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Durinig the absence of the Sub-Committee, the Chair 
was taken, pro tern., by George Petrie, Esq., V. P., whien 

Sir William R. Hamilton read a paper on the expression 
and proof of Pascal's theorem by means of quaternions; and 
oni some other connected subjects. 

This proof of the theorem of Pascal depends on the fol 
lowing form of the- general equation of cones of the second 

degree: 
s */p11 = 0; (1) 

in which 
= v (V. aa'. v . a" a "), 

' v (v . a"a". v .I ae), (2) 

/3= V (v .- a a. v.av a), j 

a, a', a", a"/', a1v at, vbeing any six homoconic vectors, and 

s, v, being characteristics of the operations of taking sepa 
rately the scalar and vector parts of a quaternion. 

In all these geometrical applications of quaternions, it is 

to be remembered that the product of two opposite vectors is 

a positive number, namely, the product of the numbers ex 

pressing the lengths of the two factors; and that the product 

of two rectangular vectors is a third vector rectangular to 

both, and such that the rotation round it, from the multiplier 

to the multiplicand, is positive. These conceptions, or defi 

nitions, of geometrical multiplication, are essential in the 

theory of quaternions, and are hitherto (so far as Sir William 

Hamilton knows) peculiar to it. If they be adopted, they 

oblige us to regard the product (or the quotient) of two in 

clined vectors (neither parallel nor perpendicular to each 

other), as being partly a numnber and partly a line; on which 

account a quaternion, generally, as being always, in its 

geometrical aspect, a product (or quotient) of two lines, may 

perhaps not improperly be also called a GfLAMMARITHM (by a 

combination of the two Greek words ypacpuy and apLLOPuO'C 
whichi signify respectively a line and a number). In this 

y 2 
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phraseology, the scalar part of a quaternion would be the 
arithmic part of a grammarithm; and the vector part of a 

quaternion would be the grammic part of a grammarithm. 
In the form given above, of the general equation of cones of 

the second degree, the six symbols, a, . . . a', denote six edges 

of a bexahedral angle inscribed in such a cone; the six 

binary products aa', ...ara, of those lines taken in their order, 
are grammarithms, of which the symbols v. aa', &c., denote 
the grammic parts, namely, certain lines perpendicular re 

spectively to the six plane faces of the angle; the three pro 
ducts 

V. aa'.v . t'aIvs &C., 

of normals to opposite faces, are again grammarithms, of 
which the grammic parts are the three lines j3, (3', 3P", situ 
ated respectively in the intersections of the three pairs of 
opposite faces of the angle inscribed in the cone; and the 
equation (l) of that cone, which expresses that the arithmic 
part of the product of these three lines vanishes, shows also, 
by the principles of this theory, that these lines themselves 
are coplanar: which is a form of the theorem of Pascal. 

The rules of this calculus of grammarithms, or of qua 

ternions, give, generally, for the arithmic or scalar part of 
the product of the vector parts of the three products of any 
six lines or vectors aa', j3j3', 'yy', taken two by two, the fol 
lowing transformed expression: 

s (v. aa'.v. 33'.v 'yy) =s. a"yy. s . a'j3 (3'-S. a'y. s. a(3(3'; (3) 

and by applying this general transformation to the recent 
results, we find easily, that the equation (1), under the con 
ditions (2), may be put under the form: 

s . aaa" s . %a s .aaVav s . araVaItr 
/it // ,- ,,T vuI,r (4) s . aa aH s . a"a'a" s.aa av s. ava aIV 

which is another mode of expressing by quaternions the ge 
v neral condition required, in order that six vectors a,.. *a a 
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diverging from one common origin, may all be sides of one 
common cone of the second degree. The summit of this cone, 
or the common initial point of each of these six vectors, being 
called o, let the six final points be ABODEC': the transformed 
equation of homoconicism (4) expresses that the ratio com 
pounded of the two ratios of the two pyramids OABC, OCDE, to 

the two other pyramids OADC, OCBE, does not change when we 

pass from the point c to any other point c' on the same cone. 

of the second degree: which is a form of the theorem of M. 
Chasles, respecting the constancy of the anharmonic ratio. 
An intimate connexion between this theorem and that of 
Pascal is thus exhibited, by this symbolical process of trans 
formation. 

