
Best practices for maintaining
bots and tools

Small Wiki Toolkits

[[User:BDavis (WMF)]]
August 2022

Hello everyone. My name is Bryan Davis and my pronouns are he/him. I am a
Principal Software Engineer working for the Wikimedia Foundation as a member of
the Technical Engagement team. I would like to talk with you today about some best
practices that you can use when building and maintaining bots and tools for
Wikimedia projects.

https://meta.wikimedia.org/wiki/User:BDavis_(WMF)

Tools are a vital
resource for on-wiki
content creation and
curation activities

Small Wiki Toolkits

<read slide>

This is a thesis that I came up with based on my personal experience in helping folks
use Toolforge and conversations I've had with Wikipedians about how they do the
things that the do on wiki. I used it as the core argument to change my job at the
Wikimedia Foundation in 2016. That was when I started working with and for the
Wikimedia technical contributor community full time. My passion is helping folks think
about ways to make it easier to build and maintain tools. My goal is more tools that
are better maintained with the presumption that that will also make things better,
faster, easier for on-wiki communities.

Some of you might say [citation needed]...

Small Wiki Toolkits

61.6%
Percentage of total edits made to Wikidata originating from
tools and services hosts in Wikimedia Cloud Services, July
2022

More than 61% of the 24 million edits made to Wikidata during July 2022 were made
by bots and tools hosted within Wikimedia Cloud Services (including Toolforge). This
number was taken from the WMCS Edits Dashboard.

https://meta.wikimedia.org/wiki/WMCS_Edits_Dashboard

Small Wiki Toolkits

Time-to-revert by ClueBot NG's status

When the Levee Breaks: Without Bots, What Happens to Wikipedia's Quality Control Processes?
R. Stuart Geiger & Aaron Halfaker. (2013). WikiSym.

CLUEBOT NG STATUS TIME-TO-REVERT, GEOMETRIC MEAN MEDIAN

Up 941 seconds (15.7 minutes) 744 seconds (12.4 minutes)

Down 1674 seconds (27.9 minutes) 1286 seconds (21.4 minutes)

Aaron Halfaker and Stuart Geiger wrote a paper about the impact of just one bot in
the first half of 2011. They found that it took roughly twice as long for garbage to get
removed from enwiki when ClueBot NG wasn't running.

One study from data that's 11 years old and a statistic about recent Wikidata activity
doesn't prove my thesis, but hey at least I have some credible sources to point to. :)

http://www-users.cs.umn.edu/%7Ehalfak/publications/When_the_Levee_Breaks/geiger13levee-preprint.pdf
http://www.wikisym.org/

All tools are
unique
snowflakes

CC by SA 4.0, Alexey KljatovSmall Wiki Toolkits

A typical bot or tool project begins life as a way for a motivated Wikimedia community
member to make some on-wiki task easier. These individuals are "scratching their
own itch" in the best tradition of open source development. Many of these projects
have a short lifecycle due to factors such as loss of interest by the maintainer,
insurmountable technical hurdles, or discovery of a better means to solve the original
problem. A few however become popular and tightly integrated in the workflows of
one or more on-wiki communities.

There is a wide range of experience and practices among the Wikimedia technical
community. Some tools are developed by professional software engineers with years
of real world experience in designing and building highly reliable and maintainable
software. Other tools are built by people who are just learning to write code by
following online tutorials. Some maintainers have years of experience as contributors
to the Wikimedia projects and others are just discovering the Wikimedia world. Some
tools are built with 100% from scratch code and others use many third-party
frameworks and libraries. Some start with a group of like minded developers and
some are solo works that have never been discussed with others. Tools are built using
both well known and esoteric programming languages.

No level of experience, programming language, or process is intrinsically better or
worse than another. The differences emerge over time. In my opinion, the best tools
are the ones that end up fulfilling a need for an on-wiki community and have
maintainers who remain responsive to requests from their users.

Some ways
that things
can go wrong

PD, Studio Lévy and Sons
Small Wiki Toolkits

I have two real world examples of tools that had serious issues that could have been
avoided.

I don't want you to leave today thinking that the developers of these tools are bad
people or that they have failed the movement. These examples are presented as a
retrospective to illustrate my broader points. We are not here to point fingers or place
blame; we are here to learn what not to do next time. In that spirit, I'm going to try not
to "name and shame" the tools involved directly. If you really want to know which
exact tools I'm talking about you can dig around on Phabricator.

It's the
little things

CC BY 2.0, Kenny LouieSmall Wiki Toolkits

A phabricator bug is filed about a tool that is often down. Nothing too new there,
except this particular tool is linked to in templates on many wikis. And these templates
are used in quite a few pages: something like 20k direct transclusions on enwiki and
120k on dewiki.

