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PR'E FA€HE:.

THE object of this work is to reduce the well-known
theory of the cubic parabola or multiform compound
curve, used as a transition curve, to a practical and con-
venient form for ordinary field work.

The applicability of this curve to the purpose in-
tended has been fully demonstrated in theory and prac-
tice by others, but the method of locating the curve on
the ground has been left too much in the mazes of
algebra, or clse has been described as a system of off-
sets, or fudging. Where a system of deflection angles
has been given,-the range of spirals furnished has been
much too limited for géncra¥practice. In consequence
the great majority of engineers have contented them-
selves with locating circular curves only, leaving to the
trackman the task of adjusting the track, not to the
centres given near the tangent points, but to such an
approximation to the spiral as he could give “&y ¢ye.”

The method here described is that of transit and
chain, analogous to the method of running circular
curves ; it is quite as simple in practice, and as accu-
rate in result. No offsets need be measured, and the
curve thus staked out is willingly followed by the track-
men because it “ looks right,”” and is right.

The preliminary labor of selecting a proper spiral for
a given case, and of calculating the necessary distances
to locate it at the proper place on the line, is here ex-
plained, and reduced to the simplest method. Many of
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the quantities required have been worked out and tabu-
lated once for all, leaving only those values to be found
which are peculiar to the individual case in hand. A
large number of spirals are thus prepared, and their
essential parts are given in Table III.

In section 22 is developed the method of applying
spirals to existing circular curves, without altering the
length of line, or throwing the track off of the road bed,
an important item to roads already completed. Table
V. contains samples of this kind of work arranged in
order, so that, by a simple interpolation, the proper se-
lection can be made in a given case.

The series of spirals given in Table III. are obtained
by a simple variation of the chord-length, while the de-
flections and central angles remain constant. This is
the converse of our series of circular curves, in which
the chord is constantly 100 feet, while the deflections
and central angles take a series of values.

The multiform compound curve has been chosen as
the basis of the system, rather than the cubic parabola,
because, while there is no practical difference in the
two, the former is more in keeping with ordinary field
methods, and is far more convenient for the calculation
and tabulation of values i terms of the chord-unit, or of
measurement along the curve. While the several com-
ponent arcs of the spiral are thus assumed to be circu-
lar, yet the chord-points are points of a true spiral, to
which the track naturally conforms when laid according
to the chord-points given as centres.

The “ Railroad Spiral ” is in the nature of a sequel to
“Field Engineering ; ” the same system of notation is
adopted, and any tables referred to, but not given here,
will be found in that work.

Wwum. H. Searigs, C. E.
NEw York, Fuly 1, 1882.
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THE RhR@AD SPIRAL.

CHAPTER 1
INTRODUCTION.

I. ON a straight line a railway track should be level
transversely ; on a curve the outer rail should be raised
an amount proportional to the degree of curve. At the
tangent point of a circular curve both .of these condi-
tions cannot be realized, and some compromise is usually
adopted, by which the rail is gradually elevated for
some distance on the tangent, so as to gain at the tan-
gent point either the full elevation required for the
curve, or else three-quarters or a half of it, as the case
may be. The consequence of this, and of the abrupt
change of direction at the point of curve, is to give the
car a sudden shock and unsteadiness of motion, as it
passes from the tangent to the curve.

The railroad spiral obviates these difficulties entirely,
since it not only blends insensibly with the tangent on
the one side, and with the circle on the other, but also
affords sufficient space between the two for the proper
elevation of the outer rail. Moreover, since the curva-
ture of the spiral increases regularly from the tangent
to the circle, and the elévation of the outer rail does
the same, the one is everywhere exactly proportional to
the other, as it should be. The use of the spiral allows

I



2 THE RAILROAD SPIRAL.

the track to remain level transversely for the whole
length of the tangent, and yet to be fully inclined for
the whole length of the circle, since the entire change
in inclination takes place on the spiral.

2. The office of the spiral is not to supersede the cir-
cular curve, but to afford an easy and gradual transition
from tangent to curve, or zzce versa, in regard both to
alignment and to the elevation of the .outer rail. A
spiral should not be so short as to cause too abrupt a
rise in the outer rail, nor yet so long as to render the
rise almost imperceptible, and therefore difficult of ac-
tual adjustment. Within these limits a spiral may be
of any length suited to the requirements of the curve
or the conditions of the locality. To suit every case in
practice an extensive list of spirals is required from
which to select.
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CHAPTER 1IIL
THEORY OF THE SPIRAL.

3. THE Railroad Spiral is a compound curve closely
resembling the cubic parabola; it is very flat .near the
tangent, but rapidly gains any desired degree of curva-
ture.

The spiral is constructed upon a series of chords of
equal length, and the curve is compounded at the end
of each chord. The chords subtend circular arcs, and
the degree of curve of the first arc is made the com-
mon - difference for the degrees of curve of the suc-
ceeding arcs. Thus, if the degree of curve of the first
arc be o° 10/, that of the second will be 0° 20/, of the
third, o° 30/, &c.

The spiral is assumed to leave the tangent at the be-
ginning of the first chord, at a tangent point known as
the Point of Spiral, and designated by the initials 2. S
or on the diagrams by the letter S.

4. To determine the co-ordinates of the sev-
eral chord extremities, let the point S be taken as
the origin of co-ordinates, the tangent through S as the
axis of Y, and a perpendicular through S as the axis of .
X. Then «x, 9, will represent the co-ordinates of any
point of compound curvature in the spiral, x being the
perpendicular offset from the point to the tangent, and
» the distance on the tangent from the origin to that
offset. &
For the purpose of calculation let us assume 100 feet
as the chord-length, and o° 10" as the degree of curve of
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the first arc of a given spiral. Then, since the degree
of curve is an angle at the centre of a circle subtended
by a chord of 100 feet, the central angle of the first
chord is 10/, of the second 20/, of the third 30', &c., and
the angles which the chords make with the tangent are :

For 1st chord, ¥ X 10’ S
S 0 iyt o Fx 20 = 20'
143 3d 143 IO’ + 20! + % X 301 - 451
“4th % 10" + 20 4+ 30 + 3 X 40 = 80

&ec., L&l &c.,,

or in general the inclination of any chord to the tan-
gent at S is equal to half the-central angle subtended
by that chord added to the central angles of all the
preceding chords. If now we consider the tangent as
a meridian, the Ja#i#ude of a chord will be the product of
the chord by the cosine of its inclination, and its depart-
ure will be the product of the chord by the sine of its
inclination to the tangent. A summation of the several
latitudes for a seriesof chords will give us the required
values of y, and a summation of the several departures
will give us the required values of x. By the aid of a
table of sines and cosines, we may therefore readily pre-
pare the following statement :

Chord. | J)n::;;ng xl?o: F;"m—_e:,. = 1\7} :::E)'s;e. 7
I 0° 05’ |0.145 | .145| 100.000 100.000
2 |0°20 |0582| .727| 99.998 199.998
3 | ©0°45'|1.309|2.036| 99.991 | 299.989
4 |1°20°|2.32714.363| 99.979 | 399968
&ec. - &e.. &ec.

In this manner Table I. has been constructed.
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5

5. To calculate the deflection angles of the
If in the didgram, Fig. 1, we

Spiral; Inst. at S.
draw the long chords Sz, S3, S4, &c., 4
we may easily determine the angle 7
which any long chord makes with the
tangent by means of the co-ordinates
of the further extremity of the chord,

for

LT
tan z = —.
ST,

Having calculated a series of values
of the angle 7, we may lay out the
spiral on the ground by transit deflec-
tions from the tangent, the transit bz~
ing at the point S.

The statement of the calculation is
as follows :
Fie. 1.

Point. x y tan z'=§ ; i
I .145 100.000- | 00145 |0° o5 oo’
2 P 199.998 .00364 12’ 30"
3 2,036 299.989 .00679 23 26"
4 4.363 | 399.968 | .orogr 37 30"
&e. &e.

The values of 7 are more readily found by logarithms

however, since

b

log tan / = log x — log ».

{
)

By this formula the first part of Table IL (Inst. at S)
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y has been calculated, and these are
the only deflections needed for field
use when the entire spiral is visible
from S.

6. To calculate the deflection
angles when the transit is at any
other chord-point than S: Sup-
pose the transit at point I, Fig. 2.

In the diagram draw through the
point 1 a line parallel to the tangent
at S, and also the long chords 1-3,
1—4, &c., and let a, represent the
angle between any one of these long
chords and the parallel. Then, from

% S the right-angled triangles of the dia-

gram we have the following expres-

FiG. 2. sions :

Xga= X e e

For point 2, tan ¢, = = =-00882.
i ¢ "= 99-998 s
LR tana, === S S 45

% ‘T = 190989 o9
e S0y tana R A o1411
g YT yi—n 299968
&ec., &c., &c.

But these are better worked by logarithms, and the
values of @, found directly from the logarithmic tan-
gent.

Let s = the spiral angle = the angle subtended by
any number of spiral chords, beginning at S. Then
s = the sum of the central angles of the several chords
considered ; and it therefore equals the angle between



THEORY OF THE SPIRAL. 2

the tangent at S and a tangent at the last point consid-
ered. The series of values of the angle s is as follows :
Point. Angle under smgle chord. Angle :

S o° oo o’

1 10' 10’

2 20’ 30’

3 30’ 1° oo — %
4 40’ 1° 40’

&c &ec.

P

Since the values of @ found above are deflections
at point 1 from a parallel to the main tangent, it is evi-
dent that if we subtract from each the value of s for
point 1, or 10', we shall have the deflections, 7 from an
auxiliary tangent through the point 1, which we require
for use in the field. The statement is as follows :

Instrument at point 1 ; (s = 10).

Point. Angle a;. Angle 7.
2 20" 10’
3 32’ 30" 22’ 30"
4 48’ 20" 38’ 20"
&ec., &e., &ec..

The instrument will read zero on the auxiliary tan-
gent through point 1 where it stands, and of course the
back deflection over the circular arc Si1 is o5. Hence
we have the complete table of deflections when the
instrument is at point 1.

Similarly, if we suppose the instrument to be at
point 2, we shall have the statement :

> ok

Point
4 Xy — X, 1.30 107
3 TR 1= 1399 _ orerb

At R 99-991
Xy — Xy 3.636 0/ 575+
4 tan @2 = = = = .oi52%.
Yagy Ja 199.970 :
&c., &ec.,
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-

and since for point 2, s = 20/, we have :
) )

Point. Angle a. Angle 7,
o ! S 4 o 2
3 o° 35 p2.9% 0% 1
o ' i o 51 "
4 o° 52°30 0° 32’ 30
&ec., &ec.

The instrument will read ze7o on the auxiliary tangent
through the point 2, the back deflection to the point 1
is half the central angle under the second chord, or 10/,
and the back deflection to S is the difference between
s, and the deflection at S for poirt 2, or 3o’ — 12’ 30" =
17 30". We thus may complete the table of deflections
for the instrument at point 2.

By a similar process the deflections required at any
other chord-point may be deduced. It should be noted,
however, in forming the table, that the back deflection
vy to any point is equal to the value
of s for the place of the instru-
ment, Jess the value of s for the
back-point, Zess the forward de-
flection at the back-point for the
place of the instrument. This is
obvious from an inspection of the
triangle formed by the two auxil-
iary tangents and the chord join-
ing the two points in question.

Thus, Fig. 3, when the instru-
ment is at point 4, the back de-
flection for point 2 is equal -to
100’ — 30’ — 32’ 30" = 37’ 30.”

In the manner above described
has been calculated the complete

Fic. 3. table of deflections from auxiliary
tangents at chord-points, for every chord-point of the
spiral up to point 20, Table II. It is evident, that by
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means of this table the entire spiral may be located, the
transit being set over any chord-point desired, while the
chain is carried around the curve in the usual manner;
also, that the curve may be laid out in the reverse direc-
tion from any chord-point not above the zoth, since all
the back deflections are also given.

7. Variation in the chord-length,

We have thus far assumed the spiral to be constructed
upon chords of 100 feet, but it is evident that such a
spiral would be entirely too long for practical use; it
would be 1700 feet long before reaching a 3° curve.

We must, therefore, assume a skorfer chord ; but in
so doing it will not be necessary to recalculate the
angles and deflections, for these remain the same whatever
be the chord-length. By shortening the chord-length we
merely construct the spiral on a smaller scale. The
values of x and y and of the radii of the arcs at corre-
sponding points are proportional to the chord-lengths,
and the degrees of curve for corresponding chords are
(nearly) inversely proportional to the same.

Thus for any chord-length ¢ we have :

¢
X Xy i€ I00, O X = —— X
100

U
Y : Vo i€ 100, Or :‘I——Ooymo'

¢
R, : Ry :i€ 51100,  OF R, = — Koo
. 100

Let D, = the degree of curve due to radius &, , and
D,y = the degree of curve due to radius £,.; then,

100 100
N and 2 R s
2 sin4 D) A a2 nSin A, g

whence

52 100 .
siny D, = ~-sin 3 Do,
¥
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in which 2, is the degree of curve upon any chord in a
spiral of chord-length ¢, and D, is the degree of curve
upon the corresponding chord in the spiral of chord-
length 100.

Accordingly, if we assume a chord-length of 10 feet

the values of x and y will be I—I(;% of those calculated for

a chord-length of 100 feet, while the degree of curve
on each chord will be (nearly) 1o times as great as be-
fore.

8. In the construction of Table III., we have as-
sumed the chord to have every length successively from
10 feet to zo feet, varying by a single foot, and have
calculated the corresponding values of x, y and D,
The' logarithm of x is also added, and the length of
spiral 7.

We are thus furnished with 41 distinct spirals, but
since the same spiral may be taken with a different
number of chords (not less than three) to suit different
cases, the variations which the tables furnish amcunt to
no less than 500 spirals, some one or more of which
will be adapted to any case that can arise. The maxi-
mum length of spiral has been taken at 4oo feet; the
shortest spiral given is 3 x 1o feet = 30 feet. Be-
tween these limits may be found spirals of various
lengths.

9. The elements of a spiral are :

D, The degree of curve on the last chord,
7, The number of chords used,
¢, The chord-length,
n X ¢, The length of spiral,
s, The central angle of the spiral,
%, 9, The coordinates of the terminal point.
Every spiral must terminate, or join the circular curve
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at a regular chord-point of which the coordirates are
known.

10. To select a spiral.

The terminal chord of a spiral must subtend a degree
of curve less than that of the circular curve which fol-
lows, but the next chord beyond (were the spiral pro-
duced) must subtend a degree of curve equal to or
differing but a little from that of the circular curve.

Thus, if the circle were a 1o degree curve, the spiral

may consist of 5. chords 10 feet long (the degree of
curve on the 6th chord being 10° 0o’ 45”), or of 15
chords 26 feet long (the degree of curve on the 16th
chord being 10° 16’ 0g”), the length of spiral is 50 feet
in one case and 390 in the other; between these limits
the tables furnish 15 other spirals of intermediate length,
all adapted to join a 1o degree curve.
. We may therefore introduce one more condition which
will fix definitely the proper spiral to employ. If the
length of spiral be assumed, we seek in the tables those
values of 7 and ¢ which are consistent with the required
value of D, for-(z + 1), at the same time that their
product, nc, equals as nearly as may be the assumed
length of spiral. Thus, if with a 10 degree curve a
length of about 130 feet were desirable, we should select
either

=8y a5= 18, D, = 10° 00! 45"; e = 120 ft;
orn=g9, ¢c=16, D,= 10°25"51"; 7c = 144 ft.

D, is always taken for (z+ 1). When circumstances
permit, a chord-length of about 3o feet will give the
best proportioned spirals. With a 30 foot chord-length
the length of spiral will be about 770 times the super-
elevation of the outer rail at a velocity of 35 miles per
hour.

e
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The value of s depends on the number of chords (#)
and is independent of the chord-length. If the angle s
were selected from the table, this would fix the number
n, and we must then choose the chord-length ¢ so as to
give the proper value of D,  Thus, if s were assumed
= 9° 10’ then #» = 10, and ¢ =18 ft. or 19 ft, giving
D, = 10° 11" 54" or 9° 39" 36" to suit a 10 degree curve,
and making the length (7c) of the spiral either 70 or
180 ft., according to the spiral selected.

The coordinates (., y) depend on the values of both
7 and ¢. They are used in solving the problems of
the spiral, being taken directly from Table ITI. for this
purpose, under the value of ¢ and opposite the value
of ».
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CHAPTER IIL

ELEMENTARY PROBLEMS.

11. To find the length C of any long chord
beginning at the point of spiral S. TFig. 4. Let
L be the other extremity of the long
chord, x, y the coordinates of L, and
7 the deflection angle YSL at S for
the point L.

Then CEE it

or C=—.

The values of x, y and 7 are found
in Tables III. and II.

