Equivalence of Partitioned Matrices*

Robert B. Feinberg**
Institute for Basic Standards, National Bureau of Standards, Washington, D.C. 20234

(November 18, 1975)

It is shown that if $M=\left[\begin{array}{cc}A & T \\ 0 & B\end{array}\right]$ is a partitioned matrix over a principal ideal domain R such that the matrices A and B are both square, then M is equivalent to $A+B \Leftrightarrow$ the matric equation $T=A Y+$ $X B$ is solvable. The result is generalized to treat the case when

$$
M=\left[\begin{array}{cccc}
M_{11} & M_{12} & \ldots & M_{1 t} \\
0 & M_{22} & \ldots & \cdot \\
\cdot & & & \cdot \\
\cdot & & & \cdot \\
0 & \ldots & 0 & M_{t t}
\end{array}\right]
$$

where each $M_{i i}$ is square.
Key words: Determinantal divisors; equivalence; matric equation; partitioned matrix; Smith normal form.

Let R be a principal ideal domain and let $R_{m n}$ denote the collection of $m \times n$ matrices over R. According to Theorem 2 of [2], if $A \epsilon R_{r r}, B \epsilon R_{s s}$, and (det A, $\operatorname{det} B$) $=1$, then for any $T \epsilon R_{r s}$,

$$
S\left[\begin{array}{ll}
A & T \\
0 & B
\end{array}\right]=S\left[\begin{array}{ll}
A & 0 \\
0 & B
\end{array}\right]
$$

where $S(M)$ denotes the Smith normal form of a matrix M. The proof consists essentially of establishing two elementary propositions:
(i) For arbitrary $A \epsilon R_{r r}, B \epsilon R_{s s}$, and $T \epsilon R_{r s}$, if the matric equation $\left({ }^{*}\right) T=A Y+X B$ has a solution $X, Y \epsilon R_{r s}$, then

$$
\left[\begin{array}{cc}
A & T \\
0 & B
\end{array}\right] \tilde{E}\left[\begin{array}{ll}
A & 0 \\
0 & B
\end{array}\right]
$$

where \tilde{E} denotes equivalence of matrices (ii). In the case when $(\operatorname{det} A, \operatorname{det} B)=1 ;\left(^{*}\right)$ is always solvable.

The central result of this note (Theorem 1) provides a converse to (i), namely that if

$$
\left[\begin{array}{cc}
A & T \\
0 & B
\end{array}\right] \tilde{E}\left[\begin{array}{cc}
A & 0 \\
0 & B
\end{array}\right]
$$

[^0]then (*) must be solvable. We generalize this result to the case when
\[

M=\left[$$
\begin{array}{cccc}
M_{11} & M_{12} & \ldots & M_{1 t} \\
0 & M_{22} & \cdots & \vdots \\
\vdots & & & \vdots \\
0 & 0 & & M_{t t}
\end{array}
$$\right],
\]

where each $M_{i i}$ is square, and also derive some corollaries.
Subsequent to completion of this work, the author discovered that Theorem 1 had been established in [3] in the case when R is the domain of polynomials over a field. The proof there carries over immediately to the case when R is an arbitrary P.I.D., and is similar to the proof of Theorem 1 presented here. The generalization of Theorem 1 is not developed there, however.

In the sequal R_{n}^{\prime} will denote the group of unimodular $n \times n$ matrices over R, I_{n} will denote the identity matrix of order n, I will denote an identity matrix of unspecified order, $0_{m n}$ will denote the 0 matrix of order $m \times n, 0_{m}$ will denote $0_{m m}$, and $d_{k}[M]$ will denote the k th determinantal divisor of the matrix M.

See [1] for a good general reference on matrices over a P.I.D.
Theorem 1: Let R be a P.I.D., $\mathrm{A}_{\mathrm{R}} \mathrm{R}_{\mathrm{rr}}, \mathrm{B} \in \mathrm{R}_{\mathrm{ss}}$, and $\mathrm{T}_{\mathrm{\epsilon}} \mathrm{R}_{\mathrm{rs}}$. Then $\left[\begin{array}{cc}\mathrm{A} & \mathrm{T} \\ 0 & \mathrm{~B}\end{array}\right] \tilde{\mathrm{E}}\left[\begin{array}{cc}\mathrm{A} & 0 \\ 0 & \mathrm{~B}\end{array}\right]\langle=\rangle \mathrm{T}=$ $\mathrm{AY}+\mathrm{XB}$, for suitable $\mathrm{X}, \mathrm{Y} \in \mathrm{R}_{\mathrm{rs}}$.

Proof: ($\left\langle=\right.$) Note that $\left[\begin{array}{cc}I_{r} & X \\ 0 & I_{s}\end{array}\right],\left[\begin{array}{cc}I_{r} & Y \\ 0 & I_{s}\end{array}\right] \epsilon R_{r+s}^{\prime}$, and that

$$
\left[\begin{array}{cc}
I_{r} & X \\
0 & I_{s}
\end{array}\right]\left[\begin{array}{cc}
A & 0 \\
0 & B
\end{array}\right]\left[\begin{array}{cc}
I_{r} & Y \\
0 & I_{s}
\end{array}\right]=\left[\begin{array}{cc}
A & T \\
0 & B
\end{array}\right]
$$

Hence

$$
\left[\begin{array}{cc}
A & T \\
0 & B
\end{array}\right] \tilde{E}\left[\begin{array}{cc}
A & 0 \\
0 & B
\end{array}\right]
$$

$(=\rangle)$ Let $\varphi\left[\begin{array}{cc}A & T \\ 0 & B\end{array}\right]$ be the statement we wish to prove, namely $\left[\begin{array}{cc}A & T \\ 0 & B\end{array}\right] \tilde{E}\left[\begin{array}{cc}A & 0 \\ 0 & B\end{array}\right]\langle=\rangle \exists X, Y \epsilon R_{\mathrm{r}+\mathrm{s}}$ such that $T=A Y+X B$.