Toolforge admins are aware of this tool and its stability issues. The admins take on
the work to migrate the tool to a newer runtime version and give it more memory to try
and make it more stable. A community member takes on monitoring as a pet project
and updates the ticket regularly when the tool is down. Admins do a lot of restarts, but
nobody ever seems to hear from the maintainer.

The tool is actually doing worse things than just being intermittently down however. It
has a memory leak that begins to affect other tools on the job grid. Massive amounts
of memory are being consumed and are only freed by stopping and starting the tool's
webservice. Admins continue to investigate the issue, but they really need some
support from the tool's maintainer.

After repeated pings on Phabricator and wiki talk pages, the maintainer responds.
They explain that they have lost interest in maintaining this particular tool. They
provide a link to the source code but decline to choose a software license. They
instead state "you can do what you will with it". We tried a couple of times to get them
to change their mind about declaring a license, but thus far it has not happened.
That's pretty much the end of the story. An unlicensed, unmaintained tool is a dead
tool.

A perfect
storm

CC by SA 4.0, Kaizenify Small Wiki Toolkits

This next example shows how multiple small issues can compound over time. I
watched this particular project go from needing a small update to being forced to shut
down entirely. Many people tried to help along the way, but ultimately some small
omissions by the original tool author and external forces created a perfect storm that
killed the tool.

The tool itself was a collection of cron jobs approved to do many different tasks for a
large Wikipedia project. I don't know the full history here, but I imagine that it followed
similar patterns I have seen elsewhere. The author wrote a script to do some task that
was needed on wiki. When that task was taken care of and things were working well
someone pointed out another task that could use attention from a bot. Eventually this
tool grew to have control over a large number of related curation tasks and made
hundreds of useful edits on any given day.

* July 2015: The bot is on the list of Action API consumers that were still using HTTP
after the global switch to HTTPS. This was possible due to a loophole that had been
left open in the server configuration for POST traffic. The maintainer responded that
they would need Java 1.8 in order to fix their software. The maintainer is pointed to a
previously declined Phabricator task for upgrading to Java 1.8.

* August 2015: Maintainer responds on the HTTP deprecation tracking task with a
refusal to change the bot's coding to accommodate Java 1.7 due to the potential time
investment.

* December 2015: Another user opens a new task requesting Java 1.8. This is
investigated by Toolforge admins and again found to be a problematic upgrade at this
time. When the new upgrade request is closed as declined, another bug specifically to
look for a alternate solution for the tool is opened. The maintainer again asserts that
the fix would be easy if only we would provide the software upgrade that has now
been rejected twice.

* May 2016: The solo maintainer has recently posted on another task that they do not
have the ability to work on anything wiki related for at least a few weeks. Knowing the
maintainer was going to be away for awhile and that the deadline for closing the
POST loophole is near, I used my Toolforge admin powers to look into how the tool
was put together. I found more bad news: there is no source code on the Toolforge
server, only compiled jar files. This greatly limits what anyone other than the
maintainer can do to try and fix things.

* June 2016: We decided to try and make a special HTTP-to-HTTPS transparent
proxy just for this tool. After the proxy was up we still had no response from the
maintainer to help with testing it and time is running out. I decided that I would try to
play the hero and make the fixes myself. I edited the TWENTY EIGHT job startup
scripts to pass the correct arguments to the Java runtime and crossed my fingers that
this would be all that was needed.

Sadly it was not. The libraries used by the tool didn't work with the standard Java
HTTP proxy configuration values. Further investigation found that there would be no
way to fix the problem without changing the source code. Source I did not have
access to because it was not present on the Toolforge server and not published by the
tool maintainer.

The maintainer suddenly appeared on Phabricator and again asked the newer version
of Java that had been rejected twice previously. They state that the bot is licensed
under the Mozilla Public License, but no link to source code is provided.

On June 20th, 329 days after the first phabricator contact trying to warn of the issue, I
shut down the cron jobs for the tool because the requests were all failing out. One
absentee maintainer, no source code, no license, procrastination, and demands for
special treatment had killed the project.

https://tldrlegal.com/license/mozilla-public-license-2.0-(mpl-2)

FLOSS best
practices for
bots & tools

Small Wiki Toolkits

A tool that is valuable for an on-wiki workflow should protect the community by
following best practices. As developers we put in a lot of effort to build new things and
keep them running. No one should feel that they must be available 24/7/365 to
support their tool. Popular tools will experience issues at all times of the day and
night. By adopting a few simple practices common in the Free/Libre and Open Source
Software ecosystem, a tool maintainer can make it easier for others to help them
keep their tool running.

