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Cognition arguably drives most behaviours in animals, but
whether and why individuals in the wild vary consistently in
their cognitive performance is scarcely known, especially under
mixed-species scenarios. One reason for this is that quantifying
the relative importance of individual, contextual, ecological and
social factors remains a major challenge. We examined how
many of these factors, and sources of bias, affected participation
and performance, in an initial discrimination learning
experiment and two reversal learning experiments during self-
administered trials in a population of great tits and blue tits.
Individuals were randomly allocated to different rewarding
feeders within an array. Participation was high and only
weakly affected by age and species. In the initial learning
experiment, great tits learned faster than blue tits. Great tits
also showed greater consistency in performance across two
reversal learning experiments. Individuals assigned to the
feeders on the edge of the array learned faster. More errors
were made on feeders neighbouring the rewarded feeder and
on feeders that had been rewarded in the previous experiment.
Our estimates of learning consistency were unaffected by
multiple factors, suggesting that, even though there was some
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influence of these factors on performance, we obtained a robust measure of discrimination learning in

the wild.
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1. Introduction
Animal cognition provides a framework for understanding evolutionary processes operating on functional
behavioural variation [1,2]. Demonstrating consistent between-individual differences in cognitive
performance is fundamental, as such evidence would point to long-term implications for individual
behaviour because, for example, this suggests the trait may be heritable and has the potential to evolve in
response to natural selection [3]. However, quantifying individual differences in cognitive performance
remains challenging (reviewed by the authors in [4–7]). One reason for this is that, while many studies
aim to measure cognitive ability, which is the inherent effectiveness of an individual’s cognitive
mechanism, cognitive ability cannot be directly measured and is instead inferred from an individual’s
performance on a cognitive task, which is subject to influence from myriad additional factors [5,8–10].
A related challenge is that the consistency, or repeatability, of cognitive traits can be difficult to estimate
(reviewed by Cauchoix et al. [11]), both because repeatability estimates can be obscured by confounding
variables [12] and because cognitive performance is influenced by previous experience and therefore
cannot always be measured multiple times under standardized conditions [13]. An important step
towards addressing these challenges involves quantifying individual performance using clearly defined
cognitive assays, characterizing the underlying drivers and potential confounds, and doing so with the
large sample sizes that are necessary for evolutionary and ecological investigations. Here, we studied
individual performance in an initial discrimination learning experiment and two subsequent reversal
learning experiments, and controlled for a range of cryptic confounding effects.

Multiple factors influence cognitive performance. For instance, individual attributes such as age,
sex and species are related to both cognitive ability and motivation and ability to interact with the
task [14–16]. However, the strength and direction of these effects is not consistent between studies
[14–17], which suggests that other contextual variables often drive individual differences in cognitive
performance. Cognitive performance is also affected by participation rates, which can introduce a
major source of bias in studies conducted in wild populations. Few studies report participation rates,
and when they do, they often report very low participation (reviewed by van Horik et al. [18]).
For example, less competitive individuals may be less likely to participate, not because of differences
in cognitive ability, but because they are excluded by others from accessing devices offering a reward
[19,20]. Alternatively, less competitive individuals may be unable to exploit their primary food source
and thus rely on their cognitive abilities to access resources from experimental devices (the ‘necessity
drives innovation’ hypothesis; [21]).

Additionally, cognitive performance can be influenced by factors related to the characteristics of the
experimental design and its interaction with the environment. Some of these factors may lead to biases
(i.e. a non-random distribution of errors) in how individuals explore experimental arrays. For instance,
distance to cover or location of the experimental apparatus relative to other profitable food sources
[22] will influence individuals’ participation and performance in experiments. Furthermore, in
discrimination learning experiments in which multiple devices are placed in an array, some of which
are rewarding and some of which are not, the placement of devices with respect to one another is
likely to affect an individual’s performance. Having to visit rewarding devices on the edge of an array
may allow for easier discrimination because they are more distinctive having a neighbouring feeder
only on one side. Edge locations may also be subject to greater predation risk [23], which can affect
visitation rates and subsequent cognitive performance [22]. Previous experience is an important factor
in reversal learning experiments, because having been rewarded in one location may make individuals
more likely to continue to explore that location even after the contingencies have switched. Finally,
social interactions may influence cognitive performance through a range of effects [24–27], such that
experimental designs should account for or manipulate the social environment to gain a better
understanding of individual variation in cognitive performance.

We investigated individual variation in learning performance in thewild in mixed-species flocks of two
songbird species: great tits Parus major and blue tits Cyanistes caeruleus. The study species are well suited for
studying cognition in the wild. They gather in large numbers during thewinter when foraging [28] and are
highly innovative foragers [24,29–31] that readily interact with cognitive tasks [32–35]. Discrimination
learning is likely to be important for these species, because the ability to discriminate among rewarding
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and non-rewarding food patches is not only central to making optimal decisions among animals in general

[36], but is likely to be especially important during the harshwinter conditions that these species experience.
Recent technological advances have opened possibilities to perform discrimination learning experiments in
wild populations using automated feeder arrays [37–39]. We used an array of automated feeders to study
individual variation in performance in an initial discrimination learning experiment, followed by two
successive reversals in which each individual was assigned to a new rewarding feeder to examine
individual flexibility and consistency in learning. Each experiment required individuals to learn to visit
one feeder that would provide them with a reward in an array with four other unrewarding feeders
(probably, but not necessarily, based on learning the rewarding feeder’s location in the array).

We asked two main questions: first, which factors influenced individual performance in each learning
experiment? Within this question, we first quantified participation rates for each experiment and
examined the factors that influenced the likelihood of participation in the experiment. We then
examined both individual (age, sex, species) and local environmental (location of the feeder within the
array) effects on learning speed. Our aim in these analyses was not to test specific hypotheses about
whether one type of individual would perform better than another, but rather to assess the influence
of these putative confounds on our measures of cognitive performance. Finally, we examined whether
there were biases in the patterns of errors made by individuals, to gain insights into how the array
set-up, individual characteristics and previous experience influenced individual performance.

