 4+ 24 L . (106)

[(1+7%) + 28241 +J)% ]
__(2221232898) (1 4+ /) (1 4 ))bs{ (1 + )2 + 23] [+ + 2424 (1 +7) 17472
[(1-j)% 284 4 282325(1 +73) (1 +7) e ] »
We may express the coefficient Q, or the continued product of 7, 7,7, 7, &c., in
terms of 7, the complement of the original modulus. Including in our approximation
the fifth derived modulus, we get
Q= (2)1.(2)1 4. (2)1+3+3, (2)1Hi+d+4, () H3H3+ats( dd87) ‘
1ol 2% 1oL 'L~ _1._1_ !-x c
)T+ AT )+ 2T 75 + 282 ) U000 +) 4 28 + 232 (LR )y

(107.)

XXX. It may not be out of place here to show, although the investigation more
properly belongs to another part of the subject, that the arc of a spherical parabola
may be represented as the sum of two elliptic integrals of the third order, having
imaginary parameters; or in other words, that every elliptic integral of the first
order may be exhibited as the sum of two elliptic integrals of the third order, having
imaginary reciprocal parameters.

Assume the expression given in (58.) for an arc of the spherical parabola, the focus
being the pole, and w the angle which the perpendicular arc from the focus, on the
tangent arc of a great circle to the curve, makes with the principal transverse are,

. du -1 siny tanu
g=sIn ————————- {aNn e b
"V V1 —cos*y smg,u.+ a { ~/'1—cos?y sinu

Let cosy=i, siny=j, and to preserve uniformity in the notation, write ¢ for p.
Then differentiating the preceding equation, it becomes after some reductions,
de 71 —%sin%p + cos?p + 42 sin’p]
do— [cosp — 1% sinp cos®p +72 sin%p] /1 —7%sin’p’

(a.)

Now the numerator is equivalent to 2j(1—¢’sin’p), and the denominator may be
written in the form 1—2#sin’p-+4sin*p. But ©=1#*(¢>4°), hence this last expression
may be put under the form 1—2#sin"p4-i*sin'p-4-2%°sin‘p. This expression is the
sum of two squares. Resolving this sum into its constituent factors, we get

do- 2j(1—1i? sin%p)
[1—z i+j & —1) sin%] [1—i(i—j v/ — 1) sin®p] 4/ 1—7*sin%"

(b.)
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Now this product may be resolved into the sum of two terms. Let
= ] = S (e
de ™ [1—i(i+7 v —1)sin%p] ¥V 1—sin® | [1—i(i—j 4/ —1) sin®] +/1—2*sin%" )

Or reducing these expressions to a common denominator,

do (P+Q)— (P+ Q) sin% + v —1(P—Q)ijsin% g
dp ™ [1—i(i+j ¥/ — 1) sin’g] [1—i(i—j ¥/ —1) sin%] ¥/ 1—Psm%" * ' ° = ° )
Hence P4+Q=2j, P—Q=0; -+ P=j,Q=j. . . . . . . (e)
Integrating (c.), we get

B S S ——
J[1—i(+j +/ —1) sin%] ¥/ 1—sin% [1—i(i—j &/ —1) sin’p] /1 —2*sin%p
Now if we multiply together the imaginary parameters
(@+ijy/~1) and (@—ijy/=1),
their product is ¢, or the parameters are reciprocal. '

Since the parameters are each affected with a negative sign, and one is equal to
2+ a certain quantity, while the other is equal to @*— a certain quantity, the
former parameter is of the circular form, while the other is of the logarithmic form.

It is very remarkable, that although the spherical parabola is a spherical conic,
the imaginary parameters satisfy the criterion of conjugation which belongs to
the logarithmic form, and not that which belongs to the circular form. Let
m=i(i—jn/—1); n=i(i+jy/=T1). These values of m and n satisfy the equation
of logarithmic conjugation, m-4n—mn=¢, and not m—n--mn=4, the equation of
circular conjugation,

(108.)

On Spherical Conic Sections with Reciprocal Parameters.

2 2
XXXI. Let %—l—‘%g::l be the equation of an ellipse, the base of an elliptic cylinder.

Let two spheres be described, having their centres at the centre of this elliptic base,
and intersecting the cylinder in two spherical conic sections. These sections will
have reciprocal parameters, if k, ¥, the radii of the spheres, are connected by the

equation
(BF=a)(k*—a)=a, . . . . . . . . . . . (109)

2 2

¢* being, as before, equal to %@—-

When k and %' are equal, we get A>=a*(1+44). This value of % agrees with that
~ found for % in (96.), or, in other words, when the two spheres coincide, the section
of the elliptic cylinder by the sphere is a spherical parabola. Hence also the spherical.
parabola always lies between two spherical conic sections with reciprocal parameters.
Let €® and €” be the parameters of those sections of the cylinder made by the
spheres. Then, as shown in (12.),
o Sinfa—sin®B  (2—0K° K% )
T sinacos’B T @*(k*— %) T K2—a?+a%?’
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but the equation of condition (109.) gives
Py 12(k2— o2
kg-—a2=m, hence 82’='*-('Z§7€7§~l-
In the same manner the spherical conic, whose radius is ¥, gives

km( ¥ —a?) ) W (B—a?)( 12 e aa)

R L N T, o 02,2 U JI,
=—gms L eeT= p =d=m, . . . . (110.)

or ¢® and €* are reciprocal parameters.

anf

To compute in this case the value of the coeﬂicxent — Sinf in the expression given

in (16.) for rectification,

__tanf dg
o= tana sin3 j‘ [1—e%sin’p] &/ 1—*sin%’
. b? a?
Since tan’B=13—7 B tan’e—-7— eyl sin k

. o, tan?B . YA (kE—o?
we obtain by substitution, ,Ean—gi-sm%::m;
but the equation of condition (109.) gives

e PR—a®) (F2—a?) B
K—a=j5—", hence tang sin"B= ( a“z‘ll)cgic’z )"—']‘—%72.

As this expression is symmetrical, we shall have for the spherical conic section,
whose radius is &',

tanp' . b?
oS =gg. . - . . . . ... . (11L)
tanB . tanp' .

Hence ﬁsmﬁ:tanismﬁ’, B ¢ S DB

or the coefficients of the elliptic integrals, which determine the arcs of two spherical
conic sections, having reciprocal parameters, are equal.
Let « be the criterion of sphericity ; then as

a=(1—m)(1=5)=(1 =) (1—e*) =10

L (D E B

XXXII. To determine the values of the angles A and A’ which correspond to the
same angle ¢ in the expressions for the arcs of spherical conic sections having reci-

procal parameters.
Sj o, __Cos?a  K*—a? k*—a?
imnce cos’=— —cos Bk — b%""kﬂ__ae_l_agz

Introducing the equation of condition (A*—a?)(k*—a’)=0a'’, we get cosz:if—,; but

. o k
tanp=cos¢ tana, as in (39.) ; hence tanr=-tang, and tani'=-tang,

therefore Etama=FKtand, . . . . . . . . . . . . (114)

or the tangent of the angle » which the perpendicular arc from the centre of the
MDCCCLII. 2v
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spherical conic, on the arc of a great circle touching it, makes with the principal
major arc, is inversely as the radius of the sphere.

A simple geometrical construction will give the magnitude ~ Fig. 10.
of those angles A and 2'.  Let the ellipse OAB be the base of 0
the cylinder; OCC’,ODD' being the bases of the hemispheres
whose intersections with the cylinders give the spherical
conic sections with reciprocal parameters. Erect the equal e
tangents DP, CQ, and join PO, QO. Theangles AOP,A0Q Q
are A and 2.

When DP=CQ=0, r=1=0; when DP=CQ=c,

a=N=~. The condition (109.) shows that when k=aq, ® T & 0

k4

K=co. Now as k' tan2'=a tan, is finite always, so long as A is not absolutely =g;

in order that its equal ¥ tana' may be finite also, we must have »' always equal to 0,
for every finite value of tana.

XXXIII. The tangent of the principal arc of a spherical parabola is a mean pro-
portional between the tangents of the principal arcs of two spherical conics with
reciprocal parameters; the three curves being the sections of the same elliptic
cylinder by three concentric spheres.

2 2 a4

. 9, —_ % S LA 2 !
Since tan‘e=1y—7s, tan’z'=;5_ _,, tan’s tane ==& =

Introducing the equation of condition (A*—a®)(k?—a®)=a*® (109.), we get

1
.
tanwtano&—i.. o e e e e e e e e e (115.)

Let %" be the radius of the sphere whose intersection with the cylinder gives the
spherical parabola ; then A”=qa*(1434). See (96.)

Hence k"”?—a*=a% ; and tan%”:z,,—;_it—lg:%; therefore
tane tane'=tan*". . . . . . . . . . . . . . (116)
The altitudes of the vertices of the three principal Fig. 11.

major arcs of the two spherical conics with recipro- B
cal parameters, and of the spherical parabola, above / \
the plane of the elliptic base of the cylinder, are in =
geometrical progression. Let AQ be the altitude B

. ; ]
of the vertex of the major arc of the spherical para-
bola. AP, AR the corresponding altitudes of the —

vertices of the major arcs of the spherical ellipses.
Then AP=+/#—0d’, AR=,/I"—a*, AQ=r/F"—a’=ar/7. The equation of con-
dition gives, as in (109.), APX AR=AQ. ‘

We shall give, further on, an expression for the sum of the arcs of two spherical
conic sections having the same amplitude, but reciprocal parameters.
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XXXIV. The projections of supplemental spherical ellipses on the plane of xy are

confocal plane ellipses.

2__ 72 2__32 2__ 72 2__ 72

a?—0% aP—b a?—b a?—b
. . ] . ! . 1 1l 1 | I—

For siny=sin¢, siny'=sine. Hence iy <y Ry R

This gives as the resulting value #*=a*+b’=a’+0’ or —b=a’—b}.

Two supplemental cones are cut by a plane at right angles to their common
internal axe. The sections are concentric similar ellipses, having the major and the
minor axes of the one, coinciding with the minor and major axes of the other.

tan?x’ —tan?8’  cot?8—cot?z  tan2x— tan?
=¢é’, and e’= 57 ﬁ_.— P 5 —s ﬁ, or ¢=e.
i tan®x cot?B - tan®«

tan®x - tan®B
tan’a

For

SecrioN IV.—On the Logarithmic Ellipse.

XXXYV. The logarithmic ellipse is the curve of symmetrical intersection of a para-
boloid of revolution with an elliptic cylinder. This section of the cylinder by the
paraboloid is analogous to the section of the cone by the concentric sphere in IX.,
for this cylinder may be viewed as a cone, having its vertex at the centre of the para-
boloid, i. e. at an infinite distance.
~ Let the axes of the paraboloid and cylinder Fig. 12.
coincide with the axis of Z; the vertex of the Z
paraboloid being supposed to touch the plane
of xy at the origin O. '

Let % be the semiparameter of the para-

gl
. . i
boloid Oab, and let @ and b be the semiaxes N ;}égf;;;{g;’;g}'g%;f//é%%}
W I 1
) o e . . &g
of the base of the elliptic cylinder ACB; then N a?ggaggégygg;éﬁw
7

=
=

==

SIS

~
Z

=

i
S

77
=

=

S

_—

==

=

N
oSN

7

7

the equations of these surfaces, and con-
sequently of the curve in which they inter-
sect, are

2 2
¥ +y'=2kz, and 5+5=1. . (117,

N
N

_
B
N

N
S

=

R
\\

=
=

S
NS

7

AR

{ X
A
Let d= be an element of the required curve,
then ' Y
dS,___ da\? dy 2 dz\2
=N (@) +@Z+&), . .. ... s
x, y and z being dependent variables on a fourth independent variable 0.
‘Assume r=acost, y=>bsinb, then a*cos®0+b*sin®0=2kz. . . . . . (i19.)
Differentiating and substituting,
dS\2 . 2__72\2
(?1?) =a”sin’0+-0* 00820+£€7§[{L sinfcos®0. . . . . . (120.)
To reduce this expression to a form suited for integration, it may be written,
d2\? .
kﬁ(—d—g =R+ (02— ) [P+ & — b sin®0— (@ — b7 sin®0. . . . . (121.)

2vY 2
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This expression may be reduced as follows :

Let P=0F, Q=(@—b0)[F+a—b], R=—(a®—=03* . . . . . (122)
and the preceding equation will become
k2=/d0,/P+Qsin®9+Rsin'e. . . . . . . . . (123)
Let this trinomial be put under the form of a product of two quadratic factors,
(A+Bsin%)(C—Bsin%0)=AC+B(C—A) sin’0—B?sin*g. . . . . (124.)
Comparing this expression with the preceding in (121.), we get
AC=b0F, C—A=k+a-V, B=d-0. . . . . . (125)
To integrate (123.) : assume tan2qo=A B tan®0. . . . . . . . (126)

The limits of integration of the complete functions will continue as before. Making
the substitutions indicated by the preceding transformations, the integral will now
become

VOE+B);5 [1 T (A+ B) sin’e |

AC [1~—A+Bsm<p] \/l (A+B)sm¢

B A+C)_, A+C_# , o
Let A+B—n, C EAiBg 2’ Ag ::—z-, N=1'—nS]n2@, I=1_Z2Sln2¢, L. (]28.)

(127.)

and the preceding expression may be written
[2n—#—n?] = =(1— " del
Vu(@—n)(L—n) & N2 N2y T’
It will presently be shown that A and C must always have the same sign, whence > n.

142

C .

As #=—7, and as C is always greater than B, #<1. From (125.) we may derive
145 ,

B

(129.)

@ (A+B)C—B) #¥__  AC
B~ (C~A=B3?’ F~(C—A—B}?
Now, that the values of @ and b may be real, we must have C>B, while A and C

must be of the same sign; but as B is essentially positive, C, and therefore A, must
be positive.

B +C

. A &
Since Arp=" and —g—=r, asin (128.)

we may eliminate A, B, C from the values of the semiaxes of the bé.se of the elliptic
cylinder, and express a, & and £, in terms of  and . We may thus obtain
a2 (=) (@P—n) b n(@—n)(1—n)
[2n__i2_n2]2 H kg—- [2n_ig_ng]g . . . . . ° . . B (130.)

In order that these values of @ and b may be real, we must have » positive, ©*>n,
and 1>7.

This is Case VL. in the Table, p. 316.
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If we put ¢ for the eccentricity of the plane elliptic base of the cylinder, we shall

have after some cbvious reductions, writing f for the complement of c,
Q=) (1—=)=QQ—n)% or fj=l—-n.. . . . . . . (131.)

Now this simple equation between n, ¢ and ¢ enables us with great ease to deter-
mine the eccentricity ¢ of the base of the elliptic cylinder, whose section with the
paraboloid gives the logarithmic ellipse, when we know the parameter n, and the
modulus i, of the given elliptic integral.

If we reduce this equation, it becomes ¢%*=2n—n’—%, the denominator of (130.).

XXXVL To integrate the expression given in (127.), we must assume

sing cosg A1 —722 sin’p.
@, = e (B2

Differentiate this expression with respect to ¢, and we shall have
d<I) 1= 2(1 +1) sin®p + 34° sm4¢+2n (sin®p — sinte) (1 —1? sin’p) )
T [1—nsin%] /1—?sin’p [1—nsin?]24/1—sin% =~ ° 7 ° (@)

Let 1—nsin’p=N, 1—#sin’p=I, as before.
P

Separating the numerators of the preceding expression into their component parts,
and attaching to each their respective denominators, we shall have

11 201 +®)sin%p _ 2(14#) (1—nsin®p—1) 2(1+4) 2(1+#)
NvI—Nyp (P and == Up— =" NvT = avT “aNvi - (&)
The next term gives
3¢ sm4¢ 3 (l—nsin®p—1) sin®p__ 329 sin%p | 3i%sin%p d
NvI~  n NI =-wvitwvrc - - (@)

Now these two terms may be still further resolved ; for
_3isin’p 3 (1 #sin’p—1) 341

% Vi = aop and
3%sin% 3_2? (1 —nsin®p—1) 3 3¢
NVI— T NV = i TNy

3sin®s 34T 3 32 3¢

N/‘/I _T—n"/T—ng"/i--‘-ngN/‘/'I‘o ° . . ° . a‘ (e-)
Combining the expressions in (b.), (c.), (d.) or (e.), the first term of the second
member of (a.) may be written

[1—2(1 +4) sin®¢ 4 3®sin’e] 34T 2
[1—n sin%] ¥ 1—2Zsin% = +[ (1+&)— ]4/—_'—[1 (1+z2)+ ]NVI (£)
Zn(sm%-—sm o) VT
(1 =—n sin®p)?
2n smeqﬂ/l _ 2 (1—nsin®p—DVT____ 21 21

whence (d.) becomes

The second term, , of (a.) may be thus developed,

N m N* “aviteewvis o0 0 0 ®)
and these two latter expressions may be written
_ 21 ___2(1——2'9sin°2<p)__ 2 2¢# l—nsin®e—1) 2 1 2% 1 2
NV NVI T~ T NVI = NvI = w Vit NI NvE
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onsin®e VT __ __gf_ AV 21
2n sin‘pl .
The term — NevT may be written
2nlsin'p 21 [ — 2n 8in% + n? sin*p— 2 + 2n sin’p -+ 1 41 21 K
B 2% S NevT ==t ®©
nl 2

Now nvl - 4/1

41  4(1—sin’p) 4 4i* (1—nsin®e—1)
and NVIT aNVI CaNvITE T NVT

4l 4 (B—n) 1
Whence nNVT—nQ VT_ nQ NVT. a . B . . . . . . . . (ln.)
Combining (k.) with (m.), we shall have

2n] sin‘p oV | 4 21

TNV W TEviT =G ”)N«/I aNeviso oo (@)

adding (n.) to (h.),
on(sin’p—sin'e)l _ 2VT  r4@ 2 2i® 4 47 1 /1 1
NV T m (nQ «/1"’[ —24 _] VT—2(5_1)NWT; ()

adding (f.) and (p.) together, we get as the final result,

d®, T, 1/*—n\ 1 1 S | 1—n) 1
P -‘7+B(T)7T+1?[2”"”2"’2]NVT_2< vt - - - (@)
or multiplying by =, transposing and integrating,
de In—n?— (" dp
— )= —n®, e I+ (S e [Py

But we have shown in (129.) that
2[2n—P—n*] 3 __ Ide
Va@E=mi—n k20 ‘”) NVT
2[2n—*—n?]

s 2n 2'9——77,‘*’
VAT v G pn ) ]NVI' (133.)

Hence, an arc of a logarithmic elhpse may be expressed by aline @,, and in terms
of elliptic integrals of the first, second and third orders; the latter being of the
logarithmic form (127.) may be written in the form

E b (de[1—i*sin’p] '
= VOA LB [l —nsinde] vidsntg - - o+ - (184)

XXXVII. When the cylinder and the paraboloid are given, we may determine the
parameter, modulus and constants of the functions which represent the curve of inter-
section of these surfaces, in the terms of the constants a, b and £.

The modulus parameter, coefficients and criterion of sphericity may be expressed, as
linear products of constants, having simple relations with those of the given surfaces.

Resuming the equations given in (125.),

AC=bF, C—A=k+a—0*, B=a>—0?

whence
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we find (A4-C)2= (k4 a*—b)*4-4b°F.
Assume Ap=R+(a+b), 4¢’=k4(a=b)>. . . . . . (135.)
we shall then have the following equations :—
A+C=4pg, B=(a+b)(a—b)
A+B=(a+p—g)(a+g—p); C—B=(p+g+a)(p+g—a)
A=(b+p-9)b+g—p);  C=(p+q+d)(p+9-0)
ab=(p+q)(p—q), F+a+8=2(p"+7)
Substituting these values in (129.) we obtain the resulting expressions
- 4(a+b)(a—Db)pq
~(p+g+0)(p+g—b)(a+p—9)e+q—p)

e (a+b)(a—D) e (a+b)(a—b)
“(at+p—q)latqg—p)y T (p+q+b)(p+g—0)

and if we denote by # the criterion of sphericity,

gm0 11+q+w>“’<p+q—a2
¥ (p+¢)? \p+qg+b) \p+g—0/’"

(136.)

(137.)

(138.)

we may express the parameters and modulus of the elliptic integral of the third order
and logarithmic form by a geometrical construction of remarkable simplicity when
the intersecting surfaces are given, or when a, b, and k are given.

Take BA=a, BD=b, and from O the point of Fig. 13.

bisection of AD, erect the perpendicular OC=§-

Then (135.) gives p=BG, ¢=AC, and putting P
and Qfor the angles BACand ABC,a-4b=2p cosQ, )/ g
a—b=2g cos P. As p, ¢, b are the sides of the
triangle BCD, and the angle BCD=P—Q, \
cont (252) = L2290400) 5.8 2\
2 4pq _
again as a, p, ¢ are the sides of the triangle ABC, and.

P+Q) (@+tp—q)letg—p)
2 4pq

cos?®

Substituting these values in (137.), we get

cosPcosQ cos Pcos Q cos Pcos Q

?= — y n=——pmrae M= g (139.)
[cos (PJ;Q) cos (P 2 Q)T cos? (P; ) COSQ(P 2 Q) ’
and if ¢ be the eccentricity of the elliptic base of the cylinder,
sin 2P.sin 2Q o
Cz=m. e e e e e e e e e e (140.)

These aré expressions remarkable for their simplicity.
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We also find for the criterion of sphericity z,
sin® (P_Q) i
-2

== cos( P1Qy (P Q)

(141.)

As 5 Is the altitude of a triangle whose sides are a, p, ¢,

@K'= (a+p+9)(p+g—a)(a+g—p)(a+p—9).

