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ABSTRACT

Previous quantitative results obtained at M.I.T. on the

bending of steel by laser line heating to produce simple

angular deflections have been verified and expanded.

Deflections and residual stresses in compound shapes formed

by laser line heating of steel are measured and analyzed.

From the measured deflections, algorithms are developed

allowing the construction of idealized compound shapes

including the dish, saddle, cone, and sine. All algorithms

are developed from single pass laser line heating data.
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CHAPTER ONE

INTRODUCTION

It has been substantially demonstrated by Masubuchi [1],

McCarthy [2], et. al. that bending of steel plates by laser

line heating is practicable for simple one dimension bending

and possible for bending complex shapes. In some ways laser

bending is preferable to mechanical forming. These include:

(1) Minimal material degradation [3], [4];

(2) The ability to determine deflection angles with heat in-

put parameters;

(3) The ability to automate the process fully with a closed-

loop feedback control system.

References [1] and [2] also show that complex shapes such as

the dish, saddle, sine, and cone which are not readily formed

as a unit by mechanical processing, can easily be formed by

laser line heating. Much literature exists extolling the

advantages of line heating over mechanical forming for

complex shapes. However, to date most attention has been

focussed on the use of flames for bending steels.

Historically, line heating by flame has been an art

rather than a science. Attempts have been made to quantify

the physics of flame bending including the description of

plastic and elastic phenomena by boundary integral equations

and finite element methods [5]. In spite of the application





of advanced and sophisticated mathematical tools to the field

of flame and laser bending, simple and easily programmable

algorithms to predict the curvature of complex shapes by

flame or laser bending do not exist.

Lasers have been used for decades to produce an intense

and concentrated line or point heat for welding or producing

micro and mini-holes. The technology already exists to con-

trol accurately the heat input and heating pattern of a laser

by optically defocussing the beam. This high degree of

control indicates the major advantage of laser line heating

over flame line heating. Specifically, a laser system is, by

its very nature, quite adaptable to a closed-loop control

system for thermal bending of steel into complex shapes

including those with well-defined inflection points.

Today is a period of transition in manufacturing from

simple open-loop and closed-loop control systems to the

development and implementation of "expert" and robotic

systems. The ability to control and to predict accurately

relevant thermal parameters is critical if plate bending by

line heating is to become an accepted automated manufacturing

process

.

In spite of the expense of a high power laser system, its

use in industry is increasing rapidly. Discussions with one

major high power CO2 industrial scale laser manufacturer

revealed that, for that company, the sale of large scale

industrial lasers is increasing about thirty per cent per
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year. Many companies who would not be willing or able to

apply the large capital expenditures required for a laser

system might invest in an automated flame bending system.

For that reason, the algorithms developed in this paper were

designed to be applicable to flame bending with obvious

adjustment to power-deflection parameters.

The purpose of the research discussed in this paper is

threefold. First, to prove the reproducabil ity of laser line

heating by predicting and then reproducing one of the experi-

ments discussed in references [1] and [2], Secondly, to

measure the residual stresses found in one of the shapes

previously formed by laser line heating. Finally, and most

importantly, to develop simple, linear algorithms which

utilyzes the extensive, simple, one dimensional data base to

mathematically construct complex shapes. Algorithms for the

dish, saddle, cone, and sine shape are separately developed.

They are empirically formulated from shapes previously formed

by laser line heating. These algorithms are then used to

predict the deflections of shapes to be formed in subsequent

experiments

.
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CHAPTER TWO

PREVIOUS AND POTDRE RESEARCH

2.1 Long-Term Research Goals

A discussion of future research is normally included at

the end of a paper. In this case, in order to understand

adequately the intent and scope of current research in laser

forming of steel plates, one must be aware of the long-term

research goals of which the work reflected in this paper is

but one step in the process.

The ultimate goal of current research in laser bending of

steel plates is the development of a closed-loop and/or

expert system to fully automate the process of forming simple

and complex shapes frequently found in the shipbuilding

industry. Although the focus of research has been on using a

high power (6-15 kW) laser as the line heater, it is antici-

pated that the method will be readily adaptable to flame

bending. Several subsystems must be developed in parallel in

order to accomplish this:

a) An extensive data base for one dimensional bending must be

established correlating plate deflections to heating and

material parameters.

b) Algorithms must be developed so that the system has

initial values and heating patterns from which to start and

12





from which the system could estimate correct curvatures for

complex shapes when encountering new sets of requirements.

c) A "real-time" deflection measurement subsystem must be

developed to give closure to the feedback system.

d) Computer programs and methodologies must be developed to

control and interface the database, algorithms, and the real-

time deflection measurements. Also, they must be capable of

interfacing with the bending laser and movable bedplate

systems

.

e) Prototype total system development and assembly.

References [1] and [2] and part of this paper show that step

"a" has been accomplished. A low power laser/video camera

interferometer system is being developed at this time. It

should accomplish step "c". The main purpose of this paper

is to describe the effort to accomplish step "b"; namely, the

development of the algorithms. Subsystem "d" and total

system integration will follow from past and current

research

,

2.2 Review of Previous Research

References [1] and [2] discuss in detail the results of

experiments on the bending of steel plates by a high power

CO2 laser. Figure 2.2-1 is a sketch of the basic method of

laser bending a plate.

13





LASER BEAM ^ \l \/ \l

MIRROR

BEAM DIAMETER (B.D.

)

^ FOCUSING LENS

FOCAL POINT

MOVABLE BEDPLATE V;iTH STEEL

Figure 2.2-1: Diagram of a Basic Laser Bending Apparatus
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The steel plate rests on a movable bed plate such that the

stationary beam irradiates the surface of the steel as a line

pass. Primary deflection is perpendicular to the laser line

pass. The resulting deflection angle, ^f, is the sum of ©^

and ©2* All deflection angles given in [1] and [2] are in

terms of ©f.

Many factors can affect the amount of curvature. These

include

:

1) Plate thickness and type of steel.

2) Heat input which is, itself, dependent on the laser power,

optical path energy loss, absorbance fraction by the plate of

the delivered infrared power, and the speed of the plate

underneath the laser beam,

3) Plate restraints such as clamping and free edge effects.

4) Plate cooldown rate.

5) Laser beam spot geometry may have an effect by changing

the power density delivered to the plates surface.

Since metals are highly reflective to the infrared radiation

("10 microns) emitted from a CO2 laser, the plate surface

must be coated with an absorbing substance. Black spray

paint is currently being used for that purpose. Optical

losses are approximately ten per cent for the 15 kW laser

used at the Naval Research Laboratory.

Heat input is being represented by the following

parameters

:

15





P/v/v and P/tv/^

where P is the laser power is kWatts less optical loss, V is

the plate speed in inches-per-minu te and t is the thickness

of the plate in inches. The deflection angle, ©ff is

correlated to specified P/vAT and /or P/t/V. The deflection

angle has been measured by dial gages and a laser

interferometer ([1],[21). Table 2.2-1 and figures 2.2-2 and

2.2-3 are extracted from reference [1]. Clearly, the results

represented in the graphs and table can be programmed into a

computer with routines for estimating deflections at

parameters not previously found by experiment. These results

with the additional data measured and described later in this

paper form the data base from which the algorithms for

complex shapes are developed.

The free edge of the plate where residual stresses must

vanish have been shown ([1],[2]) to have a pronounced effect

on the magnitude of the deflection angle for a given set of

parameters. Distortion angle decreases relative to that

obtained on the interior of the plate at the edges of a

plate. However, approximately one beam diameter (1.5 inches,

nominal) away from the edge, this effect is small and will

generally be neglected in this paper. For purposes of the

analyses in this paper the effects of the cooldown rate, edge

restraint, and beam spot pattern also will be neglected

unless otherwise specified.
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Table 2.2-1 Process Paraineters and Test Results Obtained
in Parametric Studies

Thickness
(in)

Size
(in)

Power

(kw)

Speed
(ipm)

Heat
Input
(KJ/in)

P P

ti^

*

(degree)

3

C/3

U
•H

4J

0)

E
CO

>-c

CO

CU

iH
CO

c
•H
00
T-l

o

1/4 5x10

9.0
7.0

3.0
3.0

25
20

16
12

19.4
18.9
16.9
13.5

1.80
1.56
1.25
0.86

7.2
6.24

5.0
3.44

1.45
2.00
0.84
0.48

1/2 12x12

12.7

7.0

5.0
3.0

16

12

8

6

42.8
31.5

33.8
27.0

3.17
2.02
1.76
1.22

6.34
4.04

3.52
2.4A

1.40
0.90
0.70
0.20

3/4 12x12

10.5
11.0

9.0

5.0

10

12

12

8

63

55
45

37.5

3.32

3.17
2.6

1.76

4.43

4.23
3.47

2.35

0.82
0.75
0.60
0.33

1 12x12

10

9

7

5

9

9

b

8

66
60
52.5
37.5

3.33
3.00
2.47
1.76

3.33
3.50
2.47

1.76

0.75
0.64
0.33
0.12

Additional Parametric

Study

1/2 12x12

5

5

5

5

5

12

10
8

6

5

25

30
37.5
50
60

1.44

1.56
1.76
2.04
2.24

2.88

3.16
3.52

4.08
4.48

0.33
0.55
0.92
1.23
1.40

Note

The amount of angular distortion after the plate cooled to
room temperature, or the final angular distortion, 6 is shovm here,
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CHAPTER THREE

RESIDUAL STRESSES IN COMPOUND SHAPES
FORMED BY LASER LINE HEATING

3.1 Introduction

It is a well-known phenomenon that any forming of a

metal will impose residual stress in that metal. The failure

of a component is often abetted if not caused directly by

residual stresses. When no external load is applied nor any

external restraint is present residual stresses can still be

present. One cause of these residual stresses is a

differential temperature in the metal. It is believed that

the deflections resulting from line heating are caused by a

combination of plastic and elastic behavior. Since residual

stresses are limited by the yield strength of the material, a

measurement of the residual stresses in a compound shape

should indicate the relative contribution of elastic strain

to the total deflection. Furthermore, for critical

components where failure would cause the loss of the system,

minimizing or removing residual stresses might be required.

This is particularly true if the compound shapes are to be

welded

.

3.2 Theoretical Relationships

Metals are susceptible to residual stresses caused by

uneven plastic strains. Masubuchi [6] developed some

fundamental relationships for analyzing residual stresses in

welds. Assuming perpendicular stresses are not significant

20





the following development should apply to line heating. It

should be recognized, however, that since the heating from a

laser is localized to the surface of the plate, some through

thickness residual stresses probably exist. The following

derivation is taken from reference [6],

a. Total strain results from elastic and plastic

components

:

^x = £x(e) * £x(p)

ey = Ey(e) -^ £y(p)

yxy ~ yxy(e) *" ^xyCp)

where ^j^ , gy, ^^y are components of the total strain

£x(e)' £y(e)' ^xy(e) ^^^ components of the elas-
tic strain

^x(p)' S:y{p)' ^xyCp) ^^^ components of the plas-
tic strain

b. From Hooke's Law

ex(e) = 1/E(6x - ^Gy)

Ey(e) = 1/E(6y - i^6x)

^y(e) = l/GC^jjy)

where E is Young's Modulus

G is the Shear Modulus

V is Poisson's Ratio

c. Stresses must satisfy equilibrium conditions:

^6x/^x + ^rxy/^y =

^rxy/^x + "S6y/^y =

d. Total strain must satisfy compatibility:

21





and R' = /->,2_ 4. ->,2r- -.2^

Then E ' + R ' = by compatibility.

