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PREFACE.

THE material contained in the following translation was given

in substance by Professor Hilbert as a course of lectures on

euclidean geometry at the University of Gottingen during the

winter semester of 1898-1899. The results of his investigation

were re-arranged and put into the form in which they appear here

as a memorial address published in connection with the celebra-

tion at the unveiling of the Gauss-Weber monument at Gottingen,

in June, 1899. In the French edition, which appeared soon after,

Professor Hilbert made some additions, particularly in the con-

cluding remarks, where he gave an account of the results of a re-

cent investigation made by Dr. Dehn. These additions have been

incorporated in the following translation.

As a basis for the analysis of our intuition of space, Professor

Hilbert commences his discussion by considering three systems of

things which he calls points, straight lines, and planes, and sets

up a system of axioms connecting these elements in their mutual

relations. The purpose of his investigations is to discuss syste-

matically the relations of these axioms to one another and also the

bearing of each upon the logical development of euclidean geom-

etry. Among the important results obtained, the following are

worthy of special mention

:

1. The mutual independence and also the compatibility of the

given system of axioms is fully discussed by the aid of various new

systems of geometry which are introduced.

2. The most important propositions of euclidean geometry are

demonstrated in such a manner as to show precisely what axioms

underlie and make possible the demonstration.

3. The axioms of congruence are introduced and made the

basis of the definition of geometric displacement.

4. The significance of several of the most important axioms

and theorems in the development of the euclidean geometry is

clearly shown; for example, it is shown that the whole of the
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euclidean geometry may be developed without the use of the axiom

of continuity ; the significance of Desargues's theorem, as a con-

dition that a given plane geometry may be regarded as a part of a

geometry of space, is made apparent, etc.

5. A variety of algebras of segments are introduced in accord-

ance with the laws of arithmetic.

This development and discussion of the foundation principles

of geometry is not only of mathematical but of pedagogical im-

portance. Hoping that through an English edition these impor-

tant results of Professor Hilbert's investigation may be made more

accessible to English speaking students and teachers of geometry,

I have undertaken, with his permission, this translation. In its

preparation, I have had the assistance of many valuable sugges-

tions from Professor Osgood of Harvard, Professor Moore of Chi-

cago, and Professor Halsted of Texas. I am also under obliga-

tions to Mr. Henry Coar and Mr. Arthur Bell for reading the

proof.

e. j. townsend
University of Illinois.
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"All human knowledge begins with in-

tuitions, thence passes to concepts and

ends with ideas."

Kant, Kritik der reinen Vernun/t,

Elementarlehre, Part 2, Sec. 2.

INTRODUCTION.

GEOMETRY, like arithmetic, requires for its log-

ical development only a small number of simple,

fundamental principles. These fundamental princi-

ples are called the axioms of geometry. The choice

A the axioms and the investigation of their relations

j one another is a problem which, since the time of

Euclid, has been discussed in numerous excellent

lemoirs to be found in the mathematical literature.*

This problem is tantamount to the logical analysis of

ur intuition of space.

The following investigation is a new attempt to

choose for geometry a simple and complete set of inde-

pendent axioms and to deduce from these the most im-

portant geometrical theorems in such a manner as to

bring out as clearly as possible the significance of the

different groups of axioms and the scope of the con-

clusions to be derived from the individual axioms.

Compare the comprehensive and explanatory report of G. Veronese,

Grundzuge der Geometrie, German translation by A. Schepp, Leipzig, 1894

(Appendix). See also F. Klein, "Zur ersten Verteilung des Lobatschefskiy-

Preises," Math. Ann., Vol. 50.





THE FIVE GROUPS OF AXIOMS.

§ i. THE ELEMENTS OF GEOMETRY AND THE FIVE

GROUPS OF AXIOMS.

LET us consider three distinct systems of things.

j The things composing the first system, we will

call points and designate them by the letters A, B,

C, . . . .; those of the second, we will call straight

lines and designate them by the letters a, b, c, . . . .
;

and those of the third system, we will call planes and

designate them by the Greek letters a, ft, y, ... .

The points are called the elements of linear geometry

;

the points and straight lines, the elements ofplane ge-

ometry ; and the points, lines, and planes, the elements

of the geometry of space or the elements of space.

We think of these points, straight lines, and planes

as having certain mutual relations, which we indicate

by means of such words as "are situated," "be-

tween," "parallel," "congruent," "continuous," etc.

The complete and exact description of these relations

follows as a consequence of the axioms of geometry.

These axioms may be arranged in five groups. Each

of these groups expresses, by itself, certain related

fundamental facts of our intuition. We will name

these groups as follows

:

I, 1-7. Axioms of connection.

II, 1-5. Axioms of order.

III. Axiom of parallels (Euclid's axiom).
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IV, 1-6. Axioms of congruence.

V. Axiom of continuity (Archimedes's axiom).

§ 2. GROUP I. AXIOMS OF CONNECTION.

The axioms of this group establish a connection
between the concepts indicated above ; namely, points,

straight lines, and planes. These axioms are as fol-

lows :

I, 1. Two distinct points A and B always completely

I
determine a straight line a. We write AB= a

or BA= a.

Instead of "determine," we may also employ other
forms of expression; for example, we may say A
"lies upon " a, A " is a point of " a, a '

< goes through "

A "and through" B, a "joins" A "and" or "with"
B, etc. If A lies upon a and at the same time upon
another straight line b, we make use also of the ex-

pression : "The straight lines" a "and" b "have the

point A in common," etc.

I, 2. Any two distinct points of a straight line com-

pletely determine that line; that is, ifAB'= a and
AC=a, where B =}= C, then is also BC=a.

I, 3. Three points A, B, C not situated in the same
straight line always completely determine a plane

a. We write ABC=a.

We employ also the expressions: A, B, C, "lie

in" a; A t
B, C "are points of" a, etc.

I, 4. Any three points A, B, C of a plane a, which
do not lie in the same straight line, completely de-

termine that plane.

I, 5. If two points A, B of a straight line a lie in

a plane a, then every point of a lies in a.
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In this case we say: "The straight line a lies in

the plane a," etc.

I, 6. If two planes a, ft have a point A in common,

then they have at least a second point B in common.

I, 7. Upon every straight line there exist at least two

points, in every plane at least three points not

lying in the same straight line, and in space there

exist at least four points not lying in a plane.

Axioms 1, 1-2 contain statements concerning points

and straight lines only ; that is, concerning the ele-

ments of plane geometry. We will call them, there-

fore, the plane axioms of group I, in order to distin-

guish them from the axioms* I, 3-7, which we will

designate briefly as the space axioms of this group.

Of the theorems which follow from the axioms

I, 3-7, we shall mention only the following

:

Theorem 1. Two straight lines of a plane have

either one point or no point in common ; two

planes have no point in common or a straight

line in common ; a plane and a straight line

not lying in it h|ave no point or one point in

common.

Theorem 2. Through a straight line and a point

not lying in it, or through two distinct straight

lines having a common point, one and only one

plane may be made to pass.

§ 3. GROUP II. AXIOMS OF ORDER.*

'The axioms of this group define the idea expressed

by the word "between," and make possible, upon the

x mPASch
These axioms were first studied in detail by W. Pasch in his Vorlesungen

Wbm- timers Ge&meirte^ Leipsic, 1882, Axiom II, 5 is in particular due to htm.
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basis of this idea, an order of sequence of the points

upon a straight line, in a plane, and in space. The
points of a straight line have a certain relation to one

another which the word " between" serves to describe.

The axioms of this group are as follows :

II, 1. If A, B, C are points of a straight line and

B lies between A and C, then, B lies also between

C and A.

Fig. i.

II, 2. If A and C are two points of a straight line,

then there exists at least one point B lying between

A and C and at least one point D so situated that

C lies between A and I).

Fig. 2.

II, 3. Of any three points situated on a straight line,

there is always one and only one which lies between

the other two.

II, 4. Any four points A, B, C, D of a straight line

/ can always be so arranged that B shall lie between

A and C and also between A and D, and, further-

more, so that C shall lie between A and D and

also between B and D. '

Definition. We will call the system of two points

A and B, lying upon a straight line, a segment and

denote it by AB or BA. The points lying between A
and B are called the points of the segment AB or the

points lying within the segment AB, All other points,./

are referred tofthe points lying without the segment AB.
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The points A and B are called the extremities of the

segment AB.

II, 5. Let A, B, C be three points not lying in the

same straight line and

let a be a straight

line lying in the plane

ABC and notpassing

through any of the

points A, B, C. Then,

if the straight line a

passes through a point

of the segment AB, it

will also pass through .

FlR ' 3 '

either a point of the segment BC or a point of the

segment A C.

- Axioms II, 1-4 contain statements concerning the

points of a straight line only, and, hence, we will call

them the linear axioms of group II. Axiom II, 5 re-

lates to the elements of plane geometry and, conse-

quently, shall be called the plane axiom ofgroup II.

§4. CONSEQUENCES OF THE AXIOMS OF CONNEC-
TION AND ORDER.

By the aid of the four linear axioms II, 1-4, we
can easily deduce the following theorems :

fe

Theorem 3. Between any two points of a straight

line, there always exists an unlimited number of

points.

Theorem 4. If we have given any finite number
of points situated upon a straight line, we can

always arrange them in a sequence A, B, C,

D, E, . . . ., iT so that B shall lie between A
and C, Df E, . . * . , K\ C between A, i?.and D,
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E, . . .
.

, K\ D between A, B, C and E, . . . .K,

etc. Aside from this order of sequence, there

exists but one other possessing this property

namely, the reverse order K, . . .
.

, E, D, C
B, A.

A B C D E K
1 ( 1 1

1
•

Fig. 4-

Theorem 5. Every straight line a, which lies in

a plane a, divides the remaining points of this

plane into two regions having the following

properties : Every point A of the one region de-

termines with each point B of the other region

a segment AB containing a point of the straight

line a. On the other hand, any two points A,

A* of the same region determine a segment

AA' containing no point of a.

Fig. 5.

If A> A\ O f B are four points of a straight line af

where lies between A and B but not between A and

Fig. 6.

A\ then we may say : The points A, A f

are situated

on the line a upon one and the same side of the point %
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and the points A, B are situated on the straight line a

upon different sides of the point 0. All of the points of

a which lie upon the same side of 0, when taken

together, are called the half ray emanating from 0.

Hence, each point of a straight line divides it into

two half-rays.

Making use of the notation of theorem 5, we say

:

The points A, A' lie in the plane a upon one and the

same side of the straight line a, and the points A, B lie

in the plane a upon different sides of the straight line a.

Definitions. A system of segments AB> BC,

CD, . . .
.

, KL is called a broken line joining A with L
and is designated, briefly, as the broken line ABCDB

KL. The points lying within the segments AB9

BC, CD, , KL, as also the points A, B, C, D,

. . .
.

, K> L, are called the points of the broken line. In

particular, if the point A coincides with Z, the broken

line is called a polygon and is designated as the polygon

ABCD....K. The segments AB, BC, CD,...., KA
are called the sides of the polygon and the points A, B,

C, D, . . .
.

, K the vertices. Polygons having 3, 4,

5, ...., n vertices are called, respectively, triangles,

quadrangles, pentagons, . . .
.

, n-gons. If the vertices of

a polygon are all distinct and none of them lie within

the segments composing the sides of the polygon,

and, furthermore, if no two sides have a point in com- 1

mon, then the polygon is called a simple polygon.

With the aid of theorem 5, we may now obtain,

without serious difficulty, the following theorems:

Theorem 6. Every simple polygon, whose ver-

tices all lie in a plane a, divides the points of

this plane, not belonging to the broken line

constituting the sides of the polygon, into two
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regions, an interior and an exterior, having the

following properties : If A is a point of the in-

terior region (interior point) and B 3. point of

the exterior region (exterior point), then any
broken line joining A and B must have at least

one point in common with the polygon. If, on
the other hand, A, A f

are two points of the in-

Fig. 7.

terior and B
} B' two points of the exterior re-

gion, then there are always broken lines to be
found joining A with A' and B with B' without
having a point in common with the polygon.
There exist straight lines in the plane a which
lie entirely outside of the given polygon, but
there are none which lie entirely within it.

Theorem 7. Every plane a divides the remain-
ing points of space into two regions having the
following properties : Every point A of the one
region determines with each point B of the
other region a segment AB, within which lies
a point of a. Any two points A, A' lying within
the same region determine a segment AA 9

con-
taining no point of a.
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Making use of the notation of theorem 7, we may
now say : The points A, A' are situated in space upon

one and the same side of the plane a, and the points A, B
are situated in space upon different sides of the plane a.

Theorem 7 gives us the most important facts re-

lating to the order of sequence of the elements of

space. These facts are the results, exclusively, of the

axioms already considered, and, hence, no new space

axioms are required in group II.

§ 5. GROUP III. AXTOM OF PARALLELS. (EUCLID'S
AXIOM.)

The introduction of this axiom simplifies greatly

the fundamental principles of geometry and facilitates

in no small degree its development. This axiom may
be expressed as follows :

IIL 7/7 a plane a there can be drawn through any

point A, lying outside of a straight line a, one and
only one straight line which does not intersect the

line a. This straight line is called the parallel to

a through the given point A.

This statement of the axiom of parallels contains

two assertions. The first of these is that, in the plane

a, there is always a straight line passing through A
which does not intersect the given line a. The second

states that only one such line is possible. The latter

of these statements is the essential one, and it may
also be expressed as follows

:

Theorem 8. If two straight lines a, b^oi a plane

do not meet a third straight line c of the same
plane, then they do not meet each other.

For, if a, b had a point A in common, there would
then exist in the same plane with c two straight lines
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a and b each passing through the point A and not

meeting the straight line c. This condition of affairs

is, however, contradictory to the second assertion con-

tained in the axiom of parallels as originally stated.

Conversely, the second part of the axiom of parallels,

in its original form, follows as a consequence of the-

orem 8.

The axiom of parallels is a plane axiom.

§ 6. GROUP IV. AXIOMS OF CONGRUENCE.

The axioms of this group define the idea of con-

gruence or displacement.

Segments stand in a certain relation to one an-

other which is described by the word "congruent."

IV, 1. If A, B are two points on a straight line a,

and if A' is a point upon the same or another

straight line a\ then, upon a given side ofA' *&m/
the straight line a\ we can always find one and
only one point B' so that the segment AB (or BA)
is congruent to the segment A'B\ We indicate

this relation by writing

AB=A'B\
Every segment is congruent to itself; that is$ we
always have

ABe^AB. '
,

We can state the above axiom briefly by saying
that every segment can be laid of upon a given side
of a given point of a given straight line in one and
and only one way.

IV, 2. If a segment AB is congruent to the segment
A'F and also to the segment A"B"

9 then the seg-

ment A'B' is congruent to the segment A"B"; that
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is, if ABeeeA'B' and AB^=A"B", then A'B'=
A"B".

IV, 3. Let AB andBC be two segments ofa straight

line a which have no points in common asidefrom
the point B, and, furthermore

y
let A'B' and B' C'

be two segments of the same or of another straight

line a! having, likewise^ no point other than Bf

in

Fig. 8.

common. Then, if AB^A'B' and BCzzB'C,
we have AC^nA'C.

Definitions. Let a be any arbitrary plane and h,

k any two distinct half-rays lying in a and emanating

from the point O so as to form a part of two different

straight lines. We call the system formed by these

two half-rays h, k an angle and represent it by the

symbol / (h, k) or / (k, h). From axioms II, 1-5, it

follows readily that the half-rays h and ky
taken to-

gether with the point O, divide the remaining points

of the plane a into two regions having the following

property : If A is a point of one region and B a point

of the other, then every broken line joining A and B
either passes through O or has a point in common
with one of the half-rays h, k. If, however, A, A*
both lie within the same region, then it is always pos-

sible to join these two points by a broken line which

neither passes through O nor has a point in common
with either of the half- rays h, £. One of these two

regions is distinguished from the other in that the seg-
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ment joining any two points of this region lies entirely

within the region. The region so characterised is

called the interior of the angle {h, fc) . To distinguish

the other region from this, we call it the exterior of

the angle {h, k). The half rays // and k are called the

sides of the angle, and the point O is called the vertex

of the angle,

IV, 4. Let an angle (Ji, k) be given in the plane

a and let a straight line a! be given in a plane a.

Suppose also that, in the plane a, a definite side

of the straighlTa? be assigned. Denote by h' a

halfray of the straight line a' emanating from a

^ point O' of this line. Then in the plane a there

is one and only one halfray k
f

such that the angle

{h, k), or {k, K), is congruent to the angle (h' 9
&')

# and at the same time all interior points of the angle

(//, £') lie upon the given side of a'. We express

\ "* this relation by means of the notation

L(Jh k)= /_(h', k').

Every angle is congruent to itself; that is,

L(h, h)— £(h, k)

or

A(h, k)=/_(k, h).

We say, briefly, that every angle in a given plane

can be laid off upon a given side of a given half-rif In

one and only one way.

IV, 5. If the angle (h, k) is congruent to the angle

(h
f

, £') and to the angle (h", k"), then the amgh
{H', k') is congruent to the angle (K* , M'); tkm$ $$

to say, if l(h, k)=l(h% k') and /(*,*)*£
/_{h", k"), then l(ti 9

k')= l(h", *").

Suppose we have given a triangle ABC. EtoftOtai
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by hy k the two half-rays emanating from A. and pass-

ing respectively through B and C. The angle (//, k)

is then said to be the angle included by the sides AB
and AC, or the one opposite to the side BC in the

triangle ABC. It contains all of the interior points

of the triangle ABC and is represented by the symbol

IBAC, or by I A.

/* IV, 6. If, in the two triangles ABC and A'B' C,
I *the congruences

ABehA'B', AC—A'C'j £BAC^-£B'A'C*

hold, then the congruences

<$/*C*c jLABC=/_A'B'C and £ACB~^ /_A' C'tf

also hold.

^ Axioms IV, 1-3 contain statements concerning the

congruence of segments of a straight line only. They
may, therefore, be called the linear axioms of group

IV. Axioms IV, 4, 5 contain statements relating to

the congruence of angles. Axiom IV, 6 gives the con-

nection between the congruence of segments and the

congruence of angles. Axioms IV, #~6 contain state-

ments regarding the elements of plane geometry and
may be called the plane axioms of group IV.

§ 7. CONSEQUENCES OF THE AXIOMS OF CON-
GRUENCE:

Suppose the segment AB is congruent to the seg-

ment A'B\ Since, according to axiom IV, 1, the seg-

ment AB is congruent to itself, it follows from axiom
IV, 2 that A'Bf

is congruent to AB ; that is to say, if

AB~A'B% then A'B'=AB. We say, then, that the

two segments are congruent to one another.
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Let A,B, C,D, , K, L and A\ Bf

, C\ D\ ,

K'
y
Z' be two series of points on the straight lines a

and a' , respectively, so that all the corresponding seg-

ments AB and A'B', AC and A'C, BC and B'C, ,

KL and K'L' are respectively congruent, then the two

series of points are said to be congruent to one another.

A and A', B and B',

.

. .
.

, L and Z' are called corre-

sponding points of the two congruent series of points.

From the linear axioms IV, 1-3, we can easily de-

duce the following theorems :

Theorem 9. If the first of two congruent series

of points A, B, C, D, . . .
.

, K, L and A', B',

C\ D\ . . . ., K\ Z' is so arranged that B lies

between A and C, D, . . .
.

, K, L, and C between

A, B and D, . . .
.

, K, Z, etc. , then the points A',

B\ C\ D', . . .
. , K\ L' of the second series are

arranged in a similar way; that is to say, B'

lies between A f and C, D'

,

. . .
.

, K\ Z', and C
lies between A\ 'B' and D',

. . . ., K\ Z', etc.

Let the angle (//, k) be congruent to the angle

(h', k'). Since, according to axiom IV, 4, the angle

(//, k) is congruent to itself, it follows from axiom IV,

5 that the angle {h'
9 //) is congruent to the angle

(h, k). We say, then, that the angles (h, k) and (h\ k')

are congruent to one another.

Definitions. Two angles having the same vertex

and one side in common, while the sides not common
form a straight line, are called supplementary angles.

Two angles having a common vertex and whose sides

form straight lines are called vertical angles. An angle

which is congruent to its supplementary angle is called

a right angle.

Two triangles ABC and A'B'C are said to be con-
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gruent to one another when all of the following con-

gruences are fulfilled :

AB-A'B', AC— A'C, BC— ffC\

LA=LA\ £B= /_B', LC= LC\

Theorem 10. (First theorem of congruence for

triangles). If, for the two triangles ABC and

A'B'C', the congruences

AB=A'B' y
AC=A'C, LAzhlLA'

hold, then the two triangles are congruent to

each other.

Proof. From axiom IV, 6, it follows that the

two congruences

1%=£B' and lC-zelLC

are fulfilled, and it is, therefore, sufficient to show that

the two sides BC and B'C are congruent. We will

assume the contrary to be true, namely, that ^Cand

B'C are not congruent, and show that this leads to a

contradiction. We take upon B'C a point V so that

BC=B'D'. The two triangles ABC and A'B'V have,

then, two sides and the included angle of the one

agreeing, respectively, to two sides and the included

angle of the other. It follows from axiom IV, 6 that

the two angles BAC and B'A'D' are also congruent to

each other. Consequently, by aid of axiom IV, 5,

the two angles BA'C and BAD must be congruent.
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This, however, is impossible, since, by axiom IV, 4,

an angle can be laid off in one and only one way on a

given side of a given half-ray of a plane. From this

contradiction the theorem follows.

We can also easily demonstrate the following the-

orem :

v

Theorem 11. (Second theorem of congruence

for triangles). If in any two triangles one side

and the two adjacent angles are respectively

congruent, the triangles are congruent.

We are now in a position to demonstrate the fol-

lowing important proposition.

Theorem 12. If two angles ABC and A'B'C are

congruent to each other, their supplementary

angles CBD and C'B'D' are also congruent.

Fig. io.

