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Single-crystal X-ray structures of dimeric quinoxaline
aldehyde (QA), quinoxaline dihydrazone (DHQ) and
HQNM (Goswami S et al. 2013 Tetrahedron Lett. 54,
5075–5077. (doi:10.1016/j.tetlet.2013.07.051); Goswami S
et al. 2014 RSC Adv. 4, 20 922–20 926. (doi:10.1039/C4RA
00594E); Goswami S et al. 2014 New J. Chem. 38, 6230–6235.
(doi:10.1039/C4NJ01498G)) are reported along with the
theoretical study. Among them, QA is not acting as an active
probe, but DHQ and HQNM are serving as selective and
sensitive probe for the Fe3+ cation and the Ni2+ cation,
respectively. DHQ can also detect the Fe3+ in commercial fruit
juices (grape and pomegranate).

1. Introduction
The design of a colorimetric cation sensor is important and useful
because the colorimetric sensing system would allow ‘naked-
eye’ detection of cations without the use of any spectroscopic
instrumentation, being simple and convenient for detection.
In particular, ratiometric sensors have the important feature
of permitting signal rationing, and increase the dynamic
range and provide built-in correction for the environmental
effect. Such colorimetric/ratiometric receptors would be more
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valuable if they can be obtained by a simple synthetic method. The important biological activities of
quinoxaline derivatives [1–7] include anti-cancer, [8] antimicrobial/anti-tubercular [9], anti-protozoal
[10], antiviral [11], inhibition of the enzyme phosphodiesterase [12] anti-inflammatory [13], anti-oxidant
[13], anti-tumour and anti-hyperglycaemic activity, etc. Quinoxaline derivatives are known for their
cancer chemopreventive effect [8]. Furthermore, the quinoxaline ring is a core structure of several drug
molecules and acceptors such as clofazimine, echinomycin and actinomycin [14–17]. Recently, we have
also reported some quinoxaline-based colorimetric and ratiometric sensors for specific detection of
nickel cations [18–20]. Nickel is a toxic metal and known to cause pneumonitis, asthma and cancer
of the lungs, and also disorders of the respiratory and the central nervous system [17,21–24]. Nickel
is an essential trace element in biological systems with relevance to the biosynthesis and metabolism
in certain microorganisms and plants. Nickel is used in various industries, e.g. in Ni–Cd batteries,
rods for arc welding, pigments for paints, ceramics, electroplating, dental and surgical prostheses, and
catalysts for hydrogenation, and as magnetic tapes of computers. On the other hand, iron is one of the
essential elements for fulfilling physiological function in the human body. Iron plays key roles in various
important biological processes at the cellular level, ranging from electron transfer, cellular metabolism,
energy generation, gene expression, neurotransmission, regulation of metalloenzymes, DNA synthesis
as well as differentiation [25,26]. In particular, its deficiency or overload can cause various disorders
and diseases such as anaemia and haemochromatosis. Thus, the development of the sensitive and
selective detection approaches of Fe3+ in biological systems is of great importance for investigating the
physiological and pathological functions of Fe3+ in living organisms. In this paper, we investigate the
behaviour of three quinoxaline-based derivatives where they act as an active sensor for metal cations
and also its real-world application in detection of iron in fruit juices.

2. Results and discussion
The design and synthesis of sensors for the detection of a selective metal ion in an aqueous or non-
aqueous medium is an active area of research today. Colorimetric sensors are important due to their
simplicity and lower capital cost compared with the other closely related methods. Accordingly, the
development of a novel colorimetric chemosensor for the rapid and convenient detection of Ni2+ and
Fe3+ is attractive. The binding behaviour of receptor (HQNM) [18] has already been established, hence,
in this article, we are discussing more about DHQ and its sensing behaviour with different cations.

The titration was carried out in CH3CN-HEPES buffer (9 : 1, v/v, pH = 7.4) at a 1 × 10−5 M
concentration of HQNM and DHQ upon addition of incremental amounts of 0–200 µl of nickel chloride
solution (2 × 10−4 M) and ferric chloride solution (2 × 10−4 M), respectively (schemes 1 and 2).

The UV-visible spectrum of the receptor HQNM [18] with Ni2+ is characterized by two bands
centred at 340 and 442 nm (figure 1). As shown in figure 1a, upon gradually increasing the nickel
ion concentration, the band at 340 nm gradually weakens and a new band appears at 442 nm with an
isosbestic point at 370 nm. The UV-visible spectrum of the DHQ and Fe3+ is shown in figure 1b; it was
also characterized by three bands centred at 239, 312 and 361 nm. Upon gradually increasing the iron
ion concentration, a gradual increase of each band in the UV-visible spectrum is seen. The UV-visible
spectrum of DHQ with commercial grape and pomegranate juices is also shown in figure 1c and 1d,
respectively. In figure 1c, upon gradually increasing the grape juice concentration (20 µl), the band at
275 nm gradually increases. Similarly in figure 1d, upon gradually increasing the pomegranate juice
concentration (20 µl), the band at 275 nm gradually increases. Thus the UV–vis absorption spectra of
Fe3+ in fruit juices could be detected and estimated [27–30] in an aqueous medium and in commercial
fruit juice. A control experiment without receptor and only CH3CN-HEPES buffer (9 : 1, v/v, pH = 7.4)
with fruit juices has been carried out without any significant enhancement of absorbance (electronic
supplementary material, figure S9a and S9b).

