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ABSTRACT

The emerging discipline known as "chaos theory" is a relatively new field of study

with a diverse range of applications (economics, biology, meteorology, etc.). Despite

this, there is not as yet a universally accepted definition for "chaos" as it applies to gen-

eral dynamical systems. Various approaches range from topological methods of a

qualitative description, to physical notions of randomness, information, and entropy in

crgodic theory, to the development of computational definitions and algorithms designed

to obtain quantitative information.

This thesis develops some of the current definitions and discusses several quantita-

tive measures of chaos. It is intended to stimulate the interest of undergraduate and

graduate students and is accessible to those with a knowledge of advanced calculus and

ordinary differential equations. In covering chaos for continuous systems it serves as a

complement to the work done by Philip Beaver [Ref. 1], which details chaotic dynamics

for discrete systems.
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I. INTRODUCTION

In recent years, new topological methods stemming from work, done in the late

nineteenth and early twentieth century by French mathematician and physicist Henri

Poincare have been applied to the classical "analytical" theory of ordinary differential

equations. The powerful discipline which has emerged has come to be known as "dy-

namical systems theory," with applications not only to continuous, but to discrete sys-

tems as well, such as recursive or iterative feedback loops. One result of these methods

is the ability to detect, describe, and measure the elusive phenomenon of "chaos."

Simply put "chaos" is the occurrence of behavior that appears "random" in a

deterministic dynamical system, that is, a system that changes in time governed at least

in principle by certain known physical or mathematical laws. It is a phenomenon that

is intrinsic to many dynamical systems, and not due to external influences such as

"noise." Examples are wide-ranging, and include the motion of the planets, turbulent

fluid flow, and population fluctuations. Additional applications have come from many

fields of study, such as astronomy, biology, chemistry, ecology, economics, geology,

mathematics, medicine, physics, and some social sciences, as well as various engineering

disciplines. In addition, many of these ideas have captured the public imagination, re-

sulting in a great number of popular expositions. In recent years, various attempts have

been made to codify these important concepts, and develop a rigorous unifying theory

of "chaotic dynamics."

This thesis introduces the reader to some of the methods of determining the presence

of "chaos" in continuous systems as well as measuring it quantitatively. The information

presented should be accessible to those with a knowledge of advanced calculus and or-
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dinary differential equations. To this end, the proofs of presented theorems which ex-

ceed this knowledge are referenced for the interested reader.



II. BASIC CONCEPTS

A. SYSTEMS OF FIRST ORDER DIFFERENTIAL EQUATIONS

We begin with a general system of first order ordinary differential equations ex-

pressed in the vector form

-v' = J[x.t), (1

with x'=—j- for .v=[.v,,.v, tn J e R
n

, and /=[/./ /„] e IR
n

, where each
ai

/,, i = 1, 2,..., n assigns a real scalar value to every point jc e R
n

and time t e R. Hence

/: R"'
1

-> R, and so f. U
n
~ -* U". For example, with n = 3, equation (1) is equivalent

to

x
\

X
2 =

*3

f]
(x

{

,x
2
,x

3 ,[)

f2(xl
,x2,x3 ,r)

f3{xu x2 , x3 , t)

(2)

Whenever possible vectors will be written in column form, however we may take the

liberty, as was done for the vectors x and/, to write them as rows. The vector function

/in equations (1) and (2) is defined as a vector field in R
n

. In a non-autonomous system,

/depends explicitly on the variable /. An autonomous system is one in which /has no

explicit time dependence; in this case equation (1) can be written as

x' -Ax), (3)

where /:
.n „-, n ^

for x e



It should be noted that higher order differential equations can be written as a system

of first order differential equations. For example, consider the second order differential

equation

y" + 5/ + Ay = 0. (4)

With new variables defined bv

~*1

"

y
= =

_*2_ _y _

(5)

we have

x

x
2

=
y'

y"
=

Or + W

Ay - 5v'

(6)

i.e., the original equation (4) is equivalent to the 2x2 system

x' = Ax, (7)

with A =
1

-4 -5

(8)

For methods of converting higher order differential equations to first order systems see

Borrelli-Coleman [Ref. 2].



The general form of a linear system of differential equations is

-v, an {i)x
]
+ . . . + aln(t)xn + F

l
(t)

«nl(0*i +• • + «nn(')*n + ^(0

(9)

where E: and each a„: I, i= l,..,n, j= l,..,n. Equivalently,

x' = A{i)x + F(t) (10)

where .-/ = (o
li
(f))i=i n and F: U -> U is given by F= f/

7
,...., n̂ J- If the linear system is

i=l....,n

autonomous, then a„ and F
t

are constants. A nonlinear system of differential equations

is one which is not linear.

If the linear system is such that the functions F, are identically zero, then the system

is said to be homogeneous and can be written in the form

x' = A(t)x. (11)

A{t) is a matrix consisting of the same a„ as in equation (9). Again, if the linear homo-

geneous system is autonomous, then the matrix A is constant, as in (7) and (8).

It is also true that a non-autonomous system such as (1) can be written as an au-

tonomous one. This is done by considering / as a dependent variable, increasing the size

of the problem from n to n+ 1:

x' =J\x,i)

t' = 1

(12)



is equivalent to

y = g(y) (13)

with

e U and g: R° -» 0* given by g(j-

Xv:
(14)

Since any system can be written as an autonomous one. it will be assumed without loss

of generality that the system is autonomous unless specified otherwise.

The general solution to a system of differential equations - denoted </>
f
(-v) - is called

a flow and equation (3) implies that 4>,'(x) =J[4>,(x)). As an example. </>,(-*) for a third

order system (i.e., n= 3) takes the form

n*) =

"*iW~

*20

•*
3 (')_

(15)

and defines a family of solutions or integral curves. An initial condition for the system

(3) typically has the form x(t ) — xQ , and physically prescribes a point x e K" through

which the flow passes at time / = t . Under certain conditions according to the basic lo-

cal existence and uniqueness theorem of ordinary differential equations (see

Coddington-Levinson [Ref. 3] ), this flow is uniquely determined, so that (f>,(x) = x .

Often, without loss of generality, time t = is chosen for the initial condition; then

<f>
(.x) = x .



B. ASYMPTOTIC BEHAVIOR OF FLOWS

One of the objectives of the modern theory of differential equations, or dynamical

systems, is to describe the global rather than just the local behavior of flows. To this

end, we introduce a number of definitions and then provide several examples to illustrate

them.

The forward orbit of a flow
<f> t

(x) based at a point jceM" is defined as

{</>,(*): < t < oo}. The backward orbit of 4>,(x) is defined as {4>,(x): — oo < t < 0}. The

full orbit of a flow 4>,{x) is defined as {4>,{x): — oo < t < oo}. We remark that an orbit is

also sometimes referred to as a trajectory.

A point p e U* is an equilibrium or stationary point if x = p implies that 4>{x) = p

for all / > 0. These correspond to critical points of .\-(/), and so may be found by setting

x' = in equation (3). A periodic orbit of period T is defined as a set {(j>,(x): < t < T}

for some T > such that 4> T(x) = x. If 4>,(x) # x for any < t < T, then T is the funda-

mental, minimal or prime period for 4>,(x). The flow of an equilibrium point can be

viewed as a periodic orbit of period zero. A quasi-periodic orbit is an orbit that is not

periodic, but which can be written as the sum of "incommensurate" periodic orbits. As

an example, the flow

4>i(x) = cos It + cos v'2 t (16)

defines a quasi-periodic orbit. It is written as a sum of periodic orbits, but is not itself

periodic since 2 and J2 are incommensurate (i.e., k{l + k
2j2 ^ for any ku k2

integers,

both not equal to zero).

Equilibrium points and points of a periodic flow can be viewed collectively as a

single set of points. These sets of points are specific examples of what will now be de-

fined as an invariant set. An invariant set A of a flow is a set such that (/>,(A) = A, where

we define $,(A) = jJ 4>,{x).



A closed invariant set is stable if for every c > 0, there exists a 6 > 0, such that

||x - A|| < 6 implies that \\4>,{x) — A|| < e for all / > (i.e., a flow which starts at a point

close to A, will stay close to A). Here '

|| ||

'

is the standard Euclidean distance in IR
n

, and

||.v — A|| is defined as the greatest lower bound of ||x — y\\ for ally e A. A closed invariant

set A is asymptotically stable if it is stable and if there exists a S > 0, such that

||.v — A|| < (5 implies that \\4>,(x) — A|| -> as / -* oo. (i.e., a flow which starts at a point

close to A, will get arbitrarily close to A as time advances). A closed invariant set A is

unstable if for every c > there exists a S > 0, such that ||.v — A|| < implies that

||0 f(-v ) — A|| -> as / -> — oo (i.e., a flow which starts at a point close to A, will get arbi-

trarily close to A in backward time). We remark, that many authors choose to define a

closed invariant set as unstable simply if it is not stable. The limit set A oC a flow is

defined as the set of all points p such that (f>,(x)-+p as / - ± oo. Note that by con-

struction, A is an invariant set.

The following examples of systems of differential equations are provided to illustrate

some of the previous definitions.

Example 1 - Population Equation (one dimension)

x' = r(M-x)x (17)

This differential equation can be used as a simple model of bacteria growth in a Petri

dish. The constant r is the positive rate of growth, and VI is the positive limiting pop-

ulation constant due to factors such as the size of the Petri dish.

Although this equation can be solved using methods of ordinary differential

equations, a qualitative graph of its solutions can be formed using simple analysis. F- irst,

note that the constant functions x = and x = VI are equilibrium solutions of (17).

Moreover, if either x < or x > M, then .v' < 0, so that x decreases with increasing /.
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Likewise if < jc < M, then x' > 0, so that x increases with increasing t. Using this

analysis the family of solutions is plotted for / > in Figure 1.