Example. In the spiral of chord-
length = 30 ft. what is the length of X
the long chord from S to the roth
point ? F1c. 4.

From Table III., log x 1.224491
& o 7 3° 12’ 28" log sin 8.747853

G 299.66 Ans. 2.476638

12. To find the lengths of the tangents from
the points S and L to their intersection E.
Fig. 4. Let x, y be the coordinates of L, and s the
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spiral angle for the point L. Then s = the deflection
angle between the tangents at E, and

2
E—gi-nj SE i =jyyi—veot-si-mmp - - (2.)
The values of x, y and s are found in Tables IIIL and

B It ‘
Example. In the spiral of chord-length 40 extending
to the gth point, what are the tangents LE and SE?

From Table III,, log x 1.219075
£ e IV Ll 20" log sin  9.115698
LE = 126.87 : 2.103377
log & 1.219075
T30 log cot  0.880571
125.790 2.099646

J 359-352

FE SE = 233.562

13. To find the length C of any long chord
KL. Fig 4. Let x, ybe the coordinates of L, and
«', y' the coordinates of K ; and let @ be the angle LKN
which LK makes with the main tangent, and 7 the de-
flection angle KLE', and /' the deflection angle LKE'"

Then ¢ = (s —7) at the point L, = (s' 4+ /) at K.

KN
it L

Gl R
C_cosa a1 bnp o (89

Example. In the spiral of chord-length 18 what is the
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length.of the long chord from point’ 12 to pomt 2b~2\
Here K=12and L =20 =1
From Table IIL., y 346.4767] 1 tRSITY
Y 214.84% C
N L2

N

~~ s 'S ';-" J t\
131.629 log ‘5’.119352
From Table IL., s" 13°
il 100‘07' 23”

: a 23° o7’ 23" log cos 9.963629

€ =143.13 2.155723
14. To find the lengths of the tangents from
any two points L and K to their intersection at
E'. Fig 4. Lets, s’ be the spiral angles for the points
L and K respectively. Then (s —s’) = the deflection
angle between tangents at E'.- Having first found € =
LK by the last problem we have in the triangle LKE'

- (4.)

Lxample. In the spiral of chord-length 18 what are
the tangents for the points 12 and 20 ?

Poob) Gsin g’ iz SiCsing -
~ sin (s— ) Tosin(s—)

By last example, C log 2.155723
From Table IV,,

(s — &) 35° — 13° = 22° log sin 9.573575

i 2.582148
From Table I, 7 10° 07’ 23" log sin 9.244927
.*. LE' = 67.15 . 1.82707%5
Again : 2.582148
Table II., 7 11° 52" 37" log sin 9.313468

SR IERE==87630 1.895616
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{
v L :
§i9 /V 15. Given : 4 circular curve
e/ N ; w3
and spirals joining two tangents,
to find the tangent dis-
tance 7,=VS. Fig. 5.

& Let S be the point of spiral
: ' V the intersection of the tan-
A gents, SL the spiral, LH one

7 half the circular curve, and O
its centre. In the diagram
draw GLI parallel to the tan-

x gygent VS, and GN, LM, and
OI perpendicular to VS. Join
FIG. 5" OL and OV.
Then
IS =5 OV ="1'A O, ="F'3 ‘SM ==giF e e="2
Now SV =SM + NV + MN.
But NV =GN . tan VGN = «x tan } A.
o - sin LOG _ ., sin (34 —)
A= GL L sin OGI cos + A
Hence fy o)
sin (34 —5)
7,=y+xtan A + R — e .. (5.)

Example. Let the degree of the circular curve be
D' =17° 20, and the angle between tangents, A = 42°.
Let the spirai values bec =23; 7z =9 . . s =7° 30\
Then by the last equation and the tables,

¥ 1 200.627
s log 0.978743
1A 21° log tan 9.584177

3.6¥55 ; o_.562920




ELEMENTARY PROBLEMS. 17

R 7° 20 C log 2.893118
$n—s 13° 30 log sin  9.368185
A 21° a. c. log cos 0.029848
‘ 195.502 v 2.29TI5I
i allyes 405.784

4 16. When an approximate value of 7 is only re-
quired we may employ a more convenient formula
derived from the fact that the line OI produced bisects
the spiral SL very nearly, and that the ordinate to the
spiral on the line OI, being only about § x, may be neg-
lected. Thus,

Approx. T,=Rtan{rn+3n. . . (6)

Example. Same as above.

7.2 D Lo S log  2.893118
A 21° log tan 9.584177*
300.1. 2.477295

27 c=3%X:91X:23 ,1103.5

. L, = approx. 403.6

Remark. This formula, eq. (6) when &' is'faken equal
to the radius corresponding to the degree of curve
D, for (n + 1), gives practically correct results. But
as in practice, the value of &' will differ somewhat frcm
the radius of D, so the value of 7 derived from this
formula will differ more or less from the true value, as
in the last example.

"/17. Given : the tangent distance T,= SV, and the
angle A, and the length of spiral SL, to find the radius
R' of the circular curve, LH, Fig. 5. The length



15 THE RAILROAD SPIRAL.

of spiral is expressed by #¢, hence we have from the
last equation.

approx., RE=( T B8 nsYeot F A0 055 ()

After &' is thus found, the values of # and ¢ are to be
determined, such that, while their product equals the
given length of spiral as nearly as may be, the value of
D, for (zn + 1) shall correspond nearly with 2. The
values of z and ¢ are quickly found by reference to
Table III.

Examople. Let 7, = 406, A = 42° and 7nc = 170.

T, — inc 321 log 2.5065
TN - 212 log cot. 0.4158
R' = say, 6° 51’ curve, 2.9223

By reference to Table III., we find that when » =8
and ¢ = 22, the product zc being 176, the value of D,
for (2 + 1) is 6° 49’ 19", and this is the best spiral to
use in this case. But as this spiral is longer than our
assumed one, we should decrease the value of R’ some-
what, if we would nearly preserve the given value of
7, For instance, assume &' = radius of 6° 54’ curve,
and using the same spiral, calculate by eq. (1) the re-
sulting value of 7%, and we shall find 7: = 408.646.

As this is an exact value of 7% for the values of &',
and ¢ last assumed, and is also a close approximation to
the value first given, it will probably answer the purpose
completely. If, however, for any-reason the precise
value of 7\ = 406 is required, we may find ‘the precise
radius which will give it by the following problem.
| 18. Given: a curve, and spiral, and tangent-distance,
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7, to find the difference in & corresponding to
any small difference in the value of 7.

If in eq. (5) we assume a constant spiral, and give to
R’ two values in succession and subtract one resulting
value of 7, from the other, we shall find for their dif-

ference, 7
) _sin(4A — ) :
diff = Ze== e a0 G g P (3
Hence
A cos A '
diff. R = mdlfﬁ Tisne, (9) :

Example. When R’ = rad. 6° 54’ curve, n =8, c =
22, 7, = 408.646 ; what radius will make 7, = 406 with
- the same spiral ?

Eg. (9) diff. 7, = 2.646 log 0.422590

LA, 212 log cos 9.970152

(3a —ys), 15° a. ¢. log sin 0.587004

.~ diff, R 9.544 , 0.979746
R 6° 54 830.876

*. Required radius = 821.332, or 6° 58’ 49" curve.

Remark. Care must be taken to observe whether in
thus. changing the value of &', the value of D', the de-
gree of curve, is so far changed as to require a different
spiral according to the rule for the selection of spiral
§ ro. Should this be the case (which is not very hkely)
we may adopt the new spiral, and proceed with a new
calculation as before. '

\ 19. Given: a circular curve with spirals joining two
tangents, to find the external dlstance £, =VH,
Fig. s.
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Let SL be the spiral, LH one-half the circular curve,
and O its centre.

Then VH = VG + GO — OH.

GN S e : :
But VG = oo i S e and in the-tnangle
sin OLI , COSS§
GOL, GO = IO sin LGO ~ = cos3A’
x , 1COSS o Y
*T cos A cos A £ 4o

or for computation without logarithms

x4+ R (coss—costa) (i1.)

E, ,
cos 3 A

Example. Let D' = 7° 20', A = 42° and for the
spiral let n= g9, ¢= 23, giving s =7° 30, and for
(n + 1), Dy = 7° 15" 04"

Eq. (10) x log 0.978743
3A.25° . a. c. log cos 0.029848

10.200 1.008591

R 4° 20 log 2.893118

ST NT30" log cos 9.996269

}aar® ~a. c. log cos 0.029848

830.300 . 2.919235

sum 840.500
R 7°20 781.840

vae 58.660
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20. Given: TZhe angle A at the vertex and the dis-
tance VH = £, to determine the radius & of a
circular curve with spirals connecting the tangents
and passing through the point H. Fig. 5.

Solving eq. (11) for R we have

_Ecosd A—x

RI
Ccoss — cos ¥ A

e (12)

But as this expression involves x and s of a spiral de-
pendent on the value of &' we must first find & approxi-
mately, then select the spiral, and finally determine the
exact value of R by eq. (12). The radius R of a simple
curve passing through the point H is a good approxima-
tion to &'. It is found by eq. (27) Field Engineering:

g E
=—,
exsec 3 A

or the degree of curve D may be found by dividing the
external distance of a 1° curve for the angle A by the
given value of Z,. But evidently the value of D' will
be greater than D, and we may assume D' to be from
10’ to 1° greater according to the given value of A, the
difference being more as A is less. We now select from
Table III a value of D, suited to D' so assumed, and
corresponding at the same time to any desired length of
spiral:  Since 2, so selected corresponds to (7 + 1) we
take the values of » and x from the next line above
D, in the table, find the value of s from Table IV., and
by substituting them in eq. (12) derive the true value of
R’ for the spiral selected.

Example. et A = 42° and E, = 70, to find the value
of R' with suitable spirals.

From table of externals for 1° curve, when A = 42°
E = 407.64, which divided by 70 gives 5°.823; or D =



22 THE RAILROAD SPIRAL.

5° 50'. Assume D' say 20’ greater, giving D' = 6° 10
approx. If we desire a spiral about 3oo feet long we
find, Table IIL, 7 = 10, ¢ = 30, and for (n + 1) D, =
6° 06’ 49"”. For n = 10,5 = 9° 10"

Eq. (12) cos $A, 21° .93358
& 70
65.35060

24 16.768

48.5826  log 1.686481
cos s 9° 10' .98723
cos $A 21° .93358 .05365 log 8.729570

. R"=rad. (say) 6° 20’ curve. 9o5.55 2.956911

Proof. Take the exact radius of a 6° 20’ curve and
the above spiral and calculate Z, by eq. (10) or (11).
We shall obtain Z, = 69.97. Again: if we desire a
spiral of 200 feet, we find, Table IIL., » = 8, ¢ = 25, and
for (z + 1) D, = 6°, and by eq. (12) R = rad. of (say)
6° o2’ curve ; and by way of proof we find £, = 69.96..

Again : if we desire a spiral of about go0 fect, we find,
Table IIL, » = 12, c= 33, s =13° and for (#+ 1)

, == 6° 34" 07”. Hence by eq. (12) &' = rad. of (say)
6° 50’ curve. By way of proof we find eq. (10) £, =
69.95. 3

Remark., 1t is thus evident that a variety of curves
with suitable spirals will' satisfy the problem, but D' is
increased as the spiral is' lengthened—for in the ex-
ample, with a 200 ft. spiral, D' = 6° o2’ ; with a 300 ft.
spiral, D' = 6° 20; and with a 396 ft. spiral, )’ =
6° 50. Therefore the length of spiral, as well as the
value of A, must be considered in first assuming the
value of D' as compared with D of a simple curve.
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21. In case the value of &', as calculated by eq. (12),
should give a value to D' inconsistent with the spiral
assumed, we may easily ascertain by consulting the
table what spiral will be suitable. Choosing a spiral of -
the same number of chords, but of a different chord-
length ¢, we may calculate 2’ (a new value) as before ;
or the work may be somewhat abbreviated by the fol-
lowing method :

Given: a change in the value of x, eq. (12) to_find the
corresponding change in the value of R'; n being con-
stant. :

If the values of Z,, A, and s remain unchanged, we
find, by giving to & any two values, and subtracting one
resulting value of &' from the other,

— diff x
coss —cos A

At R = e Taet)
that is, &' increases as x decreases, and the differences
bear the ratio of — T
: COoS § — COS $a

Example. Let o = 42°, E, =70, and for the spiral
let 7—= 10, ¢ = 30, s =9° 10/, as in the last example,
giving R' = 905.55 ; to find the change in &' due to
changing ¢ from 30 to 29.

Eq. (13) for ¢ = 30, x = 16.768
fovii=s29, X = 26.2009

diff. x -559 log 9.7474

cos s — cos 3 (as before) .05365 log 8.7296

i R 10.42 1.0178
old value 905.55

. new &' 915.97 D' = (say) 6° 16/,
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which agrees well with D, = 6° 19’ 29" for (z + 1) in
the new spiral.

If we prove this result by calculating the value of
E, for these new values by eq. (10) we shall find Z, =
69.93.

The slight discrepancy between these calculated
values of Z, and the original is due solely to assuming
the value of D' at an exact minute instead of at a
fraction.
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22. Given: fwo tangents joined by a simple curve, to
find a circular arc with spirals joining the same tan-
gents, that will replace the simple curve oz #ie
same ground as nearly as may be, and preserve the

same length of line.

To fulfill these conditions it is evident that the new
curve must be outside of the old one at the middle

point H; since the
spirals are inside
of the simple
curve at its tan-
gent points ; also,
the radius of the
new “curve must
be less than that
of the old. one,
otherwise the cir-
cle passing out-
side of H would
cut the given tan-
gents.

Let SV, Fig. 6
be one tangent,
and V the vertex.

F1c. 6.

Let AH be one half the simple curve,-and O its centre.
Let SL be one spiral, LH' one half the new circular
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arc, and O’ its centre. Draw the bisecting line VO, the
radii AO =2 and LO" = &', and the perpendicular
LM =x. Then MS =y. Produce the arc H'L to A’
to meet the radius O'A’ drawn parallel to OA, and let
3A = the angle AOH =A'O'H. = Let s = the angle
A'O'L = the angle of the spiral SL. Let %z = the radial
offset HH' at the middle point of the curve. Draw
O'N and LF perpendicular to OA, LF intersecting O’'A
Coals

a. 7o find the radius R' of the new arc LH’ in terms
of a selected spiral SL.

We have from the figure AO = ML + FN + NO.
But AO =R, ML =, FN ='LO' coss = R' cos s
and NO=0'Ocos} A = (OH — OH) cos{ A =
(2 + R —R') cos } A ; and substituting we have

R=x+R coss+ (h+R—R)cos} & . = (14)
whence J
s G Y viié
e Rversd A _lz-{-.cos%A + B )
" coss—coskA coss —cos 3 A’ 5

It is found in practice that % bears a nearly constant
ratio to & for all cases under the conditions assumed in

this problem. Let Z = the ratio —fc— and the last equa-

tion may be written

R = RversA _(kcos%A +1)x (16.)
Ccos s — cos¥ A Ccos s — cOs 3 A

which gives the radius of the new arc LH"in terms of
s, A and 4.
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b. 7Zv find the offset h = HH' :
From eq. (14) we derive

hcosy A =R(1 —cosd A) — R (1 — verss) +
R cos3 A —x
=R(rt —cos}3 A)—R(1—cosinr)+
R verss — x
=(R—R)vers} A + R vers s — .
Hence
R vers s X
cos 3 A  cost A

h=(R—R)exsech A + (17.)

which gives thé value of / in terms of s, # and &',

C. 7o find the value of d = AS :

We have from the figure SM = SA + NO’ + IL.
But SM =y, SA=d, NO'=00'sin 3+ A and IL =
LO' sin s, and by substitution,

res d+ (24+ R—R)siny A + R'sins.
Hence

d=y—[(A+ R —R')sin} A + R'sins] (18.)
\ B

which gives the distance on the tangent from the point
of curve A to the point of spiral S.

d. 7o compare the lengths of the new and old lines :

SAH=SA+AH=(1+IOO%A-, a4 199

in which 2 is the degree of curve of AH ;

1 >
SEH! =81 & LH =%, ¢4 fo6 "LéD, S (20.)

in which D' is the degree of curveof LH'.
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If the spiral and arc have been properly selected, the
two lines will be of equal length or practically so.

The last two equations assume the circular curves to
be measured by 100 foot chords in the usual manner,
but when the curves are sharp it is often desirable that
they should agree in the Zength of actual arcs, especially
where the rail is already laid on the simple curve. For
this purpose we use the formulae

NSl T o
SAH(arc)=d+R.—~2«"I‘§a 3 (oY)

(4

%o (22.)

