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ABSTRACT

This thesis developed an analytical model of a repair-

able item inventory system. The system consisted of a

depot that repaired failed units according to some repair

policy and stocked ready-for-issue units in support of a

finite number of customers. A least-cost repair policy

and stock level was determined by use of a computer program

which is included as an appendix.
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I. BACKGROUND

This thesis studied the problem of inventory management

of repair parts that have high unit cost and few customers.

The importance of a model such as this lies in the fact

that, although these parts represent a very low percentage

of items managed by the Navy, they account for a large

percentage of the dollar investment in inventory.

Because of the high dollar value, it costs less to repair

failed units than to buy new ones. Thus, it pays to establish

a repair facility to renew failed items.

This thesis attempted to model this repair process to

determine how this type of system might operate at minimum

cost.





II. INTRODUCTION

A repairable item inventory system consists of three

elements: users or customers , repair facilities , and

stocking activities.

When a part fails , the customer forwards that unit to

the repair facility and requests a new unit from the stocking

activity. Upon receipt of the failed unit, the repair

facility refurbishes it. The number requiring repair at any-

one time is called the "repairable stock". The third element,

the stocking activity, stores the parts received from the

repair facility and issues them on request from the end user.

The number of ready-for-issue parts in the stocking activity

is called the safety stock,,

This is the repairable item inventory system. One

should note that the system as defined is closed. That is,

every failed unit received by the repair facility can be

repaired. Thus, after the inventory system is in operation,

there is no reason to order new units to replace those

already in the system.

In order to operate the repairable item inventory system

optimally, two basic questions must be answered.

1. How many failed units should be in the repair

facility before one should repair and how many should one

repair when the decision to repair is made.





2. How much safety stock should be carried by this

stocking activity so that orders from end-users might be

promptly and economically filled.

When one has made these two decisions one can compute

a cost per cycle to operate under these conditions. The

goal of course is to make these decisions so that the system

operates at minimum cost.

The answer to the first question, when and how much to

repair , was determined using a technique developed by Howard

in his Dynamic Programming and Markov Processes . It is,

in part, the purpose of this thesis, to look into the

feasibility of utilizing such a method on this problem.

The answer to the second question, how much to stock,

can be found only after solving the repair problem.

Since the problem is naturally divided into answering

question (l) and then question (2), Section III will treat

the problem in this sequence. In Section IV, there will be

a sample solution and a discussion of the computer program.

And, finally, the methods used will be criticized, and

conclusions will be made in Section V.





III. MODEL

A . GENERAL

A model such as the one that was described in the

introduction requires that a decision about the repair policy

be made at specified time periods . The point in time at

which this decision is made is called the review time D The

time between reviews is held constant and because of this

the model is called a periodic review model. The length of

time between reviews is defined as the average time needed

to repair a failed unit. This is called the repair cycle.

By defining the length of the repair cycle in this way, the

model with its associated assumptions will better fit the

real-world situation. This will be seen more clearly later.

Graphically } the repairable item inventory system operates

in the following manner during a repair cycle

.

#1

#2

#N

Safety Stock

Quantity: M

~7K

r)

Repairabl*
Stock

Customers Repair Depot
Figure 1.

REPAIRABLE ITEM INVENTORY SYSTEM
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Thus, during the repair cycle, customers' repairable

units fail and set in motion the dynamics of Figure 1. In

this illustration there are N customers and M units of safety

stock.

Consider the effects of this M and N upon the quantity

of repairable stock. The maximum number that can be in

need of repair is N-t-M, while the minimum number is zero.

Zero in repair implies that each customer has a working

unit and that there are M units in a ready-for-issue con-

dition in stock. At the other end of the range N+M units

in repair implies that each customer lacks this part and that

there are zero units of safety stock available. This is the

worst condition in which the system is allowed to function.

Trie amount of repairable stock, a number between zero and

N+M is defined as the "state" of the system. Thus, there

are N+M states.

The depot , of course, would not need to repair all

failed items on hand. The alternatives available are to

repair from zero up to the total amount awaiting repair.

For example, if there were 5 units of repairable stock, the

depot could make six decisions: repair 0, repair 1, ...,

repair 5. Define this decision as the repair policy for

that state. Define a set of decisions, one for every state,

as the "repair policy".

The preceding has been a verbal description of a

repairable item inventory system. The next few sections

will translate this into mathematical terms.

11





The Probabilit?/ Matrix

Let Sn be the amount of repairable stock at the

th
beginning of the n repair cycle.

R be the amount of repairable stock actually

repaired during the n repair cycle.

D be the amount demanded during the n repairn

cycle

Thus S = S -,-R , + D . This describes a Markov
n n-1 n-i n-1

chain. The distinctive element in a Markov chain is that

the probability law of the future of a process , once it is

in a given state , depends only on the state and not on how

the process arrived in that state.

Using the recursive definition of S above, a matrix
n '

can be formed that gives the probability of having any

amount of repairable stock on hand, given the amount at the

beginning of the previous repair cycle. This movement from

one state to another is called a transition.

Thus, if the present state is i, and the alternative

chosen is to repair k, then the next state of the system

will be J 3 if and only if j+k-i items fail and hence are

demanded during the cycle.

Assumptions can be made concerning the number and rate

of these demands. A typical one might be that the demands

are distributed Poisson with mean A , This assumption,

although not necessary to the model, will be used in the

remainder of the thesis.

12





If p (i,J) denotes the probability that the current

state is i 5 k items are repaired and the next states is j

then p (i 5 j) is given by:
K.

if i-k^O!j+k-i*10
A e ^ J+k-i^N-irM & i^M

/ 1a4r .- n , otherwise asi=0, . . . ,N+M

j-0, ...,N+M

The restrictions upon p (i^j) when p (i,j)=0 in the
k k

formula above can be explained in the following way:

a. i-k-^-O. The probability p(.) equals zero when

one wants to repair more than is in repairable stock. The

decision is not a valid one.

b. j+k-i^ 0. This situation can occur only if there

is negative demand, which is clearly impossible.

c. j+k-i ^N. This can occur only if there are more

demands than customers can generate.

d. j+k-i MT-i M and i^M.

If i^M then the number of demands in the cycle can

be no greater than N-(i-M) since i-M customers will not have

items. Thus those cases in which ,j+k-I exceed N-i+M must be

assigned zero probability.

Suppose A is a vector that was defined earlier as

the repair policy, that is, a repair decision for every

possible state. The transpose of the (N+M+l.) vector A

can be denoted by:

13





A' = (a , ax . aN+M^

where a. is the amount to be repaired, if the

th
repair cycle starts in the i state.

For any given repair policy, a probability matrix

describing this passage from state to state can be defined

as:

(2)

P(A) =

N+M

_0 1 2

~P P P
P P
P P

N+M

F ? s denote those probstbilitiss
which are positive

Because of the number of alternative repair policies

available for a given starting state, there are (N+M+l)I

possible probability state matrices. By defining the

matrices in this way, three additional assumptions are

made: l) even after a decision to repair items in the

repairable stock is made, those items will not be available

until the next period. In other words, demands can only

be filled from those items that are ready for use at the

beginning of the repair period. 2) Parts that have failed

during a repair period are delivered to the repair facility

prior to the end of the period regardless of when they fail.

