Maß- und Integrationstheorie

Arbeitsblatt 23

Übungsaufgaben

AUFGABE 23.1. Bestimme Fourierkoeffizienten c_{-1}, c_0, c_1, c_2 für die Funktion $t^2 - 3t + 4$ auf $[0, 2\pi]$.

Aufgabe 23.2. Es sei

$$f: \mathbb{R} \longrightarrow \mathbb{C}$$

eine Funktion und sei T>0. Zeige, dass f genau dann T-periodisch ist, wenn es eine Faktorisierung

$$\mathbb{R} \stackrel{p}{\longrightarrow} S^1 \stackrel{\tilde{f}}{\longrightarrow} \mathbb{C}$$

gibt, wobei p die Quotientenabbildung modulo der Untergruppe $\mathbb{Z}T\subseteq\mathbb{R}$ ist.

Wenn man $S^1\subseteq\mathbb{C}$ auffasst, so kann man p als $t\mapsto e^{\frac{2\pi}{T}\mathrm{i}t}$ realisieren. Wenn f ein trigonometrisches Polynom zur Periode T ist, sagen wir

$$f = \sum_{n=-N}^{N} r_n e^{\omega i n t} = \sum_{n=-N}^{N} r_n \left(e^{\omega i t} \right)^n,$$

so ist $f = \tilde{f} \circ p$ mit

$$\tilde{f}(z) = \sum_{n=-N}^{N} r_n z^n.$$

Man erhält also f, indem man in die rationale Funktion \tilde{f} für die Variable die Funktion $e^{\omega it}$ einsetzt.

Aufgabe 23.3.*

Es sei T>0 und $\omega=\frac{2\pi}{T}$. Zeige, dass ein trigonometrisches Polynom $f=\sum_{n=N}^N c_n e^{\mathrm{i}\omega nt}$ höchstens 2N Nullstellen in [0,T[besitzt.

AUFGABE 23.4. Multipliziere die beiden trigonometrischen Polynome

$$f = 4e^{-2it} + 5e^{-it} + 7 + 3e^{it} + 6e^{2it}$$

und

$$g = -2e^{-2it} + 3e^{-it} - 3 + 6e^{it} - e^{2it}.$$

AUFGABE 23.5. Es sei $f \in L^2([0,T])$ mit den Fourierkoeffizienten $c_n, n \in \mathbb{Z}$. Zeige, dass die konjugiert-komplexe Funktion \overline{f} die Fourierkoeffizenten

$$d_n = \overline{c_{-n}}$$

besitzt.

AUFGABE 23.6. Es sei T>0 und $f\in L^2([0,T])$ mit den Fourierkoeffizienten $c_n, n\in\mathbb{Z}$. Zeige, dass die (zu s>0) umskalierte Funktion

$$g(t) := f(st)$$

die Periodenlänge $\frac{T}{s}$ besitzt und dass die Fourierkoeffizienten von g ebenfalls gleich c_n sind (die sich nun aber auf ein anderes Orthonormalsystem beziehen).

AUFGABE 23.7. Es sei T>0, $\omega=\frac{2\pi}{T}$ und $f\in L^2([0,T])$ mit den Fourier-koeffizienten $c_n, n\in\mathbb{Z}$. Zeige, dass die im Argument verschobene Funktion g(t):=f(t+a) zu einem $a\in\mathbb{R}$ die Fourierkoeffizienten $c_ne^{in\omega a}$ besitzt.

AUFGABE 23.8. Es sei T > 0 und sei

$$f: \mathbb{R} \longrightarrow \mathbb{K}$$

eine T-periodische Funktion. Zeige, dass f genau dann eine gerade Funktion ist, wenn der Graph von f auf [0,T] achsensymmetrisch zur Achse durch $(\frac{T}{2},0)$ ist.

AUFGABE 23.9. Es sei T > 0 und sei

$$f: \mathbb{R} \longrightarrow \mathbb{K}$$

eine T-periodische Funktion. Zeige, dass f genau dann eine ungerade Funktion ist, wenn der Graph von f auf [0,T] punktsymmetrisch zum Punkt $(\frac{T}{2},0)$ ist.

AUFGABE 23.10. Es sei T > 0 und sei

$$f: \mathbb{R} \longrightarrow \mathbb{K}$$

eine stetige T-periodische Funktion. Zeige, dass folgende Aussagen äquivalent sind.

- (1) f ist gerade.
- (2) Für die Fourierkoeffizienten gilt $c_n = c_{-n}$.
- (3) Die reellen Koeffizienten b_n sind alle 0.

AUFGABE 23.11. Es sei T > 0 und sei

$$f: \mathbb{R} \longrightarrow \mathbb{K}$$

eine stetige T-periodische Funktion. Zeige, dass folgende Aussagen äquivalent sind.

- (1) f ist ungerade.
- (2) Für die Fourierkoeffizienten gilt $c_n = -c_{-n}$.
- (3) Die reellen Koeffizienten a_n sind alle 0.

