\qquad

UNITED STATES

DEPARTMENT OF THE INTERIOR BUREAU OF MINES HELIUM ACTIVITY HELIUM RESEARCH CENTER

INTERNAL REPORT

CALCULATION OF VARIANCES AND COVARIANCES
BY

Robert E. Barieau
B. J. Dalton
\qquad
\qquad

BRANCH
Fundamental Research
PROJECT NO. 4335

HELIUM RESEARCH CENTER

INTERNAL REPORT

NON-LINEAR REGRESSION AND THE PRINCIPLE OF LEAST SQUARES. THE METHOD OF EVALUATING THE CONSTANTS AND THE CALCULATION OF VARIANCES AND COVARIANCES

asbry.

2 2

$2+2+20+20$
289 1:97h

CONTENTS

Page
Abstract 3
Introduction 3
Evaluation of the constants. 7
Calculation of variances and covariances 33
References 55

NON-LINEAR REGRESSION AND THE PRINCIPLE OF LEAST SQUARES. THE METHOD OF EVALUATING THE CONSTANTS AND THE CALCULATION OF VARIANCES AND COVARIANCES.

by

Robert E. Barieau ${ }^{1 /}$ and B. J. Dalton/2/

Abstract

This report is concerned with the necessary mathematical equations in order co accomplish the following objectives: 1. to evaluate the parameters such that the sum of the weighted squares of the residuals of an experimental observable be a true minimum, regardless of the functional relationship between the variables and these parameters; 2. to evaluate all variances and covariances of the parameters evaluated by means of the law for the propagation of errors; and 3. to insure that a true minimum will always be obtained. The equations presented in this report were developed for a three-parameter problem.

INTRODUCTION

The Helium Research Center, Bureau of Mines, has as one of its long-range objectives the development of an equation of state for

[^0]Work on manuscript completed December 1965.

7d

Moxsouvorart

helium that will reproduce the data to within the accuracy with which the data are known.

The Helium Research Center also has an experimental program for obtaining PVT data on gases and mixtures by the Burnett (2) $\underline{3}^{\frac{3}{/}}$ method.

3/ Underlined numbers in parentheses refer to items in the list of references at the end of this report.

In the Burnett method, one of the constants that must be evaluated is the volume-ratio of two containers. By the theory of the method, this constant is inherently non-linear. It was therefore decided to develop a capability for handing non-Iinear regression problems. This report gives the principles of the method the Helium Research Center uses in such problems.

Our method differs in several important respects from methods currently in use. In solving non-Iinear problems, the problem must be linearized and an iteration technique used to obtain the solution. All texts on non-linear regression, of which we are aware, linearize the problem before the normal equations are formed. This method is known as the Gauss-Newton method. In our method, the exact normal equations are formed, and the problem is linearized by expanding the exact normal equations in a Taylor's series expansion retaining the first two terms. This method is known as the Newton-Raphson method (I). The only work that we have been able to locate that uses this method in non-inear least squares problems is that of Strand, Kohl, and Bonham (8).

These two different methods, as will be shown later, lead to the same least squares solution provided the iteration procedure converges to an answer. We have found that if one starts within the region of convergence, the Newton-Raphson method converges more rapidly than the Gauss-Newton method. This is one advantage of the method we have chosen.

If on applying the Gauss-Newton or the Newton-Raphson method, the problem is diverging after the first iteration, a method must be found that will lead to convergence. One of the methods that may be tried at this stage is the negative gradient or method of steepest descent. If the step in the direction of the negative gradient is small enough, this method must lead to a smaller sum of the squares of the deviations. The problem with this method in the past has been deciding on the size of the step to be taken. If the Newton-Raphson method has been used in developing the normal equations for the first iteration, then the size of the step to be taken in the direction of the negative gradient can be evaluated very simply from the coefficients appearing in the normal equations. This is the second advantage of the method we have chosen.

The third advantage involves the calculation of the variances and covariances of the constants evaluated. As far as we are aware, all authors and all programs available calculate variances and covariances on the assumption that the formulas that apply to linear problems will apply to non-linear problems once the non-linear problems have been linearized. We reject this assumption, preferring to calculate

2

20

 us sort? 2

variances and covariances from the fundamental definition of these quantities and the law for the propagation of errors. (1, $\underline{5}$).

Some authors (6) claim that the least squares values of the constants evaluated in a non-linear problem are biased and should be corrected. All the proofs of this, that we have seen, assume the deviations are distributed with zero mean. This, of course, is never true in a non-linear problem unless this condition is imposed as a constraint. Further, the principle of least squares maximizes the probability that the deviations are equal to the true random errors. This is true for both linear and non-linear problems. This being true, we fail to see how any solution can be better than the least squares solution. We therefore take the least squares solution as being non-biased and apply no correction.

We have set the following objectives for our method.

1. To evaluate the parameters so that the sum of the weighted squares of the residuals of an experimental observable is a true minimum.
2. Objective 1 is to be accomplished even though the functional relationship between the observables and parameters is such that the observable involved in the minimum of the sum of the weighted squares of the residuals cannot be explicitly expressed as a function of other observables and the parameters.
3. All variances and covariances are to be calculated, with no approximations, by means of the law for the propagation of errors.
4. The method is to be such that a true minimum will always be obtained.
 (20.4.

 2

 4atand

 smualiata

This report is concerned with the necessary mathematical equations in order to accomplish the above-named objectives. The equations are developed for a three-parameter problem. The extension to the evaluation of more parameters should be obvious.

EVALUATION OF THE CONSTANTS

Suppose one has experimentally determined a set of n data points x_{i}, y_{i}. Let the functional relationship between x and y and the parameters A, B, and C be given by

$$
\begin{equation*}
F(y, x, A, B, C)=0 \tag{1}
\end{equation*}
$$

We assume that there are no random errors in the x_{i} 's and that random errors occur in the observed y_{i} 's.

Now suppose we have evaluated the constants A, B, and C by some means or other. Then, because of random errors in y_{i}, equation (1) will not be exactly satisfied when the observed y_{i} and x_{i} values are substituted in equation (1). We will let F_{i} be the numerical value of F, when the observed y_{i} and x_{i} values are substituted in equation (1). Thus,

$$
\begin{equation*}
E_{i}=F\left(y_{i(0)}, x_{i}, A, B, C\right) \tag{2}
\end{equation*}
$$

Now when x_{i} is substituted in equation (1), we may solve for y_{i} so that equation (1) is satisfied exactly. We will designate this y_{i} as $y_{i(c a 1 c)}$. Thus,

$$
\begin{equation*}
F\left(y_{i(c a l c)}, x_{i}, A, B, C\right)=0 \tag{3}
\end{equation*}
$$

The residual of y_{i} is given by

$$
\begin{equation*}
4=,\left(2, A_{1}, A_{i} A_{1},\right)^{2} \tag{i}
\end{equation*}
$$

 - bualr

$$
\begin{equation*}
\left.\left.\{0,2, N)^{x}+(6)\right)^{x}\right) 1=-w^{3} \tag{68}
\end{equation*}
$$

$$
\text { , जuला }(a) a z) f^{2} \text { as }
$$

$$
\begin{equation*}
0=\left(0, B_{1} \lambda_{1} y^{x}(0,<\pi), V\right)! \tag{es}
\end{equation*}
$$

$$
\begin{equation*}
y_{i}=y_{i(0)}-y_{i(c a l c)} \tag{4}
\end{equation*}
$$

Now Y_{i}, the residual of y_{i}, is the difference between the observed and calculated values. This is not the true random error in our observed y_{i} because we do not know the true value of y_{i}. However, we can maximize the probability that our $Y_{i}{ }^{\prime} s$ are equal to the true random errors, and this is just what the principle of least squares does. The principle of least squares says that we maximize the probability that the Y_{i} 's represent the true random errors by minimizing the sum of the weighted squares of the residuals.

Thus, the function to be minimized is given by

$$
\begin{equation*}
R=\sum_{i=1}^{n} w_{i(0)} Y_{i}^{2} \tag{5}
\end{equation*}
$$

where ${ }^{w} y_{i(0)}$ is the weight assigned to $y_{i(0)} \cdot R$ is a function of the constants to be evaluated: A, B, and C. The condition that R be a minimum is determined by

$$
\begin{align*}
& \frac{1}{2}\left(\frac{\partial R}{\partial A}\right)_{B, C}=\sum_{i=1}^{n} w_{i(0)} Y_{i}\left(\frac{\partial Y_{i}}{\partial A}\right)=0 \tag{6}\\
& \frac{1}{2}\left(\frac{\partial R}{\partial B}\right)_{A, C}=\sum_{i=1}^{n} W_{i(0)} Y_{i}\left(\frac{\partial Y_{i}}{\partial B}\right)=0 \tag{7}
\end{align*}
$$

and

$$
\begin{equation*}
\frac{1}{2}\left(\frac{\partial R}{\partial C}\right)_{A, B}=\sum_{i=1}^{n} W_{i(0)} Y_{i}\left(\frac{\partial Y_{i}}{\partial C}\right)=0 \tag{8}
\end{equation*}
$$

- (1)

$$
(a \operatorname{an}=)^{x}-(\operatorname{se}) x^{x}=1^{y}
$$

To unctaputh an at it

 xd feotixziziab at mantolin so ad

$$
\begin{equation*}
0-\left(\frac{2^{3} 0}{16}\right)_{2}^{x}(0) x^{x}, \frac{1}{2} \frac{1}{2}=\left(\frac{56}{66}\right) \frac{1}{5} \tag{d}
\end{equation*}
$$

$$
\begin{equation*}
\left.0 .-\left(\frac{1^{76}}{25}\right)^{2}(0) 1^{x^{w}}=\frac{\pi}{i=1}=a_{1}, \frac{96}{56}\right)-\frac{1}{5} \tag{0}
\end{equation*}
$$

In the application of equations (6), (7), and (8), the observed y_{i} 's and x_{i} 's are to be held constant in the derivatives: $\left(\frac{\partial R}{\partial A}\right)_{B, C},\left(\frac{\partial R}{\partial B}\right)_{A, C},\left(\frac{\partial R}{\partial C}\right)_{A, B}$. Equations (6), (7), and (8) are the exact normal equations.

If Y_{i} is non-linear in the undetermined constants, then the solutions of our normal equations will not be straightforward.