SLH' (arc) =2n.c + R’ <% - s>

I

in which the angle is expressed in degrees and decimals.
If the odd minutes in the angle cannot be expressed by
an exact decimal of a degree, the angle should be re-
duced to minutes, and the divisor of # changed from
180 to 10800.

7
The value Of_x_é; 15 .0174533 log 8.241877

4
¢«

is .00029089 6.463726.

10800

The length of spiral is given by chord measure in the
last equations, since the chords are so short and subtend
such small angles that the difference between chord and
arc is not material to the problem.

e. 7o select a spiral in a given case, we require to
know approximately the value of 2, and to select the
spiral (7. ¢) such that the value of D, for (# + 1) shall
not differ greatly from the value of 2. To aid in find-
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ing approximate values of D' and £, Table V. has been
prepared for curves ranging from 2° to 16° and central
angles (A) ranging from 10° to 80°.

Assume s at pleasure (less than 4 A), which fixes the
value of ».  Then inspect Table V. opposite 7 for
values of D and A next above and below the values of
D and A in the given problem, and by inference or in-
terpolation decide on the probable values of 2 and 2.
Then in Table IIL select that value of ¢ which gives
D, for (n + 1) most nearly agreeing with D'. Now
calculate R by eq. (16), and as this will usually give
the degree of curve D' fractional, take the value of
D' to the nearest minute only, and assume the corre-
sponding value of R as the real value of R'. A table
of radii makes this operation very simple.

But should it happen that D' differs too widely from
from D, to make an easy curve, increase or di-
minish the ¢hord-length ¢ by 1, thus giving a new value
to ¥ in eq. (16), and also a new value.of Dsq, + 1
with which to compare the resulting D'. In changing
« only the last term of eq. (16) is affected, and the first
term does not require recalculation.

f. When the value of R’ is decided, substitute it in
eq. (17) and calculate 4 But if it happens that the
value of R'selected differs not materially from the result
of eq. (16), we have at once zz = 4x ; or in case the value
of R'ischanged considerably from the result of eq (16),

the corresponding change in % will be ¢/ 1~ 3
S _ ' licos's - cos +Au.. :
diff. 2 = oS TR R diff. &', . (22%)

which may therefore be applied as a correction to %2 = Ax,
and we thus avoid the use of eq. (17). Eq. (22}) is de-
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rived from eq. (15) by supposing % to have any two
values, and subtracting the resulting values of &' from
each other. Note that % diminishes as &' increases, and
vice versa.

When R’ and /% are found, proceed to find & by eq.
(18), and the length of lines by eq. (19), (20), or by
(21), (22), as may be preferred.  But to produce equal-
ity of actual arcs, 2 must be a little greater than when
equality by chord-measure is desired.

Should the lines not agree in length so nearly as de-
sired, a change of one minute % in the value of D'
may produce the desired result, but any such change
necessitates, of course, a recalculation of % and 4.

The values of %in Table V. appear to vary irregu-
larly. This is due to the selection of D’ to the nearest
minute, and also to the choice of spiral chord-lengths,
¢, not in an exact series. The reader is recommended
to supplement this table by a record of the problems he
" solves, so that the values of &' and Z may be approxi-
mated with greater certainty.

Example. Given a 6° curve, with a central angle of
A = 50° 12/, to replace it by a circular arc with spirals,
preserving the same length of line.  Assume s = 7° 30
giving # = 9.

Since 6° is an average of 4° and 8°, while 50° 12’ is
nearly an average of 40° and 6o°, we examine Table V.
under 4° curve and 8° curve, and opposite A = 40°
and 60° on the same line as s = 7° 30, and take an
average of the four values of Ds(, 4+ 1, thus found ;
also of the four values of %; we thus find approx. £ =
.0885, and D' =6° 18' . Now looking in Table III.,
opposite z» = g, we find that when ¢ = 26, D (» 4 1) =
6° 24'-48", we therefore assume ¢ = 26, and proceed to
ccleulate &' by eq. (16).
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Eq. (16) coss7° 30 99144
cos+A  25° 06 -90557
5 .08587 a. c. log L.o66159
R 6° log 2.980170
vers $A 257 o6’ log 8.975116

-~ 1050.6 log 3.021445

cos § — cos ¥ A" . a. c. log 1.066159

1+ £cos $A = 1.080 © 0.033424
o - ¢ 1.031989
135.4 2.131572
.. R (say 6° 16') 915.2
Eq. (17) R6° 955.366
R 6° 16" 914.750
(R— R 40.616 log = 1.608697
exsec 3 A 25° 06’ log 9.018194

4-235 log 0.626891

R 6° 16’ log 2.961303
verss , 7° 30 log 7.932227
cos A 25° o6’ a.c. log 0.043079

8.642 log o©.936609

12.877
x log 1.031989
cos A  25° 06" "~ a.c. log 0.043079
11.887 . 1.075068

£t 0.990
Eq. (18) (R — R") 40.616 :
: 41.606 log 1.619156
sin $A  25° 06’ log 9.627570

17.649 log 1.246726
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6" a6 log  2.961303
sins 7° 30’ log 9.115698
119.399 log z2.077001
. 137.048
b2 233-579
a, 96.531
25.1° X 100
Eq. (r9) 23 . ATETEEN
LS H 514.864
Eq. (20) 3A — s) = 1056 X 100 log 5.023664
D 376’ log 2.575188
280.851 log 2.448476
n.c 9 X 26 234-.
S SEH | 514.851
Difference —.013

actual 2 = e 0.092
&

Comparison of actual arcs.

Eq. (21) 25.1° log 1.399674
1° log 8.241877

R 6° log 2.980170

418.525 log 2.621721
a 96.531

515.056

Eq. (22) 17.6° log 1.245513
1° log 8.24187%
R’ 6° 16’ log 2.961303

280.991 log 2.448693

Rl 2 3

514.991
Difference = — 0.065
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23. Given : a simple curve joining two tangents, to
move the curve inward along the bisecting line VO
so that it may join a given spiral without change
of radius. Fig. 7. v

Let SL be the given
spiral, AH one-half of the
given curve, and HL a
portion of the same curve
in its new position, and
compounded with the
spiral at L.

To find the distance
A=W =00,

Since the new radius is
equal to the old one, or 3
R'= R, we have from eq. _ l
(17) by changing the sign Lk
of 7, since it is taken in the opposite direction,

O\ o
—

x — Rverss

Rt W PR A T B A 0 B LT (23.)
To find the distance d = AS :
Changing the sign of / in eq. (18) and making &' =
R we have
d=y—(Rsins—/Asinya) . . . . (24.)
This problem is best adapted to curves of large
radius and small central angle.
Lxample.  Given, a curve D =1° 40 and A =
26° 40/, and a spiral s = 1°, # = 3, and ¢ = 4o, to find
% and & and the length LH'.

Eq. (23) R 1° 40/ log 3.5363
verss  I° log 6.1827
cos.} A 13° 20’ a. c. log o.0119

2%
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538 log = 9.7309

X ; log 9.9109
cos 3 A a. c. log o.or1g
.837 9.9228
NA .299
Eq. (24) R 1° 40 log 3536289
sin s 1° «>  8.241855
59-999 1.778144
h ., t299 log 9:4757
sind A 13° 20 «  9.3629
.069 8.8386
59-93°
4 119.996
d 60.066

H'OL = (4 A —s) =12° 20" “itov TH'L = 740 feet.

24. Given, a simple curve joining two tangents, to
compound the curve near each end with an arc
and spiral joining the tangent without disturbing the
middle portion of the curve. Fig. 8.

Let H be the . middle point of the given curve, Q the
point of compounding with the new arc, and L the
point where the new arc joins the spiral SL.

Let s = the spiral angle, and let ¢ = AOQ. Now in
this figure AOQS will be analogous to AOH'S of Fig.6,
if in the latter we suppose H' to coincide with H or
% = o. If, therefore, in eq. (15) we write 0 for ¥ A and
make % = o, we have for the new radius O’Q,

o Rvers0 —x

Lor e = LeR T ARaas )

cos s — cos G’
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in terms of 0 and the : e
spiral assumed. But
as the value of D'
resulting is likely to
‘be fractional and
must be adhered to,
it is preferable to as-
sume K& a little less
than &, select a suit-
able spiral and cal- o :
culate the angle 0. A
Resolving eq. (17)
after making % =o
and replacing 4 A ..l8
by 6, we have b (3T T l

x— R vers s ‘
Vers 0 = S — AT B ae)

The angle 0 so found must be less than § A, and in-
deed for good' practice should not exceed ¥ A. If too
large, 0 may be reduced by assuming a smaller value of
R', and repeating the calculation with a suitable spiral.
Otherwise it will be preferable to use one of the forego-
ing problems in place of this. This problem is specially
useful when the central angle is very large.

7o find the distance d = AS, we have only to write
6-for 4 A and make % = o in eq. (18), whence

d=y—[(R=R)sing+ R sins] . . . (27.)
Example. Given a curve D = 2° 30, A = 35° to

compound it with a curve D' = 2° 40’ and a spiral s =
2° 30, n =15, ¢= 37.
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Eq. (26) 2 2° 30" 2292.01
R' 2° 40" 2148.79

R—F 143.22 log 2.156004
x log 0.471203
.020663 log 8.315199
R— R a. c. log 7.843996
vers s 2° 30’ : log 6.978536
Vi 2° 40 * log 3-332193
.014280 log 8.154725

. vers 6 6° 28 30" .006383
Eq. (27) R — R’ log 2.156004
sint  6° 28 30" 9.052192
16.151 1.208196
R 2° 40’ 3-332193
ST ' 2 430" 8.639680
93-729 1.971873

109.880

¥ 184.962

ey 75.082

AH 700.
775.082
SL; = n. = 185.00

LQ, 6 —s= 3°58 30" 149.06
QH, $ A — 0= 11° o1’ 30" 441.00 775.060

Difference — .022
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25. Given: a compound curve joining two tan-
gents, to replace it by another with spirals, pre-
serving the same length of line.” Fig. g./ ¢,

Let A, = AO,P, : 9%
the angle of the arc
AP, and A,'=
PO,B, the angle of
the arc PB. Let
Ry=A Q. —and
Ka—BO® :

Adopting the
method of § 22,
the offset %2 must
be made at the
point of compound
curve P instead of
at the middle point.
Considering first
the arc of the
larger radius AO,, l
the formula of §22
will be made to
apply to this case by writing A, in place of § A, and
R: in place of R, whence eq. (16)

Fic. 9.

Hz R, vers A, (kcos A,+1)x. L (28)
COS § — €OS A,y COS § — COS A,
and eq. (17)

R, vers s g
(29.)

A2 (R — R exsec A’ =
(&, 2) Saniveads A, cos A,

and eq. (18) v
d=y—[(h+ R, — R,/)sin A, + R, sins] . . (30.)
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But in considering the second arc PB, we must retain
the value of % already found in eq. (29) in order that
the arcs may meet in P'.. We therefore use eq. (15)
which, after the necessary changes in notation, becomes

J s SURVETs~A kcos Ay, +x
1 - e .
COS § — COS A, €Os §— cos A,

e (3_1.)

which value of 2 must be adhered to.

The spiral selected for use in the last equation is in-
dependent of the spiral just used in connection with &,
It should be so selected that while suitable for &, its
value of x may be equal to% as nearly as may be, the
value of % being inferred from Table V. for D' and
2/ A,

Assuming the value of R, found by eq. (31), even
though D, be fractional, we may verify the value of /% by

R, vers s X

b= (R, — R,)exsec A, + —
(&, ) ; cos A, cos A,

(32.)

and then proceed to find &' = BS' by
d=y—[(h+ R —R')sin A, + R/sins] (33.)

Example. Given the compound curve D, = 8°, A, =
29° and D, =6° A, = 25°%6': to replace it by an-
othér compound curve connected with the tangents by
spirals.

Considering first the 6° branch of the curve, we may
assume the spiral s =7°30,7 = 9, ¢ = 26. This part
of the problem is then identical with the example given
in § 22, by which we find 2 = .g990 and & = 96.531.

To select a spiral for the 8° branch, having reference
at the same time to this value of /% ; we find in Table V.
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under D = 8° and opposite A =2 A, = 58° or say 60°,
that the given value of /% falls between the tabular
values of /2 for e = g X 20, and n¢ = 10 X 22, We there-
fore infer that the spiral zc = ¢ X 21 is most suitable to
this case.. Adopting this, we have

Eq. (31) coss 7°30" .99144
cos A, 29°.87462

.11682 log 9.0675 1'.7 a.c. log 0.932483

R, 8° “ 2.855385
vers A ,29° “ 9.098229
769.302 “ 2.886097
/cos 29° .866
x 8.694
9.560 “ 0.980458
COoS § — €os A, 2:C ~80.032483
81.835 “ 1.912941
. R,/ 8°20'30 687.467
Eq. (33) (2 + &) 717.769
30.302 “ 1.481471
sin A, 29° “ 9.685571
14.691 “ 1.167042
R, 687.467 “ 2.837251
“sins  7°30 9.115698
89.732 1.952949
104-423
188.660

R 84.237
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For the methods of computing the lengths of lines,
see § 22.

26. Given : a compound curve joining two tangents,
to move the curve inward along the line PO, so that
spirals may be introduced without changing the ra-
dii. Fig. 10.

The distance %# = PP’ is found for the arc of larger

Fig. 0.

radius AO, by the following formula derived by analogy
from eq. (23):
A% Ty VOIS'S ()
A rath e Val i RO

and for the distance & = AS we have analogous to eq.
(24):
d=y—(R,sins —Asin A,) .. (35)
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Now the same value of /4, found by eq. (34) must be
used for the arc PB, and a spiral must be selected which
will produce this value. To find the proper spiral, we
have from eq. (34) after changing the subscripts,

x=R,verss +hcos A, . . (36)

-

The last term is constant. The values of x and s must
be consistent with each other, and approximately so with
the value of R,. Assume s at any probable value, and
calculate x by eq. (36)- Then in Table III. look for
this value of x opposite 7 corresponding to s, and note
the eorresponding value of the chord-length ¢. Com-
pare D, of the table with D, and if the disagreement is
too great select - another value of s and proceed as be-
fore.

The term &, verss may be readily found, and with
sufficient accuracy for this purpose, by dividing the value
of R 1° verss Table IV. by D,. If the calculated value
~of « is not in the Table III., it may be found by inter-
polating values of ¢ to the one tenth of a foot, since for
a given value of s orz the values of ¥ and y are pro-
portional to the values of .

When the proper spiral has been found and the value
of ¢ determined, it only remains to find the value of 7 =
BS' by

3 d=y — (R,sins — Z'sin &A1), . (37.)

in which the value of y will be taken according to the
values of ¢ and s just established. v

Example. Given: D, = 1°40', A, = 13°20, D, = 3°,
and A = 22°40/, to apply spirals without change of
radii. Fig. 1o0. f

Assume for the 1° 40’ arc the spiral s = 1° 2 =3,
¢ = 4o0. This part of the problem is then identical with
the example given in § 23, from which we find £ = 0.299.
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For the second part, if we assume s = 1° 40, n'= 4,

and find by Table IV. &, vers s = 2—%2—4 = 0.808, we

have by eq. (36)
X = 0.808 + 0.277 = 1.085,

the nearest value to which in Table IIIL is under ¢ =
25, giving Ds = 2° 40/, or for (n + 1), D» =3° 20/, which
is consistent with D, = 3°. By interpolation we find
that our value of «x corresponds exactly to ¢ = 24.85,
7 = 4, and therefore the spiral should be laid out on the
ground by using this precise chord.

In order to find 4= BS' we first find the value of y
by interpolation for ¢ =24.85, when by eq. (37) we have
4 = 99.391 — (55-554 — 0.115) = 43.952.

27. Given : a compound curve joining two tan-
gents, to introduce spirals without disturbing
the point of
compound
curvature P.
Fig. 11.

a. Theradius
of each arc may
be shortened, giv-
ing two new arcs
compounded  at
the same point
P. Having se-
lected a suitable
spiral, we have
for the arc AP
s by analogy from

eq. (15), since

7=,
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v 1 o VIS Dam= 9
COSSs— COoS A,

(38.)

and, similarly, after selecting another spiral for the arc

PB,
i R, vers oy —x
ok e i)

COS! §-—Heost Ay

(39-)

From eq. (18) we have for the distance AS,
d=y— [(R,— R')sin &, + R/sin 5], . (40.)
and for the distance BS',
d=y—[(R.— R/') sin A, + R, sin sfl . (41.)

The values of
D, and D, re-
sulting from eq.
(39) and  (40)
must be Adhered
to, even thdugh
involving a frac-
tion of a minute.

b. Zither arc
may be again com-
pounded at some
point Q, leaving
the portion PQ
undisturbed, as

| s
explained in § 24.
Fig. 12.
Let ¢ = the an- e =

gle AO,Q, and we have from eq. (26), after selecting a
suitable spiral and assuming &,
X — R, vers s

verso=—}2_RT S LSS )
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For the distance AS, we have from eq. (27)
d=y — [(R.— R)/)sino + R, sins] . (43.)