We will begin with four reduction steps
(i) We may assume w.l.o.g. (without loss of generality) that $A=S(A), B=S(B)$. Justification: Choose $U, U^{*} \in R_{r r}^{\prime} ; V, V^{*} \in R_{s s}^{\prime}$ such that $U A U^{*}=S(A), V A V^{*}=S(B)$. Note that

$$
\left[\begin{array}{ll}
U & 0 \\
0 & V
\end{array}\right]\left[\begin{array}{ll}
A & 0 \\
0 & B
\end{array}\right]\left[\begin{array}{ll}
U^{*} & 0 \\
0 & V^{*}
\end{array}\right]=\left[\begin{array}{ll}
S(A) & 0 \\
0 & S(B)
\end{array}\right]
$$

and that

$$
\left[\begin{array}{ll}
U & 0 \\
0 & V
\end{array}\right]\left[\begin{array}{ll}
A & T \\
0 & B
\end{array}\right]\left[\begin{array}{ll}
U^{*} & 0 \\
0 & V^{*}
\end{array}\right]=\left[\begin{array}{ll}
S(A) & \tilde{T} \\
0 & S(B)
\end{array}\right]
$$

where $\tilde{T}=U A V^{*}$.
Hence $\quad\left[\begin{array}{ll}A & 0 \\ 0 & B\end{array}\right] \tilde{E}\left[\begin{array}{ll}S(A) & 0 \\ 0 & S(B)\end{array}\right]$ and $\left[\begin{array}{ll}A & T \\ 0 & B\end{array}\right] \tilde{E}\left[\begin{array}{ll}S(A) \tilde{T} \\ 0 & S(B)\end{array}\right]$.

Thus

$$
\left[\begin{array}{ll}
A & T \\
0 & B
\end{array}\right] \tilde{E}\left[\begin{array}{ll}
A & 0 \\
0 & B
\end{array}\right]<=>\left[\begin{array}{ll}
S(A) & \tilde{T} \\
0 & S(B)
\end{array}\right] \tilde{E}\left[\begin{array}{ll}
S(A) & 0 \\
0 & S(B)
\end{array}\right]
$$

Note also that $T=A Y+X B<=>U T V^{*}=U A Y V^{*}+U X B V^{*}<=>T=U A U^{*}\left[\left(U^{*}\right)^{-1} Y V^{*}\right]+$ $U X V^{-1}\left[V B V^{*}\right]<=>T=S(A) Y+X S(B)$, where $\bar{X}=U X V^{-1}, \bar{Y}=\left(U^{*}\right)^{-1} Y V^{*}$. It follows that

$$
\varphi\left[\begin{array}{ll}
A & T \\
0 & B
\end{array}\right]<=>\varphi\left[\begin{array}{ll}
S(A) \tilde{T} \\
0 & S(B)
\end{array}\right]
$$

Hence setting $T=\tilde{T}$, we may assume w.l.o.g. that $A=S(A), B=S(B)$.
(ii) Let $r^{\prime}=\operatorname{rank} A, s^{\prime}=\operatorname{rank} B$. We may assume w.l.o.g. that $T=\left(t_{i, r+j}\right)_{\substack{1 \leqslant i \leqslant r \\ 1 \leqslant j \leqslant s}}$, where $t_{i, r+j}=0$ for (i, j) such that $r^{\prime}<i \leqslant r$ or $s^{\prime}<i \leqslant s$. Justification: Let $A=S(A)=\operatorname{diag}\left(\alpha_{1}, \ldots, \alpha_{r^{\prime}}, 0\right.$, $\ldots, 0), B=S(B)=\operatorname{diag}\left(\beta_{1}, \ldots, \beta_{s^{\prime}}, 0, \ldots, 0\right)$, where $\alpha_{1}\left|\alpha_{2}\right| \ldots \mid \alpha_{r^{\prime}}$ and $\beta_{1}\left|\beta_{2}\right| \ldots \mid \beta_{s^{\prime}}$. Assume first that $r^{\prime}<r$ and $s^{\prime}<s$. If $\exists(i, j) \in\left(r^{\prime}, r\right] \times\left(s^{\prime}, s\right]$ such that $t_{i, r+j} \neq 0$, then it would follow that $\operatorname{rank}\left[\begin{array}{cc}A & T \\ 0 & B\end{array}\right]>r^{\prime}+s^{\prime}=\operatorname{rank}\left[\begin{array}{cc}A & 0 \\ 0 & B\end{array}\right]$, a contradiction. Hence $t_{i, r+j}=0$ for $(i, j) \in\left(r^{\prime}, r\right] \times\left(s^{\prime}, s\right]$. Assume now that $r^{\prime}<r$ and choose $(i, j) \epsilon\left(r^{\prime}, r\right] \times\left[1, s^{\prime}\right]$. Then it is easily seen that $d_{r^{\prime}+s^{\prime}}\left[\begin{array}{cc}A & 0 \\ 0 & B\end{array}\right]=\alpha_{1} \ldots \alpha_{r^{\prime}} \beta_{1} \ldots \beta_{s^{\prime}}$, and that