It will be necessary to solve them by an iterative technique in which values of the constants are assumed. This is done by expanding $Y_{i},\left(\frac{\partial Y_{i}}{\partial A}\right),\left(\frac{\partial Y_{i}}{\partial B}\right)$, and $\left(\frac{\partial Y_{i}}{\partial C}\right)$ in a Taylor's series expansion about an approximate solution, Y_{i}^{O}, retaining only the first two terms. Thus,

$$
\begin{gather*}
Y_{i}=Y_{i}^{0}+\left(\frac{\partial Y_{i}}{\partial A}\right)^{0} \Delta A+\left(\frac{\partial Y_{i}}{\partial B}\right)^{0} \Delta B+\left(\frac{\partial Y_{i}}{\partial C}\right)^{0} \Delta C \tag{9}\\
\left(\frac{\partial Y_{i}}{\partial A}\right)=\left(\frac{\partial Y_{i}}{\partial A}\right)^{0}+\left(\frac{\partial^{2} Y_{i}}{\partial A^{2}}\right)^{0} \Delta A+\left(\frac{\partial^{2} Y_{i}}{\partial A \partial B}\right)^{0} \Delta B+\left(\frac{\partial^{2} Y_{i}}{\partial A \partial C}\right)^{0} \Delta C \tag{10}\\
\left(\frac{\partial Y_{i}}{\partial B}\right)=\left(\frac{\partial Y_{i}}{\partial B}\right)^{0}+\left(\frac{\partial^{2} Y_{i}}{\partial B \partial A}\right)^{0} \Delta A+\left(\frac{\partial^{2} Y_{i}}{\partial B^{2}}\right)^{0} \Delta B+\left(\frac{\partial^{2} Y_{i}}{\partial B \partial C}\right)^{0} \Delta C \tag{11}\\
\left(\frac{\partial Y_{i}}{\partial C}\right)=\left(\frac{\partial Y_{i}}{\partial C}\right)^{0}+\left(\frac{\partial^{2} Y_{i}}{\partial C \partial A}\right)^{0} \Delta A+\left(\frac{\partial^{2} Y_{i}}{\partial C \partial B}\right)^{0} \Delta B+\left(\frac{\partial^{2} Y_{i}}{\partial C^{2}}\right)^{0} \Delta C \tag{12}
\end{gather*}
$$

where the quantities $\Delta A, \Delta B$, and ΔC are defined as

$$
\begin{aligned}
& \Delta A=A-A_{0} \\
& \Delta B=B-B_{0} \\
& \Delta C=C-C_{0}
\end{aligned}
$$

$$
0,410+1+2,16(86)+2,\left(\frac{186}{48}\right)
$$

Aroplusepe Iwhan Jskua

$$
\begin{equation*}
26\left(\frac{25}{25}\right)+46\left(\frac{125}{25}\right)+20\left(\frac{1^{40}}{46}\right)+94-14^{8} \tag{e}
\end{equation*}
$$

$$
\begin{aligned}
& 2 \mathrm{~A}+\mathrm{A}=\mathrm{AD} \\
& 8-8=9 A \\
& a-8=03
\end{aligned}
$$

where A, B, and C are our undetermined constants, and A_{0}, B_{0}, and C_{0} are approximate values for these quantities. Then to first order in the $\Delta^{\prime} s$

$$
\begin{align*}
& Y_{i}\left(\frac{\partial Y_{i}}{\partial A}\right)=\left[\begin{array}{c}
Y_{i}^{0}\left(\frac{\partial Y_{i}}{\partial A}\right)^{0}+\left[\left(\frac{\partial Y_{i}}{\partial A}\right)^{0^{2}}+Y_{i}^{0}\left(\frac{\left.\partial^{2} Y_{i}\right)^{0}}{\partial A^{2}}\right] \Delta A\right. \\
+\left[\left(\frac{\partial Y_{i}}{\partial B}\right)^{0}\left(\frac{\partial Y_{i}}{\partial A}\right)^{0}+Y_{i}^{0}\left(\frac{\partial^{2} Y_{i}}{\partial B \partial A}\right)^{0}\right] \Delta B \\
+\left[\left(\frac{\partial Y_{i}}{\partial C}\right)^{0}\left(\frac{\partial Y_{i}}{\partial A}\right)^{0}+Y_{i}^{0}\left(\frac{\partial^{2} Y_{i}}{\partial C \partial A}\right)^{0}\right] \Delta C
\end{array}\right] \tag{13}\\
& Y_{i}\left(\frac{\partial Y_{i}}{\partial B}\right)=\left[\begin{array}{c}
Y_{i}^{0}\left(\frac{\partial Y_{i}}{\partial B}\right)^{0}+\left[\left(\frac{\partial Y_{i}}{\partial A}\right)^{0}\left(\frac{\partial Y_{i}}{\partial B}\right)^{0}+Y_{i}^{0}\left(\frac{\partial^{2} Y_{i}}{\partial A \partial B}\right)^{0}\right] \Delta A \\
+\left[\left(\frac{\partial Y_{i}}{\partial B}\right)^{0^{2}}+Y_{i}^{0}\left(\frac{\partial^{2} Y_{i}}{\partial B^{2}}\right)^{0}\right] \Delta B \\
+\left[\left(\frac{\partial Y_{i}}{\partial B}\right)^{0}\left(\frac{\partial Y_{i}}{\partial C}\right)^{0}+Y_{i}^{0}\left(\frac{\partial^{2} Y_{i}}{\partial B \partial C}\right)^{0}\right] \Delta C
\end{array}\right] \tag{14}\\
& \begin{array}{l}
Y_{i}\left(\frac{\partial Y_{i}}{\partial C}\right)=\left[\begin{array}{l}
Y_{i}^{O}\left(\frac{\partial Y_{i}}{\partial C}\right)^{0}+\left[\left(\frac{\partial Y_{i}}{\partial A}\right)^{0}\left(\frac{\partial Y_{i}}{\partial C}\right)^{0}+Y_{i}^{0}\left(\frac{\partial^{2} Y_{i}}{\partial A \partial C}\right)^{0}\right] \Delta A \\
+\left[\left(\frac{\partial Y_{i}}{\partial B}\right)^{0}\left(\frac{\partial Y_{i}}{\partial C}\right)^{0}+Y_{i}^{0}\left(\frac{\partial^{2} Y_{i}}{\partial B \partial C}\right)^{0}\right] \Delta B \\
+\left[\left(\frac{\partial Y_{i}}{\partial C}\right)^{0^{2}}+Y_{i}^{O}\left(\frac{\partial^{2} Y_{i}}{\left.\left.\partial C^{2}\right)^{0}\right]} \Delta C\right.\right.
\end{array}\right]
\end{array} \tag{15}
\end{align*}
$$

Substituting equations (13), (14), and (15) into our normal equations (6), (7), and (8), we have

$$
\begin{align*}
& a_{1} \Delta A+b_{1} \Delta B+c_{1} \Delta C=m_{1} \tag{16}\\
& a_{2} \Delta A+b_{2} \Delta B+c_{2} \Delta C=m_{2} \tag{17}\\
& a_{3} \Delta A+b_{3} \Delta B+c_{3} \Delta C=m_{3} \tag{18}
\end{align*}
$$

where

$$
\begin{align*}
& a_{1}=\sum_{i=1}^{n} w_{i(0)}\left[\left(\frac{\partial Y_{i}}{\partial A}\right)^{0}+Y_{i} 0\left(\frac{\partial^{2} Y_{i}}{\partial A^{2}}\right)^{o}\right] \tag{I9}\\
& a_{2}=b_{1}=\sum_{i=1}^{n} w_{i(0)}\left[\left(\frac{\partial Y_{i}}{\partial B}\right)^{o}\left(\frac{\partial Y_{i}}{\partial A}\right)^{o}+Y_{i}^{o}\left(\frac{\partial^{2} Y_{i}}{\partial A \partial B}\right)^{o}\right] \tag{20}\\
& a_{3}=c_{1}=\sum_{i=1}^{n} w_{i(0)}\left[\left(\frac{\partial Y_{i}}{\partial A}\right)^{o}\left(\frac{\partial Y_{i}}{\partial C}\right)^{o}+Y_{i}^{o}\left(\frac{\partial^{2} Y_{i}}{\partial A \partial C}\right)^{o}\right] \tag{21}\\
& b_{2}=\sum_{i=1}^{n} w_{i(0)}\left[\left(\frac{\partial Y_{i}}{\partial B}\right)^{o^{2}}+Y_{i}^{o}\left(\frac{\partial^{2} Y_{i}}{\partial B^{2}}\right)^{o}\right] \tag{22}\\
& b_{3}=c_{2}=\sum_{i=1}^{n} w_{i(o)}\left[\left(\frac{\partial Y_{i}}{\partial B}\right)^{o}\left(\frac{\partial Y_{i}}{\partial C}\right)^{o}+Y_{i}^{o}\left(\frac{\partial^{2} Y_{i}}{\partial B \partial C}\right)^{0}\right] \tag{23}\\
&\left.c_{i}\right] \tag{24}
\end{align*}
$$

$$
i^{n}=a i_{1}+\Delta n_{1} d+A_{1} n
$$

(NS)

$$
\begin{align*}
& m_{I}=-\sum_{i=1}^{n} W_{i(0)} Y_{i}^{o}\left(\frac{\partial Y_{i}}{\partial A}\right)^{0} \tag{25}\\
& m_{2}=-\sum_{i=1}^{n} W_{i(0)} Y_{i}^{0}\left(\frac{\partial Y_{i}}{\partial B}\right)^{0} \tag{26}\\
& m_{3}=-\sum_{i=1}^{n} w_{i(0)} Y_{i}^{o}\left(\frac{\partial Y_{i}}{\partial C}\right)^{0} \tag{27}
\end{align*}
$$

The solutions to equations (16), (17), and (18) are

$$
\begin{align*}
& D_{0} \Delta A=D_{1} m_{1}+D_{2} m_{2}+D_{3} m_{3} \tag{28}\\
& D_{0} \Delta B=D_{4} m_{1}+D_{5} m_{2}+D_{6} m_{3} \tag{29}\\
& D_{0} \Delta C=D_{7} m_{1}+D_{8} m_{2}+D_{9} m_{3} \tag{30}
\end{align*}
$$

where

$$
\begin{align*}
& D_{1}=b_{2} c_{3}-b_{3} c_{2} \tag{3I}\\
& D_{2}=b_{3} c_{1}-b_{1} c_{3} \tag{32}\\
& D_{3}=b_{1} c_{2}-b_{2} c_{1} \tag{33}\\
& D_{4}=a_{3} c_{2}-a_{2} c_{3} \tag{34}\\
& D_{5}=a_{1} c_{3}-a_{3} c_{1} \tag{35}\\
& D_{6}=a_{2} c_{1}-a_{1} c_{2} \tag{36}\\
& D_{7}=a_{2} b_{3}-a_{3} b_{2} \tag{37}\\
& D_{8}=a_{3} b_{1}-a_{1} b_{3} \tag{38}\\
& D_{9}=a_{1} b_{2}-a_{2} b_{1} \tag{39}
\end{align*}
$$

$$
\begin{equation*}
\left(\frac{2^{Y 6}}{\lambda 6}\right)_{1}^{0} Y(0) 1^{2} \int_{j=1}^{\frac{n}{2}}-=I^{(\pi)} \tag{es}
\end{equation*}
$$

$$
\begin{equation*}
\left(\frac{e^{26}}{20}\right)_{1}^{a}(a) 1^{k^{2}} \int_{101}^{\frac{g}{2}}=e^{m} \tag{as}
\end{equation*}
$$

$$
{ }^{0}\left(\frac{x^{85}}{35}\right)_{2}^{7}(6) 2^{x^{4}} \int_{t=1}^{\pi}=e^{\pi}
$$

$$
\left.e^{a r}\right)^{a}+f_{3}^{a}+y^{m a}=8 a^{a} a
$$

$$
\begin{equation*}
s^{p} c^{d}-e^{3} e^{d}=1^{a} \tag{16}
\end{equation*}
$$

$$
E^{3} 1^{d}-L^{3} L^{d}=s^{4}
$$

(ice)

$$
t^{13} s^{d-}-s^{3} 1^{d}=t^{d}
$$

$$
\begin{equation*}
\varepsilon^{9} x^{a}-a^{2} i^{3}=x^{a} \tag{BC}
\end{equation*}
$$

$$
L^{3} L^{6-} e^{2} i^{6}=e^{6}
$$

$$
\begin{equation*}
t^{2} s^{n}-a^{3} s^{\pi}=d^{0} \tag{dc}
\end{equation*}
$$

$$
0 \pi
$$

$$
\begin{equation*}
s^{1} c^{0}+\varepsilon^{d} s^{\tilde{a}}=r^{d} \tag{INC}
\end{equation*}
$$

$$
\begin{align*}
& \varepsilon^{d} f^{n}-1^{d} E^{A}=8^{a} \\
& f^{d} s^{A}-s^{d} f^{b} \Rightarrow e^{a} \tag{eve}
\end{align*}
$$

$$
\begin{equation*}
D_{0}=a_{1} D_{1}+a_{2} D_{2}+a_{3} D_{3} \tag{40}
\end{equation*}
$$

The solutions of equations (28), (29), and (30) give the corrections to be applied to the assumed values of our undetermined constants.