XXXVIII. In the preceding investigations the element Fig. 14.
of the curve has been taken as a side of a limiting recti- b
linear polygon inscribed within it. We may however | —
effect the rectification of the curve, starting from other oy
elementary principles. Let APB be the plane base of the ¥
elliptic cylinder, and let a series of normal planes PP'»/'
=w'w' be drawn to the cylinder, indefinitely near to each
other, and parallel to its axis. We may conceive of every T
element Pz of this plane ellipse between the normal »
planes as the projection of the corresponding element s='
of the logarithmic ellipse. Let 7 be the inclination of the
element d3 of the logarithmic ellipse to the correspond-
ing element ds of the plane ellipse. We shall have, da
being the elementary angle between the planes PP'»' and

ww'w dz ds
’ 'ax:SeCTﬁ............q.q..(142.)

\

. d d?
Now (31.) glvesa; =p+d—>§’
and therefore 3= cos«:d7‘+ dAQ Lsecr.dh. . . . . . . . (143)

] . d*p (a®—b2)(a? cos*A —b? sin’A)
2 e 2 2 2 2 N e
In the plane ellipse p*==a’ cos®»+4-5* sin"a, whence 3;3=— (@ cosr 1 1P s

. (144.)

We have now to express coss in terms of A.
From (119.) combined with (120.) we may derive
d32 B4 (a—0B2) [A°+ 02— 7] sin®0 — (a2 —1%)%sin’d
sec® =P AT k*(a* sin*0 + b cos® 0) )

(145.)
e e e Y . @y y b
Eliminating °, between the equations tana=; >, and >=-tan0, we shall have

a
tani=ytan. . . . . . S (146.)

If we eliminate tan0 by the help of this eqﬁation from (145.), we shall obtain

k*(a? cos?A + 0% sin?A)
P —
€O’ = () [P — PP — ] s — @ —sm - - - - (147)
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Substituting this value of cosz in (143.), and writing P', Q', R’ for the coeflicients of
powers of sin, the resulting equation will become

,k2=.fdx\/P'+Q'sin2x+R' Si— (a2 )| (G cosh=Bsin) g

Jk (4% cos®» + b*sin®A)% cos T’
As the first of these integrals is precisely similar in form to the integral in (123.),
we may in the same manner reduce the expression into factors. Accordingly let
P+ Q sinA 4R sina= (a+Bsinn)(y—Bsin). . . . . . (149.)
Writing «, 8, ¥ instead of A, B, C, and following step by step the investigation in

Art. XXXV., we shall have, as in (126.) and (128.), <}, m, and ¢, being the amplitude,
parameter and modulus,

+
2«1»——-—tan m=;—f—[—3, ifzs %Z; ... .. (1800
As . ay=ak?, B=a’—=b, and y—a=a’—b—F, . . . . (151.)

we shall have the following relations between the constants e, 3, ¥, m, i, and A, B, C,n, i,
in (150.) and (128.),

ﬁ‘—:B, a":C—B) 7=A+B: e+y= A+C

y—B=A, «+p=C, y—a—f+C—A-B=0,

o _Blaty)_BA+C) £ _B

et A AT BCT O U= M= =g

Hence the moduli are the same in the two forms of integration, and the parameters

m and n will be found to be connected by the equation m-+n—mn=4*; . . (153.)

m and n are, therefore, conjugate parameters, as they fulfil the condition assumed in (1.).

(152.)

The amplitudes ¢ and ) are equal.

A+B .
In (126.) we assumed, tan%:——}-— tan®0; and in (150.) ta.n%l;:o—‘i:—é

A
tanA= tanB as in (146.), whence tan2xlz__ 72 ((A-:-@) tan’p.

In (152.) we have found z+p=C, and A+B=y,
whence tan® =Z§ég tan’p. But AC= b“’k“f, and ay=a’l?,

tan®A, but

as shown in (125.) and (151.), whence
V=0 o e e e e e e e e e ... (154)
We shall now proceed to find the value of the second integral in (148.).

. (a®—1?)? sinA cos?A
From (147.) we may derive tan%'zkg(cZQ e ey LRI (155.)

Differentiating this expression, reducing, dividing by cosr, and imtegrating, we
finally obtain '
k

'( ) (¢ dr{(a? cos’A—07sin*A) .
e Jcos (a? cos®r 452 sin?A)3’
MDCCCLIL 2z

. (156.)

cos3r""
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(148.) may now be written

=\ PSR- . . . . L. (157)

If we measure the arc of the logarithmic ellipse from the minor principal axe, or
from the parabolic arc which is projected into b, instead of placing the origin at the
vertex of the major axe as in (119.), we must put

z=asind, y=bcosd; . . . . . . . . . . (158)
and following the steps indicated in that article, we shall obtain '
iS=\ds/PEQ ST RsmnS. . . . . . . . (159)

If we now make 3=2, and subtract the two latter equations, one from the other,
the resulting equation will become

S—3—rf-&

povcal (160.)

But this integral is, we know, the expression for an arc of a common parabola,

whose semi-parameter is %, measured from the vertex of the curve, to a point on it,
where its tangent makes the angle # with the ordinate.

Thus the difference between two elliptic arcs measured from the vertices of the
curve, which in the plane ellipse may, as we know, be expressed by a right line; and
in the spherical ellipse by an arc of a circle, as shown in Art. XV.; will in the
logarithmic ellipse be expressed by an arc of a parabola. As a parabolic arc can be
rectified only by a logarithm, we may hence see the propriety of the term logarithmic,
by which this function is designated.

XXXIX. If from the vertex A of a paraboloid, an arc of a parabola be drawn, at
right angles to a parabolic section of the paraboloid, it will meet this parabolic sec-
tion at its vertex. Let the arc AQ be drawn at right angles Fig. 15.
to the parabolic section Qv of the paraboloid, the point Q
is the vertex of the parabola Qu.

Draw QT and Q¢ tangents to the arcs QA and Quv. Then
QT and Q¢ are at right angles. As QT is a tangent to a
principal section passing through the axis of the paraboloid,
it will meet this axis in a point T ; and as Q¢ is a tangent to
the surface of the paraboloid, it will be perpendicular to the —*—
normal to the surface QN. Now as Q¢ is perpendicular to
QT and to QN, it is perpendicular to the plane QTN which
passes through them, and therefore to every line in this

“plane, and therefore to the axis AN, or to any line parallel to it, as the diameter
Qn.  Hence, as the tangent Q¢ to the parabola Qu is perpendicular to the diameter
Qn, Q is the vertex of the parabola.

Henc‘e in the logarithmic ellipse, one extremity of the protangent arc is always the

vertex of the parabola which touches the logarithmic ellipse at its other extremity.
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This is a very important theorem, as the protangents are arcs of equal parabolas,
all measured from the vertices of the parabolas. Hence also thelength of the protan-
gent arc depends solely on its normal angle.

Asan arc of a circle may be expressed by the notation s=sin”‘(%), y being the ordi-
nate and k the radius, so in like manner an arc of a parabola may be designated by

the form s=tan"l(%); y being the ordinate and % the semiparameter. To distinguish

the parabolic arc from the circular arc, the former may be written s::mv"‘(%). Again,

as we say, in the case of the circle, the angle » and the arc kw, » being the angle con-
tained between the normals to the curve at the extremities of the arc: so in the para-
bola, we may write » for the angle between the normals, and (k.s) for the corre-
sponding parabolic arc. In the case of the parabola the arc is always supposed to
be measured from the vertex ; inthe circle the arc may be measured from any point,
as every point is a vertex.

XL. Resuming the equation (157.), k?:jvdh\/ P+ Q'sin’A4R'sin'A— &

cos3 We

shall now proceed to develope the first integral of the second side of this equation.
As the integral is precisely the same in form as (123.), and the amplitude =09, as
also the modulus ¢,=i, we may substitute «, 3, ¥ for A, B, C, m for n, ®, for @,
retaining the modulus and amplitude, which continue unchanged, as we have esta-
blished in (152.) and (154.) ; or substituting for e, 3, ¥ their values in m and i, we get

[+ m?—2m]( de ]

o[ +mP—2m] 3
m J1—msin®p] /1 =22 sin%p l

V m(i—m)(1—m) k=
[#—m]{ dop [ +m®—2m]2 j' dr

+ m JV1—si —i?sin%p —|—j‘dgb\/l—-z sin'p— v m(i?—m) (1 —m) 00837J

If we eliminate i from the coeflicients of (133.) and (161.), putting M for (1—m sin’p),

and N for (1—n sin%), as also /T for Jl —sin’p; (133 ) will become

n

—mP,, —
(161.)

and (161.) will be transformed into

2(n—m) 5 (1—m)(n—m)| de n n m

)3 = o, (1) yd‘”“/ 1-2=mf S a6
If we compare together (162.) and (163.), which are expressions for the same arc of

the logarithmic ellipse, and make the obvious reductions, putting for ®, and @, their

i 41 i VI . . .
Sing cl(\}s eVl and ¢ c;,ISCP I, we shall get the following resulting equation of

values

comparison,

1—n —m 2 (dr | sing cos<p vl
< " >5‘N +< )5‘ MVI— mn, VI v mn cos3-r+ . . (164)
2z2
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o .
From (155.) we may deduce sinf_ﬂ—s%m, R ¢ 1N

¥ mn sing cosp VI
MN ’
It may easily be shown that tan+ secr represents the portion of a tangent to a parabola

intercepted between the point of contact and the perpendicular from the focus.

Hence tans secr=2 cosg j;OST . N e YA

we shall therefore have tans secr= (166.)

Combining (164.), (166.) and (167.), and using the ordinarynotation of elliptic integrals,
(1 —n
n

I, )+ (5, = E 0= 7o

(& [4/ mn Sing cos¢:|

i d'r d sint 1 dr V' 1—72sin% . sin®p 68
or as cost 1—sin’s > /mn )cost an 1— [an sing coq¢] (l )
V11— sin%
we have therefore
[4/ mn sing cos<p]

1—n 1 {del v 1—c?sin%
(e, o+ () m, o) =2 F.0)— 5 i (169.)

V1—¢ sm2

This is the expression given by LecENDRE, Traité des Fonctions Elliptiques, tom. i.
p. 68. Written in the notation adopted in this paper, the formula would be

1—n\(" d¢ 1—m\(* d¢ "dp. dr
(n)NVT+( m )MA/I m\ VT &/mnj‘cos-r I VAN

XLI. We may express a and b, the semiaxes of the elliptic base of the cylinder, in
terms of m and n, the conjugate parameters of the elliptic integrals in the preceding
equations. From the equation of condition m-+n—mn=4, and (130.) we may elimi-
nate ¢*, and get

@ mn(l—m)_ 5 mn(l—n)

P—:—(n——_‘;ﬁ)—g— ’ k—2=m L (171)
Thaea b__ l—n _ ¥V (Q—=n)(1—m)__~V1—#_ j
T'herefore P A P B e i .

Hence the ratio of the axes of the elliptic base of the cylinder is a function of the
modulus and parameter.

The ratio of the corresponding quantities in the case of the spherical ellipse may
be derived from the equation

2__p2
a*—b b —— .
=2; Ora—':-\/l—iz: .

This ratio is therefore independent of the parameter. There is then an important
difference in the two cases. In the one case, the ratio of the axes is independent of
the parameter, and will continue invariable, while the parameter passes through every
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stage of magnitude. But in the logarithmic ellipse the vertical cylinder will change
its base with the change of the parameter. We shall see the importance of this
remark presently.

These ratios are—

In the sphere %2‘] In the paraboloid ’Z":T_i— B ¢ V)

m

XLII. Resuming equation (157.) and developing it by a process similar to that
applied to (127.), we get

. ¢ [l—ﬂsm%lﬂhp L ars)
k m ) [1 e sln%] ,\/1 —'ZQ s]_n2 JCOSST .

Now (151.) and (152.) give
s o KV mn mn(1 —
;—%:m, ay=ak?, ,\/7(“—}-6):@—_—_—%, and a’= W
Making these substitutions, we get

[1—#*sin%]de dr
S=a/ T=m) (s e~ e - - - - - (74)

Now let m=0, then (165.) gives ¥=0, and we shall have

> =a\dea/1 7 sin®p.

This is the common expression for the rectification of a plane ellipse, whose greater
semiaxis is @, and eccentricity ¢. This is case IV. of the Table, p. 316.

We cannot arrive at this limiting expression by making e>=m=0 in (53.) ; for this
supposition would render =0, which, throughout these investigations, is assumed to
be invariable. ' :

XLIIL If, as in the case of the spherical parabola, we make n=m, or n=1—+/1—2,

the values of % and 7 become infinite. What, then, is the meaning of the elliptic in-

tegral of the logarithmic form of the third order, when n=m, or n=1—+/T—2? In
the circular form of the third order, when m=n, n=t, and the spherical ellipse be-
comes the spherical parabola, which, as we know, may be rectified by an elliptic

. . b < o
integral of the first order. Not only do the ratios %, 7 become infinite, but they be-
2 1—n : . . .
come equal, for 2_1_m—1 When m=n. What, then, does the integral in this case
signify ? It does not become imaginary or change its species.
Resuming the equation established in (133 ),
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¥ n(12~n)( -—-z ?)

If we now introduce the relation given in (130.) %: we shall have by

29— — 4
substitution
NVIZES 22 0 __
P o (2 ”)y +EOA Hae/T L ars)

If we now suppose m=n, or n=1—a/1—72, or 2n—*—n*=0, the last equation
will become '

=3 . (d e
N —;/%-I—jvdq;\/l—n@m ... .are)
. _ tanpVT ’
In this case (I)_IW. B ¢ V8

This is the expression for the length of an arc of a logarithmic -ellipse, the intersec-
tion of a cylinder, now become circular, with a paraboloid whose semiparameter #=0;
therefore the dimensions of the paraboloid being indefinitely diminished in magni-
tude, this intersection of a finite circular cylinder by a paraboloid indefinitely atte-
nuated, must take place at an infinite altitude. We naturally should suppose that
the section of a cylinder which indefinitely approaches in its limit to a circular cylinder,
by a paraboloid of revolution, would be a circle; yet the fact is not so. The inter-
section of these surfaces, instead of being a circle, is a logarithmic ellipse, whose
rectification may be effected by an elliptic integral of the second order, as we shall
now proceed to show.

In the first place let us conceive the paraboloid as of definite magmtude, and the.
cylinder to be elliptical ; its semiaxes as before being @ and 4. Then as a and b are
the ordinates of a parabola, at the points where the elliptic cylinder meets the para-
boloid, at its greatest and least distances from the axis of the surfaces, we shall have

2—-21@, B=2ks". . . . . . . . . . . . (178)

Hence ’—4*=2k(z'—%"). Let 2'—=z"=h, then & is the thickness or height of that
portion of the cylinder Wlthm which the logarithmic ellipse is contained.

. k*mn kmn
2 —_ . —_—
Now (171.) gives == - 2h=—0
and we have also a="Ym(l—m)  yonce h="2 Nmn_
n—m 2 V1—m

Now when n=m, a=b, k=0, while we get for A
h——v;’n.............(179.)
We thus arrive at this most remarkable result, that though the cylinder changes from
elliptic to circular, while the parameter of the paraboloid approximates to its limiting
value 0, yet the thickness of the zone, that is %, does not also indefinitely diminish, but
assumes the limiting value given above.
Now if we cut this circular cylinder, the radius of whose base is a, by a plane
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making with the plane of the circular section, or with the plane of xy, an angle whose

tangent is -, the semiaxes A and B of this plane section will manifestly be

a(2—n)

B=a, and A=,/ 1 or A=; Ve (180.)
If we denote the eccentricity of this plane ellipse by
iy == i—:—ié—il, or writing j for /1 —2, —i—}j (181.)

[t is shown in every treatise on elliptic integrals, (see Hymer’s Integral Calculus,
p. 220,) that if ¢ and ¢, are two moduli connected by the equation

1—V1—¢ 1-b

v e T (182.)
and ¢ and 4 two angles related, as in (63.), so that
tan(y —¢)=btanp, . . . . .. . .. (183)
we shall have (14-¢)E.(¢)=E,({)+¢, Sln'n.f/—— sze,("lJ)-
)
Now ]'+CI=%Z’ b?:l—c?:m, hence
1+5 1—5 b
E(0)="2E, W)+ 5 sy~ R ), - - . . (184)
and, using the common notation for the present, (74.) gives
bF.(9)=1o5F.(4). Adding these equations, we get
b 1—b
E(@)+0F. ) =02 E )+ 55 %sing, . . . . . . (185)
or, using the notation adopted in this paper,
[} dov/ T =i fag /T gsing, . . . ... (186)
since n=1—b=1—j. |

Substituting the value of the first member of this equation in (176.), the resulting
equation will become

.5 (145 - n . sing cosp 4T
Qﬁzz%‘fdgb,\/ll-i-é— smxp—naag%-_rj%ﬁ%- N -7
Having put for @, its value in this case, namely,

__sing cosp v/ 1
" cos?p +4 sin?p’

we must now combine the last two members of this equation. Adding, they become

ny . _zsincpcosqsvf} ’
2{sm¢ o 17 5% v s e e+ e . .. o (188)
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From this expression we must eliminate the functions of ¢.

2 y N2
Now (73.) gives ﬁ:w;—{—,fﬂg, e e e e e (189)
writing ¢ for w.
Substituting this value of +'Tin the preceding expression, for which we put ¢, we get

{s1 mp—%"iflc"”}. ... (190)

From this equation we must eliminate sing, cose. ,
If we solve the preceding equation (189.) we shall obtain the resulting expressions

2 sin’ p=1— V1, cos+i, sin%b}
2 cos’p=1+4 vT, cosy—i, sin*y]
Multiplying these equations together, and recollecting that I,=1—4’sin*}, we find

(191.)

4cos2¢>sih2qo=sin2¢[ll-|-2 VI cosd+icos™y]. . . . . (192)
Now the second member of this equation is a perfect square,
whence . 2 sing cosp=siny[ VI, +icosd]. . . . . . . . (193.)
Substituting this value of 2 sing cosg in (190.), we get
_n.. V1, +i,cosds n 4, sind cosyd
__2sm¢[1 _.m]_ 5T e - (194)
o)
As n=1—j, and ¢ *}—‘g, n—m, equation (187.) may now be written
_a 1+ 14y ~  ai’ sing cosy
23=7 )jdm]/\/ — Vit - - - - (195)
: a (2—n) a(1+)) 2
Now as A=5 1=, =3 Vi and 1-4-2,= Ty
imatel 2=Afd«/-——f—s‘-“i”__;‘ls——‘£........ .
we get ultimately > JVI—A Vo ey (196.)

The second term of the last member of this equation is evidently the common
expression for a portion of a tangent to a plane ellipse between the point of contact

and the foot of a perpendicular on it from the centre; while Afdgb v1, or

Aj‘d«.lz ¥'1—4¢ sin*}, is the expression for the arc of a plane ellipse whose semitrans-

verse axis is A, and eccentricity ¢,
When the function is complete, @:% and y==. See (183.) .
L]

Hence as jdxla vI=2\dy vI,

,EzAjfd«,L«/i,..’. ey
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> therefore, in this case, is equal to a quadrant of the plane ellipse whose principal
semiaxis A, and eccentricity ¢, are given by the equations

A=y/@F", and i,:l— vize

Vi (198.%)

To distinguish this variety of the curve, we may call it the circular logarithmic
ellipse, as it is a section of a circular cylinder. Accordingly, in the two forms of
the third order, when the conjugate parameters are equal, or m=n, the representative
curves of those forms become the spherical parabola, and the circular logarithmic
ellipse. .

This is Case V.in the Table, p. 316. The results of the preceding investigation will
reappear in the demonstration of the theorem, that quadrants of the spherical or
logarithmic ellipse may be expressed by the help of integrals of the first and second
orders. :

XLIV. It is not difficult to show that this particular case of the logarithmic form,
when the parameters m and » are equal, represents the curve of intersection of a
circular cylinder, by a paraboloid whose principal sections are unequal.

. 2 2
Let 2*+y’=a’, and fk—+%=2z e e e e e (199)
be the equations of the circular cylinder and of the paraboloid.

qu y P

Assume x=acosh, y=asind. . . . . . . . . . (200)
‘20 3 29
Then 2z=a2{coz +E%‘},
d . d d 1 1y . -

~and a—g: —a sind, a‘%:a cosb, EZE=”2<P—Z) sinfcosd. . . . . . (201.)
dz 1 1\ . ¥ .
Hence Ii?za[l"'“z(i'_%) sin’0 cos20] e e e e e e (202)

Now we may reduce this expression by two different methods to the form of an
elliptic integral.
By the first method, eliminating cos®, this expression becomes
2 2 2
= ta(3—1) sin—a(f—y) sm0. . . . . . . (208)
We may, as in (124.), reduce this expression to the form of a product of two
quadratic factors,
(A+B sin’0)(C—B sin’0)=AC+B(C—A) sin*0—B’sin*0. . . . (204.)

Comparing this expression with the preceding,

AC=d, B=(3—7), C—A=a(—7) or C=A+B, and AC=A*+AB=a". (205.)