$$
\delta=\left\{\begin{array}{l}
\alpha_{1} \ldots \alpha_{r^{\prime}} \beta_{1} \ldots \beta_{j-1} \beta_{j+1} \ldots \beta_{s^{\prime} t_{i, r+j}}, j<s^{\prime} \\
\alpha_{1} \ldots a_{r^{\prime}} \beta_{1} \ldots \beta_{j-1} t_{i, r+j}
\end{array}\right.
$$

is an $\left(r^{\prime}+s^{\prime}\right) \times\left(r^{\prime}+s^{\prime}\right)$ determinantal divisor of $\left[\begin{array}{cc}A & T \\ 0 & B\end{array}\right]$. Since $\left[\begin{array}{cc}A & T \\ 0 & B\end{array}\right] \tilde{E}\left[\begin{array}{cc}A & 0 \\ 0 & B\end{array}\right]$, it follows that $\alpha_{1} \ldots \alpha_{r^{\prime}} \beta_{1} \ldots \beta_{s^{\prime}} \mid \delta$, from which we deduce that $\beta_{j} \mid t_{i, r+j}$. Hence we may choose $w_{i, r+j} \in R$ such that $t_{i, r+j}=w_{i, r+j} \beta_{j}$.

Assume finally that $s^{\prime}<s$ and choose $(i, j) \in\left[1, r^{\prime}\right] \times\left(s^{\prime}, s\right]$. Then it is easily seen that

$$
\eta=\left\{\begin{array}{l}
\alpha_{1} \ldots \alpha_{i-1} \alpha_{i+1} \ldots \alpha_{r^{\prime}} \beta_{1} \ldots \beta_{s^{\prime}} t_{i, r+j}, i<r^{\prime} \\
\alpha_{1} \ldots \alpha_{i-1} \beta_{1} \ldots \beta_{s^{\prime}} t_{i, r+j} \\
, i=r^{\prime}
\end{array}\right.
$$

is an $\left(r^{\prime}+s^{\prime}\right) \times\left(r^{\prime}+s^{\prime}\right)$ determinantal divisor of $\left[\begin{array}{cc}\mathrm{A} & \mathrm{T} \\ 0 & B\end{array}\right]$. It follows that $\alpha_{1} \ldots \alpha_{r^{\prime}} \beta_{1} \ldots \beta_{s^{\prime}} \mid \eta$, from which we deduce that $\alpha_{i} \mid t_{i, r+j}$. Hence we may choose $z_{i, r+j} \in R$ such that $t_{i, r+j}=\alpha_{i} z_{i, r+j}$.

Now for $1 \leqslant i \leqslant r, l \leqslant j \leqslant s$ set

$$
\bar{w}_{i, r+j}=\left\{\begin{array}{l}
w_{i, r+j}, \text { if } r^{\prime}<i \leqslant r, l \leqslant j \leqslant s^{\prime}, t_{i, r+j} \neq 0 \\
0 \text { otherwise }
\end{array}\right.
$$

and set

$$
\bar{z}_{i, r+j}=\left\{\begin{array}{l}
z_{i, r+j} \text { if } 1 \leqslant i \leqslant r^{\prime}, s^{\prime}<j \leqslant s, t_{i, r+j} \neq 0 \\
0 \text { otherwise }
\end{array}\right.
$$

$$
\text { Let } \begin{array}{rl}
W=\left(\bar{w}_{i, r+j}\right)_{1 \leqslant i \leqslant r}, Z=\left(\bar{z}_{i, r+j}\right)_{1} & \leqslant i \leqslant r \in R_{r, s} \\
1 \leqslant j \leqslant s & 1 \leqslant j \leqslant s
\end{array}
$$

Then $\left[\begin{array}{rr}I_{r}-W \\ 0 & I_{s}\end{array}\right]\left[\begin{array}{cc}A & T \\ 0 & B\end{array}\right]\left[\begin{array}{rr}I_{r}-Z \\ 0 & I_{s}\end{array}\right]=\left[\begin{array}{cc}A & \tilde{T} \\ 0 & B\end{array}\right]$, where $\tilde{T}=T-A Z-W B$. Note that

$$
(\tilde{T})_{i, r+j}=\left\{\begin{array}{l}
T_{i, r+j}, l \leqslant i \leqslant r^{\prime} \text { or } 1 \leqslant j \leqslant s^{\prime} \\
0 \text { otherwise } .
\end{array}\right.
$$

