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ABSTRACT 

 Blockchain technology has the potential to improve the areas of additive 

manufacturing, supply chain management, and many others within the Navy. An anomaly 

detection scheme that characterizes blockchain parameters as normal or anomalous using 

statistical analysis and hierarchical clustering methods was developed in this thesis. The 

histograms, probability distributions, and boxplots of the data were used to estimate 

thresholds for outliers that may indicate attacks. The thresholds obtained from 

dendrograms were used to form clusters and sub-clusters based on the hierarchical data 

structure; data point indices that do not fall within the threshold are considered 

anomalous and not included in the clusters. The anomaly detection scheme was 

implemented in the MATLAB programming environment and validated by successful 

anomaly detection corresponding to an attack on the public Ethereum blockchain network 

and in an experimental doorknob-rattling attack on a local blockchain research network. 

Hierarchical clustering proved to be a more powerful anomaly detection method than 

statistical analysis methods. 
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I. INTRODUCTION 

Blockchain technology is useful for a number of applications, and it is reasonable 

to assume that it will be implemented in U. S. Navy and other Department of Defense 

information networks in the near future. There is a cooperative research and development 

agreement between the Naval Air System Fleet Readiness Center Southwest and Indiana 

Technology and Manufacturing Companies to demonstrate a blockchain proof-of-concept 

in the focus area of supply tracking [1]. The Naval Innovation Advisory Council (NIAC) 

has determined that blockchain technology has the ability to improve many secure data 

exchange processes [2]. 

The fundamental concepts that make blockchain so appealing are security and trust. 

The most popular applications of blockchains have been in the financial domain as 

cryptocurrency, such as Bitcoin and Ethereum. These blockchains have been subjected to 

attacks through vulnerabilities identified in the software implementations and smart 

contracts [3]. With the integration of this new technology in our networks comes the 

responsibility of understanding what indications of attack may look like so we can better 

defend our networks. 

The research detailed in this thesis describes methods that may detect some, but not 

all, anomalies indicative of an attack against a blockchain network. It is an important step 

toward defining what normal blockchain network behavior is, although there remains much 

to be investigated. 

A. THESIS OBJECTIVE 

The objective of this thesis is to develop an anomaly detection scheme to 

characterize the behavior of blockchain-based systems using both statistical analysis and 

unsupervised machine learning methods. Ideally, the network data associated with the 

addition of blockchain technology for database storage can complement existing network 

intrusion detection systems. 

The anomaly detection scheme proposed in this thesis determines normal network 

behaviors by analyzing the number of blockchain transactions and average gas usage, or 
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computational power. The scheme is implemented in MATLAB and applied to both the 

data of the public Ethereum blockchain and to data collected in a local blockchain research 

network to demonstrate anomaly detection based on known network attacks. 

B. RELATED WORK 

The most well-known application of blockchain technology is in the form of 

cryptographic currency. Bitcoin, the most widely used cryptocurrency, uses a peer-to-peer 

network with no central authority but has security vulnerabilities primarily in the proof-of-

work consensus protocol [4]. Rahouti et al. describe blockchain security threats and 

proposed solutions in [4]. T. Pham and S. Lee successfully used k-means clustering, 

Mahalanobis distance, and an unsupervised support vector machine to determine Bitcoin 

network anomalous behavior in [5]. All of these methods study the transaction structure in 

the network. 

Ethereum is another public blockchain that uses smart contracts as permanent, 

irreversible records of transactions [4]. Bogner analyzed the Ethereum network and was 

able to report some anomalies by using undisclosed machine learning methods on a small 

subset of the network data, approximately five thousand of the over seven million 

blocks [6]. 

Carter et al. present a method for anomaly detection on large-scale networks 

without using temporal modeling but rather using nodes exhibiting similar behaviors [7]. 

By measuring dissimilarity and hierarchical clustering, they were able to identify, 

characterize, and classify groups of anomalous behavior of incoming and outgoing IP 

traffic [7]. We used these concepts to gain understanding of anomalous behavior in the 

context of the Ethereum blockchain. 

Combining the use of statistical methods, machine learning methods, and 

hierarchical clustering, we were able to detect an attack associated with the Ethereum 

blockchain network and associate trends over the entire data set. However, network 

behavior evolves over time, making it necessary to periodically adjust anomaly detection 

thresholds. Additionally, there were known attacks on the Ethereum network that were not 

detected by our methods, meaning that the approach we used can only detect anomalies if 
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the attack required noticeable transaction or gas usage increases. We also resolve that 

hierarchical cluster analysis is more powerful than statistical analysis methods because it 

provides a better understanding of the details of the underlying data structure. 

C. ORGANIZATION 

Five chapters and two appendices are contained in this thesis. The background 

information on several topics including blockchain technology and its application to naval 

operations, statistical analysis methods, and clustering methods is covered in Chapter II. 

The anomaly detection scheme and how it is used to detect outliers are described in 

Chapter III. The scheme described in Chapter III is applied to the public Ethereum 

blockchain network and to an experimental local blockchain research network in 

Chapter IV. A summary of significant results and recommendations for future work is 

included in Chapter V. The MATLAB programming code used to implement the statistical 

analysis method and the clustering analysis method is contained in Appendix A and 

Appendix B, respectively. 
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II. BACKGROUND 

The dominant concepts from blockchain application and anomaly detection 

leveraged in this thesis are introduced in this chapter. A discussion of blockchain 

fundamental concepts and U. S. Navy potential blockchain applications is offered first. 

Statistical techniques for analyzing network behavior are introduced. The use of k-means 

and hierarchical cluster analysis for anomaly detection are then presented. 

A. BLOCKCHAIN TECHNOLOGY AND APPLICATIONS TO NAVAL 
OPERATIONS  

In 2017, the NIAC set out to experimentally determine if blockchain technology 

could really be used as secure data storage, selecting additive manufacturing as its focus 

[2]. Blockchain technology has the potential to improve the areas of additive 

manufacturing, supply chain management, and many others [2]. As incorporation of this 

new technology begins to appear inevitable, we must consider the implications these 

systems will have on existing network intrusion detection systems. 

The 2019 publication of the Cybersecurity Readiness Review by the Secretary of 

the Navy highlights the importance of cybersecurity and that a logical approach must be 

taken to anticipate and detect network attacks to maintain robust, continuous systems [8]. 

We must understand anomaly detection in this new context prior to implementation of 

blockchains in our networks. 

Blockchain technology, introduced in 2008, is an encryption and authentication 

technology for peer-to-peer networks, relying on a hash-based proof-of-work consensus 

protocol to overcome the need for a central authority [9]. Blockchain is built on a very 

simple concept. Each block, which is a container for data, is chained to the block before it 

by containing the hash of the previous block [9]. One metric of interest that helps to 

characterize a blockchain is a transaction, or signed and timestamped data package 

containing messages to be transferred between the participants in the blockchain. 

Transactions are broadcast to all other nodes in the blockchain and accepted based on 



6 

validation of an accompanying signature and the existing user account balance as recorded 

in the blockchain [9].  

Another metric of interest in a blockchain network is average gas usage. 

Transactions contain a gas value which signifies the maximum computational cost a 

participant is willing to pay for the codification of the transaction in a block [10]. The 

average gas usage is then taken across the blocks created in a time period of interest and 

represents how much participants are willing to pay to process transactions; when this value 

spikes, we can reasonably assume something malicious is occurring.  

In proof-of-work blockchains, miners race to find nonce values that, when grouped 

with the hash of the previous block and a set of transactions waiting to be added to the 

chain, will produce a hash value meeting some agreed upon and difficult-to-achieve quality 

[9], such as a required number of leading zeros. Completed blocks are broadcast to all 

participants for inclusion in their local copies of the chain. In this way, blockchains protect 

data immutably, because subsequent changes to a block that is already encapsulated in the 

chain must be accompanied with simultaneous changes in all of the follow-on blocks [9]. 