Aufgabe 23.12.*

Bestimme die Fourierreihen zu den Funktionen e^{imt} , $m \in \mathbb{Z}$, wenn man sie auf $[0, \pi]$ auffasst.

Aufgabe 23.13. Zeige, dass die Funktionen

$$1, \sqrt{2}\cos 2\pi nt, n \in \mathbb{N}_+, \sqrt{2}\sin 2\pi nt, n \in \mathbb{N}_+,$$

ein vollständiges Orthonormalsystem von $L^2([0,1])$ bilden.

Es sei T > 0 und es seien $f, g: \mathbb{R} \to \mathbb{C}$ T-periodische messbare Funktionen, die auf [0, T] L^2 -integrierbar sind. Dann ist die periodische Faltung f * g durch

$$(f * g)(t) := \frac{1}{T} \int_0^T f(t - s)g(s)ds$$

definiert.

Aufgabe 23.14.*

Es sei T>0 und es seien $f,g\colon\mathbb{R}\to\mathbb{C}$ T-periodische messbare Funktionen, die auf [0,T] L^2 -integrierbar sind und die Fourierreihen $\sum_{n\in\mathbb{Z}}c_ne^{\mathrm{i}n\omega t}$ bzw. $\sum_{n\in\mathbb{Z}}d_ne^{\mathrm{i}n\omega t}$ besitzen. Zeige, dass die periodische Faltung die Fourierreihe $\sum_{n\in\mathbb{Z}}c_nd_ne^{\mathrm{i}n\omega t}$ besitzt.

AUFGABE 23.15. Es sei T>0. Zeige, dass $L^2([0,T])$ mit der Addition von Funktionen und der periodischen Faltung zu einem kommutativen Ring wird, in dem allerdings das neutrale Element für die Multiplikation fehlt.

Aufgabe 23.16.*

Die sogenannten Bernoulli-Polynome B_n für $n \in \mathbb{N}$ sind Polynome vom Grad n, die rekursiv definiert werden: B_0 ist das konstante Polynom mit dem Wert 1. Das Polynom B_{n+1} berechnet sich aus dem Polynom B_n über die beiden Bedingungen: B_{n+1} ist eine Stammfunktion von $(n+1)B_n$ und es ist

$$\int_0^1 B_{n+1}(x) dx = 0.$$

- (1) Berechne B_1 .
- (2) Berechne B_2 .
- (3) Berechne B_3 .

AUFGABE 23.17.*

Es seien $c_{m,n}$ die Fourierkoeffizienten zu den Potenzen t^m (auf dem Einheitsintervall). Zeige, dass diese die rekursiven Bedingungen

$$c_{0,0} = 1,$$

 $c_{0,n} = 0$

für $n \geq 1$,

$$c_{m,0} = \frac{1}{m+1}$$

für $m \ge 1$ und

$$c_{m,n} = -\frac{e^{-2\pi i n}}{2\pi i n} + \frac{m}{2\pi i n} c_{m-1,n}$$

für $m, n \geq 1$ erfüllen.

AUFGABE 23.18. Bestimme die Fourierentwicklung zu t^2 auf [0,1] unter Verwendung der Fourierreihen der Bernoulli-Polynome.

Aufgabe 23.19. Zeige

$$\sum_{k=0}^{\infty} (-1)^k \frac{1}{2k+1} = \frac{\pi}{4}$$

mit Lemma 23.9.

Aufgabe 23.20.*

Zeige

$$\sum_{n=1}^{\infty} \frac{1}{n^4} = \frac{\pi^4}{90}$$

mit Satz 23.10.

Aufgaben zum Abgeben

Aufgabe 23.21. (4 Punkte)

Bestimme Fourierkoeffizienten c_{-1}, c_0, c_1, c_2 für die Funktion $3t^2 - 5it - 1$ auf $[0, 2\pi]$.

Aufgabe 23.22. (5 Punkte)

Bestimme die Fourierkoeffizienten der 2-periodischen Funktion, die auf [-1, 1] durch die Betragsfunktion gegeben ist.

Aufgabe 23.23. (3 Punkte)

Zeige

$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{n^2} = \frac{\pi^2}{12}$$

mit Satz 23.10.

Aufgabe 23.24. (3 Punkte)

Zeige

$$\sum_{n=1}^{\infty} \frac{1}{n^6} = \frac{\pi^6}{945}$$

mit Satz 23.10.

${\bf Abbildungs verzeichnis}$

Erläuterung: Die in diesem Text verwendeten Bilder stammen aus	
Commons (also von http://commons.wikimedia.org) und haben eine	
Lizenz, die die Verwendung hier erlaubt. Die Bilder werden mit ihren	
Dateinamen auf Commons angeführt zusammen mit ihrem Autor	
bzw. Hochlader und der Lizenz.	7
Lizenzerklärung: Diese Seite wurde von Holger Brenner alias	
Bocardodarapti auf der deutschsprachigen Wikiversity erstellt und	
unter die Lizenz CC-by-sa 3.0 gestellt.	7