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A T
It is shown that ifM:[O -

the matrices A and B are both square, then M is equivalent to A+ B (=) the matric equation T=AY +
XB is solvable. The result is generalized to treat the case when

] is a partitioned matrix over a principal ideal domain R such that

My My ... My
M= |0 M,
0 0o M|,

where each M;; is square.

Key words: Determinantal divisors: equivalence; matric equation; partitioned matrix; Smith normal
form.

Let R be a principal ideal domain and let R, denote the collection of m X n matrices over

R. According to Theorem 2 of [2], if AeR,,, BeRs, and (det A, det B) = 1, then for any TeR
AT A0
s|os)=s[0s)

where S(M) denotes the Smith normal form of a matrix M. The proof consists essentially of estab-
lishing two elementary propositions:

(i) For arbitrary A€eR,,, BeRs, and TeR ., if the matric equation (*) T'= AY + XB has a solu-

tion X, YeR s, then
AT] [ A0
os)El0s)

where E denotes equivalence of matrices (ii). In the case when (det 4, det B) = 1, (*) is always
solvable.

The central result of this note (Theorem 1) provides a converse to (i), namely that if

: [ 0B ] E [ 0B ] '
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then (*) must be solvable. We generalize this result to the case when

MMy . . . My
M: 0 Mzg 5 o oo ,
0 0 M,
where each M;; is square, and also derive some corollaries.

Subsequent to completion of this work, the author discovered that Theorem 1 had been estab-
lished in [3] in the case when R is the domain of polynomials over a field. The proof there carries
over immediately to the case when R is an arbitrary P.I.D., and is similar to the proof of Theorem
1 presented here. The generalization of Theorem 1 is not developed there, however.

In the sequal R;, will denote the group of unimodular n X n matrices over R, I, will denote
the identity matrix of order n, I will denote an identity matrix of unspecified order, 0,,, will denote
the 0 matrix of order m X n, 0,, will denote 0,,,,, and d,.[M] will denote the Aith determinantal divisor

of the matrix M.
See [1] for a good general reference on matrices over a P.I.D.

THEOREM 1: Let R be a P.ID.. AeR,,. BeR.,. and TeR,.. Then [6‘ I;JE [6‘ ;;J =T
AY +XB, for suitable X, YeR .

Proor: ((=) Note that [(I)' i], [é’ {] eR . ., and that

Ilen(ze

[0 #l[5 5)

(=)) Let [g g] be the statement we wish to prove, namely [
such that T=AY + XB.

A T

~[A4 0
0 B}EI:O B]<_>3X3Y€RNS

We will begin with four reduction steps
(i) We may assume w.l.o.g. (without loss of generality) that A=S(A4), B=S(B). Justification:
Choose U, U*eR ., V, V*eR!, such that UAU*=S(A), VAV *=S(B). Note that

o w16 Bl v [0 )]

and that

[0 V105 B0 5100 S )

where T=UAV*,

Hence [g";]g[g“)g(m]and[g‘g]g[g“”f(m}
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Note also that T =AY + XB < = > UTV* = UAYV* + UXBV* <=>T=UAU* [(U*) ' YV*] +
UXV' [VBV*] <=>T=S(A)Y+XS(B), where X=UXV ', Y= (U*) ' YV* It follows

that
¢[§£] <:>¢[§(A)§<B> }

Hence setting 7= T, we may assume w.l.o.g. that A=S(4), B=S (B).
(i) Let r'=rank A4, s'=rank B. We may assume w.lLo.g. that T= (¢; ,+j) 1<;<,, where
1<j<s
ti,r+j=0for (i, j) such that r' < i < rors’ <i<s. Justification: Let A =5(4) =diag (as,. . ., a0,
...,0),B=S(B)=diag (Bi,...,Bs,0,...,0), where a;|az| ... | and B:|B:| ... |By. Assume
first that ¥ < rand s’ <s.1f 3 (i,j) € (r', r] X (s', s] such that ¢;, ,.; # 0, then it would follow that

AT A0 _— o )
rank > r' + s = rank , a contradiction. Hence t; ,,;=0for (i,j) e (r',r] X (s',s].
0B 0B :
Assume now that r' <r and choose (i, j)e(r', r] X [1, s']. Then it is easily seen that

A 0
dris [0 B]:al ... arfli . . . By,and that

8_{&1 oo o (1,-’31 o« o o B_j lB_iH . ,B.\"[i,r*_is ./<S’

