

DUDI

NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS
ANALYSIS OF THE NAVAL WARFARE GAMING

SYSTEM'S SURFACE-TO-AIR
MISSILE ROUTINE

by

Dennis Thomas Stokowski

September 1983

Thesis Advisor: A.F. Andrus

Approved for public release; distribution unlimited,

T216787

UNCLASSIFIED
SECURITY CLASSIFICATION OP THIS PAGE (Whmn Dim Entorod)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COMPLETING FORM

J

1. REPORT NUM8ER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

4. TITLE (mnd Suotnl*,

Analysis of the Naval Warfare Gaming
System's Surface-to-Air Missile Routine

5. TYPE OF REPORT a PERIOD COVEREO
Master's Thesis;
September 1983

6. PERFORMING ORG. REPORT NUMBER

7. AUTHORS

Dennis Thomas Stokowski

8. CONTRACT OR GRANT NUMBERC«J

» PERPORMINO ORGANIZATION NAME ANO AOORESS

Naval Postgraduate School
Monterey, California 93940

10. PROGRAM ELEMENT. PROJECT, TASK
AREA 4 WORK UNIT NUMBERS

It. CONTROLLING OFFICE NAME ANO AOORESS

Naval Postgraduate School
Monterey, California 93940

12. REPORT DATE

September 1983
IS. NUMBER OF PAGES

76
14. MONITORING AGENCY NAME 4 AOORESS^/ dl'ltrtnt trom Controlling Otflem") 15. SECURITY CLASS, (ol tht» report)

Unclassified

15a. DECLASSIFICATION/ DOWNGRADING
SCHEDULE

IS. DISTRIBUTION STATEMENT (ol thii Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (ol th» mbotrmct ontorod In Block 30, II dllloront /rem Roport)

It. SUPPLEMENTARY NOTES

19. KEY WOROS (Contlnuo on rmvortm tldo II nocooomry mnd identify by block numbor)

Naval Warfare Gaming System
NWGS
Surface-to-Air Missile
SAM
Computer simulation

20. ABSTRACT (Contlmto on rormrmo tldo 11 nmcmmmmty mnd tdmntlty by block nuatbor)

This thesis is an examination of the surface-to-air missile
engagement model in the Naval Warfare Gaming System installed at
the Center for War Gaming, Naval War College, Newport, Rhode
Island. Flow charts derived directly from the computer code are
included. The intent is to verify the computer code with perti-
nent documentation as well as to determine its realism in model-
ing actual surface-to-air missile engagements. Modifications to

do ,;
FORM
AN 7S 1473 EDITION OF I NOV «S IS OBSOLETE

S/N 0102- LP- 014- 6601
UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (Whon Dmtm IMtrMI

TT^jrT.A.qSTFTFn
SECURITY CLASSIFICATION OF THIS PACE (Whit Dmt* Entmrmd)

the Naval Warfare Gaming System surface-to-air model are
proposed.

S/N 0102- LF- 014. 6601 UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS RAGEf***" Dmlm Enfnd)

2

Approved for public release; distribution unlimited

Analysis of the Naval Warfare Gaming System's
Surface-to-Air Missile Routine

by

Dennis Thomas Stokowski
Lieutenant, United States Navy

B.S., Southeastern Massachusetts University, 1976

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN OPERATIONS RESEARCH

from the

NAVAL POSTGRADUATE SCHOOL
September 1983

ABSTRACT

This thesis is an examination of the surface-to-air

missile engagement model in the Naval Warfare Gaming System

installed at the Center for War Gaming, Naval War College,

Newport, Rhode Island. Flow charts derived directly from

the computer code are included. The intent is to verify the

computer code with pertinent documentation as well as to

determine its realism in modeling actual surface-to-air

missile engagements. Modifications to the Naval Warfare

Gaming System surface-to-air model are proposed.

TABLE OF CONTENTS

I. INTRODUCTION ------------------ 7

A. PREFACE- ------------------ 7

B. NAVAL WARFARE GAMING SYSTEM OVERVIEW - - - - 8

C. PURPOSE- ------------------ 10

D. PROCEDURE- ----------------- 11

E. SAM ROUTINE STRUCTURE- ----------- 13

II. SHOOT PHASE (AUTOMATIC AND PLAYER INITIATED) - - 17

A. OVERVIEW ------------------ 17

B. SAM_AC_THREAT PROCEDURE- ---------- 18

C. SAM_MSL_THREAT PROCEDURE ---------- 24

D. LAUNCHER_LOOP PROCEDURE- ---------- 26

E. SAM_AVAILABILITY PROCEDURE --------- 27

F. RANGE_ALT_CHECK PROCEDURE- --------- 28

G. SAM_MAX PROCEDURE- ------------- 32

H. SAM_ALLOCATION PROCEDURE ---------- 33

I. STORE_DATA PROCEDURE ------------ 34

III. HIT PHASE- ------------------- 35

A. OVERVIEW ------------------ 35

B. SAM_AC_RESULT PROCEDURE- ---------- 35

C. WEATHER_FACTOR PROCEDURE ---------- 37

D. FILL_ERT PROCEDURE ------------- 37

E. SAM_MSL_RESULT PROCEDURE ---------- 38

IV. RELOAD PHASE ------------------ 42

V. CONCLUSION- ------------------- 43

APPENDIX A: NWGS FLOW CHARTS ------------- 45

LIST OF REFERENCES- ------------------ 74

INITIAL DISTRIBUTION LIST --------------- 75

I. INTRODUCTION

A. PREFACE

An important responsibility of the U.S. Navy is to con-

duct exercises to train personnel and evaluate performance,

tactics and weapons systems. As the Naval environment in-

creases in complexity it becomes significantly more expen-

sive to conduct exercises even with a limited number of

platforms. Fortunately, the computer technology which

spawned today's sophisticated combat systems also provides

an alternative to the high costs associated with exercising

fleet units. Interactive computer war gaming is not a

satisfactory replacement for underway maneuvers but is a

cost effective adjunct to them.

War gaming can be used for several basic tasks in support

of defense readiness. These tasks include: training of

personnel; providing quasi-combat experience to personnel;

and formulating and analyzing scenario dependent problems.

These problems may pertain to force procurement, strategic

planning, or testing current operational doctrine.

Regardless of the purpose of a particular war game, the

results are usually no better than the algorithms and as-

sumptions that constitute the game. For this reason, veri-

fication, validation and modification of existing war games

should be a continuous process.

B. NAVAL WARFARE GAMING SYSTEM OVERVIEW

The Naval Warfare Gaming System was developed by

Computer Sciences Corporation of Moorestown, New Jersey

under U.S. Navy contract. It was installed for acceptance

testing in 1982 at the Center for War Gaming at the Naval

War College in Newport, Rhode Island. It is an interactive,

data base oriented computer simulation covering the entire

spectrum of naval engagements. It can be played in real

time or else in multiples faster or slower than real time.

The NWGS software consists of approximately 990 proce-

dures (subroutines) and 156,000 lines of code. There are

approximately 170 procedures and 50,000 lines of code in

warfare area models alone. The code is written in

Programming Language One (PL/I)

.

The central computer, facility is a Honeywell Multics

Level 68 Multiprocessing Computer system. The interactive

display system consists of Sanders Associates Incorporated,

high resolution, color graphics displays and Honeywell

alphanumeric displays. There are 44 of these interactive

console stations at the Center for War Games. Additional-

ly, two console stations are operating at CINCPACFLT in

Hawaii with plans for other remote installations such as at

the Naval Postgraduate School. Different game scenarios may

be played simultaneously at each of the terminal stations.

NWGS allows for several levels of game play: the

Command Game, the Student Full Scale Game and the Student

8

One-on-One Game. The Command Game is suited towards major

Naval staffs playing at the task force/theater level and

lasting from one day to weeks. Only one Command Game may

be played at a time as most of the 44 console stations

would be needed to support the large number of players in-

volved in just a single game. Ten Student Full Scale Games

may be played simultaneuously and are generally at the battle

group level. They are of four to eight hours duration. A

typical Student One-to-One Game is aircraft versus sub-

marine and lasts one to four hours. Ten student versus

student or twenty computer opposed Student' Games may be

played simultaneously [Ref . 1] .

Additionally NWGS allows the person preparing the game

to select the level of detail of the warfare area models

used in game play. Level One is the least detailed and

Levels Two and Three are progressively more complex. Two

levels are available in engagements, damage assessment,

sonar and others, while there are three levels available in

air operations.

The doctrinal control of forces is another feature of

NWGS. The player accomplishes this by implementing strings

of conditional commands. The conditional commands are built

into NWGS and are readily available to the player throughout

game play. The doctrinal control is especially useful for

movement or engagement of a large number of platfroms. An

example being upon detection of an air contact with speeds

in excess of 500 knots all ships in Task Force 70.1 have

weapons free. The result of this example is an automatic

engagement.

The NWGS data base consists of five files [Ref. 2].