If R' is non-zero (uneven plastic strain distribution),

then elastic (residual) stresses must exist to satisfy

compatibility. Implications of the above are:

(1) If plastic strains are linear with respect to dis-

placement, no residual stresses occur.

(2) Residual stresses cannot be determined by measuring

the stress change during external loading or unloading.

(3) Residual stresses 6x/6y/ Jiy can be calculated if

£x(e)/ ey(e)'/xy(e) ^^^ determined.

The residual stress is measured by measuring the change

in elastic strain after cutting a specimen. Residual

stresses can then be calculated using the following

equations

:

Sx = -E/(l-t^2) (^^ +^ey)

where the above strains are experimentally measured.

By measuring the strains, at the same location, on both top

and bottom of the specimen, one can determine the approximate

contribution of planar and bending stresses to the total

residual stress. The average of the strains through the

plate will give the planar stresses. The difference in

strains through the plate will give the contribution from

bending

.

22





3.3 Experimental Procedure

Twenty strain gages were attached to the sine curve

fabricated as one of the experiments in reference [2]. A

photograph and parameters used to make it is shown in

Appendix A. Ten strain gages were placed on both sides at

the same x-y coordinate. The plate is a 12" x 12" x 1/2"

mild steel plate. Since the primary deflection is perpendi-

cular to laser beam path (parallel to the y axis), the focus

of the experiment was determining the residual stress in the

X direction. Two gages per side were placed parallel to the

beam path to determine if a "poisson" effect caused strain in

the y direction. Figure 3.3-1 shows the plate geometry and

gage placement.

10 GAGES PER SIDE

X

Figure 3.3-1: Placement of Strain Gages on the Sine Shape
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All gages were BLH Electronics SR-4 type FAE-25-35-S6EL.

Each had a gage factor of 2.02 +_ 1%, a resistance of 350 +_ .5

ohms. K had a value of +0.26 and the gage length was 6.35 mm

(1/4 in) long.

A Vishay Instruments Model P-350A Digital Strain

Indicator with two SB-1 Switch and Balance units was used to

measure all strains. This instrument allows the measurement

of ten strain gages per switch unit. One-half, full, or one-

quarter balanced bridge circuits can be selected. For this

experiment, the one-quarter bridge configuration was used.

In this mode temperature effects can be automatically compen-

sated by connecting an extra lead from one of the strain gage

connections to an internal dummy resistor (350 ohm) within

the strain indicator. A 5000 micro-strain (>iin/in) internal

calibrator and a gage factor input circuit allows the compen-

sation of the measured resistances for the wire resistance.

Each strain gage is balanced to "zero" strain indication

with the Switch and Balance unit prior to cutting the speci-

men. After cutting the specimen, the main indicator control

is varied to rebalance the bridge circuit and the strain in

microinches-per-inch is read directly off the Strain Indica-

tor unit. Table 3.3-1 shows the major specifications of the

Indicator unit [ 7]

.
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Range +_ 50,000 microinch/inch polar-
ity reversible.

Sensitivity Variable. Null meter deflects
from zero to full scale with
40-4000 jjin/in at gage factor
= 2.

Readability l^in/in.

Accuracy 4;0.1% of reading or 5 )jin/in
whichever is greater for R=120
ohms, GF = 2. jhO.3% of reading
or 5 >iin/in, whichever is
greater for R=120 ohms, GF=1.5
to 4.5.

Gage Factor Continuously variable from 0.1
to 10.0

.

Bridge Excitation 1.5 VRMS at 1000 Hz square wave

Table 3.3-1: Vishay Instrument Strain Indicator and Balance
and Switch Unit Specifications

3.4 Experimental Results

Table 3.4-1 shows the results of strain measurements of

the sine shape. Longitudinal spacing is relative to the y

axis. Unless otherwise specified all gages are transversly

placed relative to the y axis. Microstrain differences and

averages are between the top and bottom of the specimen.
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-3/8 -245 -468

+ 3/8 -218 -440

+ 2 -136 -288

+3(L0NG) -462 -618

+3(TRANS) -1498 + 1359

DIST. FROM MICROSTRAIN MICROSTRAIN MICROSTRAIN MICROSTRAIN
CENTERLINE TOP BOTTOM DIFFERRENCE AVERAGE

-4 +121 +90 +30 +106

-3{L0NG) -182 -394 -212 " -288

-3(TRANS) -582 -458 -1040 -620

-2 -560 -620 -60 -590

-223 -357

-222 -329

-152 -212

-156 -540

-2857 -695

+4 -20 -180 -160 -100

Table 3.4-1: Experimental Measurements of Micro-Strain for
the Sine Shape Formed by Laser Bending

At point X = -3 the ratio of strain in the longitudinal

to transverse direction is: -182/-582 = 0.31. At point x =

+3, the ratio is: -462/-1498 = 0.308. Both values are

approximately poisson's ratio for steel (^ = 0.3) showing

that bending of this plate in the direction parallel to the

laser pass is primarily a "poisson" effect. This concept

will be extremely important in the analyses of the deflec-

tions of the complex shapes and the subsequent development of

the algorithms for them. Furthermore, on the basis of these

results, the values of the elastic strain in the y direction

at all points on the plate will be assumed to be: Ey/g) =7/*

^x(e) d'Ji^i'^9 the residual stress calculations.
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The residual stresses due to bending and planar effects

now can be calculated using the following equations:

6y = -E/d-^'^) (£y + y.^^)

Ejj =^"Ey (based on experimental evidence)

For steel: E = 2.9 x 10^ psi and ^= 0.3. The equations

become

:

bx = -6.37 X 10-'-(6x) where ^^ is the measured

6y = -1.16 X 102(£jj) strain in)jin/in.

Table 3.4-2 shows the residual stresses calculated from the

experimental data given in Table 3.4-1 using the above

equations. Figure 3.4-1 shows the results graphically.

DIST. FROM MICROSTRAIN MICROSTRAIN X-STRESS X-STRESS
CENTERLINE DIFFERENCE AVERAGE BENDING PLANAR

(KSI) (KSI)

-4 30 106 -1.91 -6.76

-3 -212 -288 13.5 18.4

-2 -60 -590 3.80 37.6

-3/8 -223

+3/8 -222

+2 -152

+3 -156

+4 -160

357 14.2 22.8

329 14.2 21.0

212 9.69 13.5

540 9.94 34.4

100 10.2 6.37

Table 3.4-2: Bending and Planar Residual Stresses Determined
for the Sine Shape Formed by Laser Bending
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The bending stress at x = +2 to the edge is

approximately constant since the edge is clamped on that

edge. The bending stress reaches a local minimum and the

planar stress reaches a maximum at approximately the position

of maximum magnitude of deflection where the rate of change

of the deflection is a minimum. Therefore, for this shape,

the bending residual stress is a minimum where the slope of

the deflection (dz/dx) is a minimum. Likewise, the planar

residual stress is a maximum where the magnitude of the

deflection (|z|) is a maximum. Except for the region of

external clamping of the plate, the bending stress is

consistently less than the planar stress. The mean ratio

between bending stress and planar stress for the positive

deflection half-cycle (X <^ 0) is 0.43 and the mean ratio

between bending stress and total residual stress is

approximately 0.48. The fact that the bending residual

stress represents about one-half of the total residual stress

could indicate that significant changes in the magnitude of

the deflection might occur if stress relieving is performed

on the plate. Future experiments could confirm this

hypothesis

.

3.5 Summary and Conclusions

The results of the measurement of residual stresses in

the sine shape appear to indicate the following:
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a. The strain induced in the plate in a direction

parallel to the laser pass is approximately poisson's ratio

times the strain in the direction perpendicular to the

heating path.

b. The bending residual stress is a minimum where the

deflections are a maximum since the magnitude of the slope of

the deflection is a minimum at that point. The planar resi-

dual stress is a maximum where the magnitude of the deflec-

tions are a maximum.

c. The bending residual stress constitutes, on the

average, of about 50% of the total residual stress but varies

on the plate from about 10% to about 80%.

d. Although clamping the plate appears to make uniform

the bending stress distribution, clamping does not appear to

affect significantly the planar stress more than about one

beam diameter ("1.5 inch) away from the restraint.

e. The planar stress is approximately symetrical about

the centerline of the plate less the effect from artificially

restraining one side.

f. No local variance was visible in the planar stress

due to multiple laser passes. This indicates that for over-

lapping or close proximity laser line passes, the stress is

distributed about the plate in accordance with the geometry

of the shape.

g. The highest y direction residual stress was observed

to be about the yield strength of the metal ("65 ksi).
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CHAPTER POOR

PHASE II LASER LINE HEATING EXPERIMENTS

4.1 Introduction

This set of experiments was part of the second phase in

the sequence whose objective is the development of a closed-

loop controlled process for laser bending of steel plates.

The specific goals of these experiments, conducted at Naval

Research Laboratories, were:

a. Verification of and testing the reproducabili ty of

previously obtained data.

b. Increasing the data base by investigating the behav-

ior of 3/8 and 5/8 inch thick mild steel plate.

c. Testing a simple linear algorithm for predicting the

deflections for simple curves as a function of plate

thickness and heat delivered to the metals surface.

d. Quantitatively Investigating the effect of multiple

laser passes at different locations.

e. Investigating the effect of surface preparation on

the deflections through multiple pass-single loca-

tion experiments.

As discussed in Chapter 2, reference [1] discusses the

deflection of steel plates as a function of the heat

delivered to the metals surface. The power delivered to the
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metal's surface is represented by the following parameters:

P/vAT or P/t^7v

where P is the laser power delivered to the metal, t is the

plate thickness, and V is the bedplate/steel speed beneath

the laser.

It is anticipated that even if the process of laser

bending steel plates to produce complex shapes is controlled

by a closed-loop system, initial bending to within twenty to

thirty per cent of the final shape will be governed by the

data base and/or developed algorithms. Final shaping and

dewarping would be monitored by the optical laser/video

system. A major goal of these experiments was to test a

simple, linear algorithm to predict the one dimensional

deflection of plates with thicknesses not previously within

the data base. To examine the reproducabi 1 i ty of this

process, the deflections of 1/2 inch thick plate were

measured and compared to that obtained during Phase I experi-

ments.

