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PREFACE TO THE FIRST EDITION.

The present book originated in a series of lectures delivered

by the author during the winter and spring 1916 1917 at the

University of Groningen. The matter of these was afterwards

augmented by the contents of some addresses held about ten years

ago at the University of Amsterdam, and by that of some others

delivered in various places in this country and in America. In

response to a desire, repeatedly expressed by some of his friends,

the author has finally resolved to publish these lectures in bookform.

Only in occasional passages, however, does it betray this devious

course of development.

The aim of the writer in publishing this volume is by no means

to give an exhaustive "treatise" of the general doctrine of symmetry.

His purpose is merely to draw the attention of students of

mathematics and natural philosophy in general to a principle, of

which the significance in the morphological description of objects,

as well as in the definition of chemical and physical phenomena is

gradually becoming more and more evident in every domain of

research.

The complete deduction of the properties and mathematical

character of symmetrical systems has been so ably treated by a

number of the best authors, and in such various ways, that there

is small chance of new points of view being found in the future. More-

over, the results have from time to time been summarised in a

number of papers which are accessible in most of the greater libraries

to every one who wishes to go further into these subjects. Hence

it appeared needless to repeat such an exhaustive treatment of
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these questions in a book, which is intended rather to fascinate

the more vivid and impulsive imagination of the observer and

experimenter, than to satisfy the more slowly working and quiet

mind of the mathematician. The whole treatment of the necessary

theorems and deductions of the general doctrine of symmetry has

therefore been condensed into four chapters of this book, in which

at the same time even its applications to morphology have been

inserted. Notwithstanding this, the author hopes that he has given a

sufficiently complete deduction of the theorems, so that even for

those students who wish to go further into the mathematical theory

itself, the general way of reasoning may be found clearly indicated.

After seriously testing the methods of argument hitherto

elaborated, the writer has in many places finally adopted that of

Schoen flies, chiefly because in his opinion it offers, from a teaching

standpoint, undeniable advantages over the often not less happy
and concise ways of treating the problem employed by authors such

as Von Fedorow, Wulff, Viola/Barlow, Boldyrew, and others.

However, many alterations and extensions have been occasionally

made, chiefly with the intention of keeping the deduction as general

as possible, even for cases which are of no special crystallographical

interest, though doubtless important for biologists. The author is

convinced that Mobius' definition of symmetrical figures has some

logical advantages above the somewhat dualistic definition of Von
Fedorow and Schoenflies adopted here; and also, that from a

mathematical standpoint, the methods of demonstration of Wulff

and Viola, and more especially that of Boldyrew, may perhaps be

considered more homogeneous. But he is convinced also that con-

fusion is more readily created in the mind of students of these

subjects, when all symmetry-properties are reduced to mere

"reflections" in planes of different functions, than when the "axial

symmetry" is considered as well. Attention is, however, occasionally

drawn to several theorems demonstrated by the authors last named

and their importance for certain purposes has in such cases been

indicated as clearly as possible.
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Moreover, abundant references to literature are made throughout,

so that the student who wishes to refer to or read the various authors

in their respective languages, will find his labour appreciably

facilitated.

The examples, chosen from biological sciences and more especially

from morphological descriptions, for illustrating the applicability

of the symmetry-principle in this province, have no claim to

absolute correctness. It is in general impossible for a chemist or

physicist to judge the exactness of such descriptions in morpho-

logy by means of drawings only, unless he has by chance gone into

these subjects in detail. The instances mentioned must be considered

as somewhat preliminary, intended only to prove the possibility

of a form-description based upon the principle of symmetry. How-

ever, it will not give much trouble to biologists to find the right

symmetry of each object, if only the general principles are once

clearly understood by them. The author will be grateful for sug-

gestions offered by his colleagues in a kindly spirit.

When the present work was almost finished, a copy of a

little book in the Russian language from the hand of Professor

G. W. Wulff: cHMMETpm H EH npojia;iEHiE Bb iiPHPoat. (Symmetry and its

Manifestations in Nature), came into the author's possession. It

contains a short review of four lectures delivered by the writer

in 1907, at the request of the Society for Popular University Instruc-

tion in Moscow. As the range and design of these lectures are obviously

quite different from those of the present volume, there was no reason

for the author to consider his book as superfluous and to give up

its publication.

If the contents should instigate our students of natural philosophy

and our future investigators to some new experiments or to any

applications in the different fields of research, the writer would

think himself amply rewarded for the work done in composing

this book.
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CHAPTER I.

Introductory Remarks. The Symmetry-Principle in General.

Its Aesthetic Value. Definition of Symmetrical Figures.
-

Symmetry-Properties and Symmetry-Character.

yu.p ast SVTGS f) ysw^erptx^ yvwai? eor/v-

Plato, Respub., 7,527,b.

1. Of the numerous theories suggested to explain natural

phenomena, those have proved particularly efficient, which allow of

mathematical treatment and therefore are especially suited for the

outlining of repeatedly observed facts in their mutual dependence.
Not before such a summarising mathematical description of the

most obvious features in the relationship of the natural phenomena
considered, or between groups of them, has been performed as

concisely as possible,
- - can we claim to have really understood

the observed facts in their logical connections.

In this mathematical outlining of nature, human science makes

use of a number of fundamental notions and principles which, as a

rule, after a long period of error or opposition have been accepted
in the end. The methods of mathematical physics wijh its classical

mechanics as well as its recent views on electromagnetics, are

wellknown illustrations of this. Such fundamental notions are

finally adopted generally, if they prove to be extremely effective

in the further theoretical development and schematising of natural

phenomena.

Among ideas of this kind playing an important role in modern

science, the principle of symmetry may certainly be considered as

one of the most remarkable and interesting.



The idea of symmetry resulted originally from the study of

geometrical forms and the observation of natural objects. Now,
after its mathematical formulation has been elaborated, and all

the conclusions drawn from it have been systematically gathered
into what is commonly named "the general doctrine of sym-

metry", the said principle also finds application in those fields

of natural science, such as e. g. physics and chemistry, where

geometrical properties are generally taken into account in cases

in which the dimensions considered will most probably always
remain beyond the scope of direct observation.

2. By the use of the word "symmetry" in the study of forms

and figures it is intended to

draw attention to some geome-
trical regularity, to a certain

process of repetition and perio-

dical arrangement
J

)
which mani-

fests itself in the external habit

of the figure considered. It is

well known, that there is im-

plied a powerful aesthetic fac-

tor 2
)
in the mere repetition of a

visual impression, and it is in

this, that symmetry became an

Fig j important aesthetic principle in

decorative art and architecture.

In Fig. i a perfectly arbitrary complex of large and small black

dots is represented. The figure formed by them does not make any

1
)

The Greek word au/ji/xsTpta signifies: right proportion, evenness, measura-

bleness, dimension; avppsTpos is: uniform, suitable, proportional, measured-off
;
and

likewise the adverb <7u/x/*Tf$ has the meaning: keeping the due medium be-

tween. Democritos e. g. speaks of: IU/X/JIST^I*? |3fou
for: the equableness of life; etc.

The French authors on problems of symmetry often use the expression: "ques-

tions d'ordre", which very well illustrates the true meaning of the theory, as one

of regular arrangement.
2
)

The significance of symmetry as an aesthetic principle was already brought

into the fore by the ancients. Thus e. g. Plotinos in his famous book on Aes-

thetics, in the first Ennead, liber 6, cap. 1, says: "Now almost by all persons

is maintained, that it is the symmetry of the different parts with respect

to each other and the beautiful colour, which produce beauty for visual

observation; and for those as well for the common intellect beauty is identical

with symmetry and being shaped after fixed proportions."



particular impression on the observer. If, however, this meaningless

figure is repeated several times by rotating it round an axis A

perpendicular to the plane of the figure, each time through an

angle of 72, the pattern of fig. 2 'will be produced. This pattern,

on the other hand, makes an undeniable "aesthetic" impression.

In the same way the particular effect of the patterns of wallpapers,

of drapery-, or dress-materials, is produced, and also that of the

symmetrical ornaments

which are met with

more particularly in

classic architecture.

In the wellknown

mirror-kaleidoscopes ,

the surprising and very
beautiful effects are

obtained by means of

the repeated reflection

in regularly arranged
little mirrors. A num-
ber of insignificant

pieces of coloured glass

which are thrown to-

gether by mere chance,

will however now seem Fig. 2.

to be purposely arran-

ged and combined in beautifully shaped, coloured patterns. Here

also the aesthetic action is caused exclusively by the regular

repetition of the same arbitrary figure. The splendour and fasci-

nating beauty of a great number of living creatures: radiolaries,

medusae, diatomeae, corals, starfishes, of innumerable flowers', that

of the splendid forms of many crystals and of the figures produced in

Lissajous' wellknown experiments with combined harmonic vibra-

tions, in vibrating membranes (eidophone) or metalplates (Chladni's

sand-figures), especially the splendid diagrams obtained by means
of the modern elliptic and twin-pendulums or harmonographes *),

-

1
) D. Brewster, Treatise on the Kaleidoscope, Edinburgh, (1819).

2
) J. Goold, Ch. E. Benham, R. Kerr, and L. R. Wilberforce; Edid. H. C.

Newton, Harmonic Vibrations and Vibration Figures, London; Th. Bazley,
Index to the Geometrical Chuck, (1875). Remarkable symmetrical figures can be



are in each case caused by the action of symmetrical repetition.

As instances of this kind some of the highly Symmetrical vibration-

diagrams obtained with Goold's elliptic pendulum, when the ratio

of the periods of the two combined vibrations is 3 : 1
,
are repro-

duced in figures j and 4. Indeed, the principle of form-symmetry
in its strict formulation has already been neglected too long in the

morphological and systematical description of the biological sciences;

or at least: its scanty applications have been too rudimentary and

insufficient in almost all cases. In this respect it is most necessary

that the obsolete and unwieldy definitions of form still in vogue

Fig. 3.

Vibration-figure, obtained with an elliptic pendulum.

in these sciences, should be finally abandoned for a rational sys-

tem of description, in which the doctrine of symmetry is the

trustworthy guide.

For our purpose it is only necessary for the moment to keep

in mind that the "symmetry" of a figure consists in some

regular repetition of definite parts of it. Thus such figures can be

made to coincide with themselves in several ways, either by

superimposing or by some other operation.

3. With respect to the aesthetic value x
)

of the symmetry-

obtained e.g. with J. Goold's elliptic pendulum. A most remarkable and charac-

teristic feature of combined elliptical movements is this, that the resulting har-

monic motion is symmetrical, whenever the sum or difference of the ratio-numbers

of the composing movements is even, but unsymmetrical, when it is odd. On the

special symmetry of Lichtenberg's electrical figures, cf . : S.Mikola, Phys. Zeits.,

18, 158. (1917).

!) Cf.: H. N. Day, Aesthetics, 72, p. 76, (1872): "Akin to this beauty of

proportion is the beauty of symmetry", etc. Suggestive ideas of this kind are also

to be found in V. Goldschmidt's book: "Ueber Harmonie und Komplikation" ,



principle some few suggestions may be made here. The aesthetic

action of symmetrical arrangement is really established beyond
all doubt. Now E. Mach l

)
has drawn attention to the remarkable

fact that the symmetry of a figure with respect to a single plane
will immediately be noticed, if the plane of symmetry is a vertical

one; that in the event of its position being horizontal, however,
the symmetry of the figure does not make a very strong impression :

we can walk for many hours by the side of a lake, before our

attention is drawn to the fact that the image in the water is the

replica of the scenery itself. Vertical bilateral symmetry appears
to be the one naturally adapted to us, while apparently horizontal

is almost imperceptible to the observer. Mach tries to give an

explanation of this fact by drawing attention to the other, that

our visual apparatus itself possesses a vertical plane of sym-
metry. The right and the left eye are in their internal structure

Fig.. 4.

Diagram of two combined harmonic vibrations, obtained with an

elliptic pendulum.

each other's mirror-images: the function of the one can

therefore not be substituted for that of the other, as appears if

one transposes the pictures of a stereoscopical photo. If we now
look through the stereoscope, a strange world is observed, in

which concave and convex are interchanged, and in which all

Berlin, (1901) pag. 121, 130, 135; Cf. also: Owen Jones, "The Grammar of Orna-

ment", London, (1868); J. L. Soret, "Sur les Conditions physiques de la Perception
du Beau", Geneve, (1892).

x
)

E. Mach, "Populdr-wiss. Vorlesungen, (1893), pag. 100; "Die Analyse der

Empfindungen" ,
2e Aufl., (1900), pag. 81, 82, 85, 116.



that should stand out, now recedes into the background and

vice versa. The impression of a vertical symmetrical figure thus

would result from the circumstance that the right eye sees

the right part of the figure in just the same way as the left eye
sees the left part of it. The effect of vertical symmetry of this

kind would really be an intensifying of the single impression, and

would therefore be immediately noticed by us.

However, the question seems to be much more complicated than

Mach supposes. For it is wellknown that also in the case of persons

born blind, often a rather developed sense for symmetry has been

observed, which evidently seems to have developed in connection

with their sense for touch. It thus appears highly probable that the

peculiar preference for vertical symmetry is intimately connected

with the movement of the extremities 1

),
and would thus finally

be explained by the vertical symmetry of the body as a whole.

Mach himself brings forward against his own explanation of the

above mentioned preference for vertical symmetrical figures, an

argument which seems unjustified in this connection, by pointing

to the fact that our hearing-apparatus too has a vertical plane of

symmetry, and notwithstanding this the melody and its
'

'mirror-

image" as played on a suitably arranged piano, will absolutely

differ from each other acoustically. For the right ear does not hear

the sound-waves in any way other than the left ear does, so that

the comparison with the case of visual observation is evidently

a wrong one.

However, the explanation which connects the established prefe-

rence -for vertical symmetrical figures with the vertical symmetry
of the body and the movement of the extremities, cannot be

considered to give a final explanation of the aesthetic action of

the symmetrical arrangement in general. In fig. 2 on page 3 we

have a symmetrical figure which does not possess any planes

of symmetry whatsoever; notwithstanding this, the aesthetic im-

pression is undeniably present here. This leads to the conclusion

that this action is merely caused by the fact of the regular repetition

as such. In my opinion the influence of this is a double one. For

in the first place this repetition helps to intensify the primary

*) Mach suggests that our ability to discern right and left, might perhaps be

based upon a slight asymmetry of our senses of motion; cf. : "Die Analyse der

Empfindungen", 2e Aufl., (1900), pag. 82.



visual impression, even if this be only an indifferent one, so that

the somewhat feeble psychological reaction of it now comes into

consciousness with much sharper outlines. And secondly, the final

impression will correspond with the one which the observer inarbi-

trarily expected beforehand from his notion of the regular repetition

of the primary impression. The symmetrical arrangement thus

appears to represent one of the numerous means, by which mental

action is facilitated and an economy of energy is obtained. However,

I have mentioned these views here only as an instigation to perhaps

better ones, -- not because I think they bring a final explanation

of this complicated matter. l

)

4. In this connection it seems not out of place perhaps

to make some few remarks about the question, in how far we

can really speak of true "symmetry" with respect to the geome-
trical properties of objects observed in nature? For it is certainly

true that we attribute to every animal, to every flower or

leaf or crystal, a characteristic external form. Everyone of us

can at a glance tell what the difference is between an oak-leaf

and that of a poplar, or between the octahedral alum-crystal and

that of quartz.

But detailed observation soon teaches us that two oak-leaves

or two poplar-leaves, two alum-, or two quartz-crystals, are never

absolutely identical ;
and that, properly speaking, an undisturbed

and invariable regularity of form, as the result of an accurate

repetition of definite parts of the object, is never be met with.

Thus the one half of the oak-leaf appears never to be precisely

the same as the other half; the alum-crystal never has twelve

accurately equal angles, etc. Notwithstanding this variability,

however, we never hesitate in recognising a given leaf as being
that of an oak-tree, nor a given alum-crystal as being an octa-

hedron. The reason of this is, that as a consequence of our frequent

1) Similar views on the aesthetic action of symmetrical arrangement have

also been brought forward and formulated by G. Heymans: Zeits. f. Psy-

chologic und Physiologic der Sinnesorgane, 11, p. 333, 335, 339, 340. (1896).

The question is here considered from the general point of view of the adaptation
of attention to subsequent observation, as a consequence of the psychological

preparedness for that coming impression, when its special nature is quali-

tatively and quantitatively on the same level with what was expected in

imagination. If this be the case, according to this author, a feeling of comfort

and delight will be produced, because of the easy assimilation of the real

occurrence to the analogous expectation already present in the mind.
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observation of these objects, we have formed an ideal image of

the completely developed and perfect leaf or crystal, by abstraction

of all that is accidental
;
and we have learned to consider the observed

forms as only more or less perfect approximations to that ideal

form. For we are convinced that if circumstances are more and

more favorable to free and undisturbed development during the

growth of the oak-leaf or the alum-crystal, we shall find a closer

approximation also to the standard-form mentioned. It is only

to this imaginary standard-form, that we can extend our consi-

derations regarding the symmetry-principle; it is again an idea-

listic scheme of nature only, to which these mathematical reaso-

nings are to be applied. In common parlance we say that

the leaf of the oak or the poplar is "intended by nature" to

be bilaterally symmetrical, or that the crystals of alum "of their

own nature" represent octahedra. But this only bears upon a

world of abstraction, the intellectual image of this imperfect

visible world. With respect to our mathematical scheme of forms

in natural objects we are indeed still very close to the idealism

of a Plato or Aristotle. It may here be mentioned also

that only in some cases, e. g. in that of crystalline matter,

we have succeeded in giving a rational explanation of the con-

nection between the internal structure and the characteristic

external form of a thing. But as regards living organisms, it

can hardly be hoped within a measurable space of time to

connect their intimate nature with the constant occurrence of

their typical external forms in any direct way, although that

form is typical of them in no less a degree, than it is of crys-

talline substances.

In every case it must be remembered here that in the following

paragraphs our views regarding the principle of symmetry can

only be applied to objects in the sense mentioned; only the ideal

forms, the "standards" of them, are taken into account, to which

the observed forms should more and more closely approach, as

the circumstances during the growth of these natural objects are

becoming more favorable.

5. It has already been said ( 2), that symmetrical figures

can be brought to self-coincidence in several ways; they are

equal to themselves in more than one respect. Indeed fig. 2

represents such a "symmetrical" figure, because it takes a new

position always congruent with the initial one, when it is repeatedly



rotated through an angle of 72 round the axis A already mentioned;
and this can be done five times in the same direction. After the fifth

motion the figure is again in exactly the same position as it was at

the beginning. It seems to be adequate in this case to define the

typical symmetry of the figure by these characteristic rotations.

Although in the case considered this will really appear to be justified,

we have, however, still to modify our definition of symmetrical figures

with respect to another particular, before it can seem complete.
In fig. 5 a complex of dots, just like those in fig. 2, is drawn in the

samemutual positions

and of the same

magnitude ; the figure

evidently possesses

the same symmetry
as the original one;

but in spite of the

fact that all details

and properties are the

same as in fig. 2, it

will appear to be im-

possible now to move
the figure in its pla-

ne l
) in such a way, as

to make it coincide

with fig. 2. We can,

however, obtain fig. 2

from fig. 5 by reflec-

ting the last one in a

mirror S, placed perpendicular to the plane of the drawing; the

mirror-image of fig. 5 now obtained, is really congruent with fig. 2

itself, and it can now be brought into coincidence with it by mere

shifting and rotating in its own plane. Because of this relation,

we say that the plane figures 2 and 5 are each other's mirror-

Fig. 5.

*) The condition that this two-dimensional figure remains in its own

plane during its motions, is essential in this mode of argument. In a tridi-

mensional space the figure would be brought to coincidence with itself by a
mere rotation through 180* round an axis situated in its own plane; conf. also:

A. Griinwald, Die Stulpungen unseres Raumes, Prag-Bubentsch, (1914), pag.6.
In this paper are also concerned the corresponding relations in polydimensional

spaces.
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images. Such mirror-images, although built up by the same geometrical

elements, are evidently not congruent and they can never be made to

coincide by mere motions.

The same is observed in tridime'nsional space : there are numerous

objects, e.g. "right" and "left" hand or foot, screwthreads and

tendrils, etc., which are wellknown instances of this kind. They
are related to each other as mirror-images, and they can never be

brought to coincidence by mere rotations or shifting. Only the

"mirror-image" of each of them will coincide with the other object

in the way described above. This is commonly expressed by saying

that the right and left extremities, or the screwthreads, etc., are

objects which are different from their mirror-images.

It must, however, be kept in mind that a number of objects are

not at all different from their mirror-images : our own body is a

good example of this. If we look into a mirror, we soon come to

the conviction that the mirror-image of our body is really congruent
with it. Indeed, if we imagine the mirror-image rotated round a

vertical axis through 1 80 and than shifted parallel to itself until it

is just as far in front of the mirror, as it is now behind it, the image
will appear to coincide absolutely with the body itself. Because we

have altered nothing of the original mirror-image during this opera-

tion, the coincidence of both proves undeniably that the human

body is an object which does not differ from its mirror-image. We
can easily test this, moreover, if we think for a moment of the body
as reflected in a vertical mirror-plane, coinciding with the meridian

plane which would divide the body in two symmetrical halves. These

parts would appear to be each others mirror-images also, but the

body as a whole is just the same as the original object. Afterwards

we shall see that just because this meridian plane is characteristic

of the special symmetry of the human body, this has the property
of being congruent with its mirror-image.

l
)

l
)

In this connection it may be mentioned that the difference between

the two kinds of operations here considered, by which a figure is brought

into coincidence either with itself or with its mirror-image, has also a simple

analytical expression. For in reality we are dealing here only with ordinary

orthogonal substitutions of coordinates. Now if the position of the new

coordinate-axes X'
', Y', Z', with respect to the old ones X, Y, Z is given

by nine directional cosines Cxx'
> CyX'> Czx'> etc., the relations C2

XX
'

-f- C2
yx

' +
&zx' = * and Cxx- cxy + Cyx'- Cyy + czx ^zy = o, etc., have always

validity. From this it is readily seen that the square of the determinant

formed from these nine cosines, must have the value 1. And from this
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Another instance of such a figure which is in different ways
similar to its mirror-image, is the cube (fig. 6).

From fig 6 it appears that the cube, reflected in each plane abed,

brought through two opposite edges, will coincide with its original

position; and evidently there are six of such mirror-planes present.

In the same way the cube will coincide with itself if reflected at

one of the three possible planes like ABCD. The cube is thus a

figure which in nine different ways is equal to its mirror-image.

On the other hand, if an irregular tetrahedron ABCD (fig. 7) is

taken, it is easily seen to be different from its mirror-image A 'B'C'D' .

Such a tetrahedron, therefore, is

an instance of a figure which is

in no way equal to its mirror-

image.

6. We have dwelt somewhat

long on this matter, because in

the beginning it often appears
difficult to obtain a complete and

clear insight into these relations,

which on the other hand must be

considered as of fundamental sig-

nificance for the following.

IB

Fig. 6.

Now there are innumerable stereometrical figures which are

similar to themselves as mirror-images: the cube, the octahedron,
the cone, etc., are all instances of this kind. They all possess a

property which fig. 7, and fig. 2 and 5, if considered only in their

own plane, evidently lack. However, figures such as fig. 2 or 5, are

surely "symmetrical" figures, and a fortiori, or at least for the

same reason, the figures mentioned above must also be called "sym-
metrical" ones.

Therefore our previous definition of a "symmetrical figure" needs

an extension in such a way, that we say: symmetrical figures are

such as are similar to themselves or to their mirror-images in more than

one way.
2
) In more than one way: for every figure is at least equal

to itself by mere identity.

relation: /\?=\, it follows, that /\ itself can be + i or - - /. The case

of A =
-f- / corresponds to the transformation of the system to a position

in which it remains congruent with itself; the case : A = J however, to

that in which it is the mirror-image of the initial system.
2

) Indeed, there is a dualistic character in this definition, although it is
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The different ways in which the congruency mentioned appears,

determines the symmetry-properties characteristic for the stereome-

trical figure, and with them, the whole symmetry-character of it is

given at the same time.

The complete set of symmetry-properties of every figure must

thus be found out, before we can say what its particular symmetry-
character really is. As we shall see later, however, not every arbitrary

combination of such symmetry-properties can occur in any special

C C

Fig. 7.

case; if present together, they are evidently in some way connected

and dependent upon each other. In the next chapter, therefore, we

shall see in what way symmetry-properties can be generally defined,

and what is the special mutual dependency of them, if more of them

are simultaneously present.

quite sufficient for the complete mathematical deduction of all possible symme-
trical systems, as Von Fedorow and Schoenflies have demonstrated. The

old definition of Mobius is free from this dualism. It says: ,,Zwei Figuren heissen

einander gleich und ahnlich, wenn jedem Punkte der einen Figur em Punkt der

anderen dergestalt entspricht, dass der gegenseitige Abstand je zweier Punkte

der einen Figur, dem gegenseitigen Abstande der zwei entsprechenden Punkte

der anderen Figur, gleich ist. Es gibt aber Figuren, welche sich selbst auf mehr

als eine Art gleich und ahnlich sind
;

. . . . solche Figuren sollen symmetrisch genannt
werden". Reflection in a mirror will really preserve the original relations and

distances of the different points to each other also in the mirror-image. This can

easily be demonstrated; cf. also: A. Grunwald, Die Stulpungen unseres Raumes,

Prag-Bubentsch, (1914), pag. 5, 6, 7.



CHAPTER II.

General Considerations on the Change of Position of stereome-

trical Figures. Characteristic Motions. - -
Figures and their

Mirror-images. Reflection and Inversion. Finite and Infinite

Figures. Symmetry-Properties, Symmetry-Elements of the First

and Second Order. Euler's Theorem. Deduction of Symmetry-
Character as a Mathematical Problem. - - Geometrical Centre of

Finite Figures. Periods of Axes of the First and of the Second

Order. -
Special Cases. - -

Repeated Reflections.
- - Demon-

stration of the general Symmetry-Relations.

1. If a stereometrical figure F be brought from its original

position in space 5X into a different position S2 ,
two cases will be

distinguished. The first case is, that the transition from 5X to 52 ,

can be made by means of a motion, i. e. by a translation (a shift

parallel to itself), by rotation, or by helicoidal motion, this being a

combination of the two former. In the positions Sl and S2 ,
the

figure thus remains congruent with itself. This could also be regarded
as if two congruent figures F were compared, but in two different

positions S
1
and 52 . As a corollary, therefore, it must always be

possible to bring two congruent figures F into coincidence by mere

motions, if they have initially different positions in space.

Now we will suppose that the figure jp is a symmetrical one, in

the sense of our definition in the previous chapter. Then it will always
be possible to make such a choice of the motions mentioned, that

the figure can be brought from its successive positions S2 ,
S3 ,

54 , etc.,

to self-coincidence or in its original place in space by mere trans-

lations. If this is the case, we will call the motions performed as

characteristic of the particular symmetry of the figure F.

An example will make this clear.

Let A (fig. 8) be a cube, the corners of which for the sake of
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clearness and reference, are numbered 1 to 8. Let us moreover take

an arbitrary point P in space, outside the cube A, and draw a

straight line LL' through it parallel to one of the four upright edges

of the cube. If now A be revolved round the axis LL' through angles

of 90, 2 x90,3 x

90, etc., the cube A
comes successively

into the positions

B, C, D, which posi-

tions differ from A,

as the numbers at

the corners clearly

show. Because the

cube now has a spe-

cial symmetry of its

own however, the

figures B, C, and D,

can be made to coin-

cide eventually with

A
, by merely shifting them parallel to themselves along the plane

of revolution. Thus, by definition, the rotations through angles of 90,
2 x 90, 3 X 90 round an axis parallel to one of the edges of the

cube, are characteristic rotations for the symmetry of this figure.

As the positions B, C, and D differ from A, these three characteristic

rotations are non-equivalent. A rotation through an angle of 450,

however, would be equivalent to that through 90, etc.

In the same way we should find, that if through some point in

space Q a straight line were drawn parallel to one of the four longest

diagonals of the cube, rotations through angles of 120 and 2 x 120

round this line as an axis, would appear also to be "characteristic

motions". It is easily seen that for the plane drawing oifig.f, rotations

through 72, 2 x 72, 3 x 72, and 4 x 72 round an arbitrary axis

passing through a point R in space and perpendicular to the plane of

the drawing, are also characteristic, and non-equivalent motions.

In the same way it must be evident that if the rotation of the

cube A in fig. 8 around LL 1 had been through an angle differing from

those mentioned, coincidence could not have been realised by shifting

alone; and the same would have been the case, if the rotations around

LL' through 90, etc., were applied to a different figure instead of

to a cube, e. g. to an unsymmetrical figure.
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Characteristic motions for a symmetrical figure therefore are in

general those, by which the figure is brought into positions parallel to

the initial one, but yet differing from it.

It is of importance to point out here, that the translations mentio-

ned are reduced to zero, when the point P in space is so chosen, that

it coincides with the ,,geo-

metrical centre" of the

cube (fig. p). After each

rotation it will now occu-

py the same place in spa-

ce, although of course

always with interchanged

corners, etc.,
- -

just in

the same way as hap-

pened in the rotations

first considered.

The symmetry of a

stereometrical figure may
now be exactly defined as the total complex of its non-equivalent

characteristic motions, as long as only symmetry-properties of the

above kind are taken into consideration.

2. The second case that we must now consider in detail is,

when a figure F in a position 5t is reflected in a mirror. It is then

transformed into its mirror-image F' and brought into a new position

52'; F' is of course now no longer congruent with F. Accordingly,

the manipulation required to make them coincide is no longer a

simple motion, some further operation being required besides.

If a symmetrical figure is of such a kind that it is equal to its

mirror-image in several ways, then it will always be possible to

find for that figure a series of characteristic reflections, in the same

sense as we have spoken of characteristic motions. Also in this case

the point P in space, through which the mirror-planes are drawn,

may be chosen in such a way that the translations by which the

reflected figures are finally shifted to the place of the original one,

are reduced te zero
;
the figure F then remaining in the same place,

but in different positions after each reflection. In the case of the

cube, P had to be made to coincide with the centre already mentio-

ned, the nine (3 -f- 6) possible characteristic reflecting planes all

passing through 0.

As we shall soon see, a figure being in several ways equal to its
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mirror-image, will, however, have not only "characteristic reflec-

tions", but these will necessarily be accompanied by some "charac-

teristic motions" also.

Thus in general we can maintain that the symmetry of a stereometrical

figure is exactly known, when the whole complex of its non-equivalent

characteristic motions and reflections is determined.

3. More detailed investigation shows that reflection in a

C'

D

Fig. 10.

mirror-plane is not the only way, in which a figure F can be trans-

formed into its mirror-image. In fig. 10 ABCD is an arbitrary irregular

tetrahedron. If now a point P in space be chosen, and straight lines

be drawn through P from

every point of ABCD, and

each respectively continued

to an equal length beyond P,

a number of points will be

found, which joined together

form a similar tetrahedron

A'B'C'D'. This tetrahedron,

however, is not congruent
with ABCD,but is its mirror-

image; we say that it is ob-

tained from ABCD by inver-

Fig . 11. sion with respect to the point

P, this point being called the

centre of inversion. However, it can be easily proved that the transi-

tion of ABCD to A'B'C'D' could have also taken place in the follow-

ing way: suppose ABCD to be first rotated through an angle of 180

round an arbitrarily chosen axis LL', passing through P, and then the

tetrahedron in this new position to be reflected in a plane perpen-
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dicular to this axis LL', and meeting it at P. From fig. n it will be

seen at once, that a point 5 in the figure F, by the rotation through
180 round any axis LL' through P will arrive at s, and by
a further reflection in the plane perpendicular to LL' will be

brought to S' . The transformation of S into 5' is, however, evidently

equivalent to an inversion with respect to P, and it can easily

be seen that the result is quite independent as well from the

special choice of LL', as from the sequence of reflection and

rotation, so long as the reflecting planeW be kept perpendicular

to the axis LL'.

4. From this it will be easily understood that every transformation

of a figure F from a definite original position S^ into its mirror-image
F' with a position S2 ', can always be executed by a combination of some

rotation round an axis LL' and a successive reflection in a plane V
perpendicular to that axis.

For by the inversion of F with respect to an arbitrarily chosen

point in space P, it moves from the position 5X into a position S/,
in which it is changed then into its mirror-image F'. Since the

figure in this new position S/ and that in the desired final position

S2

'

are now congruent, (for they are both mirror-images of the

same figure F) the transition of S/ to S2

' can be made by a single

rotation through an angle a round an axis LL' passing through P,

if only the point P be suitably chosen, so as to coincide with the

geometrical centre of F : otherwise a translation must also be finally

made to complete the transitio nof S/ into 52'. This, however, does

not affect the general validity of the demonstration. Now the

inversion can be substituted by a rotation through 180 round an

axis which for this purpose can be made coincident with the above

mentioned axis LL', the whole angle of rotation now becoming
(a + ir), and by a reflection in a plane V perpendicular to LL'. The
total transition from 5T to S2

'
is thus performed by a single rotation

through an angle (& -f TT) round an axis LL', and a reflection

combined with it, in a plane V perpendicular to this axis LL'.

Another demonstration of this important theorem will be given at

the end of this chapter as a consequence of our considerations of

repeated reflections in several planes.

5. A few remarks must now be made on the difference of finite

(limited) and infinite (unlimited) figures in general. Instances of

such finite figures are polyhedra, and all objects with a limited form.

On the other hand unlimited systems of points distributed in
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space, as considered for instance in the theories of molecular

structures, etc., are examples of infinite systems.

We will suppose such an infinite system to be under investiga-

tion, and let the most general type of motion, the helicoidal one,

be in some way characteristic of it. If this helicoidal motion is

executed, no point of the system will appear to remain in space
in its original position, in consequence of the translation which

is included in every helicoidal motion l
) ; however, the figure as,

a whole remains at the same place in space. This is also

expressed by saying that to every point of an infinite system
an infinite number of homologous points of the system always

correspond. If a finite system be subjected to a helicoidal motion,
the rotation of which corresponds to one characteristic of the

figure under investigation, it will reach a position such that a

single translation would bring it back to its original place; by
the motion considered, the figure comes into a new place in

space, making it parallel to itself. In the infinite system an

infinite number of homologous points correspond to every point;

in the finite figure only a limited number. In the infinite system
the translations mentioned have thus a real importance with respect

to the special character of the unlimited symmetrical arrangement;
in the finite figure those translations are evidently of no interest,

as long as the particular symmetry of the limited figure (polyhedron
e. g.) is regarded as being defined by its characteristic motions or

reflections. From this we can safely conclude, that helicoidal motions

can have no significance as characteristic motions for finite systems;

only those need be considered here, the translations of which are

equal to zero, i. e., when they are simple rotations about an axis.

Thus for the description of the symmetry of finite figures, the

.translation, and the helicoidal motion also, may from the first be

excluded as characteristic motions. For the definition of the special

symmetry-character of such figures it thus appears to be sufficient

to suppose only one point of the figure, the geometrical centre

previously mentioned, --to remain fixed in space during all sym-
metrical operations to which the figure may be subjected. As

already said, it is always possible to choose this point so

that the whole figure remains in its original place in space during

*) Vid: A. K. Boldyrew, Verb, der Kais. russ. Miner. Ges. St. Petersb.,

(2). 45, (1907), Definition 7 and its Corollary 8.
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all motions and reflections which are characteristic of its symmetry.
It may here be emphasized once more, that among the number of

their characteristic motions, infinite symmetrical figures always

possess translations too, and such figures can therefore eventually
also have helicoidal motions. For several of such systems, especially

for those which play an important role in the theories of crystalline

structure, such helicoidal motions are really typical.

6. For the time being we can leave the discrimination between

the two cases of finite and infinite figures, and proceed with our

task of characterising the various typical operations for the deter-

mination of their possible symmetries.
An arbitrary stereometrical figure, of which one point remains

fixed in space, can always be brought from a position S1
into another

position S
2) where-in it is congruent with itself, by a single and

completely determined rotation round an axis A passing through
the fixed point 0. This is the wellknown theorem of Euler 2

),

by which all rotatory motion in elementary mechanics can be treated

in a very simple way.
It follows from this, that the most general characteristic motion

of a finite symmetrical figure which is congruent with itself in several

ways, is only the rotation round an axis. We shall define such figures

1
)

The theorem of Euler can easily be proved, as soon as the validity
of the thesis is accepted that two rotations round two axes A and B inter-

secting in O, are together always equivalent to a third rotation round an axis C,

passing through O also. The demonstration of this is given later on. Now,
if the validity of this theorem be accepted, we can demonstrate the theorem
of Euler easily. For let the figure F be now brought from its original position
5
1

into a final position S
2 ,

a point of it remaining fixed in space. One of

the straight lines of F, e. g. OLV may be brought into its new position OL2 by the

said transition. We imagine a plane passing through OL^ and OL
2 ,

and consider

the normal N there-on in O
;
the directions OL^ and OL

2 may include an angle a.

If now the figure F be rotated round N through an angle a, OLj comes into

OL
2 ,

and the new position of F is S^'. To bring it from Sj" to S
2 ,
we have

only to rotate it round OL2 ;
for OL

2
has in 5

2
the same position as it has

now, its points thus remaining fixed in space, and those therefore being points
situated on a true ,,axis" of rotation.

The whole transition from S
1

to S
a

can therefore be considered to be

equivalent to the rotations round N and OL
2 ,

and these are equivalent to a

rotation round some axis C. The problem to find this third axis C, if the

positions of two others are given, will be gone into at the end of this chap-
ter, after the general method of reasoning by means of repeated reflections

has been described.
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as these, as possessing only symmetry-properties of the first order:

the characteristic motions are rotations through definite angles a,

and round definite axes, and will be known as axes of symmetry

of the first order. These axes of symmetry are therefore named the

special symmetry-elements of the first order.

If, however, the figure is of such a nature, that it is equivalent

to its mirror-image in several ways, and if here also the point

is supposed to remain fixed in space, we have already seen that

besides the symmetry-properties of the first order, there must also

be introduced other symmetry-properties by which the figure is

changed into its mirror-image. It is then said to possess also sym-

metry-properties of the second order
\
and as has already been demon-

strated, the characteristic operation corresponding to these, will

generally consist in definite rotations around a certain axis, insepa-

rably combined with a reflection in a plane perpendicular to that

axis. 1
)

This species of axis will be discriminated by us in the

following pages as an axis of symmetry of the second order, or a

mirror-axis. The mirror-axis is the characteristic symmetry-element

of the second order, just in the same way as the ordinary symmetry-
axis is for symmetrical figures of the first order.

If in fig. 12 A 4 is a mirror-axis with the characteristic angles of

rotation 90, 180, 270, the arrow will get the positions indicated,

if subjected to the four characteristic operations essential for the

axis ]4 4 . It is obvious that the inversion and the ordinary reflection

in a mirror-plane are only special cases of the mirror-axis : for a =
we have the pure reflection, and for a = 180, as was demonstrated

above, we have the inversion.

7. In a wellknown theorem of elementary mechanics, which is

also named after Euler, it is proved that, if two rotations

around two intersecting axes are executed successively, they are

together equivalent to a rotation round a third axis, passing through

the point of intersection 2
).

From this it follows that, if a symmetrical figure possesses two

characteristic rotations round the axes of symmetry A and B inter-

1
)

The rotation around the axis and the reflection in a plane perpendicular to

it have no significance here independently of each other: only the result of their

combined action must be taken into account.

2
)
A simple demonstration is given at the end of this chapter, as a corol-

lary of a general theorem by Boldyrew.
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secting in the fixed point of the figure, this last must necessarily

have a third characteristic rotation round another symmetry-axis

passing through 0. The last rota-

tion is equivalent to the former

two, executed in succession. Thus

from the existence of two axes of

symmetry, the existence of a third

necessarily follows.

But if the figure considered has

two axes of the second order, in-

tersecting in 0, the resulting mani-

pulation must be an ordinary rota-

tion around an axis of symmetry
of the first order, passing through
0. For by the first operation of

the second order the figure F is

transformed into its mirror-image

F', and this is in its turn changed

by the operations corresponding to

the second mirror-axis into a figure

congruent with the initial one.

Executed successively they are

therefore together equivalent to

an ordinary rotation; and this is

evidently the same thing as the

assertion already made (page 16)

that a figure cannot possess more than one symmetry-property
of the second order alone, without the simultaneous possession of

those of the first order.

From both these examples it will be clearly understood that there are

definite mathematical relations connecting the different symmetry-

properties of one and the same figure simultaneously present. Thus the

simultaneous existence of two such properties always requires the

existence of a third one equivalent to the other two combined. It is

precisely the existence of such relations, that makes the whole doctrine

of symmetry a possibility and permits us to deduce the general
classes of symmetrical types by mere mathematical reasoning.

8. However in this connection the question might rise: what
will happen, if those simultaneous axes of symmetry do not intersect,

but for instance, if they cross in space?

Fig. 12.
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Now it can be demonstrated *),
and the method will be briefly

shown later on, - - that the operation resulting from the presence

of two crossing axes of rotation must be a helicoidal motion, with

a translation differing from zero. In the same way it can be shown

that, if a figure has two axes of symmetry of the second order, which

do not intersect, the resulting motion will also be helicoidal; etc.

From these few examples it will be seen, that such cases cannot

occur in finite symmetrical figures, the helicoidal motion there

being excluded for reasons already given.

In the case of finite symmetrical figures therefore, it is strictly neces-

sary that all possible symmetry-elements of the first and of the second

order should pass through the same fixed point 0. In the same way the

planes of reflection must pass through it, and if an inversion-centre

be present, that must also coincide with this point 0. It will be dis-

criminated, as previously said, as the geometrical centre of the figure

F; it may play the role of an inversion-centre (centre of symmetry)

also, but this need not always be the case.

However, infinite figures may certainly have symmetry-elements
not passing through one and the same point simultaneously. In

such unlimited systems there may be present parallel, intersecting,

and crossing axes of the first or of the second order, sets of parallel

reflecting planes, etc.

In respect to the foregoing therefore, it seems necessary also to con-

sider the finite symmetrical systems apart from the infinite ones.

9. In this connection it seems advisable to consider in some

detail the general character of the axes of symmetry of the first

and second order and to examine more in particular the results

of repeated reflections in several planes, before the possible combina-

tions of symmetry-elements are systematically discussed. For these

investigations appear to be of great importance for the purpose

of understanding the doctrine of symmetry in general and for the

demonstration of its theorems.

a. Axes of symmetry of the first order.

The axis of symmetry of the first order is in each case determined

by its special direction in space and by its own character, which

is known when its characteristic angle of rotation & is given. That

angle is defined as the smallest angle through which the symmetrical

1) All these theorems are gone into thoroughly by A. K. Boldyrew, Verh.

der Kais. russ. Miner. Ges. St. Petersburg, (2), 45, (1907); vid. theorems 29

till 38, and 25 till 28, and also the problems 7 till 11 in his paper.
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figure must be rotated round the axis considered, to make it coincide

with itself. Of course the axis is supposed to pass through the geo-

metrical centre of the figure 0.

If this angle is
,
the figure will also be brought to self-coincidence

by rotations through

2a, 3a na, the

number n being an in-

teger part of 27T. For

if this were not the

case (fig. ij), then,after

n times turning round

the axis A, a straight

line of the figure AL
situated in a plane per-

pendicular to A , would

finally reach the posi-

tion AL 8 ,
and because

the figure is still con-

gruent with itself, AL
could be brought into

the position AL 8 by

turning the figure round A in an opposite direction over the

angle 0, this being smaller than a. It then follows that /3 would

also be a characteristic angle of the figure when rotated round its

axis of symmetry A, which is impossible because a is supposed
to be the smallest angle of this kind. Obviously /3 must thus be

equal to zero, and therefore:
r\

x =
,
where n = 1

, 2, 3, 4, 5,

8

etc. to oo
n

The number n determines the period of the axis A, and can have

all integer values between 1 and oo ,
for n = oo

,
# being 0. The

axes are, according to the values of n, regarded as binary (n = 2)

ternary, quaternary, quinary, senary, etc. axes. l
)
For n = oo

,
the

axis is called an axis of isotropy, and it has a special importance with

respect to many physical phenomena, as we shall see afterwards.

b. Axes of the second order.

In the same way we may distinguish the axes of the second order

1
) They are also called axes of threefold, fourfold, etc. symmetry, or trigonal,

tetragonal, etc. axes. These last names are however exclusively used in crys-

tallography.
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with respect to their particular period. However, it must be dis-

tinctly remarked, how a closer examination will soon prove that in

many (not in all) cases, axes of the second order can be replaced

by those of the first order, if combined with a real reflecting plane or

with a centre of inversion. It is therefore our task to investigate,

when this is possible and when not. Two cases of this kind have

already been dealt with : the binary axis of the second order (n = 2)

Fig. 14. Fig. 15.

was equivalent to the inversion, and in the case, where n = 1, the

axis was equivalent to the reflection in a real plane. The first

value of n to be examined is thus n = 3. Let ~A Z be a ternary axis

of the second order (fig. 14) and let us consider, which positions,

the arrow / wills uccessively reach. Let us execute all rotations round

Zg and combine them with the reflections inseparably connected

with them because ^A 3 is an axis of the second order.T hen we shall

find the arrow repeated six times in such positions in space, that



25

the complete set of the six arrows thus obtained has a symmetry
which can also be described by the presence of a ternary axis of the

first order and a real reflecting plane perpendicular to it. This can

easily be seen from a figure or a suitable model.

If n =
4.,

we shall find in the same way, that the complete set

of different positions reached by the arrow is that represented in

the fig. 15. Although ~A appears to be also an axis A of the first

Fig. 16. Fig. 17.

27T
order with a period , it is evidently not possible now to

substitute Z4 by other symmetry-elements which can completely
describe the particular symmetry of the figure thus obtained.

For n = 5 we shall find on examination, that the axis of the second

order A B is also an axis A^ of the first order, combined with a plane
of symmetry perpendicular to it. This case is thus evidently wholly

analogous to that of the ternary axis of the second order dealt with

in the above.



26

For n = 6, an analogous reasoning (fig. 16) shows that this axis

is equivalent to a ternary axis of the first order, combined with an

inversion. Indeed, the arrow will successively reach the positions i, j,

and 5, and 2, 4.,
and 6, so that e.g. 4.

could also be obtained from i,

5 from 2, 5 from j, etc., by simple inversion with respect to a centre

of symmetry 0. For n = 7 the result would have been analogous to

the case of n = j, or n = 5; for n = 8 however, we should have

found an arrangement of the arrows, such as is represented in fig. 17,

and here again it appears that the complete symmetry of the set of

arrows obtained cannot be described by another combination of sym-

metry-elements, just as is the case when n is equal to ^. Later on

we shall consider these cases in a more general way. For the present

it will be sufficient to formulate the results obtained as follows here :

O

An axis of the second order with a period of
,
is equivalent to an

axis of the first order of the same period, combined with a real

reflecting plane perpendicular to it, if n is an odd number.

