ENGINEERING NEWS american railway journal.

Vol. XXXIX., No. 17.
table of contents.
gNGINEERING NEWS OF THE WEEK.

265, 280 | Steel Arch 1HIgway Bridge Over Fall Creek, Ithaca, |
| :--- |
| N. Y. (Hlustrated) |
| 266 | Timber sultahle for structures in Nicaragua and Costa Rica

 A Water Power Plant on the Jorda
Rapld Transit in Paris..
The Construction of Lock
sourt (with full-page p:ate and other illustrations) sourl (with full-page pate and other Illustrations).
An mproved Surface Condenser ((Illustrated).

DITORIAL NOTES

The Opening of the War-The Need of Increasing the Navy-Opportunities for Commissioned Officer the Navy-Opportunites In the Navy-The Qualifications Necessary for Officers and for Machinists-Equlpplng Frelght Cars with Train Pipes Only, for Use with Air
 -

EDITORIAL:

$$
\begin{aligned}
& \text { LETTERS TO THE EDITOR....................... } \\
& \text { Specifications for Portland Cement; Philadelphla } \\
& \text { Department of Puhlic Works-Steel Tank Grain } \\
& \text { Elevators (Illustrated)-Tahle of Coeffleients for } \\
& \text { Designing Bridge Portals (illustrated)-Concern- } \\
& \text { Ing Ogee-Faced Dams (illustrated)-De Pontihus. }
\end{aligned}
$$

ELECTRIC MOTOR CARS are gradually helng introduced on the South Side Elevated Ry. (Alley Line), at Chlcago, to replace the steam locomotives which have hitherto been used. somp while, and some of the cars are now in service, the trains consisting of four or five cars. The Sprague system is used, in which each car has its own electrica equipment, hut all controlled from the front car. This ls the last line to make the change to electric traction, and when its engines are taken off there will be no steam loco motives on any of the Chlcago elevated raliways. On the other fines tralns of three and four cars are run, hut the speed is hy no means eqnal to that of the steam trajns on the South Side line.

MUNICIPAL OWNERSHIP OF STREET RAILWAY racks in Cleveland is recommended for consideration in the recent snnual message of Mr. Robt. E. M Kisson, Mayor
of Cleveland. If the tracks were so owned and then leased of Cleveland. If the tracks were so owne
the franchise of the clty of Cleveland, Instead of bringing
$\$ 6,600$ by way of car licenses as now, wouid undouhtedly $\$ 6,600$ by way of car licenses as now, wou'd undouhtedly
yield over a million dollars annually, to say nothing of the yield over a million dollars annually, to say nothing of the
advantages of lower fares and the marked reduction in the general tax rate which this income would allow.
During the past year the Mayor and others have heen Instrumental in securing a repeal of a statute under which the street rallway franchises of the clty would have heen extended 50 years. In Cincinnati the street rallway
panies secured the benefit of the law hefore its repeal.

THE NEW EXPRESS LOCOMOTIVES of the Chicago indianapolis \& Loulsville Ry. have some speclally inter esting features in their design, and the engine of this class which hauled the special train of the Western Rail way Club between Chlcago and Lafayette, on April 19 attracted considerable attention. The boller has no cyl indrical course, the conlcal throat sheet reaching from the extended wagon-top to the smokehox. The boller is set high along the axles, and its cah floor and firing door ars ahout 2 ft . above the top of the tender frame. To facilitate firing, therefore, the floor of the coal space is mads level with the cab floor, the tank extending helow che coal space. The engines are fitted with truck hrakes, and it would seem to be high time that these hrakes wer ntted to a large number of express engines. The cah is of polished mahogany, and is unusually roomy. Th New York hrake pump, the hollow crank plns, the auto matic hell ringer and the hroad, well-protected steps to the tender deck also came in for thelr share of the at cylinders $181 / \times 26$ engines are of the elght-wheel type, with pir $18 / 2 \times 20$ ins., and driving wheels 6 Kl . on the driving whels. The engines were huilt last y. by the Brooks wheeis. The engines were huilt last year one of thems Lacomotive Works, of Dukirk, N. Y., a and Deer Creek) in 6 minutes, or at the rate of 91 miles and Deer

A NEW TRANSCONTINENTAL RAILWAY across Canada is being discussed. The proposed line would commnece at Qu

 bec, running generally parallel to the Canadian Pacific Ry on the northern edge of the fertlle helt, and terminate atPort Simpson, on the Pacific, about 450 mlles north of Van.
couver. The latter point is sald to possess the fines harhor on the Pacific north of San Francisco, and under the influence of the Japan current, the climate is mild and the harbor would be open all the year around. The route would be laid stralght from Quebec to the north end of Lake Winnipeg, and then slightly south to Prince Albert, where it would meet the northerly extension of the Canadian Pacific hranch from Regina. The Rocky Mountains would be crossed near the source of the Peace River, at an elevation of $2,400 \mathrm{ft}$., and the line would then descend the valley of the Skeena to the Pacific, The hreadth of the strip enclosed hetween the line and the Canadian Pacific would vary from 150 to 500 miles, and the length of the line, from Que hec to Port Simpson, would he 2,400 miles. The existin Montreal-Vancouver line is 2,521 miles long. Dr. Roheit Bell, of the Geological Survey of Canada, estlmates that in this region, south of Hudson's Bay,there are $25,000,000$ acres of fertile land suitahle for settiement, but now inaccessithle on account of the lack of rallways.

CHANGING A TUNNEL TO AN OPEN CUT will be a feature of the work for douhle-tracking the Chartiers branch of the Pittshurg, Cincinaal, Chi have a maximum depth of ahout 130 ft ., with flat slopes in clay ground. The methods employed in opening up a tunnel on the Caledonian Ry., of Scotland, and the shield used in removing the hrick, were descrihed and illustrated In our issue of April 21, 1892.

THE DISTRIBUTION OF TRAFFIC in France, over rallways, rivers and canals and main highways, for the total Internal freight traffic, is placed at 69, 22 and 9%, respectively. The total length of French rallways is 21300 miles; that of navigable ways is 7,600 miles, and the main
highways of the country aggregate 24.600 miles in length.

THE COST OF BRIDGE RENEWALS and the suhstitution of permanent for temporary structures on the Lake Erie \& Western R. R., from Jan. 1, 1887, to Jan. 1, 1898, has averaged $\$ 19.16$ per ft . for $39,512 \mathrm{ft}$. of work. Most of the costiy structures have heen hullt, and this rate is
higher than future work will probahly cost, the average higher than future work will probahly cost, the average rate for which is estimated at $\$ 17$ per ft . of permanent work. These figures are taken from the "characterisW. F. Goltra, Chlef Clerk to the Chlef Englneer. By reW. F. Goltra, Chief Clerk to the Chlef Engineer. By relerring to an extract from Mr. Goitra's former report, in ft ., and it was then estimated that future work would cost oniy $\$ 15$ per ft . The diagrams accompanying the report show that during 1895 a very considerahle amount of work was done in bullding bridges and filling in hanks. In 1896 less work of this kind was done, and in 1897 it was almost at a standstlll.

THE REPLACING OF A 117-FT. RAILWAY BRIDGE span was accomplished in $11 / 2$ hours on April 24 in the work of reconstructing two spans of the elght-span viaduct of the Pittshurg, Ft. Wayne \& Chicago Ry., near Temperanceville, Pa. Practically the same method was adopted as was employed in replacing the Pennsyivania R. R. bridge over the Schuylkill Rlver, near Girard Ave. Phlladelphia, Pa, which was fully described in Engineering New, Oct. 21, 1897. A alsework was erected on each side of the old span, and on one of these the new span whect the unoccupled faisework and the new span slmulane ore sha her the he seats. The work was done hy the Edge Moor Bridge Works, of Edge Moor, Del., under the Immediate supervision of Mr. W. B. Fortune, of tha of Way, Pittsburg, Ft. Wayne \& Chicago Ry.

A Bridge across the mersey, at Liverpool, is be ing considered hy the Chamher of Commerce of that city It would be a suspension hridge, with a central span of $2,000 \mathrm{st}$., and two side spans of 1,000 ft . each. The estimated cost Is $\$ 12,500,000$.

THE BRIDGE OF BOATS, over the Indus River at Khushalgarh, Indla, was estahlished in 1876, and is only used hetween Sept. 15 and June 15, beling removed for the flood months. The length of the hridge is $1,000 \mathrm{ft}$., and it 1 made up of seven boats, each 62 ft . long, and 18 boats each 48 ft . long, with planked roadway. The Indus at this point is 81 ft . deep, below the zero gage; and the highest flood on record rose $551 / 2 \mathrm{ft}$. ahove zero.

THE MOST SERIOUS RAILWAY ACCIDENT of the week occurred on the New York Central \& Hudson River R. R., at Falrport, N. Y., on April 21. A westbound freight ran into the rear of another frelght traln, which reight ran into the rear of atanding at water station. Then were killed and one Injured.

A LARGE TRANSFORMER EXPLODED on April 19 at the works of the Wagner Electrlc Manufacturing Co.,

St. Louls, Mo. The transformer was one of the oll insulated type for high tension work undergoing a test. It is nusingod that one of the inner connections gave ou reported.

POWDER MILL located at Santa Cruz, Cal., blew up on April 26, killing several men and wounding others. The mill was at work on a government contract, manufac turing smokeless and hrown pneumatic powder. Four explosions followed and the Naval Reserve was called out the magazines

TELEPHOTES OR A SYSTEM OF SIGNALS for commu nication between ships, or between land and vessels, will be Installed at Boston, New York, Fortress Monroe, Key West and San Francisco. The device consists of Incandescent controlled by a keyboard in such a manner that signals can e transmitted hy causing the lights to flash in variou combinations. At the places named electric light plants are aiready in operation. It is also reported that the in ventor of the system, Mr. C. V. Boughton, will construct number of small plants, including the signal lamps, mall generator, and gasoline engine, and that many othe harbors and stations along the coast will he equipped w.t these small outfits.

A PORTABLE X-RAY APPARATUS intended for use in war has just heen completed hy Prof. Reginald A. Fes senden of the Western University of Pennsyivania. It is Wehster's the new machine will he ahout as large as a Wehster's dictionary and will weigh only 25 lhs . It will which will not weigh more gasoline motor or gas turhine which will not weigh more than 25 lhs . Tho electric generator used is sald to hs the smallest ever made for practical purposes, yet the outit will enahle surgeons to instruments instruments in the various fleld hospitals.

THE WHITEHEAD TORPEDO, of which we may hear frequently in the next few weeks, is 16 ft .5 ins . long 17.7 ins. greatest diameter, and welghs, ready for service, $1,160 \mathrm{lhs}$. It carries 220 lbs , of wet gun cotton at a speed of ahout 28 knots per hour, and at that speed it has a and is prout 8.50 yds. This torpedo is hulit of steel opposite propelled hy two two-hladed screws, revolving in rolling tendency of the the same axis, to neutralize the hy a three-cylinder engine driven by air compressed to 1,350 Ihs. per sq. in.; and an Intricate apparatus, called the Ohry gear, is used to automatically keep the torpedo pointed stralgbt during the run. This Obry gear is es-
sentially a gyroscope controlling the valves of the steersentially a gyroscope controlling the valves of the steer-
ing engine, which operates two rigidly connected vertical rudders.

THE HOLLAND SUBMARINE TORPEDO BOAT made another very successful test on April 20 . She made four
dives of ahout one mile each, running with $14,13,15$ and 18 dives of ahout one mile each, running with 14, 13,15 and 18 ft . of water ahove her in the several tests. She was under
ahsolute control at all times and her automatic steering apahsolute control at all times and her automatic steering apparatus worked admirahiy, keeping her steadily at the desired depth helow the surface. She fired a dummy Whitehead torpedo and also used one of her above-water guns. One marked feature of the test was that though she came to. the surface several times, at the distance of two milles and in the somewhat rcugh water, she was invisible even to those closely watching for her reappearance. The operation was conducted in Raritan Bay, in an average depth of 30 ft , of water. The naval board, which has been watching the tests of the "Holland," does not recommend her purchase at the price asked, $\$ 175,000$, though this action is strenuously advocated hy Assistant Secretary of the Navy Roosevelt. Mr. Holland, on his part, clalmed that the board declined to risk thelr Hives in the craft, so that they might more closely watch its movements; and he finally offered to go to Havana, enter the harhor and throw dynamite projectiles into Morro Castle; provided, the government would purchase upon the accomplishment of this feat. He aiso says that he is offered $\$ 100,000$ for the craft hy French agents, with delivery at New York. The matter is now being discussed at Washington; and the only apparent objection to the proposition of Mr. Holland lies in the determination of the authorities to conten themselves, for the present, with a peaceful hlockade of Cuban ports. The "Holland" is really unfinished, the engine provided having only 45 HP., while the hoat i designed for one of 150 HP ., and could carry a larger on still. This may explain the action of the naval board.

THE JAPANESE MERCHANT MARINE, saya "Indian nd Eastern Engineer," has Increased since the Chinese Japanese war from 160,000 to 400,000 tons of steam hhid ping. Lines are now organized salling from the chler port of Japan to China, India, Europe, America and Ausiralla. This growth foliows a change from an agricultural to manufacturing natloa. In 18,2 Japan only exported manafactured artlcles to the value of $\$, 00,000 ;$ in 188% exportal exports.

STEEL ARCH HIOHWAY BRIDGE OVER FALL CREEK ITHACA, N. Y.
We lilustrate herewith two views and a number of detall drawings of a steel arch highway bridge built across the gorge of Fall Creek, at Ithaca, N. Y., to connect the grounds of Cornell University with an adjacent tract of land owned by Messrs. E. G. and C. E. Wyckoff, who propose to lay it out into residence sites for Professors' houses. The bridge has a span of 169 ft .1129 - 32 ins. c. to c. of end pins, and consists of two plate girder arch ribs braced together by cross-frames and a triangular lateral system, and carrying vertical latticed posts, which uphold the floor system. Fig. 1 is a general view of the bridge and gorge; Fig. 2 is an end view of the bridge and gorge; Fig. 2 is an end
view from the bank at a point below the floor view from the bank at a point below the floor
showing the girders and posts and their systems showing the girders and posts and their systems
of bracing; Fig. 3 is a detall of one of the plate
exposure to the weather the stones were by far too soft to retain the blast successfully.
The entire work was under the supervision of M. E. A. Landon, Chlef Engineer, and Mr. H. G. Dimon, Consulting Engineer of the Groton Bridge \& Manufacturing Co., of Groton, N. Y., the contractors. Mr. K. P. Crandall was Engineer and Inspector for the Messrs. Wyckoff.

TIMBER SUITABLE FOR STRUCTURES IN NICARA-

 GUA AND COSTA RICA.
By J. Francis Le Baron, M. Am. Soc, C. E.*

The following notes on the timber sultable for purposes of construction are gathered from personal observation during a residence of over two years in Nicaragua, on survey and construc. tion of the Nicaragua Shlp Canal, and from the
often eat out the entire inside of posts and beams leaving only a thin outer shell. There are soms kind of native woods, however, that they will not eat.

In the following notes the relative abundance hardness and durabillty, are estimated on a scal of 1 to 10 , the higher figure belng the maximum The diameter is measured breast high, or aboy the buttresses, when these occur. The "length" of trunk is that part avaliable for lumber, either t or above the first limbs; the "height" is the tita helght of the tree and branches; the "durability" is that of seasoned timber. The English, Nicara guan or Spanish, and the Latin names are given when known. Of the $\mathbf{1 6 6}$ varleties of timber noted in the two countries only these are here men. tioned which are suitable for timber, or cabinet purposes.

Fig. 1.-General View Looking Down Gorge.

Fig. 2,-End View Showing Arch Ribs and Bracing.

STEEL. ARCH HIGHWAY BRIDGE OVER FALL CREEK GORGE, ITHACA; N. Y. Groton Bridge \& Mig. Co., Uroton, N. Y., Contractors.
girder ribs near the skewbacks, and Fig. 4 shows the skewback shoes themselves.

These illustrations give a sufficiently clear understanding of the arch construction. The floor system is simple, consisting of plate girder floor beams at each post which carry I-beam stringers, on whlch the plank flooring is lald. The roadway is 24 ft . wide in the clear, and is flanked on each side by a 5 - ft . sidewalk. These sldewalks consist of plank flooring laid on I-beam stringers which are supported by latticed bracket continuations of the main floor beams. Fig. 2 shows the hand railing construction clearly. The bridge is also railing construction clearly. The bridge is also provided with stringers carried on angle brackets
riveted to the floor beams, which are intended to support an electric street railway track, should it ever be desirable to construct such a track across the bridge.
As the south bank of the gorge is somewhat higher than the north, it was necessary to place the floor of the bridge on a grade, which was accomplish by using different lengths of vertical posts. In the erection of the work a falsework was bulit up complete from the bottom of the creek to the top of the bridge, the distance being about 120 ft , at the center of the bridge. In order to facllitate erection, sections of the arch ware assembled at the shop and the splices reamed.
The abutments proper were built from the native stone, with shoe stones $4 \mathrm{ft} \times 4 \mathrm{ft} . \times 18 \mathrm{ins}$. fron the Cobleskill quarries. These stones were not acurately set in place untli the falsework was built up to the level of the pockets, after which the distance across the stream was ascertained by means of wire and a steel tape. The pockets had been so accurately cut, however, that it was found necessary only to bolster up the stones by a thin layer of Portland cement. The removing of the rock was a somewhat difficult operation, owing to the fact that on account of
writings of Spanish authors on thls subject. Many woods useful in the arts and in medicine, or for the frult produced, are omitted, as not bearing directly upon the subject.
The density of forest growth in the valley of the San Juan and its affluents is remarkable; trees of many varieties grow to an enormous size; and on the flooded lands the larger trees are usually upheld by great triangular buttresses reaching 10 or 12 ft , up the trunk. Between the trees is an almost impenetrable mass of undergrowth, and about the trees are entwined innumerable creepers, extending to the tops and sometimes attaining a dlameter of 8 ins . or more. Vlewed from above, the tops of trees in this forest present an almost uniform surface; and the many sharp undulations in the ground, rlsing and falling 60 to 75 ft ., are not indicated at all. These forests are too damp to burn, and the trees are never blown down, except on the river banks, as the mass of foliage is too dense for the wind to affect, but they fall suddenly when they have lived their al lotted time.
On the Paclific slope the forests are less dense than on the Atlantle slde, and the undergrowth is not so thick. and glades occur among the trees. The trees of Nicaragua, Costa Rica, British and Spanish Honduras, Guatemala, Salvador and the United States of Colombia are all much alike. In the zone of greatest rainfall, the wood often contains so much sap that it cracks and warps on exposure to the sun to an extent that makes it unsuitable for timber. But even these trees, if cut and piled loosely under a shed for six months or if hewn and then soaked in water for six months, will make good and serviceable tlmber The same result will follow girdling when the sap is down.
The termites, or white ants, are very destruc tive to wood construction in Nicaragua, as they *Jacksonville, Fla.

