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Recently, DNA-PAINT single-molecule localization microscopy
(SMLM) has shown great promise for quantitative imaging;
however, labelling strategies thus far have relied on
multivalent and affinity-based approaches. Here, the covalent
labelling of expressed protein tags (SNAP tag and Halo tag)
with single DNA-docking strands and application of SMLM
via DNA-PAINT is demonstrated. tagPAINT is then used for
T-cell receptor signalling proteins at the immune synapse as
a proof of principle.
1. Introduction
An important challenge for single-molecule localization microscopy
(SMLM) for quantitative measurements is control over the
stoichiometry of the label to the molecule of interest. The lack of
such control can confound or alter the observed biological
behaviour and states of single molecules, complexes and structures
due to suboptimal labelling [1,2], cross-linking due to multivalency
or label exchange [3]. To address these challenges, approaches have
been developed that allow a chemically versatile stoichiometric
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covalent linkage to be formed between biological molecules and fluorescent probes, in structurally defined

positions [4,5]. For example, stable and stoichiometric coupling of fluorescent labels to proteins of interest
has been achieved through genetically encoded affinity tags [6,7], non-canonical amino acid (ncAA)
labelling [8,9] and orthogonal chemistry [10,11]. Such approaches have then been used to observe proteins
at the single-molecule level [10,12].

Recently, Jungmann et al. demonstrated an SMLM approach using the binding/unbinding of
short fluorescently conjugated DNA probes to antibodies labelled with complementary target
strands, known as DNA-PAINT [13–16]. This approach was extended to determine the number of
proteins/targets present in subdiffraction structures, termed qPAINT [17]. This method abrogates
the uncertainty associated with the stochastic nature of fluorophore blinking and exploits a priori
knowledge of the binding/unbinding behaviour of the probes. With this approach, good agreement
was achieved between the theoretical binding/unbinding rate and the observed number of proteins.
However, this approach relied on the use of probes labelled with multiple DNA target strands. Thus,
multivalent interactions between proteins, multiple target strands per protein, and incomplete
labelling are still challenges that need to be addressed. More recently, approaches to address this aim
and minimize the linkage error include ncAA incorporation [8], affimers [18] and SOMAmers [19],
which all allow 1 : 1 functionalization. However, although SOMAmers spend a long time bound, they
still rely on a non-covalent interaction, and can potentially dissociate during long imaging times.
Similarly, affimers are non-covalent, and sometimes require post-fixation, which may lead to off-target
labelling. Also, these reagents are only available for a few protein targets to date. Finally, while ncAA
incorporation does allow a covalent stoichiometric linkage, it suffers from low expression and
efficiency for labelling. New approaches which allow covalent and stoichiometric labelling of a protein
of interest, while maintaining a low linkage error, would thus allow robust counting of protein
numbers within cell, and thus full sampling of the heterogeneity therein [16].

At present, there are a variety of methods to label proteins of interest covalently. One approach is
incorporation of an enzymatically active tag, such as SNAP/CLIP tag [20] and Halo tag [21] technology.
The Halo tag makes use of a chemical reaction orthogonal to eukaryotes, i.e. the dehalogenation of
haloalkane ligands, thus, leading to highly specific covalent labelling of the tag, and therefore protein [21],
in both live and fixed cells. Haloalkanes can be modified to bear fluorescent labels, and has been
demonstrated before for SMLM in live cells using ATTO dye-modified ligands [10]. Similarly, SNAP tag, a
mutant of DNA repair protein O6-alkylguanine-DNA alkyltransferase, can be covalently modified using
O6-benzylguanine substrates (BG) and has also been demonstrated to be suitable for SMLM imaging [22].
Combining such tagging systems with DNA-PAINT imaging opens up the possibility for robust
quantitative imaging of proteins within cells. This is of particular interest, as when the protein tag reaction
with the ligand is successful, the achievable valency of labelling is 1 ligand : 1 tag, while also reducing the
linkage error (size of tags ca less than 5 nm). The labelling of these proteins with DNA oligonucleotides
has been demonstrated previously [23,24]; thus, the potential for using them for DNA-PAINT imaging is
attractive, and has been contemporaneously explored here [25].