If however n is an even number, two cases must be considered:

i) if n be divisible by 4: in this case the axis of the second order

can never be replaced by another combination of symmetry-

elements; and 2) when n is not divisible by 4, I thus being odd):

2w
in this case the axis of the second order with a period of is

fl

/yt

equivalent to an axis of the first order with a period-number
-

(period: 1, combined with a centre of symmetry.
l
)

10. These two symmetry-elements: the axis of the first and

that of the second order, having now been considered in detail,

it is of importance to notice here the result of repeated reflections

x
)
From this it appears that the centre of symmetry and the plane of reflection

are not sufficient to deduce all possible symmetries of those groups which only

have axes of the first order. As soon as an axis has a period whose number n is

divisible by 4, the addition of a centre or of a plane of symmetry can not lead to

an exhaustive treatment of all possible kinds of symmetry. Indeed, on account

of this, Bravais in his famous deduction of the possible groups of symmetry

("Etudes cristallographiques" ,
2ieme Partie, pag. 129) introduced the "plane of

alternating symmetry", which has the same function as our axis of the second

order. However, in his opinion, the corresponding group of symmetrical polyhedra

had no practical significance for crystalline substances, its occurrence in nature

being most improbable, if possible at all. (Cf. loco cit., pag. 130, 176).
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in different mirror-planes, simultaneously present. It is supposed
in this and all following cases, that the reflecting planes do not act

/wdependently of each other, but that only the result of their combined

action is always considered.

The case of a single reflecting plane has already been dealt with,

and its general character is now assumed to be understood.

We will therefore proceed to the case when two planes of symmetry
intersect in a line LL' (fig. 18). A
point of the figure P is reflected in

F1? and its mirror-image is P'; then P'

is reflected in V2 ,
and arrives in P2 . The

figure F after these two consecutive

reflections will be congruent with itself,

and therefore the final position could

also be obtained from the initial one

by rotating every point of it P through
a characteristic angle 2a round LL'

,

the axis of intersection of the two reflec-

ting planes, containing between them
an angle, the value of which is #. The

repeated, reflection in two planes inter-

secting under an angle a, thus appears
to be equivalent to a rotation about the

line of intersection through an angle 2&.

Of course it is clear, and it can also

be easily demonstrated, that every rota-

tion about an axis LL' through an angle a may be replaced by two

successive reflections in two mirror-planes, intersecting along LL'

under an angle .

If both mirrors are simultaneously turned around LL' through an

angle /3, while keeping the enclosed angle between them unaltered

(= a), P! will reach the same final position P2 ,
and the same is true

for every point of the figure P. Of course the succession of both the

reflections considered must remain the same as before.

The change of position of F thus appears to be quite independent
of such a simultaneous motion of both mirror-planes.

This is a very important principle, and it can be used, as e. g.

Boldyrew l
) showed in many cases, for the demonstration of a num-

L'

Fig. 18.

Boldyrew, loco cit.
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her of very interesting theorems in the doctrine of symmetry. A
special case is that, in which the angle tx, is infinitely small, the inter-

section LL' thus being situated at an infinite distance. The two

planes Vl and V2 (fig. zp) are then parallel; their distance apart

may be a. The repeated reflection is now evidently equivalent
to a translation = 2a. .

Such translations and parallel planes of reflection are often

characteristic of infinite figures or sys-

tems; for finite figures they have no im-

portance. It is moreover evident that in

the last mentioned case the result will

remain unaltered, if both planes are shifted

parallel to themselves, provided that their

mutual distance be kept constant = a.

11. We shall now consider the case

when reflection occurs successively at four

reflecting planes which do not act inde-

pently of each other, and which pass

through the same point 0. Then it can be

easily proved by the aid of the principle

of the simultaneous rotation of two inter-

P,

Fig. 19.

secting planes just mentioned, that these successive reflections

in four planes are equivalent to a reflection in two planes passing

through 0; or, which is the same thing, to a single rotation around

an axis passing through 0.

Let the four planes considered be 5j, S2 ,
S3 ,

and S4 ;
S

l
and S2

may intersect along a straight line OL lj2 ,
and S3 and S4 along OL 3>4 .

Now we can first turn the two mirror-planes Sl and S2 simul-

taneously round OL 1>2 ,
until 52 passes through OL 3>4 ',

the effect

of the successive reflections in 5
3
and S2 will not be altered by this,

provided that the angle of intersection ot, between S and S2 remain

the same. Now we will turn the planes S3 and S4 together round their

intersection OL 3}4 ,
until S3 passes through OL 1>2 . There will be

no change in the effect of the successive reflections in S3 and 54

by this. But now 52 ,
as well as S3 ,

coincides with the plane passing

through OL 1)2 and OL 3>4 ,
the reflections in the planes S'2

and S'8 ,

being the new positions of S2 and S3 ,

- -

neutralising each

other. Thus there remain only the successive reflections in two

planes S\ and S'4> these being the positions of 5j and S4 finally

reached after completing the above mentioned turnings of the
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four original planes. The reflections in S\ and S'4 are together

equivalent to a rotation round their intersection through a certain

angle, this axis of course also passing through 0. The figure F
remains obviously congruent with itself in these successive ope-

rations, because their number is even.

It will be immediately clear from this that the theorem of

Euler previously mentioned can now be demonstrated without the

slightest difficulty. For in this theorem it was stated that the suc-

cessive rotations through angles a and /3 round two axes A and B
intersecting in 0, are always equivalent to a rotation through a certain

angle 7 round a third axis C, also passing through 0. Now for every
rotation of both A and B, there may be substituted a successive reflec-

tion in two mirror-planes passing through A and B, and intersecting

at angles -^-
and ~-

respectively. But then we have the above

mentioned case of four planes intersecting in a single point 0. Thus

the result is equal to a single rotation round C, also passing through

0, through a definite angle 7 which can be easily found by
geometrical construction from the angles & and /3

1
). This funda-

mental theorem is now sufficiently demonstrated, and the base is

established for the mathematical treatment of the symmetry-problem
in those cases in which only axial symmetry is considered.

If the four planes do not pass through the same point 0, a

translation will be added to the resulting rotation, a helicoidal

motion thus being substituted for the single final rotation mentioned

above. But in this case also the general conclusions will still be valid,

it being only necessary (for infinite figures) to substitute the helicoidal

*) Take O as centre of a sphere (fig. 20), a being the point of intersection

of its surface with A, b being the same for

B. Let ab be joined by a great circle. Now
if the great circle aa' be so constructed that

the angle a'db is
-, and in a sense opposite to

the direction of the rotation round A
;
and if

bb' be a great circle constructed in the true

sense of the rotation round B, b'ba being
a

equal to
,

the intersection c is the point,

where the new axis OC pierces the surface

of the sphere, and its characteristic angle is

equal to 2% = y, the sense of rotation being

readily found.
Fig. 20.
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for the ordinary rotation. Of course also in this case the figure

remains congruent to itself.

12. We can now put the question: what will be the final result

of the successive reflections of a figure in three arbitrarily situated

mirror-planes? Here also only the result of their combined action is

investigated. Let the three planes be S1} S2 and S3 . We will now

turn the planes S1 and S2 at the same time around their line of

intersection in the way mentioned before, until S2 passes through Z,

being a perpendicular to S3 . The successive reflections at Slt S2 ,
and S3

are now substituted by their equivalents in S\, S'2 ,
and S3 ,

the

plane S'2 being thus perpendicular to 53 . Now in the same way we

can turn the planes S'2 and 53 simultaneously round their inter-

section (their enclosed angle (= 90) of course being kept unaltered),

until at last S3 passes through the perpendicular to S\ . The whole

series of original reflections in Slt S2 ,
and S3 ,

is thus substituted

by such in .S\, S"2 ,
and S'3 ,

of which S'3 is perpendicular to S\
as well as to S"2 .

But the reflections at Sl and S"2 being both perpendicular to

S'3 ,
can be substituted by a rotation around their line of intersection

L, this of course being a perpendicular to S'3 . The whole series of

operations thus appears to be equivalent to a rotation around an

axis L, combined with a reflection in a plane S'3 perpendicular

to it; of course the figure F is transformed by this into its mirror-

image F'.

We can therefore say in general
l

)
: The result of the successive

reflections of a figure F in three arbitrarily situated planes not acting

independently of e.ach other, is equivalent to a certain rotation round an

axis, combined with a reflection in a plane perpendicular to that axis,

their point of intersection being the common point of the three planes.

The figure F is changed thereby into its mirror-image F'.

This resulting operation is evidently equivalent to what we have

previously called a rotation round an axis of the second order.

13. It will be easily seen that the successive reflections at n

planes can always be reduced to one of the two preceding cases, ac-

cording as n is an even or an odd number. For if n is odd, it may be

reduced to the reflections in three planes; and if n is even, to such

in four planes. If n is odd, the figure F is finally changed into its

mirror-image F'
, while if n is even, F always remains congruent with

C. Viola, Zeits. f. Kryst. 26. 519. (1895).
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itself at the end. The reduction to the two cases described in the

above, takes place by turning every two new planes simultaneously,

until they pass through the point of intersection of the first three

planes; etc.

In considering this, the truth of our previous statement is evident,

that the general characteristic symmetrical operation of the first order

is the rotation round an ordinary axis or round a screw-axis, and that

of the second order is the rotation round a mirror-axis, (p. 20).

14. From these deductions it will now be clear that all theo-

rems concerning motions in space, as described by translations,

rotations and helicoidal motions, may be reduced to a combination

of successive reflections in two, three, or four not independently

acting, and therefore partially virtual mirror-planes. And by the

principle of simultaneously turning every pair of intersecting

mirror-planes, with their angle of intersection kept unaltered, through
an arbitrary angle round their line of intersection, we can find

without much trouble the resulting motion of a stereometrical

system, if the composing operations are given.

Indeed all theorems of the doctrine of symmetry may therefore be

exactly demonstrated in this way, as was indicated by Boldyrew
in the paper already referred to. Hence a figure arbitrarily situated

in space can always be made to coincide completely with a figure

congruent with the first by a certain combination of successive

reflections in no more than three mirror-planes which do not act

independently from each other, nor pass through the same straight

line. C. Viola 1
)
and G. Wulff 2

) have made use of this property
to give a systematical deduction of the 32 possible crystal-classes.

The rotation round an axis of the first order is in this case

always the result of successive reflections in two existent or

virtual 3
) intersecting mirror-planes; the rotation round an axis

of the second order is described as the action of three successive

reflections in planes passing through one point 0, and of which

one is perpendicular to both the others. We can express this

result by saying that all finite symmetrical figures may be con-

sidered as being "kaleidoscope"-figures. However from the teacher's

point of view, the method proposed by Viola and Wullf, elegant

!) C. Viola, Neues Jahrbuchf. Miner. Geol., und Pal., Beil. Band 10. 507. (1896).
2
)

G. Wulff, Zeits. f. Kryst. u. Miner. 27. 556. (1896).
3

)
Indeed "virtual" planes of reflection, as they are not acting independently

from each other, but only the "final effect" of their cooperation is considered
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as it is, has some disadvantages in so far, that in such figures as

differ from their mirror-images, such reflections can only have a

virtual significance, these figures of course possessing no real plane

of symmetry.
This fact may cause some confusion, especially to students to

whom these reasonings are new. But as a mere mathematical method,

the conception mentioned may be of general use; and it is of

importance to recognise this fact when special theorems relating

to the general symmetry of stereometrical figures have to be

strictly demonstrated.

In the next chapters we shall now proceed to the final deduction

of all the possible combinations of symmetry-elements, and to a

rational classification of them for the purpose of morphological

description in general.

here. Therefore in the case where an axis of the first order is replaced by
two intersecting mirror-planes including an angle a, only half the number of

points produced by the successive reflections must be taken into account; and

where the axis of the second order is replaced by the cooperation of three

mirrors, the third of which is perpendicular to both the others, only a fourth

of the points produced by the reflections must be considered in these deduc-

tions. Wulff therefore distinguishes the action of such combined mirrors as

hemi-, resp. tetarto-symmetry. We shall call the mirror-planes real planes of

symmetry, if all points produced in the successive reflections are taken into

account; in all other cases the reflecting planes have only virtual significance for the

symmetry of the figure considered.



CHAPTER III.

Equivalent and Non-equivalent Operations. Definition of Group.
The Problem of the possible Classes of Symmetry as a Problem of

the Theory of Groups. The Axial Groups. Some general Theorems.

Cyclic, Dihedral and Endospherical Groups.
-- Symmetry-Centre

and Enantiomorphism.

1. In this and the next chapter it is proposed to investigate

what combinations of symmetry-properties are possible in the case

of finite figures and objects, and in what way the various types of

symmetrical figures can be classified. Attention was drawn in the

previous chapter to the important fact, that not every combination

of symmetry-properties can exist, because the simultaneously existent

symmetry-properties of a certain figure are always connected by

special relations which allow of a mathematical treatment of the

problem considered. With reference to the previous chapters, the

reader will remember what has been said about the equivalence of

symmetrical operations. In the same sense we shall speak in future of

equivalent operations, as being those that bring a figure from its origi-

nal position into the same final position. Thus e. g. if a regular hexa-

gonal pyramid be rotated about its vertical axis through an angle of

60, it will coincide with itself, because it now occupies the same part
of space as before

;
but notwithstanding this, its new position is diffe-

rent from its initial one, and the same is the case if rotations around

the same axis are executed through angles of 1 20, 1 80, 240, and 300

If rotated through 360, the figure arrives, however, in the same posi-

tion in which it was originally. All these rotations except the last ones,

therefore, are non-equivalent motions, quite independent of the fact,

that by each of them the pyramid will be brought to self-coincidence.

If a symmetrical figure possesses an axis of the first order with

3
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r\

a period: a = ,
it possesses evidently n such non-equivalent ro-

tations. For the whole series of rotations: A (#), A(2a), A (3#). . . .

A(no) corresponds to a series of successive positions Sj, S2 ,
Sn

which are all different from each other, Sn being finally identical

with the initial position S .

Now these n non-equivalent rotations are connected with each

other in a particular way. For if we take any two of them at random,
and if we perform these rotations successively, the result will be

a third rotation which, however, appears to be equivalent to one or

other contained in the series of n terms. Thus for instance the combi-

nation of A(ja) and A[(n 5)^], will equal the rotations A[(n 2)0,]

or A[(n 8)oi\,
which are included in the series mentioned above;

if we take A(6x) and A[(n i)oi\,
the resulting rotations will be

A[(n /)#] or A[(n + 5)^], i. e. = A(^), both of these being also

included in the same series, etc. Looked at from this standpoint,

we can say that this series of n non-equivalent rotations represents

in a certain sense a closed system of rotations.

Such a closed system of quantities which are different from each

other, but of which each two are together equivalent to some other

term of the system, is called a group of quantities. The n non-equi-

valent rotations corresponding to an axis of symmetry with a period
r\

ex,
=

, therefore, form an instance of this kind: they represent

a finite group of rotations.

That the symmetry-properties of each figure now really represent

a system of things forming a closed group of this kind, will be at once

clear when the two facts mentioned in the last chapter are remem-

bered : viz : i) that every two symmetry-properties of a figure when

combined, always necessitate the existence of a third one equivalent

to the two combined
;
and 2) that the symmetry of a figure is abso-

lutely known when all its non-equivalent symmetry-properties are

known. Finite figures are characterised by a limited number of non-

equivalent symmetry-properties ;
and the problem of finding all pos-

sible combinations of symmetry-properties of finite figures, is that of

finding out all finite groups of these properties. The latter being deter-

mined by the corresponding rotations round axes of the first or of the

second order, the problem to be solved can be described as that of deter-

mining all finite groups of rotations of the first and the second order.

2. In this chapter we shall only deal with the relatively simple
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cases in which the symmetry of the figures considered is charac-

terised by the mere

existence of axes of

symmetry of the

first order, i. e. by

_j^ mere rotations. Such

figures and objects

therefore must al-

ways be different

from their mirror-

images', as we shall

see later, this kind

Fig. 21.

d-Camphor-oxime.

of symmetry plays an important role in many phenomena observed

in the domain of chemical and physical sciences.

I. The simplest cases are obviously those
r\

where only one axis of the period
- - exists.

The corresponding symmetry-groups contain n

non-equivalent rotations,

as mentioned before. We
shall call them cyclic

groups, and indicate them

by the symbol Cn ,
where

n may have any value

from i to oo .

l
)

Fig. 22.

Sodium-periodate.

Fig. 23.

Wulfenite.

As instances of symmetrical figures and objects of this kind, in

fig. 21, 22, and 23, the crystalforms of optically

active camphor-oxime: C10H1&NOH, of sodium-

periodate: NaJO^ -\- jH20, and of wulfenite:

PbMoO^ are reproduced; the values of n are

here 2, 3, and
4. respectively, and the axes are

all placed vertically, with the exception of that

of camphor-oxime, thisbeing inhorizontal position.

Many parts of plants and animals possess
this cyclic symmetry, as fig. 24. to 26 con-

vincingly show, where the blossom-diagrams of

Paris quadrifolia (fig. 24.',
C4),

2
)
the fruits of Chlamydia tenacissima

(fig. 25', C3) and of Helicteres baruensis (fig. 24', C5) are reproduced,
1
) For n = oo we have, properly speaking, no longer a finite group of rotations.

This case will therefore be considered more in detail later on.
2

)
The ternary symmetry is generally found in Monocotyledons, and Parts

Fig. 24.

Blossomdiagram of

Paris quadrifolia.
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Fig. 26.

Fruit of

Helicteres baruensis.

and in fig. 25 a part of a Medusa: Aurelia insulinda (Haeckel),

seen from below, and showing
the symmetry of group C4 .

Most remarkable in this

respect is the egg-cleavage of

the hemimorphic cells in the

parthenogonidium of Volvox

globator
l
), which originally

shows the symmetry C V
4 ,

but

which already in the second

stage changes to C 4 ,
and thus

remains till the end. The

structure of these individuals

rotating to the right, is dex-

trogyratory, and doubtless

there must be a relation

between both phenomena. It

were of interest to find a laevogyratory speci-

CMamydia tenadssima. men of this interesting protist, which therefore

probably at the same time would appear to

rotate in an opposite direction

during its motion.

As further instances the blossom-

diagrams of Triphasia trijoliata(C3),

of Polemonium coeruleum (C5), of

Hydrophyllum virginianum (C 5) ,
and

perhaps of Roxburghia gloriosoides

(C2), might be mentioned.

If n = 1
,
the stereometrical figure

has no symmetry at all; thus all

asymmetric objects belong to this

group Q. As examples of natural

objects of this kind, we may mention

the blossoms of Canna Sellowiana,

Fig. 25.

Fruit of

Fig. 27.

Auvelia insulinda.

quadrifolia, whose quaternary symmetry is present both in the blossom and in

the phyllotaxis of the plant (Cf. : J. Sachs, Vorlesungen iiber Pflanzen-physiologie,

p. 600, Fig. 331), is a rare exception to this rule. On the other hand, the

five-fold symmetry seems to be most general for Dicotyledons; sometimes also

the four-fold symmetry appears to be of importance in this case.

!) H. C. Delsman, Proceed. Kon. Acad. v. Wet. Amsterdam, 21. 243. (1918).
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of Valeriana, of Centranthus, etc.; and some crystals, as e.g. those of

potassium-bichromate : K2Cr2O7 ,
of sirontium-hydrotartrate : Sr (C47/5 6) 2

+ 4H20, of calcium-thiosulphate: CaS2 3 + 6 H2 (fig. 28), etc.

3. As to the special external aspect of all such symmetrical ob-

jects, we draw attention to the fact that

in general one end of the symmetry-axis

always shows a development of the

symmetrically arranged parts, which

is different from that at the other end

of the axis. This phenomenon can, in

accordance with the same phenomenon
often observed in crystallography, be

named hemimorphy. Generally speaking,

we can say that all objects possessing

a cyclic symmetry Cn ,
have hemimorphic

Calcium-thiosulphate (-f 6//20) .

In fig. 29 an imaginary fruitform

is represented, which may serve to give some impression of vegetable

objects which perhaps may possess the symmetry of

one of the groups , namely that of C6 .

]

)

It is evident tha
t^allej

these objects must differ from

their mirror-images; if the figures here reproduced,
are reflected in a mirror, this fact will be recognised
at once 2

). In most cases only one of the two possible

forms is found in nature
; why the other is not produced,

can hardly be explained. With the problems relating

to this, we shall deal more in detail later on.

4. II. We shall now proceed to the cases where several axes

1
) The symbols for these and the following groups are very convenient in

morphology for the purpose of description. They are partly analogous to

those of Schoenflies, partly analogous to those of P. Saurel, Zeits. fur

Kryst. 50. 1. (1911).
2
)

It is a very remarkable fact that in several of the very ancient and

universally used religious symbols of many peoples, this axial symmetry is also

distinctly and preferentially

expressed. So in the so-called

fylfot-symbols, mystic emblems

of doubtful significance, of

which an Arabian, Hindu, and

Scandinavian form are reproduced here; and also in a Japanese symbol- for

"good luck". The symmetry indicated as C and C
3

is easily recognisable in

these widely spread symbols.

Fig. 29.



38

are simultaneously present, and begin with the simplest case of this

kind, i. e. when two binary axes L
2 and L

2
intersect in the geome-

trical centre O of the figure (fig. jo) at an angle 0. In fig. 30 the

axes L
2
and L

2
are situated in the plane of the drawing ;

ON
may be the perpendicular to this plane in O. Because L

2 is a

binary axis (#
= 180), a rotation round L 2 will simply interchange

both ends of the line ON, its

lower and upper parts being

reversed by it. If now a rota-

tion round L
2
occurs through

180, both ends of ON will

interchange once more, ON
therefore returning finally to

its initial position. Thus ON
must be itself an axis of rota-

tion, characteristic as a sym-

metry-element of the figure

considered. Its typical angle

of rotation a can be easily

found. For if OZ be a straight line of the figure situated in the

plane (L 2OL 2), this line will reach the position OZ' by the rotation

round OL2 ,
and OZ" by the rotation round OL2 ;

it has thus changed

from OZ to OZ", the angle ZOZ" being equal to 20. Since

the same transition would nv%/5
occur if the figure were rotated

round the axis of symmetry .

\)[ b

ON through its characteristic

angle a, this angle must be
a

equal to 20 also. We can

therefore conclude from this :

a|

// a finite symmetrical figure

possesses two binary axes inclu-

ding an angle 0, it possesses

also an axis of symmetry with \b,

the characteristic angle 20,

perpendicular to the plane of

the binary axes.
Fig 31

However, we can go yet

farther. For it must be evident that if a figure F has a system

of symmetry-axes, every characteristic rotation round one of these
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axes must not only bring the figure F into coincidence with itself,

but also the whole system of axes. If this were not the case, the

group of symmetry-properties could not be a finite group. If now

we make the characteristic rotations round ON, it is clear that we

shall find in the plane (L 2OL 2)
several more binary axes, making

r\

with each other angles of 2$, where 20 = ,
m being the integer

indicating the period of the axis ON.

In the same way we shall see that there are two sets of such binary

axes: one corresponding to OL2 ,
the other to OL'2 ,

the last

axes being the bisectors of the angle between every two successive

axes of the first set, etc. The truth of this can easily be seen from

figure 3 1
,
where m = 4 : by

turning it round the perpen-

dicular to the plane of the

drawing N, it will be clear

that only the axes a
lNa{

and a2Na2
will coincide, and

in the same way b Nb{ and

b
2
Nb2 . Here, moreover, it

appears that both ends of

every axis may coincide with

both ends of the other axis

of the same set: thus e. g.

Nal with Na2 , Na{ with Fig. 32.

Na
2 ,

etc.

If, however, the number m characteristic for the axis perpendicular

to the plane of the drawing, is not an even, but an odd number,

only one end of each axis will coincide with one end of each of the

other ones: thus in fig. 32, where m = j, Nal with Na2 and Na3 ,

but Na( only with Na2
and Na'3 successively. This is often expressed

by saying that in the last case the binary axes are heteropolar,

although they all belong to one set, in contrast with the case first

mentioned. There they were homopolar, the binary axes belonging at

the same time to two different sets.

The principal axis ON must of course be always homopolar, because

binary axes perpendicular to it are present.

Reviewing the results obtained so far in the cases considered,

we may conclude as follows:

There are groups of symmetry, characterised by a principal ho-
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B'
T80

Aiao

180

t80 '

180"

C
Fig. 33.

r\

mopolar axis ON, with a period ,

- - n being 2 or greater than
n

2, and by n binary axes situated in a plane perpendicular to ON
7T

and intersecting at angles of .

These binary axes are homopolar,

but belong alternately to two diffe-

rent sets if n is an even number
;

and the axes are equivalent but

heteropolar if n is an odd num-

ber. The corresponding groups are

named dihedron-groups, and they

will in future generally be denoted

by the symbol Dn .

5. With respect to these

dihedron-groups Dn ,
it will be

remembered that n can also have

the value 2. In this special case we have to deal with figures

which have three binary axes of three different kinds, and which

are all perpendicular to each other. Figure 33
will make this clear; obviously every-one
of the three axes will coincide only with

itself if the symme-
trical figure be sub-

jected to its charac-

teristic motions.

In fig. 34 and 35
two polyhedra with

the symmetry of the

groups >
3 and Z)6

respectively, are re-

produced as illustra-

tions of figures of

thiskind.The binary
axes are indicated, p

.

and it is easily Seen Hexagonal trapezohedron.
Trigonal trapezohedron. from ^ ^ and jj-,

that in the case of D3 both ends of these binary axes are

non-equivalent, while in the case of D 6 they are equivalent, but

three of them have a function different from the three alter-
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nating ones. Moreover, to every face Z there corresponds an equivalent

face Z', as a consequence of the existence of the binary axis, both

faces forming together a "dihedron". It is because of this peculia-

rity of the polyhedra of this kind, that the groups themselves received

the name of dihedron-groups. Polyhedra of this symmetry are limited

by irregular four-sided faces, and they are therefore commonly
called trapezohedra. The figures j^ and 75 are instances

of such trigonal and hexagonal trapezohedra; but of

course an infinite number of types of these

polyhedra are possible, n having any one

of the values from 2 to oo.

In nature there will perhaps be objects

having the symmetry of the groups Dn .

Up till now, however, the existence of no

example of this kind has been proved with

certainty; hence in fig. 36 and 77 some Flg-

'fruits" have been reproduced, in order to make clear

what they would look like ; the symmetry of them is D3 and D 6

respectively. The principal difference from the case of the cyclic

groups consists in the fact that the principal axis ON is no longer

heteropolar, as was the case in the cyclic symmetry with its hemi-

Fig. 36,

imaginary

Fig. 38. Fig. 39.

morphic development of forms. Therefore this hemimorphic form

is no longer observable here. In fig. 38, jp, and 40, three sections

perpendicular to the principal axis of such fruits, having the symme-
try Z)3 ,

D 5 and Z)6 are drawn : here also the difference in the function

of the binary axes for both cases, when n is odd or is even, is once

more clearly demonstrated. As instances of objects having the

symmetry Dn , attention may be drawn to the propellers, such as

are used in aeroplanes, steamers, and in the laboratory as apparatus
for the stirring of liquids. In fig. 41 such a propeller, used as a stirrer

in a thermostate, is shown in elevation; its symmetry is evidently Z)4 .
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In these cases too it is obvious that all objects and figures,

having this particular kind of symmetry, may take a second form

which is the mirror-image of the other. In the case of our stirrer,

the one would correspond to a

right-handed, the other to a left-

handed screw.

6. III. So far we have considered

those figures which have one axis
r\

of the period ,
or such as possess

Fig. 41.

Propeller.

two or more binary axes. The

only case yet remaining is there-

fore that, where the figure has

more than one axis with a period-

number higher than 2. If this

case is treated in the most general

way, we can be sure that no other

types of symmetry-groups only

having rotations round axes of the first order, are omitted, and

that, therefore, the question of the possible groups of this kind has

been finally and exhaustively settled.

Let us suppose that a figure possesses rotations round an axis A

of the period ,
and also such round an axis B of the period . Re-

membering our previous conclusion, that by the characteristic motions

of the figure, it itself as well as its R ,

whole system of axes must be made 5

to coincide with itself, it follows

necessarily from this, that round A
there must be a number of n axes

B equivalent to each other, and in

the same way round B a number of

p axes A
,
all again of the same kind.

If a sphere with radius r be con-

structed round the fixed geometrical

centre of the figure, the points of

intersection of all these axes B will

be situated in the corners of a regular polygon with n sides,

and those of the axes A in the corners of a regular polygon

with p sides. As the whole system of axes must include a finite

-pig. 42.
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number of them, it is evident that all these points must be

distributed over the whole surface of the sphere in such a way that

all these polygons are arranged as the faces of a regular polyhedron
inscribed in the sphere,

- - the regular polyhedron formed by
all the points A being the polar figure of the regular polyhedron
formed by all points B as corners, and conversely. Now it is well-

known, that there are only five possible regular, endospherical poly-

hedra 1
)

: the tetrahedron, the cube, the octahedron, the dodecahedron,

and the icosahedron, these being the so-called "platonic" regular

polyhedra. Indeed, these polyhedra represent together three pairs

of polar figures; for the cube and the octahedron, and also the pen-

tagonal dodecahedron and the icosahedron, are pairwise polar forms

of each other, while the tetrahedron has itself as polar figure. In

jig. 42, A is a ternary axis
;
the three axes B may be quinary ones

; etc.

Thus it follows from this, that

because every pair of polyhedra

corresponds to the same system
of axes (A and B being simply

interchanged), there are only
three new symmetry-groups of this

kind possible, namely those cor-

responding to the directions of

the straight lines which in the

tetrahedron, in the cube, and in

the pentagonal dodecahedron join

the geometrical centre of each

with its corners, and with the

centres of the limiting polygons. We shall call the groups men-

tioned, in consequence of their relations to the endospherical

polyhedra, the tetrahedron-group T, the cube-group K, and the

pentagonal dodecahedron-group P. Of course the octahedron and

the icosahedron might be chosen for this purpose as well; the

choice made is quite arbitrary and of no interest, because the

result is always the same.

7. Before reviewing the corresponding symmetry-elements of

these three groups, it appears advisable first to consider another
2?r 2;r

general property of systems with several axes of the periods and .

2fl-
n p

Let ON (fig. 43) be an axis of the period ,
and OP another with

n
l
) As to the case of = oo

,
we may refer to our previous remark (p. 35).



44

r\

the period . By rotating the figure round ON through its charac-

teristic angle, ON remains unchanged in space, but OP coincides

with an equivalent axis OP'.

180 ^ "~"~^7 If now the figure is turned

round OP, ON will coincide

with a similar axis ON'. The

successive rotations round ON
and OP have therefore the final

effect that ON coincides with

ON' and OP with OP'. Ob-

viously this result could also

have been obtained, if the

figure were turned round an

axis OS through 180; S is the

point of intersection of two great circles joining N and N', and P
and P', on a sphere whose centre is at 0.

We can from this draw the general conclusion:
O O

// axes of period
- - and are simultaneously present, there exist

also binary axes, bisecting the angle between two axes of the same period.

The theorem is quite general and

holds good also of the three regular <,

polyhedra mentioned above.

8. Reviewing the special sym-

metry of the three endospherical

groups, we may summarise our results

as follows:

a. There are figures which have

the symmetry of the group T, including '80

three homopolar binary axes perpen-

dicular to each other, and having the

directions of the lines joining the

middles of every two opposite edges of

a regular tetrahedron', and four heteropolar ternary axes, having the

direction of the four perpendiculars erected in the centres of each

tetrahedron-face (fig. 44).

b. There are figures having the symmetry of the group K,

including three perpendicular, homopolar, quaternary axes, having

the direction of the perpendiculars in the centre of each cube-face',

moreover, four homopolar ternary axes having the direction of the

180
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cube-diagonals', and six homopolar binary axes having the same

direction as the lines joining the middles of every two opposite

edges of the cube (jig. p).

c. There are figures possessing the symmetry of a group P, including

six quinary axes having the directions of the perpendiculars in the

centre of each face of a regular pentagonal dodecahedron
;
ten ternary axes

having the directions of the lines joining every two most distant corners of

it\ and fifteen binary axes having the directions of the lines joining the

middles of every two opposite edges ;
all these axes are homopolar (fig. 4.5).

9. Finally it may be remarked that there exists an important
theorem dealing with the number of non-equivalent characteristic

operations, making all symmetrical figures of these groups coin-

cide with themselves. For the group T this number is evidently:

1+3+4x2 12
;
for the group K: 1+3x3+4x2 + =24;

for the group P: 1 + 6 x 4 + 10 x 2 + 15 = 60; the rotation

through 360 is of course only counted once here.

Now the number of these non-equivalent operations is in every
case=2x, where x indicates the number of the edges of the tetrahe-

dron, cube, or pentagonal dodecahedron respectively.

Indeed it appears to be a general property of each regular polyhedron

with x edges, that it can be brought to self-coincidence in 2x different ways.
This theorem is easily and quite generally demonstrable. It is

connected with the simple fact that every edge AB, by interchange,

can be placed so that its end A coincides with A or with B of any
other edge present.

10. Figures and objects of this kind are represented in fig. 46,

and ^7. They relate to the crystalforms of a
barium-nitrate: Ba(N03)2 ,

and oi cuprite:

Cu20, from

Cornwall, as

illustrations of

the symmetry
of the groups
T and K re-

spectively.

The symmetry
of the group P
is not possible

in the province

Fig. 46.

Barium-nitrate.

Fig. 47.

Cuprite. (Cornwall).

of crystalline matter, for a reason to be explained later on. Of course it
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needs no detailed discussion to see, that every figure of this kind may
also exist in a second form which is the mirror-image of the other one.

In the domain of living objects, a number of highly remarkable

Fig. 48.

Circoporus octahedrus.

Fig. 49.

Circorhegma dodecahedra.

instances of all three groups T, K, and P are known. Indeed, there is

nothing to prevent the occurrence of the symmetry of groupP in living

nature, as there is in the case of crystalline matter. On the contrary,

it seems that living objects show a certain preference for symmetry-

axes of a period of .

. As interesting examples of this

kind, we may mention the splen-

did forms of some Radiolaries

(Phaeodaria) : of Circoporus octa-

hedrus (fig. </<?),
of Circorhegma

dodecahedra (fig. 49), and of

Circogonia icosahedra (fig. 50),

all according to Haeckel's origi-

nal descriptions. They are very

striking instances of the sym-

metry of the groups K and P

respectively, and these animals

manifest in a most convincing

way their morphological relations to the regular endospherical

polyhedra, and more especially to the octahedron, the pentagonal

dodecahedron, and the icosahedron.

Fig. 50.

Circogonia icosahedra.
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As further instances of the group K we may mention from the

same family of creatures: Actinomma drymodes, and Asteracan-

thion, after Haeckel's descriptions; of the group P: Aulosphaera
icosahedra in its youthforms; etc.

In the vegetable world a certain number of pollen-cells seem to

belong to these symmetry-classes: to group T those of Corydalis

sempervirens] and

to group P the

pollen-cells of

Buchholzia mari-

tima, Fumaria

spicata, Polygo-
num amphibium,
Rivina brasilien-

sis, Bannisteria

versicolor, etc.The

number of these

examples can

certainly be aug-

mented. Some of

these pollen-cells

are reproduced in

Fig. 51.

Pollen-cells of

Dianthus Cartusianorum
(

1
). Luzula campestris (

4
)

/*& 5* Circaea alpina (

2
). Mastixea arborea (i)

11. As has Rivina humilis L.
(

3
).

been repeatedly

stated, all forms and objects which show the symmetry of any
of these -groups possessing only axes of the first order, are diffe-

rent from their mirror-

images. Of course all these

stereometrical figures and

objects lack an inversion-

centre, or, as is commonly
said, they do not possess a

"symmetry-centre"
x
). This

is a fact of importanceFig. 52.

Right-, and left-handed

deltoid-dodecahedron.

with respect to some phy-
sical properties, e. g., in

x
)

It may be remarked that the reverse of this conclusion is not generally
true: from the absence of a symmetry-centre, enantiomorphism does not

follow necessarily.
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the case of crystals, as will be demonstrated more in detail later on.

The fact of the occurrence of two different forms for every symme-
trical object of this kind, which forms are related to each other as

mirror-images, is known as enantiomorphism ;
and the two possible

forms are called enantiomorphous with respect to each other.

The phenomenon of enantiomorphism and of enantiomorphous

arrangements in space, is one of the most important facts in the

whole domain of physical and chemical research, as we shall after-

wards show in detail. Fig. 52 relates to eventually occurring

crystalforms in chemical substances, as an illustration of two

enantiomorphous polyhedra.

12. With the aid of the devices employed in this chapter,

we have succeeded in finding out all possible types of symmetrical

groups of the first order; i. e. of all symmetrical figures which can

be made to coincide with themselves by rotations alone.

We can now use these groups, as we shall see, as a basis for the

deduction of all those other groups, which possess also symmetry-

properties of the second order. This will be shown more exactly

in the following chapter.



CHAPTER IV.

Some general Remarks on Axes of the Second Order. Relations

between Groups of the Second order and those dealt with in the previous

Chapter. General Theorems concerning Groups of the Second Order.

Deduction of all possible Groups of this kind. Summary.

1. We have now to consider such figures as have symmetry-

properties of the second order as well as those of the first. For we

have already seen that the existence of symmetry-properties of

the second order necessitates also the coexistence of those of the

first, unless the figure has only a single axis of the second order.

This follows from the simple fact that every combination of two

symmetrical operations of the second order is always equivalent
to some rotation.

Besides of this conclusion, we shall later also make use of the

fact already stated, that in many cases a mirror-axis may be

replaced by a suitable combination of an axis of the first order

with an inversion-centre or a plane of reflection.

Of course the most simple instances of groups of the second order

will be those which are completely analogous to the cyclic groups
in the previous chapter, but in this case having a single mirror-

axis of the period . We shall call them cyclic groups of the second

order, and give them the symbol Cn ,
the horizontal line above

the C indicating that the unique characteristic axis is now one

of the second order. Before describing their general character, it

will seem appropriate to extend our former considerations regarding
the axes of the second order (see p. 23 to 25) to every arbitrary
value of the period-number n.

2. Let A n be an axis of the second order with a period
-

,

n

4
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If we remember its true characteristic operation, and the fact that

two successive reflections in the same plane always neutralise each

other, it must be immediately evident, that in the series of non-

equivalent operations: A(&), A(2a), A(ja).... etc., only 14
(<*),

A(3a), A(jtx). . . . etc., can be true operations of the second order,

transforming the symmetrical figure F into its mirror-image F''.

The others: Z(<?#), A~(4&), ~A(6u) etc
,
will be simple rotations

round the axis A n , through angles 20,, 4%, etc.; that their number is

evidently the same as that of the former ones, if n be an even

number, needs no further comment.

From this consideration it is at once evident that there must

be a difference between the cases when n is an odd, and when it is

an even number. For if n is an odd number, the operation A(not) will

be equivalent to a mere reflection of the original figure in a plane

perpendicular to A n ,
because not = 360, and the figure is trans-

formed by this odd number of operations of the second order into its

mirror-image. The operation A [(n + 1)^], therefore, will be equivalent

to a pure rotation of the initial figure, and thus will not be

comparable with any of the operations among the n first terms

of the series. It follows from this, that if n is an odd number,

there are in the whole series 2n non-equivalent operations present,

of which n are mere rotations, and n true operations of the second

order. Among these last ones there is a pure reflection (namely

~A(nofy\ and in consequence of a general theorem which will be

discussed in 3, the symmetry of the whole group may be defined

also as the combination of certain rotations with reflections in a

plane perpendicular to the axis A n .

If, however, n be an even number, we may at once conclude from the

presence of the axis A n ,
that there are only n non-equivalent ope-

rations in the complete series. Half of them are rotations, and the

other half are true, non-equivalent operations of the second order.

It is also obvious that there is now no pure reflection present

among the last ones; but two different cases must be distinguished

/yj

here, may be an odd or an even number.

If n is even, but odd, evidently the term of the series A I-a
J

will be a pure inversion, because it corresponds to the combination

of the rotation through an angle
- = 180, with a reflection in a

plane perpendicular to it; and as we have seen in the theorem on
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page 16, this combination is always equivalent to an inversion. As a

consequence of the same general theorem in 3 mentioned above,

we shall see that the symmetry of the whole group may, therefore,

be also described in this case as the combination of an axis of the

4?r
first order An ,

with a period of
,
and a symmetry-centre.

Y n

The special example of n 6 in Chapter // was an illustra-

tion of this.

But if - be itself an even number, (i. e. if n itself is divisible by
2

__ /^ .

four), the term A f

-<*)
is now equivalent to a simple rotation round

the axis A n through an angle of 180. Now, as there is present among
the operations of the group neither a pure reflection nor an

inversion, the axis of the second order A n can in this case not be

replaced by any combination of other symmetry-elements.
Some simple instances may make these facts more evident. If

n = 4, we have the four non-equivalent operations: A(po), A(i8o),

^(270), and A(j6o). From these the second and the fourth are equi-

valent to pure rotations through 1 80 and 360 respectively, because

the figure is brought into positions, in which it is congruent with

itself. But A(po) and ~A(2?o) are true rotations round a mirror-

axis. None of those four operations, however, is either a pure reflection

or an inversion, and therefore the symmetry of the figure cannot

be described in this case as a combination of an axis A z or A
with some symmetry-element of the second order. If n = j, there

are six non-equivalent operations: A(i2o), A(2^.o) t A(j6o),

A(4&o), A(6oo), and ^(720). From these the first, third, and

fifth operations are true operations of the second order; but A(24O)

~A(4.8o), and ~A(?2o) are mere rotations round an axis A 3 through

angles of 240, 120, and 360 respectively. Among the three opera-

tions first mentioned, A(j6o) is evidently equal to a pure reflection

in a plane perpendicular to A 3 . The whole symmetry of this group
can therefore, according to the theorem dealt with in 3 below, be

described as the combination of a ternary axis A 3 and a plane of sym-

metry perpendicular to it. Evidently in the complete discussion

of each case not only the angle of rotation must be taken into

account, but also the special place which the operation considered

occupies among the complete set of successive operations of the

series: those with even number of succession are always pure

rotations.
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It may also become clear from these instances, that the total number

of non-equivalent operations of the second order which are present

in such a group is always the same as the number of rotations which

it contains, the last ones always forming a closed group of rotations

themselves, in the sense in which the word "group" was defined in

the previous chapter. This follows from the simple observation,

that every two operations of the second order are together equi-

valent to some rotation which belongs to the characteristic ones

of the group. The number of the operations of the second order

which are non-equivalent, can, therefore, be neither greater nor

smaller than the number of non-equivalent rotations, and thus

must be equal to it. That these rotations themselves, moreover, form

a closed group if the system be a finite one, is so obvious after all

that has been said, that it needs no further comment.

It will also be evident that the whole system of axes and symmetry-

planes of the group will be brought to coincidence with itself by the

action of every operation of the group, whether of the first or of the

second order.

3. We can draw from all this a very important conclusion.

Let Q be an arbitrary operation of the second order, characteristic

for the group considered; ^4(#), ^A(pot), etc., may be its non-equi-

valent rotations. If we combine all those rotations successively

with Q, we shall obtain an equal number of non-equivalent operations

of the second order, and as they will bring the whole system of sym-

metry-elements to self-coincidence, they will really, together with

the equal number of rotations, constitute the complete group of

the second order. If instead of Q we had chosen another operation

of the second order characteristic of the group, the result would

have been precisely the same
;
the only difference would lie in the

succession of the non-equivalent operations of the second order,

as it would result from the second mode of combination.

It follows from this : that we can derive every group of the second

order from one of the first order, by simply combining each of its

typical non-equivalent rotations successively with one and the same

characteristic operation of the second order Q.

By this theorem the way is indicated, by which we may come to

the complete deduction of all possible symmetry-groups of the second

order, starting from those which we met with in the preceding chapter.

We already mentioned this theorem in the beginning of this chapter,

and we shall also make frequent use of it later on.
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4. The question may suggest itself: how can we be sure

that the results will be different if we combine a certain group
of the first order G with an operation of the second order Qlt

and at another time with another operation of this kind (X>?

Or in other words: when will the resulting groups of the second

order G1
and G2 be different and when identical?

The answer is given by a general theorem which can without diffi-

culty be proved to hold good in all cases : In combining a group of the

first order G with two different operations Qly and Q2 of the second

order, G1
and G2 will be identical if the rotation which would be the

result of combining Q^ and Q2 together, be already present among the

characteristic non-equivalent rotations of the initial group G] otherwise

G1
and G2 will be really different from each other. J

)

The significance of this theorem will at once be apparent, because

it gives a very simple criterion, whether, starting from a certain

rotatory group G, we must expect to find a new symmetry-group
or a derived group identical with one already found on a former

occasion.

5. Now that these general theorems are established, we can

resume our study of the groups Cn again. From what precedes, we

may now readily conclude that:

a. If n be an odd number, the symmetry of the group Cn may be

also described as resulting from the existence of an axis of the first

order A n with the same period as A n ,
combined with a plane of

symmetry perpendicular to A n .

b. If n be an even number, but odd, the symmetry of the group

J
)

The demonstration of this theorem can be given quite simply if we

apply the method of Schoenflies, who, following Jordan, Minnigerode
and others, made use of the idea of the "multiplication of operations", after

certain symbols for such operations are introduced, as they are used in the

theory of groups.

Let Qj and Q2
be the operations of the second order to be considered, e. g. inver-

sions or reflections. The "product" Q^ . Q2
is now of course equivalent to a

rotation A. Let us suppose it to be a rotation already present among those of
A

group G. If we multiply the equation Q1
. Q2

= A by Qv then since
>i

means the identity, the result is: Qz AQr But AQl
is an operation of the

second order belonging to the new group Gj, obtained from G by combination

with Qjj thus the equation: Qz
= AQl simply expresses that Q2 is also an

operation of the second order characteristic of Gj. But if so, Gj would also

have been obtained if G were combined immediately with Q^t
instead of

with Qjj i.e.: Gj and G
2
are identical.
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may also be represented as resulting from the existence of an axis of the

n
first order A n with a period-number ,

combined with a symmetry-centre.
~2

2

c. If, however, n and are both even numbers, the axis A n cannot be

replaced by any other symmetry-element, or by any combination of them.

As illustrations of figures and objects having the symmetry
of the groups C6 ,

C3 ,
and C4 respectively, we give here in fig. 53,

54. and 55, the images of some polyhedra. The first represents the

crystalform of dioptase: CuH2SiO^, and it is at once seen that the

axis A 6 is, as an axis of the first order only a ternary one, while

an inversion-centre is

combined with it.

