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ON THE ORBIT OF NEPTUNE.

CHAPTER I.

INTRODUCTION.

THE errors of the published ephemerides of Neptune are now increasing very

rapidly. In 1SG3, Walker's ephemeris was in error by 33", and Kowalski's by
22". Both ephemerides may be 5' in error before the end of the present century.

The orbit of this planet is, therefore, more uncertain than that of any other of

the larger members of our system. The uncertainty arises from the insufficiency

of the data at the command of those astronomers who have hitherto investigated

the motions of this planet. These motions are so slow that it is impossible to

determine the elements of the orbit with accuracy from observations extending

through only a few years. In Walker's investigations the errors of observation

are multiplied more than a hundred times in the elements deduced from them, on

account of the smallness of the arc through which the planet had moved.

The time has now come when the orbit can be determined with some approach
to accuracy. The planet has moved through an arc of nearly 40 since its dis-

covery, and the errors of observation will be multiplied only ten or twelve times

in the errors of the elements. In commencing the work of a revision of the theory

of Neptune, it will be well to glance at the past and present state of our know-

ledge on this subject.

Approximate elements of this planet, neglecting the effect of perturbations,

were computed by several astronomers within a year or two after its discovery.

But the work of preparing a theory which should include the perturbations

produced by all the other planets seems to have been left entirely in the hands

of Professor Peirce and Mr. Sears C. Walker.

2. All the first approximations to the elements showed that the mean motion

was very nearly half that of Uranus. It was, therefore, for some time doubtful

whether the mutual action of the two planets might not be such as to render the

period of Neptune exactly double that of Uranus, and thus present us, on a much

grander scale, with a phenomenon similar to that exhibited by the satellites of

Jupiter. Professor Peirce's first perturbations of Neptune were computed on this

hypothesis, and published in the Monthly Notices of the Royal Astronomical

Society, Vol. VIII, p. 40. The eccentricity of Neptune was neglected, but that

of the disturbing planets was included in the perturbations.

With these perturbations, the ancient observations of Lalande, and the vast

number of modern observations made in nearly every active observatory in the

world during 184G and 1847, Mr. Walker computed his "Elliptic Elements I." of
1 May, 1865. 1
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Neptune. The longitude of perihelion referred to the mean Equinox of Jan. 1,

1847, eccentricity, and mean daily motion were as follows :

n = 48 21' 2".93

e .00857741.

n - 21".55448.

This mean motion rendered it certain that the supposed relation between the

mean motions of the planets Uranus and Neptune had no foundation in fact.

Professor Peirce thereupon revised his theory, and published the new perturb-

ations in the Proceedings of the American Academy, Vol. I, p. 286.

The near approach to commensurability of the mean motions renders the

general theory of the mutual action of Uranus and Neptune extremely complex.
Twice the mean motion of the latter exceeds that of the former by only 320"

according to Walker, or 304" according to my first revision of his elements. The

terms in the perturbations which contain this very small quantity as a divisor

will, therefore, be very large. Considered as perturbations of the elements, their

period will be more than 4000 years. We have an analogous instance in the 900

year equation of Jupiter and Saturn. But in the latter case the perturbations

of the mean motion are of the third order with respect to the eccentricities and

inclinations, while in Uranus and Neptune they are of the first order. From this

circumstance it happens that, notwithstanding the smaller masses of the dis-

turbing planets, the perturbation of the mean motion is as great in the case of

the planets in question as in that of Jupiter and Saturn, and that of the other

elements enormously greater. In fact, the perihelion of Neptune oscillates through
a space of eight degrees in consequence of the terms in question. Such a perturb-

ation as this, four degrees on each side of the mean, is, I think, found nowhere

else in our system. Moreover, a change of 1" in the mean motion of the planet

will produce a change of nearly 2' in the coefficient of this perturbation. Any
attempt to determine its magnitude with accuracy will, therefore, be hopeless.

But the difficulties connected with these terms can be avoided in the case of a

theory which is designed to be exact for a period of only a few centuries. Not-

withstanding the great magnitude of the general integrals of the perturbations,

if we take these integrals between limits not exceeding a couple of centuries, we
shall find them so small as not to involve serious difficulty. Their effect on the

co-ordinates can then be developed in powers of the time, and the values thus

obtained will not be subject to any uncertainty of moment. This is substantially

the course adopted by Professor Peirce. He says of the terms in question :

" These coefficients will vary very sensibly by a change in the value of the

mean motion of Neptune, arising from a more accurate determination of its orbit.

But the principal effect of these terms can for a limited period, such as a century,

for instance, be included in the ordinary forms of elliptic motion, and the residual

portion will assume a secular form which is no more liable to change from a new

correction of the mean motion of Neptune than the other small coefficients of

the equations of perturbations."

Accordingly, subducting from the terms in question a series of expressions
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which would result from arbitrary changes in the elliptic orbit, there is left a

small residual, mostly developed in powers of the time, and only amounting to a

few seconds in a century, which alone is retained.

With the new perturbations, and revised normal places of Neptune, Mr. Walker

obtained the following final set of elements, which he denominated Elliptic Ele-

ments II.:

7i = 47 12' 6".50

1= 130 4 20 .81

= 328 32 44 .20

1 46 58 .97.

e =.00871946.

It
21".55448.

Epoch, Jan.l, 1847.

From these elements and perturbations we have a continuous ephemeris of

Neptune since the time of its optical discovery. From 1846 till 1851 inclusive,

this ephemeris is found in the Appendix to Vol. II of the Smithsonian Contri-

butions to Knowledge ;
for 1852, in Vol. Ill of the same series, and also in the

Astronomical Journal; and for subsequent years, in the American Ephemeris and

Nautical Almanac.

All the modern observations on which these elements were founded were made

in the ye tars 1846-47, while the planet was moving over an arc of only two and

a half degrees. Considering that the complete determination of the elements

requires, effectively, four observed longitudes, all in different parts of the orbit,

and that three of these positions are included in a space of less than three degrees,

it must be admitted that an accurate determination of the elements was, under

the circumstances, impossible, owing to the imperfections of the observations. As

already remarked, the errors of observation would be multiplied several hundred

times in the elements. Hence, with the best possible observations, the elements

would be uncertain by one or more minutes. But the observations themselves

were mainly differential ones; and it is very doubtful whether the positions of the

stars of comparison were as well determined as the position of the planet itself

could be determined by a series of good meridian observations.

3. The theory of Neptune was next taken up by Professor Kowalski, of the

University of Kasan. His work was published under the title of "
Eeclierc1t.es

sur les mouvements de Neptune, suivSes des tables de cette planete, Kasan, 1855."

The long-period perturbations of the elements are here developed, in their general

form, as perturbations of the co-ordinates. There are, therefore, a much larger

number of terms having large coefficients in this theory than in that of Professor

Peirce.

Owing to this change in the form of the perturbations, the two theories cannot

be directly compared. But the ephemerides resulting from each theory can be

compared directly with observation, and corrections of the elements thence ob-

tained. It is thus found that the elements in question require, approximately,

the following corrections in order that the ephemerides may agree with obser-

vations to 1863 :
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Theory of Walker. Theory of Kowalski.

%n _ 4 11' _ 4 12'
"

Se 52 51

& 3 6 2 53

Sn 8.4 8.5

Thus, it seems that the theory of Kowalski is, on the whole, no nearer the truth

than that of Walker, although it was founded on observations up te 1853, when
the planet had moved through an arc of sixteen degrees since its optical discovery.*
The cause of this failure to derive a more accurate result is an accidental mistake

in the computation of the perturbations of the radius vector by Jupiter, as I have

more fully pointed out in the Monthly Notices of the Royal Astronomical Society
for December, 1864.

4. The form which Professor Kowalski finds his equations of condition to

assume is illustrative of an interesting and important principle of the method of

least squares. By the comparison of his provisional theory with observations,

forty-four equations of condition are obtained for the corrections of the four

elements 7t, e, e, and n. It is then inquired whether it is possible to determine

the orbit of Neptune from the modern observations alone, omitting that of La-

lande, the planet having moved through an arc of sixteen degrees. Treating
the equations derived from the modern observations alone by the method of least

squares, four normal equations are obtained. Two of these equations are, omitting
the terms involving the correction of the mass of Uranus, which we do not need,

10.4994 jn 21.2GG1 8s + 13.0QS8 e%n + 40.2211 e
-

324".65,

26.9661 3n 73.2702 & + 40.2211 e&n + 139.9907 fe = 886 .63,

and the other two can be transformed into the following :

10.4994 in 21.2661 be + 13.0073 efa + 40.2219 & = 324.50,

26.9661 hi 73.2702 fc + 40.2219 efa + 140.0009 be = 886.77.

It will be seen that the last two equations are very nearly identical with the

first two. Hence it is concluded that the modern observations alone give only
two independent relations between the four unknown quantities sought, and do

not suffice, therefore, to determine the elements of Neptune.

Now, the identity in question does not prove that the modern observations are

insufficient to determine the elements, because it is the necessary result of tltc ///<>i/r.

of treating equations of the kind in question by tlie meffuod of least M/tuircx. This

can be most easily shown by a theorem in determinants. By the elementary

principle of determinants, if we have a number of linear equations between the

same number of unknown quantities, of the form

* The differences of the two values of An and Se, which are so small, do not correctly represent the absolute

differences of the two theories, owing to the great difference of longitude of perihelion in the two theories

proceeding from the different forms given to the perturbations. The real difference Kowalski Walker is

given Ijy the equations
<).e8in7r=+ I",
fi.e cos it = 13.
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i +% + CjZ + etc..... =
!,

2x +% + c.2z + etc..... rr n.,,

etc* etc. etc. etc. etc.;

each unknown quantity is given in the form

etc.,

in which R represents the determinant formed from all the coefficients a, b, etc.

in the given equations, and A
1}

A.2,
etc. the partial determinants, obtained by

omitting column a, row 1, column a, row 2, etc.

If, now, the number of equations is greater than that of the unknown quantities,

and they are solved by the method of least squares, the form of the solution will

be the same as the above, except that for R will be substituted the sum of the

squares of all the determinants R, formed by solving separately every combination

of such number of the given equations as is equal to the number of unknown

quantities, and for Al}
A.2, etc., certain powers and products of the partial deter-

minants which enter into the separate solutions. Hence, if these determinants

are very small, the corresponding determinants in the solution by least squares
will be very small quantities of the second order. But the determinants will all

be very small if the equations are nearly equivalent to a number less than that

of the unknown quantities ;
that is; if they can be put into the form

rp

aX+ (3Y+yZ+ etc. + p
= n4,

a'X+ @'Y+ yZ+ztc. + p'
= 6,

etc. etc. etc. etc. etc. etc.;

the quantities X, Y, Z, etc. being less in number than the unknown quantities,

and
p being a very small linear function of the unknown quantities. If the

p's

vanish, all the determinants will vanish with it
; whence, if they are very small,

the determinants will be very small likewise. Calling a system of equations

identical when they really give fewer independent relations than there are un-

known quantities, the theorem sought may be expressed as follows :

If a system of equations differ from identity by a very small quantity, the normal

equations derived from them ivill be identical to small quantities of tlie second order.

Hence, if such a system of equations is to be solved by least squares, it will be

necessary to carry the solution to nearly twice as many decimals as are necessary

in the original coefficients. Thus, in the case under consideration, as Professor

Kowalski considered it necessary to retain four places of decimals in the coefficients

of the unknown quantities, it would have been necessary to include at least six

or seven decimals in the normal equations, instead of only four.

But the necessity for so long a numerical calculation can be avoided by a suitable

transformation of the equations of condition. If the equations are identical,

they really give certain linear functions of the unknown quantities less in number
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thcin the unknown quantities. We may then substitute these linear functions

themselves in place of an equal number of the unknown quantities. If the

equations are not absolutely identical, the coefficients of the other unknown quan-
tities will not entirely vanish by the substitution, and thus we shall still have

the whole number of unknown quantities, only the coefficients of certain of them
will be very small. The solution by least squares can then be performed without

trouble, because the extra decimals will be necessary only in multiplying by the

very small coefficients, when they can be introduced with ease. Afterward the

values of the original unknown quantities can be deduced from those of the linear

functions, and the unknown quantities which have been retained.

Suppose, for example, that the equations of condition are

aft -\- It^j -\- CjZ TO!

a.2x -f-

cnz= nn

A simple inspection, or, at least, an attempt to solve three of the most diverse

of the equations, will show if the given n equations are really equivalent to only
one or two. Then we should put

X ax + $y + yz

the coefficients a, /?, y, being entirely arbitrary, and so taken that when X and Y
were substituted for x and y the coefficients of z should be as small as possible.

It would conduce to simplicity if a and
/?',

or a' and /?, could each be made zero,

which could always be done.

Ifwe attempt to correct the elements of a planet's orbit by observations extending
over only a few degrees, the equations of condition will necessarily be of the kind

referred to. Hence a transformation of this kind will be advisable. An example
will be given in the correction of the orbit of Neptune from observation.

5. Ten years have elapsed since the publication of Kowalski's theory, and

no general revision of the orbit has been published by any astronomer, so far as

the writer is aware. The observations which have accumulated in the mean time

would seem sufficient to fix the elements exactly enough to give the place of the

planet within 5" during the remainder of the present century. It is, therefore,

proposed,
1. To determine the elements of the orbit of Neptune with as much exactness

as a series of observations extending through an arc of forty degrees will admit of.

