
Calhoun: The NPS Institutional Archive

DSpace Repository

Theses and Dissertations 1. Thesis and Dissertation Collection, all items

1995-03

Configuration management for expert system

development: application to the MK92

prototype Maintenance Advisor Expert System

Metzler, Paul Gregory

Monterey, California. Naval Postgraduate School

http://hdl.handle.net/10945/31596

Downloaded from NPS Archive: Calhoun

NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS
CONFIGURATION MANAGEMENT FOR EXPERT

SYSTEM DEVELOPMENT: APPLICATION TO THE
MK 92 PROTOTYPE MAINTENANCE ADVISOR EXPERT

SYSTEM

by

Paul Gregory Metzler

March 1995
Thesis Co-Advisors: Magdi N. Kamel

Martin J. McCaffrey
Approved for public release; distribution is unlimited.

19950608 053

REPORT DOCUMENTATION PAGE Fonn Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing
instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of
information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions
for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project
0704-0188) Washington DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
March 1995 Master's Thesis

~. TITLE AND SUBTITLE CONFIGURATION MANAGEMENT FOR EXPERT 5. FUNDING NUMBERS
SYSTEM DEVELOPMENT: APPLICATION TO TIlE MK 92 PROTOTYPE
MAINTENANCE ADVISOR EXPERT SYSTEM.

~. AlITHOR(S) Metzler, Paul G.

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Naval Postgraduate School REPORT NUMBER
Monterey CA 93943-5000

9. SPONSORING!MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING!MONITORING
AGENCY REPORT NUMBER

II. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official policy or
position of the Department of Defense or the U.S. Government.

12a. DISTRIBUTION/AV AILABILITY STATEMENT Approved for public release; 12b. DISTRIBUTION CODE
Iclistribution is unlimited.

13. ABSTRACT (Maximum 0/200 words)
The Naval Postgraduate School in conjunction with Port Hueneme Division (PHD), Naval Surface Warfare Center is developing a

idiagnostic expert system for troubleshooting casualties in the MK 92 MOD 2 fIre control system deployed in US Navy Oliver Hazard
lPerry class (FFG-7) guided missile frigates. The high turnover rate of student developers and the frequency with which changes are
Imade to the expert system have highlighted a need for controlling the change process and the management of resources applied to
limplementing those changes to the expert system's knowledge base and software.

This thesis develops a confIguration management plan for the MK92 Maintenance Advisor Expert System (MK92 MAES) to assist
project members in the management of changes to software and domain knowledge. The concept of confIguration management is
examined in detail with specifIc emphasis on the challenges of its implementation to expert systems. Two automated confIguration
blanagement tools, CCC!Manager and PVCS Version Control, are evaluated for suitability for application in an expert system
development environment. Finally, specifIc recommendations are presented for establishing a confIguration management process for
he MK92 MAES project.

14. SUBJECT TERMS
Expert Systems, ConfIguration Management, Diagnostic Expert System, Expert System Development
Cycle, MK 92 MAES, MK92 Maintenance Advisor Expert System, ConfIguration Management Plan

17. SECURITY 18. SECURITY 19. SECURITY
CLASSIFICATION OF CLASSIFICATION OF THIS CLASSIFICATION OF
REPORT PAGE ABSTRACT
UnclassifIed UnclassifIed UnclassifIed

NSN 7540-01-280-5500

15. NUMBER OF PAGES
206

16. PRICE CODE

20. LIMITATION OF
ABSTRACT
UL

Standard Form 298 (Rev. 2-89)
Presaibed by ANSI Sid. 239·18

11

Approved for public release; distribution is unlimited.

CONFIGURATION MANAGEMENT FOR EXPERT SYSTEM DEVELOPMENT:
APPLICATION TO THE MK 92 PROTOTYPE MAINTENANCE ADVISOR EXPERT

SYSTEM

by

Paul Gregory Metzler
Lieutenant, United States Navy
B.S., Boston University, 1988

Submitted in partial fulfillment
of the requirements for the degree of

MASTER OF SCIENCE IN INFORMATION TECHNOLOGY MANAGEMENT

Author:

Approved by:

from the

NAVAL POSTGRADUATE SCHOOL

David R. Whipple, Chairman
Department of Systems Management

iii

jooeasl0r0 ror
UTIS ORA&.!
J.)TIC 'l}~

tJnmm 'J1J.U r. ~d

r?
o
o

JUiJto:..r i(;':"~lon· ____ ._ ...

--~.---.-----.......... -t

IV

ABSTRACT

The Naval Postgraduate School in conjunction with Port Hueneme Division

(PHD), Naval Surface Warfare Center is developing a diagnostic expert system for

troubleshooting casualties in the MK 92 MOD 2 fire control system deployed in US Navy

Oliver Hazard Perry class (FFG-7) guided missile frigates. The high turnover rate of

student developers and the frequency with which changes are made to the expert system

have highlighted a need for controlling the change process and the management of

resources applied to implementing those changes to the expert system's knowledge base

and software.

This thesis develops a configuration management plan for the MK92 Maintenance

Advisor Expert System (MK92 MAES) to assist project members in the management of

changes to software and domain knowledge. The concept of configuration management is

examined in detail with specific emphasis on the challenges of its implementation to expert

systems development. Two automated configuration management tools, CCClManager

and PVCS Version Control, are evaluated for suitability for application in an expert

system development environment. Finally, specific recommendations are presented for

establishing a configuration management process for the MK92 MAES project.

v

vi

TABLE OF CONTENTS

I. INTRODUCTION ... 1

A. BACKGROUND .. 1

B. OBJECTIVES ... 1

C. RESEARCH QUESTIONS .. 2

1. Primary Research Question ... 2

2. Subsidiary Research Questions .. 2

D. SCOPE .. 2

E. l\1ETHODOLOGY .. 2

F. THESIS ORGANIZATION .. 3

ll. A PROTOTYPE MAINTENANCE ADVISOR EXPERT SYSTEM
FOR THE MK92 FIRE CONTROL SYSTEM 5

A. INTRODUCTION ... 5

B. COST BENEFIT ANALYSIS .. 6

1. Assumptions .. 7

2. Benefits .. 7

a. Reduced Repair Parts Costs ... 8

b. Manpower Savings .. 8

c. Improved Operational Readiness. 8

d. Reduced Reliance Upon Outside Technical Assistance 9

e. Improved Shipboard Training and Knowledge ofMK92
FCS .. 9

3. Costs .. 10

a. Software Development and Associated Labor Costs 10

b. Deployment Hardware and Commercial Software Costs 10

c. Software and Hardware Maintenance Costs 11

d. Training Costs ... 12

4. Economic Analysis .. 12

a. Present Value Analysis ... 12

b. SavingslInvestment Ratio .. 12

c. Discounted Payback Analysis ... 13

vii

d. Sensitivity Analysis .. 13

C. EXPERT SYSTEM DEVELOPMENT CYCLE 14

1. Expert System Life Cycle Model ... 14

2. Problem Selection ... 15

3. Development Team .. 16

a. Domain Experts .. 16

b. Knowledge Engineers .. 17

c. Expert System Programmers ... 17

4. Knowledge Acquisition .. 17

a. Expertise of Expert .. 17

b. Technical Manuals ... 18

c. Other Recorded Sources of Knowledge 18

d. The Knowledge Acquisition Methodology 18

5. Knowledge Representation ... 21

6. Knowledge Coding .. 21

7. Knowledge Verification and Validation 24

D. EXPERT SYSTEM IMPLEMENTATION 25

1. Test and Evaluation .. 25

2. System Deployment ... 26

E. SUMMARY OF THE MK92 MAES PROJECT 27

III. CONFIGURATION MANAGEMENT CONCEPTS 29

A. OVERVIEW ... 29

1. Configuration Management Defined 29

2. Configuration Management and Change 31

3. The Purpose of Configuration Management 32

a. CM Establishes Software Integrity 32

b. CM Ensures Traceability ... 33

c. CM Increases Project Visibility 33

d. CM Supports Development and Maintenance 34

e. CM Improves Project Management 34

f CM is an Integral Component of Process Improvement 34

4. The State of Configuration Management Practice 36

viii

5. Configuration Management and the Product Assurance 37
DIscIplInes .. .

a. Quality Assurance ... 37

b. Verification and Validation .. 38

c. Configuration Management .. 38

d. Test and Evaluation ... 38

6. Sources of Configuration Management Guidance for DOD
Programs .. 38

7. Configuration Management and the Software Life-cycle 39

a. Configuration Management's Role in Structured Design
Methodology ... 39

b. Configuration Management's Role in Prototyping 40

B. CONFIGURATION MANAGEMENT TASKS 40

1. Configuration Identification of Software 42

a. Programs and Files ... 42

b. Software Identification Conventions 42

c. Configuration Identification of Files 43

d. Configuration Identification of Patch Files 45

e. Categorization of Software ... 45

f Software Categorization in the MK 92 MAES Project 47

g. Configuration Item Naming Responsibility 47

h. Configuration Identification of Storage Media .. 48

i. Version Description Document 49

j. Configuration Identification of Documentation 50

2. Establishing Baselines .. 51

a. Functional Baseline .. 51

b. Allocated Baseline ... 51

c. Developmental Configuration .. 51

d. Product Baseline ... 52

3. Configuration Change Control ... 52

a. Configuration Change Control Activities 52

b. A Comment on the Configuration Change Control Process 53

c. Identify the Problem .. 53

ix

d. Determine Appropriate Course of Action 55

e. Implement the Change ... 56

f Configuration Control Board ... 56

g. Change Control Authority .. 58

h. Configuration Change Control of Specific Software
Categories ... " 59

i. Configuration Control Documents 62

j. Configuration Control Concerns 63

k. The Need for Automation in Configuration Change
Control .. 64

4. Configuration Status Accounting ... 64

a. Overview of Configuration Status Accounting .. 64

b. The Configuration Status Accounting Process 65

5. Configuration Audits .. 66

a. Types of Configuration Management Audits 66

b. Functional Configuration Audits 67

c. Physical Configuration Audit ... 67

d. In-process Audits ... '" " '" .. 67

e. Conducting Configuration Audits 68

C. THE CONFIGURATION MANAGEMENT LIBRARY 69

a. Working Libraries .. 69

b. Project Support Libraries " " .. 69

c. Master Library ... 70

d. Software Repository ... 70

e. Backup Library .. 70

1. The CM Library in Operation .. 70

a. Check-in Check-out Concept .. 71

b. Migration .. 71

c. Change Regression ... 71

d. Promotion ... 72

e. The Single User Approach to Using a CM Library 72

f The Parallel Development Approach to Using a CM
Library... 72

x

D. CONFIGURATION MANAGEMENT KEY PERSONNEL 73

1. The Customer ... 74

2. Configuration Manager .. 74

3. Configuration Management Library Administrator 74

4. Individual Developers .. 74

5. Project Management ... 75

6. Configuration Control Board ... 75

E. THE CONFIGURATION MANAGEMENT PLAN 75

1. What is a Configuration Management Plan? 75

2. Developing CM Plans .. 76

3. Guidance on Configuration Management Plans 76

4. The Components of a CM Plan .. 78

5. Summary of Configuration Management 78

IV. ISSUES IN CONFIGURATION MANAGEMENT OF EXPERT
SYSTEMS ... 79

A. GENERAL CM ISSUES OF EXPERT SYSTEMS 79

1. Lack of Detailed Specifications .. 80

2. Difficulty in Identifying Baselines .. 80

a. The Functional Baseline .. 80

b. The Allocated Baseline ... 81

c. The Developmental Configuration 81

d. The Product Baseline .. 82

3. CM Challenge Posed by Prototyping 82

4. Frequency and Sources of Change 83

5. Expert System Development Environment 83

B. CONFIGURATION MANAGEMENT OF THE KNOWLEDGE
BASE .. 85

1. Characteristics of the Knowledge Base 85

a. Volatility ... 85

b. Expanding Functional Scope ... 86

c. System Size/Complexity .. 86

2. Distributed Knowledge .. 86

3. Knowledge Representation Scheme 87

xi

4. Configuration Identification of Knowledge 87

a. Working knowledge .. 88

b. Captured Knowledge ... 88

c. Represented Knowledge .. 89

d. Product Knowledge .. 89

5. Baselining Knowledge ... 89

a. Functional Knowledge Baseline 90

b. Developmental Knowledge Configuration 90

c. Product Knowledge Baseline ... 90

6. Assessing the Impact of Changes to Knowledge 90

7. Controlling Changes to the Knowledge Base 91

a. What Influences the Change Control Process? 91

b. When Should Changes Be Made to the Knowledge Base? 92

c. To What Knowledge Category Should Change Control
Extend? ... 92

C. CONFIGURATION MANAGEMENT OF EXPERT SYSTEM
SOFTWARE IMPLEMENTATION 93

V. CONFIGURATION MANAGEMENT TOOLS 97

A. CRITERIA FOR SELECTING CONFIGURATION
MANAGEMENT TOOLS 97

1. Configuration Management Tool Features 97

a. Change Control .. 98

b. Version Control .. 98

c. Reporting/Query Capability .. 98

d. Library/Repository ... 98

e. Release Management 99

f Compatibility .. 99

g. Build Support ... 99

h. Team Support ... 99

i. Ability to Customize Features .. 100

2. Additional Selection Criteria .. 100

a. Cost .. 100

b. Ease ofIncorporation Into a Project Life Cycle 100

xii

c. Ease of Use ... 100

d. Security .. 101

e. Power .. 101

f Robustness .. 10 1

g. Scalability .. 101

h. Quality of Commercial Support 102

i. Project Specific Features ... 102

3. Further Reading .. 103

B. AN EVALUATION METHODOLOGY FOR CM TOOLS 103

1. Conduct a Literature Review ... 103

2. Identify Constraints ... 103

3. Identify Evaluation Criteria ... 104

4. Identify Candidate Configuration Management Tools 104

5. Evaluate Candidate Configuration Management Tools 104

6. Make a Selection ... 104

C. APPLICATION OF EVALUATION METHODOLOGY TO
THE l\1K92 MAES 105

1. Conduct the Literature Review ... 105

2. Identify Constraints .. 105

3. Identify Tool Evaluation Criteria 106

4. Identify Candidate CM Tools For Further Evaluation 107

5. CCC!Manager 107

a. Cost .. 107

b. Interface .. 107

c. Access Control .. 109

d. Life Cycle Modeling .. III

e. Check-iniCheck-out ... 112

f Change Control ... 112

g. Version Control ... 112

h. Reporting Capabilities .. 113

i. Auditing ... 114

j. Interactive Merge ... 114

k. Compatible Operating Systems 115

xiii

1. Associated Products ... 115

m. Suitability to the MK 92 MAES Project 116

6. PVCS Version Manager .. 116

a. Cost .. 117

b. Interface .. 117

c. Access Control .. 118

d. Life Cycle Modeling .. 119

e. Check-iniCheck-out ... 119

f Change Control ... 119

g. Version Control ... 120

h. Reporting Capabilities .. 120

i. Version Labels .. 121

j. Keyword Embedding .. 121

k. Merge .. 121

1. Promotion and Migration .. 121

m. Compatible Operating Systems 122

n. Associated Products .. 122

o. Suitability to MK 92 Project .. 123

7. Evaluate Candidate Tools Using the Chosen Evaluation
Criteria 124

8. Select a CM Tool ... 126

VI. CONFIGURATIONMANAGEMENTIMPLEMENTATION 127

A. CM IMPLEMENTATION ISSUES .. 127

1. Organizational Issues ... 127

2. Skill level of Organizational Personnel 128

3. Organization's Level of Process Maturity 128

4. Technological Issues .. 128

5. Resources Available .. 129

B. PHASES OF CM ADOPTION .. 129

1. Phase 1: Determine CM Status and Needs 129

2. Phase 2: Evaluate Candidate CM Tools 129

3. Phase 3: Write the Configuration Management Plan 130

4. Phase 4: Implement a Pilot Project .. 130

xiv

5. Phase 5: Implement CM Plan ... 130

6. Phase 6: Evaluate and Adjust Plan as Necessary 130

C. CM ADOPTION PHASES OF THE MK92 MAES 131

1. Phase 1: The Status ofCM and Needs of the MK92 MAES
Project 131

a. Status of CM in the MK92 MAES Project 131

b. CM Needs of the MK92 MAES Project 132

2. Phase 2: Evaluate Candidate CM Tools for the MK92 MAES
Project .. 133

3. Phase 3: Write the CM Plan for the MK92 MAES
Development ... 133

4. Phase 4: Implement a Pilot Project 134

5. Phase 5: Implement the MK92 MAES CM Plan 134

6. Phase 6: Evaluate and Adjust Plan as Necessary 135

D. CMFOR THE MK 92 MAES ... 135

1. CM Organization ... 136

a. Project Manager .. 136

b. Student Project Leader .. 136

c. Configuration Manager .. 137

d. Configuration Library Administrator 137

e. Configuration Control Board .. 138

f Programmers .. 138

g. NSWC-PHD and Domain Expert 139

h. Customers .. 139

2. CM Library ... 140

3. Configuration Identification for the MK 92 MAES Project 141

a. Baselines for the MK 92 MAES .. 141

b. Categorization ofMK92 MAES Software 143

c. Configuration Identification Naming Conventions by
Classification Level of Software 144

d. Configuration Identification Naming Conventions of
Knowledge .. . 145

e. Configuration Identification of Documentation Other than
the Knowledge Document 146

xv

f Configuration Identification of Erasable Electronic Media 146

4. Configuration Change Control for the MK 92 MAES Project 147

a. Change Control Authority (CCA) 147

b. Change Control Process .. 148

c. MK 92 MAES Change Control Documents 148

d. Access ControlslPriveleges ... 149

5. CM of the MK92 MAES Knowledge Base 150

a. CM Issues Related to MK92 MAES Knowledge
Acquisition 150

b. The MK 92 MAES Approach to Implementing CM on the
Knowledge Base 151

c. AllCLEAR .. 152

d. Changes to the Knowledge Base 154

6. Configuration Status Accounting recommendations for the
MK92 MAES ... 155

a. Access Control List ... 155

b. Configuration Item Report .. 155

c. Change Status Report ... 156

d. PVCS Reports ... 156

e. Version Description Document (VDD) 157

7. Configuration Auditing Recommendations for the MK92
MAES ... 157

E. AN EXAMPLE OF THE CHANGE PROCESS 157

1. A Change to the MK92 FCS is Promulgated. 157

2. Implementing a Change to the Knowledge Base 158

F. CM RECOMMENDATIONS FOR AN EXPERT SYSTEM
DEVELOPMENT CENTER 162

1. Assumptions .. 162

2. Recommendations for CM at an Expert System Development
Center .. 163

VII. SUMMARY AND CONCLUSIONS ... 167

A. SUMMARY .. 167

1. How Can Configuration Management Concepts Be Applied
To the Implementation Of An Expert System? " 167

xvi

2. What are the Benefits ofImplementing Configuration
Management?

3. What Attributes of Expert Systems Present Unique
Challenges, If Any, to Configuration Management?

4. What Issues Surround the Application of Configuration
Management to Expert System Domain Knowledge?

5. How Can Automated Configuration Management Tools be
Applied to a Configuration Management Program?

6. What Are the Implementation Issues Surrounding the
Application of Configuration Management to the MK92

168

168

169

170

Maintenance Advisor Expert System? 170

B. RECOMMENDATIONS .. 171

1. Recommendations for Future MK92 MAES CM Initiatives 171

a. Network the MK92 MAES Project's Computers. 171

b. Identify CM Support Tools That Further Automate the
MK92 MAES CM Process. 172

c. Send Prospective Configuration Library Administrators
(CLA) to PVCS Training 172

d. Increase Secondary Storage for MK92 MAES Computers 172

e. Train NSWC-PHD Engineers to Use all CLEAR for
Knowledge Representation. 172

2. Recommendations for Further Research 173

C. CONCLUSION .. 174

APPENDIX A. SOFTWARE CONFIGURATION MANAGEMENT
STANDARDS .. . 175
A. DEPARTMENT OF DEFENSE STANDARDS AND

PUBLICATIONS 175

1. Department of Defense Standards 175

2. Military Standards .. 175

B. IEEE STANDARDS ... 175

C. INTERNATIONAL STANDARDS ORGANIZATIONS (ISO)
STANDARDS 175

D. ELECTRONIC INDUSTRY ASSOCIATION (EIA)
PUBLICATIONS 175

APPENDIX B. EXAMPLE OF A MK92 MAES CHANGE REQUEST
FORM .. . 177

xvii

APPENDIX C. PVCS REPORTS .. 179

A. EXAMPLE OF A PVCS ARCIDVE REPORT 179

B. EXAMPLE OF APVCS DIFFERENCE REPORT 181

LIST OF REFERENCES ... 183

INITIAL DISTRIBUTION LIST ... 187

xviii

I. INTRODUCTION

A. BACKGROUND

The Naval Surface Warfare Center, Port Hueneme Division (NSWC-PHD) is

seeking to improve the capability of shipboard technicians to detennine, diagnose, and

resolve problems occurring within the Mark 92 (MK92), Mod 2, Fire Control System

(FeS). This highly complex system includes CAS/STIR. radar, SM-I Missile launcher and

directors, Mark 76 gun mount, and various computers and interfaces that require continual

maintenance. The cost of maintaining the system include, in addition to the cost of

replacing a failed component, those associated with the reliance upon outside technical

assistance in fault diagnosis and the replacement of circuit cards that have been mistakenly

identified as failed components.

To reduce the costs associated with maintaining the system, NSWC-PHD and the

Naval Postgraduate School are developing a knowledge based expert system to assist

technicians onboard ships to diagnose and resolve problems occurring with the system.

Modules covering the Calibration and Performance aspects of the system have been

developed and are undergoing initial testing, verification, and validation. System

implementation is primarily undertaken by Master's Thesis students. The high turnover

rate of graduating students has underscored the need for the implementation of a process

which will allow for continuity as development team members graduate, and new students

are brought on board.

B. OBJECTIVES

This research is directed toward the development and application of software

configuration management principles to the MK 92 Fire Control System Maintenance

Advisor Expert System (MK92 MAES). The management of the change process is

critical if a project is to allocate its resources efficiently. This is as true of expert system

development as it is of traditional software engineering. To ensure the long term viability

of expert systems, maintenance considerations must be at the forefront of development

1

considerations. Configuration management adds discipline to the change process of not

only the expert system's code, but also the representation of the domain expert's

knowledge.

C. RESEARCH QUESTIONS

This thesis attempts to answer the following research questions. The investigation

of these questions shall form the basis for developing and implementing the configuration

management program for the MK 92 MAES project.

1. Primary Research Question

• How can configuration management concepts be applied to the implementation
of an expert system?

2. Subsidiary Research Questions

• What are the benefits of implementing configuration management?

• What attributes of expert systems present unique challenges, if any, to
configuration management?

• What issues surround the application of configuration management to expert
system domain knowledge?

• How can automated configuration management tools be applied to a
configuration management program?

• What are the implementation issues surrounding the application of configuration
management to the MK92 Maintenance Advisor Expert System?

D. SCOPE

The scope of the thesis is limited to the development of: (1) A configuration

management approach to expert system development (2) An implementation of the

configuration management plan to the MK92 MAES project.

E. METHODOLOGY

Research methodology for this thesis include a thorough literature review of

configuration management theory and program implementation. In addition, interviews

with software engineering professionals involved in the configuration management of

software projects aimed at providing insight to the issues surrounding the establishment of

2

a configuration management process are conducted. Using the IEEE's suggested

methodology for CASE tool evaluation, two CM tools are compared for the purpose of

selecting the automated CM tool most appropriate for the MK92 MAES.

F. THESIS ORGANIZATION

This thesis consists of seven chapters and three appendices. The following is a brief

description of the contents of each chapter.

Chapter IT provides the reader with background information on the MK92

Maintenance Advisor Expert System. This background overviews the principles of expert

system development.

Chapter ill introduces the discipline of configuration management. In addition, the

functional tasks of configuration management are examined in detail. A thorough review

of the duties and responsibilities of key personnel involved in establishing and maintaining

a configuration management program is also undertaken. Finally, the chapter discusses

the contents and purpose of a configuration management plan.

In chapter IV, the discipline of configuration management is applied to the

development of expert systems. Challenges presented by expert systems to the

implementation of a CM process are discussed. Specific issues surrounding the

maintenance of the knowledge base are also reviewed. Finally, an automated approach to

managing the changes to an expert system's knowledge base is presented.

Chapter V examines the current state of the art of configuration management tools

and the desired features for their application to a software design project. A comparison

of two automated CM tools is made. The chapter concludes with the selection of the tool

which is, based upon the characteristics of the project, best suited for application to the

MK 92 MAES.

In Chapter VI, the principles outlined in Chapter III, and Chapter IV are applied to

the MK92 MAES. Specific recommendations for the implementation of CM in the MK92

MAES project are made.

3

In Chapter VII, the thesis is summarized, and conclusions are drawn. Finally,

recommendations are made for further research.

Appendix A is a listing of standards and guidance on configuration management and

related topics, while Appendix B is an example of a Change Request Form for the MK92

MAES project. The last appendix, Appendix C, provides examples of a Change

Difference Report and an Archive Report produced by the configuration management tool

PVCS.

4

n. A PROTOTYPE MAINTENANCE ADVISOR EXPERT SYSTEM FOR THE
MK92 FIRE CONTROL SYSTEM

A. INTRODUCTION

The 1990's have seen a steady trend of what has been referred to as the

"downsizing" of the United States armed forces. Along with the resulting reduction in

personnel and equipment has emerged an effort to identifY technological alternatives that

will reduce costs while enhancing operational readiness. The development of the MK92

Maintenance Advisor Expert System (MK92 MAES) is one such effort. It was

undertaken by the faculty and graduate students of the Naval Postgraduate School in

cooperation with system engineers of the Naval Surface Warfare Center, Port Hueneme

Division (NSWC-PHD). The project is sponsored by the Naval Sea Systems Command

(NAVSEA).

The MK 92 is the designation given to the fire control system (PCS) in operation

on the United States Navy's Oliver Hazard Perry (FFG-7) class of guided missile frigates

(pFG) and US Coast Guard medium and high endurance cutters class (WHEC 715-726).

Additionally, the system has been deployed on the Australian Adelaide class frigates,

Spanish Santa Maria class FFGs and Taiwan's Cheng Kuh class of guided missile frigate.

(Jane's Fighting Ships, 1994).

As a fire control system, it is designed to coordinate the detection, tracking and

engagement of hostile air and surface targets by the vessel's 76mm gun and missiles. The

MK92 accomplishes this through the use of search/track radars, digital computers, servos,

amplidynes, and other components, all largely reflective of 1970's technology. The FCS is

modularized to support the maintenance concept of module replacement and the Navy's

Planned Maintenance System (PMS), in an effort to minimize the number of personnel

required to maintain it.

Maintenance of the MK 92 is conducted at the organizational (shipboard) and

depot levels. At the shipboard level, Fire Controlmen (PCs) are limited to planned

5

maintenance, fault isolation, and corrective maintenance consisting of replacing modules,

circuit cards, and minor Micro-miniature (2M) repair. (Lewis, 1993) If more extensive

troubleshooting is required, technical representatives must be sent to the ship, no matter

where it is, to isolate the problem and correct it. Equipment requiring repair outside the

capabilities of a vessel's technicians are turned in to repair depots. All of this translates

into increased system down time and higher maintenance costs.

During the period from July 1, 1989 to September 30, 1991, over forty percent of

all initiated Casualty Reports (CASREPs) requested outside technical assistance in

isolating the cause of the failure. Additionally, over twenty-two percent of all Depot

Level Repairables (DLRs) turned in during fiscal year 1991 were found to be No Fault

Evident (NFE), that is, in proper operating condition. In 1991, the associated cost was

estimated to be $700,000 per year. Faced with a decreasing budget and fewer technical

representatives to send to ships, the Navy Surface Warfare Center, Port Hueneme Division

(NSWC-PHD), recognized the need to improve the troubleshooting capability of the

shipboard FCs. NSWC-PHD decided to investigate the possibility of using expert system

technology as a possible remedy and approached the Naval Postgraduate School in the fall

of 1992 for assistance. (powell, 1993)

This chapter describes the development efforts of NPS faculty and students, and

NSWC-PHD engineers. It is organized as follows. Section B introduces the cost benefit

analysis applied to determine the feasibility of the MK 92 MAES project. Section C

discusses the expert system development cycle of the MAES project. Section D takes a

closer look at the implementation of the MK 92 MAES. Section E summarizes the project

and provides some lessons learned.

B. COST BENEFIT ANALYSIS

Before commencing the development of the expert system, a cost benefit analysis

was undertaken by a NPS graduate student to evaluate the feasibility of the effort. Using

CASREP data, NFE information, and other sources of cost related variables, the officer

was able to conduct a detailed analysis which looked not only at the costs and benefits as

6

compared to the status quo, but also the sensitivity of changes to various factors and their

affect on the economic viability of the project. The following is a brief summary of the

study's findings as determined by Powell (1993).

made:

1. Assumptions

In order to conduct the cost-benefit analysis, the following set of assumptions was

• The MK92 MAES will be fielded to 39 ships.

• The program life of the system will be until 2005, the anticipated service life of
the FFG-7 class.

• All quantifiable costs were multiplied by a 61 percent pertinency rate to account
for the estimated percentage of casualties to the MK92 FCS in which the MK92
MAES would be useful.

• A 50 percent efficiency rate was applied to all cost savings to account for
potential mistakes made by the expert system, as well as to make a more
conservative estimate ofMK92 MAES' impact. In other words all cost savings
were reduced by 50%.

• Net present value calculations used a ten percent discount rate and discounted
all cash flows to 1993 dollars.

• Personnel costs were computed by accelerating the composite wage rate by 32
percent to account for leave, medical care, and other fringe benefits.

• For purposes of calculating hardware costs, the useful service life of a notebook
computer is assumed to be four years.

• The supply support response time resulting from decreased numbers of logistics
related CASREPS (those in which the ship did not have the necessary part
onboard) is assumed to be 5%.

2. Benefits

The study found the benefits resulting from the deployment of a maintenance

advisor expert system include:

• reduced repair parts costs

• manpower savings

• reduced mean time to repair

7

• reduced reliance upon outside technical assistance

• improved shipboard training

a. Reduced Repair Parts Costs

The use of expert system technology would increase the likelihood of

identifying the failed part correctly. Powell's analysis determined approximately 22

percent of all Depot Level Repairable parts (DLRs) are perfectly good parts. After

applying the conservative efficiency rate of 50% to anticipated savings in terms of

unnecessary parts expense, it was determined that $215,748 per year could be saved in

terms of parts alone.

h. Manpower Savings

Using expert system technology, onboard technicians would be able to

troubleshoot faults much faster than relying on their own expertise and outdated technical

manuals. Using the Fire Controlman Second Class (E5) Composite Rate, adjusting it for

compensation and fringe benefits using a 32% acceleration rate, and reducing potential

savings in terms of man-hours by 50 percent, an annual estimated savings of$118,958 for

39 ships was determined.

c. Improved Operational Readiness

The analysis estimated MK92 FCS operational readiness would improve by

11 %. This is due to a reduction in the mean time to repair causualties to the FCS and

improvements in supply support response due to fewer NFE's and the associated burden

they place upon the supply system.

(1) Reduced Mean Time to Repair. Since a Navy frigate's weapons

systems need to be ready on a moment's notice, a one hundred percent system availability

is always the goal. When a casualty does occur, repairs need to be prompt and effective.

The analysis determined the average trouble isolation intensive

CASREP required 241 hours (over ten days) in maintenance downtime before the casualty

was corrected. It was estimated that the use of the expert system would reduce the

8

downtime associated with casualties within the problem domain by 25 percent. This

results in an eight percent increase in fleetwide MK92 MOD 2 FCS operational readiness.

(2) Improved Supply Support Response. Approximately 22 percent of

DLRs are replaced unnecessarily, resulting in unecesary parts expenses of over 10% for

MK92 MOD 2 equipped ships. It is therefore conceivable that improvements to the

supply system's response time could be achieved if the number ofNFEs could be reduced.

If a five percent improvrnent in supply related downtime could be achieved, the analysis

determined over 4,030 hours of system downtime would be saved.

d Reduced Reliance Upon Outside Technical Assistance

By using the MK92 MAES, a ship would reduce her reliance upon outside

technical assistance, thus freeing up the time of the technical experts to focus their efforts

on more critical casualties.

The MK 92 FCS program manager for Naval Sea Systems Command

Pacific determined that 90 percent of all travel expenditures for fiscal year 1992 were for

technical assistance travel. Of the travel expenditures for technical assistance, 85 percent

were made in trouble isolation efforts. After accounting for those in which the MK92

MAES would be useful and applying the 50 percent factor to provide a conservative

estimate, it was determined a savings of $16,926 in travel expenditures by technical

representatives could be realized.

e. Improved Shipboard Training and Knowledge of MK92 FCS

As FCs work with the MK92 MAES, it is foreseeable they will gain insight

as to the thought process and approach an expert takes when troubleshooting a system. In

addition, through use of the help features and explanation facility of the system, the FC

begins to understand not only what to look for, but how to look for it. Technicians could

then apply their increased troubleshooting skills to problems outside the domain of the

expert system.

The system could also be used as a training tool to diagnose hypothetical

casualties. In conjunction with circuit cards which have been intentionally faulted, the

9

MK92 MAES could be used to teach FCs, both on ship and in training schools, effective

troubleshooting techniques.