As the equation (1) expresses that the three vectors 

Al p3'j3" are coplanar, or that they are contained on one com 
mon plane, if they diverge from one common origin, and as 
the equation (4) expresses that the six vectors a, .. a are 
homoconic, so does this other equation, 

s * p (p- y) (y-/ ) (3-a) a =O, (5) 

express that the four vectors a, ,3, y, p are homosphw,ric, or 
that they may be regarded as representing, in length anid in 
direction, four diverging chords of one common sphere. Thus, 
the arithmic part of the continued product of the five succes 

sive sides of any rectilinear (but not necessarily plane) pen 

tagon, inscribed in a sphere, is zero; and conversely, if in 

any investigation respecting any rectilinear, but, generally, 
uneven, pentagon ABCDE in space, the product AB X BC X CD 

X DE X EA of five successive sides, when determined by the 

rules of the present calculus, is found to be a pure vector, or 
can be entirely constructed by a line, so that in a notation 

already submitted to the Academy (see account of the com 
mnunication made in last December) the equation 

S. ABCDEA=0, (6) 
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is found to be satisfied, we may then infer that the five cor 

ners A, B, C, D, E, of this pentagon, are situated on the surface 

of one common sphere. This equation of homosphwricism 

(5) or (6), appears to the present author to be very fertile 

in its consequences. To leave no doubt respecting its meaning, 

and to present it under a form under which it may be easily 

understood by those who have not yet made themselves mas 

ters of the whole of the theory, it may be stated thus: if we 

write for abridgment, 

a,= i - ?2) +i (Yi Y2) + k (z - Z2), 

a2 =i(x2- X3) + (Y2 -y3) + (Z2 -Z3), 

a3 =i(X3 X4) + j (Y3 Y4) + -k (Z3 - Z4), (7) 

a4 = i (X4 -X5) +j (y4 - Y) + k (Z4 - Z$) 

as = i(xs -x) + (Ys - y) + k (Zs5- ZO 5 

and then develope the continued product of these five expres 
sions, using the distributive, tut not (so far as relates to ijk) 

the commutative property of multiplication, and reducing the 
result to the form of a quaternion, 

a,a2a3a4a5= w + ix +jy+kz, (8) 

by the fundamental symbolical relations between the three 
coordinate characteristics ij A, which were communicated to 
the Academy by Sir William Hamilton in November, 1843, 
and which may be thus concisely stated: 

i2 =j=kS= = ij=-1; (A)* 

and if we find, as the result of this calculation, that the term 

* These fundamental equations between the author's symbols i,j, k, appeared, 

under a slightly more developed form, in the number of the London, Edinburgh, 

and Dublin Philosophical Magazine for July, 1844 ; in which Magazine the 

author has continued to publish, from time to time, some articles of a Paper on 

Quaternions; reserving, however, for the Transactions of the Rojal Irish 

Academy, a more complete and systematic account of his researches on this 

extensive subject. 
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w, or the part of the quaternion (8) which is independent of 
the characteristics ijk, vanishes, so that we have the following 
equation, which is entirely freed from those symbolic factors, 

w _ 0, (9) 

we shall then kno-w that the points, of which the rectangular 
coordinates are respectively (xiy, z) (x2Y2Z2) (X3y3Z3) (x4Y4z4) 
(x5y5z5), are five homosphwric points, or that one common 

spheric surface will contain them all. 
The actual process of this multiplication and reduction 

would be tedious, nor is it offered as the easiest, but only as 

one way of forming the equation in rectangular coordinates, 

which is here denoted by (9). A much easier way would be 

to prepare the equation .(5) by a previous development, so as 

to put it under the following form: 

S . aj37y = a2s j 3yp + f32 S. 'yap + y9 S .af3p; (10) 

which also admits of a simple geometrical interpretation. For, 
by comparing it with the following equation, which is in this 
calculus an identical one, or is satisfied for any four vectors, 

a, (3, y, p: 

ps . aPy3' 
= as . 3yp + P3s . yap + ys . aj3p, (11) 

we finid that the form (10) gives 

p2= aa' + 3J31 + yy, (12) 

if a', (3', y' denote three diverging edges of a parallelepiped, 
of which the intermediate diagonal (or their symbolic sum) is 
the chord p of a sphere, while aj3 y are three other chords of 
the same sphere, in the directions of the three edges, and 
coinitial with them and with p; so that the square upon the 
diagonal p is equal to the sum of the three rectangles under 

the three edges a' j3'yj and the three chords a j3y, with 

which, in direction, those edges respectively coincide. This 
theorem is only mentioned here, as a simple example of the 
interpretation7 of the formulue to which the present methdd con 
ducts; since the same result may be obtained very simply 
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from a more ordibary form of the equation of the sphere, re 
ferred t the edges v~ 3' '' s oblique coordinates; andy 4oubt 
less- has been already obtained in that or in some other 

way. An analogous theorem for the ellipsoid may be oh 
taimied with little difficulty. 