# Professor Stoxes of Cambridge has pointed out to me, that this curve, like the plane ellipse, when the
cylinder is developed on a plane, becomes a curve of sines. '

MDCCCLII. 3 A
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. A ‘
Let us now, as in (126.), assume tan’=x_gtan’p; . . . . . . . . (206,

and following the steps there indicated, we shall have

BEA+B) .,
S—A a1 A TATBE s’

B(2A+B > (207.)
I: smggv] \/1 “A1B? sin%p
an expression of the same fm m as (127.).
B B(2A+B) .,

Let A+B=n, (A+B)Q ——12, . B . B . e . . . (208-)
A A? ,
therefore l—n=x5 and 1—i2=m} C L (209)

Hence l—n=+V1—%2, or n=m

If we develope this integral by the method indicated in XXXVI., the coefficient

20— —n? de
—,— of the mtegralj‘1 i) V1= s’

, in the result will be 0, and the re-

duced integral will become, as

AEB"""’ B._-———— and B= a(k, ) coe o e L (2100

2(1 ) [5d§0~/1+1 n)f Coe e oL (211)

Let ' and 2" be the altitudes of the points above the plane of xy, in which the
principal sections of the paraboloid meet the circular cylinder. Then 2"—z' is the
height or thickness of the zone of the cylinder on which the curve is traced.

Now *=2kz', ®=2k's", whence 2"—z' 2 k’ k)

Let this altitude or thickness of the zone be put 4, and we shall have

s=h; j&wu(l ”) o). . L (212)

Hence the arc of this species of logarithmic ellipse may be expressed by integrals
of the first and second orders.

It is not a little remarkable that whether the integrals of the third order be circular
or logarithmic, or, looking to their geometrical origin, spherical or parabolic, when
the conjugate parameters are equal, or m=n, we may express the arcs of the hyper-
conic sections thus represented, in terms of integrals of the first and second orders
only; the integral of the third order being in this case eliminated.

If we now resume equation (202.) and make

20=—+¢, S G B
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sin 20=2 sinf cosf=cos}, and 2d0=d+). Therefore (202.) will become

4d
d\fg = 2+4 (]C’ lc) COoS ’4/, e e e e e e e e (214.)

2 R
hence as h:% (%-—%), we shall have 23 = s/a2+h2j‘d¢\/l ——m—?—l——z&sinw. . (215)

This is the common form for the rectification of a plane ellipse, whose principal semi-
axes are+/ a*+h* and a. Let ¢, be the eccentricity of this plane ellipse,
h B n 1= A1—¢

= = = == —_—, . 216.
VE+RR 2A+BT 20T 14 V1= ( )
and the relation between ¢ and +J is given by the equations
A S
20=g+1}/, tan90=A+B tan’p, or tan0=\/l —n tang.
1 +4sind
Hence —smq,—(l nm)tan’e. . . . . . . . . . (217)

When =0, tango:—&;; when ¢=g, (ng; when = —g, ¢=0. Hence + is measured

from the perpendicular on the tangent to the ellipse, at the point which divides the
elliptic quadrant into two segments whose difference is equal to a—b, as will be
shown further on: while ¢ is measured from the semitransverse axe . Thus while

< varies from —% (that is from the position at right angles to this perpendicular, and
below it,) to 0, that is to the perpendlcular'ltself, ¢ varies from 0 to tan-'lvj:.; and

while +/ varies from 0 to - 5 @ varies from tan™ 4/]‘ to g Thus while 4 passes over

two right angles, ¢ passes over one right angle.
We may now equate the two expressions (211.) and (215.),

jndWT:?Eﬁ“ = W[l dpy /14221 ”)‘f @], .. (218)

or we may express an elliptic integral of the first order by means of two elliptic in-
tegrals of the second order. Thus we obtain the geometrical origin of this well-known
theorem.

When the functions are complete, since

STHJ\/ 1—2 sin*y= 2Sd¢\/ 1—2sin™), we get

wal—z smw—{-ycpn( )Wl] C @)

which agrees with (186.).
342
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SectioN V.—On the Logarithmic Hyperbola.

XLV. The Logarithmic hyperbola may be defined as the curve of symmetrical in-
tersection of a paraboloid of revolution with a right cylinder standing on a plane
hyperbola as a base.

Let Oxz, be a paraboloid of revolu- Fig. 16.
z

tion, whose vertex is at O, and whose
axis is OZ. Let ACB be an hyperbola
in the plane of 2y, whose vertex isat A,
whose asymptots are the lines OX,
OY, and whose axis is the right line
OAD. Let the planes ZOX, ZOD,
ZOY cut the paraboloid in the plane
parabolas Oz, Od, Oy, and let cab be
the curve on the surface of the para-
boloid whose orthogonal projection on
the plane of 2y is the plane hyperbola
ABC. Then acb is the logarithmic
hyperbola.

As OXis an asymptot to the hyper-
bolic arc AB, it is manifest that the
parabolic arc Ox is a curvilinear
asymptot to the arc ab of the loga-
* rithmic hyperbola. \

&€

2
Let m—p=Land #4y’=2ke. . . . . . . . (220)

#

be the equations of the hyperbolic cylinder and of the paraboloid of revolution, and
consequently of the curve in which they intersect Let Y be an arc of this curve,

dz »
then _ydx[ e + ( d;)] s e e e .. .o(221)
z, y, % being functions of a fourth independent variable A. '
_ o cos?A b*sin?A
Assume SFon—rsnn ¥ Fen—Ramn ¢ - - (222)

It is manifest that these assumptions are compatible with the first of equation (220.),
and the second of that group gives

a* cos?A + b4 sin?A
Pty=——s s =2k,
a? cos®A— b sin?A

* We might, by the help of the imaginary transformation sinf= 41 tan#', pass at once from the elliptic
cylinder to the hyperbolic cylinder. Let tanf'=y, and the resulting equation will be of the form
dy = a+pPut+yut
du VA+Buwr+Cut+ Db’
an expression which, on trial, it would be found very difficult to reduce. The difficulty is eluded by making
the transformation pointed out and adopted in the text.
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Differentiating (222.), we get
( dw>2 a*b* sin?A (dy>2 a*b* cos®a ( dz>2 (a® + b%)2a%b* sin? cos®A

dn/ T (@ cos?A—07sin?2)2” \dn/ T (@B cos?A— 6% sin®A)® \dn/ T A2(a® cosPA— B2 sin)t - (223.)
kAT [a®k*+ (a®+ %) (a® + 0% —£?) sin®A— (a® + 1%)? s1n47»]‘f
Hence a2 dn T (a® cos®r — b% sin®A)? (224.)
Let this radical be put=+/V.
Assume V=(A+DBsin’2)(C— B sin"A) =AC+B(C—A) sin®A—B’sin"a, . . (225.)
hence AC=el?, B=a"+0’, C—A=a+b—-F. . . . . . . (226.)
Let us now assume sing such, that ‘
AC sin®p
S]H?\—m, Ce e e e (227)
A(A+0) C(A+C)cos?s
then A+4Bsin’A= =A+Ccos%p’ C—Bsin 27\.—-m¢ s
. (2 + %) AC sin’%p
2 — le”+07") AL SI"g,
and a? cos’A— b? sin®A =a*— B{A+Coosp) ’
or as a’+0=B, AC=dF, C+]c2 A-I—B
(A+C)
2 2
we get a® cos’—b ”m27“'A+CcosQ<p[l Csm go]
k_dT__ 4/AC.[A+C cos®] cosp
Hence P O (At C)[1—Isin%g]? (228.)
. A+B
Making I=x7¢c- - -« - - e (229.)
AC sin?
Differentiating the equation sin’A= Am% | (230.)
da ak v A+ C cosp :
we get aTP- (‘ A e e e e e e (231.)
J(A+B
A/B[A-I-CCOSQ?)]/\/I A+C)S n‘%p
dr  drda . . C(A+B)
or as dp= dx dp? making ﬁ:m, (232.)
T cos?pde
we get, finally, = vm@‘)y[l—lsin%]ﬁ IV g (233.)

- XLVI. We may develope another formula for the rectification of an arc of the

logarithmic hyperbola.
Assuming the principles established in Sect. XXXVIII., we may put

d%p .
—\psecodh—\ggsecodr. . . . . . . .. (234)

In this formula p is the perpendicular from the axis of the hyperbolic cylinder let
fall on a tangent plane to it, passing through the element of the curve; and v is the
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angle which a tangent to this element makes with the plane of the base. v in this
equation is analogous to 7 in the last section.

In the above expression, the negative sign is used as the curve is conver towards
the origin.

Q.a
N

Now p*=a® cos®»— b* sin’A, and tanv= \/ . We must substitute for these

) +(dA)

differentials, their values given in (223.), and introduce the value of ¢ assumed in

(A+C)2AC cos
(227.), whence sec’v= FIATC cos'p P (@oosr—Faimin)s © * =+ + - (235.)
. __ #AC(A+C)cos
p secv: Ic[A-(|-Ccos)9¢] L2 (236.)
. da V A+ C.ak cosp
© e — .
But (231.) gives 35 VB[A + Ccos'e] ¥ 1—Femy
2k cos®pd
whence p secvdr= 2 éo.s pae 3 .. (237.)
VBATC) [1 ~53C sin%] VI—@sin’p
We must now determine the value of the second integral in (234.), namely,
d%p
j"a}"—g secudA,
. . d®p (a®+ %) [a® cos*A + b2 sin®A] secudA
— 2 —L —n
since p*=a’ cosA— 47 sin’s, ;3 secudr= (@ cor— 17 s} . (238.)
(0® +8%) sina cosa
9
Now we may derive from (223.) tanv= = cor— P sEn) (239.)

Differentiating this expression, then multiplying by secv, and integrating, we obtain
kj’ v + b2)(' [a® cos®A + b2 sin*A] secuda

cosv ™ (a® cos®x — b2 sin?A)3

(240.)

Comparing this expression with (238.), and introducing into (234.) the values found
in (237.) and (240.), we obtain

T _(dv a? cos?ede
E~ Jeos ™ WB(A+C))[1—msin®p]2V1—sin%’ = °  ° (241.)
. C
makmg M=FTG - - v e e e e (242.)
. A+B CrA+B 2 C
since l=57¢ and “‘_]—3(m),assumen=~l—=§ - e o (248)

and we shall have » and n connected by the equation of condition, defined in (1.),
' m-n—mn=72¢.
The three parameters /, m, n, and the modulus ¢ are connected by the equations

In=v, m4n—mn==¢ . . . . . . . . (244)
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{ and n are reciprocal parameters, the reader will recollect, while m and = are con-
Jugate parameters.

XLVII. It was shown in (226.), that C— A=a’4+-0"—£F*, B=n’+0*, F=A+B—C,
and &’/*=AC, whence

@ AC » _(A+B)(B—C)
F=RAIB—02 B (A+B—CZ"

(245.)

In order that these values of @ and b may be real, we must have B>C, and A of the

same sign with C, both positive, otherwise »/V in (225.) will be 1magmany As

B
l—.iic, {>1; here the parameter / is greater than 1, while m and = are each less

than 1.

We may express the semiaxes of the hyperbola, the base of the hyperbolic cylinder,

in terms of the modulus i and the parameter /; for by the equations immediately

preceding we may eliminate A, B and C in (243.). We thus find
Bl-1)A—#)  ®__l1—1)(—#)?

e L o (246.)

therefore %:agz;W:ng;_;hg. C e e e e e e e e (247.)
We may express the semiaxes in terms of the conjugate parameters m and n,

et e el L (8)

hence %=aez;b2=(m+nﬁ2mn) and \/m=(nﬁ%; coe . (249)

or we may express @ and b more simply in terms of [ and m. Eliminating » and &,
we get | %—z—:ina(l—%?% 72—::{5}—1—1))9 Coe e o e (2600
Let ¢, be the eccentricity of the hyperbolic base of the cylinder, we shall easily
discover the following equation between ¢, ¢ and /, analogous to (131.),
(’=D&pP=(1—a)2 . . . . . . . . . . (251)
Hence when ¢ and [ are given, ¢, may easily be found.
XLVIIL If we equate together the values found for Y, the arc of the logarithmic
hyperbola, in (233.) and (241.), we shall have
b2 - vcos%d@ ‘ +a o cos?pdp
[1—7sin%p]%4'1 —42sin%p J[l—-—msmg 12V 1—2sin%
For brevity, put ’
L=1—Isin’p, M=1—msin’p, N=1—nsin’p, [=1—¢sin%. . . (253.)

= vBA+C) (252.)

cossu'

The preceding equation may now be written

cos <pd¢ 2(‘cos9<pd¢
bfLQVI “Yvevi= vB(A+0)

(254.)

cos3
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or, if we substitute for the coefficients of this equation their values given‘in (246.),
we shall have

aof cos’pde 2 cos?ede [P+ E2—202 ]V I—2( dv
( -1 ) 1241 + 2(1 - ) M2VI V/ﬁ:l_) j‘cossu. (255.)
) o N5t w sing cos<p v1 I sing cosp V1
Let 3=P+42—2[2, d=m>+*—2mi, O,= Q=57 - (256.)
Now the process given in XXXVI. will enable us to develope the integrals
cos?p cos?ode
5‘—1}2—"/—1‘ and MEAVT® as follows :—
cos?pd . ) de 0 e ,
2(l—#)? L251¢ (=)D~ (I—i x5 «/r .. (257)
and
cosgcpdqi _m(l— 2) P(1=27) ‘o"z”2 1—z9
The equations of condition ln=4", and m-4-n—mn=7, give
PA—?) (l—ﬂ) 21— (—)p
We have also, since m= l( Z}), (l—2)D,— (Zg( _z) )CI)m WJ——ggf—L/}— . (260.)

Making these substitutions, adding together (257.) and (258.), the coefficient of
/do vT vanishes, and we shall have

2y2feos 2ode . o ((cos’pdp  3sing cosg V1  3(—#)(dg 3 o dp V(=)
2(l—2 )yLﬂ/I +2(1=O)\yEyvi = LM Ti=1) Vit~ = \4«/

___Q
but (255.) gives (I—) ‘;f: ﬁdf—l- #(1—2) ‘iZZ fff 54/ (lz_z ycosz’u

Combining this equation with the preceding,

3 o V(=) dp | ¥(I—i*)(dp , Isinpcosp vI_ dv
(= )La/I m J“M«/I_I- i =2V = 1)}1 (261.)

(-1 LM os%u”
3 .  2(1—2)3 _P(—1) =) (1—2)3
Now O =m?+—2mi*= ((Z sz)g > and as m= z_;z)’ m (- 1; ’

In the last equation, substituting this value of ¢/, and then dividing by &, we get

sm¢cmcp VI (=?)(dg  (—A(Cde (=P dp (=& (dv
‘ Ti=0 vt 7 JoviT oMV Eneo - - (2620
LM
Now 25‘%:35 =tanv secv+} E%:Z and ‘3052":&;?5: (263.)

as may be shown by combining (226.) with (235.).

Hence 'sinv:\/»l(ll:;) tang /T, . . . . . . . . . (264)
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{(I=1) sing cosp +/T -
and therefore tanv secv= = lef e e e e e e oo (265.)

Substituting this value in the preceding equation, we get

A T A

In (170.) we showed that, m and n bemg conjugate parameters connected by the
equation m-++n—mn=72,

( —n\ (" dg (l—m) de 2 (de 1 j’d-r

JN «/1 m M 4/T=mn V1 A/ mn)cost
1—n\ I/A—?\ 1—m\ 1/1—3\ &2 {—1 1 ! {—
Now ( n )=F( l )’ ( m )=Z‘z I=1) mn™— (z 1) and —e==g5 =1y
Substituting these values in the preceding equation, and dividing by 3, we get

(HQ> Na/1+(l—z2>,§ ll:ﬂ § ffl \/Zilj;OST c oo 267)

If we add this equation to (266.), the coefficient of the integral

v f/l will vanish, and
the resulting equation will become

Vi (dv
SLVI+ NVI «/I+\/(Z 1) l—zﬁ) Jeosv j‘os—r] . . (268)

We shall now proceed to show that\—

COSU

‘g;osr may be put under the form

do' . . . Vit
j'c————o:u,, if we make the assumption sins/= ”V;nq’, Coe e e e e e e e (269

«' being equal to (l—n)( —1) —{—M

(1 —m sin%p) (1 — sin%p)

Now cos’v= COS% , as in (263.).
l = 1[1—12 sin%p —? sin’%p cos?p]
Hence S‘COSD [ M ] . . (270)

but we derive from (165.) and (166.) the value

I—i* | *dr _ (de [ cos®e —nsin®p +ni® sin’p]
{(I—1)Ycost— \WT MN s ..o« (271)

or subtracting,

[(i—1)| Ycosv cosr

=2 n sin%p cos?p 2 sin®
=\+r E-|- SN o=V AT R ]de . L (@er2)
These two latter integrals may be combmed into the single integral,

(11 —2%sin®0—n cos?p] [1—12 s1n4¢] dga
LMNVI coe e oo . (278)
MDCCCLII. 3B
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Now as m-+n—mn=1, the first factor of the numerator becomes (1 —n)(1 —m sin’p)
=(1—n)M, and therefore

\/ZFUCOSU j;om (Z—li2> [11_11:.:?%4@]. R C7E)

~ Substituting the second member of this equation for the last in (268.), we find

( do de  (de _ ([1—*sin*p]
JLv1+'NvT TWIT) LNvT C o (275.)

Now, since we have assumed in (269.)

. ¥ # tax LN do! V¥ [1—sin%p]de
va':—f?/-%zl—?, cos%’:m, hence co;)u’:: [LN&/I 50 . e (276-)
I
and consequently _YLVI NVl_yV1+ Ve cosu, Coe e e e e (277)
This formula is usually written
( dg de —F 1 d /¥ atang) 4
J[l—nsin2¢5]4/l—02 sin2<p+S[1_%; Sint‘)qﬁ:]\/l——cQsing?5 c(¢)+4/a d¢( ) A

(Va tanq)

We have thus shown that from the comparison of two expressions for the same
arc of the logarithmic hyperbola, we may derive the well-known equation which
connects two elliptic integrals of the third order, and of the logarithmic form, whose
parameters are reciprocal *,

Hence also it follows that if v, 7, and o' are three normal angles, which normals
to a parabola make with the axis, and if their angles are connected by the equations

cos’v = ML smu—-\/— tang v1, ]

cos?p’

5 MN  mn sing cosg
cos'r = =,  sinr=——r—",

e

(279.)

LN tang
cos%’:m, siny —-\/ (1—n) Vi)
we shall have

dv dv dr
j;osu . L. (@80)

* We might by the aid of the imaginary transformation sing=4/—1 tan{s have passed from this theorem,
connecting integrals with reciprocal parameters, to the corresponding theorem in the circular form. It seems
better to give an independent proof of this theorem by the method of differentiating under the sign of integra-
tion, as we shall do further on. Although these theorems have algebraically the same form, their geometrical
significations are entirely different. In the logarithmic form, the theorem results from the comparison of two
expressions for the same arc of the logarithmic hyperbola. But in the circular form, the theovem represents
the sum of the arcs of two different spherical conic sections described on the same cylinder by two concentric
spheres, or on the same sphere by two cylinders having their axes coincident,

(278.)
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Section VI.

XLIX. The difference between an arc of a logarithmic hyperbola, and the corre-
sponding arc of the tangent parabola, may be expressed by the arcs of a plane, a spherical
and a logarithmic ellipse.

. . Cfdv T 2 2pd
Resuming the equation (241.), 5;——(%;-;:% %‘%%%

and combining (248.) with (249.), we may easily show that

@ _n(l—m)Vmn |
VBALOC)  min—fmm > T Tttt (281.)

and from (258.) we deduce that

2n(1—m)| oy = (1 — )j ”+jd¢\/1 —m®,— (5 mtn—2mn) |2

Let G="2(1— m)f +§d¢Jl —m®,. . . . . . . (282)

Substituting this value ij‘m in the preceding equation we get, after some ob-
vious reductions,

of & T wim o n—m)
cos® kT mitn—2mn . Amn MVT
Now a, and b, being the semiaxes of the base of an elliptic cylinder whose curve of
section with the paraboloid is a logarithmic ellipse, let, as in (171.),

o _mn(l—m) 3?  mn(l—n)
B —mP BT (e—m)p

(283.)

and if we put 2 for an arc of this logarithmic ellipse, we shall have, as in (163.),

2% M%G n(l—m)* dp  (dr
E—n=m ~ Amn JMVI “Jeos’s

Subtracting this equation from the preceding, and replacing G by its value in (282.),

we finally obtain .
j' v mn(1—n)mk G (284.)
v e e e .

(n—m)(m+n—2nm)

cos%
We may express the arc Y by the help of one palabolic arc only, if we introduce the

equation established in (160.), S=24k\—5-, hence

cos?"r

» mn(1 —n)mk
T=ks cos3u S+(n-—m)(1(z+m mzmn) m(l )j‘ﬁ+§d¢,\/l—-m®] . (285)

When singb:%;—z, v=—275, and the arc of the logarithmic hyperbola becomes infinite, the

arc of the parabola also becomes infinite, and an asymptot to the logarithmic hyper-
3B2
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bola; the difference, however, between these infinite quantities is finite, and equal to -
& mn(1 —n)mk
(n—m) (n+m—2mn)
It is needless here to dwell on the analogy which this property bears to the finite
difference between the infinite arc of the common hyperbola and its asymptot. When
n=m, the above expression becomes illusory. We shall, however, in the next article
find a remarkable value for the arc of the logarithmic hyperbola, when m=n.
We may express the above formula somewhat more simply.

G—S8, integrated between the limits =0, and ¢p=sin~'/"*

As in (248.) k_L“Lm(i:_"l, and b VmT=n) Wy i w1 —nm

+n—2mn k n—m 7 w'm (n—m)(n+m—2mn)

The equation given in (285.) now becomes

Y=H s+ G L (286)

0053

The ratio between the axes of the original hyperbolic cylinder, and of the derived
elliptic cylinder, may easily be determined ; for
' b2 #(1— &2
=iy @) and 3=T70 (b)),
Let ¢, be the eccentricity of the hyperbolic base, and ¢ that of the elliptic base, then
n2(02—1)=i2(1—c2).

Comparing (a.) with (b.), \/n \/l —-1+
This equation gives at once the ratio between the axes of the hyperbolic and elliptic
cylinders.

