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ABSTRACT

Far field computational boundary conditions for 2D internal flow problems
are developed from analytic solutions of the linearized Euler equations. The

Euler equations are linearized about a constant pressure, rectilinear flow
which may have streamwise-normal variations in temperature and velocity as a

result of entropy production in the nonlinear computational region. The bound-
ary procedure can be used with any numerical Euler solution method and allows
computational boundaries to be placed much closer to the nonlinear
region of interest.

IV





I. INTRODUCTION

Numerical solution procedures for nonlinear fluid dynamic equations

usually use one or more artificial computational boundaries located at some

distance from the primary region of interest in order to limit the physical

domain to finite size. If the flow crossing such a boundary (either inflow or

outflow) is subsonic, then some type of computational boundary conditions must

be imposed which simulate the influence of the true far field conditions at

infinity. These boundary conditions must be such that waves crossing the

boundary do not produce erroneous reflections back into the computational

field to degrade the calculations. It is generally acknowledged that simply

imposing free stream conditions (or conditions at infinity) at computational

boundaries is usually inappropriate. Standard practice has consisted of

locating the boundaries quite far from the region of interest in an attempt to

simplify the boundary condition models and minimize any effects of

inconsistent modeling. The net effect is a significant increase in the number

of grid points required for an accurate flowfield calculation.

A boundary modeling procedure for two-dimensional internal flows is

presented which alleviates the difficulties mentioned above and also allows

the computational boundary to be located much closer to the nonlinear region

of interest. The procedure is limited to steady, inviscid flow, although the

flow can be rotational. It represents a logical extension of the so-called

characteristic boundary conditions commonly used with inviscid numerical

solution methods. Extension to axisymmetric or three-dimensional flows is

straightforward.

The analysis presented here is based on the Riemann variable formulation

of the Euler equations given in Reference 1. This represents a natural

starting point because the characteristic (or zero-order) boundary conditions

mentioned above are expressed in terms of Riemann variables. The equations

are linearized about a constant pressure, rectilinear flow condition, which

truly represents conditions at infinity. These linearized equations are

assumed applicable in the far field region beyond a computational boundary.

Within the nonlinear computational domain, strong entropy-producing (i.e.,



rotational) effects can exist which create variations in density, velocity,

etc. in the far field in the streamline-normal direction which are not

necessarily small perturbations. Such variations are modeled in the present

analysis.

The linearized equations are solved analytically using Fourier analysis

techniques as outlined in Reference 2. These solutions are coupled to the

nonlinear numerical solution to provide a smooth transition across the

boundary to the true far field conditions at infinity. The coupling is

accomplished by the boundary conditions. The underlying principle is that the

streamwise variations of both upstream and downstream running waves should

decay to zero at infinity. These first-order boundary conditions provide

distributions of flow quantities to be imposed along the boundary, not

constant conditions. They represent a logical extension of the zero-order (01

characteristic) boundary conditions. Furthermore, the boundary analysis can

be coupled with any inviscid numerical solution method.

The boundary condition analysis has been applied to two-dimensional

duct flow and to cascade flow, where conditions are periodic in the direction

of the blade row. For duct flow, both isentropic and non-isentropic boundary

conditions are derived. Only isentropic results are given for cascades.

Extension to non-isentropic cascade flow can be carried out by following the

i

procedure used for duct flow.

Numerical results are presented for both isentropic and non-isentropic

duct flow. Results obtained using the first-order boundary conditions are

compared with those using the zero-order boundary conditions. Numerical

results for cascade flow will be presented in Reference 3. It was found tha

the size of the computational field and associated number of grid points

needed for the nonlinear numerical solution could be reduced significantly b

using the new first-order boundary condition procedure with no loss in

numerical solution accuracy. The reduction in number of grid points was as

much as 50 percent in some cases. The additional computational effort

required by the new boundary procedure is small (less than 10 percent) so tf

a significant saving in overall computational effort was realized. A large

portion of the gain is due to the sizeable reduction in the physical extent



the computational field and the fact that fewer solution iterations are

required for information to propagate between the upstream and downstream

computational boundaries leading to more rapid solution convergence.



II. PERTURBATION EQUATION DERIVATION

The system of two-dimensional, steady, linearized Euler equations which

describe first-order spatial perturbations from a constant pressure state will

be derived in this section. A Riemann variable formulation taken from

Reference 1 will be used because of its close relationship with the character-

istic (or zero-order) boundary conditions commonly used in numerical solution

of the nonlinear Euler equations.

The two-dimensional form of the Euler equations is (Reference 1)

|3 +(q + a) |2 = .^i a(s
Y-r L as y-1 9s J

2
qa5

9n

£ +(4 . a) g.*3
i
L. (l .Jl)tg + £!|,+ijl q_g

39 96

at q 9s

9S 9S

9t q 9S

__ i_
YQ 3n

=

(1)

(2)

(3)

(4)

Velocity magnitude and speed of sound are denoted by q and a, respectively,

and P is the logarithm of pressure. The Extended Riemann Variables Q and R

are defined as

Q = q + aS

R = q - aS
(5)

while the modified entropy is defined in terms of pressure p and density p as

S = 1

y(y-D
[2Y - log (p/pir)] (6)

The flow angle is 6, time is denoted by t, and local distances along and

normal to the streamline direction are denoted by s and n, respectively.



For steady flow the analysis can be greatly simplified by defining a new

dependent variable

T = Q - R (7)

and replacing equations (1) and (2) by

(M2 - 1) |I+
( Y-l) q M S |i = (8)

a2 + III
q
2 = i (9)

The local Mach number is denoted by M. Equation (8) is obtained by

subtracting equations (1) and (2). Equation (9) is obtained by adding

equations (1) and (2) and integrating. The constant of integration, which is

proportional to stagnation temperature, can be set to unity by proper choice

of non-dimensional izing quantities. The simplified form of the steady Euler

equations is then

(M2 - 1) fl+ ( Y-l) q M S
|J

= (10)

M? 36 2 1 3T 1
, c 2 v 3S _ n Ml v

|f=0 (12)

a2 + ^q2 = l (13)

According to equation (12) entropy remains constant along streamlines.

In regions of the flowfield where nonlinear effects are weak, the flow can be

treated as a perturbation to a constant pressure, rectilinear flow. Such

regions occur near and beyond far field computational boundaries. The depend-

ent variables in equations ( 10)-( 12) can then be expanded in asymptotic series

T = T + T. + T + ...
oo 1 C

S = S + S. + S + ... (14)»12
e = e + e, + e + . .

.

oo 1 Z



The flow direction at infinity is assumed constant and denoted by 9 ; the

perturbation quantities T. , S. and 8. vanish at infinity. Entropy variation

is not excluded so that the flow can be rotational. Furthermore, entropy

variations can be strong (i.e., not small perturbations) so that S and T are
oo oo

not necessarily constant, but may vary normal to the streamline direction.