Similar formula will determine the angle 6 = BO,Q’
and the distance BS' for the other arc PB in terms of a
suitable spiral : thus,

x —R,' vers s

versO:—W o Nanmilig el S o)

d=y—[(R, —R/')sin0 + R'sins] . (45.)

The method a may be adopted with one arc and the
method b with the other if desired, since the point P is
not disturbed in either case. The former is better
adapted to short arcs, the latter to long ones.

These methods apply also to compound curves of
more than two arcs, only the extreme arcs beifig altered
in such cases.
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CHAPTER V.

FIELD WORK.

28. HaviNG prepared the necessary data by any of
the preceding formule, the engineer locates the point S
on the ground by measuring along the tangent from V
or from A. He then places the transit at S, makes the
verniers read zero, and fixes the cross-hair upon the tan-
gent. He then instructs the chainmen as to the proper
chord ¢ to use in locating the spiral, and as they meas-
ure this length in successive chords, he makes in succes-
sion the deflections given in Table II. under the
heading “Inst. at S,” lining in a pin or stake at the end
of each chord in the same manner as for a circle.

When the point L.is reached by (#) chords, the tran-
sit is brought forward and placed at L ; the verniers are
made to read the first deflection given in Table II.
under the heading “ Inst. at » "’ (whatever number » may
be), and a Dbacksight is taken on the point S. If the
verniers are made to read the succeeding deflections, the
cross-hair. should fall successively on the pins already
set, this being merely a check on the work done, until
when the verniers read zero, the cross-hair will define the
tangent to the curve at L. From this tangent the cir-
cular arc which succeeds may be located in the usual
manner. :

In case it became necessary to bring forward the tran-
sit before the point L is reached, select for a transit-
point the extremity of any chord, as point 4, for



46 THE RAILROAD SPIRAL.

example, and setting up the transit at this point, make
the verniers read the first deflection under “ Inst. at 4,”
Table II., and take a backsight on the point S. Then,
when the reading is zero, the cross-hair will define the
tangent to the curve at the point 4, and by making the
deflections which follow in the table opposite 5, 6, &c.,
those points will be located on the ground until the
desired point L is reached by z chords from the begin-
ning S. E

The transit is then placed at L, and the verniers set
at the deflection found under the heading “Inst. at »”
(whatever number 7 may be), and opposite (4) the point
just quitted. A backsight is then taken on point 4,
and the tangent to the curve at L found by bringing the
zeros together, when the circular arc may be proceeded
with as usual.

29. 7o locate a spiral from the point L running toward
the tangent at S: we have first to consider the number of
chords (#) of which the spiral SL is composed. Then,
placing the transit at L, reading zero upon the tangent
to the curve at L, look in Table II. under the heading
“Inst. at " and make the deflection given just above
0° oo’ to define the first point on the spiral from L
toward S; the next deflection, reading up the page, will
give the next point, and so on till the point S is
reached.

The transit is then placed at S; the reading is taken
from under the heading “Inst. at S,” and on the line 7
for a backsight on L.  Then the reading zero will give
the tangent to the spiral at the point S, which should
coincide with the given tangent.

If S is not visible from L, the transit may be set up
at any intermediate chord-point, as point 5, for example.
The reading for backsight on L is now found under the
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heading “ Inst. at 5,” and on the line 7 corresponding to
L ; while the readings for points between 5 and S are
found adove the line 5 of the same table. The transit
being placed. at S, the reading for backsight on 3, the
point. just quitted, is found under “Inst. at S” and
opposite 5, when by bringing the zeros together a tan-
gent to the spirakat S will be defined.

30. Since the spiral is located exclusively by its
chord-points, if it be desired # establish the regular 100-
Joot stations as they occur upon the spiral, these must be
treated as plusses to the chord-points, and a deflection
angle will be interpolated where a station occurs. 7%
Jind the deflection angle for a station succeeding any chord-
point : the differences given in Table II. are the deflec-
tions over one chord-length, or from one point to the
next. For any intermediate station the deflection will
be assumed proportional to the sub-chord, or distance
of the station-from the point. We therefore multiply
the tabular difference by the sub-chord, and divide by the
given chord-length, fer the deflection from that point to
the station.  This applied to the deflection for the point
will give the total deflection for the station.

This method of interpolation really fixes the station
on a circle passing through the two adjacent chord-
points and the place of the transit, but the consequent
error is too small to be noticeable in setting an ordinary
stake. Transit centres will be set only at chord-points,
as already explained.

3I. It is important that the spiral should join the
main tangent perfectly, in order that the full theoretic
advantage of the spiral may be realized. In view of
this fact, and on account of the slight inaccuracies
inseparable from field work as ordinarily performed, it
is usually preferable to establish carefully the two points
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of spiral S and §’ on the main tangents, and beginning
at each of these in succession, locate the spirals to the
points L and L'. The latter points are then connected
by means of the proper circular arc or arcs. Any slight
inaccuracy will thus be distributed in the body of the
curve, and the spirals will be in perfect condition.

. 32. A spiral may be located without deflection angles,
by simply laying off in succession the abscissas y and
ordinates x of Table III. corresponding to the given
chord-length ¢. The tangent EL at any point L, Fig. 4,
is then found by laying off on the main tangent the dis-
tance YE = «x cot s, and joining EL. In using this
method the chord-length should be measured along the
spiral as a check.

33. In making the final location of a railway line
through a smooth country the spirals may be introduced
at once by the methods explained in Chapter III. Eut
if the ground is difficult and the curves require close ad-
justment to the contour of the surface, it will be more
convenient to make the study of the location in circular
curves, and when these are likely to require no further
alterations, the spirals may be introduced at leisure by
the -methods explained in Chapter IV. The spirals
should be located before the work is staked out for con-
struction, so that the road-bed and masonry structures
may conform to the centre line of the track.

34. When the line has been first located by circular
curves and tangents, a description of these will ordi-
narily suffice for right of way purposes ; but if greater
precision is required the description may include the
spirals, as in the following example :

“Thence by a tangent N. 10° 15'E., 725 feet to station
1132 + 12; thence curving left by a spiral of 8 chords,
288 feet to station 1135; thence by a 4° 12’ curve (radius
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1364.5 feet), 666.7 feet to the station 1141 +66.7; thence
by a spiral of 8 chords 288 feet to station 1144 + 54.7
P.T. Total angle 40° left. Thence by a tangent N. 29°
45 W.,” &e.

35. When the track is laid, the outer rail should re-
ceive a relative elevation at the point L suitable to the
circular curve at the assumed maximum velocity. Usu-
ally the track should be level transversly at the point S,
but in case of very short spirals, which sometimes can-
not be avoided, it is well to begin the elevation of the
rail just one chord-length back of S on the tangent.

36. Inasmuch as the perfection of the line depends
on adjusting the inclination of the track proportionally
to the curvature, and in Aeeping it so, it is extremely im-
portant that the points S and L of each spiral should be
secured by permanent monuments in the centre of the
track, and by witness-posts at the side of the road. The
posts should be painted and lettered so that they may
serve as guides to the trackmen in their subsequent
efforts to grade and “line up " the track. The post op-
posite the point S may receive that initial, and the post
at L may be so marked and also should receive the
figures indicating the degree of curve.

37. The field notes may be kept in the usual manner
for curves, introducing the proper initials at the several
points as they occur. The chord-points of the spiral
may be designated as plusses from the last regular sta-
tion if preferred, as well as by the numbers 1, 2, 3, &c,
from the point S. Observe that the chord numbers
always begin at S, even though the spiral be run in the
opposite direction.



TABLE

ELEMENTS OF THE SPIRAL

Inclina-
Point | Degree | Spiral |tion of | Latitude of each | Sum of the lati-
of curve | angle | chord chord. tudes,
to axis
7. Ds. s of Y. | 160 x cos Incl. P2
o | 0°00 | 0° 00| 0% 00
1 10’ 101 051 99.99989423 99-99989423
2 20’ , 30 201 99.99830769 199.99820192
3 BOCLAL o o 45'|  99.99143275 | 299.989634607
4 40’ | 1° 40| I e 20'|  99.97292412 | 399.96255879
5 50" | 27301 2705 99.93390007 | 499 89645886
6 |1° | 37303 | 99.8029535 599.7594123
7 | 1”10 4° 40| 4 05 99.7461539 699.5055662
801 |1k 20! 6‘ 57 20 99.5670790 799.0726452
9 | 1730 [ 7°301 6”45 99.3008457 | 898.3794909
10 | 1°40 | ¢° 10} 8 207 98.944164 997-3236549
1L L1k ewS okl 1 1 10° 05| 98.455415 1095.779070
o g o I8, 12 97.814760 1193.593830
13 | 2° 10’ | 15° 10'14° 05'| g6.994284 1290.588114
14 | 2°20 | 17° 3016 20| gz.9b4184 1386.552298
15 2: 3o: 20" 18: 45: 94.693014 1481.245312
16 | 2° 4o’ | 22° 40'\21° 201 93.147975 1574.393287
17 2° 50 25 30’ 24" 05'| 9I.295292 1665.688579
f Sl 28° 30'|27 89.100650 1754.789229
b (oot BT S Uoli Ll § N (o 3o: 05| 86.529730 1841.318959
20 | 3°20 | 35° 33° 20'| 83.548780 1924.867739
X
Point Log 7= Deflection angle,
». logtani. i
I 7.16269604 °05 00." 00
2 7.5600380 0o° 12 30." "00
3 7.8317091 ° 23 20. oo
4 8.0377730 ° 37 29."99
5 8.2041217 ° 54' 59."97
6 8.3436473 ° 15" 49."90
7 8.4638309 ° 39 59."75
8 8.5694047 2° 07' 29."45
9 8.6635555 22 38’ 18. ”go
10 8.7485340 ° 12’ 27."95

&




OF CHORD-LENGTH, 100.

B,
Departure of |Sum of the depart-| Logarithm, |Logarithm, | Point
each chord. ures,
100 x sin Incl. " log y. log . n.
o
.1454441 1454441 | 1.9999995 | 9.1626960 I
.5817731 .7272172 2.3010261 | 9.8616641 2
1.3089593 2.0361765 2.4771063 | 0.3088154 3
2.3268960 4.3630725 2.6020194 | 0.6397924 4
3.6353009 7.9983734 | 2.6938800 |0.9030017| 5
5.233596 13.231969 2.7779771 | 1.1216244| 6
7.120730 20.352699 2.8447911 | 1.3086220{ 7
9.294991 29.647690 2.9025862 | I.4719909| 8
11.75374 41.40143 2.9534598 | 1.6170153| g
14.49319 55.89462 2.9988361 | 1.7473701| IO
17.50803 73.40265 3.0397231 | 1.8657117| II
20.79117 94.19382 3.0768567 ‘| 1.9740224| 12
24.33329 118.52711 3.1107877 | 2.0738177| 13
28.12251 146.64962 3.1419362 | 2.1662811| 14
32.14395 |, 178.79357 3.1706269 | 2.2523519| 15
36.37932 215.17289 3.1971131 | 2.3327375| 16
40.80649 255.97938 3.2215938 | 2.4082049| 17
45.39905 301.37843 3.2442250 | 2.4791121| 18
50.1259T 351.50434 3.2651291 | 2.5459307| I9
54.95090 406.45524 3.2844009 | 2.6090128| 20
x_ Deflection an-
Point Log v gle,
. log tan 7. i
11 8.8250886 3° 49’ 56."'39
12 8.8971657 | 4° 30'43."795
13 8.9630300 5° 14’ 50."'28
14 0.0213449 6° 02' 14."'93
15 9.0817250 | 6° 52’ 57.731
16 0.1356744 | 7°46'56."71
17 0.1866111 8° 44 12."26
18 9.2348871 9° 44’ 42."92
19 0.2808016 . |10° 48" 27."44
20 0.3246119  [11° 55’ 24."34

51



TABLE II.

DEFLECTION ANGLES, FOR LOCATING SPIRAL CURVES IN THE
- FIELD.

Rule for finding a Dcflection.,

Read under the /Zeading corresponding to the point at which the
instrument stands, and on the Zne of the number of the point
observed.

INSTRUMENT' AT S.
$ = 0.
No. of Point, |Deflection from Tangent, | Difference of Deflec-
7. Z. tion.
o 00’ '

8 05 05 "
2 e 304 07730
3 23 20 ;j fg
4 37 30 s
5 55 00 y
3 1 5o 20 50
7 i -5 8 24 10
8 2597 20 =720
9 2 38 19 92 eI
10 3 12 28 3409
11 3 49 56 oA
12 4 30 44 5
13 5 I3 50 O
14 6 02 15 7, 25
15 6 s2 57 59148
16 726 &7 DY
17 Siadact 12 27 15
18 9 44 43 i
19 10 48 27 66 44
20 T s 2y 57

52



TABLE II.—DEFLECTIOI‘; A\G:.E_S

INST. AT I. § = o%10". INST. AT 2. s = 0° 30/,
No. of Deflection from| _Diff. of || No, of |Deflection from| Diff. of
Point. aux. tan. Deflection. || Point. aux. tan. Deflection.

; e

TR e g Sl

2 10 Saraidet 2 00 b

3 22 30 12 30 3 15 15

4 i a 230 | A8

5 19 10 i %3 20 20 50

g ¥ gg go £230 6 ¥2 1730 4419

AT 711 4500 .| 273

$| 2 1500 29310 81 2 13 s0 | 3059

9| 2 4729 | 3229 9| 2 4950 | 3%

10 3 23 18 35 49 10 3. 27129 37 30
11 4 02 27 32 gg 11 4 o8 18 3‘4) gg
12 12 2 26
e @ | s t#] 5 395 1138
L 6 19 47 49 05 14 6 30 40 50 46
1] Po 30 vl So et 151 7 24 44 | 34 03
16 | 8 o7 51 gg ‘;g 16 8 22 06 (5’(7) ;;
RS e RS & SR - SIS
11 14 28 bs. 73 11 -9 67. 3%
- 19 1 68 40 19 33 49 70 23
20| 12 23 08 20 | 12 44 12

INST. AT 3. s =a2ob’ INST. AT 4. s = 1°40".
No. of |Deflection from| _Diff. of No. of Deflection from| Diff. of
Point. aux. tan. Deﬂe;clion. Point aux. tan. Deflection.

’ ’’ o ’ ’r

Gl e oot 8T RNl
3 17 3 ¥2 30 2 1 40 14 I0
pt T 20 1 e 20
5 43 30 | 223 5 25 i
6 1° 08 20 25 50 6 52 30 2738
CRI T 7| 1 2320 | 3050
8] 2 1000 | 3230 8| 1 5730 | 310
ol z 45 50 - 35 50 0| 2 35 00 37 30
1o} 3 a4sg . 399 g0 4 3550 4030
1| 3 o728 | 4229 117 3 59 99 o 429
12 § s3dp.| B 1270 4 4728 | 4729
1 5 42:28 49-%¥ 13 5 .38 16 50 48
13 6 34 52 i 14 6 gz 24 5408
151 7 3037 || $545 15| 7 2950 | 3726
16 | 8 29 40 59 03 16 8 30 34 fo.44
17| 9. 3201 | 822 17] 9 3436 | 2%
8| 10 37 37 65 36 18 | 10 41 ?’5 G- 14
1 I 46 2 08 52 1 11 52 2 70 34
"g 12 58 3 73. 06 . 6 é) 73 49
2 58 35 20| 13 06 1

53




TABLE I1.—DEFLECTION ANGLES.

INST. AT 5. s =2°30". INST. AT 6. s = 3°30".