If we suppose in the formula (6), that the point E of the 
pentagon approbehes to the point A, the side BA tends to be 
come an infinitely small tangent to, the sphere; and thus- we 
find that V. ABCDA, or that the vector part of the continued 

produCt AB) X BC XCD X DA, of the four sides of an uneven (or 

aueche) quadrilateral ABCD, if determined by the rules of 
mnltipliation proper to this calculus, is normal to the cir 
cumstribed spere the piMnt A, where t4e first and fourth 
sides are suposed to meet; By the non-eorxnutative cha 
racter- of!quaternion nmultipliedtiori, we should get a diffaiet 
preduct, if we took the factors in the rdeiqrdork cn )X&A )XM; 
and accordingly the vector or grammic patt V. saCDmAB of this 

new quaternion product wotld represe'nt -a neW line in space, 
namely, a' normal to the stme sphere at B : and similarly may 

the normals be found at the two other corners of the quadri 
lateral, by two other arrangements of the four sjdes as factors. 

To determi ne the lengths of the norma4 lites thus assigned, we 
muay observe- that if 'A' B, C', D' be the four points on the 

same sphere, which are diametrically opposite to the four 
given points X, S,C, D, then the four diametes A'A, B'B, C'C, D'D 
are given by four ezpressions, of which it may be sufficient to 
write one, namely; 

4 V,. A-BCDA (13) 

S . ABCD 

The denominiator of this expression denotes (as- was -re 
marked in a former communication) the sextuple volume of 
the pyramid, or tetralhedron, ABCD; it vanishes, therefore, 

when the four points A B, C, D are in- one plane: so that we 
have for any plane quadrilateral the equation, 

S. ABCD = O. (14) 
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If the sphere is then to become only indeterminate, a-nd 

not necessarily infinite, we must suppose that the numerator 
of the same expression (13) also vanishes; that is, we must 
hare in thNs case-the -condtion 

V. ABCDA O. (15) 

in words, as the product of the five succsive sides of an 
unevenm but rectilinear pentagon inscribed in a sphere, has 
been seen to be purely a line, so we now see that the product 

of the four successive sides of a quadrilateral inscribed in a 
circle is (in this system) purely a number: whereas, for every 
other rectilinear quadrilateral, whether plane or gauche, the 
grammarithm obtained as the product of four succesive sides 
inwolves a ramm part, which does not vanish. This 
condition (15),j for a quadrilateral incrihbable in a circle, 
couldI not be, always satisfied, wben D approached to A, 
and tended to coincide with it, unless the following theorem 
were also true, which can accordingly be otherwise proved: 
the product ABCU, or AB x BC X CA, of three successive sides of 
any trianygle nc, iu a ptre vector, in the direction of the tan 
gent to the circumseribed circle, at tbe point A, where the 
sides which are assumed as first and third factors of the pro 
duct meet each other. If A, be the point upon this circum 
scribed circle which is diametrically opposite to A, we find for 
the length and direction of the diameter AA, in this notation, 
that is, for the straight line to A from s,, the expression: * 

AA, 
ABCA 

(16) 
V . ABC 

the denominator denoting a line which is in direction perpen 

With respect to the notation of division, in this theory, the author pro 

poses to distinguish between the two symbols 

r'Q' Q and -, 
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dicular to the plane of the triangle, and in magnitude repre 
sents the double of its area; while the numerator is, as we 

have just seen, in direction tangential to the circle at A, and its 
length represents the product of the lengths of the three sides, 

or the volume of the solid constructed with those sides as 
rectangular edges. We may add, that this tangential line 
ABCA is distinguished from the equally long but opposite tan 
gent ACBA to the same circle ABC at the same point A, by the 

condition that the former is intermediate in direction between 
AB (prolonged through A) and CA, while the latter in like 
manner lies between AC (prolonged) and BA: or we may say 
that the line ABCA touches, at A, the segment alternate to that 

segment of the circle ABC which has AC for base, and contains 
the point B; while the opposite line ACBA touches, at the 
same point, the last mentioned segment i'tself. The condition 
for thje diameter AA, becoming infinite, or for the three points 
AB1C being situated on one common straight line, is 

V.ABC = 0. (17) 

This formula (17) is therefore, in this notation, the general 
equation of a straight line in space; (15) is the general 
equation of a circle; (14) of a plane; and (6) of a sphere.* 

vhich he inadvertently used as interchangeable in his first communication to the 

Academy: and to make them satisfy the two separate equations, 

Q X Q-X Q =Q', 

- -X Q =Q Q 

He proposes to confine the symbol q' + Q to the signification thus assigned 

for the latter of the two symbols which have been thus defined, and which, on 

account of the non-commutative property of multiplication of quaternions, 

ought not to be confounded with each other. 
* The simpler equation of scalar form, s. ABC = 

0, also represents a spheric 

surface, if a be regarded as the variable point; buit a plane, if B be fixed, and 

either A or c alone var iable. 
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It may seem strange that the line and circle should here be 

represented each by only one equation; but these equations 
are of vectorforms, and decompose themselves each into three 
equations, equivalent, however, only to two distinct ones, 
when we pass to rectangular coordinates, for the sake of com 
parison with known results. 