It follows that $\left[\begin{array}{cc}A & T \\ 0 & B\end{array}\right] \tilde{E}\left[\begin{array}{cc}A & \tilde{T} \\ 0 & B\end{array}\right]$, so that $\left[\begin{array}{cc}A & T \\ 0 & B\end{array}\right] \tilde{E}\left[\begin{array}{cc}A & 0 \\ 0 & B\end{array}\right]<=>\left[\begin{array}{cc}A & \tilde{T} \\ 0 & B\end{array}\right] \tilde{E}\left[\begin{array}{cc}A & 0 \\ 0 & B\end{array}\right]$. It is also immediate that $T=A Y+X B\langle\Longrightarrow \tilde{T}=A \tilde{Y}+\tilde{X} B$, where $\tilde{X}=X-W, \tilde{Y}=Y-Z$. Thus $\varphi\left[\begin{array}{cc}A & T \\ 0 & B\end{array}\right]\langle=\rangle \varphi \cdot\left[\begin{array}{ll}A & \tilde{T} \\ 0 & B\end{array}\right]$. Here we may assume w.l.o.g. that $T=\tilde{T}$, i.e., that T is of the form specified above.
(iii) We may assume w.l.o.g. that $\operatorname{rank} A=r$, rank $B=s$. Justification: We have from (i) and (ii) that we may assume that $A=\widetilde{A}+0_{r-r^{\prime}}$, where $\widetilde{A}=\operatorname{diag}\left(\alpha_{1}, \ldots, \alpha_{r^{\prime}}\right), B=\widetilde{B} \dot{+} 0_{s-s^{\prime}}$, where $\widetilde{B}=$ $\operatorname{diag}\left(\beta_{1}, \ldots, \beta_{s^{\prime}}\right)$, and that $T=\widetilde{T}+0_{r-r^{\prime}, s-s^{\prime}}$, where $\check{T} \in R_{r^{\prime}, s^{\prime}}$. It is not difficult to show that

$$
\left[\begin{array}{cc}
A & T \\
0 & B
\end{array}\right] \widetilde{E}\left[\begin{array}{cc}
A & 0 \\
0 & B
\end{array}\right]\left\langle\Leftrightarrow\left[\begin{array}{cc}
\tilde{A} & \widetilde{T} \\
0 & \widetilde{B}
\end{array}\right] \tilde{E}\left[\begin{array}{cc}
\tilde{A} & 0 \\
0 & \widetilde{B}
\end{array}\right],\right.
$$

also that $T=A Y+X B$ for some $X, Y \in R_{r s}\langle=\rangle \widetilde{T}=\widetilde{A} \widetilde{Y}+\widetilde{X} \widetilde{B}$ for some $\widetilde{X}, \widetilde{Y} \in R_{r^{\prime} s^{\prime}}$. Thus

$$
\varphi\left[\begin{array}{ll}
A & T \\
0 & B
\end{array}\right] \Leftrightarrow \varphi\left[\begin{array}{cc}
\widetilde{A} & \widetilde{T} \\
0 & \widetilde{B}
\end{array}\right] .
$$

Hence we may assume w.l.o.g. that $A=\widetilde{A}, B=\widetilde{B}$, i.e., that $\operatorname{rank} A=r, \operatorname{rank} B=s$.
(iv) We may assume w.l.o.g. that $r=s$. Justification: Assume $r<s$. Let

$$
\tilde{A}=I_{s-r}+\dot{A}, T=\left[\begin{array}{l}
0_{s-r, s} \\
T
\end{array}\right] .
$$

It is an easy consequence of $[1, \mathrm{Ch} .2$, ex. 1] that

$$
\left[\begin{array}{ll}
A & T \\
0 & B
\end{array}\right] \widetilde{E}\left[\begin{array}{ll}
A & 0 \\
0 & B
\end{array}\right] \Leftrightarrow\left[\begin{array}{ll}
\tilde{A} & \widetilde{T} \\
0 & B
\end{array}\right] \widetilde{E}\left[\begin{array}{cc}
\widetilde{A} & 0 \\
0 & B
\end{array}\right] .
$$

It is also not difficult to show that $T=A Y+X B$ for some $X, Y \in R_{r s}\langle\Longrightarrow \widetilde{Y}=\widetilde{A} \widetilde{Y}+\widetilde{X} B$ for some \widetilde{X}, $\widetilde{Y} \in R_{s s}$. Thus

$$
\varphi\left[\begin{array}{ll}
A & T \\
0 & B
\end{array}\right] \Leftrightarrow \varphi\left[\begin{array}{cc}
\widetilde{A} & \widetilde{T} \\
0 & B
\end{array}\right] .
$$

Assume now that $s<r$. Let $\widetilde{B}=I_{r-s} \dot{+} B, \widetilde{T}=\left[0_{r, r-s}, T\right]$. Proceeding as above, we can show that

$$
\varphi\left[\begin{array}{ll}
A & T \\
0 & B
\end{array}\right]\left\langle\Leftrightarrow \varphi\left[\begin{array}{ll}
A & \widetilde{T} \\
0 & \widetilde{B}
\end{array}\right] .\right.
$$