Of the groups C3 and C4

we can only give some

imaginary forms, because

no real representatives of

those groups have been

found in the world of

crystalline matter up to,

this date. But in any
case it may be seen

from these figures, that

the symmetry of~C3 is the same, as if an axis of

the first order A% were present with a reflecting

plane perpendicular to it. In the same way it will

be obvious that in fig. 55 the special sym-

metry of the polyhedron cannot be described as

any combination of axes and symmetry-proper-
ties of the second order, and can only be regarded as that of a

true mirror-axis A with a characteristic angle of 90.

In the special case Cn , where n has the value /, the symmetry of

the figures is the same, as when a single plane of symmetry were

present. Generally, therefore, the symbol S instead of Cl is given

to this group. This symmetry plays a predominant role in the

description of a great number of living beings : many leaves, flowers,

the bodies of innumerable animals of all kinds, etc., possess this

symmetry. In fig. 56 the crystalform of potassium-tetrathionate:

/C2S4 6 is reproduced, the plane of symmetry being placed here

in a vertical position.

Fig. 53.

Dioptase.

Fig. 54.
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Fig. 56.

Potassium-

tetrathionate.

In morphology this important symmetry is commonly indicated

as that of bilateral-symmetrical forms. As such, innumerable leaves

(vine, oak, etc.), and flowers

(Papillionaceae, Orchidaceae,

Labiates, Fumaria, etc.) are

representatives of this class.

In fig. 58 a few flowers of

this kind : Paphiopedilum

Hookerae(d)', Galeopsis dubia

(a); Lamium purpureum(b)\

Brunella grandiflora(c)', Dal-

housiea bracteata(e) ; Cyclopia

genistoides(f) ', Podalyria cor-

data (g), have been reprodu-

ced as typical examples of the said symmetry ;

they may bring back this wellknown fact

to memory.

Finally, if n = 2, the symmetry of the group Cn consists in the

presence of the inversion as the only symmetry-property.

Such figures have thus only a centre of symmetry. As an instance

of this kind every crystalform of a holohedral triclinic crystal, e.g.

of copper-sulphate (+ 5H20) in fig. 57, maybe mentioned. It is more

difficult to find examples of living beings

showing the symmetry of this group C2 ,

which is commonly indicated by the

symbol /.

Perhaps some representatives of the

family of the Radiolaries, as e. g., Aulo-

sphaera elegantissima, may be conjectured

to possess this symmetry.
6. It may be remarked here as a very

important fact, that almost all the higher

living beings (man, quadrupeds, birds,

insects, etc.) have the symmetry of the

group S, a single plane of reflection being

their only symmetry-element. The lower animals on the contrary

(Blastoidea, Coralla, Radiolariae, Discomedusae, Ascidiae, etc.) often

show a much higher symmetry characterised by axes of high period-

numbers (n
=

4, 5, 6, etc.), and by the presence of several planes

of symmetry. In this respect it would appear, as if a striking

Fig. 57.

Copper-sulphate (5f/20) .
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contrast existed in the evolutionary development of living and of

so-called inanimate matter. For in the domain of crystallography

generally the holohedral classes of each system show an incom-

parably greater number of representatives than the hemihedral and

tetartohedral classes, and it was therefore suggested by some

crystallographers, that hemihedral development might only be a

result of particular circumstances during the growth of the crystal,

a view which can, however, hardly be thought justified. As we shall

see later, crystals have in many

jjjV /||\ ^$^L
cases a ^so a tendency to syn-

crystallise in apparently higher

symmetrical aggregations than

they are themselves, and thus

often imitate a symmetry of

the composed individual ob-

tained by polysynthetic twin-

ning, much higher than their

own.

In living nature on the other

hand, it seems that the mor-

phological evolution goes in the

direction from higher to lower
Fl'g- 58 -

symmetry
1
).

a. Galeopsis dubia. b. Lamium PurPu>eum.

c. Brunella grandiflova. d. Paphiopedilum
Hookerae. e. Dalhousiea bracteata. /. Cy-

dopia genistoides. g. Podalyna cordata. frequent occurrence of the bila-

teral symmetry among higher

animals has not yet been explained in a rational way. Although,

therefore, the deeper causes of this phenomenon are not yet known,

there are reasons to suspect, that they are in some way connected

with the particular circumstance of "animal motion". Among the

lower beings there are many, of which a sedentary life is characte-

ristic; and it may for the living being be of advantage for the

purpose of nutrition, etc., to be in contact with its environment in as

many directions as is possible. Evidently the symmetrical repetition of

parts or organs of its body is a way of accomplishing this. In general

the immobility of the living organism is a factor much more compa-

wise: in any case the fact of the

*) Cf. also: G. Bohn, "La naissance de Vintelligence" , Paris, Ed. E. Flamma-

rion, (1917), pag. 113138.
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tible with the real character of symmetry, than motion is. For that

reason the organs of plants are, as a whole, arranged withJiigher

symmetry, and they are also more symjnetrical in themselves than

those of the animals; while the most(^perfeet)symmetry finally is

manifested in the forms of immobile, crystallised matter. On the other

hand, for the animals which can move freely, the best mechanical

stability may have been a factor of importance in the development
of their somatic forms. l

)

By the investigations of Przibram, Loeb, and others, the atten-

tion of experimental biologists has also been drawn to the special

significance of the bilateral symmetry in somatic forms for the expla-
nation of certain classes of dynamical phenomena in biology.

2
) Thus,

in numerous cases, the natural bilateral symmetry of the organism,
disturbed by accidental or intentional injury or by amputation
of certain organs, automatically reappears, and in many cases even

at the cost of the normal development or by degeneration of the

other organ yet present. All phenomena observed are evidently
aimed at the preservation of the existent symmetry in the organism,
which itself is determined as an union of two symmetrical and

mutually independent halfs of its body.

Something analogous occurs with respect to the reaction of living

organisms upon unsymmetrically applied stimuli, as observed in

cases of phototropism (plants; Eudendrium, starfishes, etc.), of eo-

tropism, of chemotropism, etc. The automatical and irresistible move-
ments performed by the individuals in such cases, always point to

a special orientation of it with respect to the direction of the stimu-

lating influence. According to Loeb's ideas, all such kinds of

"tropism" should be considered as the direct results of certain

functional dissymmetries, and as aimed at the restoration of definite

conditions of symmetry.
7. Proceeding with the deduction of the possible groups of the

second order, we can now start with those groups Cn of the first

order dealt with in the previous chapter, which only possess a

single heteropolar axis of the first order, and combine these groups
Cn with a typical symmetry-element of the second order in the way
formerly discussed.

2
)

Cf. : F. M. Jaeger, Over Kristallografische en Molekulaire Symmetric van

plaatsings-isomere Benzolderivaten, Dissertatie Leiden, (1903), p. 202 208; Zeits.

f. Kryst. 38, 592, (1904).
3
) J. Loeb, "Dynamik der Lebenserscheinungen" , Leipzig, (1906).
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As we have seen, we can use for that purpose either the reflection

in a plane, or the inversion, because the simultaneous presence of

several axes of the second order always involves the coexistence

of rotations, and thus the groups of this kind can be reduced to

the cases in which these rotations are combined with reflections or

with the inversion. For if not so, the simultaneous addition of several

axes of the second order to a rotation-group, would in general imply
the formation of other axial combinations than those already deduced

in the preceding chapter, and this is impossible. The axes of the

second order in groups of the second order, if present therein at all,

can, therefore, only coincide with the axes of the first order, because

each axis of the second order is partially also one of the first at the

same time. The only question is therefore: in what way must these

planes of reflection or this symmetry-centre be combined with Cn ?

Of course this must happen in such a way, that the whole axial

system of the group will coincide with itself by the operation
which results from the addition of the new symmetry-element. In

the case where only a single axis A n is present, as in our groups Cn ,

this can evidently be the case only if the added plane of symmetry 5
be either perpendicular to the axis A n ,

or passes through that axis.

If we suppose A n to be in a vertical position, we can indicate both

kinds of reflections by SH (horizontal reflecting plane) and by S v

(vertical reflecting plane), and we have now only to investigate, if the

groups of the second order thus obtained : C^,C^,and in the case of the

addition of the symmetry-centre : C^, are identical or different groups.

To answer the last question we have simply to investigate what

will be the result of the combination of the operations SH
,
S v

,
and

7, taken two at a time. Now SH and S v together will be equivalent

to a rotation through 180 round a horizontal axis; also S v and

/ combined. But the combination of S7/ and 7 will be equivalent

to a rotation through 180 round a vertical axis, and this operation

will be present or not present among the rotations of Cn ,
ac-

cording as n itself is either an even or an-odd number. If, therefore,

n is an even number, the combination of Cn with SH or with 7

will give identical results : in this special case the groups C1
^-

are identical with C^, according to the theorem mentioned above

(p. 53). If, however, n be odd, we shall have three kinds of new

groups of the second order.

But in connection with what was said in the discussion of the

groups Cn ,
it will be obvious that some of the groups here considered
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are the same as several of the type Cn . For if n is odd, C? is

evidently the same as Cw ;
and therefore in this case the symmetry

of the figure can be expressed by the symbol Cn as well, as by Cjf.

Reviewing the above results, we may say:

a. There are figures possible, whose symmetry is characterised

by the presence of a single axis A n of the first order, and by n planes

of symmetry passing through it.
1
)
The symbol of these groups is

C v
tl \

their principal axis is a heteropolar one, as well as in the case of

the cyclic groups Cn themselves.

b. There are a number of figures, the symmetry of which consists

in the existence of a single homopolar axis A n of the first order, and

a plane of symmetry perpendicular to it. Their general symbol is C^f. //

n is odd, these groups are identical with Cn for the same value of

Fig. 60.

Silver-iodide.

Fig. 61.

Struvite.

n; if n is even, they also possess a symmetry-centre, because they are

identical with the groups C J
n for the same values of n.

c. Other groups with one single axis A n of the first order are

impossible; for C is for n odd, identical with C n̂ ,
and for n even,

with the groups C^. If, however, more axes of the second order were

present, the groups would possess more than a single axis, and

such groups of course do not belong to the kind here considered.

8. It is of interest to look here for some representatives of

the discussed types of symmetrical objects, before we continue

*) If one plane passes through an axis An ,
there are n such planes passing

through it. This needs no further comment after what precedes.
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our systematical deduction of the other groups of the second order.

The symmetry of the type C^ plays a very important role in nature,

and more particularly among living beings ;
but there are also many

representatives of it known among the forms of crystalline matter.

As instances of this kind, in fig. 59,

60, and 61, the crystalforms of turmaline

(C
V
3 ), of silver-iodide: AgJ (C^), and

of struvite: Mg(NH^)PO^ + 6#2O (C
v
2 ) t

are reproduced.
In all these figures the prominent

feature of the hemimorphic develop-
ment is immediately seen; indeed, this

peculiarity of their external shape is

one of the most characteristic of crystals

of this kind, just as in the cases of Cn .

In living nature, the type of sym-

metry mentioned is one of those most

frequently occurring. As instances in

botany, we reproduce in fig. 62 two

objects which manifest this symmetry

very strikingly: the fruit of Bignonia
echinata (Gaertner) shows the sym-

metry of group C V
2 .

The blossoms of many Cruci'ferae, of

Circaea lutetiana, of Fraxinus, etc., evidently belong to the same class.

In the domain of ani-

mal life we can mention

as representatives of this

symmetry, a number of

Ascidiae: Polydinum con-

stellatum; of Radiolaries:

Spyridibotrys trinacria.

The polar nature of the

principal axis of all these

objects will be clearly

noticed in the examples
chosen.

Of the group CV3 we

reproduce in fig. 6j the fruit of Gloriosa superba, in fig. 64. that

of Canarium decumanum. Also the blossoms of Camphora offid-

Fig. 62.

Fruit of

Bignonia echinata.

Fig. 63.

Fruit of Gloriosa superba.
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riorum, of Hydrocharis, and of Trichlogin maritimum are instances

of this kind.

In fig. i on Table I (p. 65) we have

reproduced the beautiful forms of Porites

furcata (Haeckel), one of the class of

Hexacoralla, which are celebrated for their

graceful forms; and also of the Ascidiae:

Botryllus polycyclus (fig. 2). The symmetry
of the group C\ is also met with in many
Discomedusae : we can find it in the mantles

of Pelagia perla, of Drymonema victoria

(fig. 3), andin the stomach-section of Undosa

undulata (fig. 5), according
to Haeckel's drawings (All

in Table /) . Cyanea aurelia

and many other jelly-fishes

too, show this symmetry in

a very striking way. Among
the Ascidiae, the mantle of

Fig 55

Botryllus Marionis (fig. 4, Blossom-diagram of

Table /) may be considered Aspidistra eiatior.

as an example of this kind.

Further, in fig. 65 the blossom-diagram of Aspidistra eiatior is

reproduced, which also manifests

this particular symmetry very

beautifully ;
another instance is the

diagram of Daphne Mezereum.

Of group C\ innumerable repre-

sentatives are found in living na-

ture, as well among plants as ani-

mals. It even seems as if a certain

preference for this special sym-

metry may be supposed to exist,

which is the more remarkable, since

this particular symmetry is quite

impossible for crystalline matter

In fig. 66 the fruits of Swietenia

mahagoni, in fig. 67 that of Ceiba

pentandra, and in fig. 68 that of
Fruit of Swietenia mahagoni.

Adansonia Baobab, all after Gaertner, are reproduced as good

Fig. 64.

Fruit of

Canarium decumanum.

Fig. 66.

Fruit of Swietenia
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examples of this class. Among blossom-diagrams we draw attention

.
-

.

^

to the corolla of Campanula medium, and of

Platycodon grandiflorus , both in fig. 69.

Other instances are the diagrams of Carduus

Fig. 67.

I 'Fruit of

Ceiba pentandra.

Fig. 68.

Fruit of Adansonia Baobab.

crispus, of Cucurbita pepo, of Hedera helix, etc.

Among the lower animals the most beau-

tiful instances of this symmetry-class are

found in the Blastoidea, some of which are reproduced in fig. 6 p
on Table 7 (p. 65). The lime-armour of

Orophocrinus stelliformis (fig. p), of Pen-

tremites orbignyanus, (fig. 8) of Phaeno-

schisma acutum (fig. 7), and that of

Fig. 69. Blossom-diagrams of

Campanula medium and

Platycodon grandiflorus.

Asteroblastus stellatus (fig. 6) are, accor-

ding to Haeckel's drawings, splendid

illustrations of this kind. Finally we must

not forget the wellknown forms of the

starfishes, e. g., Asterias ruber (fig. 70), as they are found along
our sea-shores.

The symmetry of the group CV6 is also met with very often in

Fig. 70.

Asterias ruber.
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Fig. 71.

Blossom -

diagram of

Cephalotus

follicularis.

nature. Among the lower animals the most beautiful examples are

found in the Hexacoralla; especially the lime-forma-

tions of Cyathina cylindrica, Stephanophyllia complicata
and elegans (fig. 12 on Table 7), of Astrocyathus para-
doxus (fig. 10, Table 7) etc., are, according to Haeckel's

drawings, good illustrations of this symmetry and

excellent instances of these pretty forms. In fig. 77 the

blossom-diagram of Cephalotus follicularis has been

reproduced, while in fig. 72 a drawing of the fruit of

Aubletia caseolaris is given and in fig. 73 a fruit of Badamia

Commersoni, (after

Gaertner), both

as good botanical

examples of this

same symmetry.
It also seems,

that among the

Ascidiae represen-

tatives of this

class are found :

evidently Molgula

tubulosa, and Sy-

noecum turgensmay
be reckoned among this kind of symmetrical objects.

Of the groups with an axis A n of higher value for n than 6, it is

not easy to find good

examples in nature.

j^ f Perhaps among the

Qy^S^>\

Hexacoralla the form
A*W jlm %*\

f/ \\
* Leptocyathus elegans

H||t ||*i
.'. (Haeckel) may be

mlKJ^ mentioned as a repre-

^S^ ^^fck' sentative of the group
r vU 22.

Of the groups ,

which of course give

only a series of new
forms for even values of n, no instances among plants and animals

have been found up till now.

As an illustration of polyhedra of this kind, in fig. 74 and 75

Fig. 72.

Fruit of Aubletia caseolaris.

Fig. 73.

Fruit of Badamia Commersoni.
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Fig. 74.

Scheelite.

the crystalforms are reproduced of scheelite: CaWO^, (C^f), and of

apatite: Cal(PO^, (C^); these figures show
the respective symmetries comparatively clearly.

Of course the heteropolar character of the prin-

cipal axis has here disappeared; and from the

figures reproduced, it is obvious that the poly-
hedra under consideration really possess a

symmetry-centre .

The symmetry of the group CH2 is very often

met with in the case of crystalline substances:

all so-called monoclinic substances, the number

of which is extremely great, belong to this

group, as far as they are holohedral.

Commonly the horizontal plane of symmetry is placed vertically

in figures of this kind, so that the

binary axis will now have a horizon-

direction. This custom is followed

also in the accompanying drawing

(fig. 76), which represents a crystal of

amphibole :

p Ca(Mg,Fe)(Si03)2 + q MgAl2Si06

in various proportions p and q.

9. The remaining groups of the

second order yet to be dealt with,

are related to the dihedron-groups

Dn or to the endospherical groups T, K, and P respectively.

Let us start with those which are related to Dn ,
and which,

therefore, have a homopolar principal axis A n and n binary axes

situated in a plane perpendicular

to A n , being either homopolar, but

of two different sets, or heteropolar

and of the same set (p. 39).

We must now add either reflections

S, or an inversion / to the groupsDn ;

in every case the whole system of axes

of Dn must coincide with itself by
the operations corresponding to the

symmetry-elements added. Therefore,

the following cases must be taken into account: the added plane

of reflection may be either horizontal : SH
,
or vertical : S v

,
and in the

Fig. 75.

Apatite.

Fig. 76.

Amphibole.
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latter case may pass through the binary axes themselves, or may
bisect the angle between two successive binary axes. In the first

case we shall call it S v
, in the other case SD

,
to symbolise the

"diagonal" situation of it. Altogether, we have now to discuss the

addition to Dn of the operations: SH
,
S F

,
SD and 7.

The operations SH and S v are together equivalent to a rotation

through 180 round a binary axis, already found among the axes of

the group Dn . Therefore, in every case the result of combining
Dn either with a horizontal plane of reflection or with a vertical

one passing through a binary axis, will always be identical.

However, if we combine SH and SD
,
the result will be equivalent

to a rotation round a binary axis, bisecting the angle between two

successive binary axes of the group Dn already present. And as

such rotations are not yet included among those of the group Dn ,

the groups D% and 7>f will be always different from each other.

The combination of SH and 7 is equivalent to a rotation through
180 round an axis coinciding with the principal axis A n . This

rotation is present or absent among those of Dn , according as n is

an even or an odd number. Therefore, if n is even, D^ and D*n will

be identical groups ; only for n = odd number, the combination with

a symmetry-centre would produce a new group D
x
n ,

which might

appear different from any hitherto deduced. However, on closer exa-

mination it becomes obvious that it is identical with the groups D
already mentioned for odd values of n, because the inversion and

any binary axis together will produce a plane of symmetry per-

pendicular to the last one. We can thus include all cases in the

combinations of Dn with SH and SD
,
and it is no longer necessary

to consider the combination with 7. Although we might stop here,

as the combinations with SH
,
SD

,
S v

,
and 7 have now been

sufficiently discussed, it may yet be of interest to extend these

discussions. Of course it will then appear, that really no new groups
can be produced beyond those already mentioned.

For this purpose let us first investigate the combination of S r

and SD . This combination will be equivalent to a rotation round

an axis A n through an angle which is double that between S v and SD
,

i.e. through an angle . As this rotation is not yet included among

those characteristic of Dn ,

-- because the angle of rotation corres-

ponding to A n is ,
the groups D% and D% will really be diffe-
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rent. But D% need not be considered, because we found it identical

with D^', so it is once more confirmed, that D% and D% are

really different from each other.

Similarly S v and / are together equivalent to a rotation through

1 80 round a binary axis perpendicular to S v
. As S v

passes through

a binary axis of Dn> the resulting binary axis will be perpendicular

to one of the binary axes characteristic for Dn . If n is even, such

an axis perpendicular to one of the other binary axes will already

be found among those of Dn . If n is odd, this would not be the case.

Therefore, only if n is an odd number, will the groups .D% and

Dn be different; but D% being for all values of n the same as

Dn, it is only demonstrated here once more that Dn and Dn

are wholly identical for even numbers n, and only different if n is an

odd number. But, as we have seen, for n = odd, Dn is identical with

Dn already deduced.

Finally we have to consider the last possible combination: that

of SD and /. The result of both is a rotation through 180 round a

binary axis perpendicular to SD . Now, if n. is odd, such binary axes

will already have been found among those of Dn ; if, however, n be

even, it will be a newr one with respect to the binary axes of Dn .

From this it follows, that only when n even, can the deduced groups

Dn and Dn be different from each other. But if n is an even number,

D^ will be always the same as D^', so that our result amounts

to saying that for even n the groups D% and )Jjf will differ,
-

just as we have already stated. Since, because for odd n, Dn is

certainly different from Dn, it is here once more demonstrated

that in all cases Dn and Dn must be different from each other.

In this connection it is of importance to draw attention to a

special property of the axis A n ,
if such a dihedron-group Dn is made

into one of the second order by adding a diagonal mirror-plane

SD to it. It can easily be proved by means of group-theoretical ar-

gumentations, that in this case the axis A n is transformed at the

same time into an axis A 2n f the second order l

)
with a period of .

l
)

For the general and simple demonstration of this theorem, the same

symbols for the "multiplication" of operations of the first and second order

can be used as we drew attention to previously. Let SD be the diagonal

plane bisecting the angle between two successive binary axes of Dn ,
and let

A
2
be a rotation through 180 round such an axis; SH and 5^ may be positions

of planes of reflection, as we have defined them in 9 of this chapter.

Then we have: A2
= S^.S^, and therefore A

Z
.SD = SH.sr.sD. NOW
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In this way we see the combination of an axis of the second order

appear, besides the planes of symmetry, within the scope of our

deductions; the combination mentioned evidently proves to have

significance only for an even period of the axis of the second order.

10. If, therefore, we review the results obtained by these consi-

derations, we can maintain generally, that all possible groups of the

second order which are directly related to the dihedron-groups of

the previous chapter, can be deduced from them by combination

with SH or SD
,

- - the last mentioned combination making the

principal axis An simultaneously into an axis A zn of the second

order, with a period-number 2n.

Therefore :

There are symmetrical figures which possess the axial system of the

groups Dn ,
with a horizontal plane of symmetry perpendicular to the

principal axis A n ,
and thus containing all binary axes; moreover, they

possess n vertical planes of symmetry passing through An and every

binary axis. If n is an even number, there will be also a symmetry-centre

present] if n is odd, however, the figure will have no centre of symmetry.

The symbol of these groups shall be D^.
b. There are symmetrical figures which posses the axial system of

the groups Dn ,
with a system of n vertical planes

of symmetry passing through

the principal axis A n ,
and

bisecting the angles between

every two successive binary

axes. If n is an even number,

the figure will have no sym-

metry-centre ; if, however, n is

odd, the group will also cer-

tainly possess such a centre.

In every case the principal

axis A n will be simultaneously
Fg. 77.

OHvine.
an axis A 2n of the second order

Fig. 78.

with a period-number 2n. The symbol of these groups shall be

including an angle of course, will be equivalent to a rotation round an

axis of the same direction as the principal axis An of the group Dn ,
but through

the double angle . The operation A
2
.SD of the new group is thus evidently

equivalent to SH.A(), i. e. to the rotation round a mirror-axis with a period-n
number 2n. Thus the above-mentioned theorem is generally proved.
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Fig. 79.

Zivcone.

11. The symmetry of the groups D%, both for even and for

odd values of n, is often met with in nature.

As instances of this kind in polyhedral forms, in fig. 77 the

crystalform of the orthosilicate olivine : (Mg,Fe) 2SiO^ is reproduced
as a representative of the group D

1
/, while, as up till now no natural

representative of the class D? among crystals is known, an imaginary

polyhedron having this symmetry, is drawn in fig. j8. The figures

which possess a symmetry D%, have three binary axes perpendicular
to each other and three planes of symmetry, each containing two

of these binary axes. All so-called orthorhombic (holohedral) crystal-

forms, - - which are extremely numerous, - -
belong to this class

In fig. i 12 of Table II
(p. 65) a number

of instances of these groups among plants and

animals are reproduced: so we find here the

beautiful silica-structures of Diatomeae: if

they be considered similarly developed at

their tops and bases,
J

) they may be mentioned

indeed as very striking examples of the sym-
metries: D?, D?, D1

! and Df
/ ,

and perhaps
also of Z)f , in their most elegant shapes.
As illustrations we have chosen here the following representatives

of these two classes : Of the group Z)? : Biddulphia pulchella (fig. i) ;

Auliscus elegans (fig. 2)', Navicula dichyma (fig. 3)', of the group
D% : Triceratium digitate (fig. 4), and

Robertsianum (fig. 5)', Actinoptychus con-

stellatus (jig. 6).

Of the groups D% andD? we have chosen

as examples the crystalforms of zircone:

ZrSiOi (fig. 79; Z)f), and of beryll:

Be3Al2(SiO,) 6 , (fig. 80; ?).

On Table II, moreover, the following

objects have been reproduced of DH4 :

Actinoptychus heliopelta (fig. 7); Amphithe-
tras elegans (fig. <?) ; Auliscus crucifer (fig. p)

and crattfer (fig. 10). Of the group Cf
only Aulacodiscus Grevilleanus (fig. n)',a. very fine specimen of this

symmetry being also Triceratium pentacrinus, which is, however,

x
)

If the upper and basal parts of the silica-boxes are thought to be

different, the axis An will then be heteropolar, and the symmetry will, of course, be
V

simply that of the groups : Gn .

Fig. 80.

Beryll.
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not reproduced here. The form of Grovea pedalis (fig. 12) on the

contrary may be looked upon as an illustration ofthe group D,
whose representatives are very rare. Most of these figures were

reproduced after Haeckel's original drawings.
Of the group D^ no instances have been found among the Dia-

tomeae] but perhaps some Radiolaries may belong to this class: so

Ethmosphaera siphonophora (Haeckel). If the top and the basal

parts of the fruit of Badamia Commersoni (fig. 73) were equally

developed,
-- which is certainly not the case, this form would

give an idea of a vegetable object possessing this symmetry.
Some pollen-cells, e. g. those of Passiflora augustifolia, Heliofropum

grandiflorum, etc., may be reckoned, according to some authors,

also to have this symmetry.
The spicula of a number of Radiolaries are arranged in a regular and

most remarkable way. This special regularity was already described

by Joh. Miiller, and defined by him in a "rule" which bears his name.

The particular symmetry of this arrangement appears to be that of

the group D^ ;
as in the case of

Acanthostaums
, Acanthometra, etc.

The pollen-cells ofAnnona tripetala

also seem to belong here.

A striking example of the symme-

try D^ in the C3.se oiRadiolaries, is

that of Acanthodesmia prismafium

(fig.$i), after Haeckel's drawing.

Haeckel was one of the first

to understand the eminent value

of the principle of symmetry for the

description of plants and animals,

and to draw special attention to the

symmetrical and highly aesthetic

forms of the lower beings, in his
Acanthodesmia pnsmattum. _.

great work on the Radiolaries,

and in his book: "Kunstformen der Natur".

This author 1

)
also made the first valuable attempts to found a

*) E. Haeckel, Systematische Phylogenie; Entwurf eines natiirlichen Systems

der Organismen auf Grund ihrer Stammesgeschichte, End. / ///, Jena, (1894).

He speaks of four principal classes of forms: Centrostigma, Centroaxonia, Cen-

troplana, and Anaxonia. A comparison with our results must readily convince

everyone, that in his system a confusion of all classes is present.
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system of morphological description on the base of the symmetry-

principle. However, he could not succeed in this, because an

exact treatment of the symmetry-problem had not yet been made,

or at least was not known to him. Without wishing to belittle his

work, we feel compelled in the light of our more modern concep-

tions, to reject his system, and replace it by the one developed
here in detail.

It should be remarked, that, of course, not only an organism as

a whole, but also every part of it may be morphologically described

by means of the principles here developed. Thus the corolla of a

flower can have a symmetry C6 ,
its calyx that of group 5, its pistil

of C3 ,
its ovary of C5 ;

etc.

By simply writing down the symbol of its symmetry-group, as

adopted here, it is possible to characterise every form in the most

concise manner. l

)

As instances of the symmetry D? and Z)f ,
in fig. 82 and <?j the

crystalforms are reproduced of chalcopynte: CttFeS2 ,
and one of

the numerous forms of

calciie: CaC03 . In both

cases it may be seen

that really the princi-

pal axis, although as an

axis of the first order

only having a period

of 180, or 120 respec-

tively, is at the same

time an axis of the

second order with characteristic angles of 90 and 60.

Moreover, it is also clear from these figures, that in the case of calcite

there is a real centre of symmetry, which on the contrary is absent

in the case of chalcopyrite. The case of Grovea pedalis, as evidently

belonging to the group Z)f ,
we have drawn attention to before. 2

)

x
) It must be remembered here that, from a historical viewpoint, the

zoologist Gust. Jager had before Haeckel already made such attempts in

this direction, without, however, publishing a complete system of classification

based upon the symmetry-principle.
2
)

Of course the groups of the second order, which are related to Dn can

be deduced as well from the groups Cn of the second order, by combining
those with binary axes; just in the same way as in the previous chapter we
have derived Dn from the cyclic groups Cn . This, however, may be left to

the reader.

Fig. 82.

Chalcopyrite.

Fig. 83.

Calcite,
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12. The last groups which remain to be traced, are those which

relate immediately to the three possible endospherical groups T, K,
and P, previously dealt with. Again we have to investigate what

will be the result of their combination with SH
,
S v

,
SD

,
and /.

In connection with our reasonings in the case of the analogous

deductions from the group Dn ,
and bearing in mind that the groups T

and K also possess among their characteristic operations a number

of rotations round three binary axes which are perpendicular to

each other, we may conclude in the same way as before, that only

the combinations with SH and SD will produce two distinct new

groups in the case of T.

For SH and SD combined are equivalent to a rotation through 1 80

round an axis which bisects the angle between two of the above

mentioned axes
;
this new binary axis is not present in T, but in K its

direction is the line joining the middles of two opposite edges of

the cube. Therefore the three new groups appear to be: TH
,
TD ,

KH
\

other ones are not possible.

With respect to the pentagonal-dodecahedral group P, we find

in quite the same way that, if the axial system of P should coincide

with itself by the added operations of the second order, this addi-

tion can be executed only in such a way that the plane of reflection

passes through two quinary, two ternary, and two binary axes

at the same time. If one of the quinary axes is put in a vertical

position ;
we can regard this added plane as 5 v

; moreover, it will

bisect the angle of two pairs of other quinary axes, of two pairs

of binary axes, and of one pair of ternary axes, and therefore, it

has also some of the functions we have previously attributed to the

"diagonal" planes SD . On closer examination it appears also to be

perpendicular to one of the binary axes of the system, and, therefore,

it has in consequence the existence of a symmetry-centre.

Further it is obvious that it is impossible to add a horizontal

plane SH perpendicular to the supposed vertical quinary axes; for

this plane passing simultaneously through five binary axes at the

same time, does not bring the axial system of the group to coincidence

with itself by a reflection in SH . The final result is, therefore, that

only S v ,
or what is in this case the same thing, the addition

of a symmetry-centre, will produce a new group of the second order.

We shall call it PJ
,
-- with respect to this last mentioned way of

deduction; the new group is thus derived by combining P with

the inversion /.
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Summing up, we thus find altogether four new groups of

the second order, related to the endospherical groups T, K, and P:

a. There are symmetrical figures which have the axial system of the

group T, three perpendicular planes of symmetry passing through every

pair of binary axes, and a symmetry-centre. The ternary axes are at

the same time senary ones of the second order. The symbol of this group

shall be TH .

b. There are symmetrical figures which possess the axial system of the

group T, and six planes of symmetry passing through every pair of ternary

axes. They have no centre of symmetry, but every binary axis is at the same

time a quaternary one of the second order. We shall name this group TD .

c. There are symmetrical figures which possess the axial system

of the group K, three perpendicular planes of symmetry passing through

every pair of quaternary axes, and six planes of symmetry passing

through every pair of ternary axes. Moreover, they have a centre of sym-

metry. The ternary axes are at the same time senary ones of the second

order. We shall denote this group by the symbol KH .

d. There are symmetrical figures which have all axes of the group P,

as well as fifteen planes of symmetry passing through two quinary, two

ternary, and two binary axes simultaneously; moreover, they have a

centre of symmetry, and every axis of odd period is at the same time one

of the second order with a period n. We shall attribute the symbol P1

to this group. It represents the highest symmetry which a figure can

possess, if no axes with n = oo be taken into account. x
)

Finally we may draw attention to the

fact that the group KH contains all

operations which

are characteristic

as well of the

group TH
,
as of

T. These last

are therefore cal-

led sub-groups of

KH . In the same

way the groups T
andK themselves

a

Fig. 84.

Pyrite.
Fig. 85.

Boracite.

are sub-groups of KH . Also in the case of the other symmetry-groups

1
) Of course, if axes of isotropy are also concerned, the spherical symmetry

is the highest possible one. Indeed, just in the same way as the sphere is an

"endospherical" polyhedron with an infinite number of faces.
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now deduced, we can indicate such sub-groups, as containing only a

part of the operations of other higher symmetrical combinations of

symmetry-elements. This fact is of importance, as we shall see after-

wards, for the sake of combining several groups to larger ones, -

a process which is the basis of the division in crystalsystems and

crystak/asstfs, as since early days it has been used in crystallography,
and which simultaneously explains the deeper meaning of the old

division of crystallographical polyhedra into holohedral, hemihedral,

and tetartohedral forms, as was especially

brought to the fore in Naumann's doctrine.

13. As illustrative examples of this

symmetry, in fig. 84, 85, and 86, the crystal-

forms of pyrite: FeS2 (fig. 84', TH
),

of

boracite: Mg7
B16Cl2 30 , (fig. 85 \ T*>), and

of fluorspar: CaF2 (fig. 86\ KH) are repro-

duced as some instances of the groups TH ,

TD ,
and KH respectively.

Fig. 86.

Fluorspar
^ living beings, the pollen-cells of some

plants may perhaps be mentioned here:

thus of group TH perhaps those of Buchholzia maritima; of TD

those of Corydalis sempervirens, and of group KH the pollen-cells

of some Polygoneae, according to Haeckel's data.

However, it is difficult to say whether such individuals really

belong to this class or only have the symmetry of the groups
T and K themselves. If so, the drawings of fig. 51 may be included

here, or the instances just mentioned may be among those given
in the preceding chapter.

14. No other symmetry-groups than those deduced in the

preceding are possible for finite stereometrical figures, as long as

axes of isotropy are -not concerned. The whole investigation has

therefore led to the result that the different types of symmetrical

figures are- only few in number, although of course their total number

is infinitely great, because n can have all possible values.

If we review these principal types here once more, we shall find

the following result:

A. Symmetrical figures which differ from their mirror-images.

1. Cyclic groups Cn
2. Dihedron-groups: Dn

j. Endospherical groups: T, K and P.

All figures belonging to A may exist in two enantiomorphous forms.
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B . Symmetrical figures ,
which are identical with their mirror-images .

4.
. Cyclic groups of the second order : Cn ; special cases : 5 and /.

5. The groups: C and C".

6. The groups: D% and />f.

7. The groups: TH , TD ,
KH

, and PI.

The number of these different types does not exceed fourteen or

sixteen; for finite figures this exhausts the possible symmetries, if n

gets all values between 1 and infinity. The groups with axes of

isotropy (n = oo
) will be dealt with in detail in the following chapter.
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CHAPTER V.

The Limits of the axial periods in Crystalline Matter. Hauy's
Law. Crystallographically occurring Symmetry-Axes Groups
and Sub-groups; their relation to Holohedral, Hemihedral and

Tetartohedral Crystal-Classes.
--

Crystal-systems. Gadolin's

Projection of Symmetry-Elements. - - The Symmetry-Classes of the

Cubic System.
-- General and special simple Forms. Symmetry-

groups with Axes of Isotropy. The Symmetry of a Physical

Phenomemon, of a Physical State, and of a Physical Medium,
The "image" of a Physical Phenomenon. - - The Symmetry of

Cause and Effect, and their mutual Relation. - - The Symmetry
of the Electrostatic and that of the Magnetic Field. The

Symmetry of centrically-symmetrical Phenomena in Crystals.
-

The Superposition of Different Causes. - - Symmetry and Dis-

symmetry.
- - General Remarks on the symmetrical Arrangement

of experimentally determined Numbers. Problems and Investi-

gations of the Future.

1. In the preceding chapters we extended our researches to

include all kinds of symmetrical systems. It need hardly be remarked

that, as evidently no special circumstances prohibit the occurrence

of every kind of symmetry-axes in the objects of living nature,

such a general way of treating the problem was the indicated and

only effectual one for the application of the doctrine of symmetry
in the whole province of natural science. However, in the case of

other, non-living natural objects, experience teaches us that such

an unlimited variety in the periods of the symmetry-axes by no means

manifests itself; and more particularly in the domain of crystalline

matter, there must be some reason why certain limits are apparently
set to the possible values of the numbers n, and to the characteristic

periods of the symmetry-axes, as these are determined by n.

Indeed, in no field of physical research does the significance of
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the symmetry-principle come so strongly to the fore, as where

crystalline matter is considered: even in early times the typical

polyhedral forms of the crystals and their beautiful geometrical

shapes made so strong an impression on observers, that for a long
while this external form was considered the essential feature of

the crystalline state in general.

Thus crystallographical research was developed primarily by
the intense and exclusive study of the polyhedral limiting forms

of the crystals; and it was by investigations of this kind that Hauy
more than a hundred years ago discovered the fundamental law which

bears his name, and which gives the

key to the remarkable fact above

mentioned, that only symmetry-
axes with a rather small number of

quite determined periods are met

with in such crystal-polyhedra.

2. The law of Hauy, which

became the very foundation of

modern crystallography, may be-

elucidated as follows.

Let XOY, XOZ, and ZOY
(fig. 87) be three arbitrary faces

of a crystal, of which faces the

intersections are not parallel to

the same straight line in space;

their edges OX, OY, and OZ
intersect in 0. Let ABC be another

face of the crystal. The segments

a, b, and c, cut off by this plane ABC on the edges OX, OY,
and OZ chosen as coordinate-axes, shall fix its position entirely.

Now according to the law discovered by Hauy, any other possible

face of the 'crystal, let us say A'B'C'
,

must necessarily fulfil

the special condition, that the ratio of the segments OA
'

: OB' : OC'

be always expressible in the form: ma: nb: pc, the numbers m, n, and

p being rational numbers, and in most cases even very simple ones.

These numbers m, n, and p are quite sufficient to fix the plane

A'B'C' with respect to its direction in space, as determined by the

perpendicular from O upon it; and thus, if OA' be taken equal to

ma, OB' and OC' will assume the values nb and pc at the same time.

In crystallography these numbers m, n, and p are not themselves

Fig. 87.
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commonly used in calculations, but rather their reciprocal values :

h =
,
k =

, and / = . These numbers h, k, and / are called
111 ti J3

the indices of the crystal-face (Miller), and the plane itself is

usually denoted by the symbol (h k 1). As only the ratio: ma: nb:

pc is of interest for the determination of the direction of A'B'C'',

these numbers h, k, and / are generally reduced to the most simple

integers.

The law of Hauy may therefore be expressed as follows:

Only such faces can occur as limiting faces of a crystal, the indices

of which are (simple) rational numbers, if these faces are defined with

respect to four not parallel and suitably chosen planes of the crystal.
l

)

3. It is this very important law, which determines the limits

within which the possible values of the periods of eventually occurring

symmetry-axes in the crystal must remain. These limits may be

fixed in two ways: either we can look upon the external form of

the crystal only, or we can try to explain Hauy's law by some

suitable hypothesis on the molecular structure of the crystal, and

see if this supposed structural image possess a special character,

from which the limits of the axial periods mentioned above follow

as a logical consequence. Indeed, Hauy's law has led to such sup-

positions about the intimate, molecular structure of crystals in gene-

ral, suppositions which have been of great value in the develop-
ment of our views on the true nature of crystalline matter. These

views have been strikingly confirmed by the results lately obtained in

the recent experiments of Von Laue, Bragg Sr. and Jr., Debye, and

others, who sent a narrow pencil of Rontgen-rays through a crystal,

and observed in such a way a diffraction-phenomenon which is

closely related to the said molecular structure. Although the fun-

damental correctness of the above mentioned ideas regarding the

molecular structure of crystals has thereby become highly probable,
it is, however, better to postpone the demonstration based upon these

views till we are dealing in detail with the indicated systems of

molecules regularly distributed in space. With respect to our previous

*) Although the condition of simplicity of the indices considered is not an

essential one, it may be clear that in practice the law of Hauy can be of

value only if these numbers are really simple ones. For the ratio of the inter-

cepted segments on the coordinate-axes, with respect to those of the primarily

chosen fourth plane, can be always reduced to a set of rational numbers, if

only we are free to multiply the observed ratio by any suitably chosen

factor, whatever may be the magnitude of the last.



80

investigations it is perhaps preferable to give a simple demonstration

now, in which only the properties of the external, polyhedral form

of the crystals are made use of; we think this demonstration for

the present purpose will be

sufficiently clear. l

)

Let ZO in fig. 88 be a sym'-

metry-axis of the first order,

with a characteristic angle a =
r\

'

;
ON is a possible

2
) crystal-

edge, situated in the plane XOY
perpendicular to ZO.

By rotations round ZO
through angles a, 2a, 3a, etc..

ON is repeated n times. Be-

cause all edges ON may be

used as coordinate-axes, we
shall here take OZ, ON, and

ONlt
as Z-, Y-, and X-axis

respectively. If now CNN^^ be

a possible crystal-face
3
), then of course the same will be true for

CN
1
N2t CN2N3 , etc., and the mutual intersections of all these planes,

e.g. NC, Nf, N2C, etc., will, of course, also be crystallographical-

ly possible edges. But if so, such planes as NCN2 , intersecting

ONl in 5, must be possible crystal-planes, because they pass through
two intersecting possible edges of the crystal. Therefore, the plane

1
)

A. Gadolin, Acta Soc. Sclent. Fenn. (1871), 3; Ostw. Klass. d. ex.

Wiss. No. 75, p. 7, 7483. (1896).
2
)

The intersections of possible (i. e. possible in the sense of Hauy's law)

crystal-planes are always possible crystal-edges. Cf. the demonstration of this in :

A. Gadolin, Ostw. Klass. No. 75, p. 74 78. As a corollary it follows that every

plane passing through two non-parrallel possible edges of a crystal, is also a pos-

sible crystal-plane.
3
)

If CNN
1

is not a possible plane, but *e. g. CNnv Onv being ^ ONV
the successive intersections Nnv Nt

n
z ,
N

z
n3 , etc., in the plane XOY will not form

a closed polygon, if the lines Nnv N^n^, etc., be not continued until they

intersect in points Sj,
s
z ,

etc. The lines joining C with
Sj,

s
2 , etc., are now the

intersections of a regular pyramid of n sides, and a figure analogous to the

one above may now be used also for the purpose of demonstration. This last

one can, therefore, be considered to be sufficiently general.
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NCN2 must cut off segments of such magnitude on the three coordi-

nate axes OZ, ON, and ON^, that Hauy's law shall be fulfilled: thus

in the case considered, the proportion ^-must be a rational one. But

j^f- being equal to ^~, because NS is perpendicular to ONlf
-

is none other than cos a. Therefore, if Hauy's law will hold, cos a

must have a rational value, and the only permissible values of this

kind are: o, -f J or --
\, and + 1 or 1, the angle a being then

90, 60, 120, 0, and 180 respectively
1

). From this it follows that

in crystallographical polyhedra no other symmetry-axes can occur

than those which are characterised by the values 1
, 2, 3, 4, and 6 for

n. All other values of n are excluded in the case of crystals, because

the validity of Hauy's law requires this. Hence we may conclude:

The symmetry-axes of crystallographical polyhedra can only be

binary, ternary, quaternary, and senary axes'2).

4. The number of crystallographically possible symmetry-groups
as deduced from the complete number of types already traced by
us, therefore proves to be limited to thirty-two. Their symbols are,

in the same order as the general groups found previously, the

following
3
)

:

A. Groups of the first order'.

Clt C2 ,
C8 ,

C4 ,
C6 ;

D2 ,
D3 ,

Z) 4 ,
Z)6 ; T, and K.

All crystals appearing in two enantiomorphous forms belong to

one of these eleven classes.

B. Groups of the second order:

r r r rn rH rH rH rv rv rv rv r1
<^l> ^2> ^4> ^2> ^ ,i > ^4> ^ 6 >

^ 2 >
^ 3 >

^ 4 > ^6> ^ 3 >

Df
j, DH3 ,

DH4 ,
DH6 ; DD2 ,

DD3 ; T*, KH-, T^.

All crystals which do not differ from their mirror-images, belong
to one of these twenty-one classes.

N. B. Attention must be drawn again to the fact so often misunder-

stood, that the absence of a plane of symmetry need not necessarily make
the figure considered differ from its mirror-image. The reverse of this

*) For the complete demonstration, vid.: N. Boudajef, in Ostw. Klass.

No. 75, p. 78 S3, (1896).
2
)

In crystallography these axes are usually named: digonal, trigonal, tetra-

gonal and hexagonal axes, with respect to the polygonal and polyhedral
forms occurring.

3
)

The case of n = 1 (a
=

2*) has been also considered here, although the

axis A
l has, properly speaking, significance only as a symbol for identity. The

groups with such "unary" axes will therefore afterwards be indicated by the

special symbols A and S respectively.

6
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is certainly true, as well as the other view, according to which enantio-

morphous figures have never. a symmetry-centre. The above mentioned

thesis, however, is not correct, as has been clearly shown in the preceding

chapters. Stereometrical figures are different from their mirror-images
and can, therefore, occur in two non-superposable forms, only when

they do not possess any symmetry-properties of the second order,

whatever they may be. Neither the absence of a symmetry-centre,
nor that of a symmetry-plane is therefore sufficient to have enantio-

morphism as a necessary consequence. This fact . already repeatedly
mentioned in the preceding chapters, should be kept in mind, especially

by authors on chemical subjects, writing about molecular symmetry;
in many textbooks on organic chemistry these relations are wrongly
treated. We shall have occasion to return to this subject later on, more

especially when we come to deal with Pasteur's law.