The longest version of the chain in circulation is accepted as the correct chain; each of the 

distributed participants replaces their version if they receive one that is longer. 

Ethereum is one of the most popular blockchain networks because of its use of 

smart contracts, or computer programs, which carry out an agreement when executed [11]. 

Although known for its security and trust, attacks have occurred against the public 

Ethereum blockchain. An attacker stole approximately $60 million in the infamous 

decentralized autonomous organization (DAO) attack on June 18, 2016 [3]. The DAO 

attack successfully took advantage of vulnerabilities in the code of the smart contracts. The 

attacker was able to transfer ether, Ethereum cryptocurrency, out of the DAO account and 

continue taking withdrawals before updating the balance [3]. The Ethereum blockchain 

recovered via a hard fork, or a new version of the blockchain, starting from just prior to the 

attack in order to prevent the loss of ether. 

On July 19, 2017, a digital wallet contract permissions vulnerability was exploited, 

resulting in the theft of 150,000 ether, more than $33 million [12]. On November 7, 2017, 



7 

libraries were accidently deleted, freezing 500,000 ether, or $150 million [13]. In this 

thesis, we attempt to investigate what reflections of the above events we can observe using 

statistical and clustering analysis. 

B. STATISTICAL ANALYSIS 

To understand how anomaly detection could be implemented in blockchain 

technology, this thesis began with a statistical analysis of blockchain technology data. The 

principal techniques we used for this preliminary analysis were histograms, probability 

density functions, and boxplots. 

Histograms use bins to portion the data points that fall within a certain value range 

in that bin, providing a means to assess average and variability [14]. The shape of the 

histogram can be characterized by probability density functions. This thesis applies three 

probability density functions: kernel, Gaussian, and generalized extreme value. 

A kernel is a smoothing function and a nonparametric representation of the 

probability density; it is used when other distributions cannot properly be fitted to the data 

or when attempting to avoid making assumptions about the data [15]. The general form of 

the estimated kernel probability density function is given by 

  (1) 

where K is the kernel, Xi are the real observations, n is the number of observations, and h 

is the bandwidth [16]. Only a Gaussian kernel was used in this thesis. 

The Gaussian distribution is symmetric about its mean and approaches zero a few 

standard deviations from the mean. The general form of the Gaussian probability density 

function is given by: 

 
2

2
( )

2
2

1( )
2

x m

f x e σ

πσ

−
−

=  (2) 

where m is the mean and σ is the standard deviation [17]. 
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The generalized extreme value distribution is used for modeling extremes of natural 

phenomena and the cumulative distribution function is given by: 

 1( )( ) exp[ {1 ( )} ]ox xF x κκ
α

−= − −  (3) 

where α  is the scale parameter, xo is the location parameter, and κ  is the shape parameter 

[18], [19]. 

A boxplot is another way of visually assessing the median, or the value that falls in 

the middle of the dataset, and is given in Figure 1. The boxplot splits the data into four 

equal parts, or quartiles. The upper (Q3) and lower (Q1) quartile, representing 75% and 

25% of the data, respectively, form the edges of the box. The distance between the upper 

and lower quartiles, dIQR, is the interquartile range (IQR) and contains 50% of the data. The 

whiskers represent the minimum and maximum values in the data set within 1.5dIQR [20]. 

Values that exceed 1.5dIQR above the upper quartile or below the lower quartile are 

considered minor outliers; values that exceed 3dIQR above the upper quartile or below the 

lower quartile are considered major outliers [20]. These four limits form the fences of the 

boxplot and are illustrated in Figure 1. Outliers are defined as values beyond the whiskers 

and marked with a red plus sign in Figure 1. The algebraic representations for the limits of 

the upper inner fence (LUIF), lower inner fence (LLIF), upper outer fence (LUOF), and lower 

outer fence (LLOF) determinations are as follows [20]: 

 3 1.5UIF IQRL Q d= +  (4) 

 1 1.5LIF IQRL Q d= −  (5) 

 3 3UOF IQRL Q d= +  (6) 

 1 3LOF IQRL Q d= −  (7) 
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Figure 1. Histogram, distribution fit, and boxplot example. 

The combination of these tools can be used for basic anomaly detection by 

establishing immediate, clearly defined thresholds. We will explore the machine learning 

methods that might help us characterize large data sets in the next section. 

C. K-MEANS AND HIERARCHICAL CLUSTERING ANALYSIS 

The primary machine learning methods we examined for anomaly detection in 

blockchain technology were k-means and hierarchical clustering. 

1. K-means Clustering Analysis 

The k-means clustering algorithm was first introduced in 1956 by Steinhaus [21] 

and is widely used today. The k-means method is explained as taking k groups, consisting 

of random initial subsets, and calculating their means. As new points are added, they will 

be assigned to the group with the closest mean, and the group mean is adjusted each time 

a new data point is added. These groups of means, or clusters, are known as k-means [22]. 
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The k-means algorithm forms these clusters by taking a set of data points x = {x1, 

x2…xn} and partitioning them into a set c of k clusters c = {c1, c2…ck}. The goal is to 

minimize the objective function 

  (8) 

where μk is the centroid of cluster ck [21]. Centroids are centers for the spherical shapes of 

the clusters [22]. The objective function can only be minimized for a fixed number of 

clusters because J(C) = 0 when K = n [21]. Once the data is divided into k clusters, 

subsequent iterations update cluster assignments and centroids until they converge [21]. 

K-means usually specifies the Euclidean distance as the metric between data points 

and the centroid; this will be the process used throughout this thesis. One of the difficulties 

in using the k-means algorithm is determining the correct value for k, as there are many 

known methods [21]. We will discuss hierarchical clustering for use in our analysis in the 

next subsection.  

2. Hierarchical Cluster Analysis 

Hierarchical cluster analysis is one way to determine the optimal number of clusters 

best suited for anomaly detection for a given data set. Binary hierarchical clustering begins 

by starting with one cluster and then splitting it into two clusters based on dissimilarities 

forming a tree structure, or dendrogram, until there are no similarities remaining [23]. A 

dendrogram is a hierarchical representation of the similarities between groups of data 

points [7]. 

Similarities of the dendrogram are determined by the Euclidean distance, or 

linkage, between data points [7]. There are three primary choices for linkage, all illustrated 

in Figure 2: single linkage, complete linkage, and average linkage. Single linkage is the 

nearest neighbor technique in which the distance between clusters A and B, s
ABd , is defined 

as the minimum distance between a data point from cluster A and a data point from cluster 

B as given by [7], [24] 

 min{ ( , ) : , }s
ABd d a b a A b B= ∈ ∈ . (9) 
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Complete linkage relates the distance between cluster A and cluster B, c
ABd , by the 

maximum distance between a data point from cluster A and a data point from cluster B as 

given by [7], [24] 

 max{ ( , ) : , }c
ABd d a b a A b B= ∈ ∈ . (10) 

Average linkage relates the distance between cluster A and cluster B, a
ABd , by the 

average distance as given by [24] 

 
ij

i ja
AB

A B

d
d

N N
=
∑∑

 (11) 

where dij is the pairwise distance between all data points from cluster A and all data points 

from cluster B, NA is the number of data points in cluster A, and NB is the number of data 

points in cluster B. 

 

Figure 2. Inter-cluster distance measures. Source: [24]. 

Hierarchical clustering creates a hierarchical structure regardless of whether that 

structure actually exists. The cophenetic correlation, ρ, indicates how well the dendrogram 

preserves the pairwise distance between original data points and can be calculated for each 

linkage method [24]. The closer the cophenetic correlation value is to 1.0, the more similar 
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the hierarchical representation is to the original data. The cophenetic correlation is one way 

to determine if the distortion created in the hierarchical structure is acceptable [24]. 