Second, was individual performance consistent across the three experiments, or at least across the two
reversal experiments? The consistency of individual performance across these tasks gives insights into the
role of individual variation in driving behaviours in nature, where reward contingencies change frequently.
Discrimination ability may influence performance in both initial discrimination learning and reversal
learning, but reversal learning also involves additional cognitive abilities that are not involved in learning
the initial discrimination [40,41]. A negative correlation between initial discrimination performance and
performance in a reversal experiment would suggest trade-offs between speed of learning and the
flexibility necessary to adjust to new reward contingencies [42–45]. Alternatively, a positive correlation
would suggest a single underlying trait controlling substantial variation in performance in both tasks [2].
However, estimates of consistency are potentially confounded by a wide variety of variables that could
inflate or underestimate consistency [12,46]. Therefore, we also examine how our estimates of consistency
were affected by whether or not we accounted for potential confounding factors.

With these analyses, we provide new insights into individual-level differences in cognitive abilities in
the wild, and the confounding effects that should be controlled in the process. We use these insights to
highlight how knowledge of individual differences is crucial for further understanding the evolutionary
and ecological causes and consequences of cognitive abilities.
2. Methods
2.1. Study site and species
The study took place in Wytham Woods (51°460 N, 1°200 W), Oxfordshire, UK. Birds were captured with
mist nets to be ringed, aged and sexed using a standard protocol that has been in place since the 1960s
[47]. Great tits and blue tits were additionally fitted with plastic rings containing a passive integrative
transponder (PIT) tag (IB Technology, Aylesbury, UK), allowing for individual identification of birds that
interacted with our experimental devices (see below). We focused ringing efforts in winter 2017–2018 at
locations where we would later place the experimental feeders. In addition to winter mist netting, many
birds were previously marked because all breeding adults and nestlings are routinely captured and
tagged during the spring breeding season [47].

2.2. Feeder array
We set out sunflower-seed feeder arrays in multiple locations chosen to maximize bird numbers and to
minimize movement of individuals between arrays. We ran trials in four locations in November–
December 2017, and in a different set of four locations in January–February 2018. Feeders were active
each day during daylight hours from 07.00 to 16.30. Feeders shut down and visits were not recorded
outside of these hours to save battery life. While some individuals may have continued to attempt to
visit in any remaining daylight outside of these hours, possibly affecting their experience with the
reward contingencies, we consider this unlikely to have substantially affected our results because there
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was a large drop in visits towards the time that the feeders were closed, suggesting that few birds were

attempting to feed at these hours (e.g. zero visits took place between 07.00 and 07.10 while 1629 visits
took place between 08.00 and 08.10 in the initial learning experiment. Two feeders were inadvertently
programmed to be active until 17.30, and in the initial learning experiment, these recorded only 94 total
visits from 16.30 to 17.30, compared with 641 visits to the same two feeders from 15.30 to 16.30). Each
feeder was equipped with a radio frequency identification (RFID) antenna placed near the single
opening to the feeder, which served as a perch and recorded the individual ID and time of visit for each
bird coming to the feeder. During the learning experiments, selective feeders were used [35,48], where
access to food was controlled by a solenoid placed behind a transparent plastic door at the feeder
opening. The solenoid would release upon detection of specific PIT tags, allowing only those birds
assigned to a given feeder to obtain food by pushing open the door, which otherwise was immobile (see
below). RFID readings and solenoid activation were controlled by a custom program loaded onto a
printed circuit board (‘Darwin Board’, Stickman Technologies Inc., UK). All visits were monitored with
the RFID antenna throughout the experiment. Each feeder was surrounded by a cylindrical cage of
chicken wire, which had holes that were large enough for our study species to pass through but deterred
squirrels and larger birds from accessing and damaging the feeder.

A depiction of the experimental timeline is given in electronic supplementarymaterial, figure S1. Before
the learning experiment started, we placed two feeders 50 m apart with feeder doors open and therefore
accessible to all birds (5 days). The purpose of this portion of the experiment was to attract birds to the
area and to begin habituating them to the feeders. After 5 days, we closed the feeder door so that feeders
were only accessible to birds with PIT tags (7 days in 2017; 8 days in 2018; difference between years
came because one 2018 site had low visit numbers at first and more time was needed to attract good
numbers to the area). The purpose of this portion of the experiment was to continue to attract birds to
the area while also allowing tagged birds to habituate to pushing the door to access food (at this point,
all feeders were accessible to all tagged birds) and overcome any initial neophobia towards the devices.
The door was transparent, so birds could see the food inside and, for individuals that were allowed
access, pushing back the door and accessing the food reward occurred naturally as a result of their
attempts to peck at the seeds. There was no problem-solving required to access the food reward. The
next step was to remove the feeders at 50 m distance and create the array that was to be used during
the learning trials: five feeders arranged in a straight line, each 1 m apart. This array was located at the
midpoint between the original two feeders. Feeders were aligned parallel to natural cover at each study
site, as distance from cover affects participation [22]. The layout of available cover necessitated a linear
feeder array (rather than arranging feeders in a circle, which in preliminary trials caused severe biases in
visits favouring those feeders closer to cover; M.S.R., I.G.K. & J.L.Q. 2017, unpublished data). We left
feeders in this arrangement for 4 days, with all feeders again accessible to any PIT-tagged bird, with the
aim to habituate birds to the new feeder arrangement. After this 4-day period, we began the learning
experiments.

2.3. Learning and reversal learning
To measure individual variation in learning ability, we restricted each individual’s access to only one of
the five feeders in the array, by programming the particle control board with a list of PIT-tagged birds.
Therefore, each feeder only opened the solenoid and allowed access to the food reward for specified
birds, but the feeders recorded every visit of PIT-tagged birds, whether or not the bird was allowed
to access the reward. Lists of individuals assigned to each feeder were generated from a database of
birds that had visited the site during the pre-learning trials or had been captured in the area at any
point. We randomly assigned birds from each species separately to ensure a similar distribution of
species across the feeders. Within each species, individuals were randomly assigned to feeders to
minimize interactions between individuals that might have been socially connected.