3) Shipments from the repair facility are received by the

customers at the end of the repair cycle.

14





2. Complete Ergodicity

To use the techniques discussed in this thesis } the

states of the probability matrices described in the previous

section must not just be Markov chains , but ergodic Markov

chains. That is 5 the one-step probability transition

matrices which result from repair policies must be completely

ergodic . By this is meant that after a large number of

trans itions 3 the state of the system is independent of the

initial state. For a matrix P(A) to exhibit this quality }

it is sufficient to show that it has one recurrent chain.

Consider first a repair policy in which the alter-

native is
Tr do not repair" regardless of the state of the

system. The one-step probability matrix would be as follows:

12 N N+l N+M

P P P •

o o o
. . P o • • •

o
'

1 P« p~'
o ' po P

o °
•

•

2 PQ
-

• ' Po P
o

Po
.

P,

Figure 2

.

Repair Policy: "Do Not Repair"

The symbol P denotes those probabilities which are

positive under the repair decision "do not repair." From

15





the figure one can see that eventually the system will end

up in state N+M, independent of the initial state, and

remain there

.

To get a better feel for this property in conjunc-

tion with a repairable item inventory system, let the matrix

shown in Figure 2. change slightly. Consider the probability

transition matrix which results from changing just one of

the alternatives: repair k items if the state is i.

N+M

N

P
o °

Po P
o

• •

•

Figure 3.

Repair Policy: "Repair k if in states 1;
otherwise do not repair any"

The decision to repair k items shifts the associated

row of the matrix k units to the left. Thus, a decision

to repair is equivalent to allowing the system to shift

back to some lower state with positive probability. This

must be kept in mind when considering the next question.

16





Is there any repair policy that would make this

probability transition matrix non-ergodic? Consider the

following repair policy: If in states through N+M-l,

repair all; if in state N+M, repair none.

12
P
o

P
o

P
o

P
l

P
l

P
i

P2 P2 P
2

N N+M

Po
•

P
l

•

Po -

M pm PP.-m m
• P

m
•

M+l P P Pm+l m+l m+l'

*

P ,
* m+l

•

N+M-l
•

N+M - • • • P^n+m

Figure 4.

Non-ergodic Repair Policy

In this example , if, after a long period of time

one found himself in state N+M, one would know he had started

in N+M. Thus, this repair policy produces a probability

transition matrix that is non-ergodic.

A non-ergodic repair policy could arise in three

different instances in a problem of this nature. Each of

these will be considered separately along with the method

for handling that situation.

17





a. A non-ergodic repair policy might exist in the

set of possible repair policies , but might not be utilized

In any way while determining the optimal repair policy.

The method developed in the following sections requires that

only the repair policies considered be ergodic, not all

possible repair impolicies

.

b. A non-ergodic repair policy could exist and could

be in the set of repair policies considered in deriving an

optimal policy that is completely ergodic. In this case,

there is a method developed by Howard in his Dynamic Pro -

gramming and Markov Processes that can solve this type of

problem.

c. Finally, a non-ergodic repair policy might be

optimal. But, if a ncai-ergodic policy were optimal, one

would actually have two separate repairable item inventory

problems. Thus, they could be separated and treated as such.

From the example that had to be used to show that a

non-ergodic repair policy might exist, one can see that it

is an unusual case. So, with the solutions offered for

these cases, no generality will be lost in considering all

repair policies completely ergodic.

3. Costs

Up until now the thesis has described the repairable

item inventory problem as a series of transitions, going from

one amount of repairable stock to another, depending upon

the repair policy. But, from this, nothing can be said

18





about the relative merit of one repair policy over another.

This is a function of costs.

For instance, safety stock serves as an alternative

to repairing a failed unit. Having an item available in

safety stock allows one to delay repair of the failed unit

and still offer immediate delivery. Since both of these

alternatives offer delivery at once, the choice of one

method of operation over the other is dependent upon costs.

There is also the alternative between immediate

delivery and delayed delivery. But, here again, one can

attach a cost for immediate delivery and delayed delivery.

Thus, there is a set of trade-offs and each has an associated

cost. It must only be determined which repair policy and

stock level will allow this system to operate at minimum

cost.

For this repairable item model, charges will be made

at the end of each repair cycle. At that time one will

determine what has happened during the previous cycle and

what is on hand at the moment and then make appropriate

changes. The following costs will be considered while doing

this

:

a. Stock Level Costs
b. Set-up and Repair Costs
c. Additional Holding Costs
d. Backorder Costs

a. Stock Level Costs

This cost includes the rental or depreciation

of a warehouse. The maintenance, taxes, and insurance are

19





also considered in this charge. These costs are considered

fixed after the size of the operation has been determined.

It is assumed, in this model, that if it costs

$K in fixed costs for a stocking policy of M units, it will

cost $2K to have a stocking policy of 2M.

But, after the stocking policy has been set,

the cost, be it $K or $2K, will be charged no matter how much

safety stock is actually on hand at the end of the repair

cycle.

The stock level M will initially be assumed to

be given and the optimal repair policy will be determined

for that given level. In this instance, the stock level

cost is constant and independent of repair policy. So it

need not be used in this computation.

Later in the thesis the optimal choice of M will

be considered; and, at that time, the stock level cost will

enter the calculations.

b. Additional Holding Cost

At times the depot might have an amount in

excess of the fixed stock level M on hand. This comes about

when the amount demanded exceeds the safety stock. An

additional amount is charged for each unit in the depot in

excess of this safety stock to cover the cost of such things

as additional warehouse space and overtime required to

handle these items.

So, if S is the number in repair at the end

of the period; h is the holding cost per unit

20





Then

S^M
(3) Cos-L ,.v ' hold

S7M

c. Set-up and Repair Costs

When the decision is made to repair some failed

units 3 two costs are incurred: a set-up cost and a repair

cost.

The set-up cost is a fixed cost that is levied

every time the decision is made to repair and is independent

of the quantity repaired. It is considered the cost to

tool up.

The second cost is the charge that is made for

repairing each individual unit. This cost includes the labor

and materials required to repair it.

So let C = the set-up cost
r = per unit repair cost
x = quantity repaired

t

Then
C + rx x 7

(4) Cost = <

rep
otherwise

d. Backorder Costs

This is a cost charged when the quantity demanded

exceeds available safety stock. It is a penalty for loss

of goodwill or sales. In the Navy's case 3 it might be a

penalty levied for lack of readiness.

In this model the penalty cost can only be levied

if repairable stock exceeds M. If it is lesi than M there

will be at least one unit of safety stock available.
21





So if the number in repair at the end of the

repair period is denoted by S, and P is the backorder cost

per unit, then •

,c > _ JO S^ M
(5) Costback

-

I P(S-M) S 7 M

The total variable cost per transition would

then be the sum of the repair cost, the holding cost, and

the backorder cost.

B. DETERMINATION OF THE OPTIMAL REPAIR POLICY FOR A GIVEN

STOCK LEVEL

With the model, the transition probability matrix, and

the costs defined as above, the minimum cost repair policy

for a givenstock level can be developed.