A phase diagram is one which eliminates the variable / by projecting the flow curves

onto the space 1R" of the .v-variables. The direction of flow is shown schematically by

arrows. Obviously, since this process results in an n-dimensional portrait, it can only

be visualized for n= 1. 2. or 3. The phase diagram for the above population equation

is shown in Figure 2.

As observed above, the population equation has two equilibrium points: x = and

.y = M. These points can be calculated by setting x' = (i.e., r(\\ — x)x = 0). Notice

that flows with initial points in (0, oo) tend toward M as / increases, and away from M

as t decreases. This can be seen by either the plot of solutions or the phase diagram.

Thus the point VI (or more precisely, the closed invariant set A = {M}) satisfies the de-

finition of an asymptotically stable equilibrium point, or sink. Note also, that flows of

points near but not equal to zero tend away from zero as t increases, and tend toward

zero as / decreases. Thus zero satisfies the definition of an unstable equilibrium point,

or source.

Example 2 - Simple Pendulum (two dimensions)

.v, = x2

2 .

(18)

x
2

' = co sin -v,

This system of differential equations describes the motion of a pendulum moving

without friction or air resistance. The variable jc, is the angular displacement of the

pendulum from the vertical, x2 is the angular velocity, and to = g/L, where g is the

gravitational constant and L is length of the pendulum. The process of finding the ex-

plicit solution to this system of differential equations is described in Borrelli-Coleman

[Ref 2].



/

M

*

/^^^

>

\ Xs> u

Figure I. Population Flows

The graph of the family of solutions, if plotted, would be in three dimensions with

variables xu x
: , t. The plot of the phase diagram is in two dimensions, however, and

provides sufficient illustration. The phase diagram is plotted in Figure 3.

The equilibrium points of the simple pendulum are {mt, 0) for n e Z. Again, these

can be obtained by setting jc' = (i.e., x
x

' = and x
2
' = ). Notice that flows with initial

conditions near the equilibrium points (2/nr, 0) for n e Z neither converge toward nor

diverge from these points, but instead form periodic cycles around them. Hence these

equilibrium points are stable but not asymptotically stable, and the associated cycles

physically correspond to simple harmonic oscillations oC varying amplitudes. The re-

10



Figure 2. Population Phase Diagram

maining equilibrium points {{In — \)n, 0), neZ have flows which converge to and di-

verge from them. Hence these points are neither stable nor unstable, and are sometimes

referred to as saddle points.

We remark that an asymptotically stable (respectively, unstable) invariant set for a

system can also exist in the form of a limit cycle - a simple closed curve y having the

property that nearby trajectories (either interior or exterior to y ) spiral towards (re-

spectively, away from) y . This phenomenon is typically illustrated by the Van der Pol

equation, which models a triode oscillator. The Poincare-BendLxson Theorem essentially

asserts that any bounded invariant "limit set" of a planar flow is either an equilibrium

point, limit cycle, or union of such objects. This fact is in marked contrast to the be-

havior of discrete flows, and of differentiable flows in dimensions higher than two, where

more exotic limit sets, such as "strange attractors," can exist; see Guckenheimer-Holmes

[Ref. 4].

C. INVARIANT MAiNIFOLDS

As stated earlier, a linear homogeneous autonomous system of first order differential

equations can be written

x' = Ax, (19)

where A is a matrix of constants.

11



Figure 3. Pendulum Phase Diagram

Theorem 1: If A is n x n and has n independent eigenvectors [v,, ..., i/J, with corre-

sponding eigenvalues [>.,, .... AJ, then the family of solutions for (19) is

(/>,(*) = c,v,ev +... + cn vne
v

, (20)

where c„ ..., cn are arbitrary constants.

Proof: (Sketch) Note that .r = is always a solution to the homogeneous system

x' = Ax. Suppose there exists a nontrivial solution to .x:' = Ax of the form x= ve if
,

v t<= 0. Substitution of this solution into x' = Ax yields Xv— Av, thus / is an eigenvalue

of A and v is its associated eigenvector. Due to the linearity of the problem, a linear

combination o[ solutions is a solution, and by a fundamental theorem of ordinary dif-

ferential equations, all solutions must be of this form since we have a full set of linearly

12



independent eigenvectors. The details can be found in Borrelli-Coleman [Rcf. 2] and

Boyce-DiPrima [Ref. 5].

The c, are determined once an initial condition .v(0) = .\- is given. If a given initial

point x lies in the direction of one of the real eigenvectors v,, then equation (20) becomes

4> [
(x) = c

)
v/'

t

. (21)

Thus the flow through .r at t = Q remains in the direction of r
r If /, < 0, then

clearly, 4>.(x) -* as t -* + go; likewise if >., > 0, then c/>
f(-v )

-> co as r -> + od. If /, =

then (21) reduces to </>,(.r) = eft
= x (i.e.. any x in the direction of v, is an equilibrium

point).

For the case of complex eigenvalues /, = a + i/? and eigenvectors

v
i

= Re{v-j} + ilm^;}, i = % -1 . the following can be shown. If the initial condition jc„ lies

in the plane spanned by Re(v,} and Im{v,} then equation (20) can be written in real form

as

4>i(x) = Cjje* cos (it + Cj2e
3

sin (it. (22)

This implies that the flow remains in the plane spanned by Re{v,} and Imfi-,} and forms

a spiral due to the trigonometric functions, which are oscillating, bounded, and periodic.

The direction of the spiral depends on the sign of a. If a < 0, the flow spirals in toward

the origin. If a > 0, the flow spirals out toward infinity. If a = 0, the flow forms a pe-

riodic cycle about the origin. The constant (1 determines the rate at which the flow

spirals.

It should be noted that for a real matrix A, if X
i

is a complex eigenvalue then its

associated eigenvector v
)

is complex. In addition, the complex conjugate /, of/, is nec-

essarily an eigenvalue and has associated eigenvector v
r Note that RefJ.,} is equal to

Reft}.

13



With these cases in mind, one can divide U" into three classes of invariant subspaces

called eigenspaces. The stable eigenspace is defined as E
s = span{v,, v2t .., v

g }, where

v\, v2 , ... v„ are the eigenvectors associated with eigenvalues that have negative real parts

with o = dim(E
s

). The unstable eigenspace E
J

= span{vv,, w
2 , ... w

c}, where wu w2 , .., w
t

are the eigenvectors associated with eigenvalues that have positive real parts, and

u = dim(E
u

). The center eigenspace E° = span{Mls u2 , .., u
y ),

where uu i^, .., u
y

are the

eigenvectors associated with eigenvalues that have real parts equal to zero, and

y = dim(E
c

). The sum of the dimensions for the eigenspaces is equal to the dimension

of the entire space VC (i.e., a + v + y = n). Keep in mind that for complex eigenvectors

r,, and \\ the spanning vectors for the appropriate eigenspace are Rc{\]\ and Im{v,}.

Figure 4 is a general phase diagram illustrating the three eigenspaces: a) n=2, with

a = 1, y = 1, b) n= 2, with a = I. v = 1, and c) n= 3. with a = 2, v = 1.

For example, consider x' = Ax where

A =

1 10
2 2

0-1

1

(23)

A has eigenvalues 0, 3, -1 + i, -1-i and associated eigenvectors [1,-1,0,0],

[1, 2, 0, 0], [0, 0, 0, -1] + i[0, 0, 1,0], [0, 0, 0, -1] - i[0, 0, 1,0] respectively. Thus

E
s = span{[0, 0,0,-1], [0,0,1,0]}, E

u = span{[l, 2, 0, 0]}. E°= span{[l, -1,0, 0]}.

It is always true that zero is an equilibrium point for x' = Ax, regardless of A. Note

that for A n x n, if the dimension of E
s

is equal to n then zero is an asymptotically stable

equilibrium point. If the dimension of E
u

is equal to n, then zero is an unstable equi-

librium point.

14



Figure A. Eigenspaces

-J _u _C
The subspaces E , E , E are easily formed when the matrix A has n independent

eigenvectors. If the matrix A does not have n independent eigenvectors, the "missing

ones" can be constructed using techniques described in Boyce-DiPrima [Ref. 5]. These

"generalized" eigenvectors are placed in the appropriate eigenspace depending on the real

part of its associated eigenvalue.

For a linear system, flows can be classified rather easily. For a nonlinear system,

this is generally not the case. A common method in describing the dynamics of a non-

15



linear system is to linearize it in a neighborhood of an equilibrium point, so that the

analysis above may be applied locally. Given a nonlinear system .v' = J[x) and an equi-

librium point p, the linearized system is given by

x' = Ax, (24)

where A = DJ[p) =

ample, with x e IR ,

df>

ex.
Jl = l n

DJ[p)

is the Jacobian matrix of/ evaluated at p. For ex-

cf\ df\ 5/j

dx
]

dx
2 dx

3

cfi cfl V2
c.v, dx2 dx

3

w oA 3/3

c.v, dx, dx,

(25)

x=p

We need the following definitions. The local stable and unstable manifolds of p,

Wioc(/>)< W"oc(/>) respectively, are defined as follows:

sW
loc(/?)

= {jc e U: (/>/.v) -> p as / -» + 00, and </>,(.v) e U for all / > 0} (26)

u

W|0C(/>)
= {jr e U: (/>/*) -» /> as r -» - 00, and (/>,(*) e U for all t < 0} (27)

where L'c[R
n

is a neighborhood of p. The Stable Manifold Theorem below loosely states

that nonlinear systems "resemble" linear systems on a local scale, in the sense that the

dynamical roles of the invariant eigenspaces (lines, planes, or "hyperplanes" in higher

dimensions) are now played by invariant curves, surfaces, or "manifolds" in general.