The thirty-two symmetry-groups mentioned can now readily be

arranged in a more systematic way if we remember the formerly
indicated relations existing between mathematical "groups" and

"sub-groups" (p. 73). We have seen that, if a number of non-equi-

valent operations are chosen out of a group of them, so that they

may be combined to form a new complete group of operations, this

new group is called a sub-group of the original one. The number of

non-equivalent operations of a sub-group is always an aliquot part

of the number of operations present in the original group.

Thus, for instance, the group K contains all operations of the

group T (p. 73), and therefore T is a sub-group of K. Now, while

K includes twenty-four non-equivalent operations of the first order,

T has just half that number, i. e. twelve; etc.

In crystallography it is usual to reunite all sub-groups glt g2 ,

g3 , etc., of another higher symmetrical group G ,
with that group

G , and form them together into one and the same crystal-system.

Because of the fact that the number of non-equivalent operations

of these sub-groups is always an aliquot part of that of the principal

group, and that therefore this is also the case with the number of

the limiting faces of the crystals, if they are bordered by the most

unrestricted simple form of every class, these sub-groups are

distinguished from the principal one by the names hemihedral and

tetartohedral groups respectively, while the principal group itself

is called the holohedral group.
This gathering of the sub-groups with their principal one into

a crystal-system, has many practical advantages. One of the most

important being, that all crystalforms belonging to the same crys-

tal-system, can be described with respect to the same set of coordinate
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axes, whether their symmetry be a higher or a lower one. As a conse-

quence of this, the parameters of the forms of all classes belonging

to the same crystal-system, are fully determined by the same number

of independent measurements: the higher the special symmetry of

the lowest-symmetrical sub-groups of the system is, the smaller

is the number of such independent data required for the determi-

nation of the coordinate-system and the parameters of a crystal.

If now we investigate which groups of the thirty-two mentioned

above are sub-groups of others, we get the following seven crystal-

systems. The principal group in every system, of which the others

are sub-groups, is always mentioned as the first one:

I. The triclinia system includes the groups: / and A (= Q).
The polyhedra of every class of this system can be absolu-

tely fixed by five independent data 1
).

II. The monodinic system includes the groups: C?, 5, and C2 .

The forms of this system are fully determined when three

independent data are given.

III. The rhombic system includes the groups D^, CV2 , and Z)2 -

All forms of the whole system are known if two independent
data are given.

IV. The tetragonal system includes the groups: D^f, Z>?, C^f,

CV4 , C~4 ,
Z) 4 ,

and C 4
.

All polyhedra of this system are determined by one single

measurement.

V. The trigonal system includes the groups: Z)?, Z)?, C?,

CV3 ,
and Z)3 , Ci, and C3 .

VI. The hexagonal system includes the groups: Z)^f, Z)6 , C?, C,
and C6 .

x
)

Three independent data are generally sufficient to fix a coordinate-

system, whether there be given three angles between every pair of coordinate-

axes, or the three dihedral angles between every pair of coordinate-planes, or

any arbitrary combination of three such elements. For the determination of

a fourth plane of the crystal, two other data are necessary and sufficient. But

if this plane be determined, all other planes of the crystal follow from it

according to Hauy's law. If now the coordinate-system is not arbitrary, but

a higher symmetrical one, whose angles have fixed and known values (90,

60, 45, etc.), then of course the number of data required to define it, is

reduced more and more, while the same will be the case with respect to

the fixing of the fundamental fourth crystal-plane mentioned before.
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All polyhedra of both the trigonal and hexagonal system
are determined by one single measurement, just as was
the case in the tetragonal system.

VII. The cubic system includes the groups: KH ,
TH

,
TD

, K,
and T.

In this system no measurement is required to characterise

any form completely : all forms have special and invariable

values of their dihedral angles, as soon as the indices

of the limiting forms are known.

From this it is obvious that quite independently of the introduction

of conceptions such as: hemihedrism, tetartohedrism, holohedrism,

etc., into the science of crystallonomy, a grouping such as above

explained, presents itself as a very natural one, in so far as such

groups which have all certain characteristic properties in common,are

gathered into one and the same greater unit. Thus e.g., all groups KH ,

TH
,
TD

, K, and T, have four ternary axes in common; the groups:

D*j, D6 ,
C1

^, CV6 and C6 possess all a single senary axis, etc. It

is upon this basis, that the arrangement in "crystal-systems" is

really founded; and the deduction of the lower symmetrical forms

of each system from the higher ones by partial suppression of their

faces appears to be artificial and unnecessary.

5. An easy and clear review of all symmetry-properties, as

well as of the most unrestricted forms of each class, may now be

obtained in connection with the above stated facts, if a way of re-

presenting axes, planes of symmetry, and crystal-faces be made use

of, which also takes its origin from Gadolin. x
)

This author uses for that purpose a special form of the so-called

"stereographical projection" in which the axes, planes of symmetry,
and faces of the polyhedral object are represented in a simple way;
and this method may also be made use of in cases where the deter-

mination of the real symmetry of a given form in nature is required,

e. g. in morphological work. Some short remarks upon this method

in general, seems therefore to be in place here.

A stereographical projection of a crystal for instance, is obtained,

if from some point in space perpendiculars are drawn upon all

faces of a crystal (fig. <?p), and if these perpendiculars are continued

to their intersection with a spherical surface, described with a radius

J
)

A. Gadolin, loc. cit.; Ostw. Klass. No. 75, p. 32, (1896). About projection,

cf. also: V. Goldschmidt, Zeits. f. Kryst. 17, 191, (1889); 19, 35, (1891).
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R round the point as a centre. If now the diametrical plane

VV e. g., be chosen as the plane of projection, the projections of

all points P will be obtained by joining them to a point M opposite

to N, which is called the pole of the projection, and if the inter-

sections 5 of V with the straight

lines MP are considered. All

points 5 thus obtained, form

together the stereographical pro-

jection of the crystal F. l

)

Now Gadolin determines the

direction of the symmetry-axes^
and of the perpendiculars to the

crystal-faces just in the same way.

Only he superposes the two

images which would be obtained

by projection of the upper and

the lower half of the polyhedron,
if observed from M or from N
respectively, and he distinguishes the faces above and beneath

the plane of projection V simply by different signs, e. g. by
x and O. The period of the axes is denoted in the way described

further on. (fig. po).

For the purpose of illustrating the application of this method
for the representation or the eventual determination of the specific

symmetry of a body or of its general form, we will apply it in the

case of the cubic system only, and deduce in this way the most

unrestricted polyhedral forms in every class of it. It will then be

easy to extend in the same way such considerations to every other

class of crystals.

Moreover, it may be mentioned that the method indicated here

may be recommended in all cases where the special symmetry of

some complicated form or object has to be found. Thus the special

symmetry of many complexly built Radiolaries, e. g. of Ethmo-

*) For the full application of the stereographical projection and its proper-

ties, we may refer here to the numerous treatises on crystallography, in which

this method is explained in detail. Cf. more particularly: H. E. Boeke, Die

Anwendung der stereographischen Pyojektion bei krystallographischen Unter-

suchungen, Berlin, (1911); and the valuable papers of V. Goldschmidt, Zeits. f.

Kryst. 28.401,414. (1897) ;
29. 364. (1898); 30. 254. (1899); idem, Ueber Entwicke-

lung der Krystallformen,and: Atlas der Krystallformen, Heidelberg, (1913).
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sphaera siphonophora (Haeckel), etc., or the arrangement of their

spicula, or the type of symmetry of a flower or of some animal, may
often be found with small trouble, if the repeatedly occurring parts

of the object be projected in the way considered, upon a spherical

surface, and every projected part be denoted by a special sign. Even

Fig. 90.

Stereographical Projection of the Groups of the

Cubic System.

in rather complicated cases the real symmetry can thus generally

be found without much difficulty.

6. If now we review the special symmetry of the five classes

of the cubic system in the way of Gado 1 in, we obtain the following

images.
1
)

The most unrestricted forms of any of these five classes are

reproduced in fig. pi.

They have successively twelve, twenty-four, and fourty-eight

*) As already stated, the faces on the upper half of the sphere are indi-

cated by X, on the lower half by O- A binary axis bears an ellipsoid ,
a

ternary one a triangle A, etc., at its ends. An axis of the second order is

indicated by an open polygon: Q. The axes are represented by dotted lines;

if they are situated in a plane of symmetry, by a continuous line. If the circle

in the plane of projection is a continuous curve, it means that this plane of

projection is also a plane of symmetry; etc. These notations are now common-

ly adopted, especially by German crystallographers. The above reproduced

figures will now be easily understood.
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limiting faces, and are usually called: tetrahedral-pentagonal-dode-

cahedron, pentagonal-icositetmhedron (gyroid), dyads-dodecahedron

(didodecahedron\ diploid), hextetrahedron, and hexoctahedron respec-

tively, and their general Millerian symbol is {hkl}.

In the cubic system the three planes passing through every

pair of the perpendicular binary or quaternary axes, parallel to the

edges of a cube, are always taken as coordinate-planes. If now the

stereographical projection of a limiting face of the form considered,

should happen to coincide with the point of intersection of the sphere

with one of the coordinate-axes, or if it be situated in one of

the coordinate-planes, etc., or if that face be parallel to a coordinate-

axis or to a coordinate-plane, then the symmetrical repetition of

that face will determine a simple form of each crystal-class, which

does no longer agree with the most unrestricted, general form of

that class. These new simple forms, on the contrary, will possess less

limiting faces than the most unrestricted one, and therefore will

have a simpler shape and a simpler Millerian symbol. In the next

table a review is given of the special cases mentioned for every class

of the regular system, and the corresponding Millerian indices for

every form are there indicated also.

TABLE OF THE PRINCIPAL FORMS OF THE CUBIC SYSTEM.
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Fig. 91.

hedron {111} is eventually split up into a positive and a negative
tetrahedron.

Besides the general
forms {hkl} , in the

uy.&nAyvurf- ^.^t^cf^f fig. Q2 ,
the whole series

of simple forms which

occur for determined

values of h and k, are

reproduced here; the

crystals in nature are

of course generally
more or less complica-
ted combinations of

several of these simple
forms occurring at the

same time, and usually
with very different relative development of the existent forms.

That gradual trans-

itions between these

forms can be imagi-

ned with variation of

the values oih,k, and

/ from zero to every

arbitrary integer

number, is obvious

on
"

comparing the

different simple forms

with each other.

In this way we have

made clear the general

method of description

of crystallographical

polyhedra, and their

definition with res-

pect to their sym-

metry-properties. By Fi 92

the application of this

principle to the other possible classes, we shall arrive at all

possible simple forms of crystals, and thus the consequent develop-

ment of these ideas is best left to treatises on crystallography, as
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this book deals with general aspects of the subject only, rather

than with its applications to a special science 1

).

7. We, therefore, prefer to draw attention now to some other

subjects relating not only to the symmetry of crystalline matter, but

to that of physical phenomena and physical states in the broadest

sense of the word. Also in these questions we shall in most cases

not go into minute details of such phenomena, but content ourselves

with indicating the general way of deduction and only occasionally

shall we give some special illustra-

tions of what is said, by considering

some striking phenomena more in

detail. l

)

In this connection we must re-

member in the first place, that for

us those cases are of special interest,

in which the axis or the axes of

symmetry, have a period which is

infinitely small, n in the expression :

& = _ _ being infinitely great. We

have called axes of this kind, axes

of isotropy ;
and there are many phy-

sical phenomena in which they play a preponderant role. The

possible symmetries in systems which possess such axes of isotropy

are easily deduced, if the corresponding groups of symmetry be

Fig 93

*) It may be remarked that the same views hold in the case where not

the crystalforms, but the so-called "solution-bodies" are investigated. In general

these approximately polyhedral objects, limited by curved planes, and obtained

by the slow action of a solvent on a sphere cut from a homogeneous crystal,

are the polar-iorms of the crystal-forms. Therefore, they possess also the same

symmetry as these have. The solution-phenomena mentioned were first studied

by Lavizzari, and more in detail, with success by Goldschmidt and others.

Cf. also: L. Lavizzari, Nouv. Phenomernes des Corps cristallises, Lugano, 1865;

V. Spring, Zeits. f. phys. Chemie, 2, 13, (1888) ;
G. Cesaro, Ann. de Chim. et Phys.

17, 37, (1889); V. Goldschmidt and F. Wright, Neues Jahrb. f. Miner. (1903);

Beil. Bd. 18, 235, (1904); 26, 151, (1908); Zeits. f. Kryst. 38, 656, (1904);

50, 459, (1912); O. Miigge, Festschr. H. Rosenbusch, (1906). p. 96; A. John-

sen, 820 Vers. Deuts. Naturf. und Aerzte, Konigsberg, (1910); W. Burkhardt,

Inaug, Diss., Leipzig. (1911); W. Schnorr, Zeits. f. Kryst. 54, 289, (1914); etc.

*) Cf. also: G. Kirchhoff, "Vorlesungen iiber mathematische Physik" Mechanik,

page 389, 390. (1876), where the principle of symmetry is used in the study of

the phenomena of elasticity of solid bodies; ibidem, p. 240 243; 378; etc.
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considered as the limiting cases to which the endospherical groups,
the dihedron-groups Dn ,

and the cyclic groups Cn ,

-- both of the

first and of the second order, are approaching, when the number
n gradually increases.

On closer examination all endospherical groups appear to approach
then to two definite groups, which will be called spherical groups, and

to which we shall attribute the symbols Kg and K^ respectively.

The group Kg is characterised by the possession of an infinite

number of axes of isotropy, of an infinite number of symmetry-planes,
and by the presence of a symmetry-centre.

The symmetry of the group K^ consists in the presence of an

infinite number of axes of isotropy, but it does not possess any

symmetry-planes, nor a centre of symmetry.

The symmetry of the group Kg is the highest symmetry which

can eventually be attributed to a system. Each arrangement of an

infinite number of points deprived of all qualities, or which are

at least deprived of all "directional" properties, represents a system

having this symmetry; and even if directional qualities of a certain

kind are present, but the points are distributed in space in such a

way, that no preference whatsoever for any direction is manifested,

the directional qualities thus becoming effaced by this, the

system as a whole will yet have the symmetry Kg .

If, however, this effacing influence of the distribution in space is

not present, then the occurrence of such "directional" qualities will

have as a necessary consequence, that the symmetry of the system
becomes a lower one than that represented by the group Kg .

Thus, if the physical state of every molecule of an optically active

liquid be represented by a small portion of a screwthread, a

sphere filled with such a liquid can be considered as an object

having the symmetry of the group K^ ,

- - an infinite number of

axes of isotropy still being present, but no planes of symmetry,
nor a symmetry-centre.

Furthermore, there are five other groups possible which possess

a single axis of isotropy A^ ;
in connection with their intimate

relations to the dihedron- and cyclic groups of the first and second

order, we shall denote them by the symbols : Dg , Cg , D^ ,
C ,

and C^ respectively.

The group Dg has a single homopolar axis of isotropy A^ , a plane

of symmetry perpendicular to it, an infinite number of symmetry-

planes passing through A^, and a centre of symmetry.
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A cylindrical flask filled with a hypothetical, homogeneous, and

weightless liquid, may be mentioned as an instance of a system

having the symmetry D .

The group Cg possesses: a homopolar axis of isotropy A^,
a plane of symmetry perpendicular to it, and a symmetry-centre, but

no planes of symmetry passing through A^.
If a cylinder with circular base be rotated round its axis in a

2.

Group

vsfcL I -jJ

Group CH.

3. &

Group

(Holohedrism). (Pyramidal Hemihedrism). (Trapezohedral Hemihedrism).

'A
,.

5.

Group C. Group CM .

(Hemimorphic Hemihedrism.) (Hernimorphic Tetartohedrism) .

Fig. 94.

Symmetry-Groups with a single Axis of Isotropy.

definite direction with a constant angular velocity, the body as a

whole may be said to have the symmetry of the group Cg . Indeed,

if the rotating cylinder be reflected in a plane perpendicular to its

axis of revolution, the mirror-image is congruent with the cylinder

itself, while the image changes in no way by a rotation through an

angle of 180 round an axis perpendicular to the reflecting plane.
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And because the two operations mentioned are together equivalent
to an inversion, the rotating cylinder is evidently congruent with

its inverse image, which means that it has itself an inversion-centre.

The group D^ possesses a single homopolar axis of isotropy A^,
and an infinite number of binary' axes perpendicular to it.

As the group D^ does not possess a symmetry-centre (just as in

the case of Dn), the symmetry can be also described by considering

A^ as a screw-axis of infinitely small period, with an infinitely

small corresponding translation in the direction of the axis. The

binary axes mentioned are thus arranged like the infinitely low

steps of a spiral-staircase, be it dextro- or laevogyratory. There

are no planes of symmetry, nor a symmetry-centre present. If a cy-

lindrical rod be twisted by two equal but oppositely directed couples

at each of its ends, the whole system can be reckoned to have this

symmetry D^ .

The group C has a heteropolar axis of isotropy A^ ,
and an

infinitely great number of symmetry-planes passing through it.

It has neither binary axes, nor a symmetry-centre.
A truncated circular cone may be mentioned as an object having

this symmetry. Every vector which represents a force, a velocity,

etc., possesses the same symmetry; and it can be attributed also to

the electric current, or to the homogeneous electrostatic field of force.

Finally the group C^ has no other symmetry-elements than a single

heteropolar axis of isotropy A^ .

An upright circular cone which is rotated round its axis with

a constant angular velocity in a definite sense, is an instance of

an object having this symmetry. In fig. 94. some schematical figures

will elucidate what is said here in the above.

8. Although the five groups mentioned now possess, properly

speaking, an infinitely large number of non-equivalent symmetry-

properties, it can be easily understood, however, that the groups

Cg ,
C

,
and D^ only possess half, and C^ even no more than

a quarter of the symmetrical operations which are characteristic

of Dg, . They are related therefore to the last mentioned groups

as "sub-groups" are with respect to their "principal group", just

in the same way as hemihedral and tetartohedral crystal-classes are

related to their holohedral class of the same crystal-system. Indeed,

if by analogy, Z)g be considered as the holohedral class of the

"isotropous" system, Cg will represent the "pyramidal", D^,
the "trapezohedral" and C the "hemimorphic" hemihedrism
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of that system, while C^ may be considered to be a "tetartohedral"

class of it. P. Curie pointed already in 1884 to this analogy of the

groups considered with those of the ordinary crystal-systems.
l

)

9. Now we must draw closer attention to the question: how
is it possible to speak of the "specific symmetry" of a physical phe-

nomenon, of a physical state, or of a physical medium?

As long as an unlimited system is considered, built up by a very

great number of points deprived of all special qualities, such a system
as a whole can only possess the symmetry of the group Kg .

But if every point P of the system under investigation has itself

vectorial properties, defined by magnitude and direction, the system
shall have the lower symmetry of one of the groups Dg, Cg,
C

, Z)^ ,
or C^ ,

- - namely as long as the previously mentioned

condition is fulfilled, that the distribution of the points in space does

not show a lack of preference for some particular direction, because

in that case the vectorial qualities would become effaced in the

whole. As long as in P or in its immediate environment only scalar

properties (temperature, density, etc.) are concerned, which are

functions of the coordinates of P, the symmetry of the system will

also be no other than that of the group Kg .

For determining the physical state in every point P of such a

system, it is necessary to consider an infinitely small volume-element

in the immediate vicinity of P. Such a volume-element can have

a certain symmetry; the parameters by which its momentary state

is characterised, can be the same or different in the various points

P, P', P"
,
etc. of the system, according as the system is a homo-

geneous or an inhomogeneous one.

Now the vectorial qualities in a volume-element round every

point P can in most cases be represented by a certain suitable figure

/, which we shall call the "image" of the physical state in P. We
can consider in this way the "image" of a single molecule, or of a

group of molecules, or of a volume-element yet containing a very

great number of such molecules, which in this last case however

are not considered in it separately. Finally, it may be desirable to

consider the symmetry of a system or of a body as a whole. But

the "image" / must always be chosen in such a way that it really

describes the physical state to be investigated, as completely as

possible, and often it is by no means an easy matter to find out the

l

)
P. Curie, Bull, de la Soc. Miner. 7, 418, a. f., (1884).
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suitable form of / for this purpose. If this really be the case, the

figure / must be of such a nature that, if in P three coordinate-axes

OX, OY, and OZ are taken parallel to those of the whole system under

investigation, the general coordinates of P with respect to the coordi-

nate-axes of the system will appear also in the analytical expressions
which determine the image / with respect to the axes X, Y and Z.

A velocity, a force, etc., may thus be represented by a heteropolar

vector (arrow) in P, determined by direction and magnitude, and

having the symmetry C . But there are a number of physical pheno-
mena for which the choice of the "image" in every point P of the

system is not so simple : in the case of a liquid endowed with optical

activity e.g., the symmetry may be represented by a portion of a

small screw, with its axis varying in direction from one point to the

other.

In this connection it may be remarked, that a body or a medium
in which all kinds of physical phenomena can take place, may be

considered with respect to its symmetry-properties from several

standpoints: we can speak of the symmetry of the medium itself,

in so far as that symmetry is attributed to it from the point of view

of its molecular arrangement (crystals e.g.), or with respect to the

whole complex of phenomena observed in it ;
or we can more particu-

larly draw attention to the symmetry of the medium with respect

to a certain group of phenomena, or finally with respect to a special

phenomenon only. In a similar way we "can speak of the symmetry
of a group of phenomena, or of the symmetry of a special phenomenon.
In all such cases we must know either the effects produced, or the

causes which produce these effects
;
and the above mentioned image /

must represent certain elements of symmetry which we attribute

to the effects, or to the causes, if it should be really considered to

fulfil the condition, that it gives a complete description of the pecu-

liarities of the phenomenon under investigation. If this be the case,

the image / is indeed suited to its purpose ;
and then it will be possible

for us to bring the considerations on symmetry-properties, as devel-

oped in the previous chapters, into the range of the phenomena

investigated.

10. With respect to the connection of the symmetry of causes

and of the effects produced by them, we can now conclude from the

facts observed up till now, that differences of symmetry in the causes,

or in the special circumstances, can generally be manifested also

in the effects produced, but that this is not absolutely necessary in
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every case 1

). On the other hand: differences of symmetry in the

effects observed can only be possible, if they are present likewise

in the determining causes or circumstances.

A pencil of polarised light travelling in the ether, has undoubtedly a

lower symmetry (Z)f)
than the ether itself (K&), which lower symmetry

is of course connected with the absence of certain symmetry-elements
in the luminous source from which the polarised light takes its origin.

But the whole complex of light-phenomena (radiations) in the

ether, or in a crystal of calcite, etc., caused by this luminous source,

has certainly the same symmetry (Kg) as that of the ether, or a

higher symmetry (>g) than that of the calcite-crystal.
2
)

From this and analogous examples we can in general conclude

that a lack of symmetry-properties in the causes of physical pheno-

mena, can, (and as a matter of fact in by far the greater number

of cases will) be manifested also as a lack of symmetry-properties
of the effects produced, but that this need not always be the case.

From the absence of symmetry-properties in the effects observed,

however, it is certainly necessary to conclude that there is a similar

lack of symmetry-properties in the producing agents.

In other words: the effects may occasionally have the same or a

higher symmetry than the causes, but the last cannot have a higher sym-

metry than the effects observed.

It is, moreover, worth remarking in this connection, that symmetry-

properties which are present in all causes, and in all circumstances

governing a certain phenomenon, are necessarily always found in

the effects. However, we must always be sure that the number of

causes considered is really complete; evidently it is in many cases

hardly possible to get full assurance of this.

1
)

The occurrence of the phenomena of pyro- and piezo-electricity in crystals

is dependent on the special symmetry-character of the medium
;
the molecular

arrangement of it must, therefore, be taken into account as one o fthe "causes"

governing the physical phenomena mentioned above. On the contrary: light-

radiation may be arbitrarily produced in any crystalline medium under all circum-

stances; the possibility of its occurrence is here quite independent from the special

symmetry-properties of the medium itself. In the latter case, therefore, the

medium is not to be considered as a true physical "cause" in discussions of this

kind, as far as the possible manifestation of the phenomenon is concerned.

2) The "image" / of the phenomenon of the propagation of rectilinear

polarised light in a calotte-crystal, can be represented by a rotation-ellipsoid

in every point P, with its axis of isotropy parallel to the trigonal axis of

this ditrigonal crystal. (See further on).
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11. After the general remarks on the dependence of the sym-

metry-character of causes and effects in physical phenomena we
return to the consideration of some special symmetry-properties
of certain physical states and to the question, in what way several

simultaneously acting causes can cooperate as a resulting cause,

producing certain effects. l

)

If a crystal of calcite is traversed by rectilinear polarised light,

and if we wish to give an exhaustive description of the way in which

the propagation of light-waves takes place therein, experience

teaches us that it is sufficient for this purpose, if we adopt as the

"image" of the phenomenon in every point P a rotation-ellipsoid

of certain dimensions and with its axis of isotropy parallel to the

ternary axis of the crystalline medium. The symmetry of the image

/ is now, as already stated, Z)g ,

while that of the crystalline me-

--VLV.T dium, as concluded from its

- - - molecular structure or from its

____~^ cohesion-phenomena, is only that

- _ __ _ of the group D. The last group
XT JT

~
is a sub-group of Z)g ,

a fact

to be remembered in what follows.

Fig. 95. In the same way, if we ask:

what symmetry is to be attributed

to the homogeneous electric field, as e. g. it may be produced
between two parallel, infinitely extended, condensor-plates, the

answer is, that we can attribute to it the symmetry of the group C ,

the parallel lines of force of the field having the direction of the

axis of isotropy A^ .

If now the last mentioned symmetry is given to the image / which

describes the physical state of every point P of the electric field,

the question may rise, whether the special symmetry of the image /

describing the physical state in every point P of the homogeneous

magnetic field be the same or perhaps another?

Now, it is a wellknown fact that the action of a magnetic field

at each point P can be imagined to be produced by an electric current

of a definite direction, flowing in a circular circuit round P as its

centre, and with its plane perpendicular to the lines of force of the

J
)

Cf. P. Curie, Journal de Physique, (3), 3, 407, (1894); Bull, de la Soc.

Min., 7, 89, 418, (1884).
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magnetic field. The image f in P may, therefore, be suitably taken

as a circle with P as centre, with its plane perpendicular to the

parallel lines of force of the field, and with a heteropolar vector

(arrow) indicating in every point of the circuit the intensity and

direction of the current.

From this it follows that the homogeneous magnetic field can

have neither planes of symmetry passing through its axis of isotropy,

nor binary axes perpendicular to the lines of force. Moreover, if

the field is reflected in a mirror perpendicular to the lines of force,

the direction of the current in the mirror-image so obtained is

evidently the same as in the original field. The action of the field

remains, therefore, unchanged by the reflection. J

)

In other words: the magnetic field must itself possess a plane of

symmetry perpendicular to its lines of force, and a centre of sym-

metry also.

Thus we are compelled to attribute to the homogeneous magnetic
field the symmetry of the group Cg previously mentioned.

It is worth while remarking here, that this result is essentially

dependent on the symmetry attributed above to the electric field,

or to the electric current (C<). Indeed, the connection between

the different physical phenomena, as proved by experience, makes

it necessary that definite relations must also exist between their

special symmetries, in the same way as between their dimensions.

If for some reason or other we had primarily attributed the sym-

metry Cg to the electrostatic field, we should have to give to the

magnetic field the symmetry previously attributed to the electric

field, i.e. C . The electromagnetic phenomena themselves determine

this reciprocal relation: and the whole question is, as closer exa-

mination shows, evidently settled, as soon as it has become clear

what one wishes properly to consider as the "mirror-image of an

electromagnetic field" 2
).

If it be postulated that also in "the mirror-image of the elec-

1
)

Cf. also: A. Perrier, Archives des Sciences phys. et nat. Geneve, (5), 1,

124ieme annee, p. 243, (1919).
2

)
On this side of the problem my attention was kindly drawn by Prof.

H. A. Lorentz, to whom I am indebted for some valuable remarks here; cf. also:

A. Perrier, Ann. des Sciences phys. et natur. Geneve, (4), 41, 493, (1916); 45,

73, (1918); 46, 243, (1919), who, from this general point of view, treats here the

pyro-inductive and pyro-electrical phenomena, and the transformation of heat

into electrical energy by periodical variations of temperature.

7
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tromagnetic field", the general relations between electric and mag-
netic quantities shall preserve their validity, and that, therefore,

the said mirror-image shall also have the function of a possible electro-

magnetic system, then we have to decide which of the two following

standpoints we wish to adopt:
a. Either in the mirror-image we can take as electric vectors

(electric force, current, dielectric polarisation) the mirror-images
of the original electric vectors, and as magnetic vectors (magnetic

force, magnetic induction, etc.) the inversed mirror-images of the

original magnetic vectors;

b. Or in the mirror-image we can take as magnetic vectors the

mirror-images of the original magnetic vectors, and as electric

vectors the inversed mirror-images of the electric vectors in the

original electromagnetic field.

In fixing our choice in the way first mentioned, we have in a

homogeneous electric field symmetry-planes passing through the

lines of force, in the magnetic field, however, a single symmetry-plane

perpendicular to the lines of force. But in fixing our choice in the

second way, the functions of the electric and magnetic fields are

exactly interchanged.

Now there are "mechanical" theories of the electromagnetic

field, which are founded on the first conception; but there are also

theories which start from the second point of view. However, if

we should wish to describe the electromagnetic phenomena in

certain cases by the motion of ions or electrons, which has many
and wellknown advantages, the first standpoint is certainly

more convenient. These motions then, and the moving ions or

electrons themselves can be looked upon as reflected in a plane,

and it might be imagined that electric charges are attributed to

the "reflected ions" or electrons with the same algebraic sign as

they have in the original electromagnetic field. In this way a

description of the phenomena in the "mirror-image" will be possible

just in the same way as if we were dealing with the original

field; and the mirror-image is thus in truth a "possible" electro-

magnetic system, fulfilling the above mentioned condition of

the preservation of the general relations between the electric and

magnetic parameters.
From this it will now be clear that the symmetries attributed

to physical phenomena are really relative symmetries, determined

by the general relations between the different natural phenomena
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themselves, and by the particular choice of the symmetry primarily

given to a certain phenomenon which is considered as the starting-

point for the definition of the others related to it.

12. The symmetry of the "image" / in any point P of a phy-
sical system determines the maximum symmetry compatible with the

occurrence of the phenomenon considered in P. The phenomenon,

namely, can occur in a medium, if its symmetry is the same, or if

it is that of a sub-group of the symmetry characteristic for the

phenomenon in question.

If we have a crystal of turmaline, whose symmetry with respect

to the cohesion-phenomena (which are closely related to its internal

structure), is that of the group Cf, and if this crystal be heated

uniformity to a certain temperature, the symmetry of the crystal

is of course by this scalar change altered in no respect; it remains,

as before, C%. But C% is a sub-group of C
;
and therefore the

possibility exists that a dielectric polarisation, the symmetry of which

is precisely C ,
will occur in the heated crystal: as Curie expressed

it in his way: "c'est la dissymetrie, qui produit le phenomene".
Nevertheless nothing has yet been said about the true magnitude
of the expected phenomenon, nor about the real necessity of its

occurrence. It is possible that the effect is, for instance, so extremely

small, that it cannot be tested by any experimental method now
available *) .

The same is the case if a crystal of quartz be compressed homo-

geneously parallel to the direction of one of its heteropolar binary
axes: the direction of the binary axis remains heteropolar as before,

so that an electric potential-difference can eventually occur at both

its ends. Similar symmetry-relations occur if a planparallel crystal-

plate, cut perpendicular to a binary axis, be compressed in the

direction of the ternary axis of the quartz-crystal. In the two cases

here considered, this dielectric polarisation could really be detected

by experiment, because its magnitude was sufficient to be measured.

In this connection attention may be drawn upon the remarkable

fact, that the piezo-electrical polarisation produced by homogeneous

1
)

It is a curious fact, for instance, that the theory of Stokes on the con-

ductivity of heat in certain crystals, as scheelite, etc., could not be verified

by experiment until now. The existence of the so-called "rotatory coefficients"

in the equations of Stokes' theory, could not be demonstrated up to the present;

cf.: C. Soret, Journ. de Physique, (2), 2, 241, (1893); Archives d. Sc. phys. et nat.

de Geneve, (3), 29, 355, (1893); ibid. 32, 631, (1894). .
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deformation in the direction of the binary axes of a quartz-crystal,

suddenly disappears as soon as a temperature of 580 C. is reached l

),

because the /3-quartz stable at temperatures above 575 C. has a

higher symmetry than the ordinary trigonal-trapezohedral quartz-

modification (^-quartz), while the symmetry of the primary cause

producing the effect remains the same in both cases.

That such phenomena can really occur in a crystalline medium
which has the symmetry of a sub-group of that group to which

the proper symmetry of the phenomenon under investigation

belongs, is elucidated by the fact that the symmetry of a crystalline

medium is in reality a minimum symmetry, namely the lowest degree

of symmetry, beneath which the symmetry of any physical pheno-
menon observed in the crystal can never sink. Somewhat different

is the case, when phenomena can be produced in the crystal under

all circumstances, as e. g. luminous radiation. In truth, their sym-

metry appears to be much higher than that attributed to the medium

itself according to its cohesion and molecular structure, i. e. than

that of the "crystal-class", to which it belongs. In such cases the

possibility of the occurrence of the said phenomenon (here: radia-

tion), is not dependent, properly speaking, on the special nature of

the medium, and the latter can therefore not be looked upon as

to be a real physical "cause" of the phenomenon under consideration.

These higher symmetries of the phenomena observed are such,

that certain symmetry-elements which are characteristic of thes

phenomena under all circumstances, are added to those of the

crystal-class to which the crystal belongs.

13. As an illustration of this we wish to consider the symmetry
which a crystal will manifest with respect to the diffraction of

Ron tgen-rays, if a planparallel plate cut from it in some known

direction is traversed by a narrow pencil of such rays perpendicular

to its surface. This highly important phenomenon was discovered

by Von Laue 2
)
some years ago, and has since been studied by

several investigators in different ways, and with particular success

*) A. Perrier, Archiv. des Sciences phys. et natur. Geneve, 41, 493, (1916).

Indeed, it is commonly assumed that the ^3-form
of quartz, stable above 575 C,

belongs to the hexagonal-trapezohedral class (D$). In that case the binary

axes do not possess a "polarity" any longer, as they do in the ordinary a-quartz

with its principal axis of odd period. (Cf. also: page 39, and fig. 34 and 35

respectively) .

2
)

M. Von Laue, Friedrich and Knipping, Sitz. Bayr. Akad. d. Wiss. Miin-

chen, (1912), p. 303.
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by Bragg Sr. and Jr.
l

), and by P. Debije. However, we will not

consider these remarkable and fundamental investigations in detail

now, but only draw attention to the question of the symmetry of

the obtained Ron tgen-patterns.

Now the close analogy of the R on t gen-radiation with that of

common light, is also expressed in the fact that under all circum-

stances the Rontgen-radiation is a centrically-symmetrical pheno-

menon, every Rontgen-ray having a centre of inversion.

The result obtained in crystals will therefore, according to what

was said before, always be as if the inversion were added to the

characteristic symmetry-properties of the crystal; i.e. as if the

Quartz.

XX

Turmaline.

Fig. 96.

Calcite.

patterns obtained originated from a crystal whose symmetry in com-

parison with the actual one is enriched by a centre of symmetry.
2
)

Let us see if experience is in accordance with this conclusion. For

that purpose we will compare the results obtained with plates

similarly cut from the trigonal crystals of turmaline, calcite, and quartz,
*

which have successively the symmetry of the groups C V
3 , Z>?, and

Z)3 , being thus radically different in this respect in all three cases.

In fig. 96 the projection-figures drawn after Gadolin's method,

may elucidate the arrangement of the different symmetry-elements
in the three minerals considered.

We will suppose that sections through these crystals are prepared

A
) W. H. and W. L. Bragg, Proceed. Roy. Soc. London; 89, A, 277, 477,

(1913); Zeits. f. anorg. Chemie, 90, 255, (1914); P. Debije, Phys. Zeits., 17,277,

(1916); 18, 291, 483, (1917).

For the special questions dealt with here, see the papers of: G. Friedel,

Compt. rend, de 1'acad. d. Sc. Paris, 157, 1533, (1913); F. M. Jaeger and

H. Haga, Proceed. Akad. van Wet. Amsterdam, Vol. 16, 17, and 18. (19141916);
F. Rinne, Ber. d. math. phys. Kl. der Sachs. Akad. d. Wiss. Leipzig, (1915),

/. 303; //. 11; etc.

2
) A similar conclusion has already previously been drawn by G. Friedel,

Compt. rend, de 1'Acad. Paris, 157, 1533, (1913).
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parallel to the basal plane (0001), to the prism-face (10TO), and

to the face (T2TO) of the second prism.

In turmaline the basal section has thus a ternary axis and three

symmetry-planes perpendicular to it, the section (1010) has no

symmetry-element whatever perpendicular to it, while the section

(F210) has only a vertical plane of symmetry, perpendicular to the

surface of the crystal-plate.

In quartz the basal section has only a ternary axis perpendicular

to it, the section (1010) has no symmetry-elements whatever per-

pendicular to its plane, and the section (T2TO) has only a binary-axis

perpendicular to it.

In calcite the basal section has a ternary axis and three planes

of symmetry, all perpendicular to it; the section (1010) possesses

a vertical plane of symmetry perpendicular to its surface, and the

section (1210) has a binary axis perpendicular to its plane.

The Ron tgen-radiation, however, has in all circumstances a centre

of inversion. Thus, if this symmetry-centre, according to the thesis

above explained, be added to the symmetry-elements of the three

crystals considered, the symmetry of the calcite will not appear to

alter, because calcite already possesses such a centre of symmetry.
But if we remember (p. 16) that the combination of a binary axis

and a symmetry-centre has as a consequence always the existence

of a symmetry-plane perpendicular to that axis, and vice versa, -

it will be evident that in quartz there will be produced three planes

'of symmetry by the addition of the symmetry-centre mentioned,

which planes are all perpendicular to the binary axes already present,

and thus will bisect the angle between the others, passing at the

same time through the ternary axis of the crystal.

In the same way in the turmaline-crystal three binary axes per-

. pendicular to the existing vertical symmetry-planes will be produced

by the addition of the symmetry-centre, and of course these axes

will bisect the angle between every pair of successive planes of

symmetry. The symmetry of both kinds of crystals thus will evi-

dently be changed into the same as that of calcite (D
D
3 ). The result

is, therefore, that the Ron tgen-patterns obtained in all three cases

will show the same symmetry, as if they originated from three crys-

tals, every one of which possesses the symmetry of the group Z)?.

If the sections parallel to (0001), (10TO), and (T2lO) are traversed

by a thin pencil of Ron tgen-rays exactly perpendicular to their

surfaces, the result will be that the patterns obtained with a
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crystal-plate parallel to (0001) will show a ternary axis and three

symmetry-planes perpendicular to the plane of the photographic

plate; with a crystal-plate parallel to (1010) a single vertical plane

Fig. 97 a c.

Stereographical Projection of the Rontgen-patterns of quartz, turmaline

and calcite. Plates parallel to 0001$.

of symmetry perpendicular to the photographic plate; and with

Fig. 98 a c.

Stereographical Projection of the Rontgen-patterns of quartz, turmaline,

and calcite. Plates parallel to

a crystal-plate parallel to (1210) it will show a single binary axis

perpendicular to the photographic plate. *)

In fact, our experiments completely confirm the conclusions drawn

here. In fig. 97 a c, 98 a c, and pp a c the Stereographical pro-

jections of the Rontgen-patterns are reproduced, as they were

*) A binary axis perpendicular to the photographic plate, manifests itself

in the photographs as a centre of symmetry of them
;
a centre of symmetry in

the crystal is not manifested in the patterns itself,
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obtained by H. Hag a and the author 1
) in the case of the three

minerals discussed here. There can be no doubt whatever about

the full agreement between the experimental results and the theo-

retical deductions.

That in all cases of crystalline symmetry this agreement really

takes place, and that, therefore, conversely it may be safely concluded

that the Ron t gen-radiation is in all circumstances actually a

centrically'-symmetrical phenomenon, was demonstrated for the first

time by the same authors l
)

in a series of papers, in which were

described experiments with crystals of almost all the 32 classes

of crystallography.

If accidental abnormalities, caused by occasiona lirregularities

Fig. 99 a c.

Stereographical Projection of the R 6 nt g e n-patterns of quartz, turmaline,

and calcite. Plates parallel to J12TOJ.

of the molecular structure or by twinning-phenomena, be left out

of account here, we can say that the centrically-symmetrical nature

of the radiation considered, as well as the agreement of the theore-

tically deduced and experimentally found symmetry of the R on tgen-

patterns, have now been exactly stated in all cases.

14. The same thesis about the apparent increase of symmetry
of a crystalline medium in which a phenomenon of a special sym-

metry occurs, appears to be true for all other physical phenomena
in crystals. In the same way we find that the 32 possible symmetry-
classes of crystallography are reduced to the following eleven:

/, Cl, D1
}, Cl, D?, Cj, CD3 , Cl, D?. T", and K*.

for all phenomena which have likewise a centrically-symmetrical

!) H. Haga and F. M. Jaeger, Proceed. Akad. v. Wetenschappen Amster-

dam, Vol. 17, 18, (1914 '16). On accidental abnormalities of the patterns of

quartz caused by twinning, vid. the papers mentioned here.
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character, and experience has readily confirmed this conclusion.

We may also ask: to which and to how many classes will the

phenomena of pyro- and piezo-electricity appear to be restricted,

phenomena for which the absence of a symmetry-centre appears

to be precisely the striking feature?

According to a theory of W. Voigt
1
) on pyro- and piezo-electric

phenomena in crystals, in which theory the electric momentum in

such crystals is thought to be determined by the deformations which

are the consequences of the temperature-changes or of the compres-
sions or dilatations to which the crystal is subjected, the said pheno-
mena may occur in twenty of the 32 crystal-classes : of course they
will not be manifested in the eleven centrically-symmetrical crystal-

types just mentioned above, or in the crystals of the group K, which

do not possess any heteropolar axes. In the remaining groups
such dielectric polarisation may occasionally occur, if circumstances

are advantageous; and the difference of potential can then manifest

itself at both ends of any heteropolar axis.

In an analogous way we can answer the question: to how many
symmetry-classes will the number thirty-two be reduced, if the physi-

cal phenomena considered should be described by means of an

"image" /, having the shape of an ellipsoid? Such is the case in the

phenomena concerning the propagation of light-waves, of heat, of

electric currents, of magnetic induction, etc. 2
). The number of the

possible symmetry-groups will then appear to be reduced still more,

as is universally known to every mineralogist with respect to the

optical properties of crystals.

15. Something analogous to what was said in the case of phy-
sical phenomena occurring in crystalline media of a certain symmetry,
will be the case if two physical causes, each having its own symmetry-
character, be superposed in such a way that each of them can con-

tribute its share to the resulting effect. The complete cause will then

act as having only the symmetry-elements which are common to

both component causes. The symmetry of the resulting effect will thus

also be generally of a lower degree than that of each of the causes

separately; but as we have already mentioned, this need not always
be the case, the effect having possibly also a higher symmetry. If

!) W. Voigt, Abh. der Ges. der Wiss. Gottingen, 36, (1890); Phys. Zeits., 17,

287, 307, (1916); 18, 58, (1917).
2
)

Th. Liebisch, Grundriss der physikalischen Krystallographie, (1896), p.

177183.
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all determining causes of the effect .finally produced were fully

known, then of course the symmetry-elements appearing in the

complete set of causes must be characteristic also of the special

symmetry which is exhibited by the effects produced
x

)
.

The group C^ is a common sub-group of the symmetry-groups
C

, Cg , and D^ . If now two causes having the symmetry of two

of the groups mentioned, be superposed in the way stated, they
will act as a single cause having the symmetry C^ ,

and the effect

produced will have this symmetry or that of the higher symme-
trical group C . Some examples will make this clear.

If a soft iron rod, through which an electric current (C )
is passed,

be placed simultaneously in a homogeneous magnetic field (Cg),
the lines of force of which are parallel to the direction of the rod

and of the current, the iron rod will show a torsion (D^ or C^),

produced by the cooperation of both causes. Indeed, with the ap-

paratus shown in fig. 100, this effect (Matteuci-Wiedemann)
2
)

can be easily demonstrated, even as a lecture-experiment. The

thick iron-wire I, bearing at its one end a weight P of about 100

grams, can turn freely round a sharp steel-axis e, placed in the

mercury-cup Q. The current is introduced through the mercury
and the steel-axis e. The sudden magnetisation of the iron-wire

is brought about by means of a solenoid 5, and the resulting torsion

is demonstrated by the deviation of a light-beam reflected at

the small mirror a, which is fixed to the steel-axis. This deviation

1
)
The theorem that a certain lack of symmetry-elements in the causes will

usually manifest itself by the lack of certain symmetry-elements of the effects
,

needs some further comment. It holds only, if the causes be independent on

each other, if no one of them be preponderant in its influence, and if the

number of the governing causes be a limited and a relatively small one. If

this number, however, is very great, as e. g. in cases where merely statistic effects

are considered, the dissymmetry of one or more causes is, or at least need

not be manifested as a dissymmetry of the effects produced by their co-

operation (J. C. Kapteyn Skew frequency-curves in Biology and Statistics,

Groningen, 1916). In physical phenomena, however, the number of producing

causes is never a very great one; in such cases the considerations held here

will certainly be of use.

2
)

C. Matteuci, Ann. de Chim. et Phys., (3), 53, 385, (1858); G. Wiedemann,

Pogg. Ann., 103, 571, (1858); 106, 161, (1859); Baseler Verh., 2, 169, (1860) ;

E. Villari, Pogg. Ann., 137, 569, (1869); G. Gore, Proceed. Roy. Soc. London,

22, 57, (1874); Transact, idem, (1874), 529. On the Wiedemann-effect in

the case of wires of cobaltum, cf. : K. Honda and T. Shimizu, Phil. Mag., 5, 650,

(1903); H. A. Pidgeon, Physical Review, 13, 209, (1919).
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can be made visible to an audience by means of a divided scale

on the wall of the lecture-room.

The dependence of the direction of the torsion on that of the

current and the magnetic field (N == north, S = south pole), is

shown in fig. ioi\ this drawing needs no further comment.