Red Cedar: Cedro colorado, Cedrel or Cedran (Cedrela odorata.) This belongs to the same fam$11 y$ as the mahogany, and there are 17 varieties, known by special names. It is found on the river banks, with a length of 60 to 80 ft .; diameter, 2 to 3 ft . It floats in water when dry and a relative abundance is 5. It is much used for boards and canoe-making, and is very durable in water. Male Cedar; Cedro macho. Length 80 ft .; diameter 5 ft .; splits hard; floats green; lasts from 10 to 20 years.
Thorny Cedar; Pochote, Cedro Espinado; (Pochira Bombax?) Abundance 10 ; length 60 ft . and more; dlameter 9 ft . A good wood, found on the Atlantle slde, on the hllls and river banks; it is used for boats, boards and posts. Posts of this timber will take root and grow when used in fences. It bears a cotton ball that is used for textile purposes and for mattresses.
Manwood, Iron Wood; Corteza negro; Paio de hlerro; (Tecoma sideroxylum.) Abundance 8 in the West, 1 in East; length 16 to 24 ft .; diameter 4 t 9 ins. Hard to cut and split; sinks when green but floats when dry; grows on the hills and river banks. It is used for bridge and house timber, posts, railway tles, etc. It is tough and very heavy. There are three varieties of this timber Resembles bornbeam, Cospinus americana.
Yellow Manwood; Corteza amarlllo. Abundanct 6 East, 8 West; length $18 \mathrm{ft} . ;$ diameter 5 ins Grows in same localities as above and has the same characteristics and is used for similar purposes. Sinks when dry.
Medlar Tree; Nispero or Itaiba. (Hymaensa combarll L.) (Mespilus germani) and (M. americana). Abundance, 6; length, 100 ft .; diameter. 5 ft . There are four varieties, known as N . blanco; \mathbf{N}. amarillo; \mathbf{N}. negro and \mathbf{N}. colorado. Grows on the hills and river banks is very strong, hard and heavy; sinks when green. It is ustd for bridge and house tim-
ber; is large and straight; very durable and lasts indeftely in water. It is a valuable timber, as as mors some purposes, and bears good as mahouts it should be one of the into South Florlda. Wood resembles introduced in is stronger and more durable.
Black Wood; Madera negro, Madre de cacao; (Glirleidla maculata; Kunth.) (Erythrino um brosa.) (E. velutina.) Abundance 1 East, 8 West; length 20 ft .; dlameter 3 ft ; height 40 to 50 ft . A fine hard wood for house framing and cabinet work: Jargely used for tles on the Grenada-Corinto Pallway. It is also used for bridges, but is crooked. In the ground it is said to last for 100

FIO 3.-DETAILS OF PLATE GIRDER AKCII RIBS AT SKEWBACKS.

years. It is used as a shade tree in cacao plania tions. Wood may be llkenod to L'gnum v.tae. Wild Almond, Break Axe; Aimendro, Ibo or Que brada hacha; (Terminalia cattapa.) Abundance s; length 80 ft .; helght 125 ft .; diameter 1 to f it. durablilty 10; hardness 10 . Grows on river t.; durablills. sinks green, but floats dry it bank and hills; sinks green, but floats dry. It could be used for bridge timber, planks, docks, etc. It never splits or rots, except after a long time; it is hard as iron and resists nails. The grain of the wood is intertwined, and it is almost impossible to cut it with an axe. In clearing the canal right of way, these trees were sawn down by a crosscut saw and then blown up with dynamite. It is probably the same as the Quebrada negro, of the Argentine Republic, "Axemaster" of Berlize, and El Rey de los Palos, Paraguay. Wood more nearly resembles Live Oak than any other, but is harder, stronger, more difficult to split and more durable.
Tabcon; Tabacon. Abundance 8 East; length 3i) ft .; helght 50 ft .; dlameter 9 to $\mathbf{1 4} \mathrm{ins}$.; durabillty 8. Grows on high lands; sinks when green; splits very hard; last $\mathbf{8}$ to $\mathbf{1 0}$ years in the ground. It is used for house posts, and for tanning.
Mary's Milk Tree; Leche Maria, or Leche cuajo. (Varriga negro?). Abundance 7 East; length 18 to 20 ft .; height 50 ft .; dlameter 1 to 3 ft .; durability 5 . Grows on high lands and in swamp3: sinks when green; splits hard. The heart-wood is very good and is used for posts, sills and plates; lasts 5 years under cover.
Red Tree; Arbol colorado, Coloradito. Abundance 3 ; length 20 ft ; height 40 ft .; diameter 12 to 16 ins. It floats when green; splits hard; is used for girders. Grows on high lands.
Toasted Leaf; Hoja tostada. Abundance 8 East, length 50 ft. ; helght 80 ft .; diameter 18 to 20 ins Grows on high and low lands; sinks when green; used for boards, etc.
Marul. Abundance 3; durabllity 10; length 70 ft .; dlameter 2 ft . Grows on high lands; is used for house posts and lasts underground for 10 years.
Chocomico. Abundance 8 East; length 50 ft ; height 115 ft .; diameter 12 to 18 ins . Grows plentifully on high lands; sinks when green; splits hard; is used for girders, and lasts 10 to 15 years.
Matasano. (Casimiroa edulis.) Abundance 8; durability 5 ; length 50 ft . helght 80 ft .; diameter 15 to 18 ins. Grows on high lands; sinks when 10 to 18 ins. Grows on high lands; sinks when
green; splits hard; is used for house posts, and green; splits hard; is used for house posts, and
lasts underground 5 to 6 years. It grows widd lasts underground 5 to 6 years. It grows wild and is also cultivated, and bears an edible fruit. Papaya Almendro. Abundance 8 East; dura
bllity 10 ; length 50 ft .; dlameter 50 to 60 ins.

Grows on high and low lands; sinks when green; spilits hard; used for posts and boards, and lasts underground for 20 or 30 years. This is not the pawpaw, or Spanish papaya, which is a soft, valueless wood.
Sapodillo, Naseberry: Sapotillo, Espanel, Sapote, or Limonero rojo; (Achras sapota L.). Abundance 6 East; length 12 ft . diameter 4 ft . Grows on hills on East side and is cultivated on the West. Sinks when green; splits hard; has many limbs; said to be proof against teredo, and furnishes a wellknown fruit. Stephens reports finding a doorlintel of this wood, in perfect preservation, in the ruins of Palenque; he says it must have been
white and harder, and somewhat resembles white pline. Both grow on rlver banks.
Alligato Tree; Lagarto and Lagartillo: two va rieties. Grows on Atlantlc slope. Abundance 1 . length 12 ft .; dlameter 18 ins . Floats green: splits hard; wood resembles Guava; used for heavy construction.
Coal Wood, or Coyote; Gulliquiste, Guachipelin, Palo do carbon, etc. Abundance 3 West: dlameter 4 ft . Floats dry; a very strong yeilow wood with many llmbs; used for house sllls, bridge stringers and raliway ties. Very durable in the ground. Jicaro del Monte, Catabacero; (Crescentia alota or C. acuminata). Abundance 6 West; length 12 ft .; diameter 2 ft . A strong wood; floats when dry; used for boat's gunwales.
Junzopote negro. Sunsapote; (Mangifira domestica) or Achlas jimenia. Abindance S : length $\because-1 \mathrm{ft}$.; dlaueter 8 ins . Floats dry; red in color: used for bridge and house timber and rallway ties; bears an edible frult. Grows on hills. It resembles Canveadeaival wood that grows on East slope. Spllts hard.
Laurel: (Laurus nobilis): 9 varieties. Abundance 2 East, but very plentiful in interlor; length 24 ft .: dlameter 5 ins. A very good, straight wood; floats dry; used for bridge timber. piles and furniture and carriage making.
Gavilan: Gabllan colorado: (Mimosa arborea). Abundance 8; length 16 ft .: diameter 4 ft . A good wood but splits hard; the heart-wood used for tles and general construction; resembles the Acacla Grows in swamps and on river banks.
Black Thorn; Espina negro; E. blaneo: E. amarillo. Grows on East side; used in construction rillo. Grows on East side; u
and cablnet work; floats dry.
and cabinet work; floats dry.
Lead Wood; Palo de plomo. Abundance 4 East; length 80 ft .; diameter 2 to 4 ft . Stralght and tall; floats dry. Grows on river banks; wood resembles maple.
Camitos (Crysophylum ollviformis); five varietles. Abundance 8 East; length 100 ft .; dameter 4 to 5 ft . Wood red; brash and resinous: used for bridge piles. Different from Caimita of U. S. of Colombia, which is hard, close-grained and very heavy. Fioats dry.
and very heavy. Fioats dry.
Strawberry Tree; Madrono negro, M. amariilo. Abundance 5 East; length $16 \mathrm{ft.:} \mathrm{dlameter} 18$ ins A fine-grained wood without flber, resembling boxwood. Crooked: floats dry: used for rallway ties and general construction; good for lathe work.
Guasimo; four varleties. (Guasuma ulmifoila.) Abundance 8 East; length 16 ft .; diameter 5 ft . Floats dry; used in carpentry.

Elevation.

Fig. 4.-Detalls of Skewback Shoes.
Grape Tree: Uva or Huva. Abundance s East; length 20 ft .; diameter 14 ins . A good wood, splits hard: sinks dry; used in house building.
Snake Wood; Culebra. Grows on East side heavy and splits rather easily; floats dry; used in carpentry and cabinet work, and as a dyewood.
Tolodo. Length 18 ft .; diameter 3 ft . Grows on East side; fioats green or dry; splits hard; makes good lumber and fine fire wood.
Seven Skins; Siete pelejos, S, cueros. Abundance 1 East; length 16 ft .; diameter 2 ft . Floato green; cuts like cheese, but splits hard; not used. Grows on river banks.
Match Tree: Foforito. Abundance 1 East; length 12 ft .; dlameter 12 ins. Sinks green; wood flbrous and splits hard; resembles Sapote in appearance; no uses known. Grows on river banks and islands Guapinol, Copinal, Alganobo; (Hyrnenea Courbaril.) (Family Leguminosa.) Abundance 1 East;
length 25 ft .; diameter 4 ft . A beautiful, solid and hard wood; used for boards, beams, wheels and cablnet work; color reddish, with very compact fiber. Bears a nutritious fruit and furnishes a gum equal to Ceylon copal.
Red Oak, White Oak; Encina; Roble; (Quercus robur; Tecoma Mexicana); four varieties. Length 16 ft : diameter 3 ft .; grows on elevated land in the West. A strong, heavy wood; used for planks, wagons and barrels, and for dyeing and tanning.
Red and White Mangrove; Mangle colorado and M. blanco. (Lagunculria racemosa.) Abundance 6 East and West; length 25 ft .; diameter 20 to 36 ins.; height 30 to 50 ft . Grows in the salt water on both coasts; strong and heavy wood; used for shoe pegs, also for posts, planks and cabinet work, and for shipbuilding and wharves; for the latter purpose it has no equal. The Red Mangrove some tlmes grows to a height of 60 to 80 ft .; the white or light yellow, to 80 ft ., and the black Mangrove grows 50 ft . high. The bark is rich in tannin and dye, and is largely exported to Europe. It grow abundantly in Florida. Has medicinal uses.
Quebracho: and Q. colorado. Abundance 1, in Chinendega; length 28 ft .; dlameter 3 ft . This is a strong, heavy wood; used for posts and cabi r.et work.

Mahogany; Caoba; Caobano; C. Con; (Swietenia mahogany; Caoba; Caobano; C. Con; (Swietenia near Leon; none in San Juan Valley. Abundant in Zelaya 8 ; Leon 1 ; length 25 ft ; diameter 3 ft . Well known in character and use. It costs about $\$ 40$ to $\$ 50$ per $1,000 \mathrm{ft}$., B. M., to cut and square mahogany and get it to the seaboard.
Mulberry; Mora, Moran, (Rebus ideous and Morus tinctoria); six varieties. Abundance 5 West; none on East; length 20 to 30 ft .; diameter 4 to 6 ft . A heavy, yellow, strong and very fine and durable wood; as good a dye as Brazil wood; used in house building, cabinet work and for railway ties. Bears an edible berry; is cultivated. Grows on the hills and high plains.

Gamvach3. Abundance 2 East; length 24 ft ; diameter 5 ft . Floats dry; is straight and many nimbed.
Granadier; Granadillo. Abundance 4 West; none East; length 50 ft .; height 80 ft .; diameter 6 to 24 lns . Wood hard and takes a fine polish; used for canes and cabinet work.
Ronron: R. veteado. Abundance 6 West; length 30 ft .; diameter 4 ft . Used for cabinet and other construction.
Male Brazil Wood; Brazil Macho. A heavy wood that makes excellent rallway ties
Nance; Nanzite colorado; (Malphighia punicifolia.) Abundance 8 West; length 20 ft .; diameter 2 ft . A heavy, strong wood, used for building; bark useful for tanning and dyeing; bears a small edible fruit.
Cuban Pine; (Pinus Cubensis.) Grows in Zelaya, on Prinzapulka River, in a strip 50 by 20 miles; also in Segovia and on the higher lands up to $2,500 \mathrm{ft}$. elevation; none in San Juan Valley, but the most abundant tree in Florida. Length 40 ft.; diameter 18 to 20 ins.; height 60 to 80 ft . A hard, heavy and durable timber. Floats green and dry. Is the Long-leaved Pine; (Pinus palus tris) ; or Ocote
Icaco; (Chrysobolanus icaco.) Abundance 6 East and West; length 5 ft ; diameter 12 ins Grows in the sea; bears an edible fruit; brought originally from Senagal. A fine and durable wood; but small and with many limbs.
Papaturo; P. blanco; P. negro. Abundance 5 West; length 16 ft ; dlameter 3 ft . Wood soft; rooked; makes a good fence.
Little Cheese Tree; Quisillo. Abundance 10 East and West; length 10 ft .; diameter 12 ins . No known use
Monkey Tree; Jacote mico, etc.; (Spondias myrobotanus L.): five varieties. Grows in San Juan Valley. A very strong yellow wood. Abundance West 7. Floats dry; splits hard. Bark fiber used for matting, baskets, rope, etc. Length 12 ft .; diam. 12 ins
Copaiba, Camivar; (Copaifera officinalis.) Abundant in San Juan Valley, and grows to a height of 50 to 60 ft . Wood strong, reddish in color. Much used for inlaid work, being repellant to insects. Used as a dye and in medicine.
Liquid Amber; Liquidambas; (Liquidambar macrophylla, etc.) Grows in San Juan Valley and
on West side to a height of 60 ft . The wood has an agreeable odor and is used in making vases cups, etc., and has the property of preserving organic substances. Its balsam is well-known fot medicinal purposes and perfumery.
Peruvian Balsam; Balsamo del Salvador, etc. (Myroxilon Pereizal, etc.) Grows near Salvador and in San Juan Valley. Abundance 4; height 35 to 65 ft . Wood reddish-ochre; compact flber; suitable for cabinet work; perfumed. The tree is said to live 100 years. Used for medicine and perfumery
Rubber Tree; Palo de Hule, Cautchu; (Castilloa elastica.) Abundance 8 East, 2 West; length 30 ft .; height 60 to 65 ft .; diameter 2 to 3 ft . Wood ight, soft, and of no use, but each tree yields from 3 to 6 lbs . of rubber sap as a crop, and 100 bs, of this sap yields 36 lbs . of pure gum.
Milk Tree; Cow Tree; Palo de leche; (Galacto denidrum utile). Grows on moist land in the East; length 70 ft .; diameter 40 ins . Floats green splits hard; wood white and fibrous and not used It yields an abundant milky sap, which when boiled is used by the natives in their coffee; the wax from it makes excellent candles.
Melon Tree; Calabash, Jicaro, Tigulate, Temante, or Palo de Melon; (Cresentia cujete.) Plen tiful on West side; used for ships knees and cabinet work; wood durable in ground. The wood resembles the Madrono, and the hard gourd which it bears is much used by the natives for drinking vessels.
Other trees, valuable for structural purposes, rruit, dyes or medicines might be included, did space permit any lengthy description. Among these might be mentioned the following: The Little Coffee Tree, wild, and not bearing the coffee of commerce; the Jovo, Cinnamon, Vegetable Wax and Vegetable Suet trees; the Rosewood Copal, Logwood, Peruvian Bark, Gutta Percha, Pepper Tree, Dragon's Blood, False Brazil wood Sandal wood and Bamboo; Cocoanut, Coyol, Roya Palm, Cohune, Pijiballe and other varieties of palms. There are still about 29 other trees valuable for timber, but not so well known, or so common; and in some cases these are, too, useful for their fruit, or for dyes and medicinal products, to be available as lumber

THE TIMBERS OF NEW SOUTH WALES.

In the tenth issue of "The Wealth and Progress of New South Wales," for 1896-7, the Government Statistican, Mr. T. A. Coghlan, presents a brief review of the timber products of the colony. which is here abstracted for the general interest it possesses.
The characteristic of the trees of New South Wales, and of all the Australian colonies, is a dull, evergreen foliage which alters little with the changes of the seasons. The forests are generally open and the trees met with are chiefly species of Eucalyptus, Angophora and other genera of the order Myrtaceae, with the eucalypti predominating. The trees are usualiy straight and cylindrical in the trunk, with the first branches at a considerable distance from the ground when the tree is full grown. The finest specimens, and those ylelding the most valuable timber, are found on ridges and hill sides, usually too rough and stony for cultivation. A list of the best known varleties of commercially valuable trees is given as follows:

Flooded Gum (Eucalyptus rostrata). This tree grows, along streams, to a height of 100 ft . Its wood is most useful for heavy work, and for structures liable to attack by white ants.
Apple-tree (Angophora subvelutina). This tree also grows along the streams; has more spread than the majority of the Indigenous trees, and the wood is strong, heavy and durable. The tree is widely distributed over the colony. On the ridges and mountain sides other varieties of trees predominate. The Box reaches a height of 180 ft . and diameter of 6 ft . and its timber is chlefly used for firewood, for which purpose it has no equal. The Bastard Box is supposed to be a cross between the Box and Grey Gum, and is widely distributed; but the quality of the timber varies gieatly with the locality. Some varieties are only surpassed among hardwoods by the Ironbark. Ironbark (Eucalyptus leucoxylon and E. pani-
culata).) A tree of moderate size, usualiy 60 to 80 ft. high when full grown; though the White bark attains a height of 150 ft . The timber is heavy; remarkable for its great strength, is nearly twice that of the best oak in fine mens. The wood is extensively used for whary bridges and housework.
Blue Gum (E. globulus. This is one of the of the eucalyptus family. It attains a good and is sometimes 7 ft . in diameter. The is in great demand owing to lts comparatiy ness, and easy working qualities.