Proof. Take the points A f

, C, D' upon the sides

passing through B' in such a way that

A'B'=AB, C'B'-CB, DB'^iDB.

Then, in the two triangles ABC and A'B'C, the sides

AB and BC are respectively congruent to A'B f and

C'B*. Moreover, since the angles included by these

sides are congruent to each other by hypothesis, it

follows from theorem 10 that these triangles are con-

gruent; that is to say, we have the congruences

ACz=A'C, £BAC=£B'A'C.
On the other hand, since by axiom IV, 3 the segments
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AD and A'D' are congruent to each other, it follows

again from theorem 10 that the triangles CAD and

C'A'D' are congruent, and, consequently, we have the

congruences

:

CD^dCD', LADC=LA'iyC\
From these congruences and the consideration of the

triangles BCD and B'C'D', it follows by virtue of

axiom IV, 6 that the angles CBD and C'B'D' are con-

gruent.

As an immediate consequence of theorem 12, we
have a similar theorem concerning the congruence of

vertical angles.

Theorem 13. Let the angle {A, k) of the plane a

be congruent to the angle (/*', k') of the plane

a , and, furthermore, let / be a half-ray in the

plane a emanating from the vertex of the angle

(A, k) and tying within this angle. Then, there

always exists in the plane a! a half-ray /' em-

anating from the vertex of the angle (/*', k') and

lying within this angle so that we have

Fig. 11.

Proof. We will represent the vertices of the an-

gles (A, k) and (A\ k') by O and O', respectively, and

so select upon the sides A, k, A', k' the points A, B,

A', B' that the congruences

OA=OA\ OB^Q'B'
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are fulfilled. Because of the congruence of the tri-

angles OAB and O'A'B', we have at once

ABzelA'B1

, 10AB^/_0'A'B', LOBA=LO'B'A\
Let the straight line AB intersect /in C. Take the

point C upon the segment A'B' so that A'C'= AC.
Then, O'C is the required half-ray. In fact, it fol-

lows directly from these congruences, by aid of axiom
IV, 3, that BCie^B'C'. Furthermore, the triangles

OAC and O'A'C are congruent to each other, and the

same is true also of the triangles OBC and O'B'C.
With this our proposition is demonstrated.

In a similar manner, we obtain the following prop-

osition.

Theorem 14. Let h, k, /and //, k% /' be two sets

of three half-rays, where those of each set em-
anate from the same point and lie in the same
plane. Then, if the congruences

Z (4 /) ^Z (/A /'), z (*, /) =z 0*\ /')

are fulfilled, the following congruence is also

valid ; viz. :

By aid of theorems 12 and 13, it is possible to de-
duce the following simple theorem, which Euclid held
—although it seems to me wrongly—to be an axiom.

Theorem 15. All right angles are congruent to

one another.

Proof. Let the angle BAD be congruent to its

supplementary angle CAD, and, likewise, let the angle
B'A'D' be congruent to its supplementary angle
CA'D\ Hence the angles BAD, CAD, B'A'B, and
C'A'D' are all right angles. We will assume that the
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contrary of our proposition is true, namely, that the

right angle B'A'JD' is not congruent to the right angle

BAD, and will show that this assumption leads to a

contradiction. We lay off the angle B'A'JD' upon the

half-ray AB in such a manner that the side AD" aris-

ing from this operation falls either within the angle
BAD or within the angle CAD. Suppose, for ex-

ample, the first of these possibilities to be true. Be-
cause of the congruence of the angles B'A'D' and
BAD", it follows from theorem 12 that angle C'A'D'
is congruent to angle CAD", and, as the angles B'A'D'
and C'A'D' are congruent to each other, then, by
IV, 5, the angle BAD" must be congruent to CAD".

*» D

Fig. 12.

Furthermore, since the angle BAD is congruent to the

angle CAD, it is possible, by theorem 13, to find within

the angle CAD a half-ray AD'" emanating from A, so

that the angle BAD" will be congruent to the angle

CAD'", and also the angle DAD" will be congruent

to the angle DAD"'. The angle BAD" was shown
to be congruent to the angle CAD" and, hence, by
axiom IV, 5, the angle CAD", is congruent to the

angle CAD'". This, however, is not possible; for,

according to axiom IV, 4, an angle can be laid off in

a plane upon a given side of a given half-ray in only

one way. With this our proposition is demonstrated.
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We. can now introduce, in accordance with com-

mon usage, the terms "acute angle
1

' and "obtuse an-

gle."

The theorem relating to the congruence of the

base angles A and B of an equilateral triangle ABC
follows immediately by the application of axiom IV,

6 to the triangles ABC and BAC By aid of this the-

orem, in addition to theorem 14, we can easily dem-

onstrate the following proposition.

Theorem 16. (Third theorem of congruence for

triangles.) If two triangles have the three sides

of one congruent respectively to the correspond-

ing sides of the other, the triangles are con-

gruent.

Any finite number of points is called a. figure. If

all of the points lie in a plane, the figure is called a

plane figure.

Two figures are said to be congruent if their points

can be arranged in a one-to-one correspondence so

that the corresponding segments and the correspond-

ing angles of the two figures are in every case con-

gruent to each other.

Congruent figures have, as may be seen from theo-

rems 9 and 12, the following properties : Three points

of a figure lying in a straight line are likewise in a

straight line in every figure congruent to it. In con-

gruent figures, the arrangement of the points in corre-

sponding planes with respect to corresponding lines

is always the same. The same is true of the sequence

of corresponding points situated on corresponding

lines.

The most general theorems relating to congruences

in a plane and in space may be expressed as follows

:
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Theorem 17. If (A, B, C,

.

. . .) and (A', B\ C,

. . .
.
) are congruent plane figures and P is a

point in the plane of the first, then it is always

possible to find a point P in the plane of the

second figure so that {A, B }
C,....P) and (A',

B', C, P') shall likewise be congruent fig-

ures. If the two figures have at least three

points not lying in a straight line, then the se-

lection of P' can be made in only one way.

Theorem 18. If (A, B, C, . . . .) and {A\ B', C,

.. ..) are congruent figures and P represents

any arbitrary point, then there can always be

found a point P' so that the two figures {A,

B, C,....,P) and (A\ B\ C',....P') shall

likewise be congruent. If the figure {A, B, C,

P) contains at least four points not lying

in the same plane, then the determination of

P* can be made in but one way.

This theorem contains an important result; namely,

that all the facts concerning space which have ref-

erence to congruence, that is to say, to displacements

in space, are (by the addition of the axioms of groups

I and II) exclusively the consequences of the six

linear and plane axioms mentioned above. Hence, it

is not necessary to assume the axiom of parallels in

order to establish these facts.

If we take, in addition to the axioms of congru-

ence, the axiom Zi parallels, %e can then easily estab-

lish the following propositions

:

Theorem 19. If two parallel lines are cut by a

third straight line, the alternate-interior angles

and also the exterior-interior angles are con-



24 THE FOUNDATIONS OF GEOMETRY.

gruent. Conversely, if the alternate-interior or

the exterior-interior angles are congruent, the

given lines are parallel.

Theorem 20. The sum of the angles of a triangle

is two right angles.

Definitions. If M is an arbitrary point in the

plane a, the totality of all points A, for which the seg-

ments MA are congruent to one another, is called a

circle. M is called the centre of the circle.

From this definition can be easily deduced, with

the help of the axioms of groups III and IV, atts^f the

known properties of the circle ; in particular, the pos-

sibility of constructing a circle through any three

points not lying in a straight line, as also the congru-

ence of all angles inscribed in the same segment of

a circle, and the theorem relating to the angles of an

inscribed quadrilateral.

§ 8. GROUP V. AXIOM OF CONTINUITY. (ARCHI-
MEDES'S AXIOM.)

This axiom makes possible the introduction into

geometry of the idea of continuity. In order to state

this axiom, we must first establish a convention con-

cerning the equality of two segments. For this pur-

pose, we can either base our idea of equality upon the

axioms relating to the congruence of segments and
define as "equal" the <4«tfgtipMtf^£ congruent seg-

ments, or upon the basis of groups I and II, we may
determine how, by suitable constructions (see Chap.
V, § 24), a segment is to be laid off from a point of a

given straight line so that a new, definite segment is

obtained "equal" to it. In conformity with such a
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convention, the axiom of Archimedes may be stated

as follows

:

V. Let A
x
be any point upon a straight line between

the arbitrarily chosen points A and B. Take the

points A
2 , Av Av .... so that A

x
lies between A

and A
2 , A2

between A
x
and A z , A3

between A2
and

Av etc. Moreover, let the segments

AA lt A l
A

2 > A 2A S>
A

3AV ....

be equal to one another. Then, among this series

of points, there always exists a certain point An

such that B lies between A and An .

The axiom of Archimedes is a linear axiom.

Remark.* To the preceeding five groups of ax-

ioms, we may add the following one, which, although

• not .of a purely geometrical nature, merits particular

attention from a theoretical point of view. It may be

expressed in the following form

:

Axiom of Completeness. f (Vollstandigkeit): To a

system of points, straight lines, and planes, it is

impossible to add other elements in such a manner

that the system thus generalized shallform a new

geometry obeying all of the five groups of axioms.

In other words, the elements of geometry form a

system which is not susceptible of extension, if we

regard the five groups of axioms as valid. s

This axiom gives us nothing directly concerning

the existence of limiting points, or of the idea of con-

vergence. Nevertheless, it enables us to demonstrate

Bolzano's theorem by virtue of which, for all sets of

•Added by Professor Hilbert in the French translation.— 7V.

t See Hilbert, *' Ueber den Zahlenbegriff," Berichte der deutschen Mathe-

Htatiker-Vtrtinigungt 1900.
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points situated upon a straight line between two defi-

nite points of the same line, there exists necessarily

a point of condensation, that is to say, a limiting point.

From a theoretical point of view, the value of this

axiom is that it leads indirectly to the introduction

of limiting points, and, hence, renders it possible to

establish a one-to-one correspondence between the

points of a segment and the system of real numbers.
However, in what is to follow, no use will be made of

the " axiom of completeness."



COMPATIBILITY AND MUTUAL IN-

DEPENDENCE OF THE AXIOMS.

§ 9. COMPATIBILITY OF THE AXIOMS.

THE axioms, which we have discussed in the pre-

vious chapter and have divided into five groups,

are not contradictory to one another; that is to say,

it is not possible to deduce from these axioms, by any

logical process of reasoning, a proposition which is

contradictory to any of them. To demonstrate this,

it is sufficient to produce a geometry where all of the

five groups are fulfilled.

To this end, let us consider a domain O consisting

of all of those algebraic numbers which may be ob-

tained by beginning with the number one and apply-

ing to it a finite number of times the four arithmet-

ical operations (addition, subtraction, multiplication,

and division) and the irrational operation l/l + w2
,

where co represents a number arising from the five

operations already given.

Let us regard a pair of numbers (x, y) of the do-

main O as defining a point and the ratio of three such

numbers {u : v : w) of O, where u, v are not both equal

to zero, as defining a straight line. Furthermore, let

the existence of the equation

ux -f- vy -f- w=
express the condition that the point (x, y) lies on the
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straight line (u : v : wj. Then, as one readily sees,

axioms I, 1-2 and III are fulfilled. The numbers of

the domain O are all real numbers. If now we take

into consideration the fact that these numbers may be

arranged according to magnitude, we can easily make

such necessary conventions concerning our points and

straight lines as will also make the axioms of order

(group II) hold. In fact, if (xv yx), (x
2 , j2), (x

z , y3),

.... are any points whatever of a straight line, then

this may be taken as their sequence on this straight

line, providing the numbers xv x
2 , x.

d ,
...., or the

numbers yv y2 > y3 , • • • • > either all increase or decrease

in the order of sequence given here. In order that

axiom II, 5 shall be fulfilled, we have merely to as-

sume that all points corresponding to values of x and

y which make ux-\-vy-\-w less than zero or greater

than zero shall fall respectively upon the one side or

upon the other side of the straight line {u\v\ w).

We can easily convince ourselves that this conven-

tion is in accordance with those which precede, and

by which the sequence of the points on a straight line

has already been determined.

The laying off of segments and of angles follows

by the known methods of analytical geometry. A
transformation of the form

x'= x+ a

y'=y+&
produces a translation of segments and of angles.

Furthermore, if, in the accompanying figure, we rep-

* A
t

A 2 ^3 A 4 A n .
t
BA„

Fig. 13.

resent the point (0, 0) by and the point (1, 0) by E9

then, corresponding to a rotation of the angle COB
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about as a center, any point (x, y) is transformed

into another point (V, /) so related that

a b

y

Va2 + b2

b

Ya2 -\-b2

Since the number

x +

Va2 + b2

a
y-

Va2 + b2

b\ 2

V<*+P=a\ 1
+[-i

belongs to the domain O, it follows that, under the

conventions which we have made, the axioms of con-

( x,'y>),

0(o,o)

gruence (group IV) are all fulfilled. The same is true

of the axiom of Archimedes.

From these considerations, it follows that every

contradiction resulting from our system of axioms

must also appear in the arithmetic related to the do-

main 0.

The corresponding considerations for the geom-

etry of space present no difficulties.

If, in the preceding development, we had selected

the domain of all real numbers instead of the domain
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Q, we should have obtained likewise a geometry in

which all of the axioms of groups I-V are valid. For
the purposes of our demonstration, however, it was
sufficient to take the domain O, containing only an

enumerable set of elements.

§ io. INDEPENDENCE OF THE AXIOM OF PARALLELS.
(NON-EUCLIDEAN GEOMETRY.)*

Having shown that the axioms of the above system

are not contradictory to one another, it is of interest

to investigate the question of their mutual indepen-

dence. In fact, it may be shown that none of them
can be deduced from the remaining ones by any logical

process of reasoning.

First of all, so far as the particular axioms of

groups I, II, and IV are concerned, it is easy to show
that the axioms of these groups are each independent
of the others of the same group, f

According to our presentation, the axioms of groups
I and II form the basis of the remaining axioms. It

is sufficient, therefore, to show that each of the groups
III, IV, and V is independent of the others.

The first statement of the axiom of parallels can
be demonstrated by aid of the axioms of groups I, II,

and IV. In order to do this, join the given point A
with any arbitrary point B of the straight line a. Let
C be any other point of the given straight line. At

•The mutual independence of Hilbert's system of axioms has also been
discussed recently by Schur and Moore. Schur's paper, entitled " Ueber die
Grundlagen der Geometric '» appeared in the Math. Annalen, Vol. 55, p. 5565,
and that of Moore, " On the Projective Axioms of Geometry," is to be found
in the Jan. (1902) number of the Transactions ofthe Amer. Math. Society.~~Tr.

t See my lectures upon Euclidean Geometry, winter semester of 1898-
1899, which were reported by Dr. Von Schaper and manifolded for the mem-
bers of the class.
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the point A on AB, construct the angle ABC so that

it shall lie in the same plane a as the point C, but

upon the opposite side of AB from it. The straight

line thus obtained through A does not meet the given

straight line a ; for, if it should cut it, say in the point

D, and if we suppose B to be situated between C and

D, we could then find on a a point D so situated that

B would lie between D and D, and, moreover, so

that we should have

AD=BD.

Because of the congruence of the two triangles ABD
and BAD, we have also

l_ABDz= LBAD\

and since the angles ABD' and ABD are supplemen-

tary, it follows from theorem 12 that the angles BAD
and BAD' are also supplementary. This, however,

cannot be true, as, by theorem 1, two straight lines

cannot intersect in more than one point, which would

be the case if BAD and BAD were supplementary.

The second statement of the axiom of parallels is

independent of all the other axioms. This may be

most easily shown in the following well known man-

ner. As the individual elements of a geometry of

space, select the points, straight lines, and planes of

the ordinary geometry as constructed in § 9, and re-

gard these elements as restricted in extent to the in-

terior of a fixed sphere. Then, define the congruences

of this geometry by aid of such linear transformations

of the ordinary geometry as transform the fixed sphere

into itself. By suitable conventions, we can make

this " non-euclidean geometry" obey all of the axioms

of our system except the axiom of Euclid (group III).

Since the possibility of the ordinary geometry has
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~^ already been established, that of the non-euclidean

•^- geometry is now an immediate consequence of the

above considerations.

§ n. INDEPENDENCE OF THE AXIOMS OF CON-
GRUENCE.

We shall show the independence of the axioms of

congruence by demonstrating that axiom IV, 6, or

what amounts to the same thing, that the first theo-

rem of congruence for triangles (theorem 10) cannot

be deduced from the remaining axioms I, II, III, IV

1-5, V by any logical process of reasoning.

Select, as the points, straight lines, and planes of

our new geometry of space, the points, straight lines,

and planes of ordinary geometry, and define the laying

off of an angle as in ordinary geometry, for example,

as explained in § 9. We will, however, define the lay-

ing off of segments in another manner. Let Av A2 be

two points which, in ordinary geometry, have the co-

ordinates xv yv z
x
and x29 y2 , zv respectively. We

will now define the length of the segment A
X
A2 as the

positive value of the expression

V(x
x
— x

2+yx
—y

2)
2+ (yx

—y2f + (z
t
— z

2f,

and call the two segments A
Y
A 2

and A\A\ congruent

when they have equal lengths in the sense just de-

fined.

It is at once evident that, in the geometry of space

thus defined, the axioms I, II, III, IV 1-2, 4-5, V are

all fulfilled.

In order to show that axiom IV, 3 also holds, we
select an arbitrary straight line a and upon it three

points Av Av Av so that A
2
shall lie between A

x
and

Ay Let the points x
} y, z of the straight line a be

given by means of the equations
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y= p,t+ n',

z= vt -{- v f

where X, X', p, fi, v, v represent certain constants and

/ is a parameter. If tv t
2 (</t) , /

3 (<£>) are tne values

of the parameter corresponding to the points Av A 2 ,

A
3 , we have as the lengths of the three segments A

X
A

2

A2A Z , and A X
A

Z, respectively, the following values :

(A— ^It/u+zxy+ ^+ v2
!

('*-« I

t/ (A + /*)
2

+i"
2+ "

2

1

Consequently, the length of A
X
A

3
is equal to the sum of

the lengths of the segments A
X
A

2
and A

2
A3. But this

result is equivalent to the existence of axiom IV, 3.

Axiom IV, 6, or rather the first theorem of con-

gruence for triangles, is not always fulfilled in this

geometry. Consider, for example, in the plane z= 0,

the four points

O, having the co-ordinates x= 0, y=
A, (< " "

By " " "

Q (( a t<

Then, in the right triangles

OAC and OBC, the angles at

C as also the adjacent sides

AC and BC are respectively

congruent ; for, the side OC is ~W

common to the two triangles

and the sides A C and BC have

the same length, namely, \.

However, the third sides OA Flg I5

and OB have the lengths 1 and l/2, respectively, and

are not, therefore, congruent.

x= l, jy
—

x= Q>y= l

x= ~,

kB(o,u

OCo.o) Ad.O)
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It is not difficult to find in this geometry two tri-

angles for which axiom IV, 6, itself is not valid.

§ 12. INDEPENDENCE OF THE AXIOM OF CONTIN-
UITY. (NON-ARCHIMEDEAN GEOMETRY.)

In order to demonstrate the independence of the

axiom of Archimedes, we must produce a geometry

in which all of the axioms are fulfilled with the excep-

tion of the one in question.*

For this purpose, we construct a domain Q(t) of

all those algebraic functions of / which may be ob-

tained from / by means of the four arithmetical opera-

tions of addition, subtraction, multiplication, division,

and the fifth operation i/I -]~ <o
2
, where <o represents

any function arising from the application of these five

operations. The elements of 0(7)—just as was pre-

viously the case for O—constitute an enumerable set.

, » > a.j t
These five operations may all actually be performed

***\
^tiA

U
ând that in only one way. The domain 0(7) contains,

l

*"^f therefore, only real, single-valued functions of /.

Let c be any function whatever of the domain O(Z).

Since this function c is an algebraic function of /, it

can in no case vanish for more than a finite number of

values of /, and, hence, for sufficiently large positive

values of t, it must remain always positive or always
negative.

Let us now regard the functions of the domain
O(Z) as a kind of complex numbers. In the system of

complex numbers thus denned, all of the ordinary
rules of operation evidently hold. Moreover, if a, b

are any two distinct numbers of this system, then a

In his very scholarly book,—Grundzuge der Geometric, German transla-
tion by A. Schepp, Leipzig, 1894,—G. Veronese has also attempted the con-
struction of a geometry independent of the axiom of Archimedes.
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is said to be greater than, or less than, b (written a>b

or a<b) according as the difference c= a— b is always

positive or always negative for sufficiently large values

of /. By the adoption of this convention for the num-

bers of our system, it is possible to arrange them ac-

cording to their magnitude in a manner analogous to

that employed for real numbers. We readily see also

that, for this system of complex numbers, the validity

of an inequality is not destroyed by adding the same

or equal numbers to both members, or by multiplying

both members by the same number, providing it is

greater than zero.

If ;/ is any arbitrary positive integral rational num-

ber, then, for the two numbers n and / of the domain

O(Z), the inequality ;*</ certainly holds; for, the

difference n— t, considered as a function of /, is always

negative for sufficiently large values of t. We express

this fact in the following manner : The two numbers

1 and t of the domain Q(/), each of which is greater

than zero, possess the property that any multiple

whatever of the first always remains smaller than the

second.

From the complex numbers of the domain 12(/),

we now proceed to construct a geometry in exactly

the same manner as in § 9, where we took as the basis

of our consideration the algebraic numbers of the do-

main O. We will regard a system of three numbers

(x,y, z) of the domain O(Z) as defining a point, and

the ratio of any four such numbers (u\v\w\ r), where

u, v, w are not all zero, as defining a plane. Finally,

the existence of the equation

xu -\-yv -{-zw-\-r=
shall express the condition that the point O, y, z) lies

in the plane (u:v:w: r). Let the straight line be de-



36 THE FOUNDATIONS OF GEOMETRY.

fined in our geometry as the totality of all the points

lying simultaneously in the same two planes. If now
we adopt conventions corresponding to those of § 9

concerning the arrangement of elements and the lay-

ing off of angles and of segments, we shall obtain a

" non-archimedean" geometry where, as the properties

of the complex number system already investigated

show, all of the axioms, with the exception of that of

Archimedes, are fulfilled. In fact, we can lay off suc-

cessively the segment 1 upon the segment / an arbi-

trary number of times without reaching the end point

of the segment /, which is a contradiction to the axiom
of Archimedes.
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§ 13. COMPLEX NUMBER SYSTEMS.