Here, SNAP tag and Halo tag technologies are exploited to allow 1 : 1 labelling of single proteins with
a DNA-PAINT target strand (i.e. 1 protein : 1 target strand), using DNA-modified ligands to the tags. The
specificity of the approach is demonstrated by targeting T-cell signalling proteins, CD3ζ and LAT, bearing
the tags at the immune synapse in knockout cell lines. The potential of dual-channel tagPAINT is then
explored in cells co-expressing Halo-tagged CD3ζ and SNAP-tagged LAT in T cells.
2. Specific imaging of SNAP- and halo-tagged proteins in knockout
T-cell lines

A first important step in demonstrating the potential of this approach for DNA-PAINT imaging is to
explore the specificity of the DNA ligands and their targeting to the tagged proteins. T cells when
incubated on surfaces that bear T cell receptor (TCR) stimulating ligands will adhere and spread, thus,
forming an area of very flat membrane at the coverglass, and thus within the total internal reflection
fluorescence (TIRF) field [26]. To this end, we targeted SNAP- and Halo-tagged proteins in the immune
synapse, LAT and CD3ζ (figure 1). Halo- and SNAP-tagged proteins bind covalently to a single ligand;
thus, functionalization of these ligands with DNA target strands makes them amenable to DNA-PAINT
imaging. Here, we used 50-amine functionalized DNA target strands and reacted them either with
excess of O6-benzylguanine-NHS or Halo ligand-NHS ligands in a single step reaction (see Material and
methods). Cells that were deficient in both LAT and CD3ζ were reconstituted with tagged versions of
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Figure 1. tagPAINT imaging of CD3ζ and LAT proteins. LAT and CD3ζ knockout (KO) Jurkat cells were transfected; LAT-SNAP (a), CD3ζ-
SNAP (b), LAT-Halo (c) and CD3ζ-Halo (d ) constructs. (a) LAT-SNAP transfected cells were stained with anti-SNAP-ATTO488 antibody to
determine expressing cells (top left). Gaussian convolved images of positive cells imaged using DNA-PAINT (top right; 2 nM, P01-ATTO655
imager). Zoomed regions of DNA-PAINT imaging are shown (yellow boxes, i and ii). (b) CD3ζ-SNAP transfected cells were stained with
anti-SNAP-ATTO488 antibody to determine expressing cells (top left). Gaussian convolved images of positive cells imaged using DNA-
PAINT (top right; 2 nM, P01-ATTO655 imager). Zoomed regions of DNA-PAINT imaging are shown (yellow boxes, i and ii). (c) LAT-Halo
transfected cells were stained with anti-Halo-ATTO568 antibody to determine expressing cells (top left). Gaussian convolved images of
positive cells imaged using DNA-PAINT (top right; 2 nM, P03-ATTO655 imager). Zoomed regions of DNA-PAINT imaging are shown
(yellow boxes, i and ii). (d ) CD3ζ-Halo transfected cells were stained with anti-Halo-ATTO568 antibody to determine expressing
cells (top left). Gaussian convolved images of positive cells imaged using DNA-PAINT (top right; 2 nM, P03-ATTO655 imager).
Zoomed regions (yellow boxes, i and ii). Scale bars for all larger images are 5 µm and for zoomed images 1 µm.
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these proteins via transient transfection (figure 1). To detect cells expressing the tag-bearing proteins, we
used immunostaining with antibodies raised to the tag (figure 1a–d), as the tags, and the proteins they are
based on, are not endogenously expressed in mammalian cells. SNAP-tagged LAT and CD3ζ-expressing
cells were detected by anti-SNAP-ATTO488 and subsequently imaged using DNA-PAINT (figure 1a,b).
DNA-PAINT imaging revealed the presence of punctate signal within the immune synapse, similar to that
observed previously [26,27] (figure 1a,b), which is absent when cells express the SNAP tag, but have not
been labelled with the DNA-SNAP-ligand (electronic supplementary material, figure S1A). The median