Master File: contains all NWGS software and data
on platforms, weapons, sensors, etc.

Game Design File: contains game objectives,
pregame scenario, initial conditions, etc.

Game Play File: is created from the previous
two files and remains fixed for the duration
of the game. It contains all of the informa-
tion necessary for the game to be played.
This information includes platform, environ-
mental and geographical data.

Game Date File: initially contains information
from the Play File; a current listing of
platform position, detections, battle damage,
fuel status, ammunition status, etc.

Game History File: contains event information
for replay, rerun and postgame analysis.

C. PURPOSE

The purpose of this thesis is to assist the U.S. Navy in

its procurement of NWGS by ensuring that the finished prod-

uct is indeed a realistic simulation of Naval warfare. The

purpose is therefore a thorough analysis of a logical sec-

tion of the computer code, a warfare area model, namely, the

Surface-to-Air Missile Routine. Additionally, the purpose

is to recommend any changes to the model that are necessary

to accurately reflect actual Naval operations.

This work is needed because the Navy Staff at the Center

for War Gaming is involved in the daily operation of the

10

Center, providing war gaming services to Naval War College

students, Fleet staffs, and others. The Staff conducts

testing of NWGS by conducting games on it and watching for

discrepancies. This, however, only reveals the most obvious

discrepancies. The Staff just does not have the time nor,

in many instances, the experience in computer modeling to

thoroughly examine the system. Additionally, the personnel

that designed NWGS, including those currently on assignment

at the Center for War Gaming, may be proficient in computer

programming but are limited in their knowledge of Naval war-

fare. For these reasons, a complete analysis of a part of

NWGS by someone with both some modeling experience and a

Naval background would be useful to the Navy.

D. PROCEDURE

The organization of this thesis follows the structure of

the subject itself, the SAM Routine. Chapters 2, 3, and 4

correspond to the three phases in the SAM Routine: Shoot,

Result, and Reload, respectively. These three chapters are

divided into sections which each cover a single procedure

(subroutine) of the NWGS computer code. Each subroutine,

one at a time, is verified and validated. Proposed modifi-

cations as necessary are also included within each section.

In order to facilitate an analysis of the NWGS SAM

Routine, a diagram showing the relationship of the SAM

Routine to the rest of NWGS was created and is included as

11

Figure 1 of Appendix A. Figure 2 of the same appendix is an

overview of the SAM Routine showing the phases and proce-

dures that comprise it. A flow chart of each of the phases

and procedures that are shown in Figure 2 was developed from

the contractor supplied code. The flow charts reflect the

NWGS PL/I code as of 5 April 1983. These are included as

Figures 3 through 18 of Appendix A and will be referred to

throughout this thesis. Variable names used are identical

to those used in the PL/I code except where it would be dis-

ruptive to a smoothly-flowing chart. For a similar reason

some of the intricate details of data storage and retrieval

were omitted but are represented in general terms.

Actual description of the subroutines will be limited

within the three chapters of analysis to areas of particular

interest. This is because the flow charts already describe

the subroutines sufficiently.

Verification of the SAM Routine entails corroboration of

the PL/I code with model documentation. The three documents

most relevant were among those provided by the system con-

tractor, Computer Sciences Corporation. They are the

Program Performance Specification (PPS) , the Program

Description Document (PDD) and the Student's Training Course

The PPS [Ref. 3] , the most general of the three, is a broad

description down to the NWGS Routine level. The PDD

[Ref. 4] , is more detailed in that it includes variables

used and their meanings as well as an algorithm for the SAM

12

Routine. The Student's Training Course, consisting of the

Guide [Ref. 2], and the video tape [Ref. 5], in which the

NWGS senior designer uses the Course Guide to explain the

system to the personnel at the Center for War Gaming, is the

third piece of documentation. The Course is a description

of how NWGS functions with emphasis on both the models and

the reasons for the particular design chosen.

Validation implies answering the question of how accu-

rately does NWGS model real world SAM engagements. This was

accomplished by trying different feasible values for the

variables in a subroutine and manually calculating them

through the code to see if the results were reasonable.

Reasonable here means mathematically sound as well as in

accordance with personal Naval experience and common sense.

Proposed modifications naturally follow if the result of

the computer code does not match a good model. Likewise if

the code reflects the documentation accurately but really

doesn't portray real world SAM engagements, changes will

obviously be needed.

E. SAM ROUTINE STRUCTURE

The three phases in the SAM Routine are actually separate

entry points into the routine. Each phase is called from

outside the routine as necessary. The phases are related,

however, in that they all model an essential aspect of an

engagement using SAMs.

13

The Shoot Phase actually consists of two versions,

Automatic and Player initiated. They are different in

actual computer code and in how they are initiated. They

are similar in that both determine the number of missiles

fired at a hostile track by a group of SAM platforms and

they also call exactly the same SAM Procedures. However,

within most of those procedures there are points at which

specific values are determined differently for automatically

initiated SAM engagements than they are for player initiated

ones.

The Player Shoot Phase is entered by a player manually

specifying the engagement of a track by a particular SAM

platform. The Automatic Shoot Phase is called when game con-

ditions are as previously defined by the player using the

doctrinal control of forces. An example being that upon

detection of an air contact above a certain altitude and

approaching from the East, all ships are to engage that

contact.

The Hit Phase is subsequently called to determine the

results of any SAM engagements. It calls procedures that

account for various reliability factors and weapons system

degradations due to the particular circumstances at the

time. The procedures in this phase make use of several of

the data base tables in determining the engagement results.

Lastly, the Reload Phase performs just what one would

imagine by the name. It has an effect on the other phases

14

in that reload time or number of weapons readied may result

in not being able to take another hostile track.

Figures 3 through 6 of Appendix A are flow charts of the

four phases in the SAM Routine. The SAM Procedures (sub-

routines) that are called in these phases are flow charted

in Figures 7 through 18 of Appendix A.

Figure 1 is a schematic, though not complete, represen-

tation of NWGS. The organization can be illustrated best by

using a typical engagement of various hostile aircraft and

missiles attacking a carrier battle group. Module 20, Air-

to Air Engagements, accounts for the interactions of defend-

ing aircraft with the hostile platforms in the area outside

the range that surface-to-air missile (SAM) ships can fire.

Next, the surviving hostiles are engaged by the ships in

Module 21, Surface-to-Air Engagements. First, the SAM

Routine in this module, the object of this thesis, accounts

for engagements by SAMs that are of the area defense type.

Then one of the Surface-to-Air Weapon Routines considers

point-defense-missile and close-in-weapon systems defending

the ships. The Surface-to-Air Weapon 1 Routine considers

firing by sectors at aggregates of hostile platforms where-

as the Surface-to-Air Weapons 2 Routine models each indi-

vidual weapon-hostile engagement. It is important to note

that only weapons fired in the SAM Routine are allowed to

engage attacking aircraft and missiles not targeted at the

firing platform.

15

The previously described interactions are accomplished

by the NWGS Strike Supervisor which aperiodically calls

Modules 20 and 21. It also calls Module 22, Air-to-Surface

Engagements, to execute the other half of the battle. The

Strike Supervisor utilizes the Aircraft and Missile Monitors

to update track geometry and delete platforms as necessary

[Ref. 5].

Although the two other routines of the Surface-to-Air

Module may appear in Figure 1 to be the same as the SAM

Routine, they are not. The overall structure of the three

is comparable, and indeed they share some PL/I code, but

they are significantly different.

16

II. SHOOT PHASE (AUTOMATIC AND PLAYER INITIATED)

A. OVERVIEW

The purpose of this phase of the SAM Routine is to model

the activities that would occur in an actual SAM engagement

with the exception of the terminal phase of SAM flight,

including hit probability, and the reloading after firing.

The excluded activities are modeled in subsequent phases of

the SAM Routine and will be discussed in Chapters III and

IV. Following an examination of the computer code that com-

prises the central part of the shoot phase will be an analy-

sis of each of the subroutines (procedures) in this phase.

Initially in the Automatic Shoot Phase the number of SAM

platforms is determined for use in loops through all possible

SAM shooters. Then a check is made to ensure that there are

in fact additional strike platforms to be processed. If

there are not any then processing is stopped, otherwise the

type of strike that is inbound is determined. If the strike

is one or more missiles then the SAM_Msl_Threat Procedure is

called. If it is one or more aircraft then the SAM_Ac_Threat

Procedure is called. If it is neither of the above, then an

error message is returned.

In the Player Shoot Phase the system first ensures that

the player did not initiate an inappropriate SAM engagement.

It checks if the platform indicated to do the SAM firing has

17

a weapons-free rules-of-engagement status and that the

specific weapon to be fired is on that particular platform.

If it is not, then a return is caused with an error message.

Next a check is made as to whether this weapon system re-

quires a fire control illuminator, setting an indicator bit

if it does. Unlike in the Automatic Shoot Phase, the number

of firing SAM platforms here is always set to one because

the player may only fire from a single platform at a time.