When the paraboloid becomes a plane, or when its parameter is infinite, m=0,

m(l— n)
nm)

. ) dv . . .
S becomes an arc of a plane ellipse, kf—ug is changed into a rectilinear asymptot, and

the expression in (286.) is now transformed into Z\—=-—7"=S; or the difference

co s3
between the infinite branch of an hyperbola and its asymptot may be represented
by an arc of a plane ellipse.

‘L. On the rectification of the logarithmic hyperbola when the conjugate parameters
are equal, or m=n.

We have shown in XLII. that when m=n, the arc of the logarithmic ellipse is
equivalent to an arc of a plane ellipse ; so when m=nmn, the arc of a logarithmic hyper-
bola may be represented by an arc of a parabola, and an arc of a plane hyperbola.

In (262.), if we make m=n, or [=1+j, n=1— j, we shall have, writing N for M,

o:(_d¢ dp __ 2singcospV' 1 "de do
Nvi—evi=— v JvitHows- - - - - @)
and in (170.), if we make m=n, and M=N, |
e de dr | nsing cosg VT ’
2(1—7)) NVT_(2—n) V'f_2 cossq_"“—-—iqT . . . . . . (bo)
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Adding these equations together, as 1 —n —-j, we get

de _ ('dqi smcpcos Vi ¢
QJJ‘LVT— ‘)&/ I+4j osPu cos3r+ TS [ L] (c)
Now the arc of the logarithmic hyperbola, as in (233.), is
T cos?pdp - .
=A@

2
vB(A+C) ‘
value for this expression, given in (249 ), m=n; hence

. . l .
In this case, the coefficient =g, as may be shown by putting in the general

cos?pde
lLH/I B (-9

o |
Now (257.) gives 2(I—) cﬁfff;:ld),—ﬁ@\/l-l-(l AR PR (3

and the general value of 3 being 24+i*— 20, as in (256.), 8=2{(1 —n)?, [=2—n, and
l—?=I(1—n), since ln=12.
The last equation may now be written, combining (e.) with it,

47T l
T =1=0 Q1= nj}l¢\/—+ vity LVI s e (287
Adding this equation to (c.),
4T .("de sm«pcos<p ‘ '
5‘0053 j;os&r AL i d¢>~/I+ O [N L] .. (288)
_(1+j)sinp co cospV'T__ __tang /T | tangv'T
Now j L i + -

Combining this value of ®, with the preceding equation, we get

41? Scossu 2ﬁos3r+ [tan%/ I "j‘d o/1 +jj Wi I] +tanga/T [n cos’s 2 cosg + L] (28

and this latter term, in this case, may be reduced to—m%%—‘—/—!-.

. . . ab
But,aand bbeing thesemiaxes of the hyperboliccylinder, (248.) gives 4z _ﬁ%‘m
in this case, as m=n, > vab_k
or in thi & as m=n, 7 ==;

Now \/::77’ is the distance from the centre to the focus of an hyperbola, the squares

of whose semiaxes are;ab and j; ab, hence

%[tan@«/i —§d¢\/i+ji§7d/%

. i X
represents an arc of an hyperbola the squares of whose semiaxes are;ab and ‘%ab.
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Introduce this value of ;—, and divide by 2,

dv dr kj tang V1
ar=aif 0 ST 4 [tan¢¢1 - §d¢JI+ j’ ] At VI (200,
Now when this equation is integrated between the limits =0, and ¢=sin“‘\/ li’ or,

. . . 1—j
taking the corresponding values, between =0, and 7=sm“‘(1—_'j—j.), or between »=0,

Tomm s s . . dv
and v=g, Y is infinite, and the arc of the asymptotic parabola &\,

but twice the difference A between those infinite quantities is finite. Let sin%p,:%,

. _ k) (T dr @ (0 e P de
Slnv‘,-—-—l—_ry then A= & -I—]t'j; P -23-[1 ﬁ¢~/l+°7i§; th] . (291)
Hence the difference between the two infinite arcs of the equilateral logarithmic

hyperbola, and the corresponding infinite arcs of the asymptotic parabola, is equal to
a right line 4 an arc of a plane parabola — an arc of a plane hyperbola.

LI. On the logarithmic hyperbola, when /=co. Case XII., p. 316.
b cos?pde
vB(A+C)J[1—Isin%]? v/ 1—2sin%’
Now as In=1*, and as ¢ is finite, while /=c0 , n=0.
The equation of condition m+n—mn=42, gives therefore m=+’. Equations (248.)
and (249.) give a=0, b=*k.

T
Resume (233.), or 7=

b2 Byvmvl _ o . "
And as/B(A+C)=—7=, we get VBATO) Evivi =/, since m==nl ;
‘I‘____ cos®pde
hence k —"\/‘ZJ []_—lsirﬂ(p]g ,‘/]-—__—ig—sm. . . . o . ° B (a.)

Let /sin’p=sin*}, therefore o/ cospdp=cosyd}, [1—Isin’p]*=cos'y,

T e —
,\/l—izsin“’qb-—-:\/1—%—sin2«,b=\/l——n sin*}, and cosp=A/ I—M-

Making these substitutions in the preceding equation, we get

T VIe z\/ = sin%
=V ZJCOS% V1—n smgxl/

or the logarithmic hyperbola in this case becomes a common parabola.

As a=0, b=Fk, the hyperbolic cylinder becomes a vertical plane, at right angles to
the transverse axis.

Hence, comparing this result with (XIX.), we find that when the parameters are
either 4-co or —oo, the corresponding hyperconic section is a plane principal section
of the generating surface, 1. e. either a circle or a parabola.

When /=, %:O, n=0; hence Y=£Fk ESE%’ (292.)
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LII. By giving a double rectification of the common hyperbola, we shall the
more readily discover the striking analogy which exists between this curve and the
logarithmic hyperbola.

2 2
Let U be an arc of a common hyperbola, whose equation is %—-%zl.

a* cos® . b%sin? A @)
Bcoth—b2sinen ¥ T @ oA —BEsintaT  c c o+ .

Assume =

Differentiating these expressions, and substituting, we get

dU b? . 2452 | . 2
o= YRt Assume sm“’q):a 'i;b sin’, and let z2=a;_ll_-~7)§. e oo (b))
a[l— 2 s A:I
Finding from this equation the value of d(p’ as 51—?:%%-%, we shall finally obtain,
. B a1—9 a-q%r do
since —Z—=—ps=""—7— > i [ By parre (c.)
(31.) gives —U_j'pdx+5 2, or U_.-fpdx—~ e @)
. dp  (e*+0?) sinacosa a®
Now as p*=a’ cos®—b*sin?A, P Vv Sy RS and as sin’p=——— oy sin®, (e.) |
d VEFE /T e d -7 5T
52 “ a;/);’ sin’s ; (f)  hence ﬁ:—\/a2+b2tango\/ 1—2#sine; . . (g
o . a? cos®pde _a{1+#—sin’p—1}
and as p=a cosg, pdr= V(@ +0%) V1—2sin% 1 V1—2Esinp ° (h.)
: ~ ~ rd
whence, finally, —2U= tan@JI—yd@JI+(l—z2)§%. N ()

This is the expression for an arc of an hyperbola referred to in (XLIX.).

- (de ___1 [ & sinpcose
The integral Yira == d¢\/1'—1—z‘2 Va i

See Hymer’s Integral Calculus, p. 195. Adding this integral to (&),

% sing cosg

—U+(1—z2)1 = (1—i2)§—%+tan¢\/i—-———7f—:. .. (m)

but tang \/— # sing cos@_ (1— zi) _I’fan¢~.

. _t
Hence dividing by (1—4°), a0 _29)-{- IVI an¢+5‘v1, - . (n)
. WU de
but (e gives 57— ={ sy Vi

Eliminating U from these equations, we obtain

+ dqo' - de + tang ‘
[1—sin%p] Vl —#sin% | J[1—isin%] v/ 1—7 sin’p J V1—22sin% ' & 1—4sin%

(293.)
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See HyMer’s Integral Calculus, p. 245. The parameters are reciprocal in this equa-
tion, being 1 and 7.

Now this is the extreme case of the formula for the comparison of elliptic integrals
of the third orderand logarithmic form. We perceive that this formula results from
the comparison of two expressions for the same arc of a common hyperbola. We
may also see that it is the limiting case of the general formula for the comparison of
elliptic integrals of the third order having reciprocal parameters ; a formula which in
like manner has been deduced from the comparison of two expressions for the same

arc of the logarithmic hyperbola. It is also evident that 7’

4/
between tanga/T and z Smj;ow, it 1s the difference between tangents, one drawn to
the hyperbola, the other to the plane ellipse, for tangs/T denotes the portion of a
tangent to a hyperbola between the point of contact and the perpendicular on it

from the centre; and —Egi%fm denotes a similar quantity in an ellipse; this differ-

ence is precisely analogous to the expression which occurs in (284.) cos% ycossf

which denotes the difference between two parabolic arcs, one drawn a tangent to the
logarithmic hyperbola, the other a tangent to the logarithmic ellipse.

SecrioN VII.—On the Values of complete Elliptic Integrals of the third order.

LIII. We have hitherto investigated the properties and lengths of elliptic eurves, on
the supposition that the generating surface, whether sphere or paraboloid, was inva-
riable, and that the lengths of the curves were made up by the summation of the
elements produced by the successive values given to the amplitude ¢ between certain

limits, 0 and 7 3> suppose, if the arcs are to be quadrants. Thus the length of the

quadrant is obtained, by adding together the successive increments which result from
the successive additions, indefinitely small, which are made to the amplitude. We
may, however, proceed on another principle to effect the rectification of those curves.
If, to fix our ideas, we want to determine the length of a quadrant of the spherical
ellipse, we may imagine the vertical cylinder, which we shall suppose invariable, to
be successively intersected by a series of all possible concentric spheres. Every
quadrant will differ in length from the one immediately preceding it in the series,
by an infinitesimal quantity ; and if we take the least of these quadrants, and add to
it the successive elements, by which one quadrant differs from the next immediately
preceding, we shall thus obtain the length of a quadrant of the required spherical
ellipse, equal to the least quadrant which can be described on the elliptic cylinder,
plus the sum of all the elements between the least quadrant and the required one.
Thus, for example, the least quadrant which can be drawn on an elliptic vertical
cylinder, is its section by an horizontal plane, or a quadrant of the plane ellipse,
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whose semiaxes are @ and b. In this case the radius of the sphere is infinite. The
least sphere is that whose radius is @, and which cuts the cylinder in its circular
sections. Hence the greatest spherical elliptic quadrant is the quadrant of the circle
whose radius is @. All the spherical elliptic quadrants will therefore be comprised
between the quadrants of an ellipse, and of a circle whose radius ise. Any quadrant
therefore of a given spherical ellipse is equal to a quadrant of a plane ellipse,
plus a certain increment; or to a quadrant of a circle, minus a certain decrement.

The same reasoning will hold as well when we take any other limits, besides 0 and g

These considerations naturally lead to the process of differentiation under the sign
of integration, because we cannot express, under a finite known form, the arc of a
spherical or logarithmic ellipse, and then differentiate the expression so found, with
respect to a quantity which hitherto has been taken as a constant.

We may conceive the generation of successive curves of this kind to take place in
another manner. Let us imagine an invariable sphere to be cut by a succession of
concentric cylinders indefinitely near to each other, and generated after a given law.
These cylinders will cut the sphere in a series of spherical ellipses, any one of which
will differ from the one immediately preceding, by an indefinitely small quantity. If
we sum all these indefinitely small quantities, or in other words, integrate the ex-
pression so found, we shall discover the finite difference between any two curves of
the series separated by a finite interval. One of the limits being a known curve, the
other may thus be determined.

To apply this reasoning.

In the following investigations we shall assume the generating sphere to be invari-
able, and the modulus ¢, with the amplitude ¢ to be constant. The intersecting

cylinder we shall suppose to vary from curve to curve on the surface of the sphere.
.. o 0*—0? . .

But ¢ is constant, and z‘=a—?—, see (27.). Now a and b being the semiaxes of the
base of the cylinder, it follows that the bases of all the varying cylinders are con-
centric and similar ellipses. Hence in the elliptic integral of the third order, which
represents the spherical ellipse, the parameter ¢* or m, and the criterion of sphericity
A% will vary. '

In (17.) we found for a quadrant of a spherical hyperconic section, the expression

T de

o=~V % o [L—esin%p] me.

Let % be the radius of the sphere.

. L . . . .
Since e”=m, e will vary, as being a function of a the transverse semiaxe of

the variable cylinder. = We have also
ex=(1—e*)(¢'— ).

MDCCCLII. 3cC
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, dx P
Hence a;:-—Qe(l—éa) Soe e e e e e (2940
and if, as before, we write M for 1 —m sin’p, or 1—¢€* sin’p, we shall have

o=v/2 2M4/1

Differentiating this expression on the hypothesis that ¢ and ¢ are constant, while e is
variable, we shall have

de 1 ~dx(*z dp _&_/_; % de z de
de™ %e M¢I+ eQ[X) MEVT ), MVI T (295.)

2
Multiplying this equation by ﬁ, and recollecting that %Z: — 28(1 —:—4>, we shall have

V' Vrade 2n 7 dp 2 3 de
e de e‘l)jv M"/l MQ’\/I e . M"/:_[-. . . . . (296.)
But (see Hymer’s Integral Calculus, p. 195)

% % d 32 2 -
A= [Z0+#) —1—:4§le (= > +82 oI . . (207.)

Introducing this value into the preceding equation, the coeflicient of y?ﬁé% will
0
vanish, and we shall have

‘/nd 2 4
;3= (e z) +eez d\/I C oo .. (298)

Dividing by —e—", and integrating on the hy pothes1s that ¢ and ¢ are constant,

[y do /1 I:]j; Weus [ﬁg%:ljdegi;ﬁ + constant ;

or as e/ z=+/(1—¢%)(e—7°), we shall have

o= {:j;gd%/i]fva—j;(eﬂ—ﬁ) U“dq::| \/62 -+ constant. . . . (299.)

We must recollect that the definite integrals within the brackets are functions, not

of ¢, but of #, 0, and ;—r They are therefore constants.

It is not a little remarkable that the coefficients of the definite elliptic integrals are
themselves also elliptic integrals of the first and second orders. To show this, assume

e=cos’0*sin®. . . . . . . . . . . (300)
Therefore 1 —e*=j”sin’0, and ¢*—*=j” cos’0; we have also ede= —j*sin0 cosdo.
de ¢ as de
— 2 e ————————— e —— — e
Hence, if 1 —*sin’0= J’J Va0 Svisree vy (301.)
—__ j%sinfcosf
and '\/%— VTW T (302.)
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In the same manner we may show that

E—pde_ (¢ do e
j‘\/l—-ec" & JVl"'j sm20+ J[] —J sm90]2 Soee e e (303-)
sind cos9 :
but y [1—/ smeﬁ}f fd‘)«/l—J 51“29"27 14/.1 coee e e (304

Hence j&/ eg“’g de §d9¢J smf/(;ose. .. o . . . (305)

Substituting these values in (141.), we obtain

(y ]I- 5‘d9\/ J+j S0 cose] B;;d@\/ I] ~~—+constant (306.)

To determine this constant. We must not supposei=0, in this case, as is generally
done, to determine the constant. This would be to violate the supposition on which
we have all along proceeded, namely, that the variable cylinders are all similar, and
therefore that ¢ must be constant. We must determine the constant from other
considerations.

;2

. *h? . - x
Since ezzﬁ:ﬁﬂ, when a=0, ¢#=i*>. But e¢*=cos*0-}7’sin’0, therefore 0=5. As

a, the major semiaxe of the base of the cylinder, is supposed to vanish, the curve
diminishes to a point, and therefore ¢=0. 4

When a=k, ¢*=1, and 6=0. We have in this case o-=§—; for the sections of a

sphere by an elliptic cylinder, whose greater axis is equal to the diameter of the
sphere, are two semicircles of a great circle of the sphere. Hence, when 0=0,

0'_2, sinf=0 j‘d()\/J 0 y ==0; therefore the constant is equal to ¢, when 6=0.

But when 6=0, "':E’ or the constant is equal to g—

The formula now becomes

3 ind cosd
=i vl [P - ) o

When 6:%, e=1, and ¢=0, as the variable cylinder is in this case diminished to a

right line; therefore the preceding formula will become, using the ordinary notation
of elliptic integrals,
s=EF+4+EF—FF.. . . . . . . . . (308)

Hence we obtain the true geometrical meaning of this curious formula of verifica~
tion discovered by Lecexpre. In its general form (307.), it represents the difference
between the quadrants of a great circle and of a spherical ellipse. When the sphe-
rical ellipse vanishes to a point, this expression must represent, as in (308.), the
quadrant of a circle.
LIV. If we now apply the preceding investigations to the curve described on
3c2
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the same sphere by the reciprocal cylinder, or by the cylinder which gives a function
having a reciprocal parameter, we shall find

‘; - de 2_2 de
""""Uo dgb“/l]j' V(e’e—i;)(l——-em U ]f\/ - TJr gHeonstant. . . (309.)

But by the conditions of the question, as

S e T de _( ae
ee =1, e“’_l—jﬁ sin?0’ ,‘/(elﬁ__iQ)(l_eIQ)—J,‘/l_jgsingej (310.)
. de’ P2 (" jsin®0dd r 2
and 5‘ 1T—e2 4/1_7 sin20 JV]. ] SIDQH fd@\/l ——J sin?0.

Substituting these values of the integrals in (309.),

a’:[: fd@ﬁ] ‘—?/%—— [5‘ ] j'de yde\/J]+constant . (811.)

We shall now show that the constant =0.

When =0, e=1, and therefore ¢'=i. Since ¢=i, and ¢ is a quadrant of the
vanishing spherical ellipse whose principal arcs, «=0, 3=0, we shall have ¢=0.
*do .

Hence also de\/J 0, j 5=0; therefore the constant is 0. When Bzg =1,

and (309.) becomes

IR [ AR e A IV R [ s

or, in the common notation, 2_-EF —~+EF,—FF,
a formula already established in (308.).

J%sind cosd
V' 1—52sin?0’

o'-«}-a—z-l—\/ U ﬂ] C e e oo . (313)
Now o'—-(l—m>\/mn"[l d¢-*—~— "‘“( _—m’)\/mlnﬂ de

—msin®p] &1 —4sin’p’ [1—m,sin%] /1 —4sin%’

If we add together (307.) and (312.), we shall have, since 1/z=

in which mm'=2.

1— — —
Whence, as (—n;ﬂ) mn= m‘)\/mn =+/'%, as we have shown in (113.),
% de _ o
y [l—msm%] ‘/1“#“‘“‘ ‘P+S [1——sm <p] v/ 1= sing sing ‘f VI—ZQst +‘) (14

The reader will observe how very different are the geometrical origins of two alge-
braical formule apparently similar. In the logarithmic form of the elliptic integral,
the formula for the comparison of elliptic integrals, with reciprocal parameters (one
of which is greater, while the other is less than 1), resulted from putting in equation
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two algebraical expressions for the same arc of the one logarithmic hyperbola. See
Art. XLVIII. In the preceding case, that of the spherical ellipse, the analogous
formula expresses the sum of the arcs of two inverse spherical ellipses, whose ampli-
tudes are the same. .

LV. We shall use the term inverse spherical ellipses to denote curves whose
representative elliptic integrals have reciprocal parameters. The terms reciprocal
and supplemental have long since been appropriated to curves otherwise related.

Let « and (8, o, and (3, denote the principal semiarcs of two such curves. Since
the modulus i is the same in both integrals, the orthogonal projections of these
curves, on the base of the hemisphere, are similar ellipses. (15.) gives '

e*=1*sec’B, e*=7"sec’3, and we assume e*e>=4¢

Hence secBsecBi=1.. .o (315.)
Again, as tan’z(l—e*)=tan’B=sec’3—1, and tan’e(l—e’)=tan’3=sec’3,—1;
multiplying these expressions together, and introducing the relation in (315.),
1% sec?B sec?B,—i%(sec?*B + sec? 2

1ﬁ+ﬂfi]ﬁ (s((ac%i:ec%f'H =L . . . . . . (316)
Hence the principal arcs of the inverse spherical ellipses are connected by the
symmetrical relations

tan®e tan’e =

tane tane, i=1, and secBsecBi=1. . . . . . (317.)

When the inverse curves coincide, e=e, 3=, and the last equations may be

reduced to tan’z— tan’3=1. Now we have shown in (59.) that when the principal

arcs of a spherical hyperconic 'section are so related, the curve is the spherical
parabola, or when the curve becomes its own inverse, it is the spherical parabola.

sin?p

sin®z — sin?B
sin%u?

We bave shown in (15.) that *=——(—o—"=1

but (3.) gives cosn=—:—;—2—§, 29
being the angle between the cyclic arcs of the spherical ellipse. Hence ¢=sins, but
i is constant. Therefore all inverse spherical ellipses have the same cyclic arcs.

That portion of the surface of a sphere which lies between the cyclic circles may be
called the cyclic area.

The spherical parabola divides the cyclic area into two regions. In the one, between
the pole and the spherical parabola, lie all the inverse curves, whose parameters range
from ¢* to ¢. In the other, between the spherical parabola and the cyclic circles, lie
all the conjugate inverse curves, whose parameters range from ¢ to 1.

Let acb, adb be the cyclic circles, the inter- Fig. 17.
section of the sphere by an elliptic cylinder,
whose transverse axe is equal to the diameter
of the sphere, and whose minor axe is 2j. Let
a series of concyclic spherical ellipses be de-
scribed within this cyclic area, whose semi-
transverse arcs are 01, 02, 04, 05, and let 03
be the spherical parabola of the series. For
every curve, 01, or 02, within the spherical pa-
rabola, there may be found another without it, Z
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05, or 04, such that their principal arcs are connected by the equations
tane tanei=1, secfsecBi=1.