In the Gauss-Newton method of linearization, the second term in the summations of the $a^{\prime} s, b^{\prime} s$, and $c^{\prime} s$ of equations (19)-(24) is neglected; this does not lead to an error as long as the method converges because the exact solutions of equations (16), (17), and (18) are: $\Delta A=\Delta B=\Delta C=0$.

When the functional relationship between the observables is such that $y_{i(c a l c)}$ cannot be solved for explicitly, it will be necessary to solve equation (3) for $y_{i(c a l c)}$ by a series of approximations. Let us expand F in a truncated Taylor's series expansion about the point $x_{i}, y_{i(0)}$:

$$
\begin{gather*}
F=F_{i}+\left(\frac{\partial F}{\partial y}\right)_{\substack{x, A, B, C}}\left(y_{i(c a l c)}-y_{i(0)}\right)=0 \tag{41}\\
\\
x=y_{i}(0)
\end{gather*}
$$

or

$$
\begin{equation*}
y_{i(0)}-y_{i(c a l c)}=\frac{F_{i}}{\left(\frac{\partial F}{\partial y}\right)_{\substack{x, A, B, C}}} \tag{42}
\end{equation*}
$$

where in equations (41) and (42) the symboI $\left(\frac{\partial F}{\partial y}\right)_{x, A, B, C}$ means that

$$
y=y_{i}(0)
$$

$$
x=x_{i}
$$

$$
\begin{equation*}
\varepsilon^{a} c^{b}+s^{a} s^{s}+1^{a} s^{a}=d \tag{0.2}
\end{equation*}
$$

$$
\text { (c) }(c) 1^{*} \cdot 1^{x \text { tnkon }}
$$

(1)

$$
\left.0-(\operatorname{sog},(x-(\operatorname{sias})+2))_{2, a, 1, x}^{2 a}\right)+t^{2}=8
$$

(SA)

$$
\begin{aligned}
& \frac{\delta^{3}}{\left(\frac{06}{n}\right)}=(\cos \tan) x^{x}-(0) 1^{x} \\
& \text { (w) } A^{T^{-1} x} \\
& \text { 2xas }
\end{aligned}
$$

the derivative of F with regard to y, keeping x, A, B, and C constant, is to be evaluated at the point

$$
\begin{aligned}
y & =y_{i}(0) \\
x & =x_{i}
\end{aligned}
$$

The solution of equation (42) gives the first approximation for $y_{i(c a i c)}$. We designate this value as $y_{i(c a l c)}{ }_{1}$. This value is then substituted into equation (3), and if $y_{i(c a l c)}$ is not the exact answer, equation (3) will not be satisfied exactly. We designate this value of F as $F_{i(c a l c)}^{1}$. Thus,

$$
\begin{equation*}
F_{i(c a l c)_{1}}=F\left(x_{i}, y_{i(c a l c)_{1}}, A, B, C\right) \tag{43}
\end{equation*}
$$

Then the second approximation, $y_{i(c a l c)}$, of $y_{i(c a i c)}$ is obtained from the expression

$$
y_{\left.i(c a l c)_{1}-y_{i(c a l c}\right)_{2}}=\frac{F_{i(c a l c)_{1}}}{\left(\frac{\partial F}{\partial y}\right)_{\substack{x, A, B, C}}^{y=y_{i(c a l c)}} \begin{array}{l}
x=x_{i} \tag{44}
\end{array}}
$$

This iteration is repeated until equation (3) is satisfied to within any amount we wish to specify.

Once we have $y_{i(c a l c)}$ and $y_{i(0)}$, then $Y_{i}=y_{i(0)}-y_{i(c a l c)}$, and Y_{i}^{2} can be calculated. Then if $w_{i(0)}$ is known or has been assigned, R may be calculated by means of equation (4).

$$
\text { (0) } x^{x}=x
$$

 Q SodT $\left.f^{(a L a s y)}\right)^{8} \operatorname{sis}$ T 40 andan atds

$$
\left(0,8, A_{1},(2(6 s))_{1}\left(_{1}()\right)^{4}=(2(s))_{1}^{4}\right.
$$

(44)
nuzeesia

 - (h) nolymups 30 ancas od bataluolms gat vom on

If the $y_{i(0)}$'s all have the same precision index, they will all have the same weight and $w_{y_{i(0)}}=1$. If the $y_{i(0)}$'s do not all have the same precision index, then

$$
\begin{equation*}
\mathrm{w}_{\mathrm{y}(0)}=\frac{\mathrm{L}^{2}}{S_{y_{i(0)}^{2}}} \tag{45}
\end{equation*}
$$

where L is a constant and $S_{y_{i(0)}}^{2}$ is the variance of $y_{i(0)}$. In a particular problem, it may be necessary to assume that $\mathrm{w}_{\mathrm{y}_{\mathrm{i}}(\mathrm{o})}=\mathrm{I}$ in the beginning. However, if this is done, the residuals, $\left[y_{i(o)}-y_{i(c a l c)}\right]$, should be examined to see if there is any statistical evidence for the residuals squared being a function of y. Any assumption as to the variance, $S_{y_{i(0)}}^{2}$, being a function of y can always be checked by examining the residuals. In any event, $w_{y_{i(o)}}$ is not a function of the constants to be evaluated.

We now proceed to develop the equations needed to calculate the coefficients of our normal equations. Differentiating equation (4) with regard to A, keeping $x_{i}, y_{i(0)}, B$, and C constant, we have

$$
\begin{equation*}
\left(\frac{\partial Y_{i}}{\partial A}\right)_{x_{i}, y_{i(0)}, B, C}=-\left(\frac{\partial y_{i(c a I c)}}{\partial A}\right)_{x_{i}, B, C} \tag{46}
\end{equation*}
$$

Differentiating equation (3) with regard to A, keeping x_{i}, B, and C constant, we have

$$
\begin{equation*}
\left(\frac{\partial F}{\partial y_{i}(c a l c)}\right)_{x_{i}, A, B, C}\left(\frac{\partial y_{i(c a i c)}^{\partial A}}{\partial}\right)_{x_{i}, B, C}+\left(\frac{\partial F}{\partial A}\right)_{x_{i}, y_{i(c a i c)}, B, C}=0 \tag{47}
\end{equation*}
$$

 (o) 1 mods , easont ackisfongy anaa orty
(2.4)

 $(a))^{4}$
 $(0.1)^{2}$

(8 今)

(rA) $0=$

$$
a
$$

or

$$
\begin{equation*}
\left(\frac{\partial y_{i(c a l c)}}{\partial A}\right)_{x_{i}, B, C}=-\frac{\left(\frac{\partial F}{\partial A}\right)_{x_{i}, y_{i(c a l c)}, B, C}}{\left(\frac{\partial F}{\left.\partial y_{i(c a i c)}\right)} x_{x_{i}, A, B, C}\right.} \tag{48}
\end{equation*}
$$

and if we substitute equation (48) in equation (46), we have

$$
\begin{equation*}
\left(\frac{\partial Y_{i}}{\partial A}\right)_{x_{i}, y_{i(0)}, B, C}=\frac{\left(\frac{\partial F}{\partial A}\right)_{x_{i}, y_{i(c a l c)}, B, C}}{\left(\frac{\partial F}{\partial y_{i}(c a l c)}\right)_{x_{i}, A, B, C}} \tag{49}
\end{equation*}
$$

Similarly, it can be shown that

$$
\left(\frac{\partial Y_{i}}{\partial B}\right)_{x_{i}, y_{i(0)}, A, C}=\frac{\left(\frac{\partial F}{\partial B}\right)_{x_{i}, y_{i(c a l c)}, A, C}}{\left(\frac{\partial F}{\left.\partial y_{i(c a l c)}\right)}\right)_{x_{i}, A, B, C}}
$$

and that

$$
\begin{equation*}
\left(\frac{\partial Y_{i}}{\partial C}\right)_{x_{i}, y_{i(0)}, A, B}=\frac{\left(\frac{\partial F}{\partial C}\right)_{x_{i}, y_{i(c a l c)}, A, B}}{\left(\frac{\partial F}{\left.\partial y_{i(c a l c}\right)}\right)_{x_{i}, A, B, C}} \tag{51}
\end{equation*}
$$

Differentiating equation (49) with regard to A, keeping $x_{i}, y_{i(0)}$ ' B, and C constant, we have.
(BA)
($\frac{36}{18}$)

(8.4)
 Je/f inorla sti unc $4 x$, kicialdeis
(0e)

zads hum
$\left(\frac{56}{15}\right)$
(11)

 - 8ved 5a nenesamos 5 bos, 8

Now

$$
\left(\frac{\partial F}{\partial A}\right)_{x_{i}, y_{i(c a I c)}, B, C}=G\left(y_{i(c a i c)}, A, B, C\right)
$$

and

Also,

$$
\left(\frac{\partial F}{\partial y_{i(c a l c)}}\right)_{x_{i}, A, B, C}=g\left(y_{i(c a l c)}, A, B, C\right)
$$

$$
\left[d\left(\frac{\partial F}{\partial y_{i(c a l c)}}\right)_{x_{i}, A, B, C}\right]_{x_{i}, B, C}=\left[\begin{array}{l}
{\left[\frac{\partial}{\partial y_{i(c a l c)}}\left(\frac{\partial F}{\partial y_{i(c a l c)}}\right)_{x_{i}, A, B, C}\right]_{x_{i}, A, B, C} d y_{i(c a l c)}} \tag{55}\\
+\left[\frac{\partial}{\partial A}\left(\frac{\partial F}{\partial y_{i(c a l c)}}\right) x_{x_{i}, A, B, C}\right]_{x_{i}, y_{i(c a l c)}, B, C}
\end{array}\right]
$$

and

When we substitute equations (54) and (56) into equation (52), we find
bas
(ac)

But from equation (48)

$$
\left(\frac{\partial y_{i(c a l c)}}{\partial A}\right)_{x_{i}, B, C}=-\frac{\left(\frac{\partial F}{\partial A}\right)_{x_{i}, y_{i(c a l c)}, B, C}}{\left(\frac{\partial F}{\partial y_{i(c a l c)}}\right)_{x_{i}, A, B, C}}
$$

(nh) notasups mozt jud

When we substitute equation (48) in equation (57), we see that

Differentiating equation (49) with regard to B, keeping $x_{i}, y_{i(0)}, A, C$ fixed, we have

$$
\left[\frac{\partial}{\partial} \frac{\partial Y_{i}}{\partial 1}\right) \quad=\quad=\quad\left(\frac{\partial y_{i(c a l c)} x_{i}, A, B, C}{}\right.
$$

$$
\begin{equation*}
\frac{x_{i}, y_{i(c a l c)}, B, C x_{i}, A, C}{\left(\frac{\partial F}{\partial y_{i(c a l c)}}\right)_{x_{i}, A, B, C}} \tag{61}
\end{equation*}
$$

$x_{i}, y_{i(0)}, B, C x_{i}, y_{i(0)}, A, C=$

Let us differentiate $\left(\frac{\partial F}{\partial A}\right)_{x}$

$$
x_{i}, y_{i(c a l c)}, B, C \text { with regard to } B \text {, keeping } x_{i} \text {, }
$$