Spotied Gum (E. maculata), grows in the districts, on generally poor soil. It attains height of 100 to 150 ft ., but the quality wood varies greatly; when good it is considered specially adapted for ship-building.
Stringy bark (E. eugenioldes), has fibrous bark, and grows chiefly on northect lands. It is a large tree, and its wood is and general utility. The bark is much use roofing, and also as a paper-making material

The Messmate (E. obliqua), also called String bark, is one of the largest trees in Australia frequently being over 250 ft . high. The bark is used for roofing and would make excellent paper Bloodwood (E. corymbosa), is a large tre growing in the coast districts. The timber generally used for fencing and for railway ties

Grey Gum (E. tereticornis) grows to a height 150 ft . and is extensively distributed over coast districts. The timber is hardly inferior Ironbark; and some varieties produce a wood remarkable beauty and great durability.
Tallow-wood (E. microcorys) is a very large extensively found in the forests north of Sydney The wood is more easily worked than most of the hardwoods; it has great strength and durabilit and is employed for floors and building purposes and for decks of ships.
The Mountain Ash, or White-top (E. virgata) found both on the coast and the hills. Th timber is in demand for cooper-work and rough carpentry. The tree grows to a height of abou 150 ft .
Turpentine Tree (Syncarpia laurifolia) some times reaches a height of 200 ft . and diameter of 6 ft . The timber is largely used for piling and ther work in sea-water, as it resists the attack the teredo better than any other wood in the colony.
Red and White Cedar (Cedrela australis and Melia composita). These trees were once abundan n the northern forests; but few of the full-grown trees are now met with, except on the high ridges. The Red Cedar is a magnificant tree, often at taining a helght of 150 ft . and a girth of 30 ft The timber is very valuable; being light, easily worked, durable, splendidly grained and well adapted for furniture and cabinet-work. The White Cedar is about 80 ft . high and 3 ft . in diameter, and the wood is soft and easily worked. but is deficient in tensile strength and durability.
The Silky Oak (Greviliea Hilliana, G. robusta) grows to a height of about 80 ft ., under favorable circumstances, and the wood is very suitable for cabinet-work.
The Tulip Tree (Harpullia pendula) is a tall tree. with beautifully marked wood of various shades and susceptible of a high polish.
The Ash, or Pigeonberry Tree, sometimes grows to a height of 130 ft . with a diameter of 5 ft . The timber is light and tough, and in good demand. The Colonial Pine (Araucaria Cunninghamii) is one of the finest trees of Australia; sometimes reaching a height of 200 ft . and a diameter of 4 ft . The timber is white in color, easily worked, cheaper than any imported pine, and is largely used.
The Native Beech (Gmelina Leichardti), reaches a height of 150 ft . Its timber is in great demand as it nelther shrinks nor warps when exposed. In color the wood is white, or silvery, with a fine, close grain.
The specific gravity and resistance to breaking of various timbers of New South Wales is given in a table. In regard to this table, it should be mentioned that the tests were made with picked specimens, so that the results are perhaps considerably higher than would be obtained in actual practice. The modulus of rupture is eighteen times the load required to break a bar 1 in . square,

April 28, 1898.
supported at two points 1 ft . apart and loaded in supportadle between the points of support, or

$$
s=\frac{3 W 1}{2 b d^{2}}
$$

when $W=$ load applied at mlddle; $\mathrm{b}=$ breadth; $1=$ depth; $1=$ length of beam and $S=$ coefficient of rupture, or breaking stress per square inch:

	∞	
Spotted Gum	. 905	13,300
Grey Gum	${ }^{.917}$	13,100
Flooded Gum	. 095	6,900
Woolly bu	1.022	12,700
Black butt	1.067	13,700
White Ironhark	1.177	16.900
Grey Ironbark	1.182	17,800
Red 1ronbark		
Forest Oak	1.208	11.700
Turpentine	1.141	13,900
Stringy bark	1.123	10,300
Tallow Wood	1.233	15,20
Australian teak	${ }^{1.008}$	14,400
Mahogany	1.201	11,.03
Forest mahogany		
Swamp Mahogany	1.216 1.008	12.100 15.600
White Beech	1.065	11,500
Rosewood .	1.189	10,60)
Plne	. 868	8,800
Greenheart	1.001	22.000
k-British		11.800
" Dantzic.	to 99	8,700
- American	. 99	10,600
Ash, European	. 753	13,000
Birch, European	. 711	11,700
Beech, European	. 690	10.500
Mahogany, Hondur	. 56	11.500
Teak, Indian	to . 88	15,500

FILTER CRIBS IN THE ALLEGHENY RIVER, NEAR PITTSBURG, PA.
In our issue of May 10, 1894, we described several filter cribs bullt in the Allegheny River by water companies supplying places near Pittsburg. A number of other cribs in the same locallty have been brought to our attention in the past four years and are described briefly below. The maln object of these cribs is to remove matter carrieo in suspension by the river.

Sharpsburg, Pa.
The water-works here were built by the borough in 1886 . We are informed that untll 1893 the supply was pumped from the river channel directly to

The crib is located outside the lower end of an island, about one-half mile below the intake of the Pittsburg water-works, at the other side of the river. The $18-\ln$. Intake plpe is about 800 ft . in length, extending from the crib to the pump-well, from whlch water is delivered directly to the consumers. Mr. Schinneller states that the water is clear at all times. The pumping plant consists of two $1,500,000$-gallon Gordon \& Maxwell pumps. One of the pumps is in continual service; theother is worked only durlng fires, when water is pumped directly from the crib. During extreme low stages of the rlver there is only about 8 ins . of water over the gravel covering the crib; The gravel around the crib can be back-flushed through a $4-1 n$. plpe connected with the discharge slde of the pumps, We are lndebted to Mr. Schinneller for the above information. The population of Sharpsburg in 1890 was 4,898 .

Borough Works, Millvale, Pa.

We are also indebted to Mr. Schinneller for notes regarding a filter crlb bullt for the borough of Millvale (Bennett P. O.). This borough is located on the north bank of the Allegheny River opposite the clty of Pittsburg, and adjoining the clty of Allegheny. It has two water-works plants, each drawling water from the Allegheny River. Th municlpal works were built in $1893-4$, with Mr . Schineller as engineer, and Chandley Bros., of Beaver Falls, as contractors. Two cribs have been built for the borough, the first one having become disabled, as stated below. We cannot do better than to quote Mr. Schinneller's description of these cribs, sent at our request, as follows:
The first crih constructed filled with gravel during a flood
in the latter part of May, 1893 . It was 60 ft . Iong, 10 ft . in the latter part of May, 1893 . It was 60 ft . iong, 10 ft .
Wlde and $41 / 2 \mathrm{ft}$. high, and located in the middle of the
river, ahout 500 .t. river, ahout 500 ft . from the pumping station and helow the center pier of the 43 d St. hridge, connecting Pittshurg
wlith the horough. The up-stream end of the crih was with the horough. The up-stream end of the crin was
about 50 ft . helow the pler. The infuent pipe is caat-lron, flexilhe joint, 16 ins. inside dlameter, and entered the crih In the side ahout 20 ft . from up-stream end. The stringers
and cross-tles were 6×8 ins., and the cover was of 2 -in. and cross-ties were 6×8 ins., and the cover was of 2 -th.
p:ank, all hemlock, and constructed the same as
Sharpshurg crih (he Sharpshurg crih (see ahove). There was about 2 ft . of gravel on top of the cover, which was tight, and when
river was at its lowest stage there was about 13 ft of water over the gravel.
After the crilh flled with gravel we concluded to con-
struct a new crih and locate it ahout 70 ft . nearer pumping station and away from the pier. The nearer the 100 ft . long, 14 ft . wide and $41 / 2 \mathrm{ft}$. deep, including the over. The cover is 4 tns. thick and 24 ft . wide, extending ft . over the hody of the crih all around, so as to prevent
the gravei from coming in contact with the hody of the crih. The cover at the outer edge on the sides is spiked
to 6×8-in. timhers. All lumher used is hemilock. There to 6×8-in. timhers. Ail lumher used is hemlock. There
is 3 ft . of gravel over the cover, and $81 / 5 \mathrm{ft}$. of water ahove Is 3 ft . of gravel over the cover, and $81 / 2 \mathrm{ft}$. of water ahove
the gravel. The influent pipe enters in through the cover

FILTER CRIB IN THE ALLEGHENY RIVER AT SHARPSBURG, PA.
having an elhow at the end, and projects down into the crih ahout 3 ft .
On submitting the above description to Mr. John Wallace, Superintendent of the borough water works at Millvale, he has sent us the following:
The Arst crib constructed did not fill up, but was washed away, and the Infuent pipe filled with sand. The second superintendence of Mr. James T. Dickey and myself, Mr. Dickey heing chalrman of the water-works committee and
i being superintendent of the works. The crih is there now and in good shape. All the rest of statement as to conatruction is correct.
In placing the second crih different means were used from those employed on the first crilh. Stone was placed all around the crin and on top of it to a depth of 12 ft . It
was then covered with 2 ft of gravel. We have now the was then covered with 2 ft . of gravel. We have now the
hest of filters, barring none in the state, as the quailty of hest of filters, barring none in the state, as the quailty of
the water derived from the same will prove to any one the water derived from the same
wishing to investigate the matter.
The water is lifted to a 420,000 -gallon tank by means of two pumps, having a comblned capacity of $4,000,000$ gallons. The average dally consumptlon in 1896 was about 650,000 gallons.

Private Crib, Borough of Milivale
The Bennett Water Co, bullt works here in 1890-1, with Jas. H. Harlow \& Co., of Plttsburg, Pa., as engineers. This crib is $16 \times 100 \mathrm{ft}$. by 4 ft . deep. Water is pumped to an elevated tank having a capacity of 280,000 gallons. No further in-
formation is avallable. The population of the borough of Millvale in 1890 was 3,809 .
Purification Effected by the Filter Crib of the
Pennsylvanla Water Co, of Wllkinsburg.
The Pennsylvania Water Co. supplies the 37 th ward of Pittsburg (formerly Brushton); the boroughs of Wllkinsburg, Edgewood and Rankin; and the townshlps of Sterrett, Braddock, Penn and Wllkins
The population supplied is not glven, but the average daily pumpage in $1595-6$ was 990,000 sallons, and the maximum $1,750,000$ gallons. The works were built in 1889-90, with Jas. H. Harlow \& Co., of Pittsburg, as engineers. Mr. W. A. Alexander, of Wilkinsburg, is superintendent of the company. The supply was originally taken directly from the river, being pumped, as now, to a reservolr. In the fall of 1896 the company put In a filter crib, with Messrs. Harlow as engineers. No description of the crib is at hand, except that it does not differ materlally in design from others built after the plans of the same firm, illustrated in our issue of May 10, 1894.

The englneers inform us that from the flrst of February to the last of September, 1897, a total of 29 bacterial examinations were made to determine the removal effected by the crib. The results show an average for the $\mathbf{2 9}$ analyses of 3,542 bacteria in the water directly from the river, and 266 in that from the crlb, or a removal of 92.5%. Eight sets of samples examined in August and Septem ber, 1897, gave the following results:

The engineers also state that independent bacterial examinations made by another party during July and August show about the same results as those just glven. In addltion, the same independent party made a series of chemical analyses. These showed a change in the water, as affected by the crib, from more or less turbldity to clearness; an increase in alkalinlty and nitrites; sometlmes an Increase and sometlmes a decrease in total sollds, loss on ignition, chlorine and free ammonla; and generally a decrease in sulphuric acid, iron, albuminold ammonia and nitrates. The highest total solids \ln the crude water was 44.8 parts per 100,000 , the corresponding sample of water after passing the crib showing 14.0 parts. Generally the total sollds in the crude water was not over 15 parts per 100,000 . The average amount of chlorine in the water was not far from 2 parts per 100,000 , but thls was largely due to salt from oil wells. The deaths from typhoid fever In Wilkinsburg the year after the crib was put in operation, as compared with those for the prevlous year, and as compared with deaths from the same cause in both years in surrounding local Ities supplled with unfltered water, indlcate that the effect of the filters upon the public health has been beneficial.

A NEW TRENCH MACHINE.

We illustrate herewlth a new trench machine for use in the excavation of sewer and other trenches n clty streets which has been put on the market by the Potter Mfg. Co., of Indianapolis.
Most of our readers are now famillar, we pre sume, with the general operation of trench machines; but for the benefl of any who are not we may explain that in all machines of this class the dirt is excavated from the trench and holsted in buckets, which are then carried to the rear of the machine and dumped over the completed sewer. water pipe, or whatever may be built in the trench. Thus the dirt is handled but once, and obstruction of the streets by dirt plied in them is avolded. The advantage in this respect is so great, that, in specifications for street work it is common now to specify that trench machines shall be used. Such a specification involves no additional cost to the city, since a contractor saves so much in labor by the use of the machines that he cannot afford
not to use them on trenches of any considerable width or depth
The machine lliustrated herewith is of the steel trestle type, as shown by the engraving; and differs from other machines of this type chiefly in the apparatus upon the car. The upper horizonta frame of this carries three cross-shafts. The mid dle shaft carries a brake drum, the bull wheel for the traveling rope, and two drums for the separate hoisting ropes. Each of the other shafts carrie grooved wheel for a holsting rope A pulley at each end of the frame supports the traveling rope. This is a steel cable, which starts from the upper
three months great progress has been made toward construction of a plant
There are several large irrigation canals taken out of the river within the "Narrows," and the right to use one of these-the Utah and Salt Lake Canal-was purchased. The water for the power plant is thus conveyed from the head of the river's rapid fail to the lower end, where the power plant is located.
The canal runs through a very rough country, and no pains have been spared in its enlargement to meet the demands of the power plant to have all construction as substantial as possible. The

VIEW OF THE POTTER TRENCH MACHINE

Potter Ifg. Co., Indianapolis, Ind.. Makers.

irum of the hoisting engine, passes along the tres tle and over the traveler, around a tall-block puiley or sheave at the rear end of the trestle, and returns again to the traveler and passes round the bull wheel, to which it is attached. The other cable starts from the lower drum of the engine, and goes directly to an eye or ring in the front of the frame of the traveler. This latter cable holds the traveler statlonary while the buckets are being raised or lowered, and pulls it forward again after the buckets have been dumped.
The buckets are raised and lowered by winding or unwinding the main cable on the buli-wheel, which, being attached to the same shaft as the drum, causes the bucket cables to wind or unwind on their drums. The machine is operated by the engineman in obedience to signals given by the man on the traveler. Ordinarily two buckets are handied at a time. The buckets are of steei, with a capacity of $1 / 2,7 / 3$ or $1 \mathrm{cu} . \mathrm{yd}$. capacity.
The buckets used are either ordinary buckets with drop-bottoms, or a special drop-bottom bucket designed by the Potter Co., and illustrated herewith. The operation of this bucket will be apparent from the drawing. It is clalmed that it wlll open and close automatically. A rope may be attached to tlp it at any desired point. These buckets are made with a capacity of $1 / 2$-ton to 8 tons.

a Water power plant on the jordan RIVER, UTAH.

By W. P. Hardesty.
An important water and electrical power plant is now under construction on the Jordan River, along the Rlo Grande Western Ry., at a point 22 miles south of Salt Lake City. The Jordan Rlver is the outlet of Utah Lake, and where it passes through the "Jordan Narrows" it has considerable fall, affording a good opportunity for the development of water power. Last summer a company was organized to utilize this, and within the past
*Room 612, Progress Building, Salt Lake City, Utah.
old canal has been widened and deepened to four times its foriner capacity, and will now carry 600 u. ft . per sec.

It has a fall of 1 ft . per mile, a bottom width of from 26 ft . to 36 ft ., and carries 7 ft . depth of water. Three flumes will be constructed, of which the shorter one, of 200 ft ., is now finished; he two longer ones, of 825 ft . and $1,200 \mathrm{ft}$., respectively, and which are cut-offs from the old canal line, will be bulit soon, the water for the canal line, will be bullt soon, the water for the
present going around through its old channel. present going around through its old channel.
These flumes are 26 ft . wide, and carry 8 ft . of These flumes are 26 ft . wide, and carry 8 ft . of
water. Opposite the site for the power plant a

Drop-Bottom Bucket for Trench Excavation. Potter Mig. Co., Indianapolis, Ind., Makers.
very strong system of gates is put in the canal, and a concrete masonry forebay is being built. From this, four lines of $72-\mathrm{in}$. sheet steel plpe will lead down to the power house, a distance of 300 ft .
The wheel-pit of the power house is $\mathbf{1 3} \mathbf{f t} \times \mathbf{8 2}$ ft . Inside, the power house being $26 \times 82 \mathrm{ft}$. There wlll be four $700-\mathrm{HP}$. McCormick turbines in two pairs.
Each turbine has two discharge or draft tubes on account of having at times to discharge water at two different levels. The longer tubes dis-
charge into the wheel-pit, from which a tail race leads direct to the Jordan River. The shorter thes discharge inside the power house into tail which lead to two other irrigation canals, races each side of the river, and about 20 ft . higher than the same. During the irrigation season a full sup. ply will have to be returned to each of these to compensate for the taking out of the water above their head-gates. Two different heads, one .it ft . and one of 74 ft ., can thus be used on any turbine, according to necessity.
There will be four $500-\mathrm{K}-\mathrm{W}$., three-phase, 301 revs. per min. generators, one direct connected to each turbine. The Westinghouse system of electrical machinery will be used throughout. The pressure pipes, turbines and other hydraulic ma chinery is being supplied by the S . Morgan Smith Co., of York, Pa. For the marketing of the elec trical power, transmission lines will be built to Bingham, 12 miles distant, an important silver and lead mining camp, and to the Mercur goll mining camp, 21 miles distant.
At the present time the canal (except the two longer flumes) is finlshed; the very heavy excavations for pressure pipes, the wheel-pit and the power house are completed; the pipe and connec tions and the casings for the turblnes are on the ground. The power house, of heavy concrete and brick masonry, will shortly be started, and it is expected to begin delivering power to Bingham and Mercur as early as June 15, the final surveys having been made and the poles distributed.

The name of the power company is the Salt Lake City Water \& Electrical Power Co., with office at Salt Lake Clty. Mr. Allan G. Lampson 1 president, and Mr. R. M. Jones (the engineer who built the Big Cottonwood Power Co.'s plant), is chief engineer.

A NEW SOLAR TRANSIT.

Several years ago the Ohio Soclety of Surveyors and Civil Engineers appointed a committee to test the accuracy of the indications of solar transits with the purpose of removing, if possible, the ap parent objection to their more extended use in land surveys. This committee obtained solar instruments of all the more prominent makers, except ing one only, and commenced a series of extended tests. The general concluslons of the commitee as published in the Proceedings of the Socety were as follows: "That solar instruments as constructed might, with careful handling, be reiel upon to work within an are of two minutes; providing, however, that a known and accurately es tablished merldian could be had on which firs: to test them." The committee became satisfie] that the chief difficulty lay in the inability of or dinary surveyors to adjust the instruments ac curately; and it also found that the chlef objec tion of the profession to the use of solar transits arose from the fact that these additional adjustments are absolutely necessary and are very dif ficult to make, and that their maintenance was a matter, of some uncertainty.
From the experience thus gained, Mr. J. B. Da vis, of Cleveland, a member of the committee, be gan experimenting in the direction of ellminating these difficulties; and the final result was the new solar transit here described, which is now manu factured by Ulmer \& Hoff, instrument makers, of Cleveland, Ohio
In this instrument the transit telescope is used for solar work, thus obtaining greater accuracy by using a larger telescope. By the method of setting the reflector, the necessity for special solar adjustments is removed. The telescope has a fixed object end, and is so placed centrally that the line of collimation is adjusted on a flxed point by revolving the telescope in its sleeve. The reflector revolves with the telescope; and as the line ot collimation represents the polar axis, this reflector is in proper reiative position each time a solar observation is made, and without a separate solar adjustment.
The cross-hair ring, at the eye-plece end of the telescope, is provided with the usual vertical and horizontal transit hairs; but it has in addition two horizontal solar hairs, placed equidistant from the central hair. In this ring, the vertical halr is adjusted by the usual, method of reversal, and the
horizontal hairs can be adjusted by the revolution都 Wre the needle and time graduations on of the sleeve act jointly as a finder, to the rim of the sleeve sun within the fleld of view. bring the image of the sun instrument is thus deThe operation of this instrume purposes noted:

To Dip Telescope to Known Latitude.
With the usual transit adjustments accurately made, carefully place the transit axis vertical hy means of plate levels and telescope level, and with horizontal limh of transit registering zero (at zero as a convenience in reading the angle) sight a target to line and level.

Fig. 1.-A New Solar Transit.
Invented by J. B. Davis, C. E. Made by Ulmer \& Hoff, Cleveland, $\mathbf{0}$.
2. Set off on the transit limh an angle equal to the latitude of the place of ohservation, and with the telescope tude of the place of ohservation, and with the telescope still horizontal, hring the image of the target center into
the line of collimation of transit (see Fig. 2). then again point to the target center; loosen the set screw which passes through an arm of telescope axis and engages Which passes through an arm of telescope axis and engages the telescope, and rotate the telescope 90°, securing it in this the line of collimation, and hring the hubhle of axis level the line of collimation, and hring the hubhle of axis level dipped to the required latitude angle, and the axis level dipped to the required latitude angle, and the axis level determine the latitude position of telescope.

To Determine the Latitude hy Instrument

1. Place reflector at proper angles (as in Instructions for finding the meridian which are given in Solar Pamphlet) to reflect the sun's Image, when at noon declination into the optical axis of telescope.
2. Having now set the reflector in its proper relative position to the line of colllmation, rotate the telescope 90° in its sleeve, and secure it hy set screw hefore referred to.

Fig. 2.-Diagram Showing the Latitude Angle in a Hori

Fig. 3.-Diagram Showing the Latitude Angle in a Vertical Plane.