AT the beginning of this chapter, we shall present

^ briefly certain preliminary ideas concerning com-

plex number systems which will later be of service to

us in our discussion.

The real numbers form, in their totality, a system

of things having the following properties :

THEOREMS OF CONNECTION (1-12).

1. From the number a and the number b, there

is obtained by "addition" a definite number c,

which we express by writing

a-\-b= c or c— a-\-b.

2. There exists a definite number, which we call

0, such that, for every number a, we have

a-\-0= a and 0-\-a= a.

3. If a and b are two given numbers, there exists

one and only one number x, and also one and

only one number jy, such that we have respect-

ively >

a-\-x= fr, y-\-a= b.

4. From the number a and the number b, there

may be obtained in another way, namely, by

*See also Schur, Math. Annalen, Vol. 55, p. 265.— Tr.
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"multiplication," a definite number c, which

we express by writing

ab= c or c= ab.

5. There exists a definite number, called 1, such

that, for every number a, we have

a-l = a and 1 'a= a.

C. If a and b are any arbitrarily given numbers,

where a is different from 0, then there exists

one and only one number x and also one and

only one number y such that we have respect-

ively

ax — b, ya — b.

If a, b, c are arbitrary numbers, the following laws

of operation always hold :

7. a + (b + c)= (a + b) + c

8. a + b = b + a

9. a (be) = (ab)c

0. a(b + c) = ab -j- ac

1. (a-i-b)c = ac+ be

2. ab = ba.

THEOREMS OF ORDER (13-16).

13. If a, b are any two distinct numbers, one of

these, say a, is always greater (>) than the

other. The other number is said to be the

smaller of the two. We express this relation

by writing

# > b and b <#.

14. If a> b and b> c
f then is also a > c.

15. \la>b, then is also a + c>b+c and c + a
>c+b.
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16. If a>b and <r>0, then is also ac>bc and

ca> ^.

THEOREM OF ARCHIMEDES (17).

17. If a, b are any two arbitrary numbers, such

that a > and £ > 0, it is always possible to

add a to itself a sufficient number of times so

that the resulting sum shall have the property

that
a-{-a-\-a-\-....-\-a>b.

A system of things possessing only a portion of the

above properties (1-17) is called a complex number

system, or simply a number system. A number system

is called archimedean, or non-archimedean, according as

it does, or does not, satisfy condition (17).

Not every one of the properties (1-17) given above

is independent of the others. The problem arises to

investigate the logical dependence of these properties.

Because of their great importance in geometry, we

shall, in §§ 32, 33, pp. 101-106, answer two definite

questions of this character. We will here merely call

attention to the fact that, in any case, the last of these

conditions (17) is not a consequence of the remaining

properties, since, for example, the complex number

system O (/), considered in § 12, possesses all of the

properties (1-16), but does not fulfil the law stated

in (17).

§ 14. DEMONSTRATION OF PASCAL'S THEOREM.

In this and the following chapter, we shall take as

the basis of our discussion all of the plane axioms

with the exception of the axiom of Archimedes ; that

is to say, the axioms I, 1-2 and II-IV. In the pres-
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ent chapter, we propose, by aid of these axioms, to

establish Euclid's theory of proportion ; that is, we

shall establish it for the plane and that independently of

the axiom of Archimedes.

For this purpose, we shall first demonstrate a prop-

osition which is a special case of the well known the-

orem of Pascal usually considered in the theory of

conic sections, and which we shall hereafter, for the

sake of brevity, refer to simply as Pascal's theorem.

This theorem may be stated as follows

:

Theorem 21. (Pascal's theorem.) Given the two

sets of points A, B, C and A', B', C so situated

respectively upon two intersecting straight lines

that none of them fall at the intersection of

these lines. If CB' is parallel to BC and CA'

is also parallel to AC, then BA' is parallel to

AB\*

In order to- demonstrate this theorem, we shall

first introduce the following notation. In a right

triangle, the base a is uniquely determined by the

*F. Schur has published in the Math. Ann., Vol. 51, a very interesting

proof of the theorem of Pascal, based upon the axioms I—II, IV.
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Fig. 17.

hypotenuse c and the base angle a included by a and
c. We will express this fact

briefly by writing

a =ac.

Hence, the symbol ac always

represents a definite segment,

providing c is any given seg-

ment whatever and a is any given acute angle. __..

Furthermore, if c is any arbitrary segment and a,

f$ are any two acute angles whatever, then the two
segments afic and fiac are always congruent ; that is,

we have

af3c= fiaC9

and, consequently, the symbols a and ft are inter-

changeable.

In order to prove this statement, we take the seg-

ment c= AB, and with iasa vertex lay off upon the

one side of this seg-

ment the angle a

and upon the other

the angle /?. Then,

from the point B,

let fall upon the

opposite sides of

the a and /? the

perpendiculars BC
and BD, respec-

tively. Finally, join

C with D and let fall from A the perpendicular AE
upon CD.

Since the two angles A CB and ADB are right an-

gles, the four points A, B, C, D are situated upon a

circle. Consequently, the angles A CD and ABDy

Fig. 18.
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being inscribed in the same segment of the circle,

are congruent. But the angles A CD and CAE, taken

together, make a right angle, and the same is true of

the two angles ABD and BAD, Hence, the two an-

gles CAE and BAD are also congruent ; that is to say,

ICAEeezP

and, therefore,

/_ DAE= a.

From these considerations, we have immediately

the following congruences of segments

:

ficznAD, ac=AC,
af3c=a(AD)i^AE, f3ac= P(AC)iEEAE.

From these, the validity of the congruence in ques-

tion follows.

Returning now to the figure in connection with

Pascal's theorem, denote the intersection of the two

given straight lines by O and the segments OA, OB,

OC, OA', OB', OC\ CB'
y
BC\ CA' , AC, BA\ AB f

by a, b, c, a', b', c' , /, /*, m, m*, n, n*, respectively.

Fig. 19.

Let fall from the point O a perpendicular upon each

of the segments /, ///, n. The perpendicular to / will
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form with the straight lines OA and OA' acute an-

gles, which we shall denote by X' and X, respectively.

Likewise, the perpendiculars to m and n form with

these same lines OA and OA' acute angles, which we
shall denote by fx ', /x and v, v, respectively. If we
now express, as indicated above, each of these per-

pendiculars in terms of the hypotenuse and base angle,

we have the three following congruences of segments :

(1) X^'eeeXV

(2) fia'= fL£

(3) va! =vb.

But since, according to our hypothesis, / is parallel to

/* and tn is parallel to tri*> the perpendiculars from O
falling upon /* and m* must concide with the perpen-

diculars from the same point falling upon / and m
9

and consequently, we have

(4) \c'=\'t
f

(5) //,£' ez: /x'<?.

Multiplying both members of congruence (3) by
the symbol X'ft and remembering that, as we have

already seen, the symbols in question are commuta-
tive, we have

vX' fia'= i//xX'$.

In this congruence, we may replace pa' in the first

member by its value given in (2) and XV; in the second

member by its value given in (4), thus obtaining as a

result

v\'fi c= v fi\c' f

or

Vp'X'c EIE vXpC*'.

Here again in this congruence we can, by aid of (1),
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replace XV by \b\ and, by aid of (5), we may replace

in the second member pc' by fia. We then have

vydXlf' zEE vXixa }

or

XjjLvfi' == \p!va.

Because of the significance of our symbols, we can

conclude at once from this congruence that

livb' ee ii'v'a,

and, consequently, that

(6) vb'= va.

If now we consider the perpendicular let fall from

O upon n and draw perpendiculars to this same line

from the points A and B', then congruence (6) shows

that the feet of the last two perpendiculars must coin-

cide ; that is to say, the straight line n*= AB' makes
a right angle with the perpendicular to n and, conse-

quently, is parallel to n. This establishes the truth

of Pascal's theorem.

Having given any straight line whatever, together

with an arbitrary angle and a point lying outside of

the given line, we can, by constructing the given angle

and drawing a parallel line, find a straight line pass-

ing through the given point and cutting the given

straight line at the given angle. By means of this

construction, we can demonstrate Pascal's theorem in

the following very simple manner, for which, how-
ever, I am indebted to another source.

Through the point B, draw a straight line cutting

OA* in the point U and making with it the angle
OCA', so that the congruence

(1*) lOCA'—lOD'B
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is fulfilled. Now, according to a well known property

of circles, CBD'A' is an inscribed quadrilateral, and,

consequently, by aid of the theorem concerning the

congruence of angles inscribed in the same segment
of a circle, we have the congruence

(2*) lOBA'= lOD'C.

Since, by hypothesis, CA' and AC are parallel, we
have

(3*) £OCA'=£OAC,
and from (1*) and (3*) we obtain the congruence

LOUB^zLOAC.
However, BAD'C is also an inscribed quadrilateral,

and, consequently, by virtue of the theorem relating

to the angles of such a quadrilateral, we have the con-

gruence

(4*) LOAD'—lOCB.
But as CB' is, by hypothesis, parallel to BC\ we
have also
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(5*) / OB'Cee.1 OC'B.

From (4*) and (5*), we obtain the congruence

lOAD'zizlOB'C,

which shows that CAD'B' is also an inscribed quad-

rilateral, and, hence, the congruence

(6*) LOAff—LOUC
is valid. From (2*) and (6*), it follows that

LOBA f—LOAB\
and this congruence shows that BA' and AB' are par-

allel as Pascal's theorem demands.

In case D' coincides with one of the points A', B\
C, it is necessary to make a modification of this

method, which evidently is not difficult to do.

§ 15. AN ALGEBRA OF SEGMENTS, BASED UPON
PASCAL'S THEOREM.

Pascal's theorem, which was demonstrated in the

last section, puts us in a position to introduce into

geometry a method of calculating with segments, in

which all of the rules for calculating with real num-
bers remain valid without any modification.

Instead of the word "congruent " and the sign —

,

we make use, in the algebra of segments, of the word
"equal" and the sign =.

~*_

frig. 2i.

If A, B, C are three points of a straight line and
if B lies between A and C, then we say that <r= ^Cis
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the sum of the two segments a=zA£ and b= I?C. We
indicate this by writing

c= a-\- b.

The segments a and b are said to be smaller than c,

which fact we indicate by writing

a <c, b <c.

On the other hand, c is said to be larger than a and b,

and we indicate this by writing

c>a, c^>b.

From the linear axioms of congruence (axioms

IV, 1-3), we easily see that, for the above definition

of addition of segments, the associative law

a + (t+ c)= (a+ Z)+c,

as well as the commutative law

a ~\- b= b -f- a

is valid.

In order to define geometrically the product of two

segments a and b, we shall make use of the following

construction. Select any convenient segment, which,

having been selected, shall remain constant through-

out the discussion, and denote the same by 1. Upon
the one side of a

right angle, lay off abf.

from the vertex O
the segment 1 and

also the segment b.

Then, from O lay off

upon the other side

of the right angle the

segment a. Join the

extremities of the segments 1 and a by a straight line,

and from the extremity of b draw a line parallel to

Fig. 22.
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this straight line. This parallel will cut off from the

other side of the right angle a segment c. We call

this segment c the product of the segments a and b,

and indicate this relation by writing

c= ab.

We shall now demonstrate that, for this definition

of the multiplication of segments, the commutative law

ab= ba

holds. For this purpose, we construct in the above

manner the product ab. Furthermore, lay off from O
upon the first side (I)

of the right angle the

segment a and upon

the other side (II) the

segment b. Connect by

a straight line the ex-

tremity of the segment

1 with the extremity of

b, situated on II, and

draw through the end-

point of a, on I, a line

parallel to this straight

line. This parallel will

determine, by its intersection with the side II, the

segment ba. But, because the two dotted lines are,

by Pascal's theorem, parallel, the segment ba just

found coincides with the segment ab previously con-

structed, and our proposition is established.

In order to show that the associative law

a(bc)= (ab)c

holds for the multiplication of segments, we construct

first of all the segment d=bc, then da, after that the
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segment e= ba, and finally ec. By virtue oS Pascal's

theorem, the extremities of the segments da and ec

coincide, as may be clearly seen from figure 24. If

da=(bc)a

a(bc)= (ab)c
Fig. 24.

now we apply the commutative law which we have
just demonstrated, we obtain the above formula, which

expresses the associative law for the multiplication of

two segments.

Finally, the distributive law

a(fr -(- e)= ab -f- ac

8(b+C) v

b 1 c but

a{b + c)= ab-\- ac

Fig. 25.

also holds for our algebra of segments. In order to

demonstrate this, we construct the segments, ab
9
ac,
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and a(t+ c), and draw through the extremity of the

segment c (Fig. 25) a straight line parallel to the other

side of the right angle. From the congruence of the

two right-angled triangles which are shaded in the

figure and the application of the theorem relating to

the equality of the opposite sides of a parallelogram,

the desired result follows. If b and c are any two ar-

bitrary segments, there is always a segment a to be

found such that c= ab. This segmentals denoted

by -1 and is called the quotient of c by b.

b

§ 16. PROPORTION AND THE THEOREMS OF SIMILI-

TUDE.

By aid of the preceding algebra of segments, we

can establish Euclid's theory of proportion in a man-

ner free from objections and without making use of

the axiom of Archimedes.

If a, b
y

a', b' are any four segments whatever, the

proportion
a: b= a': b'

expresses nothing else than the validity of equation

ab' = ba'.

Definition. Two triangles are called similar when

the corresponding angles are congruent.

Theorem 22. If a, b and a\ b' are homologous

sides of two similar triangles, we have the pro-

portion
a : b == a' : b'

Proof. We shall first consider the special case

where the angle included between a and b and the

one included between a' and b' are right angles. More-
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Fig. 26

over, we shall assume that the two triangles are laid

off in one and the same right angle. Upon bne of the

sides of this right

angle, we lay off

from the vertex O
the segment 1, and

through the extrem-

ity of this segment,

we draw a straight

line parallel to the

hypotenuses of the

two triangles. This

parallel determines

upon the other side of the right angle a segment e.

Then, according to our definition of the product of

two segments, we have

b = ea, b'= ea\

from which we obtain

ab'= ba'

,

that is to say,

a : b= a'\ b\

Let us now return to the general case. In each of

the two similar triangles, find the point of intersection

of the bisectors of

the three angles. De-

note these points by

S and S'. From
these points let fall

upon the sides of the

triangles the perpen-

diculars r and r\ re-

spectively. Denote

the segments thus

determined upon the sides of the triangles by

Fig. 27.
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&6> a
c> bo ba , ca , cb

and

&»> a'o K> K> C
'a> c'b>

respectively. The special cdse of our proposition,

demonstrated above, gives us then the following pro*

portions :

ab \r—dib \r\ b
c : r— b'c \r' 9

ac \r= a'
e
\r\ ba \r= b'a \r'.

By aid of the distributive law, we obtain from these

proportions the following :

a: r= a' : r', b : r= b* : r.

Consequently, by virtue of the commutative law of

multiplication, we have

a : b= a': b'.

From the theorem just demonstrated, we can easily

deduce the fundamental theorem in the theory of pro-

portion. This theorem may be stated as follows

:

Theorem 23. If two parallel lines cut from the

sides of an arbitrary angle the segments a, b

and a', b' respectively, then we have always the

proportion

a: b= a':b'.

Conversely, if the four segments a, b, a', b

fulfill this proportion and if a, a! and b, b' are

laid off upon the two sides respectively of an
arbitrary angle, then the straight lines joining

the extremities of a and b and of a' and V are

parallel to each other.
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§ 17. EQUATIONS OF STRAIGHT LINES AND OF
PLANES.

To the system of segments already discussed, let

us now add a second system. We will distinguish the

segments of the new system from those of the former

one by means of a special sign, and will call them

"negative" segments in contradistinction to the "pos-

itive" segments already considered. If we introduce

also the segment 0, which is determined by al#bi«*te)

point, and make other appropriate conventions, then

all of the rules deduced in § 13 for calculating with

real numbers will hold equally well here for calcu-

lating with segments. We call special attention to

the following particular propositions :

We have always a • 1 = 1 • a= a.

If a-fi= Q, then either = 0, or 6= 0.

If a> b and c> 0, then ac> be.

In a plane a, we now take two straight lines cut-

ting each other in O at right angles as the fixed axes

of rectangular co-ordinates, and lay off from O upon

these two straight lines the arbitrary segments x and

y. We lay off these segments upon the one side or

upon the other side of O, according as they are posi-

tive or negative. At the extremities of x and y, erect

perpendiculars and determine the point P of their in-

tersection. The segments x andjy are called the co-

ordinates of P. Every point of the plane a is uniquely

determined by its co-ordinates x, y, which may be

positive, negative, or zero.

Let / be a straight line in the plane a, such that it
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shall pass through O and also through a point C hav-

ing the co-ordinates a, b. If x, y are the co-ordinates

Fig. 28.

of any point on /, it follows at once from theorem 22

that

a : b— x :y,

or

bx— ay= 0,

is the equation of the straight line /. If /' is a straight

line parallel to / and cutting off from the ^-axis the

segment c, then we may obtain the equation of the

straight line /' by replacing, in the equation for /, the

segment x by the segment x— c. The desired equa-

tion will then be of the form

bx— ay— &c= 0.

From these considerations, we may easily con-

clude, independently of the axiom of Archimedes, that

every straight line of a plane is represented by an
equation which is linear in the co-ordinates x, yy and,

conversely, every such linear equation represents a

straight line when the co-ordinates are segments ap-

pertaining to the geometry in question.
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The corresponding results for the geometry of

space may be easily deduced.

The remaining parts of geometry may now be de-

veloped by the usual methods of analytic geometry.

So far in this chapter, we have made absolutely

no use of the axiom of Archimedes. If now we as-

sume the validity of this axiom, we can arrange a

definite correspondence between the points on any

straight line in space and the real numbers. This

may be accomplished in the following manner.

We first select on a straight line any two points,

and assign to these points the numbers and 1.

Then, bisect the segment (0, 1) thus determined and

denote the middle point by the number i. In the

same way, we denote the middle of (0, -|) by J, etc.

After applying this process n times, we obtain a point

which corresponds to ^. Now, lay off ;;/ times in

both directions from the point O the segment! 0,
—J.

We obtain in this manner a point corresponding to

the numbers -^ and— --. From the axiom of Archi-
2* l n

medes, we now easily see that, upon the basis of this

association, to each arbitrary point of a straight line

there corresponds a single, definite, real number, and,

indeed, such that this correspondence possesses the

following property: If A, B, Care any three points

on a straight line and a, /3, y are the corresponding

real numbers, and, if B lies between A and C, then

one of the inequalities,

a</3<y or a>/3>y,

is always fulfilled.

From the development given in § 9, p. 27, it is

evident, that to every number belonging to the field of
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algebraic numbers O, there must exist a correspond-

ing point upon the straight line. Whether to every

real number there corresponds a point cannot in gen-

eral be established, but depends upon the geometry to

which we have reference.

However, it is always possible to generalize the

original system of points, straight lines, and planes

by the addition of " ideal" or "irrational" elements,

so that, upon any straight line of the corresponding

geometry, a point corresponds without exception to

every system of three real numbers. By the adoption

of suitable conventions, it may also be seen that, in

this generalized geometr}^ all of the axioms I-V are

valid. This geometry, generalized by the addition of

irrational elements, is nothing else than the ordinary

analytic geometry of space.
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§ 18. EQUAL AREA AND EQUAL CONTENT OF
POLYGONS.*

WE shall base the investigations of the present

chapter upon the same axioms as were made

use of in the last chapter, §§ 13-17, namely, upon the

plane axioms of all the groups, with the single excep-

tion of the axiom of Archimedes. This involves then

the axioms I, 1-2 and II-IV.

The theory of proportion as developed in §§13-17

together with the algebra of segments introduced in

the same chapter, puts us now in a position to estab-

lish Euclid's theory of areas by means of the axioms

already mentioned; that is to say, for the plane geom-

etry, and that independently of the axiom of Archimedes.

Since, by the development given in the last chapter,

pp. 37-56, the theory of proportion was made to de-

*In connection wilh the theory of areas, we desire to call attention to

the following works of M. Gerard : These de Doctorat sur la giomitrie non

euclidienne (1892) and Geometric plane (Paris, 1898). M. Gerard has developed

a theory concerning the measurement of polygons analogous to that presented

in § 20 of the present work. The difference is that M. Gerard makes use of

parallel transversals, while I use transversals emanating from the vertex.

The reader should also compare the following works of F. Schur, where he

will find a similar development: Sitzungsberichte der Dorpater Naturf. Ges.,

1892, and Lehrbuch der analytischen Geometrie^ Leipzig, 1898 (introduction).

Finally, let me refer to an article by O. Stolz in Monatsheft'efur Math, und

Phys., 1894. (Note by Professor Hilbert in French ed.)

M. Gerard has also treated the subject of areas in various ways in the

following journals: Bulletin de Math, speciales (May, 1895), Bulletin de la So-

ciety mathimatique de France (Dec, 1895), Bulletin Math, ilimentaires (Jan-

uary, 1896, June, 1897, June, 1898). (Note in French ed.)
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pend essentially upon Pascal's theorem (theorem 21),

the same may then be said here of the theory of areas.

This manner of establishing the theory of areas seems

to me a very remarkable application of Pascal's theo-

rem to elementary geometry.