1. The Problem as a Markov Chain

Let 15 (n) be a vector whose i^ element is the

probability that the state of the system will be in i after

n repair cycles. P(A), as has been defined before, is the

one-step transition probability matrix for a given repair

policy A.

If one knows the state vector b(0) and the Matrix

P(A) then the state of the system after one repair cycle is

(6) b(l)=b(0)P(A)

If one wishes to know the state vector b(n+l) with

b (°) known then

22





(7) b(n+l) = b(n) P(A)

= b(n-l)[5(A)]
2
=b(n-2) [p(A)J

3 = .

(8) =b(0)[i(A)] n

Now, if P(A) is ergodic, it can be shown that steady

state probabilities exist and can be determined by solving

the following equations

:

(9) b = bP(A)

(10) 1'b = 1

where the elements of b are the steady-state

probabilities of having a given quantity in repair.

Suppose then that repair policies vector A consists

of a^.a .....a a . and suppose further that there are

i units of repairable stock. The expected cost for the

period would be

N+M
(11) *«. (*) = £ Pa (l.J')c a .(i,J)ai j=o ai ai

where p (i^j) is the probability of ending in
a
i state jj having started in ij using

the repair policy, repair a.

.

C (i 5 j) is the cost associated with p (i^j)
a
i

a
i

Probabilities p ( 1 ^ j ) and costs C (i^j) are known

\ 1

and, so, expected cost K (i) can be easily computed.
a
i

Since the expected cost of being in each state is

known and the long-run probabilities of being in each state

are known (Equations (9) and (10)), the long-run expected

23





cost per period can be determined and would be:

( 12 ) ^-f 51.(1)
i=0 1

One could look at each possible repair policy, A,

and compute this K . Then the problem of determining a

minimum cost policy for a fixed stock level M could be solved

by comparing each cost, K , and choosing the minimum value.

However, this would involve determining a cost for a large

number of repair policies.

For example, for three customers and a two unit

stock level, the number of repair policies that must be

compared is 6 1 or 720. Thus, even for a very small size

problem, the number of repair policies to be examined is

quite large. For a larger problem the number of repair

policies becomes so large as to prohibit even the use of a

computer to solve the problem in the manner described above.

Thus the method is feasible but computationally not

practical. The equations developed in this section, though,

will be used later.

An alternative procedure for solving the problem

in a manner which requires less computation is necessary.

2. The Problem as a Dynamic Program

To gain an understanding of this alternative approach

it is best to look initially at a finite time horizon.

Consider a repairable item system over the next

L-periods . Let there be n cycles remaining until the time

24





interval terminates. Define a. (n) as the repair policy

that will be utilized if the system has i units in repair

and n cycles remaining. When i is specified for each n,

the repair policy over the life of the system will be

specified. That repair policy which minimizes the total

expected cost over the entire time period would be optimal.

Define V. (n) as the minimum total expected cost of

maintaining the system with n cycles remaining, having started

with i in repair (assuming an optimal policy has been followed

up to this point).

V.. (n) can be computed by first looking at the minimum

cost policy if the system had one cycle remaining. If at

the start of this period, one had i in repair, then

(13) V
±
(l) = MIN £ p-k (i,j)ck (i,j)

k j=0

With V
±
(l) known one could look at V

± (2)

(14) V
± (2)

N+M
MIN £
k J-0

"Prob . of
Transition
To state j

repairing k

Cost of
Transition
to state j

Minimum expected
cost for week 1
if in state j

(15) V.(2)=MIN N+M
pk

(i,j) [ck (i,J)+VJ (l)J

k j=0

In this manner one could work backward and determine

an optimal policy for each cycle.

25





A recursive relation arises out of this approach.

N+M
(16) V

i
(n) = MIN £ pK (i,j) |~c (i,j) + V.(n-l)]

If termination of this repairable item system

were imminent, this approach would be valid and efficient.

If one did not know the number of cycles until termination,

but only that it was a long time into the future, this method

seems less effective.

Consider, then, what happens to V. (n), defined

above, when n gets large. To accomplish this goal,

generating functions will be used.

3. Asymtotic Form of Recursive Relation

The gene ra tin ,-T fll-.n- ion of an arbitrary function

defined on the non-negative integers is defined by

(17) f(z) =If(n) z

n=0

Some general properties of generating functions

are the following:

General Properties of Generating Functions

Function Generating Function

f(n)
f (n-1
f (n+1

f z

ir
zf Z

'

z-^f(z)-f(0)]

TABLE I
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During the following development, generating functions

of vectors will be used. A vector generating function is

simply a vector whose elements are generating functions.

To develop the asymptotic form of V. (n) (Equation l6)

through generating functions , one must also develop the

asymptotic expression for b(n) (Equation 7).

Transforming Equation 7 using the above table

produces

:

(18) z
_1

[b(z) - 5(0)] =b(Z ) P (A)

With some manipulation, the above equation becomes:

(19) b(z ) = b(o) (i - zi(I))-
1

Of interest in this equation, for use a little later

in the section, is the inverse transform of the following

matrix from Equation (19)

(20) H(z) = (I - -z P(A))~

Consider (I-zP(A)) . By the adjoint method of

evaluating an inverse, one can write:

(21) H(z) = Adjoint (I-zP(A))

(I - ZP(A))

Since z=l is a characteristic root of every Markov

matrix, (i-zP(A)J can be written as:

(22) (1-z) (r
Q

+ rlZ + ... + r^z*" )

27





Thus by partial fraction expansion of Equation 21

one can show that H(z) = S + G(z)
1-z

where G(z) is a rational function of z

Since from Table T3 the inverse transform for

S/(l-z) is S, the inverse transform of H( z ) would be

(24) H(n) = S + G(n)

H(n) is simple I P(A) J as can be seen by

Equation (8) and Equation (19). Since P(A) is a completely

ergodic matrix, it must be true that G(n) —> as n ->

and S is the steady-state probability matrix.

So, each row of S is the row vector b.

With this information at hand, an equation for

V(n) can be developed. Suppose now that the repair policy

has been given. The subscript, A, describing this policy

will be dropped from the development since it adds no

information. Multiplying through by p(i,j) Equation (16)

becomes

:

N+M N+M
(25) V (n+l) = Y. p(i*J)c(i,J) + [ptUlV, (n)

1 3=0 j.=0

i=l,...,N+M

Combining Equation (25) with the notation of Equation (11)

this becomes

N+M
(26) V (n+l)=K(i) + [p(i,J)T.(n) i=l,...,N+M

1 j=0 J

Switching to matrix form this can be written:

28





(27) V(n+1) = K + PV(n)
b

where K^ is a column vector of the K(i)'s.