The initial learning phase (hereafter, ‘initial learning’) ran for 8 days, followed by two reversal
learning phases (hereafter ‘first reversal’ and ‘second reversal’) in which each bird was assigned to a
new feeder in each phase. We used one of two treatments per site to determine how individuals were
reassigned to new feeders during reversal learning, with the aim to test for potential social influences
acquired during initial learning that may influence reversal learning speed and to manipulate the
potential for social learning. For the purposes of the present manuscript, this social group treatment is
mentioned and included only to control for the effect. More extensive analysis of this effect is beyond
the scope of our aims here and forms part of a separate paper in preparation. In the ‘stable’ social
group treatment (four randomly selected sites), the entire cohort of birds assigned to a given feeder
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during initial learning was reassigned to the same new feeder. In the ‘unstable’ social group treatment

(the other four sites), cohorts assigned to a given feeder during initial learning were broken up, and
each individual bird was reassigned to a new feeder. The second reversal followed the stable and
unstable treatments as described in the first reversal. In all cases, birds were reassigned to a different
feeder from the one they were assigned to in the initial learning. Each reversal experiment was
performed for 8 days in 2017 (two sites for each social group treatment) and, owing to operational
differences, 10 days in 2018 (two sites for each social group treatment).

We note that our design does not exactly replicate the classical tests of reversal learning where
contingencies are switched between only two options (e.g. [49–51]), but the underlying principle of
our experiment is similar in that reward contingencies change: subjects must stop going to a
previously rewarded feeder and switch to a new rewarded feeder. Reversal learning paradigms
sometimes do encompass more than two possible choices [52]. Reversal took place on the same day
for all birds because of the social stability treatment and because we could only extract learning
performance after the data were downloaded from the devices, which stored data independently of
one another. Individuals that had not learned during the initial learning were removed from the
analyses related to learning speeds (see table 1 for sample sizes).

2.4. Data analysis
We performed five main analyses on the experimental data: first, we investigated what determined
whether an individual participated in the learning experiments. Second, we evaluated the robustness
of our chosen learning criterion by comparing it with several alternatives. Third, for those birds that
participated, we investigated what factors determined the speed of learning and reversal learning.
Fourth, we analysed individual consistency in performance (learning speed) across the different
experiments. Fifth, we examined in detail the spatial pattern of errors made during the experiments to
gain insights into the processes involved in exploration of the array and potential biases.

2.5. Visits and data inclusion
The raw dataset consisted of rows containing the date, time and PIT tag for each detected visit at each
feeder. We considered consecutive detections of the same bird to the same feeder within 2 s of each
other to be a single visit [53]. Our analyses were restricted to great tits and blue tits; a range of other
species were recorded in very small numbers and excluded from further analyses. Because many of
our analyses examined effects of sex, we excluded individuals for whom sex was unknown (because
the individual had not been recaptured since being ringed as a nestling; N = 18/269 blue tits and 11/
169 great tits were of unknown sex).

Some individuals were not assigned a feeder because they had not been previously detected at the site
until the learning experiment began; these individuals were excluded from all analyses. A total of 21
individuals that were included in the analyses appeared at more than one site (including individuals
occurring at more than one site over the 2017 and 2018 repeats). In almost all cases, these individuals
appeared frequently at one site and very rarely at any others. Therefore, to avoid pseudoreplication, for
these birds, we only analysed data from the single site it was recorded most frequently at. When birds
participated in both 2017 and 2018, we simply excluded them from the 2018 data and chose the site
visited in 2017 (because this was the individual’s first encounter with the feeders). Unless otherwise
noted, all analyses were performed separately for the three different learning experiments.

2.6. Participation
A bird was considered to be a participant in an experiment if it visited the feeders at least 50 times during
that experiment. One bird in the initial learning experiment reached the learning criterion (see below) but
visited less than 50 times and this individual was also classified as a participant. All other birds that visited
less than 50 times were classified as non-participants. We chose 50 as the cut-off for participation because
only one of 21 birds that visited between 20 and 49 times met the initial learning criterion, while five of
nine birds that visited between 50 and 79 times met the initial learning criterion. Individuals were only
considered participants in the subsequent reversal learning experiment if they had met the participation
and learning criteria in the previous experiment, and then again visited 50 or more times during the
reversal experiment.
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To analyse the factors that determined participation in the initial learning experiment, we ran

generalized linear mixed models fitted to a binomial distribution with a log link function, with the
response variable of whether or not the individual met the criterion for participating, and included
the following fixed effects: age (individuals were categorized as either adults or juveniles [less than 1
year old] because exact age was not known for all birds), sex, species, feeder location (edge, i.e. either
end of the feeder array; or centrally located, the middle three feeders), and all two- and three-way
interactions between age, sex and species, with site as a random term. We combined the middle three
feeders into a single ‘centre’ category because our preliminary analyses indicated some differences in
behaviour between the two edge feeders and the three centre feeders, but no differences in behaviour
to the very central feeder compared with its two neighbouring feeders. We do not include similar
analyses for the reversal learning experiments, because almost all individuals that participated and
learned in the initial learning experiment continued to participate in subsequent experiments (table 1),
and there was therefore an insufficient sample of non-participants for these experiments. We used the
lme4 package [54] in R v. 3.5.2 software [55] to fit an initial model and performed a backwards
stepwise procedure to remove non-significant terms beginning with the highest-order interactions and
arrive at a final model. Model estimates for non-significant terms were calculated by adding them as a
single additional variable to the final model.

2.7. Learning criterion
To determinewhen birds had learned the task,we assumed that each visitwas an attempt to feed. Therefore,
each visit a bird made to an unassigned feeder was counted as an error, and each visit to a feeder the bird
was assigned to was counted as a correct choice. In order for a visit to be detected by the antenna and
registered in our dataset, birds had to pass through the small holes of the cage surrounding each feeder
and then land on a 5 × 5 cm antenna platform in front of the only access point to the feeder. Thus, birds
were unlikely to land on this platform incidentally. We considered birds to have learned the task once
they met the criterion of visiting the correct feeder 80% of the time on 20 consecutive visits (with the
requirement that the first visit in that window be a correct visit) [56–58]. We evaluated the robustness of
this criterion by comparing it with alternative criteria with different success percentages (80 or 90%
correct) and numbers of consecutive visits (10, 20 or 30). We calculated learning speeds for each
individual using each of these methods. The learning speed was the number of visits until the first visit
at which the bird met the criterion defined above. We then used a correlation analysis to determine how
similar the calculated learning speeds were under the six different possible criteria. High correlation
coefficients would indicate that any of these criteria provide a similar answer and the measurement of
learning speed is robust to the specific details of the chosen criterion.

