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Rolling bearing failure is the main cause of failure of rotating

machinery, and leads to huge economic losses. The demand of

the technique on rolling bearing fault diagnosis in industrial

applications is increasing. With the development of artificial

intelligence, the procedure of rolling bearing fault diagnosis is

more and more treated as a procedure of pattern recognition,

and its effectiveness and reliability mainly depend on the

selection of dominant characteristic vector of the fault features.

In this paper, a novel diagnostic framework for rolling bearing

faults based on multi-dimensional feature extraction and

evidence fusion theory is proposed to fulfil the requirements

for effective assessment of different fault types and severities

with real-time computational performance. Firstly, a multi-

dimensional feature extraction strategy on the basis of entropy

characteristics, Holder coefficient characteristics and improved

generalized box-counting dimension characteristics is executed

for extracting health status feature vectors from vibration

signals. And, secondly, a grey relation algorithm is used to

calculate the basic belief assignments (BBAs) using the

extracted feature vectors, and lastly, the BBAs are fused

through the Yager algorithm for achieving bearing fault

pattern recognition. The related experimental study has

illustrated the proposed method can effectively and efficiently

recognize various fault types and severities in comparison

with the existing intelligent diagnostic methods based on a

small number of training samples with good real-time

performance, and may be used for online assessment.
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1. Introduction

The rolling bearing as an important part is widely used in almost all types of rotating machinery, such as

gas turbines, steam turbines and diesel engines. Rolling bearing failure is one of the main causes of

failure and damage for rotating machinery, and leads to huge economic losses [1–3]. To ensure

reliable operation of the rotating machinery and reduce economic losses, it is necessary to propose a

reliable and effective fault diagnosis method for the rolling bearing. Among many fault diagnosis

approaches for rolling bearings, vibration-based diagnostic methods have received much attention in

the past few decades [4,5]. Bearing vibration signals contain a wealth of information on mechanical

health status, which also makes it possible to extract the dominant features that characterize the

mechanical health status from vibration signals through signal processing techniques [6]. Currently,

many signal processing techniques have been applied to bearing offline fault diagnosis. However, due

to many nonlinear factors (e.g. stiffness, friction, clearance, etc.), bearing vibration signals (especially

in a faulted condition) will exhibit nonlinear and unsteady character [7]. In addition, the measured

vibration signal contains not only information about the operating conditions associated with bearing

itself, but also information on a large number of other rotating components and structures in the plant

equipment [8]. Owing to large background noise, slight bearing fault information is easily submerged

in the background noise. Therefore, conventional time-domain and frequency-domain methods may

not easily make an accurate assessment of the bearing health status [9]. With the development of

nonlinear dynamics, many nonlinear analytical techniques have been applied to identify and predict

the complex dynamic nonlinearities for rolling bearings [10]. Among them, the most typical one is to

extract the fault signature frequency from vibration signals through the combined usage of some

advanced signal processing techniques (such as HOS [11], WPT [12], Hilbert transform [13], empirical

mode decomposition (EMD), etc.) and further evaluate the bearing health status by comparing

extracted fault signature frequency with the theoretical characteristic frequency value with

involvement of expert empirical judgement.

With the development of artificial intelligence [14], bearing fault diagnosis is more and more treated

as the category of pattern recognition. And its effectiveness and reliability mainly depend on the

selection of dominant eigenvectors that characterize the fault features [15]. Recently, some entropy-

based methods (such as hierarchical entropy [16], fuzzy entropy [17], sample entropy (SampEn) [18],

approximate entropy [19,20], hierarchical fuzzy entropy, etc.) have been proposed for extracting

dominant eigenvectors from bearing vibration signals and have achieved some effect. In this paper, a

novel diagnostic framework for rolling bearing faults based on multi-dimensional feature extraction

and evidence fusion theory is proposed and multi-dimensional feature extraction on the basis of

entropy characteristics, Holder coefficient characteristics and improved generalized box-counting

dimension characteristics is performed for extracting health status feature vectors from bearing

vibration signals.