A, and C constant. When we do this, we get

But

$$
\left(\frac{\partial y_{i(c a l c)}}{\partial B}\right)_{x_{i}, A, C}=-\frac{\left(\frac{\partial F}{\partial B}\right)_{x_{i}, y_{i(c a l c)}, A, C}}{\left(\frac{\partial F}{\left.\partial y_{i(c a l c}\right)}\right)_{x_{i}, A, B, C}}
$$

and if we substitute equation (63) in equation (62), we see that

$$
\left[\frac{\partial}{\partial B}\left(\frac{\partial F}{\partial A}\right)_{x_{i}, y_{i(c a l c)}, B, C-x_{i}, A, C}=\left[\begin{array}{l}
\left(\frac{\partial^{2} F}{\partial A \partial B}\right)_{x_{i}, y_{i(c a l c)}, C} \tag{64}\\
\left.-\left(\frac{\partial^{2} F}{\left.\partial A \partial y_{i(c a I c}\right)}\right)_{x_{i}, B, C} \frac{\left(\frac{\partial F}{\partial B}\right)_{x_{i}, y_{i(c a I c)}, A, C}}{\partial F}\right)_{i(c a I c)} x_{i}, A, B, C
\end{array}\right]\right.
$$

Now if we differentiate $\left(\frac{\partial F}{\partial y_{i(c a l C)}}\right)_{x_{i}, A, B, C}$ with regard to B, holding x_{i}, A, and C constant, we get

$$
\left[\begin{array}{l}
{\left[\frac{\partial}{\partial B}\left(\frac{\partial F}{\partial y_{i(c a l c)}}\right)_{x_{i}, A, B, C}\right]_{x_{i}, y_{i(c a l c)}, A, C}} \tag{65}\\
+\left[\frac{\partial}{\partial y_{i(c a l c)}}\left(\frac{\partial F}{\partial y_{i(c a l c)}}\right)_{x_{i}, A, B, C}\right]_{x_{i}, A, B, C}\left(\frac{\partial y_{i(c a l c)}}{\partial B}\right)_{x_{i}, A, C}
\end{array}\right]
$$

(€ д)

$$
\begin{align*}
& \left(\frac{66}{186}\right) \\
& \frac{\left(\frac{18}{126}\right)}{22^{2}}=-
\end{align*}
$$

giculon fle us begego form

$$
\text { D, } 1
$$

$$
\left[\frac{\partial}{\partial B}\left(\frac{\partial F}{\partial y_{i(c a I c)}}\right)_{x_{i}, A, B, C}\right]_{x_{i}, A, C}=\left[\begin{array}{l}
\left(\frac{\partial^{2} F}{\left.\partial B \partial y_{i(c a I c)}\right)} x_{x_{i}, A, C}\right. \tag{66}\\
\left.-\left(\frac{\partial^{2} F}{\partial y_{i(c a I c)}^{2}}\right)_{x_{i}, A, B, C} \frac{\left(\frac{\partial F}{\partial B}\right)_{x_{i}, y_{i(c a I C)}, A, C}^{\partial F}}{\partial y_{i(c a I c)}}\right)_{x_{i}, A, B, C}
\end{array}\right]
$$

Therefore, if we substitute equations (64) and (66) in equation (61), equation (61) is expressible as

$$
\left(\frac{\partial^{2} Y_{i}}{\partial A \partial B}\right)_{x_{i}, y_{i(0)}, C}=
$$

ExHANEH2

48

are astuess edT (Vd) nolacuro as mellimls

$$
A_{5}(o) t^{R} \cdot t^{\pi}
$$

(ea)

The method of obtaining a least squares solution for the constants A, B, and C is as follows.

We have n pairs of the observed quantities, x_{i} and $y_{i(0)}$.

1. We assume values for A, B, and C.
2. We then calculate the n values of F_{i}, using equation (2).
3. We next calculate the n values of $y_{i(c a l c)}$ using an iterative method involving equations (42), (43), and (44).
4. We next calculate the n values of Y_{i} from equation (4).
5. We next calculate the n values of Y_{i}^{2}.
6. Using designated values for $w_{i(0)}$, we next calculate R, the sum of the weighted squares of the residuals, using equation (5).
7. We next calculate the n values of $\left(\partial F / \partial y_{i(c a l c)}\right)$ by differentiation of the analytical expression for F, keeping X_{i}, A, B, and C constant.
8. We next calculate the n values of $(\partial F / \partial A)$, evaluated at $y_{i(c a l c)}$, by differentiation of the analytical expression for F, keeping $x_{i}, y_{i(c a l c)}, B$, and C constant.
9. We next calculate the n values of $(\partial F / \partial B)$, evaluated at $y_{i(c a l c)}$, by differentiating the analytical expression for F, keeping $x_{i}, y_{i(c a l c)}, A$, and C constant.
10. We next calculate the n values of ($\partial F / \partial C$), evaluated at $y_{i(c a l c)}$, by differentiation of the analytical expression for F, keeping $x_{i}, y_{i(c a l c)}, A$, and B constant.
11. We next calculate the n values of $\left(\partial^{2} F / \partial A^{2}\right)$, evaluated at $y_{i(c a l c)}$, by differentiating the analytical expression for F twice.
 Comblat on ub h bma o a atay
ath

$$
\text { daysuroz } 2 \text { bins. } 8
$$

12. We next calculate the n values of $\left(\partial^{2} F / \partial B^{2}\right)$, evaluated at $y_{i(c a l c)}$, by differentiation of the analytical expression for F twice.
13. We next calculate the n values of $\left(\partial^{2} F / \partial C^{2}\right)$, evaluated at $y_{i(c a l c)}$, by differentiating the analytical expression for F twice.
14. We next calculate the n values of $\left(\partial^{2} F / \partial y_{i(c a l c)}^{2}\right)$ by differentiating the analytical expression for F twice.
15. We next calculate the n values of $\left(\partial^{2} F / \partial A \partial B\right)$, evaluated at $y_{i(c a l c)}$, which is obtained from the analytical expression for F.
16. We next calculate the n values of $\left(\partial^{2} F / \partial A \partial C\right)$, evaluated at $y_{i(c a l c)}$, which is obtained from the analytical expression for F.
17. We next calculate the n values of $\left(\partial^{2} F / \partial B \partial C\right)$, evaluated at $y_{i(c a l c)}$, which is obtained from the analytical expression for F.
18. We next calculate the n values of $\left(\partial^{2} F / \partial y_{i}(c a l c) \partial A\right)$ which is obtained from the analytical expression for F.
19. We next calculate the n values of $\left(\partial^{2} F / \partial y_{i(c a l c)} \partial B\right)$ which is obtained from the analytical expression for F.
20. We next calculate the n values of $\left(\partial^{2} F / \partial y_{i(c a l c}\right) \partial C$) which is obtained from the analytical expression for F.
21. We next calculate the n values of $\left(\partial Y_{i} / \partial A\right)$ using equation (49).
22. We next calculate the n values of ($\partial Y_{i} / \partial B$) using equation (50).
23. We next calculate the n values of $\left(\partial Y_{i} / \partial C\right)$ using equation (51).

24. We next calculate the n values of $\left(\partial^{2} Y_{i} / \partial A^{2}\right)$ using equation (58).
25. We next calculate the n values of $\left(\partial^{2} Y_{i} / \partial B^{2}\right)$ using equation (59).
26. We next calculate the n values of $\left(\partial^{2} Y_{i} / \partial C^{2}\right)$ using equation (60).
27. We next calculate the n values of $\left(\partial^{2} Y_{i} / \partial A \partial B\right)$ using equation (67).
28. We next calculate the n values of $\left(\partial^{2} Y_{i} / \partial A \partial C\right)$ using equation (68).
29. We next calculate the n values of $\left(\partial^{2} Y_{i} / \partial B \partial C\right)$ using equation (69).
30. We next calculate a_{1} from equation (19).
31. We next calculate $a_{2}=b_{1}$ from equation (20).
32. We next calculate $a_{3}=c_{1}$ from equation (21).
33. We next calculate b_{2} from equation (22).
34. We next calculate $b_{3}=c_{2}$ from equation (23).
35. We next calculate c_{3} from equation (24).
36. We next calculate m_{1} from equation (25).
37. We next calculate m_{2} from equation (26).
38. We next calculate m_{3} from equation (27).
39. We next calculate D_{1} from equation (31).
40. We next calculate D_{2} from equation (32).
41. We next calculate D_{3} from equation (33).
42. We next calculate D_{4} from equation (34).
43. We next calculate D_{5} from equation (35).
44. We next calculate D_{6} from equation (36).
45. We next calculate D_{7} from equation (37).
46. We next calculate D_{8} from equation (38).
47. We next calculate D_{9} from equation (39).
48. We next calculate D_{0} from equation (40).
49. We next calculate ΔA from equation (28).
50. We next calculate $\triangle B$ from equation (29).
51. We next calculate ΔC from equation (30).
52. We now return to step 1 and calculate $A_{0}+\Delta A$, where A_{0} is the value originally assumed in step 1.
53. We next calculate $B_{0}+\Delta B$, where B_{0} is the value originally assumed in step 1.
54. We next calculate $C_{0}+\Delta C$, where C_{0} is the value originally assumed in step 1.
55. Using $\left(A_{0}+\Delta A\right),\left(B_{0}+\Delta B\right)$, and $\left(C_{0}+\Delta C\right)$ as new values of A, B, and C, we proceed to step 2 and repeat steps 2 through 6 .
56. At this point, we compare the value of R, the sum of the weighted squares of the residuals, with the initially calculated value of R. If it is smaller, we proceed to step 7 and repeat steps 7 through 55. We continue to repeat the iteration until $m_{1}=m_{2}=m_{3}=0$ within some predetermined small quantity. Our final values of A, B, and C are our least squares solution for these quantities.
thas motsouna movi if eriflunfen twon ore ad
 I mena lot hamiena
$2 \log$

If in step 56 the sum of the weighted squares of the residuals, R, is larger than the initial value of R, the problem is diverging, and at this point, a technique must be used that will lead to convergence. One method that will lead to a smaller sum of R is the negative gradient or the method of steepest descent. The components of a vector in the direction of the negative gradient are given by

$$
-\left(\frac{\partial R}{\partial A}\right)^{0} ;-\left(\frac{\partial R}{\partial B}\right)^{0} ; \text { and }-\left(\frac{\partial R}{\partial C}\right)^{0}
$$

Thus, if we take

$$
\begin{align*}
& \Delta A=-k\left(\frac{\partial R}{\partial A}\right)^{0} \tag{70}\\
& \Delta B=-k\left(\frac{\partial R}{\partial B}\right)^{0} \tag{71}\\
& \Delta C=-k\left(\frac{\partial R}{\partial C}\right)^{0} \tag{72}
\end{align*}
$$

where k is a positive constant, we will move in the direction of the negative gradient; k has been called the size of the step. We determine the size of the step in the following way. We expand R in a Taylor's series expansion, retaining terms through the second derivatives. Thus,

(05)

$$
{ }^{\circ}\left(\frac{36}{M 5}\right) M \cdot=M
$$

(IT)

$$
\begin{aligned}
& \left(\frac{85}{46}\right)+=24 \\
& \left(\frac{26}{26}\right) \Delta=-23
\end{aligned}
$$

(s)

$$
R=\left[\begin{array}{l}
R^{0}+\left(\frac{\partial R}{\partial A}\right)^{0} \Delta A+\left(\frac{\partial R}{\partial B}\right)^{0} \Delta B+\left(\frac{\partial R}{\partial C}\right)^{0} \Delta C \tag{73}\\
+\frac{1}{2}\left[\left(\frac{\partial^{2} R}{\partial A^{2}}\right)^{0}(\Delta A)^{2}+\left(\frac{\partial^{2} R}{\partial B^{2}}\right)^{0}(\Delta B)^{2}+\left(\frac{\partial^{2} R}{\partial C^{2}}\right)^{0}(\Delta C)^{2}\right]
\end{array}\right]
$$