3. Dip telescope and follow sun untll it has attained its greatest sltitude, and then set latitude or axis level in a horizontal position, in order that the telescope may be returned to the proper latitude position when desired. 4. To read latitude angie from transit iimb, return the telescope to zero reading of limh and throw the lmage of target center into line of collimation. Now place telescope

In a horizontal plane, and move it horizontally untll targe center is again seen in Hine of collimation, when read off he latitude from transit circle
It will be observed that in this construction, the operation of dipping the telescope to the latitude of the place is a prior, instead of a subsequen operation to that of placing the reflector at its proper declination position for a meridian observation. This is so because, in determining the meridian, the declination position of the reflector must remain undisturbed until the observation is completed. And as the reflector is used in the combination for setting the telescope to latitud position, the transverse axis level becomes essential, as a means of re-establishing the latitude position of the telescope after the rellector is se to its declination position.
The operation of determining the true meridian with this instrument and the setting of the reflector, are the same as described in the "Solar Pamphlet," issued, in 1897, by Messrs. Uimer \& Hoff; with the exception of the operation of set ting off and determining the latitude of the place, described above
It will be noted that the usual vertical are has been eliminated, with all its mechanical and operative objections. The result is a much greater simplicity of construction and greater accuracy in operation are also claimed. When more than one merldan observation is to be taken in the same latitude, the ease and rapidity of observations is materially increased.
In answer to a query regarding the necesslty of having an assistant to set the target for use with this translt, Mr. Davis writes as follows: The setting of the target is as slmple as the sighting of the target in leveling, and it requires no more time. It is this target-sighting method, together with the rotating telescope, that makes it possible to eliminate all solar adjustments. If circumstances require it, the target can be sighted withIn 12 ft . of the instrument; and it is difficuit to concelve of any condition of rough country that would interfere with the use of the J. B. Davis transit that would not apply with equal force to any other transit.
With regard to measuring a vertical angle on the horizontal limb, Mr. Davis says that this method was not intended to take the place of a vertical are in general practice, but only to repiace the latitude arc in a solar transit. For pracpiace the iatitude arc in a solar transit. For practical reasons the method of setting off a vertical angle is not applicable for latitudes much fower than 20°; but this is a much lower latitude than any within the boundaries of the United States. Vertical arcs, and especially segmental ones, are very tlable to error.

RAPID TRANSIT IN PARIS.

The Metropolitan Railway of Paris is to be commenced at once, in accordance with a decree passed on April 1, which also authorized a loan of $\$ 33,000,000$ for that purpose. It is hoped that some of the divisions of the line may be open for the Exposition of 1900. The chief features of the project are electric traction, comparatively narrow cars, the construction of the roadway by the Clty of Paris and equipment and operation by a leasing company. The width of gage adopted is $4 \mathrm{ft} .83 / 4 \mathrm{ins}$., and the cars will be $7 \mathrm{ft} .101 / 2 \mathrm{ins}$. wide from out to out.
The route incluaes six distinc! lines. wlith with branches have a total length of about 34.3 miles. These main lines are as follows: Porte de Vincennes to Porte Dauphine, traversing Paris from East to West; circuiar llne on the old exterior boulevards; line completing the two first to the North, from Porte Maillot to Menllomontant; a North and South line across the city, from Porte de Clignancourt to Porte d'Orleans; llne connecting the Boulevard de Strasbourg with the briage of Austerlitz; line uniting the Vincennes Road with the Place d'Italie. The estimated total cost of the construction of these llnes, without equipment, is $\$ 30,000,000$; the balance of the capital authorized is for works of art and administration.
The leasing party is the General Traction Co. of Paris, assoclated with the Creusot Co. To provide for the payment of the capital in 75 years, at 3.33%, requires an annual revenue of $\$ 1,100,000$.

To secure thls the city will receive from the leasing company a rental based upon a tax of one cent on each second-class ticket, either single or return, and two cents on each first-class ticket. This will require an annual passenger traffic of 110, 000,000 people over the whole iline, or about 3.213,000 per mile. This is not considered unreasonable, as the Auteuil line now annually transports nearly twice that number. The General Traction Co. will recelve no subvention, nor guarantee of interest, and the price of tickets is fixed \ln advance, as follows: Three cents for a second-ciass tleket and five cents for flrst-class; with return second-class tickets at four cents, good until 9 a. m. With $125,000,000$ passengers, and running expenses placed at 50%, the company figures that, after paying rental, there would be left about $\$ 625,000$, or enongh to pay the interest on its capital. When the passenger traffle excceds $140,000,000$ the company will have to pay a supplemental rent of .02 cent per passenger: and above $150,000,000.04$ cent per passenger up to $190,000,000$. Above this figure the rental will remain fixed at 1.1 cents for second-class, and 2.1 cents for each first-class ticket.
The city reserves to itself the right of a maximum consumption of eight years in the bullding of the first three lines, and a further time of five years for the completion of the other three ines, This, however, is simply a precautionary measure as it is intended to push the lines to completion as speedily as possible. The duration of the concession is 35 years; but the City of Paris reserves the right to acquire the line in 1910, and at the expiration of the concession the electrical in stallation becomes the property of the city with out further payment.
The trains will be operated in sections of four cars each, with 50 places in each car; and it is required that not less than 16 nor more than 32 trains be run, each way, per hour. The speed is to be 22.3 miles per hour; or, including stops 13 miles per hour. The stations provided number 123. Besides the lines establlshed by the law of April 1, the Municipal Councll proposes two other lines, not yet definitely located; these would befrom the Palais Royal to the Place du Danube, and from D'Auteuil to the Opera, by way of Grenelle. All work will be conducted by the or dinary technical staff of the City of Paris, which will be augmented as required, and for this specia purpose an increase in pay is provided for. By the advice of the State Department and at the re quest of the Minister of Public Works, Parliament refused to sanction the control of working conditions imposing upon the leasing party by the Municlpal Council. These conditions would have fixed, for the laboring force, a minlmum of wages and a maximum of working hours; and it was ruled that these conditions were contrary to public policy and covered regulations that could only be fixed by a general law, applicable to every one

THE INSTITUTE FOR THE HOME STUDY OF ENGE neering and the Correspondence School of Technology, hoth o: Cleveland, o., have consolldated under the name of the former. Prof. E. P. Roherts, of the Corresp ndence School, is technical director; Mr. F. D. Lesile is husiness director, and Mr. J. H. Norton secretary and treasurer. Both of these gentlemen have been connected with the institute since its foundation. These schools were the ifrst to give electrical courses by correspondence. The Institute for Home Study of Engineering confined its efforts to electrical and mechanical work, while the Correspondence School of Technology had courses in electrical, mechan!cal, civil, hridge and hydraulic engineering. All of these courses will be carried on hy the consolidated institution, the evgineers and instructors who have heen connected with hoth continuing their connection. The new catalogue of the school announces a step in the direction of throwing off the character of privacy and entering the field of pubilic institutions. The school is now partially under the control of an Advisory Board not financlally interested and is so consti uted that only a very moderate dividend can be declared to stockholders out of the earnings, the remainder being used for extension and improvement of the schools faclities. The memhers of the Advisory Board are: Mr. C. W. Wason. President of the Electric Cluh, of Cleveland, Prof. E. L. Harris, Principal of the Central High school, of Cleveland; Prof. Perry Hohh, Professor of Chemistry hie cleveland Medical College, and Mr. Samuel Scovii, Vice-President and General Manager of the Clevelana Mons is in Arthur L. Rice, of Pratt institute, Brookiyn, resentative of the school for New York and vicinity.

ENGINEERING NEWS

AMERICAN RAILWAY JOURNAL.
Entered at the New York Past Office as Second-Class Matter. Published every Thursiay
at St. Paut Brulding, seso Broadway, New York, by the engineering news publishing company.

\% 안 chas. w. reimhardT, • - chity Dhatromen Raprivezmitative.

SUBSORIPTION RATES: United States, Canada and Mexico, One Year, $\$ 5.00 ; 6$ months, $\$ 2.50 ; 2$ months, \$1.00. To all other countries in the Postal Union: Regular Edilion, One Year, $\$ 7.60$ (31 shillings) ; Thin Paper Editon, One Year, 6.31 (26 shillings). SINGLE COPIES of any number in current year, 15 cents.
Mailing addresses may be ehanged at will by sending ooth otd and nese address. The number on the address tabel of each paper indicates when subscription expires, the tast Agure indicating the year and the one or twoo preceding figures the week of that year; for instance, the number 328 means that subseription is paid to the $32 d$ week (that is the issue of Aug. 11) of the year 1898; the ehange of these Hgures is the only receipt sent, unless by special request.
ADVERTISING RATES: 20 cents per line. Want notices special rates, see page 28. Rates for standing advertisements sent on request. Ohanges in standing advertisements must be received by Monday afternoon; new advertisements, Tuesday afternoon; transient advertisements by Wednesday noon.

To most people of sober minds and conservative ideas it seems difficuit to realize that our country has undertaken a war with a European nation, with all that that implles. The matters of internatlonal politics which have led up to the war It is not the province of thls journal to discuss. We only joln with all good citlzens in expressing regret that the beneficent purposes of the United States toward Cuba were not carried into effect through diplomacy and without a resort to that through diplomacy and without a resort to that
barbarous method of settiling international dlsbarbarous method of setting international distlon, remains the court of last resort.
The nation, through its authorized representatlves, however, has decided that the clrcumstances justify it in resorting to arms to enforce its demands; and every good cltlzen, no matter how strenuous an advocate of peace he may be, must urgently deslre to see so large a measure of damage inflicted upon the enemy at an early day that he will be compelled to treat for peace. Thls is the real object of modern warfare when pursued by an enlightened and civilized nation, to disabie so much of the enemy's machinety of warfare, his ships, forts and armies, as will destroy hls power to do harm, and to do this with the least posslble destruction of life and property.
As for the probable course of the war, where the scene of the princlpal aperations wlil be lald, what its probable duration may be, and to what extent the United States may suffer-questions that are in every one's mind, we shall attempt no predictions, for in these matters the wlsest can offer nothing but conjectures. Of course, the ultlmate outcome of the war cannot be doubtful slnce the contest is between a wealthy and powerfui nation on the one hand, and a weak and bankrupt nation, with less than one-fourth the population of its opponent, on the other.
At present, and very properly, the Government's attention is glven much more largely to defenslve than offenslve measures; and its promptness in completing the defenses of the principal Atlantic ports, and in providing a large fleet of auxiliary morchant vessels for scout, patrol and picket duty deserves the highest praise. With Spain's coaling stations on thls side of the Atlantic in our possession, any offensive movements on her part must be conducted from a base of operations on the other side of the Atiantic, and her great disadvantage in this is evident.

The steps already taken toward increasing the army are apparently on a scale sufficient for any operations that now seem likely to be undertaken; but thus far the feeling seems to have been that there was llttle use in providing for an increase of the Navy, since the war would probably be over long before any vessels now undertaken would be ready to take a part in It. We sincerely hope that thls may prove to be the case; but inasmuch as we are almost as badiy handicapped as Spain herself in any attempt to wage war against the enemy on his own coasts, we ought at least to set about strengthening our Navy in Its notably weak places, and if the vessels are not needed for the present emergency after all, so much the better. present emergency after all, so much the better.
They will be additions to the Navy which ought to be made in any event. First on the list should be be made In any event. First on the llst should be placed torpedo-boats. Compared with any other
modern naval power, the United States ls exceedingly deficient in these vessels. They cost but a small sum; they can be built in a few months, and our shipyards on the Lakes couid readlly turn them out, cutting them in two to pass through the Erie Canal. A fleet of at least 25 of these vessels would be none toomany to correspond with the present strength of our Navy in other vessels. The torpedo-boat destroyers, as they are calied, are another type of vessel on which other naval powers set the highest value, but of which we possess not a single example. With a speed of 30 knots or more, thls class of vessels can escape from any vessel their superior in armament, and in foreign navies they are consldered absolutely essentlal for the protection of fleets from torpedo-boat attacks. Whlle destroyers require longer to construct and are more expensive than torpedo boats, it is beyond question that the United States shouid have a conslderable number in lts Navy and their construction ought to be undertaken at once.
The third class of vessels that ought to be put under way is the fast armored crulser, similar to the "New York" and "Brooklyn," with armor enough to protect against all but large-caliber projectlies, armament of $8-\mathrm{in}$. guns and smaller and a speed of at least 20 knots that will enable her to escape from a heavily-armored battle-shlp and to pursue and overtake any vessel for which she is a match. If we are to be obliged to attack Spain on her own shores to compel her to make peace, we cannot lay the keels of more vessels of thls class too soon.

The very rapid increase, by purehase, of the number of vesseis in the U. S. Navy has compelied the formation of a corps of volunteer officers to man the new ships; with the relatlive rank and pay of officers of the regular navy, but with commlsions terminating at the will of the Secretary of the Navy. Boards to examine appllcants for positions in the line, steam engineering, pay and medical corps have been appointed by the government, and these boards are now actlvely at work selecting from the candidates already before them the men best fitted for the service required. In our issue of March 24, In commenting upon the new Naval Personnel Bill, in connectlon with the prospects of war, which then existed, some reference was made to the civillan graduates of technical schools seeking appointment in the steam engineering corps of the Navy, and the chances they had under the terms of the bill referred to. An actual state of war and an urgent call for officers from civll life have radically changed the conditions then existing; and in response to requests for information we here give, from an officlal source, the method to be followed by those seeking service in the Volunteen Steam Engineering Corps of the U. S. Navy.
By the courtesy of Passed Assistant Engineer Walter M. McFarland, U. S. N., of the Bureau of Steam Engineering In the Navy Department, we are enabled to say that anyone deslrous of entering this branch of the service must first make a formal appllcation to the Bureau of Steam Engineering, at Washington; and accompany his application by a brief statement of age, state of health, technlcal training and actual experience In the handing of marine engines. These appllcations will be placed upon record; and as occasion demands the Chief of the Bureau will select from the list such men as seem best fitted for service; notlify them of the selection, and issue to
them permits, or orders, to report for examination, at Phliadelphla, Pa. The applicant will first have to pass before a medical board, and will then be called before a board made up of engineer officers of the U. S. Navy. The technlcal examina tion will generally follow the lines lald down, by the U. S. Inspactors of Steam Vessels, for the examination of appllcants for the positions and asslstant engineers on ocean steamships. if successful, the candldate wili then be recom. mended for such grade as his actual training and experience may justify. Acting commissions will be Issued by the Secretary of the Navy to ac. cepted men, as follows: Chlef Engineer, with the relative grade of Lleutenant, U. S. N.; Passed Assistant Engineers, with the relative grade of Lieutenant, or Lleutenant, Junior Grade; and Assistant Engineers, with the relative grade of Ensign in the U. S. Navy. The annual pay for these grades, for the first five years in service, is $\$ 2,400$, $\$ 1,800$ and $\$ 1,200$, respectlvely; with one rat ditlonal, worth about $\$ 108$ per year more. fore mentionsd, these acting commission continue in force during the pleasure of retary of the Navy; but whlle they are in force the holder is, for all essential purposes, an officer of the Navy of the United States, with full authority as such.

Our remarks of March 24 were based upon the recommendation then made by Congress, that, instead of adding to the engineering staff by the appointment of 109 junior engineer offic would be wiser to enlist about 100 men machinist class, ranking as warrant officers, and of long experlence in the actual care, repair and handling of marine engines and bollers. The belief was then expressed that thls would be a safer course for the Navy then in exlstence, than the employment of young men, of, perhaps, far superior technical training, but of less actual value In an emergency; and young men, fitted for this employment, were warned of the social differenc in rank between a warrant officer and a commissioned officer in the U. S. Navy. Whlle there is now an urgent call for enlisted men qualified to act as machinists, electriclans, etc., on board o warshlps, the decision of the government to mak use of volunteer officers opens the door to the services of the graduates of the technical school who possess the necessary experience and qualifica. tlons. About 500 applications are now on file a Washington for positions in the line, steam engineering, pay and medlcal corps of the Navy From this list the Chlef of the Bureau of Steam Engineering has already ordered a num. ber to Philadelphla for examination; and these atter appllcations include seven graduates from the Naval Academy, now in clvil life, some professors of steam engineering at leading technlcal schools and engineers of experience on fast mer chant steamers. From present indications, a least 200 volunteer officers of line and staff rank will be needed for the present emergency, and the best of these men will stand a very good chance of belng permanently retalned in the regular Navy, after the war is over.

It might be well to add, for general information, that applicants for service in the machinist class of assistants to the steam engineers, here referred to, must possess the following qualifications: Their enlistment is for a term of three years; they must be in sound physical condition; not less than 21 nor more than 35 years old; be able to write legibly and have some acquaintance with arithmetic; be machinists by trade, and be famlllar wlth the parts and uses of marine engines and boilers, and be thoroughly trained in the use of tools. They will be rated as follows, according toexperience: Second Class Machinlsts are those who fili the above conditions, but have no experience with marine engines; pay, $\$ 40$ per month and one ration. First Class Machinists are those who have had at least one year's experience at sea with marine engines; pay, $\$ 50$ per month and one ratlon. Chief Machinists must already hold a permanent appointment as such, and they will have charge of engine-room watches; the pay is $\$ 70$ per month and one ration. Enllstments for the position of electrician on board of warships are also provided fol, upon similar lines as to age, health and technical quallications. Taere are
three grades of electricians, ranging in pay from three grades of electricians,
$\$ 35$ to $\$ 50$ per month, according to experience and $\$ 3$ to usefulness. Applications for these positions are usefuiness. Applicat ions for the navy yards.
made at the several government nat

In diseussing the equipment of freight cars with air brakes in this journal some years ago, we suggested that when the number of air-brake cars became sufficiently numerous, it might be well to ${ }^{\circ}$ adopt the pian of equipping some cars with an adopt the and hose merely, so that air brake cars could be distributed through the train and save the trouble of sorting them out and bunching them next the engine. On many classes of freight trains it is often inconvenient to bunch the air brake cars, arranging ali the cars in station order or division order being much more desirable. On several Western railways this matter of equipping oid cars with the train pipe alone is belng taken up. At a recent meeting of the Western Railway Ciub, Mr. G. W. Rhodes, of the Chieago,
Burlington \& Quincy R. R., stated that the equipment of a thousand cars in this manner was under consideration on that road. It will be remembered that the Federal Safety Appllance law, the operation of whieh has been postponed by the Interstate Commeree Commission to Jan. 1, 1900, requires that every train shall have at least enough air brake cars to enable its speed to be enough air brake cars to enable its speed to be controlled without hand brakes. What proportion
is necessary to do this, is left to the railways to determine; and it is evident that the proportion would be quite different on the steep grades of some of the transcontinental roads and on the railways in the prairie states. On these latter roads, and on the average raliway throughout the country, it is probable that trains can be safely operated when one-fourth to one-third the cars are alr-braked.
There are thousands of old freight ears in service on which their owners will hesltate to expend the cost of the air brake equipment. Most of these cars will be used in the local service, and by equipping them with train plpes, such air-braked cars as are in the train can be put wherever they happen to come. The objection which wiil doubtless be raised against this plan is that the emergency appilcation of the brake is likely to be interfered with if four or five cars fitted with piping alone should happen to come together. On the other hand, the present tendency in handiing alr brakes is to confine the use of the emergency application to actual emergencles. With the brake intelligently handied, it should be possible to stop Inteligently handied, it should be possible to stop a train as smoothly with the service application
when the air brake ears are scattered through the traln as when they are bunched at the head. As for the emergeney application, when it becomes necessary to throw thls on suddeniy, we apprehend that the shocks will be less severe with the air brake cars seattered through the train than with ali of them bunched next the locomotive.

THE MAKING OF AN INDEX.

