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During the absence of the Sub-Committee, the Chair
was taken, pro tem., by George Petrie, Esq., V. P., when

Sir William R. Hamilton read a paper on the expression
and proof of Pascal’s theorem by means of quaternions; and
on some other connected subjects.

This proof of the theorem of Pascal depends on the fol-
lowing form of the general equation of cones of the second
degree :

s BRI =0; W

B=v(v.ad. v.d”d"), ,
B=v(v.ad.v.d"a"), (2)
B'=v(v.a"d". v.d" a),

in which

a, o, a’y "’y a'’, a”, being any six homoconic vectors, and
8, v, being characteristics of the operations of taking sepa-
rately the scalar and vector parts of a quaternion.

In all these geometrical applications of quaternions, it is
to be remembered that the product of two opposite vectors is
a positive number, namely, the product of the numbers ex-
pressing the lengths of the two factors ; and that the product
of two rectangular vectors is a third vector rectangular to
both, and such that the rotation round it, from the multiplier
to the multiplicand, is positive. These conceptions, or defi-
nitions, of geometrical multiplication, are essential in the
theory of quaternions, and are hitherto (so far as Sir William
Hamilton knows) peculiar to it. If they be adopted, they
oblige us to regard the product (or the quotient) of two in-
clined vectors (neither parallel nor perpendicular to each
other), as being partly a number and partly a line ; on which
account a quaternion, generally, as being always, in its
geometrical aspect, a product (or quotient) of two lines, may
perhaps not improperly be also called a GRaMMARITHM (by a
combination of the two Greek words ypapu# and apfudc,
which signify respectively a line and a number). In this
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phraseology, the scalar part of a quaternion would be the
arithmic part of a grammarithm ; and the vector part of a
quaternion would be the grammic part of a grammarithm.
In the form given above, of the general equation of cones of
the second degree, the six symbols, a, .. .a", denotesix edges
of a hexahedral angle inscribed in such a cone; the six
binary products ad’,...a"a, of those lines taken in their order,
are grammarithms, of which the symbols v.ad’, &e., denote
the grammic parts, namely, certain lines perpendicular re-
spectively to the six plane faces of the angle; the three pro-

ducts ;
v.ad.v.a"” d”%, &ec.,

of normals to opposite faces, are again grammarithms, of
which the grammic parts are the three lines (3, 3/, 37, situ-
ated respectively in the intersections of the three pairs of
opposite faces of the angle inscribed in the cone; and the
equation (1) of that cone, which expresses that the arithmic
part of the product of these three lines vanishes, shows also,
by the principles of this theory, that these lines themselves
are coplanar: which is a form of the theorem of Pascal.

The rules of this calculus of grammarithms, or of qua-
ternions, give, generally, for the arithmic or scalar part of
the product of the vector parts of the three products of any
six lines or vectors aa’, 33, yy’, taken two by two, the fol-
lowing transformed expression:

s(v. aa'.V.ﬁB’.V.yy') =s, a-y'y'.s .a'ﬁ[)” —s.d'yy'. S.aBﬁ@ 3

and by applying this general transformation to the recent
results, we find easily, that the equation (1), under the con-
ditions (2), may be put under the form:

s.add” s.d’a"a"” S.ad'd” s.a"a”d" )
. = . 3
S. aal//all S. a’la/aly S. aal’laV S. aVa'aIV

which is another mode of expressing by quaternions the ge-
neral condition required, in order that six vectors a,...a",
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diverging from one common origin, may all be sides of one
common cone of the second degree. The summit of this cone,
or the common initial point of each of these six vectors, being
called o, let the six final points be aBcDEC”: the transformed
equation of homoconicism (4) expresses that the ratio com-
pounded of the two ratios of the two pyramids oaBc, OCDE, to
the two other pyramids oapc, 0CBE, does not change when we
pass from the point c to any other point ¢’ on the same cone.
of the second degree: which is a form of the theorem of M.
Chasles, respecting the constancy of the anharmonic ratio.
An intimate connexion between this theorem and that of
Pascal is thus exhibited, by this symbolical process of trans-
formation.