We now substitute in equation (73) for $\Delta A, \Delta B$, and ΔC from equations (70), (7i), and (72). The result is

$$
\left[\begin{array}{l}
R^{0}-k\left[\left(\frac{\partial R}{\partial A}\right)^{0^{2}}+\left(\frac{\partial R}{\partial B}\right)^{0^{2}}+\left(\frac{\partial R}{\partial C}\right)^{0^{2}}\right] \tag{74}\\
+\frac{1}{2} k^{2}\left[\left(\frac{\partial R}{\partial A}\right)^{0^{2}}\left(\frac{\partial^{2} R}{\partial A^{2}}\right)^{0}+\left(\frac{\partial R}{\partial B}\right)^{o^{2}}\left(\frac{\partial^{2} R}{\partial B^{2}}\right)^{0}+\left(\frac{\partial R}{\partial C}\right)^{0^{2}}\left(\frac{\partial^{2} R}{\partial C^{2}}\right)^{0}\right] \\
+k^{2}\left[\left(\frac{\partial R}{\partial A}\right)^{0}\left(\frac{\partial R}{\partial B}\right)^{0}\left(\frac{\partial^{2} R}{\partial A \partial B}\right)^{0}+\left(\frac{\partial R}{\partial A}\right)^{0}\left(\frac{\partial R}{\partial C}\right)^{0}\left(\frac{\partial^{2} R}{\partial A \partial C}\right)^{0}+\left(\frac{\partial R}{\partial B}\right)^{0}\left(\frac{\partial R}{\partial C}\right)^{0}\left(\frac{\partial^{2} R}{\partial B \partial C}\right)^{0}\right]
\end{array}\right]
$$

We now differentiate equation (74) with regard to k, set the derivative equal to zero, and solve for k. The result is

From equation (5) and equations (19) - (27), it is possibie t.o show that

$$
\begin{gather*}
\left(\frac{\partial R}{\partial A}\right)^{0}=-2 m_{1} \tag{76}\\
\left(\frac{\partial R}{\partial B}\right)^{0}=-2 m_{2} \tag{77}\\
\left(\frac{\partial R}{\partial C}\right)^{0}=-2 m_{3} \tag{78}\\
\left(\frac{\partial^{2} R}{\partial A^{2}}\right)^{0}=2 a_{1} \tag{79}\\
\left(\frac{\partial^{2} R}{\partial B^{2}}\right)^{=}=2 b_{2} \tag{80}\\
\left(\frac{\partial^{2} R}{\partial C^{2}}\right)^{0}=2 c_{3} \tag{81}\\
\left(\frac{\partial^{2} R}{\partial A \partial B}\right)^{0}=2 a_{2}=2 b_{1} \tag{82}\\
\left(\frac{\partial^{2} R}{\partial A \partial C}\right)^{0}=2 a_{3}=2 c_{1} \tag{83}\\
\left(\frac{\partial^{2} R}{\partial B \partial C}\right)^{0}=2 b_{3}=2 c_{2} \tag{84}
\end{gather*}
$$

Substituting equations (76) - (84) into equation (75), we have

$$
\begin{equation*}
k=\frac{m_{I}^{2}+m_{2}^{2}+m_{3}^{2}}{\sqrt{2 a_{1} m_{I}^{2}+2 b_{2} m_{2}^{2}+2 c_{3} m_{3}^{2}}}+\frac{4 a_{2} m_{1} m_{2}+4 a_{3} m_{1} m_{3}+4 b_{3} m_{2} m_{3}}{} \tag{85}
\end{equation*}
$$

(eร)

$$
\begin{equation*}
4^{20 S}-=\left(\frac{\pi 6}{1.5}\right) \tag{05}
\end{equation*}
$$

$$
c^{m 5}-\left(\frac{36}{18}\right)
$$

$$
\begin{equation*}
\varepsilon^{12 S-}=\left(\frac{28}{66}\right) \tag{85}
\end{equation*}
$$

(18)

$$
\operatorname{los} \cdot\left(\frac{10}{2}\left(\frac{2}{5}+5\right)\right.
$$

$$
\begin{equation*}
E^{3 S}=\left(\frac{\frac{y}{5}_{5}^{5}}{55}\right) \tag{18}
\end{equation*}
$$

$$
t^{d s}=s^{\Delta s}=0\left(\frac{s^{s}}{16 A 6}\right)
$$

$$
\begin{equation*}
s^{J S}=\left(\frac{g^{J} 5}{\varepsilon_{a 6}}\right) \tag{08}
\end{equation*}
$$

$$
\begin{equation*}
1^{\mathrm{DS}}=\varepsilon^{\mathrm{BS}}=\left(\frac{5^{5} 5}{25 A 6}\right) \tag{e8}
\end{equation*}
$$

$$
\begin{equation*}
s^{2 s}=c^{d s}=0^{0}\left(\frac{\mathrm{~s}^{s} 6}{06 \sqrt{2}}\right) \tag{29}
\end{equation*}
$$

We see, therefore, that if the Newton-Raphson method is used in setting up the normal equations, the size of the step to be taken in the direction of the negative gradient can be evaluated very simply from the coefficients appearing in the normal equations, provided the calculation of k leads to a positive quantity. If equation (85) leads to a negative quantity, this means that the curvature of the surface is such that the trial solution is near a maximum and not a minimum. Under these conditions, the negative value of k must be ignored and positive values of k explored on a trial basis.

Of course, the same formal calculation can be made if the Gauss-Newton method is used to set up the normal equations. However, if one is in a region of divergence, this means that the trial solution is far from the true answer. Under these conditions, the residuals will be large and the second summation in the a's, $b^{\prime} s$, and c 's, involving the second derivative terms, will be of importance compared to the first term in the summation. We therefore believe that if it is necessary to use the negative gradient method, it is better to use the Newton-Raphson method in setting up the normal equations and in calculating the size of the step. If our problem is diverging after the first iteration, we calculate $\triangle A, \Delta B$, and ΔC from

$$
\begin{align*}
\Delta \mathrm{A} & =2 \mathrm{~km}_{1} \tag{86}\\
\Delta \mathrm{~B} & =2 \mathrm{~km}_{2} \tag{87}\\
\Delta \mathrm{C} & =2 \mathrm{~km}_{3} \tag{88}
\end{align*}
$$

 24x

(3B)

$$
\begin{align*}
& t^{\operatorname{mon} 5}=4 A \\
& 5^{\text {moxt }}=4 A \\
& e^{\text {mois }}=75
\end{align*}
$$

with k calculated from equation (85). Using $A_{0}+\Delta A, B_{0}+\Delta B$, and $C_{0}+\Delta C$ as new values of our undetermined constants, A, B, and C, we then return to step 2 of the iteration. For each new value of A, B, and C, we solve the normal equations and calculate a new value of R. If we are diverging, we continue with the negative gradient method until the region of convergence is reached. As soon as this happens, we drop the negative gradient method and iterate by solving the normal equations for $\triangle A, \Delta B$, and ΔC. A scheme such as this should always lead to convergence.

Although the above scheme should always lead to convergence, the negative gradient method may be tediously slow in entering the region of convergence for the solution of the normal equations. Under these conditions, other schemes can be tried which may enter the region of convergence more rapidly than the negative gradient method.

Some of these methods are: (1) the Hartley (3) method; (2) a modification of the Hartley method due to Strand, Kohl, and Bonham (8) ; and (3) the method of Marquardt (4).

We do not have enough experience to judge the relative merits of these various methods. In our applications so far, we have not been troubled by lack of convergence.

CALCULATION OF VARIANCES AND COVARIANCES

With the value of our constants determined, the remaining questions to be answered are: (1) What are the variances and covariances of the constants evaluated? (2) What are the variances

 Hinh the

Wailana

0

of the caiculated y_{i} 's and of any other calculated y that reduces F to zero?

To answer these questions, we apply the law for the propagation of errors. This law states that if we have a quantity or function, Q, that is a function of the independent quantities, y_{1}, y_{2}, y_{3}, \ldots, then the variance of Q is given by

$$
\begin{equation*}
S_{Q}^{2}=\sum_{i=1}^{n}\left(\frac{\partial Q}{\partial y_{i(0)}}\right)^{2} s_{y_{i(0)}^{2}}^{2} \tag{89}
\end{equation*}
$$

where S_{Q}^{2} is the variance of Q, and $S_{y_{i(0)}}^{2}$ is the variance of $y_{i(0)}$.
The value of the constant A that we have evaluated is a function of all of the observed x_{i} 's and of all of the observed y_{i}^{\prime} 's. Since we have assumed there are no random errors in the x_{i} 's, the variances of the x_{i} 's are zero. Then the expression for the variance of A is given by the equation

$$
\begin{equation*}
s_{A}^{2}=\sum_{i=1}^{n}\left(\frac{\partial A}{\partial y_{i(0)}}\right)^{2} s_{y_{i(0)}}^{2} \tag{90}
\end{equation*}
$$

and there will be an equation similar to equation (90) for evaluating the variance of B and of C.

To evaluate equation (90), we must evaluate $\left(\partial A / \partial y_{i(0)}\right)$ for each $y_{i(0)}$, multiply this quantity by $S_{y_{i(0)}}$, square the product, and then sum the product over all of the observed y_{i} 's.

Now we have a total of n pairs of the observed quantities x_{i},
y_{i}. Then our constants to be evaluated are determined by the

$$
\text { ninane }+4 \text { on }
$$

solutions of equations (6), (7), and (8). Now suppose we change one of the $y_{i}^{\prime} s, y_{2(0)}$ say, to $y_{2(0)}+\Delta y_{2}$. Then on soiving equations (6), (7), and (8), we would get new values of $(A+\Delta A)$, $(B+\Delta B)$, and $(C+\Delta C)$ for our constants. Then we can calculate

$$
\begin{align*}
& \frac{\partial A}{\partial y_{2(0)}}=\frac{\Delta A}{\Delta y_{2}} \tag{91}\\
& \frac{\partial B}{\partial y_{2(0)}}=\frac{\Delta B}{\Delta y_{2}} \tag{92}\\
& \frac{\partial C}{\partial y_{2(0)}}=\frac{\Delta C}{\Delta y_{2}} \tag{93}
\end{align*}
$$

This means that when $y_{2(0)}$ is changed by a small amount, equations (6), (7), and (8) must still hold exactly. Mathematically, this means that

$$
\begin{align*}
& \frac{\partial}{\partial y_{i(0)}}\left(\frac{\partial R}{\partial A}\right)_{x_{i}, y_{i(0)}, B, C}=0 \tag{94}\\
& \frac{\partial}{\partial y_{i(0)}}\left(\frac{\partial R}{\partial B}\right)_{x_{i}, y_{i(0)}, A, C}=0 \tag{95}\\
& \frac{\partial}{\partial y_{i(0)}}\left(\frac{\partial R}{\partial C}\right)_{x_{i}, y_{i(0)}, A, B}=0 \tag{96}
\end{align*}
$$

All of the Y_{i} 's are explicit functions of the $y_{i(0)}$'s, the X_{i} 's, and the constants A, B, and C. In the application of equations (94),
(95), and (96), the derivatives $(\partial R / \partial A)_{x_{i}}, y_{i(0)}, B, C^{\prime}$
$(\partial R / \partial B)_{x_{i}}, y_{i(0)}, A, C$, and $(\partial R / \partial C)_{x_{i}}, y_{i(0)}, A, B$ are to be considered functions of all of the $y_{i(0)}$'s and of the constants evaluated, with A, B, and C being functions of all of the $y_{i(0)}$'s. Under these conditions,

 250-421bcues

(atane

	$\begin{aligned} & \left(\frac{\partial^{2} R}{\partial C^{2}}\right)_{x_{i}, y_{i(0)}, A, B}\left(\frac{\partial C}{\partial y_{i(0)}}\right)_{j \neq i} \\ & +\left(\frac{\partial^{2} R}{\partial A \partial C}\right)_{x_{i}, y_{i(0)}, B}\left(\frac{\partial A}{\partial y_{i(0)}}\right)_{y_{j \neq i}} \end{aligned}$
$\begin{equation*} \left.\frac{\partial}{\partial y_{i}(0)}\left(\frac{\partial R}{\partial C}\right)_{x_{i}, y_{i(0)}}, A, B\right]_{x_{i}, y_{j \neq i}} \tag{99} \end{equation*}$	$+\left(\frac{\partial^{2} R}{\partial B \partial C}\right)_{x_{i}, y_{i(0)}, A}\left(\frac{\partial B}{\partial y_{i(0)}}\right)_{j \neq i}$

Equations (97), (98), and (99) contain terms involving the derivative of each constant with respect to $y_{i(0)}$ and can be solved by elementary algebra for the derivatives of the constants with respect to $y_{i(0)}$. These derivatives are then to be multiplied by $S_{y_{i(0)}}$, the product squared, and then the squared product is to be summed over all of the observed $y_{i(0)}$'s. These sums give us the variance of each constant evaluated.