Finally, SAM_Msl_Threat or SAM_Ac_Threat is called based on

what the threat actually is.

Regardless of whether the system is processing an auto-

matic or player initiated shooting, the appropriate Threat

Procedure subsequently calls the Launcher_Loop, SAM_

Allocation and Store_Data Procedures. The Launcher_Loop

in turn calls SAM_Availability and through it the Range_Alt_

Check and SAM_Max Procedures. These procedures will be

discussed in detail in their respective sections.

B. SAM_AC_THREAT PROCEDURE

For each hostile aircraft track this subroutine deter-

mines the number of missiles shot at it by defending SAM

ships. It is flow charted in Figure 7.

SAM Ac Threat loops through each threat track where a

track consists of one or more similar platforms traveling

together. The maximum total shots at each platform is

determined and the track's speed, used in future calcula-

tions, is modified based on whether the track is inbound

18

or outbound. Next this subroutine calls the Launcher loop

Procedure which returns the number of SAMs that could be

shot restricted by factors to be discussed later. This

number is further restricted by whether a shoot-look-shoot

or shoot-shoot-look policy is in effect. This final number

fired is then used in allocating SAMs shot at each particu-

lar platform. The SAMs shot are also deducted from each

platform's magazines either in this subroutine or by calling

the SAM_Allocation Procedure. Next the Store_Data Procedure

is called to retain the pertinent information in the appro-

priate files. Lastly , the impact time of the weapons fired

is determined.

In Figure 7a one can see that if the SAM engagement was

not player initiated then the number of SAMs fired at each

platform in the threat track is limited to three minus any

other pending SAM shots at that particular platform. The

constraint seems to be a reasonable way to place an upper

limit on the number of SAMs shot at a single platform.

Should this prove to be unreasonable, merely changing the

value of the variable MAX_SURF_SHOTS , declared at the begin-

ning of the SAM Routine, would remedy this.

Prior to calling the Launcher_Loop Procedure in Figure

7b, the value of the variable, RDOT_FAC, is determined.

This is set to -0.2 times threat track speed if the threat

track is inbound or the SAM is player-fired. It is set to

+0.2 times track speed if the track is outbound and it is

19

not a player initiated engagement. In the SAM_MAX

Procedure, Figure 12a , RDOT_FAC is used in determining the

time of flight of the SAM. The equation is:

TOF = 3600 * LAUNCH RANGE /

(Q_WEAPON . SPEED_AVE (WPN_ID) RDOT_FAC)

.

The RDOT_FAC is used to roughly take into account the fact

that intercept of an outbound threat at a certain range

takes longer than intercept of an inbound one at the same

range.

There are two discrepancies with the above crude model-

ing. The first is that all targets at which a SAM engage-

ment is manually initiated are modeled as inbound threats.

This means that the resulting time of flight for a SAM

fired in this manner is identical for inbound and outbound

threats. It also means that the time of flight at an out-

bound threat is longer for automatically fired SAMs than it

is for player fired ones.

PROPOSED MODIFICATION: As the first step in

Figure 7a do not distinguish between player

and automatically initiated SAMs; use TSK_IX

for all SAM shots. Then in Figure 7b likewise

don't distinguish between the two; set:

EG_F = Q.SUBTASK.EGRESS_F (TSK_IX)

for both types of threat.

The second discrepancy results from the crudeness of

using the 0.2 factor. The time of flight against an outbound

20

slow threat, with a small closest point of approach (cpa) to

the launching platform, would be less, not greater, than

that against an inbound threat with a greater cpa. What is

missing is the actual geometry of the engagement. This

might slow processing time if greater detail in modeling

were used with a large number of simultaneous engagements,

but in smaller scale games this level of detail would be

important.

PROPOSED MODIFICATION: Add a third level of

detail to engagements which takes into account

the actual geometry of the problem. The vari-

ables, Q_TRACK.LAT, Q_TRACK . LONG , Q_TRACK . SPEED,

Q_TRACK.ALT_DEPTH and QJTRACK. COURSE contain

the appropriate data on the threat. For the

launching platform, Q_TRACK . LONG , QJTRACK. LAT

and Q_WEAPON.SPD_AVE are available. The range

to impact should then be calculated in a sepa-

rate routine much as M30_Great_Circle_Range_ee

calculates the range between two tracks.

In Figure 7b the Launcher_Loop Procedure is called. One

of the variables it returns is TOT_SALVO, the total salvos

shot by a group of SAM platforms against a track. In

Figure 7c TQT_SALVO is further constrained. If the SAM

platforms have a coordinated defense in effect then the

number of SAMs shot is fewer than if an uncoordinated

defense is in effect. This factor is determined at game

21

start by the person preparing the game though he may modify

it during game play.

A second constraint is based on whether a shoot-look-

shoot or shoot-shoot-look defense is in effect. This means

whether a single salvo is fired or whether a second salvo is

fired while the first is still in flight. Typically this

would be determined by the number of weapons remaining on-

board the firing platform. If a substantial number were

available one might want to fire a double salvo to increase

the probability of destroying the threat whereas if only a

few weapons were remaining, a more conservative approach

might seem prudent.

These two constraints are imposed by multiplying N_TARGS

by one of the following four factors depending on the

circumstances

:

SLS_FAC_C =1.0 (shoot-look-shoot & coordinated)

SLS_FAC =1.3 (shoot-look-shoot & uncoordinated)

SSL_FAC_C =2.0 (shoot-shoot-look & coordinated)

SSL FAC =2.3 (shoot-shoot-look & uncoordinated)

Then the total number of salvos is allowed to be no greater

than the resulting number.

The intention of the NWGS designers was to automatically

determine whether the shoot-shoot-look or shoot-look-shoot

policy was in effect and therefore not burden the player

with this decision. The intention was to make the decision

based on the ratio of salvos remaining onboard the SAM

22

platforms to the total salvos they can carry [Ref. 6], If

the ratio is less than 0.5 then the shoot-look-shoot is in

effect otherwise the shoot-shoot-look. This seems a reason-

able way to simulate fleet doctrine.

Upon closer examination of the PL/I code or Figure 7c

one can see that:

RATIO = SAM_SUM / SAM_CAPY.

Both are set to zero each time the SAM_Ac_Threat is called.

In the SAM_Availability Procedure, Figure 10, SAM_CAPY is

given the value of the full load of salvos that the firing

SAM systems could carry. SAM_Sum is the total salvos that

the SAM systems could shoot at the track during this parti-

cular call of the SAM Routine. It does not keep account of

how many SAMs are left onboard. The value of RATIO is thus

not calculated correctly.

PROPOSED MODIFICATION: Since SAM_SUM is used in

calculations other than in determining RATIO, do

not change it but rather add a new variable,

SAMSJJSED. In SAM_Avai lability, Figure 10,

SAMS_USED should be calculated as:

SAMSJJSED = SAM_USED +

(Q_PROJ_ITEM. LEVEL (PROJ_IX) *

Q_WEAPON_SYSTEM . SALVO_SI ZE

(SYSTEM_IX))

.

In Figure 7c change the calculation of RATIO to read:

RATIO = SAMS USED / SAM CAPY.

23

The code in the SAM_Ac_Threat Procedure does not agree

with the NWGS PDD, [Ref. 4: p. 3-661], which for example

multiplies threat track speed by a factor of 0.9 before any

further calculations. In addition the actual code uses an

extremely different structure from that found in the PDD.

The PDD lists only two procedures as being in the SAM

Routine vice the actual twelve. Therefore the algorithm

found in the PDD is practically useless. Unfortunately this

means that any serious examination of the NWGS SAM Routine

must be made by tediously examining the actual PL/I code or

by following some description derived from the code such as

the figures in this thesis.

C. SAM_MSL_THREAT PROCEDURE

In a manner similar to that in SAM_Ac_Threat , this proce-

dure determines for each hostile missile track the number of

missiles shot at it by the defending SAM ships. Figure 8

shows this subroutine.

The description of the SAM -Ac_Threat procedure generally

applies here. One specific exception however is that in

this routine no distinction is made between either inbound/

outbound threats nor between player/automatically initiated

engagements. In all cases RDOT_FAC, the relative speed

enhancement factor, is assigned the value 0.4 times track

speed. This is because the egress flag is never set to 1

for missiles. Unlike aircraft they are not assumed to be

able to attack their target and depart afterwards. The flaw

24

with this is that time of flight calculations always con-

sider the threat as inbound when actually it may have passed

over a SAM platform on its way to the target and is actually

outbound from the SAM shooter.

PROPOSED MODIFICATION: Add a third level of

detail to engagements which takes into account

the actual geometry of the problem. The vari-

ables, QJTRACK.LAT, QJTRACK . LONG , Q_TRACK. SPEED,

Q_TRACK.ALT_DEPTH and QJTRACK. COURSE contain the

appropriate data on the threat. For the launching

platform, QJTRACK . LONG , QJTRACK.LAT and

Q_WEAPONS . SPD_AVE are available. The range to

impact should then be calculated in a separate

routine much as M30_Great_Circle_Range_ee calcu-

lates the range between two tracks.