As the equation (1) expresses that the three vectors
3 3’3" are coplanar, or that they are contained on one com-
mon plane, if they diverge from one common origin, and as
the equation (4) expresses that the siz vectors a,...a” are
homoconic, so does this other equation,

s.plp—N—-BB —a)a=0, ®)

express that the four vectors a, 3, vy, p are homospheric, or
that they may be regarded as representing, in length and in
direction, four diverging chords of one common sphere. Thus,
the arithmic part of the continued product of the five succes-
sive sides of any rectilinear (but not necessarily plane) pen-
tagon, inscribed in a sphere, is zero; and conversely, if in
any investigation respecting any rectilinear, but, generally,
uneven, pentagon ABCDE in space, the product AB x BC X cb
X DE X EA of five successive sides, when determined by the
rules of the present calculus, is found to be a pure vector, or
can be entirely constructed by a line, so that in a notation
already submitted to the Academy (see account of the com-
munication made in last December) the equation

$.ABCDEA = 0, (6)
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is found to be satisfied, we may then infer that the five cor-
ners A, B, C, D, E, of this pentagon, are situated on the surface
of one common sphere. This equation of homosphericism
(5) or (6), appears to the present author to be very fertile
in its consequences. To leave no doubt respecting its meaning,
and to present it under a form under which it may be easily
understood by those who have not yet made themselves mas-
ters of the whole of the theory, it may be stated thus: if we
write for abridgment,

a=1(@ —2)+) % —y) + k(5 — 2),

ay =i (@ — 23) +J (2 — ¥3) + k(22— 23),

a3 = (%3 — @4) +J (Y3 — y4) + k(23 — 20), (M

a, =1 (% — %) +J s —ys) + k(2 — 25),

a=1i(@—2) +JYs—y) + k(2 — 21),
and then develope the continued product of these five expres-
sions, using the distributive, but not (so far as relates to ijk)
the commulative property of multiplication, and reducing the
result to the form of a quaternion,

@y apazagas = w + itz + Jy + kz, (8)

by the fundamental symbolical relations between the three
coordinate characteristics i jk, which were communicated to
the Academy by Sir William Hamilton in November, 1843,
and which may be thus concisely stated :
CP=pP=R=jgh= —1; (A)*

and if we find, as the result of this calculation, that the term

* These fundamental equations between the author’s symbols i, j, &, appeared,
under a slightly more developed form, in the number of the London, Edinburgh,
and Dublin Philosophical Magazine for July, 1844 ; in which Magazine the
author has continued to publish, from time to time, some articles of a Paper on
Quaternions; reserving, however, for the Transactions of the Royal Irish
Academy, a more complete and systematic account of his researches on this
extensive subject.
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w, or the part of the quaternion (8) which is independent of
the characteristics 5k, vanishes, so that we have the following
equation, which is entirely freed from those symbolic factors,

w=0, )
we shall then know that the points, of which the rectangular
coordinates are respectively (2,91 2)) (22¥225) (%3¥523) (€3Y424)
(%;y525), are five homospheric points, or that one common
spheric surface will contain them all.

The actual process of this multiplication and reduction
would be tedious, nor is it offered as the easiest, but only as
one way of forming the equation in rectangular coordinates,
which is here denoted by (9). A much easier way would be
to prepare the equation (5) by a previous development, so as
to put it under the following form :

gzs. aBy =a’s. Bye -|-[32$.'yap <+ 72 S .aﬁp; (10)
which also admits of a simple geometrical interpretation. For,
by comparing it with the following equation, which is in this
calculus an identical one, or is satisfied for any four vectors,
a,Bvp:

ps.aﬁ‘yzas.ﬁyp-{-ﬂs.‘yap+'ys.aBp, (1)
we find that the form (10) gives

o = aa’ + BB + vy (12)
ifa’y 3y ¥ denote three diverging edges of a parallelepiped,
of which the intermediate diagonal (or their symbolic sum) is
the chord p of a sphere, while a3y are three other chords of
the same sphere, in the directions of the three édges, and
coinitial with them and with p; so that the square upon the
diagonal p is equal to the sum of the three rectangles under
the three edges. a'[3'y' and the three chords a3y, with
which, in direction, those edges respectively coincide. This
theorem is only mentioned here, as a simple example of the
interpretation of the formula to which the present methdd con-
ducts ; since the same result may be obtained very simply
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from a more ordinary form of the equation of the sphere, re-
ferred te the edges o 3’ ¢’ as oblique eoordinates ; and, doubt-
less, has been already obtained in that or in some other
way. An analogous theorem for the ellipsoid may be ob-
tained with little difficulty.