- ay . . . ar’ﬂl .. -B_jrlti,ru‘ ) _i:S’

is "+ )X (r'+s') d inantal divis fAT Si AT-AO'fH‘
is an (r'+s")X (r'+s') determinantal divisor o {0 B].km(,( [O B]E[O B],n ollows

that o, . . . a'Bi ... By |8, from which we deduce that 8;|¢;,,+;. Hence we may choose w;,,.jeR
such that ¢; ;= wi, r+; B
Assume finally that s" < s and choose (i,;) € [1,7] X (5", s]. Then it is easily seen that

* ’

A1 .« « « Qi-10it1. « -« (1,-'B| 6 b a ,B,\-f[,",»t,',L<r

n= .
ay .. i e o By tioryg s L=T

A T
isan (r'+s’) X (r' +s") determinantal divisor of [ ] It follows thatay . . . v B1 . . . Bylm,

0 B
from which we deduce that «;|t;, ;. Hence we may choose z; ,.je R such that t; ;= «;zi )
Nowforl si<sr1<j<sset

_ . wi,rﬁivifr’<i$r,l$j$5,yti,r+j7é0
Wi, r+j

0 otherwise

and set

’ ’

_ {z,—,,‘,jif]SiSr,s <‘/'SS,[,“,-¢_,'?50
Zi,r+j—

0 otherwise.

Let W:(wi.r+_j)l‘ i=r, Z= (Zi,1'+_j)1 <= I‘GRI‘,.\"

1sjs<s 1<j<s
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I 4 A Tr1,—2 AT ~
Then[O Is] [0 B][O ]5.]2[0 B],whereTZT—AZ—WB.Notethat

’ !

Ti,l‘+_i9 l<i<r
0 otherwise.

A T1-[A T A T[4 0 4 T7-
Itfollowsthat[0 B]E[O B],sothat[o ~B]E[O B} [0 ~B:|E[ ]
is also immediate that T =AY + XB (=) T =AY + XB, where X = X — W,Y=Y —Z. Thus

¢ [(/)1 ng ] (=) ¢ [/(;1 g ] Here we may assume w.l.o.g. that T'= T ., that T is of the form

specified above.

(iii) We may assume w.l.o.g. that rank A =r, rank B=s. Justification: We have from (i) and (ii)
that we may assume that 4=A4+0,_,., where A~=diag (a1, . . ., ar), B=B+0,_, .where B=
diag (Bi1,. . .,By).andthat T=T+0, .. o, where T € R, It is not difficult to show that

AT T7 ~[4 0
6 ZIE[ )= fo FE[ 3}
also that T=AY + XB for some X, Y € R, (=) T=A Y+ X Bfor some X, Y ¢ R,y. Thus
A T =) AT
0 B “lo BJ

Hence we may assume w.l.o.g. that A=A, B= B,i.e.,thatrank 4= r,rank B=s.
(iv) We may assume w.l.o.g. that r=s. Justification: Assume r <s. Let

orl <sj<s

(ni,r+j: {

re H Os—r,s‘
A—IS,,-+A,T—[T :|

It is an easy consequence of [1, Ch. 2, ex. 1] that

L A I L

{t is also not difficult to show that T=AY +XB for some X, YeR (=) T=AY + XB for some X,

Y € Ry. Thus

Assume now that s<r. Let B=1,_ (+ B, T=[0,.,_s, T]. Proceeding as above, we can show

that
45 2ol &

It then follows from this and the above case that we may assume w.l.o.g. that r=s.
We now complete the proof of the theorem. By (i) —(iv), we may assume w.l.o.g. that A =S(4) =
diag (ay, . . ., ay), B=S(B)=diag (B:, . . ., B»), where «a;, 8;#0, 1<1i, j<r. Note that

[0 alEs 5] @ve=eafy g

every kXk determinantal divisor of [g g] Note
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also that T=AY+XB (=) («i, B)) | ti,rijs 1 <i,j<r.Now

A 0
d},[o B = ((Xl .. .a/\.,IBI .. .,8/.-, {ar'—lar—tﬂ L. a,_ﬂl L ,BI.‘~(HI)}1<—,151;—2),
as is easily calculated. We consider two cases.

denote the matrix obtained by deleting row r+; and column i from

0]
0 B r+j,i
. . R : . . . .[4 0
]. It is easily seen that if p is any (i—1) X (i—1) determinantal minor of [0 B:| s
r+),1

a. i1=j. Let [
[A 0
0 B

AT
then pt;,,.jis an i X { determinantal minor of [0 B ] It then follows that

40 40
& [o B]d“‘ [0 B]rﬂ-,i o

Note that

" I:A O] — , {/31...B_,'lﬁ_;.l...ﬁ,-,ifj<i
Gi-1 0 B riji Qi . . . Qi1 ,31 & o .Bifl,ifj:i ’

{ar. . caicuBi. . . Bu-1}2sus<y,
{al P (X,DpBl P B_i—l BJ"I P ﬁ,-}_ﬂp D ,'vl)(foeri—fZ).

