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NON-LINEAR REGRESSION AND THE PRINCIPLE OF LEAST 
SQUARES. THE METHOD OF EVALUATING THE CONSTANTS 
AND THE CALCULATION OF VARIANCES AND COVARIANCES. 

by 

1/ ? / 
Robert E. Barieau- and B. J. Daltons 

ABSTRACT 

This report is concerned with the necessary mathematical equations 

in order to accomplish the following objectives: 1. to evaluate the 

parameters such that the sum of the weighted squares of the residuals 

of an experimental observable be a true minimum, regardless of the 

functional relationship between the variables and these parameters; 

2. to evaluate all variances and covariances of the parameters eval¬ 

uated by means of the law for the propagation of errors; and 3. to 

insure that a true minimum will always be obtained. The equations 

presented in this report were developed for a three-parameter problem. 

INTRODUCTION 

The Helium Research Center, Bureau of Mines, has as one of its 

long-range objectives the development of an equation of state for 

1/ Supervisory Research Chemist, Project Leader, Thermodynamics7 
Helium Research Center, Bureau of Mines, Amarillo, Texas. 

2/ Research Chemist, Helium Research Center, Bureau of Mines, 
Amarillo, Texas. 

Work on manuscript completed December 1965. 



, : Vaw 

t 

■ 

J ' - 

. ■ >; 



4 

helium that will reproduce the data to within the accuracy with which 

the data are known. 

The Helium Research Center also has an experimental program j-or 

3 / 
obtaining PVT data on gases and mixtures by the Burnett (2)~ method. 

3/ Underlined numbers in parentheses refer to items in the list of 

references at the end of this report. 

In the Burnett method, ono of the constants that must be evaluated is 

the volume-ratio of two containers. By the theory of the method, this 

constant is inherently non-linear. It was therefore decided to develop 

a capability for handling non-linear regression problems. This report 

gives the principles of the method the Helium Research Center uses in 

such problems. 

Our method differs in several important respects from methods cur¬ 

rently in use. In solving non-linear problems, the problem must be 

linearized and an iteration technique used to obtain the solution. All 

texts on non-linear regression, of which we are aware, linearize the 

problem before the normal equations are formed. This method is known 

as the Gauss-Newton method. In our method, the exact normal equations 

are formed, and the problem is linearized by expanding the exact normal 

equations in a Taylor's series expansion retaining the first two terms. 

This method is known as the Newton-Raphson method (_7) . The only work 

that we have been able to locate that uses this method in non-linear 

least squares problems is that of Strand, Kohl, and Bonham (_8) . 





These two different methods, as will be shown later, lead to the 

same least squares solution provided the iteration procedure converges 

to an answer. We have found that if one starts within the region of 

convergence, the Newton-Raphson method converges more rapidly than the 

Gauss-Newton method. This is one advantage of the method we have 

chosen. 

If on applying the Gauss-Newton or the Newton-Raphson method, the 

problem is diverging after the first iteration, a method must be found 

that will lead to convergence. One of the methods that may be tried 

at this stage is the negative gradient or method of steepest descent. 

If the step in the direction of the negative gradient is small enough, 

this method must lead to a smaller sum of the squares of the deviations. 

The problem with this method in the past has been deciding on the size 

of the step to be taken. If the Newton-Raphson method has been used 

in developing the normal equations for the first iteration, then the 

size of the step to be taken in the direction of the negative gradient 

can be evaluated very simply from the coefficients appearing in the 

normal equations. This is the second advantage of the method we have 

chosen. 

The third advantage involves the calculation of the variances and 

covariances of the constants evaluated. As far as we are aware, all 

authors and all programs available calculate variances and covariances 

on the assumption that the formulas that apply to linear problems will 

apply to non-linear problems once the non-linear problems have been 

linearized. We reject this assumption, preferring to calculate 
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variances and covariances from the fundamental definition of these 

quantities and the law for the propagation of errors. (j,, _5) . 

Some authors (j6) claim that the least squares values of the 

constants evaluated in a non-linear problem are biased and should 

be corrected. All the proofs of this, that we have seen, assume 

the deviations are distributed with zero mean. This, of course, 

is never true in a non-linear problem unless this condition is im¬ 

posed as a constraint. Further, the principle of least squares 

maximizes the probability that the deviations are equal to the 

true random errors. This is true for both linear and non-linear 

problems. This being true, we fail to see how any solution can be 

better than the least squares solution. We therefore take the 

least squares solution as being non-biased and apply no correction. 

We have set the following objectives for our method. 

1. To evaluate the parameters so that the sum of the weighted 

squares of the residuals of an experimental observable is a true 

minimum. 

2. Objective 1 is to be accomplished even though the func¬ 

tional relationship between the observables and parameters is such 

that the observable involved in the minimum of the sum of the 

weighted squares of the residuals cannot be explicitly expressed 

as a function of other observables and the parameters. 

3. All variances and covariances are to be calculated, with 

no approximations, by means of the law for the propagation of errors. 

4. The method is to be such that a true minimum will always be 

obtained. 
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This report is concerned with the necessary mathematical equations 

in order to accomplish the above-named objectives. The equations are 

developed for a three-parameter problem. The extension to the evalua¬ 

tion of more parameters should be obvious. 

EVALUATION OF THE CONSTANTS 

Suppose one has experimentally determined a set of n data points 

Xf, y . Let the functional relationship between x and y and the para¬ 

meters A, B, and C be given by 

F(y,x,A,B,C) = 0 (1) 

We assume that there are no random errors in the x.'s and that 
i 

random errors occur in the observed y.’s. 
J l 

Now suppose we have evaluated the constants A, B, and C by some 

means or other. Then, because of random errors in y , equation (1) 

will not be exactly satisfied when the observed y. and x. values are 
1. X- 

substituted in equation (1). We will let F, be the numerical value of 

F, when the observed y^ and x^ values are substituted in equation (1). 

Thus , 

Fi = F(yi(o)’xi’A>B’C) 
(2) 

Now when x^ is substituted in equation (1) , we may solve for y_^ so 

that equation (1) is satisfied exactly. We will designate this y^ 

as y,, , x. Thus, 
^i(calc) 

F(y. . . v ,x.,A,B,C) 
Ji(calc) l 5 ’ 

The residual of y^ is given by 

0 (3) 
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i(o) yi(calc) (4) 

Now Y.. the residual of y., is the difference between the observed 
1 J i 

and calculated values. This is not the true random error in our 

observed because we do not know the true value of y . However, 

we can maximize the probability that our Y^'s are equal to the true 

random errors, and this is just what the principle of least squares 
* 

does. The principle of least squares says that we maximize the 

probability that the Y^'s represent the true random errors by mini¬ 

mizing the sum of the weighted squares of the residuals. 

Thus, the function to be minimized is given by 

n 

= i-. V2 

i = l i(o) 1 
(5) 

where w is the weight assigned to y^^ * R is a function of 

yi(o) 
the constants to be evaluated: A, B, and C. The condition that R 

be a minimum is determined by 

J, 
2 

n 
-dY. 