Through the use of transforms in Table I and the

fact that the transform of f(n) = 1 is l/(l-z), the matrix

of generating functions becomes

(28) z"
1

[v(z) - V(0)
]
= l/(l-z)K

b
+ P V(z)

With a little manipulation this becomes

(29) V(z) =^(1-2 P)"1^ + (I-z?)' 1V(0)

Substituting Equation (2 4) into Equation (29) and collecting

terms 3 one gets

:

(30) V(z) =- J?K+ £- 5(z)+ - SV(0)+G(z)V(0)
(i-zr b i-z ' i-z

2
Since the inverse transform of z/(l-z) is f(n)=n 5

then the first term is n Sit . By using partial fraction

expansion and dropping terms that tend to zero as n becomes

large (the asymptotic form is only of interest ), the inverse

transform of the second term is G(l)K^. The third term

has an inverse transform of SV(0), since the inverse

transform of l/(l-z) is f
(
n ) = 1« Finally ^ since the

geometric terms of G(z ) V(0) approach zero as n gets

large s this term can be ignored. Thus the asymptotic

inverse transform of V(z) is:
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(31) V(n) = nSK
b + G(l) K

fe
+ SV (0)

Since the matrix S is made up of N+M b vectors 3

one can write

:

(32) K = S ^
where each element of K is the constant K per

Equation (12).

So V(n) becomes

(33) V(n) = nK + G(l) K^ + S V(0)

What has been derived here is an equation for long-

run cost as a function of N. Looking at the equation in

this manner^ G(l)K +SV(0) will be defined as V, the

intercept. The asymptotic long-run cost equation finally

becomes

:

(3^) V(n) = nK + V

4. Review and Collection of Information

To quickly review^ one initially wanted to find a

method of determining the minimum cost repair policy. To

do this , it was decided first to determine the minimum cost

repair policy given a certain stock level.

Two approaches were used and combined: the Markov

chain and Dynamic Programming approach. In the former 5 an

equation for the cost per cycle can be obtained but it is

shown that it is computationally impractical to solve a

problem in this manner. In the latter appros h 5 a simple
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asymptotic form of total expected cost after n repair

cycles is found. This leads to a simplified method of

solution.

Suppose the repair system is operating under a

certain policy. Then, by "breaking the asymptotic form of

the matrix V(n) into its elements one gets;

(35) V
±
(n) = nK + V

±
1=0, . . .

,N+M

From equation (26) one has:

N+M
(36) V (n) = K(i) + f p(i,j)V (n-1) i=0,...,N+M

3=0
J

Now combining these two equations

,

N+M
nK+V, =K(i) + £ P(**J)V (n-1)

(37)
x 3=0 j

N+M
nK+V

±
= K(i) + £p(i,j)(nK+V ,)

3=0 3

N+M
and since £ P(l*o) = 1

3=0

N+M
(38) K+V = K(i) + [p(i,j)V. 3=0,..., N+M

1 3=0 3

Equation (38) produces N+M+l simultaneous equations with N+-M+2

unknowns. That is, there are N+M+l V. ' s and the K as unknowns

But , it one of the V. r s are set equal to zero, one

can solve these equations. This causes all of the V 's to
i

be transformed by a constant amount, but does not affect the

K. To show this, let:

(39) Vj = V. + a
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Then

(40)

N+M
K+V

± =K(i) + £ p(±,J) V
j=0 J

N+M .

K+V+a=K(i)+ £ p(i,J)[V+a]

N+M
K+V. = K(i) + £ p(i,J) V

l j=0 J

Thus j scaling down the V's by setting one of them

equal to zero does not affect the computation of the cost K

of the system.

The development of these formulas assumes an

arbitrary repair policy and thus computes the cost per

repair cycle for this policy. Equation (12 ) was an equally

easy way to solve this identical problem. The advantage to

the present way, though, is that it presents a method of

starting with an arbitrary repair policy and rapidly con-

verging to the optimal repair policy that the previous

method did not provide.

5. Algorithm

Equation 16 showed that if we were in repair cycle

n the least cost policy for cycle n+1 in the ith state would

be:

N+M
Ik +
I a*

ai

r N+M I

(41) MIN K + LPa.^J') V
i(
n

)

a± L i
i1=0

1 J
J

Since in the long run

(42) V,(n) = nK + V.
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and

N+M
(*3) LP (i,J) = 1

J=o

th
we can minimize cost over possible decisions in the i

x

state

by choosing the decision:

N+M
(44

)

MIN
a
i
V1)+ &»1 1±>' )Y

1

Using Equation (44) in conjunction with Equation

(38) produces an interactive scheme that converges to the

optimal policy. This will be proved in the next section.

Assuming this, though, the algorithm would operate as follows

ALGORITHM

A. For an arbitra ry set of decisions , or for decisions

generated from Part B, solve the set of s imultaneous

equations (setting one of the V.'s
J

- 0).

(38)
K + V. =

N+M
K(i) + £ P(i»j) V. i=0, . . . ,N+M

J

B. Us ing the V 's

J

rer all i's aj

obtained in the ab ove equations,

compute o\ id all a. 's
i

(44)
Ka± W

N+M
f Z Pa!* 1'-
3=0 1

>
v
j

For each state choose that repair alternative for

which the equation above is minimum. Go to part A.
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Each iteration will decrease the value of K. Upon

reaching the optimal policy the same decision will recur.

Thus, the system will have converged to the optimal repair

policy and the variable cost for a given stock level.

Nov; , it only remains to prove the point, and a

practical method of solving a repair problem of this nature

will have been found.

6. Proof of Convergence

Suppose we have solved the system of simultaneous

equations using a set of repair decisions A. Suppose further

that in using part B of the algorithm, a repair policy B

is generated. If it can be shown that K £ K , convergence
B A

by this iterative scheme will be proven.

Since policy B produces a lower cost than the policy

A from part B of the algorithm, we know that

N+M A
, N+M A

(^5) K
B
(i) + £ PB

(i,j) V. £ K
A
(i) + £ PA (

i ^')V
j

3=0 j=0

i=0,. . . ,N+M

Let

N+M A N+M .

(*6) C. = K
A
(i) + £ PA(^)Vj " I PB

(i,J)V. -KB (i)

Thus C. is greater than or equal to zero.

From part A of the algorithm we know

B v
N+M , %

B
W) KB + V

±
= K

B
(i) + £ PB

(i,J) Vj

J=0

3^





(48) A a N+M A
K + V.

K
= KA (i) + £ pA

(i,j) Vj

Subtracting the above two equations results in

(49)

rA - KB + V/ - V .

B = KA (i) - KB (i) + £ [pA
(i,j)V

j

B
-p

B
(i,j)^

J=0

A N+M A
=Ci " Z Pa^«V

.1

+ E PR
(1 ^' )V

N+M B N+M

J=0 j=0

+ £ P
A (

i ^')v
j

" E Pb^'^V

N+M r p a -j

c h r P (i,j) v.
B
-v

i ^ L

A
V

'
J l

J J -

Let

(50) A(K) = ^ - K
B

Av(i)= v.
A-v

B
v l i

So the above equation by substitution becomes:

N+M
(51) A(K) + AOO = C

. + t PB (i,J)
A(Vj)

j=0

Equation (51) is identical to Equation (38) except

that the terms are differences rather than absolute quantities
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Thus by analogy the solution to Ak is

N+M B
(52) A(K) = L \ C.