3. Costs

The study estimated the following costs for the development of the MK92 MAES:

• software development and associated labor costs

• deployment hardware and commercial software costs

• maintenance costs

• training costs

a. Software Development and Associated Labor Costs

Like traditional software development, labor costs make up a majority of

the costs associated with expert system development. However, most of the labor costs in

an expert system, particularly when using a visual development environment, are

associated with knowledge acquisition. Not only must the costs associated with the

developers be included, but the cost of the expert's time must be included as well. Table

2.1 represents the estimated software development costs by fiscal year.

Fiscal Year Estimated Software Development Costs

FY 1992 $309,000

FY 1993 $235,000

FY 1994 $335,000

Table 2.1 Estimated Software Development Costs for the MK92 MAES.

b. Deployment Hardware and Commercial Software Costs

This category included the purchase and fielding of computers with the

MK92 MAES. Table 2.2 lists the costs by computer type for hardware if fielded to 39

ships.

10

Additional runtime versions of the expert system shell are charged for

under the licensing agreement of the tool in use by the MK92 MAES project, therefore

only the initial development software need be included in the software costs. Software

costs include the purchase of a database program which is to be used to incorporate parts

data in the expert system. It is expected equipping 39 ships with a database program will

cost approximately $20,500.

c. Software and Hardware Maintenance Costs

Software maintenance costs include the cost required to report, identify,

and implement any changes that may result from trouble reports received from the fleet.

Additionally, the effect of ordinance alterations (ORDALTs) must be taken into

consideration. It was determined that approximately 75 percent of a man-year would be

required to properly maintain the system. This is estimated to cost approximately $73,850

dollars per year.

In addition to the software maintenance costs, hardware will also need to

be replaced or repaired. Hardware maintenance costs are estimated to be approximately

$12,000 annually.

System Features Unit Price Price for 39 Ships

386 Monochrome $1600 $62400

486 Monochrome $1,900 $74,100

486 Passive Matrix $2,600 $101,400

486 Active Matrix $4,000 $156,000

Table 2.2 Estimated Hardware Costs for the MK92 MAES from Powell (1993).

11

d Training Costs

Although the "MK92 MAES is designed to be user friendly, it was

determined a one day introduction to the system's capabilities should be given to a ship's

FCs at the time of deployment. Total training costs were estimated to be $20,990.

4. Economic Analysis

Using present value analysis, savings/investment ratios, and discounted payback

analysis, a quantitative approach to determining the economic feasibility of the MK92

MAES approach was accomplished.

a. Present Value Analysis

Present value analysis was accomplished by comparing the present value

cost of developing, fielding and maintaining the "MK92 MAES against that of the status

quo. Table 2.3 represents the present value calculations with the Monochrome 486

monitor chosen for hardware implementation. The status quo's present value cost was

determined to be $7,868,422. The fielding of the MK92 MAES through 2005 was

determined to have a Net Present Cost of $6,822,201. This represented a potential net

present savings of$1,046,221.

Alternative Net Present Value

Status Quo $7,868,422

MK92MAES ~6,822,201

Savings $1,046,221

Table 2.3 Present Value With Monochrome 486 from Powell (1993).

h. Savingsllnvestment Ratio

Savings/investment ratio (SIR.) "is the relationship between future cost

savings and the investment necessary to obtain those savings." (Raga & Lang, 1992) If

12

the SIR is equal to or less than one, the decision to make an investment should not be

made on an economic basis alone. The SIR for implementation of the MK92 MAES

varied from 3.033 using a 486 with a monochrome screen to 2.617 using a 486 with an

active matrix color screen, indicating its implementation and deployment is a sound

economic decision.

Computer SIR

386 Monochrome 3.104

486 Monochrome 3.033

486 Passive Matrix 2.881

486 Active Matrix 2.617

Table 2.4 Summary of SavingslInvestment Ratios by Computer Option from
Powell (1993).

c. Discounted Payback Analysis

With discounted payback analysis, the shorter the payback, the more

desirable the project. The discounted payback for the MK 92 MAES project was

determined to be four years beyond fielding of the system.

d Sensitivity Analysis

Due to the inherently uncertain application of economic analysis, a

sensitivity analysis was conducted in an effort to anticipate the effect changes to policy

and economic factors would have upon the feasibility of the project. The following factors

were considered in the application of sensitivity analysis:

• Accelerated decommissioning. To identify how this would affect the feasibility
of the project, the breakeven number of ships in commissioned service was
calculated. Assuming all other variables remained constant, it was determined
the MK92 MAES had to be deployed on twenty ships.

13

• Cumulative dollar value of all savings realized. It was determined, that even if
program savings were overestimated by 45%, economic analysis would still be
in favor of fielding the MK92 MAES.

• Sensitivity of repair parts savings. It was determined, all other variables
remaining constant, that repair part savings could be reduced by 74% before
breakeven would be reached.

• Trouble isolation man-hour savings. All other variables remaining constant, if
no man hour savings were realized from deployment of the MK92 MAES, the
system would still be preferable to the status quo.

• Technical representative travel savings. Regardless of the impact of the MK92
MAES on travel savings, its deployment would still be preferable to the status
quo.

• Project delay. Powell (1993) determined, even if delayed by one year, the Navy
would still receive $755,063 dollars in discounted savings from MK92 MAES
employment.

As a result of these findings, it was clearly evident that it would be prudent

to proceed with the development of the expert system. Significant cost savings and

operational readiness improvements would result.

C. EXPERT SYSTEM DEVELOPMENT CYCLE

This section discusses the expert system life cycle used to develop the MK92

MAES.

1. Expert System Life Cycle Model

The expert system life cycle (ESLC) model used by the MK92 MAES

development team is a variation on the model presented by Prerau (1990). Prerau

segments the ESLC into three phases; the initial phase, core development phase, and final

development and deployment phase (prerau, 1990).

The initial phase involves obtaining management approval, project team formation,

domain selection, and hardware/software selection. These steps lay the foundation for the

development process.

14

Core development includes an assessment of the project's feasibility and the

implementation of a full prototype. Full prototype implementation includes knowledge

acquisition, representation, and implementation.

Final development and deployment mark the final stage in Prerau's ESLC model.

It is at this point the development team builds a final production system. The system is

tested, evaluated, and known errors are corrected.

2. Problem Selection

As pointed out by Walters and Nielsen (1988), a broad problem domain can lead

to ambiguity and a lack of direction for the development effort. As a result, designers of

an application faIl into the trap of designing a system which will attempt to do everything;

the end result being an expert system which does nothing well.

To avoid this trap, it was important to define a bounded problem for the MK92

FCS domain to which the domain experts could construct a logical approach to its

troubleshooting. NSWC-PHD engineers determined an expert system designed to

diagnose problems associated with the Daily System Operability Test (DSOT) would be

the best candidate for the initial effort.

The DSOT is a daily evaluation of a US Navy combatant's weapon systems, from

the fire control radars to the weapons themselves. It provides a rapid and comprehensive

means of assessing the availability of the ship's combat suite. In the process of conducting

the DSOT, sailors inject simulated targets to evaluate the response of their fire control

system and associated weapons against established standards. As a result, a hard copy

summary of system functional performance is provided to the operator indicating any

faults with the system.

Three primary areas are the focus of the DSOT. These are CAS/STIR transmitter

RF Power Checks; DSOT initialization and calibration; and the performance test. The RF

Power checks are conducted to ensure minimum required power is available to system

components.

15

DSOT initialization and calibration, as the name alludes, is the phase in which the

calibration of the MK92 FCS' fire control channels takes place. As each channel is tested

in sequence, the system issues GOINOGO status identifiers which are printed out each

time DSOT is run. These GOINOGOs flags are used by system maintainers as starting

points in the troubleshooting process.

During the Performance Test, simulated targets are introduced into the system

which the system attempts to detect, track, and engage. As with the DSOT Calibration

test, a series of GOINOGOs are printed out. Any time the system falls outside established

parameters, a NOGO is issued. Similarly, the printout serves as a starting point for the

FCs diagnosing the problem.

Because the GOINOGO output format of the DSOT is the primary indicator of a

system fault, it was an ideal candidate for selection as a domain boundary. Furthermore,

as the DSOT output is the usual starting point for FCs troubleshooting the system, it

would be a logical input to the proposed Maintenance Advisor Expert System.

3. Development Team

The following personnel made up the development team.

a. Domain Experts

Once the problem domain was identified, the next task became that of

establishing the development team members. The engineers at NSWC-PHD were

intimately familiar with the expertise of the various technical representatives for the MK92

FCS. As such, they were tasked with identifying the best candidates to be the domain

experts. Their selection included one primary domain expert, Dorin Sauerbier, a technical

representative under contract to the US Navy from UNISYS with almost 35 years of

experience, and a secondary expert, Joe Guardione, an NSWC engineer with 18 years of

MK92 experience. Both have extensive experience in all aspects of diagnosing casualties

to the MK92 MOD 2 and were enthusiastic about contributing their time and knowledge

in developing the expert system. In addition, Mike Roth was selected as a third domain

expert to perform the validation.

16

h. Knowledge Engineers

The original intent was to train and use graduate officer students from the

Naval Postgraduate school working on their thesis research as knowledge engineers

during the knowledge acquisition phase. This proved to be unnecessary given the nature

of the problem domain and the chosen knowledge representation scheme. As detailed in a

later section, the domain expert was able to document his own knowledge directly without

the assistance of an intermediary. In so doing, the traditional knowledge acquisition

bottleneck created by an iterative interview process was substantially decreased. This was

particularly important given the geographic separation of the developers and domain

experts, and resulted in a smoother implementation effort.

c. Expert System Programmers

Though not involved directly in knowledge acquisition, the NPS graduate

students were responsible, under the guidance of NPS facuIty, for the design and

implementation of the expert system in the selected development shell. In addition to

coding, they conducted verification, validation, and testing. Additionally, they assessed

the impact of changes to both schedule and budget, as well as other aspects of program

management.

4. Knowledge Acquisition

The process of capturing domain knowledge was accomplished through several

means.

a. Expertise of Expert

The primary source of knowledge was from the domain experts. With over

50 years of cumulative experience in fire control system diagnostics, mostly on the MK92

MOD 2 FeS, they were able to provide expertise and insight to troubleshooting which

could not be obtained through examination of technical manuals alone. Their knowledge

provided the heuristics on which much of the expert system was based.

17

h. Technical Manuals

Technical manuals supplemented the expert's knowledge, providing a

resource to which they could refer to when documenting their expertise. The manuals,

however, had to be used with caution. In some instances, they were inaccurate, requiring

careful scrutiny by domain experts and other NSWC-PHD engineers. Fortunately, the

extensive experience of the domain experts enabled them to recognize areas in which the

technical manuals were inaccurate. In such cases, the engineers would consult other

experts, or if necessary, consult manufacturers of specific components for additional

information.

c. Other Recorded Sources of Knowledge

In addition to the domain expert's knowledge and technical manuals,

information from other sources was used. One such source was Casualty Reports

(CASREPs) requesting technical assistance. CASREPs include symptoms of a casualty,

its cause, and corrective action taken.

Another source used was Ordinance Alterations (ORDALTs). ORDALTs

are changes made to a weapons system such as the MK 92 FCS or a missile system.

Included in these changes is a detailed documentation which has not been incorporated in

the technical manuals. ORDALTs often provided a useful and more timely supplemental

source of knowledge than the technical manuals.

d The Knowledge Acquisition Methodology

Traditional knowledge acquisition techniques comprise an iterative process

that consists of interviewing, eliciting the domain expert's knowledge, and testing that

knowledge. This process requires close, repetitive interaction with the domain expert,

creating a bottleneck in the development process. Additionally, such problems as

interviewer bias, communication errors, and other anomalies can distort the expert's

knowledge.

18

Check CAS Track
r------,-Y=8I ECM output power . ..,No=-_--,

Is output power in

Replace
UD4 I 21Al AS-AI,

UD412IVA3FI-A03
UD412IVA3FI-A07

tolerance?

Perform CAS ECMOutput
....-----'-Y=i- power Adjustment Docs ..,No=---.

adjustment bring output
power within tolerance?

Is the ECMtrack
870MHZ signal at

Recheck DSOT
Calibration

.-----'-~"'" input to ..,No=----,
UD4121AIA6-AI

Replace
UD4121AIA6-AI.

within
-17+/-1.5dBm?

Replace cable
PIW20P2.

Yeo

Is the ECM track 870
MHz signal at

output to
UD4121AIA6-A4

within -17+1-1.5dBm.

No

Replace
UD4l2lAlA6-A4,
UD4121AlA6-AS.

Figure 2-1. Example of a MK92 MAES diagnostic tree.

To enhance the efficiency of the knowledge acquisition process, the MK92

project team decided to have the domain experts develop graphical diagnostic trees which

included their heuristics and troubleshooting procedures of the system's components.

Diagnostic expert systems lend themselves well to this type of knowledge acquisition.

Troubleshooting frequently requires following one or more paths of a hierarchical

diagnostic tree. By using a diagnostic tree formalism, the experts were able to graphically

represent their knowledge and review this knowledge for accuracy, thereby reducing the

number of repetitive iterations in the knowledge acquisition process.

19

Figure 2-1 is an example of a diagnostic tree developed by the

NSWC-PHD domain experts. As Figure 2-1 demonstrates, diagnostic trees represent a

series of hierarchical questions which an expert would normally follow when diagnosing a

problem. As the FC answers each question, they trace the thought process of the domain

expert. Although yes/no questions are the most common type of questions asked, case

statements could also be used to elicit one out of several responses.

The approach to knowledge acquisition involved developing a strategy for

modularizing the problem domain. By breaking the problem area into modules, the

domain expert could more easily concentrate on identifying the symptoms and

troubleshooting procedures ofa specific segment of the MK92 MOD 2 FCS.

The first level of abstraction was to segment the problem into calibration,

performance, and RF Power check modules. These were separate subjects of the DSOT

procedure with separate GO/NOGO output and parameters.

Once the main modules were identified, the next task was to divide each

module into logical groupings in which similar symptoms, as evidenced by test output,

would occur. To accomplish this, the domain experts began by identifying the instances of

NOGO readings and grouping them according to potential cause.

First, a grouping was made according to which component the symptom (a

NOGO) was identified. For instance, there are two primary radar components, CAS and

STIR. Symptoms were identified according to whether they affected the CAS alone,

STIR alone, or both.

Another level of abstraction is related to the mode of the radar in which the

failure occurred. Modes include track mode and search mode, Electronic

Counter-Measures (ECM), and others. If for example the symptom was a NOGO in the

CAS portion of a test of the fire control system, but only in search mode of operation, a

diagnostic tree would be created that would graphically depict the procedure for

identifying the cause of the problem. This procedure of breaking the knowledge into

20

levels of different abstraction in a hierarchical structure enabled the domain experts to lay

out and refine their troubleshooting strategy.

5. Knowledge Representation

In addition to knowledge acquisition methodology decisions, it was important to

determine the method of knowledge representation. The challenge of knowledge

representation lies in identifying a method which accurately depicts the expertise of the

domain expert in such a way as to facilitate the knowledge coding process.

A rule-based paradigm was initially considered as the knowledge representation

method of choice. It was noted, however, that as the system becomes larger, and the

number of rules increases, a rule-based system's use and maintenance become exceedingly

difficult. Additionally, as noted by Walters and Nielsen (1988), rule based structures are

not well suited for representing procedural information.

A more flexible method of knowledge representation, the procedural network, was

considered and ultimately selected as the knowledge representation method. Procedural

networks, like flow charts, are graphical representations of the conditions which must

exist before a conclusion can be reached. Each procedure is linked, defining the flow of

logic within the network. Within each procedure is a series of instructions which are

"executed," providing a vehicle for forward and backward chaining.

A main advantage of using procedural networks as a representation scheme for this

application domain is its close match with the approach used by experts in diagnosing and

resolving problems. In addition, procedural networks, are inherently modular. These two

characteristics mirror the knowledge acquisition approach of the domain expert. As will be

demonstrated in the following sections, the modularity and structure of procedural

networks allowed for easy mapping from representation to implementation.

6. Knowledge Coding

The modular approach to building the knowledge base carried over to the

knowledge coding process. As domain expert knowledge was acquired and knowledge

21

modules were completed, the implementation team began the task of mapping the

knowledge as represented by the diagnostic trees to the expert system shell.

As with the representation scheme, the suitability of the selected tool to the type of

knowledge being captured was a key consideration for the NPS developers. Prior to NPS'

involvement in the project, unsuccessful attempts by NSWC-PHD engineers were made at

implementing the acquired knowledge in an expert system shell that did not lend itself well

to procedure-based knowledge representation. Several expert system shells were

evaluated for their compatibility with the procedural knowledge of the MK92 MAES, and

the expert system shell Adept, by Softsell, was selected (Lewis, 1993).

Adept is a visual expert system development tool which incorporates a graphical

user interface (GUI) builder for the Microsoft Windows environment. Designed

specifically for diagnostic expert system development, Adept implements knowledge as a

collection of procedures, which are linked together to form a procedural network.

(Smith, 1994)

Figure 2-2 is an example of the implementation of the knowledge obtained from

the domain expert, shown in Figure 2-1. A comparison of Figure 2-1 with Figure 2-2

reveals the ease with which knowledge is mapped from the diagnostic trees, as represented

by the experts, to the expert system shell. This close affinity between representation and

implementation greatly enhanced the testing, validation, verification, and modification of

the system.

22

Figure 2-2. Knowledge coding using Adept procedures.

DSOT.

• • •
Calibration Perfonnance RF Power Checks

Figure 2-3. DSOT Modules.

23

To ease implementation of the domain expert's knowledge, the diagnostic trees

were broken down into modules which represented the paths the domain expert would

follow in his diagnosis (Smith, 1994). Each module was then implemented as a procedure

in Adept. By maintaining correspondence wherever possible between the problem

domain, diagnostic trees, and their implementation, the ability to perform maintenance and

verification are enhanced. Figure 2-3 represents the three primary DSOT modules.

7. Knowledge Verification and Validation

During the l\1K92 MAES knowledge verification process, an effort was made to

determine whether or not the domain expert's knowledge was accurate and complete.

Independent verification of the knowledge was conducted by Mike Roth, an expert at

NSWC-PHD with 20 years of experience in the l\1K92 FCS. The independent expert was

responsible for evaluating the knowledge, identifying any discrepancies, and signing off on

knowledge he considered accurate.

Once the knowledge was verified as accurate and complete, a validation process

was initiated by the development team to ensure the implemented procedures accurately

represented the knowledge document. Validation of the expert system was conducted by

NPS graduate students and involved the comparison of the knowledge document with the

corresponding expert system code. Completed expert system modules were then sent to

the domain expert for further evaluation. Discrepancies that were identified by the domain

expert were recorded on trouble reports and returned to NPS personnel for correction.

In both verification and validation, the ability to trace the knowledge as

represented by the diagnostic trees to the actual code proved to play a key factor in

establishing an effective V & V process. The Verification and validation team was able to

quickly and easily verify and validate the operation of the MK92 MAES against the

domain expert's knowledge. The logical representation of the domain experts knowledge

and its ability to map easily to the Adept procedures, makes the V & V process faster,

easier, and consequently cheaper than attempting V & V when traditional programming

languages are used.

24

D. EXPERT SYSTEM IMPLEMENTATION

This section discusses the implementation of the MK92 MAES.

1. Test and Evaluation

Testing is the process in which the operation and behavior of the expert system is

evaluated through the use of test cases (Dills & Tutt, 1994). Although the knowledge has

been certified to be correct, and the implementation, was determined to be representative

of the knowledge base, it was still necessary to determine whether or not the expert

system functioned as intended.

Before the system could be fielded, a test and evaluation plan had to be

established. To maximize the use of available resources, a test plan was developed which

prioritized the order in which testing was to be completed. To accomplish this, MK92

MAES project team members examined CASREP information to identify high failure, high

cost components which could be diagnosed by the expert system. Additionally, they

attempted to maximize the number of diagnostic paths a particular test case would

evaluate. (Dills & Tutt, 1994)

Working with fleet technicians at both Fleet Training Center Pacific

(FL TRACENP AC) and the engineers at NSWC-PHD, NPS personnel established a testing

order which would test the parts identified through CASREP analysis and path tracing in

an order which was as convenient as possible for those conducting the evaluation. The test

cases were implemented by both FLTRACENP AC and personnel operating a shore based

mock-up of the MK 92 MOD 2 FCS at NSWC-PHD. (Dills & Tutt, 1994)

Test results were provided on verification sheets, denoting any problems

encountered. Those identified were first evaluated by the knowledge coders, to ensure an

error in implementation was not made, with the remaining passed to the domain expert

for evaluation.

25

2. System Deployment

Before the system was deployed, considerable effort was expended to demonstrate

the system to fleet sailors. Visits to ships on the waterfront, presentations at navy-wide

technology expositions, and demonstrations at Navy training commands were used to

gauge enthusiasm for the product as well as gain further insight as to deployment issues.

Questions regarding the type of computer to be deployed (desktop vs. laptop), what

commands to receive evaluation copies, and suggestions for enhancements were sought.

To demonstrate the capability of the system in an effort to sustain management

support for the project, it was determined the system would be deployed in phases. The

first phase would consist of the first two modules; calibration and performance. Power

checks would be developed and fielded based upon the success of the first two. In so

doing, the system could serve as a proof of concept while at the same time minimizing

economic risk by initiating further development.

The decision was made, after an evaluation of alternatives, to provide a copy of the

expert system to a frigate preparing to deploy, the USS Sides (FFG-14). Another

evaluation copy was provided to the Navy's MK92 FCS school. Briefings were conducted

with all levels of shipboard management, from the commanding officer to the actual

technicians who would be using the system. The system was deployed on a commercial

off the shelf(COTS) notebook computer which allows the FC to take the expert system to

the location of the casualty for troubleshooting.

Initial feedback has been very positive. Upon returning from her deployment, USS

Sides sent a message to NSWC NSWC-PHD, with copies to the Commander in Chief,

Pacific Fleet (CINCPACFLT), the Naval Surface Warfare Center (NSWC), and

Commander, Naval Sea Systems Command in which the USS Sides stated its evaluation

of the MK92 MAES. The USS Sides (1995) noted, "MAES correctly diagnosed and

recommended the proper corrective action for all faults" which were within the domain of

the expert system. By their estimates, during a three month deployment, the MK92 MAES

saved 30 man hours in troubleshooting and provided over 40 man-hours of training. Their

26

confidence in the MK92 MAES led them to recommend further testing of the system be

carried out and implementation be considered for all MK92 MOD 2 frigates (USS Sides,

1995).

In addition to its deployment in USS Sides (FFG-14), the MK92 MAES was

recently used to troubleshoot a casualty onboard USS John A. Moore (FFG-19). USS

John A. Moore was receiving a technical assistance visit by NSWC engineers during a port

visit to NSWC Port Hueneme, CA. The ship was experiencing a casualty which was

resulting in NOGOs for all readings in the calibration portion of the DSOT. Ship'S force

had been troubleshooting the casualty for approximately one week (Torres, et. al., 1995).

Using the MK92 MAES, NSWC engineers and USS John A. Moore FCs were able to

successfully isolate the problem in approximately 15 minutes (Seto, 1995).

E. SUMMARY OF THE MK92 MAES PROJECT

The MK92 MAES represents a proof of concept in diagnostic expert systems and

their role in the US Navy. With the potential for significant savings in terms of dollars,

and time, the MAES promises to provide sailors with a diagnostic tool which can alleviate

their need to rely upon outside assistance. The result is an improvement in combat

readiness, reduced repair parts costs, manpower savings, reduced dependence upon

outside technical assistance, and enhanced training.

The use of diagnostic trees and a visual expert system development environment

eased the processes of knowledge acquisition, representation, and coding. The procedural

structure and intuitive representation in both the diagnostic trees and expert system shell

represent an instance where due consideration was given to matching the knowledge

representation and implementation to the problem domain. The result was a modular

system which provided for easier maintenance and evolution.

Though further testing and evaluation has yet to be done, all indications are that

expert systems have matured to the point they can playa role in the everyday activities of

the sailor. As budgets decrease, and personnel depart, the need to capture the knowledge

27

of the Navy's "experts" increases. The MK 92 MAES represents one such effort to move

expert systems out of universities and laboratories and onto the "front lines."

28

m. CONFIGURATION MANAGEMENT CONCEPTS

This chapter explores the principles of configuration management. Several

definitions are presented. First, the relationship of configuration management to other

disciplines associated with software engineering is discussed. Next, the functional tasks of

the configuration management process are examined in detail. In addition, configuration

management's role in the software development life cycle is explored. Finally, the reader

will be introduced to the concept of the configuration management plan.

A. OVERVIEW

Software configuration management can trace its ancestry to DOD and other

government agency's projects in the 1960's (Bedack, 1992) (Buckley, 1993). As the

complexity of systems increased, engineers and managers alike began searching for a

methodology to control the development process. Out of their early efforts grew the

discipline of configuration management.

Though originally applied to hardware, configuration management principles have

been adapted and adopted by developers of software, documentation, drawings, and

multi-media (Bedack, 1992) (Buckley, 1993) (Tomayko, 1990). Configuration

management has enabled project managers to establish improved methods for managing

change. The following subsections expound upon the concept of change management.

For further information on standards, and recommended practices in configuration

management, the reader is referred to Appendix A.

1. Configuration Management Defined

There are many definitions of configuration management. However, within each is

a recurring theme: the management of change. The life cycle of software, from

specification until its removal from service, is evolutionary. As the end-user's needs

change, bugs are detected, or enhancements are introduced, some process is established

which takes these changes, controls them, and turns them into a product. This process has

29

come to be known as configuration management. The degree to which the intended

change is reflected in the actual change is the barometer of the quality of the CM process.

Several definitions of configuration management have been introduced by the

Institute of Electrical and Electronics Engineers (IEEE), Department of Defense (DOD),

and authors of various publications on the subject (Bersoff, 1984) (Buckley, 1993)

(Berlack, 1992) (Tomayko, 1990). Their interpretations are presented below.

The Software Engineering Institute (SEI) definition, as promulgated in their

curriculum module on software configuration management states:

Configuration management encompasses the disciplines and
techniques of initiating evaluating and controlling change to software
products during and after the development process. (Tomayko, 1990)

Bersoff(1984), a senior member of the IEEE, further defines CM as:

the discipline of identifying the configuration of a system at discrete
points in time for the purpose of systematically controlling changes to the
configuration and maintaining the integrity and traceability of the
configuration throughout the system life cycle.

The definition used by both Buckley (1993) and Berlack (1992) is derived from

MILSTD 973B, and reads as follows:

Configuration management is a discipline applying technical and
administrative direction and surveillance to:

• identify and document the functional and physical characteristics of
configuration items (CI)

• audit the configuration items to verify conformance to specifications, interface
control documents, and other contract requirements

• control changes to configuration items and their related documentation

• record and report information needed to manage configuration items effectively,
including the status of proposed changes and the implementation status of
approved changes (Buckley, 1993) (Berlack, 1992)

30

2. Configuration Management and Change

Each of these definitions, slightly different in semantics, shares a theme which will

be reiterated throughout this thesis: configuration management is the process of

controlling change. Since the interpretation of the word change may be different from one

reader to another, it is important to distinguish the author's intent as to how the word

"change" should be interpreted. The term "change," when employed in this thesis, should

be thought of as a generic descriptor for the types defined below.

This thesis utilizes the Software Engineering Institute's (SEI) explanation of

software change types. (Tomayko, 1990)

SEI separates change into two major categories. The first category is

discrepancies. Discrepancies are broken down into three major types:

• Requirements errors. Requirements errors, as the term suggests, result from an
error in establishing the user's requirements. Tomayko (1990) states, "either the
customer or marketing did not fully or clearly express the requirements, or
incorrect information was given. "

• Development errors. Development errors result from the incorrect
implementation of correct requirements. In other words, the requirements
correctly stated what the software should be able to do, but the software cannot
accomplish the task correctly.

• Violations of standards. This third type of discrepancy refers to a violation of
agreed upon development standards. Generally, the standards which were to
have been adhered to were stated in the contract, but were not correctly
implemented during development.

The SEI's second category of change is termed requested changes. Typically,

there are three kinds of requested changes:

• Enhancements. Enhancements are change requests that involve the
establishment of new requirements. These include the addition of greater
functionality to the product. An example of an enhancement would be the
addition of reporting features to a software product.

• Improvements. SEI considers product improvements to be changes to
software that do not involve functionality or performance. One example might
be the changing of text color to make it more readable. Another might be to

31

improve system documentation to make it easier to understand. (Tomayko,
1990)

• Unimplementable requirements. A requirement might not be implementable if
resource constraints prohibit development of software that encompasses its
intended operation. This would be a lack of funding necessary for the
implementation of an established requirement. In such a case, the customer and
developer may agree to change the software to adhere to a level of functionality
that can be accomplished within the budgetary constraints. (Tomayko, 1990)

3. The Purpose of Configuration Management

Why should an organization undertake the daunting task of establishing a

configuration management program? After all, on the surface, it would appear as though

the added layers of review and administration would only serve to take up time. This,

however, is a superficial view of configuration management. It does not take into account

the benefits eM can have, not only on project management, but also in development of the

final product. The following paragraphs provide a more in depth look at the potential

benefits of configuration management.

The definitions presented in the previous subsection allude to the potential benefits

of eM. Terms such as traceability, integrity, and control are key words in the goals of any

project manager. eM supports software product integrity, increases traceability, and

provides a vehicle for controlling the development process. Additionally, eM can act as a

medium for increasing the visibility of a project. It is these potential benefits which have

prompted organizations to adopt eM as one tool in their bag of tricks for productively

developing and maintaining quality code.

D. eM Establishes Software Integrity

The goal of the software developer, according to Bersoff (1984), is to

develop a product which matches, as closely as possible, the needs of the customer. This is

known as product integrity. Applying his definition of product integrity (Bersoff, 1984) to

software, the following definition of software integrity emerges:

32

Software integrity describes a set of characteristics of a software product

that:

• satisfies the customer's functional needs

• has traceability throughout the entire software life cycle

• fulfills specified performance requirements

• is delivered and maintained within cost and delivery constraints

CM ensures software product integrity, version control, and change

control. Mechanisms in the CM process prevent untested modules from being included in

release copies of a product. Likewise, change control implies a procedure for the

identification, review, impact assessment, and implementation of changes to a

configuration item.

b. CM Ensures Traceability

Traceability refers to the ability to identify each configuration item,

regardless of the phase of a product's life cycle, to the original specifications. Traceability

must be maintained throughout the software development life cycle (SDLC). From

project inception, starting with requirements definition through evolution of the product,

until it is discarded, CM can ensure the traceability of a configuration item.

c. CM Increases Project Visibility

As software maintenance costs skyrocket, and budgets decrease, greater

emphasis is being placed upon software development. This is as true in the corporate

sector as it is in DOD. CM, through the reporting and auditing processes of status

accounting and configuration audits, acts as a vehicle for communication of the status of a

software product and its associated documentation. Increased visibility allows developers

and project managers the opportunity to adjust their resources before they discover, all to

late, a project is over budget and behind schedule. (Berlack, 1992)

33

d CM Supports Development and Maintenance

CM supports development and maintenance through version control,

change control, documentation control, and CM development tools. Version control

enables the developer to recall any previous version of a configuration item. This can be

invaluable when attempting to identify the source ofa software problem. (Buckley, 1993)

Change control provides a process for the identification, impact analysis,

and implementation of changes to software, regardless of scope or origin. CM is the

management of change, and plays the primary role in effective change control.

Configuration management also ensures user manuals, code descriptions,

and other items are not lost, or inconsistent with other aspects of the project. Through

status accounting and configuration audits, inconsistencies are identified for correction.

Today, many of these features are incorporated in automated CM tools,

thereby simplifying the tasks of both developer and configuration manager. A more

detailed review of CM tools, their capabilities, and limitations, is undertaken in Chapter V.

e. CM Improves Project Management

Today's business environment has forced product managers to take the

same perspective of software development efforts as a line manager would for a

production line. This is driven by management's increasing recognition that software is a

valuable company resource. As software development becomes a key component to an

organization's competitiveness, focus is on product delays, and cost over runs. CM is one

tool management can use in their efforts to achieve higher productivity and greater cost

control.

f. CM is an Integral Component of Process Improvement

The business climate of the '90s can be characterized by an emphasis on

process improvement (Curtis, 1992). "Total quality" is the buzzword of the day in both

corporate America and DOD.

34

This trend has extended to software development. One version of process

improvement gaining acceptance in the software engineering community is the Capability

Maturity Model (CMM). As the name implies, the CMM attempts to classify the degree

to which an organization's software engineering process has evolved. (Curtis, 1992)

The CMM's fundamental premise is a recognition that technology and

dollars alone cannot be relied upon to ensure a software product has an acceptable level of

quality (Curtis, 1992). An organization must adopt processes that create an environment

in which quality software is a by-product of day to day operations.

The CMM is divided into five levels, with the fifth level being the highest

level of maturity. The following is a brief description of the CMM's levels and the key

process areas associated with each (Curtis, 1992).

• Level 5 Optimizing: Focus is on continuous process improvement. Key process
areas include: defect prevention, technology innovation, and process change
management.

• Level 4 Managed: Focus is on product and process quality. Key process areas
include: process measurement, and analysis; quality management.

• Level 3 Defined: Focus is on engineering process. Key process areas include:
organization process focus, organization process definition, peer reviews,
training programs, inter-group coordination, software product engineering, and
integrated software management.

• Level 2 Repeatable: Focus is on project management. Key process areas
include: software project planning, software project tracking, software
subcontract management, software quality assurance, software configuration
management, and requirements management.