- y« Y.fci) - 
B.C & yi(o) A3A ' 

0 (6) 

2~(ft) ‘ IWy Yi(ar) = ° 
A,C i=i ^i(o) 

(7) 

and 

n .dY., 

2"(i). „ ■ Iwy..^Yi(ar) = 
i=l i(o) 

0 (8) 
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In the application of equations (6), (7), and (8), the observed 

y,'s and x.'s are to be held constant in the derivatives: 
i i 

’ • Equations (6) , (7) , and (8) are the 

B,C VSB/A,C VdC/A,B 
exact normal equations. 

If Y. is non-linear in the undetermined constants, then the 
l 

solutions of our normal equations will not be straightforward. 

It will be necessary to solve them by an iterative technique in 

which values of the constants are assumed. This is done by ex- 

/3Yi\ /dYA /dYi\ 
panding Y^, 5 \3B/’ anc* VdC / 3 Tay^or's series expan- 

.o 
sion about an approximate solution, Y , retaining only the first 

two terms. Thus, 

Y. 
l ■ Y° + ( 

^Y; 

^A 

.\ o ,dY., 

-) “ + (as1. 

,° /BY < 

) aB + (ac1) 

D 

AC 

(£) ■ C‘T 
,a2v . o ,B2Y., o 

2 

+ ( , 2 ) M + < 
A 

I AB + ( 
^AdC/ 

(?) ■ & 
,a2y . ° ,B2YiX o ,b2y., 

+ ( ̂ bba) m + ( I AB + ( 
sdBdC/ 

,dY.\ ,dY.\0 ?Y,o ,a2Y o 
2 

,d Y.v 

fe1) ■ (*■) + ( .seal) * + ( vdCdB/ 
1 AB + ( 

(9) 

j AC (10) 

AC (12) 

where the quantities AA, AB, and AC are defined as 

AA = A - A 
o 

AB = B - B 
o 

AC = C - C 
o 
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where A, B, and C are our undetermined constants, and Aq, B , and 

are approximate values for these quantities. Then to first order 

in the A's 
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Substituting equations (13) , (14) , and (15) into our 

equations (6), (7), and (8), we have 

ajAA + b;.AB + c^AC 

a2AA + b£AB + c^AC 

a^AA + b^AB + c^AC 

where 

normal 

(16) 

(17) 

(18) 

(19) 

(20) 

(21) 

(22) 

(23) 

(24) 
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n 

m. 

-BY.* o 

w 4ar) 
i=l yi(°) 

n 
v°/ i 

wy</, YA^r 
BY , o 

i=l i(o) 

n 

m. 
BY. o 

w Y 

yj-(°) 
Aac / 

(25) 

(26) 

(27) 

The solutions to equations (16), (17), and (18) are 

where 

D AA 
o Dlmi + D2m2 + D3m3 

D AB = D.m. + Dm + D m0 
o 4 1 5 2 6 3 

D AC = D m. + D m + D m„ 
o 7 1 8 2 9 3 

D1 b2°3 - b3C2 

D2 
= Vi ' blC3 

D3 
= blc2 - b2c: 

D4 
= 

a3C2 a2c3 

D5 
= 

aic3 a3cl 

D6 
S 

a2cl alC2 

D7 
= 

a2b3 a3b2 

00 
Q

 = 
a3bl ' alb3 

Dg 
- 

alb2 
- a2b. 

(28) 

(29) 

(30) 

(31) 

(32) 

(33) 

(34) 

(35) 

(36) 

(37) 

(38) 

(39) 
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D (40) o 

The solutions of equations (28) , (29) , and (30) give the corrections 

to be applied to the assumed values of our undetermined constants. 

In the Gauss-Newton method of linearization, the second term 

in the summations of the a's, b's, and c's of equations (19)-(24) is 

neglected; this does not lead to an error as long as the method con¬ 

verges because the exact solutions of equations (16), (17), and (18) 

are: AA - AB = AC = 0. 

When the functional relationship between the observables is such 

that yi(.calc^ cannot, be solved for explicitly, it will be necessary 

Let us expand F in a truncated Taylor's series expansion about the 

F 

or 

F. 
i 

where in equations (41) and (42) 
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the derivative of F with regard to y, keeping x, A, B, and C constant 

is to be evaluated at the point 

y = yi(o) 

x = x 

The solution of equation (42) gives the first approximation for 

./ \ • We designate this value as y., , . . 
i(calc) & 7i(calc)1 

then substituted into equation (3), and if y. 
i(calc) 

This value is 

is not the exact 

1 
answer, equation (3) will not be satisfied exactly. We designate 

this value of F as F., , . . Thus, 
i(calc)^ 

F 
i(calc) 

= F(x . , y. 
i’7i(calc) 

,A,B,C) (43) 

Then the second approximation, y., , . , of y.. . . is obtained 
i(calc)^ i(caic) 

from the expression 

F. 
i(calc) 

yi(calc) yi(calc)2 

1 

© x,A,B,C 

y=y. i(calc) 
x=x. 

l 

1 

(44) 

This iteration is repeated until equation (3) is satisfied to within 

any amount we wish to specify. 

Once we have y., . and y then Y. =y./N-y., . N, a 
i(calc) i(o)’ i 7i(o) 7i(calc) 

nd 

Y. can be calculated. Then if w 
1 y 

i(o) 

is known or has been assigned, 

R may be calculated by means of equation (4). 
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If the y.^ 's all have the same precision index, they will ail 

have the same weight and w 

yi(o) 

the same precision index, then 

= 1. If the y. , S's do not all have 
1(0) 

w 
y. 

(45) 

i(o) 
y. i(o) 

where L is a constant and S is the variance of y., N. In a 

yi(o) l(o) 
particular problem, it may be necessary to assume that w =1 

yi(o) 

in the beginning. However, if this is done, the residuals, 

- y. . , v , should be examined to see if there is any statis- 
L i(o) •/i(calc)J 

ticai evidence for the residuals squared being a function of y. Any 

2 
assumption as to the variance, S , being a function of y can 

Yi(o) 
always be checked by examining the residuals. In any event, w 

y. 
i(°) 

is not a function of the constants to be evaluated 

We now proceed to develop the equations needed to calculate the 

coefficients of our normal equations. Differentiating equation (4) 

with regard to A, keeping x^, y^^ , B, and C constant, we have 

\c)A / 
x . ,y . ,B,C 

l i(o) 

dy 
i(caic) 

SA ) (46) 

x ,B,C 

Differentiating equation (3) with regard to A, keeping x^, B, 

and C constant, we have 

(sir) 
i(calc) x^,A,B,C 

/dyi(calc)N\ 

\ SA / 
+ 

x.,B ,C 
l 

x . ,y. / - v,B,C 
i’-7i(caic) 

0 (47) 
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or 

( 
dyi(calc)\ 

dA ) 
x ,B,C 

x.,y./ i \ 
1 Ji(calc) 