No. of |Deflection from! Diff. of No. of |Deflection from  Diff. of
Point. aux. tan. cflection. || Point. aux. tan. - Deflection.
) ’ . 3 o ’ ’

2 1 06 40 I5.50 2 1 42 30 750
3 a78b | (X0 M ] wmge | 2950
> 2230 : % 24 10
Aot | BE ks T R
g 30 30 6 go 30
7 iz a0 | %30 7 35 35
8 I 38 20 35350 8 1 ‘#2930 37 30,
9.of |2 @yee § INTO 9 | 18320 | 4%5°
10 3 00 00 %530 To .3 < (2 37150 FoEo; |
1I 3 45 50 45 50 11 3 25 00 47 30
12 131 59 49 09 12 115 49 50 49
13 5 27 28 52 29 13 5 09 58 54509,
14 6 23 15 53 47 14 6 o7 27 37 29
1 22 2 59 08 1'5 o8 1 60. 48
Ig g 24 4% gg ig 16 575 12 2? 2‘; Z?
Bl [0 || 2R8 | o
19 IT 51 48 Y219 19 I1 44 27 73 59
20 13 07 20 75 32 20 13 OI 41 et
INST. AT 7. s = 4°40'. ’ INST. AT 8, s = 6°co’.
No. of |Deflection from| Diff. of || No. of |Deflection from| Diff. of
Point. aux. tan. Deflection. || Point. aux. tan. Deflection.
o 3° 00’ 00"’ P o 3™t 7 o |
Pl Sl | Bl 9 5SS |
2 22500 22 30 2 3 14 10 24 7o
3 2 o(.’; 30 25 20 3 2 50 00 27 30
4 1 36 40 20 10 4 2 22 30 30. 50
E T | S | g 1B LT
: & 35 2 o & 37 30
8 40 0 8 00 39
9 | 12230 | 4239 9 45 45
10 2 08 20 4550 10 1 13230 47 30
It 2 57 30 ‘;g ;g 11 2 23 20 23 ?g
12 3 50 00 12 3 I7 30 ‘
55 49 1 e e 57 30
g Mt | 2% I B ted | o
6 26 62,38 13 6 19 58 54: 09
;(5) o I G5 48 16 7 23 26 67,28
17 Z) 45)3 1; 6905 17 8 38 13 ' 1%:47
18 10 14 43 a2 2“1‘ 18 9 52 18 ;; gg
19 II 30 24 ;g g7 19 11 09 40 84 40
20 12 49 21 20 12 30 20

54




TABLE IL—DEFLEC'rxon ANGLES.

INST., AT 9. &= 7°30. INST. AT 0. s =¢° 10",
No. of |Deflection from| Diff. of No. of Deflection from | Diff. of
Point. aux. tan., Deflection. || Point. aux. tan. Deflection.
[ 4° 51" 41” 19’ 10” <I) 5¢ 5% 322 20’ 50"
5 4 32 gi 22 30 3 5 :;’2 41 24 II
402 25 51 3 a-vua) Shpe
3 3 44 og 29 10 3 i 411 e 30 51
i g IZ (o} 32 3o ; 3 43 0o 4730
(SJ 2 36 3o 35 50 6 3 02z 30 | 3739
1% 4o 39 10 7 2 21 40 40.99
g 73 4230 || g | 1 .g5 30 | 4410
] 45 o -~ 47 30
A 50 50 10 co 50
12 2 38 20 59 10 iz ; 52 gg o go
7 Sas 65 49 | g 5 0500 | 9730
<2 23549 | 6908 36} Gms ap | 1049
; soya | 228 |l ;7| 7apg | 1408
1% 9 2; 1? ;5 g? 18 8 47 23 gg .2;(7>
19 10 42 ;6 82 S5 19 10 08 10 84 o4
20 12 04 38 20 II 32 14
INST. AT 1I. s = 11°00". INST. AT 12. s = 13° 00/,
No. of Deflection from| ' Diff. of No. of |Deflection from| Diff. of
' Point. aux. tan. Deflection. ‘| Point aux. tan. Deflection.
o 7° 10" 04" 52075 o 8° 29’ 16” 1
2,31 24’ 11
F fema gt |4 tEE ol
4 42 29 I0 7 2(7) 34 30 51
Pt el Pl b Gouee ok HI
41 10 35 51 5 5 55 OI 37 31
g 2 o.f oo | 3910 6 5 74 17 o
Pt ;’2; 30 42 B0 7 4 30 00 B o
A i e P 8 3 230 7 4730
o | T | B | o] 25 | 0
10 55 52 30 10 I 57 30 54 19
II oo 20 II I 00 0O (5)3 30
B fam PR N B e B
3 65 50 | 67 30
By iU sk utER of
| Szo8g | 232 | B4 13950, B
17 | 6asa8 | 549 U 30 s 5459 | 2729
18 8 o1 57 79 99 l 18 7 15 48 80 29
45 82.2% il 8 6 84 08
19 9 27 24 85 45 | I9 39 5 87 27
20 10 53 09 il 20 10 07 23
' 55

N\




TABLE I1I.—DEFLECTION ANGLES.

INST. AT 13. s=15°10". INST. AT 14. s=17° 30,

No. of 'Deflection from!| Diff. of No. of |Deflection from| Diff. of

Point. aux, tan. Deflection. || Point.  aux. tan. !Deﬂection.
o 9° 55 10" 1ot [ 11° 27 45" -
I 9 29 18 :5 if I IT 00 I3 2732
2 9 00 06 32 3; 2 10 29 20 30 ;g
3 8 2735 | 303 3 9 35 08 2“7* 4
4 7 51 44 30 12 4 9 17 36 20 51 |
5 7 12 32 32 30 5 3 36 45 44 12
6 6 30 02 45 51 6 7 52 33 47 31
7 5 44 1I 49 11 7 7,06 025 05 o
8 4 55 00 e 8 2 OIS -
9 4 02 30 5 30 9 5 20 00 54
10 3 06 40 55 io 10 .4 22 30 27 30
11 2 07 30 gg 33 I 3 20 40 » 60 ig
12 1 05 00 65 12 2 17 30 6‘; =
13 00 70 13 1 10 00 70 3
14 1 Io 00 72 30 14 00 75
15 2 22 30 15 I 15 00
16 3 38 20 ;5 ?g 16 2 32 30 gg 38
17 4873 | §3. 17 33320 | o030
18 6 19 59 85 49 18 5 17 30 87 29
19 7 45 48 83 08 19 6 44 59 o
20 9 14 56 9 20 8 1548 | 9°49

INST. AT I5. s = 20° co’. 1 INST. AT 16. &= 22° 40'.

No. of 'Deflection from| Diff. of | No. cf |Deflection from| Diff. of

Point. aux. tan. Deflection. || Point. aux. tan. Deflection.
o 13° 07’ 03" g o 14° 53" 03" 2 5 ik
1 12 37 49 22 4 1 14 22 o9 30 -;’4
2 12 05 16 32 33 2 13 47 54 | 34 15
3 IT 29 23 35 5’3 3 13 10 20 3(7) 34
4 10 50 10 3(23 :3,’ 4 12 29 26 44 ?2
s | morary T3 5 | 114512 | 4308
6 9 2I 45 49 11 6 10 57 39 50 33
7 | 8323 =52 7 | 00036 | 2923
8 7 40 02 531 8 9 12 34 4 5
9 6 44 11 55 go 9 8 15 03 gZ) 32
10 5 45 OI gg i 10 6 14 11 64 ?o
I 4 42 30 65 go 11 6 10 O1 67 31
12 3 36 40 69 10 12 5 02 30 70 50
I3 2 37 30 72 30 13 3 51 40 74 10
14 I 15 00. 75 14 ° 2 37 30 77 30
15 00 80 15 I 20 00 30
16 I 20 00 82 30 16 00 85
17 2 42 30 85 20 17 I 25 00 87 30
18 4 08 20 89 io 18 2 52 30 90 50
19 5 37 30 92 29 19 4 23 20 04 10
20 7 09 59 20 5 57 30

56



TABLE II.—DEFLECTION ANGLES.

INST. AT 17,

S =25%30%

IxsT. AT 18, 5 = 28° 30.

No. of | Deflection from| Difl. of || No. of |Deflection trom| _Diff. of
Point. aux. tan. Deflection. {| Point. aux. tan. Deflection.
n ’ ’ Q ’ of

Ptk | Eu | Tl | W
AFEE AR TS S FRRT
P 1} 15 24 42 35 4 16 08 o5 44 19
5 13 29 29 45 55 5 15 20 23 47 37
6 12 40 14 49825 6 14 29 32 5050
¥yl 11 VE Mttt =1 “13,38 17 | 388
8 10 5T 47 55 54 8 12 37 42 57 35
52 35 59 12 S 6o 53
xg g 50 03: gei Ig 10 gz ‘3'2 G430
I ‘7 a4 12 65 51 11 9 25 03 67.33
12 6 35 or (7)2 ;; 12 8 14 12 ;i ii
13 5 22 30 13 7 00 oI
: 75 50 77 31
ST e [po R SRR e
16 I 25 00 i 16 2 57 30 84 10
17 00 85 17 I go go 87 3o.
18 1. 30 0O 3(2) 30 18 200 8(5)
19 3 02 30 19 1 35 00
20 4 38 20 95 50 20 $=F8 .30 97 30
INST. AT X9, s = 31° 40/, INST. AT 20. s = 35° 00'.
No. of [Deflection from I%iff . of No. of [Deflection from| Diff. of
Point. |  aux. tan. Deflection. || Point. aux. tan. Deflection.
o ’ " o ’ r
b Dr el Dot TR T
2 19. 35°X1 3n-2k 2 21 45 48 41594
3 18 53 31 4240 3 21 OI 25 44 23
4 18 07 31 4578 4 20 13 42 47 43
5 17 f18-12 4929 5 19 22 40 Sks
6 16 25 33 g: gg 6 18 28 19 2‘7‘ j;
PlnRe e [ TN% | e
5170 3y | s i o
10 12 2I 50 65 54 Ig 14 17 46 67 37
It 11 12 36 o 11 13 06 5I 79 55
12 10 00 04 ;5 g: 12 11 52 37 ;; ;‘;
=
B2 H mang B Bt g
ts g og o 82 31 I; ? Sé e 84 11
16 4 36 Zo 85. 50 16 6 22 30 87 31
17 3 27 353k 99 10 17 51 30 9050
18 1 35 92 30 18 . g 17 go CLE
19 00 Igg 19 1 40 1g<7) 30
20 I 40 20 00

3*




TABLE IIL

' DEGREE OF CURVE AND VALUES OF THE - COORDINATES X AND
J5 FOR EACH CHORD-POINT OF THE SPIRAL FOR VARIOUS
LENGTHS OF THE CHORD.

¢. CIHORD-LENGTH = 10.

n. | nc Ds. By X, Log .
I 10 1° 40' 00" 10,000 0.0145 8.162696
2 20 3 20 02 20,000 .0727 8.861604
3 30 5 00 06 20.999 .20360 9.3088r5
4 | 40 6 4013 39.996 4363 | 9.639792
5 50 8 20 26 49.990 .7998 0.903002
6 60 10 00 45 50.976 1.323 0.121624
i 70 II 41 12 69.951 2.035 0.308622
8 8o 13 21 48 79.907 2.905 0.471991
9 90 15 02 34 89.835 4.140 0.617015
10 | 100 16 43 3I 99.732 5.589 0.747370
11 110|. 18 24 42 109 578 7.340 0.805712
12 | 120| 20 06 07 119.359 9.419 0.974022
13 | 130|. 2I 47 48 129.059 11.853 1.072818
I4. | '140| 23 29 46 138.655 14.665 1.166281
15 | 150 25 12 02 148.125 17.879 1.252352
16 | 160 26 54 39 157.439 21.517 1.332788
17 - a0 28 37 38 166.569 25.598 1,408205
18 | 180| 30 21 oI 175.479 30.138 1.479112
19 | 190 32 04 48 184.132 35.150 1.545931
20 | 200 33 49 02 192.487 40.645 1.609013
35 33 46

58



TABLE III.

¢. CHORD-LENGTH = 11.

n. | ne. Ds. A A4 Log a.
I 11 1%,905557 11.CO0 0.0160 8.204089
2 22 3 OI 50 22,000 .0800 8.903057
3| 33| 4 3248 32.999 .2240 9350208
4| 44| 6 0348 43.990 -4799 9 681185
50 55| 7 34 52 54.989 8798 9-944394
6| 006 9 05 o1 65.974 1.450 0.163017
7| 77 | 10 37 16 76.946 2.239 0.350015
8 88 | 12 08 37 87.898 - 3.201 0.513384
91 99 | 13 40 06 98.822 4.554 0.658408
10 | 110 | I5 II 44 109.706 6.148 0.788763
Ir | 121 | 16 43 31 120.536 8.074 0.g07104
12 132 | 18 I5.29 131.295 10.361 1.0154I5
13 | 143 | 10 ‘47 39 141.965 13.038 1.115210
14 | 154 | 2F 20C OI 152.521 16.131 1.207674
15 | 165 | 22 52 38 162.937 19.667 1.293745
16 | 176 | 24 25 29 173.183 23.669 1.374180
VLB <[, 2505836 183.226 28.158 1.449598
18 | 198 | 27 32 oI 193.027 33.152 1.5205C5
19 | 209 | 29 05 45 202.545 38.665 1.587323
20 | 220 | 30 29 48 211.735 44.710 1.650405

320 FT ;

¢. CHORD-LENGTH = 12.

” ne Ds. 7. X Log x.
1 12 1° 23’ 20" 12.C00 0.0175 8.241877
2 24 2 46 41 24.000 .0873 8.940845
3| 36| 4 10 03 35.959 -2443 9-387997
4| 48 | 5 33 28 47996 .5236 | 0.718974
5 60 6 56 55 59.988 .9508 9.982183
6 72 8 20 26 71.971 1.588 0.2c0806
7 84 9 44 oI 83.941 2.442 0.387803
8 96 | IT 07 42 95.889 3.558 0.55I172
9 | 108 | 12 31 28 107.806 4.668 0.6¢g6196
10 | 120 | I3 55 2T 119.679 6.707 0.826551
11 | 132 | I5 Ig9 22 131.493 8.808 0.944893
12 | 144 | 16 43 31 143.231 11.303 1.053204
13 | 156 | 18 07 48 154.871 14.223 1.152999
14 | 168 | 19 32 15 166.386 17.508 1.245462
15 | 180 | 20 56 53 177.749 21.455 1.331533
16| 192.| 22 21 43 188.927 25.821 1.411969
17 | 204 | 23 46 44 199.883 30.718 1.487386
18 | 216 | 25 II &9 210.575 36.165 1.558293
19 | 228 | 26 37 28 220.958 42.181 1.625113
20 | 240 | 28 03 12 230.984 48.774 1.688194

29 29 I2 3
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TABLE IIL

<.

CHORD-LENGTH = 13.

n. | nc Ds. . C 2 Log x

1 13 1°%16'%5%" 13.C00 0.0189 8.276639
2 26 2 33 52 26.000 .0945 8.975607
3| 39| 3 5049 38.999 .2647 9 422759
4| 52 | 5 0748 51.995 -5072 9.753736
5 65 6 24 49 64.987 1.040 0.016945
6 78 7 41 53 77.969 1.720 0.235508
7 91 8 59 00 90.936 2.646 0.422565%
8] 104 | 10 16 12 103.879 3.854 0.585034
9 | 117 | 11 33 28 116.789 5.382 0.730059
10 | 130 | 12 50 49 129.652 . 7.266 0.861313
11 | 143 | 14 08 106 142.451 9.542 0.976655
12 | 186 | 15 25 50 155.167 12,245 1.087966
13 | 169 | 16 43 30 167.776 15.4C9 1.187761
14 | 182 | 18 o1 18 180.252 19.064 1.280224
15 | 195 | 10 19 I4 192.562 23.243 1.366295
16 | 208 | 20 37 20 204.671 27.972 1.446731
17 | 221 | 21 55 74 216.540 -33.277 1.522148
18 1234 | 23 14 00 228.123 39.179 1.593055
19 | 247 | 24 32 35 239.371 45.096 1.659874
20 | 260 | 25 51 23 250.233 52.839 1.7229506,

] 27 10 23
¢. CHORD-LENGTII = 14.

‘7. ne. Ds 9. ¥ Log x.