The selectivity for the ferric ion over the other cations is shown by plotting the UV–vis spectra
diagram of DHQ with different cations. In figure 2, the selectivity for Fe3+ is shown by the brown
spectrum. However, when titration of other cations such as Ni2+, Cu2+, Cd2+, Zn2+, Na+, K+, Mn2+,
Hg2+ was performed in similar experimental conditions, no significant change in the spectrum for most
of the cations was noted except for Co2+ and Fe2+, but the colour change for those metal cations is not
detectable with the naked eye.

From the experimental data, it can be concluded that the receptor DHQ possesses high selectivity
and sensitivity towards the iron (III) cation in acetonitrile–HEPES buffer (9 : 1, v/v, pH = 7.4) medium.
The other cations had no practical significant influence. The colour changes are most probably due to
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Scheme 1. Brief synthesis of the HQNM (1b) and DHQ (1c) from QA (1a).

Scheme 2. Chemical structures of (1a) QA (1b) HQNM (1c) Quinoxaline DHQ.
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Figure 1. (a) UV–vis absorption spectra of HQNM (1× 10−5 M) in CH3CN-HEPES buffer (9 : 1, v/v, pH= 7.4) upon titration with nickel
chloride (NiCl2.6H2O, 0.8 equivalent). The arrows show changes due to the increasing concentration of Ni2+. Inset: colour change due
to the addition of nickel chloride. (b) UV–vis absorption spectra of DHQ (1× 10−5 M) in CH3CN-HEPES buffer (9 : 1, v/v, pH= 7.4) upon
titration with ferric chloride (FeCl3.6H2O, 0.8 equivalent). The arrows show changes due to the increasing concentration of Fe3+. Inset:
colour change due to the addition of ferric chloride. (c) UV–vis absorption spectra of DHQ (1× 10−5 M) in CH3CN-HEPES buffer (9 : 1, v/v,
pH= 7.4) upon titration with commercial grape juice. The arrows show changes due to the increasing concentration of Fe3+. (d) UV–vis
absorption spectra of DHQ (1× 10−5 M) in CH3CN-HEPES buffer (9 : 1, v/v, pH= 7.4) upon titration with commercial pomegranate juice.
The arrows show changes due to the increasing concentration of Fe3+.
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Figure 2. The absorption spectra of DHQ (1× 10−5 M) and DHQ with all other cations (2× 10−4 M) in acetonitrile–HEPES buffer (9 : 1,
v/v, pH= 7.4).

Scheme 3. Synthesis of the receptor (HQAP) and HQNAP.

the formation of coordinate bonds of receptor DHQ on the addition of the ferric ion, which is shown in
figure 1b (inset).

To further explore the binding mechanism, Job’s plot of the UV–vis titrations of the Fe3+ ion with a
total volume of 2 ml was revealed. Maximum absorption was observed when the molar fraction reached
0.65, which is indicative of a 2 : 1 stoichiometric complexation between DHQ and the Fe3+ ion for
the newly formed species. The electrospray ionization (ESI) mass spectrum of a mixture of DHQ and
FeCl3.6H2O also revealed the formation of a 2 : 1 ligand–metal complex through the metal coordination
interaction, with a major signal at m/z = 679.0 (possibly for (2M + Fe)+ ions) (scheme 3).

The binding selectivity for HQNM (scheme 2 and figure 1a) is greatly influenced based on charge–
charge interactions, and the involvement of both N–H . . . Ni bonds, which are absent in the case of
quinoxaline aldehyde (QA) and DHQ, as they already exist as dimers, as seen from their crystal structure
(figure 2). In accordance with this discussion, for a similar type of compound acting as an active probe or
not, two more examples from our previous work are HQNAP (quinoline-2-ylmethyleneamine, scheme 2)
and HQAP1b(quinoxalin-2-ylmethyleneamine). In contrast to our previous receptor HQAP [18], HQNAP
does not serve as a good nickel sensor (electronic supplementary material, figure S8). Surprisingly, from
the complex crystal structure of HQAP, we cannot see any direct bond with the second quinoxaline
nitrogen to the nickel. However, from that fact we can say that there must be some effect of the second
quinoxaline nitrogen on the HQAP–Ni complex so that it will be formed, and of the quinoline moiety, so
that it will not form at all (scheme 4).