2. To inquire whether the mass of Uranus can be concluded from the motions

of Neptune.
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3. To inquire whether those motions indicate the action of an extra-Neptunian

planet, or throw any light on the question of the existence of such a planet.

4. To construct general tables and formulas by which the theoretical place of

Neptune may be found at any time, and, more particularly, at any time between

the years 1COO and 2000.

In giving the steps of an investigation like this, the true end should be to furnish

the means whereby every step can be corrected, or verified if already correct, and

to start only from admitted data. Sometimes a result will necessarily depend, to

a certain extent, on an act of judgment, as in assigning relative values to different

determinations of the same element. In this case data should be given for a

revision of the judgment, as far as this may be thought desirable.

Such, with very few exceptions, is the rule adhered to in the present paper.

The data are the published volumes of astronomical observations, and the funda-

jnental formulae of celestial mechanics. The steps will nearly or quite always
be so short that any one may be verified from the preceding one without much
labor.

The author is indebted to the courtesy of the Astronomer Royal, of the late

Captain James M. Gilliss, and of Professor G. W. Hough, for the observations made
at Greenwich, Washington, and Albany in the years 1863 and 1864, which have

added greatly to the reliableness of the results of his investigation.

WASHINGTON, April, 1805.
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CHAPTER II.

PROVISIONAL THEORY OF NEPTUNE.

6. ALL the perturbations have been computed by formulae founded on the

method of La Grange ;
the development of the perturbative function in series,

and the variation of arbitrary constants.

The following notation is used :

I rz mean longitude.

/I mean longitude, counted from ascending node of inner planet on outer one.

<> rz inclination of orbit to the ecliptic.

<y
mutual inclination of two orbits to each other.

a zz ratio of the mean distances.

u =1 sin \ y.

f zz mean anomaly.
o zz distance of the perihelion from the ascending node of the inner planet on

the outer one.

For the other elements the almost universal notation of astronomers is adopted.
The elements which pertain to the outer planet (Neptune) are distinguished by
an accent.

The potential of the disturbing force exerted by one planet upon another, usually
called the perturbative function, may be developed into an infinite series of terms,

each of which shall be of the form

m -, cos (t'T -f- fa +/u' +ja>)U

in which i, i', j, and/ are numerical coefficients. 7i is a function of the ratio of the

mean distances, the eccentricities, and the mutual inclination of the orbits.

Then, by the theory of the variation of arbitrary constants, any term of the

perturbative function in the action of an inner on an outer planet will cause the

following differential variations of the four elements which determine the form

of the orbit, and the position of the planet in it. Putting

e sin 4> (j
rz cos ^ tan | ^ ;

we have ^- 2 mi'ha'ri sin N.
dt

( <11> dh )
-

> cos N, ( 1 )

da fdt' YJ d^^ "c

-j
zz mn'h

]
/' cot A//'+ *y [

sin^
it t

V /

f/Tt' ,/77i
-77- zz mn' cot -f

-r - cos N.
dt dd
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From the first equation and the relation between the mean distance and mean

motion, we obtain

3zz9irf&ffim*y>
dt

These equations are entirely rigorous, provided that we regard the elements in

the second member as variable. But they can be integrated only by successive

approximations. In a first approximation the elements are regarded as constant

Equations similar to (1) for the elements of all the planets whose action is taken

into account being integrated in this way, the resulting values may be substituted

in the second members of (1), and a new integration be performed.

In the case of Neptune, however, the variations of the elements are so slow

that a single approximation will be amply sufficient for a period of several cen-

turies, provided that we adopt suitable values of the elements in the second

members
;
that is, if we add such constants to the integrals that the latter shall

n'
be very small for the present time. Putting v= -

J
i'n'-{-'in

we shall have, on the supposition that the elements as they enter into the second

member are constant,

log a' = mvA cos N-\- a'
,
d = mvE cos jV+ e?

, (2)

I' = mvL sin N-\- n' t + e'
,
ri zz mvWsin N-{- rf0)

A, L, E, and W being given by the equations

A = 2 i'h,

E= h(fcoi<V + W, (3)

*=*+
*

a'
,
n' e',

&
,
and rt are arbitrary constants, dependent on the position and velo-

city of the planet at a given epoch. a and n are, however, dependent on each

other.

For the perturbations of the true longitude in orbit, and the logarithm of the

radius vector, we shall have, omitting accents,

E}sm(N-- f] le*mv{eL
mv{eL eW E}sin(N+ /) -\e>mv {

eL eW+
emv{eL eW E}$m.(N 2/) etc.

+lemt>{eLeW+E}an(N+2f) (4)

+ V <?mv {eL eW E
}
sin (N 3/)

+ e
zmv

{
eL eW+ E }

sin (N+ 3/)
+ W e*mv

{
eL eW E

}
sin (N 4/)

+ etc.

2 May, 1865.
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5 log r =. & log

+ mv
{
2 i'h+ J ?# i e

3^
}
cos JV A rm v

{
c c TF 3#

}
cos (N/)

+ lmv{eL eWE}c,os(N- /) + A^mvj eZ eTF+ 3#
}
cos (V-|-/)

\mv{eL eTF+ J}cos(JV+ /) etc.

+ i em* {
eL eW E

}
cos (N 2/) (5)

\emv\eL eW+ E] cos(N+ 2/)

+ H e
2
mi/

{
eL eW E

}
cos (N 3/)

etc.

By these formulae all the perturbations of the longitude and radius vector have

been computed, except that the computation was so conducted as to reject all

terms above a certain order with respect to the eccentricities. The sum of all

the factors (functions of the ratio of the mean distance) of any power of the

eccentricity in any coefficient in the perturbations of the co-ordinates will generally
be much smaller than each individual factor, as we shall presently show. If, for

example, we have
to = e* (/+/+/") sinN

the sum/+/+/" will, in general, nearly destroy itself, being much smaller than

the individual components,/,/', and/". Hence, if the computation is arranged so

as to include any one of the/'s, it should include all. This end may be attained

by omitting from /*, its differential coefficients, and 7<coti]/, all terms of a higher
order with respect to the eccentricities than the assigned limit. Thus, h being of

the form

if we limit ourselves to the power + 1> we should put

7 dh (7x,
n d'x^; a -

7
- = da =-=

',

da da

s7t cot^= set*-
1

Xl + se'
s + '

( J Xl + xa)
.

*

7. Perturbations of latitude.

The equations which determine the change in the plane of a planet's orbit are

dtt a'ri dR
_

dt
' ~

sin
q>' cos fy dq>'

d<p' _ a'ri dR (6)

dt
'

sin
<p' cos fy

'

dO1

R being a function of /I, ^,', w, o', and y, each of which depends on the position

of the plane of the orbit, we have

dR_ dR d^ dR
<k>_ ,

dR dX dR d^ dR
d$
~

<fa d$
~*~ fa d$

+ dX
d<j>'

~T~
dti d$

"^
dy

dRdR fa dR rfw dR dX dR <k>'dR
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The values of the second of each pair of differential coefficients can easily be

determined geometrically. /I, w, /I', etc., it will be remembered, represent the dis-

tance of certain points on each orbit from the ascending node of the disturbing

planet on the disturbed one : the infinitesimal changes in those quantities, produced

by infinitesimal changes in the position of the plane of either orbit, will be due

entirely to the changes in the position of that node. Let us put

x
1= distance of common node from ascending node of disturbed planet on the

ecliptic.

x zz same quantity for disturbing planet.

By drawing the diagram, it will readily be seen that by a change in <>' the

common node will be moved forward on the disturbed planet by the amount

+ sin x1

cot yd<p',

and on the disturbing planet by the amount

+ sin x' cosec yd<p',

while Y will be varied by the amount

cos x'd<p'.

In like manner, by a change in 0', the corresponding changes will be

cos x' sin <>' cot ydQ',

cos x" sin <>' cosec ydff,

sin x' sin

We therefore have

cZ/l da

1 do'
zz . -M zz cos x cot y,O I 1-1 ,*' fl(V I '

I do
-jfT, cos x cosec y,

dy 1 dy
f-. = cos x'; -.

, jfe = sin x'.
' ' ''

Also, by the differentiation of the representative term of R,

dR mi'h . , T dR mj'li . ,,
-

7
- - zz-- r sin N, -T- =---- sin N,d% a' drf a!

dR mill . ,., dR mjJi . , r
-^- =--- Bin JV, -j

=-- r sin N,
dh a' f?u a'

dR dR du m dh
-j- zz -,

--
r~ zz \ ,

-T-
dy du dy a' du
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Substituting these expressions for the differential coefficients in the values of

.

^ and
rfr

we have

- =. h sin y> sinN
{ (i' +/') cot y + (i -\-j) cosec y }

-
-j- cos \y cos it cos N.

(id) tt Q> du
-

(id)

1 dR m
(tsin <> dQ

Let us now put

..
, ,.

i'+/)co
m dli

cosecvj i ~,
-

r
-

It may be remarked that i will then be the coefficient of the longitude of the

common node of the orbits in the usual development of the perturbative function.

The above equations may then be put into the form

dR m
-I , T m

, 1 . f. I 1 I AT 1
m 'fa

I 7
-r= rih cosec y sm / sinN -7 (V + f) ft tan A y sm x' sinN 1 ? -5- cos -1 y cos x cos N.

dip a! a ^ a du

1 dR m , . . ,r wi , ,, , . . ,,.
m dh

-~j- th cosec y cos x' sin IV -(- (t
T
+/) A tan J, y cos x' sin /v y cos

sin <f
dtf

Substituting these expressions in (6), and integrating, we shall have the values

of && and &$', the perturbations of the inclination and node.

For the perturbations of the latitude, counted in the direction perpendicular to

the plane of the orbit, we shall have

Where

Putting

$(?= %$ sin (^ 0') sin$W cos (tf 9)

= mv sec ty{T+I} sin (N+ V)

+ mv sec 4/ {
T 1} sin f^ F)

T \
~ cos } y ;

/= ^ 7i
{

t cosec y + (t
v

+/) tan J y }

V= true distance of planet from common node.

i T
i *

(7)

and developing Fin terms of ^, and/ to terms of the second order with respect

to the eccentricity, we shall have

+ <f sin (#;+*,+ /)
d sin (N'+ % /) -f-

sn T , /)

(8)
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For the perturbations of the constants which determine the position, of the

orbit, we put
p= sin < sin 6 ; q= sm<pcosQ;

t longitude of common node of the two orbits.

We then have

$// =z 2 mv {/sin t cosN ^cos t sin N] ;

&c(= 2 mv
{
Icos T cos N-}- Tsin t sinN

}
. (9)

Or, f/= mv{(I T)sm(N+r) (I+T)sm(N *)}>,

V= mv
{ (I T) cos (N+ T) + (7+ T) cos (Nr) } ;

8. The equations (2) and (9) determine the periodic perturbations of the

elements. For the secular variations, which proceed from those terms of the

perturbative in which both i' and *' are zero, the same expressions apply, only

changing
v sin JVinto n't Cos N ;

v cos JVinto n't sin N.

We therefore have, for the secular variations,

dl'

-jj-
mri L cosN;

de! .

-^ mn A) sin Jy ;
dt

= mn'W cosN; (10)

-~- =. 2 mn' {I sin t sin N-\- T cos t cos N} ;
U-t

^r 2 mn'
{ IQ

cos r sinN Tu sin r cos N} .

ctt

Owing to the smallness of the eccentricity of Neptune, it will l>e advisable to

substitute the rectangular co-ordinates of the centre of its orbit for the eccentri-

city and longitude of perihelion. The perihelion itself is subject to changes so

great that it would otherwise be necessary to develop the perturbations to

quantities of a higher order than the first. We shall, therefore, put

II-=.G sin 7i ;
lt e cos n.

For the secular variations of h and k, we then have, to a sufficient degree of

approximation,

dk
sn

9. Development of the action of an inner on outer planet through the Sun.

The perturbations which one planet produces on another may be divided into

two distinct parts.
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1. Those produced by their direct attraction on each other.

2. Those produced by the displacement of the Sun by the attraction of the

disturbing planet. The co-ordinates of the disturbed planet being counted from

the centre of the Sun, the displacement of the Sun not only changes the value

of the co-ordinates by changing their origin, but also by modifying the attraction

of the Sun itself.

The perturbations of both classes may be included in the same formulas, and

the total perturbations computed in the same way that those of the first class

are, by a very simple modification of those functions of the ratio of the mean
distances which enter into the different values of h. But in the case of the action

of an inner on an outer planet more than twice as far from the Sun, this method

will be subject to this serious inconvenience; that the perturbations of the

elements are many times greater than those of the co-ordinates. Referring to

formulas (4) and (5), it will be remembered that L, E, and W really express per-

turbations of the mean longitude, perihelion, and eccentricit}
r
,
and it will be seen

that the perturbations of the true longitude fe are expressed as a function of the

perturbations of those elements. Now, having in this way computed the perturb-
ations of any co-ordinate which depend upon the different terms of the perturbative

function, when we collect those coefficients which are multiplied by the sine or

cosine of identical angles, we shall frequently find that their sum will nearly vanish,

as has been already remarked. As this circumstance depends on a theorem of

some importance, which will furnish a valuable check on the developments we
shall presently give, it is worth while to trace it to its origin.