The dendrogram can be qualitatively assessed to determine the threshold, θ, for the 

division of clusters [7]. Groups that merge higher in the dendrogram have more similarities 

and are prime candidates for threshold determination. For example, a threshold of θ = 0.75 

forms two clusters, indicated in blue and green, in the dendrogram of Figure 3(a). The 

resulting clusters are shown in Figure 3(b). The data point indices of the dendrogram 

correspond to the individual data points that create the two clusters as illustrated in Figure 

3. As behavior evolves over time, thresholds will likely need to be reevaluated. 

 

Figure 3. Dendrogram (a) and clusters (b). Adapted from [25]. 

In this chapter, an overview of blockchain technology was presented to understand 

blockchain applications and the need for an anomaly detection scheme. Statistical analysis 

provides a possible means for anomaly detection once blockchain technology is integrated 

into networks. Relevant discussions for k-means clustering and hierarchical clustering, 

which are considered machine learning techniques, for anomaly detection were also 

provided. 
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III. ANOMALY DETECTION SCHEME 

A background of statistical techniques, unsupervised k-means clustering, and 

hierarchical clustering approaches were presented in Chapter II. Specifically, the ways and 

means to determine anomaly detection thresholds were discussed. Here we will explore 

application of these methods as a way to detect malicious behavior. This chapter is broken 

into two parts: statistical analysis and clustering analysis. 

A. STATISTICAL ANALYSIS METHOD 

We use analysis of the histograms, probability distributions, and boxplots as given 

in the schematic diagram shown in Figure 4 to estimate thresholds for outliers that may 

indicate attacks. First, the input data is normalized and a histogram created to provide an 

indication of a statistical distribution that describes the behavior. After the distribution fit 

is applied to the histogram, a boxplot is created to determine the median and visualize 

outliers. The outlier detection limits, LUIF and LUOF, are calculated using Equations (4) and 

(6) and applied to the histogram. LUIF and LUOF can be used to calculate the probabilities 

of detecting values that exceed those thresholds as follows: 

 ( )
UIF

UIF
L

p f x dx
∞

= ∫  (12) 

 ( )
UOF

UOF
L

p f x dx
∞

= ∫  (13) 

where pUIF is the probability range indicating that the behavior is changing and requires 

evaluation to determine if an attack has occurred, and pUOF is the probability range 

indicating an attack has occurred. Since realistically we do not know if an attack has 

occurred or not for a given data set, these probabilities are continuously calculated. 
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Figure 4. Statistical analysis method. 

To illustrate the process, a sample data set was generated and normalized. The 

histogram for this data set is illustrated in Figure 5 and indicates that the data is bimodal. 

A kernel distribution was fit to the histogram since it is nonparametric. The kernel 

distribution follows the general form as given in Equation (1) with the bandwidth parameter 

specified in Table 1. There appear to be no anomalies in this data set as noted by the lack 

of outliers in the boxplot. The statistical parameters associated with the data are listed in 

Table 1. Since the calculated values for LUIF and LUOF exceed the bounds for normalized 

data, the probability of detecting data points beyond those limits is zero. 

 

Figure 5. Histogram, distribution fit, and boxplot for sample data set. 
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Table 1. Parameters for the sample data set (see Figure 5). 

Parameter Value 

Bandwidth, h 0.2388 

Median 0.4245 

Upper Quartile, Q3 0.6084 

Lower Quartile, Q1 0.3012 

Interquartile Range, dIQR 0.3072 

Upper Inner Fence Limit, LUIF 1.0692 

Upper Outer Fence Limit, LUOF 1.5301 

pUIF ~ 0 

pUOF ~ 0 

 

B. CLUSTERING ANALYSIS METHOD 

The process of anomaly detection using clustering methods is developed in this 

section and depicted in Figure 6. The same sample data set as in Section A that exhibited 

a bimodal behavior is input to the k-means algorithm. Then a dendrogram is created to 

determine the anomaly detection threshold based on the hierarchical structure of the data, 

which is used to create hierarchical clusters. Anomalies are data points that do not belong 

in the hierarchical clusters. This section is broken into two parts: cluster refinement and 

hierarchical clustering. 

 

Figure 6. Clustering analysis method. 
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1. Cluster Refinement 

For the k-means algorithm, the k value is manually selected to minimize the 

objective function in Equation (8). Although this method relies heavily upon iterative 

manual adjustment for selecting the acceptable k value, it serves as a means to visually 

analyze the possible data clustering. The sample data set and k = 2 were input into the k-

means algorithm, resulting in two clusters separated midway between the centroids as 

given in Figure 7. 

 

Figure 7. K-means clustering of sample data set, for k = 2. 
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A more efficient way to determine the value for k is by creating dendrograms and 

hierarchical clusters as discussed in Chapter II. Since the dendrogram is based on 

similarities between the data points, it is structured in a way that helps determine the best 

number of clusters for a given data set. Different linkage methods are explored to find the 

highest cophenetic correlation, ρ, or measure of how well the dendrogram preserves the 

pairwise distance between original data points [24]. Cophenetic correlation values for 

single, complete, and average linkages are provided in Table 2. Average linkage, a
ABd , 

provided the highest cophenetic correlation not only for this data set, but also for the 

publicly available Ethereum data and for our local blockchain; therefore, it is used 

throughout this thesis. 

Table 2. Cophenetic correlation values for sample data set. 

Linkage Method Cophenetic Correlation 

Single, ρs 0.4219 

Complete, ρc 0.7593 

Average, ρa 0.8217 

 

Now that we have decided to use average linkage, a
ABd , to structure the data, an 

appropriate threshold for hierarchical clustering needs to be determined. The dendrogram 

shown in Figure 8 is abbreviated because the size of the entire sample data set is too 

numerous to view, and a clear idea about the data structure can be obtained with only 20 

data point indices. For example, selecting a threshold value θ1 = 2.9 yields two clusters, as 

noted by the dashed line labeled θ1. Selecting a threshold values of θ2 = 2.3 and θ3 = 2.0 

would yield three and five clusters, respectively. Data point index 14 appears to be 

anomalous because it is separated by a large distance from any other data points. To 

separate data point index 14 from the majority of the data points, which form two clusters, 

the best threshold for this data set is θ2. This decision will result in two primary clusters 

(blue and green) and one anomaly cluster (red) as further explained in the next subsection. 
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Figure 8. Dendrogram with θ1 = 2.9, θ2 = 2.3, and θ3 = 2.0. 

2. Hierarchical Clustering 

With the optimal number for k determined and a threshold identified, hierarchical 

clustering isolates data points that are dissimilar from the others automatically. The cluster 

tree created using Euclidean distance and average linkage is then used to create new 

clusters. If the dendrogram in Figure 8 were expanded to all 10,000 data points, we would 

see that it does branch into a set of three data points instead of one. These account for the 

anomalies illustrated in Figure 9. Comparing the clusters in Figures 9 and 7, there are minor 

differences, as noted in the red ellipse in Figure 9, between the hierarchical and k-means 

clustering. This will prove to be insignificant in network anomaly detection as discussed 

in Chapter IV. The percentage of data points, iγ , that belong in each cluster can be 

determined by  

 100i
i

N
N

γ = ×  (14) 

Cluster 1 Cluster 2 

Cluster 1 Cluster 2 Cluster 3 

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 
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where Ni is the number of data points in the ith cluster and N is the total number of data 

points in the data set. The results for this sample data set are listed in Table 3 and show that 

the clusters are approximately the same size with three anomalies as expected from the 

dendrogram. 

Table 3. Cluster comparison for sample data set. 

