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Abstract. The quark-gluon plasma, which is produced at an early stage of ultrarelativistic heavy-ion
collisions, is expected to be initially strongly populated with chromodynamic fields. We address the question
of how heavy quarks interact with such a turbulent plasma in comparison with an equilibrated one of the
same energy density. For this purpose we derive a Fokker-Planck transport equation of heavy quarks
embedded in a plasma of light quarks and gluons. We first discuss the equilibrium plasma and then
the turbulent one applying the same approach, where the heavy quarks interact not with the plasma
constituents but rather with the long wavelength classical fields. We first consider the three schematic
models of isotropic trubulent plasma and then the simplified model of glasma with the chromodynamic
fields only along the beam direction. The momentum broadening and collisional energy loss of a test heavy
quark are computed and compared to those of the equilibrium plasma of the same energy density.

1 Introduction

The early stage of relativistic heavy-ion collisions is the
least known because there are hardly any experimentally
accessible signals of the phase. Nevertheless one expects
that the quark-gluon plasma, which is produced in the
collisions, is initially strongly populated with chromody-
namic fields. Within the framework of the Color Glass
Condensate (CGC) approach, see e.g. the review [1], color
charges of partons confined in the colliding nuclei act as
sources of long wavelength chromodynamic fields which
can be treated classically because of large occupation num-
bers of the soft modes. Since the density of color charges
per transverse area of heavy nuclei is large, the corre-
sponding momentum scale Qs is expected to be signifi-
cantly bigger than the QCD scale parameter ΛQCD. Con-
sequently, the coupling constant αs is presumably suffi-
ciently small and perturbative methods are applicable.
The system, however, is rather strongly interacting be-
cause of the high-amplitude fields present in the system.

A momentum anisotropy of the early stage quark-
gluon plasma makes it unstable with respect to chromo-
magnetic modes which in turn cause a spontaneous gen-
eration of the fields, as explained at length in the review
article [2]. Therefore, the effect of strong fields is further
enhanced. Following the terminology of electromagnetic
plasma, we call such a nonequilibrium system of fields
as the turbulent plasma meaning that numerous modes
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are excited in the system. In the CGC approach the non-
equilibrium system of fields from the early stage of rela-
tivistic heavy-ion collisions is called glasma [1] and it can
be treated as a specific realization of the turbulent QCD
plasma. Leaving aside the mechanism of field generation
and its detailed structure, one asks what are the transport
properties of turbulent plasmas. We are specifically inter-
ested in how heavy quarks —charm or beauty— behave in
such a system when compared to the equilibrium plasma
of the same energy density.

Heavy quarks are often treated as a probe of strongly
interacting matter created in relativistic heavy-ion colli-
sions, see e.g. the review [3]. Thanks to their large masses
the quarks are produced only at the earliest stage of the
collision due to hard interactions of partons from incom-
ing nuclei. Later on they propagate through a surrounding
medium testing the entire history of the system. It has
been long believed that the interaction of heavy quarks
is significantly weaker than that of light quarks or gluons
but experimental data clearly contradict the expectation.
As discussed in the review [3], the behavior of mesons
containing a heavy quark is rather similar to that of light
mesons at both small and large transverse momenta. The
problem is not fully resolved.

The medium created in relativistic heavy-ion collisions
evolves fast towards the locally equilibrated quark-gluon
plasma which expands hydrodynamically and ultimately
is converted into a hadron gas. Final momentum spec-
tra of heavy quarks are mostly shaped in the long-lasting
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equilibrium phase which is relatively well understood. An
effect of a pre-equilibrium phase is often entirely ignored
but this transient phase can significantly influence heavy-
quark spectra because of its high density. Non-equilibrium
calculations recently performed in a framework of kinetic
theory [4] confirm the suggestion. However, we are inter-
ested even in the earlier phase when the medium is not
described in terms of quasi-particles, as in a kinetic the-
ory, but rather as a system dominated by classical fields
which is the turbulent plasma.

A simple parametric estimate suggests that the inter-
action of heavy quarks in a turbulent plasma is much
stronger than in the equilibrium one, if the coupling con-
stant g is small. The momentum broadening parameter q̂,
for example, is of order g4 in equilibrium plasmas. Since
the quark of interest actually interacts with soft gluons
emitted by plasma constituents, one can think that the
factor g4 is composed of two pieces of g2. The first one
is related to the gluon emission and the second one to
the gluon absorption. If soft chromodynamic fields are
present in the plasma, the interaction of the quark should
be rather of order g2 than g4. In sect. 6 we argue that q̂
is indeed not of the order g4, not even g2 but it might be
of the order g in a turbulent plasma. The effect, however,
is not that impressive at a realistic value of the coupling
constant.

Because of their big masses, relaxation times of heavy
quarks, which are produced in relativistic heavy-ion col-
lisions, are expected to be significantly longer than those
of light quarks and gluons. When an equilibrium or, more
generally, a stationary state is reached by light quarks and
gluons, heavy quarks need some extra time to adjust to the
state of the plasma. Such a situation is naturally described
in terms of the Fokker-Planck transport equation which
was indeed repeatedly applied to heavy quarks in [5–8].
The equation is usually derived from the Boltzmann equa-
tion by applying the so-called diffusion approximation to
the collision term [9]. The approximation assumes that the
momentum transfer to the heavy quark in every collision
is much smaller than the quark momentum.

The aim of this paper is threefold. In the first part
we rederive the Fokker-Planck equation of heavy quarks
which do not interact with plasma constituents but rather
with soft classical fields present in the plasma. Specifically,
we apply the so-called quasi-linear theory known from the
electromagnetic plasma [10,9]. The theory assumes that
the distribution function can be decomposed into a large
but slowly varying regular part and a small fluctuating
or turbulent one which oscillates fast. The average over
a statistical ensemble of the turbulent part is assumed
to vanish and thus the average of the distribution func-
tion equals its regular part. The turbulent contribution to
the distribution function obeys the collisionless transport
equation while the transport equation of the regular part
is determined by the fluctuation spectra which provide the
collision term. The derivation presented here closely fol-
lows the procedure which was developed for QCD in [11],
where, however, only the longitudinal chromoelectric field
was taken into account and here the complete chromo-
dynamic field is considered. The equilibrium correlation

functions of chromodynamic fields, which are needed to
obtain the quasi-linear transport equations, were derived
in [12].

Our second aim is to confront the equilibrium plasma
with the turbulent one. Therefore, we consider three mod-
els of isotropic turbulent plasma in the second part of
the paper. Postulating a form of the correlation functions
of chromodynamic fields, we derive the coefficients of the
Fokker-Planck equation which can be related to the en-
ergy loss, momentum broadening and diffusion coefficient
of heavy quarks in the plasma. The transport coefficients
of turbulent plasma are compared to those of the equilib-
rium one at the same energy density.

The third aim is to study an evolution of heavy quarks
at the earliest stage of relativistic have-ion collisions. Since
the chromoelectric and chromomagnetic fields spanned be-
tween the receding nuclei are initially mostly parallel to
the beam direction, we model the glasma with the boost
invariant correlation functions of longitudinal fields. The
energy loss and momentum broadening of heavy quarks
are computed, assuming that all energy of the glasma is
accumulated in the longitudinal fields.

At the end of the introductory remarks we note that
an approach similar to ours, which was also inspired by
the electromagnetic plasma studies [13], was formulated
in [14], see [15,16] as well. We also mention an attempt [17]
to study transport of heavy quarks in a plasma populated
by strong chromodynamic fields. Unfortunately, the pa-
per is flawed as the framework of an isotropic Langevin
approach is applied to anisotropic plasmas.

Throughout the paper we use the natural system of
units with c = � = kB = 1; our choice of the signature of
the metric tensor is (+−−−). Lorentz indices are denoted
with μ, ν = 0, 1, 2, 3 and i, j = 1, 2, 3 label the Cartesian
coordinates x, y, z. The color indices of the adjoint repre-
sentation of SU(Nc) gauge group are a, b = 1, 2, . . . N2

c −1.