The elements of a planet depend on its position and its velocity at a given epoch ;

each element is a function of the co-ordinates, their differential coefficients, and

the time, or, representing an element by a, and putting, for shortness,

t
dx _ dy dz

t-dt^-di^-dt'

we have six equations of the form

an =f(x,y, z, , >?, , f) (12)

When we express the co-ordinates as a function of the elements and the time, we
have

x, y, or z f (al}
a.2, a3, a4, a6, ae, f) (13)

Substituting for the elements the values just given, , y, and must vanish iden-

tically in the value of each co-ordinate. If, now, the changes in
, >y, and ^ are

of a higher order of magnitude than those in x, y, and z, the co-ordinates will he

subject to smaller variations than the elements.

Suppose, now, that one of the co-ordinates is affected with an inequality of

which the period is very short compared with that of the revolution of the planet.

Represent it by
c sin (pnt -f- e

)
.

Its differential coefficient will be

pnccos
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Since the elements contain this coefficient, and therefore include terms in which

the large number p multiplies the coefficient of the angle, their perturbations will

be much larger than that of the co-ordinate. But, in passing from the perturb-

ations of the elements to those of the co-ordinates, these large terms must destroy

each other.

Let us apply this principle to the case under consideration. That portion of

the perturbative function which arises from the action of an inner planet on the

Sun may be developed in a series of terms of the form

*
t (X

c representing a number, not a line.

It therefore becomes infinite when a is infinitely small.

The second differential coefficient of the perturbation of any rectilineal co-

ordinate of the outer planet will be of the order of magnitude

. dR me
-j-f -r cos ^>
da' a-

putting N= iT + & + G.

Q
If we integrate this differential, and develop the quantity .,

. according to
i n ~\~ in

7?
o

the powers of =. ~, the largest terms in the first differential coefficient of the
(I,',

n a'*

co-ordinates will be of the form
me .

sm 2V.

This also will become infinite when a is infinitely small; and since the perturb-

ations of the elements contain these terms, it follows that they also will be infinite

in this case. Finally, by another integration, we shall have for the largest per-

turbations of the co-ordinate itself

men

-^j-
cos N,

which will vanish when a is infinitely small. Hence, in the case under consider-

ation, although the perturbations of tlie elements become infinite, those of the co-ordi-

nates vanish.

The co-ordinates referred to arc linear. The order of magnitude of the angular

co-ordinates, or the logarithms of any linear co-ordinate, will be given by dividing

by a'. We shall, therefore, have for largest term in the perturbations

8v, $3, or & log r =. mca N.
cos

Hence, when we collect the perturbations of the co-ordinates due to the cause in

question, all terms of a higher order of magnitude than this ought to destroy each

other identically.
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10. That portion of the perturbative function which is due to the action of

the inner planet on the sun is

r'

-5 cos Vr

V being the angular distance between the planets. Developing it in a series of

terms of the form

cos (m +
\JL

f*

h will be of the form -# c being a numerical coefficient, multiplied by powers of
GC-

the eccentricities and mutual inclinations.

From this development, and the equations (3), (4), (5), (7), and (8), I have

computed the following analytical values of the coefficients for the perturbations

of the longitude, latitude, and logarithm of radius vector.

a
Vft

:^ 25
a

6 ^3
2

(17)

2 Vu 3

=e

= e
2

( \l v, + V ^9
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= net
(

= ue( 2

The values of JVW are as follows :

N< = X K

= - a,' + 2 A o

2 a/ a <y

a *f- o' - 2 o

= _^'+3^ 2o
= 2A a -co'

= 3 A' ^ 2<y

_a,'_2o)
3o>'

a'

vf

(19)

^ 2/1' 2/1

2

2 6>

zz 3
(20)

A'+ 2^ 2 o'

4/1' /L 3o>'

From these values ofN the corresponding values of v are derived, remembering
that

ri
~

'

i' and i being the coefficients of /I' and 2. respectively in the value of N.

The check on the correctness of the preceding values of V, R, and B may now

n
be applied by developing v in powers of

,
and retaining only the first term

;
/&

that is, by putting v z= ^, v
2 =. 0. Making these substitutions, all the values of

%

V, R, and B will be found to vanish. In other words, [j?
will be the lowest power

of
/j.
which will enter into the values of V, R, or B, as we have already shown from

a priori considerations.

For convenience, we shall give the values of V, R, and B developed according to

the powers of n, the ratio of the mean motion's, a form similar to that in which

the lunar inequalities are developed in the theory of the moon. Putting

we have

sy

May, 1865.
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We shall also put
V rV

Vyi
-a*-ff
_R _cR

^-a3 -^'
B cB

c being a constant, equal to unity if we neglect the change of mean distance pro-

duced by the action of other planets. We then have

! sin N,
8 log r= mac^R^ cos N, (21)

sin N.

Substituting the above developments for the vs in V, R, and B, we have

Vf = (1 uz

i-e
2

) (
1 i? 6

fj.

s 19
ft

4

)

+ ^(1 2(j.
2

30p
8

)

VV =>(- |- f;U
2 -

\lt?)

i^
2 + fl

3 + f|M
4

)

1

2 + V3 + 25^)
3^

2 27 ^
3 135 ^

4

) (22)

_ ^
(
_ y _ y ^_ 2|

25

_l_4 2 24

=^
( I 6^

2
3(V 116 ^

4

) (23)

zre2

( f TV^
2-

i
1^3

)
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Such arc the formula} by which we shall proceed to compute the perturbations
of Neptune by Jupiter, Saturn, and Uranus.

It will be noticed that the coefficient of
ft

vanishes identically in the last de-

velopments. I have not completely investigated this law, but it seems to arise

from the circumstance that that portion of the perturbation in question which

proceeds from the change in the origin of co-ordinates is independent of
(i,

while

that portion which is caused by the modified attraction of the Sun is of the order

of magnitude ^. It furnishes a yet more valuable check than the last on the

developments.
11. Allusion has already been made to the complications introduced into the

theory of Neptune by the near approach of its mean motion to double that of

Uranus, and the consequent oscillation of all the elements of its orbit in a cycle

of 4300 years of duration. In order to construct a dynamical theory which should

be correct within a tenth of a second through the whole of one of these cycles, it

would be necessary to include many terms dependent on the second, and perhaps
some dependent on the third power of the masses of the disturbing planets.

If this task were accomplished, the necessary uncertainty in the mass of Uranus

and the elements of Neptune would destroy all the value of the theory. A change
of one-tenth in the mass of Uranus would produce a change of 200" in the co-

efficient of the perturbation of the mean longitude. The mean motions of Walker

and Kowalski being each about 8" in error, the place of the planet from this cause

alone would be in error by nearly 10 at the end of a cycle.

After much careful consideration of different ways of relieving the theories of

Uranus and Neptune from the complexities introduced by the large perturbations

referred to, I finally determined to develop them not as perturbations of the co-

ordinates, but of the elements. It will readily be seen that if the eccentricity or

perihelion is greater than the mean during several revolutions of the planet, there

will be a perturbation in the radius vector and longitude having nearly the same

period with the revolution of the planet, although the latter may really scarcely

wander from a true elliptic orbit during an entire revolution. In such a case it

is clearly best, in constructing a theory designed to remain of the highest degree

of exactness for only a few centuries, to take not the mean values of the elements,

but their values at a particular epoch during the time the theory is expected to

be used.

In doing this, we shall be treating the change in the elements in the same way
that the secular variations are usually treated. These variations are really

periodic, and in a perfect theory would have to be treated as such. But the

elliptic elements on which all our planetary theories are founded are not mean

elements, but elements brought up by secular variation to the epoch 1800 or 1850.

Thus, our perturbations of the elements will be of the form

01 IT

Sa zz c -f aj + 2a2 {kt-^-s},cos

iji which a' is the secular variation proper, k a small coefficient equal to 2 ri n

or its multiples, and c a constant added to the integral, of such value as to make

&a vanish at the epoch 1850.
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12. Adopted dements and masses.

The elements of Neptune adopted in the computation of the perturbations are

obtained by correcting those of Walker so as to agree with the Lalande obser-

vations, and as nearly as possible with seven normal places derived from the

modern observations from 1846 to 18G3. The latter series is thus represented
within a second of arc. As these elements are merely provisional, it is not worth

while to give any details of the corrections, except their amounts, which are as

follows :

& = 4 11' 18".6
; n = 43 3' 18".G

be = .00025451; e =.00846495
&n = 8".40G

;
n = 7864".3G8

& -_ 3' 5".92 ; e = 335 5 31.10

log a = 1.4780405

i 1 47' 1"

n 130 7 20

Epoch, Jan. 0, 1850, Greenwich, M. noon.

To obtain the value of log a, the mean motion was diminished by the secular

variation of the longitude of the epoch = 21".354. A more exact value of this

quantity will appear, in the course of our computations, to be 21".4426.

The provisional inclination and longitude have been taken from Walker without

change, as the small corrections which his values of these elements may require

will not affect the perturbations.

The adopted elements of Uranus, Saturn, and Jupiter, with their functions

used in the theory for the same epoch, are as follows :
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The values of those constants which depend on the ratio of the mean distances

are as follows, using the notation of the Mecanique Celeste :

L URANUS AND NEPTUNE.

c/i
(

; rf^Ts i
dK d'V?

I
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II. SATURN AND NEPTUNE.

i
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ACTION OP URANUS.
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IV.-
-j
= 0;j'= 1; i = 0.
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VIIL y=0;/ = l; 6 =



26 THE ORBIT OF NEPTUNE.

xn.-,-=-3;y=o.
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ACTION OF SATURN.

if
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IV.-/=0; /' = -!.

h
aDah
De'h
L
E

JV 3/

i log r -=- cos N
(W- /)

3

+ 4

0.07

-8.1

-8.1

+ 0.049

+ 0.001

2

3

0.17

0.50
-19.5

1.5

-19.5

0.006

1

2

0.30

0.57

-35.5
1.9

-35.5

0.011

_|_0.156 +0.410
-j-

0.002 + 0.004

1

+ 0.116

+ 0.38

+ 13.8

+ 1-1

+ 13.8

+ 0.012

0.291

0.003

3

1

+ 9.171

+ 1.560

+ 1083.89
1.46

+ 1083.86

0.086

(127.63)
1.348

0.015

+ 29
-1344

17

2

1

+ 5.704

+ 6.43

+ 673.05

+ 36.64

+ 673.10

0.600

+ 22.056

+ 0.233

+ 0:003

9

+ 232

+ 3

+ 2.37

+ 5.02

+ 277.7

+ 18.6

+ 277.8

//

.
0.134

+ 3.995

+ 0.042

2

+ 42

+ 1

4

3

+ 0.89

+ 2.8

+ 103.6

+ 8.6

+ 103.6

//

0.040

+ 0.955

+ 0.010

-j

+ 10

+ 0.32

+ 36.7

+ 36.7

+ 0.249

+ 0.003

De'h

2

+ 3

+ 0.7

0.006

2

0.04

//

0.000

1

+ 0.07

0.002

1

0.26

+ 0.031

2
1

0.44

0.014

3
2

0.39

//

0.006

VI.-j=l; j' = 2.

i

De'h

rfw-s-sin (N /)

2

+ 3

0.000

1

0.000 0.000

1

0.11

//

+ 0.013

2

1

0.14

//

-0.005

2

+ 0.46

//

+ 0.007

VIL =

V
i

h

L

SI -=- sin N

\

+ 3

+ 0.3

+ 0.4

+ 1.5

+ 0.006

2

0.03

0.05
0.2

0.001

1

1

+ 0.18

+ 0.34

+ 0.95

2

+ 0.66

+ 1.44

+ 2.22

+ 0.008 +0.065

+ 0.48

+ 1.51

+ 5.7

0.129

4

2

+ 0.27

+ 1.08

+ 3.2

0.026

5
8
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vm._y- !;/-

i'
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XII.-^= !;/ = 2.
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ACTION OF JUPITER.

The direct action of Jupiter is so nearly insignificant that the details of the

computation are omitted. The only terms in the longitude exceeding one hun-

dredth of a second, and not sensibly confounded with the elliptic elements of

Neptune, are

0".278sin (% X)

+ .019 sin 2
(tf A

ACTION. OF VENUS, EARTH, AND MARS.
The only appreciable effect of the attraction of these planets is found in the

relation between the radius vector and the mean motion. The coefficients of the

perturbative function which correspond to the case when both i' and i are zero

introduce changes as below into the secular variation of the longitude of the

epoch. Those which correspond to the term in which N=X o' introduce con-

stants as below into the logarithm of the radius vector. For the sake of com-

pleteness we include the similar perturbations produced by Jupiter, Saturn, and

Uranus, as already computed :

de

It

Action of Venus, + 0".0403 11

Earth, + .0444 12

Mars, + .0059 2

Jupiter, +15.3571 4240

Saturn, +4.8687 1344

Uranus, + 1 .1261 311

Total, 21.4425 5920

The principal term of y , and, indeed, the entire portion not multiplied by the
at

second power of the eccentricity, is

while the principal term in 8 log r is

8 lo r =

The effect of these terms might, therefore, have been included in the mean
distance as a single term, without appreciable error.