Cluster Percentage of Data Points, iγ  

Cluster 1 50.39% 

Cluster 2 49.58% 

Anomaly 0.03% 

 

Figure 9. Hierarchical clustering, for θ = 2.3 and k = 2. 
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3. Proposed Anomaly Detection Scheme 

We propose combining both statistical and clustering methods in order to determine 

the possible anomaly detection thresholds as illustrated by the proposed anomaly detection 

scheme in Figure 10. The statistical analysis yielded no outliers as discussed in Section A. 

However, the hierarchical clustering analysis alerted to three anomalous data points that 

require further investigation as discussed in Section B. These data points could represent 

new normal behavior or may indicate malicious activity. 

The benefit of the hierarchical clustering is that the threshold from the dendrogram 

creates clusters and sub-clusters; data points that exceed the threshold are considered 

anomalies and not included in the clusters. The sub-clusters assist in determining new 

normal behavior as the network evolves. Determination of anomaly detection thresholds is 

a challenging process. Care must be taken because a threshold too low will result in 

detection of an excessive number of anomalies and a threshold too high will result in no 

anomaly detection. 

 

Figure 10. Anomaly detection scheme. 

In this chapter, we proposed an anomaly detection scheme for use with blockchain-

based systems. The statistical and clustering analysis methods were described in detail and 

demonstrated using a sample data set. The anomaly detection scheme is applied to the 

publicly available Ethereum blockchain and to an experimental local research blockchain 

in Chapter IV. 
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IV. RESULTS 

The methods described in Chapter III are implemented and verified in this chapter. 

We evaluated the performance of our proposed anomaly detection scheme using data from 

the publicly available Ethereum blockchain as well as data from an Ethereum-based 

blockchain built locally. Although there have been a limited number of known malicious 

network attacks of the public Ethereum network, data from these known attacks provide 

significant, historical blockchain behavior with at least some ground truth against which to 

measure the performance of our scheme. Although limited in volume and duration, the 

controlled attacks on our local network, independent of the social influences of 

cryptocurrency, provide successful anomaly detection results. 

A. PUBLIC ETHEREUM BLOCKCHAIN 

One of the most popular blockchain networks, Ethereum, provides historical 

network measurements that are publicly available in [26], making it a good candidate for 

initial evaluation of anomaly detection techniques for blockchain-based systems. There are 

many measurable parameters for the Ethereum blockchain: total number of transactions 

per day, average gas used in a block, total gas used by the network in a day, average 

utilization of blocks, average hash rate of the network, average block time, and others [26]. 

This thesis studies the behavior of the total number of transactions per day and the average 

gas used in a block per day as there is a clear correlation between them. This correlation 

allows us to attempt to identify an attack on the network, indicated by increased 

computational effort associated with transactions, through the analysis of gas usage. 

Network measurements from 7 July 2015 to 18 February 2019 were used to study 

normal behavior and validate our ability to detect anomalous behavior. The daily number 

of Ethereum network transactions and average gas usage were plotted first to visually 

assess network behavior over time. The red lines in Figures 11 and 12 represent dates 

corresponding to immediately apparent changes in normal parameter behavior as the 

network evolved, thereby resulting in three data segments. From the beginning of Ethereum 

network existence on 7 July 2015 through 2 May 2017, the number of transactions and 
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average gas usage values were relatively low. The increase of activity through 25 January 

2018 was likely a result of the increased popularity of the smart contracts introduced by 

the Ethereum blockchain. The activity from 25 January 2018 to 18 February 2019  

 

Figure 11. Time series plot of the daily number of Ethereum 
transactions, 7 July 2015 – 18 February 2019. 

 

Figure 12. Time series plot of the daily average Ethereum gas usage, 
7 July 2015 – 18 February 2019. 

  

Segment 1 Segment 3 Segment 2 

Segment 1 Segment 2 Segment 3 

Infamous 
DAO Attack: 
18 June 2016 
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1. Statistical Analysis Results 

While the time series plots provided some initial understanding of the data, further 

statistical analysis provided better comprehension of how best to characterize normal 

network behavior. The histograms, probability distributions, and boxplots were used to 

estimate thresholds for outliers. The combination of these methods for the first data 

segment, 7 July 2015 – 2 May 2017, is given in Figure 13. First, the average gas usage data 

was normalized and a histogram was created to provide an indication of a statistical 

distribution. Since the histogram is bimodal, a kernel distribution was fitted because it is 

nonparametric. The kernel distribution follows the general form as given in Equation (1) 

with the bandwidth parameter specified in Table 4. 

The graphs labeled Attack correspond to the DAO attack on 18 June 2016 that was 

discussed in Chapter II. Processing the continuous withdrawals required additional 

computational efforts, which is why we see the average gas usage spike that day in 

Figure 12. The network behavior immediately returned to normal after implementation of 

the hard fork in the Ethereum blockchain. The outliers associated with the attack were then 

removed, so we could visualize what the normal behavior would have looked like in the 

absence of an attack. The boxplot was especially useful in this case, providing the median 

and thresholds for outlier detection comparison. The code used to create the statistical 

analysis plots is included in Appendix A. 
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Figure 13. Comparative histograms, distribution fits, and boxplots of 
the average Ethereum gas usage for the first segment. The attack data 

corresponds to the DAO attack. 

A summary of the statistical parameters with and without the attack are listed in 

Table 4. Values that exceed the LUIF and LUOF limits are considered outliers. The Attack 

parameters are significantly lower than the No Attack parameters; however, the shift in the 

median and tail of the Attack distribution resulted in an increased probability of detecting 

values above the LUIF and LUOF limits of 0.0019 and 0.0029, respectively. The only values 

that exceed the Attack LUOF limit of 0.3647 are the two major outliers associated with the 

DAO attack. The daily number of Ethereum transactions over all three timeframes with 

and without the attack yielded no results and thus are not discussed further. 

  



25 

Table 4. Average Ethereum gas usage statistical analysis parameters 
for the first segment (see Figure 13). 

Parameter No Attack Value Attack Value 

Bandwidth, h 0.0448 0.0167 

Median 0.2139 0.0949 

Upper Quartile, Q3 0.3337 0.1247 

Lower Quartile, Q1 0.1199 0.0446 

Interquartile Range, dIQR 0.2139 0.0800 

Upper Inner Fence Limit, LUIF 0.6545 0.2447 

Upper Outer Fence Limit, LUOF 0.9754 0.3647 

pUIF 0.0489 0.0508 

pUOF 0.0021 0.0050 

 

The statistical representation of the second segment, 3 May 2017 – 5 January 2018, 

is given in Figure 14. There were no reflections of the two notable attacks during this 

timeframe as described in Chapter II, likely because the attackers took advantage of 

vulnerabilities in the software code that required no additional computational efforts, or 

gas usage. An attack similar to that of the DAO attack in the first data set would require an 

exceptionally high gas usage in order to be detected because the average daily gas usage 

has substantially increased. 

A hypothetical attack on this data segment was inserted purely for the sake of 

analysis. The boxplot provided the medians and thresholds for outlier detection and was 

useful in determining the magnitude of the hypothetical attack. The boxplot values for the 

original network data, labeled No Attack, are provided in Table 5. These values were used 

to determine the average gas values necessary to be detected using statistical analysis. To 

simulate this hypothetical attack, a major outlier value of 14,411,400 and a minor outlier 

value of 10,411,400 were inserted into the original data before it was normalized. Many 

distributions were fitted to the data, but the distribution with the tightest fit was a Gaussian 

distribution. The Gaussian distribution follows the general form as given in Equation (2) 

with the mean and standard deviation parameters specified in Table 5. The statistical 
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representation for the simulated attack was overlaid for comparison in Figure 14 with 

statistical parameter values listed in Table 5. 

 

Figure 14. Comparative histograms, distribution fits, and boxplots of 
the average Ethereum gas usage for the second segment. The attack was 

simulated for analysis. 