SF 

) 
^yi(calc) x.,A,B,C 

(48) 

and if we substitute equation (48) in equation (46) , we have 

/3Y-\ 

VdT) B c 

Xi’yi(o)’B’C 

Similarly, it can be shown that 

and that 

(?) 
Vyi(o) >A’C 

© 
Vyi(o)’A’B 

x,,y, / i \ jS 
l i(calc) 

/ SF \ 
^yi(calc)‘ 

) 
x.,A,B ,C 
l 

(2E\ 
\SB i 

x.,y. . 
r 'iC 

- x ,A,C 
calc) 

f dF \ 

^yi(calc) Xf’A’B>c 

© 
V’u 

1 x ,a,b 
calc) 

(-22-) 
i(calc) x^jAjBjC 

(49) 

(50) 

(51) 

Differentiating equation (49) with regard to A, keeping x^, y^0^ > 

B, and C constant, we have . 
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c)2Y. 
i 

3A xi,yi(o)’B,C 

(52) 

Now 

= G 

Xi’yi(calc)’B>C 
lyi(calc),A,B,C) 

e(!2 
X 
i,yi(calc),B’C xi’B,C 

‘A /’BF 
_dA Vd 

. x. 

dA 

+ 
-By 

. ,y. , , n,B,C X..V., . n,B.C 
i •7i(calc)’ l •'i(calc) 5 

^Yi(calc) 
i(calc) x.,y.(calc);B,C x.,A)B,C 

(53) 

and 

1 /dF\ 
l KEl) 

b_ /A 

.5A \bAS 

Xi,yi(calc),B,C Xi’B>c 

Xi,yi(calc),B,C Xi,yi(calc),B,C 

+ 
LBy, 

b_ (bF 

i(calc) x.,y. , , N,B,C x.,A,B ,C 
l J i(calc) * i’ * ’ 

bA 
Xl,B ,C 

(54) 

1 





Also, 

(57^-) Syi(calc)V,A,B,C V i(calc) 0 = ,a;,b?c) 

' yi(calc) x.,A,B,CJx. ,B,C 

[' 

BF_\ 

^yi(calc) ^yi(caic) x.,A,B,C x.,A,B,C 
^yi(calc) 

+ Cr^—) I dA 

ayi(calc) x.,A,B,C x.,yi(calc)’B’C 

and 

i(calc) x ,A,B,C x^BjC 

d BF 
-) 

“ ^Italic) *.,A,B,C 

fe“-r) 
^yi(calc) ^yi(calc) x^,A,B,C x^,A,B,C 

^yi(calc)^ 

When we substitute equations (54) and (56) into equation. (52), we 

find 
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B2y. 

L) 
dA Xi’yi(o)’B’C 

(dy. 
BF ^ 

.(5) 
dyj(calc) x..,A,B,C dA2 >yi(caic)>B>C 

( 

BF \ 

^yi(caic) x.,A,B,C 

SF.) (--.SILL-) 
dyi(calc) x.,A}B,CVSyi(calc)3 x. ,B,CV 3A ' x, ,B,C 

/5yi(calc)^ 

(dy. 
BF Y 

^yi(calc) x^,A,B,C 

'BF\ ( B F 
.BA/ „ „\BABy 

x.,y. , . s ,B ,C 
1 i(calc) 

-) 
i(calc) x^,B,C 

(sy. 

BF Y 

^yi(calc) x_^,A,B,C 

,( 

B2F 

Xi?yi(calc) ,B?C dyi(calc) Xj?A’B’C 
x.,B ,C 

l 

( 
BF \2 

^yi(calc) x.,A,B,C 

But from equation (48) 

^dyi(calc)^ 

x. ,B ,C 
l 

xi’yi(calc)’E’C 

(—22-■) 
^yi(calc) x.,A,B,C 

(48) 
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] 
] 

3 

3 

When we substitute equation (48) in equation (57), we see that 

A Vyi(0)’B’C 3 

3 

3 

3 

3 

3 

3 

3 

(M) 
'BA ' x . ,y. , . \ ,B,C 

l 7i(calc)’ J 

G 

B F 

-) 

(—22-) 

x.,y., - s,B.C’SASyi(caic)' x.,B,C 
l i(calc)_2_l 

i(caic) x^,A,B,C (—M—V 
i(caic) x^,A,B,C 

(3t\ 
\BA> 

d2F 

) 
+ 

( . . 
Xl'yl(calc)»B»C dyi(caic) *j»A»B>C 

i(calc) x^,A,B,C 

(58) 

Similarly, 

B x.,y., n ,A,C 
i i(o) 

B) 
BB x.,y., 1 v ,A,C 
l i(calc) 

x. ,y ,G 

B2f 

ii(calc)’ 
A ,C '^^^-^i(calc)' x . ,A,C 

-) 

( 
3F 

By -) 
i(calc) x^,A,B,C ( 

BF 

By 
i(calc) x^,A,B,C 

b2f 

) 
+ 

(-. , 
Vyl(calcrA’C Syi(calc) VA»B»C 

( » .f 
^i(calc) x. ,A,B,C 

(59) 

and 

J 
] 

J 

5 
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i’yl(o)’A>B 

(5) 
‘dC x.,y.. . v ,A,B 
i(calc) ? 

.(l 

S2f 'oF\ 

AC) . AdCSy., . 
Vyl(calc)-A’B l(caic) VA>B 

-) 

( 
SF 

-) 
^yi(calc) x^,A,B,C 

2 

i(calc) x^,A,B,C 

.(: 
B2F 

Xi,yl(calc),A,B 5yj(calc) Xj?A?B?C 

(^~)3 
i(calc) x^,A,B,C 

(60) 

Differentiating equation (49) with regard to B, keeping ,A,C 

fixed, we have 

xi’yi(0)’B>C xi’yi(o),A’C 

3_/3F' 

,oB\oA; 

( 
Xi’yi(calc>’B’C xj’A’C 

SF \ 

^yi(calc) x.,A,B,C 

dF 

) 
Xi,yi(calc) ,B,C ^ aYi(ca;Lc) x. ,A,B,CJx,,A,C 

( 
dF 

Sy. -y 
i(calc) x^,A,B,C 

(61) 

/dF\ 
Let us differentiate ( r~J with regard to B, keeping x., 

\OA/ n i 
Xi’yi(calc)-B>C 

A, and C constant. When we do this, we get 

i,yi(ealc),B,C xi’A,C 

LdBVdA) 
x 

i’yi(Calc),B,C Xi,yi(calc),A’C 

+ /dyi(calc)\ 

LByi(calc)^Ay/xi,yi(.calc^ ,B,CJxi,A,B,C x^AjC 

(62) 
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j 
But 

] 
] 
] 
] 
] 

I 

- 

fdyi(calc)\ 
\ BB / 

\BB / 
x.,y./ N,A,C 

1 i(calc) ? 

x. ,A ,C 
l 

i(calc) x^,A,B,C 

(63) 

and if we substitute equation (63) in equation (62) , we see that 

B_/'M'\ 1 
.3B\BA/ J 

x.,y.f N,B ,C x.,A,C 
l yi(caic) ’ 5 i ’ ’ 