• Levell Initial: Focus is on heroes, meaning star programmers. No key process
areas are in place.

To achieve level 2 of the CMM, a sound configuration management plan

must be in place. This underscores, the degree to which CM is fundamental to a mature

software engineering process.

35

4. The State of Configuration Management Practice

The extent to which configuration management is being practiced by software

developers is varied. Capers Jones (1994) states as of 1993:

• 30% of US software producers have no configuration control automation.

• 30% have source code automation, but no documentation automation.

• Almost 30% have both source code and documentation automation, but are not
integrated.

• Only 10% were moving toward fully integrated configuration control. No
differentiation between the degree to which CM was an integral part of the
SDLC was offered.

In 1990, a delphi study regarding software maintenance problems (Deklava, 1992)

was conducted using attendees of the 1990 Annual Conference on Software Maintenance

Association as participants. From that study, "system documentation incomplete or

nonexistent" tied with "performance measurement difficulties" for third place of the top

twenty major problems in software maintenance. Two respondents pointed out the

expense of training new maintainers and lowered maintenance productivity as a result of

poor software documentation (Deklava, 1992). The respondents identified two potential

benefits of implementing a configuration management plan; cost control and improved

software maintenance productivity.

Not all respondents were in agreement as to the extent of the problem of poor

system documentation. Two participants stated their personnel had a lot of expertise with

their system, and therefore did not rely upon the documentation. Three respondents, who

dismissed the need for documentation, stated their preference for source code due to the

fact the documentation was "not reliable or specific enough." (Deklava, 1992)

Those stating they did not need documentation for their system, ironically, pointed

out two reasons one should have a configuration management program in place. What if

an organizations "experts" suddenly left, or a change was made to the systems which was

unfamiliar to them? A lack of proper documentation could be detrimental to the

maintenance of the system.

36

Why is system documentation so poor that one is forced to rely upon source code?

Configuration management, when properly adopted by an organization, becomes a

cornerstone to a software design process which enhances the production of accurate and

reliable documentation as a natural by-product of coding.

Another finding was the level of CM knowledge possessed by personnel in

software development organizations. One-thousand-four-hundred software developers in

North America participated in a standardized test on CM conducted by R.S. Pressman and

Associates. Out of a maximum score of 100%, managers scored 60% and developers

scored 50% in their level of configuration management knowledge (Computerworld,

1994). The Computerworid article did not address how many of the 1400 surveyed had a

configuration management plan implemented within their organization.

The validity and consistency of the instruments used in these surveys was not

established. However, if they are even remotely accurate measures, both developers and

managers have a lot to learn about configuration management. Admittedly, one cannot

use three surveys to gauge with precision, the state of CM in software production

organizations. The findings, nonetheless, serve as indicators of a lack of knowledge

and/or acceptance ofCM's role in the development process.

5. Configuration Management and the Product Assurance Disciplines

"Configuration management is an integral part of software development across all

phases of the life cycle" (Tomayko, 1990). As such, it interacts with other software

engineering disciplines.

Bersoff (1984) identifies configuration management as belonging to a set of ,
disciplines he describes as "product assurance disciplines." These include:

a. Qualify Assurance

Quality assurance (QA) when referenced to software development,

involves techniques which developers apply to insure the software "meets or exceeds

pre-specified standards during a product's development life cycle" (Bersoff, 1984). In the

37

absence of specific quality requirements, QA uses "industrial or commercially acceptable

levels of excellence" (Bersoff, 1984).

h. Verification and Validation

Verification and Validation (V&V) is a discipline which has two aspects.

The first task, verification, determines whether the product adheres to established

requirements, such as functional specifications in a contract. (Bersoff, 1984)

Validation on the other hand, goes one step further. Validation tests

whether or not the software not only meets agreed upon requirements, but does what the

end user intended (Bersoff, 1984). For further information on verification and validation,

and its application to expert system development, the reader is referred to Dills & Tutt

(1994).

c. Configuration Management

Configuration management acts as a product assurance discipline by acting

as the repository for all documentation and code related to the project, maintaining a

history of development, storing and controlling product versions, and evaluating and

controlling changes. As a central controlling and storage facility, CM is integral to

developing quality software. (Bersoff, 1984)

d Test and Evaluation

Test and evaluation (T&E) refer to a process in which and organization,

independent of the development group, evaluates the software for correctness and

conformance to stated objectives (Bersoff, 1984).

6. Sources of Configuration Management Guidance for DOD Programs

DOD has recognized the benefits of configuration management and as a result, has

published requirements for the establishment of CM programs by organizations developing

software for DOD. Additional guidelines are found in the publications and standards of

international bodies such as IEEE and the International Standards Organization (ISO).

38

Those interested in establishing a software configuration management program are

referred to Appendix A for further information.

7. Configuration Management and the Software Life-cycle

The implementation of configuration management should begin as early as

practicable in a software development project. All to often, configuration management is

not considered until there is a problem. Only when project management discovers changes

are undocumented, the program is over budget, or behind schedule, do they look to CM

as one solution to their problems. (Berlack, 1992)

Requirements for CM should be established when drafting the agreement between

the customer and developer. In this way, CM can become an integral part of the software

development life cycle (SDLC). CM has a role in the entire SDLC, from the first

requirement established, until the software is removed from service (Berlack, 1992)

(Buckley, 1993).

a. Configuration Management's Role in Structured Design

Methodology

Configuration management's role in structured design methodologies is

fairly well established. Though a discussion of the SDLC is beyond the scope of this

thesis, a cursory review of its phases is provided in Dills & Tutt (1994). More complete

discussions are found in Smith (1994) and Berlack (1992). A brieflisting of the phases of

a traditional SDLC is provided below:

• Concept definition

• Requirements definition

• Design

• Implementation

• Integration and Testing

• Operations and Maintenance

39

CM supports each of these phases by capturing all relevant information

regarding a design in such a way that it can be recalled for use at any time. In addition to

software versions, requirements, test plans, documentation, and changes are also recorded.

(Buckley, 1993) (Berlack, 1992) (Tomayko, 1990)

h. Configuration Management's Role in Prototyping

As Hull and Kay (1991) point out, prototypes at some point in their

SDLC transition to more traditional cycles of software development. The establishment of

a CM process early in the prototyping stages of a development effort can make this

transition a smooth one. CM captures the change history and other relevant files and

documentation associated with the software's development.

Often the approach to designing a prototype does not take configuration

management into account. Developers have the attitude, "we don't need CM, we're only

going to throw this away anyway." Prototypes have a way, however, of evolving into the

actual deliverable. Traditional thought on prototyping revolves around the evolution of

interfaces, and programming techniques. However, as Kolkhorst (1994) points out, one

can also "prototype" the procedures and policies of configuration management.

Regardless of what development methodology is used, configuration

management is critical to managing the changes common in any software's life cycle. CM

should evolve with the software development process, adjusting as needed, yet always

capturing and managing change. (Berlack, 1992) (Buckley, 1993) (Tomayko, 1990)

B. CONFIGURA nON MANAGEMENT TASKS

This section examines the primary elements of configuration management in

greater detail. The four major tasks of configuration management; identification, change

control, status accounting, and auditing are described. Typical methods for their

application are also discussed. The applicability of these techniques will vary from project

to project. The key to successful implementation of a CM process is to scale it to the

project's specific needs. Figure 3-1 depicts the configuration management tasks.

40

The reader is cautioned that not all aspects of eM discussed in the following

sub-sections may apply to their project. They are intended to serve as guidelines. The use

of a particular eM tool will often drive the method of implementation, particularly with

regard to configuration identification and change control. The remaining chapters of this

thesis provide an example of the application ofCM to the MK92 MAES project.

Configuration management is applied to all aspects of a project. In addition to the

software code, eM controls (Tomayko, 1990):

• requirements

• specifications

• design documents

• source code

• object code

• test plans

• test suites

• maintenance manuals

• user manuals

• interface control documents

• memory maps

Identification

Configuration
Management

Change Control Status AccolUlting Auditing

Figure 3-1. Configuration management tasks.

41

Although hardware and other components listed above are often under

configuration management, in the interest of limiting the scope of this thesis, only issues

related to the configuration management of software and the associated documentation

will be explored. Therefore, the tenn configuration management shall refer specifically to

software configuration management unless otherwise noted.

The only exception to this policy is the CM of storage media. The use of storage

media such as floppy diskettes enables software to be distributed for use at sites other than

where it is developed. Because of the close relationship between software and its method

of storage, the CM of storage media is addressed.

1. Configuration Identification of Software

Configuration identification (Cl) involves the recognition of what software items

are key to maintaining the integrity of a project under development, and placing them

under configuration control. (Buckley, 1993) (Berlack, 1992) This subsection examines

the conventions for the configuration identification of a generic software program.

Chapter VI offers a recommended approach for incorporating Cl into the :MK 92 MAES

configuration management process.

a. Programs and Files

Before software configuration identification can be further examined, it is

important, to ensure the reader understands the distinction between the tenns "file" and

"program." The tenn "file" is refers to a physical and logical collection of software code.

The term "computer program" or "program" refers to a collection of files. (Buckley,

1993)

h. Software Identification Conventions

When applying CM to hardware, one finds it can be identified at

innumerable levels of abstraction. Software, however, is typically identified at two: the

configuration item, known as computer program level and file level. (Buckley, 1993)

42

In DOD, at the program level, each item has what is referred to as a

computer software configuration item (CSCI) identification number. A CSCI is a labeling

scheme for software configuration items. The CSCI number provides a common reference

for those items that make up the computer program, and serves as an "address for all

actions and documentation related to that computer program." (Buckley, 1993)

Information one might wish to contain within an identifier at the program

level includes the program's name, an abbreviation or acronym for the program's name,

and an ID number. (Buckley, 1993)

Software code is identified and controlled at the file level. In general, there

are three types of software files to be identified. These are source files, object files, and

executable files. (Buckley, 1993) (Berlack, 1992) (Tomayko, 1990)

Again, DOD has its own terminology for a file. DOD STD-1267A refers

to files as "controlling units" (DOD, 1988). This naming convention was intended to avoid

any language-specific terminology, such as procedure, module, or function. However, as

argued by Buckley (1993), the term "controlling unit" is also ambiguous, and therefore,

are not used in the context of this thesis. Instead, the terms "file", or "configuration item,"

are used in recognition of the method in which most programs are represented when

stored on disk. (Buckley, 1993)

c. Configuration Identification of Files

Why is it necessary to further discriminate between files? To attempt

control of software configuration items at the program level would be impossible.

Computer programs in large systems often contain tens of thousands of lines of code

bundled within dozens of files. Considering the need for changes to various files; some

more often than others, it is unfeasible to issue revisions for the entire program after each

change is instituted. A more logical, approach is to apply control at the file level, and only

issue those files which were actually modified. (Buckley, 1993)

43

Software at the file level, is composed of three generally accepted

identifying elements (Buckley, 1993):

• file name

• file type

• version number.

Buckley uses the following symbology to identify the file: the underscore,

period, and semi-colon are part of the identification scheme, and are typically included in

each instance of a file identifier. An example is presented for clarification. (Buckley,

1993)

PROGRAM ACRONYM_FILENAME.FILE TYPE;VERSION NUMBER

MAES_FC l.ADP; 1. 1

In this example, 1.1 refers to the file FC 1, which is part of the MK 92

MAES program, and of a type used by Softsell's expert system shell, Adept. The

particular file is version 1.1.

The identifier for source code is generated when the developer first creates

a file. Only the version number is altered from that point forward. An additional

precaution, is to include the file identifier (i.e., MAES_FC2.ADP;1.5) in the first line of

the program source code, if possible. This protects against the inadvertent renaming of a

file. A disadvantage, comes in the form of increased overhead, and therefore, resources.

The file identifier must be inserted into the code either manually or through the use of an

automated development tool. The cost of inserting the file identifier into the code as a

header should be weighed against the need for the additional identification it provides.

(Buckley, 1993)

Object files result from the compiling of source code. Object file identifiers

remain similar to source code identifiers with the exception of the file type and version

numbers. The file type will change from the source code file type to the extension of the

44

object type (i.e., ".obj" in the case of most compiled languages such as ADA and

FORTRAN). An appropriate extension should be identified and standardized across all

object files of the same type. The version number for an object file, should be an

increment of one higher than the highest version number of the source code from which it

was derived. For example, a program whose source code is entitled, TEST_NUM1.C; 1.0

would produce an object file identified as TEST_NUM1. OBJ; 1.1 when compiled.

(Buckley, 1993)

Executable files, like object and source files, use the same identifier

convention. However, since executable files often contain many different object files, the

file names do not normally translate directly to the executable file. (Buckley, 1993) It is

important a developer assign a logical file name when an executable file is generated. A

discussion of responsibilities for naming files is undertaken later in this subsection.

d Configuration Identification of Patch Files

The use of code patches is in complete contradiction to the goal behind

configuration management. The primary reason is the resulting loss of traceability.

However, as Buckley (1993) points out, there are instances in which there is no

alternative. Patches should use the same format as presented above. However, they

should be clearly identified as a patch, possibly by using the word "patch" as the file name.

(Buckley, 1993)

e. Categorization of Software

Identification and control requirements vary between different types of

software. For this reason it is important to make a distinction between the various

categories of software. By categorizing software, it is possible to establish degrees of

identification and control, thereby removing the burden of unnecessary configuration

management requirements. This translates directly into reduced overhead, and

consequently, controlling the cost ofCM implementation.

Not all software that is categorized will require CM. The purpose of

categorization is to ensure software which should be under configuration management is

45

not overlooked. The categorization and relevant CM policies are outlined in the project's

configuration management plan. A discussion of the components of a CM plan appears

later in this chapter. (Buckley, 1993)

Buckley employs the following categories for software categorization:

(Buckley, 1993)

• Category I : Product software. Software under Category I is either an end
product, or part of an end product.

Category II : Software to be embedded in firmware, such as erasable
programmable read only memory (EPROM).

• Category ill: Vendor-provided software. This software includes all software
purchased from a vendor in its "final" form. Operating systems, database
management systems, configuration management tools, word processing
software and expert systems shells are examples of category ill software. The
discriminating factor, here, is the vendor's maintenance of this software. If the
software is not going to be maintained, either through direct interaction with
the developing organization, or through future releases, and the using
organization has to assume the maintenance function, then it is not category ill
software. The category assigned will depend upon the type of software it is.

• CategOIY N: Test software. Category IV software supports the formal
acceptance testing of software in categories I, II, and ill. Test drivers, test data,
as well as test collection and analysis software are examples of this category.

• Category V: Product-support software. Product support software supports the
formal development of category I, II, IV, and VI software, but is not part of the
product itself For example, command files used to compile, link, and load
executable files would be included under this category.

• Category VI: Manufacturing support software. This type of software refers
specifically to software which supports hardware production, such as control
software for a robotic manufacturing device. Category VI software is outside
the scope of this thesis.

• Category VII: Other software. This is a miscellaneous category which includes
software developed to support informal testing, as well as software that does
not fit into any other category.

These categories are examples of a categorization scheme and do not

necessarily apply to every project. This is the case with the :MK 92 MAES project. For

instance, the :MK92 MAES project does not make use of manufacturing support software

46

(Category VI) or software embedded in firmware (Category II). To simplify and tailor

the concept of software categorization, the design team adopted a software cataloging

system that included software types relevant to the MK92 MAES development

environment. The following section discusses the process used

f. Software Categorization in the MK 92 MAES Project

As previously stated, category conventions should be tailored to the

specific project. Customizing the categorization process eliminates unnecessary

categories. As policies are determined for each category of software, the tailoring of the

software categories encourages the establishment of policies that will be customized to

meet an organization's needs. The following is a summary of the software categories

identified for the MK 92 MAES program.

• Category 1: Product software. This encompasses all files incorporated in a
release version of the MK 92 MAES.

• Category 2: Vendor-provided product development software. (e.g., expert
systems shells, DBMS software tools, CM tools, etc.)

• Category 3: Vendor provided software not specifically related to product
development (e.g., operating systems and word processors.)

• Category 4: Test Software. This consists of any formal test routines written by
the development team.

• Category 5: Other software. As the name implies, this is a catch-all category for
software not falling into any of the above categories.

g. Configuration Item Naming Responsibility

The assignment of file names should be delegated to the lowest

management level practicable; ideally, to individual developers. However, given there is

often a need for more stringent procedures, the following procedure is suggested.

The responsibility for naming software configuration items is generally

broken down by software category. The categories which are used in the following

example are those adopted for use in the MK 92 MAES development effort. The need for

47

standardization cannot be over emphasized. A lack of discipline in naming the various

configuration items would lead to a breakdown of the CM process (Buckley, 1993).

Naming conventions for category 1 (Cat1) software are typically

established by a project office configuration management instruction or policy. This policy

should be formalized and in writing. The reasoning behind this is the need for consistency

throughout the project development team. The instruction would generally only specifY

the identification scheme and the first part of the name. The originators would complete

the name in accordance with the established identification scheme. (Buckley, 1993)

For vendor provided product development software, the vendor's naming

convention (e.g., ADEPT 2.2) should be adopted. Typically this will be the vendor's

product name, followed by the version number.

Category 3 (CAT 3) software, likewise, uses the vendor's naming

convention.

Category 4 (CAT 4) software names are generated by the originator of the

software following the established procedures of the project team. The degree to which

this software will be brought under CM will depend upon its intended use.

Category 5 (CAT 5) software, as was the case with CAT 4, shall have

names generated by the originator. Unless this software is likely to become involved in

some way with software production it will not generally be brought under configuration

control.

The approach used in naming conventions is largely determined by the

degree to which control is desired. The greater the control required, the more formal the

naming conventions will be. To minimize overhead, a tradeoff between standardization

and an increased burden on the programmers should be considered when drafting CM

policy.

h. Configuration Identification of Storage Media

The term storage media includes such technology as CD ROM, floppy

disks, hard disk drives, magnetic tape, and optical storage media. Storage media is

48

generally classified as fixed or removable. Though one might have a requirement to keep

CM control over fixed electronic media such as disk drives, this thesis is concerned with

removable storage devices. Fixed media is usually controlled as hardware and therefore is

not examined (Buckley, 1993).

All moveable electronic media should have a label attached as practicable.

An electronic media label should include the following information: (Buckley, 1993)

• name of the contents (system ID, computer program abbreviation, and the
computer program ID number)

• date prepared

• name, telephone number, mailstop, organization of preparer of the item

• number of the version description document (VDD) that specifies the media's
contents

By affixing a label containing this information, both the user and the

developer have a starting point when attempting to identify a fault.

i Version Description Document

When software is stored on electronic media in a format for shipment or

archival, it should be accompanied by a document containing a detailed identification of

the software. This document, in configuration management terminology, is known as a

version description document (VDD). (Buckley, 1993)

The purpose of a VDD is to document the contents of all removable media

with the exception of vendor provided software, and backup tapes (Buckley, 1993). The

master and all copies of all media falling under CM should have an accompanying VDD.

VDDs serve as description sheets of the storage media. The following is a list of the

typical contents found in a VDD (Buckley, 1993).

• The scope of the VDD: What version does it cover of what program?

• The location of master copies

• Method of preparation: What compiler was used? What was the operating
system? Was a particular version of a build program such as Make or Installit
used?

49

• List of included files

• Changes installed: Include a description of the changes made since release of
the previous version

• Interface compatibility: State whether or not other programs are affected by this
version.

• Reference documents: List the applicable specification document to which this
version can be traced.

• Installation instructions: self explanatory

• Possible or known errors: self explanatory

• Signature of person creating this particular copy

j. Configuration Identification of Documentation

Documentation, like software, should be placed under configuration

management. Before this can happen, though, it needs to be identified. CI of

documentation involves the collection, cataloguing, and labeling of design documentation,

specifications, test plans, and associated paperwork. (Buckley, 1993)

Documents are identified using document identification numbers. In

addition to the title, this number represents a unique identifier for not only the type of

document, but also the specific version. Buckley recommends the use of a fixed identifier,

followed by a number which is initialized at one and incremented upon each revision. The

following is an example of such a numbering scheme.

MAES-REQ-OO 1

MAES represents the program name; REQ refers to the type of document,

and 001 is the version of the document.

This scheme will need to be tailored to the type of documentation, and the

degree of granularity one wishes to establish in the documentation identification process.

Chapter VI contains an example of a suggested method for identifying knowledge

documents associated with the MK 92 MAES project.

50

2. Establishing Baselines

Baselines are starting points. From these, all development work flows. In

configuration management, baselines are established to act as reference points for changes.

All changes are applied to a particular baseline, establishing traceability in the process.

The following are descriptions of the various baselines. (Buckley, 1993) (Bedack, 1992)

a. Functional Baseline

Functional baselines contain descriptions of the functional characteristics

of the system under construction. The included documentation establishes the technical

characteristics of what the system is supposed to do. The functional baseline is the first to

be established, usually resulting from contractual agreements between the customer and

developer. From it, all other baselines are derived. (Buckley, 1993)

b. Allocated Baseline

An allocated baseline can be thought of as a functional baseline broken

down into subsets. Allocated baselines describe a configuration item's functional and

interface characteristics apportioned from a higher level configuration item. Included in an

allocated baseline will be the interface requirements, design constraints, and required

demonstration to verify achievement of functional characteristics. (Buckley, 1993)

c. Developmental Configuration

The developmental configuration (DC), unlike the other baselines, is

unique to software development. It consists of the documentation and code which

describes the evolving configuration of the software under development. The DC is a

snapshot of the development at any particular point in time. (Buckley, 1993)

Buckley (1993) describes the developmental configuration as "an internal

baseline established to facilitate control of internal developmental activities." It is usually

established incrementally as each section of the software is reviewed and agreed upon.

The developmental design configuration is broken down into three principle categories.

(Buckley, 1993)

51

• top-level design documents

• detailed design documents

• code

d Product Baseline

The product baseline is the last baseline established in the development

process. It contains all documentation, code, and media required to ensure the software

can be reproduced and maintained. The code, media, software tools, and documentation

are formally encapsulated in the product configuration and presented to the customer upon

acceptance of the product. (Buckley, 1993)

3. Configuration Change Control

This subsection describes the task of configuration change control (CCC).

Configuration change control (CCC) is the process by which changes to software are

proposed, evaluated, and implemented in a formalized manner. In all to many projects,

changes are made indiscriminately, without consideration of the economic, schedule, or

other impacts the changes will have upon the system. By establishing a CM process which

includes change control, discipline is established in the software development environment.

(Buckley, 1993)

a. Configuration Change Control Activities

The Software Technology Support Center (STSC) has identified the

following functions as configuration change control activities (STSC, 1994):

• Define the change process

• Establish change control policies and procedures

• Maintain baselines

• Process changes

• Develop change documentation

• Control product release

52

Though this is an excellent summary of the overall CCC task, a more

rigorous look at the change process is necessary if the reader is to understand the rationale

behind the CM implementation recommendations made later in this thesis. For this reason,

the following change process, proposed by Buckley (1993) is presented.

Buckley (1993) identifies three primary tasks within the change process:

• Identify the problem

• Determine the appropriate course of action

• Implement the change

b. A Comment on the Configuration Change Control Process

The recurring theme throughout the CM process, and particularly true in

the case of configuration control, is scale. No two organizations are alike, and no two

projects within an organization are alike. Some large software development organizations

will have dedicated CM sections staffed with full time personnel whose efforts are directed

at the implementation of configuration management. However, CM responsibilities for

smaller organizations are often a collateral duties assigned to programmers and project

management. Therefore, one should keep in mind, it may be necessary to tailor the CM

process presented here, as well as the various documents and reviews, to the needs of the

reader's particular project.

c. Identify the Problem

Identification of the problem is the first task which must be undertaken for

the change process to be put in motion. This involves three functions. The first step is the

documentation of the problem, ideally at the time of occurrence, by the discoverer of the

problem. This is typically done on a problem report (PR) or software trouble report

(STR). How extensive the problem report should be is dependent upon project size and

desired level of detail. (Buckley, 1993)

Just as there are different problems, there will be different environments in

which a problem will occur. Taking this into account, it is important the PR be tailored to

the needs of the activity identifying the problem. For instance, the information one might

53

desire or expect from a verification and validation activity would be different from that of

a field activity actually using the software. This could require the development of several

variants of problem reports or a problem report which encompasses information pertinent

to several environments.

The focus of the problem report should be to answer the question, "What

happened?" For example what applications were being run? What were the symptoms?

What was the configuration of the hardware? What other software was running at the

time? At specifically what step did the problem occur?

The next task in identifying the problem is to review the problem report.

The number of reviews a report is subject to depends upon the size of the project. One

might wish to have a review for clarity of the problem, often referred to as an initial

review, before a more thorough review for substance. However, in a small project, there

may be insufficient resources for this to be practical. (Buckley, 1993)

Occasionally, what appears to a user to be a problem is not a problem at

all. It may be that the user misunderstands the application. If no problem is found, the

person who initiated the problem report should receive feedback with an explanation

appropriate to their level of technical expertise. The explanation given a programmer may

be far more complex than that provided to a user.

If the initial review determines the problem report has identified an actual

problem, a priority is given to the problem. Resources are then allocated to determine its

cause. Buckley (1993) recommends using due dates instead of priority ratings such as

high, medium, and low to establish the problem's level of urgency. He argues the use of a

nominal rating system invariably leads to inflation of a problem's priority, thereby

corrupting the process. (Buckley, 1993)

In addition to the use of dates, a process should be put in place to identify,

evaluate, and correct problems of a critical nature. For example, problem reports

identifying problems which have a potential to cause bodily harm or extensive damage to

property need to receive particularly close attention. The goal however, is to introduce a

54

process which accurately prioritizes all change requests, including emergency ones. The

eM process should not be discarded, just because an emergency change is required.

Instead, the problem should be flagged as being of high priority, and an appropriate due

date should be assigned.

The third and final step in identifying the problem is to determine its cause.

At this point, the allocated resources set aside during problem review are applied to the

identification of the cause of the failure. This could be done through attempts to recreate

the failure, code reviews, diagnostic tools, or other appropriate means.

At this point a word of caution is in order regarding the use of problem

reports. It must be kept in mind the information a problem report provides is based upon

the perceived symptoms of the person who noticed them. In other words, the report may

be inaccurate. (Buckley, 1993) Training personnel to properly and accurately fill out a

problem report is a challenge and must be undertaken.

d. Determine Appropriate Course of Action

Buckley (1993) recommends the following courses of action be taken

depending on the type of problem identified. If the problem results from software which

fails to meet its requirements and has a detrimental effect, then the problem should be

corrected so that it is in accordance with the specifications. (Buckley, 1993)

If software departs from the specified requirements but can be used as is

with no detrimental affect, then Buckley recommends initiating a request for waiver. A

decision can then be made as to the need for a change to future releases (Buckley, 1993)

If the software's specifications are to be changed and the customer's

approval is required, then a change proposal should be initiated. (Buckley, 1993)

If the specification is to be changed, either after customer approval or if

customer's approval is not necessary, then a specification change notice should be

initiated, and change to the specification should be made. (Buckley, 1993)

55

The decision on how to proceed is formally decided by a configuration

change board (CCB). This board, its purpose, and make up are discussed in a later

subsection of this chapter.

e. Implement the Change

Implementing the change to software ultimately falls upon the development

or maintenance team. This involves not only the physical recoding of the software, but

also the follow-on and regression testing, verification, and validation. Before a change can

be considered to be complete, it must be tested for correctness and compared to the

specifications to ensure the change has been implemented as intended. Although the

specifics of testing, verification, and validation are beyond the scope of this thesis, the

interested reader is referred to the thesis by Dills and Tutt (1994) for further discussion.

Figure 3-2 is an example of a generic software configuration change

process. (Berlack, 1992) (STSC, 1994)

f. Configuration Control Board

The fundamental purpose of a configuration control board (CCB) is to

provide a clearinghouse for all changes made to baselined configuration items. The size

and makeup of the configuration control board will be dependent upon the complexity of

the project, and the number of personnel available. The CCB should include those

personnel who are involved in the identification of the problem, if practical. It includes

those responsible for taking the corrective action; the personnel in the best position to

assess the impact of the problem; and the configuration manager. (Berlack, 1992)

The degree of formality is ultimately dependent, upon the type and scale of

the project in question. Some projects, such as those responsible for developing flight

critical software for the space shuttle, have extensive configuration control processes, with

several configuration control boards and strict, formalized procedures. This need not be

true of smaller projects. The goal is to develop a configuration control board which will

include the appropriate level of attention for the problem, in such a manner as to provide

controlled, rapid, and decisive feedback to the development process.

56

Software Change

Incorporate
Change.

Yes

Software
Enhancements

Analyze and

Problems

Assess Impact of It----..;
Change.

Evaluate
Engineering Change

Proposal.

No

Archive Change

VerifyChange. I-________ ~Supply Feedback to

Originator.

Figure 3-2. The Change Control Process.

57

The software configuration control board acts as a decision point. A

change proposal will come before the board for approval. At this point several things

could happen. First, the board could determine there is no change needed and fail to

approve the proposal. If this is the case, the proposal should be archived, the status of the

change should be closed, and feedback should go back to the initiator of the change.

Another scenario is that the board may recognize the need for a change, but due to an

analysis of its impact, it may determine not to incorporate it until a later release. In this

instance, the status of the change should be left open or active. Feedback should be sent

to the initiators of the change informing them of its status.

The final alternative is to incorporate the change in the current

development effort. If this is the decision reached, the change proposal should be turned

over to development. As always, the initiator of the change should receive feedback.

Within each of these decisions are a couple of common threads. The first is

the need to provide feedback. Problems with implementation need to be identified. By

providing feedback to the person who initiated the problem report, he/she is encouraged

to continue pointing out potential discrepancies. Such communication supports the aim of

consistently striving to improve the software and thus producing a quality software

product.

The second common thread is the need to archive and track all potential

changes to software configuration items and their associated documentation. This strikes

at the very heart of CM. As Chapter V illustrates, there are tools in the marketplace that

address the challenge of change control and the CM process.

g. Change Control Authority

Just as there is a control over what changes are made, there is also a need

for control over who can authorize changes. This authority is referred to as change

control authority (CCA). This authority is typically organized and granted by baseline.

The following is a list of the baselines and who is usually granted change authority.

58

Again, as is the case throughout this thesis, CCA must be tailorable to a given project's

specific situation. (Buckley, 1993)

Functional. Usually, the customer's approval IS required to change the
functional baseline.

• Allocated. Changes to the allocated baseline are approved at the project
management level. Typically approval is granted by the project manager (PM).

• Developmental Configuration: Changes to the developmental configuration are
also approved by the project management, usually the PM.

• Product Baseline: Approval of changes to the product, or deliverable is a result
of negotiation between the customer and developing organization. The
approach to product baseline approval outlined here is geared toward software
projects (such as those in DOD) in which a development organization is under
contract to produce software for a customer. The approval authority for
decisions to create a product baseline and make subsequent changes to it must
be established in the contract. This policy would not apply to a private company
such as Microsoft and their decision to release a product. A software vendor
making products for general distribution (Le., Microsoft Windows, or Borland
C++) grants approval for changes independent of customer involvement.

h. Configuration Change Control of Specific Software Categories

The configuration change control of software varies for each category of

software. The degree of control placed upon software that is in a developer's working

directory is likely to be much less than that of product software. Therefore, it is necessary

to discuss some of the common practices when establishing CCC over a particular

configuration item.

The degree to which CCC is applied to CAT 1, product software, will

depend upon the stage of development the concerned software is in. Early in its life cycle,

before the software is made available for other programmers to work with, very little

change control is required. It is not until a particular software item is tested and/or used in

conjunction with other items that configuration control becomes more stringent.

When a software item is first developed, changes, and consequently change

control, are the responsibility of the programmer. Once a module, file, or other item is

completed to the point it is successfully compiled, presented for testing, andlor included

59

with other items for other developers to use, configuration change control need to be

initiated. A litmus test to determine whether an item should come under CCC is to ask the

following questions:

• Is there any possibility of another developer other than the originator gaining
access to this work, even though it is "in progress"?

• Will this work be included with other items for testing?

• Will this item be included in a library or directory where the potential exists for
others to use it? (Buckley, 1993)

If the answer to all of these questions is "no," then there is no need to place

the software under CCe. Instead, it should be considered work-in-progress.

Once software is moved to an area in which others may access it, or

introduced for testing, configuration control responsibility must move to a higher level.

Why? Consider the possibility of a programmer who, after introducing code for testing,

continues to make unrestricted changes. Other programmers download the version

introduced and use it to develop their code. If control was still in the hands of the

originator of the code, other developers might discover, as changes are made, code which

once functioned properly, no longer does. To avoid this, it is important for the developer

to pass configuration change control to the next level of management. (Buckley, 1993)

As product software passes succeeding levels of testing, verification, and

validation, its configuration change control becomes more tightly controlled. Ultimately,

as final acceptance trials are completed, change control authority will pass the product

into the change control process. (Buckley, 1993)

Vendor software, CAT 2 and CAT 3, presents more ofa challenge. Often,

a development organization is not in a contractual position to have any control over the

vendor's configuration management process. Ideally, the vendor has recognized the

benefits of CM and has instituted their own program. Unfortunately, as Capers Jones

(1994) points out, many have not.

So what role does configuration change control have in the CM of vendor

software? The degree of CM control ultimately depends upon the criticality of the

60

software under development. If the product software is mission critical whose failure

would result in loss oflife or substantial property damage, then several options exist:

• Establish a requirement for vendors to implement CM programs if their
software is to be used in conjunction with the product software. This is what
NASA has done with space shuttle software.