Differentiating R, given by equation (5), by the constants A, B, and C keeping x_{i} and $y_{i(0)}$ constant, we have

$$
\begin{equation*}
\left(\frac{\partial R}{\partial A}\right)_{x_{i}, y_{i(0)}, B, C}=2 \sum_{i=1}^{n} w_{y_{i(0)}} Y_{i}\left(\frac{\partial Y_{i}}{\partial A}\right)_{x_{i}, y_{i(0)}, B, C} \tag{100}
\end{equation*}
$$

 2

(000)

$$
\begin{align*}
& \left(\frac{\partial R}{\partial B}\right)_{x_{i}, y_{i(0)}, A, C}=2 \sum_{i=1}^{n} W_{y_{i(0)}} Y_{i}\left(\frac{\partial Y_{i}}{\partial B}\right)_{x_{i}, Y_{i(0)}, A, C} \tag{101}\\
& \left(\frac{\partial R}{\partial C}\right)_{x_{i}, y_{i(0)}, A, B}=2 \sum_{i=1}^{n} W_{y_{i(0)}} Y_{i}\left(\frac{\partial Y_{i}}{\partial C}\right)_{x_{i}, Y_{i(0)}, A, B} \tag{102}
\end{align*}
$$

Differentiating equation (100) with regard to each constant, we have

$$
\begin{equation*}
\left(\frac{\partial^{2} R}{\partial A^{2}}\right)_{x_{i}, y_{i(0)}, B, C}=2 \sum_{i=1}^{n} W_{Y_{i(0)}}\left[\left(\frac{\partial Y_{i}}{\partial A}\right)_{x_{i}, y_{i(0)}, B, C}^{2}+Y_{i}\left(\frac{\partial^{2} Y_{i}}{\partial A^{2}}\right)_{x_{i}, y_{i(0)}, B, C}\right] \tag{103}
\end{equation*}
$$

$\left[\frac{\partial}{\partial B}\left(\frac{\partial R}{\partial A}\right)_{x_{i}, y_{i(0)}, B, C}\right]_{x_{i}, y_{i(0)}, A, C}=\left[\begin{array}{l}2 \sum_{i=1}^{n} w_{y_{i(0)}}\left(\frac{\partial Y_{i}}{\partial B}\right)_{x_{i}, y_{i(0)}, A, C}\left(\frac{\partial Y_{i}}{\partial A}\right)_{x_{i}, y_{i(0)}, B, C} \\ +2 \sum_{i=1}^{n} w_{y_{i(0)}} Y_{i}\left[\frac{\partial}{\partial B}\left(\frac{\partial Y_{i}}{\partial A}\right)_{x_{i}, y_{i(0)}, B, C}\right]_{x_{i}, y_{i(0)}, A, C}\end{array}\right]_{\text {(104) }}$

$9 E$
(102)
(sul)

Differentiating equation (100) with regard to a single $y_{i(0)}$, keeping A, B, and C constant, we have

The right-hand side of equation (106) reduces to a single term, since a single $y_{i(0)}$ only appears in one term in the summation.

Now from equation (4)

$$
\begin{equation*}
Y_{i}=y_{i(0)}-y_{i(c a I c)} \tag{4}
\end{equation*}
$$

so that

$$
\begin{equation*}
\left(\frac{\partial Y_{i}}{\partial y_{i(0)}}\right)_{x_{i}, y_{j \neq i}, A, B, C}=1 \tag{107}
\end{equation*}
$$

and it follows that

$$
\begin{equation*}
\left[\frac{\partial}{\partial A}\left(\frac{\partial Y_{i}}{\partial y_{i(0)}}\right)_{x_{i}, y_{j \neq i}, A, B, C}\right]_{x_{i}, y_{i(0)}, B, C}=0 \tag{108}
\end{equation*}
$$

Substituting equations (107) and (108) into equation (106), we have

RC

(a) molae.ona monz vorl

$$
\begin{equation*}
(s 1 \operatorname{sen}) 8^{Y}-(0) 1^{x}=x^{8}=m \tag{e}
\end{equation*}
$$

(50:)

$$
I=0,5, A_{i}+t^{v,},\left(\frac{1^{26}}{(0) i^{26}}\right)
$$

24013 kuadial it bas
(8a1)

$$
\left[\frac{\partial\left(\frac{\partial R}{\partial A}\right)_{x_{i}, y_{i(0)}, B, C}}{\partial y_{i(0)}}\right]_{x_{i}, y_{j \neq 1}, A, B, C}=2 w_{y_{i(0)}}\left(\frac{\partial Y_{i}}{\partial A}\right)_{x_{i}, y_{i(0)}, B, C}
$$

Substituting equations (103), (104), (105), and (109) in equation (97), we get

$$
\begin{align*}
& \left(\frac{\partial A}{\partial y_{i(0)}}\right)_{y_{j \neq 1}} \sum_{i=1}^{n} w_{i(0)}\left[\left(\frac{\partial Y_{i}}{\partial A}\right)_{x_{i}, y_{i(0)}, B, C}+Y_{i}\left(\frac{\partial^{2} y_{i}}{\partial A^{2}}\right)_{\left.x_{i}, y_{i(0)}, B, C\right]}\right] \\
& +\left(\frac{\partial B}{\partial y_{i(0)}}\right)_{y_{j \neq 1}}\left[\begin{array}{l}
\sum_{i=1}^{n} w_{y_{i(0)}}\left(\frac{\partial Y_{i}}{\partial B}\right)_{x_{i}, y_{i(0)}, A, C}\left(\frac{\partial Y_{i}}{\partial A}\right)_{x_{i}, y_{i(0)}, B, C} \\
\left.+\sum_{i=1}^{n} w_{y_{i(0)}} y_{i}\left[\frac{\partial}{\partial B}\left(\frac{\partial Y_{1}}{\partial A}\right)_{x_{i}, y_{i(0)}, B, C}\right]_{x_{1}, y_{i(0)}, A, C}\right]
\end{array}\right] \tag{110}\\
& \sum_{i=1}^{n} w_{y_{1(0)}}\left(\frac{\partial Y_{1}}{\partial C}\right)_{x_{1}, y_{i(0)}, A, B}\left(\frac{\partial Y_{1}}{\partial A}\right)_{x_{1}, y_{1(0)}, B, C} \\
& +\left(\frac{\partial C}{\partial y_{1(0)}}\right)_{y_{j \neq 1}}\left[\begin{array}{l}
i=1 \\
+\sum_{i=1}^{n} w_{y_{1(0)}} y_{1}\left[\frac{\partial}{\partial C}\left(\frac{\partial y_{1}}{\partial A}\right)_{x_{1}, y_{1(0)}, B, C_{x_{i}, y_{i(0)}}, A, B}\right]
\end{array}\right. \\
& +w_{y_{1}(0)}\left(\frac{\partial y_{1}}{\partial A}\right)_{x_{1}, y_{1}(0)} \cdot B_{1} C
\end{align*}
$$

0 OH

(012) $0=$
Lr

Upon differentiating equations (101) and (102) with regard to a single $y_{i(0)}$, we obtain two expressions similar to equation (110). We will write equation (IIO) and the two other equations as

$$
\begin{align*}
& a_{1}\left(\frac{\partial A}{\partial y_{i(0)}}\right)_{y_{j \neq i}}+b_{1}\left(\frac{\partial B}{\partial y_{i(0)}}\right)_{y_{j \neq i}}+c_{1}\left(\frac{\partial C}{\partial y_{i(0)}}\right)_{y_{j \neq i}}=n_{1} \tag{111}\\
& a_{2}\left(\frac{\partial A}{\partial y_{i(0)}}\right)_{y_{j \neq i}}+b_{2}\left(\frac{\partial B}{\partial y_{i(0)}}\right)_{y_{j \neq i}}+c_{2}\left(\frac{\partial C}{\partial y_{i(0)}}\right)_{y_{j \neq i}}=n_{2} \tag{112}\\
& a_{3}\left(\frac{\partial A}{\partial y_{i(0)}}\right)_{y_{j \neq i}}+b_{3}\left(\frac{\partial B}{\partial y_{i(0)}}\right)_{y_{j \neq i}}+c_{3}\left(\frac{\partial C}{\partial y_{i(0)}}\right)_{y_{j \neq i}}=n_{3} \tag{113}
\end{align*}
$$

where

$$
\begin{align*}
& a_{1}=\sum_{i=1}^{n} w_{i(0)}\left[\left(\frac{\partial Y_{i}}{\partial A}\right)_{x_{i}, y_{i(0)}, B, C}+Y_{i}\left(\frac{\partial^{2} Y_{i}}{\partial A^{2}}\right)_{x_{i}, y_{i(0)}, B, C}\right] \tag{114}\\
& a_{2}=b_{1}=\left[\begin{array}{l}
\sum_{i=1}^{n} w_{i(0)}\left(\frac{\partial Y_{i}}{\partial B}\right)_{x_{i}, y_{i(0)}, A, C}\left(\frac{\partial Y_{i}}{\partial A}\right)_{x_{i}, y_{i(0)}, B, C}^{n} \\
+\sum_{i=1}^{n} w_{i(0)} Y_{i}\left(\frac{\partial^{2} Y_{i}}{\partial B \partial A}\right)_{x_{i}, y_{i(0)}, C}
\end{array}\right] \tag{II5}\\
& a_{3}=c_{1}=\left[\begin{array}{l}
\sum_{i=1}^{n} w_{i(0)}\left(\frac{\partial Y_{i}}{\partial C}\right)_{x_{i}, y_{i(0)}, A, B}\left(\frac{\partial Y_{i}}{\partial A}\right)_{x_{i}, y_{i(0)}, B, C}^{n} \\
+\sum_{i=1}^{n} w_{i(0)} Y_{i}\left(\frac{\partial^{2} Y_{i}}{\partial C \partial A}\right)_{x_{i}, y_{i(0)}, B}
\end{array}\right] \tag{116}
\end{align*}
$$