If we suppose in the formula (6), that the point E of the
pentagon appreaches to the point a, the side ka tends to be-
come an infinitely small tangent to the sphere; and thus we
find that v.aBCDA, or that the vector part of the continued
product ABX BCXCD X DA, of the four sides of an uneven (or
gauche) quadrilateral aBcp, if determined by the rules of
multiplication proper to this calculus, is normal to the cir-
cumseribed sphere at’ the point A, where the fitst and fourth
sides are-supposed’ to me’et.i"‘By the non-commutative cha-
raeter of-quateérnion multiplication, we should get a different
produet, if we took the factors in the order-Bc % cB x DA X aB;
and accordingly the vector or grammic part v . Bcpas of this
new quaternion product would represent a new line in space,
namely, a normal to the same sphere at B: and similarly may
the normals be found at the two other corners of the quadri-
lateral, by two other arrangements of the four sides as factors.
T'o determine the léngths of the normal lines thus assigned, we
may observe’ that if 4/, B/, ¢/, 0’ be the four points on the
same sphere, which are diametrically opposite to the four
given points &, 8, C, D, then the four diameters a’A, B’B, c’c, D'D
are given by four expressions, of which it may be sufficient to
write one, namely ;

’

¥V-» ABCDA
AA TS —m——

S.ABCD (13)

The denominhator of this expression denotes (as was' re-
marked in a-former communicatipn) the sextuple volume of
the pyramid, or tetrahedron, aBcp; it vanishes, therefore,
when the four points a, B, ¢, D are in one plane ; so that we

have for any plane quadrilateral the equation,
s.ABCD =0, (14)
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If the sphere is then to become only indeterminate, and
not necessarily infinite, we must suppose that the numerator
of the same expression (13) also vanishes; that is, we must
have in this casethe condition

v.ABcDA = 0. (15)

In words, as the product of the five sucgessive sides of an
uneven but rectilinear pentagon inscribed in a sphere, bas
been seen to be purely a line, so we now see that the product
of the four successive sides of @ quadrilateral inscribed in a
circle is (in this system) purely a number: whereas, for every
otker rectilinear quadrilateral, whether plane or gauche, the
grammarithm obtained as the product of four successive sides
inpolves a. grammic part, which does not vanish.. This
condition (15), for a quadrilateral inscribable in a circle,
could not be always satisfied, when D approached to a,
and tended to coincide with it, unless the following theorem
were also true, which can accordingly be otherwise proved :
the product ABCA, Or AB X BC X CA, of three successive sides of
any triangle ABC, is a pyre vector, ir the direction of the tan-
gent to the circumscribed cirele, at the point a, where the
sides which are assumed as first and third factors of the pro-
duct meet each other. If a, be the point upon this circum-
scribed circle which is diametrically opposite to a, we find for
the length and direction of the diameter aa, in this notation,
that is, for the straight line v A from a,, the expression : ¥

ABCA
A= asc’ (16)

the denominator denoting a line which is in direction perpen-

* With respect to the notation of division, in this theory, the author pro-
poses to distinguish between the two symbols

’
—1

Q
Q!¢ and e
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dicular to the plane of the triangle, and in magnitude repre-
sents the double of its area; while the numerator is, as we
have just seen, in direction tangential to the circle at a, and its
length represents the product of the lengths of the three sides,
or the volume of the solid constructed with those sides as
rectangular edges. We may add, that this tangential line
ABcCa is distinguished from the equally long but opposite tan-
gent ACBA to the same circle ABcC at the same point a, by the
condition that the former is intermediate in direction between
aB (prolonged through a) and ca, while the latter in like
manner lies between ac (prolonged) and Ba: or we may say
that the line aBca touches, at a, the segment alternate to that
segment of the circle asc which has ac for base, and contains
the point B; while the opposite line acBa touches, at the
same point, the last mentioned segment itself. The condition
for the diameter aa, becoming infinite, or for the three points
ABC being situated on one common straight line, is

v.aBC = 0. (17)

This formula (17) is therefore, in this notation, the general
equation of a straight line in space; (15) is the general
equation of a circle ; (14) of a plane ; and (6) of a sphere.*

which he inadvertently used as interchangeable in his first communication to the
Academy : and to make them satisfy the two separate equations,
eX el =4,

Q
— X e=q\
Q

He proposes to confine the symbol ¢’ <~ ¢ to the signification thus assigned
for the latter of the two symbols which have been thus defined, and which, on
account of the non-commutative property of multiplication of quaternions,
ought not to be confounded with each other.