Since the completed system/process may require multiple

passes at the same or different locations on the plate, both

multiple pass-single location (MPSL) and single pass-multiple

location (SPML) experiments were conducted. It was expected

that fundamental question would be answered concerning any

interaction of passes from one location to another and inter-

actions of multiple passes at the same location.
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4.2 Experimental Procedure

In order to minimize the number of variables and to

simulate a probable industrial environment, generated laser

power was held constant at 7 kW with a beam diameter of about

1.5 inches. Beam spot geometry was the "top hat" discussed

in reference [2]. Variation of the heat linear density

delivered to the metal was accomplished by varying the plate

speed past the stationary laser beam. No complex shapes were

created in this series of experiments. Beam path locations

were predetermined on the basis of;

a. Maximizing beam pass separation when independent

measurements were desired and controlling the separation

distance during SPML studies.

b. Obtaining no effects from the plate's edge parallel

to the travel direction.

c. Allowable clearances on the bedplate mechanism with

the steel plate.

All experiments were performed with 24" x 36" K-TEN20CF

steel plates. Each was spray painted black. No clamping or

forced cooldown was done. Deflections were measured with

three dial gages of which two were placed on one side of the

beam pass. Deflections were taken periodically during

cooling until no change was observed (about 20 minutes per

pass). Figure 4.2-1 shows the arrangement for a typical

experiment

.
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Figure 4.2-1: Typical Arrangement for Phase II Experiments
Conducted at N.R.L. (September 1985)

4.3 Experimental Results

The three dial gage readings were plotted and, assuming

the minimum deflection to be at the centerline of the pass,

the angular deflection on both sides of the pass was

determined from:

e 1,2 = Tan -1 Zip, - Zi ,2i"in
Xi o -X,•1,2 "p

ef = Gi + 02

where Zj^ 2 are the measured deflections at coordinate

Xi o , Xn is the coordinate of the centerline of
J. , ^ p

the pass, and 0^ is the final total angular deflection

34





For an ideal plate, the minimum deflection at the centerline

of the beam pass, Zi^2"^^"' should be zero. In reality,

deflections parallel to the beam path are superimposed on the

plate resulting in a uniform (except at the edges) raising of

the plate. This is probably due to the longitudinal residual

stresses discussed in Chapter Three. Since only x direction

deflections are desired, this overall plate translation in

the z direction was removed by subtracting the minimum value

which was found to be consistently greater than zero. The

algorithms for complex shapes developed in the next chapter

will include this effect.

The linear algorithm assumes that 9^ is a linear fun-

ction of P/\/v between any 2 adjacent, previously determined

data points. Furthermore, it assumes 6^ is a linear function

of the thickness for a given P / \/v between any two adjacent

thicknesses. Deflection angles for 3/8" thick plate was

predicted using values of Qf for 1/4" and 3/8" plates from

figure 2.2-1 or table 2.2-1. 1/2" thick plate was subjected

to values of P/\Iw not previously within the data base al-

though they are shown graphically in figure 2.2-1. Values of

Qf were predicted on the basis of linearity between

bracketing values of 6^ within the data base (table 2.2-1).

This was done to test the linearity of the curves within

neighborhoods of the preexisting data and to test the repro-

ducability of the process. Finally, 5/8" thick plate was
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subjected to three different P/\A^ and the deflection angles

measured. Table 4.3-1 gives the results of these experiments

and the predicted values for 3/8" and 1/2" plates." Figures

4.3-1 and 4.3-2 are graphs of these measurements superimposed

upon the results from Phase I experiments.

THICKNESS P/v^ p/t\/v e

ACTUAL
e

PRED

3/8"

1.28

1.49

1.75

2.21

3.41

3.98

4.67

5.90

0.28

0.86

1.23

1.66

0.50

1.19

1.20

1.25

1/2"

1.49

1.75

2.21

2.98

3.50

4.43

0.47

0.73

1.04

0.42

0.70

1.02

5/8"

1.49

1.75

2.21

2.39

2.80

3.54

0.38

0.82

0.98

Table 4.3-1: Test Results Obtained in Parametric Studies
Conducted September 1985
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On the basis of the experimental results, one can

observe

:

a. The close agreement between the previous an-d current

results for the 1/2" plate indicating the r eproducabi 1 ity of

the process.

b. For 1/2" plating, a linear algorithm predicting

deflections between data points previously obtained is

reasonably accurate.

c. 1/4" plating should not be used to linearly predict

the behavior of plates with a different thickness.

d. The measured deflection angles for the 5/8" plating

were consistently higher than expected with or without the

use of a linear algorithm. For this reason, it is

recommended that additional experiments be performed on 5/8"

plating prior to the integration of these results into the

data base.

Experiments were performed to determine the effect of

multiple passes on the same plate. P /7v was held constant at

1.278 and the plate thickness was 3/8". The results are

given in table 4.3-2. The cumulative (total) deflection

angle as a function of the number of passes is shown in

figure 4.3-3. The results show that for as little separation

as one beam diameter ("1.5 inches) between passes the

deflection is approximately constant. This implies that

under the conditions of this experiment, superposition of

angular deflection is a reasonable assumption in SPfIL mode.
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PASS DIST. TO
NEAR. PASS

( inches)

DIST. TO
NEAR. END
( inches

)

(degrees)

10.5 .24

B 20.5 .23

5.75 10.8 .23

5.75 16.3 .38

3.0 13.5 .33

2.88

1.50

7.88

7.25

.31

.33

Average Angular Deflection Per Pass is 0.3 Degrees

Table 4.3-2: The Effect of Pass Separation Distance on the
Angular Deflection of 3/8" plate with P/\/v = 1.28
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The last series of test in this sequence indicated that,

without surface preparation (painting) after each pass in the

MPSL mode, no significant deflection occurs after fhe initial

pass. It should be emphasized that in these experiments the

plate was allowed to cool to ambience after each pass. Since

the absorption of "10 micron radiation by a metal increases

rapidly with increasing plate temperature, multiple passes

at a single location might indeed cause significant

deflection if the material is not allowed to cool

significantly prior to the next pass. Further investigations

of the effects of surface preparation are recommended. This

should include, at a minimum, the use of alternative

preparations such as white titanium oxide which is frequently

used in laser scattering experiments and should include the

MPSL processing without cooling after each pass.

4.4 Summary

The results of the series of Phase II experiments condu-

cted at Naval Research Laboratories in Washington, D.C. con-

tribute to the understanding of the behavior of metals when

subjected to laser line heating. They also provided valuable

data in the development of a closed loop control system.

Specifically :

a. Results for 1/2" plating were verified showing the

reproducability of the process.

b. Multiply located passes on the same plate cause

deflections which are approximately linear with respect to
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the number of passes. This was confirmed using K-TEN20CF

with beam path separation to as low as one beam diameter.

c. If no surface preparation is performed and the plate

is allowed to cool to room temperature after each pass in the

MPSL mode, no measurable deflection occurs after the first

pass .

d. A linear algorithm is sufficient to predict

deflections for a given thickness at power densities not

within the data base. A linear algorithm using 1/4" data for

predicting behavior of plates of other thicknesses is

inaccurate

.

Sufficient predictability and control has been shown to give

encouragement that development of a closed loop laser bending

system is practicable for simple shapes.
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CHAPTER FIVE

AN ALGORITHMIC APPROACH TO PREDICTING DEFLECTIONS

IN A COMPLEX SHAPE

5.1 Introduction

Very elaborate techniques have been developed or applied

to the prediction of the behavior of metals undergoing line

heating. In spite of this, to date, there exists no algo-

rithm based on either engineering physics or a data base

which can synthesize a complex, three dimensional shape.

Recalling the discussion in Chapter Two about the overall

goals of present research in laser bending, algorithms will

be essential for automating a shape synthesizing process

using line heat. This is also probably true for automating a

metal straightening (dewarping) process. This is equally

true for laser and flame line heating.

The "purest" algorithms are those which are based on a

thorough understanding of the physics of the technique

including the mechanisms of behavior of the object in ques-

tion. This approach is usually possible only for simple

systems where there are few primary variables. Even then,

the use of very powerful computers or experimental equipment

is often required. Any algorithmic based or assisted auto-

mated technique requiring the use of a main frame computer

will probably not be cost effective for a manufacturer such

as a shipbuilder.
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The other major approach is to base the algorithm on

empiracal data. This approach is often preferable to the

"physics" approach since it allows the development of a

process with potentially many primary variables and an incom-

plete knowledge of the science of the phenomenon. A main

disadvantage of this approach is that it may be more expen-

sive to develop the algorithm because of the number of exper-

iments required to create a sufficiently large data base. In

the long run, for producing an automated process for shaping

steel by thermomechanical means, the later approach is best

since it will reduce the complexity and cost of the hardware

in the complete system. In fact, it is not unreasonable to

strive for a system whose control system is maintained and

driven by a microcomputer. Therefore, the algorithms should

be as simple and compact as possible.

The main objective of this development is not to produce

the most elaborate, comprehensive, or sophisticated algorithm

for laser bending steel plates into complex shapes. Rather,

it is to prove that simple linearized algorithms can be

constructed which will produce with reasonable accuracy those

shapes. Furthermore, these algorithms must be based on pre-

existing information on simple, single pass deflections al-

ready within the data base. Although the data base for

simple angular deflections is substantial, the number of

preexisting complex shapes is not. Therefore, it is fully

expected that, as more experiments are performed on complex
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shapes and as more analysis is performed on the mechanisms of

bending in response to line heating, the algorithms will be

modified to become more general and more accurate. This

paper develops one algorithm for each of the shapes

considered. These are the parabaloid (dish), the parabolic

hyperboloid (saddle), the cone, and the antisymmetric double

paraboloid ("sine").

5.2 General Methodology

The algorithms created in this chapter are empirically

based on only one sample of that particular shape. Although

a strenuous attempt was made to include known physical pheno-

mena, on occasion, underivable factors had to be included

which may or may not remain the same for the same shapes

constructed under different conditions. The same methodology

was applied to the different shapes whenever possible.

Linearity was assumed whenever excessive loss of accuracy did

not result. Symmetry was determined from geometric proper-

ties of the shapes. A photograph of each of the analysed

shapes is included in Appendix A. These are extracted from

reference [2]. Also included with the photograph is a sketch

of the pattern of laser passes and relevant parameters used

to construct the shape. The deflections at specific points

on the shape were measured with a dial gage. All data was

compensated for the thickness of the plate and was normalized

such that the deflection at the center of the plate (x,y = 0)

was numerically zero. The coordinate system is cartesian
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with the center of the plate the center of the coordinate

system. The width of the plate in the "x" direction is

notated W„ and the width (height) of the plate in the "y"

direction is notated Wy. Unless otherwise noted, the

"top" of the plate is that side such that the laser path is

in the +y to -y direction. For a perfectly continuous pure

geometric shape, the entire shape can be generated by func-

tions for the X = and y = contours. Figure 5.2-1 shows

how the saddle shape can be generated with only the contours

of X = and y = analytically determined. Throughout this

chapter "z(x,y)" will represent the deflection at point (x,y)

and z(0,y) and z{x,0) will represent the components of the

deflection from the x = and y = contours, respectively.