16



Theorem 2: Suppose that DJ{p) has no eigenvalues with real part equal to zero.

Then there exist unique local stable and unstable manifolds W[oc(/?), W"oc(/?), of the same

dimensions as those of the eigenspaces E\ E" of the linearized system (24), and tangent

to E\ E
u

at p\ see Figure 5.

Proof: Guckenheimer-Holmes [Ref 4] references the proof, which uses the Implicit

Function Theorem from advanced calculus.

An example which uses the result of Theorem 2 is the nonlinear system

f 2
(28)

x2
= .vf - x

2

which has a unique equilibrium point at the origin (0.0). The associated linear system

about the point (0,0) is

1

-1

(29)

D/(0,0) has eigenvalues 1 and -1 with associated eigenvectors [1,0] and [0, 1], re-

spectively.

Thus by Theorem 2, the nonlinear system about the point (0,0) has a one-

dimensional unstable manifold W"oc(0,0) tangent to [1, 0], and a one-dimensional stable

manifold W|
oc(0,0) tangent to [0, 1]. This can be verified by direct computation. First,

if jc
l
(0) = (i.e., an initial point is chosen on the x,-axis), then it follows by solving the

first equation of (28) that x^t) = for all / > 0, and thus by the second equation of (28),

x2(t)
-> as t -> = + oo. Hence Wj

oc(0) = E
s

(0). Moreover, the explicit solution to (28)

can be represented (non-parametrically) by the curves jc
2
= -i-jc, + Cjc, ; then W"oc(0) is the

17



Figure 5. Schematic for Theorem 2

parabolic member of this family corresponding to C = 0. Figure 6 depicts the

eigenspaces and manifolds for this example.

The local manifolds W^f/?), W^Q?) have global analogues independent of the U in

(26) and (27) which are defined by letting r -* — oo and f -* 4- oo, respectively:

w'o)- ya <t>*y\M) (30)

»= v* <t>wL(p))c>0 (3D

If DJ[p) has eigenvalues with real part equal to zero, then there also exists a corre-

sponding center manifold W*(^), tangent to, and having the same dimension y as, the

center eigenspace E
c

. The existence ofW4

^), which need not be unique for a given sys-

tem, is the content of the Center Manifold Theorem. The dynamics of a system on this

manifold are generally more complicated than on the others, and a detailed analysis is

beyond the scope of this thesis. Guckenheimer-Holmes [Ref. 4] provide a detailed

discussion of center manifolds.

18



E
u

Figure 6. Eigenspaces and Manifolds

Clearly, by definition. W*(p) and Wu

(/>) are invariant under the flow (f>J(x), and

p e W(/?) n Wu

(j?). If there exists a distinct point q e WJ

Q?) f| Wu

(^) as well, then it fol-

lows that <t>,{q)
-* p as ; -* ± oo, and q is said to be a homoclinic point to p, with corre-

sponding homoclinic orbit (p{q), -oo < t < oo. Clearly, if ^ is homoclinic to p, then so is

any other point in the orbit <i> t{q), hence there will be an infinite number of such points

in general. Figure 7 illustrates a homoclinic orbit.

The formation of homoclinic points and orbits plays an important role in the de-

velopment of chaotic dynamical behavior, as will be observed in subsequent chapters.
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Figure 7. Homoclinic orbit
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III. DEFINING CHAOS

A. POINCARE MAPS

As we shall see, there are many ways to approach the definition of "chaos." We

begin with one such approach, Poincare maps. As seen earlier, one way to help char-

acterize the dynamic behavior of a nonlinear system of differential equations is to

linearize it in a local area. Another technique is to discretize it. By analyzing "snap-

shots" of a continuous solution, we can infer certain properties about it. These "snap-

shots" (discretization) form the foundation for Poincare maps.

We start with a third order (x e U ) autonomous system and a suitable two-

dimensional surface (for example, a plane) n such that the flow 0,(.v) under observation

repeatedly intersects n transversely (i.e., nontangentially). The image of a point .veil

under the first return or Poincare map P: Y\ -> n is defined as that point along the flow

<f>,(x) which next intersects the surface n . Varying definitions are possible if the direc-

tion in which 4>,{x) crosses n is taken into account. There are also cases where a well-

defined Poincare map is not possible. Moreover the definition of a Poincare map can

be extended to the general case x e !R
n

, n > 3. Instead of using a two-dimensional sur-

face for n , a hypersurface of dirnension (n-1) is chosen. Figure 8 shows the con-

struction of a Poincare map for jc e U .

As with continuous systems, discrete systems have their own accompanying set of

definitions and properties. A common example of a discrete dynamical system is an it-

erated function. Although the following definitions are stated for one dimension we will

show how they can be extended to higher dimensions.

Given a function g: U -> U and an initial value x e U, the sequence

{x
,
g{x ), g(g(x )), g(g(g{x ))), ...} is defined as the forward orbit of x under g . Note that
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Figure 8. Poincare Map
»

the recursive formula „tn _, = g(xn ) with initial condition x is an equivalent definition for

the forward orbit. Provided that g has an inverse, the backward orbit of .r under g is

defined as {.r
, jr'(.r ), iT

l

(iT
l

(-Yo)). •••}• (This definition can be generalized by using

g-'(.v) = \y e U : g(y) = x}.) The full orbit of x under g is defined as

{..., g- l

(g
l {x )), gr

] {xQ ), x , g{x ), g(g(x )),...}. Forward and backward orbits of g are com-

parable to the forward and backward orbits of a flow (/>,(.*) in the continuous system.

Thus, the sequence of points [x , xlf x2 , ...} generated by the intersection of the flow

<f>,(x) with FI in Figure 8 is the forward orbit of a point xa under the Poincare map

P-. n - n.

In discussing iterative functions it is convenient to use the following notation:

sV) = (gogo...og)(x),

n times

(32)

for n= 1,2,3,..., where the symbol o denotes function composition, and g' n
(x) = (g'

l

(x))
n

.

The point p is defined as a fixed point of g if g(p) = p. A point q which is not a fixed

point is defined as eventually Fixed if g
m
{q) is fixed for some me Z

+
. More generally, a
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point p is periodic of period n if g"{p) = p. Note that if/? has period n, then it automat-

ically has periods of all (positive) integer multiples of n. This motivates the next defi-

nition: a point p is periodic of prime period n if g
n
{p) = p and there does not exist an m

such that < m < n and g
m
{p) = p. A point q which is not periodic is defined as eventu-

ally periodic if g
m
{q) is periodic for some m e Z .

The definitions above extend to spaces other than U. For example, consider code

space 1 , the collection of all infinite binary strings s
l
s2sy .., s, e {0,1}. and the shift map

g: i —
> 1 given by

g{s
]

s
2
s
3
...) = s

2
s
3
s4 ... . (33)

The fixed points of g are 00(), 111 (The bar indicates an infinite repeating block). The

point 01000 is eventually fixed. The point 001001 is a periodic point of prime period

three. The point 10001001 is eventually periodic.

Given that g is differentiable the following definitions also hold. A periodic point

of prime period n is hyperbolic if
| (g

n
)'(p) |

# 1. Note that a fixed point is equivalent to

a periodic point of prime period one. Thus a fixed point is hyperbolic if
|
g'(p) |

^ 1. Also

note that (g
n
)'(p) in general is calculated by the Chain Rule:

(g
n

Y(p) = g'(g
n
'\p)) - g'(g(p))g'(p) (34)

For example, if p is a periodic point of prime period three of the sequence

{p=\, g(p) = 0, g*(p) = -\, gHp)=\,...} then

(g
3
)'(l)=g'(-l)g'(0)g'(l) . (35)

Clearly, this is also the common value of (g
3
)'(0) and (g

3
)'(-l). A periodic point p is

non-hyperbolic if
| (g

n
)'(p) \

= 1. A periodic point p of prime period n is attracting if

I ig
n
)'(p)

I

< 1- The point p is repelling if
| (g

n
)'{p) \

> 1. A good introductory reference
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that covers chaos for discrete systems is Beaver [Ref. 1]. A more rigorous treatment is

found in Dcvaney [Ref. 6].

For higher dimensions lR
m
the iterative svstcm takes the form

(i)
xn~\

J 2 )

.(m)

(1)/ (1) (2) (m)-,

(2), (1) (2) (m\

(m), (H (2) (m\

(36)

equivalently,

xn -
1
= g(xn) (37)

where x e R
m
and g: R

m
-> R

m
.

Definitions for higher dimensions extend in the obvious manner with the exception

of the hyperbolic, attracting and repelling periodic points. A periodic point p of prime

period n is hyperbolic if the Jacobian matrix D(gn
)(p) has no eigenvalues of unit modulus,

that is, no eigenvalues on the unit circle
|
z |
= 1 in the complex plane. (We remark that

this definition extends to all points of any limit set A; in this case we say that the entire

set A is hyperbolic.) The Jacobian can be computed with the aid of the Chain Rule as

before:

D[g
n
)ip) = Dg(g

n
-\p)) ... Dg(g[p))Dg(p). (38)

The multiplications above are matrix multiplications. If all the eigenvalues of D(gn

)(p)

have modulus less than one then the periodic point p is attracting. If all the eigenvalues

have modulus greater than one, p is repelling. An attracting fixed point can be shown

to be asymptotically stable, and hence is sometimes referred to as a sink. Likewise a
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repelling fixed point is said to be a source. If some eigenvalues lie in the interior of the

unit disk while the remaining ones lie outside, then a fixed point p is a saddle point.