Note that T depends only on S (because p is constant).
OO 00 00

Consistent with (14), spatial derivatives in equations ( 10)-( 12) can be

approximated by

= cos 600 (1-xei)!;- + cos e TO (t+6!)|^ + ...
ds

9n

9x

= -cos 8„ (t+8i)— + cos 8co (1-t9i)|— + ...

(15)

where x and y are reference Cartesian coordinates, 9 is measured from the x

axis, and

t = tan 9 (16)

If expansions (14) and (15) are introduced into equations ( 10) - ( 12 ) , the

resulting first-order perturbed Euler equations are

2 9 T 1 3T 1
ei (t

9L
3x ay

)] +

(y-1) q» m„ Sc [

99iW
39i

T r-1] =
3X J

(17)

Hi
2

o 39i 39i 1 9Ti

* s~ EiT ^ W* +
2a- < 3T

9T!

dx

ill /c m JL
2

l *~ y-1

3Sj

ayrr) [^r - t ^] + ^ [

9Si.

3X~

Si 3Se

Soo
[
3y

li r
dJl

Too
L
3y

3 Soo

" T 3FJ =
°

3T-
,

(18)

9Sj 3Sj 3S

ax~
+ t — + 9 X [— - * JOT!

=
° (19)



Velocity, speed of sound, and Mach number at infinity are denoted by q , a
oo oo

and M , respectively, and may vary normal to the streamline direction. The
oo

fact that all dependent quantities are convected unchanged along rectilinear

streamlines at infinity has been incorporated into the above equations.

Asymptotic expansions of the Riemann variables Q and R can also be

defined as

Q = Q^ + Q
1

+ Q
2

+

R = R + R. + R +

20)

Using the definition (7) and the expansion (14) for T, it follows that

T = Q - R
oo oo oo

T
x

- Qj - R
2

(21)

Introducing the expansions (14) and (20) into the algebraic equation (13)

gives the first-order relationship

Moo (Ql-Rl) + ^Sr Soo m£ (Qi+Ri) - 2 qoo S
: = (22)

This will be used later in Section IV where the boundary conditions are

derived.



III. SOLUTION OF FIRST-ORDER EQUATIONS

Solutions of the first-order equations ( 17 )-( 19) are developed in this

section for two-dimensional duct flows confined by parallel walls and for

infinite cascade flows. Duct flow solutions are obtained for both isentropic

and non-isentropic conditions. The cascade flow solution is provided for

isentropic conditions.

Duct Flow

For two-dimensional duct flow between parallel walls, the far field flow

angle 8 (and consequently t) can be set to zero by aligning the coordinate x

with the duct axis (see Figure 1). The width of the duct can be taken as

unity without loss of generality. Equations ( 17 )-( 19) then reduce to

2 9Ti 9Tco 39i
(M£ -1) [^ + 9! —] + (y-D qoo MM So, ^ = (23)

Hk n M Q ££l
. 1 r^Il Ii!l^ + . !i^

2
q°°

n
°° bo

° 9x 2 L 9y To,, 3y
J ' a

°° S„„ 9y

(24)

9Sj

2
a
°° ^

So
° v7!^ 9y~

+ *^i a„ (S- - -K) r-^ =

9Sj 9S*.

3T +el^y- =0 (2,

Isentropic Conditions - According to the scaled entropy definition (6), the

2
far field entropy S^ is -7=-. Equations (23)-(25) then simplify for isentropic

flow to

2qJ^co 9x 9y
K

'

38 1 1
3T

1 /oJt^ + ^-n ~ = 27
9x 2qooM00 9y



, yf^i?

where

P = \ 1-M; (28)

Note that q and M are constant.
OO CO

Equations (26) and (27) can be solved by separation of variables by

assuming

T,=2q M e
Ax

F(y)
OO CO * "* *

Bj = e
Ax

H(y)

where A is the unknown separation constant. Equations (26) and (27) then

reduce to the ordinary differential equation system

p
2

A F - H' =0

(30)
AH + F' =0

with boundary conditions

H(0) = H(l) = (31)

Primes denote differentiation with respect to y. Eliminating F gives the

single equation

h" + A
2
p
2

H = (32)

which has the solution

H = k. sin Apy + k
2

cos Apy (33)

To satisfy the boundary conditions (31), the constant k~ must be zero and

A = + 2jL (n = 1, 2, ...) (34)



Using these results, the general solution of the system (26) and (27) can

be written as

Tl

61 1

2q, Mo

P

cos ntry

sin ntry

nnx/p

l K2n
1

-2q0OM cos n-ny

sin mry

-mix/p

(35)

where K, and K are arbitrary coefficients.
In Zn

Non-Isentropic Conditions - Although the system ( 23)-( 25) is linear, it has

non-constant coefficients since S is independent and varies with the

streamline-normal direction y. The thermodynamic variables are related by

a» = P=

Hi 111 (_i_ - s )

2y 2 VI ;

(36)

where p is the constant pressure at infinity.

To achieve an analytic solution, a second level of linearization can be

introduced by defining a new variable o(y) by

S e -±j (l-o)

Since a is generally small, equation (36) can be approximated by

(37)

a*, = pc

III
2y d+o) (38)

10



An approximation for q^ is then provided by equation (9). Reference

quantities defined by

111
2 Y

a*, = P»

Qoo = If —[ (1-aoo) (39)

M = q /a
OO OO CO

can be introduced to simplify the notation. The approximate thermodynamic

relations then become

aoo = aoo (1 + o)

Qoo = qco (1 - —r —

)

Y l
M2
OO

Moo = M» (1 - -li-rf) (40)

T _ 4 -
I oo

_
3oo

Y-l

All quadratic and higher terms in o have been neglected.

Introducing the above approximations (40) into the governing equations

(23)-(25) gives

o 4 n 9Tl - - 4 n 301

(^Fl^ar- 2"-"-' 1 -^;!) iy ° (41)

25JL (1 . _i_ p !£l + gi m 2j_ |_{oSi) (42)

|5i._^i2
9l = (43)

3x Y"l dy l

11



The parameter p is defined by equation (28) with M substituted for M .

Equation (43) suggests that S. is of higher order than T. or e,. If so, ther

the RHS of equation (42) can be set to zero and equation (43) becomes

decoupled. Validity of this assumption can be verified later by evaluating

numerical results obtained from this analysis. The final system of governing

equations is therefore

<*
2 + A if> sr

- 2^ i 1 - ft j|) It ° < 44 >

- - 4 o 9e l 9T 1^n-fil sr +
?F

= (45 >

After these equations are solved for J. and 8., the perturbation variable S.

can be obtained from equation (43) by quadrature.