J=0

where h
±

is the i
th element of E from Equation 9. Since all

the elements of b are greater than or equal to zero, and

C.$£ by definition, Ak^-O. So KB is less than KA and

the algorithm converges

.

So for a given stock level a method for determining

the optimal repair policy and the variable cost in a few

iterations has been found; its value increases as N+M+l,

increases. One must now develop a method of determining

the optimal stock level.

7. Computation of the Total Cost

In paragraph III. A. 3. a., it was pointed out that

there is a cost associated with the stock level that was

fixed while determining repair policy. This fixed cost

(FC) is added to the variable cost (VC ) for a total cost

for a given stock level.

TC = FC + VC

There remains to determine the stock level with its

repair policy that gives minimum cost.

C. DETERMINATION OF AN OPTIMAL STOCK LEVEL

In determining an optimal stock level, the range of

stock level can be any number between zero and infinity.

One cannot, therefore, simply compute the optimal repair
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policy for each stock level and then choose that stock level

that generates the minimum total cost per cycle.

The total cost is a function of stock level and cannot

be written without considerable computation. So, to examine

the nature of the cost function, it will help to analyze

the fixed costs and variable costs associated with each M

separately. Fixed cost is a linear function of M so, it

causes no particular problem. Variable cost though requires

a little more analysis.

1. Analysis of Variable Cost

a. Set-up Cost.

As the stock level increases there will be

fewer occasions for which one will repair failed items while

minimizing cost. Thus the set-up cost per cycle approaches

zero as stock level approaches infinity

„

b. Backorder cost.

The greater the stock level the less frequently

the system will enter a backorder state. So, again, the

backorder cost per cycle will tend to approach zero as the

stock level approaches infinity.

c. Repair Costs.

The cost to repair the failed items is indepen-

dent of the stock level. In the long run, each item which

fails will be repaired. Since the expected number of

failures per cycle is.Aj the expected repair cost per cycle

must be ^.times the cost of repairing the item.

37





Adding the three costs mentioned above , one can

see that, as stock level increases to infinity the variable

cost per cycle approaches the average repair cost per cycle.

2. Analysis of the Total Cost

The graph of the total cost functions, can be plotted

as is shown below:

Total Cost

pFixed Cost

Variable Cost

[-Mean Repair Cost

ock Level

Figure 5.

GRAPH OF THE TOTAL COST FUNCTION

As an example of this total cost function the

following parameters were used to solve a problem of this

nature

:

Number of customers
Mean Cyclic Demand
Set-Up Cost
Repair Cost
Backorder Cost
Additional Carrying Cost

10
2

$ 3.
!S 3.
J5 4.
55 1.

Per Unit Fixed Carrying Cost $ 1.
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14.24 1.00 15.24
11.29 2.00 13.27
9.45 3.00 12.45
8.52 4.00 12.52
7.90 5.00 12.90
7.52 6.oo 13.52
7.27 7.oo 14.27
7.09 8.oo 15.07
6.93 9.00 15.93
6.82 10.00 16.82

TABLE II

M , T , Total Variable Total
Stock Level Total Cost

Cost Fixed Cost

1
2

3
4

I

I
9

10

Here, the variable cost is approaching $6.00 while

fixed cost is a linear function of stock level with 1 as the

slope.

The heuristic arguments presented here indicate that

the total costs function is convex. The importance of this

lies in the fact that if there is a stock level let us say a5

such that TC is the total cost of this stock level and if
a

TC ^ TC
a a+1

and
TCa <jTCa ^ a-1

then TC is the minimum total cost repair system and there is
a

no TC that has a lower cost in the range.

0<.MA <00
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IV. AN EXAMPLE

In the example initially worked by the author, the number

of customers was small and as a result, all possible repair

policies as discussed in Section III. A were studied. But,

even with all these alternatives, each state eventually

converged to one of two repair policies; repair none or

repair all. This seemed reasonable since, with a set-up

cost, if one repaired any, it would be the least-cost

policy to repair all failed units.

So, in expanding the size of the program, all other

possible repair policies were deleted. Poisson demands

were also initially assumed in the thesis but as the mean

number of demands per cycle increased the calculation of

the Poisson probability became computationally unfeasible.

To circumvent the difficulty the following theorem was used:

Theorem: A random variable K that is distributed

Poisson with a mean, m, approaches the Normal distribution

2
with mean, m, and variance m as m gets large.

lim
m-* oo

k-m+J- 2

K \^ *y
kl V27T J

k-m-i

e'm mk 1 f _-h =

For m reasonably large, this theorem was used to

approximate the Poisson probabilities in the computations

discussed in this section.

Golden section search was utilized to fir .1 the optimal

stock level. Briefly this method of search operates in tie
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following manner:

a bed
Let La.bJ te the range of search. Let b and c be points

picked in some efficient manner (golden section search).

Then:

1. compute costs for b and c.
2. if the cost at b ^ the cost at c

3 search new interval
a,d using the same method.

3. if the cost at b^the cost at c^ search new interval
c,b using the same method

„

A method such as this will allow one to get as close

as one wants to the optimal or converge to the optimal^

depending on the method of choosing the points b and c at

each stage.

A computer program has been written and can be found in

the back of the thesis. The program utilized the following

data:

Number of customers 75
Mean cyclic demand 15
Set-up cost $ 20.
Repair Cost J5 3°
Backorder cost ti 3.
Additional carrying costs !> 2.

Per unit fixed carrying cost $ 2.
Stock level range 0-24

Using this data the computer routine picked the stock

levels in the sequence shown from left to right and

generated the following rer.air policies :
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The program converged on the optimal policy of maintaining

a stock level of 22. In addition it made the following

repair decision: if, at the beginning of the repair cycle s

the number in repair is greater than or equal to 8, one

should repair all the failed units. Otherwise, do not

repair.

This program used 236K bits of computer space and

6 min.30 second of computer time.
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V. CRITIQUE AND CONCLUSIONS

A. SUMMARY

Howard's computation technique was used in determining

the optimal repair policy and the variable cost for a given

stock level. The algorithm associated with this can be

found in Section III.B.5. The total cost for this stock

level was then computed by adding its fixed cost to the

variable cost.

It was then argued that the cost of operating the repair

system was a convex function of the stock level. Thus, any

of the many unimodal search methods could be used. With

this information at hand, the following algorithm could be

used.

Minimum' Cost Algorithm

1„ Select two stock levels over a general range using
a unimodal search method.

2. Compute the total cost(s) using the repair policy
algorithm and compare. Select range associated with that
stock level that has minimum total cost.

3. Choose new stock level to compare with present
optimum stock level.

4. If there is no stock level better, stop. Other-
wise, go to step 2.
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B . CRITIQUE

Although this algorithm did locate the optimal repair

policy and stock levels it presented some computational

problems. In addition to this, there is some question as

to the usefulness of the results because of the assumptions

that were made.

1. Assumptions

The model envisaged a cyclic repair system in which

all transactions took place within that cycle. At the same

time , probability distributions were assumed that were not

consistent with this assumption. For instance, a Poisson

distribution does not prevent a part from failing a couple

of seconds prior to the end of the cycle. But, it is

assumed that, if this happened, the failed item would be

delivered to the repair activity prior to termination of

the cycle.