To further evaluate our choice of learning criterion, we analysed the performance of individuals for
all of their visits after they had reached the criterion. If our criterion captures the moment that the birds
learned the task, then we would expect individuals’ performance to remain high throughout the rest of
the experiment. We therefore calculated the proportion of birds that maintained performance above 80%
after having reached the learning criterion.

2.8. Learning speeds
We analysed what factors influenced learning speed, that is, the number of visits to meet criterion, for each
of the three experiments. Individual learning speed was ln-transformed to meet assumptions of normality
and analysed using linear mixed models with a Gaussian distribution. We included age, sex, species, the
two- and three-way interactions between age, sex and species, feeder position and the average time
interval between successive visits prior to meeting criterion (excluding time periods in which feeders
malfunctioned, see below). The inter-visit interval was included to account for the fact that the amount
of time elapsed between successive experiences often affects the speed of learning [59,60]. We could not
directly control inter-trial interval as in many laboratory studies because birds’ visits were voluntary and
we did not restrict their rewards in any way. For the reversal experiments, we included social group
treatment, learning speed in the previous experiment and the number of correct visits made after the
learning criterion was met as additional fixed factors. As above, for reversal learning, we only included
in analyses those birds that had participated and learned in the previous experiment. Some feeders
malfunctioned during the course of the experiment and did not open for any of the birds or record any
visits until they were repaired. Malfunctions occurred either because of failure of the antenna to register
any visits or unexpected loss of power to the devices. We therefore included the duration of feeder
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malfunction before the bird reached learning criterion for both the assigned (own) feeder and separately for

any of the other feeders in that site as additional fixed effects. Effect estimates were calculated using
restricted maximum likelihood.

2.9. Pattern of errors
We quantified the likelihood of different types of errors made by individuals that met the learning criterion
to gain insights into how they were exploring the feeders and learning the task. For these analyses, as we
were interested in how individuals’ errors were distributed across the feeders, we excluded all correct
visits (2 of 221 individuals that met the learning criterion in the initial learning experiment were
therefore excluded because they never made an error). First, we asked whether there was an overall bias
towards feeders on the edge or in the centre. We determined the null probability of an individual
making an error at an edge feeder, under the assumption that errors were distributed randomly across
the feeders. This probability is 50% (two incorrect edge feeders/four total incorrect feeders) for birds
assigned to a feeder in the centre, and 25% for birds assigned to a feeder on the edge (one incorrect edge
feeder/four total incorrect feeders). We then tested whether birds were biased towards the edge more
than expected by subtracting the actual percentage of errors made at feeders on the edge from the null
expectation for each bird. We used a one-way Wilcoxon test to determine if bias values differed
significantly from zero. We then asked whether birds assigned to the edge were more biased towards
errors on edge feeders than were birds assigned to the centre. This would be expected if birds on the
edge were primarily learning by discriminating between the two edge feeders (i.e. learning to go to the
left or to the right). We used a two-way Wilcoxon–Mann–Whitney (WMW) test to compare the bias
towards the edge of birds that were assigned to the edge and birds that were assigned to the centre, and
also to compare the bias between the two species.

We also askedwhether errorswere biased towards the feeders immediately adjacent to a bird’s assigned
feeder. We calculated the bias towards neighbouring feeders by subtracting the observed percentage of
errors that were made at neighbouring feeders from the expected error rate based on the null probability
of making an error at a neighbouring feeder if visits were distributed at random (which, as above, is 50%
for birds assigned to a feeder in the centre, and 25% for birds assigned to a feeder on the edge).
As above, we used a one-way Wilcoxon test to determine if bias values differed significantly from zero,
and a two-way WMW to compare the bias towards neighbouring feeders of birds that were assigned to
the edge or centre, and between great tits and blue tits.

Finally, for the reversal learning experiments, we tested whether individuals were biased to make
errors at the feeder to which they were previously assigned in the prior experiment. In this case, the
null expected percentage of errors at the previously assigned feeder was 25% for all birds. We used a
two-way WMW to compare the bias towards previous feeders for great tits and blue tits.

2.10. Individual consistency in learning speed
Consistent differences between individuals in behaviour are typically quantified using repeatability
coefficients generated from a mixed model analysis [46]. However, estimating repeatability in cognitive
studies is challenging, because even when the same behavioural outcome is measured, the underlying
cognitive processes may vary across trials [11]. In particular, initial learning and reversal learning
probably involve different cognitive processes [40,41] and as a consequence may represent two separate
traits. The advantage of the mixed model approach over related approaches, such as correlation analysis,
is that it enables controlling for multiple confounding effects (both fixed and random) on both traits at the
same time. We used mixed models and calculated repeatability coefficients to investigate whether there
were consistent, between-individual differences in learning speed across the three experiments, but for the
reasons expressed above and for heuristic reasons, we chose to refer to this as consistency in learning
performance. We calculated individual consistency using the rptR package [12] in R, with ln-transformed
learning speed as the response variable and individual ID as a random effect. We calculated consistencies
that were both adjusted and unadjusted (see [12]) for factors that may have influenced performance
within and across experiments. Unadjusted consistency included only experiment as a fixed effect.
Adjusted consistency included experiment and also the following fixed effects that were identified as
significant in the analyses described above and below: feeder position, malfunctioning time of own and
other feeders, bias towards edge feeders (see above for description of bias measurements), bias towards
neighbouring feeders and bias towards feeder assigned in previous experiment (reversal experiments
only). If consistency estimates are high and similar for unadjusted and adjusted analyses, this implies that
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our estimates of between-individual differences in performance are robust to these confounding effects and

therefore more likely to reflect intrinsic differences in discrimination learning ability. We estimated
consistency values both across all three experiments, and separately for the two reversal learning phases
only. Great tits and blue tits were analysed separately.
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3. Results
3.1. Summary of visits across experiments
A total of 409 individual great tits and blue tits of known sex visited the feeders during the initial learning
experiment, with a total of 96 833 visits. The total numbers of individuals appearing in, participating in and
meeting the learning criterion in the three different experiments are shown in table 1. The mean learning
speed and mean number of visits per individual that met the learning criterion for each category of
species, sex and age are given in electronic supplementary material, table S1.