5

rsos.royalsocietypublishing.org
R.Soc.opensci.5:180149

................................................
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HQNM
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Scheme 4. Probable host–guest binding of HQNM and DHQ in the solution phase [18].

(b)(a) (c)

Figure 3. The molecular structures of (a) QA, (b) HQNM and (c) DHQ, showing 50% probability displacement ellipsoids for non-H atoms
and the atom-numbering scheme.

2.1. X-ray crystallography
The X-ray structure of QA has been reported with a CCDC number CCDC 978283. For QA,
the asymmetric unit consists of two molecules, with comparable geometries (figure 3a) which are
approximately planar (for the 12 non-H atoms). There are no significant hydrogen bonds observed in
the crystal structure, and molecules are stacked along the axis (electronic supplementary material, figure
S5) by way of weak aromatic π–π stacking interactions between the benzene rings in adjacent molecules.
The X-ray structure of HQNM has been reported with a CCDC number CCDC 1023223.

The compound HQNM (figure 3b) consists of a HQNM molecule and 1.5 water molecule in the
asymmetric unit, and exists in trans conformations related to the N3=C9 bond. One of the water
molecules lies in a mirror plane. The dihedral angle between the two benzene rings is 38.3 (4)°. In the
crystal, molecules are linked into two-dimensional planes (electronic supplementary material, figure
S6) lying parallel to (10-1) via intermolecular C—H ··· O hydrogen bonds (electronic supplementary
material, table S2). Adjacent planes are cross-linked via water molecules with further O–H ··· O, N–
H ··· O and C–H ··· O interactions into a three-dimensional network (electronic supplementary material,
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Figure 4. The structures of (a) Ni-QA (1a) and (b) Ni-HQNM (1b).
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Figure 5. Frontier molecular orbital (HOMO and LUMO) of structures (1a) QA, (1b) HQNM and (1c) Quinoxaline DHQwith ISO value cut-off
0.04.

figure S6c). The crystal packing is further consolidated by π–π stacking interactions between the two
symmetry-related benzene rings.

The asymmetric unit of DHQ (figure 3c) contains two crystallographically independent molecules,
both of which exist in trans, trans conformations related to the N3=C9 and N4=C10 bonds. The non-
H atoms of the monohydrazone quinoxaline moiety are nearly coplanar. The dihedral angle between
the two quinoxaline rings within each molecule is 9.22 (6)° and 2.45 (6)°, respectively. In the crystal
packing, adjacent molecules are linked via pairs of intermolecular C–H ··· N interactions, forming
R22(8) ring motifs and, together with other intermolecular C– ··· N interactions, assembled into chains
propagating in [100]. Molecules are also stacked by π–π interactions between the pyrazine/pyrazine and
benzene/benzene rings of adjacent sheets. The X-ray structure of DHQ has been reported with a CCDC
number CCDC 977221.

2.2. Theoretical calculations
As in figure 4, DFT calculations were carried out using the Gaussian 03 (Revision B.04) [31–33] package.
‘Gauss View’ is used for visualization of molecular orbital (electronic supplementary material). The
observation is that the compound QA (1a) does not bind with Ni2+. High dimerization stability of QA
(1a) hydrogen bond formation and by the perfect stacking interactions with no steric crowding is the
key reason for the formation of a highly stable stacked dimer. The calculated dimerization energy in
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1a with that obtained from DFT calculations can be understood from the proposed less stable hindered
chair forms of the nickel complex to the more open structure of the Ni–1a complex as shown above to be
obtained by calculation.

High dimerization stability of 1a by hydrogen bond formation and by the perfect stacking interactions
with no steric crowding is the key reason for the formation of a highly stable stacked dimer. The
calculated dimerization energy in the case of 1a is 3.5 and 8 kcal mol−1, respectively. The difference in
the proposed complex structure of 1b with that obtained from DFT calculations can be understood from
the proposed less stable hindered chair forms of the Ni2+ complex to the more open structure of the
Ni-1b complex as shown above to be obtained by calculation (figure 5).

3. Conclusion
In conclusion, herein we report a new crystal structure for dimeric QA, HQNM and quinoxaline
dihydrazone (DHQ). Among the three compounds, HQNM can selectively and successfully recognize
nickel and DHQ recognizes Fe3+ cation selectively over other interfering cations in acetonitrile–HEPES
buffer (9 : 1, v/v, pH = 7.4) solution, but QA cannot. The detection limits of Ni2+ and Fe3+ were found
to be 1.47 µM and 1.60 × 10−5 M, respectively, from the absorption spectral change, which is sufficiently
low and enables the detection of those cations in chemical and biological systems. The theoretical study
of the three crystals along with the HOMO–LUMO calculation has also been shown.
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