(—) \3A3B/ 
x 
i’^i(caic) 

{ d2F 
BABy, -) 

(calc) x , 

(64) 

Now if we differentiate ( 
3F 

By. -) with regard to B, holding 

i(calc) x,,A,B,C 
x_^, A, and C constant, we get 

n 

J 
fB f . 3F 

tefr-) _3B \3y 
i(calc) x. ,A,B,C x.,A,C 

] 
] 

[M 3F 

By -) 
i(calc) x.,A,B,C x.,yi(calcrA,C 

r a 

*14 (sr^TT) i(calc) •/i(calc) x^,A,B,C x^,A,B,C 

^^i(calc)\ 

BB ) 
x, ,A,C 

l 

or, substituting equation (63) in equation (65), 

] 

(65) 
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BF 
-) 3B Syi(calc) x<ja,B,C x.,A,C 

32F A 

^B^yi(calc) x.,A,C 

d2F 
-) 

x. ,y. i i(caic) 
,A,C 

Syi(calc) xi,A,B,C (ay., . N ) 
^yi(calc) x.,A,B,C 

(66) 

Therefore, if we substitute equations (64) and (66) in equation (61) 

equation (61) is expressible as 

i!i) 
BABB / 

Xi’yi(o) 

[ a2F 
\babb ) 

x. ,y 
ii(calc) 

>C 

'sf\ t a2F 

Wxl’yj(caic)’A’cVaA3yi(calc) ^..E.C 

( 
BF \ 

^yi(calc) x.,A,B,C 
^yi(calc) x.,A,B,C 

k 

a2F BF 

^V^calc) .B.CVaB9yi(calc) 4. ,A,C 
-) 

i(calc) x^,A,B,C 

(-) \3A/ <: a2F 
-) 

x. ,y., . v,B,C x.,y., - x ,A,C By., , N x.,A,B,C 
i ^i(calc) ’i Ji(calc) yi(caic) 1 

(——) 
°yi(calc) x.,A,B,C 

(67) 



. 
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2 
,3 Y 

We can derive expressions for (^3c) and 

2 
>d Y 

x.,y. , N ,B 
l i(o) 

\3B3C/ similar to equation (67). The results are 

Vyi(o) >A 

( 
2 

31, 
i'l 

SASC/ 
Vyi(o)’B 

(2lU\ 
\3A3C/ 

x 

( 
i?yi(ealc) 

,G 32F 

X 
3y -) 

r3T\ 

*i?yi(calc)?A?B yi(calc) xi?B>C 
■) 

i(calc) x4,A,B,C ( 3F ■y 
^yi(calc) x^AjB^C 

x 
( 

2 a f 
3C3y. •) 

l»yl(c.lc)’B’C ^(calc) x.,A,B 

i(calc) x.,A,B,C 
i 

AX 
-) 

+ 
Vyi(calc) >B’C^ Vyi(calc) ,A?B dyi(calc) xj,A?B?C 

( 3F V 

^yi.(calc) x^,AjB?G 

(68) 

2 

MW 
Vyi(e)’A 

2 
a f lx /3I\ (. 

\aB3cJ . \ac/ . Assay. ( , J A „ 
Vyl(ealc)/A Vyl(ealc)>A?B i(calc> X<»A,C 

(■ 
X 

■). 

■) 

^yi(ealc) X£,A,B,C ( 1L 

k AX 
■). 

) 
X. ,A,B ,G 

*i,yi(ealc)A»CNBCByi(eale)/x1,A,B 

:. 2 . 

^yi(eaie) x. ,A,B,C 

ac (: ■) 

Xi’yi(eale)‘A’C xl’yi(ealc) ,A?B ayl(gale) VA-B’C 

( ■) 
^yi(calc) 

(69) 
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The method of obtaining a least squares solution for the con¬ 

stants A, B, and C is as follows. 

We have n pairs of the observed quantities, x^ and . 

1. We assume values for A, B, and C. 

2. We then calculate the n values of F^, using equation (2). 

3. We next calculate the n values of y^caj.c^using an itera¬ 

tive method involving equations (42) , (43) , and (44). 

4. We next calculate the n values of from equation (4). 

2 
5. We next calculate the n values of Y . 

6. Using designated values for w , we next calculate R, 
yi(o) 

the sum of the weighted squares of the residuals, using equation (5). 

7. We next calculate the n values of (dF/dy., , v) by 
llealc7 

differentiation of the analytical expression for F, keeping x^, A, 

B, and C constant. 

8. We next calculate the n values of (dF/dA), evaluated at 

y., , v , by differentiation of the analytical expression for F, 
i(calc) 

keeping x., y,, . B, and C constant. 
r i Ji(calc) 

9. We next calculate the n values of (dF/dB), evaluated at 

yi(calc)* ^ differentiating the analytical expression for F, 

keeping x^ , A, and C constant. 

10. We next calculate the n values of (dF/dC) , evaluated at 

y.( . , by differentiation of the analytical expression for F, 
1^C31C J 

keeping x^, y^(ca^c) > A, and ® constant. 

2 2 
11. We next calculate the n values of (d F/dA ), evaluated at 

y.( . ., by differentiating the analytical expression for F twice. 
1 \C3 J.C / 



.. 
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2 2 
12. We next calculate the n values of (3 F/3B ), evaluated at 

y^(caic)> by differentiation of the analytical expression for F 

twice. 

2 2 
13. We next calculate the n values of (3 F/3C ), evaluated at 

^i(calc)’ ^y differentiating the analytical expression for F twice. 

2 2 
14. We next calculate the n values of (3 F/By./ . N) by 

yi(calc) J 

differentiating the analytical expression for F twice. 

2 
15. We next calculate the n values of (3 F/3A3B), evaluated 

at > which is obtained from the analytical expression for F. 

2 
16. We next calculate the n values of (3 F/BABC), evaluated 

at y.j_(ca^c) > which is obtained from the analytical expression for F. 

2 
17. We next calculate the n values of (B F/3B3C) , evaluated at 

^i(calc) ’ *-s obtained from the analytical expression for F. 

2 
18. We next calculate the n values of (3 F/By./ ,.370 which is 

1 ^Ccl 1C J 

obtained from the analytical expression for F. 

2 
19. We next calculate the n values of (B F/By./ - . 3B) which 

l^CS1C/ 

is obtained from the analytical expression for F. 

2 
20. We next calculate the n values of (3 F/By., - .3C) which 

i(calc) 

is obtained from the analytical expression for F. 

21. We next calculate the n values of (3Y^/3A) using equation 

(49) 

22. We next calculate the n values of (dY /SB) using equation 

(50) . 

23. We next calculate the n values of (SY/SC) using equation 

(51) . 



' 
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24. 

(58) . 

25. 

(59) . 

26. 

(60) . 

27. 

(67). 

28. 

2 2 
We next calculate the n values of (d Y^/BA ) using equation 

2 2 
We next calculate the n values of (d Y^/dB ) using equation 

2 2 
We next calculate the n values of (B Y_^/3C ) using equation 

We next calculate the n values of (d Y^/BAdB) using equation 

We next calculate the n values of (3 Y^/3AdC) using equation 

(68). 
2 

29. We next calculate the n values of (d Y^/3BdC) using equation 

(69). 