Z(X,01 = f(X)

r^4fcf:/^^t^4^
1

1
,H1

_1 1

ZCOr) =g{Y) Z(X,>)=f(X)*g(Y)-»- CONSTANT

Figure 5.2-1: 3 Dimensional Shape Generated from Contour Lines
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The total deflection at a point (x,y) is:

z(x,y) = f(x)Iy=o + g(yHx = "^ constant

Since the curve is normalized such that 2(0,0) = the

above constant is zero and:

Z(X,y) = f (X) ly^Q + g{y) Ij^^Q or

z (x,y) = 2 (x,0) + z (0,y) .

Geometric symmetry simplifies algorithm generation. For

example, geometric symmetry predicts for the perfect

bowl and saddle: z(x,y) = z(-x,y) = z(x,-y) = z(-x,-y);

For the sine shape: z(x,y) = -z(-x,y);

For the cone shape: z(x,y) = z(-x,y) only.

The above relationships are valid only if the center of the

coordinate system is at the center of the shape as is assumed

for all the analysis herein.

The actual complex shapes were prepared in such a way as

to try to maintain the symmetry. This was done by the choice

of beam pattern and the equality of laser irradiation.

However, when the shapes were analyzed it was found that the

symmetry was not always preserved. This could be due to

uneveness in surface preparation or plate thickness,

irregularities in laser power or bed plate speed, or unequal

edge effects. These deviations of the real plates geometry

from the ideal geometric shape can be categorized as:

a. Warping: Lack of fairness or smoothness for a

particular z-contour line.

b. Asymmetry along an entire contour line or surface.

48





Figure 5.3.1(a)-l, which will be discussed in a later sec-

tion, shows examples of both types of irregularity.

Geometry and the pattern of laser passes should cause us to

predict that for a given y = k line the deflection at +x is

equal to the deflection at -x. However, the deflections in

the y>_0, x>_0 quadrant appear consistently greater that the

values in the y>^0, x<_0 quadrant. Warpage is also evident for

the y = 5 line and from x = -3 to x = -4 on the y = 1 line.

For all the shapes the edge effects are somewhat erratic.

The dish was irradiated in such a way to minimize edge

effects. Nonetheless, it still appears in several of the

contour lines. For some of the other shapes not fabricated

to minimize end effects the edge effects may or may not be

considerable

.

Due to these irregularities, the following general

methodology was used to analyze the shapes:

a. The raw (actual) deflections were normalized such

that z(0,0) = 0.

b. Using a fairing process with splines commonly used

in naval architecture to smoothe hull shapes, the contour

lines were "dewarped". This process was performed such that

the deflection was the same value at a point (n,k) approached

from both a y = k and a x = n contour.

c. Deflections were averaged in such a way as to obtain

geometric symetry predicted from the ideal curve.

d. The dewarped, symmetrized shape, called the model
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shape, ^^j^) , was then used to generate the algorithm (Z^) .

Although for each of the shapes the a 1 gor i t h m i ca 1 ly

determined deflections (Z^) are compared with the measured

values, the goal was to construct the modeled (dewarped and

symmetrized) deflections (Z^) to within about 10 % accuracy.

This procedure can be justified by the fact that plate

warpage and lack of complete symmetry always cannot be

controlled or predicted using a real process. Secondly,

these algorithms are designed to initialize the automated

process. That is, these algorithms should be capable of

obtaining "in the ball park" deflections. It is assumed that

the closed loop feedback system will be capable of fine

tuning the shape which would include dewarping and

symmetrizing the shape as required by the application of the

shape. It is estimated at this time that approximately 70 to

85 % of the desired shape's deflection will be obtained by

use of the algorithm and/or the data base. The remaining

deflection will be controlled by the feedback system.

The process of constructing the model shape consists of

using the single pass Bf (as a function of P/^fv) from

reference [2], the number and pattern of laser passes,

generalized effects from the edges, near-pass coupling

effects and, as required, correlating factors to generate the

y = and x = contours. These contours are then used to

predict the deflection at any given point within the plate in

the manner described above.
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The slopes of the x = and y = model contours were

not constant. In most of the shapes the contours were

divided into three regimes with their own governing

equations. These regimes are the flattened area near the

maximum or minimum, the edge and corresponding nearby region,

and that portion between the other two regimes. In several

cases the last two regimes had the same slope and were then

considered to have two regimes. To improve the accuracy near

the origin where flattening of the shape was prominent, a

single point deflection is predicted half-way between the

origin and the borderline between regime one and two.

Some method had to be developed which would correlate

the angular deflection within the data base for a single

laser pass, the number of passes on that portion of the plate

and a factor accounting for beam path coupling effects and

edge effects which were distributed over all the plate.

Defining "k" to be the distributed angular deflection:

k = n-e^MWy - (1+^ -B.D. ] [Wy - (l+^'B.D. l where
2-W^-Wy

n is the number of laser passes on that line or plane of

symmetry;

©f is the angular deflection (Figure or Table 2.2-1);

Wjj and Wy are the widths of the plate;

B.D. is the beam diameter;

/^ is poisson's ratio.

For steel with the laser beam diameter of 1.5, (1+^)B.D. is

approximately equal to 2. The equation becomes:
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k = n-e^ ' (Wy - 2) (W^ - 2)

The factor of two above comes from the definition of Q^.

The distributed deflection slope is given by:

l\z / 1\ q = Tan(k) where q is the generalized

coordinate

.

For example, a 1/2" thick plate with width of 24" and

height of 18" is symmetrically irradiated with 20 passes on

one side to produce a dish. The beam power is 6.3 kW

including optical losses and bed plate/steel speed is 12 ipm.

Then P/\AF = 2.02 and from table 2.2-1, 6^ = 0.90. From the

above equation:

k = (20) (0.9) (22) (16)/(2) (24) (18) = 7.33°

Tan(k) = Tan(7.33°) = 0.1286 = Az/Aq

The distributed deflection angle is the basis of the algo-

rithms of all the shapes. Z3(x,0) and Za(0,y) are assumed to

be functions of the Tan(k) parameter. It should be stated at

this time that the Tan(k) parameter is more accurate than

superposition (n*e^/2) for three dimensional curvature with

many passes. However, for simple one dimensional passes such

as those described in chapter four and references [1] and

[2], superposition appears to be more accurate.
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5.3 Shape Analysis and Algorithm Generation

5.3.1 Dish Shape

a. Derivation of the Model and Algorithm

The dish shape was produced by irradiating a plate on

one side longitudinally, transversely, and diagonally to the

y = coordinate line. This pattern is shown in Appendix A

with relevant plate and heating parameters. Table 5.3.1-1

gives the measured and normalized (raw) deflections and

figures 5.3.1-1 to 4 are graphs of the measured data.

Using the fairing and symmetrizing procedure described

in the previous section, model contours are produced. Table

5.3.1-2 and figure 5.3.1-5 show the model deflections.

Recall that the distributed deflection slope is given by:

Az/Aq = tan(k) = tan [ne^ (Wjj-2) (Wy-2) /2WjjWy 1

For this dish: n = 30; Wjj=Wy=10"; ©f =0.7 which gives

k = 6.72° and tan(k) = tan 6.72° = 0.1178

Since the geometry of the dish which was used to generate the

model has x/y symmetry, the y = and x = contours are the

same curve. Using this fact and the value of tan(k) above,

the following equations can be used to construct the model

dish.
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X Y = -5 Y = -4 Y = -3 Y = -2 Y = -l Y =

DEFL DEFL DEFL DEFL DEFL DEFL

-5 0.929 0.757 0.637 0.500 0.441 0.298

-4 0.794 0.643 0.505 0.361 0.277 0.235

-3 0.646 0.494 0.342 0.224 0.136 0.140

-2 0.521 0.419 0.291 0.152 0.065 0.065

-1 0.481 0.363 0.205 0.078 0.025 0.020

0.350 0.262 0.205 0.073 0.010 0.000

1 0.411 0.277 0.202 0.085 0.044 0.024

2 0.602 0.383 0.254 0.187 0.112 0.089

3 0.732 0.491 0.372 0.301 0.227 0.215

4 0.854 0.710 0.573 0.452 0.392 0.371

5 1.097 0.890 0.673 0.575 0.485 0.462

X Y = Y = l Y=2 Y = 3 y=4 Y = 5

DEFL DEFL DEFL DEFL DEFL DEFL

-5 0.298 0.333 0.395 0.503 0.609 0.823

-4 0.235 0.245 0.290 0.397 0.535 0.787

-3 0.140 0.185 0.187 0.286 0.440 0.597

-2 0.065 0.069 0.117 0.205 0.336 0.472

-1 0.020 0.018 0.069 0.186 0.310 0.462

0.000 0.006 0.065 0.153 0.278 0.395

1 0.024 0.030 0.070 0.177 0.298 0.416

2 0.089 0.100 0.135 0.253 0.359 0.525

3 0.215 0.227 0.252 0.357 0.481 0.611

4 0.371 0.387 0.415 0.515 0.587 0.719

5 0.462 0.473 0.531 0.590 0.715 0.839

Table 5.3.1-1: Measured and Normalized Raw Deflection Data
for the Dish Shape
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Figure 5.3.1—5: Model Deflections
After Flnol Symmotrtzing

DY=0 +lYlrl lYl-2
IXI
A ^= X IY1=4 y IYI=5

X Y=+/-5 Y=+/-4 Y=+/-3 Y=+/-2 Y=+/-l Y =

DEFL. DEFL. DEFL. DEFL. DEFL. DEFL.

+/-5 .922 .711 .601 .501 .433 .380

+ /-4 .789 .621 .492 .380 .326 .310

+ /-3 .647 .465 .342 .243 .183 .178

+ /-2 .531 .368 .248 .148 .086 .077

+/-1 .453 .286 .187 .076 .032 .022

.373 .270 .179 .063 .008 .000

Table 5.3.1-2^ Model Deflections After Final Symmetrizing
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x,0) = {:^/2) tan(k) |x

0,y) = C^2)tan(k) |y

x,0) = ^tan(k) |x

0,y) = ytan(k) |y

X = O.IW,

y = O.IW,

O.lWjj < |x| _< 0.2Wjj

O.lWy < |y| <_ 0.2Wy

x,0) = tan(k)[|xl - ,2\^^(l-y)]

0,y) = tan(k)[|y| - .2W (1-^)]

•2Wx < |x| £ .4Wjj

•2Wy < |y| <_ .4Wy

x,0) = tan(k) [.75|x| + .2\J^-.1VJ^] . 4Wjj < [x] < .5\J^

0,Y) = tan(k) [ .75|y| + .2W^y-.lWy] . 4Wy <
| y | <_ . 5Wy

The multiplicative factor of .75 in the slope of the last

series of equations accounts for edge effects. Figure 5.3.1-

6 shows the algorithmic and model deflections for |q| = 0.