• Contact the Vendor and explore the possibility of taking those modules of the
vendor software which are critical to the operation of product software and
placing them under the development team's CM program. Due to licensing,
trade secrets, and copyright restrictions, this may not be feasible. However,
language could be included in the agreement that would permit such a process
while ensuring the sanctity of the vendor's intellectual property.

• Control changes to vendor software at the version or release level. In this
method, the decision to change to a later version of a vendor's product already
under configuration change control would be made by the CCB. After an
assessment of the new version's impact, the decision would be made as to
whether or not to include it in the project's configuration library. This may be
the most economical approach for most software development projects.

Why are we concerned with placing vendor software under configuration

change control? In most cases, as changes to vendor software occur, the backward

compatibility with earlier versions is unaffected. However, this is not always true.

Therefore, to prevent compatibility problems between code developed under previous

versions and those developed using the current version, it is necessary to place the

development software under CCC.

Another concern is the situation in which a project team is using

development software from multiple vendors. As changes are made to one vendor's

product, updates to another vendor's software may not be made for some time, if at all.

The potential exists for two software tools which were at one time compatible to become

incompatible. Configuration change control of vendor software enables the development

team to identifY potential problems before damage can be done to the project. (Buckley,

1993)

The degree to which configuration change control is exercised over CAT 4,

test software, will depend upon its intended use. If the software is a one-time-only test

61

program which will be discarded upon completion of its use, then it should be controlled

as a software item that will receive no changes. The advantage to this control method, is

that the documentation, and formal process for implementing and tracking changes need

not be maintained. (Buckley, 1993)

If however, the test software is to be modified or retained for future tests

as a reusable software tool, then it needs to be tracked with the same degree of integrity as

the software it is testing. (Buckley, 1993)

Cat 5 software will typically not be brought under CM, and therefore is

not normally subject to change control. (Buckley, 1993)

i. Configuration Control Documents

In addition to the procedures outlining the CCC process, there are several

documents associated with change control. These include the software trouble report

(STR), known generically as a problem report; the change request (CR); the engineering

change proposal (ECP); and the request for waiver. Each has a key function in the CCC

task.

The STR documents a perceived problem for its subsequent review and

corrective action. This document frequently initiates the CCC process at such times as

when a user's application crashes.

Change Requests are sometimes used in lieu of STRs or problem reports.

In some organizations, change requests are specifically geared toward enhancements or

changes which are not related to what the customer perceives as incorrect operation of the

product. (Buckley, 1993)

Engineering Change Proposals are a product of the identification and

review process. Once a problem has been identified, it is sent to the change control board

(CCB) for approval. The ECP is a recommendation to the board which includes a

summary of the impact a change will have on the product, if known, and a recommended

course of action.

62

Requests for waiver are sometimes submitted in instances where a software

product does not function in accordance with specifications, but the discrepancy is not one

which would be detrimental if left unchanged. Waivers should only be granted on a

temporary basis, and an analysis should be undertaken to ascertain when a change

correcting the discrepancy can be corrected.

The degree to which a particular project adopts these documents will

largely depend upon the extent to which the change process is formalized and the degree

of automation. For those documents adopted by a development team, a process should be

initiated which tracks the status of changes and problems reported by these documents.

Problem tracking software and document management software are useful in

accomplishing this. Where automated methods of tracking the progress of problems and

changes, a manual method, such as loose leaf binder or log book may be necessary.

j. Configuration Control Concerns

Buckley (1993) points out the danger of the configuration control process

evolving into a bureaucratic process that exists for its own self survival. This is a very real

threat that encompasses as many project management issues as organizational behavior

topics. There is a need to control the change process, but one does not wish to stifle

creativity or flexibility.

The goal is to establish CM as a part of a greater emphasis on quality. By

focusing on various aspects of the organization (such as employee training) in addition to

those concerned with procedures, the threat of creating a bureaucracy of the change

process is somewhat diminished. CM will become one aspect of a larger approach to

achieving product quality.

There is also a perceived danger of configuration control slowing down the

process. When a layer of overhead is added, it could potentially bog down the process.

However, before one dismisses configuration change control in the name of streamlining,

consider the consequences of not having configuration control. Developers could be

working with a great deal of uncertainty. Changes could be made with no consideration of

63

the economic impact of their implementation or their effect on the development schedule.

The result would likely be a rise in development costs and a project which falls behind

schedule.

What would happen if an ad hoc decision was made not to make a

proposed change? The failure to apply the necessary analysis to evaluate problem's impact

could result in a decision which could lead to fault ridden software with the potential to

damage equipment, information, or at the very least, reputations. Decisions not to make

changes, just as decisions to proceed with proposed changes, must be based upon a

thorough evaluation of the alternatives. They cannot be made indiscriminately by

overworked programmers or project managers concerned about schedule delays. When

one considers the alternative to configuration control from a systems approach, the idea of

a configuration control process no longer seems like such a bad idea.

1. The Need/or Automation in Configuration Change Control

If we are to develop a successful configuration control process, it needs to

be as simple and seamless as possible. One cannot reasonably expect software developers

to follow the rules of a bulky, complex configuration control system. Therefore it is

desirable to automate as much of the configuration control reporting system as

technologically feasible. Technology exists to ease the impact CCC has upon the every

day programming environment. Chapter V provides a more in depth look at how CM

tools can assist the configuration manager in establishing and maintaining a CM process.

4. Configuration Status Accounting

a. Overview 0/ Configuration Status Accounting

Configuration status accounting (CSA) is the reporting and recording of

the information needed to manage the functional and physical characteristics of

configuration items. These reports include a listing of approved documents that describes

the physical and functional characteristics of the product software; the status of proposed

64

changes, deviations, and waivers to those characteristics; and the implementation status of

approved changes. (Buckley, 1993)

Configuration status accounting refers to the record keeping activities

intrinsic to the previously discussed CM tasks. It also has come to refer to the method of

storing the information associated with the software's configuration. This information

must be stored in a format that ensures traceability from specification to code. (Berlack,

1992)

CSA serves as an important project decision making tool. Using queries

and reports generated through the project's status accounting activity, a manager can

determine the progress (or lack of) a development team is making relative to a set time

schedule, functionality requirements, or other yardstick. (Berlack, 1992)

Another role for status accounting is in software maintenance.

Maintenance begins with the first change and continues for the lifetime of the software.

As changes, enhancements, and corrections are made, a history is developed. Frequently,

developers have a need to refer to this history to determine the design rationale for code

they encounter. Previous changes and problems provide clues for troubleshooters.

Unfortunately, all to often, the required information is either nonexistent or poorly

captured. Configuration status accounting's aim is to minimize this problem. (Berlack,

1992)

Finally, the history files created by the status accounting task can be used

to improve the software development process. By analyzing the changes made, time to

complete the changes, as well as other information provided through the CSA process,

insight is gained into the maturity of the project team's development methodology.

(Berlack, 1992)

h. The Configuration Status Accounting Process

There are two major components of the CSA process: identification of the

reporting requirements and the actual recording of the information itself

65

Identification of reporting requirements can be accomplished through the

examination of two sources. The first is the agreement or contract between the customer

and developer. The second is the developing organization's regulations and policies.

Agreements between the developer and customer often include minimum

reporting requirements. These reports keep the customer informed of the status of

changes, enhancements, and corrections, as well as resources being applied to various

aspects of the project. Where applicable, they should be included in the CSA structure.

In addition to those reports required by the customer, there may be

reporting requirements mandated by the developing organization's internal policies.

Management controls and process improvement efforts require information. Although not

the only source of information, reports derived from CSA provide a useful management

tool.

The types of reports and queries a project's personnel require will vary

depending upon its complexity and maturity relative to the development life cycle. In

some projects, developers may employ configuration management metrics such as the rate

of changes. In others there may be little regard for such information. It is important here

to recognize that the CSA process adopted must take the organization's information

requirements into account. As with change control, tools exist which can help provide

such support.

5. Configuration Audits

Webster (1977) defines an audit as a "methodical examination and review." As the

definition implies, the configuration audit determines whether or not what was required

was actually built. Configuration audits apply not only to the code, but also to the

accompanying documentation.

a. Types of Configuration Management Audits

In terms of configuration management there are three types of audits; the

functional configuration audits (PCA), physical configuration audits (PCA), and in-process

66

audits (IPA). Each reviews a different aspect of configuration management. (Buckley,

1993)

h. Functional Configuration Audits

During the functional configuration audit (FCA) , the performance of a

configuration item is compared to its required performance as defined in the functional and

allocated baselines (Buckley, 1993). To do this, test output is compared for compliance

to the software's specifications. The FCA is for the benefit of both the customer and

developer. Therefore it should be conducted in the presence of representatives from both

the customer organization and the development team (Berlack, 1992). This technical

examination can be a difficult task and may require the auditing team to combine their

expertise to come to a consensus (Buckley, 1993).

The FCA is typically held at end of development cycle and after the

configuration items subject to audit have been tested. Buckley (1993) cautions against the

urge to evaluate the testing program itself . Auditors must bear in mind that the goal of

FCA is to test whether or not the configuration item's performance is in compliance with

stated requirements (Berlack, 1992).

c. Physical Configuration Audit

The physical configuration audit (PCA) is typically performed after the

functional configuration audit has been completed on all configuration items (Berlack,

1992). In a peA auditors attempt to determine whether or not the design documents,

product specifications, and associated documentation are representative of the software

that was developed. This is the last step before establishing the product baseline. In

instances where there is to be a transition of responsibility, the ownership of the software

shifts out of the hands of the developers to the customer. (Berlack, 1992)

d In-process Audits

The purpose of an in-process audit (IP A) is to evaluate the quality of the

configuration management process itself.(Buckley, 1993) Such things as traceability

67

testing, evaluation of change documentation, and adherence to eM policy are under the

scope of an IP A. These audits can be conducted by outside organizations such as the QA

organization, or preferably through self-auditing as the software engineering process

matures.

e. Conducting Configuration Audits

The first step in conducting a configuration audit is to schedule a time and

draft an agenda. The agenda is drafted by the auditors. However, the auditors should

request input from the project manager as to the schedule of various aspects of the audit.

By contacting the project manager in advance, the auditors are ensured adequate

resources will be available (Buckley, 1993). This also enables the software developers to

schedule not only the audit, but other activities in such a way as to minimize their impact

upon the schedule.

The next task occurs on the day of the audit. A brief should be conducted

with the organization being audited. The key personnel involved in the audit should at

this point introduce themselves and their role. This establishes points of contact to keep

the process flowing smoothly. (Buckley, 1993)

The third task is the audit itself The audit should follow the established

agenda closely, both in terms of schedule and scope. Disagreements should be mediated

where possible to minimize the establishment of an environment in which people attempt

to hide the truth. (Buckley, 1993)

Upon completion of all audit functions, there should be a brief review of

the auditor's findings. Any major discrepancies, as well as any particularly good aspects,

should be pointed out to the applicable personnel. A summary of the problem areas

should be provided to the project manager if possible, so that corrective action can be

taken as soon as practical. A more detailed compilation of the auditor's findings should be

delivered later in the form ofan audit report. (Buckley, 1993)

Audits, regardless of type, should focus on improvement. All to often,

audits are looked upon by developers as another way to be penalized for errors. If true

68

process improvement is to be gained from the eM audit task, then process improvement

needs to be the focus of the audits. Audits conducted as witch hunts will only result in

falsification of records and an "us versus them" attitude in the software engineering

organization; all of which is contrary to the process improvement goals of the software

engineering disciplines.

C. THE CONFIGURA nON MANAGEMENT LmRARY

The configuration management library serves as the central repository for all

configuration management items. Various versions of a software project under

development are stored in the library as well as all changes and associated documentation.

Its existence is fundamental to the establishment of a eM program.

The simplest eM library is a simple database which stores all relevant data

associated with a project. However, Berlack (1992) notes the trend toward eM libraries

which are made up of smaller libraries. These include working libraries, project support

library (PSL), master library, software repository, and backup libraries. The following is a

brief description of the libraries used in today's eM implementations.

a. Working Libraries

Working libraries (WL) are directories set aside for individual programmers

that are protected from access by other programmers (Berlack, 1992). The desire to place

control on the development process as early as practicable is the reason one establishes a

working library for a programmer's work-in-progress. Working libraries, although not

subject to rigorous configuration management, do promote eM by shielding the work of

one programmer from another. As barriers, WLs prevent the overwriting, deletion, or

duplication of untested software.

b. Project Support Libraries

When a programmer wants to work on a particular configuration item or

file, it is extracted from what is known as a project support library (PSL). When

69

completed, the item is returned to the PSL for testing or storage until needed at a later

time.

In addition to storing files which a programmer is not working on, the PSL

acts as a staging area for the integration of modules. By collecting files in the PSL for

integration and testing, the integrity of the master library is maintained. (Berlack, 1992)

c. Master Library

The master library is the storage area of all configuration items which have

been tested and placed under more stringent CCC than was established under the PSL.

Because the master library is the baseline library for the project, it is typically under

extremely tight access control. Such control is essential if software integrity is to be

maintained. (Berlack, 1992)

d Software Repository

The software repository can be considered to be an archive. Through the

establishment of a repository it is possible to reconstruct previous versions of any

configuration item under control. Software repositories are useful for troubleshooting and

production of a change history. (Berlack, 1992)

e. Backup Library

The backup library should contain copies of all libraries which are critical

to reconstructing a particular version (Berlack, 1992). The establishment and update of a

backup library is essential if an organization wants to ensure some capability of disaster

recovery.

1. The eM Library in Operation

Since the CM library is central to a successful configuration management program,

the reader must be familiar with its operation. For the purposes of this thesis, all

references to CM library principles shall be made with a CM library established 10

electronic media.

70

a. Check-in Check-out Concept

The check-inlcheck-out concept refers to the process by which

programmers fill their working libraries. In operation, programmers would check the files

on which they wished to work out of the program support library. When finished, the

developer would return the updated version to the PSL. This ensures the developer is

always working with the most recent version of the code under construction. (Buckley,

1992) (Berlack, 1992) Tomayko, 1990)

h. Migration

Migration is a term which describes the method of moving various items

through the various life cycles of a project in terms of the CM library. As items are

developed, they are checked out by test personnel who then return the item to the library

for more work or formal acceptance. As the item is shifted from the PSL to the master, or

other library established as part of the software development life cycle, it is migrated

(Softool, 1994a). Migration should be under strict access control, as the integrity of the

master library or other libraries could be jeopardized.

c. Change Regression

Change regression refers to a situation is which the changes made by one

programmer are overwritten by the work of another programmer. For example, two

programmers, A and B, each check out the same version of a configuration item, X, to

make some changes. Programmer A checks the item out before programmer B completes

the change and returns it to the library. Programmer B decides there is not enough time to

finish the needed changes. The unchanged version of X is uploaded by programmer B,

overwriting the changed version checked-in by programmer A. The end result is a

problem in which the changes implemented by A are signed off as complete; however, in

reality the actions of programmer B have erased any work accomplished by programmer

A. The problem of two people working on a file at the same time is often referred to as

71

the simultaneous update problem. (Softool, 1994a). (Tomayko, 1990) (BerIack, 1992)

(Buckley, 1993)

d Promotion

Promotion is a term that describes the action of incorporating software

items that have been tested into a final version for release (Softool, 1994a). Promotion

should have the highest access controls of any of the previous functions, as it has the

greatest impact on the software being delivered to the customer. Promoted items become

the new product baseline from which future changes are made.

e. The Single User Approach to Using a CM Library

Figure 3-3 (Buckley, 1993) is a diagram of the single user process.

Because only one user is drawing from and adding changes to the PSL many access

controls which would be incorporated in a multiple user environment are unnecessary.

Primarily, only migration and promotion access controls are mandatory, though check-in

check-out is still desired to maintain a change history. (Buckley, 1993)

J. The Parallel Development Approach to Using a CM Library

The parallel development environment is where one encounters the

simultaneous update problem. Because of the dangers to software integrity, more

restrictions need to be put in place for a parallel development CM library. In addition to

migration and promotion access restrictions, check-in check-out becomes mandatory in

order to know who made what changes.

To ensure each developer is using the latest version of an item, a lock out

feature is incorporated in the CM library. A lock out feature, as the name implies,

prevents a configuration item from being worked upon simultaneously by two or more

programmers. This aids in preventing change regression. However, unless there is

adequate communication, testing personnel may not know whether or not the version they

are extracting from the PSL has incorporated all outstanding changes. Configuration

72

change control and status accounting, if properly implemented, will be able to resolve this

dilemma by identifying the status of all changes.

D. CONFIGURATION MANAGEMENT KEY PERSONNEL

It will become apparent that virtually all people associated with the project are in

some way responsible for some aspect of CM. In short, CM can only be successful with

the participation of everyone involved with the implementation of a software product.

-.
Programmer

rcccivcs authorization to
make a change

L(J Latest version from "\ 1\ developmental COnfiguration)

Programmer
checks-out source

file from hbmy.

Programmer Makes
Change

(
Updated version

~ to dcvclopmental I
configuration

Programmer
checks-in revised

file to Jibnuy.

Change approval
process.

Figure 3-3. Example of a single user process for working with a CM library from
Buckley (1993) ..

73

1. The Customer

The customer's role in CM cannot be overstated. Whether one discusses their role

in establishing requirements, participation in the auditing process or feedback regarding

desired changes and problems, the involvement of the customer is crucial. As stated

earlier, CM does not end with development. It is a key ingredient to maintaining software,

long term, in a cost effective manner. If the customer is going to take on the responsibility

of maintenance, they must be an integral part of the CM process. They may wish to

transfer the developer's CM process into their own management process.

2. Configuration Manager

The configuration manager is responsible for the proper operation of all aspects of

the CM program. Typically this person answers directly to the project manager on all

issues related to CM. As the keystone of the CM process, the CM manager must be

intimately familiar with all aspects of configuration management, as well as emerging

trends in CM implementation. A more thorough treatment of the responsibilities of a

configuration manager can be found in Chapter VI.

3. Configuration Management Library Administrator

The CM library administrator (CLA) is responsible for the maintenance of all

facets of the various configuration libraries. A CM program revolves around its CM

library. For this reason the CLA's role is as important, as that of the configuration

manager to a successful CM process. A more detailed review of the duties and

responsibilities of a CLA can be found in Chapter VI.

4. Individual Developers

The bulk of the responsibility for a successful CM program falls upon the

shoulders of the developers. On a daily basis, they are the ones implementing CM policy.

Developers write many of the SIRs and provide feedback as to the adequacy of CM tools

and processes. Their adoption of the CM philosophy is critical; otherwise change

74

documentation will exist, but not be thorough. If developers are not supporters of CM,

procedures will be circumvented until the result is a CM process in name only.

5. Project Management

The only way configuration management will become an integral component to the

SDLC is if continuous management support is obtained. At the outset, CM requires

resources such as software, training, and personnel. Those in control of those resources

must be behind the concept of CM to assure success.

As the CM process matures, management's involvement will promote the

improvement of the process, as well as ensure developers are adhering to established

policy.

6. Configuration Control Board

The role of the configuration control board in controlling changes to software has

been previously discussed. In addition to their duties associated with the mechanics of

CM, the CCB also has a responsibility to provide quality assurance to the CM process.

The CCB is the point where change requests, impact analysis, and other aspects of project

management collide. It is their responsibility to ensure changes supposedly already made,

aren't reappearing, and that the quality of the documentation and impact analysis is

maintained. The CCB is in the position to see problems before they develop. As

important as their role in change control is, their role in process management is equally

important.

E. THE CONFIGURA nON MANAGEMENT PLAN

1. What is a Configuration Management Plan?

A software configuration management plan is a document that sets forth guidance

for the identification of configuration items, controlling and implementing changes,

identifying reporting procedures, and establishing auditing responsibilities (IEEE, 1983).

A CM plan is a blueprint for establishing a successful configuration management

program. It establishes, in Buckley's (1993) words, "a common method of doing

75

business." In addition, he recommends a separate CM plan for each software project an

organization undertakes. When one considers the different requirements, customers, and

types of projects, this advice is well taken.

The purpose of this section is to highlight some of the key aspects of a CM plan.

Chapter VI presents some recommended procedures for implementing various

components of configuration management for the MK92 MAES.

2. Developing CM Plans

Bounds and Dart (1993) identify the configuration plan as one of three key

components to what they call a successful configuration management solution. The other

key facets are the CM tool selected and the adoption strategy. (Bounds & Dart, 1993). A

discussion of CM tools can be found in chapter V. An initial recommendation for an

adoption strategy for the MK 92 MAES project is presented in Chapter VI.

The development of a CM plan is no small undertaking. The goal in designing

and developing a CM plan is to describe and document the configuration management

policies of a product as early as possible in its life cycle (Berlack, 1992). The framework

of the plan itself may be written in a short period; however, writing the procedures and

policies which will implement the plan is significantly more difficult (Bounds & Dart,

1993). Furthermore, the CM plan, like the software process it supports will evolve. This

requires a periodic review of the CM plan to ensure it stilI fits the development effort's

needs.

3. Guidance on Configuration Management Plans

Configuration management plan guidance may be found from several sources:

• CM plan standards

• CM plan templates found in some CM tools

• CM plans from established CM programs

Bounds and Dart (1993) conducted a survey of personnel involved in configuration

management, one portion of which was devoted to the applicability of NASA, IEEE, and

76

DOD configuration management plan standards to real world projects. Each was

compared on six traits:

• ease of use

• completeness

• tailorability

• consistency

• correctness

• life cycle connection

Each trait could be assigned a score from zero to three with three identifying a

standard which "satisfies requirements for excellent standard." (Bounds & Dart, 1993).

The IEEE standard received a score of three in every category save completeness, where

it received a two, and life cycle connection, where it received a one. Neither the NASA

nor the DOD standards came close. Each had only one three, both in the trait of

completeness, and they likewise received ones for life cycle connection. In summary, the

IEEE standard was overwhelmingly preferred over the NASA and DOD standards.

Therefore, the CM plan outline provided in the IEEE standard shall be the example from

which the :MK92 MAES CM plan is derived. For further reading, Appendix A lists

standards and guidance which are applicable to CM and the development of CM plans.

Configuration management tools are beginning to come with CM plan templates

that can be customized to fit the needs of individual organizations (Bounds & Dart, 1993).

Before selecting a CM tool for its template, one needs to look at the value of all the tool's

features to the project. A good template may lead to a great looking CM plan, however, a

poor tool will kill the program the plan was attempting to implement.

As for the use of CM plans, Berlack (1992) warns against the blind copying of an

existing organization's plan. Their process may be outdated, or inadequate for the needs

of the prospective CM plan author's organization. However, he further adds, if the plan

appears to be well suited to your organization, change it to fit, and use it.

77

4. The Components of a CM Plan

This subsection presents a summary of the primary features of a CM plan. A

configuration management plan is typically divided into three sections.

The first section is typically one which provides an overview of the CM plan. The

specific purpose of the plan is outlined. Additionally, this section identifies those items,

organizations, activities, and life cycle phases which fall under the CM plan guidance.

Section two of a CM plan establishes the management of the CM program. The

functional organization is established as well as the responsibilities of personnel and

agencies falling under its scope. Implementation issues, applicable policies and regulations,

and interfaces between components are also specified.

The third section deals with the CM tasks in greater detail. The items which are to

be baselined are established, as well as the change control process. Both internal and

external reporting requirements are established for configuration status accounting.

Additionally, auditing items are identified and a process stipulated for configuration

auditing.

Additional sections could include guidance on the use of particular CM tools,

procedures for the CM of vendors and subcontractors, as well as records collection and

retention. As an individual CM plan should be established for each project, the contents

will vary from plan to plan. The goal is to establish a process which is manageable for a

given scale of project, while retaining flexibility for growth as needs dictate.

5. Summary of Configuration Management

Configuration management plays a key role in the software improvement process.

It controls and tracks changes, provides version control, and serves as a management tool.

Through the tasks of CM, identification, change control, status accounting, and auditing,

an organization can implement a product integrity supporting process that is repeatable.

This not only will reduce costs, but will also improve productivity and time to market; all

goals of not only the private sector, but also DOD.

78

IV. ISSUES IN CONFIGURATION MANAGEMENT OF EXPERT SYSTEMS

This chapter addresses the issues related to the application of configuration

management to the development of expert systems. The chapter begins by exploring

general issues surrounding expert systems. This is followed by proposing a novel

approach to the application of CM to an expert system's knowledge base. Finally, the

chapter concludes by examining the issues affecting the CM of expert system

implementation.

A. GENERAL CM ISSUES OF EXPERT SYSTEMS

The move of expert systems from the realm of academia to mainstream applications

in business, engineering, and DOD presents along with the potential benefits, reason for

concern. McCaffrey (1992) points out,

While hundreds of expert systems have been fielded, almost all have
been designed and developed without serious thought being given to their
long-term maintainability.

A vast majority of literature regarding expert system development centers on the

technical aspects of knowledge acquisition, representation, and implementation. Even

fundamental works on the subject of expert systems such as Prerau (1990) and Walters

and Nielsen (1988) devote only a couple of pages to the concept of expert system

maintenance. While these works recognize the need to address maintenance issues, they

offer little guidance on the effective application of maintenance principles. Configuration

management, a discipline which establishes control over the change process, has largely

been ignored.

"In order to effectively maintain an expert system," Bielawski and Lewand (1988)

state, "the developer must establish detailed criteria for modification of the system."

Although this is generally true of any software, it is particularly so for expert systems. In

addition to the need for configuration item identification, version control, and change

control of the software, consideration must also be given to maintaining the knowledge

79

base. The frequency with which the knowledge base changes, and the difficulty of

assessing the impact of such changes further complicates the maintenance of expert

systems.

The following is a list of challenges that are particular to applying CM to an expert

system development effort.

1. Lack of Detailed Specifications

A lack of well defined specifications is one problem complicating the application of

configuration management to expert systems. Traditional programming development

cycles include the establishment of detailed specifications to which all further

development is traced. This is not the case with expert systems (Sacerdoti, 1991) (prerau,

1990). As Prerau (1990) emphasizes, the domain expert's knowledge serves as a

surrogate for the specification of the expert system under development. Therefore, the

specification and implementation evolve simultaneously. The nature of an expert's system

development process makes traceability and the entire CM process more difficult.

2. Difficulty in Identifying Baselines

Chapter III identified the configuration management baselines used in traditional

software CM. Although similar to traditional software, the lack of functional

specifications prohibits the establishment of a detailed functional baseline at the outset of

an expert system development effort. When applying CM to traditional software

development efforts, the allocated baselines, developmental configuration, and product

baseline all evolve from the functional baseline. Lacking functional specifications, a

different approach to baselining is necessary.

a. The Functional Baseline

Although similar to traditional software implementations, the functional

baseline of an expert system will not be as well developed as that of a traditional program.

Initially, only documents describing the desired expert system's capability in broad terms

may comprise the functional baseline of the expert system. As knowledge is added and the

80

expert system is developed, the functional baseline will evolve. It is not until the product

baseline for the expert system is first established that its functional baseline is completed.

(prerau, 1990)

To establish a baseline for configuration management purposes at the

project's outset, documentation which describes the general functionality of the expert

system should be considered to serve as a functional baseline. This could include, clauses

in the contract, a statement of work, concept documents, or other documents describing

the final product.

h. The Allocated Baseline

The existence of an allocated baseline will depend upon the existence of

documents which detail any interfaces or other subset of the functional baseline. If

interface description documents exist, then allocated baselines may exist for the

knowledge and interface requirements. If no such interface requirements are stipulated,

the creation of an allocated baseline would be unnecessary.

c. The Developmental Configuration

This is the documentation and knowledge which represents the expert

system as work in progress. Since the knowledge is evolving throughout the expert

system's development, a snapshot of the developmental configuration's knowledge will

define the current functionality of the expert system.

d The Product Baseline

As with traditional software, the product configuration includes all code

and documentation which allows for the production of the expert system. However, in

addition to the code and related documentation, the product configuration includes the

approved representation of the knowledge base. This knowledge defines the functionality

of the expert system, and therefore is used as the functional specifications for the

functional baseline.

81

3. CM Challenge Posed by Proto typing

The lack of detailed specifications before implementation precludes the use of the

traditional top down approaches to software development (prerau, 1990) (Sacerdoti,

1991). Instead, expert system developers tend to use an incremental, or prototyping

approach to their implementation. Unfortunately, maintainability is not of particular

concern to expert system developers as they attempt to implement an example of the

desired functionality in the form of an initial prototype (prerau, 1990).

While prototypes of traditional applications are often discarded, the prototyping of

expert systems is often different. Even though it is only a prototype, the software,

through the natural progression of the expert system development cycle, must be mapped

from knowledge which has already been elicited from the expert. Though this knowledge

might be discarded as well, it will more likely evolve into the product's knowledge base.

Likewise, the product itself, will evolve rather than be re-implemented, particularly

if an expert system shell was used to create the prototype (prerau, 1990). Unfortunately,

the need for configuration management is often not realized until a problem calls for its

use. Implementing a eM process in a pre-existing project is far more difficult than

planning the eM process from the outset (Buckley, 1993) (Berlack, 1990).

Prototyping implies the rapid creation of versions for evaluation. It is possible

many versions of an expert system could be in circulation at anyone time. This

complicates the eM process due to a need for version control utilities earlier in the

development process than in traditional programming life cycles. It is imperative that a

process be established which enables maintainers to track and recreate earlier versions of

the expert system.

An incremental development process also tends to be subject to tinkering;

constantly modifying various components of the program. The danger in this approach is

the possibility of changing software without any management of the process. In such an

instance, resources are being applied piecemeal with little value-added to the product.

82

The ease with which changes can be made in today's expert system shells is yet another

challenge to configuration management.

Rapid prototyping need not be uncontrolled prototyping. The eM process does

not have to restrict creativity or the development cycle. In fact, as Kolkhorst (1994)

points out, the CM process can be prototyped right alongside the expert system. This

allows for the establishment of a flexible, evolutionary eM process that can grow to meet

the needs of the organization.

4. Frequency and Sources of Change

Hicks (1990) argues expert systems are among the most difficult software to

maintain because:

In addition to the problems expected with large systems, the
knowledge maintained is normally more dynamic than traditional data
processing applications, is not common or well documented, may be
distributed, and must be acquired and tested incrementally.

In addition to the high rate of change common to expert system development, the

existence of several sources of change poses additional challenges. The coordination and

collection of changes from various sources must be an integral part of any expert system

CM process. For example, in the case of the MK 92 MAES project, inputs from the

fleet, NSWC engineers, ORDAL Ts, as well as changes made by manufacturers of the fire

control system must all be accounted for and implemented. Additionally, the CM process

designed for the MK 92 MAES must incorporate changes made to technical manuals, and

Planned Maintenance System (PMS) procedures.

5. Expert System Development Environment

The expert system development environment can also add difficulty to the

implementation of CM. Programmers could be geographically distributed and so is the

knowledge required for developing the system. The communication problems created by

this situation complicates the eM of the knowledge base and the implementation of the

83

expert system. The CM of the knowledge base and implementation of the expert system

will be elaborated upon in a later section.

Consider the case of the MK92 MAES project. As noted in chapter II, the MK92

MAES represents a cooperation between NSWC, Port Hueneme and the Naval

Postgraduate School. Domain experts and technical representatives are provided by

NSWC PHD. Implementation personnel are made up of faculty and graduate students

from NPS. The physical distance between NSWC-PHD and NPS and the work

environment of both organizations make communication difficult. Furthermore, the

academic environment of NPS limits the opportunity for face-to-face visits between

graduate students, who have classes to attend in addition to their participation in the

project, and domain experts, who are working on resolving problems for the fleet.

Additionally, due to the inherently autonomous nature of an academic

environment, each student works on his/her own particular aspect of the project as part of

his Master's Thesis. Different students work on different modules, to accomplish different

tasks. Each needs to coordinate his efforts with fellow students.

The turnover rate of project team members also highlights the need for

configuration management. As programmers transfer to other assignments, they take with

them the corporate knowledge they have acquired while working as part of the

development team. For instance, the MK92 MAES project experiences a high turnover

rate of the student developers. Rarely, if ever, is a student involved with the project for

longer than 12-15 months. While not affecting the strategic focus provided by the faculty,

the loss of corporate knowledge at the implementation level has underscored the need for

an effective CM process.

The work environment of the development team, coupled with the rate at which

student programmers transfer necessitates a seamless, easy to understand CM program.

84

B. CONFIGURA TION MANAGEMENT OF THE KNOWLEDGE BASE

While eM is applied to expert system development much in the same way as it

would be applied to any prototyping activity, the main difference between the eM of an

expert system development and that of a traditional program lies in the application of eM
to an expert system's knowledge base.

Although eM is applied to the expert system implementation, a eM process that

parallels that of the expert system's process should be established for domain knowledge.

This ensures the integrity of the knowledge is maintained independent of the method of its

implementation. A poor implementation of accurate knowledge can be reworked;

however, if the knowledge has poor integrity, there is no way to establish the expert

system's accuracy. By applying eM to expert knowledge, its reusability and portability is

enhanced.

This sub-section discusses in greater detail, the configuration management of an

expert system's knowledge base.

1. Characteristics of the Knowledge Base

Hicks (1990) identifies three factors which impinge upon the maintenance of

knowledge; volatility, expanding functional scope, and system size/complexity. Since

maintenance is the implementation of changes to the expert system, these factors influence

the need for eM of the knowledge base.

a. Volatility

Volatility refers to the frequency of changes to the knowledge base. Hicks

(1990) considers this to be the" single largest factor in maintenance." Some expert systems

contain a knowledge base which has thousands of changes each year. In one example,

Hicks (1990) describes an expert system in which half the code is rewritten each year. In

another, changes would only be made if a change was made to the organization's

infrastructure.