As in SAM_Ac_Threat the criteria for choosing between a

shoot-shoot-look and a shoot-look-shoot policy is calculated

incorrectly.

PROPOSED MODIFICATION: Since SAM_SUM is used in

calculations other than in determining RATIO, do

not change it but rather add a new variable,

SAMS USED. In SAM_Avai lability, Figure 10,

SAMS_USED should be calculated as:

SAMS_USED = SAMS_USED +

(Q_PROJ_ITEM. LEVEL (PROJJCX) *

Q_WEAPON_SYSTEM . SALVO_SI ZE

(SYSTEM_IX))

.

25

In Figure 7c change the calculation of RATIO to

read:

RATIO = SAMSJJSED / SAM_CAPY

.

D. LAUNCHER_LOOP PROCEDURE

This procedure as outlined in Figure 9 basically keeps

track of which SAM platform is shooting next. It calls

SAM_Availability to loop through the SAM shooters starting

with the designated platform.

Early in this procedure the egress flag, EG_F, is set

for automatically initiated engagements to be for inbound

threat and 1 for outbound threat.. For all player initiated

engagements EG_F is set to 0. This becomes important in

later processing because this procedure calls SAM_

Availability which calls Range_Alt_Check. In this last pro-

cedure the EG_F value is used in determining which route of

subsequent calculations will be followed. Signifying all

player shots as inbound results in the wrong calculations.

PROPOSED MODIFICATION: Do not distinguish between

player and automatic fire. Allow EG_F to equal

Q_SUBTASK.EGRESS_F(TSK_IX) in both cases. This

would then correctly signify whether a track is

inbound or outbound.

Verification of the Launcher_Loop against the documenta-

tion is not possible. None of these documents covers this

procedure and the comment statements interspersed in the

code is limited.

26

E. SAM_AVAILABILITY PROCEDURE

This procedure limits the number of SAMs that can be

shot by a single launcher. Limitations imposed are due to

the geometry of the engagement, the number of SAMs at the

launcher, illuminators available, time of last shot, etc.

These limitations can be seen in Figure 10.

In this subroutine a loop is made through the SAM plat-

forms. A check is made to ensure that the platform has not

been destroyed and has weapons free or else another platform

is called. The range to the threat is calculated. Next a

second loop is formed through the SAM launchers on that

platform. For each launcher the program ensures that the

weapon system has not been destroyed and that SAMs are on-

board. Then the Range_Alt_Check Procedure is called to

determine if the track is a legitimate target now or if it

will be prior to the next call of the Shoot Phase.

Upon return from Range_Alt_Check, if the track has not

been found to be engageable, processing drops down to the

point where another launcher or SAM platform is called.

Otherwise, a check is made to ensure that the weapons on-

board are available to this system. The ready time, or

earliest time that this weapon system can shoot is calcula-

ted. If the weapon system requires an illuminator, a check

is made to see if one is available, if so, then the SAM_Max

Procedure is called. It limits the number of SAMs that can

be fired by this particular system based on several factors

to be discussed later.

27

After return from SAM_Max, the procedure checks if any

SAMs were actually shot, then as before, another launcher or

SAM platform is processed. If SAMs were fired, the number

shot by this launcher as well as the time of the last shot

are recorded. SAM_CAPY and SAM_SUM are both incremented,

SAM_CAPY being the full magazine salvo capacity for the SAM

systems that have fired and SAM_SUM the number of salvos

fired. Unfortunately, as mentioned previously, SAM_SUM as

calculated is not correct for use in determining the shoot-

look-shoot/shoot-shoot-look doctrine

.

PROPOSED MODIFICATION: Change the calculation of

RATIO in Figure 7c to read:

RATIO = SAMS_USED / SAM_CAPY.

Finally the subroutine checks if there are any additional

launchers on this platform or else if any more SAM platforms

are to be processed. If so, then the loop is started again.

If not, then the procedure returns to the Launcher-Loop.

F. RANGE_ALT_CHECK PROCEDURE

As the name implies, this subroutine determines whether

a target is within a SAM' s altitude and range limits. To

some extent it takes into account the relative movement of

the target to the firing platform.

The flow of this procedure follows one of two parallel

courses depending on whether the threat is inbound or out-

bound. A similar rough check is made in either case to

ensure that the track is within both the SAM's maximum and

28

minimum for both range and altitude. If the result is nega-

tive for the inbound threat then a check is made to see if

it will be within the SAM's maximum limits after the next

increment of game time has elapsed. In the case of an out-

bound threat the check is to see if it will be within the

SAM's minimum limits after the next increment of game time

has elapsed.

One further factor is taken into account for inbound

missiles. The angle of attack is considered in making the

altitude check. By not doing this for aircraft the implicit

assumption is that aircraft will not change altitude while

attacking or that the change is not as significant as it is

for missiles. This is not reasonable to assume, however,

coding a better aircraft simulation into NWGS would not be

easy. The angle of attack for most missiles can be placed

in a table for look-up as it currently is in NWGS; but with

aircraft the possible angles cannot be so easily predefined.

A way to mitigate this problem, which would be especially

important in modeling iron bombers, could be as follows:

PROPOSED MODIFICATION: Provide the player control-

ling strike aircraft the option of selecting from

several different attack profiles when initiating

a strike plan. Examples would be high-low-high

and high-low-low where the player would addition-

ally select the altitude for these different

stages as well as the distance out from the

29

target center at which the altitude change is

to be initiated. The changes would be made using

standard rate changes for the particular aircraft

type as in Level 3 Kinematics and might be limited

to this higher level option of game play.

PROPOSED MODIFICATION: In the case of iron

bombers add a capability for the attacking air-

craft to change altitude during the final ap-

proach to the target by means of randomly

generated attack angle. This angle could be

determined by limiting it to the maximum angle

of attack range currently listed for the par-

ticular aircraft type in the NWGS data base.

Finally, if the checks of range and altitude are satis-

fied, then a more exact slant range is calculated to ensure

that the track is within SAM range. If it is, then the

variable CHECK is set to 1 and the variable LAUNCH_RANGE

retains the slant range to the target. Both variables are

used in the next procedure, SAM_MAX.

There is a discrepancy between the modeling in Range_Alt

Check and what one would expect fleet doctrine to be. This

procedure does not simulate SAM engagements in such a manner

as to allow for threat intercept at maximum SAM range. One

would logically want to down an incoming threat as close as

possible to maximum range to allow for the greatest number

30

of additional shots should the first fail. Also, in certain

scenarios, intercept at maximum range could conceivably mean

the difference between having to shoot one aircraft or

multiple missiles launched from that aircraft.

PROPOSED MODIFICATION: The point of interest in

the program, as in Figure 11a, is where a threat

is determined to be: inbound, greater than MIN_RGE

& MIN_ALT, not less than MAX_RGE, and such that

(RANGE_DR) is less than or equal to SAM MAX_RGE

.

Change the calculation:

CHK_RGE = MAX_RGE

to read:

CHK_RGE = MAX_RGE + DR.

A similar change should be made for outbound

threats at the corresponding point in that course

of the procedure. Change:

CHK_RGE = MIN_RGE

to read:

CHK_RGE = MIN_RGE - DR.

As seen in Figure lib, prior to computing the slant range

to the threat, CHK_ALT must be converted from feet to

nautical miles. The factor, 6072, is incorrect as there are

actually 6076.1 feet in an international nautical mile

[Ref. 7].

PROPOSED MODIFICATION: Change the line which reads:

CHK_ALT = CHK_ALT / 6072

31

to be:

CHK_ALT = CHK_ALT / 6076.

G. SAM_MAX PROCEDURE

The purpose of this procedure as shown in Figure 12 is

to limit the number of SAMs shot by available time, salvos

and illuminators as well as by the reliability of the

weapon system. The time of the firing is computed taking

into account the time of any previous shot.

In the right-hand side of Figure 12a the number of auto-

matically fired salvos that can be fired is determined based

on the amount of time that the threat is in the SAM enve-

lope. For player fired salvos there is no limitation at

this point in the procedure. There is no reason for this

distinction.

PROPOSED MODIFICATION: Have both player and auto-

matically fired salvos limited by TIME_AVAIL.

There is a further discrepancy with this section of the

code. Only when time available is 1.5 times as great as

cycle time is there a calculation to determine if greater

than one salvo is shot. Realistically, the first salvo

should intercept the threat right at maximum range and

therefore if time available is equal to time per salvo, two

salvos can be shot.

PROPOSED MODIFICATION: If TIME_AVAIL is greater

than TIME PER and TIME PER is greater than zero

32

then calculate:

SALVOS = (TIME_AVAIL / TIME_PER) + 1.