As one might expect, eigenspaces and manifolds exist for discrete systems similar to

those just discussed in the previous section for continuous systems. The position of the

eigenvalues in relation to the complex unit circle is the determining factor for discrete

systems, as opposed to continuous systems where it is their position relative to the im-

aginary axis (i.e., stable if Re{/} < 0, unstable if Re{>.} > 0, etc.). The interested reader

is referred to Guckenheimer-Holmes [Ref 4].

We now return to the process of using the information gained by Poincare maps to

characterize the behavior of an n lh order nonlinear continuous system. Recall that in this

case, the Poincare map is a mapping between two (n-l)-dimensional spaces.

By construction, a periodic orbit of a continuous system corresponds to a discrete

periodic cycle of some Poincare map (Figure 9), such as a fixed point, for example. If

the fixed point is stable then the periodic orbit is asymptotically stable. If the fixed point

is unstable then so is the periodic orbit. If the fixed point is neither stable nor unstable

it is possible to relate the dimensions of the manifolds of the fixed point to the manifolds

of the periodic orbit. The reader is referred to Guckenheimer-Holmes [Ref. 4] for a

more in-depth discussion of the relation between the discrete manifolds of the Poincare

map and the manifolds of the continuous system.

A quasi-periodic orbit of a continuous system that consists of only two

incommensurate periods corresponds to some Poincare map of embedded circles. For

a quasi-periodic orbit of K incommensurate periods the Poincare map consists of a

generalized (K-l) - tori. The idea is that for a quasi-periodic orbit the corresponding

Poincare map is one of compact (closed, bounded) geometric structure. For a discussion

of Poincare maps corresponding to quasi-periodic orbits see Parker-Chua [Ref. 7].
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Figure 9. Poincare Map for a Periodic Orbit

Although we have yet to define chaos, those continuous orbits which are chaotic

have corresponding Poincare maps whose images are very distinctive and often quite

beautiful. These images are distinctive in that they seem to possess a more complex

geometric structure than those of periodic or quasi-periodic orbits. In an effort to

quantify this apparent increased complexity, various definitions of "dimension" have

been formulated which for these exotic sets can take on non-integer values. Several of

these definitions are discussed in a subsequent chapter.

B. SMALE HORSESHOE

We continue our approach toward a definition of chaos with the following example

of the Smale Horseshoe map, a two-dimensional discrete map that exhibits many of the

features which are normally associated with "chaotic" dynamical systems. This map can

arise as a Poincare map for a three-dimensional autonomous system. It is also closely

related to homoclinic orbits which were briefly introduced at the end of the section on

manifolds.



Before beginning our example a few preliminaries are needed. We have already seen

how the ability to relate the dynamics of one system to another can be very powerful.

Another much stronger method for accomplishing this relation is topological conjugacy.

Let S and T be sets; the function h: S -* T is a homeomorphism if it is continuous,

one-to-one, onto and has a continuous inverse. Two maps/ S -* S and g: T - T are said

to be topologieally conjugate if there exists a homeomorphism h: S -» T such that

^ °f= § ° h. The function h is defined as the topological conjugacy. Figure 10 is a

schematic for topologically conjugate maps/and g, and we say that the diagram "com-

mutes."

The following is an example of two topologically conjugate functions. Let

S = [0,1], T = [4. |], and let/ S - S, g: T -> T. and h: S -> T be given by

y[.v) = .v(l-.v)

g(x) = x
2 + .25 (39)

h(x) = -x + .5 .

Then

h of= x — x + .5

2
(-40)

and g o h = x — x + .5 .

Since h o g = g o h and h is a homeomorphism, the functions/, g are topologically con-

jugate.

The power of this relation is that topologically conjugate maps /and g have com-

pletely equivalent dynamics. If/ has a stable fixed point p then g has a stable fixed point

h(p). More generally, any given orbit of/ is mapped to a corresponding orbit with

equivalent dynamics in g via the homeomorphism h. For the example above, p = is a

non-hyperbolic fixed point for / and h(0) = 0.5 is a non-hyperbolic fixed point for g;
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Figure 10. Topological Conjugacy

equivalent dynamics are in fact suggested by comparing the graphs of/ and g, respec-

tively.

Thus if we are able to establish a topological conjugacy between a map with un-

known dynamics and one with which we are well acquainted, then the dynamics of the

original map will be completely known. As expected, it may not be an easy task to es-

tablish such a topological conjugacy.

The other concept we will need in discussing the Smale Horseshoe is one we have

already covered for continuous systems. An invariant set A for a general map/: S -+ S

is a subset A^S such that/A) = A, where/A) = {J[x): x e A}. Fixed points and periodic

sequences are trivial examples of invariant sets. A method of constructing an invariant

set for/ which may not be trivial, is to take the infinite intersection of the forward it-

erates of the entire domain and intersect them with the corresponding backward iterates,

that is.

A= /(S)

= lim f] f
n

($)

(41)

It is this construction which we will use to obtain an invariant set for the Smale

Horseshoe map.

23



Let S be the unit square I"; contract it vertically by a factor of one-quarter, and ex-

pand it horizontally by a factor of four. Next bend it into a horscshoc-likc shape and

superimpose it back onto the unit square S. Call this geometric mapping/. The map

f. S — S can be formulated algebraically but the geometric presentation promotes clarity,

and is diagrammed in Figure 11.

Let m= 1 in (41); the first iteration J\S) consists of two horizontal bars which we

have labeled II and II . In order to find the backward iterates, perform the map in re-

verse. This process is shown in Figure 12, and results in two vertical bars, labeled V and

V , respectively, such that/V ) = II and/(V ) = II . The intersection of one forward it-

eration and its backward iteration is shown in Figure 13, and results in four shaded

blocks which contain the invariant set A. Each block can therefore be represented as

some II '

P| V°, where s. us e {0,1}, which then corresponds to a unique binary address

of the form s_ r s , also shown in Figure 13. Thus, any point .v in such a block has the

property that x e V° and x e H ', the latter of which implies that/ (x) e V "'. This sug-

gests that the vertical bars V and V may eventually be used as the basis for tracking the

orbit of a point in A via a binary sequence.

Let m=2 in (41); we now consider the forward and backward iterations of the

intersection depicted in Figure 13. These second forward and backward iterations are

shown in Figures 14 and 15. Notice that the second forward iteration gives rise to four

horizontal bars which are subsets of H and II . (Equivalently, these four horizontal bars

2

can also be characterized as/(S); see Figure 16.) The second backward iteration results

in four vertical bars. Like the horizontal bars, the four vertical bars are subsets of V

and V . The intersection results in sixteen blocks (see Figure 17) which contain A, and

may be assigned four-digit binary addresses according to a prescription similar to that

given above.
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Figure 11. First Fonvard Iteration

In general, the nlh forward iteration will result in 2" horizontal bars which are subsets

of the 2" horizontal bars of (n-l) lh forward iteration, and likewise for the vertical bars

with respect to backward iteration. By taking the infinite intersection of the forward it-

erates of S and intersecting them with their corresponding backward iterates, we con-
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Figure 12. First Backward Iteration

struct (by the Heine-Borel Theorem of advanced calculus) a nonempty invariant set A

off, and a map h on A such that each and every point x e A has a corresponding ad-

dress, or itinerary, h(x), which is representable by a binary bi-infinite sequence:
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Figure 13. First Iteration Intersection

h(.x) = ...s.iS. 2
s.

l

.s s
l
s2 ..., (42)

where

0, f(x) s V

1,/toeV
1

(43)

This sequence is similar to the code space used in (33) except that it is bi-infinite. We

will denote this space of binary bi-infinite sequences as 1'. It is possible to show that

the map hi A — I.' is a homeomorphism, and is an example of the use of symbolic dy-

namics.

Finally we define a shift map g: 1' -* 1' such that

5-(...s.
3
s. 2

s.
l
.s s

1
s2 ...) = ...S.2S.

1
S .SiS2S3 .. (44)

Theorem 3: The maps / and g defined above are topologicals conjugate with

topological conjugacy h .
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Figure 14. Second Forward Iteration

Proof: The proof of this theorem is closely linked to the proof of Theorem 5.1.1

of Guckenheimer- Holmes [Ref. 4].
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Figure 15. Second Backward Iteration

Since /and g are topologicals conjugate we can equate the dynamic behavior of g

with that of/. The map g has certain properties which will form the definition for chaos

in the next section.
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Figure 16. f(S)

Our first goal is to show that two points in Z', initially "close", start to diverge from

one another under forward iterations of g . This property of a map is known as sensitive

dependence on initial conditions. A mathematical definition is given by Devaney

[Ref. 6]. A map g: T -* T has sensitive dependence on initial conditions on T if there
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Figure 17. Second Iteration Intersection

exists £ > such that, for any x e T and any ^-neighborhood N of x, there exists y e N

and n > such that dfg\x), g"(y)) > e.

In the previous definition d(.j, c) represents an appropriate "distance measuring"

function, or metric for the space T. For our example the space T is equal to I' and

d(s, = (45)

for s = ...^.,.5^,... and t =
.../•.,.v,... in Z'. Using the definition of sensitive dependence on

initial conditions it is possible to show that the map g, and thus/, has this property with

respect to the metric given above.

For example, suppose 5 and ; agree in positions i = -100 to 100 and disagree in the

99
remaining positions. Then s and t are initially "close" to one another: d(s,r) < 2 .

201 201

However after 201 iterations of g, g (s) and g (r) are quite widely separated:
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d(g (s),g (t)) > 2.99. In this way, given any arbitrarily small neighborhood X of s we

n n

can find a distinct point t in N such that d(g (5), g ([)) > 2.99 for some n > 0. Since /and

g are topologically conjugate there are exactly two points x and y in A that correspond

via the homeomorphism h\ A -» I' to the sequences 5 and r in £'. Hence/exhibits sen-

sitive dependence on initial conditions on A .