2 Derivation of Fokker-Planck equation

Our derivation of the Fokker-Planck equation of heavy
quarks embedded in quark-gluon plasma starts with the
transport equation of the Vlasov form

(
D0 + v · D

)
Q(t, r,p) − 1

2
{F(t, r),∇pQ(t, r,p)} = 0,

(1)
where the distribution function Q(t, r,p) of heavy quarks
is the Nc×Nc Hermitian matrix which belongs to the fun-
damental representation of the SU(Nc) group. The dis-
tribution function depends on the time (t), position (r)
and momentum (p) variables. There is no explicit depen-
dence on the time-like component of the four-momentum
pμ = (p0,p) as the distribution function is assumed to be
non-zero only for momenta obeying the mass-shell con-
straint that is p0 = Ep =

√
p2 + m2. The quark velocity

equals v = p/Ep and Dμ ≡ (D0,D) ≡ ∂μ − ig[Aμ(x), · · · ]
with Aμ(x) being the chromodynamic potential in the
fundamental representation. The mean-field term of the
transport equation (1) is expressed through the color
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Lorentz force F(t, r) ≡ g(E(t, r) + v × B(t, r)) with the
chromoelectric E(t, r) and chromomagnetic B(t, r) fields
also belonging to the fundamental representation. The
symbol {. . . , . . .} denotes the anticommutator. The deriva-
tion of the transport equation (1) is discussed in detail in
the review [2].

Further on we assume that the chromodynamic fields
and the distribution function which enter the transport
equation (1) can be decomposed into a regular and fluctu-
ating or turbulent component. The distribution function
is thus written down as

Q(t, r,p) = 〈Q(t, r,p)〉 + δQ(t, r,p), (2)

where 〈· · · 〉 denotes the ensemble average which assumes
averaging over events in relativistic heavy-ion collisions;
〈Q(t, r,p)〉 is called the regular part while δQ(t, r,p) is
called the fluctuating or turbulent one. It directly follows
from eq. (2) that 〈δQ〉 = 0. The regular contribution is
assumed to be color neutral or white, and it is expressed
as

〈Q(t, r,p)〉 = n(t, r,p) 11, (3)

where 11 is the unit matrix in color space. Since the distri-
bution function transforms under gauge transformations
as Q → U QU†, where U is the transformation matrix, the
regular contribution of the form (3) is gauge independent.
We also assume that

|〈Q〉| � |δQ|, |∇p〈Q〉| � |∇pδQ|, (4)

but at the same time
∣
∣
∣
∣
∂δQ

∂t

∣
∣
∣
∣ �

∣
∣
∣
∣
∂〈Q〉
∂t

∣
∣
∣
∣ , |∇δQ| � |∇〈Q〉|. (5)

For what concerns the chromodynamic fields, we assume
in accordance with eq. (3) that their regular parts vanish
and thus

〈E(t, r)〉 = 〈B(t, r)〉 = 0. (6)

We substitute the distribution function (2) into the
transport equation (1) and linearize the equations in the
fluctuating contributions. Thus we get the equation

D δQ(t, r,p) − F(t, r) · ∇pn(t, r,p) = 0, (7)

where D ≡ ∂
∂t +v ·∇ is the substantial or material deriva-

tive.
Now we substitute the distribution functions (2) into

the transport equations (1) but instead of linearizing the
equation in the fluctuating contributions, we take the en-
semble average of the resulting equation and trace over
the color indices. Thus we get

D n(t, r,p) − 1
Nc

Tr 〈F(t, r) · ∇pδQ(t, r,p)〉 = 0. (8)

Since the regular part of distribution function is assumed
to be color neutral, see eq. (3), the term Tr[〈F ·∇pn〉] van-
ishes because the fields E, B are traceless. The trace over
color indices also cancels the terms originating from co-
variant derivatives like Tr〈[Aμ, δQ]〉. We finally note that

the trace Tr[〈F · ∇pδQ〉] is gauge independent as the reg-
ular distribution function n(t, r,p) is.

Now, we are going to write down the transport equa-
tion (8) in the Fokker-Planck form. For this purpose we
observe that due to the condition (5), the space-time de-
pendence of the regular distribution function can be ne-
glected in the linearized transport equation (7) and then,
the equation becomes easily solvable. We solve it with the
initial condition

δQ(t = 0, r,p) = δQ0(r,p), (9)

using the one-sided Fourier transformation defined as

f(ω,k) =
∫ ∞

0

dt

∫
d3rei(ωt−k·r)f(t, r). (10)

The inverse transformation is

f(t, r) =
∫ ∞+iσ

−∞+iσ

dω

2π

∫
d3k

(2π)3
e−i(ωt−k·r)f(ω,k), (11)

where the real parameter σ > 0 is chosen in such a way
that the integral over ω is taken along a straight line in
the complex ω-plane, parallel to the real axis, above all
singularities of f(ω,k).

The linearized transport equation (7), which is con-
verted into the algebraic equation by means of the one-
sided Fourier transformation, is solved as

δQ(ω,k,p) = i
F(ω,k) · ∇pn(p) + δQ0(k,p)

ω − k · v . (12)

We stress that although we have ignored the (weak) fre-
quency and wave number dependence of the regular dis-
tribution n, the fields E(ω,k), B(ω,k) retain their full
frequency and wave number dependence in the expres-
sion (12). Inverting the one-sided Fourier transformation,
one finds the solution of the linearized transport equation
as

δQ(t, r,p) =
∫ t

0

dt′ F (t′, r − v(t − t′)) · ∇pn(p)

+δQ0(r − vt,p), (13)

where we assumed that E(ω,k) and B(ω,k) are analytic
functions of ω.

With the help of the solution (13), the force term in
the transport equation (8) becomes

〈F(t, r) · ∇pδQ(t, r,p)〉 =
∫ t

0

dt′ ∇i
p

〈
F i(t, r)F j (t′, r − v(t − t′))

〉
∇j

pn(p)

+∇i
p

〈
F i(t, r)δQ0(r − vt,p)

〉
. (14)

The second term in the r.h.s. of eq. (14) can be manipu-
lated to the form

1
Nc

Tr
[〈

F i(t, r)δQ0(r − vt,p)
〉]

= Y i(v)n(p), (15)
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which is effectively the definition of the vector Y i(v). We
also introduce the tensor

Xij(v) ≡ 1
Nc

∫ t

0

dt′ Tr
[〈

F i(t, r)F j (t′, r − v(t − t′))
〉]

,

(16)
and we note that, as explained in the subsequent sections,
X and Y become time independent for a sufficiently long
t. Then, the transport equation (8) can be written as the
Fokker-Planck equation

(
D −∇i

pX
ij(v)∇j

p −∇i
pY

i(v)
)
n(t, r,p) = 0. (17)

Since the distribution function n(t, r,p) carries no in-
formation about color degrees of freedom, the function
is gauge invariant, and consequently Xij(v) and Y i(v)
should be gauge invariant as well. However, one observes
that Xij(v) and Y i(v) as defined by eqs. (15) and (16) are
gauge dependent because the traces are of nonlocal quanti-
ties in the definitions (15) and (16). The starting transport
equation (1) is gauge covariant but the linearization pro-
cedure breaks the covariance because the covariant deriva-
tive is replaced by the normal one. Consequently, the so-
lution (13) is not gauge covariant —the right-hand side of
eq. (13) transforms differently under local gauge transfor-
mations than the left-hand side. To cure the problem, one
modifies the solution (13) by means of the link operator
which is also called the gauge parallel transporter, see e.g.
sect. IIIE of the review article [2]. Then, the modified so-
lution obeys eq. (8) with the covariant derivative instead
of the normal one. Let us briefly discuss the procedure in
a context of the Fokker-Planck equation (17).

According to eq. (16), the tensor Xij(v) is deter-
mined by the traces of the field correlation functions
like 〈Ei

a(t1, r1)Ej
a(t2, r2)〉 where chromodynamic fields are

written in the adjoint representation of the SU(Nc) group
which is used further on. The trace becomes gauge invari-
ant under the replacement

〈Ei
a(t1, r1)Ej

a(t2, r2)〉 −→
〈Ei

a(t1, r1)Ωab(t1, r1|t2, r2)Ej
b (t2, r2)〉, (18)

where Ωab(t1, r1|t2, r2) is the link operator defined as

Ω(t1, r1|t2, r2) = P exp

[

ig

∫ (t1,r1)

(t2,r2)

dsμAμ
c (s)T c

]

. (19)

Here T c is the adjoint representation generator of the
SU(Nc) group and P denotes the ordering along the path
connecting the points (t2, r2) and (t1, r1). Since the fields
transform as vectors under the local gauge transformation
U(t, r) and the link transforms as

Ω(t1, r1|t2, r2) −→ U(t1, r1)Ω(t1, r1|t2, r2)UT (t2, r2),
(20)

one checks that the trace of the correlation function which
includes the link is indeed gauge invariant. Consequently,
the tensor Xij(v) is gauge invariant. Analogously one
achieves the gauge invariance of the vector Y i(v). Further
on, whenever any nonlocal correlation function shows up
a presence of the link operator is implicitly assumed even
so it is not explicitly written.