3.2. Participation
Of all the individuals that were detected visiting at least once during the initial learning experiment, 58.7% of
themvisited enough tobe consideredasparticipating (table 1). For the initial learning experiment, therewas a
significant interactionbetween speciesandageonparticipation (estimate = 0.91, s.e. = 0.45, z = 2.03,p = 0.043).
Great tits of different ages participated at similar levels, but juvenile blue tits were more likely to participate
than adult blue tits (table 1).Noneof the other fixed effects significantlyaffected participation rates (electronic
supplementarymaterial, table S2). Two hundred and four of 221 individuals that hadmet the initial learning
criterion continued to visit feeders and also participated in the first reversal experiment, and 183/198
individuals who learned during the previous two experiments continued to visit feeders and participated
in the second reversal (table 1). We found no effects of age, sex or species on whether individuals that were
detected at the feeder in the initial learning experiment ultimately met all of the criteria for participating
and learning in all three experiments (electronic supplementary material, table S3).

3.3. Comparing learning criteria
We compared our chosen learning criterion of 80% correct visits over 20 consecutive visits to five other
learning criteria that were based on two variables: the percentage of visits that were correct (either 80
or 90%) and the number of consecutive visits over which that percentage was calculated (10, 20 or
30 consecutive visits). These criteria were highly correlated with one another (range of correlation
coefficients for initial learning: 0.69–0.96; first reversal learning: 0.68–0.95; second reversal learning:
0.76–0.98), indicating that birds met the different criteria in a similar number of visits. However, not all
birds met all of the criteria. In initial learning, 221 individuals met the least stringent criterion (80%
correct choices over 10 consecutive visits) compared with 205 individuals in the most stringent criterion
(90% correct choices over 30 visits). Similar reductions in numbers reaching criterion were seen for the
first reversal learning (200–183) and second reversal learning experiments (187–166).

For the chosen criterion of 80% correct choices over 20 consecutive visits, most individuals continued
to perform above the 80% criterion on subsequent visits after having met the criterion (number of
individuals choosing the correct feeder at least 80% of the time over all visits after those in which it
met the learning criterion/number of individuals that met the learning criterion; initial learning: 166/
221, first reversal learning: 132/198, second reversal learning: 124/183).

3.4. Factors affecting learning speeds
A summary of the findings of our analyses of factors affecting learning speeds is given in table 2.

In the initial learning experiment, great tits learned significantly faster than blue tits (electronic
supplementary material, figure S2; estimate =−0.72, s.e. = 0.16, t =−4.53, p < 0.001). There was no
significant effect of age, sex or any interactions of these variables with each other or with species on
initial learning speed (electronic supplementary material, table S4). Individuals learned faster when
they were assigned to feeders on the edge of the array than when they were assigned to the centre
(figure 1a; estimate =−1.55, s.e. = 0.17, t =−9.32, p < 0.001). Individuals that experienced longer feeder
outages took longer to learn, regardless of whether it was their own feeder, or another feeder



Table 2. Summary of factors influencing learning speed. Full results of statistical tests are given in electronic supplementary
material, table S4. ‘ indicates no significant effect of the factor on learning speed. ✓ indicates there was a significant effect of
the factor on learning speed.

initial learning first reversal second reversal

age ‘ ‘ ‘

sex ‘ ‘ ‘

species ✓a
‘ ‘

feeder position ✓b ✓b ✓b

inter-trial interval ‘ ‘ ‘

other feeders malfunction time ✓c ✓c ✓c

own feeder malfunction time ✓c ✓c ✓c

social group treatment ‘ ‘ ‘

aGreat tits learned faster than blue tits.
bBirds assigned to the edge learned faster than birds assigned to the centre.
cBirds took longer to learn when their assigned (or non-assigned) feeder was unpowered for a greater amount of time. Other
factors that never had a significant effect and interactions are reported in electronic supplementary material, table S4.
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Figure 1. Effects of the location of the feeder on individual learning speed for (a) initial learning, (b) the first reversal and (c) the
second reversal. Points represent individual birds ( points have been jittered along the x-axis and rendered partially transparent to
reduce overlap; as a result, any remaining overlap results in darker points). Horizontal line represents the mean value. Learning
speed is the number of visits to criterion; therefore, lower values represent faster learning.
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(own feeder: estimate = 0.07, s.e. = 0.02, t = 3.85, p < 0.001; other feeders: estimate = 0.07, s.e. = 0.01, t =
5.31, p < 0.001). There was no effect of the average time interval between successive visits on learning
speeds (electronic supplementary material, table S4).

In the first reversal learning experiment, therewere again significant effects of feeder location (figure 1b;
individuals assigned to the edge learned more quickly than individuals assigned to the centre;
estimate =−0.43, s.e. = 0.16, t =−2.70, p = 0.008) and the duration of feeder outages on reversal learning
speed (own feeder: estimate = 0.12, s.e. = 0.04, t = 3.15, p = 0.002; other feeders: estimate = 0.06, s.e. = 0.02,
t = 3.05, p = 0.003). There was a trend towards an effect of the number of rewards obtained after learning
in the initial learning experiment on first reversal learning speed (estimate = 0.001, s.e. = 0.0006, t = 1.97,
p = 0.050); individuals that had obtained more rewards in the previous experiment learned more slowly
during the reversal experiment. There were no effects of sex or age, as in the initial learning experiment.
However, in contrast with the initial learning experiment, in the first reversal learning experiment, there
was no effect of species on the reversal learning speed (electronic supplementary material, figure S2 and
table S4). Social group treatment, learning speed in the previous experiment, and the average visit
interval also had no significant effects on the first reversal learning speed (electronic supplementary
material, table S4).