The algebraic expressions for the arcs of these curves, having the same amplitude,
give elliptic integrals with reciprocal parameters.

The concyclic spherical ellipses will be ortho-
gonally projected on the base of the hemisphere
into as many concentric and similar plane ellipses,
whose semiaxes are 01, 02, 04, 05. The cyclic
area will be projected into the plane ellipse, and
~ the spherical parabola into the area of the plane

. s k
ellipse, whose transverse semiaxe is i Let -

E be the area of the piane ellipse, the projection
of the cyclic area, and II the area of the plane
ellipse, the projection of the spherical parabola.

. %) E-II .
Then E=ay, and II= T4 whence —— =1, ot

the ellipse, the projection of the spherical para-
bola, divides the area of the ellipse, the projection of the cyclic area, into two por-
tions, such that the outer is to the inner as i : 1.

The reader must have observed the importance of this curve, the spherical para-
bola, in the discussion of the geometrical theory of elliptic integrals.

We may determine the principal arcs of two inverse spherical ellipses by a simple
geometrical construction. Let AZB be a vertical section of the hemisphere, on which

Fig. 19.

.";
,
T NAy

7 ol G

the curves are to be described. Let F be the focus of the elliptic base of the maxi-
mum cylinder, whose principal transverse axis is accordingly equal to the diameter
of the sphere. Join OZ, FZ, and draw ZC at right angles to ZF, meeting the line
AOin C. Produce ZO until OD=AC, and on OD as diameter describe a circle.
We are required, given one principal arc Za, to determine the corresponding prin-
cipal arc Za' of the inverse hyperconic. Draw the tangent ZG. Through a draw
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the line GOu. Through D draw the line DuG,. Join OG, it will cut the sphere in
a, the vertex of the principal arc Za,. Let OZ—-—k then ZG=Fktana, and as CZF

k2
TR » k and B being the semiaxes of the
. . B»—B2 - .
maximum cylinder. As all the bases of the cylmders are similar, —_/Er= =0

Now as ZOG and ZDG' are similar triangles, ZG : ZO : : ZD : ZG/, or
ktane : k2 - ]zi ZG!, or ZG'=

is a right-angled triangle, CO=ZD=

But ZG'=Fk tane,, hence tane tanei=1, or the

arcs « and e, are connected by the equation established in (317.).

When we require to know which of these successive curves on this sphere is the
spherical parabola, the same construction will enable us to determine it. Draw
ZT, a tangent to the circle on OD, take ZT'=ZT"=ZT, and join T' and T" with O
cutting the sphere in ¢ and ¢. Zc=Zc is the principal semitransverse arc of the

— 2
spherical parabola, for ZT'=#* tan’s=0Z.ZD =k7, or tanzoo:%.
As ZT' > ZO, cZd > g, or the principal arc of a spherical parabola is always greater

than a right angle. Since in the spherical parabola 'y+2&=§, the angle COT' =24, or

COT is equal to the distance between the foci of the curve.
LVI. If we revert to the general formula (307.) and take ¢ as the quadrant of a

spherical parabola, the integrations with respect to 6 must take place between 6=0,

and 6,=tan“(%7), for e*=1, in (300.) gives tanf= —;7. Hence

s=1+ ” ] “"‘" UZ } jﬁe\/.l] [ *dea/T —‘[SdG\/J]+(1 H 3o | (318.)

. 72 sin0 cosd
Since ‘—/—1:78;1‘1;@ (1—2), when tanf= ( )

Putting the sum of these integrals = A, we shall have Ez-g— A.

But (68.) gives for the quadrant of the spherical parabola

"_._ji_ “ dp 7
o'_-(l_H.)QS - +4.

43
1— sin?
0 \/ ¥

Comparing these expressions for the same arc o,

=72 ™ dp
4_(1+i)QSV/\/_—*_~—";+A,
1——— sin"p
0 (1+72)

& being taken between the limits =0, and p,:tan“‘(-;%).

(319.)

It is easy to show that the integrals of the first order in Art. LIII. may be represented
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by two confocal spherical parabolas, having one common focus, and the nearer vertex
of the one curve on the focus of the other. Thus Fig. 20.
let F be the pole of the hemisphere ABD. Let BCf .
and ACF, denote two spherical parabolas having
one common focus at F; F, and f being the other foci.-

Let Ef=y, and therefore FF=g—y. Hence the mo-

dular angles of the two curves are y, and - ,and &
g 4 92 v \

if we make cos y=i, cos (g—y) =J.

: I
Thus while the arc of the one is given by the \\//

integral j 4/1—%2372— the arc of the other depends

on the integral ¢ Vl—:]—vm

LVII. On the value of the complete elliptic integral of the third order and

logarithmic form.
Let .
y [(1—n s1n2<p] 4/1_.12 sin’p y NVI - - .. (8200
Assume # the criterion of sphericity=(1—n) (;—-— 1),
then de_|_105 dp 107 do ,
d"B Nﬂ] jNWI - ON‘/T. L (321)
: d| (7 dp | _2x(3 dqs 200’5 dp |
Multiply by 2z, then 2"5&U NVI] S NVT ) NvE - - - - - (322)
But (see HymeR’s Integral Calculus, p. 195)
(s dp 342 fz-—n
j‘ NQA/T_ [l "(1+ 2)+n2:| NVI )j‘ —'y dQD\/I . (323.)
' 2x(3 d<p zfl 2 22
and o, NVIT +2H NvVT

Introducing the substitutions suggested by the two latter equations into (322.),

de(i[ 2N~/1] )f N )f -;~j‘dvI C ... (324)

Now g;’:: - (;{5—— 1), whence

d| "z de de z‘l-n 5 =
den[ NVI:I_‘_[_Y NVI} )5‘ Vj“jld?&/l. e e e e (325.)
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If we divide this equation by 24/%, the first member will be the differential of

\/_[‘f N«/J Integrating this equation,

2/ % 2Nd51 D‘ ffl]j'nw [ d\/l] nv,; .. (326)

Assume n=1?sin%0, then n—l—:é—slrfg dn=2:%sin0 cos0do (327.)
el 4 , ——— tanee ’ — . . . . - - . ' .

(P=n)dn___( dé »
Hence j‘ nQV; —QJtange,‘/i*m. . . . . . . . (328-)

We must now integrate this expression,

dé _ do _ )
tan?0 41 —12 sin%0 T Vsin204/1—2sin?0 )V 1—2sin20
( dé _ ~ cotf + 12 cos?6d0
J Sin*0v'1—72sin%0 T T V1—3sin? )W (1—2 singe)%

i* cos?0do | —p
(1 —22sin%0)% = WVi1—7sin%0 stH —(1=) (1— i2s1n90 sin%6)3

—p z2 sm@ cosf — 5
)""1 g Sdﬂ\/ 1—¢*sin%0;

T—#sin2d

(329.)

adding these equations,

( dé __®sinfcosf  cotf T E T 1
Jtan?0v1—#sin?0 ~ V1—2sin?d  +1—2sin% doy/T—&sin0;

— j'tanQ o cotl/ T SO+ j‘d()«/ T—7sin’d (299.).

(330.)

. . ‘ d
We have next to compute the value of the integral j;t—%;

(a0 a6
Now j‘nﬂ_—JVl—izsinQG— VoI

Substituting these values of the integrals in (326.),

N«/I—U ][cotﬂﬁﬂ‘df’\/‘ﬁ]—[fdgv\ﬁ] 1%%' ... (331)

. . ; de
If we now substitute this value ofj; NV

quadrant of the logarithmic ellipse, namely,

244//11:23 mn_fz_nﬁ]y NV1+(ZQ~n).§ +§ dov/T

. 2n—p—n? . . .
since u:(l —1#5in’0) — cot’d, we shall obtain the resultmg equation,

in the equation given in (175.) for a

n

MDCCCLII. 3p
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2‘/1_—1:22 ;‘ I Io cotd
V) @ t: , d%/I}‘HIe)[ ] [Cow) Vi ]+ constant, . (332.)

writing H for U :,glie\/(le)—[ d@JI] Vg o o (333.)

or in the ordinary notation,
H=FE,(0)—EF,©).

When we require to determine the constant, we must not suppose 6=0, for this
would render n=0, and so change the nature of the curve. Neither should we be
justified in making =0, (as some writers do), for this would be to violate the original
supposition—and all the conclusions derived from it—namely, that i is constant, and
less than 1. Moreover, since m-+n—mn=1:>=0, on this hypothesis, m+4-n=mn; or m
and » would each be greater than 1, which is inconsistent with the possible values of
those quantities.

We have now to determine the value of the constant. In these investigations we
have all along supposed » > m. The least value » can have is n=m. Were we
to suppose 7 to be less than m, it would be nothing more than to write m for », since
m and n are connected by the equation m+n—mn=1:. Hence if m is not equal to
n, one of them must be the greater, and this one we agree to call n, writing m for
the lesser. To determine the constant, let us assuine n=m.

Now n=1"sin’0, and n, when equal tom, is =1—/1—2, (I;)=1—*sin’0=+/1—17,

— 1\ . . .
cot“‘ﬂ:«/l——z“’, and tanf== (3) . Hence the coeflicient of H in the last equation,

V(L) _ cotd e .y .
A, becomes 0, since in this case cotd=,/1—*; and as n=m, the curve is

the circular logarithmic ellipse. See Art. XLIII.
The last equation now becomes

2yl—i2§=y5d¢ﬁ+Jl—i§E%+ constant. . . . . . . (334.)
0 0

Now if we turn to (176.), we shall find this, without the constant, to be the ex-
pression for the quadrant of a circular logarithmic ellipse, or the curve in which a
circular cylinder, the radius of whose base is e, intersects at an infinite distance a
paraboloid indefinitely attenuated. Hence the constant is 0.

To determine the value of the above integral, when 0=

In this case, as H=F,E~EF, H=0. And as cotd=0, and /T,=+/1—72, the
equation (332.) will assume the form

2%:“ dm/l]—{-(l—-z)[j‘ J —\/1-—1 C e e ... (335)

How are we to interpret this expression ?
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To determine the value of the fraction &%{7’ which appears under the form of g

when 0:;—', we must take the first differentials of the numerator and denominator of

this fraction. Now, as in (333.)

%d — % — do
H::[j:) %}S‘dﬂ\/l—fsmz@—[j; d@JIt]j‘m. coe e . ()
3d s T
B -V%](l—z“’sm”ﬂ)—[y d¢¢1] te 1
’ : , and ——= — =7

dH
Therefore =

V1 —1?s1n%d ’ dd — " sin®0" (b)
: ((F#)0-n-([Faevn)]
Hence, when =5 gc_gw—-cow —(vice N (3]

do
Accordingly

cott9\/1-----2 s1n26—6\/1-—z —-—-(52 de )(1—12)+<5‘ d<p\/I) when 0....—. . (836.)

Substituting this value in (332.), we get 2=aj;2~d¢\/ 1—#sin’g, . . . . (337.)
the common expression for a quadrant of a plane ellipse, whose major axis is a, and
eccentricity . As it should be, for when 0—-~ or n==:%, the section of the cylinder is
a plane ellipse, as shown in Case VII. p. 316. In the spherical form, the limits of 0
are 0 and g, while in the paraboloidal form, thelimits of 6 are tan"(;lr)% and 725 '

SecrioN VIII.—On Conjugate Arcs of Hyperconic Sections.

LVIII. Conjugate arcs of hyperconic sections may be. defined, as arcs whose ampli-

tudes @, %, « are connected by the equation
COSw==COS§P COSY,—Sing sing/1—sin‘w. . . . .. . (338)

This is a fundamental theorem in the theory of elliptic integrals.

The angles ¢, x, » may be called conjugate amplitudes.

When the hyperconic section is a circle, i=0, and cosw=cosp cosy,—sing siny,
whence =9y, or the conjugate amplitudes are ¢+, ¢ and x. The development
of this expression is the foundation of circular trigonometry.

On the Trigonometry of the Parabola.
When the hyperconlc section is a parabola, i=1, and (338.) may be reduced to
tanw=tang secyf-tanysecp. . . . . . . . . (339.)
If we make the imaginary transformations,
tanw= v —1 sind, tanp= ¥ —1 sing/, tany= v —1 siny/, secp=cose', secy= cosy/.(340.)
3p2
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The preceding formula will become, on substituting these values, and dividing by v —1,

sina'=sing' cosy'-+siny’ cosg),

the well-known trigonometrical expression for the sine of the sum of two circular ares.
Hence, by the aid of imaginary transformations, we may interchangeably permute the
formulze of the trigonometry of the circle with those of the trigonometry of the parabola.

In the trigonometry of the circle, ¥=¢-y, and in the trigonometry of the parabola » is
such a function of the angles ¢ and y, as will render tan[ (g,%) ] =tang secy-tany; sece.

We must adopt some appropriate notation to represent this function.

Let the func-

tion (@, ) be written ¢-Ly, so that tan(p--y)=tang secy-+tany secp. This must
be taken as the definition of the function o-+-y.

In like manner, we may represent by tan(¢—+7x) the function tang secy—tany, sece.

In applying the imaginary transformations, or while tang is changed inton/ — I sing,
sec into cos@, and cotg into —+/ —1 cosec, - must be changed into 4 and + into—.

- and + may be called logarithmic plus and minus.

As examples of the analogy

which exists between the trigonometry of the parabola and that of the circle, we give
the following expressions in parallel columns; premising that the formulee, marked
by corresponding letters, may be derived singly, one from the other, by the help of

the preceding imaginary transformations.

Trigonometry of the Parabola.

tan(p-Ly) =tang secy-tany sece. (@.)

tan(@-ry) =tang secy,— tany, seco. . 8.

sec(p=y) =seco secyttang tany. (v.)
. __ sing4siny

SI0(P--2) =1 { sing siny ®.)
. sing —siny

SI0(P %) =T_ing sing- ()

Let o=y

tan(p--¢)=2tang seco. .o (n)
sec(p-Lp)=sec’p+tan’p. . . . . . . (4)
. 2 sin

Sin(0--0) =1 gy - ()

e‘/;%_l_ eT/‘;%:% e/cdg%’-—e* %
seco=—"—""7—""> tang=— ———;- . (=)
141/ = TLtan(p--9)=(secp-++/—1tang)”. (r.)
1g)—1

tarﬁ@:gﬂg—;ﬂ—-. N (7D
Let the amplitudes be -+ and ¢—1.
tan(gb-l—%)tan(qo—r:x)=tan2<p—tan2x. . (v.)

Trigonometry of the Circle.
sin(p-x) =sing cosy4-siny cose.
sin(p— 1) =sing cosy—siny cose.

cos(p-t-y)=cosp cosyFsing siny.

__ tang+tany
tan(p+x)= 1—tang tany" °

__ tanp—tany
tan(p—y) =1 + tang tany"

Let o=x.
sin29=2sing cosp. .
co52¢=co0s’p—sin’¢.

2tang

tan2¢=m%.
COS -—e‘P‘/:-l_l.e"'@*/-"—l . e@‘/-——l_e—-?"/-—_l
=TTy =T e

1+sin2¢p={(cosp-sing)®.
1—cos2¢
5 -

sin®p=
Let the amplitudes be ¢+ and p—1.
sin(@-+x) sin(@ — x) =sin’p —sin%. .

(341.)

(a)
(b,
(c)

(d)
()

@)
(th.)

(i)
(k.)

(L)
(m.)
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Since sec(p--¢) =sec’p-+}tan’p, and tan(p--9)=2tang secy,
sec(p--¢)-+tan(p--¢) = (seco+tang)’.
Again, as sec(pL-p-Lp)=sec(p-+0) secp+tan(p-L-¢) tang,
and tan(p-Lp-0)=tan(p -1 9) secp+sec(p-L9) tang,

it follows that  sec(p+9--9)4tan(p--p-L¢)=(secp+tanp)®,
and so on to any number of angles. Hence
sec(pLp-Lo... to np)+ tan(p4-p-Lo.... to np)=(secp+tang)”. . . . (342.)

Introduce into the last expression the imaginary transformation, tang=+/ —1 sing,
and we get DEmorvre’s imaginary theorem for the circle,

cosnp++/ —1 sinnp=(cosp-+/ —1 sing)".
Let » be conjugate to + and w, while , as before, is conjugate to ¢ and . Then
we shall have tanw=tan(p-Ly-1++), or
tan(p + x - ¥) =tang secy sec + tany sec secp +tanyd secg secy +tang tany tand, . . . (®.)
sec(¢ + x + ¥) =sece secy secd + secp tany tany +secy tany tang +secd tang tany, . . . (p.)

sing -+ siny + sinys + sing siny sindr
1+ siny sind 4 sind sing + sing siny ’

and sin(p+x+{4)= (o)

whence, in the trigonometry of the circle,

sin(g +x + ) =sing cosy cosy + siny, cos{ cosp + sind cosg cosy—singsinysing, . . . (p.

cos(p+x + ) =cos¢ cosy cos —cosp siny sind— cosy sin{ sinp—cosd sing sinye, . . . (1)
tanqn -+ tany + tany — tang tany tan{ .

tan(p+x +4)= —tany tany—tany tang—tanptany -~ ° 7 7 T T Tttt ()

LIX. Let (k.®), (k.9), (k.x) denote three parabolic arcs measured from the vertex
of the parabola whose parameter is k. |

The normal angles of these arcs are », ¢, and % ; @, ¢ and x, being conjugate ampli-
tudes. Then

2(k.p)=Fktanpseco+k

cosw ®

ﬂ, 2(k.x)=ktanxsecx+k‘;§ » 2(k.w)= ktanwsecw+k

cosp

w
whence, since
cosw

cos¢ j‘ OSX—O, because w, ¢, and y are conjugate amplitudes,
(k.0)—(k.¢)—(k.x)=ktanwtangtany. . . . . . . . (343)

Let y, 3/, 9" be the ordinates of the arcs (k.p), (k.x), and (k.#). Then y=ZFktang,
y'=ktany, y'=Fktanwe, and the last expression becomes

(k.w)— m¢)(km_wy... C e e L (344)

If we call an arc measured from the vertex of a parabola an apsidal arc, to
distinguish it from an arc taken anywhere along the parabola, the preceding theorem
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will enable us to express an arc of a parabola, taken anywhere along the curve, as the
sum or difference of an apsidal arc and a right line.

Thus let ACD be a parabola, O its focus Fig. 21.
and A its vertex. Let AB=(k.¢), AC=(k.x),

ol
AD=(k.»)and yzjcﬁ,y =h. Then(343.) showsthatthe

parabolic arc (AC+AB)=apsidal arc AD—#%;
and the parabolic arc (AD—AB)=BD=apsidal
arc AC+h. When the arcs AC, AB' together

constitute a focal arc, or an arc whose cord -

w

passes through the focus, ¢-+x=5, and & is the

ordinate of the conjugate arc AD. Hence we
derive this theorem,
Any focal arc of a parabola is equal to the dif- .

JSerence between the conjugate apsidal arc and its \\
ordinate. T

. . . . .. 2
The relation between the amplitudes ¢ and « in this case is s1n2¢=i-_:(%§£;. Thus

when the focal cord makes an angle of 30° with the axis, we get cos»a:%, or y=>5k.

Here therefore the ordinate of the conjugate arc is five times the semiparameter.
LX. We may, in all cases, represent by a simple geometrical construction, the
ordinates of the conjugate parabolic arcs, whose amplitudes are ¢, x and .
Let ABC be a parabola whose focus is Fig. 22.

O,andwhosevertexisA. LetAO= g_——_g;

moreover let AB be the arc whose am-

plitude is ¢, and AC the arc whose

amplitude is x. At the points A, B, C

draw tangents to the parabola, they 4

will form a triangle circumscribing the

parabola, whose sides represent the
semi-ordinates of the conjugate arcs, ¢
AB, AC, AD. ¢
~ We know that the circle, circum-

scribing this triangle, passes through \
the focus of the parabola. :
Now Ab=gtang, Ac=gtany, bd=g tang secy, cd=g tanyseco;

hence bd+cd=g (tanp secx+tany sece), therefore g tanw=>bd-+cd.
When AB, AC together constitute a focal arc, the angle bdc is a right angle.
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The diameter of this circle is g sece secy.
The demonstration of these properties follows obviously from the figure.
LXI. In the trigonometry of the circle, we find the formula

tan®y = tan®y tan’d

=tan§}—-3+5—-7+&c.;........(a.)

and if we develop, by common division, the expression
1 0 . . . .
c?“ser“]%@:' cos0(1-sin%04-sin*04sin®0+- . ... &c.) and integrate,

8in@  sin’d

a0 _ . . sin’d
j';o—s—e._—-.smwrs"; T ke ()

If we now inquire, what, in the circle, is the arc which differs from its protangent,
by the distance between the vertex and its focus; or, as the protangent is 0 in the
circle, and the focus is the centre; the question may be changed into what is the
trigonometrical tangent of the arc of a circle equal to the radius. This question is
answered by putting 1 for & in (a.), and reverting the series

l-__“tan(l)__tan;(l)__l_tamZ(l)__tan;(l)_l_ &e. s
we should get, in functions of the numbers of BerNourLLi, the value of tan(l), as
is shown in most treatises on trigonometry.