* The simpler equation of scalar form, s.aBc = 0, also represents a spheric
surface, if B be regarded as the variable point; but a plane, if B be fixed, and
either A or ¢ alone variable.
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It may seem strange that the line and circle should here be
represented each by only one equation; but these equations
are of vector forms, and decompose themselves each into three
equations, equivalent, however, only to two distinct ones,
when we pass to rectangular coordinates, for the sake of com-
parison with known results.

In the same notation of capitals, whatever five distinct
points may be denoted by a, B, c, D, E, we have the general
transformation,

ABCDEA = ABCA X ACDA X ADEA -~ ACADA, (18)

in which the divisor Acabpa, or aca X apa, is the product of
two positive scalars; if then we had otherwise established
the interpretation lately assigned to the symbol aBca, as de-
noting a line which touches at a the circle ABc, we might
have in that way deduced the equation (6) of a sphere, as the
condition of the coplanarity of the three tangents at a, to the
three circles, ABC, AcD, ADE. And we see that when this
condition is satisfied, so that the points 4, B, ¢, b, E are homo-
spheric, and that, therefore, the symbol ABCDEA represents a
vector, we can construct the direction of this vector by draw-
ing in the plane which touches the sphere at a, a line a, a,
parallel to the line acpa which touches the circle acp at a,
and cutting, in the points A, and a,, the two lines aBca and
ADEA, which are drawn at A to touch the circles aBc, ADE;
for then the vector ABCDEA, which is thus seen to be a tan-
gent to the sphere, will touch, at the same point a, the circle
A Ay A,, described on the tangent plane. In the more general
case, when the condition (6) is not satisfied, and when, there-
fore, the rectilinear pentagon aBcpE, which we shall suppose
to be uneven, cannot be inscribed in a sphere, the scalar symbol
s . ABCDEA which has been seen to vanish when the pentagon
can be so inscribed, represents the continued product of the
lengths of the five sides AB, BC, CD, DE, EA, mulliplied by the
sextuple volume of that triangular pyramid whick is con-
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structed with three conterminous edges, each equal to the
unit of length, and touching at the vertex A the three circles
ABC, ACD, ADE, which have respectively for chords the three
remote sides of the pentagor, and are not now homospberic
circles. And because, in general, in this notation, the equa-
tion

S.ABCDEA = S . BCDEAB 19)

holds good, it follows that for any rectilinear pentagon (in
space) the five triangular pyramids constructed on the fore-
going plan, with the five corners of the pentagon for their
respective vertices, have equal volumes.

Besides the characteristics s and v, which serve to de-
compose a quaternion Q into fwo parts, of distinct and deter-
mined kinds, the author frequently finds it to be convenient
to use two other characteristics of operation, T and v, which
serve to decompose the same quaternion into two factors, of
kinds equally distinct and equally determinate; in such a
manner that we may write generally, with these character-
istics, for any quaternion q,

Q= sQ+ vQ = TQ X UQ. (20)

The factor Tq is always a positive, or rather an absolute
(or signless) number; it is what was called by the author,
in his first communication on this subject to the Academy,
the modulus, but he has since come to prefer to call it the
TENsOR of the quaternion @: and he calls the other factor vQ
the versos of the same quaternion, As the scalar of a sum
is the sum of the scalars, and the vector of a sum is the sum
of the vectors, so the tensor of a product is the product of the
tensors, and the versor of a product is the product of the ver-
sors; relations or properties which may be concisely expressed
by the formule :
8§88 = ¥s; VE=Zv; (21)

TO=HIT; UvO=1uv. (22)
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When we operate by the characteristics T and v on a
straight line, regarded as a vector, we obtain as the tensor of
this line a signless number expressing its length ; and, as the
versor of the same line, an imaginary unit, determining its
direction. When we operate on the product ABCc = AB X BC
of two successive lines, regarded as a quaternion, we obtain
for the tensor, T . ABC, the product of the lengths of the two
lines, or the area of the rectangle under them; and for the
versor of the same product of two successive sides of a triangle
(or polygon), we obtain an expression of the form