What constitutes a good index? This question is ralsed by a correspondent in a letter which we publish in this issue, and it merits a careful answe:. If, moreover, we may judge from the indexes of many engineering treatises a diseussion of the principles of indexing may be of service to a good many of the writers of such books, and ot especial value to those who have to read and refer to them. It is a mistake to assume that the subject is too simple a one to demand study. There are few other tasks in the routine of book-making which demand more thoughtful care in order to secure even moderately good results. If this were more generaliy understood by scientific writers, there would be fewer occasions for such criticisms as the one for whlch our correspondent eisewhere takes us to task.
We may, we think, assume without argument, as a point on which all engineers will agree, that a good index is a very necessary adjunct of any teehnical book, and especially of any designed as a work of reference. We can pass this phase of the question, therefore, and turn our study at once to the original query, what constitutes a good index? According to the definition given by the Century Dictipnary, an index is: "A detalied
alphabetic (or, rarely, classified) list or table of topics, names of persons, places, etc., treated or mentioned in a book or a series of books, polnting out their exaet positlons in the volume." In the original Latin the word index meant a discoverer, informer, indicator, or that which points out, hence, particularly, the index finger. It is, perhaps, the maln fault of the definition just quoted that it does not emphasize a ilttle more the dlstinctlve office of indicator or pointer-out, which tinctlive office of indicator or pointer-out, which
the index to a book occuples. A better definition the index to a book occuples. A better definition
in this respect would be the followlng: An index in this respect would be the following: An index
is an aiphabetic list of catch words or key words of the topics, persons, places, ete., mentioned in a book, with numerical references to the exact positions of these topics, names, places, etc., in its pages.
Neither of these definitions, as a matter of fact, expresses fully the exaet nature of a good book index. Nearly all toples are divided into subtopics, and these are often divided again into minor topies. In the best form of indexes only the key words of the main topics are arranged alphabetically with respect to the index as a whole, those of each sub-topic belng arranged under its proper main tople in alphabetical sequence in respect to themselves aione. This subdivision of alphabetie lists may be extended to any degree which the nature of the toples makes desirable. In other words, the element of ciassification as well as that of alphabetic arrangement enters into the selection of the key words, which with their proper modifying and quallifying words, and page references, constitute an index. The selection of distinctive key words, their proper classlfication, and finally their alphabetie arrangement are what distingulsh the index proper from a detalled table of contents.
Keeping alphabetic arrangement and classification in mind, the first duty of an indexer, having tion in mind, the first duty of an indexer, having
before him a number of topics, reference to whleh before him a number of topics, reference to whleh
is desirable, is to select for each of those toples a is desirable, is to select for each of those toples a particuiar topie is most likely to think of and seek. This is evidently in many cases purely a raatter of judgment, and it is the diffeulty of judging exactiy what word another person will think of in any particuiar case which makes necessary cross indexing and cross reference. By cross indexing is meant the indexing of the same tople under two or more possible key words. Cross refereneing is a similar process, but one of a somewhat different nature. Rather broadly defined, a cross reference is a parenthetical expression following a key word which refers the reader to another key word where the topic is fully indexed, or where additional or closely-allied information is to be found. As examples of both eross indexing and cross reference wili be given further on, we shall not analyze these processes further here.
Although the selection of proper key words is not a process which ruies alone can dlreet, it is evident from what has been said that there are certaln general principles governing this work which the indexer shouid aiways strlve to foliow. To lilustrate these rules we wili review some of the headings to which our correspondent refers in his letter in another column. His first analysis is the following:
Although "assumed upiift for draw spans" is not under "draw spans," we find it und
It may be noted here in explanation that drawspans is used by the author of "De Pontibus" to mean swing spans alone, and not as a generie term for movable or opening bridges in general. The proprlety of this usage is very doubtful. It is quite true that draw bridge is not a very good generic term for opening brldges, but it has become established by general usage and should be maintained untli some better term is offered. Therefore, the prevalling cholce of engineers, we think, wouid be to use draw spans as a name for the ciass under which come swing spans, bascule spans, vertical lift spans, etc., as types. This would, of course, entirely alter the position of the topic quoted in the index.
Retaining the special meaning of draw spans chosen by the author, however, there are two very important reasons to our mind why this topic should be indexed under the key word "draw spans." First, "uplift" in its special meaning here is peculiar to draw spans alone, and as a reader
would have draw spans only in mind, and never fixed spans, lift spans or bascule spans, when seeking information respecting upilft, "draw spans" seems at least as desirable a key word as "upllift." Second, "uplift" is a sub-topic of the main topic "draw spans," and, like all other subtopics of the same main tople, should be included as a sub-topie under the key word of the main topic in the index.
The full force of this iast reason will be seen if we assume that a person wlshes to look up all that the able author of "De Pontibus" has to say that the able author of "De Pontibus" has to say
concerning draw spans. His natural course would eoncerning draw spans. His natural course would
be to look under "draw spans" In the index and consult every reference he found there, and, not finding uplift, he would miss this important tople altogether unless he were famillar enough with the subject to notice the omission and curlous enough to instltute a search elsewhere. Such a seareh obviousiy entalls labor which might have been rendered unnecessary by a ilttle thoughtfulness on the part of the indexer; but worse than this, it endangers the entire missing of an important topie by a thoughtless or uninstrueted reader.
Undoubtedly, "upilft" is also a possible key word for this topic and one which under certain circumstances might be thought of by a reader rather than "draw spans." It is advisable, therefore, to cross index the topic under "uplift," unless it should happen to be divided into several sub-topics, when the key word "uplift" shouid be made merely a eross reference to "draw spans," under which would be found, for the reasons just given, a full detalled index of upilift and all of its sub-topics. In such a case it will be seen that a cross reference saves space by avolding a lengthy repetition. Were there no sub-topics under uplift to be repeated, then cross reference, Instead of cross indexing would be a fault because it would necessitate the reader making another search to find nothing additional but the page number, which might just as well have been given him at once.
In the preceding analysis of the topic noted by our correspoadent we have adopted the nomenAlature used in the book whose index he defends. As already stated, we think this nomenclature to be in error and it may be of benefit to point out just how we shouid index this topic to sult the nomenclature preferred by us, particulariy as it will afford an opportunlty to lllustrate another use of the cross reference. Making draw bridge the generic term for opening bridges of all kinds then swing bridges, bascule bridges, etc., are sim. ply types of draw bridges. Under "draw bridges" then we should index those topies which applied to opening bridges in general; for Instance, conditions whieh determine the type of draw bridge to be chosen, legal restrictions governing the width of clear opening required of draw bridges over navigable waters, ete. Last, we should cross reference the key word thus, "draw brldges (see swing bridges, baseule bridges, vertical lift bridges, bridges, baseule bridges, vertical ilft bridges,
etc.)" Under "swing bridges" we should index all the toples belonging to that type of bridge alone, the toples belonging to that type of bridge alone,
and also cross reference it thus, "swing bridges and also cross reference it thus, "swing bridges (see also draw bridges)." Uplift would then be indexed under "swing bridges" and cross indexed under "uplift." Exzetly the same method would be followed with bascule brldges, vertical lifi bridges, etc.
It has been made clear, we think, by the foregoing that the "fundamental idea" of a tople (as our correspondent ealls it), considering that topic by itseif alone, is not always a criterion by which to select the key word under which to index it. Instead, the thought should be first of the classification under which the topie properiy comes, and second, what position in this classification the toplc occupies; that ls, whether it belongs to the main topic, or is a part of a sub-topic under a general main topic. The reason for this wili be seen if we remember that ideas cannot be alphabetized. Only words are susceptlble to this form of arrangement. Hence the position of any particular idea in an aiphabetic list is determined by the sequence of words employed to express the idea; one arrangement of words may place it near the beginning of the alphabet while another will piace it toward the end, and the reader has nothing upon whleh to base his judgment as to where it will be found.

If, however, we first classify the ideas we wlsh to make reference to into main and subclasses pro ceeding from the general to the particular we finaliy limit the field in which the idea may be located so that it can be found easily and cer tainly.
Turning now to the last example mentioned by our correspondent, he says:
"Character of flange-sections for plate girders" is not
under "plate girders," but it is under "sectlons for comunder "plate girders," but it is under "sectlons for com-
pression flanges of piate girders." Here, again, the maln
ldea is "section of flanges" and not "plate girders.,
The topic shouid be indexed under the key word "plate girders" for exactiy the same reason that was given above for indexing uplift under "draw spans." A cross reference or cross indexing migh be neglected altogether without any great harm but in case one is deemed desirable the whole word "flange-section" should be used as the key word as neither "flange" nor "section" expresscs the thought any more than "plate" or "girder" taken by itself expresses the thought expressed by "plate girder." It may aiso be noted here in answer to our correspondent's first sentence in the paragraph in which this example is stated that we find aitogether nine other topics with the key word "sections" in the index of "De Pontibus" and in none of them is it the proper key word to use.

Before passing from these examples finally we wish to call attention to the absolute uselessness of selecting such words as "assumed." "best," "character," etc., as key worcs. In the first cast the topic to be indexed is the proper amount of uplift to be assumed and adopted in designing draw spans. We might then with equal propriety select "proper uplift for draw spans" or "adopted uplift for draw spans," or "amount of upilft for draw spans," instead of "assumed uplift for draw spans," and there is no reason to suppose that a reader using the index would not be as likely to look for one as for another. Simliariy, instead of "character of flange section etc," one might choose with equal propriety "nature of flange section," "make up of flange sec tion," "composition of flange section," :"design o flange section," either of which would express the topic indexed quite as accurately as "character of flange section."
Stiii, again, the index contains four references under "best." Besides "best kinds of metal paint," already alluded to, we have "best length of tape-ines," "best method of letting bridges, "best sections for columns," "best span-length for bridges," and "best span-iengths for tresties." But will a reader be likely to fook under the head of "best" for these topics any more than he would under "best" for a hundred other matters of which Mr. Waddeil has treated in this book where a best kind of material or best design method or workmanship has been pointed out.
Further, it is a cardinal rule of good indexing that if a key word is used at all then every possible reference under that head should be included. If, for example, "plate girder" is used as a key word at ali, then the reader has a right to expect that everything regarding plate girders which the author has to say wili be included in some form under that head.
Another mistake which our correspondent makes in common with many others is that of assuming that mere length of volume constitutes a merit in an index, when, as a matter of fact, it is one of the most important things to be avoided. An index is essentialiy a device to save the reader time; and every unnecessary item is a flaw, be. cause it adds to the bulk of the index and in some degree makes it less convenient for use. It is a redundant member which does not possess even the merit which such members sometimes do in a bridge, of enhancing its appearance. An index which takes up only 4 per cent. of the total pages of a book may be far superior to one which occupies 9 per cent. of the total number of pages. By carrying this particuiar comparison of our correspondent's a littie further than he does in his letter we can illustrate this point and several others in addition.
A hasty estimate shows that Trautwine's pock-et-book in 33 pages indexes about 4,600 items, while "De Pontibus" in 31 pages indexes 1,500 items. If the indexer of "De Pontibus" had had the same
number of items to index as did the indexer of Trautwine's pocket-book his index would have occupled 90 pages, or, to reverse the case. Trautwine's indexer wouid have put the 1,500 items of "De Pontibus" into ten pages of Index. There cannot be much doubt, it seems to us, as to which of these indexes in either case would be the most convenient. This saving of space in Trautwine's pocket-book is accompished: (1) By using a smailer type: (2) by using two columns of index to each page, and (3) by the far greater discrimination shown in the selection of key words, in classification, and in workmanship in general.
This brings us to still another important con sideration in the construction of an index, nameiy, its typographical make up. In the first place a much smaller type, providing it is clear, may be used in the index than would be aliowable in the text proper of the book, and unless the page of the book is very smail it is aimost always possible neariy to double the number of items per page by arranging the index in double columns. The arrangement of the key words of the main topics alphabetically in respect to the index as a whole, and, aiso, the aiphabetic arrangement of the key word of each sub-topic under the key word of its superior topic has aiready been mentioned. The relative dependence of the various key words is best indicated by indenting the suborainate key words and employing capital initiai letters for the main key words and lower case initiais for the subordinate key words.
For the sake of making clear our discussion of this subject, and at the same time answering our correspondent's letter, we have used the index of Mr. Waddell's book to illustrate the various principles which we have endeavored here to set forth; but most of the defects which we have explained are far from being peculiar to this book. It is the exception to find an index in an engineering treatise which bears on its face evidence that its author was acquainted with the principles of correct indexing; nor is this at ali a thing to be wondered at. That a man who is absorbed in professional work and studies should be unfamiliar with the technicalities of index making is entirely natural. Nevertheless, in these days of the multiplication of technical literature the responsibility on authors and publishers of providing complete and convenient indexes to all works of reference cannot be denied, and the lack of it furnishes proper ground for criticism.
Our criticism is tempered, however, with the knowiedge that the defect to which we have called attention is due to inadvertence rather than to carelessness or neglect on the part of the author; and that he is deserving of the thanks of the profession for the valuable contribution which he has made to its literature.

If this necessarily brief discussion shall serve to make ciearer to authors of technical works the true principles that should govern their indexing, and to the readers of such books the methods to be pursued in making use of an Index, our object will have been accomplished.

LETTERS TO THE EDITOR

Specifications for Portiand Cement, Philadelphia De partmeat of Pubilic Works

Sir: In the issue of Engineering News for April bere appears a tahle, "Sbowing the Principal Features of Specifications for Portiand Cement, etc.," in wbicb is given the requirements of the Department of Public Works of this city. The requirements given are for the year 1896 only and not those year 1897. year 1896 only and not tbose for the yencifications enclose berewith a copy of the standard specifcations of this city, and a dagram sbowing the average yeariy tests and tbe corresponding increase in the requirements since the year 1892. You will observ that the specifications for the year 1897 are considerably higher than those glven in the table in the Engineering News.

Yours truly
Richard L. Humpbrey.
In charge of Testing Laboratory
Clty Hali, Phliadelphia, Pa., Aprii 12, 1898.
(The diagram which our correspondent incloses was published in a slightly different form in our issue of May 7. $\mathbf{1 8 9 6}$. As compared with the fig ures given in the table published in our issue of April $\div, 1898$, the later specifications mentioned by
our correspondent have the following different re. quirements:

As we have stated before, these requirement of the Philadelphia Department of Pubiic Work are unusally high.-Ed.)

Steel Tank Grain Eievators.

Sir: Regarding the very interesting description of th Great Northern Elevator," at Buffaio, in your lissue descrihing this eievator as a new styie of constritet eievators, yet the essential principles were iong asturtion barring the steel column framework and bopper al bottoms. In confirmation of this statemen, 1 a short description of the "Washington Avenue E evator" of the Girard Point Storage Co., iocated on the Delaware River, at the foot of Washington Avenue, Philadelphia, Pa: This structure was started in 1859, and complet d abo 1863, being put in service in 1866 . The elevator has capacity of about 375,000 husheis and was consideref at the me of its construction a mammoth structure
Structural Features.-The skeleton of the bullding is of ast-iron columns in the external walls, with brick ratelin between. It has a trussed roof carried on the sld-wal independent of the interior columns. The grain tanks ar 88 in number: of wrought iron, varying from $5: 16-\mathrm{in}$, to tanks are 11 ft . in diameter and 48 ft . deep. Wide. Thes bottomed, which necessitates some shoveling in are tion out the hins, hut in some of them wooden hopper--bapet hottoms have been introduced to avold thls difficuly canks are supported on a floor system of cast-len girders, resting on cast-iron columns, wbich extend only to the com of the tanks, which are ahout 15 ft . from the gard level.
It is interesting to note in this connection, that althourb focated close to the water and subject to locomotive gases, the cast and wrought iron in this structure is in excelen condition, after about 37 years of service. The ironwork has been painted on an average of once in seven y ars The interior of tanks not at all.

Dlagram Showing Arrangement of Tanks in the Washing. ton Ave. Orain Elevator, Phlladelphia, Pa., Built in 1863.
From the sketch it will be noted that the tanks are tled together with rods. Tbe purpose of this is to utllize the space hetween the tanks for storage, whlch Is done suc-
cessfuily. It wili thus be seen that in this respect the Washing. Washington Avenue Elevator presents a point in simplicity of construction and economy of space in advance of the Great Nortbern Elevator. The tanks are also thed
at the tangent points by boits and cast-Iron fillers. at the tangent points by boits and cast-Iron fillers. movement of Grain in Tanks. -1 read in your issue with and Pressure of Grain.: I wish to cail attention to prac. and Pressic of hut perbaps may be news to the engineering publle hut perbaps may be news to the engineering publl
opened for the exit of grain a movement takes place much opened for the exit of grain, a movement takes place much tbrough the grain and this central movement is so strong tbrough the grain and this and extension have knowied in in from the bin, sucking bottom. Tbe cutting action or grain in runing over met surfaces is remar with 1 in Y/s-in. thiekn.
like a sieve. like a sieve.
Relative Merits of Steei and Wood.-As to the relative merits of steel and wood in elevator construction, i wish to say that steel prem fire that you mentioned. prominat one much ies naturaliy, in a steet elerator Insurance costs are marious diseases. These are the resu: Grain is aubect in around of micro growths and fermentation. The wood inlors. The grain is a germing ing is a serlous heating of grain, caured by that steel or Iron reature. It has bean proved hat is to heatiog in one tank causing trouble in adjacent tanks or in blas be-
ween tanks, 1 would say that at the Washington Avenue Fevator a case occurred of a bad lot of grain that went efor in fermentation in one of the hins between tanks, ruit tis caused no trouble in the adjacent tanks. If wood must be used around grain it would seem that exper:ence has demonstrated yellow plne to he less ohjec
the ground of micro growths than other woods. I wlish to say in conclusio type near Kelsey's Stores, Brooklyn, N. Y. Yours truly
14 So. Broad St., Philadelphia, Pa., Apr. 20, 1898. (1n reference to the paper on "Lateral and VerStresses in Grain Bins," to which our corre pondent refers above, we are requested by Mr. por Mat it was translated from an article published "Centralblatt der Bauverwaltung, in 1896. Mr. Toltz also calls attention to the following typographlcal errors which appeared in his translaion: In line 18 from the top of the first column ' $P_{1} F_{4}$ ' should read $P_{1} F$, and in line 8 from the otem of the second column " ρ, ," should read ρ_{1} -Ed.)