After fault feature extraction, a pattern recognition technique is required to achieve the rolling

element bearing fault diagnosis automatically [15]. Nowadays, a variety of pattern recognition

methods have been used in mechanical fault diagnosis, of which the most widely used are the

support vector machines (SVMs) [21] and artificial neural networks (ANNs) [22–24]. Among them,

the ANN training requires a large number of samples, which is difficult or even impossible to achieve

in practical applications, especially the samples with fault features. The SVMs are based on statistical

learning theory (especially suitable for training small samples), which have better generalization

ability than ANNs and can ensure that the local optimal solutions and global optimal solutions are

exactly consistent [25]. However, the accuracy of SVM classifiers depends on the selection of their

optimal parameters [25,26]. In order to ensure the diagnostic accuracy, some optimization algorithms

and/or the design of complex multi-class structures [27] often need to be used complementally to

improve the effectiveness of SVMs. In this paper, in order to solve the issue of generality versus

accuracy, a grey relation algorithm (GRA) is used to calculate the basic belief assignments (BBAs)

using the extracted feature vectors based on multi-dimensional feature extraction, and the BBAs are

fused through the Yager algorithm for achieving bearing fault pattern recognition based on a small

number of training samples.

In summary, this paper aims to solve the problem that the traditional time and frequency-domain

methods are not easy for making an accurate assessment of the health status of rolling bearings, and a

novel diagnostic framework is proposed. The rest of the paper is organized as follows. Firstly, the

diagnostic framework of the proposed method is introduced in §2, and secondly, the related

experimental study of the proposed method is illustrated in §3 and the conclusion is presented in §4.
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2. Methodology

2.1. Multi-dimensional feature extraction
In this paper, a novel diagnostic framework for rolling bearing faults based on multi-dimensional feature

extraction and evidence fusion theory was developed to meet the requirements for accurate assessment of

different fault types and severities with real-time computational performance. Firstly, multi-dimensional

feature extraction on the basis of entropy characteristics, Holder coefficient characteristics and improved

generalized box-counting dimension characteristics were proposed for extracting health status feature

vectors from bearing vibration signals, respectively.
rnal/rsos
R.Soc.open

sci.6:181488
2.1.1. Entropy characteristics

Entropy is a crucial concept in information theory and is a measure for information uncertainty of signal

distribution and a measure for signal complexity [28]. Therefore, the information contained within

signals can be quantitatively described by entropy characteristics.

Suppose the bearing vibration signal is f. The signal f is sampled and discretized into a discrete signal

sequence f (i), i ¼ 1, 2, . . . ,n, where n is the total number of the discrete signal points. Perform fast Fourier

transform (FFT) as follows:

F(k) ¼
Xn�1

i¼0

f(i) exp �j
2p

n
ik

� �
k ¼ 0, 1, . . . , n� 1: ð2:1Þ

After obtaining the signal spectrum, calculate the energy of each point:

Ek ¼ jFðkÞj2: ð2:2Þ

Calculate the total energy of the signal spectrum:

E ¼
Xn�1

k¼0

Ek: ð2:3Þ

Calculate the ratio of the energy of each point to the total energy of the signal spectrum:

Pk ¼
Ek

E
¼ EkPn�1

k¼0 Ek
: ð2:4Þ

The Shannon entropy E1 and exponential entropy E2 can be defined as follows:

E1 ¼ �
Xn�1

k¼0

Pk log Pk ð2:5Þ

and

E2 ¼
Xn�1

k¼0

Pke1�Pk : ð2:6Þ

The entropy characteristics [E1, E2] are taken as a part of dominant feature vectors for rolling element

bearing fault pattern recognition.
2.1.2. Holder coefficient characteristics

The Holder coefficient algorithm evolves from the Holder inequality [29,30]. The Holder coefficient can

be used to measure similar degree of two discrete signal sequences. The definition of the Holder

inequality can be described as follows:

For any vector X ¼ [x1, x2,. . . ,xn]T and Y ¼ [y1, y2, . . . ,yn]T, they satisfy:

Xn

i¼1

jxi � yij �
Xn

i¼1

jxijp
 !1=p

�
Xn

i¼1

jyijq
 !1=q

, ð2:7Þ

where 1/p þ 1/q ¼ 1 and p, q . 1.
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Based on the Holder inequality, for two discrete signal sequences f f1(i) � 0, i ¼ 1, 2, . . . , ng and

f f2(i) � 0, i ¼ 1, 2, . . ., ng, if 1/p þ 1/q ¼ 1 and p, q . 1, then the Holder coefficient of these two

discrete signal sequences is obtained as follows:

Hc ¼
Pn

i¼1 f1(i)f2(i)Pn
i¼1 f p

1 (i)
� �1=p �

Pn
i¼1 f q

2 (i)
� �1=q , ð2:8Þ

where 0 � Hc � 1.