Table 3. Summary of the analyses of biases in errors. We tested for three types of bias in the types of errors that were made
by individuals in our experiments. A detailed description of the analyses and statistics are given in the main text. Here, we
summarize our findings by experiment and type of bias. We examined whether there was bias towards (i) edge or centre
feeders, (ii) feeders that either neighboured or did not neighbour an individual’s assigned feeder, and (iii) the feeder that the
individual was assigned to in the previous experiment compared with feeders it had not been assigned to. For all bias types, we
compared whether the bias was greater for great tits or blue tits, and for the first two we compared whether individuals
assigned to a feeder in the centre were more biased than individuals assigned to a feeder on the edge. n.s., not significant; n.a.,
not applicable.

initial first reversal second reversal

overall bias towards edge edge > centre n.s. centre > edge

feeder assignment bias towards edge n.s. n.s. n.s.

species bias towards edge n.s. n.s. n.s.

overall bias towards neighbour neighbour >

non-neighbour

neighbour >

non-neighbour

neighbour >

non-neighbour

feeder assignment bias towards

neighbour

n.s. centre > edge centre > edge

species bias towards neighbour n.s. n.s. n.s.

overall bias towards assigned feeder of

previous experiment

n.a. assigned >

non-assigned

assigned >

non-assigned

species bias towards assigned feeder of

previous experiment

n.a. great tit > blue tit great tit > blue tit
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Once again in the second reversal learning experiment, there were significant effects of feeder location
(figure 1c; individuals assigned to the edge learned more quickly than individuals assigned to the centre;
estimate =−0.59, s.e. = 0.17, t =−3.50, p < 0.001) and the duration of feeder outages on reversal learning
speed (own feeder: estimate = 0.12, s.e. = 0.02, t = 5.35, p < 0.001; other feeders: estimate = 0.04, s.e. = 0.01,
t = 3.0, p = 0.003). Individuals that had made more rewarded visits in the previous experiment (i.e. the
first reversal learning) learned significantly more quickly in the second reversal learning experiment
(estimate =−0.0003, s.e. = 0.0009, t =−3.0, p = 0.003). There were no significant effects of social group
treatment, sex, age, species (electronic supplementary material, figure S2) or their interactions, or of the
average time interval between visits or the learning speed in the first reversal learning experiment on
learning speed in the second reversal learning experiment (electronic supplementary material, table S4).
3.5. Biases in errors
A summary of the findings of our analyses of bias in errors is given in table 3.

When individuals made an error in the initial learning experiment, they were more likely to make an
error at a feeder located at the edge of the array than would be expected if their errors were distributed
randomly (figure 2a; Wilcoxon test, V = 14 750, p < 0.001, N = 219 individuals). There was a trend for birds
assigned to the centre to be more biased towards unassigned edge feeders (taking into account the
different null probability for making an error at each feeder type depending on the type the
individual was assigned to: figure 2a; WMW, W = 6751, p = 0.08, N = 219). There was no difference
between great tits and blue tits in the bias towards edge feeders (WMW, W = 5625, p = 0.76, N = 219).

By contrast, in the first reversal learning experiment, there was no significant bias towards either
edge or centre feeders (figure 2b; Wilcoxon test, V = 9854, p = 0.90, N = 198). Individuals assigned to
the centre did not differ in their bias towards unassigned edge feeders from individuals assigned
to the edge (figure 2b; WMW, W = 4952, p = 0.56, N = 198). However, individuals that had been
assigned to the centre in the initial learning experiment had a stronger bias towards unassigned centre
feeders in the first reversal learning experiment (WMW, W = 1265, p < 0.001, N = 198). There was no
difference between great tits and blue tits in the bias towards edge feeders in this experiment (WMW,
W = 4478, p = 0.73, N = 198).
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respect to feeder location. This expected proportion differs for individuals assigned to feeders in the centre (0.5) and
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In the second reversal learning experiment, there was again a significant bias based on feeder
location, but this time individuals were biased towards feeders in the centre rather than the edge
(figure 2c; Wilcoxon test, V = 5007, p < 0.001, N = 183). There was a non-significant trend for birds
assigned to centre feeders to be more biased towards centre feeders (figure 2c; WMW, W = 3310,
p = 0.095, N = 183). Individuals that had been assigned to a centre feeder during the first reversal
learning experiment had a stronger bias towards unassigned centre feeders in the second reversal
learning experiment (WMW, W = 1730, p < 0.01, N = 183). There was no difference between great tits
and blue tits in the bias towards centre feeders in this experiment (WMW, W = 3934, p = 0.95, N = 183).

Individuals in the initial learning experiment were more likely to make an error towards a
neighbouring feeder than would be expected by chance (figure 3a; Wilcoxon test, V = 17 498, p < 0.001,
N = 219), but there was no difference between centre and edge birds in the bias towards neighbouring
feeders (figure 3a; WMW, W = 5904, p = 0.96, N = 219). There was also no difference between great tits
and blue tits in the bias towards neighbouring feeders (WMW, W = 5187, p = 0.21, N = 219).
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There was again an overall bias in making errors on feeders neighbouring the assigned feeder in the
first reversal learning experiment (figure 3b; Wilcoxon test, V = 14 550, p < 0.001, N = 198). However, in
contrast with the initial learning experiment, here individuals assigned to the centre were more biased
towards making errors on neighbouring feeders than were individuals assigned to the edge (figure 3b;
WMW, W = 5692, p = 0.014, N = 198). There was no difference between great tits and blue tits in the
bias towards neighbouring feeders (WMW, W = 4366, p = 0.53, N = 198).

Individuals in the second reversal learning experiment were again biased towards neighbouring
feeders (figure 3c; Wilcoxon test, V = 11 986, p < 0.001, N = 183), and as in the first reversal learning
experiment, individuals assigned to the centre were more biased towards making errors on
neighbouring feeders than were individuals assigned to the edge (figure 3c; WMW, W = 5243, p <
0.001, N = 183). There was no difference between great tits and blue tits in the bias towards
neighbouring feeders (WMW, W = 3983, p = 0.83, N = 183).

There was a significant bias in the first reversal learning experiment towards making errors on
the feeder to which the bird had been assigned during the initial learning experiment (Wilcoxon test,
V = 18 298, p < 0.001, N = 198). Great tits were significantly more biased than blue tits towards errors
on the feeder to which they had been previously assigned (figure 4a; WMW, W = 3543, p = 0.006,
N = 198). In the second reversal learning experiment, there was again a significant bias towards
making errors on the feeder to which the bird had been assigned during the first reversal learning
experiment (Wilcoxon test, V = 14 782, p < 0.001, N = 183), and again this bias was stronger for great
tits than it was for blue tits (figure 4b; WMW, W = 3187, p = 0.037, N = 183).