Let us now make a like inquiry in the case of the parabola, and ask what is the
value of the amplitude which will give the difference, between the arc of the parabola
and its protangent, equal to the distance between the focus and the vertex of the

parabola. Now if 0 be this angle, we must have (k.0)—gsec0tanf=g. Buat in

' dé . .
general, (k.0)—gsecOtanf=g\——5 Hence we must have, in this case, ﬁ%:l. If

. . do . .
we now revert the series (b.), putting 1 forj;—o—sg, we shall get from this particular

value of the series,
sin3@ | sin@  sin70

1=sinf+——+ =+ 7 + &ec.,

1__ a1
an arithmetical value for sinf. This will be found to be, sinf= gtg—:—l, e being the

base of the Napierian logarithms. Hence secO+ tanf=e, or if we write e for this
particular value of 6 to distinguish it from every other, and call it the angle of the base,
seceftane=e.. . . . . . . . . . . . (345)

We are thus (for the first time it is believed) put in possession of the geometrical
origin of that quantity, so familiarly known to mathematicians, the Napierian base.
From the above equations we may derive

el4e! el—e™!?

g tane=—(—, . . . . . . . . (346
or tane=1'175203015, whence e='8657606, or e=49°. 36'. 15".

- 8eCe=

3
The corresponding arc of the parabola will be (k.()):/c[l +fgé§+f9275+&c.] . (347.)
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If we assume the theory of logarithms as known, we may at once arrive at this value,

cosf

for in general j 9 _ log (secO-+4tan6) ;

and as this is to be 1, we must have sec04 tanf0=e, as before.

LXII. If we now extend this inquiry, and ask, avhat is the magnitude of the
amplitude of the arc of the parabola which shall render the difference between the
parabolic arc and its protangent equal to » times the distance between the focus and
the vertex; we shall have, as before, by the terms of the question,

(k.0)—gsecOtanb=ng. . . . . . . . . . (348)
. do
But in general (k.0)—g sech tanf=g| 5
hence we must have . n=§£%=log(sec()+tan0),
or sec0+4 tanf=e™. . . . . . . . . . . . (349)

Now we may solve this equation in two ways; either by making » a given number,
and then determine the value of sec0--tand, which may be called the base. Or
we may assign an arbitrary value to secO--tanf, and then derive the value of n.
Taking the latter course, let, for example,

secf4+tanf=10. Then n=log10,

1. . .
or — is the modulus of the second system of logarithms. Hence, if we assume any

number of systems of logarithms on the same parabola, and take their bases
g(secO+tanf), g(sect'+tand'), g(sectd’+tand"), ...&c.,

the moduli of these successive systems will be the ratios of half the semiparameter to the
successive differences between the base parabolic arcs and their protangents.

In the Napierian system, g the distance from the focus to the vertex of the para-
bola, is taken as 1. The difference between the parabolic arc and its protangent, when
equal to g, gives g(secf+-tanf)==eg. In the decimal system g(sect,+tanf)=10g,
and the difference between the corresponding parabolic arc and its protangent being
ng, if we make this difference ng equal to the arithmetical unit, we shall have ng=1,

1 . .
or g=_=modulus of the system. Hence in every system of logarithms whatever, g

the distance between the focus and the vertex of the parabola, is the modulus of the
system. Every system of logarithms may be derived from the same parabola, but
the Napierian system, in which the focal distance of the vertex is itself taken as the
unit, may justly be taken as the natural system. In the same way we may consider
that to be the natural system of circular trigonometry, in which the radius is taken
as the unit. - The modulus, in the trigonometry of the parabola, corresponds with the
radius in the trigonometry of the circle. But whilein the trigonometry of the parabola
the base is real, in the circle it is imaginary. In the parabola, the angle of the base
is given by the equation sec6-+tanf=e. In the circle cosd+4+/—1 sind=e*", and
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making =1, we get cos(1)4-+/—1sin(1)=e""". Hence while €' is the para-
bolic base, e”~' is the circular base. Or as [sece-ttane] is the Napierian base,
[cos(1)4-/—1sin(1)] is the circular or imaginary base. Thus

[cos(1) 44/ —1sin(1)P=cos¥++/—1 sind.
Hence, speaking more precisely, imaginary numbers have real logarithms, but an
imaginary base. We may always pass from the real logarithms of the parabola, to
the imaginary logarithms of the circle, by changing tan0 into o/ —1 sing, secf into
cosd, and e' into e\,

As in the parabola the angle 8 is non-periodic, its limit being—_l—;g, while in the circle

S has no limit, it follows that while a number can have only one real or parabolic
logarithm, it may have innumerable imaginary or circular logarithms.

In the parabola we thus can show the geometrical origin of the magnitudes known
as the base and the modulus. We might too form systems of circular trigonometry
analogous to different systems of logarithms. We might refer the arc of a circle not
to the radius, but to some other arbitrary fixed line, the diameter or any other sup-
pose. Let the circumference be referred to the diameter, then # will signify a whole

. . . s v . . .
circumference instead of a semicircle, and 7 will represent a right angle. Having

on this system, or any similar one, found the lengths of the arcs which correspond to
certain functions, such as given sines or tangents, we should multiply the results by
some fixed number, which we might call a modulus (2 in this example), to reduce
them to the standard system ; but such systems would obviously be useless.

If ¢ be the angle which gives the difference between the parabolic arc and its pro-

tangent equal to g=g; (e-¢) is the angle which will give this difference equal to 2g,

(ed-e-¢) is the angle which will give this difference equal to 3g, and so on to any
number of angles. Hence, in the circle, if & be the angle which gives the circular
arc equal to the radius, 2% is the angle which will give an arc equal to twice the
radius, and so on for any number of angles. This is of course self-evident in the
case of the circle, but it is instructive to point out the complete analogy which holds
in the trigonometries of the circle and of the parabola.

LXIII. The geometrical origin of the exponential theorem may thus be shown.

Assume two known logarithmic bases (sece4-tane), and (sec8--tang), and let us
investigate the ratio of the differences of the corresponding parabolic arcs and their
protangents.

Let sece-}-tane be the Napierian base, and let one difference be zg and the other yg.

The ratio of these differences is therefore %:z, if we make y=x3. Hence

seco-+tano=/(sece-}tane)*=e’, and (secB-+tanB)=e?. Therefore
(seca+tane)'=e""'=/(secf3+}tanB)*.
Or, as y=uzz, (seca--tana)*=sec@--tang.
MDCCCLIIL 3E
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Let A be the first base, and B the second. Then B=A?. This is the exponential
theorem.

Let A be the Napierian base, then 2=1, and A=e. Hence B=e¢".

LXIV. Given the number to find its logarithm, may be exhibited by the following
geometrical construction.

Let OAP be a parabola. Through the focus O draw Fig. 23.
the perpendicular OQ to the axis AQ. Through A let a »
tangent of indefinite length be drawn. On this tangent || |@

take the line AN to represent the given number. Join ||
NO, and make the angle NOT always equal to the angle =
NOQ. Draw TP at right angles to TO. This line will

touch the parabola in the point P, and the arc of the i
parabola AP—PT will be the logarithm of AN. Ao
When AN'=AO=the unit g, the angle N'OQ is equal o

to half a right angle. Hence the point T in this case will
coincide with A. The parabolic arc therefore vanishes, £
or the logarithm of 1 is 0. When sec0- tanf=1, 0=0.

When the number is less than 1, the point N will fall
below N’ in the position . Hence nOQ is greater than half a right angle. There-
fore T will fall below the axis in the point T'; and if we draw through T' a tangent T'p,
it will give the negative arc of the parabola T'p, corresponding to the number An.
Fractional numbers, or numbers between 41 and 0, must therefore be represented
by the expression g(sec6— tanb), since tanf changes its sign.

When the number is 0, = coincides with A, and the angle NOQ in this case is a
right angle. Therefore the point T' will be the intersection of AT' and OQ. Hence
T' is at an infinite distance below the axis, and therefore the logarithm of 40 is — co .

Hence negative numbers have no logarithms, at least no real ones ; and imaginary
ones can only be educed by the transformation so often referred to, and this leads us
to seek them among the properties of the circle. For as 6 always lies between 0 and
a right angle, or between 0 and the half of =, sec0+t-tanf is always positive; hence
negative numbers can have no real or parabolic logarithms, but they may have ima-
ginary or circular logarithms ; for in the expression log (cosS—++/—15in3)=%/—1,
we may make S=(2n-41)x, and we shall get log (—1)=(2n+1)7a/—1.

Hence also, as the length of the parabolic arc TP, without reference to the sign,
depends sclely on the amplitude 6, it follows that the logarithm of sec§—tan# is equal
to the logarithm of sec0+- tanf. As (sec- tanf)(sec0— tan0)=1, we may hence
infer, that the logarithm of any number is equal to the logarithm of its reciprocal,
with the sign changed. ’

When 6 is very large, sec04-tanf=2 tanf, nearly. Hence if we represent a large
number by an ordinate of a parabola whose focal distance to the vertex is 1, the differ-
ence between the corresponding arc and its protangent will represent its logarithm.

Along the tangent to the vertex of the parabola, as in the preceding figure, draw,
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measured from the vertex, a series of lines in geometrical progression,

g (sec0+tand), g (secO+tanf)’, g (secO--tanb)®...... g (secO+-tan6)".
Join N, the general representative of the extremities of these right lines, with the
focus O. Erect the perpendicular OQ, and make the angle NOT always equal to
the angle NOQ. The line OT will be =g secb, the line OT,=g sec (0--0), the line
OT, =g sec (0--0-10), &c., and we shall likewise have

AT=gtan, AT =g tan (0-1-6), AT, =g tan (0-+-0-L0), &c.

"This follows immediately from (342.); for any integral power of (secf+ tanf) may
be exhibited as a linear function of sec @4 tan @, if @=0-1-0-19...&c.,
since sec (0--0-1-0-1-0 &c. to n6) -+ tan (0--0--0--0 &c. to nd)=(sec 6~ tanb)".
Hence the parabola enables us to give a graphical construction for the angle
(6+-0-+-&ec.) as the circle does for the angle 0.

The analogous theorem in the circle may
be developed as follows :—1In the circle OBA,
(fig.24) take thearcsAB=BB,=B B, =B B,
...&e.=23. Let the diameter be G. Then
OB =G co0sd,0B,=G cos23,0B,=Gcos33...
&c. and AB=Gsin), AB,=G5in23,AB,=G |
sin39 ... &e.

Now as the lines in the second group are
always at right angles to those in the first,
and as such a change is denoted bythe symbol
=1, we get OB+4BA=G (cos¥++/—1 sin),

OB,+BA=G (cos23++/ —15in29) =G (cosY-++/—1 sind)*;
OB, +B,A=G(cos33++/—1 5in33) =G (cosd 4~/ —1 sin%)*&e.

LXV. The known theorem, that a parabola is the reciprocal polar of a circle,
whose circumference passes through the focus, suggests a transformation, which will
exhibit a much closer analogy between the formula for the rectification of the para-
bola and the circle, than when the centre of the latter curve is taken as the origin.

Let OBA be a semicircle, let the origin be placed at O, let the angle AOB=2Y, and
let G, as before, be the diameter of the circle. Through B draw the tangent BP; let
fall on this tangent the perpendicular OP=p, and let BP the protangent be equal to ¢.

Now as p=G cos’, and =G sind cosy, as also the angle AOP=23, if we apply to
the circle the formula for rectification in (33.), we shall have the arc

AB=s=2GJ::os2§}dS—- G sind cosy.

Make the imaginary transformations cosY= secf, and sin¥=,/—1 tan0, and we

shall have G 4/8:T=2.§ cg:o,e— secO tan0.

The expression for an arc of a parabola, diminished by its protangent.
3E2
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The protangent to the circle, which is exhibited in this formula, disappears in the
actual process of integration ; while in the parabola, the protangent which is involved
in the differential, is evolved by the process of integration.

As in the parabola, the perpendicular, from the focus on the tangent, bisects the
angle between the radius vector and the axis of the curve; so in the circle, the
radius vector OB drawn from the extremity of the diameter, bisects the angle
between the perpendicular OP and the diameter OA.

There are some curious analogies between the parabola and the circle, considered
under this point of view.

In the parabola, the points T, T, T,, which divide the lines

g (sec0+tan0), g [sec(0+-0)-4tan(0-L-0)], &e.
into their component parts, are upon tangents to the parabola. The corresponding
points B, B, B, in the circle, are on the circumference of the circle.

In the parabola the extremities of the lines g (secf+ tanf) are on a right line AN ;
in the circle, the extrémities of the bent lines G (cosd-++/—1 sind) are all in the
point A.

The locus of the point T, the intersections of the tangents to the parabola with the
perpendiculars from the focus, is a right line; or in other words, while one end of a
protangent rests on the parabola, the other end rests ona right line. So in the circle,
while one end of the protangent rests on the circle, the other end rests on a cardioide,
whose diameter is equal to that of the circle, and whose cusp is at O. OPPA is the
cardioide.

The length of the tangent AT to any point T is g tanf. The length of the cardioide
is 2G sind.

It is singular that the imaginary formulae in trigonometry have long been disco-
vered, while the corresponding real expressions have escaped notice. Indeed, it was
long ago observed by Lamsert, and by other geometers—the remark has been
repeated in almost every treatise on the subject since—that the ordinates of an equi-
lateral hyperbola might be expressed by real exponentials, whose exponents are
sectors of the hyperbola; but the analogy, being illusory, never led to any useful
results. And the analogy was illusory from this, that it so happens the length and
area of a circle are expressed by the same function, while the area of an equilateral
hyperbola is a function of an arc of a parabola. The true analogue of the circle is
the parabola.

LXVI. Let » be the conjugate amplitude of » and +}, while « is the conjugate am-
plitude, as before, of ¢ and .

. ds
Then as j;osw qu’*‘f os? A Yeosw jl:omp cosx

we shall have
dw dy
jm cosq:+ cosx+ cosdz
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and if (k.@), (k.9), (k.%) and (k.+}) are four corresponding parabolic arcs,
(k.w)—(k.¢)— (k.x)— (k.p)=ktan(p-Lx) tan(pL) tan(x+y). . . (350.)
which gives a simple relation between four conjugate parabolic arcs.

Let, in the preceding formula, p=y=+), and we shall have

(k.w)—3(k.p)=ktan*(p-L¢)=8k tan’psec’s. . . . . . . (351.)
We are thus enabled to assign the difference between an arc of a parabola and three
times another arc, = (p+¢-L9).

If in (w) (341.) we make p=y=1), tana=4 tan’p--tang.

Introduce into this expression, the imaginary transformation tanp=+/—1 sin6, and
we shall get sin30=—4 sin’-}-sinf, which is the known formula for the trisection of
a circular arc. (351.) may therefore be taken as the formula which gives the trisec-
tion of an arc of a parabola.

When there are five parabolic arcs, whose normal angles ¢, y, 4, v, 2 are related
as above, namely,

w=0-1y, azw‘L\l‘:QD"LXJ"‘I" Q=pLyLdLy,
we get the following relation,
£.Q) = (k.0)—(k.x)— (k) —(k.v)=Fk tan (p-Ly-Lv) tan(yL+J-Lv) tan(JLp-Lv), (352.)
a formula which connects five parabolic arcs, whose amplitudes are derived by the
given law.

We might pursue this subject very much further; but enough has been done to
show the analogy which exists between the trigonometry of the circle and that of the
parabola. As the calculus of angular magnitude has always been referred to the
circle as its type, so the calculus of logarithms may, in precisely the same way, be
referred to the parabola as its type.

The obscurities, which hitherto have hung over the geometrical theory of loga—
rithms, have it is hoped been now removed. It is possible to represent logarithms,
as elliptic integrals usually have been represented, by curves devised to exhibit some
special property only; and accordingly, such curves, while they place before us the
properties they have been constructed to represent, fail generally to carry us any
further. The close analogies which connect the theory of logarithms with the pro-
perties of the circle will no longer appear inexplicable*.

* The views above developed, on the trigonometry of the parabola, throw much light on a controversy long
carried on between Lersnirz and J. BErvourLI on the subject of the logarithms of negative numbers. Leis-
w17z insisted they were imaginary, while Bervourrr argued they were real, and the same as the logarithms
of equal positive numbers. EvuLer espoused the side of the former, while D’AvemBERT coincided with the views
of Bervourri. Indeed, if we derive the theory of logarithms from the properties of the hyperbola (as geo-
meters always have done), it will not be easy satisfactorily to answer the argument of BerNouLLi—that as an
hyperbolic area represents the logarithm of a positive number, denoted by the positive abscissa + 2, so a negative
number, according to conventional usage, being represented by the. negative abscissa —, the corresponding

hyperbolic area should denote its logarithm also. All this obscurity is cleared up by the theory developed in
the text, which completely establishes the correctness of the views of Leisnirz and EvLer.
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On Conjugate Arcs of a Spherical Parabola.

LXVII. The well-known relations between elliptic integrals of the first order,
whose amplitudes are conjugate, develope some very elegant geometxical theorems.

Thus in fig. (25.), since the arc AQ"‘J +QR and the arc BQ—J +QR’
T (e (9 :
the arcs AQ-+BQ=;j [&/fp_l- VL +QR+QR,
Now AQ+4BQ=two quadrants of the spherical
parabola, and QR+QR'=5, 2 whence half the cir- T )

cumference, or AQB=j U%/*I—;-i- 7%;] +§- ://

In XXII. it has been shown that the complete [
integral represents the semicircumference, whence !

AQB]V+2.....(b.)
Comparing these equations (a.) and (b.) together, we get

o

Now as the triangle RR'P is a quadrantal right-angled triangle, the relation
between the angles AFR, BER/, or ¢ and y;, is easily discovered. Since FPE is a

spherical triangle right-angled at P, and FE=2e=7§r—7, we get j tang tany=1.
When AQ=BQ, ¢g=1y, and tanp=-—=

The locus of the point P is a spherical ellipse, supplemental to the former, having
the extremities of its principal minor arc, in the foci F, E of the former.

LXVIIIL. Leto,o, 0, be three arcs of a spherical parabola, corresponding to the con-
Jugate amplitudes ¢, x;, ». Then successively substituting these amplitudes in (58.),
the resulting equation becomes

T (de dy dw
o+o,—0,=) [57?;)"’" }/_i— T/_I:] +rtr—7,

But as the amplitudes ¢, x, » are conjugate, the sum of these integrals of the first
order is 0, whence
o+o—o,=r47—7, . . . . . . . . . (353)
Or, when the amplitudes of three arcs in the spherical parabola are conjugate ampli-
tudes, the sum of the arcs is equal to the sum of the protangents. We use the word
sum in its algebraic sense. '
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On Conjugate Arcs of o Spherical Ellipse.

LXIX. If, in (42.), we substitute successively ¢, x, », and add the resulting equa-
tions, we shall have

c+0,—0 —<1+n)\/%UN V1¢+§N j;\Ivd:;n

2 r(de , (dx _(de___
= Vn n;+ Vf;"jvf; —r—rT,. . . . . . . . (354)

Now the conjugate relation between ¢, y and « renders the sum of the integrals of
the first order=0, and the sum of the integrals of the third order equal to a circular
arc ©, which is given by the equation

tan@= _¥Ymnsingsingsine (355

1——”—-cos COS’y COSw
1+n P cosx

Hence o+o—0,=@O—7—7 47, . . . . . . . . . (356.)
Or, when the amplitudes are conjugate, the sum of three arcs of a spherical ellipse may
be expressed as the sum of four circular arcs.

When one of the amplitudes « is a right angle, ¢, becomes a quadrant of the sphe-
rical ellipse=¢. 7,=0, and @=7=v, as we shall show presently, whence

(6—06,) —o=m, which agrees with (52.).

Or the difference between two arcs of a spherical ellipse, measured from the vertices
of the curve, may be expressed by a circular arc. In (45.) we found

tans Vmnsing cosp V/mn siny cosy
~ V1—#sin% ’ T W 1—2sin%y
Now when w=%, (338.) gives siny= 4/%’ sinp= ox

V1—isin%y’

V'mnsing cosp 4/ mn siny cosy

whence mn sing siny = S e
v psiny ¥'1—2*sin’p V1—isin%y

w
or O=s=r, when 7,=0, or o=5

LXX. When we take the negative parameter m instead of the positive n, (17.) gives

""(Fm)\/m’zUM M 4/1 fM s (857

Now the sum of these arcs is equal to a cn‘cular arc— @, which may be determined
by the expression

»/‘mn sing siny si
tan®, = mn sing siny sinw

~ (358.)
14 T—m COSP COs)Y cosw
whence o4o—c,=—0. . . . . . . . . . . (359)

If we compare together (356.) and (859.), we shall have the following simple rela-
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tion between the five circular arcs ®, @, 7, 7, 7,
O04+0=r47—7,. . . . . . . . . . (360)
We may give an independent proof of this remarkable theorem.
The primary theorem (338.) cosw=cosp cosy — sing sinyn/ I,

sinw cosw __ sing siny sinw cosw

gives VI,  cospcosy—cosm ’
and cos’p+-cos’y +}cos’w=1+-2 cosp cosy cosw—i’sin’p sin’y sin’w.
Let singsiny sine=U, cospcosy cose=V. . . . . . . (361.)
v mn sinw cosw v mn U cos®w
Now tanr, = ——— = ;
I ¥ 1—@sin% cos’w—V
Vo 2 Vmn 2.
whence tanr:._”i’fgyffﬂ, tang, = YU cosy:
cos’p—V “cos—V
tanr +tant,—tant, 4 tanr tanr, tanr,
and tan(r+7,—7,) = 1+ tanr, tant, + tanr tan,—tanr, tans ’
whence ;
cos’s | cosgx cos%» mnU?%cosp cos%y cos’w
vV mnU 5 + SV " Teosd 2 7
cos?s—V ! cos®—V T cos?w— (cos®*¢— V) (cos*¢— V)(cos?w—V)
tan(r+47,—7,)=

72 [ cos*y cos®w cos% cos®p cos’p cos?y ] )
(cos™

— V) (cos’w—V) + (cos®’w—V)(cos*¢—V) + (cos’¢—V)(cos*y—V)
If we reduce this expression, we shall have, on introducing the relations
cos’p-4-cos’y 4-cos’a=1-4-2V —72U?2, 262
and Cos’» Co8”y - CO0s*P Cos*w--cos’y cos2¢=V2+2V+j2U2,J ' (862,
[2/24 (2 +mn) V] &/ mnU
tan(v47,—7,)= () Vo (V24205 . . . (863.)
If we now combine the values of tan® and tan®, given in (355.) and (358.), we
shall have

[2%+ (2 4+mn) V] V' mnU -
tan(@+0)= Pt E V(L0 (364.)
whence 0+0,=7+7—7,

as is evident from an inspection of the preceding formule.