Again, we observed the Attack parameters were lower than the No Attack 

parameters, and there was an increased probability of detecting values above the LUIF limit 

from 0.000096 to 0.0016. At this point it is not clear whether an attack has occurred, but 

the probability of values that can be attributed to an attack has increased. 
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Table 5. Average Ethereum gas usage statistical analysis parameters 
for the second segment (see Figure 14). 

Parameter 
No Attack 

Value 

Attack Value 

Mean, m 0.477137 0.248901 

Standard Deviation, σ 0.25423 0.13954 

Median 0.4740 0.2446 

Upper Quartile, Q3 0.6693 0.3481 

Lower Quartile, Q1 0.2718 0.1403 

Interquartile Range, dIQR 0.3975 0.2078 

Upper Inner Fence Limit, LUIF 1.2656 0.6598 

Upper Outer Fence Limit, LUOF 1.8619 0.9715 

pUIF 0.000096 0.0016 

pUOF ~ 0 ~ 0 

 

The statistical representation for the third segment, 6 January 2018 – 18 February 

2019, is given in Figure 15. The average gas usage data was normalized and the histogram 

generated showed that the data is bimodal. A kernel distribution was fit to the histogram 

since it is nonparametric. The kernel distribution follows the general form as given in 

Equation (1) with the bandwidth parameter specified in Table 6. To ensure a kernel 

distribution was the best choice for the data, many other distributions were fitted to the 

histogram. The generalized extreme value distribution was a potential fit, but the shape 

parameter, κ , exceeds the expected range of 1 1
2 2

κ− < <  [18]; therefore, the kernel 

distribution was the best choice for this data set. 

Since there are no known attacks during this timeframe, a hypothetical attack 

similar to the one in the second segment was simulated. The average gas usage is 

considerably higher for this segment than for the first. A major outlier value of 13,015,700 

and a minor outlier value of 9,015,700 were inserted into the original data before it was 

normalized. 
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Figure 15. Comparative histograms, distribution fits, and boxplots of 
the average Ethereum gas usage for the third segment. The attack was 

simulated for analysis. 

A summary of the statistical parameters with and without the simulated attack is 

listed in Table 6. Similar results as the previous two data segments were observed in that 

the Attack values were lower than the No Attack parameters. The distributions were not 

long-tailed as the others have been, which is why the probabilities of outlier detection, pUIF 

and pUOF, were approximately zero prior to the simulated attack. In all three segments, the 

attack values shifted the distribution to the left significantly, allowing for a higher 

probability of more values to exceed the limits of outlier detection, LUIF and LUOF. 
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Table 6. Average Ethereum gas usage statistical analysis parameters 
for the second segment (see Figure 15). 

Parameter 
No Attack 

Value 

Attack Value 

Bandwidth, h 0.0937 0.0465 

Median 0.6078 0.2987 

Upper Quartile, Q3 0.7957 0.3918 

Lower Quartile, Q1 0.3922 0.1927 

Interquartile Range, dIQR 0.4036 0.1991 

Upper Inner Fence Limit, LUIF 1.4011 0.6904 

Upper Outer Fence Limit, LUOF 2.0064 0.9890 

pUIF ~ 0 0.0042 

pUOF ~ 0 0.0015 

 

2. Clustering Analysis Results 

While the statistical analysis method provided meaningful results for the DAO 

attack, the clustering method was applied to compare the results. We are attempting to best 

characterize normal network behavior and provide suitable thresholds for anomaly 

detection. 

a. Cluster Refinement 

K-means plots for each of the three data segments of the Ethereum network were 

analyzed. There were minor differences observed in the way k-means and hierarchical 

clusters were formed as discussed in Chapter III. Only hierarchical clusters are provided 

because they are more indicative of the data structure and isolate anomalies.  

The dendrogram for the first segment is given in Figure 16. Using average linkage, 

a cophenetic correlation of 0.8747aρ =  indicates that the abbreviated dendrogram is 

closely related to the original data structure and a good model for cluster analysis. A 

threshold of 53 10θ = ×  was selected because it is the highest level of similarity between 

the green and blue data indices before they are connected to the data indices in red. If the 
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distance between data points we select for a threshold is too small, data points above that 

threshold will be excluded from the clusters. A threshold of 53 10θ = ×  should result in two 

clusters and two outliers when hierarchical clusters are created.  

Additionally. we expect the blue cluster to be more tightly bound than the green 

cluster because there is a shorter distance between the data points of the blue cluster. Since 

the data point indices highlighted in red are between the indices for the blue and green 

clusters, it alerts to an anomaly instead of a new trend in network behavior. The red data 

point indices are associated with the DAO attack in June 2016. The code used to create the 

k-means, dendrogram, and hierarchical clusters is included in Appendix B. 

 

Figure 16. Dendrogram of Ethereum network parameters for the first 
segment. A threshold of 53 10θ = × results in two clusters (green and blue) 

and two anomalies (red). The anomalies correspond to the DAO attack. 
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The dendrogram for the second segment is given in Figure 17. A cophenetic 

correlation of 0.7111aρ =  indicates that the dendrogram is less closely related to the 

original data structure than the first segment. Selecting a threshold of 61.7 10θ = ×  should 

result in three clusters and no outliers when hierarchical clusters are formed. The increase 

in magnitude of the threshold for the second segment makes sense as the distance between 

data points increased with the popularity of the Ethereum network as previously observed 

in Figures 11 and 12. 

As in the statistical analysis subsection for this data segment, we did not see any 

reflections of the attacks that occurred during this timeframe. Unless there is an excessive 

amount of gas usage or an excessive number of transactions, we will not be alerted to the 

attack using clustering analysis. 

 

Figure 17. Dendrogram of Ethereum network parameters for the 
second segment. A threshold of 61.7 10θ = × results in three clusters (blue, 

green, and black). 



32 

The dendrogram for the third segment is given in Figure 18. A cophenetic 

correlation of 0.7240aρ =  indicates that the dendrogram is less closely related to the 

original data structure than the first segment. Selecting a threshold of 58 10θ = ×  should 

result in two clusters and no anomalies. 

 

Figure 18.  Dendrogram of Ethereum network parameters for the third 
segment. A threshold of 58 10θ = × results in two clusters (blue and green). 

b. Hierarchical Clustering 

The thresholds determined from the dendrograms were then used to form clusters; 

data points that exceed the threshold were identified as outliers and not part of the clusters. 

The hierarchical clustering algorithm for the first data segment automatically determined 

one of the two anomalous values associated with the DAO attack as indicated by the red 

data point in Figure 19. It is the only data point that is clearly not correlated with the rest 

of the data points. Both anomalous data points from the dendrogram in Figure 16 would 

have been displayed if a threshold of 61.72 10θ = ×  were used; however, we would lose the 

benefit of the sub-clusters. The sub-clusters are valuable in determining whether data points 
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correspond to new normal network behavior as the distance between data points increases 

with network evolution or if they correspond to malicious activity. 

The number of data points for each cluster were calculated using Equation (11) and 

are listed in Table 7. The majority of the data points are included in Cluster 1. The cluster 

is also more tightly bound as expected from the dendrogram. The data points in Cluster 2 

represent the beginning of the increase in popularity of the Ethereum blockchain which 

resulted in more gas usage. This also serves as an indicator that the thresholds will need to 

be reevaluated once the network activity settles into a new normal. 

 

Figure 19. Hierarchical clustering of Ethereum network parameters for 
the first segment. The anomaly corresponds to the DAO attack. 

  



34 

Table 7. Cluster comparison of the Ethereum data for the first 
segment (see Figure 19). 