3.6. Individual consistency in learning speed
Consistency measures were very similar whether or not they were adjusted for several fixed effects (see
Methods). For simplicity, we report the adjusted values here; unadjusted values are given in electronic
supplementary material, table S5. Great tits did not show significant consistency in learning speed
when all three experiments were considered (R = 0.009, s.e. = 0.05, p = 0.5). By contrast, individual
reversal learning speeds were consistent in great tits across the two reversal experiments (figure 5a;
R = 0.28, s.e. = 0.11, p = 0.01); individuals that were faster in the first reversal were also faster in the
second reversal. For blue tits, there was a trend towards statistically significant consistency in learning
speed when all three experiments were considered (R = 0.09, s.e. = 0.06, p = 0.06), but no significant
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consistency when just the two reversal experiments were considered (figure 5b; R = 0.12, s.e. = 0.09,
p = 0.13); the value of the coefficient was relatively low in both cases.
4. Discussion
Using a large-scale experiment in the wild, we examined multiple factors that determined individual-
level participation and performance in a discrimination learning and two reversal learning tasks, in
two songbird species. The largest bottleneck was identified at the level of participation in the initial
learning experiment; once birds had participated, the majority of them went on to reach the learning
criterion in all three experiments. The demographic factors of age and species affected participation
and learning in some experiments, but sex had no effects on participation or learning. We also
explored the dynamics of learning by examining whether there were patterns in the types of mistakes
that individuals made while searching for their rewarding feeder, and indeed, we found several biases
related to the location of the feeder in the array and the individual’s previous experience of reward.
Reversal learning performance was consistent within individuals in great tits, suggesting that despite
many potential confounds, we are able to capture meaningful variation in cognitive ability in this task
for this species.

4.1. Who and what proportion of the population participates?
In field studies generally, it is important to determinewhether there are biases in patterns of participation that
could affect interpretation (see also [61]). Here, we found that only 58.7% of the birds that were detected on
the feeders during the initial learning experiment made enough visits to be considered as participants.
However, few of the variables that we explored had a significant effect on the likelihood of participation,
or indeed on whether birds ultimately passed all of the participation and learning criteria for all three
experiments. Furthermore, our participation rates were generally much higher than those reported from
other cognition studies on wild populations, in which rates of full participation among individuals that
interact with tasks are usually less than 50% and in many cases less than 10% (reviewed by van Horik
et al. [18]). Indeed, similar previous studies of cognitive performance in this same population also found
that some species, including blue tits, failed to participate in large numbers [30,33], perhaps because of
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reduced ability to interact with devices due to smaller body size. A major advantage of our cognitive

apparatus is that it required almost no physical manipulation (push lightweight, transparent door) to
access the reward. This reduces the confounding effects of physical ability or motor biases that have
proven problematic in other studies, and facilitates cognition studies in mixed-species flocks [9].
Nevertheless, we caution that our calculation of participation rates only includes those birds that were
detected visiting a feeder. Rates of participation tend to be even lower when including all individuals that
potentially could have visited the device but for unknown reasons did not [18]. On the other hand, many
of the individuals that were classified as non-participants may have only occasionally passed through the
area, and therefore were not exposed to the task for very long. To obtain a fuller picture of the factors
influencing participation rates and their consequences for estimates of variation in cognitive performance,
devising new methods to characterize movements and other behaviours of non-participating individuals
is needed.

4.2. Confounding effects on learning speed
We foundno evidence for an effect of sex or age on cognitive performance.Our results on lackof influence of
sex are consistent with previous studies in great tits in this same population [34,62,63], even though in a
laboratory study of observational learning of the location of food caches, female great tits learned faster
than males [64]. Meanwhile, several studies of great tits found that juveniles were more likely to learn or
learned more quickly than adults in colour association and problem-solving tasks (although these effects
were often weak and not apparent in all years) [33,34,62,63]. By contrast, we found no effect of age on
discrimination learning. Effects of sex or age on cognitive performance are highly variable across studies,
indicating that these effects are dependent on species, task or context [14–17].

Even though great tits learned faster than blue tits in the initial learning experiment, there were no
differences between the two species in reversal learning speeds. This difference between experiments
arose primarily because great tits learned quickly in the initial learning experiment but took longer to
learn in the reversal experiments, whereas blue tits’ learning speeds were generally similar across all
three experiments (electronic supplementary material, figure S2). There are two potential explanations
for species differences in initial learning performance: (i) these species inherently differ in cognitive
ability, and (ii) these species do not differ in cognitive ability but instead differ only in cognitive
performance (i.e. the observed performance on a task at a given time in a given context). Differences
between the species in cognitive performance could arise, for instance, because great tits are larger and
superior competitors to blue tits [65,66]. However, understanding how competition influences cognitive
performance requires further investigation, as blue tits may either be displaced from their rewarded
feeder or, alternatively, may be slow to learn because their attention is focused on avoiding
displacements from competitors. If competition is an important factor, we would expect learning speed
to improve if only one species had access to the feeders at a time. However, such an experimental design
is not informative for studying cognitive ecology in the wild because these species normally forage in
mixed-species flocks. Thus, cognitive performance, not ability, is likely to be the more relevant variable
for understanding variation in cognition in the wild, not least because selection is more likely to act
directly on performance traits than underlying mechanisms (see [67]). However, if competition from
great tits explained poorer cognitive performance in blue tits, then we would have expected to see
species differences across all of the experiments. Species differences were not present in the reversal
learning phases, suggesting either that species differences may be task-specific or that the effect of
competition was only apparent during initial learning when the task was novel and more challenging.

In addition to individual attributes such as age, sex and species, the spatial position of the feeders
relative to one another may have influenced performance. Indeed, birds assigned to feeders on the edge
of the array learned faster in all three experiments, possibly because detecting and discriminating a
feeder on the edge is easier than discriminating among multiple feeders in the centre of the array.
However, these results could also be explained by factors unrelated to the ease of the discrimination task.
For instance, interference with other individuals may have been less pronounced on the edge than in the
centre. Furthermore, in the initial learning experiment, there was a general bias of visits towards feeders
on the edge (see below), and this bias could have made it easier for birds to learn edge feeders if they
were assigned to one (although we note that there was no statistically significant difference in the
proportion of errors made at edge feeders between individuals assigned to the edge and those assigned
to the centre; figure 2). However, this explanation does not hold for either of the two reversal
experiments. Indeed, in the second reversal, birds assigned to the edge continued to learn faster despite
an overall bias towards making errors on feeders in the centre (figure 2c). The quantification of biases in
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patterns of visitation is important for understanding the dynamics of learning, but we note that these biases

did not affect consistency in performance (see below), indicating that our estimates of individual variation
were robust to the types of errors made while learning.