To find the deflection at any point on the plate one now only

has to add Z3(x,0) and 2^(0, y) for the particular coordinate

(x,y)

.

b. Comparison of the Algorithm, Model, and Measured

Deflections

Table 5.3.1-3 gives the model and algorithmic

deflections and the deviations in per cent between them. The

average deviation between Zj„ and z^ is about 8.5% which is

within the goal of 10%. Outside one beam diameter radius of

the center where flattening is greatest, the average

deviation is about 7.5%. Figures 5.3.1-7 and 5.3.1-8 show

the predicted and model curves for the dish shape. Figures

5.3.1-9 and 5.3.1-10 show the predicted and measured curves.
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Figures 5.3.1-11 and 5.3.1-12 show a "3-D" perspective of the

dish shape. Figure 5.3.1-11 shows the measured deflections

while figure 5.3.1-12 show a 3 times magnification of the

measured deflections to better show the shape and warpage.
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X

(+/-)

1

2

3

4

5

1

2

3

4

5

Y

(+/-)

2

2

2

2

2

2

Z mdl

.022

.077

.178

.310

.380

.063

.076

.148

.243

.380

.501

Z alg

.018

.071

.189

.306

.395

.071

.089

.142

.260

.377

.466

DEVIATION
%

18

7.8

5.8

1.3

3.8

1 .008 .018 56

1 1 .032 .035 8.6

2 1 .086 .089 3.4

3 1 .183 .206 11

4 1 .326 .324 0.6

5 1 .433 .412 4.8

11

15

4.1

6.5

0.8

7

Table 5.3.1-3: Model and Algorithm Deflections
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X

(+/-)
Y

(+/-)
Z mdl Z alg DEVIATION

%

3 .179 .189 5.3

1 3 .187 .206 9.2

2 3 .248 .260 4.6

3 3 .342 .378 9.5

4 3 .492 .495 0.6

5 3 .601 .584 2.8

.270 .306 11.8

1 .286 .323 11.5

2 .368 .377 2.4

3 .465 .495 6.1

4 .621 .612 1.5

5 .711 .701 1.4

5 .373 .395 5.6

1 5 .453 .413 8.8

2 5 .531 .466 12

3 5 .647 .584 9.7

4 5 .789 .701 22

5 5 .922 .790 14

Table 5.3.1-3: Model and Algorithm Deflections (continued)
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5.3.2 Cone Shape

a. Derivation of the Model and Algorithm

The pattern of laser passes and relevant parameters used

to produce the cone shape are given in Appendix A. Table

5.3.2-1 gives the actual, normalized data. Figures 5.3.2-1

to 3 are graphs of the raw data. In this case, imposed y-

direction strains are present due to both the poisson effect

and due to the non-orthogonality of the beam passes relative

to the coordinate system. Therefore, longitudinal bending

has a contribution approximately proportional to the sine of

the angle between the y axis and the beam pass.

Analysis of the data seemed to indicate a significant

coupling effect between beam passes. The x-direction

deflections are significantly greater (2.5-5.75) than

expected by either superposition (nef/2) or by the tan(k)

parameter. This significant deviation from expected behavior

may be an inertial effect. As the angle of the beam pass

with the y axis increases, the closer the beam is to the

corner of the plate. The much less inertia of the plate on

the outboard side of the beam pass should imply that the

majority of the angular deflection from the beam pass would

be manifested on that outboard side. As the angle increases,

the larger this effect would be. Another possible

contributor to this "amplification" effect is the density of

heating at the focus of the beam pattern. Geometric symmetry

dictates that, for the model, z(x,y) = z(-x,y).
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X Y = -9 Y=-6 Y=-3 Y=0
DEFL DEFL DEFL DEFL

-12 .903 1.013 - -

•11.125 - - .984 -

10.188 - - - .930

-9.125 - - - -

-8.875 - - - -

-8.0 .324 .374 .474 .390

-7.063 - - - -

-4.0 -.034 .057 .113 .100

-.142 -.048 .008 .000

4.0 -.058 .079 .154 .176

6.938 - - - —

7.875 - - - -

8.0 .356 .105 .577

8.875 - - -

9.875 - - - .824

10.875 - - .841 -

12 .707 .823

Table 5.3.2-1: Raw Deflection Data for the Cone Shape
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X Y=0 y=3 Y=6 Y=9
DEFL DEFL DEFL DEFL

-12 - - - -

-11.125 - - - -

-10.188 .930 - - -

-9.125 - .785 - -

-8.875 - - .580 -

-8.0 .390 .509 - -

-7.063 - - - .388

-4.0 .100 .116 .083 -.001

.000 -.002 -.063 -.142

4.0 .176 .163 .123 .008

6.938 - - - .378

7.875 - - .586 -

8.0 .577 .662 - -

8.875 - .736 - -

9.875 .824 - - -

10.875 - - - -

12 ^ ^ _ _

Table 5.3.2-1: Raw Deflection Data for the Cone Shape (cont)
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No symmetry exists across the y = line. Table 5.3.2-2 and

figure 5.3.2-4 and 5.3.2-5 give the symmetrized and dewarped

model deflections. As one would predict from the geometry of

a cone, the changes in deflection slopes as a function of x

are significantly greater for the region of Y > than for

the region of Y < 0. For this reason one algorithm for each

region was developed. Since the plate was cut as shown in

Appendix A, the effective area term in the tan{k) parameter

was formulated on the basis of the area enclosed by the

perimeter of the shape minus 2 inches divided by the area of

the plate. Using these values gives:

tan(k) = tan[ (7) (.7) (282)/(2) (356.25) ] = .0337

It was discussed above that an "amplification" factor was

evident in the values of the deflection slopes of the model.

One set of empiracal equations that satisfy the observed

increases in deflection slope are:

f = 1

f= Wjj sin(a2)/k W^tan(aT)+BD < x < W^tanCa^^) + BD

f= WjjSin(a3) /2*k*y Myu-nx^-^/ . ^^ ^ ^ ^ „^

where f is the amplification factor; a^^, a2/ 33 are the

angles of the beam pass with the y axis; k is the distributed

deflection angle; BD is the beam diameter; and j^is poisson's

ratio. For the conditions under which this cone was made:

X < WytanCa^^) + BD

.J,
K^ J. .1 \ ^2 / / i\ rtyK.aii \a-t ) -TDU nan rVyCanCao

Wytan(a3) + BD 1 x < Wx/2

f = 1

f = 2.5

f = 5.75

x < 3.5"

3.5" < X < 7.5"

7.5" < X < 12"

77





X Y = -9 Y = -6 Y = -3 Y = Y = 3 Y = 6 Y = 9

DEFL DEFL DEFL DEFL DEFL DEFL DEFL

12 .802 .915 - - - - -

11 - - .907 - - - -

10 - - - .859 - - -

9 - - - - .758 - -

8 .268 .382 .483 .481 .583 .543 -

7 - - - - - - .379

4 -.049 .065 .131 .135 .137 .100

-.145 -.059 -.059 -.145

4 -.049 .065 .131 .135 .137 .100

7 • «^ _- _ _ .379

9

10

11

12

8 3

.907

.543

.802 .915

Table 5.3.2-2: Model Deflections for the Cone Shape
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Directly inputting the above values for f into the

equations, the algorithm's equations become:

Za(0,y) = -Wy/6 < Y < Wy/6

Za^O^y) = -(l-:^)tan(k) [ |y| - 3] |y| ^ Wy/6

I. y =

Za(x,0)

Z3(x,0)

Za(x,o)

= tan (k ) X

2.5tan(k) [x - O.lWjj]

< X < Wjj/6

Wv/6 < X < Wx/3

= tan(k)[5.75x - 4Wjj/3] Wx/3 < x 1 Wx/2

II. y <

Za(x,0)

Za(x,0)

Za(x,0)

= t an (k )

X

2.5tan(k) [x - O.lWjj]

<x 1 Wjj/e

Wy/6 < X £ Wy/3

tan(k) [ (1-2/) ( 5 . 75) x- . TSSW^l Wjj/3<x<.Wjj/2

III. y >

Za(x,0) = tan(k)x < x <. Wjj/6

Z3(x,0) = tan(k) [3.675X - 2.675Wjj/6] ^^/e<x<yi^/3

z^(x,0)=tan(k) [5.75(1- -^
) - 1.1375Wjj +11. sX]

for Wjj/3 < X <. Wjj/2

Za(x,0) = tan(k) [5.75x-1.1375Wx + 11. s/"]

for X = Wjj/2

Zq(x,0) = ZgC-x^O)

Figure 5.3.2-6 and 5.3.2-7 are graphs of the model and

algorithm y = and x = contours.
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b. Comparison of the Algorithm, Model, and Measured

Deflections

Table 5.3.2-3 shows the predicted and model deflections

and the deviation between the two. The average deviation is

5.2%. Figures 5.3.2-8 and 5.3.2-9 compare the predicted and

model curves. Figures 5.3.2-10 and 5.3.2-11 compare the

predicted and measured values. Figure 5.3.2-12 shows a "3-D"

perspective of the measured values.
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X
(+/-)

Z-mdl
DEFL

Z-alg
DEFL

DEVIATION
%

10 .859 .860 0.12

8

4

.481 .472 1.9

.135 .135

9

8

4

3

3

3

3

.758 .766 1.04

.583 .630 7.5

.137 .135 1.5

8

4

6

6

6

.543 .489 9.9

.100 .064 36

.059 -.071 16.9

7

4

9

9

9

.379

•.145

.365

.007

.142

3.7

2.1

Table 5.3.2-3: Model and Algorithm Deflections
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X
(+/-)

11

8

4

Z-mdl
DEFL

Z-alg
DEFL

DEVIATION
%

3 .907 .878 3.2

3 .483 .472 2.3

3 .131 .135 3.0

3

12

8

4

6 .915 .943 3.0

6 .382 .401 4.7

6 .065 .064 1.5

6 -.059 -.071 17

12

8

4

9 .802 .872 8.0

9 .268 .275 2.5

9 .049 .048 2.1

9 -.145 -.142 2.1

Table 5.3.2-3: Model and Algorithm Deflections (continued)
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Figure 5.3.2-12: 3-D Perspective of the Cone Shape with

Actual Deflections
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5.3.3 Sine Shape

a. Derivation of the Model and Algorithm

Appendix A shows the parameters and the pattern used to

form the "sine" shape. The coordinate system used in the

development of the algorithm is 180° from that shown in the

photograph in the appendix. Table 5.3.3-1 gives the

norlmalized, raw data. Figures 5.3.3-1 to 5.3.3-4 show the

raw data. As can be seen from the graphs, the edge along the

X = +6 line was clamped. Geometric symmetry dictates that

z(x,y) = -z(x,y) and z(x,y) = z(x,-y). Deflections in a

direction parallel to the beam passes were found. Their

origin has been discussed previously. The clamping

complicates the modeling and algorithm formation since it

causes violation of the symmetry. Since all the shapes have

and will assume unrestrained plates only the half-plate which

is undamped will be used for symmetrizing.