1| 14 123526 14.000 0.0204 8.308824
2 28 2 22 52 - 28.coo .1018 9.C07792
3 2| 33119 41.999 .2851 9454943
4 56 | 4 45 43 55.995 .6108 9.785920
5 70 5 57 18 69.986 1.120 0.049130
6| 8 |. 7 08 51 83.966 1.852 0.267752
7 98 8 20 26 97.931 2.849 0.454750
8 | 112 9 32 o4 111.870 4.151 0.618119
9| 126 | 10 43 47 125.773 5.796 0.763143
10 | 140 | IT 55 33 130.625 7.825 0.893498
1I | 154 | 13 07 24 153.409 10.276 1.011840
12 | 168 | 14 19 20 167.103 13.187 1.120150
13 | 182 | 15 31 22 180.682 10.594 1.219946
14 | 196 | 16 43 29 194.117 20.531 1.312409
15 | 210 ’| 17 55 44 207.374 25.031 1.398480
16 | 224 | 19 c6 o5 220.415 30.124 1.478915
17 | 235 | 20 20 34 233.196 35.837 1.554333
I8 2R2 g b Sy I 245.670 42.193 1.625240
19 | 266 | 22 45 56 257.785 49.211 1.692059
20 | 280 | 23 58 51 260.481 56.903 1.755141

25 II 55

60




TABLE IIL

=
¢. CHORD-LENGTH = 15.
n. | ne. Ds. . &S Log x.
y 851 B 4 1° 06" 40" 15.000 0.0218 8.338787
2 30 2 I3 20 30.000 .1091 9.037755
3. 45| 3 20 02 44.998 -3034 9484907
4| 60 | 4 26 44 59.994 .6545 9.815884
) B ) 5 33 28 74984 1.200 0.079093
6 90 6 40 13 89.964 1.985 0.297716
7 | 103 7 47 o1 104.926 3.053 0484713
8| 120 8 53 5I 119.861 - 4.447 0.648082
9| I35 | 10 00 45 134.757 6.210 0.793107
10 | 150 | II 07 41 149.599 8.384 0 923461
11°] 165 12 Tgi4% 164.367 11.0I0 1.041803
12 | 180 | 13 2T 47 179.039 14.129 I.150I14
13 | 195 | 14 28 56 193.588 17.779 1.249999
14 | 210 | 15 36 09 207.983 21.997 1.342372
15 | 225 | 16 43 28 222,187 26.819 1.428443
16 | 240 | 17 50 54 236.159 32.276 1.508879
17 | 255 | 18 58 25 249.853 38.397 1.584296
18 | 270 | 20 06 o2 263 218 45.207 1.655203
YO |- 285 | 2137 276.198 52.726 1.722022
20 | 300 | 22 21 39 288.730 60.963 1.785104
23 29 48
¢.. CHORD-LENGTH = 16.
n. | nc Ds. > . 7 Log .
I 16 1° o2' 30" 16 000 0.0233 8.366816
2 32 2 05 00 32.000 L1164 9.065784
3| 48 3 07 31 47.998 -3258 9-512935
4| 04 4 10 03 63.994 .6981 9.843912
5 80 5 12 36 79.983 1.230 0.107122
6 96 6 15 II 95.961 2.117 0.325744
7 | 112 7 17 47 111.921 3.256 0.512742
8 | 128 8 20 26 127.852 An . 0.676111
9 | 144 9 23 o7 143.741 6.624 0 821135
10 | 160 | 10 25 5T 159.572 8.943 0.951490
11 | 176 | 11 28 37 175.325 11.744 1.069832
rer 192 | 12 3528 190.975 15.071 1.178142
13 | 208 | 13 34 21 206.494 18.064 1.277938
14 | 224 | 14 37 20 221.848 23.464 1.370401
15 | 24C | 15 40 2I 236.999 28.607 1.456472
16 | 256 | 16 43 28 251.903 34.428 1.536997
17 | 272 | 17 46 40 266.510 40.957 1.612325
18 | 238 | 18 49 57 280,766 48.221 1.083232
19 | 304 | 19 53 20 294.611 56,241 1.750051
20 | 320 | 20 56 49 307.979 65.032 1.813133
22 00 23

01




TABLE III

c.

CHORD-LENGTH = 17.

AR A Ds. i x* Log .
L b e o T 17.000 0.0247 8.393145
2| 34| 1 5738 34.000 .1236 0.092113
3| 51| 2 5627 50.998 -3461 9.539264
4| 68 3 5519 67.994 -7417 9.870241
5 85 4 54 12 84.982 1.569 0.133451
6 | 102 5 53 06 101.959 2.249 0.352073
7 t 119 6 52 00 118.916 3.460 0.539071
8 | 136 7 50 57 135.842 5.040 0.702440
9| 153 | 8 49 55 152.725 7.038 0.847464
10 | 170 9 48 56 169.545 9.502 0.977819
i1 | 187 |10 48 oo 186.282 12.478 1.096161
12 | 204 | II 47 07 202.9IT 16.013 1.204471
13 | 221 | 12 46 1§ 219.400 20.150 1.304267
14 | 238 | 13 45 27 235.714 24.930 1.396730
15 | 255 | 14 44 44 251.812 30.395 1.482801
16 | 272 | 15 44 03 267.647 36.579 1.563236
17 | 289 | 16 43 27 283.107 43.516 1.638654
18 | 306 | 17 42 56 208.314 51.234 1.709561
19 | 323 | 18 42 29 313.024 59.756 1.776380
20 | 340 | I9 42 07 327.228 69.097 1.839462
20 41 49
¢. CHORD-LENGTI = 18.
n. | ne Ds. ¥ £ Log x.
1 18 0% 58483 18.000 0.0262 8.417968
2 36 I 5I 07 36.000 .1309 9.116937
3| 54 | 2 46 40 53.998 -+36065 9.564088
4| 72 | 3 42 16 71.993 ".7853 9.895065
5 90 .54 3751 89.981 1.440 0.158274
6 | 108 5 33 28 107.957 2.382 0.376897
7 | 126 6 29 o5 125.911 3.663 0.563894
8 | 144 | 7 24 45 143.833 5.337 0.727263
9 | 162 8 20 26 161.708 7.452 0.872288
10 | 180 9 16 08 179.518 10.061 1.002643
11 | 198 | 10 II 54 197.240 i3.212 1.120984
12 | 216 | IT O7 41 "214.847 16.955 1.229295
1371 2844 330" 63~ 31 232.3c6 21.335 1.3290Q0
14 | 252 | 12 59 24 249.579 26.397 1.421554
15 | 270 . 1355 20 266.624 32.183 1.507624
16 | 288 | 1y 51 18 283.391 38.731 1.588060
17 | 306 | I5 47 20 299.824 46.076 1.663477
18 | 324 | 16 43 27 315.862 54.248 1.734385
19 | 342 | 17 39 37 331.437 63.271 1.801203
20 | 360 | 18 35 51 346.476 73.161 1.864285
19 32 o8
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TABLE IIL

¢. CHORD-LENGTH = 19.

7 | Ds. ! - =5 Log x.
I 19 o° 52’ 38" 19.000 0.0276 8.441450
2 38 1 45 16 38.000 1382 9.140418
3k 87| 23754 56.998 -3869 | 9.587569
4 76 | 3 30 34 75-993 .8290 9-918546
5 95 4 23 13 94.980 1.520 0.181755
6114 | 5 15 54 113.954 2.514 0.400378
<1133 6 08 36 132.906 3.867 0.587376
8 | 152 7 oI I9 151.824 - 5.633 0.750744
9 | 171 7 54 03 170.692 7.866 0.895769
10 | 190 8 46 49 189.491 10.620 1.026124
11 | 209 9 39 36 208.198 13.947 1.144.465
12 | 228 | 10 32° 26 226.783 17.897 1.252776
13 | 247 | I1 25 18 245.212 22.520 1.352571
14 | 266 | 12 18 12 263.445 27.863 1.445035
15 | 285 | 13 II O9 281.437 33.971 1.531105
16 | 304 | 14 04 09 299.135 40.883 1.611541 "
17 | 323 | 14 57 II 316.481 48.636 1.686958
18 | 342 | 15 50 16 333.410 57.262 1.757866
19 | 361 | 16 43 25 349.851 €6.786 1.824684
20 | 380 | 17 36 38 365.725 77.226 1.887766
18 29 54
¢. CHORD-LENGTH = 2o.
n.| nec. Ly 7. ok Log x.
1| 20 | 0°50 00" 20.000 0.0291 8.463726
2 40 1 40 00 40.000 1454 9.162694
3 60 2 30 OI 59.998 .4072 9.609845
4| 8o 3 20 02 79.993 .8726 9.940822
5 | 100-| 4 10 03 99.979 1.600 0.204032
6 120 5 00 05 119.952 2.646 0.422654
7 | 140 5 50 08 139.90I 4.071 0.60g652
[ 8 | 160 6 40 13 159.815 5.930 0.773021
9 | 180 7 30 18 179.676 8.280 0.918045
10 | 200 8 20 26 199.465% I1.179 1.048400
1I | 220 9 I0 34 219.156 14.681 1.166742
12 | 240 | 10 00 44 238.719 18.839 1.275052
13 | 260 | 10 50 356 258.118 23.705 1.374848
14 | 280 | 1T 41 IO 277.310 29.330 1.467311
15 | 300 | 12 31 26 296.249 35.759 1.553382
16 | 320 | 13 2I 45 314.879 43.035 1.633817
17 | 340 | 14 12 C6 333.138 51.196 1.7€9235
18 | 360 | 15 02 29 350.958 60.276 1.780142
19 | 380 | 15 52 &5 368.264 70. 301 1.846961
20 | 400 | 16 43 25 384.974 81.290 1.910043
17 33 58
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TABLE IIIL

C.

CHORD-LENGTH = 21.

n. | ne. Ds. 9L o, Log. .
bs 21 o’ 47 37" 21.000 0.0305 8.484915
2 42 1.35.14 42.000 .1527 9.183883
3 63 2 22 52 62.998 .4276 9.631035
4| 81 3 10 30 83.992 .G162 9.962012
5 | 105 3 58 o8 104.978 1.680 0.225221
61126 | 4 45 47. 125.949 2.779 0.443844
71 147:| 5 33 27 146.896 4.274 0.630841
8 | 168 6 21 08 167.805 6.226 0.794210
9 | 189 7 o8 50 188.660 8.694 0.939235
10 | 210 7 5% 33 209.438 11.738 1.069589
L1231 8 44 18 230.114 15.415 1.187931
12 | 252 9 32 03 250.655 19.781 1.206242
13 | 273 | 10 19 5I 271.023 24.891 1.396037
I |v204: 7| IT 0540 291.176 30.766 1.488500
15 | 315 | IT 55 31 311.062 | . 37.547 1.574571
16 | 336 | 12 43.24 330.623 45.186 1.65500%7
17 1 357 | 13 3I 20 349-795 53.756 1.730424
18 | 398 | 14 19 17 368. 506 63.289 1.801331
19 | 399 | 15 07 I7 386.077 73.816 1.868150
15 55 I9
¢. CHORD-LENGTH = 22.
n. | nec. Ds. V. 2 Log. x.
T 82 45’ 27" 22.000 0.0320 8.505119
24 44 1° 30 53 44.000 .1600 9 204087
3| 66 2 16 22 65.998 .4480 9.651238
4 88 3 oI 30 87.992 .9509 9.982215
5 | IIO 34713 109.977 1.760 0.245424
6 | 132 4 32 48 131.947 2.911 0.464047
Fariss 5 18 18 153.891 4.478 0.651045
8 [.176 6 03 48 175.796 0.522 0.814414
9198 | 6 49 19 197.643 9.108 0.959438
10 | 220 7 34 51 219.411 12.297 1.089793
11} 292 8 20 2 241.071 | 16.149 1.208134
12 | 264 g9 06 oo 262.591 20.723 1.316445
13 | 286 9 5I 36 283.929 26.076 1.416240
14 | 308 | 10 37 13 305.042 32.263 1.508704
15 | 330 | II 22 53 325.874 39.335 1.504775
16 | 352 | 12 08 34 346.367 47.338 1.675210
17 | 374 | 12 54 16 366.451 56.315 1.750623
18 | 396 | 13 40 o1 386.054 66.303 1.821535
14 25 49

Gy




TABLE IIIL

%
¢. CHORD-LENGTH = 23.

n. | nc. Ds. . W Log. x.
I =23 0” 43’ 29" 23.000 0.0335 8.524424
2 46 | "1 26 58 46.000 .1673 9.223392
3| 69 2 1o 26 68.998 .4683 9.670543
7 92 2 53 56 91.99X 1.004 0.001520
ST AIS 3 37526 114.976 .1.840 0.264729
6 | 138 4 20 56 137.945 3.043 0.483352
7 | 161 5 04 20 160.886 4.681 0.670350
8 | 184 5 47 58 < 18RI 787 6.819 0.833719
9 | 207 6 31 30 200.627 9.522 0.978743

10 | 230 7 15 04 220.384 12.856 1.1090g8

11 | 253 7 58 38 252.029 16.883 1.227439

12 | 276 VAR 13 274 527 21.605 1.335750

13 1299 | 9 25 49 296.835 27.261 1.435545

14 | 322 | 10 o9 27 318.go07 33.729 1.528009

15 | 345 | 10 53 06 340.686 41.123 1.614080

16 | 368 |- 11 36 47 362.110 49.490 1.6094515

17 | 391 | 12 20 29 383.108 58.875 1.769933

13 0413
¢. CHQRD-LENGTH = 24.

n. | nc. Ds. 5 X. Log. x..
1| 24 41’ 40" 24.000 0.0349 8.542907
2 48 1° 23 20 48.000 L1745 9.241875
3 72 2 05 00 71.998 .4887 9.689027
4 96 2 46 41 05.991 1.047 0.020004

© g 120 328822 119.975 1.920 0.283213
6:1 143 4 10 03 143.942 3.176 0.501836
7 | 168 4 51 45 167.881 4.885 0.688833
8 | 192 5 33 28 191.777 L 0.852202
9 | 216 6 15 10 215.611 9.936 0.997226

10 | 240 6 56 54 230.358 13.415 1.127581
11.| 264 7 38 39 262.987 17.617 1.245923

12 | 288 8 20 25 286.463 22.607 1.354234

13 | 312 9 02 12 309.741 28.44 -1.454029

14 | 336 | 9 44 00 332.773 35.190 ° 1.546492

15 | 360 | 10 25 48 355.499 42.910 1.632563

16 | 384 | 1T 07 30 377.854 51.641 1.712099

17 | 408 | I1 49 31 399.765 61.435 1.788416

§2°-31°25 ;
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TABLE 1II

c.

CHORD-LENGTH = z5.

B2TIENTPE Ds. 9. s Log. x.
b 23 0° 40' 00" 25.000 0.0364 8.560636
2 50 I 20 co 50.000 L1818 9.259604
3| 75 | 2 oo oo 74-997 -5090 9.706755
4 | 100 2 40 o1 99.991 1.09I 0.037732
5 | 125 3 20 02 124.974 2.000 0.300942
6 | 150 4 00 03 149.940 3.308 0.519504
7| 175 4 40 04 174.876 . 5.088 0.706562
8 ! 2c0 5 20 05 199.768 7.412 0.866931
9 | 225 6 0o og 224.595 10.350 1.014955 °
10 | 250 6 40 13 249.331 13.974 1.145310
11 | 275 7 20 17 273.945 18.351 1.263652
12 | 300 8 oo 22 298.398 23.548 1.371962
13 | 325 8 40 28 322.647 29.632 1.471758
14 | 350 9 20 35 346.638 36.662 1.504221
15 | 375 | 10 00 43 370.311 44.698 1.650292
16 | 400 | 10 40 52 393.598 53.793 1.730727
II 2I 03
¢. CHORD-LENGTH = 26,
n. | nc. Ds. - 5L Log. x.
20 0° 38" 28" 26.000 0.0378 8.577669
2 52 I 16 56 52,000 L1891 9.276637
3| 78 | 15524 77.997 +5294 9.723789
4 | 104 2 33 52 103.990 1.134 0.054766
5 | 130 3 12 20 129.973 2.080 0.317975
6| 156 | 3 50 48 155.937 3.440 0.536598
7. | $182 4 29 18 181.871 5.292 0.723505
8 | 208 5 07 48 207.759 |. 7.708 0.886964
9234 | 5 46 18 233.579 10.764 1.031989
10 | 260 6 24 48 250.304 14.533 1.162343
11 | 286 7 @03 20 284.903 19.085 1.2800685
T2 312 7 41 52 310.334 24.490 1.388996
13 | 338 8 20 25 335.553 30.817 1.488791
14 | 364 8 58 59 360.504 38.129 1.581254
15 | 390 | 9 37 33 385.124 46.486 1.667325
10 16 0q -
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TABLE III.