localization precisions were 13 nm (electronic supplementary material, figure S2A) and 11 nm (electronic
supplementary material, figure S2B) for LAT and CD3ζ, respectively. Halo-tagged LAT and CD3ζ-
expressing cells were detected by anti-Halo-ATTO568, and again imaged by DNA-PAINT (figure 1c,d).
Again, similar to SNAP tag, punctate signal is observed again at the immune synapse, and is not seen in
the absence of the ligand (electronic supplementary material, figure S1B). The median localization
precisions for Halo tagged (electronic supplementary material, figure S2C,D) for LAT and CD3ζ were
12 nm and 11 nm, respectively. Thus, labelling of tag for DNA-PAINT imaging appears to be highly specific.
3. Dual-tagPAINT imaging of CD3ζ-Halo and LAT-SNAP in the same cell
Having achieved specific targeting of the both SNAP- and Halo-tagged proteins for DNA-PAINT in
isolation, we sought to demonstrate the potential for imaging the two tags within the same cell using
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Figure 2. Dual-tagPAINT imaging. CD3ζ knockout (KO) Jurkat cells were transfected with both CD3ζ-Halo and LAT-SNAP constructs.
Cells were stained with both (a) anti-SNAP-ATTO488 and (b) anti-Halo-ATTO568 to identify cells expressing both constructs.
Convolved images of Exchange-PAINT imaging of (c) LAT-SNAP (2 nM, P01-ATTO655 imager) and (d ) CD3ζ-Halo (2 nM, P01-
ATTO655 imager), which are overlaid in (e). Zoomed regions of the overlaid images are shown from regions i–iii (yellow
boxes) in e (right). Scale bars are 5 µm for a–d and large panel in e, and 500 nm for i–iii.
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exchange DNA-PAINT. We used CD3ζ-knockout Jurkat T cells and expressed both a Halo-tagged CD3ζ
chain and SNAP-tagged LAT protein (figure 2). These proteins are involved in the early signalling of
T-cell activation and have been shown to associate and co-cluster upon engagement of the TCR [28].
Here, each protein was labelled with a ligand bearing different DNA target sequences; P01 for SNAP-LAT
and P03 for CD3ζ-Halo. These sequences were chosen to avoid the possibility of cross-reaction of imaging
strands across orthogonal docking strands and have been used previously for Exchange-PAINT studies
[14]. Cells were stained with antibodies to the tags, as shown in figure 1, to allow identification of cells
expressing both tagged proteins (figure 2a,b). Firstly, LAT-SNAP was imaged by DNA-PAINT using P01
imager (figure 2c), the sample was then washed with large volumes of imaging buffer, and then CD3ζ-
Halo was imaged using the P03 imager (figure 2d). Intermixing of the two proteins is observed at the
immune synapse, similar to that observed previously [28]. Thus, it is possible to orthogonally target and
image different proteins within cells by employing the two tagging methods simultaneously.
4. Conclusion
We demonstrate the covalent conjugation of DNA target strands to SNAP and Halo tag-labelled proteins
termed tagPAINT. Firstly, we demonstrated the specificity of the approach by targeting tagged CD3ζ and
LAT expressed in knockout cells. Further, the potential for dual-colour imaging (both tags in the same
cell) of these proteins was explored. Given that the tags only bind to a single ligand covalently,
and thus will bear a single DNA target strand, this opens up the possibility for fully quantitative
DNA-PAINT imaging and the opportunity to observe multiple proteins in this manner in the same cell.
5. Material and methods
5.1. Plasmids
For the expression of Halo tag-labelled human CD3ζ, the EGFP gene in the vector pEGFP-N1 was
exchanged with the Halo tag gene after restriction digest, generating an empty back bone where
human CD3ζ could be inserted. For SNAP-CD3ζ, the Halo tag was subsequently replaced with SNAP
gene, using the AgeI and NotI sites. For SNAP-LAT, human CD3ζ of the SNAP-CD3ζ construct was
replaced with human LAT.