85

The more volatile the changes experienced by an expert system, the greater

the maintenance burden. A highly volatile knowledge base requires a highly responsive

process for identifying, controlling and implementing changes.

h. Expanding Functional Scope

Expanding functional scope refers to the growth of the rule or knowledge

base in terms of functionality. As an expert system proves its value, there is a tendency to

increase its functional capabilities (Hicks, 1990). The addition of this functionality into a

pre-existing knowledge base presents a CM challenge. If the growth of the knowledge

base is not a controlled process, resources may be wasted, and maintainability could be

lost. A configuration management process needs to be implemented that will control what

enhancements are introduced, in what priority, and with what resources.

c. System Size/Complexity

The complexity and size of an expert system will also affect its

maintainability. "Large software programs are notorious for being difficult to maintain

and expand (Hick, 1990)." Furthermore, as the expert system's knowledge base grows,

the complexity of the relationships and dependencies could make the knowledge base

unmaintainable. A configuration management process, in conjunction with sound

development strategies, could ensure changes to a system are documented, and traceability

is maintained.

2. Distributed Knowledge

Knowledge required to develop an expert system could be obtained from several

sources that are physically distributed. The sources of knowledge can include technical

manuals, system documentation, domain experts, as well as other sources. To coordinate

the acquisition, representation, and implementation of such knowledge, it becomes

necessary to establish control over the process. Configuration management can provide

this support.

86

3. Knowledge Representation Scheme

Algorithms are generally easier to change and maintain than the heuristic

knowledge of expert systems. The relationship between various portions of an algorithm

are generally explicit, and can be easily tested before implementation. Likewise, the

expected outcome of a change is more easily predicted and can be compared to the actual

outcome of the implementation.

The relationships encapsulated in a knowledge representation scheme may not be

as obvious. As rule sets grow large, the complex inter-relationships of a knowledge base

can be difficult to maintain. This is compounded by the selection of a representation

scheme which does not depict a domain expert's knowledge in an intuitive and logical

manner. Easy to understand knowledge representation schemes enable maintainers to

quickly identify the causes of problems and assess the impact of proposed changes, and

therefore simplifies the CM process.

Ideally, a representation scheme will promote traceability from the implementation

to the domain expert's knowledge. The closer the match between the way the domain

expert approaches the problem and how the knowledge is represented and implemented,

the easier the task of managing changes will be.

4. Configuration Identification of Knowledge

To apply configuration management to a knowledge base, it is necessary to

establish what will be managed, or in other words it is important to define, what is a

configuration item. To accomplish this, one needs to identify how knowledge is captured,

and at what point it needs to be controlled.

As a rule of thumb, knowledge should be brought under configuration

management when there is a possibility it could be incorporated into the expert system's

knowledge base. The degree to which it is to be controlled may vary, but some level of

CM should be established.

As stated in Chapter IT, knowledge is traditionally elicited through interviews or

questionnaires. Using this method of knowledge acquisition, an expert's knowledge is

87

elicited by a member of the development team. Once captured, it should be placed under

CM.

As with traditional software, the degree to which a knowledge configuration item

is controlled is determined by its category. However, unlike the categorization of

software, knowledge categories may contain different formats. This includes audio taped

interviews, responses to questionnaires, drawings, technical manuals, etc.

The following is a recommendation for cataloguing domain knowledge.

a. Working knowledge

Working knowledge IS that knowledge which the domain expert is

developing as hislher input to the knowledge acquisition process, but has not been

provided to the development team. It receives the lowest level of CM, and is synonymous

to the contents of a programmer's working library. With working knowledge, the primary

concern is maintaining separation between that knowledge which the domain expert has

turned in to the development team for representation and that which is still

work-in-progress. This could be done by simply keeping the two types in separate file

folders, or if using an automated tool, separate sub-directories.

Working knowledge represents a classification which will generally not be

seen when using the interview process. The distinction is whether or not the knowledge

has been provided to the implementation team. For example, knowledge acquisition for

the MK92 MAES was accomplished using diagnostic trees drawn by the domain expert.

Until provided to the development team at NPS, there is no possibility of it being

incorporated into the expert system; therefore, very little CM is required. Generally all that

is necessary is the use of naming conventions, and minimal access control to prevent its

inadvertent inclusion in knowledge to be represented.

h. Captured Knowledge

Captured knowledge is knowledge that has been elicited by a project team

member, is in the development team's possession, and could potentially be incorporated in

the expert system. Though in a form which does not reflect the chosen representation

88

paradigm of the expert system, some measure of control should be in place because the

knowledge has come under the development team's control.

Some examples of captured knowledge include interview tapes, completed

questionnaires, drawings, technical manuals, and diagnostic trees. The reader should note

that diagnostic trees may fall under the category of represented knowledge. This is

particularly true if a procedural network representation paradigm is to be used for

implementation. The identifying feature of captured knowledge is that it has not been

represented using the selected expert system paradigm.

c. Represented Knowledge

Represented knowledge is that knowledge which has been captured and

represented using the chosen knowledge representation paradigm (e.g., frames, rules,

procedure networks, semantic networks, etc.) Represented knowledge is knowledge

which has not yet been selected to be incorporated in the expert system's knowledge base.

This may be due to the fact it is still undergoing testing or is outside the boundaries of the

expert system's domain. Because it is only a step away from implementation, it will be

subject to a higher degree of eM.

d. Product Knowledge

Product knowledge is that knowledge which has been identified for

incorporation into the expert system's knowledge base. It should be under the most

stringent level of knowledge base eM.

5. Baselining Knowledge

Similar to traditional software development, knowledge should be baselined. By

baselining and applying eM to the expert's knowledge independent of the expert system

software, the domain expert's knowledge is maintained separately from its implementation.

This ensures the knowledge can be re-implemented using a different expert system shell,

or represented using a different paradigm if necessary.

89

The knowledge contained in a particular knowledge baseline forms the knowledge

base of the corresponding baseline of the expert system. For example, the expert system's

product baseline should implement the same knowledge as is represented in the product

knowledge baseline. This allows for easier maintenance and traceability.

The author recommends the following baselines for domain expert knowledge:

a. Functional Knowledge Baseline

This contains the most recent product knowledge baseline. This baseline

represents the functionality of the expert system, and therefore is a key component in the

expert system's functional baseline.

b. Developmental Knowledge Configuration

This knowledge is the most current version of the domain expert's

knowledge. It is in this baseline that all changes are made to the domain knowledge. The

expert system's developmental configuration is traced to this baseline.

c. Product Knowledge Baseline

This baseline represents the domain expert's knowledge which has been

implemented in the current release of the expert system. Upon establishing a particular

product baseline for the expert system, the knowledge represented in the product

knowledge baseline is used to describe the functionality of the expert system. For this

reason it is used to establish the expert system's functional baseline.

6. Assessing the Impact of Changes to Knowledge

One of the primary difficulties in making changes to an expert systems knowledge

base is assessing the impact of proposed changes. Expert systems are typically developed

to reduce an organizations dependence upon domain experts. Often this is the result of a

decreasing a knowledge pool, or the anticipated loss of a particularly knowledgeable

expert (prerau, 1990) (Walters & Nielsen, 1988).

The development of an expert system suggests the capturing of knowledge an

expert has that cannot be obtained easily from algorithmic sources (Walters & Nielsen,

90

1988). The effect of proposed changes may not be immediately obvious to the

developer/maintainer, thereby complicating its impact assessment. For this reason, the

domain expert or other technically proficient personnel must be involved in the

configuration management process. Where it is relatively easy for the programmer to

determine how long it will take to implement a particular change, the potential "ripple

effect" of the change may not be known. This is true to a much larger extent in expert

systems than in traditional programs.

By definition, expert systems implement the heuristics in a domain expert's thought

processes to arrive at a solution in a constrained problem domain (prerau, 1990). Because

the expert system is a representation of the thought processes of the domain expert, it is

highly desirable to ensure they remain a key participant in the maintenance process. Since

this may not be possible, a detailed change control and configuration library are paramount

to ensure the integrity of the development process. By establishing CM, technical experts

in a particular problem domain are provided with a change history of the knowledge base

and can gain insight as to the thought process of the expert whose knowledge has been

captured. This may assist them in accomplishing maintenance functions more efficiently.

7. Controlling Changes to the Knowledge Base

As noted by Bielawski and Lewand, (1988) expert systems are rarely complete.

The knowledge base will always evolve, requiring a process which will control changes so

they are made in a logical and economical manner. This process in CM is configuration

change control.

a. What Influences the Change Control Process?

In addition to the volatility, functional scope, and complexity of the

knowledge base, other factors influence the change control process. The method of

knowledge acquisition will impact the frequency with which changes are made to the

knowledge base. A highly iterative process such as interviewing will result in more

frequent changes. A process in which the domain expert manipulates the knowledge as

91

working knowledge, refining it until he is satisfied before giving it to the development

team will reduce the number of changes developers must make.

h. When Should Changes Be Made to the Knowledge Base?

Bielawski and Lewand (1988) recommend four instances in which

maintenance should be performed on expert systems. Extending their recommendations to

the knowledge base, changes should be made when:

• bugs or inaccuracies found in the knowledge base impair the performance of the
expert system significantly

• new knowledge is necessary to update the expert system

• the thought process captured no longer is capable of solving the problem

• the knowledge must be changed to accommodate a new representation
paradigm

c. To What Knowledge Category Should Change Control Extend?

Change control could conceivably extend to every time a knowledge

engineer interviews a domain expert to capture knowledge. However, this would be

impractical. To reduce the overhead associated with configuration change control of the

knowledge base, it should only be extended to that knowledge which has been formatted

in the knowledge representation scheme chosen for the expert system implementation.

For example, if one were to conduct an interview using an audio tape,

some degree of control would need to be placed on the audio tape. Perhaps a control

which would be designed to prevent the accidental overwriting, loss, or erasure of the

knowledge elicited. However, once the knowledge from an interview has been

represented in a manner which will facilitate its coding, greater change control is

necessary. This is due to the fact, the representation scheme could inadvertently be

encoded without proper testing, verification, and validation of the knowledge.

Not every change to knowledge under the control of the development team

requires extensive change control. Only those which are represented for encoding in the

expert system need be controlled. As a general rule, CM should be applied to knowledge

92

when it is first considered to be a candidate for implementation and represented in the

selected paradigm.

Chapter II introduced the knowledge acquisition methodology used by the

MK92 MAES project team. The traditional knowledge acquisition process, is one in

which a domain expert's knowledge is elicited through interviews, documented, then

tested in an iterative manner. In this methodology, the expert represented his own

knowledge using diagnostic trees, thus eliminating the need for knowledge engineers. Just

as the programmer has a working directory for code "in progress," the domain expert

under this approach is given the same privilege. Where a domain expert's knowledge

acquired using traditional knowledge acquisition techniques would be brought under CM

when first documented. The knowledge acquisition technique of the MK92 MAES

project does not require the domain expert to do so until turned over to the development

team for coding.

This novel approach to knowledge acquisition represents a change

management challenge. The configuration management process must include the domain

expert. Because the domain expert may not be well versed in software engineering

disciplines, it is important to educate them as to the purpose and importance of

configuration management. Policies and procedures must take into account the need to

apply CM to the domain expert's role in the expert system development process.

C. CONFIGURATION MANAGEMENT OF EXPERT SYSTEM SOFTWARE

IMPLEMENTATION

The configuration management of expert system software is identical to that of

traditional software applications. Identification, change control, status accounting and

audits must all be undertaken in a manner which provides the degree of control necessary

for maintaining product integrity. However, the challenge of managing expert system

software extends from the technology inherent in many expert system shells.

Expert system development tools may not lend themselves easily to tracking

changes to the expert system. Designers of expert system shells focus their efforts on the

93

functionality associated with the knowledge representation and coding paradigm's they

have selected for their tool. Very little, if any, attention is given to facilities which would

aid in the application of sound software engineering practices to the expert system

development process. (prerau, 1990)

This situation applied to the expert system shell selected for use in development of

the MK92 MAES. As discussed in Chapter n, the expert system shell, Adept, is a visual

programming tool. Whereas some visual development tools such as Visual Basic, allow

software under development to be saved in a text format, Adept stores developed code in

a proprietary binary format. CM tools that generate detailed reports on text based files can

still be used for change control and version control, however their utility as a tool for

tracking revisions and identifying the differences between two binary files is limited. As a

result, the change control, status accounting and configuration auditing tasks of CM are

made more cumbersome. Instead of applying an automated CM tool to track changes to

Adept code, they must be accounted for using a manual approach.

Visual programming languages, such as Soft Sell's Adept, present new challenges

to CM. Pre-defined visual representations, such as the nodes and arcs in Adept, represent

code at a higher level of abstraction than third generation languages (3GLs) such as Ada,

or C. Therefore, if one wishes to apply CM to the entire coding scheme of a program,

CM must be applied not only to the visual representation generated by the developer of an

application, but also to the underlying code defining the functionality of the visual node or

object.

For example, Adept gives a developer the ability to build customized nodes

through the use of its script language, NodeTalk and to establish relationships between

these nodes trough connections called arcs. The need is apparent for the CM of

developer-generated custom nodes as well as the arcs between them. As changes are

made by the development team, one would want to control changes them through the CM

process.

94

This concept of applying CM extends to the pre-defined nodes provided by the

vendor. Consider the instance, where the vendor, through the evolution of their product

makes a change to the underlying code which is represented by a particular node. To the

user, the pre-defined node will not appear to have changed, even though the code

implementing the pre-defined node's functionality may have changed dramatically. When

integrated with existing modules, there is no way to be certain the redesigned node will

not interact negatively with those defined by the user. Unless this process is managed,

changes made by the vendor could seriously impact the development team's product.

(Kolkhorst, 1994)

The application of CM to pre-defined nodes, as noted in chapter III, need not be

done by the developer of the expert system. It will, in all likelihood be managed by the

vendor. The lengths to which the expert system project team should go to ensure CM is

being applied to the vendor defined nodes will depend largely on the "criticality" of the

expert system under construction. When possible, the developer should attempt to obtain

the code for altered pre-defined visual objects, in order to evaluate the impact of any

changes. (Kolkhorst, 1994)

95

96

v. CONFIGURATION MANAGEMENT TOOLS

The trend toward the establishment of Configuration Management (CM) as an

integral part of government software development projects and CM's increased use in the

corporate sector has created a demand for automated approaches in its implementation.

Where there was once only CM tools for mainframe based application development, today

there are CM development tools for Windows, UNIX and other platforms with greater

capabilities and compatibility than before.

The main purpose of using a configuration management tool is to relieve the

development staff of the burden of implementing configuration management. The tasks of

configuration identification, change control, status accounting, and auditing would be

tedious on a small project and virtually unmanageable on larger efforts without some

automated support to manage key aspects.

This chapter examines the desirable features of an automated configuration

management tool. In addition, it presents a framework of the main features a user should

consider when evaluating a CM tool for a particular project is undertaken. Finally, the

framework is applied to the evaluation of the features and subsequent selection of a

configuration management tool for use in the MK 92 MAES project.

A. CRITERIA FOR SELECTING CONFIGURA nON MANAGEMENT TOOLS

In general, there are two facets to evaluating a generic configuration management

tool for use in a software project. The first relates directly to the features of the tool. The

second deals with the organizational, project management, and human factors issues

related to the use of the tool. The following subsection explores these two facets in detail.

1. Configuration Management Tool Features

The term features, in this instance refers to the functional characteristics of a

configuration management tool. A good CM tool should support all tasks of

configuration management. As a minimum, a configuration management tool should be

able to assist the project management and developers in identifying configuration items;

97

providing a change control feature; supporting a mechanism for status accounting; and

establishing and maintaining an auditing capability (Wreden, 1994).

a. Change Control

Change control features ensure changes made to one version, cannot be

incorporated in another without some explicit action on the part of the programmer.

Change control features include check-inlcheck-out and lock-out functions, as well as the

ability to identify the changes made to a particular version.

b. Version Control

Version control enables the developer to store, maintain, and recreate

various versions of a product. Given the possibility many versions of a program could

exist at anyone time, this capability is crucial in debugging problems identified by

customers. Version control ensures a version of software can be recreated any time it is

desired (STSC, 1994).

c. Reporting/Query Capability

A reporting/query facility enables development personnel to generate

reports which can be used for project management (STSC, 1994). Reports denoting

differences between two or more versions of software, change status, current

configuration items under CM are typical reports of CM tools. In addition, a reporting

facility is fundamental in automating configuration management status accounting.

d Library/Repository

All CM tools have a library/repository. A library acts as a storage facility

for software configuration items. Generally, a programmer will check an item out of the

library for coding or testing. When completed, the item will be checked back in. In

addition to code, some CM tool's store documentation, test routines, graphics, or other

configuration items.

98

e. Release Management

Release management features assist in identifying what items are on a

particular version through the automatic generation of version description documentation,

electronic media labeling, etc. (STSC, 1994)

f. Compatibility

Compatibility describes the extent to which a CM tool can communicate

and share information with other tools. Some CM tools have the capability of integrating

with other products such as problem tracking tools, build tools, document management,

report generators, as well as other Computer Assisted Software Engineering (CASE)

tools. Other tools have been ported across multiple platforms, allowing developers

working on PCs or UNIX workstations to use the same CM library. Compatibility with

other development software allows for flexibility and expand ability should the current

effort's CM needs change.

g. Build Support

Build support is a feature which enables a CM tool to not only track source

code, but also link and compile it. Some tools will only compile those portions of code

which have changed. (STSC, 1994) Build support facilitates the integration of the tool

with the development process. The greater a CM tool's role in the day to day software

development environment, the more likely its use will be adopted.

k Team Support

Team support describes the ability of a tool to support distributed

development (STSC, 1994). As hardware trends have shifted from mainframe technology

to the use oflocal area networks (LANs), software development has evolved into an effort

in which many programmers are likely to be making changes to a configuration item at any

one time. A CM tool with good team support capabilities will have a mechanism for

locking a configuration item to minimize the possibility of simultaneously attempting to

make changes to different versions of the same module.

99

i. Ability to Customize Features

The ability to customize the interface, life cycle model, or other aspect of a

CM tool is a highly desirable feature. As a project's needs change, or as the CM process is

improved, there will be a desire to alter various aspects of the life cycle model or other

aspects of the configuration library. By using a tool that can be extensively tailored,

flexibility and expand ability are increased.

2. Additional Selection Criteria

Aside from the configuration management features of the tool, there are other

considerations which must be taken into account. These include human factors issues,

managerial issues, and product issues not specifically identified as configuration

management features. The following is a listing of some of these criteria, some of which

have been identified by the Software Engineering Institute (SEI) as points for

consideration when selecting a CM tool (STSC, 1994).

a. Cost

The term cost refers not only to the price of the CM tool, but to the cost of

maintaining it. Maintenance costs include time, personnel, and money.

b. Ease of Incorporation Into a Project Life Cycle

Ease of incorporation into a product life cycle refers to the effort required

to integrate a CM tool into the project's life cycle. The amount of data conversion required

to implement the CM tool and the ability to import information from existing databases are

two considerations that determine the ease with which a tool may be incorporated. An

additional feature is the ability to create life cycle models for CM tool archives. A tool

which can be more easily folded into the project team's efforts will minimize the impact of

the tool's introduction to the organization.

c. Ease of Use

If a tool is not simple to use, it will not be used. Steep learning curves and

difficulties experienced by the end user of the product will ensure CM will not be adopted.

100

User interface, system documentation, help facilities and tutorials are features that enhance

a product's ease of use.

d Security

Security is a desirable feature in a CM tool for two important reasons.

First, there is a need to control access to product libraries. Developers should not have

unrestricted access to all aspects of the configuration process. For instance, the

configuration manager might wish to control who has authorization to migrate changes

from the development or testing libraries to the product library. In this way, product

integrity can be maintained. Secondly, there is always the danger of someone accidentally

overwriting good code with untested code. A security structure establishing access

controls could prevent such occurrences. Finally, a security feature would prevent

unauthorized copying, thereby ensuring untested modules are not sent to customers

inadvertently.

e. Power

Power refers to the extent to which one command have an effect

throughout the CM tool and the project's CM library. Tools with recursive check-in and

check-out features, change packaging utilities, and package migration capability simplify

the jobs of the configuration manager and CM library administrator. (STSC, 1994)

f Robustness

Robustness refers to a the reliability of the software. Such factors as how

the tool performs under failure conditions should be considered. Whether or not

checked-out items remain locked if there is a system failure is another consideration for a

CM tool. Finally, features which allow the configuration library administrator to reset tool

settings are indicative of a robust configuration management tool.

g. Scalability

Scalability addresses the issues surrounding the size of the project to which

the tool is going to be applied. Is the tool the right size for the project? How many items

101

can be managed at anyone time? How extensive is the management structure? What kind

of life cycles can it support? Can it expand to meet our future needs, regardless of scale?

One wants to select a tool which will not only meet today's needs, but can satisfy the

demands of tomorrow.

h. Quality of Commercial Support

Many of the risks associated with the above factors can be minimized by

quality commercial support. If the vendor is responsive and has a strong technical support

infrastructure, their assistance can be relied upon to overcome difficulties. What is the

vendor's reputation for support? Are they helpful; dedicated to resolving conflicts and

bugs found in the particular version of the CM tool, or are they elusive? How strong is

the maintenance agreement?

The availability of training may also be a factor for evaluation (IEEE,

1992). If there are no personnel skilled in CM, the project team may desire training.

Availability of training is one indicator of a vendor's support structure. If resources are

going to be applied to implementing a CM process, one needs to be certain the vendor of

the selected CM tool will be there when needed.

The degree to which, the CM product is supported by other CASE tool

vendors should also be taken into account (IEEE, 1992). A CM tool not supported by

other vendors indicates to the potential buyer one of two things; either the CM tool's

vendor is unwilling to release code which will allow others to coordinate integration

efforts, or it sheds light on the acceptance of the CM tool by the marketplace. A CM tool

which no other vendor is building interfaces for is not as favorable as one which can be

integrated with other development products.

i Project Specific Features

The list of features and selection criteria presented here is not exhaustive.

It is intended to identify some of the considerations one must make when selecting a CM

tool. It will be necessary to identify additional features that are required to satisfy the

needs of a project due to some particular aspect of its development environment. For

102

instance, a visual programming environment may require features that enable a tool to

track changes made to its code. The features one might wish to consider will differ

between projects. This is true with the MK92 MAES. Section C, subsection 3, presents

selection criteria for the MK92 MAES that were not mentioned in this section.

3. Further Reading

For further reading on CM tool selection, and specific CM products, the reader is

referred to the Software Technology Support Center's report on configuration

management technology (STSC, 1994) and IEEE's Recommended practice in evaluating

and selecting a CASE tool (IEEE, 1992).

B. AN EVALUATION METHODOLOGY FOR CM TOOLS

This subsection presents the evaluation process for the selection of a CM tool.

This methodology assumes the person or team making a tool selection has a general

understanding of configuration management concepts. It is adapted from IEEE's

recommended practice on CASE tools selection (IEEE, 1992). The First three phases can

be conducted in parallel, while the last three should be conducted in the order presented.

1. Conduct a Literature Review

The first step is to conduct a literature review. The purpose of the literature

review is to acquaint the selection team with the desired features of CM tools and the state

of CM tool technology. The extent to which a literature review is necessary will depend

upon the experience level of the selection team.

2. Identify Constraints

Constraints act as the decision boundaries. An effort should be made to identify

those variables which will pose restrictions on the tools which can be selected. Such

considerations as hardware limitations, operating systems, and budgetary restrictions must

be identified.

103

3. Identify Evaluation Criteria

This step includes the establishment of objective and subjective criteria that will be

used in the comparison of competing eM tools. IEEE (1992) recommends applying

weights to the evaluation criterion. For example, if cost is the primary goal, then more

weight should be assigned to it than to other factors. One way in which this can be done

is to list the criteria in order of importance.

4. Identify Candidate Configuration Management Tools

At this point, the selection team should identify eM tools which claim to meet the

minimum requirements of the evaluation criteria. The list of candidate tools should be

compiled from available literature, market surveys, vendors, and other sources. One

should then attempt to obtain evaluation copies from vendors and literature evaluating the

performance of the candidate tools, when available. (IEEE, 1992)

5. Evaluate Candidate Configuration Management Tools

If demonstration copies are available, compare one tool against another using a

pilot project that is representative of the target project. If establishing a pilot project is

not possible, compare the individual features of each tool using the evaluation criteria

identified in Subsection 3.

6. Make a Selection

Once the evaluation is completed, the selection team should select that tool which

maximizes the evaluation criteria. It should be noted that there is no single tool which will

encompass all features desired in a eM tool. The goal is to select that tool which best

incorporates the features which are required for the development project on hand.

The key to successful tool selection is to analyze the needs of the program. Both

current and future development efforts must be taken into account. eM is conducted for

the entire life cycle, and the needs analysis must take this fact into account. One should

not assume that because the organization is not using distributed development today, it

104

won't require it later. A tool should be chosen that can meet the present and future needs

of the project.

C. APPLICATION OF EVALUATION METHODOLOGY TO THE MK92

MAES

This subsection applies the previously developed methodology to the selection of a

CM tool for the MK92 MAES project.

1. Conduct the Literature Review

Articles from CD ROM archives, trade magazines, STSC (1994) technical surveys,

and Internet frequently asked questions (F AQ) were reviewed. This literature review

familiarized the author with the features of CM tools. This enabled the identification of

constraints and evaluation of a CM tool for the MK92 MAES.

2. Identify Constraints

The first constraint was that the tool had to run in a Windows 3. 1 environment to

provide as seamless an environment as possible for the developer. While there are many

CM tools available, only a small number of them run under Microsoft Windows (Eaton,

1994).

As is the case for many small projects, a second constraint was a budgetary one. A

dollar ceiling of $500 was established as the maximum that could be afforded. As a result,

our search range was limited to the following products in alphabetical order:

• CCClManager by Softool Corp. Softool provided a demonstration version for
evaluation. The features, comparisons, and findings of this evaluation are
presented in the following subsection.

• PVCS Version Manager by Intersolv, Inc. This tool was purchased at the
educational price of $1 00 and is also evaluated in the following subsection.

• SourceSafe by Microsoft. Formerly a product of One Tree Software,
SourceSafe was purchased by Microsoft late in 1994. Although evaluation
copies were provided when owned by SourceSafe, Microsoft no longer
supports this policy. Though SourceSafe has a good reputation, the lack of a
demonstration copy prevented its evaluation.

105

As a result, SourceSafe was removed from further consideration.

3. Identify Tool Evaluation Criteria

The CM tool selected had to support the four tasks of configuration management

identified in Chapter Ill; configuration identification, change control, status accounting

and auditing. In addition the tools were compared on the basis of the following features.

Cost. Although identified as a constraint, it is included here as an evaluation
criteria.

• Security. Security includes access controls, user privileges, password
capability, and encryption support.

• Change Control. Change control refers to the quality of those features that
support change control.

• Check-inlcheck-out functions.

• Lock-out function. Can the tool lock a file when it is checked-out to prevent
another programmer from accessing it?

• Ability to track changes to Adept procedures and binary files.

• Version Control.

• Ease of Incorporation in the Expert System Life Cycle. This refers to the ability
for a tool to model, through the establishment of archival directories, the MK92
MAES' development life cycle.

• Ease of Use. Described in Section A.

• Interface. This term refers to the quality of the user interface.

• Ease of installation. This term refers to the difficulty involved with
implementing the CM tool.

• Ease with which users can learn to use the tool. Self-explanatory.

• Quality of the system documentation. Self-explanatory.

• Quality of on-line help. Self-explanatory.

• Availability and Quality of tutorials. Self-explanatory.

• Quality of CM Reporting Functions. Self-explanatory.

• Team Support. Described in Section A

• Customizability. Customizability was explained in Section A

106

• Interoperability with Other Tools. Self-explanatory.

• Build Support. Described in Section A

• Release Management Functions. Described in Section A.

Performance. Performance was measured by evaluating the time (in seconds) it
took to check-out a representative.MK 92 MAES file from each tool's product
support library.

• Overall suitability of features to the .MK92 MAES CM process. General
Impression of the Tool's suitability to the MK92 MAES project.

4. Identify Candidate CM Tools For Further Evaluation

Two tools met the minimum criteria to be considered for further evaluation.

CCC!Manager and PVCS Version Manager were selected for further evaluation.

Subsection 5 is a brief description of CCC!Manager. Subsection 6 is a description of

PVCS Version Manager.

5. CCClManager

CCC!Manager is a configuration management tool developed by Softool

Corporation. The version examined is version 2.2.2. Acting as a database, CCC!Manger

controls the changes to a project, provides access control and reporting features. The

following is a summary of the primary features of CCC!Manager. Files from the .MK92

MAES are used as examples to demonstrate the capabilities of CCC!Manager.

Descriptions of CCC!Manager's functionality are adapted from "CCC!Manager Primer"

(Softool Corporation, 1994a).

a. Cost

CCC!Manager costs $495 per user. Maintenance is $85 per year as of the

1994 CCC!Manager price list.

h. Interface

The interface for CCC!Manager is a windows based GUI. The primary

operations within CCC!Manager are accomplished using three primary windows. The

Configurations window displays a project's configuration management libraries. Each

107

library in CCClManager is the CM repository for a particular lifecycIe. The project's

configuration library administrator creates the configurations for a particular project.

Configuration items are migrated between the CCClManager configurations as the

software progresses through the development lifecycIe. Figure 5-1 is an example of the

Configurations window for the MK92 MAES.

Current configuration: DEV

Confi uration name Branch Created
o 12/17/94 23:11 :45

: ['EV 1 12/17/94 23-38-13 i
ROOT

TEST
PROD

2 12/17/94 23: 39: 36
o 12/17/94 23: 42: 30

Figure 5-1. CCClManager Configurations window.

When files are checked into CCClManager, they are referred to as items.

These configuration items are viewed and manipulated in the Item Functions window.

Figure 5-2 is an example of the Item Functions window for the MK92 MAES. The Item

functions window contains both a directory tree and a list of the files contained in the

directories, just as would be found if one were to open the File Functions window. In

addition, the Item Functions window displays the initial and current version numbers of

each item checked into the library. In addition to the version numbers, the window

displays who has locked out a file. The Item Functions window is the screen from which

all configuration library manipulation functions are initiated.

The File Functions window is where the PC files are identified and

manipulated in CCClManager. In addition to file functions this window provides the

108

facilities for establishing user settings and access controls. Additionally, the File Functions

window contains the database administrator functions for use by the configuration library

administrator. Figure 5-3 is an example of the File Functions window for the .MK92

MAES.

Items: locked by:
1-·- 1 [Any) 111 l"ii.EmalWrl -= Configuration: DEV
kCC directory: \

It§.m Initial Latest Locked by

1.1 1.1
.FlT 1.1 1.1

ILO.Dll 1.1 1.1
BACK1.BMP 1.1 1.1
CALIBRAT ADP 1.1 1.1
CALIBRAT.CFG 1.1 1.1
COMMDlG.Dll 1.1 1.1
FC1.ADP 1.1 1.1
FCl.CFG 1.1 1.1

admin

FC2.ADP 1.1 1.1
FC2.CFG , .1 1.1
FC45.ADP 1.1 1.1
FC45.CFG 1.1 1.1
IMAGE.Dll 1.1 1.1
lOGODITH.BMP 1.1 1.1
MAES.ICO 1.1 1.1
MAES 1.ADP 1.1 1.1
MAES-'.CFG 1.1 1.1
MASCHKIN.lOG 1.1 , .1
MASXTRCT.lOG 1.1 1.1
AUNADEPT.EXE 1.1 1.1
SARTHElP.HlP 1.1 1.1
SHElL.Dll 1.1 1.1
SHIP.BMP 1.1 1.1

Figure 5-2. The Item Functions window for the MK92 MAES.

c. Access Control

Access controls limit who has access to what within the configuration

library. CCClManager provides access control through several methods. All of these

controls are established by the configuration library administrator (CLA) through the DBA

109

functions found on the File Functions window. The first access control established in

CCC/Manager is the use of passwords at a log-in screen. The user cannot gain access to

any portion of the CM library without a password. (Softool Corporation, 1994b)

file Iree User DBA M.di}} Window Help

File~: 1-·- I 11;~.~;li:i:m;1
Configuration:
e.C directory: c:\adept\maes

Fi!e
adepUcn
adept.ini
adpjmg.flt
adpbuild.dll
back1.bmp
calibrat.adp
cafibrat.cfg
commdlg.dll
fc1.adp
fc1.cfg
fc2.adp
fc2.cfg
fc45.adp
fc45.cfg
image.dll
logodith.bmp
maes.ico
maes_l.adp
maes_l.cfg
maschkinJog
masxtrcUog
runadept.exe
sarthelp.hlp
shell.dll
shi .bm

Size
204800
564
14717
243584
405622
1601536
119
89248
2695168
119
3740672
116
2396160
119
107917
9782
766
57344
84
1720
2238
393696
75491
41600
192018

Date
1/5/94
1/27/94
12/31192
115/94
12/14/93
8/30/94
2/15/94
1117/94
1113/95
8/11/94
8/24/94
5/26/94
8/24/94
8/24/94
1011/92
9/18/91
5/21/94
8/30/94
6/22/94
1/9/95
1/9/95
1/5/94
6/29/92
3/10/92
9/17/91

Time
19:47:46
8:51 :52
16:30:12
19:47:46
15:16:26
18:54:20
16:31:04
16:11:52
16:19:52
12:45:56
17:15:42
9:59:16
0:18:50
0:18:28
17:35:00
9:23:54
17:26:12
18:47:00
17:59:02
20:22:00
21:08:28
19:47:46
18:13:14
3:10:00
14:34:50

Figure 5-3. File Functions window for the MK92 MAES.