At the beginning of the flow chart in Figure 12b

SALVOS_SHOT is determined. In the case of an automatic

engagement, this is SALVOS, as calculated earlier, decre-

mented by the reliability of the weapon system. This decre-

ment is implemented either deterministically or stochasti-

cally depending on the choice made by the game director at

game start. In the case of a player initiated engagement

however, SALVOS_SHOT simply equals SALVOS. There is no

decrement. Logically there is no reason why missiles fired

manually should have a higher success rate than those that

are not. This is especially true when one considers that

the automatic mode is really used to simulate multiple ships

shooting at a rate which the player might not physically be

able to "punch in" quickly enough.

PROPOSED MODIFICATION: Do not distinguish between

automatic and player initiated SAM engagements in

determining SALVOS_SHOT. Allow both types to take

system reliability into account.

H. SAM_ALLOCATION PROCEDURE

This procedure is called after the number of SAMs shot at

a track is determined. It is shown in Figure 13. It loops

through the SAM systems allocating the missiles shot until

all fired are accounted for. In addition, it decrements the

number of weapons remaining onboard as well as the number of

33

available illuminators. Should there then be no more SAMs

at the launcher a reload is executed.

The subroutine accurately follows the limited documenta-

tion in the Course Guide [Ref. 2, p. 297] , though it is not

covered at all in the PDD [Ref. 4]. The result appears to

be a valid model of what occurs in the real AAW environment.

I. STORE_DATA PROCEDURE

As depicted in Figure 14 , this procedure simply updates

information in the Game Data and Game History Files. The

data includes such things as the number of salvos fired, the

number of weapons fired by each launcher, total salvos, etc.

This is the last procedure called during the Shoot Phase of

the SAM Routine.

34

III. HIT PHASE

A. OVERVIEW

The purpose of this phase is to model the terminal

moments of a SAM engagement. It takes into account factors

affecting the probability of a hit/kill. It also updates

variables that affect future SAM firings such as illumina-

tors available and time of last shot.

The PL/I code of this phase checks if any engagements

have taken place since the last time it was called. If no

engagements have taken place then a return is caused. Next

the SAM_Msl_Result or the SAM_Ac_Result is called based on

what target type the engaged platform actually is. SAM_Ac_

Result in turn calls Weather_Factor in order to consider

the effects of the environment on the engagements. It also

calls Fill_Brt in which the kill probabilities are deter-

mined and the storage of results takes place. SAM_Msl_

Result likewise calls Weather_Factor but it processes the

functions contained in Fill_Ert internally and thus does not

call this procedure. Figure 5 depicts the Hit Phase.

B. SAM_AC_RESULT PROCEDURE

This procedure determines the status of hostile aircraft

after the engagement by the SAMs fired in previous proce-

dures. Electronic countermeasures , environmental factors,

as well as speed and size of the aircraft are taken into

account.
35

As outlined in Figure 15, this procedure follows the PDD

and the NWGS Course Guide to a greater extent than the pre-

vious procedures. It loops through the firing weapons

freeing illuminators assigned during the Shoot Phase. Then

it loops through the platforms in the threat track and

checks if electronic counter measures for the specific plat-

form or the entire track is operating. Weather_Factor is

called which returns information to be used in the actual

kill probability determination. Likewise the speed of the

threat is categorized for later use as being 1, 2 or 3, that

is, slow, medium, or fast.

This procedure also determines how many of the original

platforms in the threat track are still valid. If fewer

than the original number are found then an adjustment in the

number of salvos shot is made prior to the kill probabili-

ties being determined. This is realistic in that once the

missiles are fired at a specific target, should the target

be destroyed by some other means, the missiles in flight to

it could not easily be retargeted to an extant threat.

A loop is then made through the threat platforms and

within it through the SAM systems onboard. Fill_Ert is

called inside these loops.

The final step in this procedure is a call to

M25_BDA_Control_ee. The probability of kill for a single

shot (pkss) for each of the SAMs fired as well as the number

fired at each threat is used to determine the damage

inflicted.
36

C. WEATHER_FACTOR PROCEDURE

This subroutine which is called by both of the Result

Procedures is diagrammed in Figure 17. It simply sets two

variables, EVIX1 and EVIX2 , the first for weather and the

second for sea-state, based on the conditions in the area of

the SAM engagement. These variables are used in Fill-Ert

for aircraft threats and in SAM-Msl-Threat in the case of

missile threats. In either case the variables are used as

indices in a table look-up to get a degredation for the SAM

pk.

D. FILL_ERT PROCEDURE

This procedure as shown in Figure 18, is called for each

SAM firing during SAM_Ac_Result. Pkss is initially deter-

mined by lock-up in a table specific to the SAM weapon. The

table is entered using the target's speed (slow, medium,

fast) and size (small, medium, large). The appropriate one

of the nine listed Probabilities is then returned. There is

a problem in that all nine probabilities listed though

different from each other are identical for the same speed

and size for the following missiles: SM-2-ER, SM-2-MR,

SM-l-ER, SM-l-MR, Sea-Sparrow, SA-N-1, SA-N-3, and SA-N-4.

NWGS has the potential of having separate tables for use in

unclassified as well as classified games by using the appro-

priate set of tables. This does not mean, however, that the

unclassified tables must have identical probabilities for

different missiles but the same engagements.

37

PROPOSED MODIFICATION: Change the Probability of

Kill of Surface Weapons Versus Aircraft tables to

reflect the relative capabilities of the different

SAMs.

Pkss is further modified by the guidance reliability of

the SAM system and by environmental factors returned from

Weather_Factor. Finally, a degredation due to electronic

counter-measures and counter-counter-measures is imposed.

E. SAM_MSL_RESULT PROCEDURE

Basically this subroutine determines the status of hos-

tile missiles engaged by SAMs. One major difference from

the SAM_Ac_Result Procedure is that hostile missiles are

either killed or not killed unlike aircraft in SAM_Ac_Result

which may be merely degraded in capability after a hit.

Figure 16 is the flow chart of this procedure for which

the first half is similar to SAM_Ac_Result. One difference

as seen in Figure 16a is that altitude vice size is consid-

ered in determining pkss. The look-up tables, however,

have the same flaw as those for aircraft.

PROPOSED MODIFICATION: Change the Probability of

Kill of Surface Weapons Versus Missiles tables to

reflect the relative capabilities of the different

SAMs.

The major difference between the second half of this

procedure and that of SAM_Ac_Result is that instead of

calling Fill Ert to account for the various factors used in

38

pk determination those calculations are done internally by

this procedure. At the end of SAM_Ac_Result the Battle

Damage Assessment Routine must be called to determine the

effect of any successful SAM shots. This is because multi-

engined threat aircraft are not necessarily destroyed by a

single SAM. In this procedure however, hostile missiles if

hit by SAMs are always considered destroyed and therefore it

is unnecessary to call Battle Damage Assessment.

In SAM_Msl_Threat the percentage of missiles killed in

the hostile track is determined. This can be seen near the

end of Figure 16b with the calculations of interest being:

PK = (1-PK) ** (NO/N_TGTS)

PK_PROD = PK_PROD * PK

where NO is the number of salvos and N_TGTS in the number of

missiles in the threat track. These are repeated until all

SAM systems have fired at which time the percent killed is

determined as

:

PK_PROD = 1 - PK_PROD.

This formula is correct when the number of SAMs is greater

than or equal to the number of targets, but incorrect

otherwise.

As an example, if PKSS = 0.9, NO = 1, and N_TGTS = 8,

and there is only one SAM system in the engagement, then

0.25 would be the final PK_PROD. In other words, a single

SAM destroyed 25 percent of 8, or 2, hostile missiles. In

reality this may be possible in certain circumstances but

39

since this capability is not allowed in SAM_Msl_Result it

should not be allowed here.

Furthermore, the formula used in calculating percentage

killed assumes that the SAM platforms are coordinated in

their firing. As seen in the Threat Procedures this is not

necessarily the case. Therefore, this too should be taken

into consideration. These problems were not coding errors

but rather modeling errors as the NWGS Course Guide,

[Ref. 2, p. 320], the PPS, [Ref. 3, p. 249], and the PDD,

[Ref. 4, p. 3-688], all contain the same discrepancy.

PROPOSED MODIFICATION: In Figure 16b, or in the

actual PL/I code, changes should be made after the

calculation:

PKSS = PKSS * (1- (1-ECCM_EFF) *

ECM_EFF)

Here each SAM fired must be recursively summed,

say in PKSS_SUM, so that the average pkss of all

shots fired can be calculated later. To do this

PKSS must be multiplied by SHOTS, the number of

SAMs fired in the particular salvo being consid-

ered this time through the loop and this number

added to PKSS_SUM. Also, the number of shots

fired must be recursively summed each pass through

the loop, say in TOT_SAMS. The remaining two

calculations of PK and PK_PROD in the loop as it

is now must be removed.
40

Upon completion of the necessary number of passes through

the previous loop, several calculations must be made.