3 Fokker-Planck equation

Although this is a textbook material we briefly discuss
here the Fokker-Planck equation (17). We first note that
in the isotropic plasma the tensor Xij(v) and vector Y i(v)
both depend on a single vector that is the heavy-quark
velocity v. Therefore, they can be written as

Xij(v) = XL(v)
vivj

v2
+ XT (v)

(
δij − vivj

v2

)
, (21)

Y i(v) = Y (v)vi, (22)

where v ≡ |v| and the coefficients XL(v), XT (v) and Y (v)
are equal to

XL(v) =
vivj

v2
Xij(v),

XT (v) =
1
2

(
δij − vivj

v2

)
Xij(v),

Y (v) =
vi

v2
Y i(v). (23)

The equilibrium distribution function of the form

neq(p) ∼ exp
(
−Ep

T

)
, (24)

with T being the temperature of the equilibrated plasma
of light quarks and gluons, where heavy quarks are em-
bedded, is expected to solve the transport equation (17).
This is indeed the case if the coefficients Xij(v) and Y i(v)
obey the condition

Xij(v)
vj

T
= Y i(v), (25)

which in the isotropic plasma reads

XL(v)
1
T

= Y (v). (26)

When the plasma of light quarks and gluons is in equi-
librium, the system of heavy quarks evolves towards the
equilibrium of the same temperature. Therefore, the pa-
rameter T has a clear meaning. The problem, which ap-
pears when the plasma of light quarks and gluons is out
of equilibrium, is discussed at the beginning of sect. 5.

When the plasma is isotropic and the coefficients
XL(v) and XT (v) are equal to each other and indepen-
dent of v, the Fokker-Planck equation reads

(
D − X

(
∇2

p +
1
T
∇p · v

))
n(t, r,p) = 0, (27)

where X ≡ XL(v) = XT (v).
The quantities Xij(v) and Y i(v) have a clear physical

meaning. As discussed in e.g. the classical monograph [19],
the average momentum change per unit time and the cor-
relation of momentum changes per unit time are given as

〈Δpi〉
Δt

= −Y i(v), (28)

〈ΔpiΔpj〉
Δt

= Xij(v) + Xji(v). (29)
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We note that according to eq. (16) the tensor Xji(v) is,
in general, not symmetric which explains the form of the
relation (29).

Using the formulas (28) and (29), Xij(v) and Y i(v)
can be related to the collisional energy loss dE

dx and trans-
verse momentum broadening q̂ of a heavy-quark in the
quark-gluon plasma, which play an important role in a
theoretical description of the jet quenching phenomenon.
The parameter q̂ controls the radiative energy loss in a
plasma medium [18]. One easily finds that

〈ΔE〉
Δt

=
1

Δt

〈
p · Δp

√
m2 + p2

〉

= vi 〈Δpi〉
Δt

. (30)

Since Δx = vΔt, the energy loss per unit path equals

dE

dx
=

vi

v

〈Δpi〉
Δt

= −vi

v
Y i(v), (31)

which in isotropic plasmas reads

dE

dx
= −vY (v) = − v

T
XL(v). (32)

The coefficient q̂, which is the broadening per unit path
of the distribution of the test parton’s momentum trans-
verse to the initial parton’s momentum, is immediately
found as

q̂ =
1
v

(
δij − vivj

v2

)
〈ΔpiΔpj〉

Δt

=
1
v

(
δij − vivj

v2

)
(
Xij(v) + Xji(v)

)
, (33)

and in an isotropic plasma it equals

q̂ =
2
v

(
δij − vivj

v2

)
Xij(v) =

4
v
XT (v). (34)

When we deal with an equilibrium plasma and the co-
efficients XL(v), XT (v) are equal to each other and inde-
pendent of v, the Fokker-Planck equation can be related
to the nonrelativistic Langevin equation [19]. Then, the
diffusion constant D can be expressed as

D =
T 2

XL
. (35)

We are mostly interested in turbulent QCD plasmas
populated with strong chromodynamic fields but we start
with the equilibrium system where the fields are only at
a level of thermal noise. We rederive the known Fokker-
Planck equation [6] in a different way to demonstrate the
reliability of our approach.

4 Equilibrium plasma

We assume that the quark-gluon plasma, in which heavy
quarks are embedded, is in thermodynamical equilibrium
and we first derive in this section explicit expressions for
the coefficients XL, XT and Y which enter the Fokker-
Planck equation.

4.1 Computation of X and Y

As the formula (16) shows, the tensor Xij is given
by the correlation functions 〈Ei(t, r)Ej(t′, r′)〉,
〈Bi(t, r)Bj(t′, r′)〉, 〈Ei(t, r)Bj(t′, r′)〉, and
〈Bi(t, r)Ej(t′, r′)〉 which were studied in detail in [12].
The explicit expressions are collected in appendix A.
Since the correlation functions are of the structure (A.1),
the tensor Xij is written as

Xij(v) =
1

2Nc

∫ t

0

dt′
∫

dω

2π

∫
d3k

(2π)3

×e−i(ω−k·v)(t−t′)〈F i
aF j

a 〉ω, k, (36)

where the chromodynamic fields are expressed in the ad-
joint representation of the SU(Nc) group and 〈F i

aF j
a 〉ω, k

is the fluctuation spectrum. For a translationally invariant
system it is defined as

〈F i
aF j

a 〉ω, k ≡
∫

dt

∫
d3r ei(ωt−k·r)〈F i

a(t, r)F j
a (0,0)〉.

(37)
A more general definition is discussed in ap-
pendix B. Combining the equilibrium fluctuation
spectra (A.2), (A.3) and (A.4), one finds

〈F i
aF j

a 〉ω,k =2g2(N2
c −1)

ω2

eβ|ω|−1

{

ω2 kikj

k2

	εL(ω,k)
|ω2εL(ω,k)|2

+
[
ω
(
vikj + kivj − 2δij(k · v)

)

+k2

(
δijv2 − vivj − (v × k)i(v × k)j

k2

)

+ω2

(
δij − kikj

k2

)]
	εT (ω,k)

|ω2εT (ω,k) − k2|2

}

, (38)

where β ≡ T−1 and εL,T (ω,k) are chromodielectric func-
tions which for the equilibrium plasma of massless parti-
cles are also given in appendix A.

After performing the elementary time integration in
eq. (36), one is left with the integral over the four-vector
kμ = (ω,k). Taking into account only the terms of the
integrand which are even as a function of kμ and give
nonzero contributions, one obtains

Xij(v) =
1

2Nc

∫
dω

2π

∫
d3k

(2π)3
sin((ω − ω̄)t)

ω − ω̄
〈F i

aF j
a 〉ω, k,

(39)
where ω̄ ≡ k · v. In the limit t → ∞, we have

lim
t→∞

sin((ω − ω̄)t)
ω − ω̄

= πδ(ω − ω̄), (40)

and thus we get

Xij(v) =
1

4Nc

∫
d3k

(2π)3
〈F i

aF j
a 〉ω̄, k. (41)

One can show that the expression (41) properly approxi-
mates the formula (39) if the spectrum 〈F i

aF j
a 〉ω, k weakly
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changes as a function of ω in the interval [ω̄−π/t, ω̄+π/t].
When the time grows the condition is easier and easier to
fulfill.

Since the plasma under consideration is isotropic, the
tensor Xij(v) is fully determined by the two functions
XL(v) and XT (v) introduced in eq. (21). Substituting the
explicit form of the fluctuation spectrum (38) into eq. (41),
one finds the coefficients XL(v) and XT (v) as

XL(v) = g2CF

∫
d3k

(2π)3
|ω̄|

eβ|ω̄| − 1
ω̄3

v2

[
ω̄2

k2

	εL(ω̄,k)
|ω̄2εL(ω̄,k)|2

+
(
v2 − ω̄2

k2

)
	εT (ω̄,k)

|ω̄2εT (ω̄,k) − k2|2
]
, (42)

XT (v) =
g2CF

2

∫
d3k

(2π)3
|ω̄|ω̄

eβ|ω̄| − 1

[
ω̄2

(
1 − ω̄2

v2k2

)

× 	εL(ω̄,k)
|ω̄2εL(ω̄,k)|2 +

(
v2k2 − 2ω̄2 +

ω̄4

v2k2

)

× 	εT (ω̄,k)
|ω̄2εT (ω̄,k) − k2|2

]
, (43)

where CF ≡ N2
c −1

2Nc
is the Casimir invariant.