The Holder coefficient characterizes similar degree of two discrete signal sequences, and if and only

if f p
1 (i) ¼ kfq

2 (i), i ¼ 1, 2, . . . , n, in which n denotes the length of the discrete signal sequence and k is a real

number, Hc will be the maximum value. In this case, the similar degree of two discrete signal sequences

is biggest, which indicates these two discrete signal sequences belong to the same type; if and only ifPn
i¼1 f1(i)f2(i) ¼ 0, Hc will be the minimum value, and in this case, the similar degree of the two

discrete signal sequences is smallest, which indicates these two signal sequences are irrelevant and

belong to different types.

The rectangular signal sequence s1(i) and the triangular signal sequence s2(i) are selected as two

reference sequences in the paper. Calculate the Holder coefficient values between the bearing

vibration signal sequence f(i) and the two reference signal sequences, respectively.

Calculate the Holder coefficient value H1 between the bearing vibration signal sequence f (i) and the

rectangular signal sequence s1(i).

H1 ¼
Pn

i¼1 f ðiÞs1ðiÞPn
i¼1 f p(i)

� �1=p �
Pn

i¼1 sq
1(i)

� �1=q , ð2:9Þ

where the rectangular signal sequence s1(i) is expressed as:

s1ðiÞ ¼
1, 1 � i � n
0, else

�
: ð2:10Þ

In the same way, we obtain the Holder coefficient value H2 between the vibration signal sequence f(i)
and the triangular signal sequence s2(i).

H2 ¼
Pn

i¼1 f ðiÞs2ðiÞPn
i¼1 f p(i)

� �1=p �
Pn

i¼1 sq
2(i)

� �1=q , ð2:11Þ

where the triangular signal sequence s2(i) is expressed as:

s2ðiÞ ¼

2i
n

,
1 � i � n

2
2� 2i

n
,

n
2 � i � n

8>><
>>: : ð2:12Þ

The Holder coefficient characteristics [H1, H2] are taken as a part of dominant feature vectors for

rolling element bearing fault pattern recognition.
2.1.3. Fractal box-counting dimension characteristics

Fractal theory is one of the most important branches for contemporary nonlinear science, and is suitable

for processing all types of nonlinear and non-stationary phenomenon and may also be suitable for fault

feature extraction from bearing vibration signals. Fractal box-counting dimension algorithm has the

advantage of simple calculation compared with other fractal dimension algorithms. The conventional

algorithm of fractal box-counting dimension has been widely used in the fields of image analysis,

electromagnetic fault diagnosis and biomedicine, which have strict self-similar signals.

Suppose A is a non-empty bounded subset of Euclidean space Rn to be calculated, and N(A, 1) is the

least number of boxes with the side length 1 covering A. Then the box-counting dimension can be

defined as:

D ¼ lim
1!0

log N(A, 1)

log (1=1)
: ð2:13Þ

For the actual sampled vibration signal sequence f (i), i ¼ 1, 2, . . . , N0, there is no meaning for 1! 0 to

calculate the box-counting dimension as the sampling interval s is the highest resolution for the signal
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due to the existence of sampling frequency. It is often made the minimum side length of the box 1 ¼ s.

Consider the actual sampled bearing vibration signal sequence f(i) as the closed set of Euclidean space

Rn, and the calculation process of box-counting dimension is described as follows.