Our second goal is to show that g is topologicals transitive. Devaney [Ref. 6] de-

fines a map g: T -> T as topologically transitive on T if for any pair of open sets

L ,V c T there exists k > such that g (L')P|V # 0, that is, any two subsets of T even-

tually intersect. If g contains a dense orbit, that is, if there exists a point i in £' whose

orbit becomes arbitrarily close to all points in £', then it follows that g is topologically

transitive.

Consider the point 5 constructed in the following manner:

s = ...0.0 01 10 1 1 OOO0 0001 ... 1 1 1 1 000000 0000 1

all 2-blocks all 4-blocks all 6-blocks

During the first seven iterations, the orbit of s will have agreed in the i=-l and i—

positions with every point in X'. There are only four possible binary numbers of length

two and in seven iterations the orbit of 5 has covered them.

In the next 64 (2 x 4) iterations the orbit of s will have agreed in positions i= -2 to

1 with even,' point in 1'. The construction of s is such that in a finite - although possibly

large - number of iterations, the orbit of s will agree in positions i= -n to n-1 with every

point in £', for any n > 0. In other words, the orbit of s gets arbitrarily close to every

number in S'.

Our final goal is to show that periodic points are dense in S' (i.e., show that every

point in L' has a periodic point arbitrarily close to it). Consider any point 5 e Z' , then

5 can be represented as

37



(47)

Choosing an arbitrary distance between 5 and a periodic point pel.' is equivalent to

choosing an n sufficiently large that p and s agree in positions i= -n to n. Thus construct

p in the following manner:

p = S S
1
...Sn _

1
5n .S_

rv
S_

n , ,\.
1 ..So5 1

...5n .
1
5n5. n .S. n ^ ,....S.| . (48)

The bar underneath indicates repeated blocks to the left and the bar on top indicates

repeated blocks to the right. Note that p agrees with 5 in positions i = -n to n and is

periodic of order 2n+ 1. By constructing p in this manner we have shown that any

s e I' has a periodic point arbitrarily close to it. Therefore periodic points ofg are dense

ml'.

In summary, g: £' -> 1' is a map for which

1. g has sensitive dependence on initial conditions.

2. g is topologicals transitive,

3. periodic points of g are dense in Z'.

Since g is topologicals conjugate to the Smale Horseshoe map/ A -> A, /and g share

these three properties.

There is in addition an intimate connection between this map and the existence of

homoclinic points, which we will state more precisely in the following chapter. Recall

that a point q is homoclinic to a fixed point p'\{ q ^ p and q e W s

(/>) f] \\'
u

(p). Now, since

J[W°) = 11°, it follows that the block V° f| H° is mapped to itself by f, hence it contains a

fixed point p having itinerary 0.0 . Clearly, any point q with itinerary Qs.m ...s_ ,.$„.. .sn has

the property that

<feV),*
k
fo))->0 as k^ + 00, (49)
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thus q e \V*(p) f] W
u

(/>), and there are infinitely many such intersection points q. More-

over, we may similarly construct a point q satisfying (49) for any point p e A; in this case

q is both forward and backward asymptotic to p, respectively.

The convoluted intertwining of the stable and unstable manifolds is a result of the

shrinking, stretching, and folding effects of the map and leads to sensitive dependence

on initial conditions, topological transitivity and dense periodic points (see Figure 18).

For this reason, in practice, the numerical detection of horseshoes in a particular dy-

namical system is often identified with the presence of chaos.

It should be noted that the Smale Horseshoe map has many variations. Although

our map contracted and expanded by orders of four they can be generalized to a con-

traction factor n . < a < l/
i and an expansion factor / , X > 2. The orientation of the

horseshoe with respect to the unit square need not be horizontal or vertical. Fven the

unit square may be varied to other domains.

Note also that the use of symbolic dynamics enabled us to take what were only ob-

servations (geometric properties of the Smale Horseshoe map) and make them math-

ematically precise. That is, we were able to perform rigorous analysis which was not

possible earlier without the use of symbolic dynamics.

The invariant limit set A also requires further discussion. It is constructed by an

explicit procedure that results in a sequence of disconnected sets which have some in-

teresting properties. Note that each of the small groups of four blocks in Figure 17 is

a contracted and translated copy of Figure 13, as each block in Figure 13 is such a copy

of the original unit square S in Figure 11. This property of self-similarity persists

throughout the procedure and ultimately carries through to the invariant set A itself.

This kind of recursive construction - sometimes referred to as an iterated function system

(IFS) - can be used as the basis for computer generation of other types of "fractal" im-

ages. These limit sets may be viewed as "attractors" of certain "affine maps" (linear fol-
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Figure 18. Intertwining of Stable and Unstable Manifolds

lowed by a translation, thus representable by matrices) on subsets of R\ and therefore

can be addressed by using a variation of code space. The resulting fractal attractor A

is unique, and has "dimension'' which is not necessarily an integer, but may be a frac-

tional value, for example (and hence the name). For a discussion of iterated function

systems see Beaver [Ref. 1].

The invariant limit set A of the Smale Horseshoe is itself closely related to a well-

known subset of the interval [0, 1], the Cantor Ternary or Middle-Thirds Set. This set

is constructed recursively by the repeated removal of open middle thirds from all current

intervals. Thus, removing the open middle third from [0, 1] results in two closed inter-

vals: [0, -f]
and [ j, 1]. Repeating this procedure results in four closed intervals:
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[0, j], [ 7, y], [ j, j] and [ \, 1]. Upon infinite iteration we are left with the Cantor

set. Although this straightforward construction may seem rather trivial, the Cantor set

has many interesting properties which are shared by the invariant set A . For example,

both the Cantor set and the set A are totally disconnected, that is, for every x e A there

exists an open ball, B^.v) = [y: d(.vj) < 3} centered at .v of radius S which contains no

points of A other than x. In fact, A itself may be viewed as a "higher dimensional" ver-

sion of the classical Cantor set that exists in the unit square rather than the unit interval.

For a more complete discussion of fractals and the Cantor set see Beaver [Ref. 1].

C. CHAOS

There is no universally accepted definition for chaos. For discrete systems we shall

adopt the definition given by Devaney [Ref. 6]. Fet S be a set. The map/ S — S is said

to be chaotic on S if

1. /has sensitive dependence on initial conditions.

2. /is topologicals transitive,

3. periodic points of/are dense in S.

Note that the Smale Horseshoe map is chaotic on the invariant set A . Also note

that the Smale Horseshoe map is not chaotic on the set I , the unit square, since periodic

points are not dense in F (i.e., we can find an open neighborhood in I which does not

contain a periodic point).

In a recent article published in the American Mathematical Monthly [Ref. 8], J.

Banks et. al. prove the following theorem:

Theorem 4: If/ S -» S is transitive and has dense periodic points, then/has sensitive

dependence on initial conditions.

Proof: A sketch of the proof follows. Fet x be an arbitrary point in S, and 3 > 0.

Define the open ball centered at x of radius S as B,(jc) = [y e S: d(xy) < S}. By the Tri-

angle Inequality, it can be shown that there exists a periodic point q whose orbit, O(q)
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is of distance at least AS from .v. Since periodic points are dense in S, there exists a point

p e B,(.v) which is periodic of, say, period n. There also exists a point z e Bt(x) such that

/ (z) comes within of one of the points in O(q) for some integer j. This follows from

the fact that f is transitive and requires careful construction of neighborhoods about the

points in O(q). Once again by way of the Triangle Inequality and the fact that

f\p) = p. it can be shown that d(/
l

(p),J {z)) > 23. A final application of the Triangle

Inequality implies that cither d(j(x),J (z)) > S or d{J
r
\x).f*\p)) > S. Thus for any

neighborhood N of .v, there exists a point in N, either p or z, such that the distance be-

tween them after nj' iterations is greater than 5 . This is exactly the definition of sen-

sitive dependence on initial conditions. For complete details see Banks et. al. [Ref. 8].

Thus in order to show that a function/: S — S is chaotic, we need only demonstrate

that periodic points are dense in S and /is topologically transitive. Theorem -1 implies

that /will also have sensitive dependence on initial conditions.

For a continuous system, chaotic dynamics are usually linked to the appearance of

the Smale Horseshoe map (or one of its variants) in its associated Poincare map, giving

rise to homoclinic points and orbits which can often be detected numerically. Alterna-

tively, chaotic behavior is often described using quantitative measures such as various

non-integer "dimensions'" that are associated with "strange attractors." Loosely speak-

ing, these are exotic Cantor-like limit sets which exhibit distinctive structure such as

quasi-self-similarity, a property that is normally associated with "fractal" sets. We will

discuss these topics in greater detail in the sections that follow.

Like chaos, no single accepted definition for a "strange attractor" exists. In fact,

definitions vary quite substantially. To illustrate this variance we provide the following

two definitions for a "strange attractor."

The first is provided by Rasband [Ref. 9] and is presented as a practical definition.

A set A is called an attracting set for the dynamical system jc' =/Lv) with flow designated
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by (f),(x), if there is some neighborhood U of A such that <f> r
(x) eU for t > and

</>,(.v) -> .1 (i.e., ||(/> ,(-*") — /4|| -* 0) as r -> + oo for all .v e U. A strange attractor is then

defined as an attracting set with non-integer "fractal dimension." Several measures of

fractal dimension exist, some of which will be discussed in a later chapter.

Before stating the second definition from Guckcnheimer-Holmes [Ref. 4] we provide

some preliminary ideas. A closed invariant set A is indecomposable if for every pair of

points x,y in A and c > 0, there are points x = x , .v, .vnl , xn
= y and /, tn > 1 such

that the distance from </>, (.v,.,) to .v, is smaller than i (see Figure 19). That is. for any pair

of points .v and y in an indecomposable set, a "chain'' of "nearby" flows can be con-

structed that links x to y.