¢. CHORD-LENGTH = 27,

n. | e Ds. b1 p A Log. x.
1 27 oJgrs e o Dot 27.000 0.0393 8.594060
- 51 L, 14.'04 51.000 L1963 9.293028
SRl il L 51O 80.997 -5498 9.740179
4 | 108 2. 2810 107.990 1.178 0.071156
5 | 135 3 05 I2 134.972 2.160 0.334365
6 | 162 3 42 I5 161.935 3.573 0.552088
7 1 189 4 19 19 - 188.866 5.495 0.739986
8 | 210 4 56 23 215.750 8.003 0.903355
9 | 243 5 33 28 242.562 11.178 1.048379
10 | 270 6 10 32 269.277 15.092 1.178734
11 | 297 6 47 38 295.860 19.819 1.297075
12 | 324 7 23 44 322.270 25.432 1.405386
13 | 351 8 or 51 348.459 32.002 1.505181
14 [ 378 | 8 38 59 374.369 39.595 1.597045
I5 | 405 | 9 16 07 399.936 | 45.274 1.683716
9 53 16
¢. CHORD-LENGTH = 28.
n | ne. D 7. i Log. x.
1 28 0° 35’ 42" 28.000 0.0407 8.609854
2 56 I, 11226 55.999 .2036 9.308822
3| 84 | 1 47 08 83.997 .5701 9.755973
4 | 112 23 2262 111.990 1.222 0.056950
5 | 140 2 58 36 139.971 2.240 0,350160
6 | 168 3 34 19 167.933 3.705 0.568782
7 | 196 4 10 03 195.862 5.6099 0.755780
8 | 224 4 45 48 223,740 8.301 0.919149
9 | 252 5 21 32 251.546 11.502 1.064173
10 | 280 5 57 17 279.251 15.650 1.194528
11 | 308 6 33 03 300.818 20.553 1.312870
12 | 336 7 08 50 . 334.206 26.374 1.421180
13 | 364 | 7 44 36 361.365 33.188 1.520976
14 | 392 SHi20.1 2% 388,235 41.062 1.613439
8 56 13

67




TABLE III

¢. CHORD-LENGTH = 29.

n. | #nc. Ds. 5. ey Log. x.
1 29 0° 34" 29" 20.000 0.0422 8.625094
2 58 1 08 58 57-999 .2109 9.324062
3| 87 | I 43 27 86.997 -5905 9.771213
4 | 116 2 17 56 115.989 1.265 0.102190
5| 145 2 52 26 144.970 2.320 0.305300
61174 3 26 55 173.930 3.837 0.584022
7 | 203 4 o1 26 202.857 5.902 0.771020
81232 | 4 35 56 231.731 8.593 0.934389
9 | 261 5 10 206 260.530 12.000 1.079413
10 | 260 5 44 57 289.224 16.209 1.2097068
11 | 319 6 19 29 317.776 21.287 1.328110
12 | 348 6 54 o1 346.142 27.316 1.436420
13 1377 | 7 28 34 374.271 34.373 1.536216
14 | 406 8§ 03 07 402.100 42.528 1.628679
8 37 40
¢c. CHORD-LENGTII = 30.
n | nc. Ds. P X, Log. x.
T 30 0° 33" 20" 30.000 0.0136 8.639817
2 | 6o 1 06 40 59.999 .2182 9.338785
3 90 I 40 00 89.997 .6108 9.785937
4 | 120 2 I3 20 119.989 1.300 0.116914
5 | 150 2 46 41 149.969 2.400 0.380123
6| 180 |- 3 20 o2 179.928 3.970 0.598716
7 | 210 3 53 22 200.852 6.100 0.785743
8 | 240 4 26 44 239.722 |  8.894 0.949112
9 | 270 5 00 05 209.514 12.420 1.094137
10 | 3cO0 5 33 27 209.197 16.768 1.224401
11 | 330 6 06 49 328.734 22.021 1.342833
12 | 360 6 40 12 358.078 28.258 1451144
13 | 360 | 7 13 30 387.176 35.558 1.550939
1 7 47 00
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] {2
TABLE IIL /" Bh/?N
S / :
- TY/
\4LIFORYM
¢. CHORD-LENGTH = 2L y:
n. | wuc. Ls. . X Log x.
I 31 o’ 32" 15" 31.000 0.0451 8.654058
2 62 1 03,38 61.999 .2254 9.353026
3] 93| 1 3647 92.997 .6312 | 9.800177
4 | 124 2 09 C2 123.988 1.353 0.131154
5] 155 | 2 41 18 154.968 2.479 0.394363
6 | 186 37 +13,33¢" 185.925 4.102 0.612986
7 | 217 | 3 45 50 210.847 6.309 0.799984
8 | 248 4 18 o7 247.713 9.191I 0.963353
9 | 279 4 50 24 278.498 12.834 - 1.108377
10 | 310 5 22 4I 309. 170 17.327 1.238732
IL | 341 | 'S5 54 59 339.692 22.755 1.357073
12 | 372 6 27 17 370.014 20.200 1.465384
13 | 403 | 6 59 35 400.082 36.743 1.565179
75553
CHORD-LENGTH = 32.
n. | e Ds. . x. Log x.
I 2 O 3T s 32.000 0.0465 8.667846
21164 10250 63 999 2327 9.366814
3{ 96 | 1 3345 95.997 .6516 9.813965
4 | 128 2 05 00 127.988 1.396 0.144942
5 | 160 2 36 16 159.967 2.559 0.408152
“6 | 192 53 07 31 101.923 4.234 0.626774
7 224 3 38 47 223.842 6.513 0.813772
8 | 256 4 I0 03 255.703 9.487 0.977741
9 | 288 4 41 19 287.481 13.248 1.122165
10 | 320 5 12 36 310.144 17.886 1,252520
I1 | 352 | 5 43.53 350.649 23.489 1.370802
12 | 384 6 15 10 381.950 30.142 1.479172
13 | 416 6 46 28 412.988 37.929 1.578968
2 3,17 40
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TABEE "HI

c. CHORD-LENGTH = 33.

n. | nec. Ds. . - Log. .
I 33 0° 30’ 19" 33.000 0.0480 8.681210
# 66 1 00 36 65.999 .2400 9.380178
3EEge=l 11 130 55 98.997 -6719 9.827329
4| 132 2 OI I3 131.988 1.440 0.158300
5 | 165 2 31 32 164.966 2.639 0.421516
6| 198 3 OI 50 197.921 4.367 0.640138
7 | 231 3 32 09 230.837 6.716 0.827136
8 | 261 4 02 28 263.694 9.784 0.990505
9 | 297 4 32 48 296.465 13.662 1.135529
10 | 330 5 03 07 329.117 | 18.445 1.265884
11 | 363 5..33° 27 361.607 24.253 1.384226
12 | 396 6 03 47 303.886 31.084 1.492530
6 34 o7
¢.  CHORD-LENGTH = 34.
20| -ac. Ds. 3. > Log. x.
1 34 0° 29" 25" 34.000 0.0495 8.604175
2 68 0 58 4¢ 67.999 <2473 9393143
3 | 102 1 28 14 101.990 .6923 9.84029.
4 | 136 I 57 39 135.987 1.483 0.171271
5 | 170 2 27 o} 169.965 2.719 0.434481
6 | 204 2 56 29 203.918 4.499 0.653103
7 | 238 3 25 55 237.832 6 920 o.840101
35l 292 3 55 20 271.685 10.080 1.C03470
9| 306 | 4 24 46 305.449 14.076 1.143494
10 | 340 7 B s ) 339.090 19.004 1.278849
(11 | 374 | 5 23 38 372.565 24:957 1.397191
12 | 408 5 53 0§ 405.822 32.026 1.505501
02253 T
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LS TABLE IIL

¢. CHORD-LENGTH = 35.

~
N

el
N OO O~ OVt W N -

7 Ds. . x. Log .

35 0° 2834 35.000 0.0509 8.706764
70 | o 57 09 - 69.999 -2545 9.405732
105 1 25 43 104.996 7127 9.852883
140 I 54 I7. 139.987 1.527 0.183860
175 2 22 52 174.964 2.799 0.447070
210 2 51 27 209.916 4.631 0.665692
245 3 20 OI 244.827 7<X23 0.852690
280 3 48 36 279.675 10.377 1.016059
315 4 17 12 314.433 1.4.490 1.161083
350 | 4 45 47 349.063 19.563 1.291438
385 5 14 23 383.523 25.691 1.409780
420 5 43 00 417.758 32.968 1.518090

6 o9 36

¢. CHORD-LENGTH = 36.

T y
= OO ON OV LN -

| 7. Ds. >, PR S Log .
36 o° 27' 47" 36.000 0.0524 8.718998
72| ©0 5533 71.999 .2018 | 9.417967

103 i 23 20 107.996 .7330 9.865118
144 1 5I 07 143.987 1.571 0.196095
180 2 18 54 179.963 2.879 0.459304
216 2 46 41 215.913 4.764 0.677927
252 3 14 28 251.822 7.327 0.864924
2:8 3 42.15 287.666 10.673 1.028293
324 4 10 03 323.417 14.905 1.173318
360 4 37 51 350.037 20.122 1.303673
396 | 5 05 39 394.480 26.425 1.422014
5 33 27 3
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TABLE IIL

¢. CHORD-LENGTH = 37.

L e 1 Ds. B, X Log x.
o O 4 o° 27" 02" 37.000 0.0538 8.730898
21 74| o 5403 73-999 -2691 9-429806
AT I 2I 05 110.996 .7534 9.877017
4| 148 T 48 o7 147.986 1.614 0.207994
5 | 185 2 15 09 184.962 2.959 0.471203 .
b6 22e 2 42 1I 221.911 4.896 0.689826
71 259 3 09.13 258.817 7.530 0.876824
8 | 296 3 36 15 295.657 10.970 1.040193
9 | 333 4 03 17 332.400 15.319 1.185217
I0 | 370 4 30 20 369.010 -| 20.681 1.315572
11 | 407 4 57 23 405.438 27.159 1.433913

5 24 26

.. CHORD-LENGTH = 38.
92, ol R Ds. > EN Log x.
L1 938 0" 26" 19" 38.000 0.0553 8.742480
2| 76 | o 52 39 75-999 .2763 9-441448
3, ¥4 | 1 1857 113.990 7737 9.888599
4 | 152 I 45 16 151.986 1.658 0.219576
5 | 190 22 T35 189.901 3.039 0.482785
6 | 228 287754 227.909 5.028 0.701408
7 | 266 3 04 I4 265.812 7.734 0.888406
8 | 304 380133 303.648 11.266 1.051774
9| 342 | 3 56 53 341.384 15.733 1.196799
10 | 380 4 23 13 378.983 21.240 1.327154
I | 418 | 4 49 33 4106.396 27.893 1.445495

51i15v53
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TABLE III.

¢. CHORD-LENGTH = 39.

7. TG Ds. . x. Log x.

I 39 0" 25 "gQ 39.000 0.0567 8.753761
2 78 OF, BT T 77-999 .2836 9.452729
3. ZeETY 1 16 55 116.996 .7941 9.899880
4 | 156 14234 155.985 1.702 0.230857
5 | 195 2 08 13 194.960 3.119 0.494066
6| 234 2 33 5I 233.906 5.100 0.712689
2<%273 2 59 30 272.807 7.938 0.899687
8 | 312 3 25 09 311.638 11.563 1.063055
9 | 351 3 50 48 350.368 16.147 1.208080

10 | 390 4 16 28 388.956 21.799 1.338435

4 42 07
¢. CHORD-LENGTH = 4o.

7231 nec, Ds. b2 =5 Log x.

1| 40 0° 25’ oo’ 40.000 0.0582 | 8.764756
. 2| 8o | o 5000 79-999 -2909 |' 9.463724
3 | 120 I I5 00 119.996 .8145 9.910875

4 | 160 1 40 00 159.985 1.745 0.241852
51 200 2 05 co 199.959 3.199 0.505062
6 | 240 2 30 OI § 239.9C4 5.293 0.723684
7 | 280 2 55 OI 279.802 8.141 0.910682
8 | 320 3 20 OI 319.629 11.859 1.074051
9 | 360 3 45 02 359.352 16.561 1.219075

10 | 400 4 10 03 398.929 22.358 1.349430

4 35 03
¢. CHORD-LENGTH = 41.

n. | nc. Ds. . s Log x.
I| 41 o’ 24" 24" 41.000 0.0596 8.775480
2 82 o 48 47 81.999 .2982 0.474448

3| 123 1 13 IO 122.996 .8348 9.921599
4| 164 | 1 37 34 163.985 1.789 0.252576
5 | 205 2 01 57 204.958 L5y 0.515786
6 | 246 2 26 21 245,901 5.425 0.734408
7| 287 2 50 45 286.797 8.345 0.921406
8 | 328 3 15 09 327.620 12.156 1.084775
91369 [ 3 39 33 368.336 16.975 1.229799
10 | 410 4 03 57 408.go3 22,917 1.360154

4 28 21

—
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TABLE III

c.

CIHHORD-LENGTH = 42.

O D Ds. 9. x. Log .
I| 42 0° 23' 49" 42.000 0.06I1 8.785045
2| 83 | o0 47 37 83.999 <3054 9.484913
3 | 126 I 11 26 125.996 .8552 9.932065
4 | 168 THE T4 167.984 1.832 0.263042
5 | 210 I 59 02 209.957 3.359 0.526251
6| 252 | 2 22 52 251.899 5.557 0.744874
7 | 294 2 46 41 203.792 8.548 0.931871
8 | 336 3. 10 30 335.611: 12.452 1.095240
9378 | 3334 19 377319 17.389 1.240265
10 | 420 B ER 08 418.8760 23.476 1.370619
4 21 57
¢ CHORD-LENGTH = 43.
n. | nc. Ds. . w5 Log x.
1 43 0° 23 ‘15" 43.000 0.0625 8.796164
2 5|17#86 0 46 31 85.999 3127 9.495133
3| 129 1 09 46 128.990 .8755 9.942284
4| 172 1 33 02 171.984 1.876 0.273261
Shl2dsc |- 1 TS0 214.955 3.439 0.530470
6| 258 | 2 19 33 257.897 | 5.690 0.755093
7 | 301 2 42 48 300.787 8.752 0.942090
8 | 344 3 06 o4 343.601 12.749 1.105459
QY387 | 3.29%20 386.303 17.803 | 1.250484
10 | 430 | 3 52 35 428.849 24.035 1.380839
1 4 15 50
¢. CHORD-LENGTIH = 44.
n. | nc. Ds. 3is X Log x.
1 44 07224y 44.000 0.0640 8.8006149
2 88 0 45 27 87.999 .3200 0.505117
3132 4 T 08 d1 131.995 .8959 9.952268
A" 176 I 30 55 175.984 1,020 0.283245
5 | 220 1 53 38 219.954 3.519 0546454
6 | 264 210 22 263.894 5.822 0.765077
7 | 308 | 2 39 06 307.78; 8.955 0.952075
8 | 352 3 OI 50, 351.592 13.045 1.115444
9 | 396 324" 34 395.287 18.217 1.260468
L 3 47 18
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TABLE III

¢. CHORD-LENGTH = gs.

ne. Ds. % A Log x.
1|45 VL2213 45.000 0.0655 8.815908
% 1£:90 0 44 27 89.999 .3272 9.514877
3| 135 1 06 40 134.995 .9103 9.962028
4 | 180 1 28 53 179.983 1.963 0.293005

5 | 225 I 51 07 224.953 3.599 0.556214
- 6| 270 2 13 20 269.892 5.954 0.774837
| 751asls s 2 QRS 314.778 9.159 0.961834
8 | 300 2558 350.583 13.341 1.125203
9 | 405 3 20 OI 404.271 18.631 1.270228 .
3 42 15
¢. CHORD-LENGTH = 46.
n. | anc. - Ds. b g7 Log x.
B0 0° 21’ 44" 46.000 0.0669 8.825454
21 92 0 43 29 91.999 -3345 9.524422
3 {138 | 1 0513 137.995 -9366 9.971573
4 | 184 1 26 58 183.983 2.007 © 0.302550
523 [ 1 48 g2 229.952 3.679 0.565759
-6 | 276 2 10 20 275.889 6.087 0.7584382
75822 2 32 II 321.773 9.362 0.971380
81368 | 2 5356 367.573 13.638 1.134749
9 | 414 3 15 40 413.255 19.045 1.279773
i 3 37 24
¢. CHORD-LENGTH = 47.
n. | . Ds. s x. Log x.
g o’ 21’ 16" 47.000 0.0684 8.831794
2| 91| 042 33 93.999 -3418 9533762
3| 14I I 03 50 1.40.995 <9570 9:980913
4 | 188 I 25 06 187.982 2.051 0.3118g0
51235 | T 46 23 234.951 3.759 0.575100
6 | 282 2 07 40 281.887 0.219 0.793722
7 | 329 2 28 57 - 28,768 9.566 0.980720
81376 | 2 50 14 575-504 13.934 1.144089
91 428 30 ey k 422.238 30.459 1.289113
i 3 32 48
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TABLE IIIL

/

¢. CHORD-LENGTH = 48.
$s ol < PCs Ds. > Nt Log x.
1{ 48 0° 20" 50" 48.000 0.0698 8.843937
2| 96 | 0 41 40 95.999 -3491 9.542905
3| 144 1 02 30 143.995 <9774 9.990057
4| 192 I 23 20 191.982 2,004 0.321034
5240 | I 44 IO 239.950 3.839 0.584243
6 | 288 2 05 00 287.885 6.351 0.802866
7133 | 2 25 51 335.763 9.769 0.989863
8 | 384 2 46 41 383.555 14.231 1.153232

3 06 31

¢. CHORD-LENGTH = 49.
20| o Ds. . O Log .
1| 49 0° 20" 25" 49.000 0.0713 8.852892
2| 98 | 0 40 49 97-999 .3563 9.5518060
3 T470 L1 OF LY 146.995 9977 9-99QOI1
4 | 196 1 21 38 195.982 2.138 0.329088
51 245 1 42 03 244.949 3.919 0.503198
6 | 204 2 02 27 203.882 6.481 0.811820
71343 | 2 22 52 342.758 9-973 0.998818
8 | 392 2 A8TT 391.546 14.527 1.162187

3 03 31

¢«. CHORD-LENGTH = so.
G T Ds. A S Log x.
I 50 0° 20" 00"’ 50.000 0.0727 8.8616066
2| 100 | O 40 0O 99.999 .3630 9.560034
3 | 150 I 00 00 149.995 1.018 0.007785
4 | 200’ 1 20 00 199.981 2.182 0.338762
5 1 250 I 40 oo 239.948 3.999 0.601972
6 | 300 2 00 00 299.880 6.616 0.820594 |
7 | 350 2 20 00 349.753 10.176 1.007592
8 | 400 2 40 00 399.536 14.824 1.170961
s 3 00 oo ¥
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TABLE 1IV.