U.ABC= cosB 4 ¥/ — 1 8inB; (23)

the symbol B in the second member denoting the internal
angle of ‘the figure at the point denoted by the same letter,
which angle is thus the amplitude of the versor, ‘and at the
same time (in the sense of the author’s first commuijication)
the amplitude of the quaternion itself, which quaternion is
here denoted by the symbol aBc. In this theory (as was
shown by the author to the Academy in that first communi-
cation), there are infinitely many different square roots of
negative unity, constructed by lines equal to each other, and
to the unit of length, but distinguishable by their directional
(or polar) coordinates: the particular /"= 1 which enters
into the expression (23) is perpendicular to the plane of the
triangle aBc. It is the versor of the vector of that quaternion
which is denoted by the same symbol aBc ; and it may, there-
fore, be replaced by the symbol uv.asc, which we may

agree to abridge to w. ABc, so that we may establish the sym-
bolic equation :

UvQ = wq, orsimply, Uv=w; (24)

we may also call wq the vector unit of the quaternion q. The
expression (23) suggests also the denoting the amplitude of
any quaternion by the geometrical mark for an angle, which
notation will also agree with the original conception of such
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an amplitude; and thus we are led to write, generally, as a
transformed expression for a versor,

uQ=cos £ @ + wWQ.sin £ Q. (25)

The amplitude of a vector is in this theory a quadrant;
that of a positive number being, as usual, zero, and that of a
negative number two right angles. Applying the same prin-
ciples and notation to the case of the continued product
ABcDA of the four successive sides of an uneven quadrilateral
ABCD, we find that the amplitude £ aBcDA of this quaternion
product is equal to the angle of the lunule ABCDA, if we em-
ploy this term ¢ lunule” to denote a portion of a spherical
surface bounded by two arcs (which may be greater than
halves) of small circles, namely, here, the portion of the sur-
face of the sphere circumscribed about the quadrilateral aBcp,
which portion is bounded by the two ares that go from the
corner A of that quadrilateral to the opposite corner c, and
which pass respectively through the two other corners B and
p. The tensor and scalar of the continued product of the
four sides of the quadrilateral do not change when the sides
are taken in the order, second, third, fourth, first; and gene-
rally,

co8 £ Q = sQ +TQ; (26)

so that we have the equation,

Z ABCDA = £ BCDAB; (27

hence the two lunules aBcpa and BcpaB, which have for
their diagonals ac and BD the two diagonals of the quadri-
lateral, and with which the lunules cpaBc and paBcD re-
spectively coincide, are mutually equiangular at a and B.
Thus, generally, for any four points, ABcD, the two circles
ABC, aDC cross each other at a and c (in space, or on one
plane), under the same angles as the two other circles, Bcp,
BAD, at B and D,
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Again, it may be remarked, that the condition for a fifth
point E being contained on the plane which touches, at a, the
sphere circumscribed about the tetrahedron aBcp, is expressed

by the equation
S.ABCDAE = 0; (28)

this equation, therefore, ought not to be compatible with the
equation (6), which expressed that the point E was on the sphere
itself, except by supposing that the point & coincides with the
point of contact a ; and accordingly the principles and rules of
this notation give, generally,

S . ABCDEA + §.ABCDAE = S . ABCD. AEA, (29)

in which by (14) the first factor s.aBcp of the second
member does not vanish if the sphere be finite, that is, if the
volume of the tetrahedron do not vanish, while the second
factor may be thus transformed,

AEA = — (EA)?, (30)

so that the coexistence of the two equations (6) and (28) of a
sphere and its tangent plane, is thus seen to require that we
shall have

Ea=0; (31)
which is, relatively to the sought position of &, the equation
of the point of contact. These examples, though not the
most important that might be selected, may suffice to show
that there already exists a calculus, which may deserve to be
further developed, for combining and transforming geometrical
expressions of this sort. Several of the elements of such a
calculus, especially as regards geometrical addition and sud-
traction, have been contributed by other, and (as the author
willingly believes) by better geometers; what Sir William
Hamilton considers to be peculiarly his own contribution to
this department of mathematical and symbolical science con-
sists in the introduction and development of those conceptions
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of GEOMETRICAL MULTIPLICATION (and division), which were
embodied by him (in 1843) in his fundamental formulz for the
symbolic squares and products of the three coordinate charac-
teristics (or algebraically imaginary units) 7, 7, k, which entered
into his original expression of a QUATERNION (w + t2 + jy + k2),
and by which he succeeded in representing, symmetrically,
that is, without any selection of one direction as eminent, the
three dimensions of space.