If we join two points of a polygon P by any arbi-

trary broken line lying entirely within the polygon,

we shall obtain two new polygons P
x
and P2

whose

interior points all lie within P. We say that P is de-

composed into P
1
and P

2 , or that the polygon P is com-

posed ofPx
and P2

.

Definition. Two polygons are said to be of equal

area when they can be decomposed into a finite num-

ber of triangles which are respectively congruent to

one another in pairs.

Definition. Two polygons are said to be of equal

content when it is possible, by the addition of other

polygons having equal area, to obtain two resulting

polygons having equal area.

From these definitions, it follows at once that by

combining polygons having equal area, we obtain as

a result polygons having equal area. However, if

from polygons having equal area we take polygons

having equal area, we obtain polygons which are of

equal content.

Furthermore, we have the following propositions :

Theorem 24. If each of two polygons P
x
and P2

is of equal area to a third polygon P39 then P
x

and P2
are themselves of equal area. If each

of two polygons is of equal content to a third,

then they are themselves of equal content.

Proof. By hypothesis, we can so decompose each

of the polygons Px and P2
into such a system of tri-
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angles that any triangle of either of these systems

will be congruent to the corresponding triangle of a

system into which P3
may be decomposed. If we con-

sider simultaneously the two decompositions of P3 ,

we see that, in general, each triangle of the one de-

Fig. 29.

composition is broken up into polygons by the seg-

ments which belong to the other decomposition. Let

us add to these segments a sufficient number of others

to reduce each of these polygons to triangles, and

apply the two resulting methods of decompositions to

P
x
and jP

2 , thus breaking them up into corresponding

triangles. Then, evidently the two polygons P
x
and

P
2
are each decomposed into the same number of tri-

angles, which are respectively congruent by pairs.

Consequently, the two polygons are, by definition, of

equal area.

The proof of the second part of the theorem fol-

lows without difficulty.

We define, in the usual manner, the terms: rect-

angle•, base and height of a parallelogram, base and height

of a triangle.

% 19. PARALLELOGRAMS AND TRIANGLES HAVING
EQUAL BASES AND EQUAL ALTITUDES.

The well known reasoning of Euclid, illustrated

by the accompanying figure, furnishes a proof for the

following theorem :
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Theorem 25. Two parallelograms having equal

bases and equal altitudes are also of equal con-

tent.

Fig. 50.

We have also the following well known proposi-

tion :

Theorem 26. Any triangle ABC is always of

equal area to a certain parallelogram having

an equal base and an altitude half as great as

that of the triangle.

Proof. Bisect AC in D
and BC in E, and extend

the line IJE to E, making
£7^equal to BE. Then, the

triangles EEC and EBE
are congruent to each other,

and, consequently, the tri-

angle EEC and the par-

allelogram ABED are of

equal area.

From theorems 25 and 26, we have at once, by aid
of theorem 24, the following proposition.

Theorem 27. Two triangles having equal bases
and equal altitudes have also equal content.

It is usual to show that two triangles having equal
bases and equal altitudes are always of equal area. It

is to be remarked, however, that this demonstration
cannot be made without the aid of the axiom of Archi-

Fig. 31.
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medes. In fact, we may easily construct in our non-

archimedean geometry (see § 12, p. 34) two triangles

so that they shall have equal bases and equal alti-

tudes and, consequently, by theorem 27, must be of

equal content, but which are not, however, of equal

area. As such an example, we may take the two tri-

angles ABC and ABD having each the base AB= l

and the altitude 1, where the vertex of the first triangle

is situated perpendicularly above A, and in the second

triangle the foot J? ol the perpendicular let fall from

the vertex D upon the base is so situated that AF=t.
The remaining propositions of elementary geom-

etry concerning the equal content of polygons, and

in particular the pythagorian theorem, are all simple

consequences of the theorems which we have already

given. In the further development of the theory of

area, we meet, however, with an essential difficulty.

In fact, the discussion so far leaves it still in doubt

whether all polygons are not, perhaps, of equal con-

tent. In this case, all of the propositions which we

have given would be devoid of meaning and hence of

no value. Furthermore, the more general question

also arises as to whether two rectangles of equal con-

tent and having one side in common, do not also have

their other sides congruent ; that is to say, whether a

rectangle is not definitely determined by means of a

side and its area. As a closer investigation shows,

in order to answer this question, we need to make use

of the converse of theorem 27. This may be stated as

follows

:

Theorem 28. If two triangles have equal con-

tent and equal bases, they have also equal alti-

tudes.
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This fundamental theorem is to be found in the

first book of Euclid's Elements as proposition 39. In

the demonstration of this theorem, however, Euclid

appeals to the general proposition relating to magni-

tudes : "Kat to oXov rov fiipovs fiet^ov €<rriv"—a method

of procedure which amounts to the same thing as in-

troducing a new geometrical axiom concerning areas.

It is now possible to establish the above theorem

and hence the theory of areas in the manner we have

proposed, that is to say, with the help of the plane

axioms and without making use of the axiom of Archi-

medes. In order to show this, it is necessary to in-

troduce the idea of the measure of area.

§ 20. THE MEASURE OF AREA OF TRIANGLES AND
POLYGONS.

Definition. If in a triangle ABC, having the

sides a, b, c, we construct the two altitudes Aa= AD,
hb=.BE, then, according to theorem 22, it follows

from the similarity of the

triangles BCE and A CD,

that we have the propor-

tion

a-.hb— b\ha \

that is, we have

Fig. 32.
a-ha= b-hb .

This shows that the product of the base and the cor-

responding altitude of a triangle is the same which-

ever side is selected as the base. The half of this

product of the base and the altitude of a triangle A is

called the meastire of area of the triangle A and we de-

note it by F(A).
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A segment joining a vertex of a triangle with a

point of the opposite side is called a transversal. A
transversal divides the given triangle into two others

having the same altitude and having bases which lie

in the same straight line. Such a decomposition is

called a transversal decomposition of the triangle.

Theorem 29. If a triangle A is decomposed by

means of arbitrary straight lines into a finite

number of triangles A*, then the measure of

area of A is equal to the sum of the measures

of area of the separate triangles A^.

Proof. From the distributive law of our algebra

of segments, it follows immediately that the measure

of area of an arbitrary triangle is equal to the sum of

the measures of area of two such triangles as arise

from any transversal de-

composition of the given

triangle. The repeated

application of this prop-

osition shows that the

measure of area of any

triangle is equal to the
Fig 33

sum of the measures of

area of all the triangles arising by applying the trans-

versal decomposition an arbitrary number of times in

succession.

In order to establish the corresponding proof for

an" arbitrary decomposition of the triangle A into the

triangles A*, draw from the vertex A of the given tri-

angle A a transversal through each of the points of

division of the required decomposition ; that is to say,

draw a transversal through each vertex of the triangles

A*. By means of these transversals, the given tri-
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Fig. 34-

angle A is decomposed into certain triangles A,. Each
of these triangles A, is broken up by the segments

which determined this decom-

position into certain triangles

and quadrilaterals. If, now, in

each of the quadrilaterals, we
draw a diagonal, then each tri-

angle A
/ is decomposed into

certain other triangles A^. We
shall now show that the de-

composition into the triangles

A^ is for the triangles A„ as

well as for the triangles A^,

nothing else than a series of

transversal decompositions. In fact, it is at once evi-

dent that any decomposition of a triangle into partial

triangles may always be affected by a series of trans-

versal decompositions, providing, in this decomposi-

tion, points of division do not exist within the triangle,

and further, that at least one side of the triangle re-

mains free from points of division.

We easily see that these conditions hold for the

triangles A,. In fact, the interior of each of these tri

angles, as also one side, namely, the side opposite the

point A, contains no points of division.

Likewise, for each of the triangles AA , the decom-

position into A,j is reducible to transversal decompo-

sitions. Let us consider a triangle A^. Among the

transversals of the triangle A emanating from the

point A, there is always a definite one to be found

which either coincides with a side of A*, or which it-

self divides A^ into two triangles. In the first case,

the side in question always remains free from further

points of division by the decomposition into the tri-
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angles A/r In the second case, the segment of the

transversal contained within the triangle A^ is a side

of the two triangles arising from the division, and this

side certainly remains free from further points of divi-

sion.

According to the considerations set forth at the be-

ginning of this demonstration, the measure of area

P(A) of the triangle A is equal to the sum of the

measures of area F{/^
t) of all the triangles A, and this

sum is in turn equal to the sum of all the measures of

area P(A,S). However, the sum of the measures of

area ^(A^) of all the triangles A* is also equal to the

sum of the measures of area T^(A^). Consequently,

we have finally that the measure of area i^(A) is also

equal to the sum of all the measures of area i^(A^),

and with this conclusion our demonstration is com-
pleted.

Definition. If we define the measure of area F(P)
of a polygon as the sum of the measures of area of all

the triangles into which the polygon is, by a definite

decomposition, divided, then upon the basis of theo-

rem 29 and by a process of reasoning similar to that

which we have employed in § 18 to prove theorem 24,

we know that the measure of area of a polygon is inde

pendent of the manner of decomposition into triangles

and, consequently, is definitely determined by the pol-

ygon itself. From this we obtain, by aid of theorem

29, the result \X\2X polygons of equal area have also equal

measures of area.

Furthermore, if P and Q are two polygons of equal

content, then there must exist, according to the above

definition, two other polygons P' and Q of equal area,

such that the polygon composed of P and P shall be
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of equal area with the polygon formed by combining

the polygons Q and Q
f

. From the two equations

F(P+P')=F(Q+Q')

we easily deduce the equation

that is to say, polygons of equal content have also equal

measure of area.

From this last statement, we obtain immediately

the proof of theorem 28. If we denote the equal bases

of the two triangles by g and the corresponding alti-

tudes by h and //, respectively, then we may conclude

from the assumed equality of content of the two tri-

angles that they must also have equal measures of

area ; that is to say, it follows that

and, consequently, dividing by \g, we get

h =h\

which is the statement made in theorem 28.

§21. EQUALITY OF CONTENT AND THE MEASURE
OF AREA.

In § 20 we have found that polygons having equal

content have also equal measures of area. The con-

verse of this is also true.

In order to prove the converse, let us consider two

triangles ABC and AB'C having a common right

angle at A. The measures of area of these two tri-

angles are expressed by the formulae

F{ABC) = \AB*AC,
F{AB'C f)^=\AB'-AC\
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We now assume that these measures of area are equa

to each other, and consequently we have

or

AB-AC=AB''AC,

AB:AB'=AC':AC.

From this proposition, it follows, according to theo-

rem 23, that the two straight lines BC and B'C are

parallel, and hence, by theorem 27, the two triangles

BC'B' and BC'C are of equal content. By the addi-

tion of the triangle ABC, it follows that the two tri-

angles ABC and AB'C are of equal content. We
have then shown that two right triangles having the

same measure of area are always of equal content.

Take now any arbitrary triangle having the base g
and the altitude h. Then, according to theorem 27,

it has equal content with a right triangle having the

two sides g and h. Since the original triangle had

evidently the same measure of area as the right tri-

angle, it follows that, in the above consideration, the

restriction to right triangles was not necessary. Hence,

two arbitrary triangles with equal measures of area are

also of equal content.

Moreover, let us suppose P to be any polygon
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having the measure of area g and let P be decomposed

into n triangles having respectively the measures of

area gl9 g2 , g3 , gH . Then, we have

g= ^1 + ^2 + ^3+ •• ••+£«•

Construct now a triangle ABC having the base

AB=zg and the altitude h = 1. Take, upon the base

of this triangle, the points A v A 2
,...., A u_v so that

gx
= AA v gl

= A
l
A 2> . . .

. , gn^ l
=A H_2

A u_v gn= A n_i
B.

Fig. 36.

Since the triangles composing the polygon P have re-

spectively the same measures of area as the triangles

AA
X
C, A

X
A

2
C, , A n_2

A n_ x
C, A n_x

BC, it follows

from what has already been demonstrated that they

have also the same content as these triangles. Con-

sequently, the polygon P and a triangle, having the

base g and the altitude A= l are of equal content.

From this, it follows, by the application of theorem

24, that two polygons having equal measures of area

are always of equal content.

We can now combine the proposition of this sec-

tion with that demonstrated in the last, and thus ob-

tain the following theorem :

Theorem 30. Two polygons of equal content

have always equal measures of area. Con-
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versely, two polygons having equal measures

of area are always of equal content.

In particular, if two rectangles are of equal content

and have one side in common, then their remaining

sides are respectively congruent. Hence, we have the

following proposition

:

Theorem 31. If we decompose a rectangle into

several triangles by means of straight lines and

then omit one of these triangles, we can no

longer make up completely the rectangle from

the triangles which remain.

This theorem has been demonstrated by F. Schur*

and by W. Killing, f but by making use of the axiom

of Archimedes. By O. Stolz, % it has been regarded

as an axiom. In the foregoing discussion, it has been

shown that it is completely independent of the axiom

of Archimedes. However, when we disregard the ax-

iom of Archimedes, this theorem (31) is not sufficient

of itself to enable us to demonstrate Euclid's theo-

rem concerning the equality of altitudes of triangles

having equal content and equal bases. (Theorem 28.)

In the demonstration of theorems 28, 29, and 30,

we have employed essentially the algebra of segments

introduced in § 15, p. 46, and as this depends sub-

stantially upon Pascal's theorem (theorem 21), we see

that this theorem is really the corner-stone in the the-

ory of areas. We may, by the aid of theorems 27 and

28, easily establish the converse of Pascal's theorem.

Of two polygons P and Q, we call P the smaller

or larger in content according as the measure of area

* Sitzungsberichte dcr Dorpater Naturf. Ges. 1892.

t Grundlagen der Geometric, Vol. 2, Chapter $1 % 5, 1898.

%Monatshefte fur Math, und Fhys, 1894.
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F(P} is less or greater than the measure of area -F(Q).

From what has already been said, it is clear that the

notions, equal content, smaller content, larger con-

tent, are mutually exclusive. Moreover, we easily see

that a polygon, which lies wholly within another pol-

ygon, must always be of smaller content than the ex-

terior one.

With this we have established the important the-

orems in the theory of areas.



DESARGUES'S THEOREM.

§22. DESARGUES'S THEOREM AND ITS DEMONSTRA-
TION FOR PLANE GEOMETRY BY AID OF

THE AXIOMS OF CONGRUENCE.

OF the axioms given in §§ 1-8, pp. 1-26, those

of groups II-V are in part linear and in part

plane axioms. Axioms 3-7 of group I are the only

space axioms. In order to show clearly the signifi-

cance of these axioms of space, let us assume a plane

geometry and investigate, in general, the conditions

for which this plane geometry may be regaroed as a

part of a geometry of space in which at least the ax-

ioms of groups I— III are all fulfilled.

Upon the basis of the axioms of groups I—III, it is

well known that the so-called theorem of Desargues

may be easily demonstrated. This theorem relates to

points of intersection in a plane. Let us assume in

particular that the straight line, upon which are sit-

uated the points of intersection of the homologous

sides of the two triangles, is the straight line which

we call the straight line at infinity. We will desig-

nate the theorem which arises in this case, together

with its converse, as the theorem of Desargues. This

theorem is as follows :

Theorem 32. (Desargues's theorem.) When two

triangles are so situated in a plane that their

homologous sides are respectively parallel, then
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the lines joining the homologous vertices pass

through one and the same point, or are parallel

to one another.

Conversely, if two triangles are so situated

in a plane that the straight lines joining the

homologous vertices intersect in a common
point, or are parallel to one another, and, fur

thermore, if two pairs of homologous sides arc

parallel to each other, then the third sides of

the two triangles are also parallel to each other.

Fig. 37-

As we have already mentioned, theorem 32 is a

consequence of the axioms I—III. Because of this

fact, the validity of Desargues's theorem in the plane

is, in any case, a necessary condition that the geom-

etry of this plane may be regarded as a part of a geom-

etry of space in which the axioms of groups I— 1 1 1 are

all fulfilled.

Let us assume, as in §§ 13-21, pp. 37-70, that we
have a plane geometry in which the axioms 1, 1-2 and

II-IV all hold and, also, that we have introduced in

this geometry an algebra of segments conforming to

§15.

Now, as has already been established in § 17, there
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may be made to correspond to each point in the plane

a pair of segments (x, y) and to each straight line a

ratio of three segments (u : v : w), so that the linear

equation
ux -\- vy + w=

expresses the condition that the point is situated upon

the straight line. The system composed of all the

segments in our geometry forms, according to § 17, a

domain of numbers for which the properties (1-16),

enumerated in § 13, are valid. We can, therefore, by

means of this domain of numbers, construct a geom-

etry of space in a manner similar to that already em-

ployed in § 9 or in § 12, where we made use of the

systems of numbers O and fl(/), respectively. For

this purpose, we assume that a system of three seg-

ments (x, y, z) shall represent a point, and that the

ratio of four segments {uw.w.r^) shall represent a

plane, while a straight line is denned as the intersec-

tion of two planes. Hence, the linear equation

ux -f- vy -{- wz -)- r=
expresses the fact that the point (x, y, z) lies in the

plane {u\v\w\ ;;). Finally, we determine the arrange-

ment of the points upon a straight line, or the points

of a plane with respect to a straight line situated in

this plane, or the arrangement of the points in space

with respect to a plane, by means of inequalities in a

manner similar to the method employed for the plane

in § 9.

Since we obtain again the original plane geometry

by putting z= 0, we know that our plane geometry

can be regarded as a part of geometry of space. Now,

the validity of Desargues's theorem is, according to the

above considerations, a necessary condition for this



74 THE FOUNDATIONS OF GEOMETRY.

result. Hence, in the assumed plane geometry, it

follows that Desargues's theorem must also hold.

It will be seen that the result just stated may also

be deduced without difficulty from theorem 23 in the

theory of proportion.

§ 23. THE IMPOSSIBILITY OF DEMONSTRATING DE-
SARGUES'S THEOREM FOR THE PLANE WITH-

OUT THE HELP OF THE AXIOMS
OF CONGRUENCE.*

We shall now investigate the question whether or

no in plane geometry Desargues's theorem may be

deduced without the assistance of the axioms of con-

gruence. This leads us to the following result

:

Theorem 33. A plane geometry exists in which

the axioms I 1-2, II—III, IV 1-5, V, that is to

say, all linear and all plane axioms with the

exception of axiom IV, 6 of congruence, are

fulfilled, but in which the theorem of Desargues

(theorem 32) is not valid. Desargues's theorem

is not, therefore, a consequence solely of the

axioms mentioned ; for, its demonstration ne-

cessitates either the space axioms or all of the

axioms of congruence.

Proof. Select in the ordinary plane geometry (the

possibility of which has already been demonstrated in

§ 9, pp. 27-30) any two straight lines perpendicular

to each other as the axes of x and y. Construct about

the origin O of this system of co-ordinates an ellipse

having the major and minor axes equal to 1 and \, re-

spectively. Finally, let F denote the point situated

upon the positive #-axis at the distance § from O.

*See also a recent paper by F. R. Moulton on " Simple Non-desarguegjan
Geometry," Transactions ofthe Amer, Math. Soc, April, 1902.— Tr.
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Consider all of the circles which cut the ellipse in

four real points. These points may be either distinct

or in any way coincident. Of all the points situated

upon these circles, we shall attempt to determine the

one which lies upon the .r-axis farthest from the ori-

gin. For this purpose, let us begin with an arbitrary

circle cutting the ellipse in four distinct points and

intersecting the positive jf-axis in the point C. Sup-

pose this circle then turned about the point C in

such a manner that two or more of the four points of

intersection with the ellipse finally coincide in a single

point A, while the rest of them remain real. Increase

now the resulting tangent circle in such a way that A
always remains a point of tangency with the ellipse.

In this way we obtain a circle which is either tangent

to the ellipse in also a second point B, or which has

with the ellipse a four-point contact in A. Moreover,

this circle cuts the positive taxi's in a point more re-

mote than C. The desired farthest point will accord-

ingly be found among those points of intersection of

the positive x axis by circles lying exterior to the

ellipse and being doubly tangent to it. All such cir-

cles must lie, as we can easily see, symmetrically with

repect to the y- axis. Let #, b be the co-ordinates of

any point on the ellipse. Then an easy calculation

shows that the circle, which is symmetrical with re-

spect to j- axis and tangent to the ellipse at this point,

cuts off from the positive #-axis the segment

x=\\/l + 3/;
2

|.

The greatest possible value of this expression occurs

for £—
-J-

and, hence, is equal to J|l/7|. Since the

point on the x axis which we have denoted by T^has

for its abscissa the value §> ^| V
7
?!? it follows that



76 THE FOUNDATIONS OF GEOMETRY.

among the circles cutting the ellipse four times there is

certainly none which passes through the point F.

We will now construct a new plane geometry in

the following manner. As points in this new geom-
etry, let us take the points of the (^j)-plane. We
will define a straight line of our new geometry in the

following manner. Every straight line of the (xy)-

plane which is either tangent to the fixed ellipse, or

does not cut it at all, is taken unchanged as a straight

line of the new geometry. However, when any straight

line g of the (xy) -plane cuts the ellipse, say in the

points P and Q, we will then define the correspond-

Fig. 38.

ing straight line of the new geometry as follows. Con-
struct a circle passing through the points P and Q
and the fixed point F. From what has just been said,

this circle will have no other point in common with
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the ellipse. We will now take the broken line, con-

sisting of the arc PQ just mentioned and the two

parts of the straight line g extending outward indefi-

nitely from the points P and Q, as the required straight

line in our new geometry. Let us suppose all of the

broken lines constructed which correspond to straight

lines of the (xy) -plane. We have then a system of

broken lines which, considered as straight lines of our

new geometry, evidently satisfy the axioms I, 1-2 and

III. By a convention as to the actual arrangement

of the points and the straight lines in our new geom-

etry, we have also the axioms II fulfilled.

Moreover, we will call two segments AB and A'B'

congruent in this new geometry, if the broken line

extending between A and B has equal length, in the

ordinary sense of the word, with the broken line ex-

tending from A' to B f

.