The "Lebesgue measure" of a set L'c:IR
n

is a non-negative real value that can be in-

formally described as a generalization of the notion of length, area, or volume (for

n= 1.2, or 3, respectively), and in fact, reduces to this in "simple" cases, A set having

positive Lebesgue measure need not however have a topological "interior" in U". (For

example, the Lebesgue measure of the interval I = [0.1]<=1R is one, while that of the ra-

tional numbers Q in I can be shown to be zero. From this it follows that the comple-

ment, the irrational numbers I — Q in [0,1], has Lebesgue measure one, even though this

set contains no open intervals.) A rigorous definition lies beyond the scope of this thesis.

For an in-depth discussion of measure theory, see Royden [Ref. 10].

Recall that q is a homoclinic point to a fixed point p if q ^ p and if

q e \V
S

(/?) f) W u

(/?). A homoclinic point q is transversal if the tangent vectors to W s

(p)

and W u

(/>) do not coincide, and gives rise to a transversal homoelinie orbit,

{4> t{q):
— oo < l < oo}.

Guckenheimer-llolmes [Ref. 4] provide the following definition for a strange

attractor. An attractor is an indecomposable closed invariant set A with the property

that, given £ > 0, there is a set U of positive Lebesgue measure in an t -neighborhood
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Figure 19. Schematic for an Indecomposable Set A

of A such that jc e U implies that <j>.(x) for some subsequence r
if
as r, -* + oo, is contained

in A and the forward orbit of .r is contained in U. An attractor is called strange if it

contains a transversal homoclinic orbit. This is called a chaotic attractor by some au-

thors, and is consistent with the development of the notion of chaos in this thesis.

Note that the condition, "x e U implies that <p
!t

(x) for some subsequence r„ as

fi
-* + oo, is contained in A ," found in the above definition is not as restrictive as the

condition, ".re U implies 4> :
(x) -+ A," found in the definition for an attracting set. It is

also true however that the definition for an attracting set does not require the restriction

that A be indecomposable.
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Clearly these two definitions for a "strange attractor" are quite dissimilar. It should

become apparent that chaos is a topic with much diversity which is yet to be unified.

The last property we will mention that is associated with a chaotic dynamical system

is the existence of positive "Lyapunov exponents." A continuous or discrete system with

an attracting set that has a positive Lyapunov exponent is often classified as chaotic.

This property is often associated with sensitive dependence on initial conditions.

Before defining Lyapunov exponents and discussing them in-depth, we provide two

examples of continuous third order autonomous systems which exhibit chaotic behavior:

DufTing's equation and the Lorenz equations. It should be noted that a continuous

autonomous system requires at least three dimensions in order for a strange attractor to

be present. This is a direct result from the Poincare-Bendixson Theorem which implies

that an attractor for a continuous two-dimensional autonomous system can consist of

only equilibrium points, periodic orbits or unions of these invariant sets {see Figure 3 for

example), none of which possess a transversal homoclinic orbit or "fractal dimension."

A presentation of the Poincare-Bendixson Theorem as well as the proof can be found in

Coddington-Levinson [Ref 3]. The theorem is presented in terms of limit points and

limit sets of a semi-orbit. However, two-dimensional discrete systems can also give rise

to strange attractors, such as the Smale Horseshoe map and the Henon map. See

Peitgen-Jurgens-Saupe [Ref. 11] for examples of two-dimensional discrete systems with

stranee attractors.
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IV. TWO EXAMPLES OF CHAOTIC SYSTEMS

A. DUFFING'S EQUATION

DufFing's equation is a second order differential equation of the form

x" + ex' + bx + ax
3 = //[/) (50)

where ' represents differentiation with respect to i, the coefficients a, t\ c, / are real

constants (c representing damping), and/: E —* R is a periodic forcing function with pe-

riod T.

Main phenomena have been modeled by an equation of this form, including the

dynamics of a buckled elastic beam and the movement of a particle in a plasma. For

our discussion we will choose the constants a and b to be equal to 1 and -1 respectively.

With these choices equation (50) is equivalent to the following third order autonomous

svstem:

x, =x
2

x2'=x]

- a-,
3 - or

2
+ //[/) (51)

/' - 1 mod T .

We begin with the undamped unforced case: X = and c = 0. A Poincare map

P: n -> n can be formulated by choosing the plane n to be parallel to the /-axis. Spe-

cifically, let FI be the jc„ x2 plane where / = 0. In this case the image of the Poincare

map is quite similar to the phase diagram for the Duffing equation (i.e., it is equivalent

to sampling the phase diagram in intervals of T).

The Poincare map has three fixed points (-1,0), (1,0) and (0,0). These fixed points

correspond to periodic orbits of period T for the continuous system (51 ). The Jacobian
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matrices off at (-1,0) and (1,0) have eigenvalues + /v 3 . The Jacobian of P at (0,0) has

eigenvalues + 1. The phase diagram and the image of the Poincare map are shown in

Figures 20 and 21. The point q in figure 20 is a homoclinic point and the loops on ei-

ther side of the point p = (0,0) arc homoclinic orbits.

F
:or c some positive value and ). = 0, the fixed points for the Poincare map remain

(-1,0). ( 1,0) and (0,0); however only (-1,0) and ( 1,0) are attracting. These attracting fixed

points correspond to asymptotically stable equilibrium points. The phase diagram is

plotted in Figure 22.

If we keep c positive and increase the forcing parameter X , the fixed points of the

Poincare map shift and a transversal homoclinic point emerges near (0,0). Let p be the

shifted fixed point from (0,0). Figure 23 depicts the changing manifolds of p and the

emergence of transversal homoclinic points as A increases.

We now give some preliminary definitions prior to stating a special case of the

Smale-Birkhoff Homoclinic Theorem, which relates the presence of a transversal

homoclinic point to the shift map defined in discussing the Smale Horseshoe. A map

P: R~ -» W is C if all of its first partial derivatives exist and are continuous. The map

P: R~ -> R~ is C°° if all mixed k th partial derivatives exist and are continuous for all k. A

map P: R~ -» IR is a diffeomorphism if it is one-to-one, onto and C , and its inverse is

also C°°. Recall that a fixed point p of the map P: R~ -» R is hyperbolic if the Jacobian

DP(p) has no eigenvalues of unit modulus.

Theorem 5: Let P: R~ -> R be a diffeomorphism such that p is a hyperbolic point

and there exists a transversal homoclinic point q # p. Then P has an invariant set A on

which P is topologically equivalent to the shift map on I' (binary bi-infinitc sequences).

It should be noted that the Smale-Birkhoff Homoclinic Theorem is a generalization

of Theorem 5 to maps P: R
n
-> U

n

.
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Figure 20. Phase Diagram for k = 0, c = 0.

Proof: The proof of the Smale- Birkhoff Homoclinic Theorem is detailed in

Guckenheimer-Holmes [Ref. 4]. It links the geometry of a transversal homoclinic point

to that of a Smale Horseshoe map by way of Markov partitions.

We conclude from Theorem 5 that whenever the parameters are such that the

Poincare map for a continuous dynamical system, in particular Duffing's equation, has

a transversal homoclinic point then in the neighborhood of such a point the map has the

same properties as the Smale Horseshoe:

1. sensitive dependence on initial conditions,

2. existence of a dense orbit, which implies topological transitivity,

3. dense set of periodic points.

That is, the Poincare map associated to Duffing's equation is chaotic whenever the pa-

rameters are such that a transversal homoclinic point is present. There has been much

work done on this equation, and much ongoing research as well; see Guckenheimer-

Holmes [Ref. 4].
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Figure 21. Image of Poincare Map for X = 0, c = 0.

B. LORENZ EQUATIONS

The "Lorenz equations" of meteorology are a third order autonomous system of

differential equations. Formulated in an effort to model some of the unpredictable be-

havior associated with weather, this system has become further popularized by the cha-

otic dynamics it exhibits, such as the so-called "butterfly effect." It characterizes a fluid

laver heated from below and cooled from above and is written in the following form:

x' = aiy - x)

y' = rx—y- xz

z' = xy — bz .

(52)

The variables jc, y and z represent convective motion and the horizontal and vertical

temperature variations, respectively. The parameters a (Prantl number), r (Rayleigh

number), and b (an aspect ratio) are positive real constants. Although this system has

been analyzed for a wide range of parameter values we shall adopt the traditional ones

where a = 10, b =
-f-
and r is varied.
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Figure 22. Phase Diagram for X = 0, c> 0.

For r 5: 1 the Lorenz equations accurately model the dynamics of a convective sys-

tem. For r Tar'' from one the equations are not an accurate model for the fluid's dy-

namics but have been used to model other physical systems. [Ref. 12]

We begin by presenting properties of the Lorenz equations which are true for any

values of a , r and b. First, there is a natural symmetry of variables under the transfor-

mation (xy,z) — (-x,-y,z). That is, any dynamical behavior that occurs in a particular

octant is reflected through the r-axis to the octant diagonally opposite.

Secondly, the origin is clearly an equilibrium point for the Lorenz system for all

parameter values. Moreover, if an initial point (0,0, z„) is chosen, then direct inspection

of the equations in (52) shows that x'(0) =/(0) = 0, and z'(0) = -bz . Since z is arbitrary,

this shows that the -r-axis x = y = is invariant, i.e., flows which start on the r-axis stay

on it, and furthermore, tend toward the origin (0,0,0). Thus the z-axis is contained in

W(0).

We will show that there exists an ellipsoid EcH
3

for which the flow along the

boundary is always directed inward. This implies that there exists a bounded attracting

set A defined bv
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Figure 23. Emergence of Transversal Homoclinic Points.