From this it may be verified that

A 0
(@i, B)) di-i [() B]m.i

A 0
(l,‘ ’:0 B:| .
It follows that (ai, B)) | ti,r+j, as was to be shown.

. A 0
b. j > i. We proceed as in (a). If o is any (j — 1) X (j — 1) determinantal minor of [ 0 B ]
r+j,i

. . A4 T i
then ot;,,;is aj X jdeterminantal minor of [0 B]' [t then follows that

A 0 A4 0
1 dj- i+
("[0 B” ’ 1[0 B],,H-,f’ g

A 0
dj—l l:O B :| ,-+j,i:(a1 BN 0 7 R 0 2 N BN & D)

Note that

Bl .. -,Bj—h {al o e . au,Bl P ,Bj—(u#l)}l- U=i-—1s
{ar. . caiciaivr. o @B - - Bj—vtivi=v=j—1)-

(assuming i < j + 2)
A 0
It follows that (ai,3;) | ti,+j, as was to be shown.
With this we have completed proof of the theorem. Q.E.D.

From this it may be verified that («;,B8))d;j - [ Ay ]
S 0 B r+j,i

COROLLARY 1.1: Let A, B, and R be as before, and suppose P, QeR .
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Then[g g—P]E[g g]:[g Z]E[g’ g]

Proor: By Theorem 1, Q —P =AY + XB, for some X, Y € R ,,. Note that

I X A P 1Y A Q ] [A P } ~ [A Q]
= .H .E.D.
[01”0 BHO 1] [OB ““lo BlFlo B QED
. oo 6 47-~-76 2 )
NOTE: The converse to Corollary 1.2 fails. For example, [0 9 ] E [0 9 ] as may be veri-
fied by considering determinantal divisors, but [ 0 9— } is not equivalent to [ 8 8 ]

We now generalize Theorem 1 as follows:
THEOREM 2: Let M be a matrix over R, and suppose that M may be partitioned as

My M. ..My,

M = 0 l\/Igg 50 0 0 Mg(
0... 0 M,
where each My; is square, of order ri. Then M E diaglM,,, . . ., M,] (=) forl <i<js<t3Xy,

J
Yj_;GR,-I-,'J-SLLCh that MIJ':M,','YU-F 2 Xi/;M/\-j.

k=i+1

PROOF (&): Let

1 X, x.| [1 o 0 [_1 0 ... 0

. 1 X/

0. 0 0 0 1 0 1

and
ﬁ 0 o 1N o. 0 011 Yu...Y
01 0...0 0 1 01 00
V= 1 Yio 1 Yioa

Yioi 1 0 0
0...0 1 | [0...0 1] (o 01 |

Then U, V are invertible and U diag[M,,,. . ., My ] V=M, as may be verified. Hence M E diag
My, . . ., Myl
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(j) L(‘t /11 :M”, T[ :I1M|2, o o oy /‘4”] ilnd

/‘122 .......... [ '11-_)[
0
If] = .
0 . ........ M”
so that M = [ /(‘)11 ;“ ] Note that to obtain a minor of [/(‘)11 OB ] with nonzero determinant, it is
1 1

necessary that the number of rows deleted which pass through the block 4, equal the number of
columns deleted which pass through this block. It follows from this that every determinantal divisor

of [ i OB ] is also a determinantal divisor of M. Since M E diag[M,,, . . ., M,], it follows that
1

0
A| O ] . . . -, Al 0
[0 B, ]Edld;,[M,., .. ., My]as well, so thdtME[O B,
matrices X,V of appropriate size such that T, = A4,Y, + X,B. We may write X| = [X 2, . . ., X (],

Yi=[Yi .. . Yyl where Xy, YyjeR,, j, 2 < j < t, from which it follows that M,;=M,, Y,; +
J