The first attempt to model the plate focussed to fitting

a sine curve to the shapes. This proved to be too

inaccurate. Instead, the shape was modeled as an

antisymmetric double parabola. Table 5.3.3-2 and figure

3.5.3-5 shows the modeled data. The inflection point is

approximately at x,y =0. Significant coupling exists between

the two sides of the plate. The result is that the portion

of the plate containing the line connecting the two sides of

the plate (each side irradiated on opposite sides) has an

unexpected rate of change of curvature. This area acts as a
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X Y = -6 Y=-4 Y = -2 Y=0
DEFL DEFL DEFL DEFL

ACTUAL ACTUAL ACTUAL ACTUAL

-6 -.165 -.078 -.011 .001

-4 -.054 .024 .080 .094

-2 -.003 .046 .097 .108

-.072 -.055 -.009

2 -.177 -.157 -.132 -.123

4 -.146 -.169 -.148 -.142

6 -.092 -.092 -.077 -.050

X Y = Y = 2 Y=4 Y=6
DEFL DEFL DEFL DEFL

ACTUAL ACTUAL ACTUAL ACTUAL

-6 .001 -.039 -.106 -.177

-4 .094 .078 .046 -.104

-2 .108 .095 .053 -.040

-.010 -.038 -.102

2 -.123 -.126 -.148 -.172

4 -.142 -.143 -.150 -.174

6 -.050 -.039 -.060 -.065

Table 5.3.3-1: Raw Deflection Data for the Sine Shape
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X Y = -6 Y=-4 Y=-2 Y=0
DEFL DEFL DEFL DEFL

MODEL MODEL MODEL MODEL

-6 -0.171 -0.092 -0.025

-4 -0.010 0.037 0.080 0.090

-2 0.018 0.060 0.103 0.113

-0.085 -0.048 -0.010

2 -0.188 -0.156 -0.123 -0.113

4 -0.211 -0.179 -0.146 -0.090

6 -0.171 -0.092 -0.025

X Y=0 Y=2 Y=4 Y=6
DEFL DEFL DEFL DEFL

MODEL MODEL MODEL MODEL

-6 -0.025 -0.092 -0.171

-4 0.090 0.080 0.037 -0.010

-2 0.113 0.103 0.060 0.018

-0.010 -0.048 -0.085

2 -0.113 -0.123 -0.156 -0.188

4 -0.090 -0.146 -0.179 -0.211

6 -0.025 -0.092 -0.171

Table 5.3.3-2: Model Deflections for the Sine Shape
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clamp. Therefore, for this reason, the tan(k) parameter must

be modified by poisson's ratio from about x = -BD to about

X = +BD. The tan(k) parameter remains applicable to most of

the interior of the plate.

The following equations form the heart of the algorithm

for the sine shape:

tan(k) = tan[ (4) (0.7) {100)/(2) (144) ] = .0172

2a(0,y) = -.25tan(k) |y| |y| < Wy/6

2a(0,y) = -tan(k)[|y| - 15/Wy] Wy/6 < |y| < Wy/2

2^(0, y) = 2^(0, -y) _<

For the "negative" deflection half-cycle:

Za(x,0) = -(l/y)tan{k)K < x <. W^/S

Za(x,0) = -tan(k)[x - Wjj (:^ -1 ) /6 •;^ Wx/6<x< . 94Wjj/4

Za(x,0) = tan(k)[x - .846Wjj]

2a(x,0) = tan(k) [x - W„/2]
1.18-^

.94Wjj/4 < X <.:y-Wx

^Wjj < X <_ Wjj/2

For all regions:

2a(-x,0) = -2a(x,0)

b. Comparison of the Algorithm, Model, and Measured

Deflections

Table 5.3.3-3 gives the results of the algorithm and the

model with their deviations. Note that this algorithm is

somewhat inaccurate for computing the values at the edges.

This is in part due to the clamping effect discussed earlier.

The average deviation more than one beam diameter from the

edges is 9.2%. Figures 5.3.3-6 and 5.3.3-7 show the model

100





and algorithm deflections for x,y = 0. Figure 5.3.3-8 shows

the model and algorithm deflections for x,y not equal to

zero. The +/- y contour deflections for a given x are the

same value for both the algorithm and model. Figures 5.3.3-9

and 5.3.3-10 show a comparison of the actual and algorithm

deflections. Since the x = +6 edge is clamped which distorts

the actual deflections, only the x < deflections are

compared. Figures 5.3.3-11 and 5.3.3-12 are 3-D plots of the

sine shape.

101





X Y
(+/-)

Z-itidl

(IN)
Z-alg
(IN)

DEVIATION
%

-6 .000 .000

-4 .090 .097 7.2

-2 .113 .115 1.7

.000 .000

2 -.113 -.155 1.7

4 -.090 -.097 7.2

6 .000 .000

-6 2 -.025 -.009 64

-4 2 .080 .089 10

-2 2 .103 .106 2.8

2 -.010 -.009 1.0

2 2 -.123 -.123

4 2 -.146 -.106 27

6 2 -.025 -.009 64

Table 5.3.3-3: Model and Algorithm Deflection for the Sine
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X Y

( + /-)
Z-indl

(IN)
Z-alg
(IN)

DEVIATION
%

-6 4 -.092 -.043 53

. -4 4 .037 .054 31

-2 4 .060 .072 16.7

4 -.048 -.043 8.5

2 4 -.156 -.158 1.2

4 4 -.179 -.140 21.8

6 4 -.092 -.043 53

-6 6 -.171 -.077 55

-4 6 -.010 .175 105

-2 6 .018 .037 51

6 -.085 -.077 9.4

2 6 -.188 -.192 2.1

4 6 -.211 -.175 17.1

6 6 -.171 -.077 C C

'able 5.3.3-3: Model & Algorithin Defl. for Sine (cont)

103





CO

(Nl) SN0LL33U3a UV3H\1

104

- ^

- CN

- O

CN

I

I

(0

I

o
II

u
1

>-

E
I

>-





t

i_

en

<
u o

1

c 11

X
D 4J

<D

(D
C

U V
s:

>
M-

n
• • c

N
Q)

n Q

in

o

>-

o
I

E
I

X

n

I I I I I I

(Nl) SN0LL33U3a yv3Nn

105





JZ

Qi

<
U /—s

c
D +

o
-^

u >

> c
(/)

• •
i.

00
•

H-
0)

K) Q

0)

Li.
(N CO (0 ^ CM O N ^ CO 00 r-

o
•
o

•
o

•
o o

• •
o

•
o

•
o

»

•

o
o o o o o o o o

1

1 1 1 1

CN ^

O O

CO 00 CN CM
CN

O O
I I

o

II

a
I

>-

II

d
I

X

CN

il

I

X

(0

U

E
I

>•

(Nl) SN0LL33U3a yV3Nn

II

E
I

>-

e

106





a

O
<

r A

-M ^^>

• 1

(D

(/)

U' Q
J_

< 1^

H-
« •

(D
c

-M
u

« Q

(U

CN

CO

CMr-QOCO'tCMOCN'ttDOO^XOOOO OOOO
O O O O OOOOIII!

o
I

0^ tJ- (0 CO
X— r- V- V-

• • • •OOOO
1 I I I

VJ3

o
I

II

a
I

>-

X

CM

II

o
I

>-

X

CO

li

o

I

y

(Nl) SN0ll03U3a dV3Nn

11

a
>-

-f-

rsj

II

a
>-

107





I

II

o
I

II

a

X
CM

I

II

1

z

X

ID

I

o
I

>-

(Nl) SN0LL33"U3a dV3Nn

I

II

U
O

4-

I

II

*->

O
I

>-

a

108





J>^.

•>-, J^

Figure 5.3.3-11: 3-D Perspective of the Sine Shape with

Actual Deflections
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Figure 5.3.3-12: 3-D Perspective of the Sine Shape with

Deflections Magnified by 3 Times
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5.3.4 Saddle Shape

a. Derivation of the Model and Algorithm

Appendix A shows the parameters and pattern in which the

plate was fabricated. Table 5.3.4-1 and figures 5.3.4-1 to

5.3.4-4 show the actual normalized deflections. For this

shape, symmetry dictates that 2(x,y) = z(-x,y) and z(x,y) =

z(x,-y). Using the above rules of symmetry and the general

methodology utilyzed for the other shapes, the model deflec-

tion data was determined and is given in table 5.3.4-2 and

shown in figure 5.3.4-5.

Ideally, since the power delivered to each side of the

plate is the same, the magnitudes of the deflections should

be the same. This is not the case. The magnitudes of the

deflections of the X = contour are much more than predicted

from the tan(k) parameter or superposition. It is believed

that the poisson effect which has been discussed is

responsible. The "top" plate irradiation imposes longitudi-

nal deflections which enhance the deflections during the

"bottom" plate irradiation. Therefore, the side which has

been irradiated second will have more deflection than

predicted by superposition or tan(k) for single side

irradiation. This increase should be predictable from pois-

son's ratio and, in fact, the plate can be reasonably modeled

over much of the area by assuming a multiplicative (1 +^)

factor with tan(k). It appears from the data that the second

side passes do not reduce the first side (y = contour)
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X Y = -5 Y = -4 Y = -3 Y = -2 Y = -l Y =

DEFL DEFL DEFL DEFL DEFL DEFL
ACTUAL ACTUAL ACTUAL ACTUAL ACTUAL ACTUAL

-5 -0.164 -0.052 0.158 0.174 0.258 0.237

-4 -0.198 -0.072 0.055 0.115 0.167 0.161

-3 -0.264 -0.127 -0.035 0.040 0.094 0.117

-2 -0.352 -0.186 -0.108 -0.036 0.031 0.039

-1 -0.403 -0.239 -0.152 -0.071 -0.010 0.004

-0.402 -0.275 -0.166 -0.078 -0.022 0.000

1 -0.401 -0.264 -0.164 -0.074 -0.007 0.012

2 -0.376 -0.241 -0.136 -0.036 0.023 0.044

3 -0.315 -0.195 -0. 082 0.005 0.070 0.095

4 -0.240 -0.121 -0.010 0.077 0.117 0.156

5 -0.186 -0.065 0.021 0.104 0.157 0.215

X Y = Y = l y=2 Y=3 Y = 4 Y = 5

DEFL DEFL DEFL DEFL DEFL DEFL
ACTUAL ACTUAL ACTUAL ACTUAL ACTUAL ACTUAL

-5 0.237 0.227 0.167 0.137 0.023 -0.068

-4 0.161 0.147 0.126 0.037 -0.066 -0.145

-3 0.117 0.085 0.055 -0.031 -0.139 -0.225

-2 0.039 0.009 -0.023 -0.090 -0.191 -0.303

-1 0.004 -0.015 -0.057 -0.132 -0.241 -0.358

0.000 -0.018 -0.057 -0.132 -0.242 -0.371

1 0.012 -0.003 -0.043 -0.111 -0.231 -0.352

2 0.044 0.036 -0.001 -0.071 -0.181 -0.298

3 0.095 0.102 0.067 -0.002 -0.107 -0.235

4 0.156 0.155 0.150 0.085 -0.030 -0.132

5 0.215 0.214 0.192 0.165 0.032 -0.075

Table 5.3.4-1: Raw Deflection Data for the Saddle Shape
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X y=-5 y=-4 y=-3 Y = -2 y=-i Y =