In the same notation of capitals, whatever five distinct 
points may be denoted by A, B, C, D, E, we have the general 

transformation, 

ABCDEA = ABCA X ACDA X ADBA ', ACADA, (18) 

in which the divisor ACADA, or ACA X ADA, iS the product of 
two positive scalars; if then we had otherwise established 
the interpretation lately assigned to the symbol ABCA, as de 
noting a line which touches at A the circle ABC, we might 
have in that way deduced the equation (6) of a sphere, as the 

condition of the coplanarity of the three tangents at A, to the 

three circles, ABC, ACD, ADE. And we see that when this 
cond'ition is satisfied, so that the points A, B, C, D, R are homo 
sph&eric, and that, therefore, the symbol ABODRA represents a 
vector, we can construct the direction of this vector by draw 
ing in the plane which touches the sphere at A, a line Al A2 
parallel to the line ACDA which touches the circle ACD at A, 
and cutting, in the points A1 and A2, the two lines ABCA and 
ADEA, which are drawn at A to touch the circles ABC, ADE; 
for then the vector ABCDEA, which is thus seen to be a tan 
gent to the sphere, will touch, at the same point A, the circle 
A A1 A2, described on the tangent plane. In the more general 
case, when the condition (6) is not satisfied, and when, there 
ftore, the rectilinear pentagon ABCDE, which we shall suppose 
to be uneven, caninot be inscribed in a sphere, the scalar symbol 
S . ABCDEA which has been seen to vanish when the pentagon 
can be so inscribed, represents the continued product of the 
lengths of the five sides AB, BC, CD, DE, EA, multiplied by the 

sextuple volume of that triangular pyramid which is con 
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structed with three conterminous edges, each equal to the 

unit of length, and touching at the verteX A the three circles 

ABC, ACD, ADE, which have respectively for chords the three 

remote sides of the pentagon, and are not now homospb&eric 

circles. And because, in general, in this notation, the equa 
tion 

S. ABCDBA = S. BCDEAB (19) 

holds good, it follows that for any rectilinear pentagon (in 
space) the five triangular pyramids constructed on the fore 
going plan, with the five corners of the pentagon for their 
respective vertices, have equal volumes. 

Besides the characteristics s and v, which serve to de, 
compose a quaternion Q into two parts, of distinct and deter 
mined kinds, the author frequently finds it to be convenient 
to use two other characteristics of operation, T and u, whichi 

serve to decompose the same quaternion into two factors, of 
kinds equally distinct and equally determinate; in such a 
manner that we may write generally, with these character 
istics, for any quaternion q, 

Q SQ + VQ = TQ X UQ. (20) 

The factor TQ is always a positive, or rather an absolute 
(or signlss) number; it is what was called by the author, 
in his first communication on this subject to the Academy, 
the modulus, but he has since come to prefer to call it the 
TENSOR of the quaternion Q: and he calls the other factor UQ 
the VERsOB of the same quaternion. As the scalar of a sum 

is the sum of the scalars, and the vector of a sum is the sum 

of the vectors, so the tensor of a product is the product of the 
tensors, and the versor of a product is the product of tke ver 

sors; relations or properties which may be concisely expressed 

by the formule: 

sX=Xs; vS-Zv; (21) 

1'T II _ T; u II =I U. (22) 



283 

When we operate by the characteristiCs T and u on a 
straight line, regarded as a vector, we obtain as the tensor of 
this line a signless number expressing its length; and, as the 
versor of the same line, an imaginary unit, determining its 
direction. When we operate on the product ABC = AB X BC 
of two successive lines, regarded as a quaternion, we obtain 
for the tensor, T . ABC, the product of the lengths of the two 
lines, or the area of the rectangle under them; and for the 
versor of the same product of two successive sides of a triangle 
(or polygon), we obtain an expression of the form 

tJ . ABC = S B + V-sin ; (23) 

the symbol B in the second member denoting the internal 
angle of -the figure at the point denoted by the same letter, 
which angle is thus the amplitude ofthe versot, and at the 
same time (in the sense of the author's first commuhication) 
the amplitude of the quaternion itself, which quaternion is 
here denoted by the symbol ABC. In this theory (as was 
shown by the author to the Academy in that first communi 
cation), there are infinitely many different square roots of 
negative unity, constructed by lines equal to each other, and 
to the unit of length, but distinguishable by their directional 
(or polar) coordinates: the particular V- I which enters 
into the expression (23) is perpendicular to the plane of the 
triangle ABC. It is the versor of the vector of that quaternion 

which is denoted by the samne symbol ABC; and it may, there 
fore, be replaced by the symbol uv . ABC, which we may 
agree to abridge to w. ABC, so that we may establish the sym 
bolic equation: 