It then follows from this and the above case that we may assume w.l.o.g. that $r=s$.
We now complete the proof of the theorem. By (i) -(iv), we may assume w.l.o.g. that $A=S(A)=$ $\operatorname{diag}\left(\alpha_{1}, \ldots, \alpha_{r}\right), B=S(B)=\operatorname{diag}\left(\beta_{1}, \ldots, \beta_{r}\right)$, where $\alpha_{i}, \beta_{j} \neq 0, l \leqslant i, j \leqslant r$. Note that $\left[\begin{array}{ll}A & T \\ 0 & B\end{array}\right] \widetilde{\mathrm{E}}\left[\begin{array}{ll}A & 0 \\ 0 & B\end{array}\right] \Leftrightarrow \forall k \leqslant 2 r, \left.\mathrm{~d}_{k}\left[\begin{array}{cc}A & 0 \\ 0 & B\end{array}\right] \right\rvert\,$ every $k \times k$ determinantal divisor of $\left[\begin{array}{ll}A & T \\ 0 & \mathrm{~B}\end{array}\right]$. Note
also that $T=A Y+X B\langle=\rangle\left(\alpha_{i}, \beta_{j}\right) \mid t_{i, r+j}, 1 \leqslant i, j \leqslant r$. Now
$d_{k}\left[\begin{array}{cc}A & 0 \\ 0 & B\end{array}\right]=\left(\alpha_{1} \ldots \alpha_{k}, \beta_{1} \ldots \beta_{k},\left\{\alpha_{r-t} \alpha_{r-t+1} \ldots \alpha_{r} \beta_{1} \ldots \beta_{k-(t+1)}\right\}_{1 \leqslant t \leqslant k-2}\right)$,
as is easily calculated. We consider two cases.
a. $i \geqslant j$. Let $\left[\begin{array}{ll}A & 0 \\ 0 & B\end{array}\right]_{r+j, i}$ denote the matrix obtained by deleting row $r+j$ and column i from $\left[\begin{array}{ll}A & 0 \\ 0 & B\end{array}\right]$. It is easily seen that if ρ is any $(i-1) \times(i-1)$ determinantal minor of $\left[\begin{array}{ll}A & 0 \\ 0 & B\end{array}\right]_{r+j, i}$, then $\rho t_{i, r+j}$ is an $i \times i$ determinantal minor of $\left[\begin{array}{cc}A & T \\ 0 & B\end{array}\right]$. It then follows that
$d_{i}\left[\begin{array}{ll}A & 0 \\ 0 & B\end{array}\right] d_{i-1}\left[\begin{array}{cc}A & 0 \\ 0 & B\end{array}\right]_{r+j, i} t_{i, r+j}$.
Note that

$$
\begin{aligned}
d_{i-1}\left[\begin{array}{cc}
A & 0 \\
0 & B
\end{array}\right]_{r+j, i}=\left(\alpha_{1} \ldots \alpha_{i-1},\right. & \left\{\begin{array}{l}
\beta_{1} \ldots \beta_{j-1} \beta_{j+1} \ldots \beta_{i}, \text { if } j<i \\
\beta_{1} \ldots \beta_{i-1}, \text { if } j=i
\end{array}\right. \\
& \left\{\begin{array}{l}
\left.\ldots \alpha_{i-u} \beta_{1} \ldots \beta_{u-1}\right\} 2 \leqslant u \leqslant j, \\
\\
\end{array}\left\{\alpha_{1} \ldots \alpha_{i-v} \beta_{1} \ldots \beta_{j-1} \beta_{j+1} \ldots \beta_{v}\right\}_{j+1 \leqslant v \leqslant i-1}\right)(\text { for } j \leqslant i-2) .
\end{aligned}
$$

From this it may be verified that

$$
\left.\left(\alpha_{i}, \beta_{j}\right) d_{i-1}\left[\begin{array}{cc}
A & 0 \\
0 & B
\end{array}\right]_{r+j, i} \right\rvert\, d_{i}\left[\begin{array}{cc}
A & 0 \\
0 & B
\end{array}\right] .
$$

It follows that $\left(a_{i}, \beta_{j}\right) \mid t_{i, r+j}$, as was to be shown.
b. $j>i$. We proceed as in (a). If σ is any $(j-1) \times(j-1)$ determinantal minor of $\left[\begin{array}{cc}A & 0 \\ 0 & B\end{array}\right]_{r+j, i}$ then $\sigma t_{i, r+j}$ is a $j \times j$ determinantal minor of $\left[\begin{array}{ll}A & T \\ 0 & \mathrm{~B}\end{array}\right]$. It then follows that

$$
d_{j}\left[\begin{array}{cc}
A & 0 \\
0 & B
\end{array}\right] \left\lvert\, d_{j-1}\left[\begin{array}{cc}
A & 0 \\
0 & B
\end{array}\right]_{r+j, i} t_{i, r+j .}\right.
$$

Note that

$$
\begin{aligned}
d_{j-1}\left[\begin{array}{cc}
A & 0 \\
0 & B
\end{array}\right]_{r+j, i}= & \left(\alpha_{1} \ldots \alpha_{i-1} \alpha_{i+1} \ldots \alpha_{j}\right.
\end{aligned} \quad \begin{array}{r}
\beta_{1} \ldots \beta_{j-1},\left\{\alpha_{1} \ldots \alpha_{u} \beta_{1} \ldots \beta_{j-(u+1)}\right\}_{1 \leqslant u \leqslant i-1}, \\
\\
\left.\quad\left\{\alpha_{1} \ldots \alpha_{i-1} \alpha_{i+1} \ldots \alpha_{v} \beta_{1} \ldots \beta_{j-v}\right\}_{i+1 \leq v \leq j-1}\right) . \\
\quad(\text { assuming } i \leqslant j+2)
\end{array}
$$

From this it may be verified that $\left.\left(\alpha_{i}, \beta_{j}\right) d_{j-1}\left[\begin{array}{cc}A & 0 \\ 0 & B\end{array}\right]_{r+j, i} \right\rvert\, d_{j}\left[\begin{array}{cc}A & 0 \\ 0 & B\end{array}\right]$.
It follows that $\left(\alpha_{i}, \beta_{j}\right) \mid t_{i, r+j}$, as was to be shown.
With this we have completed proof of the theorem.
Q.E.D.