Cluster Percentage of Data Points, iγ  

Cluster 1 82.27% 

Cluster 2 17.42% 

Anomaly 0.31% 

 

The hierarchical clustering for the second segment displayed no anomalous values 

as expected from the corresponding dendrogram in the previous subsection and from the 

lack of additional computational efforts required in the attacks that occurred during this 

timeframe. A hypothetical attack was simulated to determine at what magnitude the 

clustering algorithm would detect an attack using normal network behavior thresholds. We 

determined a threshold of 61.7 10θ = × from the dendrogram of the second data segment. 

An average gas value of 69.4 10×  was inserted into the original data set with a 

corresponding number of transactions of 58.04 10× ; the algorithm correctly identified the 

anomaly as illustrated by the red data point in Figure 20. The DAO attack average gas 

values were 61.6583 10× and 62.2162 10× . These values would be reflected as minimum 

values for the second and third segments because the daily average values have increased 

substantially from the beginning of the life of the Ethereum blockchain network.  

The number of data points for each cluster prior to the hypothetical attack were 

calculated using Equation (11) and are listed in Table 8. The cluster trends and percentages 

represent the changing gas usage illustrated in Figures 11 and 12. During the dramatic 

increase in public use of the Ethereum network during this timeframe, the network behavior 

became less predictable. All networks are dynamic; during periods of time where the 

behavior is changing, thresholds need to be reevaluated more frequently to ensure the 

network is not under attack and to gain a sense of the new network normal once it settles. 
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Figure 20. Hierarchical clustering of Ethereum network parameters for 
the second segment. The cluster behavior reflects the increase in Ethereum 

network usage. The anomaly corresponds to a simulated attack. 

Table 8. Cluster comparison of the Ethereum data from the second 
segment (see Figure 20). 

Cluster Percentage of Data Points, iγ  

Cluster 1 43.15% 

Cluster 2 13.71% 

Cluster 3 42.74% 

 

The hierarchical clustering for the third segment also displayed no anomalous 

values because there are no reflections of any attacks as discussed in the statistical analysis 

results subsection. A hypothetical attack was simulated in the same way as for the second 

segment. We determined a threshold of 58 10θ = × from the dendrogram of the original 

data. A value of 68.33 10×  was inserted into the original data set as a gas value with a 
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corresponding number of transactions of 58 10× , and the algorithm again correctly 

identified the anomaly as given by the red data point in Figure 21. 

The number of data points for each cluster prior to the hypothetical attack were 

calculated using Equation (11) and are listed in Table 9. Cluster 2 includes the majority of 

the data points and represents the gas usage once the popularity of the Ethereum blockchain 

network had settled into a new normal behavior. 

 

Figure 21. Hierarchical clustering of Ethereum network parameters for 
the third segment. The cluster behavior reflects the new normal behavior in 
Ethereum network usage. The anomaly corresponds to a simulated attack. 

Table 9. Cluster comparison of the Ethereum data from the third 
segment (see Figure 21). 

Cluster Percentage of Data Points, iγ  

Cluster 1 43.77% 

Cluster 2 56.23% 
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The intention of this thesis is to explore the capabilities and limitations of traditional 

statistical methods and machine learning clustering methods and, if possible, to resolve 

which is best suited for anomaly detection in blockchain-based systems. A comparison of 

the threshold values from both statistical analysis, LUIF and LUOF, and hierarchical 

clustering analysis, θ, for all three segments is provided in Table 10, indicating that the 

clustering method detects attacks at a lower magnitude than statistical methods.  

For example, consider the first data segment. Statistical analysis provided a 

threshold of 58.0833 10UOFL = × and clustering analysis provided a threshold of    

53 10θ = × ; both were successful at detecting the DAO attack. The second segment showed 

a much-improved performance using clustering methods than statistical methods. In this 

case, statistical analysis provided a threshold of 71.4019 10UOFL = × and required a gas 

usage value in excess of 71.4411 10× to be detected. For the same data segment, clustering 

analysis provided a threshold of 61.7 10θ = ×  and detected an attack resulting in a gas usage 

of 69.4 10× , which is a significantly lower threshold for detection capability. Additionally, 

hierarchical clustering provides better insight into the blockchain data structure. 

Table 10. Comparison of thresholds from statistical analysis, LUIF and 
LUOF, and hierarchical clustering analysis, θ, for the Ethereum data from all 

three segments.  

Method Threshold Attack Value 

First Segment 

Statistical 58.0833 10×  62.2162 10× , 61.6583 10×  

Clustering 53.0 10×  62.2162 10× , 61.6583 10×  

Second Segment 

Statistical 71.4019 10×  71.4411 10× , 71.0411 10×  

Clustering 61.7 10×  69.4 10×  

Third Segment 

Statistical 71.0554 10×  71.3016 10× , 69.0157 10×  

Clustering 58.0 10×  61.1 10×  
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B. LOCAL BLOCKCHAIN RESEARCH NETWORK 

We wanted to analyze some blockchain network data that is independent of the 

financial realm to see what reflections of an attack may be identified by the anomaly 

detection scheme. We were able to design an experiment in which we conducted a 

doorknob-rattling attack on a local blockchain research network; in the scenario, login 

attempts were counted as transactions [27]. Normal network behavior was established as 

20 to 30 attempted logins in five-minute intervals on our victim machine. A few extra login 

attempts were inserted in specified intervals to see if we would be able to observe 

indications of outliers. A randomly varying gas value associated with each transaction was 

similarly inserted since average daily gas usage was critical in outlier detection for the 

Ethereum network data. The intent was to vary the gas usage proportionally with the 

number of transactions. 

A visual representation of the number of transactions and total gas usage for the 

doorknob-rattling scenario are given in Figures 22 and 23, respectively. For this data set, 

total instead of average gas was used because the random insertion of gas values created a 

minimum value that theoretically could not happen based on the number of transactions. A 

doorknob-rattling attack would not create an anomaly with too few transactions nor too 

little gas usage as computational efforts are necessary to process transactions. Since the 

data collected for this experiment was relatively small, consisting of only sixteen data 

points, the randomly inserted smaller gas usage value had a substantial effect on the interval 

average. Using the total gas usage per interval corrected this inaccuracy and further helped 

us realize that both the statistical and clustering methods require case-by-case parameter 

considerations. 
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Figure 22. Time series plot of the number of transactions during the 
doorknob-rattling scenario. Normally, 20 to 30 attempted logins are expected 

every five-minutes. 

 

Figure 23. Time series plot of the total gas usage during the doorknob-
rattling scenario. Gas usage varies proportionally with the number of 

transactions. 

1. Statistical Analysis Results, Doorknob-Rattling Attack 

The histogram, probability distribution, and boxplot were used to determine 

thresholds for anomaly detection as before. The distribution with the tightest fit was a 

generalized extreme value distribution. The boxplot proved to be more advantageous in 
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visualizing the presence of outliers as given in Figure 24. Although three intervals 

exceeded the established normal network behavior of 20 to 30 transactions, only one was 

significant enough to be classified as an outlier using statistical analysis. The generalized 

extreme value distribution follows the general form as given in Equation (3) with the scale, 

location, and shape parameters specified in Table 11.  

A summary of the statistical values is provided in Table 11. The limits of LUIF and 

LUOF are 37 and 47 transactions, respectively. This resulted in the determination of one 

minor outlier of 41 transactions in one time interval. We know that this is not a very 

conservative threshold because we defined normal behavior to be 20 to 30 transactions. 

Additionally, we expect to get an anomaly about 7.3% of the time. For this experiment, 

that value is not significant, but requiring that many data points to be investigated for a 

large network is unreasonable. 

 

Figure 24. Histogram, distribution fit, and boxplot of the number of 
transactions during the doorknob-rattling attack scenario. There is one minor 

outlier of 41 transactions. 
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Table 11. Doorknob-rattling attack scenario statistical parameters 
(see Figure 24). 