Finally, we need a convention concerning the con-

gruence of angles. So long as neither of the vertices

of the angles to be compared lies upon the ellipse, we

call the two angles congruent to each other, if they

are equal in the ordinary sense. In all other cases

we make the following convention. Let A, B, C be

points which follow one another in this order upon a

straight line of our new geometry, and let A', B\ C
be also points which lie in this order upon another

straight line of our new geometry. Let D be a point

iying outside of the straight line ABC and D' be a

point outside of the straight A'B'C. We will now

say that, in our new geometry, the angles between

these straight lines fulfill the congruences

LABD^LA'B'D' and /_CBD~ LCB'V',

whenever the natural angles between the correspond-
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ing broken lines of the ordinary geometry fulfill the

proportion

Z ABD : I CBD= / A*ffD' : L CB'D'.

These conventions render the axioms IV, 1-5 and V
valid.

Fig. 39-

In order to see that Desargues's theorem does not

hold for our new geometry, let us consider the follow-

ing three ordinary straight lines of the (.#>')-plan e

;

viz., the axis of x, the axis of y, and the straight line

joining the two points of the ellipse (|, •§•) and (-—•!,

— |). Since these three ordinary straight lines pass

through the origin, we can easily construct two tri-

angles so that their vertices shall lie respectively upon
these three straight lines and their homologous sides

shall be parallel and all three sides shall lie exterior to

the ellipse. As we may see from figure 40, or show
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by an easy calculation, the broken lines arising fro.m

the three straight lines in question do not intersect in

a common point. Hence, it follows that Desargues's

Y

Fig. 40.

theorem certainly does not hold for this particular

plane geometry in which we have constructed the two
triangles just considered.

This new geometry serves at the same time as an

example of a plane geometry in which the axioms I,

1-2, II III, IV, 1-5, V all hold, but which cannot be

considered as a part of a geometry of space.

§ 24. INTRODUCTION OF AN ALGEBRA OF SEGMENTS
BASED UPON DESARGUES'S THEOREM AND INDE-
PENDENT OF THE AXIOMS OF CONGRUENCE.*

In order to see fully the significance of Desargues's

theorem (theorem 32), let us take as the basis of our

consideration a plane geometry where all of the ax-

* Discussed also by Moore in a paper before the Am. Math. Soc, Jan.,

190a. See Trans. Am, Math. Soc.— Tr.
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ioms I 1-2, II—III are valid, that is to say, where all

of the plane axioms of the first three groups hold, and

then introduce into this geometry, in the following

manner, a new algebra of segments independent of

the axioms of congruence.

Take in the plane two fixed straight lines inter-

secting in O, and consider only such segments as have

O for their origin and their other extremity in one of

the fixed lines. We will regard the point O itself as

a segment and call it the segment 0. We will indi-

cate this fact by writing

00= 0, or = OO.

Let E and E* be two definite points situated re-

spectively upon the two fixed straight lines through

O. Then, define the two segments OE and OE' as

the segment 1 and write accordingly

OE=OE'^l or l = OE=:OE\

We will call the straight line EE', for brevity, the

unit-line. If, furthermore, A and A' are points upon

Fig. 41.

the straight lines OE and OE', respectively, and, if

the straight line AA f

joining them is parallel to EE',
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then we will say that the segments OA and OA' are

equal to one another, and write

OA = OA', or OA'=OA.

In order now to define the sum of the segments
a= OA and /?— OB, we construct AA* parallel to the

unit-line EE' and draw through A' a parallel to OE
and through B a parallel to 0E r

. Let these two par-

allels intersect in A" . Finally, draw through A" a

straight line parallel to the unit-line EE*. Let this

parallel cut the two fixed lines OE and OE' in C and

C, respectively. Then c=OC=OC is called the

sum of the segments a= OA and &= OB. We indi-

cate this by writing

c=a-\-b, or a-\-b— c.

In order to define the product of a segment a= OA
by a segment b=OB, we make use of exactly the

same construction as employed in § 15, except that,

in place of the sides of a right angle, we make use

here of the straight lines OE and OE' . The construc-

Fig. 42.

tion is consequently as follows. Determine upon OE'

a point A' so that AA' is parallel to the unit-line EE\
and join E with A'. Then draw through B a straight
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line parallel to EA'. This parallel will intersect the

fixed straight line OE f

in the point C, and we call

c=OC the product of the segment a= OA by the

segment b= OB. We indicate this relation by writing

c= ab, or ab= c.

§ 25. THE COMMUTATIVE AND THE ASSOCIATIVE
LAW OF ADDITION FOR OUR NEW ALGE-

BRA OF SEGMENTS.

In this section, we shall investigate the laws of

operation, as enumerated in § 13, in order to see which

of these hold for our new algebra of segments, when
we base our considerations upon a plane geometry in

which axioms I l-2r II- III are all fulfilled, and, more-

over, in which Desargues's theorem also holds.

First of all, we shall show that, for the addition of

segments as defined in § 24, the commutative law

a-\- b= b -\- a
holds. Let

a=OA = OA'
b-=OB=OB\

Hence, A A* and BB f

are, according to our conven-

tion, parallel to the

unit-line. Construct

the points A" and B"
by drawing A'A" and
B'B" parallel to OA
and also AB" and
BA' parallel to OA.
We see at once that

the line A"B" is paral-

lei to AA' as the com-
mutative law requires. We shall show the validity of

this statement by the aid of Desargues's theorem in
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the following manner. Denote the point of intersec-

tion of AB" and A'A" by F and that of BA" and B'B'

by D. Then, in the triangles AA'F and BB'D, the

homologous sides are parallel to each other. By De-

sargues's theorem, it follows that the three points

O, F, D lie in a straight line. In consequence of this

condition, the two triangles OAA' and DB"A" lie in

such a way that the lines joining the corresponding

vertices pass through the same point F, and since the

homologous sides OA and DB", as also OA' and DA"

,

are parallel to each other, then, according to the sec-

ond part of Desargues's theorem (theorem 32), the

third sides AA' and B"A" are parallel to each other.

To prove the associative law of addition

<* + (* + £)= (* + &)+'>

we shall make use of figure 44. In consequence of

the commutative law of addition just demonstrated,

the above formula states that the straight line A"B"

* + (£ + = (* + *)+'

Fig. 44.

must be parallel to the unit-line. The validity of this

statement is evident, since the shaded part of figure

44 corresponds exactly with figure 43 f
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§26. THE ASSOCIATIVE LAW OF MULTIPLICATION
AND THE TWO DISTRIBUTIVE LAWS FOR

THE NEW ALGEBRA OF SEGMENTS.

The associative law of multiplication

a(bc)-=.(ab)c

has also a place in our new algebra of segments.

Let there be given upon the first of the two fixed

straight lines through O the segments

1 = 0A, b-=-OC, c=OA'

abc.D

a (be)= {ab) c

Fig. 45-

and upon the second of these straight lines, the seg-

ments
a^OG, b=OB.

In order to construct the segments

bc^OB' and bc=OC,
ab= OI),

(ab)c=OD\
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in accordance with § 24, draw A'B' parallel to AB,
B'C parallel to BC, CD parallel to AG, and A D' par-

allel to AD. We see at once that the given law

amounts to the same as saying that CD must also be

parallel to CD'. Denote the point of intersection of

the straight lines A'D' and B'C 9 by F' and that of the

straight lines AD and BC by F. Then the triangles

ABF and A'B'F' have their homologous sides par-

allel to each other, and, according to Desargues's

theorem, the three points O, F, F' must lie in a

straight line. Because of these conditions, we can

apply the second part of Desargues's theorem to the

two triangle CDF and C'D'F', and hence show that,

in fact, CD is parallel to CD'.

Finally, upon the basis of Desargues's theorem,

we shall show that the two distributive laws

a {b -\- c)= ab -\- ac

and

{a -\- b) c= ac -f- be

hold for our algebra of segments.

In the proof of the first one of these laws, we shall

make use of figure 46.* In this figure, we have

b= OA' c=OC\
ab= OB', ab=OA", ac^OC", etc.

In the same figure, B"D2 is parallel to C"DV which

is parallel to the fixed straight line 0A\ and B'D
X
is

parallel to C'D
2 , which is parallel to the fixed straight

line OA". Moreover, we have A'A" parallel to C'C">

and A'B" parallel to B'A", parallel to F'D
2 ,

parallel

to F"DV

Figures 46, 47, and 48 were designed by Dr. Von Schaper, as have also

the details of the demonstrations relating to these figures.
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Our proposition amounts to asserting that we must

necessarily have also

F'F" parallel to A'A" and to C C"

.

We construct the following auxiliary lines :

^'[/parallel to the fixed straight line OA',

F' T " ii iC iC i( ii OA".

Let us denote the points of intersection of the straight

lines C"D
X
and C'D

2 , CD, and F'f, C

D

%
and F"J

by G, Hv II
2 , respectively. Finally, we obtain the

other auxiliary lines indicated in the figure by joining

the points already constructed.

'

-J- c) = ab -\- ac

Fig 46.

In the two triangles A'B" C" andF'D
2 G, the straight

lines joining homologous vertices are parallel to each

other. According to the second part of Desargues's

theorem, it follows, therefore, that

^'C"is parallel to F' G.

In the two triangles A'C'F" and F' GJ?
2 , the straight

lines joining the homologous vertices are also par-

allel to each other. From the properties already dem-
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onstrated, it follows by virtue of the second part of

Desargues's theorem that we must have

A'F" parallel to F'ff
2

.

Since in the two horizontally shaded triangles OA'F'

andJH2
F' the homologous sides are parallel, Desar-

gues's theorem shows that the three straight lines

joining the homologous vertices, viz.

:

Of, A'H
2 , F"F'

all intersect in one and the same point, say in P.

In the same way, we have necessarily

A"F' parallel to F"H
x

and since, in the two obliquely shaded triangles OA"F'

andJHl
F ,

\ the homologous sides are parallel, then,

in consequence of Desargues's theorem, the three

straight lines joining the homologous vertices, viz.:

O/, A"JIV F'F",

all intersect likewise in the same point, namely, in

point P.

Moreover, in the triangles OA'A" andJH2
HV the

straight lines joining the homologous vertices all pass

through this same point P, and, consequently, it fol-

lows that we have

H
X
H

2
parallel to A'A",

and, therefore,

H
X
H

2
is parallel to C C".

Finally, let us consider the figure F"H
2
C C"HX

F'F"

.

Since, in this figure, we have

F"H
2
parallel to CF\ parallel to C"HV

H
2
C " " F"C", " " H

X
F\

C'C" << " HJIy>
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we recognize here again figure 43, which we have

already made use of in § 25 to prove the commutative

law of addition. The conclusions, analogous to those

which we reached there, show that we must have

F'F" parallel to H
X
HV

and, consequently, we must have also

F'F" parallel to A'A",

which result concludes our demonstration.

To prove the second formula of the distributive

law, we make use of an entirely different figure,—

figure 47. In this figure, we have

(a -f b) c= ac -\- be

Fig. 47.

l = OD, a=zOA, a=OB, b=OG, c=OD\
ac=OA\ ac=OB\ bc=OG\ etc.,

and, furthermore, we have

Gil parallel to G'H', parallel to the fixed line OA,
AH " " A'H', " " « << " OF.

We have also

AB parallel to A'B'

BD " << B'Zr

DG " << JD'G'

HJ <•' « H'J\
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That which we are to prove amounts, then, to dem-

onstrating that

DJ must be parallel to D'J'

.

Denote the points in which BD and GD intersect

the straight line AH by C and F, respectively, and

the points in which B'D' and G'D' intersect the straight

line A'JT' by C and F\ respectively. Finally, draw

the auxiliary lines FJ and F'J', indicated in the figure

by dotted lines.

In the triangles ABC and A'B'C, the homologous

sides are parallel and, consequently, by Desargues's

theorem the three points O, C, C lie on a straight

line. Then, by considering in the same way the tri-

angles CDF and C D'F', it follows that the points

O, F, F' lie upon the same straight line and like-

wise, from a consideration of the triangles FGIf and

F'G'If', we find the points O, H, H' to be situated

on a straight line. Now, in the triangles FIIJ a.n&

F'H'J', the straight lines joining the homologous

vertices all pass through the same point O, and,

hence, as a consequence of the second part of De-

sargues's theorem, the straight lines FJ and F'J' must

also be parallel to each other. Finally, a considera-

tion of the triangles DFJ and D'F'J' shows that the

straight lines DJ and D'J' are parallel to each other

and with this our proof is completed.

§ 27. EQUATION OF THE STRAIGHT LINE, BASED
UPON THE NEW ALGEBRA OF SEGMENTS.

In §§ 24-26, we have introduced into the plane

geometry an algebra of segments in which the com-

mutative law of addition and that of multiplication,

as well as the two distributive laws, hold. This was
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done upon the assumption that the axioms cited in

§ 24, as also the theorem of Desargues, were valid.

In this section, we shall show how an analytical rep-

resentation of the point and straight line in the plane

is possible upon the basis of this algebra of segments.

Definition. Take the two given fixed straight

lines lying in the plane and intersecting in O as the

axis of x and of y, respectively. Let us suppose any

point P of the plane determined by the two segments

x, y which we obtain upon the #-axis andjy-axis, re-

spectively, by drawing through P parallels to these

axes. These segments are called the co-ordinates of

the point P. Upon the basis of this new algebra of

segments and by aid of Desargues's theorem, we shall

deduce the following proposition.

Theorem 34. The co-ordinates x
f y of a point on

an arbitrary straight line always satisfy an equa-

tion in these segments of the form

ax-{- by-\- c= 0.

In this equation, the segments a and b stand

necessarily to the left of the co-ordinates x and

y. The segments a and b are never both zero

and c is an arbitrary segment.

Conversely, every equation in these segments

and of this form represents always a straight

line in the plane geometry under consideration.

Proof. Suppose that the straight line / passes

through the origin O. Furthermore, let C be a defi-

nite point upon / different from O, and P any arbitrary

point of /. Let OA and OB be the co-ordinates of C
and x t y be the co-ordinates of P. We will denote

the straight line joining the extremities of the seg-

ments x, y by g. Finally, through the extremity of
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the segment 1, laid off on the #-axis, draw a straight

line h parallel to AB. This parallel cuts off upon the

jy-axis the segment e. From the second part of De-

sargues's theorem, it follows that the straight line g
is also always parallel to AB. Since g is always par-

allel to h, it follows that the co-ordinates x, y of the

point P must satisfy the equation

ex=g.

Moreover, in figure 49 let /' be any arbitrary

straight line in our plane. This straight line will cut

off on the j*>axis the segment c=00'. Now, in the

same figure, draw through O the straight line / par-

allel to /'. Let P' be an arbitrary point on the line /'.

The straight line through P', parallel to the #-axis,

intersects the straight line / in P and cuts off upon

the jy-axis the segment y= OB. Finally, through P
and P' let parallels to the y axis cut off on the #-axis

the segments x= OA and x' = OA\
We shall now undertake to show that the equation
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is fulfilled by the segments in question. For this pur-

pose, draw O'C parallel to the unit-line and likewise

CD parallel to the jc-axis and AD parallel to the j-axis.

Fig. 49-

Then, to prove our proposition amounts to showing

that we must have necessarily

A'D parallel to O'C

Let D' be. the point of intersection of the straight

lines CD and A'P' and draw O'C parallel to they axis.

Since, in the triangles OCPand O'C'P', the straight

lines joining the homologous vertices are parallel, it

follows, by virtue of the second part of Desargues's

theorem, that we must have

CP parallel to CP\
In a similar way, a consideration of the triangles\ACP
and A' C'P' shows that we must have

AC parallel to A' C\

Since, in the triangles A CD and C'A'O', the homol-

ogous sides are parallel to each other, it follows that

the straight lines AC, CA' and DO' intersect in a

common point. A consideration of the triangles C'A fD
and ACO f then shows that A'D and CO' are parallel

to each other.
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From the two equations already obtained, viz.

:

ex=y and x'= x-\- c,

follows at once the equation

ex' =y -f- ec.

If we denote, finally, by n the segment which added

to the segment 1 gives the segment 0, then, from this

last equation, we may easily deduce the following

ex
1

-f- ny -f- nee= 0,

and this equation is of the form required by theo-

rem 34.

We can now show that the second part of the the-

orem is equally true ; for, every linear equation

ax -f- by -f- e=
may evidently be brought into the required form

ex -f- ny -f- nee=
by a left-sided multiplication by a properly chosen

segment.

It must be expressly stated, however, that, by our

hypothesis, an equation of segments of the form

xa-\-yb-\- e= 0,

where the segments a, b stand to the right of the co-

ordinates x, y does not, in general, represent a straight

line.

In § 30, we shall make an important application

of theorem 34.

§ 28. THE TOTALITY OF SEGMENTS, REGARDED AS

A COMPLEX NUMBER SYSTEM.

We see immediately that, for the new algebra of

segments established in § 24, theorems 1-6 of § 13 are

fulfilled.
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Moreover, by aid of Desargues's theorem, we have

already shown in §§ 25 and 26 that the laws 7-11 of

operation, as given in § 13, are all valid in this algebra

of segments. With the single exception of the com-

mutative law of multiplication, therefore, all of the

theorems of connection hold.

Finally, in order to make possible an order of mag-

nitude of these segments, we make the following con-

vention. Let A and B be any two distinct points of

the straight line OE. Suppose then that the four

points O, E, A, B stand, in conformity with axiom II,

4, in a certain sequence. If this sequence is one of

the following six possible ones, viz.

:

ABOE, AOBE, AOEB, OABE, OAEB, OEAB,

then we will call the segment a= OA smaller than the

segment l>= OB and indicate the same by writing

On the other hand, if the sequence is one of the six

following ones, viz.:

BAOE, BOAE, BOEA, OBAE, QBEA, OEBA,

then we will call the segment a^= OA greater than the

segment l>= OB, and we write accordingly

a>b.

This convention remains in force whenever A or B
coincides with O or E, only then the coinciding points

are to be regarded as a single point, and, consequently,

we have only to consider the order of three points.

Upon the basis of the axioms of group II, we can

easily show also that, in our algebra of segments, the

laws 13-16 of operation given in § 13 are fulfilled.

Consequently, the totality of all the different segments

forms a complex number system for which the laws
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1-11, 13-16 of § 13 hold; that is to say, all of the
usual laws of operation except the commutative law
of multiplication and the theorem of Archimedes. We
will call such a system, briefly, a desarguesian number
system.

§ 29. CONSTRUCTION OF A GEOMETRY OF SPACE BY
AID OF A DESARGUESIAN NUMBER SYSTEM.

Suppose we have given a desarguesian number
system D. Such a system makes possible the con-
struction of a geometry of space in which axioms I,

II, III are all fulfilled.

In order to show this, let us consider any system
of three numbers (x, y, z) of the desarguesian number
system D as a point, and the ratio of four such num-
bers (u\v\w\r), of which the first three are not 0,

as a plane. However, the systems (uw\w\r) and
(av : au : aw : ar), where a is any number of D different

from 0, represent the same plane. The existence of

the equation

ux -f- vy -j- ws -f- r=
expresses the condition that the point (x, y, z) shall

lie in the plane (u\v:w\ r). Finally, we define a

straight line by the aid of a system of two planes
(u':v':w':r) and (u"\v":w":r"), where we impose the

condition that it is impossible to find in D two num-
bers a\ a" different from zero, such that we have
simultaneously the relations

a'u'= a"u"
y

a'v'= a"v", a'w'= a"w".

A point (x, y, z) is said to be situated upon this

straight line [Vrj/io/ir'), (u":v":w":r")~\, if it is

common to the two planes (u':v':w':r') and (>":#":
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w"\ r"). Two straight lines which contain the same
points are not regarded as being distinct.

By application of the laws 1-11 of § 13, which by

hypothesis hold for the numbers of D, we obtain with-

out difficulty the result that the geometry of space

which we have just constructed satisfies all of the ax-

ioms of groups I and III.

In order that the axioms (II) of order may also be

valid, we adopt the following conventions. Let

(XV J'v Zl)> (
X2> Iv %)> (X.V J3' 2.0

be any three points of a straight line

[(//: v
r

: w \ r'), (//': v" \ ze/":r")].

Then, the point (x
29 y2 , z

2) is said to lie between the

other two, if we have fulfilled at least one of the six

following double inequalities :

(1) x
x <x*<Xv x

x
y>x

2
>x.v

(2) j;i<J'2<j'» }\>y2 >y-»

(3) z
l < z

2 < s„ z
x
> z

2 > z
2 ,

If one of the two double inequalities (1) exists, then

we can easily conclude that either j\ =y2
=y39 or one

of the two double inequalities (2) exists, and, conse-

quently, either z
l
=^z

2
= z

2 or one of the double inequal-

ities (3) must exist. In fact, from the equations

u'x
t + v'y

t + w'z
{ + r* = 0,

tS
,x<+v"y

t
+w''3

t + t
J

'= o,

(/=1, 2, 3)

we may obtain, by a left-sided multiplication of these

equations by numbers suitably chosen from D and
then adding the resulting equations, a system of equa-
tions of the form

(4) trx
t+v"yt+ r"'= 0, (/=!, 2, 3).



DESARGUES'S THEOREM. 97

In this system, the coefficient v'" is certainly different

from zero, since otherwise the three numbers xv x
2 , x3

would be mutually equal.

From

it follows that

u"
fx

l
= x'"u

2
= x'"u

3 ,

and, hence, as a consequence of (4), we have

v"'y
x

and, therefore,

v"'y
x + r'" ^ v'"y

2 -f r'" ^ v'"y
3 + r'"

^ ^-

Since z>'" is different from zero, we have

< <

In each of these double inequalities, we must take

either the upper sign throughout, or the middle sign

throughout, or the lower sign throughout.

The preceding considerations show, that, in our

geometry, the linear axioms II, 1-4 of order are all

valid. However, it remains yet to show that, in this

geometry, the plane axiom II, 5 is also valid.