Best practices

Small Wiki Toolkits

➔ Pick a license
➔ Publish the code
➔ Have multiple maintainers
➔ Write some documentation
➔ Participate in the Community

These 5 core practices are what I would like all of you to try to follow with each and
every tool you expect others to use. <read list from slide>

Let's talk about each of them in a little more detail...

➔ Pick a license
➔ Publish the code
➔ Have multiple maintainers
➔ Write some documentation
➔ Participate in the Community

Best practices

Small Wiki Toolkits

Pick a license

As many of you will know from your work in Wikimedia projects, copyright laws vary
from country to country. In the United States and elsewhere, copyright automatically
attaches to creative original works including software.

Without a license you are implicitly claiming copyright with no explanation of the rights
you are willing to grant to others who wish to use or modify your software. Nobody
else may reproduce, distribute, or create derivative works until standard copyright
lapses without your explicit permission.

In the US today, copyright extends until 70 years after the creator's death. (That
ridiculous duration will continue to grow too as long as Disney wants to protect Mickey
Mouse.) If you think about how computers have changed in the last 70 years you will
probably understand how this "protection" will make your software obsolete long
before the copyright expires.

The Toolforge and Cloud Services Terms of Use say that you must use a license that
has been approved by the Open Source Initiative. OSI is a US-based 501(c)3
non-profit responsible for maintaining the Open Source Definition standard. The OSD
lists 10 criteria that all conforming licenses must comply with.

There are a number of different OSI approved licenses, and which to choose is largely
a personal decision for the individual or team first developing a new tool. The two

https://opensource.org/
https://opensource.org/docs/osd

easiest options for your license are:
● GNU General Public License v3.0 or later. This license ensures that all

derivative works are made available under the same terms. It is conceptually
similar to the Creative Commons Attribution-ShareAlike license that is used by
most Wikimedia content projects. MediaWiki itself is licensed under an older
version of the GPL.

● The MIT license. This license only requires derivatives to mention the original
work and its license. This is conceptually similar to the Creative Commons
Attribution license.

I can recommend https://choosealicense.com/ as resource for learning more about
the differences between various licenses. Be aware the some of the licenses
described there are not OSI approved however, so make sure to check against the
OSI list before using a license for your project.

https://www.gnu.org/licenses/gpl-3.0-standalone.html
https://creativecommons.org/licenses/by-sa/3.0/
https://opensource.org/licenses/MIT
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
https://choosealicense.com/
http://opensource.org/licenses
http://opensource.org/licenses

➔ Pick a license
➔ Publish the code
➔ Have multiple maintainers
➔ Write some documentation
➔ Participate in the Community

Best practices

Small Wiki Toolkits

Publish the code

Making the source code of your application public can feel scary, but without source
code it is very difficult for the community to help rescue abandoned tools. It is ok to
feel anxious about showing your work, but try to remember that most folks in the
Wikimedia technical community have had the same feelings at some point. By sharing
our code in public we can help others learn and maybe even get some feedback that
will help improve our own code.

There are several gratis source code hosting options that tool developers can use on
the internet. We also have a few libre options available thanks to the Wikimedia
Foundation. The new tools admin console (<https://toolsadmin.wikimedia.org/>)
makes creating a git repo for a tool's source code a one click task. Today
(2022-09-18) those repositories will be created on Phabricator's Diffusion service, but
I am working on a task to change the location to the newer
https://gitlab.wikimedia.org/ service.

https://toolsadmin.wikimedia.org/
https://phabricator.wikimedia.org/T296893
https://gitlab.wikimedia.org/

➔ Pick a license
➔ Publish the code
➔ Have multiple maintainers
➔ Write some documentation
➔ Participate in the Community

Best practices

Small Wiki Toolkits

Have multiple maintainers

Having multiple maintainers is very helpful. Nobody has time to make sure that their
tool is up and running 24/7/365 on their own. Having a few people who are familiar
with at least starting and stopping a tool goes a long way towards improving uptime. It
also creates a path for the original maintainer to transition out of a project when they
eventually lose interest.

A question that often comes up is how to actually find these co-maintainers. We will
talk a bit more later about what I mean by "participate in the community", but for me
this is the answer. Ask on mailing lists or the technical discussion spaces related to
the wikis that your tool is designed to work with. Consider forming a mutual aid group
with two or three other folks where you each become co-maintainers for everyone
else's tools. Talk to your power users and the folks who most often notice when your
tools are broken to see if they would be interested in learning how to help keep them
working.