As for the isentropic analysis presented above, a separation of variables

solution approach is again appropriate. Analagous to equations (29) assume

Tj = 2qm f^ e
Ax

F(y)
(46;

6
X

= e
Ax

H(y)

Equations (44) and (45) then reduce to the ordinary differential equation

system

H' - «2 F - £ -f tAF ,£
IT]

oo oo

(47)

F* + AH = -Ar =§ AH

00

with boundary conditions

H(0) = H(l) = (48)

12



Eliminating F from equations (47) gives the single equation

H" + A2 p2 H = -1|. ^ [o(H
M

+ X 2 P 2 H + AM£ F') + o'(H' + Xm£ F)] (49)

This equation is in a form suitable for solution by iteration. The lowest

order solution (i.e., first approximation) satisfies

H + \
c

$
c

H =

F = -W
A3 2

(50)

Using these results in the RHS (denoted by $) of equation (49) produces

H" + A 2 p2 H = JL —^[o' H' + m£ o H"] = * (51)
Y
" 1

p
2
q£00

The solution of this equation provides an improved second approximation for

the solution of equation (49). Repetition of this iterative process generates

ever-improving approximations. Only the solution for the second approximation

will be given here. Whether or not it is sufficiently accurate can be

assessed by evaluating the numerical results presented later.

The solution for the first-approximation equations (50) was obtained in

the above isentropic analysis as

H = I An sin n-ny ; A = + — (52)

1
P

where the A are arbitrary coefficients. Note that the iterative solution
n

J

procedure used here is consistent in that the isentropic solution is recovered

for vanishingly small o. Using the approximation (52) the RHS of equation

(51) can be written

4 i

°°
-2

°°

<fr
= —r -sr= [o* I n An cos niry n H, o E n2 A n sin nny]^ P

Z<£ 1 1

(53)

13



Equation (51) can be separated into component equations

ii 22
H + X

c
B H =

<|>

n n
K

n n
(n = 1, 2,...) (54

where (j> represents the nth component of the source term $ defined as

4 irnAn ,
-_

<t>n = —jr p.? L cos niiy - n M£ o n sin n-ny] (55

For consistency, the separation constant A must also be expanded as

n - v
8 n '

so that equation (54) becomes

(56

"22
H + n -n H =

<J>
- 2irBn 6A A sin mry

n n n n n
(57

The solution of this equation which satisfies the boundary conditions (48) i:

1 r
y

Hn = Kn sin nny + B 6A n A n y cos mry + ^±. V <j> n sin mi(y-n) dq (58

where K is an arbitrary coefficient and
n

1 f
1

6X
"

=
nTMn" ) *n

Sin nitn dn (59

This solution is valid regardless of the choice of sign in equation (56)

The solution for the nth component of F can be obtained from the system

(47) as

F n = t [jf
1 U - ^TJ 7F2~>

cos n *y " 6A n An
00

1 f
y

+ —- \ +n cos rni(y-q) dq]
nnB J „

y sin mry

(6(

14



The choice of sign corresponds to that of equation (56).

Using the above results, the approximate solution of the system (44) and

(45) can be written as

Tl oo

= I K ln
»1 1

2qcoM

+ E K2n
1

-
2qcoMoo

P

(1 - rrr "r7?' cos niTV
Y °c

sin niiy

(1 - ;—j ~Tl) cos niTV

oo

sin nny

^ «„)x

/ nir r . v

e
"(-p + 6A n )x

+ E

1

3 e
(^^6A n )x

+

2q oM00 f
f

P

'n J

/ nn r , v

"(-p + 6A n) x

where

1 r
y

fn e p 6X n A n y sin nny - — \ $n cos rni(y- n ) d n
J
o

1 f
y

h n = p 5A n An y cos niry + —
J

<*n sin nn(y-n) dn

(61)

(62)

(63)

This solution reduces to the isentropic result (35) when o is zero. Using

this solution, equation (43) can be integrated to obtain the entropy

perturbation S-.

Cascade Flow

For isentropic cascade flow, equations ( 17 )-( 19) reduce to

p2 3Ti 3Ti 39i . **1
. n

2q 00M00
L 3x

T
9y J 3y

T
3x '

U (64)

15



JT + T
9T

+
2Tm~ t^r - T aT]

= ° (65 >

If the (x,y) coordinates are chosen such that the flow is periodic in the y

direction (see Figure 2), then a separation of variables defined as

Tl = Zajt. F(5) e
in^

\ -- H(0 e
1n,,y

(66)

£ = initx

can be used. The blade spacing has been taken as unity. Equations (64) and

(65) are thereby transformed to the ordinary differential equation system

(67)

3
2
(F' + tF) + tH' - H =

H' + tH - tF' + F =

Primes denote differentiation with respect to £.

The solution of the system (67) has the form

F = aeH H = e
U

(68)

where the eigenvalues are

t M2 ± ip(l + t 2 )

A = —^—
7 3

(69)
P
2 + T Z

and

A + t .. t i

a -
At - 1

= + ± (70)1

Using these results, the general solution of the system (64) and (65) can be

written as

16



Tl

61

I K In

l K2n

-2qJ^
P

1

2q X i

3

1

inTi(Aix + y)
e +

inir(A2X + y)

where

M =

*2

x M2 + ip(l + T 2 )
00

i^TT2

x M2 - ip(l + t 2 )

P
2 + T 2

Note that \. and X
?

are complex conjugates,

(71)

(72)

17



IV. BOUNDARY CONDITION DEVELOPMENT

Examination of equations (l)-(4) shows that at a subsonic far field

computational boundary there are three downstream-running waves and one

upstream running wave. Therefore, the information available from the

numerical solution is not complete and differs at upstream and downstream

boundaries. The information lacking is provided by the boundary conditions,

If the flow is supersonic, all waves are downstream-running and specification

of boundary conditions is straightforward.

Far field computational boundary conditions (subsonic) are developed in

this section based on the linearized Euler solutions obtained in the previous

section. These solutions are assumed valid in the region beyond the computa-

tional boundaries where nonlinear effects are small. Within the computational

boundaries the full nonlinear Euler equations must be solved numerically. The

boundary conditions provide for a smooth coupling of the nonlinear and linear

solutions so that the true conditions at infinity can be imposed.

The three specific cases analyzed in the previous section will be

addressed in this section.

Duct Flow

Both upstream and downstream duct flow boundary conditions will be

derived for isentropic conditions. The upstream boundary analysis is valid

even if there is nonlinear entropy production downstream of the boundary

within the computational domain. For non-isentropic conditions only

downstream boundary conditions will be derived, since non-isentropic

downstream flow is the more common situation.