Use the approximate method to make the minimum side length of the box covering the vibration

discrete signal sequence f (i) equal to the sampling interval s. And calculate the least number of boxes

N(k1) with side length k1 covering the signal sequence f (i), thus:

p1 ¼ max { f(k(i� 1)þ 1), f(k(i� 1)þ 2), . . . , f(k(i� 1)þ k þ 1)}, ð2:14Þ

p2 ¼ min { f(k(i� 1)þ 1), f(k(i� 1)þ 2), . . . , f(k(i� 1)þ k þ 1)} ð2:15Þ

and pðk1Þ ¼
XN0=k

i¼1

jp1 � p2j, ð2:16Þ

where i ¼ 1, 2, . . . , N0/k, k ¼ 1, 2, . . . , K. N0 is the number of sampling points, K , N0. p(k1) is the

longitudinal coordinate scale of the actual sampled bearing vibration signal sequence f(i). Thus, N(k1)

can be defined as:

Nðk1Þ ¼ pðk1Þ
k1þ 1

: ð2:17Þ

Select a fitting curve log k1 � log Nðk1Þ with good linearity as a scale-free zone, and the fitting curve

can be defined as:

log Nðk1Þ ¼ a log k1þ b, ð2:18Þ

where k1 � k � k2 and k1 and k2 are the start and end of the scale-free zone, respectively.

Generally, a least square method is used to calculate the slope of the fitting curve, which is the fractal

box-counting dimension D of the actual sampled bearing vibration signal sequence f (i):

D ¼ �ðk2 � k1 þ 1Þ
P

log k � log Nðk1Þ �
P

log k �
P

log Nðk1Þ
ðk2 � k1 þ 1Þ

P
log2k � ð

P
log kÞ2

: ð2:19Þ

However, for the actual bearing vibration signals, they do not satisfy the self-similar structure of

fractal theory to some degree. Therefore, when using the traditional fractal box-counting dimension

algorithm to calculate box-counting dimension of the vibration signals, the fitting curve often does not

have good linear structure. Aiming at this issue, an improved generalized fractal box-counting

dimension algorithm has been developed to overcome the defect of the conventional fractal box-

counting dimension algorithm. The specific calculation procedure is as follows:

(i) Resample the actual bearing vibration signal sequence f (i), i ¼ 1, 2, . . . , N0, and properly increase the

sampling points to reduce the minimum side length 1, to improve the calculation accuracy of the

fractal box-counting dimension of the signal sequence f (i). The phase space of the signal sequence

f (i) is reconstructed, and the number of iterated dimension of the reconstructed phase space is

determined according to the number of sampling points.

(ii) Suppose the number of sampling points of the signal sequence f (i) is N0 ¼ 2n. To improve the

calculation accuracy, resample the actual bearing vibration signal sequence f (i), and suppose the

number of sampling points of the signal sequence f (i) is N ¼ 2K (K . n). The reconstruction

dimension of the phase space of the signal sequence f (i) is set, respectively, as m ¼ K þ 1 ¼ 2, 3,

4, . . . , log2N þ 1.

(iii) The derivated process of the number of boxes covering the actual bearing vibration signal sequence

f (i) can be described as follows:

when k ¼ 1:

p1 ¼maxf f (i), f(i þ 1)g, p2 ¼minf f (i), f(i þ 1)g,i ¼ 1, 2, . . . , N/k. In this case, the reconstructed phase

space dimension is 2;

when k ¼ 2:

p1 ¼maxf f (2i 2 1), f (2i), f(2i þ 1)g, p2 ¼minf f (2i 2 1), f (2i), f (2i þ 1)g, i ¼ 1, 2, . . . , N/k. In this case,

the reconstructed phase space dimension is 3;

when k ¼ 3:

p1 ¼maxf f(3i 2 2), f(3i 2 1), f(3i), f(3i þ 1)g, p2 ¼minf f(3i 2 2), f(3i 2 1), f(3i), f(3i þ 1)g, i ¼ 1, 2, . . . ,

N/k. In this case, the reconstructed phase space dimension is 4;

when k ¼ K:
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p1 ¼maxf f(Ki 2 K þ 1), f(Ki 2 K þ 2), . . . , f(Ki þ 1)g, p2 ¼minf f(Ki 2 K þ 1), f(Ki 2 K þ 2), . . . ,

f(Kiþ 1)g, i ¼ 1, 2, . . . , N/k. In this case, the reconstructed phase space dimension is m ¼ K þ 1.