UvQ = WQ, or simply, uv _ w; (24) 

we may also call WQ the vector unit of the quaternion Q. The 
expression (23) suggests also the denoting the amplitude of 
any quaternion by the geometrical mark for an angle, whiich 
notation will also agree with the original conception of such 
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an amplitude; and thus we are led to write, generally, as a 

transformed expression for a versor, 

UQ=CosZ Q+WQ.SinlZ Q. (25) 

The amplitude of a vector is in this theory a quadrant; 
that of a positive number being, as usual, zero, and that of a 
negative number two right angles. Applying the same prin. 
ciples and notation to the case of the continued product 
ABCDA of the four successive sides of an uneven quadrilateral 
ABCD, we find that the amplitude 4 ABCDA of this quaternion 
product is equal to the angle of the lunule ABCDA, if we em 
ploy this term " lunule" to denote a portion of a spherical 

surface bounded- by two arcs (which may be greater than 

halves) of small circles, namely, here, the portion of the sur 

face of the sphere circumscribed about the quadrilateral ABCD, 
which portion is bounded by the two arcs that go from the 
corner A of that quadrilateral to the opposite corner c, and 
which pass respectively through the two other corners B and 
D. The tensor and scalar of the continued product of the 

four sides of the quadrilateral do not change when the sides 

are taken in the order, second, third, fourth, first; and gene 
rally, 

COS Z Q = SQ . TQ; (26) 

so that we have the equation, 

L ABCDA = BCDAB; (27) 

hence the two lunules ABCDA and BCDAB, which have for 
their diagonals AC and BD the two diagonals of the quadri. 

lateral, and with which the lunules CDABC and DABCD re 

spectively coincide, are mutually equiangular at A and B. 
Thus, generally, for anyfour points, ABC cD, the two circles 
ABC, ADC cross each other at A and c (in space, or on one 

plane), under the same angles as the two other circles, BCD, 
BAD, at B and D. 
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Again, it may be remarked, that the condition for a fifth 
point E being contained on the plane which touches, at A, the 
sphere circumscribed about the tetrahedron ABCD, is expressed 
by the equation 

S . ABCDAE = 0; (28) 

this equation, therefore, ought not to be compatible with the 
equation (6), which expressed that the point E was on the sphere 
itself, except by supposing that the point E coincides with the 
point of contact A; and accordingly the principles and rules of 
this notation give, generally, 

S . ABCDEA + S . ABCDAE = S ABCD . ARA, (29) 

in which by (14) the first factor s . ABCD of the second 
member does not vanish if the sphere be finite, that is, if the 
volume of the tetrahedron do not vanish, while the second 
factor may be thus transformed, 

AEA= - (BA)2, (30) 

so that the coexistence of the two equations (6) and (28) of a 

sphere and its tangent plane, is thus seen to require that we 

shall have 
EA = 0; (31) 

which is, relatively to the sought position of a, the equation 

of the point of contact. These examples, though not the 

most important that might be selected, may suffice to show 

that there already exists a calculus, which may deserve to be 

further developed, for combining and transforming geometrical 
expressions of this sort. Several of the elements of such a 

calculus, especially as regards geometrical addition and ub 

traction, have been contributed by other, and (as the aiuthor 
willingly believes) by better geometers; what Sir William 
Hamilton considers to be peculiarly his own contribution to 
this department of mathematical and symbolical science con 

sists in the introduction and development of those conceptions 
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of GEOMETRICAL MULTIPLICATION (and divisioni), which were 
embodied by him (in 1843) in his fundamental formulae for the 
symbolic squares and products of the three coordinate charac 
teristics (or algebraically imaginary units) i, j, k, which entered 
into his original expression of al QUATERNION (w + ix +jjy + Az), 
and by which he succeeded in representing, symmetrically, 
that is, without any selection of one direction as eminent, the 
three dimensions of space. 