Evidently we have to deal with the superposition of two causes

having the symmetries C and Cg, with their axes of isotropy

parallel to each other, giving as effect

a torsion of the symmetry D^ or

C^ . In accordance with the fact

that these relations between the three

groups are reciprocal, a magnetised
steel-wire in its turn, if twisted by a

force at both its ends, will show a

difference of potential (current) produ-
ced in it, the presence of which can

be easily demonstrated by the induction-

current it produces in an encircling

solenoid. Here also the superposition of

the magnetic field (Cg ) and the torsion

(DOO ) or
CQJ, ,

will have a result of the

symmetry C^ ,
and this group C^ being

a sub-group of Cg, the occurrence of

an electric current having the latter

symmetry is compatible with the

superposition of both causes.

In the same way a soft iron rod will

become a magnet if an electric current

passes through it, while the rod is twisted

by a force applied to one of its ends;

the other end is held fast. This pheno-
menon can also be easily demonstrated

by means of the induction-current which the magnet produced
will start in an encircling solenoid. It is a fact worthy of

attention, that the free electrons of the iron rod moved by the

electric force, are not the same as the electrons which are attached

to the iron-atoms themselves and whose motion is the cause

of Ampere's "molecular currents". The kinetic energy of both

kinds of electrons in the metal must, therefore, be interchanged to

and fro in some way or other, because in experiments like these,

Fig. 100.
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0,

1
b. b.

there must evidently exist definite connections between them.

16. French authors especially
l

)
have frequently pointed to

the fact that for the description of physical relations it is often

more desirable to bring to the fore the absence of some symmetry-

properties (i. e. ^'ssymetry), rather than to deal with the presence

of other symmetry-properties, as we have done in the preceding

paragraphs. Indeed, in the course of our considerations we have

already been able to draw attention to this fact.

If in a crystalline medium there is no centre of symmetry, or if

the principal axis of a crystal

be heteropolar, i. e. if no

binary-axes, nor asymmetry-

plane is perpendicular to

it,
- then the absence of

these symmetry-elements
will make it possible that

an electric field with a sym-

metry C eventually occurs,

in which the symmetry
centre, the binary axes, and

the symmetry-plane per-

pendicular to the lines of

force, are also lacking. The

same is the case if two

causes are superposed to a resulting cause, which gives an effect

in which both components take a part. If the superposition of an

electric and a magnetic field occurs in such a way that their axes

of isotropy are not parallel, but perpendicular to each other, the

only remaining symmetry-element of the resulting cause is a plane

passing through the axis of the electric field and perpendicular to

the magnetic lines of force.

The electric current which in this arrangement of both fields is

observed in crystallised bismuthum (Hall-effect), may be considered

as an effect, the occurrence of which is in full accordance with the

absence of definite symmetry-elements in the producing cause 2
).

For such electric current has no plane of symmetry perpendicular

1
)

Vid. e. g. : L. Pasteur, Deux Lemons sur la Dissymetrie Moleculaive pro/essees

devant la Socttti Chimique de Paris, (1860); P. Curie, Journal de Physique,

(3), 3, 407, (1894).

2) Cf. also: H. A. Lorentz, Versl. Kon. Acad. v. Wet. Amsterdam, 19, p. 219,(1884).

I. II
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to its direction
;
therefore at least in one of its causes must that sym-

metry-element lack too. Now in the above mentioned superposition,

conditions have become such as to make the occurrence of the

electric current possible: neither the electric field alone, nor the

magnetic field alone, can be the cause of the Hall-phenomenon
in a direction perpendicular to the plane of the current and the

magnetic lines of force
;
but if both be combined, the symmetry-centre

of the magnetic field, as well as the symmetry-planes of the electric

field,
- - with the exception of the single one just mentioned, -

will disappear, and now really all circumstances of symmetry (or

of Asymmetry) in the resulting cause will become such as to be

compatible with an eventual occurrence of the electric current (C ) ,

as is observed in the Hall-effect.

In the same way the motion of the string in Einthoven's string-

galvanometer, or that of the electric arc in the Birkeland-Eyde-
furnaces, will be symmetrical with respect to a plane passing through
the electrodes, or perpendicular to the lines of force of the mag-
netic field applied.

However, the magnitude of such a predicted or expected effect

must be investigated in every case by special experiments ;
as already

stated, it may be too insignificant to be detected by the usual

experimental methods. The general reasonings only teach us that,

if such an effect be produced by two superposed causes, the dis-

symmetries of the last are added to each other, and the symmetry
of the effect must be in accordance with the higher degree of dis-

symmetry (i. e. the lower symmetry) thus produced.
The views concerning the symmetry or the dissymmetry of causes

and effects are principally identical : but in the one case is the chief

attention drawn to the symmetry-properties still present, in the

other case to the symmetry-properties which have disappeared.

17. It may be remarked, moreover, that a number of problems
which can only be answered in the experimental way are connected

with the views developed in the preceding paragraphs.
If only the superposed physical conditions be such that an effect

resulting from the interference of them may be expected with some

probability, it is worth trying such an experiment tentatively.

Thus it may possibly be found that a difference of potential would

be observed with two electrodes plunged into a liquid of strong optical

rotatory power, if this fills a tube and be placed in a strong homo-

geneous magnetic field, having its lines of force parallel to the axis
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of the tube and to the direction of an incident beam of polarised

light; and vice versa.

If in a superposed magnetic and electrostatic field, with their

lines of force parallel to each other, a chemical reaction takes place

in which a racemic acid or base combines with an inactive base or

acid, it might under favorable circumstances perhaps be observed

that the reaction-velocities of the dextro-, and laevogyratory com-

ponents of the racemic substance which combines with the inactive

compound, were not the same, and that an optical activity of the

reaction-mixture were thus produced during the reaction. If such an

effect could really be demonstrated, the fact would be of the highest

importance with respect to the eventual origin of the first optically

active substances on earth, i. e. with respect to the primitive question

of the complete "asymmetrical synthesis" of organic molecules. It

cannot be predicted a priori whether such effects will manifest

themselves or not
;
and even if their possibility appear from theore-

tical reasons to be most probable, their magnitude, as was already

stated, may be so small as not to be detected by any experiment.

Only continual attempts in this direction can bring real progress in

such cases. Perhaps promising experiments of this kind could be

made by investigating the influence of superposed magnetic and

electric fields on crystallisation-phenomena of salts containing iron,

cobalt or nickel
;
or by trying to establish the fact of the predomi-

nant crystallisation of one of both enantiomorphous crystalforms

from solutions of substances such as sodiumchlorate, the molecules of

which are doubtless themselves enantiomorphous, and can evidently

congregate to dextrogyrate or laevogyrate structures.

It would be of interest also to investigate if a substance, the mole-

cules of which have an enantiomorphous or asymmetrical structure,

would possibly show a magnetic polarisation if placed in a strong

electrostatic field. Objects of this kind might be found amongst
the crystals of the remarkable mirror-stereoisomerides of complex

salts, as [Co(Eine)3}X3 and {Fe(Phen)3}X2 ;
etc. 1

)
Some ex-

periments with these objects and others, on the relative decom-

position-velocities of both antipodes in photochemical reactions

under the influence of dextro- or laevogyratory, circularly pola-

rides light, have been tried in the author's laboratory, but without

a positive result up to this date.

x
)

In these formulae: Eine = Ethylene-diamine: C
Z
H

4(NH2)2 ,
and Phen =

ar(ortho)-Phenantroline :



In general we may say, that there can be hardly any doubt about

the fact that the remarkable symmetry of the physical properties

of solid crystallized matter, must find its primary cause in the

special symmetry-properties of the smallest constituting particles

themselves and in the characteristic symmetry of the moving systems,

we call atoms. However, the modern views on the intimate structure

of these atoms, with their complicated architecture of electrons

rotating round a minute centre (Rutherford, Bohr, Debije, etc.),

are at this moment still too hypothetical and uncertain to allow more

detailed attempts here to be made towards the solution of the nume-

rous problems associated therewith. This must be postponed as a

task for the future, to be begun as soon as more exhaustive and certain

information about the structure of the atoms shall be available.

18. Finally a few remarks on another subject. In the preceding

paragraphs we have not dealt with the symmetry in the arrangement
of numerical data as they are often found as the result of statistic

investigations on a great number of facts, because this subject is,

properly speaking, merely a chapter of pure mathematics.

That there are often to be detected symmetrical arrangements of

numbers in cases x

)
of numerical arrangement, where series of such

data are considered, to which the calculus of probabilities (fre-

quency-curves, etc. 2
)
can be applied, is a wellknown fact (binomial

coefficients, etc.). This symmetry manifests itself for instance in the

numbers obtained by Gr. Mendel in his famous researches con-

cerning the heredity of properties in plant-hybrids, and in the

corresponding work of several other investigators.
3
)

Instances of this kind may easily be augmented; however, it is

not our purpose to go into details here, but simply to draw the

attention of the reader also to these occurences, which represent

more especially a chapter of the general theory of numbers.

About the symmetrical arrangement of some organs in plants,
- a problem which is closely related to the kind of problems men-

tioned here, we will say something at the end of the next chapter.

*) Cf. also: A. Sommerfeld, Die Naturwissenschaften, 8, 61, (1920); V. Gold-

schmidt, Ueber Harmonie im Weltraum, O s tw a 1 d's Ann. der Naturphilos., 5, 51 .

2
) J. C. Kapteyn, Skew frequency-curves in Biology and Statistics, Gro-

ningen, (1916); on symmetrical probability-curves, cf. also: H. Reichenbach,
Zeits. f. Philosophic und philos. Kritik, 161, (1917).

3) Gr. Mendel, Versuche iiber Pjlanzenhybriden, Verh. naturf. Verein. Brunn

4, 347, (1865); Ostw., Klass. d. ex. Wiss. No. 121, (1901), p. 17; Cf. ajso:

J. Tammes, Rec. des Trav. botan. Neerl., 8, 232, (1911).



CHAPTER VI.

The Periodical Repetition of Identical Units in a Plane.

The Repeat as the Unit of an Endless Pattern. --
Homogeneity

in Periodical Arrangements.
-
Homologous Points. The

Homogeneous Distribution of Points in a Plane. - - The Net-

Plane, The Netplane-structure in Endless plane Patterns. -

The Symmetry of a Pattern and of its Netplane.
- - Points

regulary distributed in Space. The Space-lattice.
- - Some

general Properties of Space-lattices. The Symmetry of Bravais'

Space-lattices.
-- Elements of Pseudosymmetry.

-- General Sym-
metry-Relations in Endless Systems. The Problem of the

General Deduction of All Homogeneous Arrangements in Space.
-

The Fundamental Domain in Endless Homogeneous Structures.

Enantiomorphism and Congruency of Structural Units. The

Theories of Sohncke, Von Fedorow, Schoenflies. General

Result. - - Endless Periodical Patterns and Crystalstructure.
-

The Crystal as a Tridimensional Symmetrical Pattern. -- Con-

tinuous and Discontinuous Properties of Crystalline Matter. -

The Space-lattice as as Geometrical Expression of Hauy'sL^w.
The Chemical Structure of Crystals: various Ideas. - - Barlow-

Pope's Theory of the Unitstere. -- The Diffraction of Ront gen-
rays in Crystals.

- - Some Remarks about the Investigations of

Laue, Bragg, Debije.
-- The Deductions of Bragg concerning

the Space-lattices of Crystals.
- Some simple Examples.

-- The

Chemical Molecule in the Crystalline State. - Molecular and

Atomic Forces; Valency and Coordination. The Periodical

Arrangements in Living Nature. Disposition of Leaves in

Plants; Views on Phyllotaxis.
-- A Contrast between Inanimate

and Living Nature with respect to the manifestation of Sym-

metry. Some Final Remarks.

1. Hitherto we have dealt exclusively with the symmetry
of limited systems. In such figures only a limited number of points

corresponds to each given point; the original point can successively be
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made to coincide with some others by the non-equivalent operations

of the symmetry-group to which the figure as a whole belongs.

But occasionally we have drawn attention to the fact that there

are also figures in which an endless number of points may correspond

to any given point; it may happen that no point of the system re-

mains at its place in space, should the system be subjected to the

set of non-equivalent operations characteristic of its symmetry.
Such figures are called endless, unlimited, or infinitely extended figures.

It will be remembered that in Chapter II, several symmetrical

operations were considered which have no real significance for limited

figures, as, for instance: translations, helicoidal motions, rotations

about axes or reflections in planes not passing through the same point

O in space, etc. Such operations may, however, be of essential

interest for such unlimited systems.

A detailed account of the structure-theories and an exhaustive

treatment of the remarkable properties of all possible unlimited

symmetrical arrangements would be out of place here. We wish to

give an impression only of the most salient features of such systems,

and more particularly to show the importance of the views dealt

with, for the problem of the internal structure of crystalline matter.

As these views have in recent times met with most happy endorse-

ment from direct experiments, it seemed desirable to dwell somewhat

longer upon the results obtained in this way and upon the methods

applied in these investigations. Finally, some remarks on arrange-

ments of this kind, as met with in living nature, will be made with

a view of drawing the attention of the reader to these applications of

the doctrine of the regular unlimited systems, also in questions of the

arrangement in space of the organs in living individuals. Even if

only preliminary, and giving no true explanation of the mechanical

and physiological causes governing the said phenomena, the views

about them are suggestive enough, to be worthy of more detailed

examination in the future from the standpoint of the general

doctrine considered in this book.

2. If a plane figure be repeated again and again in the plane of

drawing, in such a way that proceeding in some direction, we meet

after equal distances identical and identically oriented figures, it may
be said that the repetition of the original figures occurs periodically;

the length of the distance between two consecutive figures in the same

position is called the period of the arrangement in the direction con-

sidered. The complete, infinitely extended assemblage thus obtained

8
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can be discriminated as a plane, endless pattern', the original figure,

by the repetition of which the pattern is produced, may be called

the repeat or the motif of it. The repeat is the essential unit of the

endless pattern, and the special nature of the latter is determined as

well by the shape of this unit, as by the specific mode of its repetition.

From what we have seen in the preceding chapters, we can conclude

that "symmetrical" arrangements of a repeat have an essentially

"periodical" character.

Moreover, if the arrangement be such that every repeat of it be

surrounded by all others in the same way as every other motif is

by the remaining, then we say that the pattern is homogeneous.
The homogeneity of the pattern involves, that its aspect will always
be the same to an observer, if placed at any point whatsoever of

the infinitely extended system.

In jig. 102 a portion of a pattern is reproduced which shows

clearly what is meant by this homogeneity ;
of course, the pattern

must be imagined to be infinitely continued in all directions of the

plane. If A
j
be a given point of the repeat and A z the corresponding

point in the next figure, the line joining A l
and A 2 will be parallel

and equal to a number of other lines joining two corresponding

points Bl and #2 , Q and C2 ,
in both pattern-units considered. The

points A l and A 2 ,
B and B2 ,

C1 and C2 , etc., are said to be homologous

points of the pattern ;
round such homologous points the distribution

of all other points in every pattern-unit is the same as in all other

units of the pattern. The lines A^A^ B^B2 , C-^C^, are evidently

equal and parallel to the translation FF' which brings the original

motif F into the position of the next parallel figure F
f

. However,

it is easily seen that there are a number of other translations by
which the original repeat can be made to coincide with the surrounding

figures F" , F'", etc., if it be shifted along various directions of the

plane, such as A^A^, B^B^, C^ etc. If we do not consider the

special shape of the repeat F and simply take one of its points P, -

for instance its geometrical centre, we can describe the situations

of all corresponding figures F'
,
F"

,
F'" by fixing only the final

situations of the points P'
',
P"

,
P'"

,
which are the homologues of P,

i.e. in the case considered: the geometrical centres of the figures F'
t

F", F'", etc. All these homologous points form together a plane

system of homogeneously and regularly distributed points which,

on closer examination, appear to be situated like the knots of a net-

work with parallelogrammatic, rectangular, or quadratic meshes.
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This plane system of points is, therefore, called a net-plane (fig.

and if in fig. 102 we had started with any other point of the repeat

i

6
*

Q

6
^

a

4
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From this it is clear that the proper character of the pattern

is intimately connected with that of the net-plane PP'P"P">
',

(or QQ'Q"Q"' t . . . . etc.), which is, in a sense, its very foundation.

3. It is thus of high importance for the study of homogeneous
distribution in general, to examine first the properties of such

homogeneous and regular systems of mathematical points. If for

the moment we make abstraction from the particular case of the

distribution of points in a "plane" only, and if we extend our

reasonings to tridimensional systems of points, asking what their

Fig? 104.

arrangement in space must be in order to fulfil the condition of

homogeneity as defined above, the answer will evidently be, that

these points must be situated at the corners of an infinite number

of congruent and contiguous parallelepiped cells, in which space

can be divided without leaving any room between them. In this

way these points appear situated like the knots of a net-work in space,

the meshes of which are the congruent and contiguously arranged

parallelepiped cells just mentioned.

A general type of such network, which bears the name of a space-

lattice,
- - is reproduced in fig. 104.. Starting with a point 0, we can

look for the point Pl nearest to it at a distance dlt then for the

second nearest point P2 at a distance d
2 ,
and finally for the third

nearest P3 at a distance ds from 0. The directions of OPlt OP2 ,
and
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OP3 may be taken as axes of reference OX, OY, and OZ\ then the

parallelopipedon having dlt d2 ,
and d3 as its edges, is the absolutely

determined, parallelepiped "unit-cell" of the infinitely extended

space-lattice, and evidently no other point of the latter is situated

within this parallelepiped cell any longer. The whole space-lattice

might also be imagined to be built up by three sets of an infinite

number of net-planes, all parallel to and equidistant from the three

pairs of opposite limiting faces of the parallelepiped cell; and in the

same way an infinite number of sets of parallel equidistant net-

planes can be distinguished in the space-lattice, all made up by

points placed at the corners of parallelogram-shaped meshes, while

no other points are situated within the boundaries of these parallelo-

grams.
The essence of a space-lattice is, thatit is a homogeneous and perio-

dical structure of points, in which each point, therefore, is situated

relatively to its neighbours in exactly the same way ae every other

point. The parallelopiped unit-cell represents the "geometrical

period" of the space-lattice, and this period, although extremely

small, is always a finite one. The orientation of every net-plane

therein, is determined by the space-lattice alone; and to every

net-plane there corresponds a set of an infinite number of congruent

net-planes, all parallel to and equidistant from the first. Moreover,
the assemblage may possess special symmetry-properties by which

the individual shape of the unit-cells arid their marshalling are

determined; in such a case the points will have a perfectly regular

geometrical arrangement, in which the various symmetry-elements
will be associated according to the general rules of the doctrine

of symmetry, as deduced in the preceding chapters.

4. Before dealing with these symmetry-properties of space-

lattices, it is of interest to consider some of their general proper-
ties in detail.

In the first place it is clear that the meshes of the various

net-planes of a space-lattice are of different sizes, but constant

for every net-plane of a certain situation. The parallelograms in

the net-planes parallel to the coordination-planes, as determined

above, evidently possess the three smallest areas which can occur

in the space-lattice under consideration. Because the unit-cell

of smallest volume has a constant volume, this surface of the

meshes will be smaller in the same rate, as the distance between

the equidistant net-planes of the same set is greater than in another
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set. l
) Thus, if d^ ]> d2 > d3 ,

the meshes of the net-plane (dz ,
d3)

will have a smaller area than those of the net-plane (dlt d^ or (dlt
d2),

and more particularly will these areas be inversely proportional to

the distances dlt dz ,
and d3 respectively. When we define the density

of a net-plane as the number of meshes per unit of surface, this

density can be expressed by ,
in which s is the surface of the

parallelogram-shaped mesh of the net-plane. From what has been

said, it is obvious that the surface-density of net-planes is directly

proportional to the distance between two of them in the same parallel

set. The further such parallel net-planes are distant from each other,

the greater will their surface-density be, and conversely: the distance

between two parallel net-planes of a space-lattice is directly proportional

to their surface-density.

In the second place, if three axes of reference OX, OY, and OZ
be chosen, the distances of the successive points along them being

dlf d2 , and d3 respectively, then the coordinates of every point P
of the space-lattice will always be pdlt qd2 ,

and sd3 ,
in which p, q,

and s are integer numbers. It may be easily conceived from this, how

this fact involves that every net-plane passing through the point P
intercepts on the three axes OX, OY, and OZ segments, the lenghts

of which are always of the form: mdlt nd2 ,
and rd3 respectively, m, n,

and r being also such integer numbers.

The significance of these considerations for the special problem

of crystal-structure is evident, because the fact just mentioned

is a direct geometrical expression of Hauy's law in crystallography,

concerning the rational indices of possible crystal-facets (see the

previous Chapter).

5. We will now examine the symmetry-properties of such

space-lattices more closely, and in the first place draw attention

to some general facts in connection with this symmetry.
Because every point of the endless space-lattice has wholly the

same function as all other points, it must be at once clear that

every point of a space-lattice is a symmetry-centre of it. A space-lattice

!) It can easily be demonstrated, that primary cells, i. e. such cells of the

space-lattice which do not contain any other points within their parallelepiped

volume besides those at the corners of it, have always the same minimum volume.

A simple geometrical reasoning will convince us of this, and a similar

thesis is valid for the primary meshes of a net-plane, i. e. for each mesh which

contains no more points within its parallelogrammatical area.
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is, therefore, always a centrically-symmetrical arrangement, and as

the existence of this symmetry is equivalent to a symmetry-property
of the second order, it follows from this, that a space-lattice can

never differ from its mirror-image. Its symmetry belongs in all

cases to that of the symmetry-groups of the second order, and more

especially to those amongst them, which are characterised by the

possession of a symmetry-centre. Of course this fact will at once

restrict appreciably the number of eventually possible symmetrical

arrangements of this kind.

A second universal property of space-lattices is, that an eventual

symmetry-axis of it must always be parallel to, or coincident with a point-

row of the space-lattice; and moreover each symmetry-axis must be

always perpendicular to a net-

plane of the space-lattice too.

The truth of both these facts

can easily be deduced from some

simple geometrical reasonings.

Finally it will be clear that, if

a space-lattice has a symmetry-

axis of the period y, = ,
not

passing through a point of the

system, it must have simul-

taneously an infinite number of
Fig. 105.

parallel symmetry-axes of the

same period passing through every point of the space-lattice.

The truth of this can be demonstrated as follows. Let S (fig. 105)

be the point of intersection of a symmetry-axis A(a) with the plane

of drawing; this plane, according to what is said above, is certainly

a net-plane of the space-lattice, and therefore, Pl may represent a

point situated in it nearest to 5. If we turn the space-lattice
r\

round A (a) through tx,
=

,
the point P, comes into P2 ,

and P2

must, therefore, be also a point of the system. If this is now shifted

along PiP2 ,
until P2 coincides with Plf the point of intersection 5

will have reached S', while the point P1 will have returned to its

original position. Both successive operations are evidently together

equivalent to a rotation about an axis passing through Plt which

brings S in 5', the period /3 of this axis also being = . It is

demonstrated in this way, that there are really at all points P
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such axes parallel to the one supposed in 5, and that all have

the same period.

With respect to the possible combinations of symmetry-elements
in such space-lattices, we can refer here to the contents of the prece-

ding chapters // to IV
\ the general rules stated there are valid

also here. The only question yet to be considered is: what can be

the periods of the axes of symmetry in such space-lattices?

Let P (fig. iotf) be a point of

the system, Let us suppose that a

symmetry-axis A (tx) of the period
r\

passes through P, and that it is

perpendicular to the plane of the

figure. According to the above,

it is, therefore, at the same

time a net-plane of the space-

lattice. The point situated nearest

to P in this net-plane may be N
l

.

When we perform now the characteristic rotations round A through

angles a, 2a, 3a, etc., the point A^ reaches successively the corres-

ponding points N2 ,
N3 , NI, etc., of the net-plane. But because of the

parallelogram-shaped meshes of this net-plane, a point Q must also be

found in the net-plane in such a way that Q, Nlf N2 ,
and N3 together

form a primary mesh of it. Moreover, the coordinates of all these

points in the net-plane must be in rational proportion to each other.

Now we have supposed that N-^ was nearest to P; the absolute

distance PQ may therefore only be greater, or in the extremest case

be equal to PNlt etc. Now
j-.

is evidently ==1 4 sin2

f-j;
and

if we calculate the values of this expression for n = 3, 4, 5, 6, etc.,

we obtain the following result: l
)

106.

n:
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From this it is obvious that besides the value n = 2, the possi-

bility of which needs no further discussion, only the values n = j,

^, and 6 fulfil the conditions mentioned above. No value greater

than 6 is allowable, and n = 5 is excluded because of the irrational

value of the corresponding parameter. It appears, therefore, that

in this respect also the space-lattice may be considered as a geome-
trical interpretation

of a fact previously

stated, and intrinsi-

cally identical with

the significance of

Hauy's law, namely:
the restriction of the

possible crystallogra-

phical axes (Chap-
ter V)'.

6.

The restrictions to

be made in the dis-

cussion of the possible

symmetries of space-

lattices, as following

from the considera-

tions in 5, will, of

course, diminish very

appreciably the num-

C.

Fig. 107.

Bravais' Fourteen Types of Space-lattices,

ber of possible sym-
metrical space-lattices, and at the same time simplify their deduction

to a considerable degree.

It was Bravais, 1
)
who in 1848 solved the problem: what are

all possible types of symmetrical space-lattices?,
-- not only com-

pletely, but at the same time applied the theory successfully to

various problems concerning the internal structure of crystals.

Bravais demonstrated, that there are only fourteen possible types
of symmetrical space-lattices, the unit-cells of which are represented
in fig. 107. Their symmetry corresponds to that of the holohedral

classes of the seven wellknown crystal-systems; for the triclinic

*) A. Bravais, Journ. de 1'Ecole polyt., 19, 1, (1850); 20, 201, (1851);

Etudes crystallographiques, Paris, (1866), p. 1128; 101287; L. Sohncke,

Pogg. Ann. d. Phys., 132, 75, (1867).
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system only an oblique parallelepiped cell being possible, for the

monodinic two kinds of cells, for the rhombic four, for the trigonal

only one rhombohedral cell, for the tetragonal system two kinds of

cells, for the hexagonal only an equilateral trigonal prism, of which

six contiguous ones are shown in the figure,
-- and for the cubic

system three kinds of cells. The cells of the rhombic, tetragonal

and cubic system which have a point in the centre of the parallele-

piped cells drawn in fig, 107, can be also chosen in such a way,
that no point lies within the cell; in the cubic system for instance,

the elementary cell would then have an octahedral form, with a

point at each corner of the octahedron, etc.

7. In connection with this we shall at the same time draw

attention to a fact which will appear of interest to us in future for

the understanding of special groups of phenomena. It concerns

the existence of so-called elements of pseudo-symmetry in such space-

lattices, a fact which finds its explanation in the special circum-

stance that there may exist a gradual passage of form from the one

kind of unit-cell to the other.

Thus, comparison of the elementary cells of both the tetragonal

cells with the types a and b of the rhombic and the cubic system,

will make it clear at once, that a suitable change of the principal

dimensions in one or two directions will make their form approach

as closely as desired to that of a cubic cell. In the same way, if the

dihedral angle of the oblique monoclinic cell, differing from 90,

approaches very closely to this value, the cell becomes almost that

of a rhombic space-lattice.

When the principal ternary axis of the rhombohedral cell is suitably

lengthened or shortened, the polar dihedral angles can approach

as closely as possible to 90, the rhombohedral cell being, therefore,

converted almost into a cube. Indeed, the rhombohedron is a dis-

torted cube, namely, if the latter be compressed or dilated in the

direction of one of its fo'ur trigonal symmetry-axes.

If the prism-angle of a rhombic prismatic cell is almost 60 or

120, it approaches very closely to the equilateral triangular cell

of the hexagonal space-lattice, etc.

In all such cases the lower symmetrical space-lattice exhibits

a greater or smaller approximation to a space-lattice of higher

symmetry. It is said to possess a limiting or pseudo-symmetry: the

space-lattice is called pseudo-cubic, pseudo-hexagonal, etc., to indi-

cate that, although having truly a lower degree of symmetry,
-
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its dimensions and its whole character closely approach to those of a

really cubic or hexagonal space-lattice. In the case of such a rhombic,

but pseudo-trigonal or pseudo-hexagonal arrangement for instance,

the vertical axis is, of course, only a binary axis of symmetry; but its

direction is at the same time that of an approximately ternary or

senary axis. The space-lattice is said to have an axis of apparent

symmetry; and, as we shall see afterwards, such pseudo-ternary or

pseudo-hexagonal axes, - -
although, properly speaking, being no

real symmetry-elements of the space-lattice, can occasionally have

some of the functions of true symmetry-axes.
We will consider this fact more in detail in the next chapter of

this book, in connection with some remarkable phenomena met

with in crystalline matter.

8. For the moment
we will return to our two-

dimensional patterns of 2,

the character of which, as

we have seen, is always

closely related to a certain

net-plane. Such pattern can

eventually possess a cer-

tain symmetry, and the

question may arise: what

relations exist between the

symmetry of the pattern

and that of its characteris-

tic net-plane?

In fig. loS and /op two

patterns are reproduced whose net-planes are essentially identical,

namely a net-plane with ordinary quadratic meshes. This net-plane

can, therefore, be considered as having an infinite number of quater-

nary axes perpendicular to the plane of drawing,- and four sets of

symmetry-planes passing through those axes; moreover, their inter-

sections with the plane of the figure are binary axes, and, of course,

there is also an infinite number of symmetry-centres.
In fig. 108 .a repeat is placed round each point of the described

net-plane, which has itself precisely the same set of symmetry-ele-

ments; in fig. 109, however, a motif is chosen in which only the quater-

nary axis has remained, while all other symmetry-elements of the

quadratic net-plane are lacking in it. Now from these figures it can

Fig. 108.
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immediately be seen, that the pattern in fig. loS as a whole possesses

just the same symmetry as its net-plane, while that in fig. zop has

only a set of parallel quaternary axes perpendicular to the plane
of the drawing. Such a pat-

tern, therefore, appears to

have at the best the sym-

metry of its own net-plane,

namely, if its repeat has

exactly the same symme-
try-elements which the net-

plane possesses; but if the

repeat has a lower symme-

try than the net-plane has,

the pattern as a whole must

also exhibit a lower degree
of symmetry, possessing

only those symmetry-ele-
ments which are common to

its motif and its net-plane. Fig- 109.

The same is true in the

case in which a tridimensional space-lattice is considered, the points

of which are substituted by stereometrical figures of a certain sym-

metry, playing the

part of repeats for

the tridimensional

pattern resulting

in this way. The

pattern as a whole

can never have a

higher symmetry
than its characte-

ristic space-lattice

has; but often its

symmetry is ap-

preciably lower,

Fig. no. because its sym-

metry-elements

are only those, which its space-lattice and its repeat have in common.

Closer examination .of fig. no may soon give the conviction, that

also in the case where the motif of the pattern has a higher degree
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of symmetry than its net-plane, the symmetry of the pattern as

a whole nevertheless does not possess a higher symmetry than its

net-plane.

In fig. no the repeat is tetragonal, the net-plane rhombic
;
and

the pattern as a whole is rhombic also.

Bravais has made use of facts of this kind to explain the internal

structure of crystals which belong to the merohedral classes of the

seven crystal-systems. For, as we have seen, all the fourteen types

of possible symmetrical space-lattices have the symmetries of

the holohedral class of each system. If, however, round every point

of these space-lattices molecules be placed, which only possess a

certain part of the symmetry-properties characteristic of the space-

lattice under consideration, the molecular structure as a whole

can only exhibit the symmetry-elements which are common to

the space-lattice and the complex crystal-molecules. And precisely

because the space-lattice and its complex molecule still have some

symmetry-elements in common, these molecules will all remain

in parallel positions with respect to each other, in the same way
as the repeats of fig. 108, as well as those of jig. lop are parallel

to each other. All homologous atoms of these complex molecules

will, therefore, be arranged in similar and similarly oriented space-

lattices, which can be brought to coincidence with each other by the

characteristic symmetrical operations of the complex molecule l
).

9. It is, however, evident that the solution of the problem of

homogeneous symmetrical arrangement as given by Bravais,
cannot be considered the most general and thus not a final one,

because the condition that all repeats of the stereometrical pattern
shall be parallel to each other, is quite an arbitrary factor in it, and

the deficiency of the theory in explaining the occurrence of lower

symmetrical dispositions than those of the space-lattices, is only

apparently eliminated by attributing to the repeats themselves such

qualities, as had to be explained by the principle of homogeneous

symmetrical arrangement alone. With respect to the explanation

*) All that has been said above with respect to the "motif" or the"repeat"
of the endless pattern, is valid also for Bravais' "crystal-molecules"; etc.

However, it should be mentioned here, that the word "motif", for instance in

the work of G. Friedel, has been used in a somewhat different significance,

namely in that of "fundamental domain" (cf. page 131 etseq.). If that definition

be adopted, our reasonings must be exchanged for such as are applicable to the

said "fundamental domains". In that case, for instance, the "motif" cannot be

more highly symmetrical than the crystalline system as a whole; etc.
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of crystallographical phenomena, Bravais' supposition of the

parallel orientation of all crystal-molecules appears more particularly

untenable: the phenomena of twin-formation, and those concerning

the homogeneous deformations along so-called "gliding-planes",

prove the incorrectness of this hypothesis in a convincing way.
The more general solution of the problem: to deduce all

possible homogeneous and symmetrical arrangements of equal

things, independent of their accidental qualities, was solved by
Sohncke 1

)
for the cases in which only symmetry-properties of the

first order were considered; afterwards the complete solution, inclu-

ding also the symmetry-properties of the second order, was given

by Von Fedorow 2
) and by Schoenflies 3

), while similar stu-

dies on the principle of homogeneity were published by Barlow 4
)

and others 5
). Of course, as soon as tridimensional arrangements

be considered which have also symmetry-properties of the second

order, the necessity arises of adopting the possibility in such systems
of two kinds of "motifs" which are enantiomorphous with respect

to each other. For by the operations of the second order characteristic

for the tridimensional pattern, each motif is converted into its

mirror-image ;
and as soon as the motif itself is deprived of all qua-

lities, and therefore of all specific symmetry, its mirror-image must

be in general non-superposable with itself.

Therefore, homogeneous systems in space, possessing also symme-

try-properties of the second order, must be built up by two enantio-

1
)

L. Sohncke, Entwickelung einer Theorie der Krystallstruktur, Leipzig.

(1879); Wied. Ann. der Physik., 16, 489, (1882); Zeits. f. Kryst., 13, 214,

(1888); 14, 417, 426, (1888); Pogg. Ann. d. Phys., 137, 177, (1869).
2
)

C. E. Von Fedorow, Symmetrie der regelmdssigen Systeme von Figuren

(1890); Zeits. f. Kryst., 20, 25, (1892); 24, 209, (1895); 25, 113, (1896); 28,

232, 468, (1898); 31, 17, (1900); 36, 209, (1902); 37, 22, (1903); 38, 322,

(1904); 40, 529, (1905); 41, 478, (1906).
3
)

A. Schoenflies, Krystallsysteme und Krystallstruktur, Leipzig, 1891),

p. 237; Zeits. f. Kryst., 20, 359, (1892); 54, 545, (1915); 55, 323, (1916).
4
)'
W. Barlow, Nature, 29, 106, 205, (1883); Chem. News, 53, 3, 16, Zeits. f.

Kryst., 23, 1, (1896); 25, 86, (1897); 27, 449, (1897); 29, 433, (1899).

5) L. Wulff, Zeits. f. Kryst., 13, 503, (1888); 14, 552, (1888); E. Blasius,

Ber. d. bayr. Akad. d. Wiss. Miinchen, 19, 47, (1889); Zeits. f. Kryst., 19,512,

(1892); C. Viola, ibid., 31, 114, (1900); 35, 229, (1902); 41, 521, (1906);

A. Nold. ibid., 40, 13, 433, (1905); 41, 529, (1906); 48, 321, (1911); F. Haag,
Zeits. f. Kryst., 14, 501, (1888); K. Rohn, ibid., 35, 183, (1902); J. Becken-

kamp, Zeits. f. Kryst., 44, 576, (1908); 45, 225, (190); 47, 35, (1910); E.

Riecke,. Zeits. f. Kryst., 36, 283, (1902).
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morphously related kinds of repeats, and only such patterns as are

themselves different from their mirror-images, i. e. which possess

only symmetry-properties of the first order, are in general formed

by the regular arrangement of one and the same kind of pattern-unit.

The regular structures, as deduced by Sohncke, are completely
determined by rotations and translations; the latter and their com-

binations with certain motions about axes of the first order, which

represent therefore helicoidal motions, -- are indeed operations of

essential significance for unlimited systems, as we have seen in

Chapter //.

Owing to the fact that in these unlimited systems there are sets

of parallel axes of rotation or helicoidal motion, it is of interest to

point here again to the fact that the simultaneous existence of such

parallel axes always involves * A
the existence of others, which v* /_T X
can be found by the construc-

tion of Euler (see Chapter //,

p. 29). Some examples may
make this clear.

Let (fig. in) A l and A 2 be

two parallel quaternary axes.

If we apply Euler's construc-

tion to find the resulting axis,

we must realise, that the centre of the sphere used in fig. 20, is now
at infinite distance, the surface of the sphere, therefore, being changed
into a plane perpendicular to A l and A 2 ,

and thus coinciding with the

plane of our drawing here. When the rotations are both clockwise,

we must construct the angles
- - (= 45) as indicated in the

figure, and because /_A^A^A^ = 90 therefore, it appears that A 3

is a binary axis (^ = 180), parallel to A l and A 2 . Indeed, the exis-

tence of such parallel binary axes, as a necessary consequence of

the presence of A l and A z ,
is confirmed, for instance, by the patterns

of fig. 108, 109, 114, etc.; the arrangement of the quaternary axes

of the pattern appears the same as that of the alternating binary
axes. In the same way it is seen from fig. 115, that the senary axes

alternate with sets of ternary and of binary axes there, which follow

from the simultaneous presence of the parallel senary axes in exactly
the same way.

If, however, the rotations round A
1 and A 2 had opposite directions,



128

so that the algebraic sum of their angles of rotation were = 0, the

axis A 3 would be situated at an infinite distance
;
the result would,

therefore, be a translation. From fig. 112, which show the successive

rotations round A l and

A 2 over angles & and
,

which are together equi-

valent to a translation

A^A\, it is easily seen

that the dimension of

this translation is

2 sn

Fig. 112.

(
V

W/
A detailed study

teaches, moreover, that

the combination of axes

of helicoidal motion in

such infinite systems is

governed by exactly the

same laws, as were previously found in the case of the combination

of ordinary axes of rotation: in general we can deal with such heli-

coidal axes in just the same way
as if they were mere axes of

rotation: the periods of the heli-

coidal axes possible in infinite

systems, can also be no other

than that, which we found lor

the simple axes of rotation.

If rotations or helicoidal mo-

tions be combined with a trans-

lation t perpendicular to the axis

Ai

under consideration, it can be

easily demonstrated (fig. nj)
that the result of this is always

a motion about another axis

Fig. 113. parallel to the first. Let A l (fig.

nj) be an axis of rotation or

of helicoidal motion, and let t be the characteristic translation per-

pendicular to that axis. A point P1 of the system arrives at P2 by
the rotation through an angle # round the axis A ly

or in P\ situated

above the plane of rotation, if A l is a helicoidal axis. Because Px
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and P2 are two points of the system nearest to each other, PiP2 is

a characteristic translation of it, and as t has the same function,

P! can always be chosen in such a way that Pt
P2 is parallel and

equal to t\ this is the case represented in fig. 113. Now this trans-

lation brings P2 back in Plf and makes A l coincide with a similar

axis A\. Therefore the combination of both motions is equivalent

to a rotation about an axis passing through Plf which brings A l

into A'; and the angle of rotation of the axis passing through Pl

must therefore also be a.

The axis resulting from the simultaneous existence of the trans-

lation t and the rotation about A lt is evidently situated normally

Fig. 114.

with respect to the rotation-plane of A lt and at the apex of an

isosceles triangle which has t as its base, and a as its top-angle ;
the

top lies at that side of t, in the direction of which the rotation round

A l occurs.

10. These instances may be sufficient to give at least some

impression of the way in which different motions in such infinite

systems, if combined with each other, will determine others.

In chapter // we have indicated how the symmetry-properties of

9
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such systems can be generally deduced by the method of Boldyrew
and others. The systematical deduction of all possible symmetrical

arrangements, being a purely mathematical and very extensive

problem, may also, therefore, be omitted here, and only some general

properties of these systems be elucidated by suitably chosen examples.

Most of the sixty-five Sohnckian systems can be imagined to

be deduced from the space-lattices of Bravais by replacing each

point of them by definite, similarly composed, groups of points, the

symmetry-elements of which are, however, differently oriented with

respect to those of the fundamental B

space-lattice. In fig. 114. a section A c ^
through such a system is reproduced,

B
B

the points of it being replaced by B
C

c^
B

absolutely unsymmetrical repeats.
* A ^c* A

*

The existence of an infinite number * ^ B
A

of tetragonal axes and of an infinite B c$
number of binary axes situated A c* B

between them, and arranged in the *
^P ~ D ^^ A

same disposition, is clearly exhibited
.

1115

by the pattern, and also the existence

of centrical symmetry. Moreover, the characteristic translations

of the fundamental net-plane of the pattern, are easily recognisable.

Something analogous occurs in the symmetrical system, a section

of which is represented in fig. 115.

Here a set of parallel senary axes A is present, while trigonal

axes B and digonal axes C alternate with them, in accordance with

Euler's theorem. If the hexagonal cells

O O O O O O ^e reduced to a single point, there results

O O O O O O an arrangement which is not different

O O O O O O from the hexagonal space-lattice of Bra-
O OO OO O vais; but when the hexagons extend

Q Q Q ^ Q^ ~ '

and reach their neighbours, the result

O O O O O O w^ ke an arrangement, a section of

O O O O O O which is reproduced in fig. 116, and

Fig. 116. which is evidently not met with amongst
the regular systems deduced by Bravais.

Generally speaking, the Sohnckian systems can be considered

to be built up of n congruent and parallel, interpenetrating space-

lattices of Bravais. The repeats placed in the various points of the

same space-lattice are all parallel to each other; they are, however,
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not similarly oriented in the different composing space-lattices,

but they can be brought to successive coincidence with each other

by the characteristic motions of the regular system under consi-

deration. An observer placed in the consecutive non-parallel motifs

of the pattern, will then see the whole infinite system always in

the same way, only when he subjects himself to the successive

symmetrical operations characteristic of each group of non-parallel

motifs; for instance in fig. 114., if he looks every time in the direction

of a quaternary axis of each tetrade of motifs.

In fig. iij two non-superposable regular systems are reproduced
in projection, which are characterised by a set of parallel trigonal

screw-axes perpendicular to the plane of the figures; their points are

9 9

d.

> .

@ .

Fig. 117.

substituted by perfectly asymmetrical repeats. The repeats of three

consecutive layers are distinguished by their colour, and they are

tinted more darkly, the nearer they are to the observer's eye. It is

obvious that we have here two arrangements, characterised by right-

and left-handed screw-axes, and being real non-superposable mirror-

images of each other. Crystals whose unsymmetrical molecules were

placed in the points of these regular systems, would evidently
exhibit true enantiomorphism, as, for instance, is often observed in the

case of crystalline substances endowed with optical rotatory power.
11. With respect to the symmetry of Sohncke's sixty-five

regular systems, we may remark here that they are all characterised

by rotations and translations, and that their symmetry is exactly
the same as that of the symmetry-groups previously deduced,

possessing only symmetry-properties of the first order. If the points

in these regular systems be substituted by absolutely arbitrary
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repeats, the symmetry of the resulting pattern will not be influenced

by the specific geometrical nature of these repeats, if the latter only

be all identical and placed in an analogous way with respect to

the axes of the system.

But if these patterns should also have symmetry-properties of

the second order, e. g. a centrical symmetry or symmetry-planes,
then again special symmetry-properties of this kind must be attribu-

ted to the motifs themselves, just as appeared to be the case in

Bravais' explanation of the lower symmetrical crystal-forms.

Sohncke's theory shows, therefore, in this respect an analogous

deficiency to that of Bravais, if used for the explanation of such

higher symmetrical, crystal-structures, although its deficiency has

another significance, and is not so strongly marked, as that of

Bravais' view. Therefore Sohnckes' theory must certainly be

considered to be a real progress in comparison with that of the

latter, although the problem mentioned above has evidently not

yet got its most general solution by it.
1
)

12. Before finishing these considerations of Sohncke's regular

systems, we may remark here, that the theory can be extended

also to cases in which the constitu-

^ve rePeats f t^ie tridimensional

pattern are no longer of the same

kind, but of different character. If a

definite number of such Sohnckian

systems, which all possess the same

^ ^ and parallel translations, but which

f \*J \J/ ^5 are neither congruent nor need be
*

built up of the same particles, be

Fig. 118. suitably placed the one into the

other, such an interpenetration can

lead to a complex, materially heterogeneous system, the foundation

of which is a space-lattice which is characterised by the trans-

lations just mentioned.

As an instance of this, a section of such a periodical pattern has

been represented in fig. 118 . It is deduced from the pattern of fig.

115 in such a way that a motif of an other kind is placed every time

at the centre of each hexagonal group of fig. 775. The fundamental

:; :6; :;

l
)

Cf. also: P. Niggli, "Geometrische Krystallographie des Diskontinuums"
,

Leipzig, (1918, 1919).
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features of the regular systems are evidently preserved in this new

arrangement too, and Sohncke has, for instance, proposed systems

of this kind to explain the crystal-structure of complex molecular

compounds, like salt-hydrates, etc. Moreover, he was able to give

a rational explanation in this way of the occurrence of some tetar-

tohedral and hemimorphic crystals, which could not be explained

by means of his

original, unextended

theory.

Another example
of two such inter-

penetrating systems
built up from two

different repeats, is

the pattern shown

in fig. 119. Here the

symmetry of the

whole pattern is evi-

dently the same as

of each of its motifs,

these having all the

same tetragonal

symmetry.
The extended

theory of Sohncke
can be used succesfully for the explanation of the structure of crys-

talline chemical compounds, if it be supposed that the points of

all interpenetrating space-lattices of such a system are replaced

by one and the same kind of chemical atoms; to this we will draw

attention again later on.

13. However, from the above it may be clearly seen that the

application of the theories of Bravais and Sohncke to the pro-
blems of crystal-structure, always involves to a certain degree
certain suppositions about the special properties of the molecules

which take the places of the points in the deduced arrangements.
From a mathematical viewpoint, however, it is of importance

to solve the problem : how to find the total number of such arrange-

ments of repeats, that the tridimensional patterns produced may
have all the 32 symmetries which are possible for stereometrical

regular systems, without it being necessary to make any special

Fig. 119.



134

assumption about the nature of the constituent motifs. As we have

seen ( 9), the solution of this problem involves the supposition of

two enantiomorphously related repeats, as soon as there is question
of patterns having symmetry-properties of the second order.