DEFL DEFL DEFL DEFL DEFL DEFL
MODEL MODEL MODEL MODEL MODEL MODEL

-5 -0.123 0.011 0.132 0.186 0.215 0.226

-4 -0.190 -0.072 0.042 0.102 0.147 0.165

-3 -0.260 -0.142 -0.038 0.033 0.088 0.106

-2 -0.332 -0.200 -0.101 -0.024 0.025 0.042

-1 -0.379 -0.244 -0.140 -0.061 -0.009 0.008

-0.387 -0.258 -0.149 -0.068 -0.020 0.000

1 -0.379 -0.244 -0.140 -0.061 -0.009 0.008

2 -0.332 -0.200 -0.101 -0.024 0.025 0.042

3 -0.260 -0.142 -0.038 0.033 0.088 0.106

4 -0.190 -0.072 0.042 0.102 0.147 0.165

5 -0.123 0.011 0.132 0.186 0.215 0.226

X y=o Y = l Y=2 Y=3 Y = 4 y=5
DEFL DEFL DEFL DEFL DEFL DEFL

MODEL MODEL MODEL MODEL MODEL MODEL

-5 0.226 0.215 0.186 0.132 0.011 -0. 123

-4 0.165 0.147 0.102 0.042 -0.072 -0.190

-3 0.106 0.088 0.033 -0.038 -0.142 -0.260

-2 0.042 0.025 -0.024 -0.101 -0.200 -0.332

-1 0.008 -0.009 -0.061 -0.140 -0.244 -0.379

0.000 -0.020 -0.068 -0.149 -0.258 -0.387

1 0.008 -0.009 -0.061 -0.140 -0.244 -0.379

2 0.042 0.025 -0.024 -0.101 -0.200 -0.332

3 0.106 0.088 0.033 -0.038 -0.142 -0.260

4 0.165 0.147 0.102 0.042 -0.072 -0.190

5 0.226 0.215 0.186 0.132 0.011 -0.123

Table 5.3.4-2: Model Deflections for the Saddle Shape
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deflections which are reasonably modeled by the tan(k)

parameter. Perhaps, the reason is that the process has

insufficient power to overcome the high longitudinal residual

stresses imposed during the "top" plate irradiation. On the

other hand no such stresses oppose the longitudinal bending

during the first series of passes.

The algorithm equations become:

tan(k) = tan[ (16) (0.7) (.64)/2] =0.0626

Za(x,0) = .5[.33tan(k)
]
|x|

Za(0,y) = .5[ ( ) •5tan(k)l ly

X = O.IW,

yl = O.IW,

Za(x,0) = .33tan(k) |x|

Za(0,y) = Ct^) •^tan(k) |y|

0.1 i |x| < 0.2Wjj

0.1 < |y| <. 0.2Wy

Za(x,0) = tan(k)[|x| - .A\i^/3] . 2Wjj < |x| < . SW^

2^(0, y) = (1 +^)tan(k) [ |y| - .2Wy(l -5^ )! for

•2Wy < |y| < .4Wy

2a(0,y) = C^) •^tan(k)
[ |y| + .2Wy-C] where

C = {V)'^ + d^)^'^ + (^) - 2 for

.4Wy < |y| < .5Wy

Za(x,y) = Za(-x,y); Za(x,y) = Za(x,-y)
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b. Comparison of the Algorithm, Model, and Measured

Deflections

Table 5.3.4-3 shows the predicted and model deflections.

Average deviation is 10.6%. The average deviation on the

plate greater than a distance of about 2/3 BD from the edges

is 9%. Figures 5.3.4-6 to 5.3.4-8 compare the results of the

algorithm and the model. Figures 5.3.4-9 and 5.3.4-10

compare the results of the algorithm with the actual

deflections. Figures 5.3.4-11 and 5.3.4-12 are 3-D

perspectives of the saddle shape.
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X

(+/-)

Y

(+/-)

Z-iridl

(IN)

Z-alg
(IN)

DEVIATION
%

.000 .000

1 .008 .010 20

2 .042 .042

3 .106 .104 1.9

4 .165 .167 1.2

5 .226 .230 1.7

-.020 -.017 15

1 -.009 -.007 22

2 .025 .025

3 .088 .087 1.1

4 .147 .150 2.0

5 .215 .213 0.9

2 -.068 -.069 1.4

1 2 -.061 -.061

2 2 -.024 -.027 11 .1

3 2 .033 .037 10.8

4 2 .102 .096 5.9

5 2 .186 .157 15

Table 5.3.4-3: Model and Algorithm Deflections for the Saddle
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X

(+/-)
y

(+/-)
Z-itidl

(IN)
Z-alg
(IN)

DEVIATION
%

3 -.149 -.150 0.7

1 3 -.140 -.142 1.4

2 3 -.101 -.108 6.5

3 3 -.038 -.044 13.6

4 3 .042 .015 64

5 3 .132 .076 42

-.258 -.231 10.5

1 -.244 -.223 8.6

2 -.200 -.189 5.5

3 -.142 -.125 12

4 -.072 -.066 8.3

5 .011 .005 54

5 -.387 -.346 10.6

1 5 -.379 -.338 10.8

2 5 -.332 -.304 8.4

3 5 -.260 -.240 7.7

4 5 -.190 -.181 4.7

5 5 -.123 -.120 2.4

Table 5.3.4-3: Model £. Algorithm Defl. for the Saddle (cont)
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Figure 5.3.4-11: 3-D Perspective of the Saddle Shape with

Actual Deflections
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Deflections Magnified 3 Times
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CHAPTER SIX

CONCLDSION AND RECOMMENDATIONS FOR PDTORE RESEARCH

The main purposes of the research and analyses in this

paper have been proven. Namely:

a. The technique of irradiating a plate with a laser

under controlled conditions is a reproducable and predictable

phenomenon. Complex shapes can be mathematically constructed

with reasonable accuracy using simple, linearized equations

and well-known aspects of geometric symmetry.

b. Generality between algorithms has been established

through the use of the TAN(k) parameter, poisson's ratio,

plate dimensions, and the same general methodology.

c. Residual stress analysis appears to be consistent

with the general algorithmic development with respect to

poisson's effect.

d. All methods used to establish the construction algo-

rithms are applicable to flame line heating as well as laser

line heating with appropriate modifications for differences

in heating parameters. This should provide sufficient flexi-

bility for further development of a general line heating

automated process using either lasers or flames.

It was stated previously that the algorithms developed

in this paper are only a "first step". Admittedly, they lose

accuracy near the edges and sometimes near the points of
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maximum and minimum curvature. Future research should, in

part, focus toward "fine-tuning" them. Futhermore, the even-

tual goal of the algorithmic development should be to genera-

lize the shapes into as few algorithms as is practicable.

Possibly all conical and spherical shapes can be generalized

into a single algorithm. Due to the lack of experimental

data, it was not possible to generate general algorithms

which would cover a variety of pure or combined shapes. For

example, no algorithm was generated which would predict with

correlatable accuracy a combined shape such as a sine curve

superimposed on a conical shape. Also, since no experimental

data exists on shapes which were unsymet

r

ically heated in

terms of the P/ V for the various passes, the applicability

of these algorithms to this condition is untried and may not

be accurate. However, futher experimentation including that

which is on-going at the time of this writing should clarify

and better define the scope of applicability of these

routines

.

Most research, up to this time, has concentrated in

producing a process to laser bend metals without much atten-

tion on the mechanisms and consequences of the process. The

practicability of the process has been demonstrated. At some

point the physics of laser line heating should be thoroughly

investigated. This is of more than academic importance. For

example, current studies indicate that laser beam spot geome-

try has a significant effect on the magnitude of deflections.
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If this turns out to be true, P/ V, in itself, may no longer

be the best parameter to use to correlate deflection angles.

More research into the questions of power, thermal, and

stress distributions are recommended.

With the exception of the conical shape, all the complex

shapes formed up to now have been fabricated with beam passes

either parallel or perpendicular to the edges of the plate.

This may not be the most efficient pattern. Other patterns

to produce the same shape may reduce the warpage and

asymmetry found in the shapes already constructed. A dish

might be formed by a circular or spiralling beam pattern and

it conceivably could be more efficient and/or produce less

warpage. Therefore, research is recommended in studying

various patterns to produce a shape and in correlating the

total heat required to produce the shape as compared to the

patterns used in the experiments described in this paper.

Perhaps the most important of the recommendations is the

investigation of using the laser bending with closed loop

system to symetrize and dewarp a plate made with the laser.

It has been shown that almost any shape can be fabricated.

What has not been demonstrated up to now is if the same laser

system can economically produce those shapes to the same

tolerances required in many industries including ship

building. The use of the laser interferometer/video system

will be invaluable in accomplishing this.
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Appendix A

Photographs: Complex Curvature Study
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DISH SHAPE

PLATE SIZE 101b X lOin

PLATE THICKNESS t/9 Iseb

MATERIAL A-M MUd 8U«1

POWER INPUT %a KW

PLATE TRAVEL SPEED U Ipm

HEAT INPUT S1.S Ki/ln

BEAM DL^METER 1^ la (88.1 mm)

NUMBER OF PASSES SO (6 Io&Sm 8 iraxu., dUf-f « dl
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'/4" • I"

136





137





CONE SEGMENT

PLATE SIZE ISln X S4in

PLATE THICKISTESS 1/1 Inch

MATERIAL A-«a MUd Steel

POWER INPUT ».0 KW

PLATE TRAVEL SPEED • Ipm

HEAT INPUT »7.5 KJ/ln

BEAM DIAMETER 1 S/8 In (4^1 mm)

NUMBER OF PASSES 7 (topside only)
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SINE SHAPE

PLATE SIZE

PLATE THICKNESS

MATERIAL

POWER INPUT

PLATE TRAVEL SPEED

HEAT INPUT

BEAM DIAMETER

NUMBER OF PASSES

ISlo X ISln

1/S Inch

A-3e MUd St«el

e^KW

ISlpm

tl.S KJ/ln

1.S In (Sft.1 mm)

8 (4 uch tide)
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SINE SHAPE
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SADDLE SHAPE

PLATE SIZE 101b X lOin

PLATE THICKNESS 1/S inch

MATERIAL A-M MUd Steel

POWER ISFVT %a KW

PLATE TRAVEL SPEED IS 1pm

HEAT INPUT ai^ KJ/lB

BEAM DIAMETER l.S 1b (S&.1 mm)

NUMBER OF PASSES Zt (16 Ioq«. top, 16 tr&ni
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APPENDIX B

Application of the Algorithms/Predictions

for Future Experiments
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Ongoing research at the United Technologies Research

Center (UTRC) in Hartford, Connecticut by M.I.T. staff and

students is based on increasing the number of samples of

complex shapes and, using the algorithms within this paper,

to predict the deflections under given power parameters. En-

closed within Appendix B are the predictions for the

deflections (symmetrized and dewarped) of the shapes.

Furthermore, the research will determine if "fine tuning"

with a laser is practicable. That is, can the formed plates

be irradiated again to achieve the final desired deflections?

All plates within this appendix are assumed to be

18"x24"xl/2" and the pattern of laser passes are the same as

for those plates used to develop the algorithms. P/v^ and

the number of laser passes are varied to determine the

accuracy of the algorithm.