The vector Y i(v), which is determined by the
correlations functions 〈Ei(t, r)δQ0(r′,p′)〉, and
〈Bi(t, r)δQ0(r′,p′)〉 can be derived directly from the
formula (15). Such a derivation for a simplified case of
only longitudinal electric field present in the plasma can
be found in [11] where it is shown that the condition (25)
or (26) is indeed satisfied. Here instead we refer to the
condition (25) to obtain Y i(v).

Once the tensor Xij(v) is given by eq. (21) together
with eqs. (42), (43) and Y i(v) by eqs. (22) and (26),
the Fokker-Planck equation (17) is fully specified. We
note that Xij(v) and Y i(v) depend on heavy quark mo-
mentum p and its mass m only through the velocity
v = p/

√
m2 + p2. Therefore, XL(v), XT (v) and Y (v)

become independent of p when the heavy quarks of in-
terest are truly relativistic and p2 � m2. Although, the
coefficients XL(v), XT (v) and Y (v) are independent of the
quark mass, the Fokker-Planck equation (17) does depend
on m which is evident when the momentum derivatives are
replaced by the velocity derivatives.

Since the coefficients XL(v), XT (v) and Y (v) depend
on the quark mass only through the velocity, one might
think that the corresponding Fokker-Planck equation is
applicable to quarks of any mass. However, it is not true.
As mentioned in the introduction, the typical momentum
transfer in a single collision, which is of order gT , must
be much smaller than the quark momentum that is gT �
mv/

√
1 − v2. And here the quark mass matters.

4.2 Limit of small v

In the limit of small velocities of heavy quarks, the equilib-
rium Fokker-Planck equation gets a simpler form and the
coefficients XL(v), XT (v) can be estimated analytically.
Indeed, when heavy quarks are nonrelativistic (v2 � 1),

we have ω̄2 � k2 and one can use the approximate for-
mulas (A.8) and (A.9). Then, eqs. (42) and (43) read

XL(v)=
g2πCF

2
m2

D

∫
d3k

(2π)3
ω̄2

v2|k|
1

(m2
D+k2)2

|ω̄|
eβ|ω̄|−1

,

(44)

XT (v)=
g2πCF

4
m2

D

∫
d3k

(2π)3

(
1 − ω̄2

k2v2

)

× |k|
(m2

D + k2)2
|ω̄|

eβ|ω̄| − 1
, (45)

where the contributions originating from εT (ω,k) appear
to vanish. Introducing spherical coordinates with the axis
z along the vector v, the integrals (44) and (45) are rewrit-
ten as

XL(v)=
g2CF

4π
m2

Dv

∫ ∞

0

dkk4

(m2
D+k2)2

∫ 1

0

dxx3

eβkxv − 1
, (46)

XT (v)=
g2CF

8π
m2

Dv

∫ ∞

0

dkk4

(m2
D+k2)2

∫ 1

0

dx(1−x2)x
eβkxv−1

, (47)

where the trivial azimuthal integrals are performed and
x ≡ cos θ with θ being the angle between v and k.

When T � mD, the integrals (46) and (47) can be
estimated as follows. One first observes that the domi-
nant contribution comes from k ∈ [mD, T ]. Assuming that
βkxv � 1, the integrals over x are easily computed and
one obtains

XL(v) = XT (v) =
g2CF

12π
m2

DT

∫ T

mD

dk k3

(m2
D + k2)2

. (48)

Approximating the integrand as k−1, we finally get

XL(v) = XT (v) =
g2CF

12π
m2

DT log
(

T

mD

)
. (49)

As one sees in eq. (48) or (49), XL(v) and XT (v) are
independent of v and equal to each other. The formula (35)
is therefore applicable and the inverse diffusion constant
equals

1
D

=
g2CF

12π

m2
D

T
log

(
T

mD

)
, (50)

which agrees with eq. (12) of the study [5] when only the
logarithmic term is taken into account.

4.3 Numerical results

Here we show some numerical results for the equilibrium
QGP of Nc = 3 and Nf = 2. The Debye mass is com-
puted according to the formula (A.7). Figure 1 presents
the coefficients XL(v) and XT (v), which are obtained di-
rectly from eqs. (42) and (43), as functions of the ve-
locity v. The coupling constant and the temperature are
αs ≡ g2/4π = 0.1 and T = 0.5GeV. In fig. 2 we show how
XL(v) and XT (v) depend on the temperature T . The cou-
pling constant is again αs = 0.1 and the velocity equals
v = 0.8.
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Fig. 1. The equilibrium coefficients XL(v) and XT (v) as func-
tions of the velocity v.

Fig. 2. The equilibrium coefficients XL(v) and XT (v) as func-
tions of the temperature T .

We have checked that the values of XL(v) and XT (v),
which we obtained numerically, agree rather well with
those computed by Svetitsky [6] except in the domain of
small velocities v ≤ 0.1. The agreement is not trivial be-
cause the coefficients of the Fokker-Planck equation were
derived in [6] from the matrix elements of heavy quark
binary interactions with plasma constituents. To remove
infrared divergences of the matrix elements, a mass pa-
rameter, corresponding to the Debye mass, was included
in the gluon propagator. Since the procedure is not very
accurate, it presumably explains the difference with our
XL(v) and XT (v) in the domain of small velocities. On
the other hand our approach does not treat properly the
interactions with a momentum transfer exceeding the De-
bye mass. Nevertheless the results of both approaches are
numerically rather similar.

5 Turbulent QGP

In this section we consider a Fokker-Planck equation of
heavy quarks in a turbulent QGP which is populated with
strong chromodynamic fields. The plasma is assumed to
be isotropic and translationally invariant both in time and

space. The tensor Xij(v), which enters the Fokker-Planck
equation (17), is given by eq. (41). The method to obtain
Y j(v), which is used in [11], works only for equilibrium
plasmas. Therefore, we will refer to the relation (25). How-
ever, it implicitly assumes that in the long time limit the
system of heavy quarks described by the Fokker-Planck
equation reaches a state of thermal equilibrium with tem-
perature T . First of all, the value of T is, in principle, un-
known and one needs additional arguments to determine
it. There is also a more important problem —it is unclear
what the properties of Xij(v) are for which the assump-
tion of equilibrium makes sense. If, for example, there are
only magnetic fields in the plasma, Xij(v) is purely trans-
verse and TY i(v) = 0. Consequently, the Fokker-Planck
equation reads

∂

∂t
n(t,p) = ∇i

pXT (v)
(

δij − pipj

p2

)
∇j

pn(t,p), (51)

and any stationary isotropic function n(p) solves the equa-
tion because ∇pn(p) ∼ p. Therefore, pure magnetic fields
do not drive the system to the thermal equilibrium, as
expected. In spite of these concerns, we will use the re-
lation (25) to get Y j(v). The parameter T is assumed to
be the temperature of the equilibrium plasma, the energy
density of which is equal to that of the turbulent plasma
under consideration.

5.1 Gaussian correlation functions of independent E
and B fields

We start with a simple model proposed in [14] where the
correlation functions of electric and magnetic fields are
chosen in the following Gaussian form:

〈Ei
a(t, r)Ej

b (0,0)〉=δabδijME exp
(
− t2

2σ2
t

− r2

2σ2
r

)
, (52)

〈Bi
a(t, r)Bj

b (0,0)〉=δabδijMB exp
(
− t2

2σ2
t

− r2

2σ2
r

)
, (53)

〈Ei
a(t, r)Bj

b (0,0)〉= 〈Bi
a(t, r)Ej

b (0,0)〉 = 0. (54)

We remind the reader that the link operators (19) are im-
plicitly assumed to be present in eqs. (52), (53) and (54)
even if they are not explicitly written. The correlation
lengths σt, σr and the parameters ME , MB of dimension
mass to the fourth power will be discussed later on. The
fluctuation spectrum obtained from the correlation func-
tion (52) is also Gaussian and it equals

〈Ei
aEj

b 〉ω, k = δabδij(2π)2τσ3ME exp
(
−σ2

t ω2

2
− σ2

rk
2

2

)
.