It is, however, convenient, in many researches, to retain
the notation in which Greek letters denote vectors, instead of
employing that other notation, in which capital letters (a few
characteristics excepted), denote points. In the former nota-
tion it was shown to the Academy in last December (see
formula (21) of the abstract of the author’s communication of
that date), that the equation of an ellipsoid, with three unequal

axes, referred to its centre as the origin of vectors, may be put
under the form :

(ap + pa) — (Bp — pB) = 15"

p being the variable vector of the ellipsoid, and 3 and a being
two constant vectors, in the directions respectively of the axes
of one of the two circumscribed cylinders of revolution, and
of a normal to the plane of the corresponding ellipse of con-
tact. Decomposing the first member of that equation of an
ellipsoid into two factors of the first degree, or writing the
equation as follows:

(ap + pa+ Bp — pP) (ap +pa—Bp + pP) = 1, (32)

we may observe that these two factors, which are thus sepa-
rately linear with respect to the variable vector p, are at the
same time conjugate quaternions; if we call two quaternions,
Q and KQ, CONJUGATE, when they have equal scalars but
have opposite vectors, so that generally,

* Appendix, No. V., page Iviii.
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KQ = $Q — vQ, or, more concisely, K=s —v. (33)

And if we further observe, that in general the product of
two conjugate quaternions is equal to the square of their
common tensor,

Q X K@= (s@)’— (v@)' = (TQ)}, (34)
we shall perceive that the equation (32) of an ellipsoid may

be put, by extraction of a square root, under this simpler, but
not less general form :

T (ap + pa+ Bp — pP) = 1. (35)

Again, by employing the principle, that TII = IIT, we

may again decompose the first member of (35) into two fac-
tors, and may write the equation of an ellipsoid thus :

T(a+P+06).To=1, - (886)
if we introduce an auxiliary veetor, o; connected with the vec-
tor p by the relation

e=p(e—f)p~" (37
which gives, by the same principle respecting the tensor of a
product,

Toe =T (a —,B) H (38)
so, that the auxiliary vector o has.a constant length, although
it has by (37) a variable direation,: depending on, and in its
turn assisting to determine or construct the direction of the
vector p of the ellipsoid ; for the same equation (37) gi ves for
the versor of that vector the expression

vp=*u(a— B+ a). (39)

Hence, by the second general decompesition (20), and by
the equation (36), the last mentioned vector p itself may be
expressed as follows :

o [_, (a_g-g.,;ﬁ —‘-0. d‘) .
P+ B+
making then, in the notation of capital Yétters for points,
VOL. III. z

(40)
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a+P=cB, a~B=¢€r 6=Dpcrp=Es, (41)
so that A is the centre of the ellipsoid, & a variable point on
its surface, c the fixed centre of an auxiliary sphere, of which
the surface passes through the fixed point 4, and also through
the auxiliary and variable point b, while B is another fixed
point, we obtain the equation:

Ea= * U,DA~-T.DB; (42)
which gives ‘

(A)'= 3 vU.pA.T.DB, (43)
and shows, therefore, that the prozimity (8a)~' of a variable
point B, on the surface of an ellipsoid, to the centre A of that
ellipsoid, is represented in direction by a zariable chord. pa
of a fired sphere, of which one extremity a is fixed, while
the magnitude of the same proximity, or the degree of near-
ness (jncreasing as-E.approaches to the centre 4, .and: dimi-
nishing as it recedes), is represented by the distance DB of
the other extremity o of the same chord pa from another fived
point B, which may be supposed to be external to the sphere.
This use of the word * proximity,” which appears to he a
very convenient one, is berrowed from Sir John Herschelt
the construction for the ellipsoid is perhaps new, and may be
also thus enunciated 1—From a fixed point a on the surfaée
of a sphere, draw a variable chord pa; let' p’ be the second
paint of intersection of the spheric surface with the secant px,
drawn to the variable extremity b of this chord from a fixed
external point B ; take the radius vector EA equal in length
ta p'B, and in direction either comcldent with, or opposite to,
the chord DA; the locus of the point E, thus constructed will
be an elZzpsouf which will pass through tbe pomt B TIns
fixed point & (one of four known pomts upon the priricipal
ellipse) may, perhaps, be fitly called a PoLE, and the line BE
a polar chord, of the ellipsoid; and in the construction just
stated, the two variable points p, p’ may be said to be conju-
gate guide-points, at the extremities of coinitial and conge-
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gate guide-chords .pa; ‘A of a fixed guidessphare, which
passes through the centre a of the ellipsoid.