Corollary 1.1: Let A, B, and R be as before, and suppose $\mathrm{P}, \mathrm{Q} \in \mathrm{R}_{r s}$.

Then $\left[\begin{array}{ll}A & Q-P \\ 0 & B\end{array}\right] \tilde{E}\left[\begin{array}{ll}A & 0 \\ 0 & B\end{array}\right] \Rightarrow\left[\begin{array}{ll}A & P \\ 0 & B\end{array}\right] \tilde{E}\left[\begin{array}{ll}A & Q \\ 0 & B\end{array}\right]$.
Proof: By Theorem 1, $Q-P=A Y+X B$, for some $X, Y \in R_{r s}$. Note that

$$
\left[\begin{array}{ll}
I & X \\
0 & I
\end{array}\right]\left[\begin{array}{ll}
A & P \\
0 & B
\end{array}\right]\left[\begin{array}{ll}
I & Y \\
0 & I
\end{array}\right]=\left[\begin{array}{cc}
A & Q \\
0 & B
\end{array}\right] \text {. Hence }\left[\begin{array}{cc}
A & P \\
0 & B
\end{array}\right] \tilde{E}\left[\begin{array}{ll}
A & Q \\
0 & B
\end{array}\right] \quad \text { Q.E.D. }
$$

Note: The converse to Corollary 1.2 fails. For example, $\left[\begin{array}{ll}6 & 4 \\ 0 & 9\end{array}\right] \tilde{E}\left[\begin{array}{ll}6 & 2 \\ 0 & 9\end{array}\right]$, as may be verified by considering determinantal divisors, but $\left[\begin{array}{ll}6 & 4-2 \\ 0 & 9\end{array}\right]$ is not equivalent to $\left[\begin{array}{ll}6 & 0 \\ 0 & 9\end{array}\right]$.

We now generalize Theorem 1 as follows:
Theorem 2: Let M be a matrix over R , and suppose that M may be partitioned as

$$
\mathbf{M}=\left[\begin{array}{llll}
\mathrm{M}_{11} & \mathrm{M}_{12} & \ldots & \mathrm{M}_{1 t} \\
0 & \mathrm{M}_{22} & \ldots & \mathrm{M}_{2 t} \\
\vdots & & \vdots \\
0 & \ldots & 0 & \\
\mathrm{M}_{t t}
\end{array}\right]
$$

where each $\mathrm{M}_{i i}$ is square, of order r_{i}. Then $\mathrm{M} \mathbb{E} \operatorname{diag}\left[\mathrm{M}_{11}, \ldots, \mathrm{M}_{t t}\right]\langle=\rangle$ for $\mathrm{l} \leqslant \mathrm{i}<\mathrm{j} \leqslant \mathrm{t} \exists \mathrm{X}_{i j}$, $\mathrm{Y}_{i j} \in \mathrm{R}_{r_{i} r_{j}}$ such that $\mathrm{M}_{i j}=\mathrm{M}_{i i} \mathrm{Y}_{i j}+\sum_{k=i+1}^{j} \mathrm{X}_{i k} \mathrm{M}_{k j .}$.

Proof (\Leftrightarrow) : Let

and

Then U, V are invertible and $U \operatorname{diag}\left[M_{11}, \ldots, M_{t t}\right] V=M$, as may be verified. Hence $M \widetilde{E} \operatorname{diag}$ $\left[M_{11}, \ldots, M_{t t}\right]$.
\Leftrightarrow Let $A_{1}=M_{11}, T_{1}=\left[M_{12}, \ldots, M_{1 t}\right]$ and

$$
B_{1}=\left[\begin{array}{lllll}
M_{22} & \ldots & \ldots & M_{2 t} \\
0 & & & \vdots \\
\vdots & & & \vdots \\
0 & \ldots & \ldots & M_{t t}
\end{array}\right]
$$

so that $M=\left[\begin{array}{cc}A_{1} & T_{1} \\ 0 & B_{1}\end{array}\right]$. Note that to obtain a minor of $\left[\begin{array}{ll}A_{1} & 0 \\ 0 & B_{1}\end{array}\right]$ with nonzero determinant, it is necessary that the number of rows deleted which pass through the block \boldsymbol{A}_{1} equal the number of columns deleted which pass through this block. It follows from this that every determinantal divisor of $\left[\begin{array}{ll}A_{1} & 0 \\ 0 & B_{1}\end{array}\right]$ is also a determinantal divisor of M. Since $M \widetilde{E} \operatorname{diag}\left[M_{11}, \ldots, M_{t t}\right]$, it follows that $\left[\begin{array}{ll}A_{1} & 0 \\ 0 & B_{1}\end{array}\right] \tilde{E} \operatorname{diag}\left[M_{11}, \ldots, M_{t t}\right]$ as well, so that $M \tilde{E}\left[\begin{array}{ll}A_{1} & 0 \\ 0 & B_{1}\end{array}\right]$. Hence by Theorem 1 there are matrices X_{1}, Y_{1} of appropriate size such that $T_{1}=A_{1} Y_{1}+X_{1} B$. We may write $X_{1} \equiv\left[X_{12}, \ldots, X_{1 t}\right]$, $Y_{1}=\left[Y_{12}, \ldots ., Y_{1 t}\right]$, where $X_{1 j}, Y_{1 j} \epsilon R_{r_{1}, r j, 2} \leqslant j \leqslant t$, from which it follows that $M_{1 j}=M_{11} Y_{1 j}+$ $\sum_{k=2}^{j} X_{1 k} M_{k j}$.