For this purpose let a plane (u\v\w\f) and a

straight line \iuw\w\r), {u':v':w':r')'] in this plane

be given. Let us assume that all the points (#, y, z)

of the plane (u: v : w: r), for which we have the ex-

pression ux -f- v'y -f- w'z -f r' greater than or less than

zero, lie respectively upon the one side or upon the

other side of the given straight line. We have then

only to show that this convention is in accordance

with the preceding statements. This, however, is

easily done.
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We have thus shown that all of the axioms of

groups I, II, III are fulfilled in the geometry of space

which we have obtained in the above indicated man-

ner from the desarguesian number system D. Re-

membering now that the theorem of Desargues is a

consequence of the axioms I, II, III, we see that the

proposition just stated is exactly the converse of the

result reached in § 28.

§ 30. SIGNIFICANCE OF DESARGUES'S THEOREM.

If, in a plane geometry, axioms I, 1-2, II, III are

all fulfilled and, moreover, if the theorem of Desar-

gues holds, then, according to §§ 24-28, it is always

possible to introduce into this geometry an algebra of

segments to which the laws 1-11, 13-1C of § 13 are

applicable. We will now consider the totality of these

segments as a complex number system and construct,

upon the basis of this system, a geometry of space, in

accordance with § 29, in which all of the axioms I, II,

III hold.

In this geometry of space, we shall consider only

the points {x, y, 0) and those straight lines upon

trvJU* whichAsuch points lie. We have then a plane geom-

etry which must, if we take into account the proposi-

2 -7 tion established in § 3Q, coincide exactly with the

plane geometry proposed at the beginning. Hence,

we are led to the following proposition, which may be

regarded as the objective point of the entire discus-

sion of the present chapter.

Theorem 35. If, in a plane geometry, axioms I,

1-2, II, III are all fulfilled, then the existence of

Desargues's theorem is the necessary and suffi-

cient condition that this plane geometry may
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be regarded as a part of a geometry of space in

which all of the axioms I, II, III are fulfilled.

The theorem of Desargues may be characterized

for plane geometry as being, so to speak, the result

of the elimination of the space axioms.

The results obtained so far put us now in the posi-

tion to show that every geometry of space in which
axioms I, II, III are all fulfilled may be always re-

garded as a part of a "geometry of any number of di-

mensions whatever." By a geometry of an arbitrary

number of dimensions is to be understood the totality

of all points, straight lines, planes, and other linear

elements, for which the corresponding axioms of con-

nection and of order, as well as the axiom of paral-

lels, are all valid.



PASCAL'S THEOREM.

§ 31. TWO THEOREMS CONCERNING THE POSSIBIL-

ITY OF PROVING PASCAL'S THEOREM.

AS is well known, Desargues's theorem (theorem 32)

l\ may be demonstrated by the aid of axioms I, II,

III; that is to say, by the use, essentially, of the ax-

ioms of space. In § 23, we have shown that the dem-

onstration of this theorem without the aid of the space

axioms of group I and without the axioms of congru-

ence (group IV) is impossible, even if we make use

of the axiom of Archimedes.

Upon the basis of axioms I, 1-2, II, III, IV and,

hence, by the exclusion of the axioms of space but

with the assistance, essentially, of the axioms of con-

gruence, we have, in § 14, deduced Pascal's theorem

and, consequently, according to § 22, also Desargues's

theorem. The question arises as to whether Pascal's

theorem can be demonstrated without the assistance

of the axioms of congruence. Our investigation will

show that in this respect Pascal's theorem is very dif-

ferent from Desargues's theorem ; for, in the demon-

stration of Pascal's theorem, the admission or exclu-

sion of the axiom of Archimedes is of decided influence.

We may combine the essential results of our investi-

gation in the two following theorems.

Theorem 36. Pascal's theorem (theorem 21) may
be demonstrated by means of the axioms I, II,
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III, V; that is to say, without the assistance
of the axioms of congruence and with the aid

of the axiom of Archimedes.

Theorem 37. Pascal's theorem (theorem 21) can-
not be demonstrated by means of the axioms I,

II, III alone; that is to say, by exclusion of

the axioms of congruence and also the axiom
of Archimedes.

In the statement of these two theorems, we may,
by virtue of the general theorem 35, replace the space
axioms I, 3-7 by the plane condition that Desargues's
theorem (theorem 32) shall be valid.

§ 32. THE COMMUTATIVE LAW OF MULTIPLICATION
FOR AN ARCHIMEDEAN NUMBER SYSTEM.

The demonstration of theorems 36 and 37 rests

essentially upon certain mutual relations concerning
the laws of operation and the fundamental proposi-
tions of arithmetic, a knowledge of which is of itself

of interest. We will state the two following theorems.

Theorem 38. For an archimedean number sys-

tem, the commutative law of multiplication is a

necessary consequence of the remaining laws of

operation
; that is to say, if a number system

possesses the properties 1-11, 13-17 given in

§ 13, it follows necessarily that this system sat-

isfies also formula 12.

Proof. Let us observe first of all that, if a is an
arbitrary number of the system, and, if

*= l + l + .... + l

is a positive integral rational number, then for n and
a the commutative law of multiplication always holds.

In fact, we have
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0*= rt(l + l + .... + l)

= a~\- a-\- .. . . + «,

and likewise

*0= (1 -f 1 + .. .. + 1)0

= 1 • a -f l-<z+.... + l-#

= # + # + .. • • + #•

Suppose now, in contradiction to our hypothesis,

a, b to be numbers of this system, for which the com-

mutative law of multiplication does not hold. It is

then at once evident that we may make the assump-

tion that we have

a > 0, b > 0, ab— ba> 0.

By virtue of condition 6 of § 13, there exists a number

c{^> 0), such that

(« + # + l)c~ab— ba.

Finally, if we select a number d, satisfying simultane-

ously the inequalities

//> 0, d<l, d<c
9

and denote by m and n two such integral rational

numbers ^0 that we have respectively

md<^a<Xm-\- V)d
and

nd<b<(n-{- l)d,

then the existence of the numbers m and n is an im-

mediate consequence of the theorem of Archimedes

(theorem 17, § 13). Recalling now the remark made
at the beginning of this proof, we have by the multi-

plication of the last inequalities

ab<,mnd2+ (/« + # + 1)*/
2

ba > mnd2
,
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and, hence, by subtraction

ab— ba<_(in 4- n -j- l)d 2
.

We have, however,

md<a, nd<^b, d <^1

and, consequently,

(m + n+ l)tt<a + & + l
;

i. e.,

or, since d<c, we have

#<£— ba<^(a-{- b -\- l)c.

This inequality stands in contradiction to the defini-

tion of the number c, and, hence, the validity of the

theorem 38 follows.

§ 33. THE COMMUTATIVE LAW OF MULTIPLICATION
FOR A NON-ARCHIMEDEAN NUMBER SYSTEM.

Theorem 39. For a non-archimedean number
system, the commutative law of multiplication

is not a necessary consequence of the remain-

ing laws of operation; that is to say, there ex-

ists a system of numbers possessing the prop-

erties 1-11, 13-16 mentioned in § 13, but for

which the commutative law (12) of multiplica-

tion is not valid. A desarguesian number sys-

tem, in the sense of § 28, is such a system.

Proof. Let / be a parameter and T any expres-

sion containing a finite or infinite number of terms,

say of the form

where r (=f= 0), rv r
2

. . . . are arbitrary rational num-
bers and n is an arbitrary integral rational number
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== 0. Moreover, let s be another parameter and S any

expression having a finite or infinite number of terms,

say of the form

S= s
m 7 -f s

w+ l T
x
+ s

m+2T
2 + ,

where 7" (4=0), Tv T
2

. . . . denote arbitrary expres-

sions of the form Z'and m is again an arbitrary integral

rational number =0. We will regard the totality of

all the expressions of the form S as a complex num-

ber system 0(x, /), for which we will assume the fol-

lowing laws of operation; namely, we will operate

with s and / according to the laws 7-11 of § 13, as

with parameters, while in place of rule 12 we will ap-

ply the formula

(1) ts= 2st.

If, now, S', S" are any two expressions of the form

S, say

s' = s-'r + ^'+ J r
x + j'»'+3 r; + . . .

.

,

s"

=

s
w,,t;+ s

9""* 1 T'i+ s
m"+* r;'+

then, by combination, we can evidently form a new ex-

pression S' -f- S" which is of the form S, and is, more-

over, uniquely determined. This expression S' -f- S'

is called the sum of the numbers represented by S'

and S".

By the multiplication of the two expressions S' and

*S" term by term, we obtain another expression of the

form

s's"= s*' r; $»*" r;+ <v*'t;
j*"+i r; + j^+i t[ *»" t;)

+ {s
m' T' s

m"+2 T%+ s
m'+ l T\ s

m"+ l T'(+ s
M'+2T

2
s
m"T* )+ . . .

.

This expression, by the aid of formula (1), is evidently

a definite single-valued expression of the form S and
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we will call it the product of the numbers represented
by S' and S".

This method of calculation shows at once the valid-
ity of the laws 1-5 given in § 13 for calculating with
numbers. The validity of law 6 of that section is also
not difficult to establish. To this end, let us assume
that

s' =s>*
fr + j»"+i t[ + j^r;+ . . .

.

and

are two expressions of the form S, and let us suppose,
further, that the coefficient /-; of T' is different from
zero. By equating the like powers of s in the two
members of the equation

S'S"= S'",

we find, first of all, in a definite manner an integral
number m" as exponent, and then such a succession
of expressions

T" T" T"

that, by aid of formula (1), the expression

S"= s
m 'f

Tl-^sm"^T[-\sm"^Tl. . .

.

satisfies equation (2). With this our theorem is estab-
lished.

In order, finally, to render possible an order of se-

quence of the numbers of our system Q(s, f), we make
the following conventions. Let a number of this sys-
tem be called greater or less than according as in
the expression S, which represents it, the first coeffi-

cient r of T is greater or less than zero. Given any
two numbers a, b of the complex number system under
consideration, we say that a<b or a>b according as
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we have a—£<0 or >0. It is seen immediately that,

with these conventions, the laws 13-16 of § 13 are

valid ; that is to say, O (x, /) is a desarguesian number

system (see § 28).

As equation (1) shows, law 12 of § 13 is not ful-

filled by our complex number system and, conse-

quently, the validity of theorem 39 is fully established.

In conformity with theorem 38, Archimedes's the-

orem (theorem 17, § 13) does not hold for the number

system 0(j, f) which we have just constructed.

We wish also to call attention to the fact that the

number system 0(j, /), as well as the systems Q and

Q(/) made use of in § 9 and § 12, respectively, con-

tains only an enumerable set of numbers.

§ 34. PROOF OF THE TWO PROPOSITIONS CONCERN-
ING PASCAL'S THEOREM. (NON-PASCALIAN

GEOMETRY )

If, in a geometry of space, all of the axioms I, II,

III are fulfilled, then Desargues's therem (theorem

32) is also valid, and, consequently, according to §§

24-26, pp. 79-89, it is possible to introduce into this

geometry an algebra of segments for which the rules

1-11, 13-16 of § 13 are all valid. If we assume now
that the axiom (V) of Archimedes is valid for our

geometry, then evidently Archimedes's theorem (the-

orem 17 of § 13) also holds for our algebra of seg-

ments, and, consequently, by virtue of theorem 38,

the commutative law of multiplication is valid. Since,

however, the definition of the product of two seg-

ments, as introduced in § 24 (figure 42) and which is

the definition here also under discussion, agrees with

the definition in § 15 (figure 22), it follows from the

construction made in § 15 that the commutative law



PASCAL'S THEOREM. 107

of multiplication is nothing else than Pascal's theo- J^,
rem. Consequently, the validity of theorem 36 is estab-

lished.

In order to demonstrate theorem 37, let us con-
sider again the desarguesian number system Q(s, t)

introduced in § 33, and construct, in the manner de-

scribed in § 29, a geometry of space for which all of

the axioms I, II, III are fulfilled. However, Pascal's

theorem will not hold for this geometry ; for, the com-
mutative law of multiplication is not valid in the de-

sarguesian number system G(j, /). According to theo-

rem 36, the non-pascalian geometry is then neces-

sarily a non-archimedean geometry.

By adopting the hypothesis we have, it is evident

that we cannot demonstrate Pascal's theorem, pro-

viding we regard our geometry of space as a part of

a geometry of an arbitrary number of dimensions in

which, besides the points, straight lines, and planes,

still other linear elements are present, and providing

there exists for these elements a corresponding sys-

tem of axioms of connection and of order, as well as

the axiom of parallels.

§ 35. THE DEMONSTRATION, BY MEANS OF THE THE
:

OREMS OF PASCAL AND DESARGUES, OF ANY
THEOREM RELATING TO POINTS

OF INTERSECTION.

Every proposition relating to points of intersection

in a plane has necessarily the following form : Select,

first of all, an arbitrary system of points and straight

lines satisfying respectively the condition that certain

ones of these points are situated on certain ones of

the straight lines. If, in some known manner, we
construct the straight lines joining the given points
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and determine the points of intersection of the given

lines, we shall obtain finally a definite system of three

straight lines, of which our proposition asserts that

they all pass through the same point.

Suppose we now have a plane geometry in which

all of the axioms I 1-2, II. . . ., V are valid. Accord-

ing to § 17, pp. 53-56, we may now find, by making

use of a rectangular pair of axes, for each point a cor-

responding pair of numbers (x,y) and for each straight

line a ratio of three definite numbers (ii\v\ w). Here,

the numbers x, y, it, v> w are all real numbers, of

which u, v cannot both be zero. The condition show-

ing that the given point is situated upon the given

straight line, viz.

:

mx -f- vy ~{-w=
is an equation in the ordinary sense of the word. Con-

versely, in case x, y, u, v, w are numbers of the alge-

braic domain O of § 9, and u, v are not both zero, we
may certainly assume that each pair of numbers (x, y)

gives a point and that each ratio of three numbers

(u\v\w) gives a straight line in the geometry in ques-

tion.

If, for all the points and straight lines which occur

in connection with any theorem relating to intersec-

tions in a plane, we introduce the corresponding pairs

and triples of numbers, then such a theorem asserts

that a definite expression A (pv p29 . : .
. , pr) with real

coefficients and depending rationally upon certain

parameters pv p2 , . . .
. , pr always vanishes as soon as

we put for each of these parameters a number of the

main O considered in § 9. We conclude from this

that the expression A(fiv p2 , . . .
. , pr) must also van-

ish identically in accordance with the laws 7-12 of

§13.
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Since, according to § 32, Desargues's theorem holds
for the geometry in question, it follows that we cer-

tainly can make use of the algebra of segments intro-

duced in § 24, and because Pascal's theorem is equally
valid in this case, the commutative law of multiplica-

tion is also. Hence, for this algebra of segments, all

of the laws 7-12 of § 13 are valid.

If we take as our axes in this new algebra of seg-

ments the co-ordinate axes already used and consider
the unit points JS, E' as suitably established, we see

that the new algebra of segments is nothing else than
the system of co-ordinates previously employed.

In order to show that, for the new algebra of seg-

ments, the expression A (plf p2 , , pr) vanishes

identically, it is sufficient to apply the theorems of

Pascal and Desargues. Consequently we see that

:

Every proposition relative to points of intersection in

the geometry in question must always, by the aid of suit-

ably coristructed auxiliary points and straight lines, turn

out to be a combination of the theorems of Pascal and
Desargues. Hence for the proof of the validity of a theo-

rem relating to points of intersection, we need not have
resource to the theorems of congruence.



GEOMETRICAL CONSTRUCTIONS
BASED UPON THE AXIOMS I-V.

§ 36. GEOMETRICAL CONSTRUCTIONS BY MEANS OF
A STRAIGHT-EDGE AND A TRANS-

FERER OF SEGMENTS.

SUPPOSE we have given a geometry of space, in

which all of the axioms I-V are valid. For the

sake of simplicity, we shall consider in this chapter a

a plane geometry which is contained in this.geometry

of space and shall investigate the question as to what

elementary geometrical constructions may be carried

out in such a geometry.

Upon the basis of the axioms of group I, the fol-

lowing constructions are always possible.

Problem 1. To join two points with a straight

line and to find the intersection of two straight lines,

the lines not being parallel.

Axiom III renders possible the following construc-

tion :

Problem 2. Through a given point to draw a par-

allel to a given straight line.

By the assistance of the axioms (IV) of congru-

ence, it is possible to layoff segments and angles;

that is to say, in the given geometry we may solve the

following problems

:

Problem 3. To lay off from a given point upon a

given straight line a given segment.
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Problem 4. To lay off on a given straight line a

given angle ; or what is the same thing, to construct

a straight line which shall cut a given straight line at

a given angle.

It is impossible to make any new constructions by
the addition of the axioms of groups II and V. Con-

sequently, when we take into consideration merely the

axioms of groups I-V, all of those constructions and
only those are possible, which may be reduced to the

problems 1-4 given above.

We will add to the fundamental problems 1-4 also

the following :

Problem 5. To draw a perpendicular to a given

straight line.

We see at once that this construction can be made
in different ways by means of the problems 1-4.

In order to carry out the construction in problem

1, we need to make use of only a straight edge. An
instrument which enables us to make the construction

in problem 3, we will call a transferer of segments. We
shall now show that problems 2, 4, and 5 can be re-

duced to the constructions in problems 1 and 3 and,

consequently, all of the problems 1-5 can be com-
pletely constructed by means of a straight-edge and a

transferer of segments. We arrive, then, at the fol-

lowing result

:

Theorem 40. Those problems in geometrical

construction, which may be solved by the as-

sistance of only the axioms I-V, can always be

carried out by the use of the straight-edge and

the transferer of segments.

Proof. In order to reduce problem 2 to the solu-

tion of problems 1 and 3, we join the given point P
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with any point A of the given straight line and pro-

duce PA to C, making AC— PA. Then, join C with

any other point B of the

given straight line and

produce CB to Q, making

BQ-=CB. The straight

line PQ is the desired

parallel.

We can solve problem

5 in the following manner.

LetA be an arbitrary point

of the given straight line.

Then upon this straight line, lay off in both directions

from A the two equal segments AB and AC. Deter-

mine, upon any two straight lines passing through the

point A, the points E and D so that the segments

AD and AE will equal AB and AC. Suppose the

Fig 50.

straight lines BD and CE intersect in F and the

straight lines BE and CD intersect in H. FH is

then the desired perpendicular. In fact, the angles

BDC and BEC, being inscribed in a semicircle having
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the diameter BC, are both right angles, and, hence,
according to the theorem relating to the point of in-

tersection of the altitudes of a triangle, the straight
lines i^7and j5Care perpendicular to each other.

Moreover, we can easily solve problem 4 simply by
the drawing of straight lines and the laying off of seg-
ments. We will employ the following method which
requires only the drawing of parallel lines and the
erection of perpendiculars. Let /3 be the angle to be
laid off and A its vertex. Draw through A a straight
line / parallel to the given straight line, upon which

Fig. 52.

we are to lay off the given angle /?. From an arbi-

trary point B of one side of the angle p, let fall a per-
pendicular upon the other side of this angle and also

one upon /. Denote the feet of these perpendiculars
by D and C respectively. The construction of these
perpendiculars is accomplished by means of problems
2 and 5. Then, let fall from A a perpendicular upon
CD, and let its foot be denoted by E. According to

the demonstration given in § 14, the angle CAB equals

/?. Consequently, the construction in 4 is made to

depend upon that of 1 and 3 and with this our propo-
sition is demonstrated.
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% 37. ANALYTICAL REPRESENTATION OF THE CO-
ORDINATES OF POINTS WHICH CAN

BE SO CONSTRUCTED.

Besides the elementary geometrical problems con-

sidered in § 36, there exists a long series of other

problems whose solution is possible by the drawing

of straight lines and the laying off of segments. In

order to get a general survey of the scope of the prob-

lems which may be solved in this manner, let us take

as the basis of our consideration a system of axes in

rectangular co-ordinates and suppose that the co-or-

dinates of the points are, as usual, represented by real

numbers or by functions of certain arbitrary param-

eters. In order to answer the question in respect to

all the points capable of such a construction, we em-

ploy the following considerations.

Let a system of definite points be given. Combine
the co-ordinates of these points into a domain R.

This domain contains, then, certain real numbers and

certain arbitrary parameters p. Consider, now, the

totality of points capable of construction by the draw-

ing of straight lines and the laying off of definite seg-

ments, making use of the system of points in question.

We will call the domain formed from the co-ordinates

of these points O(-tf), which will then contain real

numbers and functions of the arbitrary parameters /.

The discussion in § 17 shows that the drawing of

straight lines and of parallels amounts, analytically,

to the addition, subtraction, multiplication, and divi-

sion of segments. Furthermore, the well known for-

mula given in § 9 for a rotation shows that the laying

off of segments upon a straight line does not necessi-
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tate any other analytical operation than the extraction

of the square root of the sum of the squares of two

segments whose bases have been previously con-

structed. Conversely, in consequence of the Pytha-

gorean theorem, we can always construct, by the aid

of a right triangle, the square root of the sum of the

squares of two segments by the mere laying off of

segments.

From these considerations, it follows that the do-

main O (i?) contains all of those and only those real

numbers and functions of the parameters/, which arise

from the numbers and parameters in R by means of a

finite number of applications of the five operations

;

viz., the four elementary operations of arithmetic and,

in addition, the fifth operation of extracting the square

root of the sum of two squares. We may express this

result as follows :

Theorem 41. A problem in geometrical construc-

tion is, then, possible of solution by the drawing

of straight lines and the laying off of segments,

that is to say, by the use of the straight-edge

and a transferer of segments, when and only

when, by the analytical solution of the prob-

lem, the co-ordinates of the desired points are

such functions of the co-ordinates of the given

points as may be determined by the rational

operations and, in addition, the extraction of

the square root of the sum of two squares.