(55)
Substituting the correlation functions (52), (53),

and (54) into eq. (41), the tensor Xij(v) is found as

Xij(v) =
√

π

2
g2CF

(
δijME + (δijv2 − vivj)MB

)

× σtσr√
σ2

r + v2σ2
t

, (56)
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which gives

XL(v) =
√

π

2
g2CF

MEσtσr√
σ2

r + v2σ2
t

, (57)

XT (v) =
√

π

2
g2CF

(ME + v2MB)σtσr√
σ2

r + v2σ2
t

. (58)

When v2 � σ2
r/σ2

t and v2 � ME/MB , the coefficients
XL(v) and XT (v) are, as in the equilibrium case, equal to
each other and independent of v, and

X = XL(v) = XT (v) =
√

π

2
g2CF MEσt. (59)

The Fokker-Planck equation is then of the form (27).

5.2 Gaussian correlation function of vector potentials

Since the electric and magnetic fields are, in general,
coupled to each other, the functions 〈Ei

a Ej
b 〉, 〈Ei

a Bj
b 〉,

〈Bi
a Ej

b 〉, and 〈Bi
a Bj

b 〉 are not fully independent from each
other. The electric and magnetic fields are automatically
related to each other if one postulates the correlation func-
tion of the four-potential and then computes the correla-
tion functions of the E- and B-fields. In this section we
follow this path. Specifically, we assume the Gaussian cor-
relation function of the vector potential

〈Ai
a(t, r)Aj

b(0,0)〉 = δabδijMA exp
(
− t2

2σ2
t

− r2

2σ2
r

)
.

(60)
The parameter MA of the dimension mass squared will
be discussed later on. The fluctuation spectrum of the
potential equals

〈Ai
aAj

b〉ω, k = δabδij(2π)2σtσ
3
rMA exp

(
−σ2

t ω2

2
− σ2

rk
2

2

)
.

(61)
We further choose the radiation gauge

A0
a(t, r) = 0, ∇ · Aa(t, r) = 0, (62)

and the electric and magnetic fields are obtained in the
linear regime as

Ea(t, r) = −Ȧa(t, r), Ba(t, r) = ∇× Aa(t, r). (63)

Since these are the fields’ not the potential correlators
which enter the Fokker-Planck equation, it does not actu-
ally matter whether the Abelian approximation is adopted
here or not. The final form of the field correlators matters.
The linear relations (63) are used mostly as a guideline to
show that the electric and magnetic fields cannot be fully
independent from each other as assumed in [14] and in
sect. 5.1.

To get the fluctuation spectra 〈Ei
aEj

b 〉ω,k, 〈Bi
aEj

b 〉ω,k,
〈Bi

aBj
b 〉ω,k from the spectrum (61) we refer to the rela-

tion (B.7) derived in appendix B. Using eq. (63), the fluc-
tuation spectra are found as

〈Ei
aEj

b 〉ω,k =δab(2π)2σtσ
3
rMAω2δijexp

(
−σ2

t ω2

2
− σ2

rk
2

2

)
,

(64)

〈Bi
aBj

b 〉ω,k =δab(2π)2σtσ
3
rMA

(
δijk2 − kikj

)

× exp
(
−σ2

t ω2

2
− σ2

rk
2

2

)
, (65)

〈Ei
aBj

b 〉ω,k = 〈Bj
aEi

b〉ω,k = δab(2π)2σtσ
3
rMA ω εjmikm

× exp
(
−σ2

t ω2

2
− σ2

rk
2

2

)
. (66)

Substituting the formulas (64), (65), and (66) into
eq. (41), one gets after some manipulations

Xij(v)=2π2g2CF σtσ
3
rMA

∫
d3k

(2π)3
exp

(
−σ2

t ω2

2
− σ2

rk
2

2

)

×
[
(kivj + kjvi)ω̄ − δijω̄2 + (δijv2 − vivj)k2

− (k × v)i(k × v)j
]
, (67)

which gives

XL(v) =
√

π

2
g2CF

MAσtσrv
2

(σ2
r + v2σ2

t )3/2
, (68)

XT (v) =
√

π

8
g2CF

MA σtv
2

σr

[
3

(σ2 + v2τ2)1/2

− σ2 + 3τ2v2

(σ2 + v2τ2)3/2

]

. (69)

When v2 � σ2
r/σ2

t , we find again, as in the equilibrium
case, that the coefficients XL(v), XT (v) are equal to each
other, but they do depend on v. Specifically,

XL(v) = XT (v) =
√

π

2
g2CF

MAσtv
2

σ2
r

. (70)

In contrast to the equilibrium result and eq. (59), XL(v)
and XT (v) vanish as v → 0.

5.3 Stationary power spectrum of vector potential

When the momentum distribution of plasma constituents
is anisotropic, the system is unstable due to the Weibel
instability, see the review [2], and a strong chromomag-
netic field is generated spontaneously. As shown in the
numerical study [20], the fluctuation spectrum of the soft
fields becomes up to the wave number kmax stationary af-
ter a sufficiently long time and the spectrum decays with
wave vector as k−2. Inspired by these findings we choose,
as previously, the radiation gauge (62) and consider the
following spectrum

〈Ai
aAj

b〉ω, k = δabδij 2πδ(ω)
μ2 + k2

Θ(|k| − kmax)M, (71)
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Table 1. The coefficients XL(v) and XT (v) in the models of turbulent plasmas.

1
g2CF

XL(v) 1
g2CF

XT (v)

Gauss E & B
p

π
2

MEσtσr√
σ2

r+v2σ2
t

p

π
2

(ME+v2MB)σtσr√
σ2

r+v2σ2
t

Gauss A
p

π
2

MAσtσrv2

(σ2
r+v2σ2

t )3/2

p

π
8

MA σtv2

σr

h

3

(σ2
r+v2σ2

t )1/2 − σ2
r+3σ2

t v2

(σ2
r+v2σ2

t )3/2

i

Stationary A 0 Mv
8π

h

1
2
k2
max − 1

2
μ2 ln

“

k2
max+μ2

μ2

”i

Table 2. The transport coefficients dE
dx

and q̂ in the models of turbulent plasmas.

− 1
g2CF

dE
dx

1
g2CF

q̂

Gauss E & B
p

π
2

MEσtσrv

(σ2
r+v2σ2

t )1/2T

√
8π (ME+v2MB)σtσr

v
√

σ2
r+v2σ2

t

Gauss A
p

π
2

MAσtσrv3

(σ2
r+v2σ2

t )3/2T

p

π
2

MAσtv
σr

h

3

(σ2
r+v2σ2

t )1/2 − σ2
r+3v2σ2

t

(σ2
r+v2σ2

t )3/2

i

Stationary A 0 M
2π

h

1
2
k2
max − 1

2
m2 ln

“

k2
max+m2

m2

”i

where the parameters M, μ and kmax, which are all of the
dimension of mass, will be determined later on. We note
that kmax is of order of the Debye mass and that the small
but nonzero parameter μ is introduced to eliminate the
infrared divergence of the expression (71). In contrast to
the study [20], there are only zero frequency modes in the
spectrum (71), and consequently the correlators involving
electric field vanish. The only non-vanishing correlator is

〈Bi
aBj

b 〉ω,k = δab
(
δijk2 − kikj

) 2πδ(ω)
μ2 + k2

Θ(|k| − kmax)M.

(72)
Using the formula (36), the tensor Xij(v) is found as

Xij(v) =
g2CF

2

∫
d3k

(2π)3
((

δijv2 − vivj
)
k2

− (v × k)i(v × k)j
) 2πδ(ω̄)

μ2 + k2
Θ(|k| − kmax)M.

(73)

The coefficient XL(v) given by eq. (23) vanishes because
of transversality of magnetic field while XT (v) equals

XT (v) =
g2CF

4
Mv2

∫
d3k

(2π)3
k2 2πδ(ω̄)

μ2 + k2
Θ(|k| − kmax).

(74)
After taking the elementary integrals, one obtains

XT (v) =
g2CF

8π
Mv

[
1
2
k2
max − 1

2
μ2 ln

(
k2
max + μ2

μ2

)]
.(75)

As seen, XT (v) vanishes when v → 0 and the formula (75)
simplifies to

XT (v) =
g2CF

16π
M k2

maxv, (76)

when kmax � μ.

In tables 1 and 2, the coefficients XL(v), XT (v) and the
corresponding transport coefficients dE

dx , q̂ obtained in the
models of turbulent plasma discussed in the sects. 5.1, 5.2
and 5.3 are collected. The models are called “Gauss E &
B”, “Gauss A” and “Stationary A”, respectively. We ob-
serve that dE

dx is not always reliable because there is no
guarantee that heavy quarks evolve in turbulent plasmas
towards the state of thermodynamical equilibrium as re-
quired by the relation (26) that is used. We also note that
the formula of q̂ in the “Gauss E & B” model, which does
not hold for a test quark with any v but for a test gluon
with v = 1, was first obtained in [15].