30. We next calculate 
al 

from equation (19). 

31. We next calculate 
a2 

= from equation (20) . 

32. We next calculate 
a3 

= c^ from equation (21). 

33. We next calculate 
b2 

from equation (22). 

34. We next calculate 
b3 

= c2 from equation (23). 

35. We next calculate 
°3 

from equation (24). 

36. We next calculate 
ml 

from equation (25). 

37. We next calculate 
m2 

from equation (26) . 

38. We next calculate m3 from equation (27). 

39. We next calculate from equation (31). 

40. We next calculate 
D2 

from equation (32). 

41. We next calculate 
D3 

from equation (33). 

42. We next calculate D,, from equation (34). 
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43. We next calculate from equation (35), 

44. We next calculate D, from equation (36). 
b 

45. We next calculate Dfrom equation (37). 

46. We next calculate Dg from equation (38). 

47. We next calculate from equation (39). 

48. We next calculate Dq from equation (40). 

49. We next calculate AA from equation (28). 

50. We next calculate AB from equation (29). 

51. We next calculate AC from equation (30). 

52. We now return to step 1 and calculate kQ + AA, where Aq is 

the value originally assumed in step 1. 

53. We next calculate + AB, where is the value originally 

assumed in step 1. 

54. We next calculate + AC, where C^ is the value originally 

assumed in step 1. 

55. Using (A + AA), (Bq + AB), and (CQ + AC) as new values of 

A, B, and C, we proceed to step 2 and repeat steps 2 through 6. 

56. At this point, we compare the value of R, the sum of the 

weighted squares of the residuals, with the initially calculated 

value of R. If it is smaller, we proceed to step 1 and repeat 

steps 7 through 55. We continue to repeat the iteration until 

m = m? = nu = 0 within some predetermined small quantity. Our 
12 3 

final values of A, B, and C are our least squares solution for these 

quantities. 



' 
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If in step 56 the sum of the weighted squares of 

R, is larger than the initial value of R, the problem 

and at this point, a technique must be used that will 

vergence. One method that will lead to a smaller sum 

negative gradient or the method of steepest descent, 

of a vector in the direction of the negative gradient 

the residuals, 

is diverging, 

lead to con- 

of R is the 

The components 

are given by 

o 

Thus, if we take 

where k is a positive constant, we will move in the direction of the 

negative gradient; k has been called the size of the step. We 

determine the size of the step in the following way. We expand R 

in a Taylor's series expansion, retaining terms through the second 

derivatives. Thus, 
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R = (73) 

We now substitute in equation (73) for AA, AB, and AC from equations 

(70), (71), and (72). The result is 

(74) 

We now differentiate equation (74) with regard to k, set the 

derivative equal to zero, and solve for k. The result is 

k = (75) 





From equation (5) and equations (19) - (27) , it is possible 

show that 

®° 
= -2m. (76) 

®° 
= (77) 

v (®° 
= -2m3 (78) 

$>■ 
" 2al 

(79) 

“ 2t2 
(80) 

<$> 
= 2c3 (81) 

( *2r)° = \dA3B/ 2a2 2bl 
(82) 

/ a2R\° 
\dASC) 2a3 

2c. 
i 

(83) 

l ^R)° - VdBdC/ 2b3 - 2c2 
(84) 

Substituting equations (76) - (84) into equation (75) , we have 
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We see, therefore, that if the Newton-Raphson method is used in 

setting up the normal equations, the size of the step to be taken 

in the direction of the negative gradient can be evaluated very 

simply from the coefficients appearing in the normal equations, 

provided the calculation of k leads to a positive quantity. If 

equation (85) leads to a negative quantity, this means that the 

curvature of the surface is such that the trial solution is near 

a maximum and not a minimum. Under these conditions, the negative 

value of k must be ignored and positive values of k explored on 

a trial basis. 

Of course, the same formal calculation can be made if the 

Gauss-Newton method is used to set up the normal equations. How¬ 

ever, if one is in a region of divergence, this means that the 

trial solution is far from the true answer. Under these conditions, 

the residuals will be large and the second summation in the a's, 

b's, and c's, involving the second derivative terms, will be of 

importance compared to the first term in the summation. We there¬ 

fore believe that if it. is necessary to use the negative gradient 

method, it is better to use the Newton-Raphson method in setting 

up the normal equations and in calculating the size of the step. 

If our problem is diverging after the first iteration, we 

calculate AA, AB, and AC from 

AA = 2km^ (86) 

AB = 2km2 (87) 

AC = 2km^ (88) 
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with k calculated from equation (85). Using Aq + AA, + AB, 

and C^ + AC as new values of our undetermined constants, A, B, 

and C, we then return to step 2 of the iteration. For each new 

value of A, B, and C, we solve the normal equations and calculate 

a new value of R. If we are diverging, we continue with the nega¬ 

tive gradient method until the region of convergence is reached. 

As soon as this happens, we drop the negative gradient method 

and iterate by solving the normal equations for AA, AB, and AC. 

A scheme such as this should always lead to convergence. 

Although the above scheme should always lead to convergence, 

the negative gradient method may be tediously slow in entering 

the region of convergence for the solution of the normal equations. 

Under these conditions, other schemes can be tried which may enter 

the region of convergence more rapidly than the negative gradient 

method. 

Some of these methods are: (1) the Hartley (_3) method; (2) a 

modification of the Hartley method due to Strand, Kohl, and Bonham 

(_8) ; and (3) the method of Marquardt (4). 

We do not have enough experience to judge the relative merits 

of these various methods. In our applications so far, we have not 

been troubled by lack of convergence. 

CALCULATION OF VARIANCES AND COVARIANCES 

With the value of our constants determined, the remaining 

questions to be answered are: (I) What are the variances and 

covariances of the constants evaluated? (2) What are the variances 
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of the calculated y 's and of any other calculated y that reduces 

F to zero? 

To answer these questions, we apply the law for the propaga¬ 

tion of errors. This law states that if we have a quantity or 

function, Q, that is a function of the independent quantities, y^, 

y^, ^3’ *■* 5 t^ien t^rie variance of Q is given by 

n 

M. 
• By. / \ 

1=1 ^o) 
) y. 

(89) 

i(o) 

2 2 
where is the variance of Q, and S 

Q y. 
is the variance of y. 

i(o) 
i(o) 

The value of the constant. A that we have evaluated is a 

function of all of the observed x^'s and of all of the observed 

y.'s. Since we have assumed there are no random errors in 
l 

the x^'s, the variances of the x/s are zero. Then the expression 

for the variance of A is given by the equation 

■ i fe^): 
i=l i(o) 

y 
i(°) 

(90) 

and there will be an equation similar to equation (90) for eval¬ 

uating the variance of B and. of C, 

To evaluate equation (90), we must evaluate (8A/8y.. . ) for 
i(o) 

each Y-/ multiply this quantity by S , square the product, 

Yi(o) 
and then sum the product, over all of the observed y^’s. 