The mathematical problem just mentioned has been solved by
Von Fedorow and by Schoenflies *); and although it would be

quite out of place here to give a full account of these deductions,

some general remarks as to the way followed by these authors may
be of interest.

Both authors subdivide the unlimited space into an infinite number
of equal or enantiomorphously related, contiguous small volumes,

filling up that space completey. The distribution of matter within

such an elementary volume, - - which Von Fedorow calls a

sterohedron, while Schoenflies prefers the name of fundamental
domain for it, --is supposed to be completely arbitrary and free

from all symmetry. Its volume is constant and equal to that of

the elementary parallelepiped of the space-lattice, or a multiple
of it. When some of these identical or enantiomorphous "fundamental

domains" in symmetrical space-lattices or structures, are eventually
combined into greater units exhibiting a certain symmetry, these

symmetrical "complex domains", which by similar repetition are

also filling up the whole space, are discriminated by Von Fedorow
as parallelohedm

2
). Corresponding points of such parallelohedra are

also corresponding (homologous) points of the regular system, and

*) loco cit.; see also: A. Schoenflies, Zeits. f. Kryst., 54, 545, (1915); 55, 323,

(1916); F. Wallerant, Bull, de la Soc. Miner., 21, 197, (1898).

2) If a point of a space-lattice be joined with all nearest points situated

round it, and planes perpendicular to the centre of these lines be constructed,

a volume of space is separated, which is limited by fourteen planes which

are pairwise parallel to each other. In a cubic space-lattice for instance, these

planes are perpendicular to the edges of the cubic cell and to the four cube-

diagonals. The "fundamental domain" thus determined, a hepta-parallelo-

hedron, is in the latter case a cube, the corners of which are truncated by

planes of the octahedron. With elements of this shape space can be filled

without any room remaining between the composing cells. These hepta-parrallelohe-

dra, already used by Lord Kelvin, have an important share in the

deductions of Von Fedorow. However, it may be remarked here, that it is

not necessary to determine the special shape of the fundamental domain. This

form can be quite arbitrary; but its volume is always constant and equal to

that of the elementary cell of the space-lattice, or in regular systems in

general a multiple of this.
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they are always arranged in a space-lattice characterised by a definite

group of translations, etc. l

)

It is easy to demonstrate, moreover, that no existing symmetry-
elements can ever lie within the fundamental domain of a regular

structure, but that they are always situated on its surface. This

follows immediately from the fact that each symmetrical operation

must always bring a fundamental domain into coincidence with

another one present in the whole complex. From this it is clear that

the existence of symmetry-axes and of symmetij--planes in the

structure will then of course

be in some way determinative

for the shape of the funda-

mental domain, as e. g. sym-

metry-planes must be always

limiting parts of the surface

of such fundamental cells (fig.

120). In the latter cases it also

becomes clear that in general

to every fundamental domain

A, a second one A', being the

mirror-image of the first, must

be present, because the reflec-

tion of the elementary volume

A in the symmetry-plane will

change it into its contiguous,

but in general non-superpo-
sable mirror-image A', etc.

Within all such enantiomorphously related fundamental domains

the whole distribution of matter must of course also be enantio-

morphous; and this is the meaning of the supposition of Von
Fedorow and Schoenflies, when they maintain that crystals

possessing symmetry-properties of the second order must be built

up by certain atom-complexes (crystal-molecules) which are of two,

enantiomorphously related, kinds. Only in the cases of enantiomor-

phous crystals the right-handed and left-handed crystals can separate-

ly be composed of atom-complexes of one and the same kind, right- or

Fig. 120.

1
) The "fundamental domain" plays the same role here, as what by G. Friedel

is called the "mtftif" of the crystalline aggregation. The latter is identical with our

"motif", as soon as the empty space round it is included also within the con-

siderations about it.
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left-handed. If such crystals as, for instance, those of dextro- and

laevogyrate sodiumc-hlorate, are dissolved, giving an optically in-

active solution, the supposition must necessarily be made that a

rearrangement of the atoms during the process of solution takes

place, producing an equal number of both kinds of enantiomorphous

molecules, or perhaps a quite different species of them, superposable

with their mirror-image. This is intimately connected with the fact

that the notion of the fundamental domain is a purely mathematical

one, and, therefore, with respect to the endless periodical repetition

of equal parts throughout the regular structure, the gathering

together of certain atoms into complexes is within wider limits a

quite arbitrary, purely mathematical fiction. The notion of "mole-

cular complex" is in the crystalline state, therefore, formally without

significance ; which, however, does not mean that the connections

between the constituting atoms, as involved in the study of the

properties of the chemical molecule, should have completely dis-

appeared. Only they need not be considered for the mathematical

description of the crystalline, periodical arrangement: that is all.

The specific character of the crystal-structure lies in the fact

that all atoms of the same kind are equivalent in the architecture

of the crystal, and that for the mechanical equilibrium finally reached

therein, the total action of each atom is as if it were an autonomical

individual. Atoms of different kinds can, moreover, always be grouped

together so as to form complexes which, similarly and infinitely

repeated in an absolutely regular and periodical way according

to the special symmetry-properties of the whole structure, will

fill up space to produce the remarkable masterpiece of nature,

that we call a crystal.

However, it is exactly this very general character of the theory

which makes its application to concrete cases rather difficult. The

whole number of symmetrical arrangements thus found amounts

to no less than two hundred and thirty, the symmetry of which can

be grouped in the same 32 classes as we have previously found to

be possible for crystals (Chapter F).

A considerable number of possible structures belongs therefore

to each of these 32 classes; and as for the explanation of physical

phenomena the precise arrangement of the constitutive atoms is

the point of interest which this general theory leaves totally out of

consideration, the chance of its successful application for the purpose

of explaining crystallographical and crystallophysical phenomena
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cannot be said to be very hopeful. But this general and, from a

mathematical point of view, highly finished theory certainly remains

of interest, as being the final and exhaustive solution of the special

mathematical problem concerning the regular arrangement in dis-

continuous and homogeneous systems.

14. In the preceding paragraphs we repeatedly had occasion

to point out that the most general properties of space-lattices and of

regular structures, were just those, by which crystals are also cha-

racterised. Crystalline matter behaves in many respects as a physical

medium of continuous structure
;
but for a number of physical pheno-

mena, as for instance with respect to its cohesion-, and growth-pheno-

mena, with respect to its influence on a thin pencil of Ron tgen-rays

travelling through it, etc., it exhibits an undeniable discontinuous

character. The validity of Hauy's law for space-lattices, the corres-

pondence of the values for the periods of eventually occurring sym-

metry-axes in regular systems of the kinds mentioned above, and

the circumstance that all possible regular structures as deduced in

the modern structure-theories belong to exactly the same 32 classes,

to which also crystals may be reckoned, are all facts which give

the conviction that an explanation of crystallonomical phenomena,

presupposing an analogous internal structure for crystals such as

those dealt with in the above, will certainly be successful.

It was precisely for this purpose that in the middle of the nine-

teenth century Bravais began his famous studies on space-lattices.

With great acumen and in a most ingenious way he developed
these views gradually for the explanation of the most important

properties of crystalline substances; later on his methods were

followed with admirable success especially by French authors for

the explanation of a great number of physical phenomena; and it

cannot be denied that Bravais' simpler and more transparent
ideas have been far more effectual for the development of the science

of crystalline matter, than those concerning the more general, but

incomparably more complicated regular arrangements of Sohncke,
Von Fedorow and Schoenflies. Another cause of this is also the

particular fact, that up to now there had been no method available

which allowed in any concrete case the making of a definite choice

between the numerous structures possible in the same crystal-class.

In most cases it remained, therefore, merely a question of personal

preference, which grouping of particles an observer wished to attribute

to the crystal-species under investigation; and it is conceivable
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that under such conditions most crystallographers felt inclined

rather to adopt the simpler views of Bravais, than the much more

complicated doctrine of the regular arrangements in space discussed

in the above l

).

15. The problem of giving a rational deduction of the crys-

talline structure from the chemical composition of the crystal has

puzzled investigators ever since early times. It has been more in

particular the deduction of the observed symmetry, which originally

occupied most workers in this field, and in this respect the endea-

vours of Groth 2
) in 1870 are worthy to be remembered, who tried

to find out what change the symmetry of the crystalline substance

undergoes when one of its hydrogen-atoms is replaced by another

univalent atom or radical. The phenomena observed in such cases

are named morphotropism.

Some frequently occurring facts could be stated in these inves-

tigations, although it appeared impossible to find here absolute

regularities, because it very soon became clear that the "morphotropic

action" of any substitute does not only depend on its proper

chemical character, but also on that of the substituted molecule.

Thus, Groth was able to draw attention to the fact that the sub-

stitution of a hydrogen-atom in organic molecules by a hydroxyl-

or nitro-group, has commonly as a consequence only a rather slight

and one-sided change of the crystallographical parameters of the

substituted substance, while the original symmetry of it is usually

preserved. The substitution of hydrogen-atoms in such molecules

by halogen-atoms or by alkyl-groups, is, however, in almost all cases

followed by a striking change of the crystallographical symmetry
of the original substance. These rules are valid in most cases, but

the number of exceptions is by no means negligible.

Other observers tried to trace the connection between chemical

constitution and crystallographical symmetry by the comparative

study of the crystal-forms of position-isomerides. The present author

1) Cf. also: G. Friedel, Bull, de la Soc. Miner., 31, 326, (1907); G. W.

Wulff, Zeits.' f. Kryst., 47, 607, (1910).

W. J. Sollas, Proc. Royal Soc., 63, 270, (1898); 67, 493. (1900); 69,294,

(1902; 80, A, 267, (1908); Brit. Assoc. Rep., (1907), p. 481.

G. Cesaro, Bull. Acad. R. beige, (1901), p. 303; P. Groth, Zeits. f. Kryst.,

54, 65, 498, (1914); E. Riecke, Phys. Zeits., (1900), /, 277; Ann. der Phys.,

3, 545, (1900).
2
) P. Groth, Ber. d. d. Chem. Ges. 3, 449, (1870).,
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found in this way, for instance,
l

)
that although close relations

between such position-isomerides are in general rather rare, in the

case of 1 -2-4-6-, and \-2-3-5-tribromo-toluenes a complete isomorphism

occurs, which is also preserved in the corresponding dinitro-

derivatives of them.

Although no general rules concerning the relation between che-

mical composition and the degree of crystallonomical symmetry
have hitherto been found, these, and an exceedingly large number

of other phenomena, must convince us of the truth that a rational

connection between crystalline form and molecular composition
exists beyond all doubt. The discovery of isomorphism by Mitscher-

lich was a first step on the way towards the solution of the problem
indicated above, as here the "analogy" in chemical composition
is expressively pointed out. Isomorphism, however, is only a special

case of the much wider conception of morphotropism, i. e. of the

causal relations between chemical and crystallographical arrangement,
and between the forces which determine the configuration of atoms

in space, in connection with those governing the structural arrange-

ment of the crystallonomical units.

16. A highly suggestive theory concerning the problem men-

tioned, was developed in 1906 by Barlow and Pope 2
). It represents

a happy completion of Barlow's views on homogeneous configu-

rations and on the most closely packing of spheres, by the aid of a new
fundamental hypothesis about the relation between the valency of an

atom and the space it occupies in such homogeneous assemblages.

The domain of each chemical atom is a distinct portion of space,

which it occupies by virtue of an influence exerted uniformly in every
direction. These spheres of influence are now supposed to have a

volume which in every compound is nearly proportional to the valency

of the atom, the factor of proportionality being the same for all atoms

of the same crystallised substance; and according to the authors, a

J
)

F. M. Jaeger, Kristallografische en Molekulaive Symmetric van Plaatsings-

isomere Benzolderivaten, Dissertatie Leiden, (1903); Zeits. f. Kryst. 38, 555,

(1904); 39, 170, (1904); 40, 357, (1905).
2
)
W. Barlow and W. J. Pope, Journ. Chem. Soc. London, 89, 1675, (1906);

G. Le Bas, ibid., 91, 112, (1907); W. Barlow and W. J. Pope, Journ. Chem.

Soc., 91, 1150, (1907); 93, 1528, (1908); F. M. Jaeger, Zeits. f. Kryst., 44, 61,

(1907); W. Barlow and W. J.. Pope, Journ. Chem. Soc., 97. 2308. (1910); W.

Barlow, Miner. Mag. 17, 314, (1916); cf. also: W. Barlow, Zeits. f. Kryst., 29,

433, (1889); and especially the work of A. E. H. Tutton: Crystalline Structurre

and Chemical Constitution, Londen, (1910).
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crystalline structure must be regarded as a most closely packed, homo-

geneous assemblage of the spheres of influence of the component atoms.

The whole assemblage of atoms, most closely packed in the way
described, is of course homogeneously partitionable into exactly

similar cells which all contain a single chemical molecule.

It will be clear that each point in every cell corresponds to a

homologous point in any other cell, and that these homologous

points of the same kind will represent a space-lattice characterised

by definite translations, and also occasionally by definite rotations.

The unit-cell containing the single molecule, and built up by

spheres of atomic influence, has therefore in the whole assemblage
a similar function as the "repeat" had in our "patterns" formerly

discussed. The homogeneous, periodical nature of the whole structure

makes the partitioning into "molecular cells" to some extent arbi-

trary from a theoretical point of view, just as was previously pointed

out when we spoke of the significance of the conception of "molecule"

in the crystalline state.

If a sphere be taken from the whole complex and replaced by
another, the total solid volume of the replacing and replaced spheres

must be almost the same. Thus the cavity produced by three hydrogen-

atoms may be nearly filled up by one trivalent nitrogen-atom, etc.

It must here be remarked that the proportionality of the volume

of the influence-spheres and the valencies of the respective atoms,

is only an approximate one. This follows among other things from

the fact that the isomorphous substitution of K by Rb, or by Cs,

does not lead to identical crystal-forms, and also from the fact that

the univalent Li-, or Afa-atoms do not replace those of K, Rb, Cs,

isomorphously. From this the possibility of a slight shifting of these

spheres in most closely packing after such substitutions, and, as a

consequence of this, a change of symmetry, may be conceivable.

17. The theory just described in outlines, has been applied

by both the authors in a very ingenious way to explain a number

of peculiarities and phenomena observed in crystals. For these

applications we must refer the reader here to the series of publications

mentioned in the preceding paragraph. It cannot be denied that

there often appears some arbitrariness with respect to the way in

which these assemblages are brought into agreement with the crys-

tallographical data at hand, especially with respect to the selection

of the "multiples of the axial ratios" as calculated from direct mea-

surements. This is the same criticism which has often been actually
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made of analogous trials made by other investigators to elucidate

relationships between crystalline forms of different, but closely

related substances. Multiplication of axial ratios with other numbers

than those following from the directly observed Millerian indices

of the occurring crystal-facets, with the purpose of bringing out

analogies in form with the crystal-forms of other substances, is a

dangerous process. By suitable choice of the multipliers, all desired

axial ratios can finally be made comparable with each other. Not-

withstanding this, it can be seen from the Barlow- Pope-theory
that a certain persistence of a particular type of structure as an

element throughout widely differing assemblages, often occurs in

the case of substances, which are substitution-products of a same

mother-compound; and also, that the structures of two polymorphous
modifications of a same substance are geometrically often very

simply related to each other.

It is of no use to study all the cases considered by the authors

in the light of these conceptions, nor to mention all the numerous

conclusions to which they have arrived, because, as we shall see

later, the results to which they have come differ appreciably in many
respects from those obtained by means of the more objective diffrac-

tion-method of Bragg, and because further research must bring
full evidence as to the correctness of the one view or the other. But

it may be of interest to say some few words about the crystalline

forms of the chemical elements as seen from this standpoint, and

also of some simply constituted oxides of bivalent metals. We are

here dealing with the relatively simple case of the symmetrical

marshalling of equal spheres. These considerations may also be

useful afterwards from another point of view.

18. It is a wellknown fact that the elements crystallise in

either the cubic or the hexagonal (ditrigonal) system. Assuming this

phenomenon to have some relation to the hypothesis mentioned

above, the question may arise whether the crystalline structures of

these elements may be considered as most closely packed assemblages
of equal spheres?

Equal spheres can be packed most closely under a general pressure
so as to produce a completely homogeneous system in two ways only,
which can be differentiated as the cubic and the hexagonal closely

packed arrangements of equal spheres. *)

!) W. Barlow, Nature, 29, 186, (1883); Lord Kelvin, Proceed. Roy. Soc.

of Edinburgh, 16, 693, (1889).



The cubic (tetrahedral) arrangement will be clear from fig. 121 a

and b. It has all symmetry-elements of the holohedral class of the

a. Fig. 121. b.

Cubic Assemblage of Equal Spheres.

cubic system (KH). The centres of the spheres, the points of

contact between the spheres, and the centres of the octahedral

groups of spheres shown in the octahedral section of fig i2ib, are

all centres of symmetry of the unlimited system. The ternary axes are

perpendicalur to the planes of most closely packing of spheres in the

whole system, and of these planes, which are parallel to those of the

octahedron, there are three

consecutive ones differently

arranged, the fourth being

identical with the first and

the seventh, the fifth with the

second and the eighth, etc.

(fig. i2ib.) The projection of

three consecutive layers pa-

rallel to (111) is shown in fig.

122, and can make clear the

mutual marshalling of the

spheres in this direction, if

compared with figure 123,

which in its turn represents

the most closely packed as-

semblage of equal spheres

mentioned above under the name of the hexagonal arrangement.

The symmetry-elements of this hexagonal assemblage are those

of the holohedral class of the hexagonal system. The system of sphe-

res possesses parallel planes of symmetry passing through the centres

Fig. 122.

Section parallel to (111).
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Fig. 123.

Section parallel to (100).

of the spheres of each of its most closely packed triangularly ar-

ranged layers, (fiv. 124). In the centres of the cavities of each triad

of spheres, ternary axes of rotation are present perpendicular to

the different layers just men-

tioned, in such a way that they

pass simultaneously through a

sphere-centre of an adjacent

layer b and c; while through
the centres of the cavities of

every group of six contiguous

spheres of two consecutive

layers, senary screw-axes pass,

of course being also perpen-
dicular to the already mentio-

ned symmetry-planes.
The screw-axes do not pass

through any sphere-centres at

all; but three planes of sym-

metry pass through every sena-

ry screw-axis and through the centres of the three nearest spheres

of consecutive layers. Three double sets of binary axes lie in planes

midway betwreen the layers of most closely packed triangularly

arranged spheres, and perpendicular

to the last described symmetry-planes,
and they intersect the senary screw-

axes. Through every pair of nearest

senary screw-axes a plane of "gliding"

symmetry can be brought, which

planes are evidently perpendicular to

the binary axes just mentioned. In

planes midway between the conse-

cutive layers, the symmetry-centres of

the endless system are situated on

every senary screw-axis and at points

midway between them. If the value

of the translation perpendicular to

each layer, by which a sphere of the first layer can be brought to

coincidence with a superposed sphere of the third layer, be taken

as the parameter of the c-axis, while the distance of two contiguous

spheres in each layer is taken as a-axis, --it will be obvious that

Fig. 124.

Hexagonal Assemblage of Equal

Spheres.
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the axial ratio of this hexagonal arrangement is:a:c = l:2vr

f
=

1 : 1,6330, or half of it,
= 1 : 0,8165. This value is therefore

descriptive
l
) of such most closely packed hexagonal assemblages

of equal spheres.

First now, there are a number of chemical elements which crys-

tallise in the cubic system: silver, mercury, gold, copper, several

platinum-metals, etc., are wellknown examples of this.

Secondly, a number of elements are hexagonal: magnesium, beryl-

lium, arsenic, etc., may be mentioned among others. Moreover, in

cases of dimorphism of such elements, the change of cubic into hexa-

gonal symmetry, and vice-versa, is frequently observed.

However, the agreement of the axial ratios of these elements with

both theoretical values, appears to be only an approximate one:

for magnesium it is: 1 : 1,6242; for beryllium: 1 : 1,5802; for

arsenic: 1 : 1,4025, while for most of them those values oscillate

round 1 : 1,33.

The agreement is better in the case of the oxides and sulphides

of bivalent elements as zinc, cadmium, beryllium, etc., where evidently

the same conditions must exist. A few examples will make this clear 2
) :

Zinc-oxide a : c = 1 : 1,6077.

Zinc-sulphide a : c 1 : 0,8175.

Beryllium-oxide a : c = \ : 1,6305.

Cadmium-sulphide a : c = \ : 0,8109.

etc.

18. Notwithstanding this obvious, at least partial, agreement
between measurements and calculations, we shall see that the struc-

tures following from the above mentioned theory agree only occa-

sionally with the result of the recent investigations of some of

these substances by means of Ron t gen-rays. It can hardly be

denied that serious objections have occasionally been raised against

the theory mentioned, against its fundamental suppositions, and

against the conclusions drawn from them, - -
suggestive as they

1
) If, however, the perpendicular to the now adopted a-axis were chosen as

such, the ratio: a : c = 1 :~[/^2
= l : 1,4142 would have been the descriptive

value for this assemblage, which, of course, is equally appropriate for the purpose

of characterising the hexagonal assemblage under consideration.

2
)

C. Friedel, Compt. rend, de 1'Acad. d. Sciences Paris, 52, 983, (1861);

O. Miigge, Jahrb. f. Miner., 2, 1, (1882); E. Mallard, Ann., des Mines, 12,

427, (1887); H. Traube, Jahrb. f. Miner., Beil. End. 9, 147, (1894).
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may be. Therefore, it will be certainly necessary to postpone a final

judgement of the various results obtained, until full certainty has

been obtained about the real value of the conclusions drawn from

the experimental results of the newly discovered methods.

There is, however, one point in which all these different investigators

agree : it is the conviction of the soundness of the contention that

constitutive atoms of a molecule preserve their individuality, and

to some extent also their autonomy, as the component particles

of a crystalline structure. The theory of Sohncke, that a crystal

may be regarded as an interpenetration of regular point-systems,

and the view maintained by Groth and by Barlow and Pope,
that the structural units of these systems and space-lattices are the

separate atoms of the chemical molecule, have been supported by
modern experience, and their correctness seems to become more

and more certain. It will, therefore, be of interest to consider here

these new methods of research more in detail.

20. In the preceding paragraphs we have learned to consider

the crystal as a discontinuous system of atoms and molecules regu-

larly distributed in space, and separated from each other by very
small but definite distances. A long time ago physicists made some

evaluations of the order of magnitude of these interatomic and

intermolecular dimensions, which they found to be about 10 8

or 10 9 cm.

Now it will be clear that an aggregation of particles of this kind

will behave as a continuous body towards most physical agencies,

because the dimensions which come into play in such physical pheno-

mena, are commonly of an order of magnitude incomparably greater

than the extremely small interatomic distances mentioned above.

Thus, if for instance a pencil of visible light-rays travel through
such a crystalline body, the latter will behave towards these vibra-

tions like an anisotropous, but continuous medium, because the

wave-lengths of the luminous vibrations vary from 0,00004

to 0,00007 cm., this being about thousand to ten thousand times

as great as the mutual distance between the consecutive particles

of the assemblage.
From special phenomena observed with Ron tgen-rays, suspicion

had arisen among physicists, that the wave-length of these vibrations

which seemed to have a close analogy to ordinary light-waves, should

be extremely small, much smaller than those of the visible light.

Diffraction-phenomena studied by Hag a and Wind, afterwards

10
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by Walter and Pohl 1
),

and theoretical speculations by Wien,

Stark, and others, had gradually led to the conviction that the

wave-length of Ron t gen-radiation would be of the order of 10 8

or 10 9 cm. If this were true however, the wave-length would be

of the same order of magnitude as the interatomic distances supposed

in space-lattices of crystals, and in that case there would exist a

great probability that the crystalline medium would behave no

longer as a continuum towards Ron t gen-radiation. It might be

expected that the crystal would behave towards these extremely

short transversal waves in a way analogous to that, which the

wellknown "gratings" in optics do towards ordinary light-waves,

and that a diffraction-phenomenon, would occur, the nature of

which would be analogous to that which would be produced when

visible light fell upon a grating having three dimensions instead of

only two.

21. The ingenious idea that such a crystal might be used as

a tridimensional and most perfect "grating" for Rontgen-rays,
was in 1912 conceived byVonLaue 2

).
The experiment was carried

out in the spring of 1912 by Friedrich and Knipping 3
)

in

Sommerfeld's laboratory, and it was crowned with complete
success. Round the central spot at the point where a thin pencil

of Rontgen-rays, after passing the crystal, met the photographic

plate, a great number of oval spots of different intensities were

produced, which were symmetrically arranged about it, when the

direction of the rays coincided with that of a symmetry-axis of the

crystal-plate. In the preceding chapters some of these Ron tgen-

patterns have already been considered in detail, so that it is un-

necessary here to dwell upon them.

Since then, an ever-increasing number of experimental and theo-

retical work has been published
4
) concerning this highly important

phenomenon, which at the same time revealed the true nature of

!) H. Haga and C. H. Wind, Wied. Ann. der Phys., (3), 68, 884, (1899);

(4), 10, 305, (1903); B. Walter and R. Pohl, Ann. der Phys., (4). 28, 715,

(1908); (4), 29, 331, (1909).
2

)
M. Von Laue, Bayr. Akad. d. Wiss., (1912), p. 303; Ann. d. Phys.,

42, 397, (1913).
3
)

M. Von Laue, W. Friedrich, and P. Knipping, Ber. Bayr. Akad.

der Wiss., (1912), p. 303.

4
)

H. Haga and F. M. Jaeger, Proceed. Kon. Akad. van Wet. Amster-

dam, Vol. 16, 17, 18, (19141916); P. Debije, Verh. der phys. Ges., 15, 678,

738, 857. (1913); P. P. Ewald, Sitz. kon. Bayr. Akad. d. Wiss., (1914), p. 325;
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the Ron t gen-radiation and created the possibility of studying
the internal arrangement of the crystalline substances.

It proved not only the analogy between the nature of the Ron tgen-
radiation and the wave-motion of ordinary light, and made the

determination of its wave-length possible, but it brought simul-

taneously the direct proof of the correctness of the ideas which

crystallographers had already held for so long about the space-

lattice-arrangement of the particles in the crystal.

Indeed, Von Laue showed that the problem could be attacked

succesfully on the basis of the ordinary diffraction-theory, the

analytical treatment being, however, appreciably more complicated,

because of the tridimensional nature of the grating employed
1

).

22. For our purpose it is better, however, not to consider these

views in detail here, but to adopt an explanation of the phenomenon

brought forward by W. L. and W. H. Bragg, which enables the

questions considered here to be treated in a simple geometrical way

Phys. Zeits., 15, 399, (1914); P. P. Ewald and W. Friedrich, Ann. der Phys.

44, 1183, (1914); W. H. and W. L. Bragg, Proceed. Cambr. Phil. Soc., 17,

43, (1913); Proc. Royal Soc. London, 89, A, p. 277, 286, 477. (1913) ;
Zeits.

f. anorg. Chem., 90, 153, (1914); G. C. W. Kaye, X-Rays, London, (1914, p. 168;

W. H. and W. L. Bragg, X-Rays and Crystalstructure, London, (1915); E.

Keller, Ann. der Physik, 46, 157, (1915); C. L. Burdick and E. A. Owen, Journ.
Amer. Chem. Soc., 40, 1749, (1918); A. Johnsen, Zeits. f. Kryst., 54, 148, (1914);

R. Glockner, Ann. d. Phys., 47, 377, (1915); F. Rinne, Ber. d. math. phys.

Klasse d. kon. Sachs. Ges. der Wiss. Leipzig, 67, 303, (1915); 68, 11, (1915);

A. Sommerfeld, Munch. Med. Wochenschr., 42, 1424, (1915); A. Johnsen,
Centr. Bl. f. Miner., (1915), p. 331; P. Niggli, Ber. d. math. phys. Klasse

der Sachs. Ges. der Wiss., Leipzig, 67, 364, (1915); Zeits. f. anorg. Chem., 85,

207, (1915); Centralblatt f. Miner. (1917), p. 313; Vierteljahrschrift d. Naturf. Ges.

in Zurich, 62, 242, (1917) ;
M. Von Laue, Ann. der Phys., 50, 433, (1916) ;

F. Rinne
Zeits. f. anorg. Chem., 96, 317, (1916); E. Wagner, Phys. Zeits., 14, 1232, (1913);

18, 405, 432, 461, 488, (1917); P. Pfeiffer, Zeits. f. anorg. Chem., 92, 376, (1915);

P. Debije and P. Scherrer, Nachr. d. Ges. d. Wiss. zu Gottingen, (1916); J. Olie

and J. A. Bijl, Proceed. Kon. Akad. van Wet. Amsterdam, 19, (1917); Phys. Zeits.,

17, 277, (1916); 18, 291, 483, (1917); C. Runge, Phys. Zeits., 18,509, (1917);

P. Scherrer, Phys. Zeits., 19, 23, (1918); L. Vegard, Phil. Mag., (6), 32, 65,

(1916); C. M. Williams Proceed. Royal Soc. London, ^.93, 418, (1917). F. Rinne,
Centr. Bl. f. Miner., (1919), 129, 161, 193; E. Schiebold, Inaug. Dissert. Leipzig,

(1919); P. Niggli, Vierteljahrschr. Naturf. Ges. Zurich, 62, 242, (1917);

R. G. Dickinson, Journ. Amer. Chem. Soc., 42, 85, (1920); G. Am in off,

Geol. Foren. Forh., 41, 428, (1919); Meddelanden fran Stockholms Hogskolas
Miner. Institut, No. 12, p. 534, (1919).

J
)
About the application of L a u e-diagrams to problems concerning crystal-

structure, cf . : E. Schiebold, Inaug. Dissert. Leipzig, (1919).
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and to avoid all calculations. It differs only from Von Laue's

method in form, not in essence, as several authors have shown. l

)

The principal idea of it is, that the phenomena observed can also

be described as if the radiation were reflected by the consecutive

parallel and equidistant molecular layers of the crystal under con-

sideration, the "reflected" vibrations interfering with each other

according to Huyghens' principle, because each particle becomes

in its turn the centre of a secondary wave-motion spread around

it spherically, when a pulse of the incident beams passes over it.

Let us suppose, that the pencil of

parallel Ron tgen-rays L^L t (jig. 125)

contains every possible wave-length over

a wide range, its spectrum, therefore,

being a continuous one. According to

our suppositions, each atom of a net-

plane Vl
struck by the primary radiation,

will become the centre of a new wavelet,

and these various diffracted wavelets

will touch a reflected wave-front per-

pendicular to the parallel beam L\L\
which emerges from the crystal. The

same will be true for the atoms of the

consecutive net-planes F2 ,
F3 ,

etc.
;
but

since the rays do not usually penetrate

more than e.g. one millimetre deep into

the substance, it is only a relatively thin

layer of crystalline substance that is

engaged in the phenomenon considered, and in every case the

number of "reflecting" net-planes is a finite one. Only when

the reflected wave-trains are in the same phase, i. e. when they
interfere with phase-differences of A or a multiple of A, an

interference-maximum will occur. Now if bS be the plane per-

pendicular to the incident beam of radiation, and aS that perpendi-

cular to the "reflected" beam L\L'2 ,
the difference in the path

travelled by a ray coming from Vlt and by that coming from F2 ,

will obviously be bP + Pa. But bP Pa, is the projection of

the distance d between two consecutive net-planes Fx and F2

upon the direction of the incident an emergent beam, and therefore

!) Cf.: T. Terada, Proceed. Tokyo math. phys. Soc., 7, 60, (1913); G. W.

Wullf, Phys. Zeils., 14, 217, (1913).

Fig. 125.
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equal to d.sinQ, when <p is the glancing
l

) angle which the incident

pencil makes with the planes Vl or F2 . The whole phase-difference

is therefore: 2d.sin(p and an interference-maximum will only

occur, if this difference be equal to A or to a multiple of it: 2A, 3A,

4A, etc.

It is obvious from the equation:

2d.sin(p = nh,

that for constant d and for each definite value of A, the angle <J>

can only have definite values Qlt <J)2 ,
< 3 , etc., the sines of which are

rational multiples of each other. Conversely: if Vl is given in a

certain crystal, d is wholly determined by the internal specific crystal-

structure, and when homogeneous radiation of a known wave-length
A be used, we have only to measure Qlf <pz , etc., to find the distance

d between two consecutive layers parallel to V: . On the other hand

it must be clear that from all wave-lengths present in the incident

radiation, only that which is equal to A, or
, , etc., will be

reflected under the angles mentioned, when the plane is in a fixed

position. The reflection at such a fixed set of net-planes under a

constant glancing angle <J) has, therefore, the effect of separating

only special wave-lenghts A, and -, -, etc., out of the total number

of wave-lengths present in the incident rays; it changes the incident

radiation, being in the case of uniform metallic anticathodes a

wave-motion of only a comparatively small number of wave-lengths,
into a "monochromatic" one of definite wave-length A or m A, corres-

ponding to a certain glancing angle <J), and, therefore, such a reflection

has a pronounced selective action. It may be remarked here that Vl

need not be a limiting plane of the crystal; the so-called "reflection"

occurs within the crystal, and at the parallel, equidistant net-planes

present therein, which are situated in a relatively thin layer parallel

to the reflecting external surface of the crystal.

When the original radiation falling on the crystal is itself mono-

chromatic, the effect is still more restricted. For only at a few charac-

teristic glancing angles <&, <
2 ,

< 3 , etc., can reflections then take

place, these all being determined by the equation: 2d,sin(p
= nx.

The crystal in this case must be held at exactly the characteristic

*) The "glancing" angle is, therefore, the complement of the "incident" angle
between the incident ray and the perpendicular to the plane of reflection.
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angle, and even then it can only give a spectrum of one order at

the same time
;
in this respect it differs principally from an ordinary

line-grating which may give at any angle of incidence spectra of

different orders simultaneously. It follows from this that in the

L a u e-patterns previously considered, where the crystal-plate

remained in a fixed position during the experiment with "white"

Rontgen-radiation, each spot on the photographic plate corresponds

to a series of wave-lengths A, -, -, etc. If we could distinguish the

"colours" of a Rontgen-radiation with continuous spectrum, as

we do in-visible light, we should see that the pattern would be a multi-

coloured one, every spot having its own colour, wholly depending
on the direction of the set of net-planes in the crystal from which

the ray which produced that spot, took its origin.

23. For our purpose the facts referred to in the preceding

paragraphs may be considered sufficient. Indeed, if Rontgen-
radiation of known wave-length A be used, observation of the angles
of reflection on a definite set of net-planes will give us a relation

between A and d, and by doing this for various known directions

of a crystal, for instance for the three pinacoides 100} , 010} ,
and

001} , etc., we shall gain an important insight into the dimensions

di, d2 ,
d3 , etc., related to them.

The equation deduced in the above includes all we have to know
for the study of the special arrangement of the net-planes in such

a crystalline medium with respect to each other, and it was in this

way, that W. H. and W. L. Bragg made their successful investi-

gations of the internal structure of a number of crystals. Without

considering their special methods of experimenting
l

)
in detail,

l
)
The directions in which, on turning the crystal about an axis, real inter-

ference-maxima occur, can be found by several methods. The English investigators

mentioned used for this purpose the ionising effect R on t gen-rays have on gas-

molecules. The "indicator" of their ^"-ray-spectrometer was an ionisation-chamber.

filled with a suitable gas, as for instance sulphurdioxide. However, it is equally

possible to make use of other effects produced by Rontgen-rays, when these

effects can be measured or observed, even if they be very feeble. Many investigators

have in recent times made use of the photographic plate (De Broglie, Friman
and Siegbahn, Debije, and others), especially for the study of wave-lengths.

Some few indications may be sufficient concerning Debije's beautiful method of

investigation, which undoubtedly is of highest importance for future researchwork

in this direction. The advantage of this method is, that no well-developed crystals

or accurately cut plates are any longer necessary : the substance to be investigated
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we shall only discuss here some of their results, in so far as they
are important for testing our general conclusions as to the structure

of the regular, unlimited, molecular systems to wich we were led

hitherto in this chapter.

24. Every metal used in the X-ray-bulb as anticathode is

stimulated to the emission of X-rays characteristic for that metal l

)

Some of them give spectra of very few lines, most of them such of

a somewhat more complicated structure (doublets), although the

most intensive lines are also in this case rather small in number,

and belong to only two or three different series, which are commonly

distinguished as K- L-, and M-series.

Within a certain range of the spectrum, two or three of the most

intense lines may be used for the experiments to be described further

on, so that these are carried out with a source of radiation which,

although not monochromatic in the true sense of the word, gives

results which ordinarily are easily controlled and interpreted.

Such rather simple X-ray-spectra can be obtained by means of

anticathodes made from palladium, rhodium, tungsten, or platinum.

The rhodium-a.ntica.ihode chiefly emits rays with the wave-lengths :

0,537.10-8 cm.; 0,545.1Q-8 cm.; 0,614.10-8 cm. and 0,619.10~8

cm., -- the latter being much more intense than the former. The

palladium-anticathode gives radiations of 0,583.10~8 and 0,589. 10

cm., and of 0,516.10
8 and 0,503.10

8
cm., while in another series

there is again a wave-length of 4,622.10
8 cm. Tungsten emits a

is ground in a mortar and brought into the form of a finely divided powder. This is

then shaped into a thin cylindrical rod, and fixed in a position parallel to the axis of

a cylindrical photographic camera, provided with a sensitive film. The rod is exposed
to monochromatic Ron t gen-radiation, entering through a thin aluminium-window

in the side of the camera, and propagating in a direction perpendicular to the axis

of the cylindrical film. The crystal-particles, orientated in all directions of space,

reflect the incident rays in such a way that the dispersed rays are situated on the

surface of circular cones, each of those corresponding to a special set of parallel

net-planes in the minute crystal-particles. The intersections of these conical surfaces

with the film produce a series of curves, the distance and intensities of which

are definite functions of the characteristic molecular distances of each set of net-

planes. The calculation of the results is rather complicated, but exhaustively treated

by Runge, Johnsen, etc.

!) W. H. and W. L. Bragg, Proceed. Roy. Soc. London, 88, A, 428, (1913);

H. G. J. Moseley and C. G. Darwin, Phil. Mag., (6), 26, 210, (1913); H. G. J.

Moseley, ibid. (6), 26, 1024, (1913); (6), 27, 703, (1914); E.Wagner, Phys. Zeits.,

18, 405, 432, 461, 488, (1917); M. Siegbahn, and W. Stenstrom, ibid., 18,

547, (1917).
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radiation of 1,486.10
8
cm., while a platinum-anticathode gives

a spectrum with five principal lines, the wave-lengths of the most

intense being: 1,316.10
8 cm. (A), a doublet of 1,113.10-8 and

1,095.10
8 cm. (B), and a line of 0,96.10

8 cm. (C).

Let us suppose that an X-ray-bulb is used with such a platinum

anticathode, of whose radiation we shall at present consider only

the wave-lengths denoted by A , B, and C. A crystal of sodiumchloride

may be so placed, that the "reflection" of the incident beam occurs

at the cube-face (100) of the crystal.

Three maxima, of which B is the strongest and C the weakest,

are found at glancing angles $ of 1348 /

,
1 130' and 10 respectively.

They are repeated in a spectrum of the second order with somewhat

smaller intensities, as A 2 ,
B2 and C2 ,

the corresponding glancing

angles being: 2736', 2330 /

,
and 20 respectively; and finally as

a spectrum of the third order with still smaller intensity, as B3 and

C3 ,
at angles of 3550' and 3048'.

In agreement with the theory enunciated in the above,we find that :

sin 1348': sin 2736 / = 0,238:0,463; sin 1130': sin 2330': sin

3550' = 0,199:0,399:0,585; and sin 10: sin 20: sin 20: sin

3048' = 0,173:0,342: 0,512; which ratios are very near to 1 : 2,

or to 1: 2:3.

If instead of rocksalt, the corresponding mineral sylvine (KCl)

be used, the phenomena observed when reflection occurs at the

faces of the cube 100}, of the rhombicdodecahedron 110], and

of the octahedron 111] successively, are in two of the three cases

wholly analogous in character, but for the same wave-length the

glancing angles on each of the three faces -are different, their sines

being always in a constant ratio, exactly as in the case of rocksalt.

Thus, for instance, corresponding maxima on the faces (100), (1 10),

and (111) are found here at 513', 718 /

,
and 93' respectively, the

sines of which are in proportion of 1:1/2: 1/3.

The same ratio would be found for the sines of the angles, at which

corresponding maxima occur on the faces (100), (110), and (111)

in the case of rocksalt, although the absolute values of these angles

are other than with sylvine.

It is obvious that this constant ratio is exactly the same as that

of the inverse distances of the consecutive layers parallel to the

three faces mentioned in a simple cubic space-lattice. For if we take

the three possible types of arrangements in cubic space-lattices

(p. 121), we have:
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Type of Space-lattice:
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additional phenomenon in comparison with the corresponding
reflection in the case of rocksalt, in so far as a maximum intensity

now corresponds not only to a glancing angle of 21, as would be

expected with regard to the reflection at the potassiumchloride-

crystal, but, moreover, to another angle of about 1030'. The maxi-

mum is here somewhat feebler than the first mentioned one.

The cause of this difference is explained by the fact that the

atomic weight, and, therefore, the power of emission of sodium- and

chlorine-atoms, differ much more than those of potassium- and

chlorine-atoms. Indeed, if in the simple cubic space-lattice of fig. 126,

in which the black dots are the metal-atoms and the white ones the

halogen-atoms, we make sections parallel to (100) or (110), these

consecutive sections will all prove to be identical, consisting of equal

numbers of metal- and halogen-atoms. But if we make sections

in a direction perpendicular to a trigonal axis of the space-lattice,

we. have layers of metal-atoms alone, alternating with layers con-

sisting only of halogen-atoms. In the case of potassiumchloride, where

K and Cl with respect to their secondary emission behave almost

identically, the result of the interference of the reflected rays is

nearly the same as when all layers are built up by the same kind

of particles. In the case of sodiumchloride, however, this is no longer

the case; here the result of the interference of rays coming from the

layers 1, 3, 5, 7, etc., will be different from that of the waves coming
from the alternating layers 2, 4, 6, 8, etc. The latter will, of course,

have a phase opposite to that of the first series; but as their ampli-

tudes are different, they will not completely counterbalance each

other, and a second maximum, as mentioned above, is therefore

observed here x
).

The structure of both salts is thus much the same: both

1
)
When a and a' are the amplitudes of the waves reflected by the planes

1, 3, 5, 7, etc., consisting of metal-atoms, and 2, 4, 6, 8, etc., consisting of chlorine-

atoms respectively, and when 5 is the phase-difference produced by the reflection

at two consecutive layers of the whole parallel set, the resulting amplitude A produ-

ced by the interference, may be represented by an equation of the form:

A a cos(nt) -f- a' cos (nt s.) -f- a cos (nt 2s) -f- a' cos (nt 3z) -f- . . . .
,
etc.

If a were equal to a', we should have a maximum for & 2n, 4-n: etc., but for

s =
TT, the value of A would become zero, because every two consecutive terms

of the sum would counterbalance each other, their phases being exactly opposite.

When a and a' are, however, not equal, there will besides the maxima mentioned

in the preceding case, also be some feebler ones for e =
TT, because these oppo-

sitely directed vibrations now no longer counterbalance each other, their intensities
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systems consist of two interpenetrating cubic face-centred space-

lattices, the one of which is built up by chlorine-, the other by metal-

atoms, and so intercalated that the cA/onw^-space-lattice is shifted

over a distance of half the cubic-edge of the metal-space-lattice,

each chlorine-atom thus falling midway between two consecutive

metal-atoms, and vice versa.

The different behaviour with respect to the reflection at (111)

is fully explained by the difference of atomic weights in the case

of K and Cl, and of Na and Cl.

However, there is again further evidence as to the correctness

of these conclusions. In comparing the behaviour of both crystals

with respect to the reflection at the same face, let us say at (100)

or (110), it is obvious that they are similar, but, as it were,

executed "on a different scale". This scale is governed by a constant

proportion in so far, as the sines of the corresponding glancing

angles on the same faces of KCl and NaCl prove to be nearly

1,12. The explanation of this fact is very simple indeed: it is caused

by the difference in magnitude of the distances d between correspon-

ding consecutive layers in both crystals. If, therefore, it be observed

that the ratio -
V{NaCl)

is .about = /,/?, we can conclude that

this is the same for
-,

:

-^ ;
and it is easily calculated from

"(Nad) "(KCl)

the molecular weights M1 and Mz (74,6 and 5^,5) of both salts, and

from their densities sl and s2 (1,99 and 2,17), that this ratio is almost

exactly the same as that of the edges of two cubes, each of which

contains one mol of the salts; these edges are j,J5, and 3,00 cm.

respectively. The number of molecules present in such a cube is,

however, known : for the absolute weight of a hydrogen-atom is 1,64. x
1024 gram, that of a mol sodiumchloride therefore: 95,94 X 10 24

being different. This is the analytical expression for what is said in the above. If the

consecutive layers of different atoms did not follow each other in equal distances,

but e. g. in such a way that every layer of the one kind of atoms divided the

distances d of two consecutive identical layers of the other kind in a ratio of

I : 3, we should have:

A = acos(nt) -\- a'cos(nt Js) -f- a cos(nt t) -j- a'cos(nt |) -f-

-f- acos(nt 2) + ...... etc.

Now there will be a maximum for e = 2-n, and a feebler one for = 4it. The

two first vibrations of the series will be : a cos (nt) and a' cos (nt w) ; they are oppo-

sitely directed, but do not nullify each other, because a and a' are different. This

is observed in the case of zinc-sulphide.
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gram. The number of molecules NaCl in the cube with its edge of

58 5
3,00 cm. is therefore: ^ Q

.

'

| Q_24
= 0,610 X 1024

,
or 1,22 x

1024 atoms. On every edge of the cube there are as a consequence:

7,07 x 108 atoms, their mutual distance, therefore, being: -*-f\T~ fns

cm. = 2,8 x io~~8 cm.

The spacing of the layers parallel to (1 10) or (1 1 1) is then easily

calculated from this number, while that of the consecutive layers

of KCl parallel to (100), is of course: j,/5 X 10 8
cm.; etc.

26. The cases of sodium-, and potassiumchloride, discussed more

in detail, may give an idea of the general method of reasoning
followed by Bragg to try to find out the internal structure of crys-

talline substances. The study of the relative intensities of the spectra

of the first, second, third order, etc., and of other peculiarities of

them, as for instance in the case of diamond, where the second spec-

trum was completely cut out, requires a number of conditions

to be fulfilled, before the arrangement adopted really explains the

diffraction-phenomena observed in every special case. l
)

More particularly the face-centred space-lattice of cubic symmetry,
so closely related to the most closely packed arrangement, appears to

be of high importance for the internal structure of cubic crystals. Thus

in the case of zinc-sulphide, the zinc-atoms are arranged in such a face-

centred cubic lattice, while the sulfur-atoms are disposed through
the system in such a way that they occupy the centres of half the

number of the eight smaller cubes in which the greater face-centred

cubes of the zinc-atoms may be imagined to be subdivided; in this

case two of these smaller cubes must never be adjacent to each other.