It was further assumed that all work started in a

repair cycle would be completed in that cycle. This implied

that everything required to repair the failed item would be

on hand at all times. This particular assumption might be

good or bad depending upon what is required to repair the

item.

It was also assumed that every failed item received

could be repaired. This is very unrealistic. But, it is

felt that this assumption could be relaxed by allowing for

some attrition, although no suggestions are to be offered

at this time

.
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There are two properties of this model , though, that

make it particularly useful. First of all, "the model assumes

that the repair periods are cyclic. This is the way most

workloads are formed and work is accomplished today. Secondly,

the model is independent of the demand distribution used.

So, even some empirical demand distribution could be used

as easily as the Poisson.

2. Computational Problems

The two major weaknesses of the model are program

size and computer run-time. In the example in Section IV,

it was noted that 236K bits of computer space were required

for a problem that contained only 75 customers and a range

of possible stock levels of 0-24. 236K is considered a

very large program, while 75 customers is a very small

problem. The large storage space requirement is due to

the matrix size required to hold all the state probabilities

for the associated decisions. In the example in Section IV,

the matrix was 100x100x2 which uses 80,000 bits of computer

space by itself. A single computer could not handle a

problem with 1000 customers which is not an unrealistic

repairable item problem.

The second major weakness was the running time of

the program. The small example took 6J- minutes. This

lengthy running time was due to the fact that a probability

of demand must be computed for each state and each repair

alternative. And then, having done this, one was required

to solve a series of systems of simultaneous ?quations to

determine the optimal repair policy.
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3. Parameter Sensitivity

The parameters or costs were not tested in the

thesis. This would normally be done to see how repair

policies and stock levels were affected by changes in the

set-up cost, and the unit costs of carrying and repairing

failed items. It was felt, though, that the computational

problem mentioned in the previous section required a solution

prior to testing parameters.

C . ALTERNATIVES

There are ways to avoid some of the problems. The

suggested alternative ways given here deal with either

reducing the number of states or reducing the number of

alternatives

.

1. Reduction of Storage Area

Information could be generated as required for

each iteration rather than storing it. But, by doing this,

computation time would be increased significantly. For

example, even in determining a repair policy for a given

stock level, the entire state space and cost space would

have to be computed at each iteration. And, as was pointed

out earlier, computer running time was already quite high.

Thus, there does not seem to be a practical means of reducing

storage space utilized while using the same approach

developed in the thesis.
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2. Compression of State Space

A study of the results of Section IV led to two

possible alternatives for reducing state space. Both

alternatives required the following facts to be noted from

Table III in Section IV.

Let x be the amount of repairable stock on hand;

let b be the smallest x such that the repair decision is:

repair all failed items . Then, if , at the beginning of a

repair cycle, x is greater than b, the decision will be

to repair all failed units

.

Secondly , note that the "active" state space is

quite small. By "active" is meant those states or repair

decisions that actually change during cost reduction routines.

The size of the active state space seems to be a function

more of cyclic demand and stock size than of the number of

customers. The following two alternatives are offered:

a. Reduce the Size of the Problem:

Let M = the number in stock
Amean = the cyclic demand

N = number of customers

Define the state space , the number in repair 3

in the following way. Let the state space = 0,1, . . . ,AMEAN-tfy[,K

where K is any possible state greater than M + Amean. The

bulk of the states of a larger problem are combined into

state K. A major difficulty in solving this problem is the

determination of a cost associated with the state K.

Although no specific solution will be offered in this paper,

it is felt that this can be solved utilizing expected cost

rather fian actual cost.
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b. Reduce the Number of Alternatives for Certain States

Define M, Amean and N in the same way, use the

following general rule. For the states 0, . . .M+Amean, one

can make two decisions: repair none or repair all. For

all states K greater than M+Amean, repair all. This would

reduce storage space while retaining the structure of the

problem as it is

.

D. EXTENSION-MULTI-ITEM SYSTEM

A discussion of a repairable item inventory system

would not be complete without at least a cursory look at a

repairable item system that is multi-item. Since this was

not the main thrust of this thesis, a solution to this

problem will only be suggested.

1. No Resource Constraint

With the absence of constraints on resources, the

multi-item problem reduces trivally to a set of individual

repairable-item problems. The minimum cost repair policy

and stock level can be determined for each item individually.

2. Resources Constraint

The more common repairable item systems would have

a combination of two constraints: a budget constraint and

a workload constraint. Suppose minimizing the probability

of a stock-out is the measure of effectiveness. To work

with this measure, stock-out cost must be deleted from the

cost function and the problem must be reformulated in the

following manner:
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L
MIN £ a P(S/0),

i=l
±

L
ST£ C i (P

i
)£D

ill
E^i£ F

Where L = number of customers

P(S/0). = probability for the i item being
1 out of stock

a. = weighting factor for item i

C.(P.) = cost of the repair policy associated
1 1 with item i

E. = work units required to repair item i

x. = total number of the i item to be
1 repaired

D = total budget constraint

F - workload constraint

With the time required to compute the optimal repair

policy and stock level even for one item 3 solving this type

of minimization problem is not amenable to solution at this

time.

E. CONCLUSIONS

Three major conclusions can be drawn from this paper.

1. The total cost of maintaining a part in a repairable

item system is a convex function of stock level.

2. The optimal repair policy will be of the following

form:
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Let x be the number of failed items in repair. Let

b be the state of the smallest quantity in repair for which

all will be repaired. Then the following decision rule will

be used:

If x^bj do not repair

x^b, repair all.

This is similar to the (s,S) policy in inventory theory.

3. The dynamic programming-Markov process approach

to the repairable inventory system leads to a minimum cost

solution.

51





£** ******************************************** *******£
c c
C DEFINITION OF VARIABLES C
C C
C** ************************************** ****** *****5Jt*C
c C
c Al LOWER BOUND OF GOLDEN SECTION C
c SEARCH C
c c
c A2 UPPER BOUND OF GOLDEN SECTION c
c SEARCH c
c c
c AMEAN MEAN DEMAND DURING REPAIR c
c PERIOD c
c c
c B(I) EXPECTED IMMEDIATE COST USED c
c IN A GIVEN COMPUTATION c
c c
c BLL(I) PROBABILITIES USED IN A c
c GIVEN COMPUTATION c
c c
c CFIX FIXED PER UNIT COST OF c
c CARRYING A UNIT IN STOCK c
c c
c COST( J,K) COST ASSOCIATED WITH c
c PROB(I,J,K)o THIS IS c
c INDEPENDENT OF STARTING c
c STATE c
c
c CPCL COST ASSOCIATED WITH STOCK

c
c

c
c
c

LEVEL AND COST OF BACKORDEP c
c
cCREP REPAIR COST PER ITEM

c c
c CSET FIXED COST OF SETTING UP c
c
c
c

MACHINES FOR REPAIR c
c

CXLFT COST IF STOCK LEVEL WERE AT LEFT c
c
c
c

SEARCH POINT c
c
cCXRT COST IF STOCK LEVEL WERE AT RIGHT

c SEARCH POINT c
c c
c DENOM TRUNCATION FACTOR FOR c
c
c
c
c
c
c
c

POISSON DISTRIBUTION c
c
c
c
c
c
c

DPOL TOTAL CPOL

DREP TOTAL CREP

DSET TOTAL CSET
c c
c GELG SUBROUTINE THAT SOLVES A c
c SYSTEM OF SIMULTANEOUS c
c
c

EQUATIONS c
c

c
c
c

H RANGE OF GOLDEN SECTION SEARCH c
c
cLDEM SYSTEM DEMAND DURING REPAIR

c
c

CYCLE c
c

c LEND QUANTITY UNREPAIRED AT c
c
c
c
c
c

END OF REPAIR CYCLE c
c
c
c
c

LREP QUANTITY BEING REPAIRED

QUANTITY AVAILABLE FOR REPAIR
c
c
c

AT START OF REPAIR CYCLE c
c
cLSTART NUMBER IN REPAIR AT BEGINNING

c OF THE REPAIR CYCLE c
c c
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MA