14. Perturbations of Neptune l>y Saturn throuyh the Sun.

These perturbations, it will be remembered, have been omitted in the preceding

computations, from reasons already set forth. They have been computed by
formula) (16) (19), and are as follows:
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- 20".536 sin (X X)

0.007 sin (2 a/ 2 ;i o' +
+ 0.530 sin

(
a' + 2 a o)

.059 sin
(A, -co')

.340 sin (2 X a o')

+ .022 sin
(

51' + 3 a 2 o
. .007 sin (A/ + a 2 u)

.002 sin (2 a, o o')

ACTION OF SATURN.
8 log r =

+ 345 cos (a/

+ 10 cos
( 3,'+ 2 A w

)

2 cos (* o')

+ 3 cos (2 a' a, o')

15. Perturbations of the elements. Collecting and adding up the coefficients

of all sines or cosines of the same angle in the perturbations, \ve find them as

below. For 2, and a, their values, I t and -n t, are substituted. We shall

first collect those terms which are developed as perturbations of the elements,

namely, the secular variations, and all terms in the action of Uranus in which

i' 2 i. We find them to be as follows :

+ 125".67 sin (2 7' 7)

0.42sin (27' I 2n)
-0.36 sin (2? l+n if)

+ 0.14sin (2 1 I + Tt' TI)

30".93 sin (4 Z' 2 7 TI)

+ 8 .03 sin (4? 27 Tt
7

)

0.03sin(47' 27+7^ 27t)

+ 2".62 sin (6 7' 3 7 2 7t)

1.37 sin (62' 37 rt n)

+ 0.17sin(67' 37 2
71')

+
+
+

2163".60sin(27' 7 TI)

14 1.69 sin (2 7' 7
TI')

0.56 sin (27' 7+ TT' 2 ?t)

0.21 sin (27' 7+7t 2 7t
/

)

1 .08 sin (27' 7 +71 2 T)

O.OSsin (27' 7+Tt' 2r)

= + 125".G7 cos (2 ?'
7)

+ .42 cos (21' I 2 TT)

0.36 cos (27' I it + 71}

+ 0.14cos (27' 7+ rf n)

30".93 cos (4 7' 2 7 n)

+ 8 .03 cos (4 7' 2 7
7t')

.03 cos (4 7' 2 7+ it 2*)

+ 2".62 cos (6 7' 3 7 2 n)

1.37 cos (6 7' 3 7 Tt' 7t)

+ .17 cos (6 I 37 2 TI')

+0".003U

a= 1232 cos (2 7' 7 n)

+ 92 cos (2 7' 7 rf)

+ 85 cos (4 I' 2 7 2 n)
44 cos (4 7' 27 T^ n)

+ 6 cos (4 7' 2 7 27^)

71".93 sin (4 7' 2 7 2 n)

+ 38 .09 sin (4 7' 27 TI' 7t)

4 .99 sin (4 7' 27 2
7t')

+ 4".36sin (67' 37 3
TI)

-3.27 sin (6 7' 3 7 Tt
7

27t)

+ .85 sin (G 3 7 2 rt n}
0.08 sin (07' 37 3^)

+ 2V.4425 i
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= rMlsin (2 f I 71+ T)

.72 sin (2 P I T)

+ .16 sin (2 I' I 71!+ r)

+ .15 sin (2 ? Z TI' T)

2".98sin (4P 2Z T)

0".0110

l".ll cos (2 Z' Z n + T)

+ .72 cos (2 P I n T)

+ O.lGcos (2Z' Z 7t+ T)
.15 cos (2 1' I rf T)

2".98cos(4Z' 2Z T)

+ 0".0001<

16. Perturbations of the co-ordinates Comparison with PEIRCE and KOWALSKI.

The first column of the following tables gives the coefficients according to

Peirce (Proceedings of the American Academy, Vol. 1, pp. 287-291) ;
and the

second, the values according to Kowalski (Recherches sur les mouvements de

Neptune, pp. 14-16). In the case of Uranus, Peirce's coefficients have been

increased by + 3*5-*
^ reduce his mass of Uranus to the adopted one. The

coefficients enclosed in parentheses are not comparable, as they include the effect

of terms now developed as perturbations of the elements, and therefore omitted

from the perturbations of the co-ordinates. The perturbations of the radiua

vector have been reduced to logarithms by multiplying by

I. ACTION OF URANUS.
c5 log r=

-206".91)
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ACTION OF URANUS (Continued).

p.

(-0.01)
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II. ACTION OF SATURN.

P. K. N.

18".60 18".12 18".552 sin (V I)

+ 0.15 + 0.15 + .141 sin 2 (V I)

+ .02 + .03 +0 .012 sin 3 (V I)

+ .06 +0 .000 sin 4 (V I)

+ 0".002 sin
(

V + I * + )
- .006 sin

(
2 V 2 I ir

1 + r)

<! log r=
P. K. N.

+ 398 + 393 + 397 cos (f
.

+ 4 0+4

+ .54 + 53 + 0".524 sin
(

+ .01 .10 +0 .008 sin
(

+ 1 .319 sin
(

- .28 + 1 .09 - - .280 sin
(

- .02 - - .17 - .023 sin
(

.004 sin (

I' + 21 -ir) + 12 + 11 + 9cos( I' + 21
it)*) 2 + 2 cos

( I K)

ff) 34 cos
(

V
TT)

2 V I n) 6 - - 20 - - 7 cos
(

2 V I
TT)

3J'_ 21
TT) lcos( 31' 21 *)

4l' 8l K)

- .08 - - .09 - - 0".080 sin
( I

TT')

+ .136 sin
(

I'
u')

- .22 + 3 .85 - - .228 sin (2 I' I
TT')

+ .01 + .04 +0 .008 sin (3 I' 2 I
TT')

+ .001 sin (4 I' 3 I K')

+ 0".022 sin
(

I' + 3 I 2
jr)

+ .10 - - .008 sin
(

I' + I 2 TT)

+ .004 sin
(

21' 2 w)
+ .13 +0 .037 sin

( 3 I' 1 2*)

- 0".002 sin
( 2 I n'

?r)
- .002 sin

(
V + I TT'

TT)

+ .020 sin (2 I' V
jr)

+ .10 .029 sin (31' I *'
ir)

+ 0".005 sin (21' 2 *')
- .75 +0 .006 sin (3 I' I 2

TT')

,5/3
=

+ 0".309 sin
( I T)

+ .045 sin
(

I' T)
.005 sin (2 P I T)

3 3 1 cos
(

I
ir')

+ 3 + 47 + 5 cos (21' I
*')

III. ACTION OF JUPITER.
Sv =

.

_ 34".09 32".C7 34".121 sin
(/' I)

+ 0.02 + 0.03 + 0.019sin2(J' I)

.14 +0 .003 sin 3 (f I)

+ 0.11 - .009 sin (2V 21 TT' +

+ 0. 82 +0 .84 + 0-.801 sin
(

P + 2 I
TT)

.07 + .003 sin
( I

TT)

+ 2 .358 sin
(

I'
TT)

- .01 + .19 .010 sin
(

21' I n)

- 0.14 - - .15 --
0".143sin( I w')

+ 0.117 sin
(

I'
ir')

.42 - - .48 .432 sin (2 I' I *)

S log r =
P. K. N.

+ 719 + 683 + 701 cos (V I)

+ 1 cos 2
(I' I)

+ 17 + 17 + 18 cos
(

/' + 2 / + r)

+ 51 cos (
I'

)

6 27 2 cos
( /

')

2cos( /'
n-')

+ 6 + 135 + 7 cos (2 V I V)
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ACTION OF JUPITER (Continued).

6v = (! log r =
P. K. N. P. K. N.

+ 0".030 sin
(

/' + 3 I 2 TT)

.011 sin
(

I' + J 2
TT)

+ .004 sin (
2 I' 2 w)

+ 0.10 0".005 sin (2 I ir
1

TT)

+ .028 sin (2 V ir
1

)

<?/?
=

+ 0".5G4 sin (I T)

+ .039 sin
(I' r)

By comparing the different authorities for the coefficients, it will be seen that

while our present results agree very well with those of Professor Peirce, the

agreement with Professor Kowalski is in many cases very far from being satis-

factory. It will be observed that the latter differ most in the case of those terms

whose coefficients depend on the action of the disturbing planets on the Sun, and

we have also seen that these terms are ordinarily developed as small differences

of very large quantities. They are, therefore, the terms, into which errors would

most easily creep.

The terms enclosed in parentheses are not of great importance, because they
are for a long period sensibly confounded with the elliptic elements. Notwith-

standing that one of these terms amounts to more than half a degree, and others

to several minutes, the effect of the whole of them could scarcely be discovered

from all the observations hitherto made on Neptune.
17. For the purpose of tabulating and computing an ephemeris, it is expedient

to change the form of the perturbations by Uranus. Consider any two terms in

which the coefficients of 7 are equal, but of opposite signs :

&v =PI sin
{
si' iA u

} -f- Pi sin
{
si' -\-iA o> }

where

The terms may then be put in the form

{ (p.2 p^) sin o sin iA + (PI + p\) cos a cos iA
}
sin si'

{ (pz pj) cos sin iA (p2 -f p^) sin &> cos iA
}
cos si'

So that we may put

$v = to. + P,.t sin I' + P,t cos Z'+ Ps .2 sin 2 I+ Pc .2 cos 2 1'

8 log r 5 log r -f- Rtl sin Z' -f- P^ cos Z'

where &v, P, and R are functions only of A, and may be tabulated as such.

18. For Jupiter and Saturn, if we neglect those terms of which the coefficients

are less than 0".03, it will be more convenient to tabulate the perturbations

directly. This course we shall adopt, except with reference to those perturb-

ations which depend on the mean longitude of Neptune alone, and do not contain

the mean longitude of the disturbing planets. These have been omitted by both
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Peirce and Kowalski, as may be seen by reference to the preceding values of their

coefficients. They are, in fact, very nearly confounded with the elliptic motion

of the planet, but not exactly. We shall, at present, retain only the small resi-

duals, after subducting those portions which are sensibly elliptic. The entire

terms are as follows :

1. In the longitude.

Action of Uranus, + 0".385 sinZ 0".092 cosZ 0".014 sin 2 1 0".002 cos 2 1

Saturn, + 0.099sinZ 1.412cosZ 0.018sin2Z 0.020cos2Z

Jupiter, +2.393 sinl 0.567 cosZ + 0.018 sin 2? 0.029 cos 2Z

Total, + 2.877sinZ 2.071 cos? 0.014sin2Z 0.051 cos2Z (a)

2. In the logarithm of radius vector.

Action of Uranus, -f- 1 sin Z +14 cos I

Saturn, 34 sin I

Jupiter, 11 sin I 51 cos I

Total, 44 sin Z 37 cos Z
(Z>)

Changes in the functions e sin 7t and e cos n, represented by 5/t and 8k, will pro-
duce the following changes in the longitude and log r,

to = 2 Sfc sin Z 2 Mi cos Z + f (We 7tM) sin 2 Z | (7^7i + Jfik) cos 2 Z

<5 log r M /i sin Z M&k cos Z.

Taking the elliptic terms to be subducted so that the coefficients of sin Z and cos Z

shall vanish, we must put

M = + 1".03G
; & = + 1".438,

which will produce the inequalities

to = + 2".877 sin Z 2".071 cos Z + 0".007 sin 2 Z 0".037 cos 2 Z

6 log r 21 sin Z 30 cos Z.

Subtracting these elliptic inequalities from (a) and (I), we have for the residuals

to = 0".021 sin 2 I 0".014 cos 2 Z

<51ogr 23 sin Z 7 cos Z.

So that the constants of /* etc. are

Constant of Psl

P*=
Ps2 -_0".021
Pc,= 0.014

#,! = 23

3a =- 7
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The constant terms in the coefficients Bsl and Bcl ,
which give the perturbations

of the latitude, may be omitted without any error amounting to one hundredth

of a second.

19. The form of the preceding perturbations being different from that of the

perturbations computed by Professor Peirce, the elliptic elements are next pro-

visionally altered, so that the provisional theory shall be substantially identical

with that already adopted. Small corrections have also been applied to the

constants which determine the plane of the orbit.

The provisional elements finally adopted for correction are as follows :

e = 335 5' 25".97

n=
7i =
fc =
p=
q=

7864.421

+ 1192 .93

+ 1279 .36

+4910.17
4137.46

Epoch, 1850, Jan. 0, Greenwich mean noon. Unit of time, 365.25 days.

e= 0.00848055

e (in seconds) 1749".24

i 147' 1".95

n 42 59 52 .0

n 1-30 7 6.7

log a 1.4787523

The perturbations of the preceding elements are expressed in the following
form :

Put M= 21' I

Then,
and

T Number
j)f

centuries after 1850, Jan. 0.

M 281 43' 48" + 8 26' 10".7 T;

$h = 125".42 sin
(
M 16'.3)

+ 36 .08 sin (2M+ 1 50')

+ 3.58 sin (3M+ 3 42')

+ 1".32 T+ constant.

3Jfe = 126".17 cos
(
M 6'.2)

+ 36 .08 cos (2M+ 1 50')

+ 3 .58 cos (3 M + 3 42')

+ 0".31 T -\- constant.

2247".52 sin
(
M 170 32' 23") 5 log a = 1286 cos

(
Af+ 9 8')

+ 98 .57 gin (2M+ 183 24'.1) + 115 cos (2 M+ 4 0')

+ 6 .81 sin (3M+ 186 14') + constant.