From this proposition, we can at once show that

not every problem which can be solved by the use of

a compass can also be solved by the aid of a trans-

ferer of segments and a straight-edge. For the pur-

pose of showing this, let us consider again that geom-
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etry which was constructed in § 9 by the help of the

domain O of algebraic numbers. In this geometry,

there exist only such segments as can be constructed

by means of a straight-edge and a transferer of seg-

ments, namely, the segments determined by the num-

bers of the domain O.

Now, if o) is a number of the domain O, we easily

see from the definition of O that every algebraic num-

ber conjugate to <o must also lie in O. Since the num-

bers of the domain O are evidently all real, it follows

that it can contain only such real algebraic numbers

as have their conjugates also real.

Let us now consider the following problem; viz.,

to construct a right triangle having the hypotenuse

1 and one side \V %\ — 1. The algebraic number

\/z\V 2
|

— 2, which expresses the numerical value of

the other side, does not occur in the domain Q, since

the conjugate number ]/ — 2|"j/2|— 2 is imaginary.

This problem is, therefore, not capable of solution in

the geometry in question and, hence, cannot be con-

structed by means of a straight-edge and a transferer

of segments, although the solution by means of a com-

pass is possible.

§ 38. THE REPRESENTATION OF ALGEBRAIC NUM-
BERS AND OF INTEGRAL RATIONAL FUNC-

TIONS AS SUMS OF SQUARES.

The question of the possibility of geometrical con-

structions by the aid of a straight-edge and a transferer

of segments necessitates, for its complete treatment,

particular theorems of an arithmetical and algebraic

character, which, it appears to me, are themselves of

interest.
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Since the time of Fermat, it has been known that
every positive integral rational number can be repre-
sented as the sum of four squares. This theorem of
Fermat permits the following remarkable generaliza-
tion :

Definition. Let k be an arbitrary number field
and let m be its degree. We will denote by k\ k",

.. .., k{m~l) the m— 1 number fields conjugate to k.

If, among the m fields k, //, k"

,

, fc
m~l

\ there is

one or more formed entirely of real numbers, then we
call these fields real. Suppose that the fields k, k\

, ku
~ l) are such. A number a of the field k is called

in this case totally positive in k, whenever the j num-
bers conjugate to a, contained respectively in k, k\
k",

, k{s~l

\ are all positive. However, if in each
of the m fields k, k\ k" , . . . .,

#>»-» there are also im-
aginary numbers present, we call every number a in
k totally positive.

We have, then, the following proposition :

Theorem 42. Every totally positive number in k
may be represented as the sum of four squares,
whose bases are integral or fractional numbers
of the field k.

The demonstration of this theorem presents seri-

ous difficulty. It depends essentially upon the theory
of relatively quadratic number fields, which I have
recently developed in several papers.* We will here
call attention only to that proposition in this theory
which gives the condition that a ternary diophantine
equation of the form

*"Ueber die Theorie der relativquadratischen Zahlkorper," Jahresbe-
richt der Deutschen Math. Vereinigung, Vol. 6, 1899, and Math. Annalen, Vol.
51. See, also, " Ueber die Theorie der relativ-Abelschen Zahlkorper, " Nachr.
der K. Ges. der Wiss. zu Gottingen, 1898.
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can be solved when the coefficients a, fi, y are given

numbers in k and f, rj } £ are the required numbers in

k. The demonstration of theorem 42 is accomplished

by the repeated application of the proposition just

mentioned.

From theorem 42 follow a series of propositions

concerning the representation of such rational func-

tions of a variable, with rational coefficients, as never

have negative values. I will mention only the follow-

ing theorem, which will be of service in the following

sections.

Theorem 43. Let/(.x) be an integral rational func-

tion of x whose coefficients are rational num-
bers and which never becomes negative for any

real value of x. Then/(.r) can always be rep-

resented as the quotient of two sums of squares

of which the bases are all integral rational func-

tions of x with rational coefficients.

Proof. We will denote the degree of the function

f(jx) by ;//, which, in any case, must evidently be even.

When ;//= 0, that is to say, when f(x) is a rational

number, the validity of theorem 43 follows imme-
diately from Fermat's theorem concerning the repre-

sentation of a positive number as the sum of four

squares. We will assume that the proposition is al-

ready established for functions of degree 2, 4, 6, . . . .,

m— 2, and show, in the following manner, its validity

for the case of a function of the mth degree.

Let us, first of all, consider briefly the case where

f(x) breaks up into the product of two or more in-

tegral functions of x with rational coefficients. Sup-

pose p{x) to be one of those functions contained in



CONSTRUCTIONS BASED ON AXIOMS I-V. 119

f(x), which itself cannot be further decomposed into

a product of integral functions having rational co-

efficients. It then follows at once from the "definite"
character which we have given to the function/(»,
that the factor p(x) must either appear inf(x) to an
even degree or p(x) must be itself "definite"; that

is to say, must be such a function as never has nega-
tive values for any real values of x. In the first case,

f(x}
the quotient 7-7---^ and, in the second case, both p(x)

f(x) I/O)! ^ ;

and -^v are "definite," and these functions have an

even degree < m. Hence, according to our hypoth-

esis, in the first case, yiA_J_ and, in the last case, p(x)

and —4- may be represented as the quotient of thep\X)
sum of squares of the character mentioned in theorem
43. Consequently, in both of these cases, the func-

tion/^) admits of the required representation.

Let us now consider the case where f(x) cannot
be broken up into the product of two integral functions

having rational coefficients. The equation /(0)— O de-

fines, then, a field of algebraic numbers k{6) of the

mth degree, which, together with all their conjugate
fields, are imaginary. Since, according to the defini-

tion given just before the statement of theorem 42,

each number given in k(0), and hence also — 1 is to-

tally positive in &(0), it follows from theorem 42 that

the number — 1 can be represented as a sum of the

squares of four definite numbers in k(0). Let, for ex-

ample

(1) —l=a?+F + f + &,

where a, (3, y, S are integral or fractional numbers in

k{0). Let us put
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a= a^-1 + tf
2r-2 + .... +

a

m= +(0),

p=^r-1 + bjlT^ + .... + bm = ^r(fl),

y

=

^r-1 + r
2r-2 + .... + ^

=

x(0),

0=dfi*-i + ^r~2 + .... +^ =p(0) ;

where ^
x , #2 , . . .

.
, #wJ . . .

.
, */

lf 2̂ , . .
.

, dm are the

rational numerical coefficients and <£(0), <K#)> x(^)>

p(0) the integral rational functions in question, hav-

ing the degree (m— 1) in $.

From (1), we have

1+ {<K*)}
2+ W*)!'+ {x(0)}

2+ {/»(*) l

2 =o.

Because of the irreducibility of the equation /*(>)= 0,

the expression

F(x)=i+ <*(*)}' + !<K*)!
2+ !xW! 2 + \p(*))

2

represents, necessarily, such an integral rational func-

tion of x as is divisible by/(V). F(x) is, then, a

" definite'' function of the degree (2m— 2) or lower.

J?(x)
Hence, the quotient „- ~ is a "definite" function of

the degree (m— 2) or lower in x, having rational co-

efficients. Consequently, by the hypothesis we have
F(x~)

made, ~~~~ can be represented as the quotient of two

sums of squares of the kind mentioned in theorem 43

and, since -F(x) is itself such a sum of squares, it fol-

lows that/(#) must also be a quotient of two sums of

squares of the required kind. The validity of theo-

rem 43 is accordingly established.

It would be perhaps difficult to formulate and to

demonstrate the corresponding proposition for integral

functions of two or more variables. However, I will

here merely remark that I have demonstrated in an

entirely different manner the possibility of represent-

ing any "definite " integral rational function of two
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variables as the quotient of sums of squares of in-

tegral functions, upon the hypothesis that the func-
tions represented may have as coefficients not only
rational but any real numbers.*

§ 39 CRITERION FOR THE POSSIBILITY OF A GEO-
METRICAL CONSTRUCTION BY MEANS OF A

STRAIGHT-EDGE AND A TRANSFERER
OF SEGMENTS.

Suppose we have given a problem in geometrical
construction which can be affected by means of a com-
pass. We shall attempt to find a criterion which will

enable us to decide, from the analytical nature of the
problem and its solutions, whether or not the construc-
tion can be carried out by means of only a straight-
edge and a transferer of segments. Our investigation
will lead us to the following proposition.

Theorem 44. Suppose we have given a problem
in geometrical construction, which is of such a
character that the analytical treatment of it

enables us to determine uniquely the co-ordi-

nates of the desired points from the co-ordinates
of the given points by means of the rational

operations and the extraction of the square root.

Let n be the smallest number of square roots
which suffice to calculate the co-ordinates of

the points. Then, in order that the required
construction shall be possible by the drawing
of straight lines and the laying off of segments,
it is necessary and sufficient that the given geo-
metrical problem shall have exactly 2n real so-

lutions for every position of the given points

;

that is to say, for all values of the arbitrary

See " Ueber ternare definite Formeri,' 'Acta mathematica, Vol. 17.
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parameter expressed in terms of the co-ordi-

nates of the given points.

Proof. We shall demonstrate this proposition

merely for the case where the co-ordinates of the

given points are rational functions, having rational

coefficients, of a single parameter p.

It is at once evident that the proposition gives a

necessary condition. In order to show that it is also

sufficient, let us assume that it is fulfilled and then,

among the n square roots, consider that one which,

in the calculation of the co-ordinates of the desired

points, is first to be extracted. The expression under

this radical is a rational functionfx{f), having rational

coefficients, of the parameter/. This rational func-

tion cannot have a negative value for any real value

of the parameter/; for, otherwise the problem must

have imaginary solutions for certain values of/, which

is contrary to the given hypothesis. Hence, from

theorem 43, we conclude that/^/) can be represented

as a quotient of the sums of squares of integral ra-

tional functions.

Moreover, the formulae

i/^+ ^+ ^-f*/
2= ]/ (1/^2^72^72) 2+ d^

show that, in general, the extraction of the square root

of a sum of any number of squares may always be re-

duced to the repeated extraction of the square root of

the sum of two squares.

If now we combine this conclusion with the pre-

ceding results, it follows that the expression VfY{p}

can certainly be constructed by means of a straight-

edge and a transferer of segments.
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Among the n square roots, consider now the sec-
ond one to be extracted in the process of calculating
the co-ordinates of the required points. The expres-
sion under this radical is a rational function///, |//)
of the parameter/ and the square root first considered.
This function /2 can never be negative for any real
arbitrary value of the parameter/ and for either sign
of Vfx ; for, otherwise among the 2n solutions of our
problem, there would exist for certain values of/ also
imaginary solutions, which is contrary to our hypoth-
esis. It follows, therefore, that/

2 must satisfy a quad-
ratic equation of the form

where ^(/) and ^(/) are, necessarily, such rational
functions of/ as have rational coefficients and for real

values of/ never become negative. From this equa-
tion, we have

f _ fi + Mf)

Now, according to theorem 43, the functions ^(/) and
<M/) must again be the quotient of the sums of squares
of rational functions, and, on the other hand, the ex-
pression /2 may be, from the above considerations,
constructed by means of a straight-edge and a trans-

ferer of segments. The expression found for/
2 shows,

therefore, that/
2 is a quotient of the sum of squares

of functions which may be constructed in the same
way. Hence, the expression V/2 can also be con-
structed by means of a straight-edge and a transferer
of segments.

Just as with the expression/, an\ other rational

function <£2(/, j//) of/ and l// may be shown to be
the quotient of two sums of squares of functions which
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may be constructed, providing, this rational function

4>2 possesses the property that, for real values of the

parameter / and for either sign of Vfv it never be-

comes negative.

This remark permits us to extend the above method

of reasoning in the following manner.

Let f3(p, Vfv 1//2) be such an expression as de-

pends in a rational manner upon the three arguments

A y/fx <> Vf2
and of which, in the analytical calculation

of the co-ordinates of the desired points, the square

root is to be extrated a third time. As before, it fol-

lows that 7*3 can never have negative values for real

values of/ and for either sign of V

f

x
and VfT This

condition of affairs shows again that/
3
must satisfy a

quadratic equation of the form

where <£2 and \f/2
are such rational functions of / and

Vfx
as never become negative for any real value of /

and either sign of Vfv But, according to the preced-

ing remark, the functions
<f>2

and \p2
are the quotients

of two sums of squares of functions which may be con-

structed and, hence, it follows that the expression

&(A V/0
is likewise possible of construction by aid of a straight-

edge and a transferer of segments.

The continuation of this method of reasoning leads

to the demonstration of theorem 44 for the case of a

single parameter/.

The truth of theorem 44 for the general case de-

pends upon whether or not theorem 43 can be gen-

eralized in a similar manner to cover the case of two

or more variables.
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As an example of the application of theorem 44,
we may consider the regular polygons which may be
constructed by means of a compass. In this case, the
arbitrary parameter/ does not occur, and the expres-
sions to be constructed all represent algebraic num-
bers. We easily see that the criterion of theorem 44
is fulfilled, and, consequently, it follows that (every J HIjl r. ^,^
regular polygon can be constructed by the drawing of
straight lines and the laying off of segments. We
might deduce this result also directly from the theory
of the division of the circle {Kreisteilung).

Concerning the other known problems of construc-
tion in the elementary geometry, we will here only
mention that the problem of Malfatti may be con-
structed by means of a straight-edge and a transferer
of segments. This is, however, not the case with the
contact problems of Appolonius.



CONCLUSION.

THE preceding work treats essentially of the prob-

lems of the euclidean geometry only ; that is to

say, it is a discussion of the questions which present

themselves when we admit the validity of the axiom

of parallels. It is none the less important to discuss

the principles and the fundamental theorems when we

disregard the axiom of parallels. We have thus ex-

cluded from our study the important question as to

whether it is possible to construct a geometry in a

logical manner, without introducing the notion of the

plane and the straight line, by means of only points

as elements, making use of the idea of groups of trans-

formations, or employing the idea of distance. This

last question has recently been the subject of consider-

able study, due to the fundamental and prolific works

of Sophus Lie. However, for the complete elucida-

tion of this question, it would be well to divide into

several parts the axiom of Lie, that space is a numer-

ical multiplicity. First of all, it would seem to me

desirable to discuss thoroughly the hypothesis of Lie,

that functions which produce transformations are not

only continuous, but may also be differentiated. As

to myself, it does not seem to me probable that the

geometrical axioms included in the condition for the

possibility of differentiation are all necessary.

In the treatment of all questions of this character,
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I believe the methods and the principles employed in

the preceding work will be of value. As an example,
let me call attention to an investigation undertaken at

my suggestion by Mr. Dehn, and which has already

appeared.* In this article, he has discussed the known
theorems of Legendre concerning the sum of the an-

gles of a triangle, in the demonstration of which that

geometer made use of the idea of continuity.

The investigation of Mr. Dehn rests upon the ax-

ioms of connection, of order, and of congruence; that

is to say, upon the axioms of groups I, II, IV. How-
ever, the axiom of parallels and the axiom of Archi-

medes are excluded. Moreover, the axioms of order

are stated in a more general manner than in the pres-

ent work, and in substance as follows : Among four

points A, B, C, D of a straight line, there are always
two, for example A, C, which are separated(from) the

other two and conversely. Five points A, B, C, D,
E upon a straight line may always be so arranged that

A, C shall be separated (from) B, E and from B, D.
Consequently, A, Bare always separated /fromji?, E
and from C, E, etc. The (elliptic) geometry of Rie-

mann, which we have not considered in the present

work, is in this way not necessarily excluded.

Upon the basis of the axioms of connection, order,

and congruence, that is to say, the axioms I, II, IV,

we may introduce, in the well known manner, the ele-

ments called ideal,—ideal points, ideal straight lines,

and ideal planes. Having done this, Mr. Dehn dem-
onstrates the following theorem.

If, with the exception of the straight line / and

the points lying upon it, we regard all of the

* Math. Annalen, Vol. 53 (1900).
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straight lines and all of the points (ideal or

real) of a plane as the elements of a new geom-

etry, we may then define a new kind of congru-

ence so that all of the axioms of connection,

order, and congruence, as well as the axiom of

Euclid, shall be fulfilled. In this new geom-
etry, the straight line t takes the place of the

straight line at infinity.

S*^. ; . . .- ''^.This euclidean geometry, confined thus to a non-

euclidean plane, may be called a pseudo-geometry and
the new kind of congruence & pseuds-congruence.

By aid of the preceding theorem, we may now in-

troduce an algebra of segments relating to the plane

and depending upon the developments made in § 15,

pp. 46-50. This algebra of segments permits the

demonstration of the following important theorem :

If, in any triangle whatever, the sum of the an-

gles is greater than, equal to, or less than, two
right angles, then the same is true for all tri-

angles.

The case where the sum of the angles is equal to

two right angles gives the well known theorem of

Legendre. However, in his demonstration, Legendre
makes use of continuity.

Mr. Dehn then discusses the connection between

the three different hypotheses relative to the sum of

the angles and the three hypotheses relative to par-

allels.

He arrives in this manner at the following remark-

able propositions.

Upon the hypothesis that through a given point

we may draw an infinity of lines parallel to a

given straight line, it does not follow, when we
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exclude the axiom of Archimedes, that the sum
of the angles of a triangle is less than two right

angles, but on the contrary, this sum may be

(a) greater than two right angles, or

(£) equal to two right angles.

In order to demonstrate part (a) of this theorem,
Mr. Dehn constructs a geometry where we may draw
through a point an infinity of lines parallel to a given
straight line and where, moreover, all of the theorems
of Riemann's (elliptic) geometry are valid. This geom-
etry may be called non-legendrian, for it is in contra-
diction with that theorem of Legendre by virtue of

which the sum of the angles a triangle is never greater
than two right angles. From the existence of this

non-legendrian geometry, it follows at once that it is

impossible to demonstrate the theorem of Legendre
just mentioned without employing the axiom of Ar-
chimedes, and, in fact, Legendre made use also of

continuity in his demonstration of this theorem.
For the demonstration of case (£), Mr. Dehn con-

structs a geometry where the axiom of parallels does
not hold, but where, nevertheless, all of the theorems
of the euclidean geometry are valid. Then, we have
the sum of the angles of a triangle equal to two right

angles. There exist also similar triangles, and the ex-

tremities of the perpendiculars having the same length

and their bases upon a straight line all lie upon the

same straight line, etc. The existence of this geom-
etry shows that, if we disregard the axiom of Archi-

medes, the axiom of parallels cannot be replaced by
any of the propositions which we usually regard as

equivalent to it.

This new geometry may be called a semi-euclidean
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geometry. As in the case of the non-legendrian geom-

etry, it is clear that the semi-euclidean geometry is at

the same time a non-archimedean geometry.

Mr. Dehn finally arrives at the following surpris-

ing theorem

:

Upon the hypothesis that there exists no parallel,

it follows that the sum of the angles of a tri-

angle is greater than two right angles.

This theorern shows that the two non-euclidean

«t.v> cyG hypotheses concerning parallels lead to very different

results from those of the axiom of Archimedes.

We may combine the preceding results in the fol-

lowing table.

THE SUM OF
THROUGH A GIVEN POINT, WE MAY DRAW

THE ANGLES
OF A TRIAN-
GLE IS

NO PARALLELS
TO A

STRAIGHT LINE

ONE PARALLEL
TO A

STRAIGHT LINE

AN INFINITY OF PARALLELS
TO A STRAIGHT LINE

> 2 right

angles

Riemann's

(elliptic) ge-

ometry

This case im-

possible
Non-legendrian geometry

< 2 right

angles

This case im-

possible

Euclidean

(parabolic)

geometry

Semi-euclideari geometry

= 2 right

angles

This case im-

possible

This case im-

possible

Geometry of Lobatschewski

(hyperbolic)

However, as I have already remarked, the present

work is rather a critical investigation of the principles

of the euclidean geometry. In this investigation, we
have taken as a guide the following fundamental prin-

ciple ; viz., to make the discussion of each question

of such a character as to examine at the same time
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whether or not it is possible to answer this question
by following out a previously determined method and
by employing certain limited means. This fundamen-
tal rule seems to me to contain a general law and to

conform to the nature of things. In fact, whenever
in our mathematical investigations we encounter a
problem or suspect the existence of a theorem, our
reason is satisfied only when we possess a complete
solution of the problem or a rigorous demonstration of

the theorem, or, indeed, when we see clearly the rea-

son of the impossibility of the success and, conse-
quently, the necessity of failure.

Thus, in the modern mathematics, the question of
the impossibility of solution of certain problems plays
an important role, and the attempts made to answer
such questions have often been the occasion of dis-

covering new and fruitful fields for research. We re-

call in this connection the demonstration by Abel of

the impossibility of solving an equation of the fifth

degree by means of radicals, as also the discovery of

the impossibility of demonstrating the axiom of par-
allels, and, finally, the theorems of Hermite and Lin-
deman concerning the impossibility of constructing
by algebraic means the numbers e and ?r.

This fundamental principle, by virtue of which we S,<

are everywhere able to discuss the principles under-
lying the impossibility of demonstrations, is intimately

connected with the condition for the "purity" of

methods in demonstration, which in recent times has
been considered of the highest importance by many
mathematicians. The foundation of this condition is

nothing else than a subjective conception of the fun-

damental principle given above. In fact, the preced-

ing geometrical study attempts, in general, to explain
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what are the axioms, hypotheses, or means, necessary

to the demonstration of a truth of elementary geom-

etry, and it only remains now for us to judge from the

point of view in which we place ourselves as to what

are the methods of demonstration which we should

prefer.