AUrib

ar
ar
ar
ar
ar
ar
ar
ar
ar
ar
ar
ar
ar
ar
ar
ar
ar
ar
ar
ar
ar
ar
ar
ar
ar

Access controls are further delineated through the assignment of users to a

particular user group. There are three primary user groups; user, manager, and

administrator. Each has a default level of access that can be tailored to the project's needs

by the CLA. In addition, the CLA can create new User Groups which can be assigned

access, thereby allowing for a greater degree of customizing the system.

110

In addition to assigning permissions for access to CM functions, the CLA

may also establish configuration restricted control. Through configuration access control,

not only are users access to a specific configuration, the capabilities they have within a

particular configuration can be restricted as well. A user group may be assigned read

only, limited, or full access to a particular configuration. Figure 5-4 is an example of a

screen in which the CLA can assign access controls.

d Life Cycle Modeling

CCClManager, through the use of the Configurations window, provides for

the establishment of an automated CM process which models a project's software life

cycle. When the CM library is first created, the CLA establishes the libraries which the

CM program will use. It is from these libraries that users check out, change and migrate

files, generate reports, and promote files for release as products. By mapping the phases

of the life cycle to CCClManager configurations, development personnel are able to work

r Uem Functions-------.

18I(~h~~~:~lI~ .. ~p.~~i
~ Interactive lIIerge

IZI Combine versions

~ Delete item

~ Delete version

IZI Rename change name

~ Clear Jocks [all)

~ Create director,

~ Rename cirector,

~ Delete director,

r[ile Functions ------,

~ Check in new items

~ Unrestricted check. in

~ User seHinga

Edit Group Privileges - ADMIN

tonfiguration Functions---'

181 General config functions

181 Add configuration

IZI Werge configuration

IZI Delete configuration

IZI Rename configuration

IZI Access control

fackage Functions

~ General package functions

~ New package

IZI Edit package

~ Delete package

~ Rename package

IZI Migrate package

.Q.BA Functions------. ~ Promote package
~-------------~ IZI General DBA functions B.ridge Functions-------.

IZI Users 0 I~erl(~ral tJlid~Jp. (um~i()m-

~ Groups

IZI Auditing

IZI Settings

o I)uwnluad/upluad compll~tt:

o Upluad P~(;-ki.l~Jt:

o Add (.i1.H'mklad (~m(ifSur aliotl

IZI Waintenance 0 Brid!Je .,elting_'

Figure 5-4 An example of group privileges for the MK 92 MAES.

111

within a CM framework which matches as closely as possible, the development

environment of the project.

e. Check-iniCheck-out

In addition to the ability to provide fundamental check-in!check-out

capabilities, CCC can conduct recursive check-in!check-out. Recursive check-in!

check-out refers to the ability to check-out files as a group for work which may require

more than a single file. This capability prevents the developer from having to check-out

each file one at a time.

In addition to check-inlcheck-out, CCClManager has the capability to lock-out

files which have been checked out for maintenance This prevents two users from

simultaneously updating a file, thereby overwriting the changes each made to the file.

f. Change Control

When one desires to make a change, one first checks out the file from the

Item Functions window to the programmer's working directory. As figure 5-2

demonstrates, the file is then locked, thus preventing access by others. The user then

makes changes to the file as desired. Upon completion, the developer checks the file back

In. Files are checked in through the File Functions window.

Figure 5-5 is an example of the check-in dialogue box. In order to

complete the check-in process, the user must give the change a title and brief description.

This encourages the documentation of the change process.

Several changes may be grouped together to form packages. These change

packages enable the developer to manipulate groups of changes more easily. This

procedure speeds up the process of migrating and promoting changes.

g. Version Control

CCClManager provides for the capability to reconstruct any version that is

part of the configuration library. It does this for text files by storing the changes to a

112

particular file as "deltas." These "deltas" are then applied to the baseline to reconstruct

any particular version of the code desired.

In the case of binary files, there is no feasible way to identify specific

changes; therefore, "deltas" cannot be created. In the case of binary files, CCClManager

stores the entire file. When an older version is desired, it is retrieved from the

configuration library.

Check In - DEV

r F~; clirectoJ}': I c:\adept\maes 'I
_ files:?=! •. =. =========================:'.

[~~c clirectory: ,~ ,I
Change name: ISTROOOl COllllllen!: L..-_______________ --'

This change is to FC1. The node which identifies a bandwidth power reading of
30+/-1.05 dB. was changed to reflect a new tolerance of 25+/-1.05 dBm.

~ersion:

.Mode

® Update and unlock

o U pdale and lock

o Unlock only

item filters

[81 New

[81 Existing

D Unreshicted

OPtions

D Recursiye

D CffJi~ttJ (; C C dimc(~)fi(~~

D Pro.-pt for description

[81 Display lock errors

Figure 5-5. Check-in screen for changes made using CCClManager.

h. Reporting Capabilities

The degree to which reports are available for a project will depend upon

the file types used. Reports generated on text files can identify specific lines which have

been changed. Reports generated on binary files rely upon their date/time stamps as flags

that a change has been made. However, there is no capability to identify what changes

were specifically made.

113

The types of reports generated by CCClManager are limited to:

o Versions Report. The Versions report provides summary change information
on selected items. A typical version report lists the configuration item, the
configuration, and the changes by name and description for each item.

o List Change Report. This report identifies the line-by-line changes between one
versions of a text file and another. This report is not available for binary files.

• List Difference report. Similar to the List Change Report, the List Difference
Report flags the differences between a configuration item in a particular
configuration or directory and another copy in a different configuration or
directory. The List Difference Report is not available for binary files.

o Package definition report: Package definition reports describe a particular
change package and the change names associated with it.

o Package history report: A package history report displays a record of actions
performed on a specified package.

i Auditing

CCClManager's support to the configuration auditing process is in the form

of an audit log. The audit log keeps track of item updates and deletions, package

creations, deletions, migrations, and promotions. Any combination of the audit options

may be selected. The audit log can be important in not only the monitoring of

configuration library activities, but also in the auditing of the CM process.

j. Interactive Merge

CCClManager has the capability to merge changes through its Interactive

Merge function. The Interactive Merge function allows the development team to merge

changes made in one or more versions of a configuration item with those in another. This

capability can be of particular importance when concurrent development is taking place. If

developers are working in parallel on separate versions of an application, several changes

may need to be merged into a single version.

Interactive merges can also be used for retrofitting emergency maintenance

to current development projects. For instance, if a ship were to report a problem with

their version of the MK92 MAES which needed an immediate patch, one would want to

114

incorporate this change into the current version as well. By using interactive merging, the

changes made to the patched file could be included in the current build.

k. Compatible Operating Systems

CCC/Manager and its supporting product family are compatible with the

following operating systems:

• MVS/SP, XA, ESA

• VMlCMS, XA

• AIX

• VMS

• Ultrix RISC

• UNIX, SCO UNIX

• OS/2, MS Windows, and Windows NT

• Windows

• SunOS, and Solaris

This allows for the expandability and portability of a development effort

and its CM program.

L Associated Products

There are several tools made by Softool which are specifically made to

enhance the features of CCClManager. CCClPro is one such tool. CCClPro is a problem

tracking tool which is used to track a problem from its discovery, until changes to the

software are made to correct it. This tool enhances the automated change control

capabilities of a CM process.

Another tool is CCClMake. CCClManager contains a GUI for interacting

with CCClMake. CCClMake is a tool which will take approved changes and incorporate

them into a build or release version of an application. This further integrates the CM

process into the software development cycle.

115

m. Suitability to the MK 92 MAES Project

For basic change control functions, check-inlcheck-out, and version

control, CCClManager is well suited to the needs of the MK92 Project. Additionally, its

capabilities in identifying the text file changes made to the knowledge base using the script

based graphical tool, all CLEAR, is also beneficial.

The interface is relatively easy to understand, particularly after one follows

the tutorial in the primer. The terminology in the manual is similar to that in the CM

literature, making the tool easier to understand in the context of the entire CM process.

The required change name and description upon check-in is a good way to

promote change documentation. Recursive check-in enables one to set up a CM library in

less than 15 minutes. The ease with which access controls are set up is another plus.

On the negative side is the tool's inability to handle the change tracking and

reporting of binary files. Recognizing this is a technological problem in that one cannot

dissect binary files in a manner which identifies specific changes, some features for using

time stamps should be in place to identifY at least a change was made.

The tool meets the requirements which are technologically feasible for the

CM of the MK92 MAES. It's reporting capabilities are adequate for conducting

maintenance of the knowledge base. Overall, CCClManager is a strong candidate for

selection as the tool for the MK92 MAES project.

6. PVCS Version Manager

PVCS Version Manager (PVCS) is a configuration management product

developed by Intersolv, Incorporated. The version examined in this subsection is version

5.l.l. The following is a summary of the main features of PVCS. Files from the MK92

MAES are used as examples to demonstrate the capabilities of PVCS. Descriptions of

PVCS' functionality are adapted from the PVCS Administrator Guide and Reference.

(Intersolv, 1993b)

116

a. Cost

The MK92 MAES project team was able to obtain a copy ofPVCS for the

educational price of$100 per user. The regular price is $599 per user (DelRossi, 1994).

h. Interface

PVCS for Windows is actually the command line version ofPVCS which is

common UNIX and DOS users with a Windows interface overlay. Through the use of

ASCII configuration files, PVCS is able to tailor almost every aspect of its functionality.

These files, however, use PVCS commands which can be cryptic. The purpose of the

GUI is to incorporate as much of the functionality as possible from this command line

interface in a graphical format using radio buttons and dialogue boxes.

There are actually two interfaces in PVCS, one for the system

administrator and a second for users. The PVCS Version Manager Administrator is for

the CLA to use to establish and manage the CM library. Once a project has been set up,

most CM functions are launched from the Main window of the PVCS interface built for

the user. Figure 5-6 is an example of the Main window for the MK92 MAES project.

Working sets are created by the CLA that make the directory paths from

which files are checked out invisible to the user. Files are grouped together under a more

descriptive name. In Figure 5-6, "MK92 MAES Program Files" is the working set

describing those files which are part of the expert system.

In addition to the working sets described by the CLA, the user may create

custom working sets. Custom working sets allow for the logical grouping of files in

different archives and directories. One such use for this might be in Independent

Verification and Validation (IV&V). IV&V personnel could create custom working sets

which contain the Adept files for a particular module as well as the knowledge document

files to which they must be traced.

117

.~ " ... ,',.".".'."." · .. ··PVcs·v;;;i~~"M·;~;g;;·· .. · ·" "· " "· .. "·· " "." ... I:Ii:ij

Project

View:

Working set:

Working directory:

6L _____
1

Iknwldge)
Imaes)
(-a-l
(-c-J

MK92 MAES

Working set

~IM_K_9_2_M_A_E_s_P_r_o~g_ra_m_F_I_le_s ______________ ~I~
c:\maesproj\workfile

<MK92 MAES Program Files>(c:\maesproj\Workfile\maes\ADP Jmg~.
<MK92 MAES Program Files>(c:\maesproj\Workfile\maes\BACK1.b ,m
<MK92 MAES Program Files>(c:\maesproj\Workfile\maes\CAlIBRA
<MK92 MAES Program Files>(c:\maesproj\Workfile\maes\CAlIBRA
<MK92 MAES Program Files>(c:\maesproj\Workfile\maes\FC1.cfg)
<MK92 MAES Program Files>(c:\maesproj\Workfile\maes\FC2.adp)
<MK92 MAES Program Files>(c:\maesproj\Workfile\maes\FC2.cfg) ::=t..

o Select all files

Figure 5-6. PVCS Version Control Main Window for the MK92 MAES.

c. Access Control

PVCS is capable of providing a very fine degree of access control. To

accomplish this, it relies upon the use of ASCII files known as access control databases.

An access control database is an encrypted file in which user groups and individual users

are assigned access. Additionally, users can be assigned passwords.

PVCS provides a list of privileges which can be combined to create custom

privileges. These privileges can then be assigned to entire groups or limited to certain

users. Though providing for more options than CCClM:anager, project management

should weigh the need for access control and the functionality provided by other CM tools

against the overhead associated with administering the access control database. In the

case of a small development team or project, the access controls provided by

CCClM:anager and the ease with which they are implemented may outweigh the power

provided by PVCS' access database scripts given the maintenance challenge PVCS'

method presents.

118

d Life Cycle Modeling

When the CLA creates a project, they have the option of establishing a life

cycle model through which all files are migrated. PVCS refers to this as a promotion

model. As with CCClManager, the CLA can customize the hierarchy of the promotion

model to match the project's software development life cycle.

e. Check-iniCheck-out

PVCS supports check-inlcheck-out. The user selects a base working set

with which they would like to work. They may then select any combination of files from

the working set to check out. Specific working directories can be chosen by the user

though the creation of custom working sets, or a default working directory can be

established by the CLA.

As with CCClManager, PVCS allows for lock out of files upon check-out.

However, unlike CCClManger, one cannot tell by looking at the Main window which files

are unlocked at a particular time. To determine what files are locked, one must print an

archive report.

The delete upon check-in function clears the working directory when files

are checked in. However, if a file is not modified and is unlocked rather than checked-in,

PVCS does not delete the file from the working directory. This has the potential to leave

files, no longer under CM, in working directories.

f. Change Control

Change control in PVCS is similar to that provided by CCClManager.

Check-inlcheck-out, lock-out functions, and PVCS' equivalent to packages, labels, are

virtually identical to CCClManager. Unfortunately, PVCS is also unable to adequately

track changes to binary files. The use of custom worksets tailors the change process

allowing for a grouping of files across directories, and functions.

For example, often a change to the knowledge base necessitates a change

to the corresponding module in the expert system. By establishing custom worksets which

119

link the knowledge document of a particular module with the associated Adept modules,

the change process is streamlined.

PVCS also allows one to select what text editor is executed when the Edit

icon is selected from the Main window. This is particularly useful in maintaining the

knowledge base. From the edit icon the tool used to document the knowledge base,

allCLEAR, can be launched to make changes to the knowledge document. Switches can

be set which will allow for automatic check-out of files upon launching all CLEAR and

automatic check-in upon exiting the editor. This further supports the goal of creating a

seamless development environment.

g. Version Control

Through the use of access controls, lock-out features, and the promotion

model concept, PVCS is able to provide a development project with version control.

PVCS ensures only those configuration items migrated to the product level of the :MK92

MAES' promotion model are available for release.

It. Reporting Capabilities

PVCS has the capability to generate several types of reports. Additional

reporting capabilities are provided when PVCS is integrated with the add-on product

PVCS Reporter.

• Difference Report. The Difference Report displays the modifications made
between two revisions or files. As with CCClManager, the generation of
difference reports between two binary files is not very useful.

• Archive Report. The Archive Report is used to provide information on
archives and the revisions they contain.

• Journal Report. The journal report is used to document the activity of an
archive. The basis foundation of a journal report is the journal file. A journal
file is a log maintained by PVCS of modifications made to project archives.
This log records the name of the archive, the action used to modify the archive,
who performed it, and when it was performed. The CLA can configure PVCS
to keep a journal file.

120

i Version Labels

A version label is a name that identifies a group of revisions stored in

separate archives. Version labels are used to identify the revisions that comprise a version

of an application. Version labeling is similar to the package function used in

CCClManager. It allows for groups of revisions to be managed easily.

Floating version labels enable the easy identification of the most recent

versions of files assigned such labels. This provides a convenient method of ensuring the

latest version of an application is being manipulated.

j. Keyword Embedding

Keywords are flags in which PVCS can automatically insert data such as

the version number, author, date, and time of modification to files as they are checked in.

The embedding of this information is recommended by Buckley (1993) as part of the

coding process. The use of an automated tool to accomplish this makes its

implementation less difficult.

k. Merge

As with CCClManager, PVCS has the capability to merge revisions

produced by concurrent development efforts. This is done through a merge dialogue box.

As with the other dialogue boxes, the inability to browse for a desired file, or scroll

through a long path statement to identify a file, makes the merge function cumbersome.

L Promotion and Migration

PVCS supports promotion and migration through all phases of a promotion

model from a configuration to PC directories. By selecting the Promote icon from the

main menu, one can migrate files to the next highest level in the promotion model. Figure

5-7 is an example of the promotion dialogue box.

121

Promote

Filename(s): Iledge Base>(c:\maesproj\worldiJe\knwldge\TREEXMPL.acJ)

Revision information---------------------,

Promote from: I~D_e_v_el_o~pm __ en_t ______________________ ~11I

o fromote across branches

Figure 5-7. PVCS Promotion Dialogue Box.

III. Compatible Operating Systems

PVCS supports the following operating systems:

• MSDOS

• MS Windows, Windows NT

• OS/2

• UNIX

n. Associated Products

There are two products provided by Intersolv which are designed to

integrate with PVCS Version Manager.

PVCS Configuration Builder is a product which interacts with PVCS to

build current or previous versions from archived files.

PVCS Reporter is another add-on product which enables the project team

to construct customized reports.

122

o. Suitability to MK 92 Project

PVCS is a powerful tool; however the user pays for this capability in terms

of a steep learning curve. The use of terminology that is different from that in the

literature complicates the learning process. As noted by DelRossi (1994), the GUI,

though a vast improvement over the command line version of PVCS, could be better

designed. It is apparent to the Windows application user, PVCS' interface was an

afterthought.

Many of the program's access control capabilities come from an ASCII

script referred to as the Access Control Database. Though powerful, the cryptic

command lines do not promote ease of use.

Another problem with the interface is the fact the dialogue boxes remain

very command line oriented. For instance, instead of providing a browse capability, the

user is required to type in the entire path to files about which they desire to generate

reports. The power of the Windows interface is under-utilized and thus adds unnecessary

burden to the user.

Another shortcoming of PVCS is its inability to track changes to binary

files. As noted in the previous subsection, this is a technological problem common to all

CM automated tools. Until greater consideration is given to the integration of project

management functions as integrated features of development tools such as expert system

shells, this problem will persist.

Once the development team overcomes the steep learning curve, PVCS'

power makes it an excellent automated CM tool. Custom working sets promise to

provide an easier method for tying knowledge documentation to the associated program

files. A CLA who is familiar with the access control database's nuances can introduce a

high degree of control to directories and files. The degree to which PVCS can be

customized, the tools which are available as add-on products, and its reputation in the

marketplace further strengthens it as a choice for use in the MK92 MAES project.

123

While PVCS has not been ported to as many operating systems as

CCClManager, all those likely to be used by an expert system development team for the

MK92 MAES are supported.

PVCS meets the current requirements of the MK92 MAES project

including the potential for distributed development. Should the MK92 MAES project

evolve into the establishment of an expert system development center, PVCS will can be

expected to meet any foreseeable functionality requirements.

7. Evaluate Candidate Tools Using the Chosen Evaluation Criteria

Using the selected criteria, CCC/Manager and PVCS were compared. This

subsection presents a summary of the comparison of CCC/Manager and PVCS as

evaluated according to the grading criteria.

Table 5.1 summarizes the comparison of CCC/Manager to Intersolv's PVCS

Version Manager. In those categories where an ordinal response is provided, the

following scale was used.

• Excellent. The product completely satisfies all aspects of the aspect rated in
terms of functionality and ease of use.

• Very good. The product completely satisfies all aspects of either functionality
or ease of use, but does not completely satisfy both.

• Satisfactory. The product meets the minimum standards in terms of both
functionality and ease of use, but does not completely satisfy the needs of the
project in either category.

• Poor. The product does not meet the minimum threshold in either functionality
or ease of use.

• Not available. The product does not have this feature, therefore it could not be
evaluated.

Without question, these selection criteria are subjective. However, given the fact

the decision process is designed to select the tool for which the user has the greatest

preferences, an inherently subjective undertaking, the use of subjective measures, in this

instance is not seen as a limiting factor in the selection process.

124

Category CCC/Manager PVCS

Cost per user (to the MK92 MAES team) $495.00 $599.00

Security Very Good Very Good

Change control features Very Good Very Good

Check-in check-out functions Excellent Very Good

Lock out function Excellent Very Good

Ability to track changes to Adept procedures Not Available Not Available
and binary files

Version control features Very Good Excellent

Ease of Incorporation into the expert system Excellent Excellent
life cycle

Ease of use Excellent Excellent

Interface Very Good Satisfactory

Ease of installation Excellent Satisfactory

Ease with which users can learn to use the tool Excellent Satisfactory

Quality of the system documentation Very Good Very Good

Quality of on-line help Very Good Satisfactory

Availability and Quality of tutorials Very Good Very Good

Quality of CM reporting functions Satisfactory Very Good

Team support Satisfactory Very Good

Customizability Satisfactory Excellent

Interoperability with other tools. Very Good Very Good

Release management functions Very Good Very Good

Build support Not available Not available

Performance. Time to check-out MAES file 64 seconds 36 seconds
FC1.ADP (2.7 MB) from the tool's product
support library in seconds. (Intel 486-DX2
50MHZ, 20MB Ram)

Overall suitability of features to the MK92 Very Good Excellent
MAES CM process

Table 5.1 Comparison ofCCC/Manager to PVCS Version Control.

125

8. Select a eM Tool

Based upon the analysis of the previous sections, the tool selected for

incorporation into the MK 92 MAES' configuration program was PVCS Version

Manager. Although the Configuration Library Administrator (CLA) encounters a steep

learning curve when first configuring the product for a development effort, it is relatively

easy for the programmer to operate. Features such as the capability to launch the user's

favorite editor from within the tool, while at the same time providing automated

check-infcheck-out make PVCS particularly suitable for use in the development of the

MK92MAES.

No CM tool meets every need of a project. One significant drawback of PVCS is

the need to maintain the access security database. It was determined, given the limited

number of people working on the MK92 MAES project at anyone time, the

implementation of a user's access controls would not be an insurmountable task. It will

however require more time and skill than the dialogue box used in CCClManager.

Another shortcoming of both tools is the technological difficulty of tracking

changes to binary files. The only support available for binary files by either product

centered on check-inlcheck-out functions, as well as version control. However, as the

CM process of the MK92 MAES must also support maintenance of the knowledge base,

other features needed to be considered. It is here that PVCS distinguished itself

CCClManager is an extremely powerful and easy product to use. For almost any

other project, its ease of use would have outweighed any perceived advantages of PVCS.

Given the fact most of the MK92 MAES development process involves changes made in a

visual programming environment, virtually all features useful in PVCS were available in

CCClManager, not to mention easier to use. However, the ability to create the custom

working sets is ideally suited to the challenges of applying CM to both the knowledge base

and expert system software. This capability perhaps more than any other was a deciding

factor in the project team's selection.

126

VI. CONFIGURATION MANAGEMENT IMPLEMENTATION

This chapter presents recommendations for the implementation of a configuration

management plan for the MK92 MAES project. An adoption strategy is established for all

four tasks of the eM. In addition, a recommendation for the implementation of a eM

process for a small expert system development center is made.

A. CM IMPLEMENTATION ISSUES

One cannot blindly apply the principles of configuration management to every

project in the same manner. Each project faces distinct challenges. Therefore, eM must

be tailored to each project on an individual basis. To this end, this subsection addresses

some issues a development team should take into consideration when developing a eM

program.

The highly evolutionary nature of prototypes requires a eM plan that will be

designed with flexibility as a foremost consideration. When developing an expert system,

the need to apply eM is not only to the software, but the knowledge base as well. This

fact multiplies the volume of changes requiring control. In addition, organizational

factors, such as resistance to change or the impact of corporate culture, adds to the

difficulty in implementing eM. A brief discussion of the implementation issues follows.

1. Organizational Issues

A good eM plan will attempt to achieve a fit with the organization's culture in a

way that will provide the degree of control over software which is consistent with the

quality goals of the organization.

In addition to the culture of the organization as a whole, one must be concerned

with the effect the introduction of eM will have on individual project team members.

Some team members may feel as though eM will restrict their creativity. Others may

resist changes to their organization. These barriers must be overcome if a successful eM

process is to be initiated.

127

2. Skill level of Organizational Personnel

The skill level of an organization's personnel is another important consideration

when implementing a CM plan. The degree to which developers are familiar with the

concepts of CM must be a consideration. Personnel familiar with CM and its potential

benefits are more likely to adopt a CM plan than those unfamiliar with the concepts.

Training in CM may be necessary to overcome any deficiencies.

3. Organization's Level of Process Maturity

Process maturity refers to the processes and software design policies of the

organization. An organization that has already implemented control policies is likely to be

more receptive to the introduction of configuration management. CM would simply be an

enhancement to existing policies and procedures. However, if the organization does not

have any policies, or has inadequate or informal policies, the task becomes more daunting.

A formalized CM program will need to be established. Education for the developers and

management at a fundamental level will be necessary.

4. Technological Issues

As was demonstrated in Chapter V, today's software environment precludes the

development of a generic, off the shelf tool that will fit every user's needs. There is no

"silver bullet" which will provide the perfect automated solution to configuration

management. What is available is a myriad of tools for different platforms and different

project sizes; each providing markedly different levels of functionality.

A CM program must match not only the technology that is to be applied to a

project, but also be compatible with the CM issues presented by the software under

development. For instance, if one were to implement a CM plan on an expert system one

should take into account the change control of the expert system software, as well as the

changes to the knowledge.

128

5. Resources Available

The availability of resources is another concern. The implementation of a CM plan

may require training, additional personnel, automated CM tools, and other resources. The

degree to which a CM plan can be implemented may be dependent upon the availability of

time, money, and other constraining resources. The CM plan should be designed so that it

is sustainable given the resources likely to be available to support it.

B. PHASES OF CM ADOPTION

Before presenting the implementation recommendations for the MK92 MAES

project, it is useful to describe a generic process for CM program implementation. As

recommended by Dart (1993), one should treat these phases as though they are starting

points of a CM checklist. Phases one to three need not necessarily be conducted in series.

Depending upon manpower availability and the complexity of the project, the steps

presented in the following paragraphs could be undertaken simultaneously.

1. Phase 1: Determine CM Status and Needs

In the first phase, the organization must determine the extent to which CM is being

practiced within the organization. To do this, it may first be necessary to educate the

project members on CM. It may be that some degree of CM is already being practiced,

but not in a well defined manner. A review of the organization's procedures and current

practices is useful in determining the degree to which CM is being practiced.

Once the developers know what the status of their CM process is, they should

identifY what their CM needs are. Complex, mission critical software projects using

distributed development techniques will require a more rigorous CM processes than a

small development team building work productivity tools on a single computer.

2. Phase 2: Evaluate Candidate CM Tools

As the project team identifies its needs it can begin identifYing and evaluating

automated CM tools which will meet their needs. The decision as to whether or not the

project development team requires an automated tool should be made. A small one or

129

two person coding effort may not necessitate the functionality of a CM tool. Chapter V

discussed the considerations for evaluating CM tools in greater detail.

3. Phase 3: Write the Configuration Management Plan

The configuration management plan serves as the road map for the configuration

management process. The plan adopted should match as closely as possible the needs,

culture, and capabilities of the project team. A plan that is too restrictive, does not satisfy

critical needs, or is beyond the capabilities of the development effort will not be adopted

by project personnel.

4. Phase 4: Implement a Pilot Project

If practical, the CM plan should be initiated on a pilot project. By doing so, the

team is able to elicit feedback from developers and make adjustments to CM processes

before the CM plan is applied project-wide. This may ease the transition to the new CM

methodology.

5. Phase 5: Implement CM Plan

Once the pilot project has been implemented and adjustments to the CM plan have

been made, the CM process should be extended to the intended project. Every effort

should be made to make this implementation as smooth as possible. Training for

developers, management support of the effort, and the availability of resources are all

critical factors for a successful implementation (Buckley, 1993).

6. Phase 6: Evaluate and Adjust Plan as Necessary

Just as software evolves, so should the project's CM plan. Through the use of

feedback from developers, management, CM library administrators, and customers, the

configuration manager is able to recommend changes to the CM plan which will streamline

the process and ensure the success of the CM plan.

130

C. CM ADOPTION PHASES OF THE MK92 MAES

This section addresses the adoption phases of a CM plan for the MK92 MAES

project.

1. Phase 1: The Status ofCM and Needs of the MK92 MAES Project

a. Status of eM in the MK92 MAES Project

The first step in the implementation of the MK92 MAES project's CM plan

is to identify the current status of CM in the project as well as its CM needs. The MK92

MAES project is presently at what Capers Jones (1994) describes as severity level one.

That is, neither automated nor manual configuration control have been formally

established. Changes are made to the expert system software as they are received by

NSWC-PHD or when errors are found. Only when a change requires a significant revision

to the project is there any discussion among faculty and students as to the feasibility and

impact of proposed changes.

No formalized process for tracking changes is currently in place. In several

instances this has resulted in changes to knowledge documents being stored by a

developer without the knowledge of other project members. This situation has caused

problems, particularly with the continual student turnover.

Version control for the MK92 MAES consists of unprotected directories in

which the latest version resides. There are no safeguards to prevent someone from

making unauthorized changes to release versions. Archival of versions consists of storing

knowledge documentation in loose-leaf binders which contain a copy of that revision's

knowledge documentation, diskettes containing the program's code, and a paper copy of

the implemented procedures. Though far better than no configuration management at all,

there is no process by which decisions are made to create new releases and archive older

versions.

Having noted the CM shortcomings, several factors should be pointed out.

Expert System CM is in its infancy. The vast majority of expert system projects have not

131

implemented a CM plan. As the literature review demonstrated, there is a scarcity of

writing on the subject. Also the .MK92 MAES project was originally conceived as a

prototyping demonstration, for which the establishment of a CM process was considered

too costly. As Chapter IV noted is often the case with expert system development, it was

not until well into the project that a change in strategy resulted in the evolution of the

demonstration prototype into a developmental effort aimed at delivering a production

fieldable product. This study began a year ago when the aforementioned change in

strategy was established. In that time, three groups of students have transferred. The

resulting loss of corporate knowledge has underscored the necessity of implementing a

CMprocess.

b. eM Needs of the MK92 MAES Project

The CM process developed for the .MK92 MAES must be flexible enough

to process changes from many different sources in a timely manner. This flexibility is

crucial, particularly during the developmental stages of the expert system life cycle.

Proposed changes must be evaluated and acted upon with as little delay as possible.

The CM process should account for the work environments of both NPS

and NSWC-PHD. The development atmosphere of an academic setting and the fact most

implementation is done by Master's Thesis students must be taken into consideration. For

instance, the formalized, highly structured, boards typical of organizations with strict

hierarchies such as NASA are inappropriate for the academic setting of NPS. By fitting

the process to the culture and procedures of the two organizations, disruptions to the

developer are minimized during initial implementation of the CM process.

Strict access control, version control, and check-inlcheck-out procedures

are required for the MK92 MAES project. Many of the CM-related problems

encountered (i.e., identifying latest versions of files) during the development of the first

two modules of the MK92 MAES could have been avoided through these establishment of

a CM process which encompassed these features. The .MK92 MAES project needs a CM

process which can control not only the expert system, but also the knowledge base. The

132

ability to archive both in an automated fashion and provide change information and

functionality is highly desirable.

Current technology does not support automated change control for the

expert system development shell, Adept, used in building the MK92 MAES beyond the

use of date/time stamps. Some method which is capable of tracking the status of

proposed changes should be adopted. Specific changes to nodes may need to be identified

using comments or through the use of a manual process. Whichever process is

implemented, it needs to be as easy as possible to use. The frequent turnover of students

necessitates a process with an easy a learning curve. It must also be affordable. The

benefits gained from the implementation of a CM program must outweigh the associated

overhead. The need to minimize overhead is particularly important in the early phases of

CM implementation when the greatest resistance is likely to be met.

2. Phase 2: Evaluate Candidate CM Tools for the MK92 MAES Project

Chapter V discusses the evaluation and selection process of an automated CM

tool. The tool selected, PVCS by Intersolv, encompasses a degree of functionality that

promises to address many of the requirements of the MK92 MAES' CM plan. Examples

used in this chapter are in terms of the process as implemented by PVCS. Adjustments

will need to be made to the plan to account for the use of an automated CM tool other

than PVCS Version Manager.

3. Phase 3: Write the CM Plan for the MK92 MAES Development

The remainder of this chapter is dedicated to presenting specific recommendations

for application of CM to the MK92 MAES development. Subsection D, that follows,

addresses recommendations for a CM plan for the MK92 MAES. Specific focus is on the

four tasks of configuration management and their applicability in managing changes to the

MK92MAES.

133

4. Phase 4: Implement a Pilot Project

As there was only one expert system project under development by the MAES

development team, it was not possible to initiate a pilot project. However, the various

tasks of the CM plan, such as change control and status accounting, were practiced with

PVCS using MK92 MAES software files and knowledge documentation implemented in

alICLEAR. This included the following:

• establishment of a configuration management library using PVCS functions
(such as working sets)

• CM library administration

• creation of expert system life cycle stages using PVCS promotion models

• popUlating the CM library

• editing files using the tool's check-in, check-out functions

• creating reports for review

• reviewing change information

• using the tool's journal

• migrating packages through the promotion models

• promoting oftested modules to the status of a product.

By using this approach the project development team was able to devise a eM

implementation that maximizes the capabilities of the selected eM tool.