A = 2) <^E )- (53)

To see that such an ellipsoid E exists, consider

y
Eu ={(w)eR: 4- +^ + ^--(r + l)z -,* = 0} (54)

for ix a positive constant. Showing that the dot product V of the velocity vector for (52)

with the outward normal vector of Ea is always negative implies that the flow is always

directed inward along E a
:

dEM dE^ dE u
v = x'-r- + y'-r- + :'^r-ox ay 02

= -.r
2 - y" -bz

1 + bz{r + 1) .

m
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If (xy,z) is on the ellipsoid E„, that is.

2 2 2

-f- +V + "V ~ (' + Hz - ^ = ° • (56)

then

v-M+JLv-K-i+iv-i.,*-*
Ja

(57)

which is negative for sufficiently large a.

Note that any ellipsoid which contains E
a

in its interior will have the flow along its

boundary' always directed inward. This implies that any How starting a finite distance

from the origin will stay a finite distance from the origin (i.e.. no flows tend toward in-

finity).

The linearized system of (52) has Jacobian equal to

-a

r — z

a

1 -.v

y x -b

(58)

At the origin .v =y = z = 0, the Jacobian is

-a a o"

r -1

-b

(59)

which has eigenvalues

;..,;.

-{o + \)± v (ff-1) + Aar

1'
r-2 , U = -b. (60)
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For r < 1 all eigenvalues of (59) are less than zero (i.e., the origin is asymptotically sta-

ble). In fact, all solutions, not just those in some small neighborhood, tend toward the

origin. Note that in this case the attracting set A defined in (53) consists of only one

point, namely the origin, and Ws

(0) = IR , i.e., the origin is "global" sink. See Figure 24

for a phase diagram schematic with r < 1.

For /' = 1 the eigenvalues of (59) are

/, =0, /
2
= -(a+l), X 3

= -b. (61)

Two eigenvalues are negative and one is equal to zero. Thus for r = 1 the origin is no

longer asymptotically stable but still satisfies the definition of a stable equilibrium point.

As r becomes greater than one, two additional equilibrium points

q- = {^b{r - 1) , N b(r - 1) , r — 1) and q~ = (- N b{r - 1 ) ,
-
x b(r — 1) , r — 1) appear which

are initially asymptotically stable. The origin is now neither stable nor unstable for

r> 1. This transition as the parameter passes through r=\ is an example of a

"bifurcation." A discussion of bifurcations for continuous systems can be found in

-Guckenheimer-Holmes [Ref. 4].

For r> 1 two eigenvalues (/-,, /
3 ) of (59) are negative and one (/,) is positive. By

Theorem 2 of Chapter II the unstable manifold W u

(0) at the origin has dimension one

and \V\0) has dimension two. The eigenvalues for the Jacobian matrices evaluated at

q- and q all have real parts negative when 1 < r < rH . (When a = 10 and b = -§-,

rH ^ 24.74 .) The equilibrium points q
+ and q~ are asymptotically stable. The attracting

set A now consists of three points: the origin. q
+ and q~. See Figure 25 for a schematic

for r close to but greater than one.

For 1 < r < rH the flow along the unstable manifold W"(0) approaches q' and q-.

For r-values moderately larger than one, flows which start nearer to q* will spiral in to-

ward it and those which start nearer to q~ will spiral in toward that. As r increases past
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Figure 24. Phase Diagram r< 1.

a critical value r' , the flows along the unstable manifold "cross over" and spiral in toward

the "opposite" equilibrium point. (When a = 10 and b = T , r' ^ 13.926.) At r = r'

homoclinic orbits exist which contain the origin. See Figures 26, 27 and 28 for sche-

matics for 1 < r < r\ r = r' and r < r < rH respectively.

As r is increased past rH , the equilibrium points q~ and q~ are no longer stable. The

attracting set A increases in complexity. Using a version of symbolic dynamics similar

to that of the Smale Horseshoe, it is possible to show that the Lorenz equations can

eventually be classified as chaotic on A through the formation of transversal homoclinic

orbits. Figure 29 illustrates a numerical solution of the "Lorenz attractor," projected

onto the jcz-plane with a = 10, b = - and r = 60. It is also possible to show that A is a

strange attractor, possessing non-integer "fractal dimension;" see Rasband [Ref. 9].

The Lorenz equations are filled with much richness that we have not discussed.

They exhibit horseshoes, a phenomenon known as "period-doubling" and also undergo

a series of "homoclinic explosions." Sparrow [Ref. 12] provides a detailed analysis of

the Lorenz equations.
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Figure 27. Phase Diagram r= r\
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Figure 28. Phase Diagram r < r < rH .
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V. QUANTITATIVE MEASURES OF CHAOS

A. LYAPUNOV EXPONENTS

Up to now we were concerned with defining chaos and deciding whether or not a

system was chaotic. Quantitative measures of chaos not only indicate when chaos is

present in a dynamical system, but attempt to capture the degree of this behavior by

assigning it a numerical value. Lyapunov exponents are one such quantitative measure.

Lyapunov exponents are numbers which measure the amount of exponential diver-

gence or convergence between flows with "close" initial points, and are normally associ-

ated with a flow
<f)t

(x) (specifically a bounded flow such as on an attractor). Of most

concern is the largest Lyapunov exponent. If the largest Lyapunov exponent of an

attractor is positive then it would seem plausible that the attractor would have sensitive

dependence on initial conditions. In fact many authors call a system chaotic if the

largest Lyapunov exponent for an attractor is positive.

The full definition of Lyapunov exponents is somewhat involved, and the following

non-rigorous argument suffices as motivation for the definition of the largest of them.

Let X be a scalar, and consider the first order autonomous differential equation x' — Xx,

x(0) = x , the solution of which is x = x &'. Thus, a pair of initial points separated by a

distance d > and allowed to flow from time to time t eventually become separated

by a distance d{t) = d c i!
. If/ > 0, then the flows diverge exponentially, regardless of

how close they were initially/

More generally, let (j>,{x) be a bounded flow on an attractor, and let d(t) represent

the distance between the flow 4> r
(x) and some "nearby" flow at time /. Suppose now that

d(i) = d (t)&' for some "initial distance" function d (t) and scalar X. Then X is said to be

a Lyapunov exponent for the flow 4>,(x). For k= 1,2,. ..,\,..., as / runs from some time
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/„., to a close but later time rk , a "small" initial distance of d^t^) between these flows is

multiplied by an exponential growth factor. That is. locally,

d(tk)^d (tk
.y^- 1^

. (62)

Beyond this time value of /
k , if the growth rate of d(t) becomes "too large" for exponen-

tial growth, then a new "nearby" flow is chosen with a new initial distance d^Q, and the

process is repeated; see Figure 30. The form of formula (62) suggests that

d((k )

/(/
k
-/

k.,)^ln—-f— . (63)

Summing from k= 1 to X and taking an appropriate limit yields a precise definition:

k = l

Thus the largest Lyapunov exponent for the flow 4>
r
(x) can be estimated by averaging

the local expansion rates over time. Other expressions for / exist, as well as versions for

flows of discrete maps. It should be noted that the choice of the exponential e in (62)

is arbitrary; base 2 is often used.

Another method for estimating the largest Lyapunov exponent for a bounded flow

<f> t
{x) follows. We first provide the following definitions. Let L be a matrix with complex

elements /„. A matrix L is defined as the Hermitian conjugate matrix of L if the elements

C
t

of L are equal to the complex conjugates of the elements of L transpose (i.e.,

/,)
= (,). The trace of a n x n matrix L, Tr(L), is equal to the sum of its diagonal elements

(i.e., Tr(L) = £/„).
1=1
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Figure 30. Estimation of a Lyapunov Exponent

Instead of defining a Jacobian matrix evaluated at a single point, consider

DJ{(f) t
(x)), a Jacobian matrix evaluated for an entire flow. It depends on the parameter

r and is illustrated by the following example. Given a flow for the Lorenz equations

*ito =

x(t)

(65)

we have

61



OMM)

-a a

r-z(t) -1 -.vU)

y(t) x([) -b

(66)

It is possible to relate the distance d{t) between <j>,(x) and a "nearby" flow by the fol-

lowing expression:

d'(i) = DJ\<f> [
(x))d(t) (67)

An analytic solution for d[t) using (67) is virtually impossible except in some special

cases. However. (67) can be integrated numerically such that

d(i)=l(i)d (r ) (6S)

where L(/) is a matrix with the same dimension as DJ[<f) ,(x)) (i.e., n x n ). The largest

Lyapunov exponent is the average of the eigenvalues of L(/) with the largest real part

as [ goes from zero to infinity. Mathematically, for X the largest Lyapunov exponent.

/ = lim ^-ln[Tr(L
+
(0L(f))] (69)

where L is the Hermitian conjugate matrix of L and Tr(L~(0L(0) is the trace of the

matrix product L U)L(/). The limit in (69) has been established by "multiplicative

ergodic theorems" to exist for a large category of systems.

It should be noted that an entire spectrum of Lyapunov exponents exists, largest to

smallest. In general, for an nth order autonomous system there are n Lyapunov expo-

nents. The spectrum of Lyapunov exponents for an equilibrium point p of the system

x' =J{x) consists of exactly the real parts of the eigenvalues of the Jacobian DJ[p).
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For an attractor to exist it must be true that the sum of the Lyapunov exponents is

negative. It can also be shown that for a system x' =J[x), if </>,(.v) is bounded for / > 0,

if </>,(-*") does not tend toward an equilibrium point, and if/ has a finite number of zeros,

then at least one of the Lyapunov exponents for 4>,{x) is zero; see Parker-Chua

[Ref. 7].