It is, however, convenient, in many researches, to retain 
the notation in which Greek letters denote vectors, instead of 
employing that other notation, in which capital letters (a few 
characteristics excepted), denote points. In the former nota 
tion it was shown to the Academy in last December (see 
formula (21) of the abstract of the author's communication of 
that date), that the equation of an ellipsoid, with three unequal 
axes, referred to its centre as the origin of vectors, may be put 
under the form: 

(ap + pa) (J03e - 3) = P ;' 

p being the variable vector of the ellipsoid, and ,3 and a being 
two constant vectors, in the directions respectively of the axes 
of one of the two circumscribed cylinders of revolution, and 
of a normal to the plane of the corresponding ellipse of con 
tact. Decomposing the first member of that equation of an 
ellipsoid into two factors of the first degree, or writing the 
equation as follows: 

(ap + pa + pp -p1) (ap + pa - 3p + p3) , (32) 

we may observe that these two factors, which are thus sepa 
rately linear with respect to the variable vector p, are at the 
same time conjugate quaternions; if we call' two quaternions, 
Q and KQ, CONJUGATE, when they have equal scalars but 
have opposite vectors, so that generally, 

* 
Appendix, No. V., page Iviii. 
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KQ = SQ - VQ, or, more concisely, K = S - V. (33) 

And if we further observe, that in general the product of 
two conjugate quaternions is equal to the square of their 

common tensor, 

Q X KQ= (SQ)2- (VQ)l = (TQ), (34) 

we shall perceive that the equation (32) of an ellipsoid may 

be put, by extraction of a square root, under this simpler, but 

not less general form: 

T (ae + pa + 3p-p3)l. (35) 

Again, by employing the principle, that TH = IT, we 
may again decompose the first member of (35) into two fac 
tors, and may write the equation of an ellipsoid thus: 

T.(a+ D3 + f) .Tp =136 

if we intwoduce an auxiliary vector, ct connected with the vec 

tor p by the relation 

cr= p (at -3) p-lI (37) 

which gives, by the same principle respctin Abe ter of a 
product, 

Tcr = T (a-/,; (38) 

so th*s the auxiliary vector a hLasAa cons(ant length, although 
it has by (37) a variable dirc,qtion,< depending on, and in its 

tvrn as4s$ting tp deterxine or enguwt the direction of the 
vector p of the ellipsoid; for the same equation (37) gives for 
the versor of that vector the expression 

up 4- u (a-f +a). (39) 

Henc>, by thejecond geneVldecnmposition (20), and by 
the eqMation (36), the last mentioned vector p itself may: be 

expressed as follows: 