On Conjugate Ares of a Logarithmic Ellipse.
LXXI. In (162.) substitute 5 and » successively for ¢. Let

- e sing cosp VT, __siny cosy VT, __sinw cosw VT,
\/It- ) mn, D= 1—nsin’p X= 1—nsindy ~ 0= T—nsin%w (365.)

we shall have, adding the three resulting equations together, and dividing by ——-——t/“__m,
mn

2[5 =%, 3, = 2l ntnX —n2— ( j'd¢\/1¢+fdm/1 —j‘dw\/l )]

N L (e "
T (n— m)\/ [5‘ JV;C , VE] —\/” [.§‘N¢ ‘/T;—I_EN%VT;—fN@VI_, . (366.)
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Now as 9, %, and » are conjugate amplitudes,
d d d - = = . . .
7%+f—f%-— 5—%: 0, and j&@J I +5dx\/ I —fdc«/ I=2¢*sing siny, sina.
See Hymer’s Integral Calculus, p. 206.
Whence %[2,,-—-2,6— o)== Vmn [n(I)+nX—-nQ-— i sing siny sinw|

\/z[‘S‘N +‘fN Nﬂ,l C L. (367

We have now to compute the sum of ®+X—{2.

cosp cosy — cosw  sinw coswV Ty

sin%» (cos?w—V)
singsiny ~° 1—nsinw

Since +/I,= =Q=— NU > if we make, as

before, cosg cosy, cosw=V, and sing siny sine=U. Finding similar expressions for
® and X, we shall have

sin?p cos®s | sin?y cos’y sin%wcos®w  Vnsin®ew  nsin’¢  nsin?p
nCI)—{-nX—-nQ_U[ ¢ + ;lslz x_ N, :I—-ﬁ N, + N, X4 ] (368.)
n sin%p cosgcp cos’p(1+nsin®p—1) cos’p cos’s
Now UN = NU =NU" U’
cos’¢ l+4n—nsinp—1 1 (1—n)
and NU= #NU  —z0— nNU’
n sin%p cos?p cos?’s  (1—n) Vnsin% V V

whence N = o anee and—"Ng =g NT
Finding similar expressions for the functions of » and yx, and recollecting that, as
in (362.), cos’0+ cos’+ cosw=1+42V—7"U?, we shall have, making W=1—-n-+4nV,

nU(n® 41X —nQ) =3 —n+nV +ni?U— W [N%+l—\};+ﬁl—]
Now jdcp\/ I—;-I—j‘dx\/ I_,;-—jldw\/ I.=#U, whence
nU[n+nX—n0— ( ydgp\/i{d%\/‘f_ j‘dwﬁ)] =2-W[N‘—q-’+§;+ﬁ%—1]. (369.)

We shall find, after some complicated calculations, NyN,N,=W?*—n*sU? . (370.)
and N, N4+ NNg+NeN, =W 2W—n(1—n)(@+m)U*. . . . . (371.)

Substituting the values hence derived, the whole expression becomes divisible by
nU?, and we shall obtain, finally, the following expression,

v mn . n v/ xWU 2mn® v/ xUV
— [nP+nX—nQ—*U]= Wois nQuU2+ (WU (372.)

It may easily be shown, that

_ 1—n+nV4+n VU
_\/"[ Nq,VT N ~/1 SN V1T 1—n+nV—nvxUJ’

MDCCCLII.

(373.)
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or writing, as before, W for 1—n-+nV, and multiplying numerator and denominator
by the numerator,

— ’_‘[yNjf/i-l_fNj’«C/T_fNu”:/T = log %’%} S (374
Now let ”“;EU:siné, N € 748
and the preceding logarithm becomes log(sect+ tanf), which is, we know, the integral
of (oo
Now %: sect tanf; and as 2 ig_seci tan§+ o E
we shall have, dividing by 2,
Sy—Se—3S,=k coS,35+ o ’;’3’(”;‘,‘?"_‘;2;}2) C ... (376)

Hence the sum of three arcs of a logarithmic ellipse may be expressed by an arc of a
parabola and a right line.
When one of the arcs 3, is a quadrant, V=0, and the cquation becomes
d ' A
[2,—2 ] So=Fk cof;,g, N G 7D

which coincides with (160.).

If we apply to (163.) the same process, step by step, and make sin="_ %V;'U, in
which W,=1-—m+mV we shall have ‘
. _ km®n /% UV dr dr,
2a=2y— 2= cosS§+(n —m)(W, Q—mgn U2)+ cos37+k cosslfr cossl'lru' (378.)

If we subtract this equation from (376.), we shall have

d¢ ¢ (‘dr dr, dr, m v x, nVx

5;083£+ cost— Joostr T Jcosr, — JeosP, n—mUV[W —— Ue"'w‘e‘:,;e;fjé]- - (379

Now this last term is divisible by (n—m), and may be reduced to the expression
mn &/ mn UV [V2 4 2ZmnU2—2(1 - V)?]
[We— 02U [W?—m, U]
If in (170.), which gives the relation between conjugate elliptic integrals of the
third order, we substitute successively ¢, x and », and add the equations thence

resulting, we shall have

é’ dr dr, dr,
j‘cosg—‘_ cost . coss T Ws'r,_j::os-r”’ S e (381

(380.)

in which

. sing siny si . mm sing siny si

sing= A/m: ¢ siny sinw , sinl= V' mn sing siny sinw
m
1 +—— cosg cosy cosw 1+ COSP COSy COsw
1—n l1—m . (382.)

. Vmnsing cosp . Vmnsinyg cosy . / mn sinw cose

SINg ==, SINT, = sing,=

V1—2Esin’p ’ V1—sin% ’ V1—@sinfe
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If, in these equations, we change n into —n, and therefore sing into \/ —1 tan®,
sin inton/ —1 tan®’,
sinr into o/ —1 tane, sinr, into o/ —1 tans,, and sinr, into o/ —1 tanr,,

the preceding equations will become

tan® = 4/% sing siny sinw , tan®@'= +/mn sing siny sinw
m
1 ———— cos¢ cosy cosw 1 +-~—— cos¢ cosy cosw
1 + 1—m (383.)
tanse @ﬁin¢ cosp tans, = v/ mn siny cosy tan, __ V/mnsinw codw
T V1—2%sin% ’ V11— siny ’ T Vi—2sinw

and @40 =¢+7—7, as in (360.), values which coincide with those found in LXIX.
for the circular form. Or we may pass from the logarithmic to the circular form, or
from the paraboloid to the sphere, or inversely, by the imaginary transformations above
referred to.

We shall find on trial, that the angles v, v' and = in (279.) fulfil the condition of
conjugate amplitudes.

SectioN IX.—On the Maximum Protangent Arcs of Hyperconic Sections.

LXXII. Since the protangents vanish at the summits of these curves, there must
be some intermediate position at which they attain their maximum. When the curve
has but one summit, as is the case in the parabola, the hyperbola, the logarithmic
parabola, and the logarithmic hyperbola, there evidently can be no maximum*.
ai® Sing cos@

In the plane ellipse, the protangent ¢=—

VI—Psing’ If we differentiate this expres-

. . . . dt
sion with respect to ¢, and make the differential coefficient dp=0 e shall get

1
tdn¢~/]...........(38~4.)

Substituting this value of tang in the preceding expression,
t=a—b. . . . . . . . . . . . . (385.)

In this cuse, the arcs drawn from the vertices of the curve, and which are compared
together, have a common extremity, or they together constitute the quadrant.
The coordinates x, y of the arc measured from the vertex of the minor axis

are z=asinY, y=>b cos9, therefore Z —-—é - cotI=j coty, since ja=>. If wenow make

2 0 o

cot 5’-—-\/J, ==j%.  Again,astani=13; %, %,:j2 tani; or making A=3%, or tan?\zéj,

* The investigation of these particular values of those portions of the tangent arcs to the curves, which lie

between the points of contact and the perpendicular arcs from the origin upon them—or as they have been

termed in this paper, protangent arcs—is of importance ; because, as we shall show in the next section, in the

different series of derived hyperconic sections, the maximum protangent arc of any curve in the series, becomes
a parameter in the integral of the curve immediately succeeding.

3Fr2
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!
y—,:j? or Zl,__y-. Therefore the arcs have a common extremity. We have also

tanﬁ:z. This property of the plane ellipse, called Facnano’s theorem, may be found

in any elementary treatise on elliptic functions. See HymEer's Integral Calculus,
p- 209.

On the Maximum Protangent Arc in the Spherical Hyperconic Section.
LXXIII. If we assume the expression found for this arc = in (45.),

+/mn sing cosp

nr=— T
ta V1—#sin’%’

(386.)

and differentiate it, as in the last article, and make %:O, we shall find, as before,

tangb_—--—\/ S R G178

sinB’ *

If we substitute this value of tan ¢ in the preceding expression, we shall obtain
tans= tan« secB— tanBsece, . . . . , . . (388)

writing 7 to denote the maximum protangent.

Now if we turn to Art. LVIIIL., we shall there find that this equation connects the
amplitudes of three conjugate arcs of a plane parabola. Or if 7, 3, and « are made
the three normal angles of a plane parabola, and (k.7), (k.3), (k.«) the three corre-
sponding arcs of the parabola, we shall have

(k.e)—(k.B)—(k.7)=F tane tanp tans.

. . . 1 Fi
If in (386.) we substitute for sing and cos¢ their values Vie and «/%’ the ex-
pression will become .
=__ Vmn
tanr= ——. e e e . o .. (389,
(+) (389.)

We shall see the importance of this value of = in the next section.

. . 1—j
the spherical parabola, as m=n=i, tan’r= —l-_—g—

Precisely in the same manner as in the plane ellipse, we may show that when tan«
has the preceding value, the arcs drawn from the vertices of the curve have a common
extremity. This will be shown by proving that the vector arcs, drawn from the
centre of the curve to the extremities of the compared arcs, have the same inclination
to the principal arc 2¢. Now 4 and ' being these inclinations, as in XIV., we find

tantx 2 1
anip 0",
and (39.) shows that tang= coss tanA. Hence reducing,

tan?B sin?B
- 2, 1, an2m
tan = = tan’e. . . . . . . . . (a)

tan
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Again, (49.) shows, when we measure the arc from the minor principal arc, that

cotﬂ:%—, or cote_ ta /. Now in order that we may compare these arcs
together, we must have 0= A. Hence
tanﬁ 1
2. 1)
tan’J)/= Ttantafandg v v v oot (b.)

When we substitute for ¢ any particular value, (a.) and (b.) will give the correspond-
sine

s~ j°

J/ become equal, or the compared arcs together constitute the quadrant.

LXXIV. To determine the inclination, to the horizontal plane, of the tangent
drawn to any point of the spherical ellipse. The spherical ellipse being taken as the
curve of intersection of a cylinder by a sphere as in (X.), through a side R» of the
cylinder let a plane be drawn, it will cut the sphere in a small circle, which will touch
the spherical ellipse in the point », and will cut the base of the hemisphere in the right
line RP, which touches the base of the cylinder at the Fig. 26.
point R. Let O be the centre of the sphere and Z the
centre of the spherical hyperconic. Through the line OZ
let a plane be drawn at right angles to the plane of the
small circle Rr#P, it will cut the sphere in the arc of a
great circle Zz at right angles to the arc ro; and as the
three planes, namely, the horizontal plane, the plane of
the small circle, and the plane of the great circle ZOPx,
are mutually at right angles, the right lines in which
they intersect PR, Pz, PO are mutually at right angles,
therefore P is the foot of the perpendicular drawn from the centre O of the base of
the cylinder, to the tangent RP which touches the curve. P is also the centre of
the small circle Arz, since AB is a cord of the sphere. Hence Az is a quadrant,
and therefore, r# or » is the inclination of the element of the spherical ellipse at
r to the base of the hemisphere. Now ZO is the radius of the sphere, and Pr that
of the small circle. RPO is a right angle, and therefore OR*=0P*+PR2. Hence
Rr*=0r"—OR2. Now for the moment putting A and B for the semiaxes of the base
of the cylinder, OP?=A? cosr+Bzsina, and

ing values of tan+ and tan+}'; but when we make tan’p=—— the values of +J and

55, (AZ—DB?)?sin®A, cos A, At cos?x + Btsin’;,

2
RP*= A% cos?A,+ B? stA Whence OR T A?cos?x+B2sin®2 0 0 0 0 (a.)
=  ——  A%cos?A 4 B%sinx ’ . .
and therefore Rr’=0r"—25 OSQ}\: B Sin%:. Let Or=1, A=sine, B=sin, . . (b.)

(sinx —sin?B)? sin®x, cos?A,
sin% cos®x cos?A, + sin’p cos®B sin?x,

RP?
and as tan® =3, tan®=
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Let, as in (25.), tanA,= coss tanp= 7 tang. Substituting, we get the expression

sine siny sing cosg
#/ (1 —sin% sin®p) (1 — sin®y sin%)’

tany= v - . . (390.)

In supplemental spherical ellipses, since sinz and sine* are respectively equal to
sin¢ and sin#, we infer, therefore, that in supplemental spherical ellipses the inclina-
tions to the plane of zy of the tangents to the curves are the same, when the ampli-
tudes ¢ are the same.

. . d
If we now differentiate this expression, and make E;:O, we shall find that

tan@:m—n%. If we substitute this value of tan¢ in (390.), we shall get

tan
tany=tan (¢—f0), orv=e—B. . . . . . . . . (391)

Hence the maximum inclination to the plane of xy of the tangent to the spherical
ellipse is equal to the difference between the principal semiarcs. It is remarkable
that the point of the curve which gives the maximum difference between the arcs,
which together constitute the quadrant of the spherical ellipse, is not the point of

greatest inclination. For this point is found by making tan @*r—; ; while the point

sin
of maximum difference is obtained by putting tan® <]>"-SI ; This is the more worthy

of notice, as we shall find the two points—the point of maximum division, and the
point of greatest inclination—to coincide in the logarithmic ellipse.

If we take the two plane ellipses which are the projections of the spherical ellipse,
one being the perspective, and the other the orthogonal projection, and seek on
these plane ellipses their points of maximum division, we shall find that the angles,
which the perpendiculars on the tangents, through these points of maximum division
of those plane curves, make with the principal arc, are the values which must be
assigned to the amplitude ¢, to determine the point where the tangent to the carve
has the greatest inclination to the plane of xy, and the point which divides the
quadrant into two parts, such that their difference shall be a maximum. This is
plain ; for the semiaxes of one ellipse are £ tane, k tanB; while the semiaxes of the
other are k sine and % sin3. And these angles are given by the equations

sine

4, _ tana 2, _Sia
tan’A= =fang ’ and tan®, = =5inB

On the Maximum Protangent in the Logarithmic Ellipse.

LXXYV. If we follow the steps previously indicated, and differentiate the expression
found in (165),

singF=

»/ mn sing cosg (a.)
Vi—isnt’ e e e e e e e e .
* Theory of Elliptic Integrals, p. 19.
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7 being the normal angle of the tangent parabolic arc to the logarithmic ellipse,
this, evidently, will be a maximum when the parabolic arc is a maximum. Put the

. . . d s 1 S .
differential coefficient a;;:o. TI'his gives, as before, tangb:—;/—f. Substituting this ex-
pression in (a.), we get

sin’«;—_—.ﬁ.%. e e e e (392)
We shall find the importance of this expression in the next section.
From (392.) we derive tan*?:m%;:n—%-
Now (14y)’=242j—*=2+42j—m—n-+mn. Hence as
J= I=m)(1=n), (14j)*—mn=[/T—m+~/T—n]"

V'mn
Vi—m+ V1—n
nominator by »/T—m—s/1—n, and the last expression will become
\/mnVl—-m s/m——nv\/l—n_

n—m n—m

Whence we get tanz=

Multiply this equation, numerator and de-

tans =

In (171.) we found for the semiaxes of the cylinder, whose intersection with the

paraboloid is the 10gauthmlc ellipse, % Y/mn ‘/l—m-, b_Ymavi—n

n—-m kK n—in

Hence (393.)

This gives a simple expression for the tangent of the maximum parabolic arc, ana-
logous to (385.) and (391.). We have only to take in the parabola, whose semi-
parameter is £, an arc whose ordinate is a—b, to determine the maximum protangent
parabolic arc.

The value tan(p=~7, which fixes the position and magnltude of the maximum

protangent arc to the logarithmic ellipse, renders tan’A= b For (150.) gives

. C C 1
tan’*ga:ﬁ—a—ﬁtan%. But (152.) gives +ﬁ_c B andC B=

_m’
‘ tanA
hence tan’p=7—-. If we now make
1_ 1 o Jl—m_a
R v, s B VA A

as we may infer from (171.). Now substltuting this value of tan®A in (155.), we

shall get

¢ _a=b
an«r_——k—

Again, if we differentiate the values of x, y, z given in (158.), the coordinates of the
extremity of the arc measured from the minor axis, and substitute them in the general
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expression for the tangent of the inclination of any curve to the plane of zy, namely,
d : .
ﬁ%—(i—?, and make Y=2, we shall get, as before, putting for tan®»=tan’J, the value

a dz a—b . .
P Vidtdg F Hence the arcs have a common extremity, since they have the

same inclination to the plane of zy. As %:tan”x is the value of tan®», which gives

the maximum protangent =a—»b in the plane ellipse, the base of the cylinder; it
follows that the point of maximum division on the logarithmic ellipse is orthogonally
projected into the point of maximum division on the plane ellipse; and the corre-
sponding protangent in the latter a—b is the ordinate of the parabolic arc, which
expresses the difference between the corresponding arcs of the former. Thus, while
the arcs which together constitute the quadrant on the plane ellipse, differ by the
difference of the semiaxes a—b, the corresponding arcs of the logarithmic ellipse
will differ by an arc of a parabola whose ordinate is a—b.

LXXVI. When the amplitude ¢ is given by the equation tang=—-=, or when the

/\/ o
protangent is a maximum, the corresponding arc of the spherical ellipse, or of the
logarithmic ellipse, may be expressed by functions of the first and second orders

only. This may be shown as follows. When tanp= 75 —= the arcs ¢ and ¢, of the

spherical ellipse, or the arcs 3 and S of the logarithmic ellipse, together make up the
quadrant C. Hence 6+6=C, or 34+S=C. But we have also 6, —o=w, as in (52.),
and S—3=v, as in (160.). Therefore

C—r C+r C+'r C-—'r.

0’=T GI=T3 S"“ 2: b}

Or s and o, or 2 and S may be expressed as simple functions of C and 7. Now C,
the quadrant, as we have shown in the Jast section, may be expressed by functions
of the first and second orders only, while = is an arc either of a circle or of a parabola.

Hence an elliptic integral of the third order, whose amplitude p= tan"‘(————) may
be expressed by functions of the first and second orders only.

Section X.—On Derivative Hyperconic Sections.

LXXVII. We shall now proceed to show that, when a hyperconic section is given,
whether it be spherical or paraboloidal, we may from it derive a series of curves, whose
moduli and parameters shall decrease or increase according to a certain law ; so that
ultimately the rectification of these curves may be reduced to the calculation of
circular or parabolic arcs, or in other words, to circular functions or logarithms.
We shall also show that all these derived curves, together with the original curve,

may be traced on the same generating surface, i. e. on the same sphere or para-
boloid.
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In (186.) we have shown that the rectification of a plane ellipse whose semiaxes are
a and b, may be reduced to the rectification of another plane ellipse whose semiaxes
a,, b, are given by the equations a,=a-b, b,=2+/ab, of which the eccentricity is less
than that of the former. a-+b is that portion of the tangent, drawn through the point
of maximum division, which lies between the axes; and /ab is the perpendicular
from the centre on it.

We have shown in (63.) and (74.), that if ¢ and +/ are connected by the equation

1— 1—;
4/1——1‘5Z 1+5°

tan(y—@)=j tang; while ¢ and i, are so related, that ;=

we shall have
( d¢ _Q+9)C (H"MA _(1+4) _d_"’z
JVI_—vzq sin%_ 2 J \/E[—-z? sine-.[;— 2 "/I,
Let us now introduce this suggested transformation into the elliptic integral of
the third order, circular form and negative parameter. In (191.) we found

2 sin’p=141,sin*y—cosya/I,.
o _( de
Now MVT1 J[1—msin%] ¥ 1—sin%
Or replacing ¢ by its equivalent functions in +J, and recollecting that m—n-mn=2,
since m and n are conjugate parameters, we shall find
‘ d¢ dy
MVI—(1+Z’)_)[2 —m—misin®y+meosy VI w1 ° ° C (394.)

We may eliminate the radical m cosya/1, from the denominator of this expression,
by treating it as the sum of two terms.