➔ Pick a license
➔ Publish the code
➔ Have multiple maintainers
➔ Write some documentation
➔ Participate in the Community

Best practices

Small Wiki Toolkits

Write some documentation

In 2004 Brion Vibber wrote as Bug #1 "Our docs are teh suck. Fix them up.". This is a
problem for all software projects, including your tools.

A tool usually doesn't need a lot of documentation. Having a wiki page that explains
how to start and stop the tool and a bit about how to troubleshoot common problems
goes a very long way. We have the Tool namespace on Wikitech specifically for this
kind of documentation, but put the docs wherever makes the most sense for you.

When writing these docs, think about the 5 most common things that can go wrong
with your tool. What steps are needed to fix these issues? Go back and add to the
docs when you discover new problems.

Some example documentation:
● https://wikitech.wikimedia.org/wiki/Tool:Bridgebot
● https://wikitech.wikimedia.org/wiki/Tool:Stashbot
● https://www.mediawiki.org/wiki/Wikibugs
● https://wikitech.wikimedia.org/wiki/Wm-bot

https://phabricator.wikimedia.org/T2001
https://wikitech.wikimedia.org/wiki/Tool:Bridgebot
https://wikitech.wikimedia.org/wiki/Tool:Stashbot
https://www.mediawiki.org/wiki/Wikibugs
https://wikitech.wikimedia.org/wiki/Wm-bot

➔ Pick a license
➔ Publish the code
➔ Have multiple maintainers
➔ Write some documentation
➔ Participate in the Community

Best practices

Small Wiki Toolkits

Being here to participate in this workshop is a sign that you are already participating
in the Wikimedia community, but let's talk a bit more about other ways to participate
specifically in the technical community.

Participate in
the technical
community

Small Wiki Toolkits

Participate in the technical community

We know it takes a lot of people who are interested and skilled in a lot of different
ways to create and maintain a wiki. The software that tool maintainers write is really
no different. By acting as a community and supporting each other we can build better
software. Asking questions of strangers can be scary, but asking questions of your
neighbors and friends is easier. Tool maintainers can and should get and give help to
each other in friendly ways through a variety of channels.

➔ Join mailing lists:
◆ cloud@lists.wikimedia.org
◆ wikitech-l@lists.wikimedia.org

See https://lists.wikimedia.org/ for many more!

Technical community

Small Wiki Toolkits

Mailing lists are one of the most "old school" community gathering places we have.

There are many mailing lists to discussing technical topics and receiving
announcements about changes to software and services. Some of the lists I read and
use most often include:

● Cloud which is for discussion of Cloud Services projects like Cloud VPS and
Toolforge

● Wikitech-l which is for discussion of pretty much anything technical related to
the Wikimedia movement

○ Speaking of old school, the archives for wikitech-l go all the way back
to the first message to the list sent on February 8th, 2002 by Jimmy
Wales.

There are many more specialized lists too. See lists.wikimedia.org for lists related to
MediaWiki, the Action API, Dumps, Pywikibot, and lots more.

https://lists.wikimedia.org/
https://lists.wikimedia.org/hyperkitty/list/wikitech-l@lists.wikimedia.org/thread/HRK2BX7443DVI6Y7PP5ZW73CUUNL6W7M/

➔ Libra.chat IRC channels
◆ #wikimedia-cloud
◆ #wikimedia-tech

➔ Telegram channels
◆ Wikimedia Cloud Services support
◆ Small Wiki Toolkits

Technical community

Small Wiki Toolkits

In addition to mailing lists, there are a number of chat platforms and channels that are
used by the movement and it's technical community.

IRC is another old school communications system still in use by the Wikimedia
movement. There are a large number of Wikimedia channels on the libra.chat IRC
network. The #wikimedia-cloud channel is a good place to ask for help with things
specific to using Toolforge, Cloud VPS, and other Cloud Services products. The
#wikimedia-tech channel hosts discussions on technical topics related to the
Wikimedia wikis. There are many, many other channels for talking about specific
services or wikis. [[meta:IRC]] is a good place to start looking for other channels and
advice on using IRC in general.