MD(I)

NCCUNT

NCUST

ND(I)

NUMBER

NYESNO

POISS(X, Y)

PRCBd ,J,K)

QUE( I,K)

R

XLFT

XRT

STOCK LEVEL

BEST REPAIR POLICY VECTOR

NUMBER
OF IMPROVEMENT ROUTINES
INITIATED

NUMBER OF CUSTOMERS

BEST ALTERNATIVE REPAIR
POLICY VECTOR

TOTAL NUMBER OF STATES
IN SYSTEM

DETERMINES WHETHER OR NOT
PRESENT SET OF ALTERNATIVES
MATCH PREVIOUS SET

SUBROUTINE THAT COMPUTES
POISSON PROBABILITIES OF
DEMAND

PROBABILITY J ITEMS ARE
IN REPAIR AFTER ONE PERIOD
GIVEN THAT I ITEMS NEEDED
REPAIR AT BEGINNING CF
PERIOD AND K ITEMS WERE
REPAIRED DURING PERIOD

IMMEDIATE EXPECTED COST
DUE TO HAVING I ITEMS
AND REPAIRING K

GOLDEN SECTION SEARCH CONSTANT

LEFTHAND POINT OF SEARCH

RIGHTHAND POINT OF SEARCH

C************************** ******** *******************C
c c
C CECLARATICN OF VARIABLES C
C C
C*******^* ****:« ***^* ****** *******^ ******** *************C
C c

DIMENSION P RGB (100,100,2) *CCST( 100,100)

,

1QUE( 100,2) ,8LL( llJOO) ,8(100) ,ND(1CG) ,MD( IOC)
NCQUNT =
NCUST=75
AMEAN = 15o0
CSET=2CoOO
CREP =3o0
CPOL = 5oO
CFIX=2oOO
LMNOP=C
R=o5*(SQRT(5.0)-1.0)

c c
C******************** *****************^***************C
c c
C INITIALIZE FIRST TWO POINTS OF GOLDEN C
C SECTION SEARCH C
c c
C**^*^**«****3t:******-: 3!c*^**-c#*****#****5i:*****3}:*^i!c******C
c c

Al=CoO
A2=24.0
H=A2-A1
XLFT=A1+(R**2)*H
XRT=A1+R*H
MA= IFIX(XLFT)
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WRITE (6,0003) MA
0003 F0RMAT( •

1« ,«THE NEW SEARCH VALUE IS 1
, 14///)

GO TO 0015
0C07 MA = IFIX(XRT)

WRITE (6, 000 8) MA
0008 FORMAT( '1' ,'THE NEW SEARCH VALUE IS«,I4///)

c c
£**************** *************************************£
C C
C START SEARCH OF OPTIMAL REPAIR POLICY C
C FOR A GIVEN STOCK LEVEL C
c c
C****** ******* ******* ************* ******* *************£
c c
0015 NCOUNT =

NUMBER = NCUST + MA + 1
DO 10 I = 1,21
MD( I ) =
ND(I) =
B(I) = OoO
DC 14 J= 1,21
NNNN = ( I-1)*NUMBER + J
BLL(NNNN) = fi,0
CCST(I.J) = 0.0
DC 20 K=l,2
QUE(JtK) = OoO
PROB(I,J,K) = OoO

C>r>20 CONTINUE
CO 14 CONTINUE
00 10 CONTINUE

C c
C ** ************** ************************************* C
c c
C COMPUTATION OF PROBABILITY MATRICES C
C c
c** ************************************** *************c
c c

DO 12C0 I = 1, NUMBER
LSTART = 1-1
DC HOC K =1,2
IF(K.GT.I) GO TO 11C0
LREP=LSTART
IF(KoEQ.l) LREP=0
DENOM = 0.0
DO 500 J = 1, NUMBER
LEND = J-l

C
C

IF( (LSTART-LREP) oGToLEND) GO TO 400
LDEM = LEND - LSTART + LREP
IF(LDEMoGTo NCUST) GO TO 400
IF( (LSTARToGT.MA).ANC. (LDEMoGTo ( NCUST-LST ART+MA) )

)

1G0 TO 400
D = 44oO/7oO
BB = FLOAT(LDE'I)
PROB( I,J,K)=EXP(-(( (BB-AMEAN)/AMEAN)**2)/2oO)/

1SQRT(D)*AMEAN
DENOM = DENOM + PROBU,J,K)
GO TO 500

400 PROBU , J,K)= OoO
5CC CONTINUE

DO 1000 J =1, NUMBER
A = PROBU , J,K) /DENOM

1000 PROBU, J, K) A
1100 CONTINUE
1200 CONTINUE

c c
c************* *************************** *************c
c c
C COMPUTATION OF COST MATRICES C
c c
c** ******************************** ***********-. *******c
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c c
DC 1500 J = 1, NUMBER
LEND = J-l
DC 140c K = 1, NUMBER
LREP = K-l
DSET = CSET
IF( (K.EOol) ) DSET = OoO
DREP = CREP*FLOAT(LREP)
KA = C
IF(LEND.GToMA) KA = LEND - MA
DPOL = CPOL*FLOAT(KA)

1400 COST(J,K) = DSET + DREP + DPOL
1500 CCNTINUE

c c
c** ******************** *******************************

c

c c
C COMPUTATION OF IMMEDIATE EXPECTED COST C
C C
C** ************************************** *************£
c c

DC 160C I = 1, NUMBER
DC 155C K=l,2

1550 QUE (I ,K) = OoO
16CC CCNTINUE

C
c

DO 1800 I = I, NUMBER
DO 1700 K=l,2
IF(KoGT.I) GO TO 1700
LL=I
IF(KoEQ.l) LL=1
DC 165C J=l, NUMBER

1650 QUE( I,K)=QUE( I,K) + PROB ( I , J , K ) *COST ( J , LL

)

1700 CCNTINUE
18C0 CONTINUE

c c
Q»»»**»**»*»*»*^*»»**»**»»*»*;***********»*»*»*****»*{;
C C
C CHOCSE ALTERNATIVE THAT GIVES MINIMUM C
C IMMEDIATE EXPECTED COST C
C C
C** ************************************** *************C
c c