For isentropic, constant pressure flow in the upstream or downstream

regions, the far field Mach number M^ is determined implicitly from the mass

flow per unit area w by the relation
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I ill

MJ 1 + ^ Mf3
2 1_

" = w (73)

The mass flow is usually known (or can be calculated) for a given duct flow

problem. The associated speed of sound and velocity are

in
M 1+Y

a<» = (—

)

qoo = a,,, M^ (74)
w

Therefore, the far field quantities Q^ and R^ appearing in expansions (20) are

2 2
Qoo = q<» + —y aoo Roo = qco - —y a. (75)

2
The far field entropy has been set to —r. Equations (21) relate Q and R to

the variable T.

For non-isentropic, constant pressure flow in the downstream region,

equations (37), (39), and (40) give the approximate far field relationships

n 2 - 2 a °°

Qoo = qoo + —T a« " —T t- o
Y-l °° Y-l m

Mco

Roo = qoo r a«, - —r zr~ o (76)
Y 1 Y X

Moo

loo - i aoo

Quadratic and higher terms in o have been neglected.

Isentropic Conditions - At a computational boundary (assumed located at x=0)

the perturbation flow variables can be represented by the Fourier series
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8i = I An sin rnry (77)
1

Ql = I Bn cos rmy (78)
1

R\ = I Cn cos rmy (79)
1

Tj = I E n cos rmy = E (B n -C n ) cos rmy (80)
1 1

The boundary conditions will be developed from relationships between the

Fourier coefficients A , B , and C . The absence of modes corresponding to
n n n 3

n=0 for Q. , R. and T. is related to the fact that these first-order

perturbations must vanish at infinity. Further discussion of this topic is

presented below in conjunction with the boundary condition development for

cascade flows.

The general solution for linearized isentropic flow is given by equation

(35). Applying this solution at x=0 and using the series expansions ( 77 )
- ( 80)

it follows that

A = K. + K,
n In 2n

2q00M00

En
= —— ( K ln " K2n)

(81)

Therefore,

Kln = \ ^n + fhr (Bn - C n )] (82)
2q«M

K2n = f ^n -^ ^ B" ' Cn>]
I ra_^ §— rn_ - r._\i (83)

For the region upstream of the computational boundary (i.e., x<0), the

exponentially growing component of the solution (35) can be suppressed by

forcing K to be zero. This requires the Fourier coefficients to be related
cn

by
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A„ = 1
n

=
2qOoM0O

(Bn " Cn) (84)

The linearized upstream solution is then

2q00M00

Tl

01

= Z A r
P

cos n-ny

sin mry

nirx/p
(85)

For isentropic flow there are two downstream-running waves propagating

information to the upstream boundary from outside the computational domain and

one upstream-running wave propagating information from the numerical solution.

Equation (84) provides one of the lacking pieces of information from outside

the computational domain; the remaining information is provided by combining

equations (22), (78) and (79) to give

Bn =
1 - M

11 1 + Moo
n

Using the expansions (20) and the Fourier representation (79), the

coefficients C are determined from
n

(86)

Rl = I C n cos miy = Rnum - Rc

1

(87)

where R is the boundary distribution of R obtained from the nonlinear
num J

numerical solution and R is given by equation (75). The coefficients A and

B are then obtained from equations (84) and (86). Using the Fourier

representations (77) and (78), the distributions of 8 and Q on the boundary

(i.e., the boundary conditions) are calculated according to

e D = I An sin miy
1

Qb = Qoo + l Bn cos nuy

1

(88)
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For the region downstream of the computational boundary (i.e., x>0), the

exponentially growing component of the solution (35) can be suppressed by

forcing K, defined by equation (82) to be zero. This requires the Fourier

coefficients to be related by

Cn = Bn +
2qJAco

A
r (89)

The linearized downstream solution is then

Tl

»1
I An
1

-2q^Mo

3
cos niry

sin niry

-n-nx/p
(90]

For isentropic flow there are two downstream-running waves propagating

information to the downstream boundary from the numerical solution and one

upstream-running wave propagating information from outside the computational

domain. Equation (89) provides the lacking information. Using the expansion

(20) and the Fourier representations (77) and (78), the coefficients A and B

are determined from

ej = E An sin mry = 8num
1

(91!
00

Qi = I B n cos nny = Qnum - Q«,

1

where 8 and Q are the boundary distributions of 6 and Q obtained from
num num J x

the nonlinear numerical solution and Q^ is given by equations (75). The

coefficients C are then obtained from equation (89). Using the Fourier

representation (79), the distribution of R on the boundary (i.e., the bounda

condition) is calculated according to

Rb = Roc + I Cn cos mry

1

(9

= Qn urn Y-l

2q00M00
°°

+ —-— l An cos nny
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The second form of this relation requires only the calculation of the

coefficients A .

n

Many numerical solution algorithms for the Euler equations use so-called

characteristic far field boundary conditions in which 6 and Q are specified
OO 00

at inflow boundaries and R^ is imposed at outflow boundaries. The boundary

conditions (88) and (92) therefore represent a logical first-order extension

of the widely-used characteristic (or zero-order) boundary conditions.

Non-Isentropic Conditions - For the case of non-isentropic flow crossing a

downstream computational boundary, the Fourier series representation (77) for

6, at the boundary is still valid because e is zero at the duct walls. The

variable o which characterizes the entropy distribution at infinity can be

represented by

o = ow + E D|( sin(k-l/2)Tiy (93)

1

where o is the wall value at y = 0. This Fourier series representation
w

assumes an even extension of o for 1 < y < 2. The source term component *

defined by equation (55) can then be written as

n^A,

e
2

*i
n = -^T "*J-=? £ E (k-1/2) D k [cos(n+k-l/2)Tiy + cos(n-k+l/2)*y]y i- ft*- n<- l._n

194)

-? °° -2
+ nHl I D|< [cos(n+k-l/2)ny - cos(n-k+l/2)iry] - 2ow M„ n sin nuy}

k=l

The procedure for relating o to the entropy distribution at the computational

boundary and determining the coefficients D. will be presented later.

The approximate solution for linearized non-isentropic flow is given by

equation (61). Since it is only an approximate solution of the approximate

system (44) and (45), the arguments used in the isentropic analysis for

choosing K, and K„ to eliminate exponentially growing solution components
3 In 2n

cannot be used. That is, the RHS of equation (51) has been treated as a known

source term by using a lower-order solution approximation. As a result, the
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behavior of the source term for large x directly influences the character of

the solution obtained. However, closer examination of the isentropic analysis

shows that the same results would have been obtained had the exponentially

growing components simply been ignored. The remaining constant (i.e., K. or

K
?

) associated with the decaying solution component could have been

determined by matching the solution at x=0 with the Fourier series

representations on the boundary.

Using this approach and selecting only the decaying component of the

solution (61), the solution for the downstream region (i.e., x>0) is

Tl

61
= E K,

-2qJL 4 o .