PROPOSED MODIFICATION: PKSS_AVG can be calculated

by dividing PKSS_SUM by the total number of shots

fired. Then one needs to determine if the SAM

platforms are coordinated in their fire by check-

ing SE_STAT(10) which has the value "l"b if

coordinated.

Additionally, if a coordinated defense is in effect, then

one must determine if the number of SAMs fired is less than

the number of targets.

PROPOSED MODIFICATION: Compare the total number

of SAMs shot with N_TGTS and set a flag if the

former is less than the latter.

PROPOSED MODIFICATION: Calculate the percentage

of incoming missiles killed according to one of

the following three formulas depending on the

situation:

Percent killed (uncoordinated fire) =

1- ((1- (PKSS_AVG/N_TGTS)) **TOT_SAMS)

[Ref. 8].

Percent killed (coor; SAMS >= targets) =

1- ((1-PKSS_AVG) ** (TOT_SAMS/N_TGTS)

)

[Ref. 8].

Percent killed (coor; SAMs < targets)

PKSS_AVG*TOT_SAMS/N_TGTS

.

41

IV. RELOAD PHASE

Prior to any reloading it is first determined whether

the platform firing the SAM or the SAM system itself has

been destroyed since firing. If both are still operable

then the reload takes place. The number of rounds that

should be reloaded is found using the salvo size times the

number of rounds fired per salvo for this weapon as indica-

ted in the appropriate weapon_system table. If this number

is actually available to this system then a full reload

occurs, otherwise the number reloaded equals the greatest

integer number of salvos that is possible.

This final phase of the SAM Routine, shown in Figure 6,

is not covered in the documentation. It does, however,

appear to accurately model the reloading of SAM weapons.

42

V. CONCLUSION

Personal experience in playing the Naval Warfare Gaming

System led to the conclusion that it is an excellent device

for the education of Naval decision makers and for investi-

gative purposes even though a few discrepancies became

obvious during game play. Upon closer examination however,

namely verification of the computer code with documentation

as well as a check as to the validity of the model, addi-

tional discrepancies were found. None of these discrepancies

were drastic when viewed singly but when one considers the

total number found in the entire SAM Routine it leads to

doubts as to how well this system really models SAM engage-

ments. Even more importantly if the number of discrepancies

found in this one small section of NWGS is representative of

the number found throughout the system then one must con-

sider the possible synergistic effect that such discrepan-

cies have on the outcome of the games.

In every instance where a discrepancy was discovered a

modification was proposed. These proposals are specific

enough so contractor personnel can make these changes

readily under the supervision of the Navy personnel at the

Center for War Gaming.

Future analysis and improvements to NWGS could be made

easier if the contractor was required to provide better

43

documentation. This could be accomplished by correcting the

existing contractor supplied publications, the PPS [Ref. 3],

and the PDD [Ref. 4], to accurately reflect what is realized

in the computer code. It could also be accomplished by

completing the comment blocks that exist inside the PL/I

code but which have not been filled in. These blocks should

be filled in well in advance of final acceptance of NWGS so

that Center for War Gaming personnel have the opportunity to

use this information to assist them in reviewing the product.

The flow charts in Appendix A of this thesis were derived

from the contractor supplied code since good documentation

did not exist for the SAM Routine. The intention is that

this work will assist others in further analysis of this

routine.

44

APPFNDTX A
NWGS FLOW CHARTS

NWCS
Central
Event
Process
Driver.

Central Play
Process

Module 20
AIR-TO-AIR
Engagements

Display
update
Process

Module 22
AIR-TO-SURF
Engagements

Module 21
SURFACE-TO-AIR
Engagements

SURFACE-TO-
AIR Weapon 1.

Routine

SAM Routine

Automatic Snoot
Phase

.SURFACE-TO-
AIR Weapon 2

Routine

Player Shoot
Phase

Cane Play
File

Result Phase

Game History
File

Reload Phase

SAM Procedures
(Subroutines)

Game Data
File

Figure 1: Naval Warfare Gamtng System

45

SAM Routtno

Figure 2: SAM Routine

46

Figure 3: SAM Routine Automatic Shoot Phase

47

requested
weapon

system on
vsam platform

return with
error

message

return with
error

message

yes

/weapon need\ , .

/ Illuminators V*_V_/1
yes

set Illuminator
bit to 1

n earn - 1
rsTng1e sam
platform If

player fired]

missile
threat

SAMrwTujHREAT SAggBgAT

return

Figure 4: SAM Routine Player Shoot Phase

48

•tart

reny penfltnnN
engagements ^ m

tnrsat
V**/ tilssHe \no

return

yes

SofterSAM_M sgi^SuTT

c
return

Figure 5: SAM Routine Hit Phase

49

c
•tart

tan olatfornS
destroyed yea

no

weapon
systen

destroyed
,V—

no

no
ilvo sfze *\
rounds per
salvo *

available
round*

yea

reload - rounde
/ rounde per

aalvo

reload - aalvo
efze * rounds

per salvo

return

Figure 6: SAM Routine Reload Phase

50

start

tsk_!x • 1 yes
sam player

ffred no
tsk_tx -

qse.suDtask.lx

do for each
threat tracK

count ["cod
targetsf -

«ax_salvo -

yes
sam player

fired
do for eacn
platform fn
threat track

.„ /BhotspTayeA „„

platforms fn)

—

track

count • shots count »

platforms
count - count *1

sam's at
thfs

platform <
max

surf,.shots

»ax_surf_shots • 3

max_saivo -

shots player
ftred

max_salvo •

max_salvo *

max_surf_shots
- pending sans

at this platform

no
another

platform tn
track

yes

V
Figure 7a: Sam_Ac_Threat Procedure

51

©
count * 0.
[good tgts]
A max 9olvo
> [weps

snot J

yes

sam_capy»
[salvo capacity

of all sam
letforms with
ui i meaazfnas]I

sam. sun *

[salvbs shot by
all sam

platforms at a

tracm

eg_f
yes,

sam pTayer eg_f •

Q_subtask.
jgressf (tsk_lx)
t0 tf inDound &
1 tf outpoung]

rdot.fac = -0.2
* track speed no

threat track^
Inbound or
sam player

ves
rdot_fac » 0.2
* track speed

Ftgure 7b: Sam_Ac_Threat Procedure

52

©
se« player

fired yes

no

ratio = sam_sura
/ sam.caoy

ll»_c = n.targs
* ssl fac_c
[coordinated

shoot-shoot- 1 ook
defense!

yes
ratio \ 0.5\ no 1Jm_c n_targs

* sls_fac_c
"*][coord I na t edshoo

t-look-shoot
defense]

11m n_targs *

ss1_fac
[uncoordinated

shoot-snoot- 1 ook
defense]

9ls_fac_c - 1.0
sis fac » 1.3
ssl_fac_c - 2.0
ssl_fac 2.3

11m n_targs *

sls_fac
[uncoordinated

shoot - 1 ook - shoo t

defense]

yes
coordinated

defense

'tot_salvo > .

1tm.C
1-

/tot.salvo >
no / 1In

yes

tot_salvo
ltm_c

yes

tot_salvo - Urn

9

Figure 7c: Sam_Ac_Threat Procedure

53

no
t0t_S8lv0

>

yes

assfgn each
threat platform
the number of
son's ftrea at

It

/sam player
fired

account for
saa's shot on
sa* platform

snTOXftw

fiWiSffl

Impact game
time averageUm of f 1 tgnt
for sam's fired

sam player
ffred yes

ftipact '

Impact time
of threat

Impact time of
threat • Impact

«/ —f«ar

no

anotner
threat track V *

return

Figure 7d: Sam_Ac_Threat Procedure

54

start

tsk_lx - 1
yes

sam player
fired

tsk_tx -

qse.suotask_tx

do for each
threat track

count [good
targets] - o
max.salvo -

yes
sam player

fired
do for each
platform tn
threat track

hots playerX _.
ft red < \no

platforms tn >—
track /

count shots count »

platforms
count - count !

sam»s at
thts

platform <
max.

surf _s^ots

max_3urf_shots

max_sa1vo •

9hot3 player
ft red

max_salvo -

max.saivo *

max_surf_snots
- pending sams

*\ this platform

no
another

platform fn
track

yes

Figure 8a: Sam_Ms1_Threat Procedure

55

o
count * 0.
[good tgts]
A max salvo

[weps

no

yes

sam_capy"
[salvo capacity

of al 1 satn
latforms with
ull magazines]£

sam_suai =

[salvos snot by
all sam

platforms at a
track 1

rdot_fac 0.4
* track speed

.Procedure.,
launcheOoCp

any sam's
shot no

Figure 8b: Sam_Ms1_Threat Procedure

56

©
sam player

fired yes

no

ratio sam_sum
/ sam.cBDy

11m_c n_targs
* 6s1_fac_c
[coordinated

shoot-shoot- look
defense]

ye3
/ratio * 0.5\ no

1 Tm_c = n_targs
* sls_fec_c

[coord 'natedshoo
t- look-shoot

defense]