Table of Coefficients for Designing Bridge Portals. Sir: In the article on "Tahie of Coefficlents for Designing Bridge Portais," sent you hy Mr. C. S. Davis, Englneer Massllion Bridge Co., which appeared in Englneering News for Feh. 10, there would appear to be an error in the expression for the direct thrust in the main strut of the portal, which is presumably stated for the sections of the strut suffering a maximum thrust, viz., the ead sections. The expression given for the thrust, $\frac{\mathbf{P}}{\mathbf{2}}$, Is correct for the middle section of the strut, hut for the windward section, 1. e., hetween the windward end of the strut and the point of attachment of the knee-brace,
the thrust is not $\frac{P}{2}$, hut is

$$
=-P-\frac{P}{2}\left(\frac{1-h}{h}\right)
$$

which, with the dimensions of 1 and b ordinarily used where this type of portal is adopted, would give five or six times the tbrust for which the article directs the strut be propolly White correctly given for the m
strut, should have the value

$$
+P \frac{1}{a}\left(1 / 2-\frac{a}{w}\right)
$$

Ia the windwsrd and the leeward sectlons of the strut and these values will exceed the shear in the middie sections when a is less than $\frac{W}{4}$
If, as is apparentiy assumed, the web is not designed to carry any of the direct thrust nor hending-moment stresses, and if the bracket connection wlth the strut is
lon of the flange areas. This will be evident from an examination of the expressions for the flange stresses un der the assumption mentioned above. These expressions are as follows, tension heing indicated by the plus sign and compression hy the minus sign.
Windward section, leeward end of section-
Upper flange: \mathbf{P}

$$
\begin{aligned}
& \text { Upper flange: } \mathbf{P}\left[-\frac{1}{2}-\left(\frac{1-b}{4 b}\right)-\frac{1}{d}\left(\frac{1}{2}-\frac{a}{w}\right)\right] \\
& \text { Lower flange: } P\left[-\frac{1}{2}-\left(\frac{1-b}{4 b}\right)+\frac{1}{d}\left(\frac{1}{2}-\frac{a}{w}\right)\right]
\end{aligned}
$$

Middle section, windward end of section-
Upper flange: $P\left[-\frac{1}{4}-\frac{1}{d}\left(\frac{1}{2}-\frac{a}{w}\right)\right]$
Lower flange: $\mathbf{P}\left[-\frac{1}{4}+\frac{1}{d}\left(\frac{1}{2}-\frac{a}{w}\right)\right]$
Middie section, leeward end of section-
Upper flange: $P\left[-\frac{1}{4}+\frac{1}{d}\left(\frac{1}{2}-\frac{a}{w}\right)\right]$
Lowe fanes $\left[\left[-\frac{1}{-}-\frac{1}{4}\left(\frac{1}{2}-\frac{-}{2}\right)\right]\right.$
Leeward section, windward end of section-
Upper flange: $\mathrm{P}\left[+\left(\frac{1-\mathrm{b}}{4 \mathrm{~h}}\right)+\frac{1}{\mathrm{~d}}\left(\frac{1}{2}-\frac{\mathrm{a}}{\mathrm{w}}\right)\right]$
Lower flange: $\mathrm{p}\left[+\left(\frac{1-\mathrm{b}}{\mathrm{b}}\right)-\frac{1}{-}\left(\frac{1}{-}-\frac{\mathrm{a}}{-}\right)\right]$
Lower flange: $\mathrm{P}\left[+\left(\frac{\mathrm{I}-\mathrm{b}}{4 \mathrm{~b}}\right)-\frac{1}{\mathrm{~d}}\left(\frac{1}{2}-\frac{\mathrm{a}}{\mathrm{w}}\right)\right]$
The notation here is the same as that used hy Mr. Davis, with the addition of $\mathrm{d}=$ depth of girder hetween centers of gravity of flanges.
As an example of the widely different stresses which the flanges are suhject to, in a portal of general average dimenslons, the following results are derlved from the ahove expressions for a portal in which $1=20 \mathrm{ft}$. $\mathrm{W}=12 \mathrm{ft}$.; $\mathrm{a}=4 \mathrm{ft}$.; $\mathrm{h}=5 \mathrm{ft} .$, and $\mathrm{d}=15 \mathrm{ins}$. :

Wind-
ward. Leeward. Windwrd Leew'rd. Windwrd ward.
 Respectfully yours, Olin H. Landreth
Union College, Schenectady, N. Y., Feb. 14, 1898.
(We referred the above letter to Mr. Davis, who sends us the following reply.-Ed.)
Sir: I have your letter of the 19 th inst., together with the communlcation from Professor Landreth, and in reply would say, that I have checked his formulæ and found them correct. The expressions I gave for shear and thrust were not intended to represent maximums in either case, hut only the shear snd thrust for the center section of the portal, where they give true values under the conditions assumed, viz.: that the wind load is divided equally hetween the end posts of the hridge and that the lower ends of the posts are conslared rund ends
A large portlon of the portals put on highway hridges in this country do not have their slzes figured. They are built He others that have gone hefore or are designed hy guess. A very small portion have their sizes determined hy cor-
rect methods. This may he accounted for hy the fact that
strain. With a littie caution I helleve the formula given can be used with perfect safety. In fact it gives larger sizes than are ordinarity used.
In regard to the inequality of the stresses in the two flanges of the portal would say that I have used a formula commonly used for proportioning beams or girders that are subject to direct thrust as well as to hending. The advantage of this is that it is not necessary to determine the stresses in the flanges
While Professor Landreth's method is correct for finding the stresses, he gives us no guide to tell what materlal to use after the stresses are determined.
Toledo, O., Feh. 26, 1898.
C. S. Davis.

Concerning Ogee-Faced Dams.

Sir: Your issue of April 14 contains an artlele "On the shape and effect of a stream of water flowing over a dam havig an ogee downstream race, signed Clemens Herchel, hyaraufic engineer. The article contains a mis lome signed Mr Hower co. is now hulling was not de gsed un. Hersche. The plans for the dam were no and do not resemble them, excepting that ail such work dams have what mith berme family rese in lsfit I designed wo tor or Sprague Manufacturing C_{0}, to he hullt across the She ucket River in Connectiout which weress the she imilar in section to the Holyoke am The particula profle was adopted in order that the water flowing over the dam should run as smoothiy beyond the foot of the dam so neers term it, might be lessene and its destructive engl exted upon the river bottom below the apron of the da and not directly at its foot.
When I, as the hydrauilc engineer of our company, wa calied upon to construct the dam across the Connecticut River, I had in mind my former plans and adopted a similar profle, helleving it well adapted to the purpose I do not claim much originality for the designs, though they were not copled from any plan by Mr. Herschel. He surely cannot claim a patent for an ogee section, for darps of that form were hullt hefore Mr. Herschel was born. The curve of the upper portion of the Holyoke dam is a para bola, that heing the curve that water naturally takes in falling. The parahollc curve was merged Into a cyclold the curve of quickest descent and consequently smoothest.
I have never seen Mr. Herschel's latest design for the Holyoke dam and cannot express any opinlon as to it merits, hut if, as he wrote to the directors of our company, he can build a stable and enduring dam across the Connecticut River of the same height as the one I am constructing, haif a million dollars cheaper than I am dolng, 1 am sorry that he has not had the opportunity to do so, for I shou'd look upon it as the greatest wonder of the age.

Yours truly,
Edward S. Waters,
Treasurer and Hydraulic Engr. Holyoke Water Power Co. Holyoke, Mass., April 18, 1898.
(We submitted a proof of the above letter to Mr. Herschel, who sends us the following reply.-Ed.) Sir: The ahove letter gives rise to certaln thoughts that may prove of interest to the student of dam construction. In my letter, published in your issue of April 14, 1 gave where my preliminary plan Am. Soc. C. E., 1886, p. D76) wht plyser at Holyoke in 1586 , a determine the of experiments made dam, were printed. it would no doubt shape for such a ers to he able to see the cross-section designed in 1807 hy ers to he ahle to see the cross-section, designed in 1867 hy the wruer of the above lelter, for the shalucket luver, and what are o were to have heen its dimensions?

Cross-Sections of Dam across the Connecticut River at Holyoke, Mass

A comparison of the cross-section of the dsm commenced at Holyoke in 1895, with the eross-section which 1 designed for a dam at the same place in 1885, shows no valuahle o material difference hetween the two. The outlizes of th wo are given on the drawing herewith shown, and in mak g the comparison I have used the section given in the con ract and specifications for the work. 1 leave your readers judge for themselves whether some other plan was not'also
"had in mind" wben the tben hydraulic engineer of the company adopted in 1895 a profle now described as similar to the 1867 designs only. Indeed, I know that my plan was also had in mind, for besides having the use of plans, model ec., left by me at Holyoke, wben I resigned my position there, the then hydraulic engineer had eapectally sent for and had studled, the Am. Soc. C. E. paper above referred o, in 1887, or 1888.
The student of dam hullding would also like to have a reference to a dam 30 ft . bigb bult of ogee section any where the wide-world over betore 1842, the date before Whlch, as clalmed hy your correspondent, such dams wer common. I know of none. The Croton dam, half-bull about 1848, and cobbled up several years later, is not sucb a case. Its bistory and cross-section is given in my peper abeve referred to.
or course it is easy to say now that tbere was notbing new ahout this design of mine in 1885; hut from tbe amoun of adverse critticism and the abuse it then met with, even in Influentlal quarters, one would not bave tbought so. Tbe ex periments referred to in the I886 paper disposed of most of that: the remalnder I endeavored to dispose of in my two letters to Englneering News, Nov. 10, 1892, and April 14 1898.

I would heve made no reply whatever to the above communication, except for the cbarge that I wrote "the direc tors of the Holyoke Water Power Company, etc." Tbls is personel and sufficlently untrue,or half true, to make a cor rection advisahle. As will eppear, 1 wrote a private letter, a a stockholder, to a gentleman, who was and is a director before the work was let,but just as soon as i bad beard tbat the dam was to be built. If I bad neglected to do tbis, would have considered myseif remiss in botb my dutie and privileges.
This is the letter, omitting only the gentleman'e name Dear Sir: Referring to our conversetion oov. 26 , 1894. since, 1 heg to say that it heard to-day that some montbs Holyoke
Water Power Co. are Intending soon to call for bids on Water Power Co. are intending soon to call for bids on a
stone dam at Holyoke. I also learn that this dam 18 elther
nodeled after the design I made for a stone dam in 1885 , or
to be bult according to that design.
1 intended to heve come to the annuel meeting tbis year,
a 1 expected the matter of bullding the new dam would mexpected the matter of bullding the new dam would
he laid hefore the meeting; as I understand was done. But
was prevented by heling obliged to attend court tbat day Was prevented by heing obliged to attend court that day.
Yous heing one of the partles largest in interest in th
oinpany, I am writing tbis to you to say. that I want t isclaim, any endorsement of, or recommendenation of, this or or
dis.
any other such stone dam for Holyoke at this time. 1 do
ot wish it to he inferred bereafter, hecause recommended it to be built at that studies of tbe case, that
think, on the contrary, that more than $\$ 500,000$ In 1894 .
thed, rather than hulld $1 t$; and this is saved,
saving.
(Signed) Clemens Hersebel. Now that 1 have heen reminded of tbe fact of a letter bav ag been written, and have read it, I think it was a very proper lut t wite, osilthat ing nearly higb that 1 did ot ton estmate the posinhe saving nearly higb enough. lo not consider saving his amount or expendure
 ram or 13 years, or to ada tw rom destruction for tbe last 13 years, or to add twice th the co coal of the introdutom of a proper system the compar by the water a measuremutite oxecutive requires the
2 Wall St., New York city, Aprll 22, 1898.

"De Pontibus.

Sir: I have reed witb surprise in your issue of Marcb 31 your revlew of Mr. Waddell's "De Pontibus," for it seems to me tbat tbe impression your article will give to those who have not seen the book will be rather unfavorable. As I am acquainted witb every paragrepb in tbe book rom heginning to end, baving cbecked tbe entire menuscript, besides preparing all tbe tahles, and making many pecial computations, I feel competent to form a cor rect opinion of tbe true value of the work to a bridge d your criticisms bimself, i am going to take tbe liberty, on my own responsibility, of answering a few of your cmments and pointing out the scope and usefulness of tbe book in question.
In my opinion, the treatise is a true "pocket-hook" for bridge deslgners, hecause it contains in condensed form a great mass of valuabie information, including specifications for all kinds of hridges, and many tahies and curves of loading to facilitate the making of computations. No one wbo bas not used the work in actual precile can form an adequate opinion of its efficiency and usefulness. The specifications are tbe most tborough, systematic and comprebensive tbat I have ever seen, and tbey cover the entire ground of designing and construction, down to the imallest detalls, for rallway, bigbway and combined hridges of all types, and can he used also for steel buildhilgs hy sssuming the ceeffient of 1 mpact to be zero The specifications are so thorougb and systematic that if several designers were to work independently on any design, witb the general outline and loadings the same design, witb the general oulila the same down to the smallest details thus eliminating from the designing, to the ereatest posalble extent, tbe effect of "personal equa tion.'

From the time I took cbarge of Mr. Waddell's office until tbe specifications given in "De Pontibus were writ ten, this "personal equation" of tbe members of the omfee was always evident to a very large extent, althougo we used, as far as they would appiy, the best specifications avallahle. The consequence was tbat wben tbe results of an accumulation of data were compiled, great irregularities were found. which prevented satisfactory comparisons of tbe results of our work. For years Mr. Waddell has bad in contempletion the writing of specifieations for rallway bridges similar in completeness to tbose be wrote, some ten years ago, for higbway briages, but be bad been prevented mainly on account of the amount of personal work that be had to do in connection with bis large prac tice. It was upon my urgent solicitation that Mr. Waddell prepared tbe epecificutions whicb were tbe nucleus of the entire text of bis new book, and, in tact, the ralson d'être of the work, a fact for which I take some credit to myself in addition to wbat Mr. Waddell bas given me in bls preface. A year's experience in the use of these specifications has proved to me their usefulness and efficiency. In no particular bave they thus far been found wanting.
Readers of your review migbt form an opinion from your eecond paragraph that Mr. Waddell's ideas in respect to bridge designing are very different from those of otber authorities; but such a conclusion would be incorrect, as can be seen by perusing the discusslons on the various papers wbich Mr. Waddell bas suhmitted to tbe engineering profession during the last ten years. I have read tbem all thoroughly and have come to the conclusion that, in respect to disputed points, tbe consensus of opinion is nearly always with the autbor of "De Ponthus, and that in every case be has eeveral eminent autborities on bls side. Incidentally 1 might mention, concerning the specilications of De Ponibas, that tbey were submitted to several prominent autborities for comment and criticism, and were, in many minor points, modified to conform with sucb criticisms.
in regard to tbe index, it seems to me that you are rather severe in saying tbat it autbor bas provided an index wblcb le abo a cerce cently about si peges ougbt to sbow tbet it is pretty thorough and comprehensive. These 31 pages index 347 pages of lext, tbus an ping to you can point to any otber englaring work wbicb bas sucb a proportionately large index. By tbe same metbods of figuring Trautwine's "Pocket-Book" sbowe 4\%, Pencoyd's, 3%, and Carnegle's 2%
You must heve searcbed the index pretty thoroughly for flaws when you compiled your list of faults, because a study of it sbows tbat tbe cross-referencing in general is very thorougb indeed. Let us analyze a intle these so-called fauls, laking tbem up in the order you bave adopted. Al though assumed upift for draw-spans" is not under "draw spans we ind it cross-indexed under uplift, wbicb is tbe fundamental idea in the ltem. Altbougbt "best kinds of paint" is not under "paint," nevertbeless, the same item is covered under painung, livestigations forg "Character liange-section for plate girders" is not under "plate girders," but it is under "sections for compression lianges of plate glrders. Here agaln tbe maln laea is "eection of langes, and not plate girders, so in eacb of the cases you have referred to, I and tbe subject proper. croseinex Hence it seems to me that the index of "De Pontinus" will compare favorably, to say tbe least, with tbose of otber engineering books.
It is quite a disappointment to me that the reviews of this work, whicb bave thus far appeared in the technical press, have been of such a superficlal cbaracter. Not one of tben attempts to discuss tbe aner points of the book, or seems t recognize tbe great amount of new and useful information l contarns value to every one engaged in the designing, manufactur r bullding of structural work.
The book in one sense is absolutely unique, for the autho bas in it presented to tbe engineering profession what too many members tbereor would consider tbelr wbole stock in rade, and has witheld nothing of value whicb he bas learned from bis own experience or from thet of others. or tbis Mr. Wadell deserves the hearty tbanks of the enineering profession and especially the young memhers wb re at present just entering upon tbeir work
There is a great amount iabor and expense connecte with tbe preparation of such a book, and as the price low, it is hardly probable toat toe litle royatty which the author receives will ever reimhurse bim for bis actual cas utlay, to say nothing of the value of his own time. Tb main object of Mr. Waddell in writing the book was to ben efit the profession, and to ralse tbe standard of his chose speclalty from rule-of-thumh methods to a systematize
I trust that you will pardon me for my plain speaking ut wbat I have sald bas heen prompted by a desire to se "De Pontlhus" given a fair sbowing, for there is no on Yours very truly,
Kansas Clty, Mo., April 4, 1898.
(We are pleased to give space to the opinions of a critic who is evidently so familiar with the subject of which he writes; and if he will read our
review carefuily, he will find no serious dlsagre ment as to the real merit and vaiue of the book question. Our comments upon the index to "D Pontibus," however, appear to have bern so ${ }^{\text {D }}$ apprehended by our correspondent, thet 80 mis hought it worth while to explain at len whe ditorial columns this week, some of the found ion principles which must be observed in any empt at indexing, if an index is to be of ene others than those who complie it.-E

the construction of lock no. I osage RIVER, MISSOURI

By F. B. Maltby,* M. Am. Soc

 (Wlth furl-page plate.)The Osage River is one of the largest and mos: important tributaries of the lower Missouri River and is the iargest stream in the State of Missouri, except the Mississlppi and Missourl Rivers empties into the latter stream about above its mouth, and about 8 miles below Jiffer on City, the capital of the state. During high an medium stages it is navigable for a distance bout 220 miles from its mouth, and throughou his distance flows through a country very poor erved with other means of transportation.
The United States government assumed char ffe improvement in 1871, previous to which tim s had been made by the state of Missouri partially improve it by the construction of win wails to concentrate the flow over shoals. From 1871 to 1891 the improvements made by the ernment consisted in dredging the shoals, remo ng snags and obstructions, and by building number of wing and training dams. The construc tion of a lock and dam near the mouth of the rive was authorized in the River and Harbor bill 1890, but owing to lack of sufficlent appropria tions, construction was not commenced until 189% In June of that year a contract for the construc tion of a portion of the lock was entered into with McGee, Kahman \& Co., of Kansas City, Mo., an during that summer and fall the coffer dam wa built, and some dredging and excavating done. I the spring of 1896 it was thought advisable to make some changes in the pians, and, as the government was unable to make any satisfactory agreement with the contractors as to prices to be paid under the new conditions, it was declded to terminate the contract, purchase the contractors plant and continue the work by hired labor. O receipt of the necessary authority from the Chlef of Engineers, this was done, and during the season of 1896 nearly all the excavation was completed and most of the foundation piles driven. On resumption of active operations in 1897 , the writer was placed in local charge of the work, under the direction of Captain H. M. Chittenden, Corps of Engineers, U. S. A., and Secretary of the Mlssourl River Commission, the improvement of the Osage River having been turned over to this Commission in 1894
The lock is about 7 miles above the mouth of the Osage River, at which point is the nearest railroad station to the lock. All the material used in construction, except sand, gravel and piling. was received by rail at this station and towed by water to the lock. The river at this point has a range between high and low water of about 25 ft ., and owing to the duration of high stages the working season is confined to the period between Aug. 1 and Jan. 1, or only about five months in the year.
The lock as constructed is 220 ft . long between quoins, and 42 ft , wide in the clear. It is 276 ft . 3 ins . Iong over ail, and 76 ft . wide. It will hav a maximum lift of 16 ft ., though ordinarlly the lift will not exceed 12 to 13 ft . In making pre. Ilminary borings, the materiais encountered wer a rather fine gravei, with layers of clay from 18 ins. to 3 ft . in thickness. No rock was encountere and it was decided to make the foundations for the iock walis of piles with the usuai timber griliage surmounting them.

The floor of the chamber of the lock is made of soncrete 3 ft . thick, deposited around piles driven 4 ft . center to center, and cut off level with the to of the floor. Excavation extended about 13 f below ordinary low water. A coffer dam, sur ©U. S. Asst. Engineer Missouri River Commisslon, 1513
Locust St., ©t. Louis, Mo.

FIG. 1. VIEW OF COFFER DAM AFTER PUMPING OUT IN 1897
SEDIMENT BEING WASHED OUT.

FIG. 2. FILLING THE TIMBER FORMS FOR THE LOCK WALLS.

CONCRETE LOCK ON THE OSAGE RIVER, MISSOURI.

Built under direction of the Missouri River Commission.

Capt. H. M. Chittenden, Corps of Engineers, U.S. A., Secretary and Engineer.
F. B. Maltby, M. Am. Soc. C. E., U.S. Asst. Engineer in Charge.