We also use Telegram channels for some technical discussions. Some channels like
Wikimedia Cloud Services support are bridged to IRC so you can use one or the
other, but see all the conversations from either side. Others like the Small Wiki
Toolkits channel are only on Telegram. [[meta:Telegram]] lists a few other technical
channels as well as a large number of content project and thematic group related
channels.

https://meta.wikimedia.org/wiki/IRC
https://web.libera.chat/?#wikimedia-cloud
https://web.libera.chat/?#wikimedia-tech
https://meta.wikimedia.org/wiki/Telegram
https://t.me/wmcloudirc
https://t.me/+Z_b1MR8O0wAzZmVh
https://meta.wikimedia.org/wiki/IRC
https://meta.wikimedia.org/wiki/Telegram

➔ Use Wikimedia Cloud Services
◆ Toolforge
◆ Cloud VPS
◆ PAWS
◆ Quarry

Technical community

Small Wiki Toolkits

The Wikimedia Cloud Services project is a collection of services designed to help the
Wikimedia technical community test and host their tools.

Toolforge is a platform as a service environment providing access to a Kubernetes
cluster and a legacy Grid Engine distributed computing environment. This
environment has features specifically designed to make it easier for multiple
maintainers to collaborate on operating a tool.

Cloud VPS is an infrastructure as a service environment similar to rackspace.com or
AWS. When tools outgrow the Toolforge environment Cloud VPS can often be used to
create a dedicated environment with more resources. The main trade off for the tool
maintainers is that virtual machines created in Cloud VPS have to be maintained as
well.

PAWS is a Jupyter notebook deployment hosted by Wikimedia. Anyone with a
Wikimedia user account--the same account you use to edit the wikis--can use PAWS
to run Jupyter notebooks. PAWS also has special features for using pywikibot to edit
the wikis.

Quarry is another service that anyone with a Wikimedia user account can use. Quarry
provides a web interface for running SQL queries against the Wiki Replicas, a set of
live replica SQL databases of public Wikimedia wikis.

https://wikitech.wikimedia.org/wiki/Help:Toolforge
https://wikitech.wikimedia.org/wiki/Portal:Cloud_VPS
https://wikitech.wikimedia.org/wiki/PAWS
https://quarry.wmcloud.org

Thank you!

Small Wiki Toolkits

[[User:BDavis (WMF)]]
August 2022

Thank you for making the time to listen to me speak today. Does anyone have
questions related to the talk that I can try to answer?

https://meta.wikimedia.org/wiki/User:BDavis_(WMF)

● Wikimedia Community Logo.svg By Artur Jan Fijałkowski, Public Domain
● Brain, By Jasmina El Bouamraoui and Karabo Poppy Moletsane, CC0
● Snowflake macro photography 1.jpg By Alexey Kljatov, CC BY-SA 4.0
● Train wreck at Montparnasse 1895.jpg credited to Studio Lévy and Sons, Public Domain
● Stop to notice the little things (7360780594).jpg By Kenny Louie, CC BY 2.0
● Hurricane Frances from the ISS - 10AM. EDT AUG 27 2004.jpg By Mike Fincke, Public Domain
● MediaWiki, By Jasmina El Bouamraoui and Karabo Poppy Moletsane, CC0
● Wikisource, By Jasmina El Bouamraoui and Karabo Poppy Moletsane, CC0

Copyright © 2022, Bryan Davis and the Wikimedia Foundation.
This work is licensed under a Creative Commons Attribution-Share Alike 4.0 International license.

Credits

Small Wiki Toolkits

https://commons.wikimedia.org/wiki/File:Wikimedia_Community_Logo.svg
https://pl.wikipedia.org/wiki/User:WarX
https://en.wikipedia.org/wiki/Public_domain
https://commons.wikimedia.org/wiki/File:WP20Symbols_brain.svg
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://commons.wikimedia.org/wiki/File:Snowflake_macro_photography_1.jpg
https://commons.wikimedia.org/wiki/User:Alexey_Kljatov
https://creativecommons.org/licenses/by-sa/4.0
https://commons.wikimedia.org/wiki/File:Train_wreck_at_Montparnasse_1895.jpg
http://people.csail.mit.edu/sparis/siggraph06_gallery/memorial/
https://en.wikipedia.org/wiki/Public_domain
https://commons.wikimedia.org/wiki/File:Stop_to_notice_the_little_things_(7360780594).jpg
https://creativecommons.org/licenses/by/2.0
https://commons.wikimedia.org/wiki/File:Hurricane_Frances_from_the_ISS_-_10AM._EDT_AUG_27_2004.jpg
http://earthobservatory.nasa.gov/NaturalHazards/natural_hazards_v2.php3?img_id=12379
https://en.wikipedia.org/wiki/Public_domain
https://commons.wikimedia.org/wiki/File:WP20Symbols_MediaWiki.svg
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://commons.wikimedia.org/wiki/File:WP20Symbols_WikiSource.svg
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://meta.wikimedia.org/wiki/User:BDavis_(WMF)
https://wikimediafoundation.org/wiki/Home
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