DO 21C0 1=1, NUMBER
IF( IoEQ.l) GO TO 1900
LB = 1

IF(QUE(I ,DoGToQUE( 1,2) ) LB=2
B( I ) = QUE( I, LB)
MD(I) = LB
GO TO 20C0

1900 LB=1
MD(I) =1
B(I) = QUE( I, LB)

2000 DC 20 50 J = 1, NUMBER
NNNN=I+( J-l )*NUMBER

2C50 BLL(NNNN)=PROB(I ,J,LB)
2100 CCNTINUE

c c
£***********--**********************************5ie******C
c c
C WRITE INITIAL REPAIR POLICY C
C C
C******************* ********************* *************c
c c

WRITE(6,220C)
2200 FCRMAT(« «,' INITIAL REPAIR POLICY'//)

WRITE(6,2225)
2225 FORMAT( • ', 'NUMBER IN REPAI R

• , 10X ,
' RE PA I

R
• /

)

DO 2275 1=1, NUMBER
J=I-1
JJ=0
IF(MD(I UEQ.2) JJ=I-1
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WRITE<6,2240 ) J,JJ
2240 FGRMAT(« , 4X , I 4 »1 8X, 14)
2275 CCNTINUE

WRITE(6,2230)
2280 FORMAT(///)

C C
C** ***************************************************£
c c
C ORGANIZE PROBLEM AS SYSTEM OF SIMULTANEOUS C
C EQUATIONS C
c c
£**** *************************************************£
c c
2300 MNMM= NUMBER**2

DO 2320 I = 1,MMMM
Y=(-1)*BLL( I)

2320 BLL(I) = Y
DO 2400 I = 1, NUMBER

2400 BLL( I) = lot
J= 1
DC 2500 I = 2, NUMBER
J= J + l
K= ( 1-1 )*NUMBER + J
Y= BLL(K) + 1.0

2500 BLL(K) = Y
CALL GELG ( B , BLL, NUMBER, 1 , .0005, N IER

)

B(l) = OoO
DO 350C I =1, NUMBER
DO 3400 K = 1,2
IF(K.GT.I ) GO TO 3400
Y = O.C
DC 3300 J = 1, NUMBER
Y = Y+ PROBU ,J,K)*B( J)

3300 CCNTINUE
Y = Y + QUE( I,K)
IF(K.EQ.l) E=Y
IHY.GT.E) GO TO 3400
ND(I ) = K
E = Y

3400 CONTINUE
3500 CCNTINUE

NYESNO =
DC 360C I = 1, NUMBER

3600 IF (MD( I ).NE.ND(I) ) NYESNO = 1
IF(NYESNO.EQ.O ) GO TO 5000

c c
C************ ******** ****************** *******a**** ***c
c c
C WRITE PRESENT REPAIR POLICY C
C C
c** ******************************************* ********c
c c

NCOUNT = NCCUNT + 1
WRITE (6,29 50) NCOUNT

2950 F0RM4T(' ^'POLICY IMPROVEMENT ROUTINE NUMBER • ,

113/)
WRITE(6,363C )

3630 FORMATf ', 'NUMBER IN REPAIR* , 10X ,» REPA IR •/

)

DO 3625 1=1, NUMBER
J=I-1
JJ=0
IF(ND( I )oEQo2) JJ=I-1
ViRITE(6,3635) J,JJ

3635 FORMAT(« • ,4X , I 4 ,1 8X, I 4)
3625 CONTINUE

WRITE(6,3640)
3640 FORMAT(///)

DO 36 50 I = 1, NUMBER
36 50 MDU) = ND(I)

C C
Q********************************* ***********; :<*******C
c c
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C CHOOSE PROBABILITY MATRIX AND ASSOCIATED C
C IMMEDIATE EXPECTED COSTS FOR NEXT ITERATION C
c c£*****************************#*******************#*£*,-
c c

DO 4000 I = 1, NUMBER
NN = ND( I)
B( I) = QUE( I,NN)
DO 3800 J = 1, NUMBER
NNNN = I + (J-1)*NUMBER

3800 BLL(NNNN) = PROB(I,J,NN)
4CC0 CONTINUE

GO TO 2300
C C£*****************************************************£
c c
C COMPUTE THE STEADY STATE PROBABILITIES C
c c
C**************************************** ********&***;;;£
c c
5CC0 DO 5100 I =1, NUMBER

NN = ND( I)
DC 505C J = 1» NUMBER
NNNN = J + (I-1)*NUMBER

5050 BLL(NNNN) = PROB(I,J,NN)
510C CONTINUE

C
c

J =
DC 5200 I = 1, NUMBER
B(I) = OoO
J = J+l
K =( 1-1 )*NUMBER + J
A=BLL(K)-loO
BLL(K) = A
KKKK= ( I-1)*NUMBER + 1

BL L ( KKKK ) ~ 1 •
52C0 CONTINUE'

C
c

B(l) = loO
C
C

CALL GELG ( B , BLL , NUMBER , 1 , <,Q095 , NIER )

C C
£************************************ *****************C
c c
C NOW COMPUTE EXFECTED PERIODIC COST FCR C
C GIVEN INVENTORY C
c c
c **************************************** *************c
c c

A = 0.0
DO 5300 I =1, NUMBER
NN = ND( I

)

5300 A = A + B(I )*QUE(I,NN)
C
c

WRITE (6,5400) A
54C0 FORMAT* • ' ,'THE TOTAL VARIABLE COST IS «,F7o2)

IF(MA.EQ.IFIX(XLFT) ) CXLFT = A+FLOAT ( MA*2

)

IF(MA.EQ.IFIX( XRT) ) CXRT = A + FL0AT(MA*2)
IF(MA.EQoIFIX( XLFT) ) WRITE ( 6 , 81G0 ) CXLFT
IF(MA.EQ. IFIX(XRT) ) WRITE (6, 8100 ) CXRT

8100 FORMAT* • « ,'THE TOTAL COST OF SYSTEM IS ',F7o2)
LMNOP= LMNOP +1
IF(LMNOPoEGol ) GO TO 00C7

c c
£****************************:p************************£
c c
C COMPARE COSTS USING GOLDEN SECTION SEARCH C
C c
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C********************************** ****** *************£
c c

IF(CXLFT.LToCXRT) GO TO 8500
A1=XLFT
H=A2-A1
IF(H.LT.l.O) GO TO 9000
XLFT = XRT
CXLFT =CXRT
XRT=A1+R*H
MA= IFIX(XRT)
WRITE(6,83CC) MA

8300 FCRMAT( '1« , 'THE NEW SEARCH VALUE IS »,I4///)
GO TO C015

8500 A2=XRT
H=A2-A1
IFfH.LT. 1.0) GO TO 9000
XRT = XLFT
CXRT = CXLFT
XLFT=A1+(R**2)*H
MA = IFIX(XLFT)
WRITE(6,360r ) MA

8600 FORMAT* ' 1' , "THE NEW SEARCH VALUE IS ',14///)
GO TO CO 15

9000 STOP
END
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