Multiplying and dividing the function by their difference, since 1+i,=ﬁz_7,
de dy[2—m—mi, sin®y—m cosy VT,
4(1—mj‘M ﬁ=(1+z,.§' 2 [’"+ ik d, (395.)

e o] VT

Now it is truly remarkable that whether the parameter of the original function we
start from be positive or negative, the parameter of the first derived integral will
always be positive. Indeed it is necessary that this should be the case, because the
parameters of the derived functions, increasing or diminishing as they do, must at
length pass from between the limits 1 and #*. Should they do so, the integral would
be no longer of the circular form, but of the logarithmic. Now we cannot pass from one
of these forms to the other by any but an imaginary transformation. This objection
does not hold when the parameter is positive, because the limits of the positive para-
meter are 0 and co. It is, too, worthy of remark, that the first derived parameter is
always the same, whether we transform from positive or negative parameters. Write

mn

mETae o (396.)
n, is the first derived parameter.
MDCCCLII. 3G
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We may transform (395.) into

401 —-m)e= <1+»(‘1‘”[2"”“’“*"'3“‘% 1)—meosy VT]

[1+n,sin%] V]
my_7 miy__m+n
Now w = and 2—m+ W m (397.)
Hence ‘
1—m)( do (m+n) anr dy (1+7) #0dd  (1+3)

ﬁ

- 4 -1 K]
m JM*’I mn. Vmn J[1+nsiny] VI, 2 mn)VI 24n tan~'(v/n, sin+}). (398.)

/mn sing cosp

We shall now show that VT sy = sind. . . . . . . (399)

If we revert to (189.) and (193.), we there find
2 sing cosp=siny[/T+i, cosy], and 23/T=(145)[a/ T+ cos].
(396.) gives n/mn=,/n,1-+474); therefore M—\/— sin.

If we replace %ﬁ"‘% in the preceding equation by its valuef;%-, and put N, for
’ 1 LY
14n,sin*),

—m (m+n 1 n-! x/mnsm¢cos¢
2( )JA j'N T mn VI an [ - (400,

Now the common formula for comparing circular integrals with conjugate para-
meters is, we know, see (47.),

<1+n (" _de ( —m\ (* d¢~_£§d¢ 1 n-! ansmcpcosqs
.’N‘/I IMVT ™ mn ‘/I an v'1—#sin% )

Adding these equations we obtain this new formula

140\ ,— —m d m+n
(5 )/ yw Galers )mj‘m 7= )\/_51\ vips oo o)
By the help of this important formula we may establlsh a simple relation between
the sum of the original conjugate functions of the third order, and the first derived
function of this order.
LXXVIII. If ¢ be the arc of a spherical ellipse, it is shown in (46.) that

_/l4n # —1[V mn sing cosp
7= ( >meNV1 A/mnyVI tan [4/1—1281119]

. 1—m do
and in (17) that o= (_;n_)" / mnym—f-
Adding these equations together, and intboduc’ing the relation just now established,
(m+n) _“ dy

dg [ Vmnsing cosp
= \/nJNI v, ‘/%j“/i—wn ¥ 1—i%sin% ]

Now as m—n=2*~mn, (m+n)*=1i'—2"mn+m*n>+44mn.

(402.)
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We have also mn=n(147)?, ,-___i and = (1—j)(14j), hence

1452
mtn=1+)A4n)m, . . . . . . . . . . . (403)
and therefore mﬂ;")Jﬁ;:C:”’)J@ C e e e e . (404)
1

. . . . dy . .
It is worthy of especial remark that this coefficient "ffﬁ“%i‘ is precisely the same
i I

. . de
in form as the coefficient of N VT
The preceding equation (402.) may now be written,
14n 2 (de _ ansmq: cosp
25— (i — e T 1 . 0 .
2r= (=" )‘/"N«/I 7 b4 e R il (405.)
Lets, =n, i, < beanalogous quantities for the derived spherlcal ellipse o/,
__[1+4n B (dy ¥ mp, sind cosy cosdl
= ( >\/ " {fN «/1 Vo )VT T tan ul 1%} - - (406)
-9 2

i
——=9
*/ mn’ Vmp, 4/m”n”

(1+7), (1+J)(1+J1)’ )+ A+7,), AHDA+7)(1+7,)(1+7,), &e. Let also
Q, ¥, ¥, V¥, &c. denote the arcs, whose tangents are

Let q, 9, 4,5 9. &ec. denote. &c., and put r, r, r,, r,, &c. for

Vmn sing cosp V'mpn, sind cos¥ vV mymy S smxlz, cosd;, &e.
V=7 SmQ? V11— i sin®y V-7 —1 sm“’xb,

Making these substitutions, and writing Q, Q,, Q,, &ec. for the coefficients of

de dy t Ay,
NoT yN, VT N, VI (405.) and (406.) become
d
za-_.QNﬂ A5 . . @) a_QyN Y R e

Taking the derivatives of these expressions, we may write

dy d d d
2”1=Q/1 I q‘j‘fl .. (b =N T ¢ =¥. . . . (b)

N, V1,
dd; de dy
20,=Q, N, ;m"%ﬁ'l VT—TI - (e) u=Q N, 4}‘1“ Q" 4/1 ¥, . . (c)

Subtract (a,.) from (a.), (b,.) from (b.), and (c,.) from (c.), the integrals of the third
order disappear, and we shall have

*d
20 —0,=(g7r— g)j «/¢T+\P— Q

d
20, —0,=(q,r,— 9:7")5‘7%"' ¥-v
d
20,—0,=(qu"i— 91:7'1)‘; _{/% +¥,—Y,

de
20— 0= (il s — 91117"11)5‘_{/71‘ +¥,—¥,
362

S .. . ... (407)

-
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If we add these equations together,

o400, 40,4+ (0—0,)=(quru 9)5’4/1+Tm Q.. . .. .. (408)

If we multiply the first of (407.) by 2°, the second by 27, the third by 2, and the
fourth by 2°, and add the results,

d .
2%c—0,,= (quurm+9mru+ 2¢9,r,+49r—89) }/iil"'l" (\Fm+ ¥, +2¥ 447 —-8Q), . (409.)

an integral which enables us to approximate with ease to the value of the integral of
the third order and circular form, in terms of an integral of the first order.
We have shown in XXVIII. how the integral of the first order may be reduced.
The above expressions may be reduced to simpler forms, when the functions are
complete. In this case 2=0, ¥=0, ¥,=0, ¥ ,=0, &c.; and when ¢ is a quadrant, s,
will be two quadrants, ¢, will be four quadl ants, ¢, will be eight quadrants, and so on;;
the preceding expression may now be written, denoting a quadrant by the symbol 7,

ve o . i de
lb("““’uu):(gu‘u'rm'}'9/1;7'l/+4291lr1+47/’""89)& Y (410.)
In (396.) we found for the parameter of the derived integral of the third order, the

expression n,= Or, referring to the geometrical representatives of these ex-

mn
1 +5)*
pressions, we found for the focal distance ¢ of this derived curve, the expression
n= tan“’e,:z-l—?%)—é; but if we turn to (389.) we shall see that this is the expression
for the maximum protangent to the original spherical ellipse, which is given by the

. mn . . . .
equation tan’r= ( We thus arrive at this curious relation between the curves

1+5)*
successively derived, that the maximum protangent of any one of the spherical ellipses
becomes the focal distance of the one immediately succeeding in the series.

LXXIX. Given m, n and i, we may determine m, n, and ¢,

for i,= Substituting these values of i, and », in the equation which

1—; n,

1457 (1 +J) '
connects the parameters, m,—n +mmn,=1,
m___[a/l+n— V1—m7?

V1tnt+ v/1—m

(411.)

Hence given m, n and 7, we can easily compute the values of m, n, and %, and then of
m,, n, and 7,; and so on as far as we please.

Given the semiaxes ¢ and b of the elliptic cylinder, whose intersection with the
sphere is the original spherical ellipse, to determine the semiaxes a, and b, of the
cylinder, whose intersection with the sphere shall be the first derived spherical ellipse.

We may derive from (53.) and (54.) the values of ¢ and & in terms of m, n and 1,
or eliminating ¢, in terms of m and » only. Now

¢ n b n(l1—m) ’ »_n,(1—m)
REm(la) B m Hence CETm(ln) BT om
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Or substituting the values of m, and #, in terms of m and n, and therefore of a and b,

a+b b 2N/db
1 ab) b. .
1+k2 1+‘;Cg

a,= (412.)

When the radius of the sphere is infinite, or the derived curve is a plane ellipse,
a,=a-+b, b=2+/ab, as in LXXVIL.

When m=n=i; m,=n=i, or when the given curve is a spherical parabola, the
derived curve will also be a spherical parabola. Hence all the curves of the series
will be spherical parabolas.

If we take the corresponding integral of the third order with a reciprocal para-
meter /, such that /m=¢, and derive by the foregoing process the first derived
function of the third order, we shall find the parameter / of this function to be
positive also, and reciprocal to n, so that [, n,=1.

Hence, if we deduce a series of derived functions from two primitive functions of
the third order and circular form, having either positive or negative reciprocal para-
meters, the parameters of all the derived functions 1,0, 1, n, n, n,, will be positive,
and reciprocal in pairs, so that [n,=2, {n,=2, [n,=0, &e.

LXXX. We may apply the same method of proceeding to the logarithmic ellipse,
or to the logarithmic integral of the third order,

5’( de , in which > m.

1—m sin%p) 4/1—4°sin®p

If on this function we perform the operations effected on the similar integral in
(394.), we shall have, after like reductions,

(143) (dY[2—m—mi, sin®y—m cos{ &/I,]
VI 4(1—m) [1—m, sin?y] VT,

We must recollect that

(413.)

M=1—msin’p, M,=1—m,sin*}, I=1—*sin’p, [, =1—12 sin’}, and m,:—(l—rf%);. (414.)
We may reduce this expression.
The numerator may be put under the form

2_m+’7’;-’}{1_m, sin*y—1} —m cosyn/T,

miy__(n—m) mi; i 4/z,__ 1
Now 2-—m—ml-_ P and s We have alsc =14

Hence, making the necessary transformations,
' 2(1—--m) de __(n—m)__&_/z, dy z«/z,(' d¥ W (cosddd

m \MyVI _ mn i MM/T, anVI 7 M,

: . . d 1 d
If into this expression we introduce the relation given in (74.),§~£-—( +1)5 L4

viT 2 JvI
1—m\( dp _ (n—m) «/i‘, t Ay ®(de  Wifeosydd
we shall have 2(—711—)5‘\/1 s M VT mnj Ji— T M - (415)
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R sing cosg

VI
the last term of the preceding equation may be written

Now in(399.) it hasbeen shown that /m, sin= ,and as ¥mn= v m(1+j),

d [ +/mn sing cosp
1 [— T de

v mn D sinp cos?p
—

Substituting this value in the preceding equation and comparing it with (169.) or (170.),
we shall find
» 1—m\ (" do 1—a\(Cdp _ (n—m) V(" d¥
( m >5M¢r AT sl vrvs pACEENEIE (416.)

This equation is analogous to (401.). By the help of it and the last equation we can
always express

j;ha 5‘NVI in terms of M«/I

Since m,=(—1—7_£$); is symmetrical with respect to » and m, we should have obtained the

. . . . (Cde . de

same value for the derived parameter had it been deduced flomyN—fi instead of MV
. mn (1 —j)”—mn _Y1=m—V1=n?

Since =T "Taa)i=m T | Vicas V—l—n]' . (417.)

LXXXI. We may express m, and z, simply, in terms of @ and b, the semiaxes of
the base of the elliptic cylinder, whose curve of section with the paraboloid is the
logarithmic ellipse. '

In (171.) we have found the values of m and = in terms of a, b and %, namely,

a_ ¥ mn(l—m) b Vmn(1=n) —-n)

P B £ B B

a—-b_Vl-m-—Vl——n
a+b" V1—m+V1=7n

Now n—m=_1—m)—(1=n)=K/1—m~+./1=n)(/1—m—s/1—n).

Hence or assuming the value of », in (417.) n,= (%—2—

. . mn (142 =mn__ (V1—m+ vV 1—n)?
Or as = T gy (=
a—b v mn

and (a.) gives

E = Vi—m+ V1-n
l_ml___(‘/l—m— 4/—1——-_7—0)2

m, mn

therefore

—h\2
Hence reducing, m,=k—e%@—2;)§'

If we now compare together these expressions for m, and », namely,

(@—
m—m, n—(a+b . L (418.)

we shall find that »,>m, so long as k>2/ab; that when k=2./ab, m=n,;
and that when k< 2/ ab, n,<m,
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To determine the axes of the base of the cylinder, whose intersection with the
paraboloid gives the derived logarithmic ellipse.

2
Since iR —’:—%’—), as we may infer from (171.),

we shall have', substituting the preceding values of m, and n,,

_ (@+bP® B __4ab[F+ (a—b)?] _ +(a+D)?

=Emaa) B E—aa o A= ( [/c2+(a~b)9]‘ - (419

When k=0, or when the paraboloid is a plane, a,=(a+b), b=2+/ab, which are

a—b 1— 4/1-—-4Q
a+b 1+ 4/1- WV1—2
as we should have anticipated, for these are the values found in LXXVII. and LXXIX.
for the axes of the derived plane ellipse.

the values of the semiaxes of a plane e]hpse, whose eccentricity is

mn

When m=n=1—j, == (1 +j) =#, and n,=0.

Hence, when the original logarithmic ellipse is of the circular form, the first derived
ellipse is a plane ellipse.

When k*=4ab, (418.) shows that m,=n,, or %:%: oo, as in XLIIL.; butm =n, is
equivalent to n=m(y/14j++/7)% :

Whenever therefore this relation exists between the parameters and modulus of
the original integral, the first derived integral will represent the circular logarithmic
ellipse, which may be integrated by functions of the first and second orders. Accord-
ingly whenever the above relation exists between the parameters, the integral of the
third order may be reduced to others of the first and second orders.

If in the second, third, or any other of the derived logarithmic ellipses, we can
make the parameters equal, this derived ellipse will be of the circular form, and its
rectification may be effected by integrals of the first and second orders only ; accord-
ingly the rectification of all the ellipses which precede it in the scale, may be
effected by integrals of the first and second orders only.

We iay repeat the remark made in LXXIX. The derived fanctions of two
integrals of the logarithinic form with reciprocal parameters, have themselves reci-
procal parameters. ,

LXXXII. If we now add together (162.) and (163.), we shall have

%__;@ %___[ncp +m®, ]+[ “'2i|§

e[ (R e

We must now reduce this equation into functions of 4 instead of ¢; +/ and ¢ being
connected, as before, by the fundamental equation

tan(y —@)=j tang.

(420.)
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The elements of these transformations are given at page 358, namely,

. .. — v mn
2 sin’p=1-i sin’)— cos¢\/l,, and w—\/n, sina.

V1—¢ sin’p

From this last equation we derive (1 —n sin’p)(1 —m sin’p) =I(1—m, sin®}).

Now as @, M, we shall have n®,= V/m,Siod['2n—2nm sm%] . (42L)
1 —nsin®p 2 vV'mn 1—m, sin®y
. . L sg s __ V/m;sing [2n— nm—nmi, sin®y + mn cosy V' T)]
Or putting for sin’p its value, n®,= W [T, sin%)] . (422)
In the same manner, we may find
V'm, sing [2m—mn —mni, sin®Y + mn cosy VT, I,]
= e e e .. (423,
m®,= 2 v/ mn [1—m,sin®}] ( )

Adding those equations together, and recollecting that m+n—mn=4, we shall get

Vmzsing . v mV mn cosd sing VT,
n@,mP,=———1 I[l—-m, Sy (424.)
Now as #=(14)(1—j), and o/ mn=+/m(1+5)
— (1D, D, ) = — (1 =) singh— (1) Sinb cosd VT, (125,

~(T—msin?)
In (186.) we found

2§d¢\/I=(1+ j)jdq,\/T, T «/1 N r(—fsing. . . . . . . (426)
Adding this expression to the preceding, the terms involving siny will disappear.
‘We must now compute the sum of the coefficients ofy—g‘—llf—--

. dp  (14i)(dy (+) tz
Since Vi— VI , this coefficient becomes

+o—20145) |-

g
1+’1)
Or as m--n=1"+mn, this coefficient may be written [—+L —2(1-45 )]
ng o 3
Or as mn=m (1-7)? it becomes finally, 1+i, -ﬁ’—l]. e e e e (427)
2P RV EEAVR: s *dy
Hence [ﬁ“‘n—Q(l"‘J)]( ; >yvf“1+i['@_l]yvf' C ... (428)
1—m dp (1—n)(* do (p—m) 1 ¢ dy
And (n—m)[( m >5M v1 n JNVI] an v'mn 1+JJ[1-—-m,sm%]4/I (429.)
Now as ntm=—mn, (n+m)*=i'"—2mni*4m*n’.
Hence (n—m)*=1"42mni* +m*n®— 4mn,
and as #=(14y)’(1—y)*, mn=m(1-+j)* substituting

(n—m)*=(147) (1 —=7)*+2m,(1+7)* (1 —f) +m} (1 47)* — 4m (1 +5)?,
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2 4 2 4
therefore (r—m)*=(1+4y) [(1+J) +2m <1 5 T_%g],
and as (l—fj.)—gz( 1)) the expression will finally become
n—m=(145)*(1—m)/n, hence x/ﬁ 32—( ’)\/mn .o ... . (4380)

If now we add together (420.), (425.), (426.);, (428.) and (429.), we shall have,
(n m)

dividing by

i 1 —'ml) V;z_q)m‘ (1—m) l«/n,j:jﬁb\/l -]

( _ml> mn'M VI S cos3r

Let us now take the logarithmic ellipse whose equation contams m,, n, i,y instead
of m, n, i and ¢, we shall have from (163.),

23! m,V'mn 1—m
H= m ¢ "'( >V’”"yNVI

4/ mpm, n (1—m dr
+T-%&‘¢£"’MZ n‘_m')\/ 5 Noogrr - - - - (432)
If we now subtract these equations one from the other, combining together like
integrals, the integral of the third order will vanish and we shall have,

— d
B m [ (/T - m)fr—m¥]+2f i —2(it. . wss)

- 3
cos’r,
_n,(n, m,)(1—m,) ]

(431.)

Hence, as we may express an arc of a plane ellipse by an arc of a derived ellipse, an
integral of the first order, and a right line—a known theorem—so we may extend
this analogy and express an arc of a logarithmic ellipse by an arc of a derived loga-
rithmic ellipse, by functions of the first and second orders, by an arc of a parabola
and by a right line. The relations between the moduli and amplitudes are the same
in both cases,

z'—--i—-_'—-_-}:, and tan(y—@)=j tang.

Let m,, n,, %,, ¥, be derived from m, n, 7, '\JJ, y the same law as these latter are
derived from m, n, i, @, namely,

V1—m— v T:.ﬁ]g 7
Vi—m+ V1—n

and derive an arc of a third logarithmic ellipse, we shall have, putting A, B, C, D for
the coeflicients of the integrals, and II for the parabolic arc,

_Tr
’=T-]—7 tan(y — ¢)=jtang, M= =

- d
%—Q_Ayd¢dl,+3j~%—cw+nn,
2 L_A§d¢JI,,+B d‘”"c—'w,+D'n,

MDCCCLII. 3H
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Multiply the first of these equations by 2 and add them, 3 will be eliminated. In this
way we may successively eliminate 3, 2, 2, until ultimately we shall have

%"2'+l%=vE+vF+VT-—Vﬁ,
v being the number of operations, and denoting by F and E, the sum of the integrals
of the first and second orders, by ¥ the sum of the right lines, and by II the sum of
the parabolic arcs.
If in (401.) and (416.) we substitute the coefficients of the derived integrals as
transformed in (404.) and (430.), the relation between the original and the derived
integrals of the third order will be,

14n do (=) do (e dv
( n )m‘)(l—}—nsin“’(p) «/1--asin2¢T( m ) Vm’n(l—-msin%) x/lm_( n, ) m’”&l-{-n,siu?@ V1T =iFsinty’ (#34)

for the circular form or the spherical ellipse, and

1—m ( e - 1—n ( do Clem) v
(T) m‘)(l —msin%g) VI—Zsinsp <T) mj(l —nsin?g) /1 -2 sin7¢=< m, ) vm’"ﬂ(l —m, sin?y) V1 —i2siny

(435.)

for the logarithmic form, or the logarithmic ellipse.

LXXXIII. There are several plane curves, whose lengths we may express by elliptic
integrals of the third order. For example, the length of the elliptic lemniscate, or the
locus of the intersections of central perpendiculars on tangents to an ellipse, is equal
to that of a spherical ellipse, which is supplemental to itself, or the sum of whose prin-
cipal arcs is equal to #. We cannot represent elliptic integrals of the third order
generally, by the arcs of curves, whose equations in their simplest forms contain only
two constants. Thus let @ and b be the constants. We shall have two equations
between the constants the parameter and the modulus of the function, i=f{a, b),
n=f"(a, b). Assume a as invariable, and eliminate b, we shall have one resulting
equation between i, n, and a, or F(a, i, n)=0; or n depends on <.

When there are three independent constants, as in the preceding investigations,
a, b, and %k, we shall have i=f(a, b, k), n=f"(a, b, k). Eliminating successively &
and k, we shall have two resulting equations, instead of one, F(a, £, ¢, n)=0, and
F'(a, b, i, n)=0, or i and n depend on two equations, and may therefore be inde-
pendent.

ERRATA.

Page 319, last line, dele n.

320, line 5, for page 6 read page 316.
~— 328, line 12, for (47.) read (46.).
— 329, line 15, for (32.) read (31.).

1—j

1+j

-——— 338, to the last line add, ¢ being here the eccentricity of the base of the elliptic cylinder.
—— 372, line 11, for Case XII. read Case XIII.

—— 389, line 14, for BErNovILLI read BERNOULLI.

—— 331, line 7 from bottom, for n=m=i, read n=m=