+ 2144".26 T+ const. + const. X T.

+ 2 .98 sin (2M 155 38')

+ 1".10 T+ constant.

M 61 0')

+ 2 .98 cos (2M 155 38')

+ 0".01 T+ constant.
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The constants being so taken that the perturbations, and also the differential

coefficient of 81, shall all vanish at the epoch 1850.0. These perturbations are

given for the beginning of every tenth year, from 1GOO to 2000, in the following
table :

SECULAR AND LONG-PERIOD PERTURBATIONS OF THE ELEMENTS OF NEPTUNE FROM

1GOO TO 2000.

Date
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dv . dv
.
dv

For the period during which Neptune has been observed, we have, to a sufficient

degree of approximation,
dv

dl

,

-jj- 2 COS /,
an,

d log r-
dh

-f- =. COS V,
dp

= 1,

dv 0-7
-jj- = 2 sm Z:
dk

d log r _
~~dk~~~

d{3
-j = sin v.

dq

Theyalues ofPs_i,
Pc ,t , etc., derived from the perturbations by Uranus, are, putting

A =: mean longitude of Uranus, minus that of Neptune,
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The other terms in the longitude, logarithm of r, and latitude, representing the

mean longitude of the planet by the initial letter of its name, are :

Sv, = 2". 949 sin A 0".002 cos A 6r,= 314 cos A
9.942sin2J. 0.094cos24 + 162cos2X
1.967 sin 3 A + .016 cos 3 A + 38 cos 3 A
0.610sin4.4 +0.004cos44 + 13cos4^1

0.237 sin 5 A -f 6 cos 5 A
0.104sin64 + 2cos64

.041 sin 7 A

.017 sin 8 A

.007 sin 9 A

+ 18".552sin (S N) + 397 cos (S W)
- .137 sin 2 (S;/) + 4 cos2 (S JV)

.012 sin 3 (S #)
0".524cos(2S N) + 10 sin (2 S N) + lcos(2S JV)

- 0.058sin5 + 0.047cosS + 4sin(S 2N) + 4 cos (S 2 JV)

+ O.lGGsin (S 2N) .436 cos (S 2 N) + 70lcos (JN)
+ 34.121sin (J N) + 4sm(2JN') + 18cos(2^ N)
- 0.011 sin 2 (J N) 5nin(J2N) + 4 cos (J 2N)
+ .783 sin (2 J N) .104 cos (2J JV)

.101 sin J" + 0.007 cos J
+ .326sin(^ 2N) + .297 cos (J 2 If)

<5/3.
= 0".302 sin S + 0".OG5 cos S + 0".041 sin J + 0".5G3 cos J.

It will be observed that in the perturbations of the longitude by Jupiter and

Saturn we have neglected a number of small terms, the coefficients of the four

largest of which are each about 0".03. The probable error in the theory pro-

duced by this neglect is 0".04, and it was judged best, therefore, not to encumber
it with them. But, should any one wish to include their effect, it can readily be

calculated. Then, we have

Provisional longitude of Neptune, referred to the mean equinox

rr Precession, + Longitude in pure elliptic orbit, from elements page 39

+ M+ CP..I + 2 3&) sin Z+ (Ptl 2 3A) cos I+ P,.2 sin 2 1+Pc ,2 cos 2 1+ Sv,

-f- Reduction to ecliptic.

Common logarithm of the radius vector

= Log. radius vector in elliptic orbit

- .0005920 + 8a + (fltl MSK) sin I + (R^ MM) cos I + 8r .

Latitude

Latitude in elliptic orbit (the longitude being increased by the perturbations),

sin v + ,! 8 cos v

I is the mean longitude of Neptune, and v its true longitude in orbit, referred

to the mean equinox of 1850.0.

20. These formulae give the following heliocentric positions of Neptune :

6 May, 1865.
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Heliocentric co-ordinates of Neptune, referred to the mean equinox of date,
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From these heliocentric positions are concluded the following apparent geocentric

positions, corrected for aberration, for the dates of the normal places to be given
in the next chapter.

Date.



CHAPTER III.

DISCUSSION OF THE OBSERVATIONS OF NEPTUNE.

21. DURING the four years following the discovery of Neptune, observations

of this planet, both meridian and extra-meridian, were very numerous. If the

results of all these observations were free from constant errors, and, therefore,

strictly comparable both with themselves and with subsequent observations, their

combination would give very accurate positions of the planet. Unfortunately,

however, we cannot assume that observations of different kinds, made at different

observatories, are strictly comparable, nor have we, in many cases, the data for

reducing them to a common standard.

Let us consider, for instance, the meridian observations. Under the title of
" Meridian Observations of Neptune," we find in astronomical periodicals series of

observed Right Ascensions and Declinations. But right ascensions and declinations

can never be really observed with any instrument. Only times of transit, and the

readings of micrometers and other instruments, are really observed. The right

ascensions and declinations of the planet are concluded from the observations, by
the aid of a great number of subsidiary data, some relating to the stars, others

to the instrument. Respecting these data we have, in most cases, absolutely no

information whatever. But a knowledge of some of them, at least, is indispen-

sable. Even if we grant that the instrumental errors are in all cases perfectly

known for every observation, we still do not know either the names or the assumed

right ascensions of the stars used in determining clock errors. Hence we cannot

use the results, because the right ascensions given in standard catalogues not

unfrequently differ by a second of space.

The declinations of the planet are sometimes determined by comparison with

standard stars, sometimes by measures of nadir distance, combined with the lati-

tude of the observatory. The Paris observations are reduced by the former

method
; those of most other observatories, by the latter. Using the latter method,

it would naturally be supposed that the declinations from the observations of all

observatories of which the latitudes are well determined ought to agree. But

such is far from being the case. Compare, for instance, the declinations of funda-

mental stars concluded from observations with the great transit circle at Green-

wich with those in the Tabulse Reductionum of Wolfers, and we shall find that

for stars more than 45 from the pole, the Greenwich positions are systematically

nearly a second south of Wolfers', an amount greater than the probable error of

a single isolated observation. We cannot impeach either authority. Wolfers'

positions depend on such authorities as Pond, Struve, Argelandcr, Henderson,

Airy, and Bessel. The conscientious care bestowed on the reduction of the

Greenwich observations would seem to render their results unimpeachable.

Besides, from a comparison of Winnecke's observations of his " Mars Stars" in

44
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1862 with those of Greenwich, it would seem that the meridian circle of Pulkowa

gives declinations an entire second farther south than those of the great transit

circle
;
so that had the Pulkowa instrument been employed on fundamental stars,

their declinations would have been 2" less than Wolfers'. On the other hand, the

Cambridge (Eng.) mural circle places the fundamental stars even farther north

than Wolfers, and the Washington mural nearly as far north.

It is foreign to our present purpose to speculate upon the causes of these dis-

crepancies ;
we are concerned only with their existence and amount. Their

existence renders it absolutely necessary to correct the declinations as well as the

right ascensions in order to reduce them to a common standard
;
and no obser-

vations have been used unless data for these corrections could be obtained.

This rule necessitates the entire rejection of nearly all the vast mass of obser-

vations on which Walker's theory was founded. In the case of the micrometric

comparisons, no sufficient data seem to exist for determining the positions of the

comparison stars
;
the results are, therefore, heterogeneous in their character.

However valuable they might have been when made, it will not be admissible,

to combine them with the fifteen years of meridian observations made since.

Micrometric observations were almost given up after 1850, and the planet was left

to be followed by the meridian instruments of the larger observatories. The

superior accuracy of this class of observations may be inferred from the fact that

the comparatively small error in Walker's radius vector is made evident by them

even during the period of construction of Walker's theory.
A similar remark applies to the meridian observations. Four years of obser-

vations made at a great number of observatories may be indiscriminately combined

on the supposition that the systematic as well as the accidental errors will destroy
each other, particularly if each series extends through the entire period. But, as

few or none of these series made at observatories able to publish any thing but

their results are continued later than 1849, it will not do to assume that the mean
of their systematic errors, as fixed by the standard we have assumed, would vanish.

The observations which fulfil the conditions we have indicated are made at

observatories, as follows :

Ancient observations.

Paris, by Lalande, May 8 and 10 1795.

Modern observations.

Greenwich, 1846 to 1864.

Cambridge, 1846 to 1857.

Paris, 1856 to 1861.

Washington, 1846 to 1850.

Washington, 1861 to 1864.

Hamburg, 1846 to 1849.

Albany, 1861 to 1864.

22. Reduction of Lalande s two observations of Neptune, May 8-10, 1795.

The first of these observations is found in the Comptes Rendus, tome 24, p. 667.

The second is in the Histoire Celeste, p. 158, and is the eighth star of the firsf
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column. They were made with the large mural quadrant of the observatory
attached to the Military School. The Histoire Celeste does not seem to contain

any definite information as to the observer or observers by whom the observa-

tions were made.

The stars of comparison which I shall select for the determination of the errors

of the instrument and clock are the following :

May 10.

a Virginis,

1 Virginis,

/I Virginis,

2 Librae,

f.i
Libra1

,

'

Librae.

May8.

/? Virginis,

$ Corvi,

q Virginis,

$/ Virginis,

a Virginis,

h Virginis,

x Virginis,

X Virginis,

2 Librae,

s Libra?.

These lists, I believe, include all of Bradley's stars observed by Lalande on

the dates in question within the zone of the planet, for which reliable modern

positions can readily be obtained. Their positions for the year 1795 were obtained

as follows. The positions given by Bessel in the Fundamenta Astronomic were

reduced by the precessions there given to the mean equinox and equator of ITU"). (I.

The modern positions were obtained from the Greenwich Twelve Year Catalogue,
the Greenwich observations, or Eumker's Catalogue, and were also reduced to

1795.0 with Bessel's precessions. The difference of the results, being supposed
due to proper motion, was divided proportionally to the time, and the concluded

true position for 1795 obtained. As Lalande's observations arc subject to errors

of several seconds, any farther refinement in investigating the positions of the

stars would be a waste of labor. In the following table is exhibited the position

of the star at the two epochs, referred to the mean equinox and equator of 1795.0,

with the modern authorities, and the concluded mean positions for 1795.0 :
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The above places were reduced to the dates of observation with the constants

of the Tabulae Regiomontange.
The apparent positions of/? Virginia and a Virginis are derived from the same

work, correcting the Declination of the latter by + 0".60. The former is not used

for index error, owing to its distance from the zone of Neptune.

Intervals of wires.

On attempting to test the wire intervals of Lalande, H. C., p. 576, the interval

of the third wire was found to exhibit well-marked systematic discrepancies. The
observations of May 10 concur very well in indicating a diminution of OMO; and

this correction has been applied to Lalande's intervals. The interval for wire 1 has

not been changed.

Deviation of- instrument.

The next quantity required is the deviation of the instrument from the circle

of Eight ascension of the planet. On using Lalande's value of this correction,

stars of different altitudes, even in the zone of observation, gave inadmissible dis-

crepancies. It is found necessary to reduce the value to less than half. This

will be readily seen from the table below.

Clock error, &c.

The following tables give, for each star and each date

The number of wires observed, ^ meaning a doubtful observation.

The concluded time of transit over the middle wire.

Lalande's correction to this time for deviation of the middle wire, this deviation

being supposed to vanish at the circle reading for Neptune, viz.: 60 7'.

The correction for deviation actually applied, derived from the comparison of

clock corrections given by {$ Virginis and 8 Corvi.

Seconds of apparent R. A. of star.

The clock correction, using Lalande's deviation.

The clock correction, using the concluded deviation.

The weight assigned to the result for clock correction, depending on the number
of wires, and the proximity of the star to the planet.

For the second observation the deviation is of less importance than for the

first, the planet being near the middle of the zone, and the mean of the cor-

rections, therefore, very small.
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1795, May 8.
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Taking the means of the separate results for equatorial point, we have, for the

apparent declinations of Neptune
May 8. May 10.

o ' // o i ft

Observed circle reading, 60 8 17 60 7 19

Refraction, 1 39.0 1 39.0

Corrected circle reading, 60 9 56.0 60 8 58.0

Equatorial point, 48 49 18.4 48 49 19.6
'

Apparent declination, 11 20 37.6 - 11 19 38.4

23. Probable errors of these positions.

So far as we can judge from the discordance of the clock errors, and equatorial

points derived from the several stars, the probable error of a single observation

over a single wire in right ascension would appear to be about O s

.27, and the pro-

bable error of a single observed zenith distance about 2". 2. The agreement of

the difference of the two observations with the computed motion of the planet

shows that neither observation is affected with any abnormal error. We conclude,

therefore, that the probable error of the normal place derived from the two obser-

vations is about 2". 8 in R. A. and 1".5 in declination.

Notwithstanding the magnitude of these probable errors, the observations will

be very valuable during the remainder of the present century, owing to the weight
with which they enter into the expressions of the elements. But in the twentieth

century the observations made after 1846 will enable astronomers to compute the

position of the planet in 1795 with a much higher degree of accuracy than La-

lande could observe it.

A similar remark applies to Lament's accidental zone observations in 1845.

Valuable during the first two or three years, they afterward ceased to be so,

because the theory soon became more accurate than the observation for an epoch
so near the time of optical discovery. Had they been made in 1820, they would

still have been valuable.

Reduction of the modern observations.