(iv) It can be seen from the above deduction that, during reconstructing the phase space of the bearing

vibration signal sequence f (i) K times, the corresponding log N(k1) can be obtained at each time. And

then the relationship curve of log k1 � log Nðk1Þ can be determined. Since the fitting curve does not

have a strict linear relationship, calculate the derivative of the relationship curve at these K points.

The slopes D1, D2, D3, . . . , DK at these K points from the relationship curve are the fractal box-

counting dimensions in the different reconstructed phase space. Take the slopes D1, D2, D3, . . . ,

DK obtained as the K characteristic parameters for the fault feature vector extracted from the

signal sequence f (i), which characterizes the bearing fault symptoms.

2.2. Basic belief assignment acquisition
The research of grey relation theory is the foundation of grey system theory, which is mainly based on the

basic theory of space mathematics to calculate relation coefficient and relation degree between reference

characteristic vector and each comparative characteristic vector. GRA has good potential to be used in

BBA acquisition for rolling element bearing fault pattern recognition with the following reasons

[31,32]: it has good tolerance to measurement noise; its algorithm is simple and can solve the issue of

generality versus accuracy; and it can solve the learning problem with a small number of samples.

Suppose the health status feature vectors, i.e. the multi-dimensional feature vectors extracted based

on entropy characteristics, the Holder coefficient characteristics and improved generalized box-

counting dimension characteristics, from vibration signals, to be recognized, are as follows:

B1 ¼

b1ð1Þ
b1ð2Þ
b1ð3Þ
. . .
b1ðqÞ

2
66664

3
77775, B2 ¼

b2ð1Þ
b2ð2Þ
b2ð3Þ
. . .
b2ðqÞ

2
66664

3
77775, Bi ¼

bið1Þ
bið2Þ
bið3Þ
. . .
biðqÞ

2
66664

3
77775, ð2:20Þ

where Bi (i ¼ 1, 2,. . .) is a certain fault pattern to be recognized (i.e. fault types and severities). q is the

total number of characteristic parameters chosen as the characteristic vector, where q ¼ 2 for entropy

characteristics [E1, E2]T and Holder coefficient characteristics [H1, H2]T, and q ¼ K for improved

generalized fractal box-counting dimension characteristics [D1, D2, D3, . . . , DK]T, respectively.

Assume that the knowledge base (i.e. the recognition template) between the fault patterns (i.e. fault

types and severities) and fault signatures (i.e. the fault feature vectors) based on a small number of

training samples is as follows:

C1 ¼

c1ð1Þ
c1ð2Þ
c1ð3Þ
. . .
c1ðqÞ

2
66664

3
77775, C2 ¼

c2ð1Þ
c2ð2Þ
c2ð3Þ
. . .
c2ðqÞ

2
66664

3
77775, Cj ¼

cjð1Þ
cjð2Þ
cjð3Þ
. . .
cjðqÞ

2
66664

3
77775, ð2:21Þ

where Cj ( j ¼ 1,2, . . .) is a known fault pattern and cj ( j ¼ 1,2, . . .) is a certain feature parameter.

For r [ (0,1) : j(biðkÞ,cj(k)) ¼
min

j
min

k
jbiðkÞ � cj(k)j þ r �max

j
max

k
jbiðkÞ � cj(k)j

jbiðkÞ � cj(k)j þ r �max
j

max
k
jbiðkÞ � cj(k)j ð2:22Þ

and jðBi,CjÞ ¼
1

q

Xq

k¼1

j(biðkÞ,cj(k)), j ¼ 1,2, . . . ð2:23Þ

where r is the distinguishing coefficient; j(bi(k), cj(k)) is the grey relation coefficient of kth characteristic

parameter for Bi and Cj; and j(Bi, Cj) is the grey relation degree between Bi and Cj.

According to the matching degree between the feature vectors to be recognized and the recognition

template by the GRA, the basic probability assignment function for BBA can be obtained.

2.3. Basic belief assignments fusion
In this step, the BBAs obtained by GRA are fused through the Yager algorithm for achieving bearing fault

pattern recognition intelligently using the extracted feature vectors.