$$
\text { Now let } A_{2}=M_{22}, T_{2}=\left[M_{23}, \ldots, M_{2 t}\right] \text {, }
$$

$$
B_{2}=\left[\begin{array}{lll}
M_{33} & \cdots & M_{3 t} \\
0 & & \\
\vdots & & \\
0 & \cdots & 0 \\
M_{t t}
\end{array}\right]
$$

Then $M \tilde{E} A_{1}+\left[\begin{array}{ll}A_{2} & T_{2} \\ 0 & B_{2}\end{array}\right] \tilde{E} A_{1}+\left[\begin{array}{ll}A_{2} & 0 \\ 0 & B_{2}\end{array}\right]$ as before, so that $\left[\begin{array}{ll}A_{2} & T_{2} \\ 0 & B_{2}\end{array}\right] \tilde{E}\left[\begin{array}{ll}A_{2} & 0 \\ 0 & B_{2}\end{array}\right]$. Proceeding as above we obtain that $\exists X_{2} \equiv\left[X_{23}, \ldots, X_{2 t}\right], Y_{2}=\left[Y_{23}, \ldots, Y_{2 t}\right]$ such that

$$
M_{2 j}=M_{22} Y_{2, j}+\sum_{k=3}^{j} X_{2 k} M_{k j}, 3 \leqslant j \leqslant t
$$

Continuing in this manner we obtain the desired linear recurrence relation.
Q.E.D.

Corollary 2.1: Let R and $\left\{\mathrm{M}_{\mathrm{ii}}\right\}_{\mathrm{i}=1}^{\mathrm{t}}$ be as in Theorem 2, and

$$
\mathrm{M} \equiv\left[\begin{array}{llll}
\mathrm{M}_{11} & \mathrm{M}_{12} & \cdots & \mathrm{M}_{1 t} \\
0 & \mathrm{M}_{22} & \cdots & \mathrm{M}_{2 \mathrm{t}} \\
\vdots & & & \vdots \\
0 & \cdots & \cdots & \cdots
\end{array}\right)
$$

Then MẼ $\operatorname{diag}\left[\mathrm{M}_{11}, \mathrm{M}_{22}, \ldots, \mathrm{M}_{\mathrm{tt}}\right] \forall\left\{\mathrm{M}_{\mathrm{ij}}\right\}_{1 \leqslant \mathrm{i}<\mathrm{j} \leqslant \mathrm{t}}$, where $\mathrm{M}_{\mathrm{ij}} \in \mathrm{R}_{\mathrm{r}_{\mathrm{i}} \mathrm{r}_{\mathrm{j}}}\langle=\rangle$
(i) $\left(\operatorname{det} \mathrm{M}_{\mathrm{ii}}, \operatorname{det} \mathrm{M}_{\mathrm{jj}}\right)=1,1 \leqslant \mathrm{i} \leqslant \mathrm{j} \leqslant \mathrm{t}$ or
(ii) $\exists \mathrm{j} \epsilon[1, \mathrm{n}]$ such that det $\mathrm{M}_{\mathrm{j} \mathrm{j}}=0$ and such that for all $\mathrm{k} \neq \mathrm{j}, \mathrm{M}_{\mathrm{kk}}$ is unimodular.

Proof: ($\langle=$) (i) This is essentially Theorem 3 of [1]. (ii) Consider first the equation

$$
\begin{equation*}
M_{t-1, t}=M_{t-1, t-1} Y_{t-1, t}+X_{t-1, t} M_{t t} \tag{*}
\end{equation*}
$$

By hypothesis, at least one of $M_{t-1, t-1}, M_{t t}$ is unimodular. If $M_{t-1, t-1}$ is unimodular, we may let $X_{t-1, t}=0$ and $Y_{t-1, t}=M_{t-1, t-1}{ }^{-1} M_{t-1, t}$ to obtain a solution to $\left.{ }^{*}\right)$. If $M_{t t}$ is unimodular, it is again easy to solve (${ }^{*}$).

Consider now the equations

$$
\begin{equation*}
M_{t-2, t-1}=M_{t-2, t-2} Y_{t-2, t-1}+X_{t-2, t-1} M_{t-1, t-1} \tag{}
\end{equation*}
$$

and

$$
\begin{equation*}
M_{t-2, t}=M_{t-2, t-2} Y_{t-2, t}+X_{t-2, t-1} M_{t-1, t}+X_{t-2, t} M_{t t} \tag{}
\end{equation*}
$$

Proceeding as above, it is again easy to solve (${ }^{(*)}$), this time for $X_{t-2, t-1}, Y_{t-2, t-1}$. Now rewrite (***) as

$$
\begin{equation*}
M_{t-2, t}-X_{t-2, t-1} M_{t-1, t}=M_{t-2, t-2} Y_{t-2, t}+X_{t-2, t} M_{t t} \tag{***'}
\end{equation*}
$$

and note that the matrices on the left-hand side have all been given or determined previously. Again, it is easy to solve (${ }^{* * * \prime}$), for $X_{t-2, t}, Y_{t-2, t}$.