24. The modern observations will be treated in the following manner. The

observations of each year will be divided into four groups, according to the time

of culmination of the planet. The first group will include all observations made

after

h. m. h. m.

13 30 m. t.

Second, between 10 30 and 13 30.

Third, 7 30 and 10 30.

Fourth, all made before 7 30.

The mean correction derived from each group will at first be regarded as the

true correction applicable to the mean of the times of observation. This involves

the supposition that the error of the ephemeris is changing uniformly during each

series of observations. If we could compare with an ephemeris of the heliocentric

7 May, 1865.
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place of the planet, this hypothesis would be sufficiently near the truth for an

entire year or more. But the error of geocentric place would be subject to an

annual period though the errors of the heliocentric place should be invariable.

Let us estimate the error of the hypothesis in question. Put

r radius vector of Neptune.
D =. difference of longitude of Sun and Neptune.

fe, 5r, errors of heliocentric longitude and radius vector.

Then the errors of geocentric longitude will be, appi'oximately,

. /.. cosZ>\ $r .

fr^l
+ j+yin.ft

Of this expression the part
8v Sr .- cos D+ -j sin D
r r2

will not be regularly progressive, but will change with the sine and cosine of D,
the period of which is about 368 days.

The integral of this expression gives 'for the mean value of the error, while/)

is increasing from D to D^

$v sinDl sinD fir cos />, cos /},

T A A
"
? ~A^A

By putting

t l
- -

u,

and developing according to powers of 5, this expression becomes

This, plus the error of heliocentric longitude, is the mean error which will be

given by a series of observations equally scattered through a period + 8 on each

side of the mean epoch D. But what we really want is the error at the mean

epoch itself; that is,

i
OV n t -Of 7-,

dv + cos D+ -7, sm D;
T r

so that we must correct the mean error actually found by the quantity

or, since 8 is generally about 1J, and r about 30,

.027(1
eo-i+ ^ri
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The maximum value of &v being less than 30", the first term will be entirely

neglected. The value of &r sometimes amounts to .018, so that the correction

arising from the second term may sometimes amount to 0".ll. We shall, there-

fore, take account of it in a few cases.

The ephemeris which will be compared with observation in order to deduce

normal places of the planet will be the same with which the Greenwich obser-

vations are compared, namely, "Walker's ephemeris until the year 1854, and
Kowalski's ephemeris in subsequent years. It will be remembered, however,
that these ephemerides are used only for the purpose of obtaining normal places,
and in order to save the trouble of comparing every individual observation with

the provisional theory.

25. Mean corrections of the Ephemeris of Neptune given by observations at the

different observatories, without correction for systematic differences.

GREENWICH.
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GREENWICH (Cont.).
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20. Corrections to the observed 2>ositions in order to render them strictly com-

parable with each other.

These corrections have been derived from a comparison of the positions of the

ten fundamental clock stars, from y Aquilre to a Ceti inclusive, given by obser-

vations at the different observatories, with the adopted standard positions. The
standard right ascensions are those of Dr. Gould, prepared for the United States

Coast Survey. The declinations are those of Wolfers in the " Tabulte Reduc-

tionum," diminished by 0".50. Both are given in the following table :
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REMARKS ON THE PRECEDING CORRECTIONS.

GREENWICH.

The corrections actually applied to the right ascensions from 1848 to 1853 have

been derived by comparing the corrections on p. IV. of the introduction to the Green-

wich six-year catalogue for 1854 with the corrections given by that catalogue,

namely, 0'.020. From 1857 to 1864 the corrections have been derived in the

same way from the seven-year catalogue for 18GO. The entire list of corrections

is as follows :

1846,
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depended on the positions of the Nautical Almanac stars. For the years 1846-47,
the Nautical Almanac right ascensions require the constant correction 0'.003,
and in 1848-49 the correction +0*.049, to reduce them to those adopted.
The declinations do not seem so easily reducible to our adopted standard.

They are, therefore, not included.

All the Washington, and some of the Paris and Albany, observations having
been compared with Walker's Ephemeris in years subsequent to 1855, the fol-

lowing corrections have been applied for differences of Ephemerides :

To Paris Corrections.

Date. R. A. Dec.

s

1856, Sept. 14, +0.54 +4.68
Oct. 25, +0.65 +5.75

1857, Sept. 19, +0.676 +5.02
Oct. 25, +0.80 +5.82
Dec. 14, +0.80 +5.92

To Washington and Albany Corrections.

Date. R. A. Dec.

1861,
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27. The concluded corrections of the ephemeris for normal dates generally

near the mean of the means have been concluded by applying to the corrections

of pp. 51, 52 the following corrections :

1. Correction for systematic error given by fundamental stars.

2. Reduction, when the change of error was rapid, from the dates of the means

to the dates of the normals.

3. 0.027 ^-jf sin D for second differences of error, when 8r > .01.

4. Correction just given for difference of ephemerides.

The results are given in the following table. The small figures show the

relative weights assigned to the separate results, which are, to a certain extent, a

matter of judgment, but which are assigned without any reference to the magni-
tude of the correction itself.
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CORRECTIONS TO THE TABULAR RIGHT ASCENSIONS GIVEN BY THE DIFFERENT
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CORRECTIONS TO THE TABULAR RIGHT ASCENSIONS GIVEN BY THE DIFFERENT
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CORRECTION TO THE DECLINATIONS, WITH THE CONCLUDED DECLINATIONS.
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CORRECTION TO TUB DECLINATIONS, WITH THE CONCLUDED DECLINATIONS (Cont.).
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REMARKS ON THE PRECEDING TABLE.

The processes to which we have subjected the observations ought, it would

seem, to eliminate every source of constant differences between those made at

different observatories. But there are still two well-marked cases of systematic

differences in the right ascensions, namely, in the Cambridge observations of the

first five years, and the Albany observations of the last four. The differences

between the corrections finally concluded from all the observations, and those

concluded from Cambridge and Albany, are, it will be seen, as follows :

Date. Cone. Camb. Date. Cone. Albany.

S S

1846, Oct. + 0.02 1861, Sept. 0.09

Nov. +0.06 Oct. 0.06

1847, July, +0.02 Dec. 0.05

Aug. + 0.03 1862, Aug. 0.06

Oct. +0.08 Sept. -0.08

Nov. +0.07 Nov. 0.07

1848, July, + 0.07 Dec. 0.09

Aug. + 0.07 1863, Sept. 0.06

Oct. +0.01 Nov. 0.04

Nov. +0.07 Dec. 0.01

1849, Sept. + 0.06 1864, Oct. - 0.05

Oct. +0.10 Nov. -0.08

Nov. 0.03 Dec. 0.03

1850, Aug. + 0.04

Oct. + 0.05

Nov. + 0.01

The constancy of signs here exhibited can hardly be attributed to chance in

the case of Cambridge, and not at all in the case of Albany. The only cause

to which I can attribute it is a habit of registering the transit of Neptune earlier

or later than that of a bright star. Such a habit would seem to pertain to the

observer rather than the instrument, and, therefore, less to be feared as the number

of observers is increased. On account of its possible existence, the weights of the

results of any one observatory have not been supposed proportional to the number

of observations, but each has been subject to a constant probable error of at least

0'.02 when observations were made by eye and ear, and Os
.01 when made with

chronograph, however great the number of observations.

Albany exhibits the anomaly that the real systematic error seems greater than

the probable accidental error. The latter is of the smallest class, as might be

anticipated from the facts that the observations are made with a first-class in-

strument, in a good atmosphere, and are recorded with the electro-chronograph.

They have, therefore, been treated in such a way that, while they should enter

the absolute longitudes with a very small weight, they should enter the relative

longitudes at different times of the year, in other words, the radius vector, with
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as much weight as those of any other observatory. This has been effected by

applying the constant correction Os
.04 to all the results before combining

them.

Anomalies somewhat similar are exhibited by the Paris declinations from I860

to 1861, and by the Washington declinations of 1861. In the case of Wash-

ington, they may be accounted for by the circumstance that the systematic cor-

rections for 1861 depend mainly on observations made in 1863, very few declina-

tions of fundamental stars being observed in 1861-62. But it does not seem so

easy to account for the discrepancy between the Paris and Greenwich results.

A comparison of them shows that while the Paris observations systematically

place the ten fundamental stars adopted as our standard about 0".8 farther north

than Greenwich, their positions of Neptune, and of some small stars near the

equator, substantially agree.

28. The preceding normal right ascensions and declinations are next con-

verted into apparent ecliptic longitudes and latitudes, for the purpose of com-

parison with the provisional theory. For this purpose Hansen's obliquity of the

ecliptic has been adopted, so as to agree with the motion of the ecliptic adopted
in the preceding chapter. In the following table we give for each date 1. The

longitude from observation, obtained as just stated. 2. The seconds of longitude

from provisional theory, as given on p. 43. 3. The excess of the theoretical

over the observed longitude. 4, 5, 6. The corresponding quantities relative to

the latitude.
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GEOCENTRIC APPARENT LONGITUDES AND LATITUDES OF NEPTUNE DERIVED
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GEOCENTRIC APPARENT LONGITUDES AND LATITUDES OF NEPTUNE DERIVED



CHAPTER IV.

RESULTS OF THE COMPARISON OF THE THEORETICAL WITH
THE OBSERVED POSITIONS OF NEPTUNE.

29. THE first question of the present chapter will be whether the observations

of Neptune can be satisfied within the limits of their probable errors by suitable

changes in the elements of the orbit of Neptune and the masses of the disturbing

planets.

No admissible change in the mass either of Jupiter or Saturn will sensibly

affect the perturbations of Neptune. The mass of Uranus will, therefore, be the

only one the correction of which need be taken into account.

The errors of the provisional latitude of Neptune are so small that the errors

of the longitude in orbit may be taken as sensibly the same with the errors of

ecliptic longitude. The latter give equations of condition between the following

unknown quantities.

Correction of the mean longitude of Neptune,
mean motion of Neptune,

eccentricity X sm - perihelion of Neptune.
"

eccentricity X cos - perihelion of Neptune.
" " mass of Uranus.

But if we attempt to solve by least squares the equations between these cor-

rections, we shall be met with the difficulty set forth in the introduction, and our

normal equations will be equivalent to only three, unless we include a great

number of decimals in the computation. We shall, therefore, make a linear

transformation of the unknown quantities, on the principles already referred to,

and suggested by the following considerations.

The true longitude of Neptune has been less than its mean longitude, and its

true motion has been greater than its mean motion, ever since its optical discovery.

From these circumstances the difficulty in question arises. We may obviate it

by substituting for the mean longitude and mean motion of Neptune during an

entire revolution its average longitude and heliocentric motion during the period

of the modern observations. Suppose an imaginary planet to move uniformly in

the orbit of Neptune in such a way that its average longitude and motion have

been the same as the average longitude and motion of Neptune during the last

nineteen years, and let x be its longitude, 1850, Jan. 0, and xf its annual motion.

We may then make the eccentricity and perihelion of Neptune to depend ana-

lytically upon the deviation of its motion from that of the hypothetical planet,

as it must depend really, because this deviation is the only real datum which we

to reason from, the Lalande observations excepted. It is to be remarked
9 May, 1865. 65
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that both the longitude and motion of the hypothetical planet are entirely

arbitrary.

For the differential coefficients of the elements with respect to the heliocentric

co-ordinates, we have

- 1 + 2 k cos I + 2 h sin I.

(.IE

dv dv

dn
~

de
'

dv

dh-JT
2 cos I f h sin 2 I | k cos 2 I.

t3Q
-TT=. 2 sin I + I k sin 2 7 | h cos 2 I.

ct/c

\ dr .-
-j /: sin I li cos t.

ae

1 d>
_ J^ t_ dr_

a dn
~

3 an a de

7r sin I + h k sin 2 I + A cos 2 I.

a dh

z= cos 7 + Z; 7i sin 2 Z k cos 2 Z.

a dk

In accordance with what has been proposed, we shall substitute for s and n the

quantities x and a', connected with them by the relations

x =. e + ah -\- (3k ... .

af = n + a'h

a and ft being approximately the average values of 2 cos Z and + 2 sin Z during

the last nineteen years, and a' and
ft'

the average values of 2 n sin Z and 2 n cos Z

during the same time. We shall take

a = 1.77 a' = 0.018

ft = 0.85 P' = + 0.073.

Then, considering v as a function of x, y, It,
and /;, and enclosing the new dif-

ferential coefficients in parentheses, we have, by suitable transformations,

dv\ dv {dv\_dv (
c]^\ dr_. i

1^]
di '

Vcfcey dn '

\dx / de
'

\dstf/ dn

dv/dv \ dv . dv
( -71- ) 77 ( + -j-
\dh / dh ' de
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Putting 2, for the geocentric longitude, .and A for the distance from the earth,

the differential coefficients of the geocentric with respect to the heliocentric co-

ordinates will be

<fa r
-7- cos (v /I), ...
dv A (4)

dh a
a -= sm (v /I) ;dr A

and the coefficients of the equations of conditions will be

(ft dh dv dh I dr
.___ ,_

I fi ._..

dx dv de dr a de

dh _ d?i dv eft I dr

dxf dv dn dr a dn

dv\ d/l 1 /dr

/(ft \ _ (ft /dv_\
(ft 1 /dr\ (5)

\dh ) dv~ \dh)
~* a

fo a \dh)
d/l 1

/dr_\a
dr~ a\dk)

The perturbations in the geocentric longitude of Neptune produced by Uranus

will be
Jn

1. Perturbations of the true heliocentric longitude multiplied by y- ;

* /7^

2. Perturbations of radius vector multiplied by -y-, for which has been taken
dr

a dhn r ^Md^
Of course the effect of the long-period and secular perturbations of the elements

produced by the action of Uranus must be included in the perturbations of

Neptune.