First of all, the Dempster–Shafer evidence theory is introduced as the following. Let Q be the

universe, and the set Q representing all possible states of a system under consideration. The power set
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2Q is the set of all subsets of Q , including the empty set f . For example, if: Q ¼ fF1, F2g, then 2Q ¼ ff,

fF1g, fF2g, Qg. The elements of the power set can be taken to represent propositions concerning the actual

state of the system, by containing all and only the states in which the proposition is true. The theory of

evidence assigns a belief mass to each element of the power set. Formally, a function: m : 2Q! [0, 1] is

called a BBA, when it has two properties. The mass of the empty set is zero, that is, m(f ) ¼ 0, and

the masses of the remaining members of the power set add up to a total of 1, that is
P

A[2Q
mðAÞ ¼ 1.

The mass m(A) of A, a given member of the power set, represents the proportion of all relevant and

available evidence which supports the claim that the actual state belongs to A but to no particular subset

of A. The value of m(A) pertains only to the set A and makes no additional claims about any subsets of A.

In particular, the combination (called the joint mass) is calculated from the two masses m1 and m2 in

the following manner:

m1,2ðfÞ ¼ 0, ð2:24Þ

m1,2ðAÞ ¼ ðm1 �m2ÞðAÞ ¼
1

1� k

X
B>C¼A=f

m1ðBÞm2ðCÞ ð2:25Þ

and k ¼
X

B>C¼f
m1ðBÞm2ðCÞ, ð2:26Þ

where k is a measure of the conflicting amount between the two mass sets.

The Dempster–Shafer evidence theory is a critical method to fuse the results from multi-symptom

domain. However, when dealing with highly conflicted evidence, the Dempster–Shafer evidence

theory will lead to an abnormal conclusion. Aiming at this problem, some researchers presented

many improved combination rules, for example, the Yager method, Dubois and Prade method and

Smets method. In this paper, the improved combination rule of the Yager method was used to fuse

all the BBAs to obtain the last decision-making results. The improvement of the Yager method is to

use the conflicting coefficient k as an evidence of uncertainty and a new mathematical model can be

obtained as follows.

m1,2ðAÞ ¼ ðm1 �m2ÞðAÞ ¼

P
B>C¼A

m1ðBÞm2ðCÞ A , Q, A = QP
B>C¼Q

m1ðBÞm2ðCÞ þ k A ¼ Q

8<
: : ð2:27Þ

2.4. Diagnostic procedure
Totally, the process of the proposed diagnostic framework (illustrated in figure 1) for rolling bearing fault

diagnosis is as follows.

Step 1: The vibration signals from the object bearing are sampled under different health status,

including normal operating condition and conditions with different fault types and severities, to

establish the knowledge base (i.e. the recognition template).

Step 2: The health status feature vectors are extracted from the sample knowledge base through the

multi-dimensional feature extraction based on entropy characteristics [E1, E2], Holder coefficient

characteristics [H1, H2] and improved generalized box-counting dimension characteristics [D1, D2, D3,

. . . , DK], respectively.

Step 3: The sample knowledge base is established based on the fault symptom (i.e. the extracted fault

feature vectors) and the fault pattern (i.e. the known fault types and severities).

Step 4: The health status feature vectors extracted based on bearing vibration signals to be identified

are input into the GRA to obtain BBAs (i.e. BBA1, BBA2, BBA3), and then the BBAs are fused through the

Yager method to output the diagnostic results (i.e. fault types and severities).
3. Experimental validation
In this paper, the rolling bearing vibration signals for testing are from Case Western Reserve University

Bearing Data Center [33]. The related rolling element bearing experimental device consists of a torque

meter, a power meter and a three-phase induction motor, and the load power and speed are

measured by the sensors, as shown in figure 2. The motor drive end rotor is supported by a test

bearing, where a single point of failure is set by means of discharge machining. The test bearing is a

deep groove rolling bearing of 6205-2RS JEM SKF. Through controlling the power meter, the desired



Figure 2. Experimental set-up.
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Figure 1. The diagnostic framework for rolling bearing fault diagnosis.
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torque load can be obtained. The fault types contain outer race fault, the inner race fault, and the ball

fault, and the fault diameters, i.e. fault severities, contain 28, 21, 14 and 7‰. An accelerometer is

installed on the motor drive end housing with a bandwidth of up to 5000 Hz, and the vibration data

for the test bearing under different fault patterns are collected by a recorder, in which the sampling

frequency is 12 kHz.