~T~ (1 " 7TT -?=-?) cos ni,y

+ E

1

2qoA

P^Qo

sin n-ny

e
-(-p + ^ n )x

(95)

where

1 j
f n = 3 6A n An y sin mty - — C $ n cos rnr(y-n) dn.

J o

i e y
hn = b 6X n An y cos rnry + — ( <J>n sin mr(y-n) dn

o

6A n --~^k\ *n sin nitr, d n

(96)

(97)

(98)

These last three expressions are obtained from equations (59), (62), and (63)

If the upstream region (i.e., x<0) were to be analyzed for non-isentropic

conditions, then the other solution component would need to be selected.
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The solution (95) can be matched to conditions at the computational

boundary x=0 by letting

K = A + SA
n n n

and using the Fourier series representation (77) to give

oo o 1 y
6Am = l

nw i
sin mvy

f *" sin niT (n-y) dn dy -

n=l J o J o

2B
f 1

I An 6A n \ sin m-ny cos n-ny y dy
n=l J o

(99)

(100)

Evaluation of the integrals in this expression along with those appearing in

equations (96)-(98) is given in Appendix A.

All parameters appearing in the solution (95) can be evaluated in terms

of the Fourier coefficients A and D. . The A coefficients can be determine!
n k n

in the same manner as for isentropic flow using equation (91), namely,

I An sin ntry = e num (101)
1

where 8 is the distribution of 9 along the boundary obtained from the
num " J

nonlinear numerical solution. The D, coefficients can be determined by

solving the entropy equation (43). Neglecting higher-order terms, its solu-

tion is

n-n

Si 2 6 do I
An . -(— + 6A n )xb

l = r ^ j- E — sin n-ny e
v

B n/
Y~l v dy . n

where, from equation (93),

(102)

do

dy
= v I (k-1/2) D k cos(k-l/2)Try (103)

25



Combining these two expressions gives

Si = - -4r E E ^^ An Dk [sin(n+k-l/2)ny +

Y_1 k=l n=l
n

(104)

"(S
1 + *An )x

sin(n-k+l/2)ny] e P

Since entropy is convected downstream along streamlines, the distribution

at the computational boundary, denoted by S , is known from the numerical

so lution. From the expansions (14) and the definition (37) it follows that

Smim = S^ + S.tO.y)
num °° i

(105)

= -4r (1 - o) + S.(0,y)
v-l 1

Introducing the relationship (93) for o and S^O.y) from the solution (104)

gives

l D^ sin(k-l/2)ny = 1 - ow - *s- Snum
k=l

(106;

£ j 1 klZi A D [ s in(n+k-l/2)Tiy + sin(n-k+l/2)iry]

? n n k
d

k=l n=l

The coefficients D, must therefore satisfy

Jm = 2
J

1

[1 - ow - ^1 snum] sin(m-l/2)iry dy -

(107)

m-1 k-1/2

k=l k=l k=m+l

m

This equation can be solved for each D
m

by iteration, started by using the

first integral term as an initial guess. Note that the wall value o
w

is known

from the numerical solution since the wall is a streamline.
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Combining the definition (7) and the expansions (14) gives the

first-order relation

R = Q " T„ " T
i (108)

Applying this approximation along with the solution (95) at the computational

boundary x=0, the distribution of R on the boundary (i.e., the boundary

condition) can be calculated according to

4 - 2QoJK*> 4
R b

= Qnum ' rrr a~ + —=— (1 - —T -5=?) £ (An + *An ) cos miy
t * P Y i- $CqC

j

(109)

2qJL "
,

The approximation (76) for T has been used and Q denotes the boundary
00 ^num J

distribution of Q obtained from the nonlinear numerical solution. This

expression reduces to the boundary condition (92) if the flow becomes

isentropic.

Cascade Flow

Both upstream and downstream cascade boundary conditions will be derived

for isentropic conditions. The analysis parallels that for isentropic duct

flow except that the parameters appearing in the general linearized solution

(71) are complex quantities. For isentropic conditions, the cascade turns the

flow without losses. Therefore, all upstream and downstream far field

quantities (e.g., Q_, R_, etc.) can be determined from the downstream pressure

at infinity, p .

CO 00
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At a computation boundary (assumed located at x=0) the perturbation flow

variables can be represented by the general Fourier series

°° inny
8l = I An e

A 00 _ 00 _M

(110

= y- + l An cos rnry + E An sin rnry
' 1 1

°° miry
Ql = l Bn e

= -Z- + l Bn cos nny + E Bn sin rnry
* 1 1

(111

00 inny
Rl = I C n e

(112

o _ 00 _

= -^ + I Cn cos nny + E Cn sin rnry
^ 1 1

Co

°° imry
Tl = S E n e

E

(113

= 5- + I E n cos rnry + E En sin rnry
c

1 1

The boundary conditions will be developed from relationships between the

Fourier coefficients A , B and C . F<
n' n n

relationships (for n = 0, 1, 2, . . .)

Fourier coefficients A , B and C . Fourier analysis provides the additiona'
n n n

Z
„ - Z

n
+ Z

-n
2
n ' I < Z

n
" S V

Z
n

- < < Z
n

" Z
-n»

Z
-n ' 5 < Zn

+
'

Z
n>

(11
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where Z represents any of the coefficients A, B, C or E. Since perturbations

must vanish at infinity, A
q

, B
q

, C
q

and E must each be zero.

Applying the solution (71) at x=0 and using the series expansions (110)

and (113) it follows that

n In 2n

2qoXo
En -p- 1 (K 2 n " Km)

(115)

Therefore,

Kin = g
[An +

z qj^ En3 (116)

K2n =
2

C An "
2 qooM0O

EnJ (117)

In the region upstream of the computational boundary (i.e., x<0) the

inflow angle 9^ is known so that t defined by equation (16) is known. To

suppress the exponentially growing component of the solution (71), the

coefficients K, and K n must satisfy
In 2n J

K. =0 (n > 0)
In

x ' K =0 (n < 0)
2n v ' (118)

This requires the Fourier coefficients to be related by

A = - -&-An
2 qooM

i£En
=

"
2q00Ma5

(Bn " °n)

n 2q0OM<X)

tn
2q00M00

ib" Ln >

(n > 0)

(n < 0)

(119)

The linearized upstream solution is then

Tl

81

-1

I A r

-2q0OM«) i

init(A 1 x+y)
e + I A.

2qJ<U

1

in-n( A?x+y)
e

d
(120:
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The parameters A^ and X„ are defined by equations (72). The component

corresponding to n=0 has been neglected. This will be discussed in more

detail below.

Equation (86) used for the duct flow analysis is again applicable.