5.2. Synthesis of Halo tag-DNA ligands
50amino modified DNA-docking strands (either P01: 50- TTATACATCTA-30 or P03: 50- TTTCTTCATTA-30)
were diluted in 10 mM sodium phosphate buffer pH 6.8, supplemented with 5 mM EDTA, to a final
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concentration of 1 mM. N-hydroxysuccinimidyl ester functionalized Halo tag ligand (NHS-HL) was

freshly reconstituted in dry DMSO to a final concentration of 50 mM (unused NHS-HL was aliquoted
and stored at −80°C). NHS-HL was diluted 10 times by adding 50amino modified DNA-docking
strands and mixing thoroughly. The reaction was left for 1 h at room temperature. The reaction
product, HL functionalized with a DNA-docking strand, was purified from excess unreacted NHS-HL
by size exclusion chromatography, with 10 mM Tris supplemented with 1 mM EDTA as the mobile
phase. Purified HL-DNA-docking strands were aliquoted and stored at −20°C until use (final
concentration approx. 100–200 µM).

5.3. Synthesis of SNAP tag-DNA ligands
50amino modified DNA-docking strands were diluted in 10 mM sodium phosphate buffer pH 6.8,
supplemented with 5 mM EDTA, to a final concentration of 1 mM. N-hydroxysuccinimidyl ester
functionalized SNAP ligand (O6-benzylguanine) was freshly reconstituted in dry DMSO to a
final concentration of 50 mM (unused NHS-O6-benzylguanine was aliquoted and stored at −80°C).
NHS-O6-benzylguanine was diluted 10 times by adding 50amino modified DNA-docking strands
and mixing thoroughly. The reaction was left for 1 h at room temperature. The reaction product,
O6-benzylguanine functionalized with a DNA-docking strand, was purified from excess unreacted
NHS-O6-benzylguanine by size exclusion chromatography, with 10 mM Tris supplemented with 1 mM
EDTA as the mobile phase. Purified HL-DNA-docking strands were aliquoted and stored at −20°C
until use (final concentration approx. 100–200 µM).

5.4. Transfection and fixation of Jurkat T cells
E6.1 Jurkat T cells were transfected with Halo or SNAP constructs using an Invitrogen Neon
Electroporation Transfection System (Life Technologies Pty Ltd), using three pulses of 1350 V lasting
10 ms. The cells were left to recover after transfection in RPMI medium without Phenol Red (6040,
GIBCO) supplemented 20% (v/v) fetal bovine serum. Before seeding, cells were pelleted by
centrifugation, washed once with PBS and then resuspended in PBS. Cells were then used for seeding
onto coverslips coated with 10 µg ml−1 anti-human CD3ε (activating) for 10 min at 37°C with 5% CO2,
after which non-adherent cells were washed away with PBS and then fixed with freshly prepared
warm 4% (w/v) PFA in PBS for 10 min. Fixative was then washed away with PBS and then cells were
permeabilized for labelling with 0.1% (v/v) Triton X-100 in PBS for 3 min.

5.5. Immunostaining for SNAP and Halo tags
Cells expressing Halo and SNAP tags were processed for staining in an identical manner. After fixation,
cells were permeabilized with PBS supplemented with 0.2% Triton-X100 for 3 min, and then
subsequently incubated with 50 mg ml−1 BSA in PBS for 30 min. After which, the cells were stained
with either anti-SNAP-ATTO488 or anti-Halo-ATTO568 (or both; figure 2) at a final concentration of
1 µg ml−1 in 50 mg ml−1 BSA in PBS for 30 min. Cells were then washed with PBS and post-fixed
using 4% PFA in PBS.

5.6. Labelling with SNAP and Halo DNA ligands
Both DNA-functionalized SNAP and Halo ligands were incubated with fixed and immunostained cell
samples at a final concentration of 5 µM in PBS supplemented with 0.2% Tween-20 (PBST) for 10 min.
The samples were then vigorously washed with 1 ml of PBST several times, to remove any non-
specifically adsorbed ligand. Finally, the samples were incubated with gold nanorods (Nanopartz) in
PBST for 10 min before mounting for tagPAINT imaging.

5.7. tagPAINT imaging
Prior to imaging labelled cells, glass coverslips were mounted into a Chamlide chamber and freshly
prepared imaging strands (2 nM ATTO655 P01 or 2 nM ATTO655 P03) in PBST supplemented with
500 mM NaCl were added to the chamber. For tagPAINT imaging, ATTO655 imager binding was
acquired with the 642 nm (0.075 kW cm−2) laser lines, respectively. For standard tagPAINT imaging,
an integration time of 80 ms was used, with a TIRF angle of 66.90° (penetration depth = 110 nm), with
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40 000 frames acquired. Images were acquired as 512 × 512 pixel images with a pixel size of 97 nm. For

Exchange-PAINT imaging (figure 2), the same imaging parameters as above were used, but in between
each image series, the imager solution was exchanged by washing with at least 10 × 1 ml PBST
supplemented with 500 mM NaCl, and then adding in the second imager solution.

5.8. tagPAINT processing and image convolution
tagPAINT images were processed using Zeiss Zen Black software. The position of bound imaging
strands in the acquisition was determined by Gaussian fitting, using a peak mask radius size of
6 pixels and a signal to noise ratio cut-off of 8. The localization data were then drift corrected using
the point patterns generated from the localization of gold nanorod fiducials within the field of view
using the Zeiss Zen Black software drift correction. The point pattern data were then convolved with
a Gaussian kernel using the ThunderSTORM plugin in Fiji, with a pixel size of 9.7 nm. The median
precision values were extracted from the distribution of precision values (electronic supplementary
material, figure S2) given in the output of the Zen processing.

Data accessibility. The data used to create this images and figures in the manuscript can be found on Figshare, collection
‘tagPAINT data’ [31]: https://doi.org/10.6084/m9.figshare.c.2928956.
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