6 Equilibrium vs. isotropic turbulent plasma

We are going to compare the equilibrium plasma to the
turbulent one at the same energy density. The energy den-
sity of the equilibrium quark-gluon plasma of Nf massless
flavors equals

εQGP =
π2

60
(
4(N2

c − 1) + 7NfNc

)
T 4. (77)

The density of energy accumulated in chromodynamic
fields is expressed as

εfield =
1
2
〈Ei

a(t, r)Ei
a(t, r)〉 +

1
2
〈Bi

a(t, r)Bi
a(t, r)〉

=
1
2

∫
dω

2π

d3k

(2π)3
(
〈Ei

aEi
a〉ω, k + 〈Bi

aBi
a〉ω, k

)
. (78)

If the fluctuation spectra 〈Ei
aEi

a〉ω, k and 〈Bi
aBi

a〉ω, k are
of the Gaussian form (55), the energy density equals

εfield =
3(N2

c − 1)
2

(ME + MB). (79)
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Table 3. Parametric estimates of the coefficients XT (v) in
the four plasma models under consideration. The third column
takes into account that σ−1

t ∼ kmax ∼ gT .

XT (v) XT (v)

Equilibrium g4T 3 g4T 3

Gauss E & B g2τT 4 gT 3

Gauss A g2τT 4v2 gT 3v2

Stationary A g2 T4

kmax
v gT 3v

When the fluctuation spectra 〈Ei
aEi

a〉ω, k and 〈Bi
aBi

a〉ω, k

are given by eqs. (64) and (65), we have

εfield =
3(N2

c − 1)
2

(
1
σ2

t

+
2
σ2

r

)
MA. (80)

Finally, if the fluctuation spectrum 〈Ai
aAi

a〉ω, k is of the
form (71), the purely magnetic energy density equals

εfield =
N2

c − 1
6π2

M k3
max =

4
3π2

M k3
max, (81)

where we assume that kmax � μ. We note that in the
weak coupling limit the magnitudes of electric and mag-
netic fields in turbulent plasmas, which are according to
the above estimates of the order T 2, are much larger than
in equilibrium plasmas where the fields are typically of
the order g2T 2. This is the main reason why the turbu-
lent plasmas, which are discussed here, are qualitatively
different than the equilibrium one.

To reduce the number of parameters of our models of
turbulent plasma we adopt the simplifying assumptions
that ME = MB and σt = σr. Then, when the energy
density of the fields in turbulent plasma (79), (80) and (81)
equals the energy density of the equilibrium QGP (77), the
parameters ME , MA and M are equal to

ME =
37π2

720
T 4, MA =

37π2

1080
σ2

t T 4, M =
37π4

40
T 4

k3
max

.

(82)
We set Nc = 3 and Nf = 2. With the simplifying rela-
tions ME = MB and σt = σr and the equalities (82), one
obtains the parametric estimates of the coefficient XT (v)
which are shown in the second column of table 3 where
we have additionally assumed that v2 � 1.

Since the parameters σt, σr determine the field corre-
lation length in time and space, they are of order of the
screening length and thus we choose σt = σr = m−1

D . Sim-
ilarly, kmax is a soft momentum and following [20] we set
kmax = 5mD. Using the formula (A.7), we get

σt =
√

3
2gT

, kmax =
10√

3
gT. (83)

The parametric estimates of XT (v), which take into ac-
count the relations (83), are shown in the third column of
table 3. As seen, the interaction of heavy quarks is much

Fig. 3. The coefficient XL(v) as a function of the velocity v in
the equilibrium plasma and the models of turbulent plasma.

stronger in the turbulent plasma than in the equilibrium
one if the plasma is truly weakly coupled with g � 1. The
effect disappears when the coupling constant αs ≡ g2/4π
is of realistic value and gives g close to unity or even big-
ger.

One may ask whether the strong magnetic fields dis-
cussed above are stable or, maybe, they rapidly decay due
to the Nielsen-Olesen instability [21] which has been dis-
cussed in the context of quark-gluon plasma in [22,23].
Strictly speaking, the Nielsen-Olsen instability occurs in
systems with a homogeneous magnetic field because the
system’s energy can be reduced by particles circulating
in the magnetic fields. The unstable mode grows as eγt

with γ =
√

gB. When the field is inhomogeneous with
the wave vector k, the decrement of growth is reduced to
γ =

√
gB − k2. The instability disappears when gB < k2

which physically means that the length of inhomogeneity
is shorter than the Larmor radius. As discussed above,
B ∼ T 2 and k ∼ gT in the turbulent plasma and thus
the Nielsen-Olsen instability is unavoidable as long as
g � 1. The lifetime of strong magnetic field is then of
order (

√
g T )−1. The parametric estimates from table 3

are merely given to stress that a turbulent plasma qual-
itatively differs from the equilibrium one. In sect. 7 we
discuss the glasma [1] which is of our main interest. We
show that the instability is absent in the glasma because
the field correlation length is of the order of the inverse
stauration scale Qs.

In figs. 3 and 4 we present how XL(v) and XT (v) de-
pend on the velocity v in the plasma models under con-
sideration. The coupling constant and temperature are
αs = 0.1 and T = 0.5GeV. Figures 5 and 6 show the
corresponding energy loss and momentum broadening as
functions of v. Since the energy density of the turbulent
plasma is fixed, the temperature T , which enters eq. (25)
or (26), is fixed as well. The coefficient q̂ is computed for
v ≥ 0.3 because it diverges as v → 0 in the model “Gauss
E & B”. However, q̂ is of no physical relevance for small
velocities. As seen, the coefficients XL(v) and XT (v) and
consequently dE/dx and q̂ are rather different in the equi-
librium and turbulent plasmas —not only the magnitudes



Eur. Phys. J. A (2018) 54: 43 Page 11 of 15

Fig. 4. The coefficient XT (v) as a function of the velocity v in
the equilibrium plasma and the models of turbulent plasma.

Fig. 5. The energy loss as a function of v in the models of
turbulent plasma.

Fig. 6. The momentum broadening q̂ in the models of turbu-
lent plasma.

differ but the dependences on the heavy quark’s velocity
are different. The interaction of heavy quarks is particu-
larly strong in the model “Gauss E & B”.

One wonders why the models “Gauss E & B” and
“Gauss A”, which at first glance are quite similar, give
rather different results as shown in figs. 3 and 4. Com-
paring the fluctuation spectra (64) and (65) to (55), one
observes that the low frequency and long wavelength fields
are suppressed in the “Gauss A” model. These fields ap-
pear to contribute more effectively to the transport co-
efficients than the high frequency and short wavelength
fields.

7 Glasma

When relativistic heavy ions collide color charges of par-
tons confined in the colliding nuclei generate strong chro-
modynamic fields right after the collision. Since the system
of infinitely contracted nuclei moving against each other
with the speed of light is boost invariant, so is the con-
figuration of generated fields. As shown in the detailed
analytic study [24], see also [25], the chromoelectric and
chromomagnetic fields spanned between the receding nu-
clei are initially only parallel to the beam direction. Trans-
verse field components start to develop later on. We fo-
cus here on the longitudinal fields which dominate the
glasma’s dynamics and are invariant under Lorentz trans-
formations along the beam direction identified with the
axis z.

7.1 Field correlation functions

Since the electric and magnetic fields are expressed in
the Abelian limit through the four-potential according to
eq. (63), the potential generating the fields only along the
axis z is of the form

Aμ
a(t, r) =

(
A0

a(t, z), Ax
a(x, y), Ay

a(x, y), Az
a(t, z)

)
, (84)

that is the 0 and z components of Aμ depend on t and
z while the x and y components on x and y. The elec-
tric field corresponding to the potential (84) depends on
t and z while the magnetic field on x and y. The elec-
tric field Ez

a is boost invariant if it depends on t and z

only through the proper time τ ≡
√

t2 − z2 which is the
Lorentz scalar. However, we do not require the boost in-
variance of the fields but of the field correlators. To write
down a general expression of the electric field correlator
〈Ez

a(t1, z1)Ez
b (t2, z2)〉, we introduce the variables

τi ≡
√

t2i − z2
i , ηi ≡

1
2

log
(

ti + zi

ti − zi

)
, i = 1, 2, (85)

and we note that the proper times τi and space-time ra-
pidities ηi are well defined only for the time-like two-
vectors (ti, zi). The boost invariant correlation function
of the electric fields is assumed to be

〈Ez
a(t1, z1)Ez

b (t2, z2)〉 =

δabΘ(t21 − z2
1)Θ(t22 − z2

2) fE(τ1 − τ2, η1 − η2), (86)
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where Θ(t2i − z2
i ) is the Heaviside step function and

fE(τ, η) is an arbitrary function. Since τi and ηi are well
defined only for t2i ≥ z2

i , we require that the correlation
function (86) vanish when the space-time points (ti, zi)
are localized beyond the light cone of the point (0, 0). We
observe that the correlation function, which depends not
only on τ1 − τ2 but on both τ1 and τ2, is also boost in-
variant but we assume the translation invariance in the τ
variable just for simplicity.