The beam spot of the CO2 laser at UTRC is annular vice

the "top hat" spot geometry of the laser at NRL. Beam

diameter was varied in accordance with optical power theory

to give approximately the same power density as that

delivered by the 6 kW laser at NRL. The accuracy of this

approach will be determined only after the analysis of the

samples

.
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I. DISH

A. Parameters

-P/vA^

-ef

-Number of Passes

B. Equations

tan(k) =

z (x,0) =

z(0,y) =

z (x,0) =

z(0,y) =

z (x,0) =

z(0,y) =

z (x,0) =

z(0,y) =

C. Results

1.708

0.417*'

10 diagonal

10 diagonal

10 longitudinal

10 transverse

tan[ (40) (.417) (22) 916)/ (2) (24) (18) ]

0.0179|x| |x| < 2.5"

0.0179|y|

0.0358 [xj

0.0358|y|

.1192|xl

.1192|y

.0894 |x

.0894|y

.4005

.3004

.1144

.0858

|y| <_2'

2.5" <

2" < |y

5" < |x

3.6" <

9.6" <

7.2" <

x| <. 5"

jL 3 . 6
"

j^ 9 . 6
"

y
I
<_1 .2"

x| <_12"

y| ± 9"

X Y z X Y Z X Y Z X Y Z

+/- + /- + /- +/- +/- +/- +/- + /-

3 .107 6 .415 9 .719
3 .107 3 3 .215 3 6 .522 3 9 .826
6 .315 6 3 .422 6 6 .730 6 9 1.03
9 .672 9 3 .779 9 6 1.09 9 9 1.39

12 .958 12 3 1.07 12 6 1.37 12 9 1.68
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II. DISH

A. Parameters

-Number of Passes

B. Equations

tan(k) = .3553

C.

z(x,0) =

z(0,y) =

z (x,0) =

z(0,y) =

z(x,0) =

z(y,0) =

z(x,0) =

z(0,y) =

Results

0.0533|x

0.0533|y

0.1066|x

0.1066|y

.3553|x|

.3553|y|

.2665|x

.2665|y

1.1938

.8954

.3411

.2558

2.5

1.2^^

Same as I

.

< 2.5"

|y| < 2"

2.5" < Ixl < 5"

2" < |y| 13.6"

5 " <
I

X
I

< 9 . 6
"

3.6" < |y| < 7.2"

9.6" < |x| < 12"

7.2" < |y| £ 9"

X Y z X Y Z X Y Z X Y Z

+/- + /- +/- +/- +/- +/- +/- +/-

3 .320 6 1.24 9 2.14
3 .320 3 3 .640 3 6 1.56 3 9 2.46
6 .940 6 3 1.26 6 6 2.18 6 9 3.08
9 2.0 9 3 2.32 9 6 3.24 9 9 4.14

12 2.86 12 3 3.18 12 6 4.09 12 9 5.0
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III. CONE

A. Parameters

-F/^/v

-Number of Passes

B. Equations

2(0, y) =

z(0,y) = -0.0140[y - 3]

z{0,y) = 0.0140[y + 3]

Y =

1.708

0.417

Same as Appendix A

-3" < y 1 3"

y > 3"

y < -3"

z(x,0) = .0201|x| |x| < 4"
*

z(x,0) = .0501[|x| - 2.4] 4" < |x| <_ 8"

z(x,0) = .1153|x| - .6416 8" < |x| <_ 12"

This equation applies for all y's (+/- or 0)

* *

* *
This equation applies for Y <_

Y <

z(x,0) = .08071x1 - .3649 8" < Ixl < 12"

Y >

z(x,0) = .07371x1 - .2145 4" < Ixl < 12"
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C. Results

X Y Z X Y Z

-6 -.042

3 .060 3 -6 .018

6 .180 6 -6 .138

9 .396 9 -6 .319

12 .742 12 -6 .561

3 9 -.084

3 3 .060 3 9 -.024

6 3 .228 6 9 .143

9 3 .456 9 9 .364

12 3 .670 12 9 .585

-3 -9 -.084

3 -3 .060 3 -9 -.024

6 -3 .180 6 -9 .096

9 -3 .361 9 -9 .277

12 -3 .603 12 -9 .519

6 -.042

3 6 .018

6 6 .186

9 6 .407

12 6 .628
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IV. CONE

A. Parameters

-p/sAT

-Number of Passes

2.5

1.2'

Same as Appendix A

B. Equations

z(0,y)=0 |y|<3"

z(0,y) = -0.0404[|y| - 1.8485] |y| > 3"

Y = £

z(x,0) = .0578|x

z(x,0) = 0.1444[ |x| - 2.4]

z(x,0) = .2325[ Ixl - 1.0513]

|x| < 4" *

4" < |x| < 8"

8 " <
I

X
I

< 12"

This equation applies for all y's (+/- or 0)

* *

* *
This equation applies for Y <_

Y <

z{x,0) = .2335[ Ixl - 1.0513] 8" < |x| < 12"

Y >

z(x,0) = .2123[ Ixl - .6181] 4" < Ixl < 12"
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C. Results
X Y Z X y Z

-6 -.121

3 .173 3 -6 .052

6 .520 6 -6 .399

9 1.14 9 -6 .920

12 2.14 12 -6 1.62

3 9 -.243

3 3 .173 3 9 -.070

6 3 .656 6 9 .413

9 3 1.29 9 9 1.05

12 3 1.93 12 9 1.69

-3 -9 -.243

3 -3 .173 3 -9 -.070

6 -3 .520 6 -9 .277

9 -3 1.04 9 -9 .798

12 -3 1.74 12 -9 1.50

6 -.121

3 6 .052

6 6 .535

9 6 1.17

12 6 1.81
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V. Sine

A. Parameters

-P/vAf 2.5

1.2'

-Number of Passes 8 Passes Each Side

B. Equations

tan(k) = tan[ (8) (1.2) (.815)/2] = 0.0684

z (x,0) = -0.2279X X < 4"

2 (x,0) = -.0684X - .6383 4" < X < 5.4"

z(x,0) = .0684X - 1.3885 5.4" < X 1.7.3"

z{x,0) = .19314X - 2.5108 7.3" < X < 12"

2 (x,0) = -2 (-x,0)

z(0,y) = -.05129|y yl ^4"

z(0,y) = -.0684|y| + .0570 4" < |y| < 9"
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C. Results
X Y Z X Y Z

6 -.353

3 -.684 3 6 -1.04

6 -.978 6 6 -1.33

9 -.773 9 6 -1.13

12 -.193 12 6 -.546

-3 .684 -3 6 .331

-6 .978 -6 6 .625

-9 .773 -9 6 .420

-12 .193 -12 6 -.160

3 -.154 9 -.558

3 3 -.838 3 9 -1.24

6 3 -1.13 6 9 -1.54

9 3 -.927 9 9 -1.33

12 3 -.347 12 9 -.751

-3 3 .530 -3 9 .126

-6 3 .824 -6 9 .420

-9 3 .619 -9 9 .215

-12 3 .039 -12 9 -.365
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VI. SINE

A. Parameters

-P//7

-Gf

-Number of Passes

1.708

0.417

Same as VI.

B. Equations

z(x,0) = -.0791X

z(x,0) = -.0237X - .7383

z(x,0) = .0237X - .4818

z (x,0) = .0670X - .8713

z (x,0) = -z (-x,y)

z(0,y) = -.0178|y

z(0,y) = -.0237

X < 4"

4" < X < 5.4"

5.4" < X < 7.3"

7.3" < X < 12"

|y| <_ 4"

4" < lyl < 9"
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C. Results

X Y Z X Y Z

6 -.123

3 -.237 3 6 -.360

6 -.339 6 6 -.462

9 -.268 9 6 -.391

12 -.067 12 6 -.190

-3 .237 -3 6 .114

-6 .339 -6 6 .216

-9 .268 -9 6 .145

-12 .067 -12 6 -.056

3 -.053 9 -.194

3 3 -.290 3 9 -.431

6 3 -.392 6 9 -.533

9 3 -.321 9 9 -.462

12 3 -.120 12 9 -.261

-3 3 .184 -3 9 .043

-6 3 .286 -6 9 .145

-9 3 .215 -9 9 .074

-12 3 .014 -12 9 -.127
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VII. SADDLE

A. Parameters

-P//V 1.708

-Sf 0.417

-Number of Passes 16 Top; 16 Bottom

B. Equations

tan(k) = tan[ (16) (.417) (.815)/2] = .0475

2(x,0) = .008 xl = 2.5"

z(0,y) = .013 y| = 2"

z (x,0) = .0158
I

X

2(0, y) = .0260

z(x,0) = .0475

z(0,y) = .0617

z(0,y) = .0867

- .1520

- .1286

- .3084

2.5" < Ixl < 5"

2" < |y| < 3.6"

5" < Ixl < 12"

3.6" < lyl < 7.2"

7.2" < |y| <^ 9"

where: z(x,0) ± 0; z(0,y) <^ 0.
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C. Results
X Y Z X Y Z

6 -.242

3 .048 3 6 -.194

6 .133 6 6 -.109

9 .275 9 6 .033

12 .420 12 6 .178

3 -.078 9 -.472

3 3 -.030 3 9 -.424

6 3 .055 6 9 -.339

9 3 .197 9 9 -.197

12 3 .342 12 9 -.052
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VIII. SADDLE

A. Parameters

-P/>/^ 2.5

-ef 1.2'

-Number of Passes Same as VI I

.

B. Equations

tan(k) = tan[ (16) (1.2) (.815)/2] = .1374

z(x,0) = .0229 X
I

= 2.5"

z(0,y) = .0376 yl = 2"

(x,0) = .0458ix

z(0,y) = .0753jy

z(x,0) = .1374|x

2(0, y) = . 17861 y

- .4397

- .3721

2.5" <
I
X

I
< 5

"

2" < |y| <_ 3.6"

5 " <
I
X

I
< 12"

3.6" <
I y I < 7.2"

z(0,y) = .2509[y| - .8923 7.2" < |y| <, 9"

where: z(x,0) >. 0; z(0,y) < 0.

164





VIII. SADDLE

A. Parameters

-P/,/V 2.5

-ef 1.2'

-Number of Passes Same as VII

B. Equations

tan(k) = tan[ (16) (1.2) (.815)/2] = .1374

z(x,0) = .0229 xl = 2.5"

z(0,y) = .0376 y = 2= -5"

z (x,0) = .0458
I

X

z(0,y) = .0753|y

z(x,0) = .1374|x

z(0,y) = .1786|y

2.5" < Ixl < 5"

- .4397

- .3721

2" < ly

5" < |x

3.6" <

z(0,y) = .2509|yl - .8923 7.2" < |y| 1 9"

< 3.6"

< 12"

y| < 7.2"

where: z(x,0) >. ; z(0,y) £0.
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C. Results

X Y Z X Y Z

6 -.700

3 .137 3 6 -.562

6 .385 6 6 -.315

9 .780 9 6 .080

12 1.21 12 6 .509

3 -.226 9 -1.37

3 3 -.088 3 9 -1.23

6 3 .159 6 9 -.981

9 3 .554 9 9 -.586

12 3 .983 12 9 -.157
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