
An Introduction to
the Puppet 4

language

The puppet 4.x
language has a lot of

cool features, and
why should you care

Puppetlabs has a bad
rep for language design
 “puppet's language design is like what you'd expect if someone spent years poring over the designs of all

the greatest languages in the history of computing, and brilliantly deduced the best possible combination

of attributes for the One True Perfect Language. and then someone hit that guy over the head with a

hammer, put his brains in a blender, fed the mush to a flock of seagulls, had the seagulls eaten by a killer

whale, and then interpreted the killer whale's shit as a design document.” --bblack

Everyone dislikes the
puppet DSL.

It seems like Puppetlabs finally listened.

New
features

● Data Types
● Loops and data

manipulation
● Puppet native functions
● New ruby function API
● Resource defaults and

ordering
● Miscellanea

Data Types

● String, Integer, Float,
Numeric, Boolean,
Undef

● Array[Integer],
Hash[String][Integer]

● Regexp[/\s{3}123/]
● Struct
● Variant, Optional

Puppet 3.x

class foo($bar) { validate_string($bar) ... }

Puppet 4.x

class foo(String $bar) { ... }

How to use data types

modules/wmflib/types/useripport.pp

type Wmflib::UserIpPort = Integer[1024, 49151]

Define your own types

type Mcrouter::Ssl = Variant[Undef, Struct[{

 'port' => Wmflib::IpPort,

 'ca_cert' => Stdlib::Unixpath,

 'cert' => Stdlib::Unixpath,

 'key' => Stdlib::Unixpath

}]]

Define your own types

● All parameters of all classes/defines in modules should use types as a

validation system. Less important for profiles.

● Puppet didn’t become strongly typed overnight, but will fail with obvious

mishandling of parameters

● Custom data types should be in wmflib if general enough, in the module

otherwise

How to use data types

Loops

● each
● map
● reduce
● slice
● filter

Looping over an array

$elements = ['He', 'C', 'N']

$elements.each |$el| {

 file { "/tmp/${el}":

 content => "I found ${el}!\n"

 }

}

Iteration

Loop over a hash

$elements = {'He' => 2, 'C' => 6, 'N' => 7}

$elements.each |$el, $at| {

 file { "/tmp/${el}":

 content => "The AN for ${el} is ${at}!\n"

 }

}

Iteration/2

$even = [1, 3, 5, 7]

$odd = [2, 4, 6, 8]

$even + $odd # numbers 1..8

$a = {'foo' => 0, 'bar' => 5}

$b = {'bar' => 3, 'baz' => 2}

$a + b # merge($a, $b)

Native data merges

Things get nastier with
map/reduce

Use loops for:

● Modify, compose data structures, in the way we did with templates or

parser functions before

● Declare sets of resources with variable arguments

● Wherever you would’ve used create_resources

How to use loops

It’s very tempting to use loops everywhere. They make less obvious what is

declared and how, so they should NOT be used when:

● A simple declaration of a static resource with an array of titles could

work

● You could easily use a series of resources with many defaults

How NOT to use loops

New
functions
interface

● Puppet native functions
are easy to write but not
as powerful as ruby
functions

● New function ruby API,
the only one that will be
supported in the future

<modulepath>/foo/functions/bar.pp

function foo::bar(String $baz) >> Integer {

 if $baz == "foobar" {

 1

 } else {

 0

 }

}

Native functions

● Are located under <module_name>/lib/functions

● Function signature (multiple of them!) need to be defined in dispatch

stanzas

● Can be namespaced (so stdlib::merge could coexist with wmflib::merge)

● Can read, not write to the puppet scope

● Can accept puppet code blocks!

New function API

Puppet::Functions.create_function(:'mediawiki::dsn') do

 dispatch :standard_port do

 param 'String', :host_name

 end

 dispatch :all_params do

 param 'String', :host_name

 param ‘Integer’, :port

 end

 def standard_port(host_name)

 "mysql://#{host_name}:3306”

 end

 def all_params(host_name, port)

 "mysql://#{host_name}:#{port}”

 end

end

New
function
API

file {

 default:

 mode => 0444,

 owner => 'root',

 group => 'root'

 ;

 '/etc/default/foobar':

 content => 'baz',

 mode => 0400,

 ;

...

Resource
defaults

● Resources in a manifest will be ordered according to the position in the

file

● That’s unless you declare “require/before/after/notify”, that takes

precedence

● Containment of resources is still not possible (do NOT use “include” if

not in roles)

Resource ordering

● $facts[‘proccessorcount’] vs $::processorcount

● $y = [‘hello’, ‘world’].join(‘, ‘)

● $redis_settings = Redis::Instance[‘6379’][‘settings’]

● lookup() vs hiera()

Miscellanea

That’s all for today!
Take the time to learn the new constructs in

puppet 4.x; it is definitely worth it.

For examples of good use of puppet 4 constructs,

you can use the “httpd” and the “php” modules as

examples.

Also take your time to go back to your old code and

see wherever you did one of those crazy

workarounds for puppet’s lack of data structure

iteration, and maybe fix it. Code will be clearer and

more maintainable.

As an example, check this patchset.

https://gerrit.wikimedia.org/r/c/operations/puppet/+/468536

THANK YOU