4

$$
\begin{gather*}
b_{2}=\sum_{i=1}^{n} w_{y_{i(0)}}\left[\left(\frac{\partial Y_{i}}{\partial B}\right)_{x_{i}, y_{i(0)}^{2}, A, C}+Y_{i}\left(\frac{\partial^{2} Y_{i}}{\partial B^{2}}\right)_{x_{i}, y_{i(0)}, A, C}\right] \tag{117}\\
b_{3}=c_{2}=\left[\begin{array}{l}
\sum_{i=1}^{n} w_{i(0)}\left(\frac{\partial Y_{i}}{\partial B}\right)_{x_{i}, y_{i(0)}, A, C}\left(\frac{\partial Y_{i}}{\partial C}\right)_{x_{i}, y_{i(0)}, A, B} \\
+\sum_{i=1}^{n} w_{i(0)} Y_{i}\left(\frac{\partial^{2} Y_{i}}{\partial C \partial B}\right)_{x_{i}, y_{i(0)}, A}
\end{array}\right] \tag{I18}
\end{gather*}
$$

$$
\begin{equation*}
c_{3}=\sum_{i=1}^{n} w_{y_{i(0)}}\left[\left(\frac{\partial Y_{i}}{\partial C}\right)_{x_{i}, y_{i(0)}, A, B}^{2}+Y_{i}\left(\frac{\partial^{2} Y_{i}}{\partial C^{2}}\right)_{x_{i}, y_{i(0)}, A, B}\right] \tag{119}
\end{equation*}
$$

$$
\begin{equation*}
n_{I}=-w_{y_{i(0)}}\left(\frac{\partial Y_{i}}{\partial A}\right)_{x_{i}, y_{i(0)}, B, C} \tag{120}
\end{equation*}
$$

$$
\begin{equation*}
n_{2}=-w_{y_{i(0)}}\left(\frac{\partial Y_{i}}{\partial B}\right)_{x_{i}, y_{i(0)}}, A, C \tag{12I}
\end{equation*}
$$

$$
\begin{equation*}
n_{3}=-w_{y_{i(0)}}\left(\frac{\partial Y_{i}}{\partial C}\right)_{x_{i}, y_{i(0)}, A, B} \tag{122}
\end{equation*}
$$

Notice that the $a^{\prime} s, b^{\prime} s$, and $c^{\prime} s$ defined by equations (114) (119) are of the same form as the $a^{\prime} s, b$'s, and c 's defined by
(512)

$$
1
$$

(811)

$$
1
$$

(e14)
(0.2. 1)

$$
\prod
$$

(5St)

$$
\left.9, A_{1}(a) \sum^{k+1}\right)^{x^{2}}\left(\frac{c^{v \delta}}{8(}\right)(t) 4^{v-}=s^{\pi}
$$

(ssi)

$$
\sigma_{i} A_{r}(0) x^{(+1} z^{x^{2}}\left(\frac{x^{x 6}}{95}\right)(a) x^{c^{1 \pi}}=c^{2}
$$

equations (19) - (24) which appear in our normal equations. The difference between these two definitions is that equations (iI4) (II9) apply when the least squares solution is obtained while equations (19) - (24) apply to trial solutions. The a's, b's, and c's given by equations (114) - (119) can be considered as the values of the coefficients in the normal equations for the final iteration.

Solving equations (III), (II2), and (113) simultaneously for $\left(\partial A / \partial y_{i(0)}\right),\left(\partial B / \partial y_{i(0)}\right)$, and $\left(\partial C / \partial y_{i(0)}\right)$, we get

$$
\begin{align*}
& D_{0}\left(\frac{\partial A}{\partial y_{i(0)}}\right)=D_{1} n_{1}+D_{2} n_{2}+D_{3} n_{3} \tag{123}\\
& D_{0}\left(\frac{\partial B}{\partial y_{i(0)}}\right)=D_{4} n_{I}+D_{5} n_{2}+D_{6} n_{3} \tag{124}\\
& D_{0}\left(\frac{\partial C}{\partial y_{i(0)}}\right)=D_{7} n_{1}+D_{8} n_{2}+D_{9} n_{3} \tag{I25}
\end{align*}
$$

where

$$
\begin{align*}
& D_{1}=b_{2} c_{3}-b_{3} c_{2} \tag{I26}\\
& D_{2}=b_{3} c_{1}-b_{1} c_{3} \tag{127}\\
& D_{3}=b_{1} c_{2}-b_{2} c_{1} \tag{128}\\
& D_{4}=a_{3} c_{2}-a_{2} c_{3} \tag{129}\\
& D_{5}=a_{1} c_{3}-a_{3} c_{1} \tag{I30}
\end{align*}
$$

$$
\begin{gather*}
D_{6}=a_{2} c_{1}-a_{1} c_{2} \tag{131}\\
D_{7}=a_{2} b_{3}-a_{3} b_{2} \tag{132}\\
D_{8}=a_{3} b_{1}-a_{1} b_{3} \tag{133}\\
D_{9}=a_{1} b_{2}-a_{2} b_{1} \tag{134}\\
D_{0}=a_{1} D_{1}+a_{2} D_{2}+a_{3} D_{3} \tag{135}
\end{gather*}
$$

Notice that the D^{\prime} s defined by equations (126) - (135) are of the same form as the D 's defined by equations (31) - (40) and, for the last iteration, when the least squares solution is obtained, they will be identical.

Squaring equation (123) and multiplying by $s_{y_{i(0)}}^{2}$, we have

$$
D_{0}^{2}\left(\frac{\partial A}{\partial y_{i(0)}}\right)^{2} s_{y_{i(0)}}^{2}=\left[\begin{array}{l}
D_{1}^{2} n_{1}^{2} s_{y_{i(0)}^{2}}^{2}+D_{2}^{2} n_{2}^{2} s_{y_{i(0)}^{2}}+D_{3}^{2} n_{3}^{2} s_{y_{i(0)}^{2}} \tag{136}\\
+2 D_{1} D_{2} n_{1} n_{2} s_{y_{i(0)}^{2}}^{2}+2 D_{1} D_{3} n_{1} n_{3} s_{y_{i(0)}^{2}} \\
+2 D_{2} D_{3} n_{2} n_{3} s_{y_{i(0)}^{2}}
\end{array}\right]
$$

But from equation (120)

$$
\begin{equation*}
n_{1}^{2} s_{y_{i(0)}^{2}}^{2}=w_{y_{i(0)}^{2}}^{2}\left[\left(\frac{\partial Y_{1}}{\partial A}\right)_{x_{i}, y_{i(0)}, B_{,} c}^{2} s_{y_{i(0)}^{2}}\right. \tag{137}
\end{equation*}
$$

$$
\begin{align*}
& s^{2} y^{2}-t^{2} s^{a}=d^{a} \tag{IE.}\\
& 2^{d} e^{2}-c^{d} d^{a}=a^{a} \\
& 4^{d} y^{a}+I^{d} e^{a}=d^{a}
\end{align*}
$$

$$
\begin{equation*}
e^{a} i^{8}+x^{y_{2}}{ }^{s}+1^{4} L^{2}=0^{0} \tag{2E1}
\end{equation*}
$$

 20

(OS1) moltaypa aby? fuld

Now

$$
\begin{equation*}
s_{y_{i(0)}^{2}}^{2}=\frac{L^{2}}{w_{i(0)}} \tag{138}
\end{equation*}
$$

where L is a constant. Substituting equation (138) in equation (137), we find that

$$
\begin{equation*}
n_{1}^{2} S_{y_{i(0)}^{2}}=L^{2} w_{y_{i(0)}}\left(\frac{\partial Y_{i}}{\partial A}\right)_{x_{i}, y_{i(0)}}^{2}, B, C \tag{139}
\end{equation*}
$$

Similarly, we find that

$$
\begin{gather*}
n_{2}^{2} S_{y_{i(0)}^{2}}=L^{2} w_{y_{i(0)}}\left(\frac{\partial Y_{i}}{\partial B}\right)_{x_{i}, y_{i(0)}}^{2}, A, C \tag{140}\\
n_{3}^{2} S_{y_{i(0)}^{2}}=L^{2} w_{y_{i(0)}}\left(\frac{\partial Y_{i}}{\partial C}\right)_{x_{i}, y_{i(0)}}^{2}, A, B \tag{141}\\
n_{1} n_{2} S_{y_{i(0)}^{2}}=L^{2} w_{y_{i(0)}}\left(\frac{\partial Y_{i}}{\partial A}\right)_{x_{i}, y_{i(0)}, B, C}\left(\frac{\partial Y_{i}}{\partial B}\right)_{x_{i}, y_{i(0)}, A, C} \tag{142}\\
n_{1} n_{3} S_{y_{i(0)}^{2}}=L^{2} w_{y_{i(0)}}\left(\frac{\partial Y_{i}}{\partial A}\right)_{x_{i}, y_{i(0)}, B, C}\left(\frac{\partial Y_{i}}{\partial C}\right)_{x_{i}, y_{i(0)}, A, B} \tag{143}\\
n_{2} n_{3} S_{y_{i(0)}^{2}}=L^{2} w_{y_{i(0)}}\left(\frac{\partial Y_{i}}{\partial B}\right)_{x_{i}, y_{i(0)}, A, C}\left(\frac{\partial Y_{i}}{\partial C}\right)_{x_{i}, y_{i(0)}, A, B} \tag{144}
\end{gather*}
$$

Substituting equations (139), (140), (141), (142), (143), and (144) into equation (136) and then summing over all of the observed $y_{i(0)}$'s, we have

$$
\begin{align*}
& \sqrt{D_{i}^{2} \sum_{i=1}^{n} w_{y_{i(0)}}\left(\frac{\partial Y_{i}}{\partial A}\right)_{x_{i}, y_{i(0)}, B, C}^{2}} \\
& +D_{2}^{2} \sum_{i=1}^{n} w_{y_{i(0)}}\left(\frac{\partial Y_{i}}{\partial B}\right)_{x_{i}, y_{i(0)}, A, C}^{2} \\
& +D_{3}^{2} \sum_{i=1}^{n} w_{i(0)}\left(\frac{\partial Y_{i}}{\partial C}\right)_{x_{i}, y_{i(0)}}^{2} A, B \\
& +2 D_{i} D_{2} \sum_{i=1}^{n} w_{y_{i(0)}}\left(\frac{\partial Y_{i}}{\partial A}\right)_{x_{i}, y_{i(0)}, B, C}\left(\frac{\partial Y_{i}}{\partial B}\right)_{x_{i}, y_{i(0)}, A, C} \tag{145}\\
& +2 D_{1} D_{3} \sum_{i=1}^{n} W_{y_{i(0)}}\left(\frac{\partial Y_{i}}{\partial A}\right)_{x_{i}, y_{i(0)}, B, C}\left(\frac{\partial Y_{i}}{\partial C}\right)_{x_{i}, y_{i(0)}, A, B} \\
& +2 D_{2} D_{3} \sum_{i=1}^{n} w_{y_{i(0)}}\left(\frac{\partial Y_{i}}{\partial B}\right)_{x_{i}, y_{i(0)}, A, C}\left(\frac{\partial Y_{i}}{\partial C}\right)_{x}
\end{align*}
$$

$\partial \Delta$

$x+2+2$
\square
(בAD)

$$
1
$$

$$
\frac{s_{1}}{\frac{d^{9}}{-}}=s_{8}=(n) z^{2}\left(\frac{s_{3}^{8}}{(a) t^{26}}\right)
$$

Squaring equation (124), multiplying by $S_{y_{i(0)}}^{2}$ and then summing, we find that