FIG. 3. GENERAL VIEW OF LOCK.
rounding the lock on three sides, was constructed by driving two rows of piles 11 ft . apart, center to by driving 8 ft . apart in the rows. These plles had waling pieces boited to them, and $3-\mathrm{ln}$. sheethad waling piven against the waling pleces, and to a ing was ariowhat above the bottom of the excavadepth somewhat abo the river bot tion. The interior of the dam above the river bottom was flled with clay from the adjacent banks. The top of the coffer dam is 21 ft . above the floor

35 ft . high and 16 ft . wide on the bottom. The chamber walls are 27 ft . high, 5 ft . wide on top ard 14 ft . wide on the bottom, and are all icrmed of concrete deposited in place. The floor of the lock chamber, the breast wall and a small portlon of the core of the land wall is made of Milwaukee cement concrete, 1 part packed cement to 2 parts loose sand and $31 / 2$ parts of loose gravel. With the above exception the walls are of Portland ce-

FIG. 5. -PLAT CAST-IRON QUOIN FOR OSAGE RIVER LOCK.
o the lock, which is about 10 ft . below low water. The excavation was done with a clam shell dredge The excar as the material could be reached with a as far as the material could be reached with a portion was excavated by hand, loaded Into boxes and hoisted and dumped outside the coffer dam, a slow and expenslve method.
While making the excavation, an extraordinary and unlooked-for flow of water was encountered, which came, not from the river, but from the gravel beds which were penetrated. This fact was ciearly demonstrated when the pumps were shut down, at which time the water in the coffer dam down, at which time the water in the cofter dam To keep down this flow required the combined efforts of three centrifugal pumps, 8, 12 and 15 ins. diameter, respectively. The water was llfted about 19 ft . The maximum flow was about 12,000 mallons per minute, but this was greatly reduced fer the foundion plles were drlven After after the foundion pies and the foor of ther completing the foundations and the floor of the lock the flow was only about 6,000 gallons per minute. The pumping has been a very expensive tem, costing for both seasons, covering 192 days of pumping, $\$ 13,334.94$, excluslve of cost of plant. It has very greatly Increased the cost of excavation and plle driving.
After completing the excavation to about one foot above the desired depth, the foundation plles were driven. The coffer dam was allowed to partly fill and the piles were driven with a floating driver. A few were also driven with an ordinary land driver after the coffer was again pumped out. A line of Wakefield triple lap sheet piling was driven across the lock under the upper miter slll and well into the bank.
The total amount of excavation in both seasons, 1896 and 1897 , was $11,063 \mathrm{cu} . \mathrm{yds}$., costing, including pumping, $\$ 1.034$ per yd. The cost of pumping charged to excavation amounted to $\$ 0.512$ per yd. The total number of plles driven in foundations, including sheet plles, was 1,955 , or 46,356 iin. ft., costing for driving, excluding pumping, 10 cts. per ft . The cost of pumping charged to pile driving amounted to $\$ 0.076$ per ft . These 'rices are, perhaps, subject to a slight correction, owling to the fact that in the season of 1896 no attemit was made to keep the exact cost of separate kinds of work. It is thought, however, that the distribution made is very close to actual costs, as only two kinds of work, excavation and pile driving, were done during that year.
Active operations were resumed Aug. 1, 1897, after a shut-down since Jan. 2, 1897. The pumps were started Aug. 6, and the coffer was not allowed to fill untll Nov. 6, when the work was closed for the season, a period of 90 days, during which time the engines and pumps were not shut down. On pumping out the coffer dam it was found that sediment had been deposited over the entire foundation to an average depth of about 5 ft . This sediment was all removed by stirring it and washing It, wlth strong streams of water from a fire hose, to the centrifugal pumps and pumped out through them. About $4,000 \mathrm{cu} . \mathrm{yds}$. were thus removed at an estimated cost of from 18 to 20 cts. Der yd; $78,698 \mathrm{ft}$., B. M., of timber were placed in foundations at a cost for placing, excluding pump ing, of $\$ 8.13$ per $\mathbf{1 , 0 0 0} \mathrm{ft}$., B. M.
Perhaps the most interesting feature of the lcck to an engineer is the concrete construction of the walls. The head walls for a length of 41 ft . are
ment concrete, In proportion of 1 part packed ce ment to 4 parts loose sand and 9 parts loose gravel. The faces of the walls, where exposed, are made in proportions of 1,2 and 3 , to give a slightly smoother appearance.
The forms for the walls were made of frames or bents of $8 \times 10-\mathrm{ln}$. timber braced thoroughly with $6 \times 8-\mathrm{in}$. and $7 \times 9-\mathrm{in}$. braces. The posts were tled together at the top with $4 \times 10-\mathrm{in}$. oak pleces, which also formed the supports for a track on which the concrete was brought from the mixer. The bents were placed 4 ft . apart center to center and were sheeted or lined with $4 \times 10-\mathrm{in}$. plank. All the timber used in forming was of long-leaved yellow pine, and the posts for the $35-$ ft . wall were single sticks 36 ft . long. The forms are divided by bulkheads into sectlons from 20 to 24 ft . long, and alternate sectlons were filled. The bulkheads were then taken down and Intermediate sections filled. A section was usually fllied without interruption, though in a few instances work was suspended from 12 midnight to $7 \mathrm{a} . \mathrm{m}$
Timber enough for forming only one-half of one wall was provided. On completion of a portion of the wall the forming was taken down and again erected in position for another portion of the wall The timber was thus used on an average four

FIg. 6.-Cast-Iron Step for Gates of Osage River Lock.
tlmes, and thereby reduced the cost of forming per cubic yard of concrete. It was found that the loss or damage from use and handllng was very small. Atlas Portland cement was used generally for the walls, though, owing to the fallure of the dealers to deliver cement as fast as desired, several hundred barrels of Lagerdorfer cement were used. The Atlas cement was purchased under specificatlons requiring 99% fineness on No. 50 sleve and 88% fineness on No. 100 sieve. Tensile strength, neat 7 days, 500 lbs., 1 to 3 of sand, 7 days, 160 lbs. Every tenth barrel was tested. Several hundred briquettes were made and broken and have given satisfactory results.
The sand and gravel were procured and stored on the bank prior on the resumption of active construction in 1897. The sand was dredged from the Missouri Rlver, about 8 miles from the lock, and cost, stored on the bank adjacent to the work, 80 cts. per cu. yd. It is clean and sharp, but contal 19 a rather large proportion of fine material; about 30% will pass a No. 50 sleve. The gravel was dredged from the river within $1 / 2$ mile of the lock. A ladder dredge was used, elevating it into screens where it was thoroughly washed and screened rnd
delivered onto a barge. It is of superior quality, being of a flinty character, and although the face are quite smooth, the stones are very irregular in shape. It contains 37% of volds, and cost, stored on the bank, $\$ 0.571$ per $y d$.
The concrete was mixed in a cubical milxer with 4 - ft . sides. The mixer was run with a belt from a pulley put in place of a winch head on a Munly double-drum hoisting engine, the same engine be ing used to hoist the material from the ground and dump it into the hopper of the mixer frame. Sand, gravel and cement were loaded by hand into $2-\mathrm{ft}$. gage slde-dump cars. They were run to the mixer and dumped into a box which was holsted and dumped into the mixer hopper. After mixing it was dumped into cars which ran around a track on top of the forms, and dumped into place. In mixing it was the practice to use as much water as fossible, and yet avoid quaking under the rammers. Eight or ten men, using steel rammers weighing 22 ibs . aplece, were employed in $\mathrm{r}: \mathrm{m}$ ming the concrete in place. This number of men was all that could be employed economically in a section at a time. The capacity of the mlxer was cniy limited by the progress of the tampers, end an average of 12 to 15 cu . yds. per hour was deposited and rammed in place. The batches mixed were of such size and proportlons as to vse a fuli barrel of cement at a time. Concreting wsis begun on Sept. 3, and was completed Nov. 6. It was not, however, carried on continuously, as forming could not be kept out of the way. During this time a total of $6,708 \mathrm{cu} . \mathrm{yds}$. of concrete was inade at an average cost, as shown in the accompanying table:
Cost of $6,708 \mathrm{cu} . \begin{gathered}\text { yds. of Concrete made at Lock No. } 1, \\ \text { Osage River. }-1897 .\end{gathered}$

$6,010 \mathrm{yds}$. of gravel at $\$ 0.57$ $3,021 \mathrm{yds}$ of sand at $\$ 0.80$.

$3,021 \mathrm{yd}$ Cement

Cement $\$ 0.80$.
Material used
Storing cement

Coal and wood
15
.32
.14
.027
.168
.220
.041
.174
.016
.011
.685
.29
.073
85.238
recting mixer tracks Labor
Unloading, storing, handiling cement from Orage.
Mixing
Placing
Placing..
Finishing top of wails
Forming.
abor erecting and removing forms.

Total

The cost shown in the table is the average cost of all the concrete made. Of this amount 2,030 cu. yds. of natural cement concrete were made, costing per yard:

For cement
grave
mlixing.
xing, placing, forming, etc
Total
8.821

There were made $4,678 \mathrm{cu}$. yds. of Portland ce ment concrete, costing:

For cement

Total
$\$ 3.410$
The above cost is made up of the items as shown in the table, and does not include general superintendence, office expenses, plant and pumping. A falr proportion of these expenses incurred during the season, and which might be charged to concrete, is about $\$ 1.64$ per yd.
The only novel features of the lock itself lie in the quoins, which have a flat surface 'nstead of the usual curved or hollow form. This surface is normal to the line of reslstance at this end of the gate, and has a contact surface 10 ins. wldc The center of motion is in such a position that the gate leaves the quoin as soon as it begins to open. It is thought that a larger bearing surface will be obtained for the quoin post at a less expense for fitting than with the common shape.
The dam to be bullt in connection wlth the lock will be a movable one of the type known as a "Drum weir," and along the general lines advocated by Captain Chittenden in the Journal of the Association of Engineering Societies of June, 1896. The fixed dam will be 9 ft . high and the movable. welr will have an additional lift of 7 ft . It will be

750 ft . long, divided into sections 75 ft . long, each one of which can be operated Independently and from the shore. Plans have been drawn and approved for this structure, and it is hoped to begin its construction this year.

AN IMPROVED SURFACE CONDENSER.

We Illustrate herewith an Improved form of surface condenser, recently patented by Mr. D. McLeod Cobh, formerly proprietor of the South
and iliustrated herewith, has $2,400 \mathrm{sq}$. ft . of cooling surface, within a diameter of 41 Ins , and a length over all of 137 ins., with a weight of 10,200 lbs., against a listed size and weight of 63 ins. \times 173 ins., and $17,290 \mathrm{fbs}$. of the standard build of the Lighthall type. These condensers are manuthe Lighthall type. These condensers are manu-
factured by D. McLeod Cobb, whose father was factured by D. McLeod Cobb, whose father was
the original and sole manufacturer of the Lighthall Surface Condenser up to the t:me of the expiration of the patents.
The present office and works is at Huntington

SURFACE CONDENSER WITH IMPROVED SYSTET OF TUBING. Patented and Manufactured by D. McLeod Cobb,

Cooling Surface between Tube Heads, 2,400 sq. ft .
Number of F O. D. Condenser Tubes, 1,468.
Length of Tubes, 1219 ins.
Brookiyn Steam Engine Works. Mr. Cobb has for many years been engaged in the manufacture of the well-known Lightali surface condenser, which is in extensive use in marine service. His new condenser is an improvement upon it, designed to effect a saving in the space occupied, and also in welght and cost. In the ordinary form of condenser the tubes are expanded in one tube plate and in the opposite one are secured in a small stuffing box with corset lace, paper, or other packing, secured by screw glands. The glands take up considerable space in the tube heads, and prevent the tubes being set as close together as they otherwise might be. Mr. Cobb conceived the idea of economizing space by altering the horizonta rows of tubes in each tube plate, one row being expanded and the next having stuffing boxes. By having half of the glands in one tube head ans the other half in the other, the tubes may be placed cioser together. The construction is clearly shown in the accompanying cuts. It is claimed that by this arrangement of aiternating the rows of the expanded and packed ends of the tubes, together with proper designing of the screw gland, a saving of 40% of the area of the brass tube heads may be made, for an equal amount of cooling surface. A saving in the circumference of the shell is also made, and these savings, together with the dispensing with one-haif of the screw glands commonly used, amount to a cons derable saving in weight and in cost, as well as in space, which latter is usualiy of most importance in steam vesseis. The tube head is stiffer than in the old construction, if made of the same thickness, for the reason that there is less metal cut out between the tubes in the expanded rows.
While the expanded ends are perfectiy tight against water or steam pressure, they can $b \geqslant$ driven out by a smart blow with a tool made to fit the tube and bear upon its end, and can thus be backed out in either direction; so that tube-room is necessary only at one end of the condenser, and it matters not which.

A condenser recently finished upon this system

Length over all, 137 ms .
Dlameter over all
45
Welght of Condenser, complete, 10200 lbs
and Smith Sts., Brookiyn, and the New York of fice, at 38 Burling Slip, New York.

MOVING A PIER OF THE BISMARCK BRIDGE NORTHERN PACIFIC R.R.

An important and difficult piece of work which has been recently carried out under the direction of the engineering department of the Northern Pacific R. R., is the moving of one of the piers of the bridge over the Missouri River, at Bismarck No. Dak., the pler having been forced out of po sition by the pressure of the earth against its
against the pier as to force it 44 ins. toward the river, the total movement of the pler being 10 ins .
greater than the sum of the succesing greater than the sum of the successive move ments of the spans. The base of the pler is about 47 ft . below the ground.
To prevent the falling of the two spans the smalier was propped up on timber falseyp the the large one was dragged west 34 ins., by , and of locomotives and tackle, so that its sho means still rest upon the pier. These measures wern mere ly temporary, and two plans were then considered for the permanent work. One was to prop up both bridge spans, tear down the pler and rebulld it in the proper position. The second plan, and the one finally adopted, was to remove the tath from around the pler, to build a new and stable foundation at a greater depth than before and move the pier back into position upon this new move
The old pler, from bridge to foundation, is 83 ft . in height, its base measures $24 \times 60 \mathrm{ft}$, and with the superimposed load its weight is more than 4,500 tons. The work must be carried to a depth 60 ft . below ground, and 30 below low water mark the earth on the land slde of the pier has been re moved and a shaft sunk 13 ft . below the old foundation. At a depth of $31 / 2 \mathrm{ft}$. a vein of coal was struck, and it is on a sllppery seam above this that the earth has slipped, bearing the pier along with it. Immediately under the center of the pier a tunnel has been dug, about 5 ft . wide, 13 ft . high and 32 ft . long, running from the river face, undet the pier, to a distance of 8 ft . beyond the shore face. This tunnel will be partially filled with ce ment concrete, and on this a framework of tim bers, $S \times 8$ ins., will be constructed, reaching up nearly to the bottom of the old pier, and support ing two trasks, each consisting of four 5 ti-1b. stee talls. On these tracks will be placed two rows of steel rollers, 2 ins . diameter and spaced 1 in . apart. Resting on these rollers, and touching the bottom of the pier above, will be eight more steel ralis, upon which the weight will rest during the moving. The two tiers of rails with the rollers between, are to be securely fastened, wealged up tight, and brought to an even bearing against th bottom of the pier, after which the tunnel will be packed with cement concrete clear up to the fower railis, which are imbedded in it. On each side of the raiis only sufficient space is left between the bottom of the old pier and the top of the new concrete for a man to crawl in to adjust any roilers which might need attention.
A second tunnel will then be dug parallel with the first, and the same operations followed-partial filling up with concrete, erection of woodwork. laying and wedging up of rails and rollers, complete filling with concrete. In the same way ten tunnels will be driven, removing all the material below the old masonry, and from the earth which formerly supported it, gradually shifting the

SKETCH FROM MODEL OF COBB'S IMPROVED SYSTEM OF TUBING SURFACE CONDENSERS.
base. The pier is on the east bank of the river, and supports the ends of a deck shore span of 113 ft ., and one of the through channel spans of 400 ft . The bank is steep, and rises to a height of about 100 ft ., while near the edge are the reservoirs of the Bismarck water-works. It is said that leakage from these has saturated the entire slope, causing it to silp and throw such a pressure
weight of the pler to 40 steel rails, resting upon 960 steel rollers, which in turn bear upon the 4 rails of the lower tier imbedded in the nell con crete. This has now assumed the form of a mon lithic concrete foundation, and bears the entir olithic concrete foundion, and bears the enire weight of all above it-ralls, rollers, pier and bridge. On the river side this great block is flush with the face of the pier, but on the land side it
extends like a shelf 8 ft . In width. To roll the pler across this shelf to its proper place will require a pull equal to nearly $1,500,000 \mathrm{lbs}$. , which will be applied through ten large serew-jaeks bolted to the lower bloek of eonerete, and pulling bole ralls. Six levers on the ends of the upper tier will actuate each of of heavy oak, the ten screws, and under their combined strains the old pier will roll slowly aeross its new foun the old pler whe the ends of the two bridge spans above will come into place on rollers adjusted under them. When the pier is finally in place, and all temporary applianees are removed, the nar and unfilled between the new work row the will be rammed tight with eonerete so and the old wid be the new base become one that the old pier and the new base become one The new foundation will be 1 ft . longer, 8 ft . wide and 13 ft . deeper than before. As much masonry and concrete will be added as may be deemed suf ffient to prevent all danger of any future movement.
The plans were prepared under the direction of Mr. E. H. MeHenry, M. Am. Soc. C. E., Chief En ineer of the Northern Paeifie Ry., who inform that the above partieulars are correct. Th is that the above partieulars arect. The Wr. W. L. Darling, M. Am. Soc. C. E., Dlvision Engineer, the plans being drawn by Mr. S. J. Brat ger, Assistant Englneer. The foreman in charge of the work was Thomas J. Molloy, of CIncin nati, O. The work was commenced on Oct. 1 1s:1\%, and will probably be eompleted about Jun 1, 1898.

NOTES FROM THE ENOINEERINO SCHOOLS

owa State College, Ames, 1a.-The entrance re olrements of the engineering courses have been ralsed about one year. The entering class, how ver, was !arger than usual this year.
A new forge shop and foundry has been eom pleted, and a new earpenter shop, $40 \times 120 \mathrm{ft}$., is under contraet. The eivil engineering department is fitting up a new hydraulie laboratory, whieh will be conneeted by about 700 ft . of 8 and $10-\mathrm{in}$. cast-iron pipe with the eollege water tower, an elevated steel tank of 163,000 gallons eapaeity, whose top is about 160 ft . above the laborator foor. Arrangements will be made for determining at any time the loss of head in the east-iron pipe and in its several parts, and this ean be done at very high veloeities. A tank 50 ft . long will serve as a discharge and measuring tank for motors weir tanks, orifices, ete., and will also permit ex periments on the resistance of models to propul sion. Two experimental sewers, one 6 and the ther 15 ins diameter, which will serve to remov the waste water, will be so arranged as to permit xperiments to demonstrate the laws of flow at different depths. Experiments may also be made on flow in open ehannels near the mouth of the sewers.
Professor A. Marston has just been made "Engineer to the College," at an inereased salary, in addition to his duties as head of the civll engineering department. The intention is to continue and officially reeognize the supervision and designing by him of the engineering features of eollege improvements. As examples of the work intrusted to him there may be mentioned the eollege water-Works, just completed, a sewage disposal system, and the supervision of the construction of a chimes tower, now building. His examination of the architeet's plans for one important college structure resulted in doubling the size of the foundations.
University of Illinols.-Among the matters now inder investigation may be mentioned the follow ng:
Recent investigations in the laboratory of applied mechanies on the shearing strength of rivet steel indicate that the values ordinarlly used by engineers in designing riveted joints are too large. An investigation is in progress to determine the relation between the standard method of testing paving brieks adopted by the National Brick Manufaeturers' Association, and the standard method of the University of Illinois, which has been used in the tests made by the University for the Department of Publie Works of Chicago. A eries of tests on impaet effect on beams is being conducted as thesis work. In the hydraulic laboratory experiments on weir tubes are being made.