11m - n_targs *

ss1_fac
[uncoordinated

snoot-shoot- 1 ook
defense]

sls_fac_c - 1.0
sls_fac - 1.3

ssl_fac_c - 2.0
ssl.fac 2.3

1 1m • n_targs *

s1s_fac
[uncoordinated

shoot- look-shoot
defense]

<
coord Ina ted x

defense

'tot„salvo >\
Tlm_c

>
i
<

/tot_salvo >
00 / 11m

yes

tot.salvo
1fm_c

yes

tot.salvo - Urn

Figure 8c: Sam_Ms1_Threat Procedure

57

no

O
tot_salvo

>

O

yes

assign each
threat platform
the nmnoer of
sera's flrea at

It

account for
saw's shot on
sas platform

SAM_ALLOCATION
Ecacefluca

smifo

Impact - game
ttme average
ttrae of flight
for sam'a ffred

sam player
fired ves

no

Impact >

Impact time
of threat

ye9
Impact time of
threat - Impact

no

san player
yes/ ffrea

no

another
threat track \ves

return

V

Figure 8d: Sam_Msl_Threat Procedure

58

start

tot.salvo -
[salvos shot by

all san
platforms at a

track!

saw player
fired

eg_f - o
[egress flag)

eg_f -

q_subtask.
eqress_f (tsk_tx)
ft) If Inbound &
1 If outbound

J

s per - 60
[calling

Interval for
strike sup In

seconds!

s_per » as
specified by
game director

new threat
track

current.! x - 1

[Index to sam
platform

shooting next]

current. I x - 1

Ix number of
san platforms

.current.tx
> Ix

yes

current_lx - 1

sam_avaiLa3iL ity

.current_!x
> 1

yes

'tot_salvo < .

max_salvo \no

yes

.Ix -

current_lx - 1

current_lx * 1

5AM_AVAIL ABILITY
Proceflut

fo

return

Figure 9: Launcher_Loop Procedure

59

start

O
do for

current! x to
fx wnlie

tot_salvo < mx V y
~T\

__ Ahreat trackN
00 / In sam

< envelope

»a« platforn
destroyed or
weapcra tight

no

platforn

yes

compute slant
raroe from sam
platforn to
threat track

do for each sam
launcher wnlie
tot.salvo <
•ex.salvo

yes

sam • s

\

aval ladle to \
this launcher >

yes

readv = time of
last shot

cycle time for
this weapon

S*Si£3

ready <
next call &
radiating
necessary

Ilium

salvo. ltst(t) •
salvos.shot by

launcher t

tls_shot(t) •

time of last
shot for
launcher t

sam_capy = sam_
capy salvo_
capy [full

magazine solvo
capacity]

sam_sum
sam_sum

salvos_shot
[actual ly shot
bv this weapon

j

time time
salvos_shot *

time of flight

another
launcher \ yB»

another sam\
platform \ves

no

return

Figure 10: Sam.Avaf labf 1 f ty Procedure

60

start

r_ok -

1aunch_range-
a_ok • 1).

.cneck. - o

yes eg_f
[inbound
tlveat]

threat rangeN
* sam

•In rge &
alt.tgt i
;a» mln_alt>

no no
r-

yes

range * saw
•ax_rge

p_ok
chk.rge

1

range
dr » s_per

throat velocity

range - dr)>
$ sam max.rge'

yes

r_ok - 1

chk_rge » sam
max_rge

threat rangeN
z max_rgs i

ait_tgt s
sam mx.alt

yes

range i sam
mfn_rge \ye«

dr - s_per
threat velocity

r_ok - 1 -

chk_rge • range

[range dr)>
'i sam ml^rge'

yes

r_ok « 1

Chk_rge « sam
m!n_rge

\y

Figure 11a: Range_Alt_Check Procedure

61

o
r.otc

L
no

yes

alt.tgt s
S44 »»jlt

yes

a_ok - 1

cntt.eU -

elt.tgt

itsttle
threat

yes

angle ilsst le
attack angle

pi

da • threat
velocity *

stn(angie) *
•_per

(alt.tgt

«x_alt

yes

a_ok - 1

cnk.alt -

(•U_tgt-da)

O

'a.ok A r_ok

yes

chk ait
chk.ait / 6072

no

chk_aU*«2 £ \no
sam) >

ax_rge»*2

yes

Check 1
1eunch_range

cnk range

return

O
r_ok

yes

alt.tgt 2
• / sew mtn.aU

yes

a_ok • 1

chk_alt
elt_tgt

Figure lib: Range_AU_Check Procedure

62

start

salvos.snot -
[salvos fired
by a 9fngle
launcher]

rel.sys
launcher rel *

guidance system
rel

t!ss_por
weapon system
cycle time

t1me_aval1 -

3600 • (threat
range -

i»1n_rge) /
track >peed

tof • 3600 «

launch.range /
(avg weapon
speed

rdot fac)

%*r - \no
requiring)—

i

Illuminator /

yw

tlme_per -

tl»e_per tof

ttme_per -

t!me_per
(shots per

salvo / rate of
fire)

weapon
player fired

salvos as
specified by

player

.time avail
> 1.5 *

t!me_per t,

tttne.per > o

salvos salvos »

[t(tln)e_avall /
tlme.per)

0.533

salvos >

sal_avati

[[33 Indicates

truncated to

nearest Integer

9alvos "

S4i_aval

1

weapon
require

Illuminator

no

yes

tllum
available

sa 1 vos

yes

salvos •

Illuminators
available

Figure 12a: Sam.Max Procedure

63

saw player
ffred

salvos snot
salvos

game
director
select

stocnastlc
option

do for each
salvo

salvos snot
[[(salvos *

rel_sys) .5]]

rn • random
nuieber

intform(0,l)

n i re!_sys\

yes

salvos_snot •

salvo9_shot * 1

, any salvos
**«/ left

no

nun_snot -

shot9_per »

salvos.shot

salvo_cBDy -

max_ level
onooard for

this launcner /
?ftot?.P?r .

nura_shot J

actual ly
onooard tor
this weapon

yes

no ^

num^snot
number onboard

*j for tnfs weapon

salvos_=Mot
>

yes

totai_salvo
=total_salvo
salvos_shot

'ready [time
ready to
fire] <

game_t1ffle

yes

no

ready =

gai»e_t1»e

t1ne_avan
salvos_snot *

t1me_per

tis » ready
cycle time •

t1rae_ava(

1

return

FTgure 12b: Sam_Max Procedure

64

start

m«_su« •

tot_sa 1 vo yes
omount_l tst(k)
[weapons shot
by launcher k]
-sal * weapons
shot per...sa.lyg.

no

sal.sun • more
launcner

s

sa1vo_l!«_!(•)
- salvo_Hst(*)

[max salvos
without sls/ssl

constraint!

ratio •

tot_salvo /
sam_sun

00 for eacn san
launcner

sal [salvos
allocated to
launcner k] -

ratto »

W>1vo_1tst(K)

sal.sua -
Mi.sun * sal

salvo_H«t(k)
Ml

no

sal_sum <

tot_salvo
[more to
al locate]

sal_sum «

sal_su» 1

yes

flo until
sal.sum tot.

salvo

do for each
launcner wnlle

sal_suni <

tot_selvo

sa 1 vo_
11st(kf<
sa 1 vo_

Hst.lfk)

/ more
ves / launchers

no «j

reduce nunoer
of weapons
onboard for
launcher k by
amount 'lfst(k)

all salvos
at this
launcher
expended

yes

reload

weapon use
II lunlnator

do for each
launcner

sa 1 vo_
Ust(k) >

yes

decrement
aval lable

Illuminators

yes

Mlvo_Hst(k) -

salvo_Hst(k)
1

yes

salvos_aval

l

for launcner
salvos_8vall -

salvo_Hst(k)

amount_l tst(k)

amount. 11 st (k)
« weapons shot

aer ?i)yo

more
launchers

return

Figure 13: Sam.Al location Procedure

65

start

store data fn
game data f f le

6tore data fn
game history

file

return

Figure 14: Store_Data Procedure

66

start

do for eacn
weapon

wjdoo use
H iu«lnator

ye9

niu»_aval ladle

U1u«_avaflBbie
tnls weapon's
11 luslnatcr

v*j
additional
weapons

K
no

track stf 11
valla

yes

n.tgts •

tgt_c» o

do for cecn
platfom In
trrwt track

tnreat
platform
destroyed

n_tgts « n_tgts

tgt_ci» « tgt_c«
i platform.
ec(B_status

more
y*5 /platforms In

track

no

n.tgts -

no

wri^Sy^ofl

sal.fact [ratio
of current tots

to original
tgts] « n_tgts

/ CQvPt

U

r<

/ spd_tgt <

1200. kts \yes

/]
1!