Equation (87) can be generalized to determine the coefficients C . That is,

C and C are determined from
n n

Z Cn cos nTiy + l Cn sin rniy = Rnum - Roo (121
1 1

where R is the boundary distribution of R obtained from the nonlinear
num

numerical solution. The coefficient C has been neglected. The coefficients
o

A and B are then obtained from equations (86) and (119) and the general
n n

Fourier relationships (114). Using the Fourier representations (110) and

(111), the distributions of 8 and Q on the boundary (i.e., the boundary

conditions) are calculated according to

6b = Boo + £ An cos nny + I An sin nny
1 1

(122)

OO _ 00 _

Qb
= Q°° + E Bn cos mry + z Bn sin mTy

1 1

Both A and B have been set to zero in the boundary conditions (122). A zerooo
value of B imposed on the numerical solution through the boundary condition

should tend to force a zero value for C (and hence E ) in the numerical
o o

solution according to equation (86). It should be noted from these

first-order relations that, within the context of a Fourier representation, Q* 00 1

and 9 can be viewed as the mean values of Q and 8 on the computational
oo

boundary. Deviations from this condition can be shown to be a second-order

effect. These arguments apply also to duct flows.
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For the region downstream of the computational boundary (i.e., x>0), the

outflow angle 8^ is unknown so that t is also unknown. To suppress the

exponentially growing component of the solution (71), the coefficients K, and
In

K must satisfy
Zn

K
ln

=0 (n < 0) K
2n

=0 (n > 0) (123)

This requires the Fourier coefficients to be related by

i£.An =
" 2q„MQO

wn
2qJA,

En
= " ?n m < Bn " c n)

An =
ip

2qooM
En = IL

2qooM

(n < 0)

(B n - C n ) (n > 0)

(124)

The linearized downstream solution is then

T

01

I A. P

1

inir(Aix+y) "1

e + E A,

2gcoMcoi

P

1

iniT(A2X+y)
(125)

As for the duct flow analysis, the coefficients A and B are determined
n n

from the general Fourier representations (110) and (111) according to

Z An cos nuy + l An sin rnry = 8 num - 8oo

1 1

(126)

I Bn cos rnry + I B n sin mry = Qnum - Q^,

1 1

where 8 and Q are the boundary distributions of 8 and Q obtained from
num num

the nonlinear numerical solution. The coefficients A and B have been
o o

neglected. The outflow angle 8 can be calculated from
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A
e« =

\
enum dy (127]

J
o

which is the mean value of 8 on the boundary. This justifies setting the

coefficient A to zero. The coefficients C are obtained from equations
o n ^

(124). Using the Fourier representation (112), the distribution of R on the

boundary (i.e., the boundary condition) is calculated from

RD
= R» + J ^n cos ni,v + l ^n s ^ n nvV

1 1

(128)

4 2q0OMco

= Qnum " ~T a» + —a— t 1 An cos niTy " l An sin niyy]
^ 1 p

1 1

The second form of this relation requires only the evalution of the

coefficients A and A . It is analogous to equation (92) for duct flow.

The coefficient C has been set to zero which, when imposed on the
o

numerical solution through the boundary condition, should tend to force a zero

value for B (and hence E ). That is, the boundary condition tends to enforceoo
R as the mean value of R on the boundary. This argument applies also to duct

00

flows.
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V. APPLICATIONS

Numerical solutions of the Euler equations have been calculated for

two-dimensional, steady duct flows using the first-order boundary condition

procedures developed in the previous section. Both isentropic and

non-isentropic cases were analyzed. Non-isentropic flow was produced by a

shock wave located in a nozzle portion of the duct. First-order boundary

condition results are compared with those produced using the conventional

zero-order characteristic boundary conditions.

A solution algorithm was used for the nonlinear Euler equations (l)-(4)

which is based on the method presented in Reference 1. It uses explicit time

integration to relax to steady state conditions and includes the shock-fitting

procedure of Reference 4 to accurately calculate flows containing shock waves.

Shock waves appear in the solution as distinct discontinuities which satisfy

the Rankine-Hugoniot relations. It should be noted that the boundary

condition analysis is independent of the choice of inviscid, nonlinear

solution method.

The duct/nozzle geometry is shown schematically in Figure 1. The flow is

characterized by p^, the downstream pressure at infinity, which produces a

mass flow per unit area w through the duct. The linearized solutions given by

equations (85), (90) and (95) are assumed valid in the semi-infinite regions I

and III and the computational boundary conditions are applied at the upstream

and downstream boundaries AA and BB of the nonlinear computational region II.

The actual shape of the duct/nozzle and the computational grid are shown

in Figure 3. The nozzle contour is sinusoidal and symmetric about the

centerline. The computational grid for this portion of the nozzle had

dimensions 41 x 21. The area ratio is .75 and the upstream and downstream

areas are equal. For these constant area sections of the duct, additional

rectangular grid cells could be added without altering the basic 41 x 21 grid.

This served to minimize the effect of grid changes on the calculations when

the computational boundaries were moved in order to assess the accuracy of the

boundary conditions.

33



Because the configuration is symmetric, calculations were limited to the

lower half of the duct and a centerline symmetry condition was used. Although

the configuration used for these calculations is simple, the boundary

condition analysis of the previous section is general and applicable to

unsymmetric configurations having unequal upstream and downstream areas. Use

of the simple configuration is sufficient to demonstrate the validity of the

analysis.

Isentropic Conditions

For isentropic flow the first-order upstream and downstream boundary

conditions are given by equations (88) and (92), respectively. The associated

analytic far field solutions are given by equations (85) and (90). The

zero-order (or characteristic) boundary conditions consist of imposing the

constant value of Q and a zero value of 6 along the upstream boundary and the

constant value of R along the downstream boundary. The values of Q and R
oo oo oo

are determined from equations (74) and (75).

Results are presented for a single value of p^ but with the computational

boundaries located at several different longitudinal stations. The relative

accuracy of the zero and first-order boundary conditions can then be

evaluated.

Case 1 - Results obtained using the complete grid shown in Figure 3 are

presented in Figures 4 and 5. This grid has 20 columns of grid cells in both

the upstream and downstream constant area portions of the duct. For this case

the computational boundaries were far enough upstream and downstream that the

zero-order and first-order boundary condition results were nearly identical.

Figure 4 shows pressure and Mach number distributions along the centerline and

lower wall of the duct/nozzle. Pressure, Mach number, and flow angle contours

are presented in Figure 5. These results serve as a reference for evaluating

the accuracy of solutions where the computational boundaries are moved closer

to the nozzle portion of the duct.

Case 2 - Results for a shortened duct obtained using the zero-order boundary

conditions are presented in Figure 6 and 7. There were 5 columns of grid
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cells in both the upstream and downstream constant area portions of the duct

for this case. Pressure and Mach number distributions are shown in Figure 6

and contours are shown in Figure 7. The most noticeable effect of the

boundary proximity is a change in peak values of pressure and Mach number and

a significant amount of longitudinal asymmetry.