p = - 
~~~~~~(40.) T (a- + a-)(40 

making then, in the notation orcapitat Ptters for points, 
VOL. III. Z 
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a+P-CB, a = XCA, a = DCr-P A, (44) 

so that A iS the centre of the ellipsoid4E a variable point on 
its surface, c the fixed centre of an auxiliary sphere, of which 
the surface passes through the fixed point A, and also through 
the auxiliary and variable point D, while H IS another fitxed 
point, we obtain the equation: 

EA + U DA TT DB; (42) 

which gives 

(19A) = + U DA T *DB S (43) 

and,shows, that the proximity (-A)'1of a variable 
point E, an the surface of an ellipsoid, to ehe centre A of tlat 

ellipsoid, is represented in direction by a rariable chord, PA 

of a fixed sphere, of which one extremity A is fixed, while 
the magnitude of the same proximity, or the degree of nea>, 
ne,ss !(ncrgsing as- ss approches toX he oen0e A, tw, 4 
nishing as it receaes), is represented by the- distance: of 

the other extremity n of the same chord PA from another fixed 

point B, which may be supposed to be external to the sphere. 
This uR of the word " proximity," which appears to be a 
very convenient one, is borrowyed from Sir John Herschel: 
the constructionfor the ellipsoid is perhaps new, and may be 
also thus enunciated ;-,From a fixed point & on the surfate 

of a sphere, draw a variable rch ord PDA; let P' be thescd 
point of intersection of the spheric sutrface with the secant DR, 
drawn to the variable extremity D) of this chord from a fixed 
external pQint B; take the- radius vector EA equal in lehgth 
t D'B, and in direction either coincident with, or opposite to, 
the chord DA; the locus of the point E, thus constructed, will 

be an -eltipsoid, which will pass through the Toint s. This 
fix&rpBdnt i9-(owe of bour knowni pointi supon the priincipal 
ellipse) may, perhaps, be fitly called a POLE, and the line BE 
a polar chord, of the ellipsoid; and in the construction just 
stated, the two variable points D, D' may be said to be- conju. 
gate guide-points, at the extremities of coinitial and co*u 
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gge guide-chordsDfA EVA of a fiXed guidesphowre, which 

pts4es throughe he-centre A of the ellipsoid. 
We may &1so say, that if of a quadrilateral (AB"') qf 

which one side (AB), is given in length and in position, the 

two diagonals (AE, BR') be-equal to each other in length, and 

intersect (in D) on the surface of a given sphere (with centre 
c), of which a chord (AD') isa side ofthe quadrilateral adjacent 

to the given side (AR), then the other side' (Bn), adjacent to the 

same given side, is a (polar) chord ofa given ellipsoid: of which 

list surface, the form, position, and magnitude, are thus seen 
to depend on the form, position, and magnitude, of hiat may, 
therefore, be called the generating triangle ARC. Twosides 
of this triangle' tnamely, Bc and CA, are perpedicular tothe 
two planes of'circular section; and the third .ide AR' 1g pe'r. 

pendicular to one of the two planes of circular ptrject6bn of 

the ellipsoid, being the axis of revolution of a irmscribed 
circular cylinder. Many fundamental properties of the ellip 
soil may be deduced with extreme fatility, as geometricall 

conmquences of this mode of geerationn for-example,'te 
well-known proportionality of the differenee of the squares of 
the reciprocals of the-seniiaxes of a diametral section to the 
produet- of the sines;of the inclinations of its plane to th, two 
planes of tircular s,iction, teseits Itself urid&thti fibrnii of 6a 

prthportiottality 'of- the sAnie fe of sqares tc the ree 

tang4e-under the pPtofetlonfIofth_e two sie and ICof the 
gensratiwg triangle of the planb {of the- elliptic seeiSinC 

If wt8 put the eqUation (35) of an ellipsoid under the form 

T tp Pic) IC 2 (44) 

the constant vectors tand r will be in the directions of the 
normals to the planes of circular section, and may represent 

* For the foliowing- geometrical corollary, from the construction assigned 

atove, the author is indebted td the ittv. t2*. bittbs, F'rellow of Trinity College. 

ItAhe auitliary pMAt s des?$be, 'n the&spWeti, a Iftvle 6f'wiclrthe plane is 

perpedicular t& nc, the point t oni the ellipsoidwIll describe a apherical conic. 
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the, two sides Ec and AC of the triangle, while c - Ktwill be 

one value of the variable vector p or NA, namely, the remain 
ing side of the same triangle, or the semi-diameter BA in the 
last mentioned construction of the surface; and by applying 
to this equation (44) the general methods which the autbor, 
his established- for investigating by quaternions the tangent 
planes and curvatures &f s-urfaces, it is found that the vector 

ofproxirnity v of the tangent plane to the centre of the ellip 
soid (that is, the reciprocal of the perpendicuiar let fall on this 
plane from this centre)3? is determined in length and in di 
reetion by -the equation, 

(K' - 2 V = (K2 + L2) p + pK + Kpt; (45) 

while the two rectangular directions of a vector r, tangential 
to a line of curvature, at the extremity of the vector p, are de 
termined by the system of equations: 

vr + r V = O; VTLTK - KTITV 0; (46) 

which may also be thus writtens 

S.VT=0; S. vtric=O. (47) 

Of these two equations (46) or (47), tbe former expresses 
merely that the tang4rntial vector r is perpendicular to the 
normal vector v; while the latter itsfound1to express that the 
tangent to either line of curvature of ani ellipsoid is equally 
inclined to the two' traces of the Pines of circular section 

on the tangent plane, and therefore' bisects one pair of the 
angles formed by the two circular sections themselves, which 