Proceeding in this manner, for $1 \leqslant i<j \leqslant t$ we may find $X_{i j}, Y_{i j} \in R_{r_{i} r_{j}}$ such that $M_{i j}=M_{i j} Y_{i j}+$ $\sum_{k=i+1}^{j} X_{i k} \boldsymbol{M}_{k j j}$. Hence by Theorem 2, M$\widetilde{E} \operatorname{diag}\left[M_{11}, M_{22}, \ldots, M_{t t}\right]$.
$(=\rangle)$ We may assume w.o.l.g. that $M_{i i}=S\left(M_{i i}\right)=\operatorname{diag}\left(\alpha_{i 1}, \ldots, \alpha_{i r_{i}}, 0, \ldots, 0\right), 1 \leqslant i \leqslant t$, where $r_{i^{\prime}} \leqslant r_{i}$. Suppose \exists distinct $i, j \epsilon[1, n]$ such that $\operatorname{det} M_{i i}=\operatorname{det} M_{j j}=0$. Then $r_{i}^{\prime}<r_{i}$ and $r^{\prime}<r_{j}$. But if we let $M_{i j}$ be the matrix of all l's and set $M_{u v}=0, u \neq i$ or $v \neq j$, we would obtain ${ }^{\text {ti.at }}$ ank $M>\operatorname{rank} \operatorname{diag}\left[M_{11}, \ldots, M_{t t}\right]$, contradicting hypothesis. Hence there is at most one $i \epsilon[1, n]$ such that $\operatorname{det} M_{i i}=0$.

Suppose first that there is such an i. We will show that (i) holds in this case. Choose any $j>i$ (if such exist) and let $M_{i j}$ and $M_{u v}$ be defined as above. By Theorem 2,

$$
M_{i j}=M_{i i} Y_{i j}+\sum_{k=i+1}^{j} X_{i k} M_{k j}=M_{i i} Y_{i j}+X_{i j} M_{j j}
$$

Considering the (k, l) component of this matric equation, for $r_{i^{\prime}}<k \leqslant r_{i}$ and $l \leqslant r_{j}$ we obtain that $l=\left(x_{i j}\right)_{k l} \alpha_{j l}$. This implies that $\alpha_{j l}$ is a unit, $l \leqslant l \leqslant r_{j}$. Since det $M_{j j}=\prod_{i=1}^{r j} \alpha_{j l}$, we obtain that $M_{j j}$ is unimodular. If we choose any $j<i$, we may obtain by a similar argument that $\operatorname{det} M_{j j}$ is a unit, so that $M_{j j}$ is unimodular in this case as well. We can thus conclude that (i) holds when $\operatorname{det} M_{i i}=0$ for some i.

Now suppose that $\operatorname{det} M_{i i} \neq 0, \mathrm{l} \leqslant i \leqslant t$. We will show that (ii) holds in this case. Choose $i \neq j \epsilon[1, t]$ and let $M_{i j}$ and $M_{u v}(u \neq i$ or $v \neq j)$ be defined as before. Again, $M_{i j}=M_{i i} Y_{i j}+X_{i j} M_{j j}$. Considering the (k, l) component of this matric equation, for $l \leqslant k \leqslant r_{i}, l \leqslant l \leqslant r_{j}$ we obtain that

$$
\mathrm{l}=\alpha_{i j}\left(Y_{i j}\right)_{k \ell l}+\left(X_{i j}\right)_{k i l} \alpha_{j l} .
$$

It follows that $\left(\alpha_{i k}, \alpha_{j l}\right)=1$. Since det $M_{i i}=\prod_{k=1}^{r_{i}} \alpha_{i k}$ and $\operatorname{det} M_{j j}=\prod_{l=1}^{r_{j}} \alpha_{j l}$, we obtain that ($\operatorname{det} M_{i i}$, $\left.\operatorname{det} M_{i j}\right)=1$. We can thus conclude that (ii) holds when $\operatorname{det} M_{i i} \neq 0$, all i.

This completes the proof of the corollary.
Q.E.D.

References

[1] Newman, Morris, Integral Matrices (Academic Press, New York, 1972).
[2] Newman, Morris, The Smith normal form of a partitioned matrix, J. Res. Nat. Bur. of Stand. (U.S.), 75B (Math. Sci.), No. 1, 3-6 (Jan.-March 1974).
[3] Roth, W., The equations $A X-Y B=C$ and $A X-X B=C$ in matrices, Proc. AMS 3, 392-396 (1952).

[^0]: *This paper was prepared while the author was a National Academy of Sciences-National Research Council Postdoctoral Research Associate at the National Bureau of Standards, Washington, D.C. 20234. He would like to thank Dr. Morris Newman for several helpful conversations.
 ${ }^{* *}$ Present address: Clarkson College of Technology, Potsdam, New York 13676.