We may also say, that if of @ quadrilateral (sBED’) of
which one side (aB) is given in length and in position, the
two diagonals (AE, BD') be-equal to each other in length, and
intersect (in D) on the surface of a given sphere (with centre
€), of which a chord (aD’) isa side of the quadrilateral adjacent
to the given side (aB), then the other side (BE), adjacent to the
same given side, is a (polar) chord of a given ellipsoid: of which
last surface, the form, position, and magnitude, are thus seen
to depend on the form, position, and magnitude, of what may,
therefore, be called the generating triangle ac. Two sides
of this triangle, hamely, Bc and ca, are perpendicular to'the
two planes of circular section; and the ‘third side aB-is per-
pendicular to one of the two planes of circular projection of
the ellipsoid, being the axis of revolution of a circumscribed
eircalar cylinder. Many fundamental properties of the ellip-
soid may be deduced with extreme facility, as geometrical®
consequences of this mode of generations; for example, the
well-known propornonalxty of the difference of the squares of
the reciprocals of the semi-axes of a diamietral section to the
produet of the sines ‘of the inclinations of its plane to the two
planes of circular ‘section, presents itself under the form of a
proportionality of the same’ differerce’ of squares to 'the ree-
tangle under'the ptojeetions of the two &idés Bc and ca of the
generating triangle on'the planéof the elliptic section.

If we put the e‘qhdtion ’(‘35’)"0&‘ an elﬁpsoid urrder the form

T (l.p + px) =« — tg, (44)
the constant vectors ¢ and n w1ll be in the dxrectlons of the
normals to the planes ‘of circular sectlon, and may represent

* For the following geometrical corollary, from the conetructlon assigned
above, the author is indebted td the Rev. J. N géubbs, Fellow of Tnmty College.
¥ the augiliary poirit » descéribe, ‘dn. the spliers, a 'ofrcle 6f whick'the plane is
perpendicular td. Bc, the point ¥ on the ellipsoid- will describe a spherical conie.
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the two sides B¢ and ac of the triangle, while ¢ — « will be
one value of the variable vector p or xa, namely, the remain-
ing side of the same triangle, or the semi-diameter Ba in the
last mentioned construction of the surface; and by applying
to this equation (44) the general methods which the author
his established for investigating by quaternions the tangent
planes- and curvatures of surfaces, it is found that the vector
of prozimity v of the tangent plane to the centre of the ellip-
soid'(that is, the reciprocal of the perpendicular let fall on this
plane from this centre), is determined in length and in di-
reetion by the equation,

(= v=(¢+ Optupetup;  (45)

while the two rectangular directions of a vector 7, tangential
to a line of curvature, at the extremity of the vector p, are de-
termined by the system of equations :

w4 rv=20; vTiTK — kriry = 03 (46)
which may also be thus written :
s.vr=0; s.vrok=0. {47)

Of these two equations (46) or (47), the former expresses
merely that the tangential vector r i8 perpendicular to the
normal vector v ; while the latter is-found to express that the
tangent to either line of curvature of an' ellipsoid is equally
inclined to the two traces of ‘the planes of cireular section
on the tangent plane, and therefore: bisects one pair of the
angles formed by the two circular sections themselves, which
pass through the given point of contact. Indeed, it is easy to
prove this relation of bisection otherwise, not only for the
ellipsoid, but for the hyperboloids, by ednsidering the common
sphere which contains the circular sections last mentioned ;
the author believes that the result. has been given in one of
the excellent geometrical works of M. Chasles; it may also
be derived without difficulty from principles stated in the mas-
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terly Memeoir on Surfaces of the Second Order, which has
been published by Professor Mac Cullagh in the Proceedings
of this Academy. (See Part VIII., page 484.)