Now we have a total of n pairs of the observed quantities x., 

yi- Then our constants to be evaluated are determined by the 



. 

' 



35 

solutions of equations (6), (7), and (8). Now suppose we change 

one of the y\'s, ^2(0) sa^’ t0 -^2(o) + ^2' ^en on solving equa¬ 

tions (6), (7), and (8), we would get new values of (A + AA), 

(B + AB) , and (C + AC) for our constants. Then we can calculate 

5A 

By 2(o) 

AA 

Ay. 

SB 

Sy 
2(0) 

AB 

Ay. 

SC 

By 
2(o) 

AC 

Ay0 

(91) 

(92) 

(93) 

This means that when is changed by a small amount, equa¬ 

tions (6), (7), and (8) must still hold exactly. Mathematically, 

this means that 

_iL_ /"M) = 0 
3y., . V3A1 „ „ 

l(o) xi’yi(o)’B,C 

(94) 

© 
3yi(o) •'”!ti-,yi(o),A1c 

= 0 (95) 

By, 
i(°) 

© = 0 

Xi-yi(o)>A'B 

(96) 

All of the Y.'s are explicit functions of the y., N's, the x.'s. 
1 r 71(0) 1 

and the constants A, B, and C. In the application of equations (94), 
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(95) , and (96) , the derivatives (SR/dA) 

(9R/BB) 

Xi’yi(o) ’B’C’ 

xi,yi(o) 
,A,C’ anc* (SR/ciC)^ ,y^(0) >A,B are to be considered 

functions of all of the y., N1s and of the constants evaluated, with 
i(o) 

A, B, and C being functions of all of the y^^'s. Under these 

conditions, 

-  (~) 
dy VSA/ -D r> 

__i(o) xi>yi(0) ’B^. 

xi’yj^i 

/BR\ f 5A \ 

3A Xi’yi(o),B,C l(o) yj#i 

-) w SBSA/ ASy., 
xi’yi(o)’C l(o) 

+ 
\dCcw 

xi>yi(o) 

+ 
x ., y,, s ,b ,c 

X r(o) 

3y i(o) 
.y^- ,A,B,C 

= 0 (97) 

'SR' 

3yi(o) V3B-x v AC 
_U°; xi’yi(o) >A± 

x.,y. ,. 
i jfi 

(JL) 
■SB x.,yi{o);A,C 1(0) yj)6. 

+ 
oA \ (A 

VdAbB/ pVdy., 
xryKo)’c l(o) yj^i 

.G 

+ (-JLS) 
VbCBB/ 

,SB 
x.,y., >. ,A,C 
l^iCo) 

— ^yi(o) — 
xi>yj/i’A’2£ 

= 0 (98) 
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Equations (97) , (98) , and (99) contain terms involving the 

derivative of each constant with respect to y^^ and can solved 

by elementary algebra for the derivatives of the constants with 

respect to y^^ . These derivatives are then to be multiplied by 

S , the product squared, and then the squared product is to be 

yi(o) 

summed over ail of the observed y., ' s. These sums give us the 
i(o) 

variance of each constant evaluated. 

Differentiating R, given by equation (5), by the constants A, 

B, and C keeping x^ and y^^ constant, we have 

Vy, i(o) 
,BSC ,B ,C 

0 (99) 

(100) 
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Vyi(o) ,A,C 

n 

2IW 
i=l yi(°) 

,dY.< 

a (101) 

Vyi(o) >A’C 

xi’yi(o)-A>B 

n 
r /bY-\ 

Zj Wy ., JAW) 
2 ) w Y 

i=l y^°> 1 ' Vyi(o)’A’B 

(102) 

Differentiating equation (100) with regard to each constant, we have 

82R 

) 
n 

SA Xi’yi(o) ,B,C 

» 2 y w 

1-1 yi(°) 

/SY,v 2 

(sr) + Y 

2 
,3 Y.\ 

AA 
xi,yi(o),B,C 3A Vyi(o)’B’C 

(103) 

Xi’yi(o) ,B>C 

Xi’yl(o) >A’C 

A /dY.v /dY. v 

2 Z, wy.r Abb”) Aba") 
1=1 l(o) Xl’yl(o) ,A,C Xi’yl(o)’B,C 

n r*i 
+ 2 ) w Y. 

i-l Ao) 
dB 

,BY.N 

(s1) 
xi’yi(o)’B>£ 

x.,y., s,A,C 
ii(o) * 

(104) 

xi’yi(o)’B-i. 

Xi'yi(o) >A’B 

n 

2 E w 
1=1 yi(o) xl’yl(o) ,A,B ' xi,yi(o) ,B,C 

& (-1) \BA / 

n 

+ 2 w 

i~i YAo)Yi 
BC 

■ BY 

iw) 

Xl’yl(0)’B£ 

xl’yi(o)-A’B 

(105) 
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Differentiating equation (100) with regard 

keeping A, B, and C constant, we have 

to a s ing ie y. , . , 
1(0) 

(106) 

The right-hand side of equation (106) reduces to a single term, since 

a single only appears in one term in the summation. 

Now from equation (4) 

Y. 
l ^i(o) ^i(calc) (4) 

so that 

( 
3Y 

3 v ^ 
yi(o) xi,y_.^i,A,B,C 

= 1 (107) 

and it follows that 

a / 3Y. * 
A. (—JlJ) 
3A \3y., N„ 

^(o) ^i,y^i,APBaC 
= 0 

x.,y. , x ,B SC 
i i(o) ’ s 

(108) 

Substituting equations (107) and (108) into equation (106) , we have 
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<dAj 
x.,y . / N ,B,C 

I— 3yi(o) 

= 2w 

Wi’A’B’C 

,BY.* 

yi(o) 3A 
(109) 

Substituting equations (103), (104), (105), and (109) in equation 

(97), we get 

n 

(r^H 7* 
yK°) yJ^1 i-i yi(°) 

/Hi'2 
32Y 

\5A )* + Yl(~21) 
xi’yi(o)’B»C SA xl’yl(o)’B,C 

( as\ 

ayi(o) y 

n 
BY 

yw (!!i^ p.) 
L. yABB / , A BA / „ r 

1=1 i(o) ' xl’yl(o),A,C xi’yl(o)’B’C 

n 
ra fhYi\ 

Yj / iLbb \BA / « v AO 
i-1 i(o' Vyi(o) ,BsC xi,yi(o),AsC 
I + > w J 

(.W.) 
'3yi(e/y 

J H 

n BY ,BY.n 

ly, AiA v . .(sA 
1-1 1(o) xl’yi(o) ,A’B xl’yi(o) 

n 

+ T w Y 

i-i y*<e> 1 

i. 
,BC VBA / 

K4 A x4 A#® 

+ w 
yl(e)'®A y.y^.B.C 

» o (110) 
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Upon differentiating equations (101) and (102) with regard to 

a single y^^> we obtain two expressions similar to equation (110) 

We will write equation (110) and the two other equations as 

l\c 

BA \ 

a,l,By. , J 
+ b (-J*-) 

l\By./ J 
, , + c ) = n (111) 

^(o) yJjti U(o) yjH 

+b,(-as_) • + c,(r-§S-) - n, (112) 
2'3yi(o) y<4j A3yi(o)4.^ Aayi(o/y^. 