Representing by p the factor by which the assumed mass of Uranus must be

multiplied, so that the true mass shall be

21000'

the computed perturbations produced by Uranus will be the coefficients of
fi

in

the equations of condition.

30. The residuals in longitude thus give the following equations between the

unknown quantities, which are numbered in the order of time, but grouped
somewhat differently.
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No.
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No.
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= 0.25&e
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Substituting these values of the corrections in equations (7), we have the fol-

lowing residuals, which are grouped, as before, according to the time of year of the

normals on which the equations were founded.^ Thus, the first residual of each

series of modern observations corresponds to positions of Neptune observed when
the planet culminated after 13'' 30'" during the years to which the series belongs.

h. m. h. m.

The second, to observations between 10 30 and 13 30

The third, to observations between 7 30 and 10 30

The fourth, before 7 30

We first give the residuals from the equations (7), each of which is supposed
to be of equal precision ;

then the numbers by which the errors of observation

are multiplied to reduce them to the assumed standard of precision derived from

(G), column M.
; and, finally, the apparent errors of the theory derived from ob-

servations themselves, formed by dividing the residuals of the equations by the

measures of precision.

Residuals of equations.
Acfual cfln resi<1 ^ or ap-

parent errors ot theory.

1st series, \

''

179-3, {
1
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Residuals of equations.
Actual """"' """'""Is or

1>-

parent, errors ot theory.

8th series,

1863-1864,

+ 2.8% l.2(i 3 + o.93

2.4 0.9^ 7 0.34 0.13p
0.3 +0.7^ 7 -0.04 + 0.10^
2.0 + 0.9,u 6 0.33 +0.15^

32. The coefficients of
(i,

taken negatively, represent the changes which would
be produced in the residuals if we suppose the mass of Uranus to be nothing. It

will be seen that these coefficients are generally smaller than the residuals them-

selves, and that their actual effect on the modern residuals never amounts to

more than four-tenths of a second. Supposing that the modern observations

cannot be relied on within this limit of error, we should arrive at this remarkable

result, that if the planet Uranus were unknown, its existence could scarcely be

inferred from all the observations hitherto made on Neptune, unless these were

combined in such -a way as to show the systematic error of the theoretical radius

vector. In fact, the orbit of Neptune, computed without regard to the perturb-
ations of Uranus, would only exhibit an error of 9" when compared with Lalande's

position ;
and a discussion of the modern observations would exhibit no sensible

error in the heliocentric longitudes. This circumstance furnishes a very good
illustration of the propriety of developing the long-period perturbations, the co-

efficients of which amount to whole minutes, as perturbations of the elements

which shall vanish at the epoch 1850.

Under these circumstances, no reliable correction of the mass of Uranus can be

concluded from the motions of Neptune. The solution of the preceding residuals

does, indeed, indicate an increase of this mass by one-third, which seems altogether

inadmissible, and is certainly very unreliable. Of the twenty-nine residuals,

fifteen indicate an increase of the mass, thirteen a diminution, and for one the

coefficient of ^ vanishes : so that the increase of the mass of Uranus is indicated

only by the fact that the residuals which favor it are generally a little larger than

those which do not.

33. If Uranus could scarcely be detected from the motions of Neptune, much
less can an extra-Neptunian planet, unless it happened to be nearly in conjunction

with Neptune at the present time, and to have a much greater mass than Uranus,
a highly improbable combination of circumstances. That there is no present

indication of any such action is shown by the smallness of the apparent mean

errors of theory in heliocentric longitude and radius vector during the whole

period from 1846 to 1864. The following table shows the mean value of these

errors during each of the seven series of modern observations, and the error of

the geocentric longitude of the Lalande observations, putting fj.
zz 0. The error

of radius vector is expressed as error of annual parallax. It will be remembered

that the first of the four equations of each series arise from observations made

about half-way between the first quadrature and the opposition, the second at

opposition, the third between opposition and last quadrature, and the fourth near

the last quadrature. Each series, therefore, gives four equations of the first

degree between the errors of heliocentric longitude &>, and annual parallax fy>.
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The coefficient of 8v will be sensibly unity, and that of fy will vary from about

0.5 to + 1.0 in each series.

Error of theory by tJie Lalande observations.

+ 2".3

(It will be remembered that the probable error of the Lalande position was

estimated at 2".8
; but, owing to the over-estimate of the comparative precision of

the modern observations, the weight assigned to this position in the equations of

condition corresponded to a probable error of rather more than 4".)

By modern observations.

Limiting dates. Error of longitude. Error of parallax.

1846-47, O."o5 o"l8

1848-50, -0.08 0.03

1851-53, 0.07 +0.55
1854-56, 0.08 0.00

1857-59, + 0.22 + 0.23

1860-62, + 0.11 + 0.18

1863-64, + 0.02 + 0.28

These errors are as small as could be expected if the theory were perfect.

There is, therefore, no indication of the action of an extra-Neptunian planet.

But this fact does not militate against the existence of such a planet. The per-

turbations of a planet, and its elliptic elements, develop themselves, not in pro-

portion to the time, but in proportion to the square of the arc described. .In

order, therefore, to determine the errors of a slow-moving planet with as much

accuracy as those of a quick-moving one, we must observe it through a period pro-

portioned to its time of revolution. And we cannot detect a deviation of long period

from an elliptic orbit until we have accumulated data much more than sufficient

for the exact determination of the elliptic elements. For example, when the

position of Neptune was determined from the perturbations of Uranus, the latter

planet had been regularly observed through an arc of some 270. Moreover, the

two planets had been in conjunction in 1824. They are also remarkably near

each other when in conjunction. Yet, with all these circumstances so favorable

to the development of large perturbations, Uranus only wandered about 5" from

an elliptic orbit during the entire period of the modern observations.

Perturbations will, at first, be developed in proportion to the square of the arc

passed over. Therefore, had Uranus been observed through an arc of only 120,
the perturbations by Neptune would have been indicated only by deviations in

heliocentric longitude of less than I". It is, therefore, almost vain to hope for the

detection of an extra-Neptunian planet from the motions of Neptune before the

close of the present century.
34. Determination of the position of the plane of the orbit of Neptune.

To determine the corrections of the constants p and q, which determine the

10 Hay, 1865.
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position of the plane of the orbit, '\ve shall divide the residuals of latitude into

five groups, the last one including three years, and each of the others four years.

To find the heliocentric angular distance of the planet above the plane of its

assumed orbit, we shall take an indiscriminate mean of the errors of geocentric

latitude of each group, multiply it by 0.98 to reduce it to heliocentric error, and

correct it for the mean error in longitude.

The mean errors of geocentric latitude, with the equations to which they give

rise, are as follows. The probable errors of each modern mean is estimated at

0".15 : so that the Lalaude position is entitled to a precision of ^

Limiting Dates.
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& = + 12M
= + 0.5144

37*= + 8.76

&fc= 3.79

$p= 0.73

fy =_ 0.41

Applying these corrections to the provisional elements of 19, they become

e = 335 5 38.91

n= 7864.9354

h= +1201.69
k= +1275.57

2)= +4909.44

q= 4137.87

75



CHAPTER V.

TABLES OF NEPTUNE.

30. F/II/I/IIHH i/ttt/ theory.

The fundamental theory on which these tables are founded is as follows :

1. Undisturbed elements of Neptime, referred to the mut
<t-/!j>/!i-

<ni<! Kji/i/id.r <>/

the epocli.

h zz eccentricity X *mc perihelion zz -f- 1201.69

k eccentricity X cos perihelion zz -f- 1275.57

p =. sine inclination X gine node zz -j- 4909.44

q zz sine inclination X cos node zz 4137.87

n zzmean motion in 365^ days zz 7864.935

E zz mean longitude at epoch zz 335 5' 38".91

Epoch 1850, Jan. 0, Greemvich mean noon.

From these expressions we deduce

n zz4317'30".3

e
- 0.0084962

log a zz 1.4781414

Period zz 164.782 Julian years.

In log a we have included the constants of log ? introduced by the action of

the planets, and also the effect of the secular variation of the longitude of the

epoch, both of which are computed on p. 31.

2. Secular and long-period, perturbations of the above elements.

These are taken without change from the table p. 39.

The elements being corrected by the addition of these perturbations for the

epoch of computation, we thence deduce the elliptic place of the planet.

3. Perturbations of the co-ordinates.

To the elliptic place of the planet we apply corrections for- periodic perturb-

ations of the co-ordinates, as follows :

To the longitude in orbit,

Ptl sin I + Pc.j cos I + Ps,2 sin 2 / -f Pc .2 cos 2 1 + &v

To the logarithm of the radius vector,

Rsl sin I + Rcj cos I + 5r .

To the north latitude, computed with the true longitude in orbit,

B, ,
sin v -\- J3cl cos v -f fy?o-

70
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All these quantities have the same values as in 19, pp. 40 and 41.

The elliptic values of the co-ordinates being thus corrected, we have the helio-

centric co-ordinates resulting from the concluded theory.

To facilitate this computation, the following tables are constructed. They are

designed to give the means of determining, for any date between the years 1600

and 2000, the principal auxiliary quantities which will be needed in computing
the place of the planet from the above theory. Many of these quantities are

modified so that the computer shall be troubled as little as possible with difference

of signs. Thus, to all the quantities Ps,
Pa Rs,

etc. constants are added so that

they shall always be positive, and so that the signs of the products which form

the perturbations shall be the same as those of sin /, cos I, etc. Again, constants

are added to all the perturbations of the longitude and radius vector, to make

them positive.

37. Data given in the several tables.

TABLE I. gives the values of the "
epochs and arguments" for the beginning of

each fourth year from 1800 to 1952 inclusive, the years 1800 and 1900 beginning

with Greenwich mean noon of Jan. 0, and all the other years with that of Jan. 1.

Pis simply the number of the four-year cycle before 1900, by which I' and &
1900 Y

of the next table must be multiplied, or - 7 , adding a unit for fractions.

I is the mean longitude in orbit of Neptune, affected with the long-period per-

turbations of that clement, p. 39, and referred to the mean equinox of 1850.0.

y is the negative of the longitude of the node affected by perturbations, counted

on the orbit of the planet from that point which is equally distant from the node

of 1850 with the equinox of 1850, and diminished by 1, the sum of the constants

added to the equations of longitude.

6 is the longitude of the node, referred to the mean equinox of the epoch, and

diminished by 1', the constant added to the reduction to the ecliptic.

In the arguments 1 to 9 inclusive, the circle is divided into 400 parts. Repre-

senting the mean longitude of a planet, referred to the equinox of 1850.0 by its

initial letter, the values of the different arguments are as follows :

Arg. 1 = U N,
" 2 = S N,
" 3 = J N,

4 = 2S N,
" 5 = S,

G = S 2N,
" 7 = 2J N,

S = J,
" Q=J 2N.

>>

Thus, Arg, 1 gives the difference of the mean longitudes of Uranus and Neptune,

expressed in parts 100 of which make a quadrant ;
and so of the other arguments.

At the bottom of the table the expression A[}^)is the change in the longitude

or the argument during that 180 days which commences with 1850, Jan. 0.
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Fact. T gives the change in A[{g ) during a century : so that the change in any

180-day period within one or two centuries of the epoch may be found by mul-

tiplying Fact. T by the fraction of a century after 1850.0 at which the 180-day

period commences, and applying it to Aj}^).

A$so) gives the second difference for any series of 180-day periods within one or

two centuries of 1850 : so that, knowing the first value of Aj}^,, we can find a series

of values by successive addition.

The period of 180 days has been selected as a convenient one for computing a

heliocentric ephemeris. If any other period, represented by JVdays, be preferred,

the corresponding values of A(1) and A(2) are found by multiplying

and

A$o> by j.

TABLE II. gives the change of each longitude and argument for the first day
of each month during a four-year cycle. The change in I is given for that cycle

which begins with 1900 and ends with 1904. Column ?' gives, in units of the

second decimal of seconds, the change in column I during one cycle. Hence,

multiplying I' by the whole number P of the preceding table, and adding the

units of the product to the hundredths of seconds of /, we have the change of

mean longitude during the cycle numbered P in Table I. The correction is

positive for years before 1900, because the mean motion is diminishing.

must be corrected in precisely the same way ;
but here the correction is nega-

tive before 1900.

Rigorously, both y and require correction similar to I. But it is not requisite

that either of these quantities should be accurate within a second, so long as their

sum is exactly equal to the precession diminished by 1 1'. The four-year changes
of both y and 6, which destroy each other, are, therefore, neglected ;

but the change
in due to the secular variation of the constant of precession (0".0227) is allowed

for by the correction P6'.

TABLE III. gives the reduction from the first to the subsequent days of any

month, or the motion of the epochs and arguments during a number of days one

less than those on the left of the table.