When the zinc- and the sulphur-atoms in ZnS are all substituted

by carbon-atoms, the structure of diamond is obtained, such as it

must be with respect to the experimental results met with in the

study of its crystals. That there, contrarily to what was observed

in the case of ZnS, the spectre of the second order (f
= 2 x 2?r)

is completely cut out in the reflection at the octahedron-faces, is

explained by the fact that the alternating layers all consist of identical

atoms, the amplitudes a and a' of both oppositely directed secondary

*) The question may be raised: can the supposed structures be the only true

ones, excluding every other possible arrangement? According to Barlow (Proc.

Roy. Soc. London, 91, 1, (1915), the possibility of other explanations as given

by Bragg, seems to be undeniable.
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vibrations being therefore equal in this case. The waves reflected

under this difference of phase will thus totally destroy each other,

which was not the case when they were emitted by alternating layers

of zinc- and sulphur-atoms.

With respect to the structure of diamond it may be remarked,

that the whole arrangement is such that each carbon-atom is sur-

rounded by four others, placed in the corners of a regular tetrahedron,

the centre of which is occupied by the first named carbon-atom.

This arrangement is in striking agreement with the suppositions

once made by Van 't Hoff and Le Bel with respect to the direc-

tion in space of the four valencies of the carbon-atom in general.

However, in the simple cases of KCl and NaCl already, there are

a number of subtile discrepancies with the results of crystallogra-

phical research, for instance, in the symmetry of both salts,
-

which are not accounted for in the structures derived by these

experiments. Special suppositions must, therefore, be made about

certain small displacements of the atoms from the normal positions

of equilibrium, to explain such differences. a
)

Recently Debije
2
), by means of his most ingenious and evidently

most universally applicable method of observation, studied the

structure of graphite and of other allotropic forms of carbon, which

all appear to have the same structure as graphite itself. He found,

that the carbon-atoms are placed here in the corners of regular

hexagons arranged in parallel strata, the fourth valency of the

carbon-atom being reduced to an extremely weak force. This fact

seems to prove that the carbon-atom can act as a centre either of

four or of three equal valencies, and the phenomena observed give

to some extent an explanation of the possible occurrence of deriva-

x
)

R. Gross, Jahrb. 1. Radioact. und Elektron., 15, 316, 319, (1919).
2
)

P. Debije and P. Scherrer, Phys. Zeits., 17, 277, (1916); 18, 291, (1917);

P. Debije, ibid., 18, 483, (1917); P. Scherrer, ibid., 19, 23, (1918); A. J. Bijl,

Dissertatie, Utrecht, (1918); P. Scherrer, Nachr. d. Ges. d. Wiss. Gottingen,

(1918), p. 98; K. Schutt, Umschau, 22, 406, (1918); R. Gross, Jahrb. f. Radio-

akt. und Elektron., 15, 325. (1919). It is remarkable, that the method mentioned

allows one also to state the crystalline nature of the particles dispersed in some

colloidal solutions, such as those of gold and silver.

During the war-time, the American physicist A. W. Hull (Phys. Review, N. S.

10, 661, (1917), came independently from the two investigators mentioned above,
to the invention of exactly the same method of observation. However, Debije's

publication dates from one-and-half a year before. Also the technical development
of Hull's method is almost identical with Debije's way of manipulation.
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lives of tfn'valent carbon (as triphenylmethyl, etc.) and of the specific

nature of the "aromatic" nucleus with its "paralysed" valencies.

Something of the same kind was found in the case of bivalent and

tetravalent tin.

It is highly probable, indeed, that the phenomena of the "allo-

tropy" of the elements is intimately connected with the variation

of their "valency", as defined by means of chemical investigations.

In the same way the case of "polymorphism" in chemical compounds
might have its deeper cause in real "desmotropic" changes within

the chemical molecule, as was already suggested on former occasions1
).

27. Without going into further details of these highly important

investigations or into the discussions and problems which they entail,

we may bring to the fore the following salient points from the above :

a). Direct experimental proof is given of the correctness of the view

that the component particles in crystals are arranged in space-

lattices, as was already foreshadowed by crystallographers some

sixty years ago.

b). Direct proof is given of the correctness of the other view

(Sohncke, Groth 2
),

that the unlimited regular structures we call

crystalline substances, may be considered as being built up by the

regular interpenetration of such space-lattices, each of which con-

sists of one and the same kind of atoms. These atoms preserve,

therefore, apparently their individuality as constituents of such

crystalline substances.

c) . Because of the periodical character of these unlimited regular

systems, it is from a mathematical and crystallographical point

of view absolutely arbitrary, in which way we wish to imagine these

atoms to be combined into larger units, although we have at present

no idea, wether and in what way or by what forces the "chemical

molecule" is preserved in such structures 3
).

The notion of "crystal-molecule" as a structural unit has, therefore,

!) F. M. Jaeger, Zeits. f. Kryst., 40, 131, 371, (1905); Proceed. Ron. Acad. v.

Wet. Amsterdam, 20, 282, (1917).
2
)

P. Groth, Ber. d. d. Chem. Ges., 47, 2063, (1914); Zeits. f. Kryst., 54, (1915).

According to this author, the interatomic connections must remain, even if from a

crystallographical point of view the chemical molecule as such seems to have lost its

significance. Many crystals have symmetry-elements, the special nature of which

is obviously closely related to the atomic structure of the chemical molecule itself.

This can only have real significance, if the latter remains present in the crystal.
3
)

In 1916 Smits and Scheffer (Proceed. Kon. Acad. v. Wet. Amsterdam,

19, 432, (1916) and in 1917 J. Beckenkamp (Centralbl. f. Miner., (1917), p.



159

lost its significance, as far as regards the crystallographical descrip-

tion of the phenomena observed: the whole crystal, endlessly

extended in all directions, behaves as one single gigantic crystal-

molecule. There is, however, at present no reason why the existence

of special forces preserving the atomic relations previously existing

in the separate chemical molecule should be denied, as has been

done in recent times by a number of physicists.
l

)

28. One of the most important problems of the immediate

future must be to get information about the special connection

between the forces which hold together the regular arrangements
in space of the atoms composing the crystalline medium, and the

chemical forces or valencies supposed to be the causes of the chemical

architecture of the molecule itself. Certainly there must be an intimate

relation between them, as was for instance seen in the case of diamond

and graphite, although we do not know at present how to attack

this problem properly. The modern views on coordination, as proposed

by Werner, seem to open a road in this direction: the forces which

govern the structure of coordinative compounds appear to differ,

not principally at least, from those supposed by the elder atomists.

When we shall have gone so far as to have found out this relation,

the significance of the symmetry-principle for the mode of action

of the chemical forces and for the stereometrical configuration of

the chemical molecule itself, will then doubtless be seen in a new

light, thus extending the views expounded in the previous chapters
to the mutual actions of the ultimate particles of inanimate matter.

29. In the preceding chapters we have also had full opportunity
to draw the attention of the reader to the part which the principle

of symmetry plays in living nature. The questions relating to this

have two sides : either we can study the special symmetry of the diffe-

rent organs of living individuals
;
or we can regard more particularly

the symmetry of the mutual arrangement of such organs. Hitherto

we have dealt more exclusively with the first side of the question,

97 1 10, have made some suggestive suppositions about the preservation of "chemi-

cal molecules" in crystalline media; cf. also: R. Gross, Centralbl. f. Miner., (1918),

p. 1.

1) From the experiments with R on t gen-rays it can only be concluded,

that for the description of the diffraction-phenomena observed, it appears

Mwnecessary to allow for the eventually existing chemical forces between the

atoms of one and the same chemical molecule. However, it is not proved by these

investigations, that the more intimate relations existing before between the atoms

of the chemical molecules, should have totally disappeared in the crystal.
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which to some extent can be formulated in a way comparable with

the second problem, by defining it as the question about the arrange-
ment of the different parts within these limited organs themselves.

But as a plant or an animal increases its volume continuously

by growth, and only secondary influences like the exhaust of life-

energy, sexual functions, etc., will help to put a limit to this growth
within a finite time, while without these hindering causes it

properly would go on infinitely,
- - the living organism can also

be looked upon as being endless and an unlimited system like those

we have discussed in the above. Exactly as the growth of a crystalline

medium is only determined by secondary circumstances existing in

its mother-liquid or its immediate environment, while from a

theoretical point of view it is also an endlessly extended system
of regularly arranged units.

.In this connection some considerations may be inserted here

concerning the remarkable views about phyllotaxis, i. e. about the

way of arrangement of leaves in plants. As we shall see, these phe-
nomena are in many.points very analogous to those dealt with in

the preceding paragraphs. Closely related to them are the pecu-

liarities observed in the arrangement of buds, of scales, and of the

different parts of muscles etc., as observed in oceanic conchifers.

The fact that the leaves of plants are arranged in spiral series

about their axis, has long been observed and recognised by botanists.

The spiral-theory of phyllotaxis has since the days of Goethe and

Bonnet 1
) often been a subject of investigation and speculation,

and for a considerable time it has been an object of botanical interest,

since its development by Schimper and Braun'2

)
and by A. and

L. Bravais 3
).

Its fundamental conception was originally, that the arrangement of

such leaves occurs in series which form alternating rows when viewed

in a horizontal or vertical direction. Thus proceeding along such a

spiral line, we shall meet a definite number of leaves ("members" of

the series), until after one or more revolutions a leaf is reached, which

stands exactly vertically above the first one. The members included

in such a series form together a cycle; the row of vertically superposed

!) Ch. Bonnet, Recherches sur I' Usage des Feuilles dans les Plantes, Goettinge

et Leyde, (1754), p. 159.

2
)

K. F. Schimper and A. Braun, Flora, 2, (1835); A. Braun, Nova Acta

Acad. Carol. Leopold. Nat. Curios., Halle, 15, 1, p. 195, (1831).
3

)
A. and L. Bravais, Ann. des Sciences naturelles, (2), 7, p. 42, 67, (1837).
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leaves are called orthostichies
,
while the parallel spirals are named

parastichies. The cycle is indicated by a numeral symbol in the

form of a fraction,

like: fa fa fff etc.,

the numerator of

which indicates the

number of turns of

the spiral in each

cycle, while its de-

nominator indica-

tes the number of

members inserted

in each cycle. As

an instance of this,

we have in fig. i2j

reproduced the

plane projection

of such a spiral

Fig. 127. arrangement on a

Plane projection of a spiral arrangement ( \ on a cone. COnical Surface, in

which five mem-
Genetic spiral Parastichies.

bets are included

in a cycle of two revolutions
(|).

The orthostichies (e. g.,*2-7-12) are

projected as the radii of the system
of circles, while for some members

a right-, and a left-handed wound

parastichy has been drawn, to the

significance of which we will draw

attention afterwards.

Bravais determined Braun's

"divergence" of two consecutive

leaves by angular measurements,

expressed in degrees of arc, the

magnitude of this angle being,

of course, directly related to the

fractional symbols mentioned in

the above. As beautiful examples
of such spiral arrangements may
be mentioned: the ripened car-

pellary cones of Pinus, the fruitbearing capitulum of the ordinary

ii

Fig. 128.

Fruits in the capitulum of

the sunflower.
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sunflower (Helianthus annuus) (fig. 128), the multiple fruit of

Ananassa sativa (fig. 129) with its consolidated mass of berries and

their bracts round the axis, and finally the phyllotaxis of Euphorbia

Wulfeni, according to Church.

The number can be easily

augmented.
Such a periodical arrange-

ment evidently possesses the

characteristics of a space-

lattice wound upon a cylin-

dricar surface. There are thus

definite translations, by which

the fundamental space-lattice

is determined as by a special

kind of symmetrical opera-

tions. If rolled round the

cylindrical surface, the diver-

gence of consecutive leaves

on the genetic spiral (dotted

line) may be expressed by a

fraction, the values of wh'ich

as found in nature l
) belong, among others, to the remarkable

series: |,
1*

-|, |, -f^, -fa, -J|,
etc.. Each fraction therein is obtained

from both the preceding by addition of their numerators and

denominators respectively. The series of these numbers was already

studied by Leonardo Pisano (Fibonacci; 1180 1225), by

Kepler, Lame, Bravais, and other mathematicians. More especial-

ly it may be remembered, that these fractions represent the

There occur also divergencies in nature, the value of which belong to the

1

i:
'

T' 2x+ 1' 3x+
terms of the continuous fraction:

'

- -^--
-, etc., which may be expressed as the successive

x+

1 + etc.

Such divergencies are the rarer, the greater the value of x is. The more general

expression for the occurring divergencies, published by Wiesner, is :

2 _ ^_ ^
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successive values of the stages of the continuous fraction:

1

2 +J
1 + 1

1 + 1

1 + etc.,

- values which oscillate alternately towards the positive or negative

with respect to a definite limiting number, to which the successive

terms continuously approach more closely. This true limit-va]ue

is no other than the irrational number: |(3 1/5), which represents

the smaller portion of the ratio known as the "aurea sectio",
-

a ratio which since the days of Leonardo da Vinci (1452 1519)

has been considered to be intimately connected with all questions

about ideal visual beauty of proportion in art and natural forms x
).

The "ideal" arrangement in phyllotaxis, towards a "tendency"
in living nature appears to exist, should therefore be considered such,

that a spiral arrangement is attended to, whose characteristic angular

divergence is equal to 7r(3 1/5), i. e. to 137 30'28". In this case

true "orthostichies" do no longer exist, because there can never

be a leaf standing exactly above some other, except in infinity. In

the opinion of the adherents of this theory, the "ideal" disposition of

leaves about a cylindrical stem aimed at by nature, would, therefore,

be such as to prevent each leaf from overlapping another, even if

the plants were so closely packed together as is often the case in dark

tropical forests. The question, in how far this teleological view must

be considered as being a mere fiction, or in real agreement with

the natural adaptation of the plant to its need of light and free air,

may be passed over here 2
).

30. If the theory of phyllotaxis just explained be once adopted,

1
)

Let a straight line AB be equal to unity, and C be a point so situated on

it, that AC : CB = AB : AC. Then AC2 = AB. BC, from which follows that

BC = 4(3 1/5), and AC =
(J/5 1). This division of AB by the point C

is called the "golden section", "aurea sectio" (also: "sectio divina" or "divina

proportio" (Kepler)), the length of^both portions is 0,381988 and 0,618034

respectively. The relations of this ratio to the properties of the regular pentagon

and, therefore, to pentagonal symmetry in general, (are wellknown.J
2
) J. Wiesner, Flora, (1875), p. 115, 139, 142; Biol. Centralblatt., 23, 209,

249, (1913); H. Winckler, Pringsheim's Jahrbuch f. wiss. Botan., 36, 1, (1901).

Wiesner concludes: "Regular phyllotaxis as determined in the sense described

above, is a phenomenon doubtless intimately connected with the question of the

most suitable adaptation to the natural conditions of light-absorption by plants".



164

and if the forms of the parastichies on a cylindrical stem be supposed
to agree with that of the ordinary Archimedian spirals (p

=
a.i),

the development of the system of parastichies on the cylindrical

surface in a plane will give a system of parallelogram-shaped

meshes, at the corners of which are placed the different leaves.

Such a plane drawing, showing the arrangement of the bracts and

berries observed in a

part of the multiple

fruit of Ananassa

sativa, is reprodu-
ced in fig. ijo.

As Wulff 1

) first

pointed out, the

distribution of these

organs is, at least

in principle, exactly

comparable with the

space-lattice-struc-

ture met with in

crystalline matter,

this form of struc-

ture being, indeed,

the prototype of the

most general perio-

Fig. 130.

.... Genetic spiral (laevogyratory) .

Parastichies (* -f- 13) .

dical distribution of

equal things in unli-

mited number. But

yet there must ap-

pear to be a striking difference between the arrangement of living

objects in one case, and that of the molecules in the other. For

if all conditions in phyllotaxis were really such as pictured here,

the divergencies which occur would be such, that their numerical

symbols Could be only rational numbers, just in the same way
as the possible edges of a crystal are always determined by the

direction of some straight line joining the angular points of each

netplane.

However, as we have seen, it is found by experience, that only

symbols closely related to those of the series mentioned above occur

l
)

G. W. Wulff, CHMMETPlfl H Efl HPOJ1B71EH1E Bb'llPHPCVlfc. (Symmetry and Its

Manifestations in Nature), (Russian), Moscou, (1907), p. 119. etc.
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in living nature, and that there is thus rather a tendency towards

the irrational ratio of the "aurea sectio" in living nature, which

to some extent goes parallel to the preference for true pentagonal

symmetry stated in the preceding chapters of this book.

Wulff tries to show that this contrast is only an apparent one,

pointing to the fact that even in such a crystallographically admis-

sible space-lattice, irrational "limit"-values might be indicated. J
)

If a straight line, for instance, joins the angular point of such a net-

plane, which has the coordinates (<?,/), with the origin (= o, o),

it passes alternately above and beneath the angular points (5,/j),

(3,8), (2,5), etc., of the net-plane; and it approaches the closer

towards these points, the further distant the original point (m, n) was

chosen from 0, that original point being determined,for instance,

by coordinates like m = 34, n = 89, etc. The angular points men-

tioned have the coordinate-fractions characteristic for the consecutive

terms of the Fibonaccian series; and the straight line considered

will, in infinity, pass through the point having the tn-ational coordi-

nates: Af[(3-l/5),2). However, it is clear that there is in the whole

infinitely extended net-plane, no such point really present; and

it cannot be maintained that a parallelism between the space-lattice-

character of crystals with their rational indices, and between living

organisms is really established by this mode of reasoning, suggestive

as it may be for the remaining. For the generatrix of the cylindrical

stem would in this case be a line of the supposed space-lattice, which

does not pass through any real angular point of the net-plane consi-

dered; this straight line would, therefore, have no significance at all

in a crystalline medium. Instead of supporting such a parallelism

between the two groups of phenomena, the fundamental contrast

between living and inanimate nature with respect to form-symmetry,
is again more strikingly brought to the fore by these considerations

in so far, as what is impossible in the one domain of phenomena,
should even be the most perfect state of things in the other.

31. However, it must be borne in mind that we have no right

to consider these remarkable views on phyllotaxis, as pictured in

the above, to be of real ontogenetic significance, as long as we have

no indications about the mechanical or physiological causes of such

mathematically determinable arrangements of similar organs.
In this respect it is now of importance to remark, that the cor-

l
)

G. W. Wulff, loco cit,
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rectness of the theory of phyllotaxis mentioned, as developed by
Bravais, Schimper and Braun, has been partially contested in

later times by several workers in this field of research, for instance

by Hofmeister 1

),
Sachs 2

), Church 3
), and others.

The latter has demonstrated in a convincing way, that the determi-

nation of a member exactly vertically superposed to one taken as a

point of reference, is practically impossible, either by direct observa-

tion or by angular measurements as proposed by Bravais. Direct

observation teaches us that a leaf never stands vertically above

any other given one, a fact already stated in some exceptional cases

by Bravais. All so-called "orthostichies" seem to be really curvi-

serial lines, especially in the higher divergencies. But then they
cannot be distinguished from parastichies, and therewith one of

the premises of the Schimper-Braun-theory has lost its value.

Church concludes that only the number of intersecting para-

stichies, dextro-, orlaevogyratory, determines the numerical character

of the arrangement, as already suggested by Braun. Moreover,

he points to the fact already stated by Hofmeister, De Candolle

and Sachs, that the phyllotaxis-fraction, whatever numerical

value is given to it, must appear greater or smaller in the same rate,

as the axis about which the leaves are arranged, is shortened or

lengthened, the phenomena of varying phyllotaxis, therefore, being

partially caused by the varying rates of growth
4
).
De Candolle 4

)

has drawn attention to the same fact; according to this author the

character of the phyllotaxis, even if a constant angular divergence

between consecutive members be supposed,
- - must vary when

length
the ratio : -rr-^ of the stem during the process of growth changes

diameter

appreciably. In condensed and multiple fruits and inflorescences

1
)
W. Hofmeister, Allgemeine Morphologic der Gewdchse, (1868).

2
) J. Sachs, Vorlesungen tiber Pflanzenphysiologie, Leipzig, (1882). p. 603,

606; S. Schwendener, Mechanische Theovie der Blattstellungen, (1878).
3
)

A. H. Church, On the Relation of Phyllotaxis to Mechanical Laws, (1904).

4
)

Cf.: G. v. Iterson Jr., Mathematische und Mikvoskopisch-anatomische

Studien tiber Blattstellungen, Jena, (1907), p. 222; C. de Candolle, Considerations

sur I'Etude de la Phyllotaxie, Geneve, (1881), p. 29, 47, 52. Certainly, however, there

are a number of other important causes acting during the first design of the lateral

organs, which govern this phenomenon of varying phyllotaxis ;
and it is highly

probable that an exact and exhaustive knowledge of the specific nature of

these causes would simultaneously bring the final solution of the problem

concerning the true meaning of the remarkable numerical relations exposed

in the above.
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(Pinus, Ananassa, Helianthus, etc.) a change of the ratio between

longitudinal and transversal growth does not occur; hence, the laws

of phyllotaxis are best studied in the case of such multiple fruits

and inflorescences, in the capitulum of the sunflower, in the cones

of Pinus, in terminal buds, etc. It is, therefore, absolutely necessary

to draw attention more exclusively to the study of the growing

apex of the plant : the first zone of growth in the terminal bud must,

in the opinion of this author, reveal the phenomena of phyllotaxis

in their most pure and undisturbed form. The explanation to be

given to it must, moreover, really satisfy the requirements of onto-

genetic observation. Thus, starting from Sachs' theory of cell-for-

mation and of the orthogonal intersection of cell-walls x

)
in the

terminal bud, he comes to the conclusion that the parastichies must

have the shape of logarithmic spirals (p
= a s

), intersecting every-

a.

Fig. 131 a and b.

where at right angles. Indeed, in two-dimensional space the loga-

rithmic spiral is the only curve, in which one part differs from the

other only in size, but not in shape,
- - a property which brings

out very 'strikingly the essential character of such curves as lines

of growth.
If it be kept in mind that the primordial cells will be greater as

they are older, Church gives the following constructions of the spiral

arrangements in the first zone of growth. As symbols of the emer-

gences based on lateral members of cell-aggregates, he takes, like

De Candolle (loco cit. p. 52), circles of different diameter packed

closely together in the way of the most closely packed "cubic" arrange-
ments (fig. /j/

a
, 13i

b
), and in both principal directions (see fig. 123),

as well laterally (fig. iji
a
), as diagonally (fig. 13i

b
)
oriented along

*) J. Sachs, loco cit. p. 253; Cf. also: L. Errera, Bull, de la Soc. beige de

Microscopic, 13, 1, (1886).



168

the radii of all-sided growth. The "diagonal" arrangement corres-

ponds to the special supposition, that a new member takes its place

exactly in the cavity left between two members already present.

The radial arrangement is in

agreement with the radial direc-

tion of transversal growth (De
Candolle, loco cit. p. 29). Now
the concentric circles indicating

the successive zones, are substi-

tuted by a logarithmic spiral as

"genetic" line, "like the line of

current in a spiral vortex", and

the radii likewise substituted by

parastichies of the same shape

Fig. 132. wound in one or in the opposite

direction.

Thus, in the case of "diagonal" orientation, the asymmetrical

system of fig, 132

appears; and how

closely these con-

structions, which

can, moreover, be

performed in a sim-

ple geometrical way,
- lead to arrange-

ments correspon-

ding with what is

actually observed in

nature, may be

seen by comparison
of Church's fig.133,

which represents

the configuration of

fruits in the capi-

tulum of Helianthus

annuus as deduced church
from his theory,

-

with the arrange-

ment of the fruits really observed, as represented in fig. 128. In this

construction the whole system remains orthogonal, as was original-

Fig. 133.

construction of the Configuration of the

fruits in the Capitulum of Helianthus annuus.
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ly planned with regard to Sachs' theory mentioned above. 1
).

32. As to the numerical relations expressed by this theory,

in which the orthostichies have wholly lost their significance, the

following remarks may be made here.

The system of intersecting parastichies is indicated by two numbers,

as for instance (34. + 55) in the case of Helianthus for the inplan-

tation of the individuals in its capitulum-disk, or (<P -f- ij) for that

of the bracts in the multiple fruit of Ananassa (fig. 129). Of these

numbers the first refers to the longer, the second to the shorter

spiral (see fig. 127). The symbols mentioned above, would be
-|

or ^- in the Schimper-Braun-theory; and in an analogous way
as therein the series of fractions indicated previously is arrived at,

we can write the "normal" series in the new symbols as follows:

(/ + 7), (/ + 2), (2 + j), (3 + 5), (5 + 8), etc. Here also the succes-

sive values approach gradually to a limit: / -7-5
- -> and

I,Ulo 2

the ratios naturally adopted by the plant for its intersecting para-

stichies are the successive terms of the continuous fraction:

1

1 +1
1 + etc.,

In a great number of cases z is equal to unity in this fraction.

These values would for growing plants with a definite number

of leaves give the optimum approach to a symmetrical distri-

bution in such a spiral system. However, it may appear doubtful

whether the mechanical or physiological causes of this leaf-distri-

bution are really better explained by this mode of reasoning than

by previous views 2
).

The true "pentamery" as observed in the flowers of many Dicotyle-

dons and in many lower animals (Chapter /// and IV), is a special

case of this ideal arrangement, and in truth the most highly perfected
condition of phyllotaxis

2
), expressed by the special symbol: (5 +5).

In this respect a certain tendency of living nature to the ratio

expressed by the "aurea sectio" may be stated again,
- - a fact

x
) Recently some doubt has also arisen about the correctness of Sachs' original

view, concerning the "orthogonal" intersection of newly formed cell-walls.

(Private communication to the author by Prof. ]. C. Schoute).
2
)

G. van Iterson Jr., IOQO cit., p. 106, 108, and 144, (1907).
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already pointed to in^GGl^JbjrJKe^pler in some of his botanical

speculations.

But it must be clear from the above, that in the light of this theory
all supposed analogy with the arrangement of the molecules in

crystals, as suggested by Wulff, vanishes completely. Church

expressly points out that no Archimedian spirals ever play a role

in natural phyllotaxis
l
), and, therefore, the development of such

a spiral in a plane does not give a system of points endowed with

the peculiarities of a Bravais' net-plane.

In this case the result will rather be a system of logarithmic

curves, to which no reasonings as brought to the fore by Wulff
can be immediately applied. Only more complicated and elongated

relations exist between these logarithmic spirals
2
)
and the helices

on a cylindrical or conical surface. There is no question about such

simple connections between the internal structure of crystals and

the phenomena of phyllotaxis, as suspected by the Russian scientist.

The essential difference between the two cases remains this, that

all kinds of net-planes can, with a greater or smaller probability

of occurrence, have the function of crystal-facets, while of all theore-

tically possible regular distributions of the loci of leaf-attachment

in plants only such are realised by nature, whose divergencies

approach closely to those expressed by the fractions of the principal

series indicated in the above, or of series deduced from it in a

simple way.

Finally, in connection with the subject dealt with in the last

paragraphs, attention may be drawn here also to the works of T. A
Cook and of S. Co1m an,

3
)
who strongly emphasize the general

importance of s/^>0/-structures in art and nature. In the books

mentioned also a great number of excellent figures are reproduced,

which may be of value to all those who wish to study phenomena
of this kind more in detail, and certainly will contribute considerably

to awaken the interest "of the reader for the incomparable beauty
of the structure of the forms in living nature and of many products
of plastic and ornamental art.

1
)

Cf.: G. van Iterson Jr., loco cit., p. 1, (1907).
2
)
A. H. Church, loco cit.

3
)
Th. A. Cook, The Curves of Life, London, (1914); S. Colman, Nature's

Harmonic Unity: A Treatise on its Relation to Proportional Form, New-York, (1912).



CHAPTER VII.

MIMETIC FORMS AND APPARENT SYMMETRY.

Observed Disagreements between Crystallographical and Physical

Symmetry. Crystal-Aggregates in General. Twinning: general
Remarks. Repeated Twinning: Cyclic and Polysynthetic Twins.

- Forms of Approximate Symmetry. - - Pseudosymmetry. -

Mimetic Forms. Mimicry and Pseudo-symmetry. Compound
Twinning of Microscopical Lamellae of Approximate Symmetry.

The Explanation of Optical Anomalies. Examples.
-

Mallard's Theory of the Optical Behaviour of crossed Lamellae. -

The Rotatory Power of Crystals.
-- Pseudosymmetry and Poly-

morphism. Mallard's Views about the Pseudosymmetrical
Character of all Crystalline Matter. -- Final Remarks.

,,Cette tendance vers la Symetrie est une des grandes
lots de la nature inorganique . . . . Elle nest d'ailleurs

qu'une manifestation de la tendance plus generate de

la Nature vers la stabilite, c'est-a-dire vers le repos,

tendance, qui est une des grandes forces antagonistes
de I'Univers."

E. Mallard, 1880.

1. In the previous chapters we have repeatedly had occasion

to observe how the symmetry-principle and its laws find application

in all considerations regarding crystalline matter and its inherent

properties. Indeed, with respect to their external appearance no

less than with respect to their internal structure, crystals are objects

whose behaviour is chiefly governed by the laws of symmetrical

configuration. In general it may appear that no essential discordances

exist between the external forms of each crystalline individual and its

molecular structure; and the world of crystals appeared from this

to be rigorously ruled by stubborn laws, which do not allow
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any exception in the behaviour of the individuals which have

a part in it.

However, on closer examination, this appears to be by no means

the case under all circumstances. In this well-governed society,

with its clear lines of demarcation and its strictly defined distinctions

of classes and systems, there are a number of individuals which

certainly behave rather strangely.

In the present chapter we propose to deal with some of the

phenomena indicated, and as experience has taught, that even these

crystallographical eccentricities conform to certain well determined

laws, let us see first what remarks and attempts at an explanation

of the peculiar behaviour of these individuals have been made up
till now.

2. Since the time of Rome de 1'Isle and Hauy, it has been

stated by several observers that many crystals have a strong tendency
to form more or less complicated aggregates. This fact has been met

with innumerable times especially among minerals, and of some

of them this tendency seems to be so characteristic, that separate

crystals of such minerals must be reckoned among the greatest

mineralogical rarities.

Whether crystals will deposit from a solution as separate indivi-

duals, or as a confused aggregation of irregularly situated crystals,

seems to be determined by special circumstances of deposition-

velocity, and by the fact whether crystallisation may take place

quietly or not. Indeed, if the solution be rigorously stirred or irre-

gularly moved during the process of crystallisation, an aggregate

of small crystals directed towards all sides is commonly the result.

Such crystal-aggregates may be completely irregular: a heap or a

crop of arbitrarily grown needles or plates will be present, and no

definite relation whatsoever will exist between the mutual orienta-

tion of two contiguous individuals. Often, however, a great number

of small crystals, if they are even only rudimentary or embryonic

(trichites, crystallites, etc.),
-- combine in a perfectly regular way,

according to definite laws. In such cases more or less symmetrical

groupings result, of which the wellknown snow-crystals
J
) (fig. 134)

are most beautiful examples, while the pretty dendrites exhibited

by many substances when crystallising from a solvent, are closely

!) G. Nordenskjold, Bull, de la Soc. Miner., 16, 59, (1893); 17. 141, (1894);

L. Bombicci, Bull, de la Soc. Miner., 3, 85, (1880).



173

related to the former and known to all investigators who have

studied crystallisation-phenomena through the miscroscope.

But even if the number of combining individuals is much smaller

than in the case mentioned, definite aggroupments of a few indi-

viduals frequently occur, which from a crystallographical point of

view have certainly not less importance than the separate crystals

referred to in the previous chapters.

If, in contrast with the special circumstances mentioned above,

Fig. 134. Snow-Crystals.

crystallisation occurs in solutions which are only slowly stirred,

or if the process of crystal-formation is purposely retarded by
increasing the viscosity of the solvent by the addition in minute

quantities
l
) of gum or gelatine, then aggregates only make their

appearance between a very small number of individuals. These

J
)

O. Lehmann, Molekularphysik ,
I. p. 415, (1888).

Here the aggregation-phenomena of crystals of different species are omitted;
see for these interesting facts: F. Wallerant, Crystallographie, Paris, (1909),

p. 491; J. Beckenkamp, Statische und Kinetische Krystall-theorien, I, p. 187.

(1913); Th. V. Barker, Journ. Chem. Soc., 89, 1120, (1906) ;
Miner. Magaz., 14,

235, (1907); O. Miigge, Neues Jahrb. f. Miner. Beil. Bd. 16, 335, (1903).

Moreover, Grandjean [Bull, de la Soc. Miner., 39, 164, (1916)] was able to

demonstrate that also the fluid crystals and anisotropous liquids of p-azoxyanisol,

p-azoxyphenetol, anisaldazine, ethyl-p-azoxybenzoate, and ethyl-p-azoxycinnamate
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apparent associations of crystals are always the same and quite

characteristic for the crystals under consideration. Their formation

is governed by strict laws, and such "compound crystals" show a

constancy of their interfacial angles and mutual orientation with

a degree of perfection analogous to that, which is met with in the

properties of so-called single individuals.

Such apparent aggroupments seem to consist always of two or

more individuals of the same kind 1

), every two of which are symme-

trically arranged with respect to a net-plane or to a molecular row

of the space-lattice. They are commonly distinguished as twins.

In the case of real twins, these are called twins of the first order,

if the symmetry-element of the compound crystal be a row of par-

ticles; if it is a net-plane, the twins are said to be of the second order.

Now the examples of these crystal-aggregates which have been

most studied, are the rather simple, real twins. In quite early times

of the development of crystallography a distinction was intro-

duced between twins which appear to be formed by juxtaposition

of the composing individuals, and those made by their mutual

penetration. In the first case the molecular system of both indivi-

duals is considered to be symmetrical with respect to the plane
of juxtaposition or composition-plane,

- - it may coincide with

the proper twinning-plane or not (gypsum). This composition-plane

may be parallel to the twinning-axis, or to the twinning-plane,

or it may be perpendicular to one of them; but it must always be

a possible crystallographical plane of the crystal, or a plane perpen-

dicular to a crystallographically possible edge of it. The common

straight line of both individuals may be a possible edge of the

crystal, or the normal to a possible crystal-face.

Of course, a symmetry-axis of even period or symmetry-planes
of the crystal can never have the functions of a twinning-axis or

of a twinning-plane ;
for in that case not twins, but parallel growths

of two crystals would be produced.
In the second case the molecular systems of the two individuals

are, as it were, soldered together: the two crystals are symmetrical

take, as a rule, regularly oriented positions with respect to the crystallographical

directions of cleavage-lamellae prepared from muscovite, orpiment, zincblende,

phlogopite, brucite, talc, leadhillite, syhrine, rock-salt and pyrophyllite, if brought

into immediate contact with them.
x

)
A. Sadebeck, Angewandte Krystallographie, p. 244, (1873); O. Lehmann,

Molekularphysik, I, p. 293407, (1888).
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with respect to a centre or a molecular row of the space-lattice,

the direction of it being other than the axis of the constitutive

particle itself, in the sense of Bravais' theory, (fluorspar;

fig. ijj). This is valid for holohedral, as well as for merohedral

forms; in the first case, however, Mallard has shown that the sym-

metry-axis of the new compound crystal

as a whole, can also be an axis of approxi-

mate symmetry of the space-lattice under

consideration, in the sense in which we

have defined it in the preceding chapter,

and that a special tendency to the sym-
metrical arrangement of the separate in-

dividuals round this axis of approximate

symmetry is observable in these cases x
).

In connection with this, it must be remar-

ked, that such twins can also have a plane

of symmetry, and in the case of holohedral

crystals, a plane of approximate sym-

metry. This is easily understood if one considers that, if an axis of

even period and an inversion-centre be the apparent symmetry-
elements of twins, the existence of a symmetry with respect to a

plane perpendicular to that axis is also of course involved as a logical

consequence.

Resuming, we may sa"y that experience has shown that there is a

remarkable tendency in merohedral crystals to twin-formation,

in such a way, that as preferential twinning-elements there appear
such planes or such axes of even periods, as in the holohedral class

of the same crystal-system have the function of true symmetry-

planes or of true symmetry-axes (pyrite). The twins appear, therefore,

as an approximation to the holohedral symmetry of the system
to which the crystal belongs, and according to Haidinger, they

may be given the name of completion-twins (calamine, quartz). And

secondly, experience teaches that planes and axes of approximate

Fig. 135.

Twin of Fluorspar.

!) E. Mallard, Ann. des Mines., 20, (1876); Bull, de la Soc. Miner., 8, (1885);

Revue Scientifique, (1887); Cf. also: A. Bravais, Etudes Crystallographiques,

Paris, (1866), p. 248.

It may be understood, that twins are single individuals. If there is spoken
here and in the preceding paragraphs, of two or more individuals which form

"compound" twins, then this is simply a mode of speech, used for the purpose
to help the imagination.
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symmetry may also have the function of twinning-elements ; in this

case, therefore, the twinning-process may also be considered as a way
of apparently increasing the existent degree of symmetry of the

crystal under consideration (feldspars). Finally, the twinning plane

may be perpendicular to a symmetry-plane of the composing indi-

viduals ;
the same subdivision of the different twins as in the previous

cases may be also made here.

In general the classification of twins into such as are produced

by juxtaposition or by penetration, may have certain advantages
from a practical standpoint; from a theoretical point of view,

however, it may be considered as somewhat too limiting, as for

instance the individuals of a twin by juxtaposition may at least

partially penetrate each other to some extent.

Moreover, it may be remarked, that in a crystal-aggregate several

laws of twinning are often expressed simultaneously, so that very

complicated relations may be produced in such compound twins.

If the same kind of twinning be repeated several times in the forma-

tion of a crystal-aggregate, polysynthetic twins are said to be produ-
ced when the twinning-plane remains parallel to itself, so that the

alternate individuals of the whole complex are in parallel position.

If this twinning-plane, however, changes its direction in the

successive repetitions of the twinning-process, so-called cyclic twins

will be produced. The mineral aragonite presents wellknown

examples of both kinds of twins.

3. It cannot be our purpose here to go into the details of

twinning-phenomena in general, as this is a special chapter of pure

crystallography. We have only to consider in the following certain

cases of repeated twinning, more particularly of penetration-

twins, between individuals of the same crystal-species, which

show approximate, or pseudosymmetry .

There are a number of substances, the crystal-forms of which

show a more or less close approximation to forms of higher symmetry.

Thus, if a tetragonal crystal, like chalcopyrite : CuFeS2 ,
has an

axial ratio a : c very near to unity (here: 1 : 0,9857), the tetragonal

crystal has evidently a space-lattice which closely approaches to

that of a cubic crystal. Chalcopyrite shows sphenoidal hemihedrism.

but the interfacial angle (111) : (111) is here 10842 /

,
while for

a regular octahedron it would be 10928 /

. This mineral has, therefore,

a tetragonal, but clearly pseudo-cubic space-lattice.

The same is the case if a rhombic crystal has a prism-angle of
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nearly 60 or 1 20
;
in this case the vertical binary axis of the crystal

has the direction of an approximately hexagonal or trigonal axis

of the space-lattice, and the rhombic crystal mentioned above is

a real pseudo-hexagonal or pseudo-trigonal limit-form. If a monoclinic

crystal has an angle /? only slightly different from 90 ,while, moreover,
in its axial ratio a : b : c, one or two of the quotients are close to

unity, the said monoclinic crystal has a space-lattice which is dis-

tinctly pseudo-tetragonal or pseudo-cubic.

Such pseudosymmetrical crystals will often betray in their external

habit a certain approximation to higher symmetrical forms: thus

rubidium-nitrate has a strikingly simulative hexagonal aspect ').

Or they will have a definite set of gliding-, or of cleavage-planes
which are nearly parallel to the faces of a crystal-form with a

higher symmetry.

Pseudosymmetrical crystals are, therefore, those which closely

simulate a higher symmetry than they really have
;
this higher sym-

metrical form is in many respects like an ideal model to which the

proper symmetry of the crystal tends, without ever reaching it.

Now it is one of the most remarkable facts observed in inorganic

nature, that such pseudosymmetrical crystals seem to exhibit a strong and

undeniable tendency to increase their deceptive appearance yet more

by repeated twinning and regular aggregation-).

The new complexes thus produced are called mimetic forms;

the phenomenon itself bears the name of mimicry
3
). This mimicry

is often so perfect, that only a careful study of the optical and physi-
cal properties, which in general reveal the true symmetry of the real

molecular arrangement of the crystal, can show its true character.

As the optical properties are, therefore, evidently often in discordance

*) F. M. Jaeger, Zeits. f. Kryst., 43, 588, (1907).
2
)

G. Friedel, (Bull, de la Soc. miner., 29, 14, (1906); Dictionnaire de Wurtz,
2ieme Supplem., art: Mdcles\ Cours de Cristallographie i

2ieme Ed., (1918); etc.), is

of opinion that the approximation to special values of the parameters, which is

often completely accidental, is sometimes the primary cause of the twin-formation

of this kind, and not true "pseudosymmetry" as such. Thus, for instance, boleite

is not "pseudo-cubic", but tetragonal, with a : c = 1 : 3,996, or about 1 :4. And,

according to Friedel, it is this peculiarity, accidental as it may be, that should be

the cause of the crystals appearing in an aggregation of several individuals, which

apparently imitates the symmetry of a "cubic" individual.

3
)

G. Tschermak, Lehrbuch der Mineralogie, (1897), p. 91; O. Miigge, Neues

Jahrb. f. Miner., Beil. Bd., 14, 245, (1901); 16, 335, (1903); P. Fischer, Disser-

tation, Gottingen, (1911); V. Goldschmidt, Zeits f. Kryst., 43, 353, (1907).

12
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with the geometrical form exhibited by these mimetic crystals,

they are said to manifest optical anomalies. To the discussion of

these anomalies we shall return later on.

4. Some instances may elucidate this

occurrence of mimetic forms.

Thus, chrysoberyll is a beryllium-alumi-

nate of the composition: BeO, ALOZ .

The mineral is orthorhombic (a: b: c =
0,4.701:1 : ofaoo); but its space-lattice

is obviously pseudo-hexagonal, as is

proved i. a. by the fact, that the angle

(001) : (Oil) is 6013'. Now three indivi-

duals will combine in such a way that

they form a trilling after the plane

Fi 136 (031), so that the apparently hexagonal

Chrysoberyll.
complex of fig. 136 is formed. By
suitable development of the component

individuals the re-entrant angles will recede gradually more and

more into the background; finally they become imperceptible, the

d. e. ./. g.

Fig. 137.

Basal sections of: a, b, c: Aragonite; d: Bromlite; e: Cerussite; /: Chlorite;

g: Potassiumsulphate.

aggregate is flattened towards the face a = (100), and in this way an

individual is produced which in its external aspect no longer deviates

from a true hexagonal crystal. The facets of (100] commonly show
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a featherlike striation, as the final indication of the twinning-process

which has led to the deceptive form of the crystal; but its mimetic

character is immediately revealed by optical investigation: indeed,

the optical character, as a direct manifestation of its molecular

structure, appears to be that of true biaxial crystals.

In fig. 137 basal sections are reproduced of some compound twins

of aragonite: CaC03 ;
witherite: BaC03 ', barytocalcite or bromlite:

(Ca,Ba)(C03); cerussite :PbC03 ; chlorite; potassium-sulphate :K2SO^ ;
etc.

Aragonite has a prism-angle of 6348', and repeated twinning
occurs with (110) as twinning-plane. The polysynthetic twins, espe-

cially when they are built up by fine lamellae, simulate a hexagonal
or ditrigonal individual, but optical investigation easily proves that

only a mimetic hexagonal form of orthorhombic individuals is present.

Witherite occurs always in the shape of repeated twins which

closely simulate hexagonal or ditrigonal individuals.

The orthorhombic pseudo-hexagonal mineral has a

prism-angle (110): (110)
= 6212 /

;
the twins are

usually very complex, the faces rough and striated.

The optical properties reveal the lower symmetry

very clearly.

Bromlite (of Bromley Hill, Cumberland), the form

of which is very nearly that of witherite, is found in

dihexahedral pyramids formed by complex twinning;

optical investigation shows that the simulative

crystal is a combination of six individuals, as shown

in the figure.

Cerussite has a prism-angle of 6244'
;
the ortho-

rhombic mineral forms apparently hexagonal twins

(fig. 13$), with the twinning planes (110), and less often (130).

They are optically biaxial, but their appearance is completely

ditrigonal
l
).

Another beautiful example of a pseudo-hexagonal substance is

potassium-sulphate. The prism-angle (110) : (ifO) is here 5936';

repeated twins occur with (130) as twinning-plane, and the simula-

tive effect is sometimes so great, that the crystals have wholly
the aspect of true hexagonal bipyramids.

in

Fig. 138.

Cerussite.

*) Cf. also: J. Beckenkamp, Centralbl. f. Miner., (1917), p. 25; O. Miigge,
Neues Jahrb., Beil. End., 14, 247, (1901).
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Calcium-chloro-aluminate 1
): [3CaO,AlzOa,CaCl2fiH<f)]+4H20, is

monoclinic, with /?
= 87 13', but pseudo-

hexagonal, because the sface(301) and .(3 10)

include an angle of about 60 with the

plane of symmetry (010). Twinning occurs

by three sets of lamellae, intersecting at

120, and with (110) as twinning-plane ;
the

crystals appear as thin hexagonal plates

parallel to the apparent basal face (0001).

Fig. 139.
At a temperature of 36 C. they become

Scoiezite; section parallel really rhombohedral and uniaxial.
to

(001} (Lacroix). ScoUzite: CaAl^Si3Ow + 3 H2
is monocli-

nic, with an axial ratio a: b:c = 0,0764: i: 0,3434, and /3 8<fi8'.

The prism-angle (110): (UO) is 8837|'. The space-lattice is, there-

fore, pseudo-tetra-

gonal. Twins occur

with (100) as twin-

ning-plane; a sec-

tion parallel to

(001) shows the

division in fields

and strips, as

drawn in fig. 130.

(Lacroix).
How perfectly

the shape of such

crystals may ap-

proximate to real

hexagonal or trigo-

nal symmetry, may
also been seen

from the stereogra-

phical projection

of a Rontgenpat-
tern of cerussite,

parallel to (001} . and obtained by us in our series of investigations

on the symmetry of the Rontgen-patterns of isomorphously related

Fig. 140.