Similarly, from equation (125), we find that

For the covariances, we find from equations (123), (124), and (125)
$\prod_{i=1}^{n}\left(\frac{\partial A}{\partial y_{i(0)}}\right)\left(\frac{\partial B}{\partial y_{i(0)}}\right) S_{y_{i(0)}^{2}}^{2}=S_{A B}^{2}=\frac{L^{2}}{D_{0}^{2}}$

$$
\begin{aligned}
& D_{1} D_{4} \sum_{i=1}^{n} w_{i(0)}\left(\frac{\partial Y_{i}}{\partial A}\right)_{x_{i}, y_{i(0)}, B, C} \\
& +D_{2} D_{5} \sum_{i=1}^{n} w_{i(0)}\left(\frac{\partial Y_{i}}{\partial B}\right)_{x_{i}, y_{i(0)}, A, C} \\
& +D_{3} D_{6} \sum_{i=1}^{n} w_{y_{i(0)}}\left(\frac{\partial Y_{i}}{\partial C}\right)_{x_{i}, y_{i(0)}, A, B}^{2} \\
& +\left(D_{2} D_{4}+D_{1} D_{5}\right) \sum_{i=1}^{n} W_{y_{i(0)}}\left(\frac{\partial Y_{i}}{\partial A}\right)_{x_{i}, y_{i(0)}, B, C}\left(\frac{\partial Y_{i}}{\partial B}\right)_{x_{i}, y_{i(0)}, A, C} \\
& +\left(D_{1} D_{6}+D_{3} D_{4}\right) \sum_{i=1}^{n} w_{y_{i(0)}}\left(\frac{\partial Y_{i}}{\partial A}\right)_{x_{i}, y_{i(0)}, B, C}\left(\frac{\partial Y_{i}}{\partial C}\right)_{x_{i}, y_{i(0)}, A, B} \\
& +\left(D_{2} D_{6}+D_{3} D_{5}\right) \sum_{i=1}^{n} w_{i(0)}\left(\frac{\partial Y_{i}}{\partial B}\right)_{x_{i}, y_{i(0)}, A, C}\left(\frac{\partial Y_{i}}{\partial C}\right)_{x_{i}, y_{i(0)}, A, B}
\end{aligned}
$$

(ancen

$$
\begin{aligned}
& D_{i} D_{7} \sum_{i=1}^{n} w_{y_{i(0)}}\left(\frac{\partial Y_{i}}{\partial A}\right)_{x_{i}, y_{i(0)}, B, C} \\
& +D_{2} D_{8} \sum_{i=1}^{n} W_{y_{i(0)}}\left(\frac{\partial Y}{\partial B}\right)_{x_{i}, y_{i(0)}}^{2}, A, C \\
& +D_{3} D_{9} \sum_{i=1}^{n} w_{y_{i(0)}}\left(\frac{\partial Y_{i}}{\partial C}\right)_{x_{i}, y_{i(0)}}^{2} A, B \\
& +\left(D_{i} D_{8}+D_{2} D_{7}\right) \sum_{i=1}^{n} w_{y_{i(0)}}\left(\frac{\partial Y_{i}}{\partial A}\right)_{x_{i}, y_{i(0)}, B, C}\left(\frac{\partial Y_{i}}{\partial B}\right)_{x_{i}, y_{i(0)}, A, C} \\
& +\left(D_{1} D_{9}+D_{3} D_{7}\right) \sum_{i=1}^{n} w_{i(0)}\left(\frac{\partial Y_{i}}{\partial A}\right)_{x_{i}, y_{i(0)}, B, C}\left(\frac{\partial Y_{i}}{\partial C}\right)_{x_{i}, y_{i(0)}} A, B \\
& +\left(D_{2} D_{9}+D_{3} D_{8}\right) \sum_{i=1}^{n} w_{y_{i(0)}}\left(\frac{\partial Y_{i}}{\partial B}\right)_{x_{i}, y_{i(0)}, A, C}\left(\frac{\partial Y_{i}}{\partial C}\right)_{x_{i}, y_{i(0)}, A, B}
\end{aligned}
$$

oz
(esd)
and finally,

$$
\left[\begin{array}{l}
+\left(D_{4} D_{8}+D_{5} D_{7}\right) \sum_{i=1}^{n} w_{y_{i(0)}}\left(\frac{\partial Y_{i}}{\partial A}\right)_{x_{i}, y_{i(0)}, B, C}\left(\frac{\partial Y_{i}}{\partial B}\right)_{x_{i}, y_{i(0)}, A, C} \\
+\left(D_{4} D_{9}+D_{6} D_{7}\right) \sum_{i=1}^{n} w_{y_{i(0)}}\left(\frac{\partial Y_{i}}{\partial A}\right)_{x_{i}, y_{i(0)}, B, C}\left(\frac{\partial Y_{i}}{\partial C}\right)_{x_{i}, y_{i(0)}, A, B} \\
+\left(D_{5} D_{9}+D_{6} D_{8}\right) \sum_{i=1}^{n} w_{y_{i(0)}}\left(\frac{\partial Y_{i}}{\partial B}\right)_{x_{i}, y_{i(0)}, A, C}^{\left(\frac{\partial Y_{i}}{\partial C}\right)_{x_{i}, y_{i(0)}}, A, B}
\end{array}\right.
$$

侸

Equations (145), (146), (147), (148), (149), and (150) aliow us to calculate the variances and covariances of the constants evaluated.

Now D_{0} is the value of the determinate of the coefficients that appear in the final normal equations. In a linear problem, it is found that D_{0} may be factored from the right-hand side of equations (145) - (150) so that the expressions for the variances and covariances only involve D_{0} to the first power in the denominator. This is not true for a non-linear problem as can be shown from the exact derivation given above. The present method in use in calculating variances and covariances is therefore only an approximation. How good this approximation is can only be decided by testing it against the mathematically exact calculation given above. Since this is true, we prefer to calculate variances and covariances using the mathematically exact equations given above.

We now answer the question, how do we calculate the variance of a calculated y which reduces the function F to zero for a given x ? The answer to this question is obtained as follows: y is a function of x, and through the constants evaluated, is a function of all of the observed $y_{i(0)}$'s and x_{i} 's. When we apply the law for the propagation of errors, we have

$$
\begin{equation*}
s_{y}^{2}=\sum_{i=1}^{n}\left(\frac{\partial y}{\partial y_{i}(0)}\right)^{2} s_{\substack{y_{i}(0) \\ j \neq i \\ j, x_{i}, x_{i}}}^{2} \tag{151}
\end{equation*}
$$

, hay

 240.2

$$
\cos _{8}^{3}\left(\frac{x 6}{(p)+6}\right) \sum_{t=1}^{\pi}-s_{3}^{v^{3}}
$$

We calculate $\left(\frac{\partial y}{\partial y_{i(0)}}\right)_{y_{j \neq i}, x, x_{i}}$ from equation (1). Differentiating equation (I), we have

$$
\left[\begin{array}{l}
\left(\frac{\partial F}{\partial A}\right)_{x, y, B, C}\left(\frac{\partial A}{\partial y_{i}(0)}\right)_{y_{j \neq i}, x_{i}}+\left(\frac{\partial F}{\partial B}\right)_{x, y, A, C}\left(\frac{\partial B}{\partial y_{i(0)}}\right)_{y_{j \neq i}, x_{i}} \\
+\left(\frac{\partial F}{\partial C}\right)_{x, y, A, B}\left(\frac{\partial C}{\partial y_{i(0)}}\right)_{y_{j \neq i}, x_{i}}+\left(\frac{\partial F}{\partial y}\right)_{x, A, B, C}\left(\frac{\partial y}{\partial y_{i(0)}}\right)_{y_{j \neq i}, x_{i}, x} \tag{152}
\end{array}\right]=0
$$

Solving equation (152) for $\left(\frac{\partial y}{\partial y_{i(0)}}\right)_{y_{j \neq i}, x_{i}, x}$, we get

$$
\left(\frac{\partial y}{\partial y_{i(0)}}\right)_{y_{j \neq i}, x_{i}, x}=-\frac{1}{\left(\frac{\partial F}{\partial y}\right)_{x, A, B, C}}\left|\begin{array}{c}
\left.\left(\frac{\partial F}{\partial A}\right)_{x, y, B, C}\left(\frac{\partial A}{\partial y_{i(0)}}\right)_{y_{j \neq i}, x_{i}}\left|\left(\frac{\partial F}{\partial B}\right)_{x, y, A, C}\left(\frac{\partial B}{\partial y_{i(0)}}\right)_{y_{j \neq i}, x_{i}}\right| \right\rvert\,
\end{array}\right|
$$

svail 2w s (1) पojakypu
(sed) $0 .=$

Squaring equation (153), multiplying by $S_{y_{i(0)}}^{2}$, and then summing over all the observed $y_{i(0)}$'s, we obtain
$s_{y}^{2}=\sum_{i=1}^{n}\left(\frac{\partial y}{\partial y_{i(0)}}\right)_{\substack{y \\ j \neq i}}^{2} s_{\substack{i(0) \\ 2}}=\frac{1}{\left(\frac{\partial F}{\partial y}\right)^{2}}$

$$
\begin{aligned}
& S_{A}^{2}\left(\frac{\partial F}{\partial A}\right)_{x, y, B, C}^{2}+S_{B}^{2}\left(\frac{\partial F}{\partial B}\right)_{x, y, A, C}^{2} \\
& +S_{C}^{2}\left(\frac{\partial F}{\partial C}\right)_{x, y, A, B}^{2}+2 S_{A B}^{2}\left(\frac{\partial F}{\partial A}\right)_{x, y, B, C}\left(\frac{\partial F}{\partial B}\right)_{x, y, A, C} \\
& +2 S_{A C}^{2}\left(\frac{\partial F}{\partial A}\right)_{x, y, B, C}\left(\frac{\partial F}{\partial C}\right)_{x, y, A, B} \\
& +2 S_{B C}^{2}\left(\frac{\partial F}{\partial B}\right)_{x, y, A, C}\left(\frac{\partial F}{\partial C}\right)_{x, y, A, B}
\end{aligned}
$$

where the variances and covariances in equation (154) are to be calculated from equations (145), (146), (147), (148), (149), and (150). Equation (154) is the general formula for calculating the variance of a calculated y, regardless of the functional relationship between y and x and the parameters, A, B, and C.

This concludes the derivations of the formulas used by us in the solution of general non-linear least squares problems.

In a later paper, we will apply these general formulas to the reduction of PVT data obtained by the Burnett method.

$$
(0) H^{x}
$$

20
(बR1)

 2....
 Whathen

REFERENCES

1. Birge, Raymond T. The Calculation of Errors by the Method of Least Squares. Phys. Rev., v. 40, Apr. 15, 1932, pp. 207-227.
2. Burnett, E. S. Compressibility Determinations Without Volume Measurements. J. App1. Mech., v. 3A, December 1936, pp. A136A140.
3. Hartley, H. O. The Modified Gauss-Newton Method for the Fitting of Non-Linear Regression Functions by Least Squares. Technometrics, v. 3, No. 2, May 1961, pp. 269-280.
4. Marquardt, Donald W. An Algorithm for Least-Squares Estimation of Nonlinear Parameters. J. of the Soc. for Ind. and App1. Math., v. 11, No. 2, June 1963, pp. 431-441.
5. Merriman, Mansfield. A Textbook on the Method of Least Squares. John Wiley and Sons, Inc., New York, N. Y., 8th ed., 1911, pp. 75-79.
6. Moore, Roger Hughes. On the Least Squares, Estimation of Parameters in Nonlinear Models. Ph. D. thesis, Oklahoma State University, Stillwater, Oklahoma, 1962. University Microfilms, Inc., Ann Arbor, Michigan, 63-4067.
7. Scarborough, James B. Numerical Mathematical Analysis. The John Hopkins Press, Baltimore, Maryland, 4th ed., 1958, pp. 192-198.
8. Strand, T. G., D. A. Kohl, and R. A. Bonham. Modification to the Newton-Raphson Method for the Fitting of Nonlinear Functions by Least Squares. J. Chem. Phys., v. 39, No. 5, Sept. 1, 1963, pp. 1307-1310.

280nx Rymy

 -

 $20+2$ an intione

[^0]: 1/ Supervisory Research Chemist, Project Leader, Thermodynamics, Helium Research Center, Bureau of Mines, Amarillo, Texas.

 2/ Research Chemist, Helium Research Center, Bureau of Mines, Amarillo, Texas.