5. Phase 5: Implement the MK92 MAES eM Plan

At this point, it is important to note that no one aspect of configuration

management can prevent poor software development practices. Configuration

management is, in itself, a system. Only through a combination of CM tools, policies,

procedures, audits, and personnel discipline can an organization expect to adopt an

effective eM program. Plan implementation begins with the establishment of CM policies

and the education of project team members. Unless they understand what the potential

benefits of CM are to them and their role in the CM process, one cannot expect a CM

134

implementation to be successful. This thesis should be an integral part of the CM training

process for future MK92 MAES project team members.

To implement the MK92 MAES CM plan, the assigned configuration

library administrator (CLA) needs to establish the CM library and working libraries for the

developers. Access controls were implemented, and archives populated with the baselined

versions of software under development. PVCS automates many of the CM functions.

The use ofPVCS in the implementation process will be identified in greater detail through

the use of examples provided later in this subsection. Once the appropriate controls were

in place, and the CM library established, the programmers can begin developing software

and managing domain knowledge using the new CM process.

6. Phase 6: Evaluate and Adjust Plan as Necessary

No implementation will be flawless. Problems which were not anticipated by the

drafters of the MK92 MAES CM plan are bound to arise. Additionally, as the MK92

MAES project evolves, so to will the CM plan. Since the CM plan for the MK92 MAES

has only been in place for a short period of time, insufficient feedback has been generated

to evaluate its suitability at this point. However, it will be necessary for future MK92

MAES project team members to provide feedback to the configuration manager, CLA,

and project manager as to their perceptions of the CM processes strengths and

weaknesses. Their recommendations for improvement will be critical in ensuring a CM

process that promotes software integrity is adopted by the project team.

D. eM FOR THE MK 92 MAES

Typically, a configuration management plan is a document which includes an

overview of the purpose, tasks and roles of the CM process. Due to the desire to limit

redundancy, yet provide the project team members with a working document, the

background information which would normally be presented in a CM plan should be

considered to have been presented in the preceding chapters. This subsection outlines the

policy recommendations for CM in the MK 92 MAES project. Terms such as "will" and

"shall" are in keeping with the traditional format of CM plans and represent policies in

135

which an action is required. Terms such as "could", "should," and "may" are used in

situations where the policies presented are recommendations to project management.

1. eM Organization

Although some responsibilities and duties are addressed here, many duties and

responsibilities are outlined in the recommendations regarding the specific CM tasks.

a. Project Manager

The project manager (PM) for the MK92 MAES should be a faculty

member. This faculty member will act as the approval authority for actions such as the

granting of user accesses, change approval, and change migration. The PM should

promote the improvement of the CM process as well as ensure developers are adhering to

established policy. Additionally the PM will be responsible for allocating resources to the

developers.

It may be necessary to have an additional faculty member act as the

program manager in charge of project development. If such a position is created, approval

actions listed in the following sub-sections should be the responsibility of the PM in charge

of development.

h. Student Project Leader

The MK92 MAES project team should establish the position of student

project leader. This will allow the faculty acting as project manager to delegate some

responsibilities regarding reporting and approval requirements. The degree to which

responsibilities are delegated should be considered with caution. The faculty member is

ultimately responsible for the project. A clear definition of responsibilities regarding issues

which could adversely affect the project should be made. The project manager may wish

to retain control over decisions to baseline, change control authority, and version control.

However, approval authority for granting access controls could be delegated. The

decision to delegate responsibilities should rest with the project manager and be based

136

upon the number of students In the project and the need for supervision of the

development effort.

c. Configuration Manager

The configuration manager for the MK92 MAES should be either the

student project leader, the faculty member in charge of development, or another

responsible developer. The current size of the project does not warrant the establishment

of a separate position, therefore it should be assigned as collateral duty. The configuration

manager must be the authority on MK92 MAES CM policy. In addition to the various

responsibilities outlined in this chapter, the CM manager should be evaluating the

emerging trends in CM and their applicability to the evolving needs of the implementation.

d Configuration Library Administrator

The CLA is responsible for creating the various CM libraries outlined in

Chapter V. Additionally, the CLA will establish and maintain the PVCS archives, working

sets, and access controls. It is recommended the CLA not be given the authority to

approve the addition or deletion of archives; only the responsibility and access for

implementing the decisions of the project manager and configuration manager regarding

these matters. This ensures project management is aware of major changes to the CM

library.

It is recommended that the position of CLA be assigned to a student

developer. If student's are involved in the IV & V of the expert system, their role in the

product assurance process would make one of them the logical choice for managing the

configuration management library.

As pointed out in Chapter V, PVCS has two interfaces. The CLA shall

perform library administrative functions through PVCS version control administrator

interface. All programming functions should be used through the user interface. This will

prevent users from accessing CLA functions.

137

e. Configuration Control Board

As pointed out in Chapter V the configuration control board (CCB) acts as

the clearinghouse for all change requests. For the MK92 MAES project, it is

recommended the CCB is made up of a faculty member, the student developer responsible

for implementing the proposed changes, and any project personnel in a position to

evaluate the impact of the proposed changes.

The CCB for the MK92 will meet as an integral part of the development

team's scheduled project meetings, preferably before the discussion of other business.

Other meetings of the CCB can be called as needed. This approach is best suited to the

project environment of the MK92 MAES. It allows the students and faculty to meet

weekly or bi-weekly only, thereby reducing the burden of project meetings upon their

other responsibilities.

The CCB's focus is on the evaluation of a proposed change's impact and

how to allocate resources, if necessary, for its implementation. It is important the CCB

remain focused on this process and not drift into discussions of other project related

matters. It is the responsibility of the project manager (PM) to ensure the CCB meeting

deals exclusively with change related issues.

f. Programmers

The term programmer refers to any member of the project team involved in

the physical coding process of domain knowledge into Adept procedures. Project

management and the CLA should not be given access controls to make changes to specific

nodes. CM requires discipline in development, and that discipline must begin with the

identification of who is allowed to make changes.

A primary responsibility of a programmer is to be familiar with and follow

the established procedures of CM for the MK92 MAES. Through the use of access

controls, access can be limited to specific files, archives, and functions. It is the

responsibility of programmers to use only the access for authorized programmers they

have been assigned. For instance, a programmer may be assigned the additional

138

responsibilities of configuration library administrator (CLA). It is the responsibility of the

programmer to avoid using their CLA access to make modifications to code.

One solution may be to remove programming functions from the CLA's

access level. When performing CLA functions, a programmer will have to use a different

account than when they are making changes. The power of the CLA's access and the

ability to not only make changes to files, but delete entire archives, is the reason for

making the decision to segregate responsibilities and access. The inadvertent deletion of

an archive because the programmer thought they were deleting their own

work-in-progress must be guarded against.

g. NSWC-PHD and Domain Expert

NSWC-PlID is presently the collection point for changes made to the

MK92 MOD 2 FCS. This role makes them the logical collection point for trouble reports

from the fleet regarding the MK92 MAES. Therefore, NSWC-PlID should ensure the

expert system's domain knowledge is updated. Until the use of the script-based graphical

tool, all CLEAR, to document knowledge is completely implemented, changes to domain

knowledge should continue to be provided to the MK92 MAES development team at NPS

in the fonn of hand-drawn diagnostic trees. These trees should then be incorporated into

the all CLEAR coding process of the domain knowledge. Once allCLEAR implementation

has been completed, NSWC-PlID should make changes to the domain knowledge using

all CLEAR. This will speed up the change implementation process.

The ability for NSWC-PlID engineers to make corrections and changes to

domain knowledge makes the reporting of problems as to fleet readiness and safety more

efficient and effective. An assessment of the impact of a problem with the MK92 MAES

should be included with any changes to the domain knowledge NSWC-PlID provides to

the development team.

h. Customers

For purposes of this discussion a customer is defined as a ship or

installation to which the MK92 MAES has been deployed. The only responsibility

139

assigned to the customer is to provide feedback regarding any problems associated with

the MK92 MAES or recommendations for improvement. It may be necessary to establish,

through NSWC-PHD, a reporting procedure regarding the use of the MK92 MAES and

any recommendations or problems encountered. Customer feedback is crucial if

improvements to the MK92 MAES software is to be improved.

2. eM Library

The CM library for the MK92 MAES will be established and maintained by the

configuration library administrator. The current method of implementation of the CM

library will be to use the automated tool, PVCS, described in detail in Chapter V. All

references to specific implementation of the CM library will be in reference to PVCS and

its functionality. The reader is referred to Chapter V, or the PVCS Reference Guide

(Intersolv, 1993a) for a description of the specific functions and terminology used in this

discussion of the CM library.

Two base working sets are recommended for the MK92 MAES. One base

working set should be established for the :MK92 MAES project software. A second base

working set should be implemented that will contain the knowledge document as it is

represented using the script-based graphical tool alICLEAR.

In addition to the working sets for the domain knowledge and product software, it

is recommended that CM working sets be established for documentation (if digitized) and

the Installit build-script files. The adoption of automated tools such as PVCS Make (a

build program by Intersolv that integrates with PVCS Version Manager) and document

management software may be one option for simplifying this process.

The CLA can establish whether or not a working set will have public access or not.

If the project manager wishes to restrict programmer's access to certain base working sets,

such as the InstaIlit build-scripts, he can tell the CLA to create the base working set, but

not select "public" on the working set creation screen ofPVCS.

140

Within each working set, archives shall be established by the CLA for every file

checked-in. This is done as part of the file check-in process ofPVCS. The archives will

be used to store previous versions of files.

In addition to the base working sets, the CLA can also establish custom working

sets which can be accessed by all programmers. This is useful for those conducting

IV&V. The CLA can establish custom working sets for IV&V personnel that match files

containing domain knowledge with the corresponding MAES program file. By so doing,

the IV & V personnel can easily check out files which are from separate base working sets

in a way that is well suited to their process. Additionally, programmers can make changes

to domain knowledge and Adept procedures more easily by being able to check out the

applicable files together. The establishment of publicly accessible custom working sets

that correlate domain knowledge files coded in allCLEAR with program files from Adept

is highly recommended.

In order to implement the life cycle of the expert system's development process

within PVCS, it will be necessary to establish a promotion model. A simple promotion

model that promotes files from a developmental configuration to a test library and in tum

to a product library should be adequate for the purposes of the MK92 MAES. All

programming and change implementation should take place in the developmental library.

All IV&V functions should be performed using the test library. All builds and product

disks should be created using the product library. The CLA is also responsible for

establishing the promotion model to be used by the MK92 MAES project.

3. Configuration Identification for the MK 92 MAES Project

This subsection contains recommendations for configuration identification of

MK92 MAES configuration items.

a. Baselines for the MK 92 MAES

Baselines for the MK92 MAES are broken down into two primary

categories. The first category is the knowledge baselines. These are discussed in detail in

Chapter IV, and therefore will only be listed here.

141

• Functional Knowledge Baseline. The functional knowledge baseline shall
consist of the knowledge documentation representative of the MK92 MAES
version 1.0 knowledge base. As additional releases are made, the knowledge
which makes up the product's knowledge base shall make up the functional
knowledge baseline of the subsequent development efforts. For example, when
version 2.0 is released, its knowledge documentation will be used as the
baseline for development efforts after version 2.0's release.

• Developmental Knowledge Baseline. The developmental knowledge base shall
consist of the functional knowledge baseline of the MK92 MAES version 1.0
plus any implemented changes to the knowledge base after the release of
version 1.0. As outlined in Chapter IV, the developmental knowledge baseline
represents the current status of implemented, approved domain knowledge.
Changes to the knowledge base are made to the developmental knowledge
baseline.

• Product Knowledge Baseline. The product baseline shall be established as the
knowledge documentation representative of the MK92 MAES version 1.0. (the
version currently being released to test sites). Subsequent product knowledge
baselines shall incorporate the knowledge representative of the latest release of
the MK92 MAES.

The second category of MK92 MAES baselines is the software baselines.

The reason for segregating the knowledge and software baselines was explained in

Chapter IV. Software baselines are examined in Chapter III. The following is a listing of

the software baselines established for the MK92 MAES.

• Functional Baseline. The MK92 MAES version 1.0 functional baseline shall
consist of the Engineering Development Model (NSWES, 1992) and the
functional knowledge baseline for the MK92 MAES version 1.0. Subsequent
versions should include that documentation that defines the required interfaces
and the functional knowledge defining the current release.

• Developmental Baseline. The developmental baseline for (current software, and
current knowledge documentation) the MK92 MAES version 1.0 represents the
current status of development. Therefore, it should include the latest copy of
all files, documentation, and knowledge (in the form of the developmental
knowledge baseline) that represents the current implementation of the MK92
MAES. As the software evolves, so to will the developmental baseline.

• Product Baseline. The MK92 MAES product baseline consists of the software
which makes up the Adept code for version 1.0, the build scripts for making
product diskettes, the MK92 MAES product knowledge baseline, user's
manuals, and any other documentation that defines, describes, or facilitates the

142

reconstruction of version 1.0. Subsequent versions must be baselined as a
result of agreement between .MK92 MAES project management, and
NSWC-PHD.

The version numbering of configuration items within baselines that are

stored on a computer shall be accomplished using the numbering features of PVCS.

Numbering of other configuration items will be discussed as appropriate in the remaining

subsections. Any changes to the numbering scheme adopted here must be approved by

the CCB and the faculty project managers.

h. Categorization of MK92 MAES Software

A description of the software categories for the .MK92 MAES is presented

in Chapter m. The following is a listing of the categories and software under each.

Category 1: Product software. This encompasses all files that can

potentially be incorporated in a release version of the .MK 92 MAES.

Category 2: Vendor-provided product development software. Software

that falls under this category includes:

• Adept version 2.2

• allCLEAR version 2.0a

• Installit for Windows 4.59w

• PVCS Version Manager 5.1.1

• PVCS GUI for Windows 1.0

Category 3: Vendor provided software not specifically related to product

development (e.g., operating systems and word processors.). Software that falls under

this category includes:

• MSDOS 6.2

• Microsoft Windows 3.1

• Ami Pro 3.0

Category 4: Test software. This consists of any formal test routines

written by the development team. Currently, there is no software that falls under this

category.

143

Category 5: Other software. As the name implies, this is a catch-all

category for software not falling into any of the above categories.

c. Configuration Identification Naming Conventions by Classification

Level of Software

Category 1: Product software. Since version 1.0 was established prior to

the implementation of CM and build scripts have already been constructed, the names

already given to MK92 MAES files should not be changed until a second release is being

considered. Upon product baselining of the next release, the MK92 MAES project team

may wish to migrate the naming of files to be more in line with the generally accepted

formats outlined in Chapter ill and presented by Buckley (1993). The program's name

shall be "MK92 MAES v x.x" were "x. x" is the version number. The following is an

example of the recommended naming convention for Adept files.

MAES_MODULE.FILE EXTENSION; VERSION NUMBER

MAES is the program name and should be present in all MAES files, if

practical. The MODULE name refers to the module that is being coded (i.e., FCl, FC2,

FC4, CAL, etc.). The label for the FILE EXTENSION will be assigned by the

development tool (Adept, or All Clear) and the VERSION NUMBER will be assigned by

PVCS.

Category 1 program and file names shall be recommended by programmers

and approved by the faculty member in charge of development.

Category 2: Vendor-provided product development software will use the

name assigned by the vendor.

Category 3: Vendor provided software not specifically related to product

development. As with Category 2 and Category 3 software will be assigned the name

used by the vendor.

144

Category 4: Test software. Test routines as a rule are not applicable to

the Adept development environment. However, given the potential for a MK92 MAES

programmer to develop test routines, it is necessary to recommend an identification

scheme. Informal test software developed as one-time-only test routines should be named

an appropriate name by the developer and should remain in the programmer's working

library.

Those routines that are to become part of a formalized testing process

should be labeled in the following format:

TEST _ MODULE. EXTENSION; VERSION NUMBER

TEST identifies the file as being a test routine. The programmer should

insert the name of the module for which the test routing was developed where MODULE

appears in the example. As with the naming of product files, the EXTENSION and

VERSION NUMBER are named by the computer software.

Category 5: Miscellaneous software. Any software not falling under the

previous categories is not brought under CM for the purposes of the MK92 MAES

project. The naming of Category 5 software is done at the discretion of its developer.

d Configuration Identification Naming Conventions of Knowledge

The recommendation for naming the knowledge document assumes the

diagnostic trees for the MK92 MAES will be implemented using all CLEAR and will

mirror the implementation of the knowledge in Adept. The process used for naming

software files for Adept would apply equally to the naming of allCLEAR files. The only

difference would be the name of the file extension which is assigned by the computer.

145

e. Configuration Identification of Documentation Other than the

Knowledge Document

The use of a document identifier number such as those presented in

Buckley (1993) or Chapter ITl is not recommended to satisfy the current needs of the

MK92 MAES project team. For technical manuals, PMS cards, ORDALTs and other

documentation, the MK92 MAES project team shall adopt the name given by the

originator of the document. Documentation should be identified by the name given by the

originator and the date drafted. If no date is on the document, the date the document was

brought under CM should be assigned.

Documents originated by the MAES project team shall have their titles

approved by the project manager. This is done during the normal editing process of the

document.

Version description documents are to be labeled using the following

format. Program name and version number are self-explanatory. DATE refers to the date

the document was approved by the program manager. For example:

PROGRAM NAME-VERSON NUMBER-DATE
MK92 MAES-vl.0-3FEB95

f. Configuration Identification of Erasable Electronic Media

Labeling conventions of electronic erasable media such as floppy diskettes

and magnetic backup tapes shall be in accordance with the method presented in Chapter

ITl. An electronic media label shall contain the following information.

• Name of the contents

• Version number

• Date prepared

• Name, telephone number, mailstop, and organization of pre parer of the item

146

MAES.

• Number of the version description document (VDD) that specifies the media's
contents

The following is an example of an electronic media label for the MK92

,--------------------,
MK92MAES

Version 1.0
04 March 1995

P.G. Metzler (408) 656-3626
MK92 Project Team

Naval Postgraduate School
Monterey, CA 93940

VDD: MK92 MAES-v1.0-00l

,.------------------~ Figure 6-1. Example of an electronic media label for the MK92 MAES.

4. Configuration Change Control for the MK 92 MAES Project

This subsection addresses the procedures and policies for configuration change

control in the MK92 MAES project.

a. Change Control Authority (CCA)

The CCA for the MK92 MAES is organized by baseline. Table 6.1 is a

summary of the MK92 MAES baselines and associated change approval authority.

Baseline

Functional Baseline
(knowledge and software)

Developmental Baselines
(knowledge and software)

Approval Authority

Agreement between NSWC-PHD and MK92 MAES
project management

MK92 MAES Project Manager as recommended by
CCB

Product Baseline Agreement between NSWC-PHD and MK92 MAES
(knowledge and software) project management

Table 6.1 Change Control Authority for the MK92 MAES.

147

h. Change Control Process

Feedback from the fleet regarding problems and recommendations for

enhancement should be collected by NSWC-PHD and recorded on a change request.

Change requests should be provided to NPS with an estimation of the problems impact

should it not be implemented. Change requests should also accompany changes to

knowledge resulting from ORDALTs and other technological changes.

Problems discovered by developers are documented on a change request

form with an impact assessment and recommendation for corrective action if known. The

change request is presented to the CCB at a project team meeting. The CCB will

determine the impact of the proposed change and make a recommendation as to how to

proceed. Final change authority will lay with NPS faculty members in instances which do

not alter functionality or cause the product to vary from specifications. If the project's

schedule is severely impacted, or the product's functionality is altered to the extent it will

vary from the design agreed upon, then NSWC-PHD should be consulted for concurrence.

Approved change requests are to be prioritized by placing a due date for

completion. The use of nominal ratings (high, medium, low priority) should be avoided.

Changes will be made by checking-out the appropriate knowledge document or software

module from the applicable PVCS archive. It is recommended the CLA establish working

sets that group MK92 MAES modules implemented in Adept with their associated

knowledge implemented in all CLEAR. This will ensure changes are implemented to both

the knowledge base and the Adept procedure. Upon completion of the implementation,

the configuration item should be checked-in to the archive from which it was removed.

An example of the change process to both the knowledge base and software is provided in

Subsection E.

c. MK 92 MAES Change Control Documents

MK92 MAES change requests and the action taken on them should be

recorded on one concise document. This minimizes the amount of paperwork. Appendix

148

B provides an example of a change request document that could be used for the MK92

MAES.

Changes documents should be maintained in a Change Log Book that is

comprised of three sections

• Proposed changes. This section contains all change requests that have not been
reviewed and approved by the CCB.

• Active changes. This section of the Change Log Book contains all change
requests that have been approved for implementation but have not been
completed.

• Closed changes. This section contains those change requests that have been
implemented or were not approved when reviewed by the CCB.

It is recommended that a problem tracking software or documentation

management tool be identified and purchased to automate the tracking of change

documentation. The use of an automated tool promotes the implementation of a seamless

CM process. Given the size of the MK92 MAES development team, there is a need to

reduce the administrative burden of the change control process.

d Access ControlsiPriveleges

PVCS refers to access controls as privileges. Privileges for the MK92

MAES are approved by the MK92 MAES project manager or student project leader, and

are implemented by the CLA. Table 6.2 lists the recommended privileges for the three

primary user groups: programmer, project management and configuration library

administrator. An explanation of each privilege available in PVCS can be found in

Intersolv manual (1 993a). As stated in Chapter V, custom access controls/priveleges can

be implemented by the CLA. The creation of custom privileges and the addition of new

user groups, such as "IV&V" or "Test and Evaluation", should be approved by the project

manager and implemented by the CLA.

The project manager may desire to restrict the privileges of the CLA to

exclude those functions accessible to programmers. This would be done to prevent a

programmer who is also the CLA from using hislher CLA account to circumvent

149

established controls. Table 6.2 provides recommendations for CLAs that are also

programmers.

User Group PVCS Access Controls

Programmer AddVersion, ChangeWorkfileName, Get, Lock,
ModifyDescription, Put, ModifyVersion,
View Archive

Project Management Unlimited, NoDeleteRev, NoBreakLock,
NoChangeCommentDelimitter,NoChangeOwner,
NoChangeProtection, NoInitArchive

Configuration Library Administrator SuperUser
(non-programmer)

Configuration Library Administrator Unlimited, NoGet, NoPut
(CLA is also a programmer)

Table 6.2 Recommended Access Controls by User Group.

In addition to privileges, the CLA may also establish login names and

password protection. These are highly recommended to prevent unauthorized access of

the MK92 MAES archives. Passwords should be created by the individual user and

implemented by the CLA.

5. eM of the MK92 MAES Knowledge Base

This subsection makes recommendations for the application of CM to the MK92

MAES knowledge base.

a. eM Issues Related to MK92 MAES Knowledge Acquisition

Chapter II introduced the knowledge acquisition methodology used by the

MK92 MAES project team. The traditional knowledge acquisition process, is one in

which a domain expert's knowledge is elicited through interviews, documented, then

tested in an iterative manner. The MK92 MAES project's diagnostic tree method of

knowledge documentation, on the other hand, does not put a knowledge engineer directly

into the knowledge acquisition process.

150

Just as the programmer has a working directory for code "in progress," the

domain expert, through the absence of a knowledge engineer, is given the same luxury.

Where a domain expert's knowledge acquired using traditional knowledge acquisition

techniques would be brought under CM when documented, regardless of its relevance, the

rate of change is decreased through the use of formalisms such as diagnostic trees. Using

the knowledge acquisition technique of the MK92 MAES project, the domain expert is

able to manipulate his/her knowledge at will, until satisfied with its content. The

diagnostic trees are not placed under configuration management until turned over to the

development team for coding.

This approach to knowledge acquisition represents a change management

challenge. The configuration management process must include the domain expert.

Because domain experts may not be well versed in software engineering disciplines, it is

important to educate them as to the purpose and importance of configuration

management. Policies and procedures must take into account the need to apply CM to the

domain expert's role in the expert system development process.

h. The MK 92 MAES Approach to Implementing eM on the Knowledge

Base

The use of the diagnostic trees to document the domain experts knowledge

simplified the task of applying configuration management to the knowledge base of the

MK92 MAES. Originally, the domain expert would draft each diagnostic tree by hand.

Each diagnostic tree diagram would be connected to other diagrams using connector

symbols. NSWC-PHD engineers would make changes to knowledge by hand, either by

lining out errors or redrawing the affected branch of the diagnostic tree.

As the knowledge base grew and time progressed, changes became more

difficult to implement. Changes were time consuming and not easily archived. Older

versions had to be stored on paper in filing cabinets. Changes to knowledge documents

were getting lost and, on several occasions, were not implemented. Additionally, errors

151

would be introduced due to misinterpretations of a domain expert's handwriting during the

coding process.

To alleviate these problems, the decision was made to use an automated

script-based flowcharting tool to capture and represent the domain expert's knowledge in

the form of diagnostic trees. Originally intended as a tool to save time and provide a less

labor intensive method of developing the diagnostic trees, the software proved to be a

valuable tool in the establishing a CM process for the knowledge base.

c. AIICLEAR

The tool selected for use in the MK92 MAES project was allCLEAR

version 2.0a, by CLEAR Software. All CLEAR is a script-based flow charting program

which automatically draws different types of charts by using a simple script language.

Figure 6-2 is an example of an all CLEAR script. Figure 6-3 is an example of the

flowchart generated by the script in Figure 6-2.

From Al.2.

Is The RF Power Output of Mixer Within -13.6+/- IdBm at 30MHz +/- .1MHz?
(Yes) Is the RF power input to the Stalo Loop Assembly within -13.6+/- IdBm at 30 MHz

+/- .1MHz?

?end

(Yes) Replace stalo Loop Assembly UD412/AIA8
(No) Replace/Repair Cable Assembly PIW33P2

(No) Is the RF Power Output of the Stalo Assembly within + 1 0 to + 13 dBm at 8.93 to
9.43 GHz?

?end

(Yes) Is the Stalo RF Power input to the Mixer within +9.8 to + 13dBm at 8.93 to
9.43 Ghz?

?end

(Yes) Replace Down Converter Mixer UD412/AIA3-Ul
(No) Replace/Repair Cable Assembly PI W3IP2

(No) Replace Stalo Assembly UD412/AIA3-A3

Figure 6-2. Example of a script written in all CLEAR

152

The ease with which one can build flowcharts is a vast improvement over

the original manual process used by the MK92 MAES domain experts. Additionally, the

scripts allow for changes to be made quickly and easily.

Replace sWo Loop
_Iy UD4l2lAlAB

Is the RF power qJUt 10
the Stalo Loop

_Iywithin
·13.6+I·ldBmIl30MIIz

Replace/Rq>air cable
_IyPlW33P2

Replace Down
Coovatcr Mixer
UD4l2lAlA3.UI

Is the RF P Output
" orthe Stalo _Iy

Is the Stalo RFPowcr

within +10to +13 dBm 11
8.9310 9.43ClHz?

" qJUt 10 the Mixcrwithin No
+9.810 +13dBmIl8.93

10 9.43Gbz?

ReplacelRepair Cable
_lyPlW3lP2

Repla<e Stalo _Iy
UD4l2lAlA3·A3

Figure 6-3. Graphical representation of a diagnostic tree using all CLEAR

An unexpected advantage of using all CLEAR to document the expert's

knowledge is the ease with which configuration management may be applied to the

knowledge base. Because the diagnostic trees are implemented using a text- based script

language, the features of configuration management tools which implement version

control, change control, status accounting , and configuration auditing can be used to

apply CM to the knowledge base. Differences between versions can be identified down to

the specific changes made to the knowledge. Older versions can be recreated, and change

histories can be maintained. The features, capabilities, and limitations of CM tools are

discussed in Chapter V.

153

Because of the selection of diagnostic trees as the knowledge acquisition

method, knowledge acquisition and representation phases are accomplished

simultaneously. Diagnostic trees are placed under configuration management when they

have been delivered to NPS for implementation. Configuration management at the domain

expert's level is limited to the use of naming conventions and basic access controls to

prevent work-in-progress from being inadvertently included in completed diagnostic trees.

In instances where hand-drawn diagnostic trees are delivered, a copy is

made, dated, and archived. The original is implemented in all CLEAR. If a file containing

the knowledge already exists, it is checked out of the CM library and updated. The use of

the tool's search function to locate the headers of various troubleshooting paths

represented in a particular allCLEAR file enables the maintainer to locate the section

which must be updated. After Qualitiy Assurance (QA) of the diagnostic trees has been

accomplished, the file containing the updated knowledge is checked into the CM library .

Older versions of the file containing the knowledge are archived. The archive capability is

a feature ofPVCS.

Future changes and diagnostic trees will be in the form of allCLEAR files

created by the domain expert and saved on diskette. These files will facilitate the

establishment of a paperless process of knowledge acquisition and representation. Though

this tool is particularly useful for procedural knowledge, the author recommends its use in

rule based applications also be explored.

d Changes to the Knowledge Base

The change process outlined in this subsection assumes the use of

allCLEAR. To implement changes to the knowledge base, the CLA should configure

PVCS with allCLEAR as the text editor. Subsection E is an example of a change process

that incorporates changes to the .MK92 MAES knowledge base.

As with changes to the .MK92 MAES program, decisions to change

knowledge will be made by the CCB. The decision to incorporate changes will be through

a by-negation process. That is, NPS should incorporate changes provided by

154

NSWC-PHD into the knowledge base unless there is a very good reason for not doing so.

It should be assumed NSWC-PHD is sending change requests to knowledge that are

considered necessary for implementation. This change request should be presented to the

CCB with the understanding that changes will be made unless a reason can be provided as

to why they should not be incorporated in the knowledge base. The decision by the CCB

to approve a change to the knowledge base triggers a change request for the

implementation of the knowledge in the expert system.

Using alICLEAR, implementation of approved changes to the knowledge

base would be as follows: The appropriate all CLEAR file from the PVCS archives would

be checked-out using the "Get" icon in the PVCS main window. By selecting the "Edit"

icon, all CLEAR will be started, and the programmer may make hislher changes. Upon

completion of the editing session, the programmer should check-in the revised file using

the "Put" icon in the PVCS main window.

6. Configuration Status Accounting recommendations for the MK92 MAES

a. Access Control List

The Access Control Report is a report that provides a listing of the user

groups, users, and their assigned access privileges. The report is provided to the project

manager and student project leader by the CLA. The Access control list should be

produced quarterly.

h. Configuration Item Report

The Configuration Item Report IS a report listing all items under

configuration management. It should be generated quarterly upon rotation of CM

manager and upon turnover of the CLA. Generation of the report is the responsibility of

the configuration library administrator.

155

c. Change Status Report

A change status report should be produced that gives the latest status of

approved change requests. Its availability will depend upon the features of the tool

purchased for tracking changes.

The change status report should be provided to each member of the CCB

when it meets. Additionally, all project team members attending project meetings should

be given a copy of the change status report. Change status reports should be part of the

turnover given to faculty members by project team members as they transfer. When

project meetings are being held, the frequency of change status reporting shall be

determined by the project manager. Generation of the change status report is the

responsibility of the configuration manager.

d PVCS Reports

The following is a list of the PVCS reports. These reports can be produced

on demand by any developer with the appropriate access.

• Difference Report. The Difference Report displays the modifications made
between two revisions or files. The generation of difference reports between
two binary files is not very useful.

• Archive Report. The Archive Report is used to provide information on archives
and the revisions they contain.

• Journal Report. The journal report is used to document the activity of an
archive. The basic foundation of a journal report is the journal file. A journal
file is a log maintained by PVCS of modifications made to project archives.
This log records the name of the archive, the action used to modify the archive,
who performed it, and when it was performed. The CLA can configure PVCS
to keep a journal file

PVCS Reporter is an add-on tool that provides greater reporting and query

capabilities for the MK92 MAES' archives. Through the use of PVCS Reporter, the

development team can produce customized reports on archived information.

156

e. Version Description Document (VDD)

As described in Chapter III, VDDs are sent to customers along with MK92

MAES installation diskettes. Each time a new version is prepared, the VDD must be

approved by the project manager. Generation of VDDs is the responsibility of the faculty

member in charge of development or the student project leader, if applicable. The

document is produced by the project member responsible for creating builds from the

Installit scripts. An approved copy of the VDD for a particular release should be provided

to the faculty project management and NSWC-PHD engineers.

7. Configuration Auditing Recommendations for the MK92 MAES

Audits should be conducted by project management and the student project

leader. They should be scheduled at least quarterly and prior to the release of a new

verSIon of the MK92 MAES software. The types of audits include, Functional

Configuration Audit, Physical Configuration Audit, and In-process Audit. Chapter III

provides a detailed explanation of the types of configuration audits and the purpose of

each.

E. AN EXAMPLE OF THE CHANGE PROCESS

To illustrate the recommendations presented in this chapter, an example is

provided. In this example, a change is proposed to the knowledge represented in Figure

6-2 and Figure 6-3. The proposal is input to the CM process and the changes are made.

The example assumes the domain knowledge has been represented using all CLEAR and

implemented using Adept. It further assumes PVCS is used by NPS as the CM tool for

the MK92 MAES project.

1. A Change to the MK92 FCS is Promulgated.

NSWC-PHD receives an update by the manufacturer which changes a reading

which is taken on a component of the MK92 MOD 2 FCS. After review, the MK92

experts at NSWC-PHD come to the conclusion this change affects the MK92 MAES and

157

should be proposed for update of the expert system by developers at NPS. Figure 6-2 and

Figure 6-3 represent the knowledge as it exists before the change.