With the last two statements in mind the only possible spectrum of Lyapunov ex-

ponents (/,, A 2 , /j) for a three-dimensional system with an attractor is one where /, > 0,

/, = 0, /
3
< and /, < -Xy

B. FRACTAL DIMENSION

Fractal dimensions are dimensions which allow non-integer values. The dimension

of Euclidean space is the dimension with which we are most familiar and is not consid-

ered a fractal dimension. It assigns only integer- valued dimensions; a point has di-

mension zero, a line dimension one. a plane dimension two. and a cube dimension three.

Fractal dimensions are consistent with the dimension of Euclidean space in that a point,

line, plane and cube all have the appropriate integer valued dimensions.

We are most concerned with defining an appropriate dimension for invariant sets,

in particular, strange attractors. Note that we have already seen that strange attractors

can be defined as attracting sets with non-integer fractal dimension. Inasmuch as most

(but not all) strange attractors exhibit chaos in the sense of possessing transversal

homoclinic orbits (and thus sensitive dependence on initial conditions, etc.), the dimen-

sions of non-chaotic attractors are always integers.

We start with a notion of fractal dimension called capacity. Given an attractor A,

cover it with appropriate volume elements (i.e., spheres, cubes, circles, squares, intervals,

etc.) each with diameter c. Let N(e) denote the number of volume elements with diam-

eter £ needed to cover A. As e decreases the number of volume elements N(2) needed to

cover A increases, that is,
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N(c) = f£
D

(70)

for some constants c, and D. The capacity D cap is derived by solving (70) for D and let-

ting £ approach zero, that is,

_ Hrr, In N(e)
d»p=S ^TT (7I)

provided the limit exists independent of the shape of the boxes used to compute N(fi).

If the limit does not exist, the capacity is undefined. Capacity is also known as box or

box-counting dimension.

Consider the capacity for the unit square. Let the volume elements be boxes with

sides of length c = ^r If k = I then nine boxes are necessary to cover the unit square.

For k = 2. eighty-one boxes are necessary. In general N(e) = 3" boxes are necessary to

cover the unit square. Letting i —- is equivalent to letting k —* co, thus

2k

n - lim JSJ 2 (17)

In 3

Notice that two is consistent with the Euclidean dimension for the unit square.

Now consider the Cantor Ternary set briefly introduced in Chapter III. This set is

a subset of the unit interval and thus the appropriate volume elements will be intervals.

After completion of the first step in our construction of the Cantor Ternary set we were

left with two intervals [0, j], [y,l]. These intervals can be covered with two intervals

k 1

of length one-third. In general after the k
l

step, N(e) = 2 intervals of length c = -^- are

sufficient to cover the resulting set. Thus the capacity of the Cantor Ternary set is

DoP = !

im -^ = -r-f « °- 6309
• (

73 )cap k^o
ln3

k in 3
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Notice that D cap is not an integer and that the value is less than the dimension of the unit

interval (dimension one) of which the Cantor Ternary set is a subset.

In calculating the capacity for attractors such as those found for Duifing's equation

and the Lorcnz equations, note that equation (70) can be written as

In N(e)= D(ln (i>) + ln c . (74)

Thus, in a limiting sense, D cap is the slope of the log-log plot of N(c) versus — .

N(c) can be calculated for an appropriate number of difTerent £-values by con-

structing a grid of boxes (hyper-cubes) with sides of length e that cover an area (n-

dimensional phase space) which bounds the attractor. For DufTlng's equation, n=2,

and boxes are used for volume elements. For the Lorenz equations, n= 3, and cubes are

used for volume elements. This grid of boxes (hyper-cubes) can be initialized in a

boolean array with value FALSE. For each data point x, on the attractor determine in

which box it is contained and change the corresponding array value to TRUE. N(e) is

the number of elements in the array which are marked TRUE.

It should be noted that for n greater than three, computer memory requirements

become excessive. In this case other more efficient methods (see Parker-Chua [Ref: 7])

can be used for calculating Dcap . Additionally the number of data points .v, on the

attractor used in calculating the capacity as well as the other fractal dimensions is crit-

ical. We will return to this issue at the end of the section.

The next measure we shall discuss is called the information dimension. We maintain

the notation that N(e) is the number of volume elements of diameter e which covers the

attractor. The information dimension is based on the relative frequency that the

attractor "visits" any particular volume element. Let P, be the relative frequency with

which the attractor enters the i

lh

volume element. Define
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N(«)

H(£) = -J]p i
lnP

i
. (75)

he information dimension is defined bv

lim H(e)

Again if the limit does not exist D, is undefined.

Consider the information dimension for the unit square with uniform probability

'k 1

density. I hen as seen earlier N(£) = 3 boxes with sides of length e. = -^- are necessary

to cover the unit square. Since the probability density is uniform, the probability that

a point chosen at random from the unit square is in a box with side of length c = -rj- is

equal to -tt~ (i.e., P, = -rsr). Thus

3
2k

H( E )
= - > A-lnf 4r) = ln3

2k

(77)

1=1

3

and the information dimension is

In 3

D
>
= Si "Hr

Notice that D, for the unit square with uniform probability is equal to Dcap for the

unit square. In fact it is always true that D cap
= D, for uniform densities.

Next consider a unit square with uniform probability density equal to - and the

single point (2,0) with probability j. If the volume elements are again boxes with sides
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of length c = tt , then N(fi) = 3
2k

4- 1 boxes are necessary to cover the unit square plus

the point (2,0). P, = — for the volume element covering the point (2,0) and

P, = — ( -^jr ) for the remaining 3~
k

volume elements. hus
j

2k
3

/ j 2 • 3 \ 2 • j /

1=1

= 4- ln - + ^- ln
( 2 '

32k

) (79)

= In 2 + 4" In 3
2k

and

Di=!L™ f-^ +^Vi- (so)

In 3

Thus D, is the average of the dimensions of the point and the unit square. This illus-

trates how the information dimension can weigh the lower-dimensional subsets accord-

ing to their relative frequency of "visitation,'' where as capacity tends to ignore the

lower-dimensional subsets. It can be shown for any attractor that D, < Dcap .

The final fractal dimension which we shall discuss is the correlation dimension.

Keeping the same notation used for information dimension, the correlation dimension

D corr is defined by

N(£)
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As an aid to interpreting the numerator of (81), let N be the number of points x, of

the attractor used to estimate D rnrr . It is rather easv to show that for

C(c) = Inn
\ -»oo N

7- [the number of pairs of points

\.\\. x
}

\ such that ||.v, — jcj|| < s} '

(82)

(81) is equivalent to

D = Iim In C(£]

In c
(83)

Once again consider the unit square and a single point. Let the volume elements

be boxes with sides of length t = -^r . Then N(e) = 3
2k + 1. Let P, = — I ^3-

j
for the

volume elements covering the unit square and P, = — for the single point. Then

\(£)

InVp-

1=1

= In T +

i=l

4.3
^F

(84)

= in i' ++
which implies

*-^corr

lim
k-»oo

i(>+±

In

(85)

=

Thus the correlation dimension completely ignores the unit square in this example. It

can be shown that D corr
< D, < Dcap for any attractor.
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Other similar types of fractal dimensions exist which are also designed to reflect

various statistical properties of the attractor. Related measures include entropy,

I Iausdorff dimension, and Lyapunov dimension which requires the values for the entire

spectrum of Lyapunov exponents. This probabilistic approach to analyzing dynamical

systems has played an important role in the development of a formal discipline known

as ergodic theory, which relies heavily on the classical theory of measure and integration.

The main reason for choosing one fractal dimension over another is the ease and accu-

racy of calculation, as well as computational stability and robustness. Since this area is

still undergoing much active research it is unclear which dimensions are preferable and

how they are related to one another. It is unlikely that the complexity of a strange

attractor will ever be represented by a single number.

Much of the power in determining an attractor's fractal dimension is realized when

working with data from experimental observations (i.e., time series). This provides an

estimate of the minimum number of variables needed to model the systems' underlying

dynamics. For example, if the dimension of the attractor is 2.7 then theoretically the

underlying system can be modeled with three variables.

This leads to two questions:

1. How reliable is computational simulation of the true orbits?

2. How much data is necessary to estimate the fractal dimension of an attractor?

The first question is answered by the Shadowing Lemma, see Guckenheimer-Holmes

[Ref. 4], which states that a computed "pseudo-orbit'' does approximate some true orbit

in a hyperbolic invariant set A. The second question is answered (specifically for cor-

relation dimension estimated by the widely used Grassenberger-Procaccia algorithm) in

Ruelle [Ref. 13]. Let N be the number of points on the attractor or number of exper-

imentally observed data points used to estimate the correlation dimension. It can be
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argued that in order for the correlation dimension to be estimated accurately by this al-

gorithm the following relation must hold:

correlation dimension < 2 log 10N . (86)

Thus if the correlation dimension is estimated to be 3.7 for a certain attractor then we

should ensure that substantially more than 71 data points were used in the estimation.

Although the relation in (86) is specific to a fractal dimension calculated by a certain

algorithm, the result suggests we should in general be wary of any fractal dimension es-

timated with a "small" number of data points.
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APPENDIX - NOTATION

We provide the following definitions for some of the fundamental mathematical

notation used in this thesis.

1. a e A - a is a member of set A

2. U - the set of real numbers

3. (R
n

- the set of n-tuples (jc, xn), where .v, e U, i = l,...,n

4. Z - the set of integers, (0, + 1, ±2, ...}

5. Z
T

- the set of non-negative integers, |0, 1, 2, ...}

6. Q - the set of rational numbers. {
—

: m,n eZ,«^ 0}

7. f. A -> B - a function/with set A as its domain and set B as its range

S. hof - composition of functions. hqf[x) = h(J\x))

9. Re{/} - the real part of the complex number A

10. Im{/} - the imaginary part of the complex number A
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