pass through the given point of contact. Indeed, it is easy to 
prove this relation of bisection otherwise, not only for the 
ellipsoid, but for the hyperboloids; by ecnsidering the common 
sphere which contains the circular sections last mentioned; 
the author believes that the;result. has been given in one of 

the excellent geometrical works of M. Chasles; it may also 
be derived without difficulty from principles stated in the mas 
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terly Memoir on Surfaces of the Seconid Order, which has 
been published by Professor Mac Cullagh in the Proceedings 
of this Academy. (See Part VIII., page 484.) 

The length to which the present abstract has already ex 
tended, prevents Sir William Hamilton from offering on the 
present occasion any details respecting the processes (analo 
gous in some respects to the calculi of variations and partial 

differentials) by which he applies the principles of his own 
method to investigations respecting surfaces and curves in 
space, or to physical problems connected therewith; he de 
sires, however, to mention here that, in investigations respect 
ing normals to surfaces, he finds it convenient to employ a 

new characteristic of operation of the form 

(s. dp)-.da, (48) 

in order to obtain from a scalar function of a variable vector 
p, a new variable vector v which shall be normal to the locus 

for which that scalar function is constant; and that the fol 
lowing more general characteristic of operation, 

id jd +k+ d =+Cl X(49) 

in which x, y, z are ordinary rectangular coordinates, while 
i,j, k are his own coordinate imaginary units, appears to him 
to be one of great importance in many researches. This will 
be felt (he thinks) as soon as it is perceived that with this 
meaning of c the equation 

(d)2 (d)2 (d12 12(50 
()+ (dy) + (dz) ' (50) 

is satisfied in virtue of the fundamental relations between his 
symbols ij, k; which relations give also, as another result of 
operating with the same characteristic, this other important 
symbolic expression, which presents itself under the form of 
a quaternion: 



4(it+jfzt+k) -(4?414+IV 

+i dv du 

+Y -d "d 

.j 
dt tBrE 

+ du: _dW Lt 

The President h#wg taken the Chair, 

T,he Jtev.,,Cha*4esFGrayes read a paper ky 4r,,Geor el 

Boole, of Lincoln, containinginvestigations supp1enwntar 
to his former papers on Discontinuous Functions and Iefinite 

MultiplejIntegrals ; 
The author commences, 4is observations by ponting oalt 

a distinction among integrals which constitute --the lmitsof 
mre ganeral lforms, acording as hey are-supposed, to be 

obtainedb tke4 vanishing>oif one orspfmqrqaeant The 

integral S dx cos (qx) r-s a ditpo*ltive, Constideredl As 

the limit of 5 dxt-k cos (qx) r, he designates a limiting 

integral of the first cIitWihiAe tiVs the tonsiAeration 
of one vanishing constant. Tke same integral, when n is 

negative, he regards as th&-lir#tf t4o more general form. 

0 (I2 + X2fr 

two constants k and I vanshing; and designates it a lifmitin 
integral of the second class. Under this assumption lie 
assigns as its value 

dx cosi qx ir (+g)n-4 

Jo z^1 M2(n) 
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the upper or lower sign keing taken, aceording. as q is posi-. 

tive or negative. Assuniing as the definition of r(n), the 
equation 

J(n) = dx tos (x) t1, 

whether n is positive or ttegativev tu regarding the intral 
in the second member as a limiting integral of the first ot 
sdcond class, according as nr is- poitiVe or negative, the author 
shews that, universally, 

r(n) (l-n) = W 

a-the;orem which is known to be true of r in its ordinar 6 
finition Wheti n lies betweeh O arnd 1, but not otherwise. "This 
theo6tly is further applied to 6exp1ain the discontinuity of form 

which is apparent in integrals, the subjects of wvhich become 
innnite within the limits of integratdon, with- some other con 
nected points. 

The` paper concludes with ian application of Fourier's 
theorem tothe solltion of equatiansz It ?s proved that the 
value v of the definite integral 

V 
3 

St S dadv E (a-T V't/--i fQ vj 
Vy I) 

is symbolically expressed by the epiation 

(4 d9 

provided that 0 Q, fromn which Abe following theorem is 
deduced: 

If f(u) x and +(Q) be any f.unction of z which makes 

f{t (&) real, then 

F(U) 
d 

(%( dI [f ( F' [rp(x)] '(x) 

whicth may be expanided in the form 
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F(U) = F[ 4)] + x' [+p(x)] +'(t)+ 
I d 
-x2Fr[#(x)10 '(x)+&c i.2dx 

wherein 
x = x-f[l(x)I. 

From this result the author deduces the theorems of 
Laplace and Lagrange for the expansion of implicit functions; 
and he shews that, through the arbitrary character of J(x), 
they are particular cases of a class of theorems, infinite in 
number. Applied to the solution of the equationf(u) =x 
by making F(U) = u, this method gives that root which will 
be represented by +(v), in which v is the least root of the 
equation 

f [(v)] =x. 

The President read the following letter from Mr. Cooper: 

"c Markree Castle, July 3, 1846. 

" MY DEAR SIR,-L now beg to transmit to you, for the 
favourable consideration of the Academy, the observations we 
have been able to make on comets at this Observatory, 
during the first six months of this year. They are preceded 
by the places of some stars with which we compared the 
comets, and which we were forced to determine, as they were 
not included in any catalogue we possess. The results of 
observations, made by Mr. Graham principally, for polar 
point on circle, are also added. The dates without places, 

signify that we have the observation, but not yet the stars of 

comparison. 

Believe me, my dear Sir, 
" Your's very sincerely, 

" EDWARD COOPER. 
"The Rev. H. Lloyd, D. D. 

4jc. &5c. S5c." 