TABLE IV. gives the corrections to be applied to the longitudes and arguments

for the epochs 1800 -H to reduce them to the epochs 1GOO + t, 1700 + 1, and

1900 -f- 1, respectively. They are expressed in the form

a + TX Fact. T+ T- X Fact. T\

in which Tis the fraction of a century.
TABLE V. gives the expressions for the perturbations of the longitude produced

by Uranus. To each of the expressions 7^, and Pct 14" has l>een added, and to

Ps2 and Pcx 3" has been added. Hence, when these quantities, as given in the
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tables, are multiplied by sin I, cos I,
sin 2

Z, and cos 2 Z, the sum will be too great by
the quantity

14" sin I + 14" cos I + 3" sin 2 I + 3" cos 2
Z,

which expression has been subtracted from the equation of the centre. The con-

stant 14" has been added to 5^.

TABLE VI. gives the principal perturbations of the longitude produced by

Saturn, namely,
18".552sin (S N)

.141 sin 2 (SN)
0.012 sin3^^)

+ (const. = 19".000)

TABLE VII. gives the principal perturbations of the longitude produced by

Jupiter, namely,
34".121sin (JN)
0.011sin2( t7 N)

+ (const. = 35".000)

TABLE VIII. gives the term

0".524cos(2S N)
+ (const. = 0".GOO)

TABLE IX. gives the terms

- 0".058 sin S + 0".047 costf

+ (const. = 0".100)

TABLE X. gives the terms

+ 0".1GG sin (S 2 N) + 0".43G cos (S 2 N)
+ (const. = 0".500)

TABLE XI. gives the terms

+ 0".783 sin (2 / N) 0".1G4 cos (2J N)
+ (const. =: 1'MOO)

TABLE XII. gives the terms

0".101 sin J + 0".097 cos J
+ (const. = 0".200)

TABLE XIII. gives the terms

+ 0".32G sin (J2N) + 0".297 cos (J 2 N)
+ (const. = 0".500)

TABLE XIV. will be more easily understood after we have explained the table

of equation of the centre.

TABLE XV. is composed of the four following parts :

1. The equation of the centre in the undisturbed ellipse of 1850.0, or,
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+ 2551-.117 sin I 2403".35Scos

+ 1.163 sin 2 I 18 .580 cos 2 I

0.088 sin 3 1 0.104 cos 3 1

2. The change in the equation of the centre produced by the perturbations of

the elements h and k during that revolution of the planet which commenced

1779, Jan. 4, and ends 1943, Oct. 15. This change is represented by

2 Me sin I 2 M cos I,

M and 8k being taken from the table on p. 39 for the times corresponding to the

various values of I during the period in question.

3. The terms

14" sin 7 -14" cos I

3 sin 2 I 3 cos 2 I

introduced to destroy the effect of the constants added to the values of PsA ,
Pcl,

P
s,2 ,

and Pc
.2 to render them positive.

4. The constant

3529",

?
added to render all the numbers of the table positive.

During the revolution to which Table XV. corresponds, the planet passed from

180 mean longitude, and returned to the same point in the heavens
;
whence the

table begins and ends with this value of I. But since the commencement of the

table corresponds to the values of 7* and k in 1779, and the end to these values

in 1943, they do not correspond with each other. The sum of the constants

added to Tables V. to XV. inclusive is 1, which has been subtracted from y in

Table I.

Table XIV. is formed by subtracting the values of M- and M during the revo-

lution of Table XV. from the values of the same elements 164.78 years earlier

or later. Or, we have

APU = 2(&' M-o)

APC., = 2(8# Mo)

M' and 8fr representing the values ofM and Sk at any epoch, and &7i and <$/, their

values at that date of the period 1779-1943 when the planet had the same mean

longitude as at the epoch in question.

The sum of the sixteen quantities P^ sin I,Pcj cos 7, P, 2 sin 2 7, P^ cos 2 7, 8v d to 9) ,

7, y, and the equation of Table XV. will give the true distance of the planet

from its ascending node, which we represent by u.

TABLE XVI. gives the reduction to the ecliptic for the years 1800, 1900, and

2000, together with the change of the reduction for a century. The constant

60"

has been added to render all the numbers of the table positive.
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The sum of u, 6, and the reduction to the ecliptic gives the true ecliptic longi-
tude of the planet, referred to the mean equinox of the date.

Tables of the radius vector.

TABLE XVII. gives the values of

-B.J + 150, and R^ + 100.

The expressions for E^ and #cl are given on p. 40, 19, and the units are those
of the seventh place of decimals. Rsl + 150 must be multiplied by sinZ, and
HC.I + 100 by cos I, and the products included in the perturbations of log r.

TABLE XVIII. gives the principal terms of the perturbations of the logarithm
of the radius vector produced by Uranus, as given on p. 41. The constant added
is 209.

TABLE XIX. gives the perturbations of the same element by Saturn, namely,

39 7 cos (S N)
+ 4 cos 2 (S N)
+ (const. = 400)

TABLE XX. gives the perturbations of the same element by Jupiter, namely,

701 cos (JN)
+ (const. = 700)

The units of these tables are those of the seventh place of decimals.
TABLE XXI. is formed of the four following quantities.
1. A constant formed by applying the necessary corrections to the logarithm

of the mean distance. We have

Mean motion, including its perturbations, 7864.935
Secular var. long, epoch, _j_ 21.443

Elliptic mean motion, 7843.492
To which corresponds log a = 1.4787334
Constants of perturbations of log r (p. 31), 5920
Negative of constants added to Tables XVIII.-XX., 1309
Constant to be substituted for log a in expression for log radius vector, 1.4780105

2. The elliptic log r log a, namely,

+ .0000078

-.0026857 cos I .0025301 sin I

.0000014 cos 2 I .0000235 sin 2 I

3. The effects of the perturbations of h, k and a during the same revolution to
which Table XV. corresponds, represented by

MSh MSk
r-^r- Sin I :r- COS Z+ 6 log ,

sin 1" sin 1"

M being the modulus of the common system of logarithms.
11 May, 1865.
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4. The terms

150 sin I 100 cos I

introduced to destroy the effects of the constants added to Rsl and 7?cl .

TABLE XXII. gives the values of B^ and Bcl (p. 40). The constant 0".30 has

been added to each of these quantities to render them positive.

TABLES XXIII. and XXIV. give the perturbations of the latitude produced by
Saturn and Jupiter respectively, no constants being added.

TABLE XXV. gives the values of log sin i, to be added to log sin u in order to

obtain the elliptic latitude. They, as well as 6, have been obtained from the

formulae

sin i sin p + 8p + 0".30

sin i cos 6 =. q -f- &q .30

The values of ftp and 8q being taken from the table p. 39, and the corrections

+ 0".30 being applied to destroy the effect of the constants added to Bsl and Bcl .

38. Elementary precepts for the iise of the tables.

Express the date for which the position of Neptune is required, in years, months,
and days of Greenwich mean time, according to the Gregorian Calendar.

If the date is between 1800 and 1955 inclusive, enter Table I. with the year,

or the first preceding year found therein, and take out the values of /, y, 6, and

Arguments 19 inclusive. Note also the value of P. If the date is not between

the above limits, enter as if the number of the century were 18.

Enter Table II. with the excess of the actual year above that with which

Table I. was entered, and with the month. Write the values of 7, y, 6, and the

arguments under those from Table I. Multiply I' and 0', the former interpolated

to the day of the month, by P of Table I., and write the units of the product under

the hundredths of seconds of I and 0, paying attention to the algebraic signs.

Enter Table III. with the day of the mouth, and write down I, &c., under the

former values.

If the date is without the limits 1800-1955, enter Table IV. with the century,

write the principal quantities under their proper heads, as before
; multiply column

"Fact. T" by the entire fraction of the century represented by the date, and

column "Fact. T2"
by the square of this fraction, and write the products under

their proper heads.

Add up all the partial values of I, y, 6, and the arguments thus obtained,

attending to the algebraic signs of the products, subtracting from the arguments
as many times 400 as possible, and we have the final values of those quantities.

Enter Table V. with the final value of Arg. 1, and take from it the five quan-
tities there found. Multiply the first four of them as follows, using logarithms

or natural numbers as may be most convenient :

PiA by sine of Z,

P,..! by cosine of f,

P,z by sine of 2 I,

Pc.2 by cosine of 2 /.
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But if the* date is earlier than 1779 or later than 1943, PsA and P^ must first

be corrected from Table X1Y.

Write these four products under each other, remembering that their algebraic

signs will be the same as those of the sine and cosine of I and 2 I, unless the cor-

rections make Psl or Pc.i negative. Write under them the fifth quantity, &V
Enter Tables VI. to XIII. inclusive, with the arguments at the top of each.

Take out the eight remaining values of &v.

Enter Table XV. with Z,
first reducing the minutes and seconds to decimals

of a degree, and take out the corresponding equation by interpolation to second

differences.

Under these fourteen quantities write Z and y, add up the sixteen lines, and call

the sum u.

Under u write
;
enter Table XVI. with u (reduced to hundredths of a degree)

as the side argument, and the year as the top argument, and take out the reduction

to the ecliptic. Add it to u and 0, and the sum will be the heliocentric longitude

of Neptune referred to the mean equinox and ecliptic of the date.

Enter Table XVII. with argument 1, and take out the values of R^ and R^.

If the date is previous to 1779 or subsequent to 1943, multiply the values of

APsi and AP^ from Table XIV. by 10.53, and correct R^ and B^ as follows :

Rsl by 10.53 APcA ,

Rc.i by 10.53 AP,i,

adding the units of these products to the last figures of R,.i and R^. Then multiply

Rsl by sine of Z,

Rcl by cosine of I,

and write down the products with the algebraic sign of sine I and cos I respectively.

Enter Tables XVIII. to XX. with their proper arguments, and write the results

under the products thus found.

Enter Table XXI. with the argument Z, and take out the corresponding number,

the first two figures of which are at the top of each column. Write it so that

the last figure (the seventh place of decimals) shall be under the last figures of

the former numbers.

The sum of the six numbers thus found will be the common logarithm of the

radius vector of Neptune.
Enter Table XXII. with argument 1, and take out S^ and B^. Multiply the

former by sin Z and the latter by cos Z.

Enter Tables XXIII. and XXIV. with their proper arguments, and take out

the corresponding numbers, applying the proper algebraic signs.

Take the sine of i from Table XXV., and multiply it by the sine of u (u having

already been found).

The sum of the five quantities thus found, each taken with its proper algebraic

sign, will be the north latitude of Neptune above the plane of the ecliptic of the date.

Thus we shall have the heliocentric co-ordinates of the planet. The computer
can then pass to the geocentric place by the method which he prefers.

If an ephemcris is wanted during a series of years, it will not be necessary to
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take the arguments from Tables I.-IV. more than once in three or four, or even

five, years. The intervals of computation are first to be chosen, and need not he

less than 180 days for the heliocentric place. Then compute the values of I, y, 0,

and the arguments for the first date of the series, and again for a date an integral
number of intervals (not generally exceeding ten) later. The longitudes and

arguments for the intermediate dates may then be found by continual addition

of the differences for 180 days (if this is the interval) from the bottom of Table I.

39. Examples of (lie use of the tables.

As a first example, we will compute an ephemeris of the heliocentric positions

of Neptune for the years 1865 to 18G8 inclusive. The intervals of computation
will be 180 days, and we commence with the date 1864, Oct. 13, and end with

1869, March 21, between which are nine of the assumed intervals. We first

compute the epochs and arguments for the extreme dates as follows :

1. FOR 1864, OCTOBER 13.
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The epochs and arguments for the intermediate dates are now formed by suc-

cessive additions of the change in 180 days, deduced from Table I. T, the fraction

of a century after 1850, being 0.148, the first differences for 180 days, with the

arguments, are found to be as follows :

Also
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RADIUS VECTOR.
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As another example, let us compute the heliocentric position of Neptune for

Greenwich mean noon of 1795, May 9, the epoch of the normal place derived

from Lalande's two observations.
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TABLE I.

EPOCHS AND ARGUMENTS FOR THE BEGINNING OF EACH FOURTH YEAR FROM

1800 to 1952.
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TABLE I.

EPOCHS AND ARGUMENTS FOR THE BEGINNING OF EACH FOURTH YEAR FROM

1800 TO 1952 (Continued).
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TABLE II.

REDUCTION OF THE EPOCHS AND ARGUMENTS TO THE FIRST DAT OF EACH MONTH
IN A CYCLE OF FOUR YEARS.
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TABLE II.

REDUCTION OF THE EPOCHS AND ARGUMENTS TO THE FIRST DAT OF EACH MONTH
IN A CYCLE OF FOUR YEARS (Continued).
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TABLE.
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TABLK.
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TABLE.
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TABLE.
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TABLE.
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TABLE.
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TABLE.
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TABLE.
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TABLE.
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TABLE XV.

EQUATION OF THE CENTRE.
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TABLE XV.

EQUATION OF THE CENTRE (Continued).
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TABLE XV.

EQUATION OF THE CENTRE (Concluded).
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TABLE XVI.
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TABLE XVII.
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PERTURBATIONS OF LOGARITHM OF RADIUS VECTOR.
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TABLE XXI.
PRINCIPAL TERM OF THE LOGARITHM OF THE RADIUS VECTOR.

Argument Z.
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TABLE XXI.
PRINCIPAL TERM OF THE LOGARITHM OF THE RADIUS VECTOR (Continued).

Argument I.
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TABLE XXII.
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