Parameter Value 

Scale, α 3.04272 

Location, xo 21.6909 

Shape, κ  0.48112 

Median 23 

Upper Quartile, Q3 27.5 

Lower Quartile, Q1 21 

Interquartile Range, dIQR 6.5 

Upper Inner Fence Limit, LUIF 37.25 

Upper Outer Fence Limit, LUOF 47 

pUIF 0.0730 

pUOF 0.0346 

 

2. Clustering Analysis Results, Doorknob-Rattling Attack 

This section studies the behavior of the total number of transactions per five-minute 

interval and the total gas used during the doorknob-rattling scenario using machine learning 

clustering methods. 

a. Cluster Refinement 

We determined from the dendrogram in Figure 25 that a threshold of 
67.078 10θ = ×  should result in one cluster and three outliers. The cophenetic correlation 

of 0.8816aρ = indicates that the dendrogram is a good representation of the original data 

structure. The blue section corresponds to the normal behavior and can be further divided 

into two sub-clusters. The green section represents two data points that do not reach the 

threshold for anomaly detection but are suspicious in nature because they have some 

similarity to the attack value in red. Therefore, these data points require further evaluation 

to determine if they represent new network normal behavior or if they are a result of an 
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attack. The dendrogram provides a more accurate visualization of how the data is 

connected than the statistical analysis. 

 

Figure 25. Dendrogram during doorknob-rattling scenario. A threshold 
of 67.078 10θ = × results in one cluster (blue), suspicious behavior (green), 

and one anomaly (red). 

b. Hierarchical Clustering 

With the optimal k value determined and a threshold identified, hierarchical 

clustering isolates data points that are dissimilar from the others automatically as illustrated 

in Figure 26. Using Equation (11), the number of data points for each cluster were 

calculated and listed in Table 12. The anomaly is able to make up a significant percentage 

of the total data because the data set was very small; we did not see the same impact for 

the larger Ethereum network.  
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When we ran the experiment, specific information regarding the magnitudes or time 

intervals of attacks were not provided to the scheme. The anomaly detection scheme was 

successful in identifying normal behavior and doorknob-rattling attack behavior. The 

hierarchical clustering methods were successful in detecting all three attacks whereas 

statistical analysis only detected one attack. 

 

Figure 26. Hierarchical clustering during doorknob-rattling scenario. 
The cluster behavior reflects normal activity of 19 to 28 transactions. 

Suspicious behavior is 30 to 40 transactions, and more than 40 transactions 
are attacks. 

Table 12. Cluster comparison for doorknob-rattling attack scenario 
(see Figure 26). 

Cluster Percentage of Data Points, iγ   

Normal Behavior 68.75% 

Suspicious Behavior 12.50% 

Anomaly 6.25% 
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In the first section of this chapter, statistical analysis including the analysis of 

histograms, probability distributions, and boxplots were used to estimate thresholds for 

outliers in the public Ethereum network data. Then, the hierarchical clustering process was 

conducted to compare the results. The second section of this chapter successfully applied 

the anomaly detection scheme to an experimental local blockchain research network under 

a doorknob-rattling attack scenario. 
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V. CONCLUSIONS 

The objective of this thesis was to characterize normal network behavior in 

blockchain-based systems and to develop a way to detect anomalous behavior by exploring 

statistical and machine learning techniques. 

The general framework of the anomaly detection scheme we developed 

characterizes the number of transactions and average gas usage parameters as normal or 

anomalous using statistical analysis and hierarchical clustering methods. Statistical 

analysis included histograms, statistical distributions, and boxplots to calculate limits to 

evaluate outliers. In the presence of an attack, the statistical values shifted the distributions 

to the left significantly, allowing for a higher probability of more values to exceed the limits 

of outlier detection. 

Hierarchical clusters were formed through the use of dendrograms, which 

determined lower thresholds while proving more effective at anomaly detection than 

statistical methods in our applications. An additional benefit of the hierarchical clustering 

is that the threshold from the dendrogram creates clusters and sub-clusters. The sub-clusters 

are valuable in determining whether data points correspond to new normal network 

behavior or if they correspond to malicious activity. 

A. SIGNIFICANT RESULTS 

The work presented in this thesis contributes to understanding data behavior 

associated with blockchain-based systems and how anomaly detection could occur in such 

systems. We proposed an anomaly detection scheme that inputs data into statistical and 

clustering methods for analysis. The anomaly detection scheme was validated by analyzing 

the DAO attack on the public Ethereum network and by simulating hypothetical attacks on 

the same network as it evolved over time. Both methods were successful at detecting 

attacks that required additional gas usage. 

We demonstrated that hierarchical cluster analysis was more powerful because it 

detected attacks at a significantly lower magnitude than statistical methods. We also 

showed that threshold determination for anomaly detection can be achieved without prior 
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knowledge of the network behavior. The determination is affected by the dynamic nature 

of a network and thus requires constant reevaluation.  

We extended our evaluation by conducting experiments on a local blockchain 

research network to test the proposed anomaly detection scheme. Normal network behavior 

of 20 to 30 logins per five-minute time interval were established. Additional login attempts 

were made during certain intervals to simulate a doorknob-rattling attack. Both the 

statistical and clustering methods proved successful in determining normal network 

behavior and alerting to attacks. Statistical analysis indicated one minor outlier at 41 login 

attempts in one interval. The clustering analysis method indicated three anomalies at 33, 

36, and 41 logins in three separate intervals, indicating three separate attacks. Hierarchical 

clustering provided better insight into the blockchain data structure because there were in 

fact three doorknob-rattling attacks on the network. 

B. RECOMMENDATIONS FOR FUTURE WORK 

There are several possibilities for future work. First, the process for cluster 

refinement and threshold determination was manually performed. An automated process 

for taking measurable parameters, clustering the data, determining the centroids, 

determining which outliers within a specified distance are new normal behaviors and which 

should be evaluated as possibly malicious could be made similar to that described in [28]. 

There is much yet to be explored within the measurable network parameters of 

blockchains for determining normal behavior. This thesis only studied two of many 

parameters publicly archived for analysis; exploring the others may provide insight into 

behavior characterization or attack indication. Additionally, adding a node to the public 

Ethereum network in order to measure and process the parameters directly would provide 

more granularity of all the parameters for more extensive analysis.  

The proposed anomaly detection scheme only detected attacks that involved an 

increase in computational power; attacks that exploit vulnerabilities in software or smart 

contract code were not detected. There are several avenues that would provide additional 

data sets for analysis that are independent of the Ethereum network. For example, Walmart 

plans to launch a major blockchain-based supply-tracking project in 2019 [29], [30], and 
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there are several blockchain projects currently underway within the Department of Defense 

[1], [31]. Evaluating these blockchain-based system behaviors and the types of attacks they 

are susceptible to would provide additional insight into anomaly detection capabilities and 

limitations. 
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APPENDIX A.  STATISTICAL ANALYSIS SCRIPT 

This appendix includes the code written as a MATLAB script to perform the 

statistical analysis method of a given data set. The code is from the MATLAB 

documentation. Comments are in green text. 
% Data downloaded on 18FEB19 from: https://www.etherchain.org/charts 
filename1=('TransVsGas.xlsx'); 
Date1=xlsread(filename1,'A:A'); 
DailyNumTx=xlsread(filename1,'B:B'); 
DailyNumTx=normalize(DailyNumTx,'range'); 
% DailyNumTx = data with DAO attack 
AvgGasUse=xlsread(filename1,'C:C');  
AvgGasUse=normalize(AvgGasUse,'range'); 
% AvgGasUse = data with DAO attack 
t1=datetime(2015,7,30) + caldays(0:642); 
  
filename2=('TransVsGas1.xlsx'); 
Date2=xlsread(filename2,'A:A'); 
DailyNumTx2=xlsread(filename2,'B:B');  
DailyNumTx2=normalize(DailyNumTx2,'range'); 
% DailyNumTx2 = data with DAO attack removed 
AvgGasUse2=xlsread(filename2,'C:C');  
AvgGasUse2=normalize(AvgGasUse2,'range'); 
% AvgGasUse2 = data with DAO attack removed 
t1=datetime(2015,7,30) + caldays(0:640); 
  