A NSWC-PHD engineer represents the proposed change to the knowledge

diagnostic tree diagram and mails it to the MK92 MAES developers at NPS along with an

estimate of the impact of not implementing the change. This information is recorded on

the latest version of the MK92 MAES Change Request Form. Upon receipt of the

proposed change to the knowledge document, NPS developers assess the impact of its

implementation on resources and the project's schedule. This should take into account not

only its representation in all CLEAR but also its subsequent implementation in Adept.

At the weekly project meeting, the student project leader presents the proposed

change to the development group, now exercising there role as the MK92 MAES CCB.

After a description of the proposed change and a discussion of its impact on the software,

project resources, and the schedule, a decision is reached regarding further action. The

CCB agrees the change to the knowledge should be implemented in the version currently

under development. They further agree, in addition to a change to the knowledge, the

software should also be changed. Due dates are assigned for both the completion of the

knowledge implementation and the change to the MK92 MAES software. The CCB has

no further proposed changes to review, therefore "adjourns." The status of changes in

progress are saved until later in the project meeting. The CCB is not the place to discuss

the status of changes currently being implemented unless a change to the due date is

required.

2. Implementing a Change to the Knowledge Base

The project manager, upon reviewing the recommendations of the CCB approves

the change request. The change request is then filed in the Change Control Log Book in

the "active" section.

Figure 6-4 is an example of the PVCS main window from which many of the

following actions are initiated. The student project leader has assigned the change to the

student whose responsibility is to make changes to the calibration module. The student

158

takes the active change request from the log book and launches PVCS. The programmer

selects the "Open" icon from the PVCS main window and the project entitled MK92

MAES. He then selects the "Wkngset" icon and chooses "MK92 MAES Knowledge

Base."

... ···· .. PVcs··v~~~·i~·~··M·~·~~g·~~······ .. · .. · ·· .. · .. ···· .. ~~

Project:

View:

Working set:

MK92 MAES

Working set

1~~_K_9_2_MA __ ES_~ __ o_~_e_dg~e_B_a_s_c __________ ~11I
Working directory: c:\pvcs\gui

(-a-)
(-c-]

o Select all files

Figure 6-4. PVCS Main Window for the MK92 MAES.

To make a change, the programmer changes the working directory to the

desired directory, chooses the desired files from the list in the main window, and selects

the "Edit" icon. Because of the settings made by the CLA, PVCS automatically launches

alICLEAR, checks out the latest version of each file to the programmer's working

directory, and locks the files so others cannot make revisions to them.

Using alICLEAR, the programmer adds the changes to the knowledge

highlighted in Figure 6-5. The resulting graphical representation of the knowledge is

shown on Figure 6-6.

159

The programmer, upon completion, checks-in the revised file by exiting

alICLEAR, choosing the file that has been checked out from the file list in the PVCS main

window, and selecting the "Put" icon. The programmer completes the change process for

a change to the knowledge base by completing the action taken portion of the change

request and moving the document to the completed portion of the Change Control Log

Book.

Fro .. A1.2.
Is The RF Power Output of Mixer Within -13.6+/- 1dB .. at 3DMHz +/- .1MHz?

(Yes) Is the RF power input to the Stalo Loop Rsse~bly within -13.6+/- 1d
(Yes) Replace stalo Loop Rsse~bly UD412/R1R&
(No) Replace/Repair Cable Rsse~bly P1W33P2
?end

(No) Is the RF Power Output of the Stalo Asse~bly within +11 to +13 dB~
(Yes) Is the Stalo RF po~!r input to the Mixer within +9.& to +13dB~ a

(Yes) Replace Down Conuerter Mixer UD412/R1R3-U1
(No) Replace/Repair Cable Rsse~bly P1W31P2

?end
(No) Replace Stalo Rsse.-bly UD412/A1R3-A3

nd

?end

Figure 6-5. Change to MK92 MAES knowledge using all CLEAR.

To examine the differences between one version and another, the

Difference Report capability is used. By selecting the "Dir' icon, the programmer can

generate a difference report between two files or versions of a file. Appendix C provides

examples ofan Archive Report and a Difference Report as generated by PVCS.

160

I F~Al.2 /

~
Is The RF Power Output Is the RF power input to

ReplacclRcpair
of Mixer Within -13.6+/-~ the Stalo Loop Assembly ~ IdBmat 30MHz+/- within -13.6+!-ldBmat 30

Cable Assembly

. 1 MHz? MHz+/-.IMHz?
PIW33P2

~NO lY ••
Replace Stalo

Is the RF Power Output
Replace stalo Loop

/!!!- of the Stalo Assembly
r Assembly within +1010 +13dBmat

Assembly
UD4121AlA3-A3

8.93 to 9.43GHz?
UD412lAIA8

~y ••

Is the Stalo RF
ReplaccJRcpair

~
Power input 10 the

Cable Assembly Mixcrwithin +9.810
PIW31P2 +13dBmat 8.9310

9.43Ghz?

~y ••

Replace Down
Converter Mixer
UD4121 AIA3-U1

~

Replacc Mixer
Docs this =t

~
the RFPower

Assembly
Output of the

UDI23/A4S6-B7
Mixer?

~y ••

Recheck DSOT
Calibration.

Figure 6-6. Graphical representation of a change to MK92 MAES knowledge
using all CLEAR.

161

Changes to the MK92 MAES implemented modules are conducted the

same was as those done on the knowledge. However, instead of launching allCLEAR and

checking-out files using the "Edit" icon, the programmer will have to check out the

desired files using the "Get" icon. Additionally, the programmer will have to minimize

PVCS and start Adept outside of PVCS. Upon completion of desired changes, the

developer should save the file, exit Adept, maximize PVCS, and check-in the revised file

in the same manner as was done for the knowledge document. Unfortunately, because

Adept files are binary files, a Differences Report cannot be generated.

Once the changes have been completed, they can be migrated to the testing

archive for IV&Y. To expedite the change process, the CLA or programmer should

create custom workfiles that group knowledge modules with their associated MK92

MAES modules. This would allow the programmer to remain within the same working

set for the entire change process. This also facilitates the IV & V process by grouping

domain knowledge with its associated implementation.

F. CM RECOMMENDATIONS FOR AN EXPERT SYSTEM DEVELOPMENT

CENTER

This section presents recommended modifications to the MK92 MAES' CM plan

for its application to a small expert system development center.

1. Assumptions

Before one can make recommendations for scaling the MK92 MAES' CM plan to

an expert development center, it is necessary to make several assumptions.

• The development team consists of three to five full time developers. For a five
member development team, three will be programmers. The remaining two
developers will make up the IV & V team.

• Project management will consist of two faculty members.

• Graduate students will be involved in thesis related research.

• The development team can be expected to be involved in the development of
two expert system projects at anyone time.

162

• The expert systems under development are diagnostic systems similar to :MK92
MAES and will use the procedural network paradigm.

2. Recommendations for CM at an Expert System Development Center

Many of the recommendations made for the :MK92 MAES project team will apply

to the expert system development center. The number of personnel working for the

development center and its expert system development process will be similar to the

MK92 MAES project. The difference lies mainly in the fact that the development center is

an environment in which greater structure and continuity will be maintained than the

MK92 MAES development environment. Additionally, full time personnel will be

available to offset the increased workload.

The PM will need to ensure the CM plan is adapted to new requirements such as

the use of different development tools or the introduction of multimedia technology.

Although students are going to be involved with the project, it is recommended the

CM tasks be accomplished by the full-time developers. By doing this, continuity and

corporate knowledge are maintained, thus minimizing the impact of transferring students

on the project team.

The position of CM manager should be filled by the senior developer. The senior

developer is in the best position to control the day to day management of the CM process.

It is unlikely the CM tasks associated with a full-time development center of the size

assumed here will require the establishment of a separate CM manager position.

The position of configuration library administrator should be assigned to one of the

IV&V members of the design center. IV&V personnel focus on product integrity, and

work independently of the developers. This allows the CLA to be independent of the

programmers.

The development center should continue to use PVCS as an automated CM tool.

PVCS can be expanded to accommodate the expanded CM needs of several small

projects. It is therefore suitable to continue using PVCS.

163

The development team should all be on a local area network (LAN). This LAN

should include the faculty member's computers. Through a local area network, the

development team can access the configuration library, and management can produce

reports on demand.

The change control board can be more formal. Because the development team will

largely be made up of full-time personnel, separate meetings from the project progress

meeting can be scheduled with minimal impact on the development effort.

Change frequencies may increase with full time development taking place; however

the existence of full-time personnel and other unknown variables such as the complexity of

the projects under development makes it impossible at this time to assess the impact of

the increased workload on the CM process. As the development team becomes involved

in multiple projects, the automation of the CM processes becomes increasingly important.

Problem tracking software will be a necessity. Document management software would

also be useful.

The principles of configuration identification won't change. The difference will be

the number of items. A more formalized labeling method for documentation, similar to

that recommended by Buckley (1993) and presented in Chapter III, may be necessary as

the systems under development become more numerous and their complexity increases.

Configuration status accounting won't change. The same reports will be required.

However, as the CM process matures, techniques such as the use of metrics may require

the generation of additional reports.

Configuration auditing won't change. Just as with the MK92 MAES project, there

will be a need for configuration auditing at the development center. However, as there

will be several projects in progress at anyone time, greater coordination will be necessary

to ensure the accomplishment of audits does not impinge upon the development of other

projects unnecessarily.

The development center's CM program will have to evolve to meet the specific

challenges of the paradigm selected for implementation. This thesis assumes a procedural

164

network paradigm similar to that used in the MK92 will be used for every project. If the

decision is made to use another expert system paradigm, then the eM plan should be

evaluated and changed to meet the needs of the project.

The development center should have a general eM plan that addresses those

aspects of eM that won't change from project to project. eM, however, must be tailored

to the peculiarities of each specific project; therefore, a project specific addendum to the

general eM plan must be drafted for each project.

165

166

VIT. SUMMARY AND CONCLUSIONS

This chapter summarizes the findings of the research of this thesis on the design and

implementation of a software configuration management plan for the 1\11(92 MAES. It

also makes recommendations for further research efforts on configuration of expert

systems.

A. SUMMARY

The implementation of changes to software requires the dedication of time and

project resources. A process in which changes are made on an ad hoc basis fails to take

into account the economic justification of such changes. This lack of control over project

resources can result in projects that are over budget and behind schedule. Configuration

management (CM) is aimed at providing a control mechanism for the change process.

This section addresses the findings of this thesis with respect to the research

questions introduced in Chapter 1.

1. How Can Configuration Management Concepts be Applied to the

Implementation of an Expert System?

CM of an expert system implementation is similar to that of traditional software

development. The concepts of configuration identification, change control, status

accounting and auditing that apply to traditional software development apply equally to an

expert system software implementation. The difference between the CM of expert

systems and traditional software lies in the need to apply CM to the knowledge base. To

apply CM to expert system software alone is to address only half the problem of ensuring

the software integrity of an expert system. Through the application of eM to the expert

system development process, controls are placed over the implementation of changes to

the system. Decisions regarding resource allocation are made after evaluating the impact

of proposed changes on the project schedule and the budget. In this way, changes are

implemented to both the knowledge base and the expert system implementation in an

orderly, controlled manner.

167

2. What are the Benefits of Implementing Configuration Management?

Configuration management provides control to the change process and maintains

product integrity. Traceability is promoted between the expert system implementation and

the knowledge base through the application of CM. Furthermore, through the reporting

and auditing processes of status accounting and configuration audits, CM communicates

the status of a software project to management. Finally, CM supports development and

maintenance through version control and change control, thus giving programmers the

ability to quickly track down problems with an application and correct them efficiently and

effectively.

3. What Attributes of Expert Systems Present Unique Challenges, If Any, to

Configuration Management?

One of the challenges of implementing CM is the lack of detailed specifications.

The domain expert's knowledge serves as a surrogate for the specification of the expert

system under development. The lack of specifications complicates the establishment of

expert system baselines. This makes the traceability of an expert system traceability

difficult.

Expert systems are typically developed usmg a prototyping implementation

process. Additionally, an iterative process of eliciting and testing expert knowledge is

used to develop the expert system's knowledge base. As a result, an expert system is

subject to a higher frequency of changes than traditional software development efforts.

The expert system development environment can also add difficulty to the

implementation of CM. Not only is there a possibility of the programmers being

geographically distributed, the knowledge required for developing the system could be

physically distributed as well. The communication problems created by this situation

complicates the CM of the knowledge base and the implementation of the expert system.

Chapter IV discusses the issues surrounding the application of CM to expert systems in

greater detail.

168

4. What Issues Surround the Application of Configuration Management to

Expert System Domain Knowledge?

To ensure product integrity of an expert system, CM must apply to both the

knowledge base and the expert system implementation. Characteristics of the knowledge

base that influence the need for its CM include its volatility, functional scope, and system

size/complexity. The possibility of physically distributed knowledge complicates the CM

problem. Finally, knowledge representation schemes may make it difficult to interpret the

impact of changes to the system.

To be placed under configuration management, the expert's knowledge must be

categorized and baselined. This thesis proposes a classification consisting of four

categories of knowledge for CM purposes. These categories include working knowledge,

captured knowledge, developmental knowledge, and product knowledge. Once the

knowledge has been categorized, baselines are established. Knowledge baselines include

the functional knowledge baseline, developmental knowledge baseline, and product

knowledge baseline. Each knowledge baseline is a subset of a corresponding expert

system software baseline. The expert system's code should be traceable to the knowledge

baseline it implements.

Using the script-based flowcharting program, allCLEAR, a method for

representing domain knowledge is presented that facilitates the application of CM to the

knowledge base using automated tools. Chapter IV presents the issues surrounding the

CM of expert system's knowledge base. Chapter VI includes an example of a change that

is made to the MK92 MAES' knowledge base using allCLEAR and PVCS. Through the

use of the automated tool PVCS' custom working sets, one can group the knowledge

represented in allCLEAR with the corresponding modules coded in Adept. This facilitates

the maintenance and independent verification and validation of the expert system.

169

5. How Can Automated Configuration Management Tools be Applied to a

Configuration Management Program?

Automated configuration management tools ease the administrative burden of CM

by providing features for archiving, change control, status accounting, and auditing.

Additional features include those that provide for check-inlcheck-out, life-cycle modeling,

change migration, and the ability to reconstruct any version of a configuration item.

In this thesis, the IEEE recommended practices for the evaluation of CASE tools is

adapted for the evaluation of CM tools for their suitability for the MK92 MAES. A

methodology for evaluation that included the formulation of evaluation criteria is also

presented. Two CM tools were identified for evaluation, Intersolv's PVCS Version

Manager (PVCS) and Softool's CCC/Manager. After applying the evaluation criteria to

the two tools, the project team selected PVCS for application to the MK92 MAES.

Although PVCS has a relatively steep learning curve, the degree to which PVCS can be

customized makes it particularly suitable to the CM of expert systems. Both CM tools

evaluated share a problem that is common to all automated CM tools in that neither is able

to identify specific changes made to binary files, such as those created by the expert

system development shell, Adept. Chapter V presents summaries of the CM tools'

features, and the process used in their evaluation.

6. What Are the Implementation Issues Surrounding the Application of

Configuration Management to the MK92 Maintenance Advisor Expert

System?

Chapter VI presents detailed recommendations for the implementation of CM to

the MK92 MAES. A CM plan for the MK92 MAES must take into account the work

environment of the project. The autonomous nature of an academic environment presents

a coordination problem that must be addressed by the CM plan. Additionally, the frequent

turnover of students necessitates a process that is easy to learn and incorporates as much

automation as possible. The CM process developed for the MK92 MAES must be flexible

enough to process changes from many different sources in a timely manner.

170

Strict access control, version control, and check-inlcheck-out procedures are

required for the MK92 MAES project. However, formalized, highly structured, Change

Control Boards (CCBs) typical of organizations with strict hierarchies such as NASA are

inappropriate for the academic setting ofNPS and the nature of the project.

A CM process is recommended for the MK92 MAES project that incorporates

PVCS. PVCS provides the necessary version control and check-inlcheck-out procedures

required for the MK92 MAES. Working sets are tailored to enable maintainers to

check-out Adept modules and their associated knowledge documents, represented in

all CLEAR, for simultaneous update.

Problems or recommendations for enhancement are recorded on a Change

Request Form. This form is then presented to the MK92 MAES project's equivalent of

CCB along with an analysis of the proposed change's impact upon project resources and

the product under development. The CCB for the MK92 should meet as an integral part

of the development team's scheduled project meetings. This approach is best suited to the

project environment of the MK92 MAES.

B. RECOMMENDATIONS

The following subsections provides recommendations for future enhancements to

the MK92 MAES' CM process and directions for future research in the development and

refinement of a CM methodology for expert systems.

1. Recommendations for Future MK92 MAES CM Initiatives

a. Network the MK92 MAES Project's Computers.

To suport check-inlcheck-out and other CM functions in a distributed

development environment, it is recommended MK92 MAES developer's computers be

incorporated into a local area network (LAN). The establishment of a LAN will facilitate

the implementation of changes to configuration items downloaded from the configuration

library.

171

b. Identify CM Support Tools That Further Automate the MK92 MAES

CM Process.

Further research into the incorporation of CM support products such as

documentation tracking tools, build software, and problem tracking tools in an expert

system development environment is highly recommended. As the MK92 MAES is being

tested, problems will be identified. The ability to automate the problem tracking process

will be critical in keeping the CM of the MK92 MAES manageable for a small project

team. The Change Control Log Book should be replaced with a problem/change tracking

tool.

c. Send Prospective Configuration Library Administrators (CLA) to

PVCS Training

The person assigned to be the CLA should attend Intersolv's PVCS

Version Manager training course. This will reduce the PVCS learning curve, which as

Chapter V points out, can be steep.

d Increase Secondary Storage for MK92 MAES Computers

pvcs archives of binary files are compressed, however, as the MK92

MAES project matures and changes accumulate, additional storage space will be

necessary. The hard disk drives of the project's computers are nearing capacity. An

additional hard drive will be required to provide ample storage space for configuration

items.

e. Train NSWC-PHD Engineers to Use allCLEAR for Knowledge

Representation.

NSWC-PHD engineers manually draw diagnostic trees that constitute the

knowledge base. Once the diagnostic trees are received by NPS, they are entered into

allCLEAR to produce a knowledge base that can be placed under CM using the features

ofPVCS. To streamline this process, the possibility of training the NSWC-PHD engineers

to use all CLEAR should be considered. This may require the establishment of a greater

degree of CM at NSWC-PHD to control changes to the knowledge base as it evolves.

172

The difficulty of establishing a CM process that adequately controls changes made both at

NPS and NSWC-PHD may outweigh any perceived benefits that come from

"streamlining" the representation of the knowledge base.

One solution may be to have the NSWC-PHD engineers use all CLEAR for

knowledge representation, but still maintain CM control at NPS. Under this process,

AlICLEAR disks sent by NSWC-PHD could be placed under CM just as it is currently

done. The use of allCLEAR by NSWC would eliminate the extra step of translating

diagnostic trees into allCLEAR scripts.

2. Recommendations for Further Research

Research should be undertaken to develop configuration management tools which

can manage changes to programs written in visual programming languages. As was

demonstrated in Chapter V, current technology does not adequately address many of the

latest trends in software development. Those that track changes to visual languages

require the visual language be saved in a text format before useful CM reports can be

generated and changes can be tracked. Development environments and CASE tools

should incorporate software engineering disciplines that promote the development of

maintainable code .

One problem with the reporting capabilities ofPVCS, and CM tools in general, IS

its inability to identity changes made to binary files. As 4GLs and visual languages grow

to dominate the marketplace, improvements in either 4GL development tools or CM

support tools will be necessary if CM is to be adaptable to future development

environments. Research that addresses the challenges of applying CM to 4GLs should be

undertaken.

Finally, it is recommended that research be conducted that examines the feasibility

of establishing a center for the development of diagnostic expert systems for the Navy.

Although there are several efforts that are developing expert system technology, they do

not seem to be coordinated nor organized. Useful output such as lessons learned,

methodologies, and "best practices" are not resulting from these development efforts. The

173

result is a duplication of efforts in the areas of knowledge engineering, expert system

development, expert system shell selection, project management techniques, and other

aspects of expert system development. The establishment of a center would enable

resources to be pooled and research efforts to be focused on solving problems associated

with diagnostic expert system development. Further research is needed that would

identify whether or not the concept of an expert system development center is

economically justified.

C. CONCLUSION

The use of CM to control the changes to the software component of an expert

system, in this author's opinion, is not nearly as significant as the application of CM to the

domain knowledge from which the expert system is developed. The value of an expert

system lies in the knowledge that is contained within it. Once the expert's knowledge is

captured, represented, verified and validated, it can be implemented and adapted to suit

almost any desired implementation technology. By developing and adopting a process

that controls the changes independently to both the knowledge base and the expert system

implementation, the goal oflong-term maintainability is made more achievable.

If expert systems are to become a feasible alternative for the cost effective

maintenance in the Navy, a maintenance oriented approach to their development must be

taken. Configuration management is one approach that can be used to promote the

implementation of maintainable diagnostic expert systems.

174

APPENDIX A. SOFTWARE CONFIGURATION MANAGEMENT STANDARDS

The standards and publications presented here are adapted from STSC (1994) and

Buckley (1993).

A. DEPARTMENT OF DEFENSE STANDARDS AND PUBLICATIONS

The following is a list of DOD and military standards and publications of relevance

toCM.

1. Department of Defense Standards

• DOD-STD-2168, Defense System Software Quality Program

• DOD 5010.19, Configuration Management

2. Military Standards

• MIL-STD-498, Software Development and Documentation

• MIL-STD-973, Configuration Management

• MIL-STD-1456, Configuration Management Plans

B. IEEE STANDARDS

• IEEE Std 610.12-1990, Glossary of Software Engineering Terminology

• IEEE Std 828-1990, Standard for Software Configuration Management Plans

• IEEE Std 1042-1986, Guide for Software Configuration Management

C. INTERNATIONAL STANDARDS ORGANIZATIONS (ISO) STANDARDS

• ISOIIEC JTCI/SC7/WG8/P.7.23, Software Configuration Management

• ISO 9000, Quality Assurance - Part 3, Software Configuration Management

D. ELECTRONIC INDUSTRY ASSOCIATION (EIA) PUBLICATIONS

• CMB6-3, Configuration Identification

• CMB6-4, Configuration Change Control

• CMB6-5, Textbook for Configuration Status Accounting

• CMB6-6, Textbook for Audits and Reviews

175

• CMB7-2, Guideline for Transitioning Configuration Management to an
Automated Environment.

176

APPENDIX B. EXAMPLE OF A MK92 MAES CHANGE REQUEST
FORM

MK92 MAES Change Request Form

Date I Site IFailed or Suspected Module IVersion
I I I

--------___ I� __________ �~ ___________________ I __________________ __

Description ofProblemlRequested Change: (please be as specific as possible. Attach additional pages if necessary)

Impact of Problem:

Recommended Action:

Expected Impact of Proposed Recommendation:

CCB Recommendation: IDate Reviewed:
I
I

IApproved by:

I
I

IDueDate:

I
I

Action Taken: (Provide detailed description. Attach additional Sheets if necessary.)

Date Action Completed: IAction Completed by (Print):

I
I Signature of Person Completing Action:

I

177

178

APPENDIX C. PVCS REPORTS

A. EXAMPLE OF A PVCS ARCHIVE REPORT

Archive: C: \maesproj\archive\knwldge\treexmpl. stv
Workfile: TREEXMPL.STY
Archive created: 19 Dec 1994 18:12:22
Owner: unknown
Last trunk rev: 1.1
Locks:
Groups:
Rev count:
Attributes:

Development : 1.1
2

WRITEPROTECT
CHECKLOCK
NOEXCLUSIVELOCK
EXP ANDKEYWORDS
TRANSLATE
NOCOMPRESSDELTA
NOCOMPRESSWORKIMAGE
COMMENTPREFIX =" "
NEWLINE = "\r\n"

Version labels:
Description:

Rev l.1
Checked in: 02 Jan 1995 11:51:44
Last modified: 02 Jan 1995 11 :46: 12
Author id: unknown lines deleted/added/moved: 17/2811
This change to the calibration document accounts
for the possibility of a failed mixer assembly.

Rev l.0
Checked in: 19 Dec 1994 18:12:58
Last modified: 13 Feb 199523:15:04
Author id: unknown lines deleted/added/moved: 010/0
Baseline of this file

179

Archive: C: \maesproj\archive\knwldge\treexmpl. acv
Workfile: TREEXMPL.ACL
Archive created: 19 Dec 1994 18:12:22
Owner: unknown
Last trunk rev: 1.2
Locks:
Groups:
Rev count:
Attributes:

Development: 1.2
3

WRITEPROTECT
CHECKLOCK
NOEXCLUSIVELOCK
EXPANDKEYWORDS
TRANSLATE
NOCOMPRESSDELTA
NOCOMPRESSWORKIMAGE
COMMENTPREFIX =" "
NEWLINE = "\r\n"

Version labels:
Description:

Rev 1.2
Checked in: 02 Jan 1995 11 :51:44
Last modified: 02 Jan 1995 11:46:18
Author id: unknown lines deleted/added/moved: 0/4/0
This change to the calibration document accounts
for the possibility of a failed mixer assembly.

Rev 1.1
Checked in: 19 Dec 1994 19:43 :22
Last modified: 19 Dec 1994 19:41:38
Author id: unknown lines deleted/added/moved: 4/0/0
Removed a statement that was in error

Rev 1.0
Checked in: 19 Dec 1994 18:12:56
Last modified: 26 Jan 1995 13:38:52
Author id: unknown lines deleted/added/moved: 0/0/0
Baseline of this file

180

B. EXAMPLE OF A PVCS DIFFERENCE REPORT

C:\maesproj\archive\knwldge\treexmpl.acv Rev l.0 (26 Jan 1995 13:38:52)
C:\maesproj\archive\knwldge\treexmpl.acv Rev 1.2 (02 Jan 1995 11 :46: 18)

12 12 I (No) Replace Stalo Assembly UD412/A1A3-A3
13 13 I ?end

+ 14 I Does this correct the RF Power Output of the Mixer?
+ 15 I (Yes) Recheck DSOT Calibration.
+ 16 I (No) Replace Mixer Assembly UDI23/A456-B7

14 I Does it work?
15 I (Yes) Good you're done
16 I (No) Keep going ...
17 17 I ?end
18 18 I?end

Note: The "+" symbols refer to those lines that have been added. The "_" symbols refer
to those lines of code that have been deleted. The numbers in the left column refer to the
line number of the code in the earlier revision, while the numbers in the right column refer
to the location of the code in the latest version.

181


~~~~~~~~- ~---

182 



LIST OF REFERENCES 

Berlack, H.R, Software Configuration Management, John Wiley & Sons, Inc., 1992. 

Bersoff, E.H., "Elements of Software Configuration Management," Tutorial: Software 
Engineering Project Management, pp. 430-438, The Computer Society of the 
IEEE, 1984. 

Bielawski, L., and Lewand, R, "Maintenance Issues," Expert Systems Development: 
Building PC-Based Applications pp. 230-232 QED Information Services, Inc., 
1988. 

Bounds, N.M., and Dart, S.A., Configuration Management Plans: The Beginning to Your 
eM Solution, Software Engineering Institute, 1993. 

Buckley, F .1., Implementing Configuration Management, IEEE Press, 1992. 

Curtis, B., "Maintaining the Software Process," 1992 IEEE Conference on Software 
Maintenance, pp. 2-8 , IEEE Computer Society Press, 1992. 

Eaton, D., "Commercial CM Tools," Configuration Management Frequently Asked 
Questions ,Honeywell, 1994. 

CCClManager Primer, Softool Corporation, 1994a. 

CCClManager Release Notes Version 2.2, Softool Corporation, 1994b. 

CCClManager Order Form, Softool Corporation, 1994c. 

Deklava, S., "Delphi Study of Software Maintenance Problems," 1992 IEEE Conference 
on Software Maintenance, pp. 10-17, IEEE Computer Society, 1992. 

Dills, K.R & Tutt, T.F. Verification and Validation of the MK92 Fire Control System 
Maintenance Advisor Expert System, Master's Thesis, Naval Postgraduate School, 
Monterey, California, September 1994. 

Engineering Development Model (EDM): FCS MK 92 Maintenance Advisor Expert 
System. Naval Surface Warfare Engineering Systems, Code 4W, 21 August 1992. 

Haga, W.J. and Lang, RG., Economic Analysis Proceduresfor ADP, 3rd rev., Naval 
Postgraduate School, March 1992. 

183 



Hicks, RC, "A Composite Methodology for Low Maintenance Expert Systems 
Development," Communications of the ACM, v32, no. 3, 1989. 

Hull, L.G., and Kay, P., "Expert System Development Methodology and Management," 
Proceedings of the lEEEIACM International Conference on Developing and 
Managing Expert System , pp. 38-44, IEEE Computer Society Press, 1991. 

IEEE Std 828-1983: IEEE Standardfor Software Configuration Management , IEEE 
Press, 1983. 

IEEE Std 1209-1992: IEEE Recommended Practice for the Evaluation and Selection of 
CASE Tools, IEEE Computer Society, 1992. 

Interview with Ms. B. Kolkhorst, ruM, and the author, 8 November 1994. 

Jane's Fighting Ships 1993-94, Jane's Information Group, 1994. 

Jones, C, "Inadequate Configuration Control and Project Repositories," Assessment and 
Control of Software Risks pp. 202-209, Yourdon Press, NJ, 1994. 

McCa.ffrey, M.J., "Maintenance of Expert Systems- The Upcoming Challenge," Managing 
Expert Systems pp. 262-284, IDEA Group Publishing, 1992. 

Lewis, CD. Development ofaMaintenance Advisor Expert Systemfor the MK 92 MOD 
2 Fire Control System: FC-1 Designation-Time, FC-1 Track- Bearing, Elevation 
and Range, and FC-2 Track -Bearing, Elevation and Range. Master's Thesis, 
Naval Postgraduate School, Monterey, California, September 1993. 

"Little Knowledge," Computer World v.28, pp. 86, 1994. 

"Military Standard Defense System Software Development," DOD-STD-2167A, 
Department of Defense (DOD), 1988. 

Powell, S.H. Economic Analysis of the MK 92 MOD 2 Fire Control System Maintenance 
Advisor Expert System. Master's Thesis, Naval Postgraduate School, Monterey, 
California, September 1993. 

Prerau, D.S., Developing and Managing Expert, Addison-Wesley Publishing Co., 1990. 

PVCS Version Manager Reference Guide Version 5.1, Intersolv, 1993a. 

PVCS Graphical Interface Administrator Guide and Reference Version 5.1, Intersolv, 
1993b. 

184 



PVCS Graphical Interface Administrator Guide and Reference Version 5.1, Intersolv, 
1993c. 

Sacerdoti, E.D., "Managing Expert System Development," AI Expert, v.6, pp.26-34 
Miller Freeman Publications, 1991. 

Smith, L.M. Development of a Structured Design and Programming Methodology for 
Expert System Shells Utilizing a Visual Programming Language: Application of 
Structured Methodology to the MK92 Maintenance Advisor Expert System, 
Performance Module Prototype. Master's Thesis, Naval Postgraduate School, 
Monterey, California, September 1994. 

Software Configuration Management Technology Report, Software Technology Support 
Center, Hill Air Force Base, UT, 1994. 

Telephone conversation between Henry Seto, Engineer, Naval Surface Warfare 
Center-Port Hueneme Division, and the author, 9 February 1995. 

Tomayko, J.E., Software Configuration Management: Curriculum Module 
SEI-CM-4-1.4, Software Engineering Institute, 1990. 

Torres, A., Miller, R., FCC Riley, Seto, H. USS John A. Moore FCS MK 92 MOD 2 
Groom, Port Visit Port Hueneme, CA 06 - 09 FEB 1995, Naval Surface Warfare 
Center, Port Hueneme Division Memorandum, 1995. 

USS Sides (FFG-14). (l995)MK-92 MOD 2 FCSMaintenance Advisor Expert System 
(MAES) prototype evaluation, Unclassified naval message, Date-time group 
032252Z Feb 1995. 

Walters, J.R., & Nielsen, N.R. Crafting Knowledge Based Systems: Expert Systems Made 
Realistic, John Wiley & Sons, Inc., 1988. 

Wreden, N., "Configuration Management: Getting with the Program," Beyond 
Computing., pp. 49-51, International Business Machines, 1994. 

Webster's New Collegiate Dictionary, p. 74, G. & C. Merriam Company, 1977. 

185 



186 



INITIAL DISTRIBUTION LIST 

Number of Copies 
1. Defense Technical Information Center 2 

Cameron Station 
Alexandria, Virginia 22304-6145 

2. Superintendent 2 
Attn: Library, Code 52 
Naval Postgraduate School 
Monterey, California 93943-5101 

3. Magdi N. Kamel, Code SMlKa 2 
Department of Systems Management 
Naval Postgraduate School 
Monterey, California 93943-5002 

4. Martin J. McCaffrey, Code SMIMf 2 
Department of Systems Management 
Naval Postgraduate School 
Monterey, California 93943-5002 

5. Commander, NSWC-PHD 2 
Attn: Henry Seto 
Code4W32 
4363 Missile Way 
Port Hueneme, California 93043-4307 

6. Don Eaton, Code SMlEt 1 
Department of Systems Management 
Naval Postgraduate School 
Monterey, California 93943-5002 

7. Bala Ramesh, Code SMIRa 1 
Department of Systems Management 
Naval Postgraduate School 
Monterey, California 93943-5002 

8. LT Paul G. Metzler, USN 1 
6962 Berkshire Dr. 
Export, Pennsylvania 15632 

187 