The bearing vibration data used for analysis are obtained under the motor speed of 1797 r min21 and

load of 0 hp. Totally, 11 types of vibration signals considering different fault categories and severities are

analysed, as seen in table 1. Each data sample from vibration signals is made up of 2048 time-series

points. For those 550 data samples, 110 data samples are chosen randomly for the establishment of

the knowledge base, with the rest of the 440 data samples taken as testing data samples. If the motor

speed and the load change in the practical application, data samples under these working conditions

have to be chosen for the establishment of the knowledge base so that the motor speed and load

would not affect the diagnostic performance.

The health status feature vectors extracted from rolling bearing normal operating condition and

different fault conditions with 7‰ fault diameter (figure 3) based on entropy characteristics, Holder

coefficient characteristics and improved generalized box-counting dimension characteristics, are shown

in figures 4–6, respectively. And the health status feature vectors extracted from inner race fault

condition with various severities (figure 7) based on entropy characteristics, Holder coefficient

characteristics and improved generalized box-counting dimension characteristics, are shown in

figures 8–10, respectively.

From figures 4–6, the Holder coefficient characteristics show a better inter-class separation and

intra-class polymerization than entropy characteristics and improved generalized box-counting

dimension characteristics extracted from the bearing vibration signals with different fault types.

However, from figures 8–10, the improved generalized box-counting dimension characteristics

show a better inter-class separation than entropy characteristics and Holder coefficient

characteristics extracted from the bearing vibration signals with different severities. As entropy

characteristics, Holder coefficient characteristics and improved generalized box-counting dimension

characteristics show their strengths and weaknesses in classifying different fault types and

severities, evidence fusion theory is used to obtain the final diagnostic results. The knowledge

base (i.e. the recognition template) for GRA is established based on the fault symptom (i.e. the
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Figure 3. Rolling bearing normal operating condition and various fault conditions with fault diameter 7‰.

Table 1. Description of experimental dataset.

health status
condition

fault diameter
(‰)

the number of base
samples

the number of testing
samples

label of
classification

normal 0 10 40 1

inner race fault 7 10 40 2

14 10 40 3

21 10 40 4

28 10 40 5

ball fault 7 10 40 6

14 10 40 7

28 10 40 8

outer race fault 7 10 40 9

14 10 40 10

21 10 40 11
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extracted feature vectors) and the fault pattern (i.e. the known fault types and severities). The fault

feature vectors extracted based on the testing rolling bearing vibration signals to be recognized

input to GRA, and the diagnostic results (i.e. fault types and severities) are output after the fusion

of BBAs, shown in table 2.

The diagnostic results from table 2 show that the detecting success rate for bearing faulty conditions

can reach 100%, with the total fault pattern recognition success rate almost 99.09% based on a small

number of training samples, which shows a certain improvement in diagnostic accuracy compared

with the existing intelligent diagnostic methods from [34–36]. The time cost of the proposed method

through a laptop computer with a 4.0 GHz dual processor for one test case is only 0.016 s. The time

consumption of the proposed approach is encouraging, and the proposed method may be suitable for

online bearing fault diagnosis. For supplementary verification, the k-fold cross-validation is performed

for those 550 data samples and the average success rate is 100% for 10-fold cross-validation, and the

average success rate is 99.98% for fivefold cross-validation.



0.35 0.40 0.45 0.50 0.55 0.60 0.65
0.10

0.15

0.20

0.25

0.30

0.35

H1

H
2

normal
inner race fault
ball fault
outer race fault

Figure 5. Holder coefficient characteristics of a random selected sample from normal operating condition and various fault
conditions with fault diameter 7‰, where the abscissa axis H1 represents the Holder coefficient with the rectangular sequence
as the reference sequence.