1

spd » 3 / spd_tgt > */ 500 Kts \yes

<\ '

spd 1 spd = 2

•

\ 1

sam player
fired

tgt.cm
[electronic

count ermeasuresl
« tgt_cm I

I track cm status

prev

used

rtew_salvos -

CC(sal_fact *

tot_saivo fired
at original

track) * 0.511

[[11 Indicates

truncated to

nearest Integer

Figure 15a: Sam_Ac_Result Procedure

67

sal_per -

ft (new.salvos/
n_tgts) 0.5]]

sal_per -

yes

sal_per • 1

extra
ww.salvos
(sal.per *

n_tgts)

Oo for eacn
threat platform
Title used <

tot_saivo

need - sal .per

do for eacn
weapon «nt le

need > o | used
< new.salvos

[C(salvo_ltst(t)
* sal.fact) *

0.5])

O
no >

yes

no s need

yes

need • need -

no; used used
* no

snots • no *

snots per salvo
for tnts weapon

saivo.ltst(T)

ecacg'&&-

yes
J

•ore weaponsN

no

r.ore
platforms

C[]] Indicates

truncated to

nearest Integer

yes

need » need 1

extra = extra
1

shots - need
shots per salvo
for this weapon

amount.l tst(t)

amount. 1 tst(f

)

- shots

salvo.Ustd)-
no - need

used used
need

need

O
'any weapons

snot

yes

ao Battle
damage assesment

return

Ftgure 15b: Sam_Ac_Result Procedure

68

start

do for each
weapon

weapon use.
11 lumtnator

yes

niu«_ava!1at)1e

niu»_ava liable
tnl3 weapon's
Ulifl DA10JL

y«>
additional
weapons

no

track still
valid

yes

n_tgts -
no_down o

do for each
platfoni fn
threat track

K)

threat
platform
destroyed

no

n_tgts - n_tgts
1

yes
/ more
platforms In

track

no

n.tgts «

no

w$\
rocodure
TfiFR_F ACTOR

sal_fect [ratio
of current tots

to original
tgts] - n_tgts

/ count

new.salvos -

[[(sal.fact *

tot_salvo fired
at original

track) * 0.51]

_ / ait_tgt * \veV 20,000 ft \no

CC]] Indicates

truncated to

nearest integer

yes/ 5.00(T ft \no

alt - 2 alt - 1

/ ait_tgt < \yes/ 50,000 ft \no

alt - 3 alt • 4

spd tqt <
"O / 1200. kts y«

spd • 3

spd 1 spd • 2

Figure 16a: Sam_Msl_Result Procedure

69

©
pk_prod • 1

no_down -

9aw playern pi

fir- ed

yes

tot OB
g1obal_c«_status

tgt_c« =»

used o

do for each
weapon wnfie

useo <
new_sa 1 vos

no >

yes

need •

new_salvo3 -

(used * no)

need <

yes

no » new_9alvos
- used

snots no *

snots per salvo

.used used
no

pkss wep_vs_
atr.p_kl 1 l_ms)

(ait, spd.
weapon pk)

pkss Dkss *
guidance

reitaotitty

env_fav - 1

evtxi
ye9

no

env_fac -

env_fac *

fac_array(evfxl)

evlx2

env_fac -

env_fac »

fec_array(evlx2)

pkss pkss »

env_fac

pkss « pkss *

(l-U-eccm_eff)
* ecm_eff)

pk - (1-pkss)
** (no / n_tgts)

pk_prod
[percent

survivors]
pk_prod * pk

yes
additional
weapons

pk_prod »

l-pk_prod
[percent kt 1 led]

V

Figure 16b: Sam.Msl .Result Procedure

70

tf » [threats
destroyed} yes

stochastic
option

selected by
jame director/

no

do for each
threat

yes
random
number

uniform (0,1)
i pk_prod

no_down -

no.down 1

designate
threat I as
destroyed

sam's
targeted at
this threat

>

yes

reduce saw's
targeted at

this threat Dy 1

additional
threats In
this track

yes

pk prod <
reference

prod

no_down no_down
CT(pt<_proa *

n.tgts) 0.5]]

11 «= [threats
destroyed]

'no_dowo >
yes

process
engagements

no

return

[[]] indicates

truncated to

nearest Integer

do for each
threat

< no.down

11 - 11

/ <

00 / tare
sam's
geted at

r—< this threat

designate
threat I as
destroyed

yes

reduce san's
targeted at

this threat by 1

yes
(additional

threats In
track

no

Figure 16c: Sam_Msl .Result Procedure

71

start

evtxl »

ev1x2 •

no clouds In
this area *

i
jrecfpttattorv,

'.9

evlxl •
precipitation

no/ sea.state \yes

yes

/ clouds >

\

/precipitation\V /

yes
evlxl - clouds

In this area
*

sea_state

< 3

no

evlx2 - 4

sea_state

i 4

ev1x3 evlx4 - 6

return

Figure 17: Weather_Factor Procedure

72

start

'weapon type
sane as tn
previous
call to

yes

no

get ecm_eff &
eccn_e-ff

env_fac -

fac_array(evtxl)

pkss -

(vsurfweo_vs_
alr.Dkll l_ac
(pk.fx.sz.spd)

pkss - pkss *

outdance system
reliability

factor

env.fac - 1.0

evlxl *
yes

no

evtx2 *

yes

env_fac -

env.fec
fac_array(evlx2)

pkss - pkss *

env.fac

pkss pkss *

(l-U-eccrr^eff

)

* ectn.eff)

return

Figure 18: Ffll.Ert Procedure

73

LIST OF REFERENCES

1. Computer Sciences Corporation, Command and Staff Users
Manual for Naval Warfare Gaming System (NWGS) , Center
for War Gaming, U.S. Naval War College, Newport, RI

,

June 1981.

2. Computer Sciences Corporation, Naval Warfare Gaming
System (NWGS) Student's Training Course Guide for
Application Software , Center for War Gaming, U.S.
Naval War College, Newport, RI , October 1982.

3. Computer Sciences Corporation, Naval Warfare Gaming
System (NWGS) Program Performance Specification (PPS)

,

Center for War Gaming, U.S. Naval War College, Newport,
RI, January 1981.

4. Computer Sciences Corporation, Naval Warfare Gaming
System (NWGS) Program Description Document Data Base
(Models) Computer Program Configuration Item , Center
for War Gaming, U.S. Naval War College, Newport, RI

,

November 198 0.

5. Naval Warfare Gaming System (NWGS) Student's Training
Course , video tape of, Center for War Gaming, U.S.
Naval War College, Newport, RI , October 1982.

6. Paul E. Rubin, telephone conversation with, Computer
Sciences Corporation, Moorestown, NJ, May 10, 1983.

7. Nathaniel Bowditch, American Practical Navigator, An
Epitome of Navigation, Vol. 1 , Defense Mapping Agency
Hydrographic Center, Pub. no. 9, 1977.

8. Alan R. Washburn, Professor of Operations Research,
Combat Models and Games, class notes on, Naval Post-
graduate School, Monterey, CA, October 20, 1982.

74

INITIAL DISTRIBUTION LIST

No. Copies

1. Defense Technical Information Center 2
Cameron Station
Alexandria, Virginia 22314

2. Library, Code 0142 2
Naval Postgraduate School
Monterey, California 93940

3. Professor A.F. Andrus, Code 55As 1
Naval Postgraduate School
Monterey, California 93940

4. Cdr. G.R. Porter, USN, Code 55Pt 1
Naval Postgraduate School
Monterey, California 93940

5. Cdr. R. Adams, USN 2
Center for War Gaming
Naval War College
Newport, Rhode Island 02840

6. Lcdr P. Craig, USN 1

Center for War Gaming
Naval War College
Newport, Rhode Island 02840

7. Lcdr. M. Thomas, USN 1

Center for War Gaming
Naval War College
Newport, Rhode Island 02840

8. Professor J.N. Eagle, Code 55Er 1

Naval Postgraduate School
Monterey, California 93940

9. Capt. W.P. Hughes, USN, Code 55Hi 1

Naval Postgraduate School
Monterey, California 93940

10. Professor M.G. Sovereign, Code 55Zo 1

Naval Postgraduate School
Monterey, California 93940

11. Professor J.K. Hartman, Code 5 5Hh 1

Naval Postgraduate School
Monterey, California 93940

75

12. Professor R.H. Moose, Code 39A
Naval Postgraduate School
Monterey, California 93940

13. Professor J.M. Wozencraft, Code 62Wz
Naval Postgraduate School
Monterey, California 93940

14. Lt. Dennis Stokowski, USN
326 Swanee Dr.
North Dighton, Massachusetts 02764

76

\ n \ -

Tl
g-,Thesis

c ST 37^
c.l

i|.

207S92

Stokowski
Analysis of the Naval

Warfare Gaming System's
surface-to-air missile

1WU

Thesis

c.l

Stokowski
Analysis of the Naval

Warfare Gaming System's
surface-to-air missile
rout ine

.