APPENDIX.*

THE investigations by Riemann and Helmholtz of

the foundations of geometry led Lie to take up
the problem of the axiomatic treatment of geometry
as introductory to the study of groups. This profound
mathematician introduced a system of axioms which
he showed by means of his theory of transformation

groups to be sufficient for the complete development
of geometry, f

As the basis of his transformation groups, Lie
made the assumption that the functions defining the

group can be differentiated. Hence in Lie's develop-
ment, the question remains uninvestigated as to

whether this assumption as to the differentiability of

the functions in question is really unavoidable in de-

veloping the subject according to the axioms of ge-

ometry, or whether, on the other hand, it is not a

consequence of the group-conception and of the re-

maining axioms of geometry. In conseque%ce of his

method of development, Lie has also necessitated the

express statement of the axiom that the group of dis-

placements is produced by infinitesimal transforma-

tions. These requirements, as well as essential parts

*The following is a smmary of a paper by Professor Hilbert which is

soon to appear in full in the Math. Annalen,— Tr.

t See Lie-Engel, Theorie der Transformationsgruppen, Vol, 3, Chapter 5.
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of Lie's fundamental axioms concerning the nature of

the equation defining points of equal distance, can be

expressed geometrically in only a very unnatural and

complicated manner. Moreover, they appear only

through the analytical method used by Lie and not

as a necessity of the problem itself.

In what follows, I have therefore attempted to set

up for plane geometry a system of axioms, depending

likewise upon the conception of a group,* which con-

tains only those requirements which are simple and

easily seen geometrically. In particular they do not

require the differentiability of the functions denning

displacement. The axioms of the system which I set

up are a special division of Lie's, or, as I believe, are

at once deducible from his.

My method of proof is entirely different from Lie's

method. I make use particularly of Cantor's theory

of assemblages of points and of the theorem of C. Jor-

dan, according to which every closed continuous plane

curve free from double points divides the plane into

an inner and an outer region.

To be sure, in the system set up by me, particular

parts are unnecessary. However, I have turned aside

from the further investigation of these conditions to

the simple statement of the axioms, and above all be-

cause I wish to avoid a comparatively too complicated

proof, anyone which is not at once geometrically evi-

dent.

In what follows I shall consider only the axioms

relating to the plane, although I suppose that an anal-

ogous system of axioms for space can be set up which

*By the following investigation is answered also, as I believe, a general

question concerning the theory of groups, which I proposed in my address

on " MathematischeProbleme," Gbttinger Nachrichten, 1900, p. 17.
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wilt make possible the construction of the geometry
of space in a similar manner.
We establish the following convention, namely:

We will understand by number-plane the ordinary plane
having a rectangular system of co-ordinates x, y.

A continuous curve lying in this number-plane and
being free from double points and including its end
points is called a Jordan curve. If the Jordan curve
is closed, the interior of the region of the number-
plane bounded by it is called a Jordan region.

For the sake of easier representation and compre-
hension, I shall in the following investigation formu-
late the definition of the plane in a more restricted

sense than my method of proof requires,* namely: I

shall assume that it is possible to .map f in a reversible,

single-valued manner all of the points of our geom-
etry at the same time upon the points lying in the
finite region of the number-plane, or upon a definite

partial system of the same. Hence, each point of our
geometry is characterized by a definite pair of num-
bers x, y. We formulate this statement of the idea
of the plane as follows

:

Definitions of the Plane. The plane is a system
of points which can be mapped in a reversible, single-

valued manner upon the points lying in the finite re-

gion of the number-plane, or upon a certain partial

system of the same. To each point A of our geom-
etry, there exists a Jordan curve in whose interior the

map of A lies and all of whose points likewise repre-

sent points of our geometry. This Jordan region is

called the domain of the point A. Each Jordan region

Concerning the broader statement of the conception of the plane see my
note, " Ueber die Grundlagen der Geometrie," GdttingerNachrichten, 1901.

\Abbilden.
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contained in a Jordan region which includes the ppint

A is likewise called a domain of A. If B is any point

in a domain of A, then this domain is at the same

time called also a domain of B.

If A and B are any two points of our geometry,

then there always exists a domain which contains at

the same time both of the points A and B.

We will define a displacement as a reversible, single-

valued transformation of a plane into itself. Evi-

dently we may distinguish two kinds of reversible,

single-valued, continuous transformations of the num-

ber-plane into itself. If we take any closed Jordan

curve in the number-plane and think of its being trav-

ersed in a definite sense, then by such a transforma-

tion this curve goes over into another closed Jordan

curve which is also traversed in a certain sense. We
shall assume in the present investigation that it is

traversed in the same sense as the original Jordan

curve, when we apply a transformation of the number-

plane into itself, which defines a displacement. This

assumption* necessitates the following statement of

the conception of a displacement.

Definition of Displacement. A displacement is

a reversible, single-valued, continuous transformation

of the maps of the given points upon the number-plane

into themselves in such a manner that a closed Jordan

curve is traversed in the same sense after the trans-

formation as before. A displacement by which the

*Lie makes this assumption to contain the condition that the group of

displacements be generated by infinitesimal transformations. The opposite

assumption would assist essentially the demonstration in so far as the "true

straight line " could then be defined as the locus of those points which re-

main unchanged by a displacement changing the sense in which the curve is

traversed
(
Umklappung).
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pointM remains unchanged is called a rotation* about

the point M.
In accordance with the conventions setting forth

the notions "plane" and li displacement," we set up

the three following axioms

:

Axiom I. If two displacements are followed out one

after the other, then the resulting map of the plane

upon itself is again a displacement.

We say briefly

:

Axiom I. The Displacements Form a Group.

Axiom II. IfA andM are two arbitrary points

distinct from each other, then by a rotation about

M we can always bring A into an infinite number

of different positions.

If in our geometry we define a true circle as the to-

tality of those points which arise by rotating about M
a point different from M, then we can express the

statement made in axiom II as follows:

Axiom II. Every True Circle Consists of an

Infinite Number of Points.

As preliminary to axiom III, we make the follow-

ing explanations

:

Let A be a definite point in our geometry and A v

A
2, A 3 , ....any infinite system of points. With the

same letters we will also denote the maps of these

points upon the number-plane. About the point A
in the number-plane take an arbitrarily small domain

xx. If then any of the map-points A t
fall within the

domain a, we say that there are points A {
arbitrarily

near the point A.

* The term "rotation " is used here in the sense of a rotatory displace

ment ; that is to say, only the initial and final stages and not the aggregate of

the intermediate stages of the transition enter into consideration.— Tr.
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Let A, B be a definite pair of points in our geom-

etry, and let A
t
Bv A 2

B
2 , A 3

B3,
... .be any infinite sys-

tem of pairs of points. With the same letters we will

denote the maps of these pairs of points upon the

number-plane. Select about each of the points A
and B in the number-plane an arbitrarily small do-

main a and
fi,

respectively. If then there are pairs of

points A
t
B; such that A £

falls within the domain a and

at the same time i?z
- falls within the domain ft, we say

that there are segments A iBi
lying arbitrarily near the

segment AB.
Let ABC be a definite triad of points in our geom-

etry, and let A
x
B

x Cu A
2
B

2
C2 , A 3

B
S
C3 ,

. . . .be any in-

finite system of triads of points. With the same let-

ters we will also denote the maps of these triads of

points upon the number-plane. About each of the

points^?, By Cin the number-plane take an arbitrarily

small domain a, ft, y, respectively. If then there are

triads of points A
zBfCz

- such that A {
falls in the do-

main a, and likewise Bt in the domain ft and Ct in the

domain y, then we say that there are triangles A
t
B

t
C%

lying arbitrarily near to the triangle ABC

Axtoat III. If there are displacements of such a

kind that triangles arbitrarily near the triangle

ABC can be brought arbitrarily near to the tri-

angle A'B'C'y then there always exists a displace-

ment by which the triangle ABC goes over exactly

into the triangle A'B'C*

The content of this axiom can be briefly expressed

as follows

:

* It is sufficient to assume that axiom III holds for sufficiently small do-

mains as Lie has done. My method of proof may be so changed as to make*

use of only this narrower assumption.
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Axiom III. The Displacements Form a Closed
System.

We call special attention to the following partic-
ular cases of axiom III.

If there are rotations about a point M of the kind
that segments lying arbitrarily near the segment AB
can be brought arbitrarily near the segment A'B', then
there is always such a rotation about M possible by
which the segment AB goes over exactly into the seg-
ment A'B'.

If there are displacements of the kind that seg-
ments arbitrarily near the segment AB can be brought
arbitrarily near to the segment A'B', then there is

always a displacement possible by which the segment
AB goes over exactly into the segment A'B'.

If there are rotations about the point M of the
kind that points arbitrarily near the point A can be
brought arbitrarily near the point A', then there is

always such a rotation about M possible by which A
goes over exactly into the point A'.

I now prove the following proposition :

A geometry in which axioms I—III are fulfilled is

either the euclidean or the bolyai-lobatchefskian

geometry.

If we wish to obtain only the euclidean geometry,
it is necessary merely to make in connection with
axiom I the additional statement that the groups of

displacements shall possess an invariant sub-group.
This additional statement takes the place of the ax-

ioms of parallels.

In what follows, I will briefly outline the general

idea of my method of proof.*

*The complete proof will appear later in the Math. Annalen.
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Within the domain of a certain point M construct

in a particular manner a certain point-configuration

kk, and upon this configuration construct a certain

point K. We then base our investigation upon the

true circle k aboutM and passing through K. It may
be easily shown that the true circle k is an assemblage

of points which is closed and in itself dense. It con-

stitutes, therefore, a perfect assemblage of points.

The next objective point in our demonstration is

to show that the true circle k is a closed Jordan curve.

We do this in that we first show the possibility of a

cyclical arrangement of the points of the true circle

k, from which it follows that we may map in a re-

versible, single-valued manner the points of k upon

the points of an ordinary circle. Finally, we show

that this map must necessarily be a continuous one.

Furthermore, it follows also that the originally con-

structed point-configuration kk is identical with the

true circle k. Moreover, the law holds that each true

circle inside of k is likewise a closed Jordan curve.

We turn now to the investigation of the group of

all the displacements which by the rotation of the

plane about M transforms a definite true circle k into

itself. This group possesses the following proper-

ties : (1) Every displacement which leaves one point

of k undisturbed, leaves all points of k undisturbed.

(2) There always exists a displacement which changes

any given point of k into any other given point of k.

(3) The group of displacements is a continuous one.

These three properties determine completely the con-

struction of the group of transformations of all the

displacements of the true circle into itself. We set up

the following proposition : The group of all the dis-

placements of the true circle into itself, which are ro-
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tations about M, is holoedric, isomorphic with the

group of ordinary rotations of the ordinary circle into

itself.

Moreover, we investigate the group of displace-

ments of all the points of our plane by a rotation about

M. The law holds that, aside from the identity, there

is no rotation of the plane aboutMwhich leaves every

point of the true circle undisturbed. We now see that

every true circle is a Jordan curve and deduce formulae

for the transformation of that group of all the rota-

tions Finally, the proposition easily follows that : If

any two points remain fixed by a displacement of the

plane, then all points remain fixed ; that is to say, the

displacement is the identity. Each point of the plane

may be indeed made to go over into any other point

of the plane by means of a displacement.

Our further important objective point is to define

the idea of the true straight line in our geometry and

deduce those properties of it which are necessary in

the further development of geometry. First of all, the

notions "semi-rotation" and "middle of a segment

"

are defined. A segment has at most one middle, and,

when we know the middle of one segment, then every

smaller segment possesses a middle.

In order to pass judgment as to the position of the

middle of a segment, we need particular propositions

concerning true circles which are mutually tangent,

and indeed the question depends upon the construc-

tion of two congruent circles tangent to each other ex-

ternally in one and only one point. We derive also

a more general proposition concerning circles which

are tangent to each other internally and consequently

a theorem covering the special case where the circle
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which is tangent internally to a second passes through

the centre of that circle.

Moreover, a sufficiently small definite segment is

taken as a unit segment, and from this by continued

bisection and semi-rotation a system of points is con-

structed of the kind that to each point of this system

a definite number a corresponds, which is rational

and has as denominator some power of 2. By setting

up a law concerning this correspondence, the points of

the above system are so arranged that the above laws

concerning mutually tangent circles are valid. It is

now shown that the points corresponding to the num-
bers J, J, -|, . . . . converge toward the point 0. This

result is generalized step by step until it is finally

shown that every series of points of our system con-

verges, so soon as the corresponding series of num-
bers converges.

From what has been said, the definition of the true

straight line follows as a system of points which arise

from two fundamental points, if we apply repeatedly

a semi-rotation, take the middle point, and add to the

assemblage the points of condensation of the system of

points which arises. We can then prove that the true

straight line is a continuous curve, possessing no

double points and having with any other true straight

line at most one point in common. Furthermore, it

can be shown that the true straight line cuts each

circle drawn "about one of its points, and from this it

follows that any two arbitrary points of the plane can

always be joined by a true straight line. We see also

that in our geometry the laws of congruence hold, by

which however two triangles are proven to be con-

gruent if they are traversed in the same sense.

With regard to the position of the systems of all
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the true straight lines with respect to one another,

there are two cases to distinguish, according as the
axiom of parallels holds, or through each point there

exists two straight lines which separate the straight

lines which cut the given straight line from those
which do not cut it. In the first case we have the
euclidean and in the second the bolyai-lobatschefskian

geometry.
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PRESS COMMENTS ON THE FIRST ENGLISH EDITION.

•'The appearance of a translation into English of this remarkable book

should serve to revivify in this country [England] the somewhat stagnating

treatment of its subject, and should call up the thoughts which puzzle us

when we think of them, and that is not sufficiently often. . . . Professor Mach

is a striking instance of the combination of great mathematical knowledge

with experimental skill, as exemplified not only by the elegant illustrations

of mechanical principles which abound in this treatise, but also from his

brilliant experiments on the photography of bullets. ... A careful study of

Professor Mach's work, and a treatment with more experimental illustration,

on the lines laid down in the interesting diagrams of his Science ofMechanics,

will do much to revivify theoretical mechanical science, as developed from

the elements by rigorous logical treatment."—Prof. A. G. Greenhill, in Na
ture

% London.

•* Those who are curious to learn how the principles of mechanics have

been evolved, from what source they take their origin, and how far they can

be deemed of positive and permanent value, will find Dr. Mach's able trea-

tise entrancingly interesting. . . . The book is a remarkable one in many re-

spects, while the mixture of history with the latest scientific principles and

absolute mathematical deductions makes it exceedingly attractive."

—

Me

chanical World, Manchester and London, England.

" Mach's Mechanics is unique. It is not a text-book, but forms a useful

supplement to the ordinary text-book. The latter is usually a skeleton out-

line, full of mathematical symbols and other abstractions. Mach's book has

•muscle and clothing,' and being written from the historical standpoint, in-

troduces the leading contributors in succession, tells what they did and how

they did it, and often what manner of men they were. Thus it is that the

pages glow, as it were, with a certain humanism, quite delightful in a scien-

tific book. . . . The book is handsomely printed, and deserves a warm recep-

tion from all interested in the progress of science."— The Physical Review,

New York and London.

"Mr. T.J. McCormack, by his effective translation, where translation

was no light task, of this masterly treatise upon the earliest and most funda

mental of the sciences, has rendered no slight service to the English-speak

ing student. The German and English languages are generally accounted

second to none in their value as instruments for the expression of scientific

thought; but the conversion bodily of an abstruse work from one into the

other, so as to preserve all the meaning and spirit of the original and to set it

easily and naturally into its new form, is a task of the greatest difficulty, and
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when performed so well as in the present instance, merits great commenda-
tion. Dr. Mach has created for his own works the severest possible standard

of judgment. To expect no more from the books of such a master than from
the elementary productions of an ordinary teacher in the science would be

undue moderation. Our author has lifted what, to many of us, was at one

time a course of seemingly unprofitable mental gymnastics, encompassed

only at vast expenditure of intellectual effort, into a study possescing a deep

philosophical value and instinct with life and interest. 4 No profit grows

where is no pleasure ta'en,' and the emancipated collegian will turn with

pleasure from the narrow methods of the text-book to where the science is

made to illustrate, by a treatment at once broad and deep, the fundamental

connexion between all the physical sciences, taken together."—The Mining

Journal, London, England.

"As a history of mechanics, the work is admirable."— The Nation, New
York.

"An excellent book, admirably illustrated."— The Literary World, Lon-

don, England.

•• Sets forth the elements of its subject with a lucidity, clearness, and
force unknown in the mathematical text-books ... is admirably fitted to

serve students as an introduction on historical lines to the principles of me-
chanical science."

—

Canadian Mining and Mechanical Review, Ottawa, Can.

"A masterly book. ... To any one who feels that he does not know as

much as he ought to about physics, we can commend it most heartily as a

scholarly and able treatise .... both interesting and profitable."—A. M.

Wellington, in Engineering News, New York.

"The book as a whole is unique, and is a valuable addition to any library

of science or philosophy. . . . Reproductions of quaint old portraits and
vignettes give piquancy to the pages. The numerous marginal titles form a

complete epitome of the work ; and there is that invaluable adjunct, a good

index. Altogether the publishers are to be congratulated upon producing a

technical work that is thoroughly attractive in its make-up."—Prof. D. W.
Hering, in Science.

••There is one other point upon which this volume should be commended,
and that is the perfection of the translation. It is a common fault that books

of the greatest interest and value in the original are oftenest butchered or

made ridiculous by a clumsy translator. The present is a noteworthy excep-

tion."—Railway Age%
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••The book is admirably printed and bound. . . . The presswork is un-

excelled by any technical books that have come to our hands for some time

and the engravings and figures are all clearly and well executed."—Railroad

Gazette,

TESTIMONIALS OF PROMINENT EDUCATORS.

*' I am delighted with Professor Mach's Science of Mechanics."—M. E
Cooley, Professor of Mechanical Engineering, Ann Arbor, Mich.

*' You have done a great service to science in publishing Mach's Science

ofMechanics in English. I shall take every opportunity to recommend it to

young students as a source of much interesting information and inspiration.'

~M. I. Pupin, Professor of Mechanics, Columbia College, New York.

"Mach's Science of Mechanics is an admirable .... book."—Prof. E, A

Fuertes, Director of the College of Civil Engineering of Cornell University

Ithaca, N. Y.

" I congratulate you upon producing the work in such good style and in

so good a translation. I bought a copy of it a year ago, very shortly after you

issued it. The book itself is deserving of the highest admiration ; and you

are entitled to the thanks of all English-speaking physicists for the publica-

tion of this translation."—/?. W. Bering, Professor of Physics, University of

the City of New York, New York.

11
1 have read Mach's Science ofMechanics with great pleasure. The book

is exceedingly interesting."— W. F. Magie, Professor of Physics, Princeton

University, Princeton, N. J.

" The Science of Mechanics by Mach, translated by T. J. McCormack, I

regard as a most valuable work, not only for acquainting the student with the

history of the development of Mechanics, but as serving to present to him

most favorably the fundamental ideas of Mechanics and their rational con-

nexion with the highest mathematical developments. It is a most profitable

book to read along with the study of a text-book of Mechanics, and I shall take

pleasure in recommending its perusal by my students."—S. W.Robinson, Pro

lessor of Mechanical Engineering, Ohio State University, Columbus, Ohio.

"I am delighted with Mach's 'Mechanics.' I will call the attention to

it of students and instructors who have the Mechanics or Physics to study or

teach/"—J. F, JDavies, University of Wisconsin, Madison, Wis.

"There can be but one opinion as to the value of Mach's work in this

translation. No instructor in physics should be without a copy of it,"—-Henry

Crew, Professor of Physics in the Northwestern University, Evanston, 111.
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PRESS NOTICES.

41 A most fascinating volume, treating of phenomena in which all are in-

terested, in a delightful style and with wonderful clearness. For lightness

of touch and yet solid value of information the chapter * Why Has Man Two

Eyes? ' has scarcely a rival in the whole realm of popular scientific writing."

— The Boston Traveller.

"Truly remarkable in the insight they give into the relationship of the

various fields cultivated under the name of Physics. ... A vein of humor is

met here and there reminding the reader of Heaviside, never offending one's

taste. These features, together with the lightness of touch with which Mr

McCormack has rendered them, make the volume one that may be fairly

called rare. The spirit of the author is preserved in such attractive, really

delightful, English that one is assured nothing has been lost by translation.'

—Prof. Henry Crew, in The Astrophysical Journal.
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"A very delightful and useful book. . . . Should find a place in every

library."

—

Daily Picayune, New Orleans.

' In his translation Mr. McCormack has well preserved the frank, simple.

and pleasing style of this famous lecturer on scientific topics. Professor Mach

deals'with the live facts, the salient points of science, and not with its mysti-

cism or dead traditions. He uses the simplest of illustrations and expresses

himself clearly, tersely, and with a delightful freshness that makes entertain-

ing reading of what in other hands would be dull and prosy."

—

Engineering

News, N. Y.

" The general reader is led by plain and easy steps along a delightful way

through what would be to him without such a help a complicated maze of

difficulties. Marvels are invented and science is revealed as the natural foe

to mysteries."

—

The Chautauquan.

" The beautiful quality of the work is not marred by abstruse discussions

which would require a scientist to fathom, but is so simple and so clear that

it brings us into direct contact with the matter treated."

—

The Boston Post.

"A masterly exposition of important scientific truths."—Scotsman, Edin

burgh.

"These lectures by Dr. Mach are delightfully simple and frank ; there is

no dryness or darkness of technicalities, and science and common life do not

seem separated by a gulf. . . . The style is admirable, and the whole volume

seems gloriously alive and human."

—

Providence Journal, R. I.

"The non-scientific reader who desires to learn something of modern

scientific theories, and the reasons for their existence, cannot do better than

carefully study these lectures. The English is excellent throughout, and re-

flects great credit on the translator."

—

Manufacturer and Builder,

" Have all the interest of lively fiction."

—

New York Com. Advertiser.

"The literary and philosophical suggestiveness of the book is very rich.'

—Hartford Seminary Record.

"All are presented so skilfully that one can imagine that Professor Mach's

hearers departed from his lecture-room with the conviction that science was

a matter for abecedarians. Will please those who find the fairy tales of

science more absorbing than fiction."

—

The Pilot, Boston.

" Professor Mach ... is a master in physics. . . , His book is a good one

and will serve a good purpose, both for instruction and suggestion."—Prof

A. E. Dolbear, in The Dial.

"The most beautiful ideas are unfolded in the exposition."

—

Catholic

World, New York.
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