1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6
2.50

2.55

2.60

2.65

2.70

2.75

E1

E
2

normal
inner race fault
ball fault
outer race fault

Figure 4. Entropy characteristics of a random selected sample from normal operating condition and various fault conditions with
fault diameter 7‰, where the abscissa axis E1 represents the Shannon entropy, and the ordinate axis E2 represents the exponential
entropy.

1 2 3 4 5 6 7
1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

K

D
K

 

 

normal
inner race fault
ball fault
outer race fault

Figure 6. Improved generalized box-counting dimension characteristics of a random chosen sample from bearing normal condition
and different fault conditions with fault size 7‰.

royalsocietypublishing.org/journal/rsos
R.Soc.open

sci.6:181488
10



–2

–1

0

1

2

–4

–2

0

2

4

m
 s

–2
m

 s
–2

–2

–1

0

1

2

m
 s

–2

–4

–2

0

2

4

m
 s

–2

0 500 1000 1500 2000

0 500 1000 1500 20000 500 1000 1500 2000

sampling point
0 500 1000 1500 2000

sampling point

28‰

7‰ 14‰

21‰

Figure 7. Bearing inner race fault conditions with various severities.

2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8
2.670

2.675

2.680

2.685

2.690

2.695

2.700

2.705

2.710

2.715

E1

E
2

7 ‰
14 ‰
21 ‰
28 ‰

Figure 8. Entropy characteristics of a random selected sample from inner race fault condition with various severities.

0.42 0.44 0.46 0.48 0.50 0.52 0.54 0.56 0.58 0.60 0.62

0.16

0.18

0.20

0.22

0.24

0.26

0.28

0.30

0.32

H1

H
2

7‰
14‰
21‰
28‰

Figure 9. Holder coefficient characteristics of a random selected sample from inner race fault condition with various severities.

royalsocietypublishing.org/journal/rsos
R.Soc.open

sci.6:181488
11



1 2 3 4 5 6 7
1.4

1.5

1.6

1.7

1.8

1.9

2.0

K

D
K

7‰
14‰
21‰
28‰

Figure 10. Improved generalized box-counting dimension characteristics of a random chosen sample from bearing inner race fault
condition with different levels of severity.

Table 2. The diagnostic results by the proposed method compared with results from [34 – 36].

label of
classification

the number
of testing
samples

the number of misclassified samples testing accuracy (%)

[34] [35] [36] proposed [34] [35] [36] proposed

1 40 0 0 0 0 100 100 100 100

2 40 0 0 0 0 100 100 100 100

3 40 0 4 2 2 100 90 95 95

4 40 3 0 0 0 92.5 100 100 100

5 40 0 0 0 0 100 100 100 100

6 40 2 4 3 0 95 90 92.5 100

7 40 3 0 0 2 92.5 100 100 95

8 40 3 4 4 0 92.5 90 90 100

9 40 0 0 0 0 100 100 100 100

10 40 0 0 3 0 100 100 92.5 100

11 40 4 4 0 0 90 90 100 100

in total 440 15 16 12 4 96.59 96.36 96.97 99.09
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4. Conclusion
In this paper, a novel diagnostic framework for rolling bearing fault diagnosis is proposed to fulfil the

requirements for accurate assessment of different fault types and severities with real-time

computational performance. The related experimental study has illustrated the following conclusions:

the diagnostic success rate for bearing faulty conditions can reach 100%, with the total diagnostic

success rate almost 99.09% based on a small number of training samples; the proposed approach can

improve the fault diagnostic accuracy compared with the existing intelligent diagnostic methods, and

may be suitable for online bearing fault diagnosis.

In future research, so as to continually improve the fault diagnostic accuracy, the improvement of

feature extraction algorithm and evidence fusion theory can be further carried out, on the prerequisite

of algorithm real-time performance.

Data accessibility. The rolling bearing vibration signals for testing are from Case Western Reserve University Bearing Data

Center [33] in this paper. The Case Western Reserve University Bearing Data Center, http://csegroups.case.edu/

bearingdatacenter/pages/download-data-file (accessed 11 October 2017).

http://csegroups.case.edu/bearingdatacenter/pages/download-data-file
http://csegroups.case.edu/bearingdatacenter/pages/download-data-file
http://csegroups.case.edu/bearingdatacenter/pages/download-data-file
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