In the electrieal engineering laboratory eomplete ests on all the electric meters on the Ameriean market, and a special study on the design of rheo stats for absorbing power, are in progress.
In the steam engineering laboratory experiments are in progress on Serve and other loeomotiv boiler tubes, and on the effect of scale on boller tubes. The meshanical engineering department is also condueting a series of locomotive road test on the lllinois Central and on the C., C., C. \& St. L. railways

The University has recently completed a new electrieal and mechanical engineering laboratory, at a cost of $\$ 2.0000$. exclusive of equipment. eonslderable quantity of new equipment has been purehased. A new central heating and lighting plant has just been completed and has been ar ranged with reference to facilities for testing com bustion of coal, efficiency of boilers, etc., on a large scale.

Massachusetts Institute of Technology.-The collection of physical apparatus has recently received a number of important additions. Amon these are a large automatie mechanical air-pump, made by Ritehie, and new vacuum tubes of ait kinds for experiments with X rays, making the collection probably the most complete of any in the country. There are many novel forms illustrating peculiar phenomena and new discoveries, including crown tubes for illustrating the phosphorescence of gases; the Holtz tube, showing the influence of funnel-shaped apertures on the resistance; a series of Hittorf's "longway tubes. showing how, at a certain pressure, the electr. des must be separated by a considerable distance in order that a discharge may pass directly between them; partition-tubes for showing the existence of a great resistance to the passage between a metal and gas; a series of tubes at various exhaustions for exhibiting the changed luminous phenomena due to change in pressure of the residual gas; a like set for showing the change of gaseous resistance under like elrcumstances; the eleetrodeless tubes used by Professor J. J. Thomson in his studies of the true resistance of gases and various others illustrating the researches of Tesla, McFarlane, Moore and other investigators in the direction of utilizing the electrie diseharge as a means of illumination. One series illustrates the effect of eleetrie discharge in eausing phosphorescence of minerals
For the study of eathode rays, besides the or dinary Crookes tubes, there is the apparatus used by Lenard in his elassical research, and the tubes of Goidstein showing the existence of several kind of cathode rays with diverse properties; also sev eral tubes showing the repulsion phenomena ob served by Goldstein. Others illustrate the eurious change of colors of salts subjected to the action of eathode rays, discovered by Goldstein and the capillary light recently studied by Schott. There is also a large colleeton of electrical and other radiometers illustrating the electrical and heat henomena studied by Puluj: a new apparatus for illustrating the phenomena of the Hertzian waves, and also the apparatus of Elster \& Goite for studying the effects of light and of the X rays n causing the discharge of electrified bodies.
To the equipment of the laboratory of physica chemistry has been added apparatus for measur ing the dielectric constant of substances by mean of eleetrie waves. The method, whieh is due to Professor Drude, of Leipzig, eonsists essentially in measuring the length of the eleetrleal waves set up in a system of two parallel wires by a suit able spark-exciter, first when the wires are in air and seeond when surrounded by the liquid to be investigated. A Gelssler tube placed in the path of the waves indlcates by a sudden glow when movable bridge placed across the wires reaches so-ealled node. The apparatus has proved very satisfactory in the preliminary experiments of an Investigation now being carried out in the laboratory.
For the laboratory of heat measurements there has been purehased a Junker calorimeter for th determination of the heating value of gas; a new apparatus for the measurement of the heat of combustion of eoal, and a callendar resistanee pyrometer.
Purdue Unlversity.-The agricultural experi ment station is conducting a number of interest-
ing experiments on the growth of plants, and alhough th sse have no connection with engineering. hey involve the use of some interesting appar tus. A little motor about 4 ins . in diameter is sed to revolve a disk on which plants are growing in order to see the effect of gravity upon roots, and another humble plant records the progress of is growth on a sheet of paper on a revolving drum.
University of Nebraska.-All appropriation has been made for the purchase hy the department of divil engineering of a testing machine of 200,000 bs. eapacity. O. V. P. Stout is advanced from associate to full professorship of civil engineer ng. Geo. R. Chatburn is promoted from in structor to adjunct professor of civil engineering - R. Richards. Associate Professor of Practical Mechanics, has been advanced to a full professorhip, with the title of professor of mechanical en ineering. A course in mechanical engineering vill be offered.
A department of drawing and machine design has been established, and instructor R. E. Chand er, of the department of electrical and steam en ineering. is in charge with the rank of adjunct professor
The new mechanle arts building will probably be completed in time to be occupled hy the engineering departments at the heginning of the next school year.
Cornell Lniversity.-The college of architecture has established an annual fellowship, valued at $\$ 2.000$. It is to be awarded on a basis of com petition, the winner to spend two years in ad vanced study at Corneli or in Europe, under the direction of the faculty of architecture Compe titions will be limited to alumni of the college of architecture, who are under 30 years old, and to special students who have completed a two-yea course.
University of Kansas,-Mr. George A. Fowler, president of the Fowler Packing Co., has offered $\$ 18,000$ to put up a new electrical engineering bnilding in the place of the one that was destroye hy fire on March 22, on condition that the board of regents provide $\$ 20,000$ for equipment and maehinery. The board will accept the offer. The burned building will be repaired and used as a power and heating plant.
West Virginia University.-Eleven fellowships have been established, one in each of eleven departments of the University. The departments of mechanical engineering, civil engineering, and mathematics will each have one. These fellowships are established for the purpose of eneour aging advanced study and promoting higher seholarship.
Some of the regulations governing them are as follows:
Each Fellow will be paid $\$ 300$ annuaily, and will
be excused from the payment of all University fees.
The Fellowsblps will be awarded annually by the preat dent of the University to candidates for advanced degrees who are graduates of the West Virginia University, or
other institutions of recognized standing
All Feliowships All Fellowships will be filed each yrar. Fellows may be re-elected for one additlonal year only.
Eacb Fellow will pursue his studies under the direction
of the professor or professors in charge of his speclal Each Fellow will pursue his studles under the direction
of the professor or professors in charge of his special
studies. Assignment of Unilersity service to the Fellows
will be made by the president in consultation with the will be made by the president in consultation with the
head of the department to wbich the Fellow has heen as
signed. The work assigned will be equivalent to one hour of teaching daily. or the supervision of laboratory work for two hours daliy.
Candidates for Fe Candidates for Fellowships wili send in their applicaability, not later than June 1st each year. Tbe appoint ments will be announced at Commencement

STEEL RAILS for the Manchurian division of the TransSiberian Rallway, to the extent of 30,000 tons, have been contracted for by the Maryland Steel Co., with de ivery on board vessels in 60 days. Another 10,000 tons, a cording to one authority, has been taken by Continental irms, and according to another will also come to the Uni ed States. London Engineering says that the locomotives for thl Manchurian railway are also to be made in the United States; and this Journal ascribes the loss of this orber by British irms, to the uncertaliny in delvery result atrike in England. The Russlans are evidently intending strike in Engla . The l an positul the fact that 15 steamers and 40 barges, ordered for use on the tmur and Sungari rivers, will not be ready for dellvery unill nex sungari rivers, whe not be ready something to do with the placing of these last orders.

MANGANESE ORE, suitable for the manufacture of ferro manganese, has been found in Jefferson county. Pa., accord
ing to the Pittsburg "Dispatch." It is said that a vein, from one to three feet thick, has been located. A discovery of a large mine of high-grade manganese ore in the arly all ohtained from ahroad and it is hecoming scarcer.

THE PIG IRON PRODUCTION of the United States is now atationary at the maximum point it has now reached. According to the monthly statistics of the "Iron Age," the weekly capacity of the furnaces in blast on April 1 was March 1. The "Ameris compared with es' figures show an increase from 235,937 tons on March 1 to 237,394 tons on April 1. A year ago the production was also nearly stationary from March 1 to June 1, at ahout 170,000 tons.

THE WORLD'S COPPER CONSUMPTION is increasing at a very rapid rate, as is shown in the following estimate hy Aron Hirsch \& Sohn, of Halverstadt, puh lished in the "Iron Age"

\section*{Grance
 France
 Austrfa-Mungary | | | | | |
| :--- | :--- | :--- | :--- | :--- |
| 1893. | 1894. | 1895.9 | 1896. | 1897. |
| 66,513 | 62,055 | 70,39 | 85,371 | 96,385 |
| 33,886 | 31,37 | 40,323 | 49,007 | 58,336 |
| 96,615 | 90,069 | 91,084 | 115,557 | 110,210 |
| 14,901 | 16,457 | 15,375 | 16,498 | 18,288 |
| 77,443 | 94,511 | 108,000 | 93,698 | 101,404 |}

Totals
Production in world
283,348
295,829
325,491
360,131
384,653 Production in world
(Merton)303,530 324,505 334,565 373,363 396,728 The United States now supplies 54% of all the copper produced in the world. Its export in 1897 amounted 125,000 tons.
variations in the resulets of chemical analyses are discussed in a paper hy Mr. Thos, D. West read at a meeting of the Pittshurg Foundrymen's Associa tion on March 28. Identical samples of horings from three pieces of plg Iron were sent to diferent chemists, and the results ohtalned hy 18 chemists on the samples of foundry fron, by 14 on Bessemer fron and by 13 on charcoal Iron are recorded, together with the names of the chemists. The range of
of analyses was as follows:
of analyses was as follows: Graph. Comb. Total $\begin{array}{llllllll} & \text { SII } & \text { Sul. } & \text { Phos. } & \text { Man. } & \text { C. } & \text { C. } & \text { C. } \\ \text { Foundry } & \text { Iron.. } 0.27 & 0.015 & 0.114 & 0.23 & 0.77 & 0.59 & 1.09 \\ \text { Bessemer } & \text { Iron. } 0.32 & 0.018 & 0.031 & 0.36 & 0.73 & 0.60 & 1.04 \\ \text { Charcoal } & \text { Iron. } 0.21 & 0.020 & 0.067 & 0.22 & 0.61 & 0.58 & 0.30\end{array}$

INFUSORIAL EARTH has been found in the Caucasus, near Akholtsikh, Kissatybe and Tskhorảza, in beds reaching 33 ft . In đepth. Near hy is found an analogous mixed deposit, containing kleselguhr colored by oxide of iron. Chemical analyses show this earth to be of excellent quality and preparations are being made to market it in Russia, Industrial purposes.

SEWAGE DISPOSAL AT MANCHESTER, ENGLAND, is giving the authorities much trouble. According to The Engineer the sewage from a population of 500,000 s now treated sulphate of iron being used as chemicals. The eftuent goes into the Manchester Ship Canal, hut under protest rom the Canal authorities. The works were put in operation in Decemher, 1893. It was proposed to treat the clarifed sewage on land, hut the great cost seems to have led to the postponement of this. So-called bacterla filter beds were next investigated, hut these seem ocal Gromment Board rigidy insists on the old-fashLocal Government Board rigidly insists on the old-fashoned land treatment, even if the new kind of filter beds are used. A proposilion to construct a long outfall sewer for carrying the elluent far down the River Mersey was recently voted down hy the taxpayers. A committee has ince reported in tavor or bacteria ilker beds, hoping that he stand of the loan for this purpose could be Board will not recede from its position. The city is now considering a plan for raising money without the necessity of approvalion the lour Governent Board. The early construction of four acres of bacteria filter beds is proposed, with more to follow as experience is gained. The eity surveyor estimates the cost of 37 acres of these beds from some $\$ 40,00$ to $\$ 635,0$, accoraing to the depth and mode of construction employed. The English papers oo not make clear the difference hetween hacterla cessful ane in this country Coke hreeze crushe cessful operation in this country. Coke breeze, crushed cinders and other materials seem to be employed in some cases in place of sand, and possibly forced aeration is hrought into service in some cases. The great alm is

THE COTTON INDUSTRY OF THE SOUTH was the subject of a late address before the Merchants' Associasubject of a late address before the Merchants' Associa-
tion of New York, delivered by Mr. W. J. Mercer, of the tion of New York, delivered by Mr. W. J. Mercer, of the
"Journal of Commerce" editorial staff. Mr. Mercer sald Thournal of Commerce" editorial stafl. Mr. Mercer said that in 1880 the South contributed 542,000 spindles out of
the $10,653,000$ then operated in the United States. In 1890 the South's quota was $1,712,000$ out of a total of 14 ,

188,000; and In 1898 the South is credited with $4,100,000$ out of $17,400,000$ spindies. Up to 1892 Southern manufacturers made coarse cotton goods almost exclusively; hut since that date finer goods are heing turned out, and at the present time 500,000 spindles in the South are workIng on the "Fall River" class of goods. The Southern rate of wages is low, as compared with the North, ranging from 20 to 30% below, and In South Carolina and Georgia the working hours are 66 per week; and in other states there is no limit fixed by law. But living in the South is also comparatively very cheap. The Southern mills now have the home market; and as a result of over pro duction, North and South, the price of cotton goods is denen saing everywhere in the United States. Mr. Merce effort to secure the only remedy was a more vigorou about 5% of the quantity exported by Great Britaln; and to China, our own best market, England exports eigh times as much as we do.

A CONGRESS FOR THE PROTECTION OF INDUS trial Property, in inventions, etc., will be held in London on June 1, 2, 3, of this year, under the auspices of the International Association for the Protection of Industrial Property. The latter association was founded last year at Brussels, with Eugene Pouillet, of Paris, as President One ohject is the improvement and assimilation of patent laws in various countries.

EUROPEAN RUSSIA, at the beginning of 1897, had a population of $94,215,000$; the Caucasus had $9,248,000$ inhahitants: the Previsliansky Provinces, $9,455,000$; hahitants; the Previsilansky Provinces, $9,455,000$; Si heria,
$7,721,000$. The total population of European and Aslatic Russia is thus placed at 126,368,000; and includlng the Russians in Finland, Bokhara and Khiva the total is Russians in Finland, Bokhara and Khiva the total is placed at $126,411,000$, of which number $63,253,000$ are
males. U. S. Consul Smith, of Moscow, says that the population of the cities and towns of Russia is only 16 , 289,000 , or about 13% of the aggregate population. If the people of the villages and small settlements are added the actual town population is still only $20,000,000$.

A WATER TANK ONE HUNDRED YEARS OLD has heen exposed to view hy the partial destruction of bulldings occasloned hy the widening of Elm St., now in progress in New York city. The tank is ahout 35 ft . in diameter and 15 f. high, and is composed of three courses of segmental Iron castings, with flanged and bolted joints. The castings are hout $21 / 2 \mathrm{ft}$. wide hy 5 ft . high and are reinforced midway in their height by a web, the flanges at the joints also belng einforced by angle wehs. An ornamental effect is obained by the use of heads forming panels on each half of he outer facings of the segmental castings. Four iron hoops are placed around the tank. The tank rests on masonry tower some 15 or 20 ft . high. The supply pipe is 0 ins. In diameter and is provided with a gate enclosed in a ectangular chamber formed by bolting together two flanged ron castings. This tank was erected and for a century has been kept filled with water hy the Manhattan Co., through which Aaron Burr and others surreptitiously launched out in the hanking business on the strength of a charter to supply New York with water. It is said that the tank is kept full in order to maintain the charter of the company. For years the tank has been enclosed by a building.

IMPROVEMENTS TO THE WATER-WORKS of Council Grove, Kan., now nearing completion, are designed to give a purer supply and one more reliahle in times of drought. A pressure mechanical filter plant will be used and a storage dam has been built across the Neosho River, from which the supply is taken. The dam is of masonry and gravel-nil, and its crest will be used as a highway. It is designed to give the least possible resistance to loods and o avold scour. The slopes are very gentle and the roadway and downstreai side are the pared with stone. Depressions in the coping of the heart-wall will pass the normal ary weather low, the coping allording a broken lootway for pedestrians. The darm has been completed a rew weeks and has already satisfactorily passed a number of loods. The improvements were designed by Mr. L. L. Tribus, M. Am. Soc. C. E., of 84 Warren St., New York
clty, to whom we are indebted for the above Information.

THE BURSTING OF A NEW WOODEN WATER TANK at Delta, Colo., is reported as having occurred on April 16. It is said that the tank had just been filled for the first time to soak up the wooden staves.

THE POROSITY OF THIN STEEL PLATES was tested the Washington Navy Yard on April 14. Readers of Engineering News may remember that in our issue of July 23, 1896, was puhlished a letter from Mr. Charles Steiner, proposing to transmit hydraulic power long distances by driving tunnels, lining them with metal and forcing water through them at a pressure of several thousand pounds per square inch. To see whether water steel of $1 / 4,1 / 3,1-16$ and $1-32-\ln$. were each subjected to a
water pressure of $6,000 \mathrm{lbs}$. per sq. In., and to no case was any percolation found; a $8 / 8-\ln$. Fivet joining two $1 / /-\mathrm{ln}$, was a'so underaken to der the same pressure. A test under high pressure, and whlle it was inconch of water was no evidence that the friction of waterusive, there pressure was any greater than the fricton under hlgh under pressure. We need hardly remark of witer nol as also the results with the steel plates, are what ent, neers would naturally expect.

POWER DISTRIBUTION SYSTEM using compressed air ohtained from compressors run th the James River is under conslderation at Richmond, Va The schme cos. templates installing turbines and suitable apparatus for compressed alr which will he piped to parts of the clty where power is needed. It is said-that a similar plant is in operation at Magog, Canada, where a large cotton mill ahandoned steam and adopted compressed air.

PRICES FOR POWER furnished by the Catarsct Power Conduft Co., of Buffalo, N. Y., for manufacturing and general purposes are given in a schedule just issucd. Payments for power are required to be made monthly, and the rates are arranged upon a sliding scale varying with the power consumed as shown by meters. The charge for pow for small size motors amounts to about 75 cts, per HP month. The following is the detalled schedule

THE STRENGTH OF BRICK PIERS lald up in Portand cement mortar, has been under test at McGill Unl ersity, at Montreal. The mortar was made of one psrt ins, square hy $101 /$ to $111 /$ ins ns. square hy $101 / 2$ co $11 / 2$ ins. high. Two plers were made pressed brick, keyed on one side. The mortar had set for pressed hrick, keyed on one side. The mortar had set for
three weeks before testing. The general results were ss three $\begin{aligned} & \text { follows }\end{aligned}$
Compression strength, lhs.

400 lh.
800 lh. \qquad
 $\begin{array}{lllll}0.33 & \dddot{0.33} & 0.004 & 0.0 & 0.0045 \\ 0.25\end{array}$ In each case the fallure was in the hrick, though the stress causing the first crack. A brick similar to those sed in Piers 1 and 2, when laid flat in p'aster of pare had a crushing strength of 1,400 lhs, per sq. in. for the first crack; and $2,400 \mathrm{lbs}$. for the maximum load.

THE NICARAGUA CANAL COMMISSION, through ad miral Walker, Chairman of the Commission, asks Congress for an appropriation of $\$ 50,000$ to complete the work for which the Commission was sent to Nicaragua. Admiral Walker, in his communication, says that much valuable information has been gathered; hut that much till remains to be done; especially in the completion of hinks it would he sites of the princlpal untll all engineering questions are definitely settled hy actual survey.

THE GOOD ROADS LAW OF NEW YORK, passed at the last session of the legislature, has already brought in three petitions for road improvement from Erle county. These came from property holders, have been approved by the Erie county supervisors, and were then forwarded to State Engineer Adams. The fate of these petitions depends, however, on that of the Supply Bill, not yet signed, which carries with it the appropriation for making the Good Roads law effective. This year's appropristion for this

THE BUILDING CODE OF NEW YORK CITY will have to he revised to meet the altered conditions following the consolidation of the citles of Brooklyn and New York. A Joint Committee, composed of representatives from various local building organizations, has heen for several month endeavoring to secure the appointment of a committee in accordance with the provision in the New York, which provides the present Commissianer of Bullaings, Mr. Thomas J, Brady, who stated that at present nothing o Mr. in olas city's bord ine the will be referred by the committee to Mayor Van Wyck with a view to securing the committee to Mayor Van Wyck with a code of building lawk.