Case 3 - The previous shortened duct case was recalculated using the

first-order boundary conditions. These results are presented in Figures 8 and

9. Pressure and Mach number distributions are shown in Figure 8 and contours

are shown in Figure 9. The results within the numerical solution portion of

the domain are almost identical to those shown in Figures 4 and 5. Linearized

solution results obtained from equations (85) and (90) have been added

upstream and downstream of the computational boundaries. It is evident that

the linearized far field analytic solutions provide for a smooth transition

across the computational boundary to the true far field conditions at

infinity.

Case 4 - Results for a more drastic case using the first-order boundary

conditions are presented in Figures 10 and 11. Only one column of grid cells

was used in the upstream and downstream constant-area portions of the duct.

Pressure and Mach number distributions are shown in Figure 10 and contours in

Figure 11. Even with the computational boundaries extremely close, the

numerical solution in the nozzle portion of the duct is affected very little.

Boundary Comparison - A more quantitative comparison between the zero- and

first-order boundary conditions can be obtained by examining the distribution

of flow variables along the computational boundaries. Figure 12 shows a

comparison of the distribution of pressure and flow angle along the upstream

and downstream boundaries for Cases 2 and 3. Results taken from the numerical

solution of Case 1 at the same longitudinal locations are also shown. There

is little difference between the Case 1 and Case 3 results. The larger

differences between the Case 2 and Case 3 pressures occurring along the

upstream boundary are primarily due to the fact that a zero flow angle is

imposed along the boundary.
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Implementation of the first-order boundary conditions obviously

introduces additional computational effort. However, the boundary conditions

do not have to be updated with every iteration of the numerical solution. The

small additional effort is more than offset by the large reduction in number

of grid points required and the fewer solution iterations necessary for

convergence because information propagates between the computational

boundaries more quickly. For the isentropic results presented above, only 5

Fourier modes were required to give a reasonably accurate representation of

the boundary distributions of R (upstream) and (downstream) for the Case 3

calculations. For the Case 1 and Case 4 calculations, the number of Fourier

modes required were 3 and 7, respectively.

Non-Isentropic Conditions

Non-isentropic flow was produced by lowering the value of p so that a
oo

shock wave formed in the nozzle portion of the duct. For this situation the

isentropic, first-order upstream boundary conditions (88) and the associated

linearized solution can be used. The upstream far field quantities Q and R
oo c

are constant and must be determined from the mass flow through the nozzle as

explained when deriving equations (75). The mass flow can be determined by

numerically integrating the mass flux crossing the downstream computational

boundary each time the boundary conditions are updated.

The first-order downstream boundary condition is given by equation (109)

and the associated analytic solution by equation (95). It should be noted

that this solution is only an approximation to the solution of the linearized

equations (23)-(25). The downstream far field quantities Q^ and R^ vary in

the streamline-normal direction and can be determined from equations (76).

Zero-order downstream boundary conditions as used herein consist of imposing a

distribution of R along the boundary given by equations (76) with o replaced

by 1- -*7r- S . This in itself represents an improvement over someJ
2 num ^ r

applications of zero-order characteristic boundary conditions in which a

constant value of the Riemann variable associated with upstream-running waves

is imposed along the boundary.

Results are presented for two different values of p chosen such that ar r oo

weak and a strong shock are produced in the nozzle. The strong shock spans
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the width of the nozzle while the weak shock does not. Two computational

boundary locations are used for each value of p^ so that the accuracy of the

non-isentropic boundary conditions can be evaluated.

Case 5 - Weak shock results obtained using the complete grid of Figure 3 are

shown in Figures 13 and 14. Pressure and Mach number distributions are shown

in Figure 13 for the centerline and lower wall. Pressure, Mach number,

entropy and flow angle contours are presented in Figure 14. The non-constant

Mach number in the downstream far field is evident in Figure 13. Note that

the scales used in Figure 13 are much more compressed than those used for the

isentropic results.

For this case, there were slight differences produced by the choice of

boundary conditions, so these two sets of results are shown separately. These

differences can be attributed to difficulties with the numerical fitting of a

weak shock discontinuity. The shock fitting procedure is extremely sensitive

to small disturbances in the numerical solution when the shock is weak,

especially in the vicinity of the tail of the shock located near the center of

the computational domain. These interactions were stronger when the

zero-order boundary conditions were used.

Placement of the computational boundary even further downstream by using

additional columns of grid cells caused very little change to the solution

when the first-order boundary conditions were used, but produced noticeable

differences when the zero-order conditions were used. For this reason the

results of Figures 13b and 14b can be considered more accurate and can serve

as a reference for evaluating the accuracy of solutions where the

computational boundaries are closer to the nozzle portion of the duct.

Case 6 - Results for a shortened duct using the zero-order boundary conditions

are presented in Figures 15 and 16. There were 5 columns of grid cells in

both the upstream and downstream constant area portions of the duct for this

case. Pressure and Mach number distributions are shown in Figure 15 and

contours are shown in Figure 16. The effect of the boundary proximity is

clearly evident in these results.
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Case 7 - The short duct flowfield was recalculated using the first-order

boundary conditions. These results are presented in Figures 17 and 18.

Pressure and Mach number distributions are shown in Figure 17 and contours in

Figure 18. The results agree closely with those shown in Figures 13b and 14b

for the numerical solution portion of the domain. Linearized solution results

obtained from equations (85) and (95) have been added upstream and downstream

of the computational boundaries. Even though the solution (95) is approxi-

mate, having been obtained by linearizing the thermodynamic relation (36) and

using only a two iteration approximation for the solution of equation (49), it

still leads to a useful boundary condition and an adequate prediction of the

downstream flowfield.

Case 8 - Strong shock results obtained using the complete grid of Figure 3 are

presented in Figures 19 and 20. Pressure and Mach number distributions are

shown in Figure 19 and contours in Figure 20. The significant variation of

Mach number in the downstream portion of the duct is clearly evident in Figure

19. The shock fitting procedure was much less sensitive to numerical

disturbances for this strong shock case. As a result, the solutions obtainec

using the zero-order and first-order boundary conditions for the long duct

were nearly identical. These results can serve as a reference for evaluatini

the accuracy of solutions where the computational boundaries are closer to the

nozzle portion of the duct.

Case 9 - Results for the shortened duct using the zero-order boundary

conditions are presented in Figures 21 and 22. Pressure and Mach number

distributions are shown in Figure 21 and contours in Figure 22. The

inaccuracy of the zero-order boundary conditions for this case is evident.

One noticeable effect is the change in shock position.

Case 10 - The short duct flowfield was recalculated using the first-order

boundary conditions. These results are presented in Figures 23 and 24.