The boost invariant magnetic field correlator is chosen
to be

〈Bz
a(x1, y1)Bz

b (x2, y2)〉 = δabfB(x1 − x2, y1 − y2), (87)

that is the plasma is assumed to be translationally in-
variant in the x and y directions. We note that the fields
Ez

a(t, z) and Bz
a(x, y) are completely decoupled from each

other in the Abelian limit and thus the mixed correlator
〈Ez

a(t1, z1)Bz
b (t2, z2)〉 is expected to be small or vanish.

We introduce the unit vector n = (0, 0, 1) along the
axis z and the correlation functions of electric and mag-
netic fields are written as

〈Ei
a(t1, r1)Ej

b (t2, r2)〉=δabninjΘ(t21 − z2
1)Θ(t22 − z2

2)
×fE(τ1 − τ2, η1 − η2), (88)

〈Bi
a(t1, r1)Bj

a(t2, r2)〉=δabninjfB(x1−x2, y1−y2). (89)

The correlators are chosen to be of the Gaussian form

fE(τ, η) = M̃E exp
(
− τ2

2σ2
τ

− η2

2σ2
η

)
, (90)

fB(x, y) = M̃B exp
(
−x2 + y2

2σ2
T

)
, (91)

with the real positive parameters M̃E , M̃B , στ , ση and σT

to be determined later on.

7.2 Computation of X and Y

Substituting the correlation function (89) with (91) into
eq. (16), the magnetic contribution to the tensor Xij(v)
is found as

Xij
B (v) = g2CF V ijM̃B

∫ t

0

dt′ exp

(

−
(v2

x + v2
y)t′2

2σ2
T

)

,

(92)
where

V ij ≡ εiklvknlεjmnvmnn =

⎛

⎜
⎝

v2
y −vxvy 0

−vxvy v2
x 0

0 0 0

⎞

⎟
⎠ . (93)

Since the Fokker-Planck equation is derived in the long
time limit, we assume that t � σT and the integral be-
comes Gaussian. Thus, we get

Xij
B (v) =

√
π

2
g2CF

V ij

vT
M̃BσT , (94)

where vT ≡ |vT | =
√

v2
x + v2

y is the quark velocity per-
pendicular to n.

The electric contribution to the tensor Xij(v) is

Xij
E (v) = g2CF ninj

∫ t

0

dt′ Θ(t2 − z2)

×Θ
(
t′2 − (z − vz(t − t′))2

)
fE(τ, η), (95)

where

τ ≡ τ1 − τ2 =
√

t2 − z2 −
√

t′2 − (z − vz(t − t′))2, (96)

η ≡ η1 − η2 =
1
2

log
(

t + z

t − z

)

−1
2

log
(

t′ + (z − vz(t − t′))
t′ − (z − vz(t − t′))

)
. (97)

The integral from eq. (95) with the correlation func-
tion (90) is difficult to compute analytically. The problem
greatly simplifies in the long time limit. When t � z and
t � στ one easily finds

Xij
E (v) ≈

√
π

2
g2CF ninjM̃E στ , (98)

which is independent of ση. We have checked numerically
a quality of the approximation (98). In fig. 7 we show the
numerically computed coefficient Xzz

E (v) divided by the
approximate expression (98) for t = 10στ and t = 30στ

as a function of heavy-quark velocity vz. The coefficient
is independent of vx and vy. The correlation length in ra-
pidity is chosen as ση = 1 but for a bigger ση the approx-
imation (98) is even more accurate. We conclude that the
approximation (98) works pretty well and we write the
tensor Xij(v), which includes the magnetic and electric
contributions, as

Xij(v) =
√

π

2
g2CF

(
ninjM̃E στ +

V ij

vT
M̃BσT

)
. (99)

Using the relation (25), one finds that the vector Y i(v)
equals

Y i(v) =
√

π

2
g2CF (v · n)ni M̃Eστ

T
. (100)

The temperature will be estimated in the next section
but, as already discussed at the beginning of sect. 5, the
result (100) should be treated with a reservation.

7.3 Estimates of parameters

To get approximate values of the parameters, which char-
acterize the glasma, let us estimate the density of en-
ergy released in relativistic heavy-ion collisions. When one
deals with the central collisions of two nuclei of mass num-
ber A, the energy density in the center-of-mass frame of
colliding nuclei is roughly

εcoll =
cinelA

√
s

πR2
Al

, (101)
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Fig. 7. The coefficient Xzz
E (v) divided by the approximate

expression (98) for t = 10στ in the upper panel and for t =
30στ in the lower panel.

where
√

s is the center-of-mass energy of nucleon-nucleon
collision, cinel is the inelasticity parameter which gives the
fraction of all accessible energy going to particle produc-
tion, RA is the radius of colliding nuclei and l is a length
of the cylinder where the energy is released. Assuming
that cinel = 0.5 [26] and taking A = 200, RA = 7 fm and
l = 1 fm, one obtains εcoll ≈ 3.25TeV/fm3 for

√
s = 5TeV

which is the energy of Pb-Pb collisions at LHC of the 2015
run.

According to eq. (78) the density of energy accumu-
lated in chromodynamic fields equals

εfield =
N2

c −1
2

(fE(0, 0)+fB(0, 0))=
N2

c −1
2

(M̃E +M̃B),

(102)
where the explicit form of the correlation functions (90)
and (91) have been used. The field energy density is con-
trolled by the parameters M̃E and M̃B but is indepen-
dent of the correlations lengths σT , στ and ση. Assuming
M̃E = M̃B , as suggested [24], we get εfield = 8M̃E for
Nc = 3. Requiring that εfield = εcoll, the parameter M̃E is
estimated as

M̃E =
1
8

εcoll ≈ 3.10GeV4. (103)

To use the formula (25) to obtain the coefficient Y i(v),
one needs a temperature of the equilibrated quark-gluon
plasma of the same energy density as the glasma. Using
the formula (77), the equation εfield = εQGP provides

T =
(

240
37π2

M̃E

)1/4

≈ 1.20GeV, (104)

where Nc = 3 and Nf = 2.
Within the CGC approach the strong longitudinal

chromodynamic fields are screened on transverse distance
which is of the order of the inverse saturation momen-
tum Qs. Since Qs is estimated as 2 GeV [1], we choose
the transverse correlation σT = Q−1

s = 0.5GeV−1. We
also assume that στ = σT . The remaining parameter is
the coupling constant which, as previously, is chosen to
be αs = 0.1. As already mention in sect. 6, the glasma
magnetic field is stable against the Nielsen-Olesen insta-
bility, because the inhomogeneity length of order Q−1

s is
not much bigger than the Larmor radius (gB)−1/2, Qs is
even bigger than M̃

1/4
B .

Using the formulas (100) and (99) combined with
eqs. (31) and (34), we obtain the following estimates of
the energy loss and momentum broadening

−dE

dx
=

27/2π3/2

3
αsv cos2 θ

M̃Eστ

T
≈ 14v cos2 θ

[
GeV
fm

]
,

(105)

q̂ =
29/2π3/2

3
αs

sin2 θ + v sin θ

v
M̃Eστ

≈33
sin2 θ + v sin θ

v

[
GeV2

fm

]
, (106)

where θ is the angle between v and n. Because the electric
field is along the beam axis, the collisional energy loss
is maximal when the heavy quark moves along the axis,
v ‖ n. The maximal momentum broadening occurs when
v ⊥ n.