As field-based technologies allow experiments to move into an automated era ( just as tracking
devices have allowed a move into automated observation), it is particularly important to consider the
effects of device and automation reliability. In our study, the amount of time during which the feeders
malfunctioned and were inaccessible could have biased estimates of learning speed in two ways.
First, if an individual’s assigned feeder malfunctioned, this would have disrupted the formation of a
learned association between reward and feeder location. Second, if feeders not assigned to the individual
malfunctioned, we would have missed any erroneous visits made to that feeder, and thus inferred a faster
learning speed than we should have. We believe that the non-assigned feeder malfunctions were not a
major source of bias because of the positive relationship between the duration of non-assigned feeder
malfunction and learning speed (i.e. individuals that experienced more non-assigned malfunctions
learned more slowly). Nevertheless, malfunction at the assigned feeder probably slowed down learning
for some individuals. We attempted to control for this statistically, but acknowledge that the estimates of
learning speed for some individuals potentially indicate a lower cognitive performance than is actually
the case. This is because slow learners were disproportionately affected since fast learners were more
likely to meet the learning criterion before any feeder malfunction took place.

4.3. Dynamics of learning and errors
We examined temporal, spatial and experiential effects on learning speed as well as on the pattern of
visits to gain insights into how individuals learned the task. Typical experimental designs for studies
of learning in the laboratory are able to control for variables such as inter-trial intervals and reward
experience by setting specific criteria before advancing subjects to subsequent test phases on a regular
schedule. These controls are not always possible in field experiments. Although we did not control the
amount of time between an individual’s visits, we found no evidence that this variable impacted
performance in our study: individuals whose visits were more distantly spaced in time did not meet
the learning criterion in fewer total visits, as would be predicted from previous theoretical and
laboratory studies of learning and memory (reviewed by the authors in [59,60]). However, we did
show that reward history after the learning criterion was reached influenced learning in the reversal
experiments, an effect that can be controlled for statistically or alternatively by implementing
individual-specific automated programmes [33].

As expected for tasks in which reward contingences have been switched, we found that birds
were more likely to make errors on their previously rewarded feeder in the reversal phases.
Our experimental set-up consisted of five choices (as opposed to a binary choice), allowing us to
explicitly investigate additional sources of bias that may affect error rate. We showed that visits were
biased by the spatial position of the feeders with respect to one another. Errors were more likely to be
made on feeders that neighboured the assigned feeder. In both reversal learning experiments, this bias
was stronger for birds assigned to the centre than birds assigned to the edge. This suggests that
individuals had the most difficulty in discriminating between feeders that had feeders located on
either side, and supports our finding that birds assigned to the edge learned more quickly. However,
we also found there were general spatial biases for edge versus central feeders, but that the direction
of this bias shifted across the experiments, regardless of the location of individuals’ assigned feeders.
The pattern of increased bias towards centre feeders across the experiments may be explained by
more individuals having experienced being rewarded previously by a centre feeder with each new
experiment because centre feeders outnumber edge feeders. Overall, these results show that fine-scale
spatial patterns probably influence cognitive performance.

4.4. Consistency and individual differences
Individuals that participated almost always learned, but there was a great deal of individual variation in
learning speed. Some of these differences were consistent, pointing to intrinsic differences in cognitive
performance; namely, in great tits, between-individual differences in performance were consistent for
the two reversal experiments (figure 5a). Estimates for between-individual differences in behaviour are
often affected by whether or not additional variables are controlled for [11]. However, we found that
consistency estimates adjusted for potential confounding variables were very similar to unadjusted
values, suggesting that our measurements of performance were robust to a variety of environmental
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conditions. Demonstrating that consistent between-individual differences are an accurate measure of a

clearly defined trait is an important prerequisite for studies on the evolution of cognitive performance
in wild populations [2]. By contrast, blue tits were not consistent in their reversal learning
performance. Although individual differences may simply be less pronounced in the blue tit, it may
also be that individual differences may be masked in the social environment, and in particular by the
effect of living in groups with larger and more dominant species such as the great tit. Whatever the
mechanism, the difference in consistency shows that selection potentially will act on cognitive
performance differently for species in a mixed-species environment.

Despite the evidence for consistency across the two reversal learning experiments in one species, we
found only very low values for consistency across all three experiments for both species; in other words,
an individual’s learning speed in the initial learning experiment was unrelated to its learning speed in
the reversal learning experiments. A positive relationship between performance in these tasks is
predicted if there is some underlying cognitive factor that affects performance in multiple contexts
[44,45]. Alternatively, trade-offs between initial learning and reversal learning performance are frequently
postulated because of a trade-off between speed and flexibility [42,43]. Neither of these hypotheses was
supported by our data, suggesting the two traits are independent. This result is not entirely unexpected
because different cognitive abilities and brain regions are thought to be involved in these two tasks
[40,41], and some previous studies have also reported that initial and reversal performance are not
correlated [68,69]. Nevertheless, as outlined above, many studies find covariation in initial and reversal
learning, and we cannot discount the possibility that some important confounds (e.g. neophobia [70,71])
were not controlled for, obscuring relationships between these two behaviours in our study system.
7

5. Conclusion
Both individual-level and local environmental scale factors affected cognitive performance in our
experiment, as in previous studies of cognition in the wild [18,63,72,73]. Intuitively, it should be
expected that a multitude of factors influence cognitive performance, both because cognitive ability
itself is underpinned by diverse neurophysiological mechanisms [74], and because the resulting
cognitive performance, like the expression of most behaviours, is highly dependent on context [75].
Our findings of consistent individual variation in some cases, along with our ability to rapidly
measure learning speeds in large numbers of individuals, while accounting for several usually
overlooked confounding variables, point the way towards the potential for advancing our
understanding of cognition in wild animals.
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