BA 

“sW^Tt) + b3(ay~r) + c3(s^7t) = n3 (u3) 
yi(o) yJ)H 1(0) yj!tl ^(°) yj/i 

where 

n 

a. - Vw 

1 4 yi(°) 

BY2 

(sa ) 
+ Y A) 

xi’yi(o) ,B’C * 'SA xi’yl(o)’B>C 

(114) 

n 

w 

i=l yi(°) 
© 

,3Y.\ 

k1) 
Vyi(o) ’A,c Vyi(o) ’B,c 

n 

+ Iw 
i=l 

2 
BY., 

A ”y., ,Yi(&B9a) 
yi(o) 

xi’yi(o),C 

(115) 

a3 C1 

n 

i=l 

A) 
\BA / r, r. 

Xl’yi(o) ,A,B xi’yl(o)>B’C 

v- ,32Y.N 

+ IWy., Yi(i-^ 

n 

L y.f v i\BCBA/ 
1=1 j-w vyi 1(0) 

,B 

(116) 
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(117) 

,A,B 
i(°) 

(119) 

(120) 

(121) 

(122) 

Notice that the a's, b's, and c's defined by equations (114) - 

(119) are of the same form as the a's, b's, and c's defined by 



. 
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equations (19) - (24) which appear in our normal equations. The 

difference between these two definitions is that equations (114) - 

(119) apply when the least squares solution is obtained while 

equations (19) - (24) apply to 

c's given by equations (114) - 

values of the coefficients in 

iteration. 

Solving equations (111), 

(dA/dy^^) , (dB/dy^^) , and 

trial solutions. The a's, b's, and 

(119) can be considered as the 

the normal equations for the final 

(112), and (113) simultaneously for 

(dC/dy^^) , we get 

d( bA ) ■ .o\oy.t N/ 
i(o) 

Vi + ^>2n2 + D3n3 
(123) 

D (- aB ) = 
oVayi(o)' 

D4nl 
+ D5n2 + D6n3 (124) 

D L 3C ) - 
Aoyi(o/ 

Vl 
+ Dgn2 + D^n^ (125) 

where 

h ’ b2C3 ■ b3°2 
(126) 

D2 = Vl ■ ' blC3 
(127) 

D3 " blC2 ' 
- b2cx (128) 

D4 “ a3C2 a2C3 
(129) 

D5 " alC3 a3Cl 
(130) 
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D6 a2Cl " alC2 
(131) 

D7 ~ a2^3 ~ a3°2 
(132) 

D8 = a3bl " a1b3 
(133) 

D9 alb2 ' a2bl 
(134) 

D 
o alDl + a2D2 + a3D3 

(135) 

Notice that the D's defined by equations (126) - (135) are of 

the same form as the D's defined by equations (31) - (40) and, for 

the last iteration, when the least squares solution is obtained, they 

will be identical. 

2 
Squaring equation (123) and multiplying by S , we have 

yi(o) 

2 2C2 , n2 2S2 , n2 2C2 
D.n-S + D.n_S + D^n^S 

1 1 yl(o) 2 2 yi(o) 3 3 yi(o) 

2 2 
+ 2D1D„n1n0S + 2D1D„n1n„3 

1212 y1(o) 1313 y1(0) 

2 
+ 2DJ n n S 

2 3 2 3 y 
l(o) 

(136) 

But from equation (120) 

(137) 
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Now 

y . , . w 
1(0) y. 

(138) 

i(o) 

where L is a constant. Substituting equation (138) in equation (137), 

we find that 

2C2 
n. S 

1 y. i(o) 

t2 L w 

,BY..2 

y. , A B A / 

l(o) xi’yi(o) ,B,C 

(139) 

Similarly, we find that 

2c 2 n„S 
2 y,* i(o) 

0 /BY.. 2 

L w («r) 
yi(o)VSB XV AC 

U ; i’yi(o)jAsC 

(140) 

2 2 
noS 

3 y,. i(o) 

T2 L w 

BY.. 2 

y. 
i(o) 

(sr) 
Vyi(o) ’A’B 

(141) 

n n S 
i 2 y. 

i(o) 

t2 L w (5 
VBA 

/BY. 

(s1 
(142) 

1(o) Xi’yi(o),B?C xi’yi(o),A°C 

n,nQS2 
1 3 y4 

i(°) 

2 /BY.. /BY. 

L wy , Aba") AST, 
l(o) Xi’yl(o) ,BjC xi’yi(o) ’A’B 

(143) 

n n S 
2 3 y. 

i(°) 

T2 L w 
/BY.. /BY. 

y. / Abb") (bc~) 

l(o) Xl’yi(o)’A>C xl’yi(o) ,A,B 

(144) 





Substituting equations (139), 

(144)ilnto “•>“«<>» <136) and then 

yi(o) s’ We have 

(140)’ (WI), (142), a43), and 

summing over all of the observed 
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Squaring equation (124), multiplying by S and then summing, 

yi(o) 
we find that 

-&-) s2 

Syi(o) yi(o) 

= S 
2 L 

B 
D 

o 

, A /9Y.,2 

d2 y » At1) 4l y. ( ABA / ^ „ 
i=l 1<°> xi’yi(o),B,C 

n 
2r /BY..2 

°5 1 Wy. ( AW) 
1=1 l(°> xi’yi(o),A,C 

n 
,3Y.N 2 
/ l 

+ DeIwy Ar) 
i-1 l(0) Xi’yi(o),A,B 

Y". /BY . 

+ 2D4D5 Z Wy.,_\W) 
i=l 

i(o) 

BY, 
_i 
BB 

Xi’yi(o) ,B,C xi’yi(o)’A 

n 
• BY., 

+ 2D4°6 X Wy. , .(bA ) (sc ) 
i=1 i(o) x.,y.,^,B,C x.,y.,^,A: 

‘i i(o) i i(o) 

n 
r-1 /BY.. 

+ 2D5D6 2Wy,, Air) 
1=1 ^°> 

/BY.. 

(sr) 
x.,y., N ,AaC 'w~ 'x.,y., . ,A 

i y i(o) i h(o) 

(146) 

C 

B 

B 



' 
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Similarly, from equation (125) , we find that 

n 

V ( BC 

i(°)# y i(°) 

2 

y. 
= s 

1=1 

2 = IT 

C = D2 
o 

°7 l W (S1)2 

i-1 yi<°)W Vy1(o),B;C 

? A /3Y-\2 
+ D2 V w ? A , .. (—iV 

8i=l Yi(d) 3B x.,y./„s,A,C 
i’U(o) 

n 

+ ) w 

,BY.X2 

9 L y. / ABC 
i=i ^ 

n 
/BY. 