2 X1:My;.

=2

]. Hence by Theorem 1 there are

N()W l('t AQZM:'_g. T:Z [Mg;;., 5 B a0 ng],

M:;;; « o o M.’i!
0
83: .
0 ... 0 M,
~ . [As T = . [As O A, T,71-[A, O
Then MEA, + [O— B—_,] FA,+ [0- Bz] as before, so that [O- B;]E [O— b’g]' Proceeding
as above we obtain that 3 X, = [Xus, . . ., Xuo/],Yo=[Yas, . . ., Y, ] suchthat

o
MZAi:Mgngj =F 2 Xg/‘-M/;j, 3< ] ==
k=3

Continuing in this manner we obtain the desired linear recurrence relation.

Q.E.D.
COROLLARY 2.1:  Let R and {M;;}\_, be as in Theorem 2, and
M]l M];z 5 6 o Mlt
M = 0 Mgg o et e Mg[
0......... 0 My

Then ME diag[M,,, Mas, . . ., M ]V {M;}i<i-;=, where M;;eRp;;, (=)
(i) (det M, det Mj;)=1,1<i<j<tor
(i1) 3je[1, n] such that det M;;=0 and such that for all k # j, My is unimodular.

95



Proor: ((=) (i) This is essentially Theorem 3 of [1]. (ii) Consider first the equation
My, ;=M Yeor, o+ Xeo1, (M. (*)

By hypothesis, at least one of M, -, My is unimodular. If M,_, ;_,is unimodular, we may let
X, 1.0=0and Y, =M,y (1" M,_y,, to obtain a solution to (*). If M/, is unimodular, it is again
easy to solve (¥).

Consider now the equations

Mo =M, Yo 1+ Xe o0 My, (**)

and
Mo, ;=M s, 2Y o, - +Xi—o,eoiMi—1 0+ Xe—2, My (ERE)
Proceeding as above, it is again easy to solve (**), this time for X; >, {, Y/ 5., 1. Now rewrite

Mo i —Xeo, - M1 =Mi—s, =Y 0+ Xi—2,: My (I3

and note that the matrices on the left-hand side have all been given or determined previously.
Again, it is easy to solve (¥***'), for X, _» ¢, Yi—s,r.

Proceeding in this manner, for 1 <i<j<t we may find Xij, YijeR,,,, such that Mi;=M;Y;;+

j .
E XM ;. Hence by Theorem 2, ME diag [M,, M»s, . . ., My].

k=i+1

(=)) We may assume w.o.l.g. that M;;=S(M;;) =diag(ais, . . ., air,, 0,. . .,0),1<i=t,
where ri<r;. Suppose 3 distinct i, je[1l, n] such that det M;;=det M;;=0. Then r; <r; and
r' <r;. But if we let M;; be the matrix of all 1’s and set M,,=0, u# i or v # j, we would obtain
tl.at rank M > rank diag[M,,, . . ., M], contradicting hypothesis. Hence there is at most one
i€[1,n] such that det M;;=0.

Suppose first that there is such an i. We will show that (i) holds in this case. Choose any j > i
(if such exist) and let M;; and M, be defined as above. By Theorem 2,

J
M,‘A;:M,','Yij—f- E X,‘kM/,-j:M,‘iY,'.,"f—X,'jMA,'j.

k=it+1

Considering the (k, ) component of this matric equation, for ri < k< r; and [ < r; we obtain that

rj
1= (xi;) riaji. This implies that aj is a unit, 1 </ <r;. Since det M;;=[] i, we obtain that
M ; is unimodular. If we choose any j < i, we may obtain by a similar arglimlent that det M j; is a
unit, so that M ;; is unimodular in this case as well. We can thus conclude that (i) holds when
det M;;=0 for some i.

Now suppose that det M;; #0, 1 <i<t. We will show that (ii) holds in this case. Choose
i #je[l,t] and let M;; and M ,(u# i or v # j) be defined as before. Again, M;;=M;;Y;;+Xi;M;;.
Considering the (%, /) component of this matric equation, for 1 </, <r;, 1 </<r; we obtain that

1=oj(Yij) i+ (Xij) e
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r; 7
It follows that (aix, aji) = 1. Since det Mi; =[] aix and det M;;=][ aji, we obtain that (det M,
=1 =1

det M;j) =1. We can thus conclude that (ii) holds when det M;; # 0, all .
This completes the proof of the corollary.

Q.E.D.
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