FUNCTIONS OF THE ANGLE s.

B b e bt e b e -
OO IO LHWLRH OO O~ O m-hb:nm! X

cos s. [logverss. & 1°x sin s. | log sin s.
2 vers s. ||
0° 10'[.99999(4. 626422 .024/| .c0291| 7.463726 | 0° 10
0 30.99996!5.580662 .218| .00873) 7.940842 | o 30
I 00{.99985(6.182714 .873|.01745| 8.241855 | 1 0O
I 40(.99958/6.626392 2.424|.02908| 8.463665 | I 40
2 30/.99905/6.978536|  5.453| .04362| 8.639680 | 2 30
3 30/.99813/7.720726| 10.687| .c6105|8.785675( 3 30
4 40(.99668|7.520498| 18.994| .08136| 8.910404 | 4 40
6 00|.99452(7.738630 3I 388|.10453| 9.019235| 6 ©O
7 30(.99144(7.932227| 49.018|/.13053| 9.115698 | 7 30
9 10(.98723/8.106221 73.173[.15931 9.202234| 9 IO
II 00 |.98163/8.264176| 105.270/|.19081! 9.280599 |11 0O
13 00(.97437/8 408748| 146.857||.22495 9.352088 |13 0O
15 I0|.96517|8.541968| 199.570/|.26163 9.417684 |15 10
17 30|.95372(8.665422| 265.186 .30071’ 9.478142 |17 30
20 00 .93969(8.780370| 345.540|/.34202 9.534052 |20 00
22 40|.92276/8.887829| 442.543!.38537 9.585877 (22 40
125 30.902598.988625| 558.153 |.43051| 9.633984 125 30
|28 30(.87882/9.083441| 694.335|.47716/ 9.678663 (28 30
31 4o |.85112/9.172846| 853.050 |.52498) 9.720140 |31 40
35 00/.81915/9.257314/1036.20 ||.57358 9.758591 |35 0O
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TABLE

SELECTED SPIRALS FOR A 2° CURVE, GIVING
A A 7 X ¢ Dsn41)- §5 4 d.
10° 1° 00’ 3 X 32 2° 05’ 00" 203 41.12
10 I 40 421X..30 2 08 13 2 09 61.04
10 2 30 5 X 43 2 19 33 2458 73.69
10 3 30 6 x 45 2 35 34 2 33 78.81
10 4 40 7X44 | 3 OI 50 2 40 70.47
20 I 0o 3 x 33 2 oI I3 2 oI 45.28
20 I 40 4 X 41 270157 2 02 73.85
20 2 30 5 x 48 2 05 00 2 05 99.99
20 3 30 6 x 50 2 20 00 2 06 109.52
30 I 00 3 X 34 I 57 39 2 oI 46.14
30 1 40 4 X 41 2 OI 57 2 o1 75.16
30 2 30 5 X 49 2 0227 2 02 109.78
30 3 30 6'x 50 2 20 00 2 02 115.63
30 3 30 6 x 50 2 20 00 2 03 110.90
40 I 00 3 X 35 X S4aL7 2 o1 46.90
40 I+ 40 4 X 42 I 59 02 2 oI 76.96
40 2 30 5 X 50 2 00 00 2 oI 117.87

J
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EQUAL LENGTHS BY CHORD MEASUREMENT.

% old line. {§ newline.| Diff. i A, 4.
291.12 291.12 .00 .6516 .040 .061
311.04 311.04 .00 1.702 187 .110
323.69 323.70 -+ .0l 3.439 <354 -103
328.81 328.82 + .or 5.054 .590 .099
320.47 320.50 + .03 8.955 897 .100
545.28 545.28 .00 .6719 D122 .182
573.85 573.84 1+ — .o1 1.789 118 .066
509.99 600.00 + .01 3.839 .527 137
609.52 609.52 .00 | 6.616 554 .084
796.14 796.22 + .08 .6923 .566 .082
825.16 825.16 .00 1.789 .227 127
859.78 859.75 — .03 | 3.919 .377 .096
865.63 865.57 |- — .06 | 6.616 .249 .038
860.90 860.98 + .08 | 6.616 1.013 .153

1046.90 | 1047.15 + .25 &4 ) 1.222 | 1.715
1076.96 1077.09 + .13 | 1.832 .848 .463
1117.87 | 1117.77 — .10 3.999 141 .035
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TABLE

SELECTI;:D SPIRALS FOR A 4° CURVE, GIVING
A e o A A Ds n +1). Dz d.
10° 1° oo’ 3 x 16 4°10' 03" | 4° o7 20.22
10 1 40 4 % I9 4 23 13 416 29.12
10 2 30 5 X 22 4 32 48 4 39 38.75
10 330 6 x 23 5 04 26 5 17 41.37
20 I 40 4 x 20 4 10 03 4 o4 34.92
20 2 30 5 X 24 4 10 03 4 09 50.72
20 BIR130: (555 7 4 19 I9 4 17 63.69
20 4 40 7 X 30 4 26 44 4 31 78.07
20 6 o0 8%y 4 50 24 4 46 81.88
20 7 30 9 X 32 5 12 36 5 16 85.40
30 I 40 4 X 20 4 10 03 4 o2 35.57
30 2 30 5 X 25 4 00 03 4 04 57-39
30 3 30 6 x 28 4 10 03 4 o7 72.37
30 4 40 7 X 32 4 10 03 4 14 93.09
30 6 oo 8 x 35 4 DT7AE2 4523 110.31
30 7 30 Qe X137 4 30 20 4 34 122.20
30 9 IO 10 X 38 4 49 33 4 47 126.86 A
40 2 30 5 X 25 4 00 03 4 o2 58.91
40 3 30 6 x 28 4 10 03 4 o4 73.75
40 4 4o 7 X 32 4 10 03 4 o8 94.65
40 6 ©0 8 x 36 4 10 03 4 12 121.38
40 Ry ) 9 X 39 4 16 28 42T 142.86
40 9 I0 | IO X 4I 428 21 4 26 | 154.34
60 2 30 5 X 25 4 00 03 4 or 59.68
60 3 30 6 x 29 4 or 26 4 02 81.04
6o 4 40 7 % 32 4 10 03 4 o3 99.59
60 6 oo 8 x 36 4 10 03 4 05 125.81
60 7 30 9 X 40 4 10 03 4 o8 154.42
80 2 30 5 X 25 4 ©00 03 4 o1 58.29
80 31730 6 X 29 4 or 26 4 o1 82.82
80 4 40 HX 8 4 o2 28 4 02 106.99
8o 6 oo 8 x 37 4 03 17 4 03 135.61
8o 7 30 9 X 4I 4 03 57 4 03 164.79

(o]
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V.

EQUAL LENGTHS

ERSITY
BY c\a‘cif-b[,@pxsyk“@\mNT

4 old line. |} new line.|  Diff. 23 VR k.
145.22 145.17 — .05 .5258 .045. .I35
154.12 154.13 + .01 <8290 .080 100
163.75 163.76 + .oI 1.760 177 100
166.37 166.39 + .02 3.043 .305 100
284.92 284.92 .00 .8726 .081 | .IoO
300.72 300.72 .00 1.920 L1814 .096
313.69 313.75 + .06 3.573 -375 105 -
328.07 328.08 +. .01 6.106 .508 .098
332.88 331.92 + .04 9.191 .9I0 .092
335.40 335.47 + .07 13.248 1.310 -099
410.57 410.57 .00 .8726 (%7t L1587
432.39 432.38 oL 2.000 JI17 .074
447.37 447-35 — .02 3.705 .284 .077 —
468.09 468.09 .00 6.513 .687 .105
485.31 485.32 + .01 10.377 1.091 105
497.20 497.23 + .03 15.319 1.526 100
501.86 501.95 + .09 21.240 2.126 100
558.91 558.88 — .03 2.000 .109 .054
573-75 573.74 ~— .01 3.705 -361 .097
504.65 504.66 + .01 6.513 -977 .150
621.38 621.33 — .05 | 10.673 .973 .09I
642.86 642.83 — .03 16.147 1.100 .086
654.34 654.360 + .02 22.917 2.186 .095.
809.68 809.67 — .01 2.000 .180 .090
831.04 831.03 — .01 3.837 .461 120
849.59 849.52 — .07 6.513 .572 .088
875.81 675.76 — .05 10.673 1.074 106
904.42 '904.36 — .06 16 561 1.718 104

1058.29 1058.61 + .32 2,000 .979 490
1082.82 1082.71 — JII 3.837 .295 .074
1106.99 1107.03 + .04 6.716 1.000 .149
1135.61 1135.5I — .I0 10.970 1.199 .109
1164.79 1164.92 + .13 16.975 2.440 44
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TABLE

SELECTED SPIRALS FOR AN 8° CURVE, GIVING

A s nXe. Dsn +1). D', d.
10° 28505 P 9° 06’ o1” | g° 06’ 19.95
20 2730 G I2 8 20 26 8 16 25.71
20 3 30 6L% 114 8 20 26 8 34 34.86
20 4 40 7 x 15 8 53 351 8 54 39.90
20 65 00 8 x 16 9 23 07 9 24 45.52
30 2 30 5 X I2 8 20 26 8 o7 26.50
30 3 30 6 x 14 8 20 26 8 14 36.16
30 4 40 7 x 16 | 8 20 26 8 26 47.01
30 6 oo 8 x 17 8 49 55 8 36 53.13
30 8330 9 x 18 9 16 o8 8 46 60.05
30 9 I0 | 10 x Ig 9 39 36 9 I4 65.70
40 27530 5 X 12 8 20 26 8 o4 26.93
40 33430, 6 x I4 8 20 26 8 o8 36.85
40 4 40 s WL 8 20 26 8 14 48.25
40 6 o©o 8 x 18 8 20 26 8 22 61.35
40 7 30 9 X I9 8 46 49 8 30 68.07
40 9 IO I0 X 20 9 10 34 8 40 75.01
40 1500 3| - TEax T2F 9 32 03 8 354 82.13
40 13 ©00 12 X 22 9 5I 36 9 I4 89.81
60 2 30 L s ) 8 20 26 8 o2 27.30
60 380 6 x 14 8 20 26 8 03 38.22
60 4 40 7 X 16 8 20 26 8 o6 49.75
60 6 oo 8 x 18 8 20 26 8 10 62.87
60 7 30 9 x 20 8 20 26 8 16 77.16
— 60 g IO 10 X 22 8 20 25 8 24 93.05
60 II 00 11 % 23 8 42 13 8 31 101.08
60 13 00 I2 X 25 8 40 28 8 48 118.19
60 15, I0 13-5¢C126, 8 58 59 9 02 127.21
60 17 30 14 X 27 9 16 o7 9 22 136.45
8o 4 40 7 X 17 7 50 57 8 o4 57.04
80 6 o0 8 x 19 7 54 03 8 o6 71.78
80 7 30 9 X 20 8 20 26 8 o8} 79.18
80 9 10 | I0 X 22 8 20 25 8 13 95.23
80 PENGO |-1T ey 8 20 25 8 19 112.67
80 13 00 | 12 x 26 8320257 8 28 130.86
80 840 (] £37%, 2% 8 38 59 8 34 140.88
8o 17 30 | 14 x 28 8 56 13 8 42 150.55

—
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EQUAL LENGTHS BY CHORD MEASUREMENT.
% old line. | new line. Diff. 2 k. k.
82.45 82.47 + .02 .8798 .051 .058
150.71 150.72 + .01 .9598 .051 .053
159.86 159.88 + .02 1.852 LI17 .063
164.90 164.92 + .02 3.053 .185 .061
170.52 170.55 + .03 4-744 .221 .047
214.00 214.00 .Co .9598 .049 .051
223.66 223.68 + .02 I.852 142 077
234.51 234.53 + .02 3.256 260 .080
240.63 240.65 + .02 5.040 .325 .065
247.55 247.55 .00 7-452 .287 -039 -
253.20 253.18 — .02 10.620 .590 .056
276.93 276.94 + .ot .9598 .079 .082
286.85 286.87 + .02 1.852 181 .098
208.25 298.24 — .01 3.256 .293 .0go
311.35 311.33 — .02 5.337 .330 .062
318.07 318.06 — .01 %7.866 472 .c6o
325.01 325.00 \— .0I 11.179 .629 .056
332.13 332.12 — .ol 15.415 .840 .054
339.81 - | 339.81 .00 20.723 1.024 .049
402.30 402.32 + .02 .9598 .136 142
413.22 413.19 — .03 1.852 .083 .045
424.75 424.76 + .01 3.256 .317 .097
437-87 437.88 + .o1 5.337 .539 .10
452.16 452.18 + .02 8.280 .863—| .104
468.05 468.02 — .03 12.297 1.139 .093
476.08 476.09 + .01 16.883 1.523 .0gO
493.19 493.18 — .01 23.548 2.160 :092
502.21 502.21 .00 30.817 2.613 .085
5II.45 5I1.45 .00 39.595 3.157 .080
55%7.04 55%7.02 — .02 3.460 .366 .106
571.78 571.75 — .03 5633 .408 072
579.18 579.18 .00 8.280 .860 .104
505.23 595.25 + .02 12.297 1.346 .1I0
612.67 612.70 + .03 17.617 1.719 -| .IOQ
630.86 630.90 .| -+ .04 24.490 2.738 J12
640.88 640.88 .00 32.002 3.119 .008
650.55 650.62 + .07 41.062 3.809 .003




TABLE

i)
SELECTED SPIRALS FOR A 16° CURVE,

A i n X ¢ Ds@m+1). 0% A
30 4° 40 | 7 x 10 | 13° 21" 48" | 18° 00O’ 33.59
40 6 oo 8 x 10 | 15 02 34 714 36.14
6o 7 30 9 x 10 | 16 43 3I 16 32 38.47
60 9 IO 10-%.13 16 43 31 16 48 46.40
60 11 00 LE 432 16 43 31 17 14 54.62
60 13 00 12 x 12 18 07 48 1. 2% 54.14
6o 15 IO 13 X I3 18 o1 18 18 10 62.88
6o 17.5130' | -54 5 T3 10 T T4 1°18, 12 62.85
6o 20 00 | I5 x 1} | 19 0b 05 20 00 72.14
8o 7 30 9 x 10 | 16 43 31 16 16 39.74
80 9 10 |10 x II | 16 43 3I 16 26 47.49
8o TIHO0 |- TIx-d2 |10 4331 16 38 | 36.19
80 13 00 12 X I3 16 43 30 16 56 65.24
80 15 10 | T3xc 14 -]16.-43 29 17 22 74.72
8o 17 30 4 x 14 17 55 44 17 24 75.02
8o 20 00 15 x I5 17 50 54 18 06 85.15
8o’ 22 40 16 X 1§ 18 58 25 18 08 85.18
80 28 30 8 Xhiz6r 5] #19-<53 20 19 42 95.84




.

GIVING EQUAL LENGTHS OF ACTUAL ARCS.
4 old line. [} new line. Diff. xS k. £.
127.64 127.64 .00 2.035 .388 .191
161.55 : 161.55 .00 2.965 .430 L1458
226.58 226.56 -— .02 4.140 .436 .105
234.50 234.45 — .05 6.148 .576 .094
242.73 246.67 — .06 8.208 .860 .099
242.25 242.26 + .01 1I1.303 1.093 .097
250.99 250.99 \ .00 15.409 1.516 .0g8
250.96 250.97 + .01 19.064 1.552 .081
260.25 260.25 .00 25.031 2.182 .087
2Q0.55 290.47 — .08 4.140 <328 .305
298.30 298.27 — .03 6.148 .680 JII
307.01 306.96 — .05 8.808 .943 .107
316.06 316.03 — .03 12.245 1.384 4 %!
325.53 325.54 + .01 16.504 1.973 119
325.83 325.81 — .02 20.531 1.939 .094
335.97 | 335.96 — .01 26.819 2.657 .099
336.00 335.99 — .01 32.276 2,677 .083
346.65 346.66 + .01 43.221 3.748 .078
85
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