Pressure and Mach number distributions are shown in Figure 23 and contours in

Figure 24. For the numerical solution portion of the domain, the results

agree closely with those shown in Figures 19 and 20. Linearized solution

results obtained from Equations (85) and (95) have been added upstream and

downstream of the computational boundaries. The transition across the
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boundary is reasonably smooth indicating that the approximations used in

developing the non-isentropic boundary conditions do not produce a strong

mismatch between the numerical and analytic solutions.

Boundary Comparison - A more quantitative comparison between the zero- and

first-order downstream boundary conditions can be obtained from the

distribution of flow variables along the boundary. Figure 25 shows a

comparison of the pressure and flow angle distributions along the downstream

boundary for Cases 6 and 7 (weak shock) and Cases 9 and 10 (strong shock).

Results taken from the numerical solutions of Case 5 (first-order boundary

conditions) and Case 8 at the same longitudinal location are also shown. The

validity of the first-order boundary condition analysis is clearly evident.

The minor deviations are due in part to the approximations used in obtaining

the solution (95)

.

For the non-isentropic calculations, 9 Fourier modes were required to

give a reasonably accurate representation of the downstream boundary

distributions of e and o for the Case 7 and 10 calculations. For the Case 5

and 8 calculations, only 7 modes were used. Implementation of the first-order

boundary conditions for non-isentropic situations clearly requires more

computational effort than for isentropic flow. However, this increase is

warranted in view of the fact that the far field flow can contain significant

streamline-normal variations in quantities other than pressure (e.g., see

Figure 19).
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VI. SUMMARY

Far field computational boundary conditions have been developed for 2D

duct and cascade flows. These first-order boundary conditions are derived

from analytic solutions of the linearized Euler equations and represent a

logical extension of the zero-order (or characteristic) boundary conditions

commonly used in the numerical solution of nonlinear fluid dynamic equations

The boundary conditions and analytic solutions provide a smooth transition

across a computational boundary to the true far field conditions at infinity.

The boundary procedure is general in that it can be used in conjunction with

any numerical solution method.

For the case of isentropic flow the linearized Euler equations are solvec

exactly for duct and cascade flow using separation of variables and Fourier

analysis. For non-isentropic flow the far field can contain significant

streamline-normal variations in quantities other than pressure and flow angT

and these variations cannot be treated as small perturbations from uniform

flow conditions. For the case of duct flow the non-isentropic linearized

equations are solved approximately using an approximate thermodynamic relation

and an iterative technique. The validity of this approximate solution has

been verified by numerical results. Use of non-constant zero-order boundary

conditions, which vary on the boundary as a result of entropy variations, also

offer substantial improvement over constant conditions derived solely from the;

far field pressure. Extension of the non-isentropic analysis to cascade flows

is straightforward.

Use of zero-order (or characteristic) boundary conditions requires that

the computational boundaries be located far from the nonlinear region of the

flow. Closer placement of the boundaries may result in a significant amount

of solution degradation. The first-order boundary conditions allow the

boundaries to be located much closer thereby reducing the number of grid

points needed for the numerical solution and also the number of iterations for

solution convergence. This allows a significant reduction in the amount of

computational effort required for the nonlinear numerical solution because the;
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additional calculations required for the first-order boundary conditions is

modest.

The boundary condition procedures developed herein can be extended to

axisymmetric, three-dimensional, and viscous flows, including external flows.

It is recommended that these analyses be undertaken and also that the present

results be extended to non-isentropic cascade flows.
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III. APPENDIX A: EVALUATION OF INTEGRALS

Evaluation of the integrals appearing in equations (96), (97), (98) and

(100) will be presented here. They are defined as shown below.

Equation (96):

i y
!
1

=
nT ( *n cos ni, ( y

"
n) dn

o

Equation (97)

i y
l 2 ~ nT ( *n sin n*(y-n) dq

J o

Equation (98):

13 =
n^"An ^ *n Sin n *y dy

Equation (100):

14 = f sin rimy cos nny y dy

1

I 5 = f sin rimy f
<J> n sin mr(n-y) dq dy

•'o *

The quantity 4 appearing in the integrands is defined by equation (94).
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Evaluation of Ij

h = -^t ~% f S (k - I)
Di, r

sin(nH-l/2)ny 4- sin rmy
1

^
_1

P
2qi

l

k^
1 2' Uk l 2n+k-l/2

sin(n-k+l/2)Tiy + sin mry sin(n+k-l/2)Try - sin(n-k+l/2)iTV -,

2n-k+l/2 k-1/2 J

. «2 "
n r

sin(n+k-l/2)TTy + sin mry sin(n-k+l/2)ny + sin mry
n "°°

k=x
k 2n+k-l/2 " 2n-k+l/2

+ sin(n+k-l/2)Try + sin(n-k-H/2)Tiy - 2sin mry -. _ ^2 . -

+ — ^2.2/2 J 'M°° °w niTV sin niTy)

Evaluation of \-£

h = -T 1 4^ f r (k - i) Dl r
cos(n->-k-l/2)TTy - cos rniy

2
*
_1

P
2q£

l

k^
1 2' Uk L 2n+k-l/2

cos(n-k+l/2)-ny - cos mry cos(n-k+l/2)-ny - cos(n-*-k-l/2)ny •,

2n-k+l/2 k-1/2 J

"2 "
n r cos(n+k-l/2)Tiy - cos mry cos(n-k+l/2)Tiy - cos mry

+ n IV i Uk L 2n+k-l/2
"

2n-k+l/2

(n+k-l/2)Try + cos(n-k+l/2)Try - 2cos mry -.

lr-1/3 J
cos_

k-1/2

-2

2Moo ow [sin nny - niry cos niry]}

Evaluation of I3

00

1 1 1
!
3

:

^1 ^2 [

fc
jj

(k ' j) Dk Wk-1/2 +
2n-k+l/2 ]

+ n ^
Jj

Dk C
2n+k-l/2 " 2n-kil/2 " k^T72 ]

" 2ttM» n °" }
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Evaluation of I4

1
- •

4Tim ' n=m

/ . xm+n ,
- (z±) m ; n?m

m2 -n 2

Evaluation of I5

15 =

1 If 1
- x 3 Am 6Am - p I (1-y) <j>m cos rimy dy ; n=m

p"
? [f f *n s i n mi,v dy " (-U

m+n MAn 6X n ] ;
n#n

mc -n c
- J n

(1
"
y) *m

C°S ^ iy "^Si {

jx'^'
°k E

(2^k-l/ 2 )2
+

li^ITi^
+

? '? °°
1 1

"2—x] + m NT Z D k [
*

5
* ~] - tt ow fC}

(k-1/2) 2 °°

k=1
K

(2m+k-l/2) 2 (2m-k+l/2) 2 W

J

1

„ sin My dy - Jj -gj {
j <k-£) D k l^±^ + *™ +1 + _I
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+
m-n+k-l/2 ]
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+
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m+n-k+1/2 m-n+k-l/2 J '
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