% Histogram 
% Matlab documentation: 
% https://www.mathworks.com/help/matlab/ref/hist.html  
 
% Distribution Fit 
% Matlab documentation: 
% https://www.mathworks.com/help/stats/fitdist.html  
 
figure 
hp1 = uipanel('position',[0 .25 1 .75]); 
hp2 = uipanel('position',[0 0 1 .25]); 
axes('Parent',hp1);  
X = 0:.055:1; 
h=histogram(AvgGasUse2,X,'FaceColor',[.8 .8 1]);  
hold on  
pd_kernel = fitdist(AvgGasUse2,'Kernel'); 
x = 0:.01:1; 
pdf_kernel = pdf(pd_kernel,x)*32; 
plot(x,pdf_kernel,'Color','k','LineWidth',2); 
hold on 
xlabel('Average Ethereum Gas Usage','FontSize',14) 
ylabel('Frequency','FontSize',14) 
 
h1=histogram(AvgGasUse,X,'FaceColor',[0.91 0.41 0.17]); 
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hold on 
pd_kernel1 = fitdist(AvgGasUse,'Kernel'); 
pdf_kernel1 = pdf(pd_kernel1,x)*30; 
plot(x,pdf_kernel,'Color','r','LineWidth',2); 
grid on; 
hold on 
 
% calculate the statistics 
q1=quantile(AvgGasUse,[0.25 0.75]); 
iqr1=iqr(AvgGasUse); 
q2=quantile(AvgGasUse2,[0.25 0.75]); 
iqr2=iqr(AvgGasUse2); 
  
% find the "inner fences" 
minor_attack=q1(2)+(1.5*iqr1); 
minor_out=q2(2)+(1.5*iqr2); 
  
% find the "outer fences" 
major_attack=q1(2)+(3*iqr1); 
major_out=q2(2)+(3*iqr2); 
  
% plot the limits of the fences 
% vline function from MathWorks:  
% https://www.mathworks.com/matlabcentral/fileexchange/1039-hline-and- % vline 
H1=vline(minor_out, 'k', 'L{_U_I_F}'); 
hold on 
H2=vline(major_out, 'k', 'L{_U_O_F}'); 
hold on 
H3=vline(minor_attack, 'r', 'L{_U_I_F}'); 
hold on 
H4=vline(major_attack, 'r', 'L{_U_O_F}'); 
 
% find the probabilities 
p1_UIF=cdf(pd_kernel,minor_out,'upper'); 
p1_UOF=cdf(pd_kernel,major_out,'upper'); 
p2_UIF=cdf(pd_kernel1,minor_attack,'upper'); 
p2_UOF=cdf(pd_kernel1,major_attack,'upper'); 
 
hold off 
alpha(h1,.2) 
lgd=legend({'Histogram (No Attacks)','Kernel Distribution (No Attacks)','Histogram (Attack)','Kernel 
Distribution (Attack)'},'Location','ne','FontSize',10); 
title(lgd,'Legend') 
 
% add the boxplot  
% Matlab documentation: 
% https://www.mathworks.com/help/stats/boxplot.html  
axes('Parent',hp2) 
y=[AvgGasUse;AvgGasUse2]; 
g=[ones(size(AvgGasUse));2*ones(size(AvgGasUse2))]; 
boxplot(y,g,'Labels',{'Attack','No Attack'},'Orientation','horizontal') 
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APPENDIX B.  K-MEANS AND HIERARCHICAL CLUSTERING 
SCRIPT 

This appendix includes the code written as a MATLAB script to perform the k-

means and hierarchical clustering of a given data set. The code is from the MATLAB 

documentation. Comments are in green text. 
% Data downloaded on 18FEB19 from: https://www.etherchain.org/charts 
filename=('TransVsGas.xlsx'); 
Date=xlsread(filename,'A:A'); 
DailyNumTx=xlsread(filename,'B:B');  
AvgGasUse=xlsread(filename,'C:C');  
t1=datetime(2015,7,30) + caldays(0:642); 
 
% K-means 
% Matlab documentation: 
% https://www.mathworks.com/help/stats/kmeans.html  
k=2; 
opts = statset('Display','final'); 
X=[DailyNumTx, AvgGasUse]; 
[idx,C] = kmeans(X,k,'Distance','sqeuclidean','Replicates',5,'Options',opts); 
 
figure 
plot(X(idx==1,1),X(idx==1,2),'b.','MarkerSize',12) 
hold on 
plot(X(idx==2,1),X(idx==2,2),'g.','MarkerSize',12) 
plot(C(:,1),C(:,2),'kx','MarkerSize',15,'LineWidth',3)  
grid on 
xlabel('Daily Number of Transactions','FontSize',15)  
ylabel('Avg Gas Usage','FontSize',15) 
lgd=legend({'Cluster 1','Cluster 2','Centroids'},'Location','nw'); 
title(lgd,'Legend') 
 
% Hierarchical Clustering 
% Matlab documentation: 
% https://www.mathworks.com/help/stats/examples/cluster-analysis.html  
eucD = pdist(X,'euclidean'); 
clustTreeEuc = linkage(eucD,'average'); 
cophenet=cophenet(clustTreeEuc,eucD) 
[h,nodes] = dendrogram(clustTreeEuc,20); 
set(h,'LineWidth',2) 
h_gca = gca; 
h_gca.TickDir = 'out'; 
h_gca.TickLength = [.002 0]; 
H=hline(3*10^5,'--k','{\theta}'); 
% hline function from MathWorks: https://www.mathworks.com/matlabcentral/fileexchange/1039-
hline-and-vline 
 
xlabel('Data Point Index','FontSize',16)  
ylabel('Distance Between Data Points','FontSize',16)  

https://www.mathworks.com/matlabcentral/fileexchange/1039-hline-and-vline
https://www.mathworks.com/matlabcentral/fileexchange/1039-hline-and-vline
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figure 
ptsymb = {'b.','r.','g.'}; 
hidx = cluster(clustTreeEuc,'criterion','distance','cutoff',3e+05); 
% cutoff = 1.72e+06 for no sub-clusters, both anomalies detected 
for i = 1:3 
    clust = find(hidx==i); 
    plot(X(clust,1),X(clust,2),ptsymb{i},'MarkerSize',12); 
    hold on 
end 
 
h(1).Color = 'g'; 
h(2).Color = 'g'; 
h(3).Color = 'b'; 
h(4).Color = 'g'; 
h(5).Color = 'b'; 
h(6).Color = 'g'; 
h(7).Color = 'g'; 
h(8).Color = 'b'; 
h(9).Color = 'g'; 
h(10).Color = 'g'; 
h(11).Color = 'g'; 
h(12).Color = 'b'; 
h(13).Color = 'g'; 
h(14).Color = 'g'; 
h(15).Color = 'b'; 
h(16).Color = 'g'; 
h(17).Color = 'k'; 
hold off 
 
xlabel('Daily Number of Transactions','FontSize',16); 
ylabel('Avg Gas Use','FontSize',16); 
grid on 
lgd2=legend({'Cluster 1','Anomaly','Cluster 2'},'Location','nw','FontSize',14); 
title(lgd2,'Legend') 
 
cluster_counts=[sum(ismember(nodes,[11 16 8 4])) sum(ismember(nodes,[13 18 17 14])) 
sum(ismember(nodes,[12 19 15 20])) sum(ismember(nodes,[1 2 5])) sum(ismember(nodes,[3 7 6])) 
sum(ismember(nodes,[9 10]))]; 
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