The length to which the present abstract has already ex-
tended, prevents Sir William Hamilton from offering on the
present occasion any details respecting the processes (analo-
gous in some respects to the calculi of variations and partial
differentials) by which he applies the principles of his own
method to investigations respecting surfaces and curves in
space, or to physical problems connected therewith ; he de-
sires, however, to mention here that, in irvestigations respect-
ing normals to surfaces, he finds it convenient to employ a
new characteristic of operation of the form

(s-dp)d =a, (48)

in order to obtain from a scalar function of a variable vector
p, & new variable vector » which shall be normal to the locus
for which that scalar function is constant ; and that the fol-
lowing more general characteristic of operation,

d .4 d

in which 2, y, z are ordinary rectangular coordinates, while
% J» & are his own coordinate imaginary units, appears to him
to be one of great importance in many researches. This will
be felt (he thinks) as soon as it is perceived that with this
meaning of 4 the equation

@+ @+@=-a e

is satisfied in virtue of the fundamental relations between his
symbols 1, j, & ; which relations give also, as another result of
operating with the same characteristic, this other important
symbolic expression, which presents itself under the form of
a quaternion :
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it +fu+ ko) = — (d1.+dy+da
+i(-5)
+i(gF-g)
du dt)

+k (H;“ %) (51

The President hyyiag taken the Chair,

The Rev. Charles Graves read a paper hy Mr,.George
Boale, ’of Lincoln, containing .investigations supplementary,
to his former papers on Discontinuous Functions and Definite
Multlple Integrals,

The author commences his observations by pomtmg out
a distinction among integrals which constitute the limits of
more general forms, according. as they are. supposed to be
obtained by the. vamshmgpf one or.af mare congtants., .. The

integral SO dz cos (gz) =, nbeing’ =poﬁtweg ¢onsidered’ as
® o
the limit ofS deé* cos (qz) #99, he designates a limiting

integral of the first cfads,'ﬂt&nge it involvés the consideration
of one vanishing constant. T e same integral, when n is
negative, he regards as the’ imi;t of tﬂe more general form.

S°° dre ¥ cos ga cos[(?} fan z)
0 (k’ + w’)’
two constants X and &/ vanishmg‘, and deslgnates ita lnmt.mg

integral of the second class. Under this éwsumptlon he
assigns as its value

Pdzcosqr _ m(Lg)!
S 0 T 2D(w)
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the upper or lower sign being taken, according as g is posi-
tive or negative. Assuming as the definition of I'(n), the
equation

I(n) = S dz cos (z) 2,

whether = is positive or negativey and regarding the mtegral
in the second member as a limiting integral of the first or
sécond class, according as # is positive or negative, the author
shews that, universally,

r(n)T(l—n)=

su\mr
a theorem which is known to be true of I'in its ordinary de-
finition when n lies betweeh 0 and 1, but not otherwise. ‘This
theory' is further apphed to explain the discontinuity of form
which is apparent in integrals, the subjects of which become
innnite within the Hmits of integration, with some other con-
nected points.

The paper concludes with an application of Feurier's
theorem to'the soliition of equations: It is proved that the
value v of the definite integral

V= -*Soc dadv a2V =1 flg vy - 1

is symbolically expressed by the equation

: 4
v ) £

provided that @ = 0, from which the following theorem is
deduced : ’
If fw) =z and ¢(z) be any function of  which makes

ST¢ (x)j real, then

w=-(-2)

which may be expanded in the form

(=02 g )19 @)
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P =4 @]+ 50 [p(] () + 5 e [p(@)] /() e
wherein
x=uz— f[ (@]

From this result the author deduces the theorems of
Laplace and Lagrange for the expansion of implicit functions;
and he shews that, through the arbitrary character of ¢ (),
they are particular cases of a class of theorems, infinite in
number. Applied to the solution of the equation f(u) =z,
by making F(u) = u, this method gives that root which will
be represented by ¢(v), in which v is the least root of the

equation
Sle @] ==

The President read the following letter from Mr. Cooper:—

» ““ Markree Castle, July 3, 1846.
¢ My pEAR Sir,—1 now beg to transmit to you, for the
favourable consideration of the Academy, the observations we
have been able to make on comets at this Observatory,
during the first six months of this year. They are preceded
by the places of some stars with which we compared the
comets, and which we were forced to determine, as they were
not included in any catalogue we possess. The results of
observations, made by Mr. Graham principally, for polar
point on circle, are also added. The dates without places,
signify that we have the observation, but not yet the stars of
comparison.
¢ Believe me, my dear Sir,
“ Your’s very sincerely,
« Epwarp CooPER.
¢« The Rev. H. Lloyd, D. D.

&c. §e. e