+ 2D7D8ZWy.r A 
1=1 l(o> 

n 
/BYi 

?~9 Zj "y, nBA-1 
+ 2D^D ) w 

9 4j j . , s. 
1=1 

n 

+ 2D8D9lwy., ' 
1=1 ^°> 

/BY. 

,’yi(o) ,AjB 

\ / '3Yi\ 

7 „ A ,8B ) 
xi’yi(o),B,C xi’yi(o)’A’C 

\ / 
,3Y.. 

V ( sBC / 

Xl’yi(o) ’B’C xi’yi(o) ,A,E 

\ i rBY., 

( *dC/ A „ 

Vyi(o) >A’C xi,yl(o) >A>B 

(147) 
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For the covariances, we find from equations (123), (124), and 

(125) 

n BY,, 2 

1-1 xi’yi(o) ’B,C 
"A £ V,© 

n 

aA V SB A2 = q2 _ i 
ayi(o/'*yi(o/ yi(o) AB " D 

r /BY..2 
+ D D_ ) w (~) 

2 5 L y., Abb ) n 
i=l Xi,yi(o) A3C 

r A y.x2 

+ D3D6lWyi(o)(^) 
i=l x.,y., , ,A,B 

i i(o) ’ 

n 
r-i / BY. v 

+(d2VdiV I wyi(o)(sr) 

'BY. 

i=l 

© 
Vyi(o) ’B’C Xi’yi(o) ’A’C 

n r~> / BY . v 
+<WW Ay., Air) 

1=1 1(0) 

• 3Y.. 

(A 
Xi’yi(o),B’C °C xi’yi(o)’A’B 

n 

C-h.) 
\3B / 

+ (d2d6+ d3d5) y w 

i=1 yi(o)- -*1.y1(o),A,c- -*1,yi(o),A,B 

/BY., 

sr) 

(148) 
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^A_)(^£_)s2 

Sy-r^A9y.*/-N' y_. 

,2 L 

ri(o)Adyi(o)7 yi(o) AC D2 
o 

V /■\ 

DiD71 V, Asa1) 
i=1 i (o) Xi,yi(o)’B,C 

n 
SY.v 2 

I\., Xw) + D2°8 L Vy.( .__ 
1=1 l<» xi’yi(o)’A’C 

n 
SY.v 2 

fer) + DoDq / W 
j y L y., s_, , „ 

i-1 L(o) Xi’yl(o),A,B 

n 
fiX. 

+(WWlv, Asa1 ) 
,3Y . 

(ar 
i=l 1(0) xi’yi(o) ,B,C ~~ xi’yi(o)’A,C 

n 
/SY.n /BY.s 

t(WWlvn(») . iw) 
i=l 1(0) K.,y.(o),B;C x.,yi(o))A;B 

n 
/3Y-\ /SY., 

+(W W 2 wy...(sr) . (sr) 
1 = 1 1(0) xi’yi(o)>A’C ‘ 

X. ,y . , v ,A,B 
1 1(0)’ 5 

(149) 
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and finally, 

■^Xi^y2 3yi(o)A3yi(o/ yi(o) 
s2 = i- 

BG d2 

O 

n 

V? L Wy 
/SY.X2 

(sr) 
i=l *- (°) xi -,yi (o) ,B 

n 
BY.V2 

+ V8IWy.. .(sT) 
1=1 l(0) Vyi(o)’A>C 

n 

+ 
/BY.X2 

,(sr) V91" 
1=1 ’ 1(°) Xi’yi(o)’A’B 

+(D5D9+ D6D8} 

n 

X Wy. . < 
1=1 1(°> \<5k ) 

n 

X wy. , < 
1=1 ^ ,ar) 

n 
,3Y S 

Xv, ( i=l i(o) 5:;) 

(S 
Xi’yi(o) ’B’C xi>Yi(o)’A>C 

SY.v 

hr) 
Xi,yi(o),B,C ~ Xi’yi(o)>A’B 

,BY. 

.(sc' ) 
‘ i5 y i ( o) 

x.,y. , .,ASB 
i7i(o)’ 5 

(150) 
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Equations (145), (146), (147), (148), (149), and (150) allow 

us to calculate the variances and covariances of the constants eval¬ 

uated . 

Now Dq is the value of the determinate of the coefficients that 

appear in the final normal equations. In a linear problem, it is 

found that may be factored from the right-hand side of equations 

(.145) - (150) so that the expressions for the variances and covar¬ 

iances only involve Dq to the first, power in. the denominator. This 

is not true for a non-linear problem as can be shown from the exact 

derivation given above. The present method in use in calculating 

variances and covariances is therefore only an approximation. How 

good this approximation is can only be decided by testing it against 

the mathematically exact calculation given above. Since this is 

true, we prefer to calculate variances and covariances using the 

mathematically exact equations given above. 

We now answer the question, how do we calculate the variance, 

of a calculated y which reduces the function F to zero for a given 

x? The answer to this question is obtained as follows: y is a 

function of x, and through the constants evaluated, is a function 

of all of the observed y^.^'s and x.'s. When we apply the law for 

the. propagation of errors, we have 

(151) 
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We calculate 
& 

from equation (1). Differentiating 

equation (1) , we have 

i(°) 

(M.) 
\SA J k?r) + 

’SFV 

& 
x,y,B,C'dyi(o)/y^i,x. ^dB x,y,A,C Syi(o)'y^i5x. 

+ + ("J • 
SC x,y,A,B $yi(o) yj^± ± Sy x,A,B,C Syi(o)' y^i ,xj, ,x kt-) 

= 0 (152) 

Solving equation (152) for ('^y^ ) , we get 

i(o) yj/i5x.,x 

& 
1(0) !(1,V 

x,A3B PC 

+ 

(-&—) 
x,y,B,C 3yi(o) y.jti,xi 

f-a 
,\dy. SB/ ASy., v/ 

x,y,AaC yi(o) y ^i,xi 

+ c-sc ^ 
9C x,y,A,B 3yi(o) yj?ti>xi 

(153) 
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Squaring equation (153), multiplying by S , and then summing 

Yi(o) 
over all the observed y 's, we obtain 

Ho; 

V(^_)S2 

- yi(0) © 
x ,ASB SC 

i<£)‘ , *«)2 
x,y,B,C x ,y ,A,C 

* 4© 
+ 2S 

x,y,A,B 

2 /dF\ 
AB\W „ AW 

x,y,B,C °B'x,y,A,C 

+ 2s2 (&) (m acW _ AW A „ 
x,y,BsC x,y,A,B 

+ 2S /SFn 
BC\3B/ . \ SC/ . „ 

x,y,A,C x,y,A,B 

(154) 

where the variances and covariances in equation (154) are to be calcu¬ 

lated from equations (145), (146), (147), (148), (149), and (150). 

Equation (154) is the general formula for calculating the variance 

of a calculated y, regardless of the functional relationship between 

y and x and the parameters, A, Bs and C. 

This concludes the derivations of the formulas used by us in 

the solution of general non-linear least squares problems. 

In a later paper, we will apply these general formulas to the 

reduction of PVT data obtained by the Burnett method. 
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