Let us compare the numerical values (105) and (106)
with those which are required to properly model experi-
mental data on the charm meson suppression. The colli-
sional energy loss and momentum broadening of a charm
quark with 10GeV momentum in the plasma of the tem-
perature from the interval 0.35–0.5GeV are estimated [3]
as

−dE

dx
= 1.0–3.0

[
GeV
fm

]
, (107)

q̂ = 1.5–7.0
[
GeV2

fm

]
. (108)

As seen, the values (105) and (106) can be significantly
larger than (107) and (108), suggesting that in spite of
a short lifetime of the glasma it can provide a significant
contribution to the collisional and radiative energy loss to
heavy quarks from relativistic heavy-ion collisions. Conse-
quently, the effect should be included in the phenomenol-
ogy of jet quenching.
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8 Summary, conclusions and outlook

Applying the so-called quasi-linear theory [10,9], we have
derived a general form of the Fokker-Planck equation of
heavy quarks embedded in the plasma of light quarks and
gluons. Since the interaction is taken into account through
the correlation functions of chromodynamic fields, heavy
quarks are seen as interacting not with plasma con-
stituents but rather with fields present in the plasma.
At first we have obtained the explicit form of the equa-
tion for the case of equilibrium plasma which was stud-
ied long ago [6] using the standard method where the
Fokker-Planck equation simply approximates the Boltz-
mann one. Although our approach is noticeably different,
the Fokker-Planck equation we obtained agrees with the
standard one [6].

In the second part of the paper, the method devel-
oped for the equilibrium plasma has been applied to the
turbulent plasma populated with strong fields. The para-
metric estimate shows that the interaction of heavy quarks
with the turbulent plasma is much stronger than with the
equilibrium one of the same energy density if the coupling
constant is truly small. The effect is less prominent for a
realistic value of the coupling constant and the difference
depends on characteristics of the plasma fields. Within the
“Gaussian E & B” model both the energy loss and mo-
mentum broadening are significantly bigger than the equi-
librium results. A dependence of dE/dx and q̂ on heavy
quark velocity also strongly depends on how the turbulent
plasma is modeled.

The third part of our study is devoted to the glasma
from the earliest stage of relativistic heavy-ion collisions.
Assuming that there are chromoelectric and chromomag-
netic fields only along the beam direction we have de-
rived the appropriate Fokker-Planc equation. We have also
shown that in spite of its short lifetime the glasma can
provide a significant contribution to the collisional and
radiative energy loss of heavy quarks.

Our findings clearly suggest a direction of further work.
We need a more realistic model of turbulent QCD plasma
from relativistic heavy-ion collisions. In contrast to the
simple model discussed here, a temporal evolution of the
glasma has to be taken into account and the fields can-
not be purely longitudinal. The CGC studies [1] and, in
particular, the analytic analysis [24] provide a very good
guidance to build up such a model.

I am very grateful to Margaret Carrington for numerous fruit-
ful discussions and valuable comments.

Appendix A. Equilibrium correlation
functions

The correlation functions of chromodynamic fields in the
equilibrium plasma, which were studied in detail in [12],

can be expressed as

〈Hi
a(t, r)Kj

b (t′, r′)〉 =
∫

dω

2π

∫
d3k

(2π)3
e−i(ω(t−t′)−k·(r−r′))〈Hi

aKj
b 〉ω, k, (A.1)

where Hi
a(t, r) and Kj

b (t, r) is either the electric or mag-
netic field, and the fluctuation spectra are

〈Ei
aEj

b 〉ω, k = 2δab ω4

eβ|ω| − 1

[
kikj

k2

	εL(ω,k)
|ω2εL(ω,k)|2

+
(

δij− kikj

k2

)
	εT (ω,k)

|ω2εT (ω,k)−k2|2
]
, (A.2)

〈Bi
aBj

b 〉ω, k = 2δab ω2k2

eβ|ω| − 1

(
δij − kikj

k2

)

× 	εT (ω,k)
|ω2εT (ω,k) − k2|2 , (A.3)

〈Bi
aEj

b 〉ω, k = 〈Ej
aBi

b〉k = 2δab ω3

eβ|ω| − 1
εimjkm

× 	εT (ω,k)
|ω2εT (ω,k) − k2|2 , (A.4)

εijm is the antisymmetric tensor, β ≡ T−1 with T being
the system’s temperature and εL,T (ω,k) are chromodi-
electric functions. For an equilibrium plasma of massless
particles, the functions are well known to be, see e.g. [27],

�εL(ω,k) = 1 +
m2

D

k2

[
1 − ω

2|k| ln
∣
∣
∣
∣
ω + |k|
ω − |k|

∣
∣
∣
∣

]
,

	εL(ω,k) =
π

2
Θ(k2 − ω2)

m2
Dω

|k|3 , (A.5)

�εT (ω,k) = 1 − m2
D

2k2

[
1 − ω2 − k2

2ω|k| ln
∣
∣
∣
∣
ω + |k|
ω − |k|

∣
∣
∣
∣

]
,

	εT (ω,k) =
π

4
Θ(k2 − ω2)

m2
D(k2 − ω2)

ω|k|3 , (A.6)

with mD being the Debye mass which for the quark-gluon
plasma of Nf massless flavors equals

m2
D =

g2T 2

6
(Nf + 2Nc). (A.7)

When ω2 � k2, the dielectric functions can be approxi-
mated as

�εL(ω,k) = 1 +
m2

D

k2
, 	εL(ω,k) =

π

2
m2

Dω

|k|3 , (A.8)

�εT (ω,k) = 1 − m2
D

k2
, 	εT (ω,k) =

π

4
m2

D

ω|k| . (A.9)

We note that the fluctuation spectra of pure classical
fields were actually derived in our study [12]. The effect
of Bose statistics of field quanta has been included in the
formulas (A.2), (A.3), and (A.4) by means of the substi-
tution

T

ω
→ sgn(ω)

eβ|ω| − 1
ω�T≈ T

ω
. (A.10)
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The absolute value of the frequency results from the fol-
lowing reasoning. Since the electric and magnetic fields are
real in coordinate space, their correlation functions are
real as well. Consequently, the fluctuation spectra must
obey

〈Hi
aKj

b 〉ω, k = 〈Hi
aKj

b 〉−ω,−k. (A.11)

One checks that the formulas (A.2), (A.3), and (A.4) in-
deed satisfy the symmetry (A.11) and thus the correlation
function (A.1) is real as it should be.

Appendix B. Correlation function and
fluctuation spectrum

We discuss here the relation between the correlation func-
tion of the Fourier transformed fields and the fluctuation
spectrum. The correlation function of the Fourier trans-
formed fields equals

〈Hi
a(ω,k)Kj

b (ω′,k′)〉 =
∫

dtd3rei(ωt−k·r)
∫

dt′d3r′ei(ω′t′−k′·r′)〈Hi
a(t, r)Kj

b (t′, r′)〉,

(B.1)

where Hi
a(t, r) and Kj

b (t, r) is either the electric field, mag-
netic field, or the potential. To define the fluctuation spec-
trum we first write down the correlation function as

〈Hi
a(t1, r1)Kj

b (t2, r2)〉 =
〈

Hi
a

(
t +

Δt

2
, r +

Δr
2

)
Kj

b

(
t − Δt

2
, r − Δr

2

)〉
, (B.2)

where the new space-time variables read

t ≡ t1 + t2
2

, r ≡ r1 + r2

2
, (B.3)

Δt ≡ t1 − t2, Δr ≡ r1 − r2. (B.4)

The fluctuation spectrum is defined as

〈Hi
aKj

b 〉ω,k =
∫

dΔt d3Δrei(ωΔt−k·Δr)

×
〈

Hi
a

(
t+

Δt

2
, r+

Δr
2

)
Kj

b

(
t−Δt

2
, r−Δr

2

)〉
. (B.5)

In general, the fluctuation spectrum (B.5) depends on t
and r. However, if the system is stationary and homoge-
neous, that is translationally invariant in both space and
time, the spectrum is independent of t and r. Therefore,
eq. (B.5) can be rewritten as

〈Hi
aKj

b 〉ω,k =
1

V T

∫
dtd3r

∫
dΔt d3Δr ei(ωΔt−k·Δr)

×
〈

Hi
a

(
t+

Δt

2
, r+

Δr
2

)
Kj

b

(
t−Δt

2
, r−Δr

2

)〉
, (B.6)

where V T is the space-time volume occupied by the sys-
tem. Substituting the space-time correlation function ex-
pressed through 〈Hi

a(ω,k)Kj
b (ω′,k′)〉 into eq. (B.6) and

performing the trivial integrations involving delta func-
tions, one obtains the desired relation

〈Hi
aKj

b 〉ω,k =
1

V T 〈Hi
a(ω,k)Kj

b (−ω,−k)〉. (B.7)
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