Stereographical Projection of the Rontgen-pattern
of Cerussite; plate parallel to

!) G. Friedel, Bull, de la Soc. Miner., 20, 122, (1897); O. Miigge, Neues

Jahrb. f. Miner., Beil. End., 14, 264, (1901).
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substances J

)
in general. Although it is obvious, that the symmetry is

only rhombic, it is remarkable, how closely the image obtained

approximates to that of a true hexagonal crystal (fig. 146).

5. If repeated twinning occurs in several directions at the

same time, compound penetration-twins of a very complicated
structure may be formed, and the approximation to higher

symmetrical individuals obtained in this way may go remarkably far.

As an instance of the way in which the approximation to the higher

symmetrical form may take place, we here mention the mineral

philUpsite, a zeolithic silicate of the approximate composition:

This mineral is undoubtedly monoclinic; but its angle (110): (110)

is 6042', while (001): (101) = 90!'. It has, therefore, an approximate

rhombic, as well as a pseudo-hexagonal symmetry. The result of

Fig. 141. PhilUpsite.

the repeated twinning with (001) and (Oil) as twinning-planes, is

almost a square prism formed by four individuals, the faces of which

are finally striated. Now, three compound individuals of this kind

may interpenetrate, with (110) as twinning-plane, to form a single,

yet more compound individual, as shown in fig. 141.

If the re-entrant angles be now gradually removed by the develop-
ment of the faces indicated, this complex of twelve crystals

passes finally into the form of an apparent rhombicdodecahedron, as

it occurs in the cubic system. Each rhombic face of this form may
then be subdivided into four fields by striations diverging from

the centre, and parallel to the principal edges of the pseudo-
dodecahedron thus obtained.

In general such remarkable mimetic forms are often met with in

the group of the zeolithic silicates, a fact which may be coordinated

!) F. M. Jaeger and H. Haga, Proceed. Kon. Akad. van Wet. Amsterdam,
18, 1357, (1915).
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in some way or other with the strange behaviour of these minerals

regarding their loss and absorption of water. Analogous phenomena
as discussed here in the case of phillipsite, are found with harmo-

tome, stilbite, etc., while the connection between the content of water

and the occurrence of optical anomalies has been established beyond
doubt in the case of heulandite, chabazite, analcite, etc., by the in-

vestigations of Mallard, Klein, Rinne, and others 1

).

Finally, the case of chabazite may be discussed here more in

detail, as another very curious example of this kind.

Becke (loco cit.) showed that chabazite: (Ca,Na 2)Al2(Si03)4 +
6H20, although completely rhombohedral in its external aspect,

is in reality only triclinic. On a cleavage-form exhibiting the three

pinacoides, the interfacial angles were found to be: (100): (010)
=

8342'; (010): (001)
= 855', and (100): (001) = 8531 J'. From this it

may be seen, that the triclinic crystal is approximately a rhombo-

hedron with a polar angle of about 841. In accordance herewith,

the compound individuals are formed by repeated twinning
as follows.

Six or more individuals combine into double twins according to

two different twinning laws, the twinning-planes being (1 10) or (1 10).

The exterior of the pseudo-rhombohedral crystal may be bordered

either by the faces of the pinacoids: (100), of {010}, or of {001},
and a basal section of the different pseudo-rhombohedra thus ob-

tained, will show six sectors with an arrangement of their extinction-

angles, which is in agreement with one of the three types of rhom-

bohedra just mentioned (fig. 1420). The angles which these extinction-

directions make with the diagonal of each rhombohedron-face will, in

these three cases, be respectively: 46, 11, or 24.

The mimetic form thus obtained is, therefore, now an apparent

rhombohedron. Two such rhombohedral forms may, moreover, com-

bine into penetration-twins, with either their pseudo-trigonal axis

c as twin-axis, or, rarely, with the face (1011) as twinning-plane.

!) Cf. also: E. Mallard, Ann. des Mines, 10, 111, (1876); F. Becke,
Tscherm. Min. Mith., 2, 391, (1879); A. v. Lassaulx, Zeits. f. Kryst.,5,330, (1881);

A. Ben Saude, Neues Jahrb. f. Min., 1, 41, (1882); E. Mallard, Bull, de la Soc.

Min., 5, 255, (1882) ;
C. Klein, Zeits. f. Kryst., 9, 54, (1884) ;

Neues Jahrb. f. Miner.,

1, 240, (1884); 2, 101, (1885); F. Rinne, ibid., 2, 25, (1887); Sitz. Akad. d. Wiss.

Berlin, (1890), p. 1175, 1183, 1188, 1190, 1192; W. C. Brogger, Zeits. f. Kryst.,

16, 565, (1890); C. Klein, Neues Jahrb. f. Min., Beil. End., I, 93, 96, (1891) ;

R. Brauns, Die Optischen Anomalien, (1891).
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In the first case we may have the complex of fig. i^zb, which,

by a suitable development of its bordering faces, finally obtains

the simulative form of a hexagonal crystal (fig. 1420).

6. The cases of chabazite and phillipsite are very instructive

in so far as it illustrates how strongly the tendency of the original

lower symmetrical individual to similate a higher symmetry, is

exhibited. The triclinic individual in the first case has the latent

predisposition in its space-lattice to imitate a trigonal symmetry;
but it has also the capacity of simulating a yet higher symmetry,

namely that of a hexagonal crystal. Now repeated twinning is made
use of, first, to reach the form of a mimetic, pseudo-trigonal

Pseudo-rhombohedron

of six individuals,

parallel to 0001
}.

b.

Penetration-twin

of two pseudo-rhombohedra.

Fig. 142. Chabazite.

Final apparent

hexagonal individual.

individual; but this again combines until finally the deceptive

form of the higher symmetrical hexagonal individual is reached.

Something analogous takes place with phillipsite.

The result in all such cases is one of the same kind
;
the pseudo-

symmetrical crystal finally approaches more closely, by repeated

combination of individuals of its own species, to the higher symmetry,
to which the predisposition is present as a consequence of its special

internal structure, and of which the single individual is only a

defective morphological representative.

This strong tendency to strive at higher perfection by aggregation,

is one of the most remarkable facts in inorganic matter; it is a

"struggle for higher symmetry", by the aid, as it were, of the

most primitive form of "cooperation". Just as union into well-

governed states gives a greater stability of life-conditions to human

creatures, and is the necessary basis for their speedy and regular

progress, so the aggregation of lower symmetrical crystals into higher

symmetrical complexes, is probably a way of reaching a higher
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degree of mechanical stability of the total molecular arrangement .

7. It was such facts as these, that have led Mallard since

1876 to his most suggestive explanation of a number of optical

phenomena exhibited by numerous crystalline substances, namely
the occurrence of the above mentioned optical anomalies and the

rotatory power in uniaxial crystals belonging to the trigonal, tetra-

gonal, and hexagonal systems.

Optical anomalies have been observed in a gradually increasing

number of crystals ever since Brewster *) in the beginning of the

nineteenth century first discovered and studied them. More especially

the symmetry of the optical behaviour of such crystals appeared
to be appreciably lower than that of their external forms; or, what

is another view of the same fact : their geometrical form is evidently

of higher symmetry than that of their internal molecular structure.

Thus, many crystals of the cubic system are birefringent, and,

in striking contrast to what might be expected, they act powerfully

upon transmitted polarised light; tetragonal and hexagonal crystals

are notoriously biaxial, and show optical phenomena analogous to

those to be expected in rhombic, monoclinic, or triclinic crystals; etc.

The apparently cubic minerals: boracite, leucite, perowskite, fluor-

spar, diamond, garnet, analcite, etc., are in most cases distinctly bire-

fringent, and the same is true for many laboratory-products, such

as alums, the nitrates of barium, strontium, and lead, Schlippe's

salt, sodium-chlorate, sodium-brornate, etc., all crystallising in one

of the classes of the cubic system. The apparently tetragonal crystals

of potassium-ferrocyanide, of strychnine-sulphate etc., and of minerals

like idocrase, apophyllite, etc., are beyond all doubt optically biaxial.

The same is true for a great number of substances which, with respect

to their crystal-forms, must belong to the trigonal or hexagonal

systems, as for instance : quartz, turmaline, chabazite, sodium-periodate,

beryll, apatite, the dithionates of potassium, rubidium, caesium,

calcium, strontium, and lead, and many other chemical compounds.
The disparity between the optical character of such crystals and

their geometrical appearance is, therefore, an indisputable fact, and

even one of frequent occurrence
;
and a very great number of highly

interesting investigations have been made with the purpose of eluci-

!) D. Brewster, Phil. Trans. London, /, 187, (1814); Trans. Royal Soc.

Edinb., 8, /, 155, (1817); Phil. Trans. London, /, 199, (1818); Trans. R. Soc.

Edinb., 9, /, 139, (1821); II, 317, (1823); 10, 187, (1826); Edinburgh Phil. Journ.,

1, 1, (1819); 3, 98, (1820); 5, 217, 218, (1821); Phil. Mag., 7, 245, (1835); etc.
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dating the causes of this striking discordance. The work done in this

field has chiefly led to explanations of the phenomena considered

from two different points of view. One class of investigators regards

the external form as the decisive and essential criterion for attributing

the right degree of symmetry to the crystal; and the discordance

between this symmetry and that of the optical phenomena observed

is explained by them by the supposition of the influence of secondary,

disturbing forces, like internal tensions produced by isomorphous

admixture, by rapid cooling, by changes in volume as a consequence
of polymorphic transformations, etc. The other view is, that the

optical properties reveal the true character of the space-lattice of

the crystal, and, therefore, of the true symmetry of the molecular

arrangement itself, while the external form is only to be considered as

a simulated, a mimetic one, exhibiting only an appparent symmetry.

According to the first view, the disparity mentioned above may
really be considered as an occurrence of "optical anomalies", while

according to the second, it is reduced rather to a case of "geometrical

anomalies" than to one of optical deviations. To the adherents of

the views first mentioned, objects of this kind are of a higher sym-

metry than from their optical behaviour they appear to be; for

the supporters of the last mentioned views, these crystals appear

higher symmetrical than they really are.

8. On the other hand, the explanation of the rotatory power
of uniaxial crystals first discovered by Biot, has not been given

in any satisfactory way since the development of the optical theory
of that phenomenon by Fresnel. The latter had made the supposition,

that the propagating rectilinear ray consisted in reality of two equal

circularly polarised rays with opposite rotation-directions, of which

the one traversed the crystal with a greater speed than the

other. The result of this difference in velocity is a difference

in phase, and if the action of both rays on leaving the crystal

be again combined, a deviation of the original plane of polarisa-

tion, either to the right or to the left, must necessarily occur.

This conception is, however, more a description of the phenomenon
than an explanation, because it includes no rational cause, either why
the one ray should be retarded in the crystalline medium with respect

to the other, or why the phenomenon, so far from being a general one

for such uniaxial crystals, is on the contrary a relatively rare one. l
)

') For a review of the phenomena of circular polarisation, cf. : M. Berek,
Fortschr. f. Min., Kryst. u. Petrogr., Ed. G. Linck, 4, 73, (1914).
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The famous experiment ofVonReusch 1
) in 1869, who succeeded

in exactly imitating the phenomenon of the rotatory power in uniaxial

crystals by the regular piling up of a great number of biaxial laminae

of mica crossing under angles of 45 and 60, gave a first indication,

in which direction a solution of the problem might be looked for.

In point of fact the theory of the optical effect of such piles of

lamellae was developed in its base outlines by Sohncke 2
),

and

more fully by Mallard 3
)
in 1876, while a great number of experi-

mental investigations, among others those of Wyroubof f
4
), regar-

ding the properties of the crystals of quartz, cinnabar, -potassium-,

rubidium-, calcium-, strontium-, .
and lead-dithionates

, strychnine-

sulphate, strychnine-selenate, diacetyl-phenolphtaleme , benzile, ethylene-

diamine-sulphate, guanidine-carbonate, sodium-chlorate and -bromate,

of sqme uranyl-double-acetates, and of several other substances, have

strikingly confirmed the correctness of these views in a great

number of cases.

One of the most beautiful examples of this kind is unquestionably
the ammonium-lithium-sulphate: (NH^LiSO^, described by Wyrou-
bof f

5
), the crystals of which are endowed with a strong rotatory power.

If an individual be studied composed of several intergrown lamel-

lar crystals (fig. 143), local triangular spots are met with, consisting

of lamellae interwoven at angles of 60, which become extinguished

between crossed nicols at any angles; but these are just the parts

endowed with rotatory power. There cannot be the least doubt

here, that the rotatory power of these parts is governed by the crossing

of the biaxial laminae, in full accordance with Mallard's theory.

In general it has become clear from these researches, that a great

J
)

E. von Reusch, Pogg. Ann. der Phys., 138, 628, (1869).
2
)

L. Sohncke, Pogg. Ann. der Phys., Erganz. End., 8, 16, (1876).
3

)
E. Mallard, Ann. des Mines, (7), 10, 119, (1876); ibid., (1881).

At my request, professor Lorentz in 1905 was kind enough to treat theoreti-

cally once more the problem of the optical effect of a pile of regularly arranged,

infinitely thin, biaxial lamellae. The result of his very general reasonings is in

qualitative agreement with the results obtained by Mallard, while quantitatively

there are some differences in the final values for the rotation-angle. In every case

the theory of the superposed lamellae may certainly be regarded as based upon a

perfectly sane supposition.
4
)

G. Wyrouboff, Ann. de Chim. et Phys., (6), 8, 340, (1886); Bull, de la Soc.

Miner., 7, 10, 49, 86, (1884); Cf. also: A. Bodlander, Inaug. Dissert. Breslau,

(1882); F. Klocke, Neues Jahrb. f. Min., 2, 97, (1880); C. Pape, Pogg. Ann.,

139, 229, (1870); W. Barlow, Zeits. f. Kryst., 27, 468, (1896).

5) C. Wyrouboff, Bull, de la Soc. Miner. 13, 217, (1890).
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Fig. 143.

Basal section of

A mmonium-lithiumsulphate.

number of crystals showing optical rotatory power, also exhibit optical

anomalies in the sense indicated above, and that these dextro-, or

laevogyratory uniaxial crystals, are in

reality all very complicated twins of lower

symmetrical material. They are, therefore,

true pseudosymmetrical crystals, built

up according to definite twinning-laws,

by a great number of biaxial lamellae,

which in an analogous way to that demon-

strated in the cases of phillipsite and chaba-

zite, combine into an apparently higher

symmetrical, "mimetic" aggregate. The

special circumstances of crystallisation

seem to have a certain influence on the

arrangement of the composing lamellae,

so that within certain limits a fluctuation

of the optical properties of such crystals may evidently occur. The

inconstancy of the magnitude of the rotatory power of such Crystals

was in many cases confirmed by direct observations.

9. Now Mallard, basing his theory on the observed fact that

the crystals which show optical anomalies are just those whose

geometrical properties are approximate to those of higher symmetry,
considers the optically anomalous crystals as without exception

pseudosymmetrical aggregates of lamellae,

the space-lattice of which has a lower degree
of symmetry than the crystal as a whole

possesses.
x
)

If for instance (fig. 144) a rhom-

bic crystal has a space-lattice, the layers of

which, parallel to the plane of drawing, consist

of particles arranged in rhomboids of nearly

60, then the binary axis of the rhombic

individual perpendicular to the plane of this

layer is at the same time an axis of apparently
threefold symmetry. Thus, if the space-lattice

be turned round this axis of apparent symmetry through 120

or 240, the space-lattice in its new positions will coincide, not

x
)

E. Mallard, Explication des Phtnomenes Optiques Anomaux dans les

Substances Cristallistes, Paris, 1876; Ann. des Mines, (7), 10, 60, (1876); Bull,

de la Soc. Miner., 5, 144, 214, (1882); 7, 349, (1884); A. Scacchi, Zeits. der deut-

schen Geol. Ges., (1864), p. 35.

Fig. 144.
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completely, it is true, but in any case very nearly, with the space-
lattice in its original position.

If, therefore, such layers of molecular dimensions are successively

subjected to all symmetrical operations which correspond to the

presence of one or more symmetry-elements of apparent symmetry
in the space-lattice under consideration, a complex pseudosymmetri-
cal crystal may be formed, exhibiting rotatory power or not, accor-

ding to the way in which the superimposed layers are arranged. *)

As the cross-laid lamellae become thinner, and their compound

twinning and mutual penetration more perfect, the mimetic crystals

will approach more closely to a true higher symmetrical individual;

and if the dimensions of the crossed lamellae become submicros-

copically small, the crystal is no longer distinguishable from a homo-

geneous one by any existing physical means. Mallard then says,

that the substance under consideration is dimorphic; the symmetry
of both polymorphic forms being that of the composing lamellae

on the one hand, and that of the higher symmetrical individual

now obtained on the other. The higher symmetrical modification

thus appears as an extremely perfect and regular aggregate of sub-

microscopical individuals of the lower symmetrical form, -- in an

analogous way to that, in which the mixed-crystals are built up from

their isomorphous components by the intercalation of alternating

layers of molecular dimensions. 2
) The suggestive idea of Mallard,

therefore, should have the great advantage of reuniting under the

same point of view three different phenomena exhibited by crystals :

their optical rotatory power, their optical anomalies, and their eventual

polymorphism. They should all be explained by the repeated twinning

of pseudosymmetrical space-lattices and their combination into

aggregates of apparently higher symmetry
3
) .

J
) If, for instance, the angle between the consecutive lamellae be 90 or 180,

no rotation of the plane of polarisation of the emergent rays will occur.

2
) See, however, in this respect: L. Vegard and H. Schjelderup, Phys. Zeits.,

18, 93, (1917).
3
)

That this explanation of "polymorphism" cannot always hold, is evident,

as has already been recognised by Mallard himself. The mere difference in specific

weight between the two modifications, as it is observed frequently, cannot be plau-

sibly explained by his theory. However, there is a certain number of substances

which behave just as Mallard's view demands. At present these substances are

classified as those, which are really pseudosymmetrical, to distinguish them from

those in which true dimorphism occurs.Cf.: P. Groth, Einleitung in die Chemische

Krystallogvaphie, (1904), p. 4 7; G. Wyrouboff, Bull, de la Soc. Min6r., 29,

335, (1906); F. Wallerant, ibid., 24, 159, (1901); 27, 184, (1904).
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Fig. 145.

Potassium-ferrocyanide.

Plate parallel to

10. It may be asked, if any indication of such lamellar structure

in crystals showing optical anomalies, is really found? Experience

has indeed plainly established its existence, as may be demonstrated

in the following by some detailed examples.

One of the instances of this kind most studied l

)
is potassium-

ferrocyanide : K4 {Fe(CN)Q} ,
the optical anomalies of which were

discovered by Brewster. The crystals are monoclinic, but they

are so nearly tetragonal, that for a long

time they were considered really to belong

to the last mentioned system.

Indeed the axial ratio is: a : b : c =

>3947
'

*
'

>3983> witn |3
= 90 1'; from

these numbers the approximate tetragonal

character of the space-lattice is imme-

diately clear.

The optical properties are those of a

biaxial crystal; the rather large angle of

the optical axes is about 1 20 for sodium-

light, and the character of birefringence

is positive. In compound crystals a plate

parallel to the planes of 010} appears between crossed nicols

to be divided into four sectors (fig. 145), two of them diametrically

opposed of negative, the other two of positive character. The

boundary-lines of the fields are parallel to the edges of the qua-

dratic plates. In every two adjacent sectors the planes of the optical

axes are perpendicular to each other; all four sectors become simul-

taneously dark between crossed nicols, if the sides of the quadratic

plate include an angle of respectively about 34 or 56 with the

planes of vibration of polarizer and analyser.

The whole behaviour of these crystals is in full agreement with

the supposition that they are composed by monoclinic lamellae,

crossing at 90, and intercalated in such a way that an apparently

tetragonal crystal is produced. There cannot be the least doubt

as to the correctness of Mallard's view in this case.

The same is valid for the case of autunite 2
): Cfl(702) 2(PO4)2 +

J
)
G. Wyrouboff, Ann.de Chim.et Phys., (4), 16, 293, (1896) ; 29,335, (1906) ;R.

Brauns, DieOptischen Anomalien, (1891), p. 58; G.W. Wulff, Verh.der Kais. russ.

Miner. Ges. Petersburg, (2), 29, 65, (1892); A. Karnojitzki, Zeits. f. Kryst., 19,

571, (1891); Russ. Berg Journ., (1892), No. W; Ref.: Zeits. f. Kryst., 24, 512, (1895).

2) A. Brezina, Zeits. f. Kryst., 3,273, (1897); A. Madelung, ibid., 8, 75, (1884);
R. Brauns, loco cit., p. 63.
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Fig. 146. Leucite.

8H20, (a : b: c = 0,34.63 : / : 0,5525; /3
= pojo'); of natrolithe:

Na2Al2Si3Ow + 2H20; of prehnite
1

); CaH2
Al2Si3 12 ;

of pennine*):

2 or 3 (Mg3H^Si2 9) -f Mg2H^Al2Si09 \
and of some other sub-

stances, which even by
Brauns, who in gene-

ral does not agree with

Mallard's views, are

considered to be true

mimetic aggregates of

lower symmetrical la-

mellae. 3
)

The cases of the

pseudo-cubic minerals

boracite; Mg7Cl2Bw 30 ,
and leucite; KAIS12 & ,

as optically anoma-

lous crystal-species, are wellknown, and numerous investigations

have already been made in connection

with these remarkable substances. In

particular, the work of Mallard and

C. Klein has contributed much to the

explanation of their abnormal beha-

viour 4
).

Without going into details,

we may mention here, that in both these

cases the lamellar structure is beyond
all doubt.

In fig. 146 a crystal of leucite with

its typical striation of the apparent icosahedron-faces is reproduced,
and the aspect of a plate parallel to the cube-face, when observed

between crossed nicols. The lamellae disappear abruptly at about

500 C., an reappear on cooling.

Of boracite in fig. 147 a plate parallel to 111} in its condition

Fig. 147. Boracite.

Plate parallel to
{\\\}.

!) C. Stadtlander, Neues Jahrb. f. Miner., (1885); //, p. 113; A. Von Koenen,
Sitzber. d. Ges. zu Beford. d. Naturwiss. Marburg, (1874); R. Brauns, loco cit.

2
)

A. Des Cloizeaux, Bull, de la Soc. Miner., 5, 58, 125, (1882); E. Mallard,
ibid. p. 70, 195, (1882); R. Brauns, loco cit., p. 69.

3
)

R. Brauns, Die Optischen Anomalien, (1891), p. 74.
4
)

E. Mallard, Ann. des Mines, (7), 10, 79, 93, (1876); Bull, de la Soc. Miner.,

2, 147, (1879); 5, 144, 216, (1885); E. Mallard and H. Le Chatelier, ibid., 6,

122, (1883); 6, 129, (1883); 9, 69, (1886); C. Klein, Neues Jahrb. f. Miner., (1880),

//, p. 209; (1888) /, p. 239; Gott. Nachrichten, (1881); (1884); p. 189, 421
;
Neues

Jahrb. f. Miner., (1884) /, p. 235; //, p. 49, (1887). /, p. 224, 234, (1885) Beil.

End., ///, p. 522; R. Brauns, loco cit., p. 88, 106, (1891); H. Baumhauer,
Zeits. f. Kryst, 1, 257, (1877); etc.
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after heating and subsequent cooling has been reproduced (Mallard),

which shows the lamellar structure quite clearly. At 265 C. the bire-

fringence disappears suddenly, and reappears without retardation

if the crystal be cooled down below that temperature. The optical

behaviour of plates cut parallel to 110} and (100} is schematically

{110} II {110}

Fig. 148.

Boracite. Plates parallel to {100} and {HO}.

II {100}

shown in fig. 14.$, while in fig. 14.9 a pseudo-rhombicdodecahedron
of boracite is reproduced, and the arrangement of the component
rhombic individuals is indicated by the direction of their axial plane.

Every face of the rhombicdodecahedron is the base of a rhombic

pyramid, with its top lying in the centre of the crystal; the biaxial

individuals have their optical axial plane

parallel to the longer diagonal of each rhom-

boid. By means of Ron t gen-rays, patterns

for plates parallel to 100], $110}, and

111} were obtained by us 1
)
at room-tem-

perature, which were in accordance with

the symmetry of a cubic space-lattice, but

also others which, when parallel to 100},

only manifested a binary axis with two per-

pendicular planes of symmetry; the last

plate, however, when heated to 300 C., and

then passed by a pencil of Ron t gen-rays, gave a pattern, the

symmetry of which was that of a true cubic crystal-plate.

Although definite conclusions cannot yet be drawn from these

results, the last mentioned experiment nevertheless seems to support

the explanation given by Mallard. In the case of leucite we were

not able to obtain Ron tgen-patterns at all, whose symmetry was

Fig. 149.

Boracite.

1
)
H. Haga and F. M. Jaeger, Proceed. Kon. Akad. van Wet. Amsterdam,

Vol. 16, 792, (1914).
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in accordance with a cubic space-lattice; here, indeed, no such cubic

lattice seems to be present, but instead of this a very complicated

arrangement of lower symmetrical individuals.

As far as we can at present judge, the behaviour of leucite-crystals

towards Ron tgen-radiation can surely not be explained by the

mere assumption of internal stresses which are related to the limiting

facets and edges of the crystals, as was occasionally done.

In the same way in fig. 150 755 several other crystal-sections

are drawn, as they appear between crossed nicols. Here the

optical properties of plates cut from crystals of garnet, parallel to

1 10} ;
of anakite, parallel to [WO] ;

of fluorspar, parallel to 1 10} ;

of perowskite, parallel to 100} and 111}; of apophyllite, parallel

to 001
}
and at 45 to the planes of the nicols; and of rutile, parallel

to 001} are expressed, as observed by Mallard and others.

In particular the figure relating to perowskite: CaTi03 , parallel

to 100}, is very instructive. There is not the least doubt in this

case that we have here to deal with a pseudo-cubic crystal being
in reality a very complex twin of differently oriented lamellae.

According to Baumhauer 1
)

and Von Kokscharow 2
), the true

symmetry should be orthorhombic, with a twinning chiefly occurring

with respect to a face of the prism 110} and of the pyramid 111}.

In several of these cases, Brauns and others have tried to demon-

strate, that the optical anomalies are caused by internal stresses,

as a consequence of isomorphous admixture, etc.; cf. : Brauns, loco

cit., p. 358, (1891). The truth may lie in the middle also in this matter,
- the two views separately being perhaps both too exclusive and

one-sided. It is quite possible and even probable, that in many cases

internal stresses are in fact the direct cause of the optical anomalies ;

but our experience in the study of the anomalous crystals by means

of Rontgen-rays seems to indicate, that there is in many cases a

greater probability of the correctness of Mallard's view.

In the course of our studies on the symmetry of the Rontgen-

!) H. Baumhauer, Zeits. f. Kryst., 4, 187, (1880).
2
)

N. Von Kokscharow, Matevalien zuv Mineralogie Russlands, Bnd. 6,

p. 388, (1871); 7, p. 375, (1875); 8, p. 39, (1878); Neues Jahrb. f. Miner., (1878),

p. 38; A. Ben Saude, Ueber den Perowskit, Gottingen, (1882); C. Klein, Neues

Jahrb. f. Miner., (1884) /, p. 245; A. Des Cloizeaux, Neues Jahrb. f. Miner.,

(1875), p. 279; (1877), p. 160, 499; (1878), p. 43; Ann. des Mines, (5), 14, 417,

(1858); Pogg. Ann., 126, 420, (1865).
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patterns in general
1

), a series of optical anomalous crystals were

Fig. 150.

Garnet; section parallel to 110}.

Fig. 152.

Fluorspar] section parallel to 100} and

Fig. 151.

Analcite\ section parallel to 100}

Fig. 153.

Perowskite\ section parallel

to 100}.

Fig. 154. Fig. 155.

Apophyllite; section parallel to 001
}. Rutile; section parallel to 001

}.

also investigated: besides boracite and leucite already mentioned,

J
)

Cf.: H. Haga and F. M. Jaeger, Proceed. Kon. Akad. v. Wet. Amsterdam,
Vol. 16, 792, (1914); 17, 438, 1204, (1915); 18, 542, 559, 1201, 1250, 1350,

1357, 1552, (1916).

13



194

potassium-ferrocyanide, apophyllite, sodium-chlorate, benitoite, racemic

triethylenediamine-cobaltibromide, benzile, brucite, etc., were studied,

and also some crystals endowed with rotatory power, like quartz,

cinnabar, strychnine-sulphate, etc. Although in the last mentioned

cases faultless patterns were obtained (fig. 156), --a fact which

demonstrates to what

high degree of per-

fection this supposed
lamellar intercalation

can go,
- - we obser-

ved in the case of

apophyllite ,potassium-

ferrocyanide, benzile,

benitoite, and the

complex cobalti-di\t

just mentioned, that

even from apparent-

ly homogeneous and

faultless plates, pat-

terns of a lower sym-

metry were obtained,

Fig. 156.

Stereographical Projection of the Ron t gen-pattern
of pseudo-tetragonal Strychnine-sulphate.

than should be the

case with respect to

their proper symme-

try.

In particular, images were obtained which posessed only a single

plane of symmetry, as is quite normal for monoclinic crystals cut

parallel to the faces (100) or (001), or to any other face of the

orthodiagonal-zone
1
).
As an instance of this in fig. 757 the Ron tgen-

pattern, as it was obtained with racemic triethylenediamine-cobalti-

bromide is reproduced in Stereographical projection.

Here, the natural' crystals parallel to 001} were used in the

experiment
2
)
in the shape of very thin, splendidly developed pseudo-

hexagonal plates, which showed an exactly central and almost

undisturbed axial image in convergent polarised light; a slight

deformity of the axial interference-image, because of an apparent

biaxiality of the substance, was the only abnormality observed.

!) F. M. Jaeger, Proceed. Kon. Akad. van Wet. Amsterdam, 18, 51, (1915).
2

)
H. Haga and F. M. Jaeger, ibid., 18, 1201, (1915).
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Analogous phenomena were met with in the case of the perfectly

transparent benzile-p\a.tes cut parallel to 001}, and of cleavage-

lamellae of apophyllite
l

)
. Potassium-ferrocyanide once gave an almost

tetragonal-symmetrical pattern, but in most cases abnormal images

showing only a single plane of symmetry. Obviously this is a fact

which supports the

lamellar theory; for

it proves that local

disturbances of the

structure may occur,

which cannot but

consist of a slight

rotation of a part

of the basal plate

round an axis ha-

ving the direction

of the perpendicular
to the plane of sym-

metry visible in the

obtained pattern. If

such a crystal be

Fig. 157.

Stereographical Projection of an abnormal Ron tgen

pattern of pseudo-tetragonal

rac.-Tnethylenediamine-Cobalti-bromide.

composed of lamel-

lae, it is easily con-

ceivable that such

dislocations may oc-

cur, if a pile of

lamellae is slightly rotated, e.g. round its longer direction. The effect

will depend on the accidental choice of the place where the pencil

of Rontgen-rays pierces the crystal-plate, as was in fact stated in

some cases 2
). As stress or tension produced in the plate by slightly

compressing it, has no appreciable effect as long as the crystal is

not internally dislocated by the force applied, the phenomenon
mentioned here can only be caused by a local disarrangement of some

of the component lamellae. In a recent investigation, the author 3
)

!) H. Haga and F. M. Jaeger, ibid., 17, 438, (1914).
2

)
H. Haga und F. M. Jaeger, loco cit.; e.g. in the case of d-sodium-

ammonium-tartrate, parallel to 010} .

3
)

F. M. Jaeger, Proceed. Ron. Acad. v. Wet. Amsterdam, Vol. 22,

May, (1920).
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was able to bring complete experimental evidence of this by the

aid of Ron tgen-diagrams obtained with complex mica-piles, the

lamellae of which were crossing under angles of 45, 60, or 90,
and arranged in definite ways. As is wellknown, the plane of

the optical axes of muscovite is perpendicular to its plane of

symmetry (010), while at the same time it is almost perfectly

perpendicular to the plane of cleavage (001) of this monoclinic

mineral. If, for the purpose of preparing circularly polarizing

mica-piles, these lamellae now are piled up, say under angles of

60, - - it makes no sensible difference with respect to the optical

behaviour of the complex, whether the successive lamellae be all

rigorously parallel to each other, or some of them be rotated through
1 80 round an axis coinciding with the direction of the intersection

of the axial plane and the plane of cleavage (001). But with respect

to the final effect of the diffraction of the Ron t gen-rays in such

piles, this rotation through 180 appears to be not at all indifferent.

According to the particular way of piling up, be it in the case men-

tioned before, in triades or hexades of parallel or inversed lamellae,

it may be foreseen, that Rontgenograms of hexagonal, trigonal,

and even of only monoclinic symmetry can be obtained. The ex-

periments have fully confirmed these deductions; and they have

proved that, if amongst the numerous crossing, lower symmetrical
lamellae of polysynthetic twins, there is an only relatively small

number of them accidentally rotated through 180 round an axis

not coinciding with any direction of symmetry 'of the lamella, the

effect must necessarily be such, that a Rontgenogram of the

pseudosymmetrical complex under consideration appears to possess

e.g. only bilateral symmetry, while no optical disturbances or irre-

gularities whatsoever can be detected, even by the most sensitive

methods. Of some of these substances, e. g. of benitoite, other investi-

gators later have really obtained completely normal diffraction-

images; cf.: F. Rin-ne, Centr. Bi. f.Min.,(1919),p. 193. In the opinion

of the present writer, therefore, there is scarcely room for doubt,

that the explanation given by Mallard will prove to hold in the

larger number of cases 1
).

1) G. W. Wulff, Zeits. f. Kryst., 17, 592, (1890); G. Wyrouboff, Bull, de la

Soc. Miner., 8, 78, 398, (1885); 13, 213, 277, (1890); 14, 215, 233, (1891); Ann. de

Chim. et Phys., (6), 8, 340, (1886); etc.; F. Wallerant, Bull, de la Soc. Miner.,

24, 155, (1901); 27, 184, (1904).
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11. At present, however, the explanation given by Mallard

for the phenomenon of dimorphism can scarcely be maintained.

The study of polymorphism in recent times has proved beyond
all doubt, that in the case of reversibility of this phenomenon, i.e. if

true enantiotropy be present, we have in reality to deal with a true

heterogeneous equilibrium between two different phases, which under

any given pressure is determined by a definite temperature, generally

called the transition-, or inversion-temperature. Above this temperature

the one modification is the stabler one, below it the other form;

and if no retardation-phenomena occur, the transformation of the

one form into the other occurs abruptly, with a specific heat-effect

and a change of specific volume. Now in Mallard's explanation of

dimorphism, such an abrupt change, accompanied by an appreciable

heat-effect, would be hardly conceivable. For if the higher symmetrical

form were nothing but a mimetic aggregate of submicroscopical,

repeatedly twinned lamellae of lower symmetry, that higher sym-
metrical form would, from a thermodynamical standpoint, represent

in fact the same phase as the lower symmetrical modification of

which it is composed. Therefore, one would expect that the change

would neither be accompanied by a considerable heat-effect, nor

by an abrupt transition, but rather by a gradual transformation,

because the component lamellae, according to Mallard's view,

get gradually finer and finer with increase of temperature. In practice

this traject may be larger or smaller, and the change may occa-

sionally even give the impression of occurring suddenly. Indeed, as

far as experience goes, the change of true pseudosymmetrical sub-

stances into the higher symmetrical forms, even when it seems to

take place instantaneously, is never accompanied by an appreciable

heat-effect, nor by a measurable change of specific volume.

A study of these phenomena from these points of view has been

made in several very convincing cases. Thus, the temperature at

which the monoclinic, pseudotrigonal uranyl-magnesium-sodium-
acetate 1

): NaMg(U02)3(C2H3Oz) 9 + 9#2 is changed into an

real trigonal crystal, was determined by Steinmetz to be 28 C.,

who stated at the same time that the change observed is accom-

panied neither by an appreciable dilatometrical, nor by a thermal

effect.

!) G. Wyrouboff, Bull, de la Soc. Miner., 24, 93, (1901); Zeits. f. Kryst., 37,

192, (1903).
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Analogous results were obtained by Steinmetz with isopropyl-

amine-platinichloride
l
): (iso-C3

H
7
.NH2)2PtCl6 ,

which is a mono-

clinic, but pseudo-rhombic substance, and which at 32 C. is changed
into an apparently true rhombic individual, without measurable

heat-, or volume-effects. Something of the same kind was found

by Gossner 2
)

in the case of glaserite: K3Na(S04)2 ,
and of the

corresponding chrornate: K3Na(CrO^)3 ;
here too, neither heat- nor

volume-effects were found when the monoclinic, pseudo-hexagonal

crystals passed into such of apparently true hexagonal symmetry.
Beautiful examples were also found by Gossner 3

)
in the case

of the tri-alkali-hydrosulphates: K3H(SO^)2 , (NHJ3H(SOJ2 ,
and

T13H(SO^)2 ,
and in that of the corresponding selenate: K3H(SeO^)2 .

The ammonium-, and potassium-hydrosulphates are monoclinic and

pseudo-trigonal; the thallo-salt is really ditrigonal, with approxi-

mately the same angular values. On heating the monoclinic salts, a

system of three sets of lamellae, crossing at angles of 60, becomes

visible, which at increasing temperatures get gradually more nume-

rous, until finally apparently a perfect ditrigonal crystal is pro-

duced. The transformation is completely reversible, and according

to Gossner, a continuous one. Fischer 4
), however, demonstrated,

that in reality in the case of the ammonium-salt a ^continuous

change may be present between 124 and 135 C., so that a true

polymorphic change seems to immediately follow the first one.

From this it appears that the phenomenon of polysymmetry
must be distinguished from the case of true polymorphism

5
) ;

and

for the explanation of the latter, Mallard's theory cannot serve.

It must, however, be remarked, that pseudosymmetrical substan-

ces can often be changed at higher temperature into new, true

polymorphic modifications 6
)

: potassium-sulphate is a wellknown

example of this, it being suddenly changed at about 650 C. into

a new, really hexagonal modification.

1
)

A. Ries, Zeits. f. Kryst. 36. 329, 360, (1902); H. Steinmetz, Zeits. f. phys.

Chemie, 52, 449, (1905).
2
)

B. Gossner, Zeits. f. Kryst., 39, 155, (1904).
3
)

B. Gossner, Zeits. f. Kryst., 38, 110, 159, 161, (1904).
4

)
P. Fischer, Dissertation Gottingen, (1911), p. 10, 25.

5) J. Beckenkamp, Zeits. f. Kryst., 34, 633, (1901). The author suggests

to adopt Mallard's theory in all cases of so-called polymorphism, where both

modifications have the same or only unappreciably different specific gravities.

6
)

P. Groth, Einleitung in die Chemische Krystallographie, (1904), p. 6.
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Also combinations of polysymmetrical and real polymorphic

changes may occur with the same substance 1
).

Cases of this are: propylamine-stannichloride
2
)

: (CzH1
.NH2) 2SnSl6 \

diethylamine-platinichloride : [(C2H5)2NH2] 2
PtCl6 ; diethylamine-stanni-

chloride: \(C2H5)2
NH2] 2

SnCl6 ,
which even in its external habit

completely simulates a cubic crystal ; tripropylamine-platini-

chloride : [(C3H7)3NH] 2PtCl6 ; tetraethyl-ammonium-stannichloride :

[N(C2H^4\ 2SnCls, where the lamellar structure of the monoclinic,

but pseudocubic crystals is very distinctly recognisable ; tetrapropyl-

ammonium-platinichloride: [(C3^7) 4A^] 2P^C/6 ;
and tetramethyl-ammo-

nmm-platimMoride;[N(CH3)4\ 2PtCl6 , where, however, a rather similar

case perhaps occurs to that of the isopropylamine-platinichloride pre-

viously mentioned. While in the case of real polymorphism, metastable

states may occasionally occur under the influence of retardative

circumstances, it must be clear from what has been said about poly-

symmetrical changes in general, that of such metastable conditions

there can be no question here.

12. From these and many other researches it has gradually
become clear, that even if a crystal be apparently a homogeneous
individual, only in rare cases may it be considered as a really homo-

geneous thing. According to Mallard's views and those of a number
of other investigators, the molecular arrangements which are charac-

teristic of crystalline matter, do not necessarily possess the perfect

homogeneity involved by Hessel's and Bravais' theories 3
). Its

constituting and identical molecules are, therefore, not always parallel

to each other, but they may have different orientations in space,

depending on the special symmetry of the crystalline substance.

In very numerous cases it is built up from lower symmetrical masses,

according to the general laws of twin-formation.

The fact, that it is just those space-lattices whose dimensions are

such as to make them appear to possess an approximate symmetry,
which show most conclusively that tendency to aggregate into ap-

parently higher symmetrical complexes, whose twinning-elements

correspond with the approximate symmetry-elements of these simu-

lated higher symmetrical complexes, was certainly first recognised
in its general significance by Mallard. But from this to his later

!) P. Groth, loco cit., p. 7.

2) A. Ries, Zeits. f. Kryst., 39, 50, 55, 56, 66, 69, 73, (1904); 36, 360, (1902);

49, 513, (1911).
3
) J. Beckenkamp, Statische und Kinetische Krystalltheorien, I, p. 194, (1913).
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views that all space-lattices should really be pseudo-cubic *), or that

all higher symmetrical crystals should only be pseudo-symmetrical

aggregations of submicroscopical lamellae of lower symmetry, is

a long way. A rational proof of these views cannot at present be given,

and as such these hypotheses have no immediate value for our know-

ledge in its present state. But even if we leave these views aside, it

can only be once more emphasised, that the idea of lamellar aggre-

gation has been, and in future will prove, a very successful one in

the explanation of a great number of the most interesting phenomena
in the science of inorganic matter.

13. In this and the preceding chapters we were able to compare
on several occasions the specific symmetry of objects in inanimate

and in living nature. As strikingly different features of the sym-

metry-properties revealed in both domains we must chiefly bear in

mind two important facts: 1) the occurrence in living nature of

symmetry-axes which are characterised by irrational values of the

cosines of their periods n\ and 2) the much higher symmetry of the

older species of animals, in comparison with that of the living beings

of later periods of evolution. Indeed, after what we have seen in

the last chapter, in non-living nature there seems to be rather an

oppositely directed tendency, a drift towards the highest degree of

symmetry possible
2
).
The cases of apparent and mimetic symmetry

dealt with in the above may serve to sustain this view; further the

fact that polymorphic substances generally change into higher

symmetrical forms, when temperature increases. In the next chapter

we shall obtain yet more evidence for this view: we shall see, that

optical antipodes, possessing only symmetry-properties of the first

order, have also a natural tendency to pass into optical ^active

systems exhibiting symmetry-properties of the second order. A cer-

tain tendency to form the more symmetrically built molecules in cases,

!) E. Mallard, Bull, de la Soc. Miner., 7, 349, (1884); 9, 54, 123, (1886);

F. Wallerant, ibidem, 24, 159, (1901).

This theory, however, has in recent times gained a new support, although in some-

what modified form, by the dynamical views of J. Stark. According to this investi-

gator, rocksalt for instance, would be built up by three submicroscopical systems

of tetragonal-hemimorphic symmetry. They form a quasi-homogeneous complex

of apparently holohedral cubic symmetry. Similar ideas are found in a paper of

J. Beckenkamp (Cf. : J. Stark, Jahrbuch fur Radioaktiv. und Elektronik,

12, 280, (1915).
2
) Cf. also: G, Bohn, "La naissance de I'intelligence" , Paris, (1917), p. 113 138.
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where several isomerides may occur simultaneously, is also observed

on many occasions by chemists, and it is a wellknown fact for in-

stance, how easily the threefold symmetrically substituted deri-

vatives of phenoles, aniline, etc. are commonly produced, in compari-

son with their less symmetrical isomerides (cf. page 202).

On the contrary, evolution in living nature seems to proceed in

exactly the opposite direction, the lower animals showing in many
cases a much higher symmetry than the mere bilateral one of the

animals, which have appeared in the later periods of the earth's

history. Even a certain preference for pen-

tagonal symmetry, both in the case of

animals and of plants, seems to exist

here, - - a symmetry so closely related

to the important ratio of the "golden

section," and impossible in the world of

inanimate matter.

The view, that really the older forms

should possess the higher symmetries, is

probably also sustained by the remark-

able phenomena of the occurrence of

so-called peloria
l

) in flowers.

It has been observed for a long time

that many plants, the flowers of which

have only bilateral symmetry, suddenly

produce at the top of an inflorescence a

flower which shows the perfect symmetry
of one of the axial groups, or of the groups C^. Thus Delphinium

peregrinum produces occasionally a completely pentagonal blossom
;

the common foxglove (Digitalis purpurea monstrosa) exhibits the

same phenomenon (fig. 158), as the accompanying figure (after

H. de Vries) clearly shows. Among Orchidaceae the species Cattleya

marginata and Phalaenopsis Schilleriana occasionally show a pelo-

rium of perfect ternary symmetry.
2
) This remarkable phenomenon

is commonly observed in the flower which stands at the apex of a

Fig. 158.

Pelorium of Digitalis

purpurea monstrosa.

J
)

From: niiup = monstrum.
2
)

M. T. Martens, Nat. Hist. Review, (1863); Vegetable Teratology (1869).

On symmetrical arrangement in the case of artificial situs inversus produced

by constriction of the eggs of Triton cristatus, and on its explanation, cf. :

H. Spemann and H. Fal ken berg, Archiv fur Entwickelungsmechanik
der Organismen, 45, 371, (1919).
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stem or in the centre of an inflorescence, and the changed flower has,

moreover, a tendency to take a more upright direction of growth
than is usual for it. (Antirrhinum maius', Digitalis; etc.). When such

an irregular blossom becomes symmetrical, this may occur in two

different ways : either the development of such parts which determine

the lack of symmetry in the ordinary individuals is stopped, or the

irregular parts are produced in greater number, so that a higher

symmetrical complex is the final result. In the first case it is said

that a "regular pelorium" is produced, in the latter case an "irregu-

lar" one.

The regular pelorium is, therefore, a product of stagnation in the

natural development of the blossom, the irregular pelorium is the

result of an excessive development of certain parts of it.

At present the phenomenon is generally explained in both cases

as a retrogression towards an older prototype. According to this

view, the occurrence of peloria is a case of atavism, of typical re-

trograde mutation. The irregular or less symmetrical flower is the

descendant of a higher symmetrical ancestor; and also here the older

form, therefore, appears to be that of higher symmetry.

Indeed, it can hardly be denied that there is a sharp line of

demarcation between the forms of non-living and living nature

with respect to the part the principle of symmetry takes therein:

here the gradual evolution of forms from higher towards lower sym-

metry, and the characteristic preference for the irrational ratio of

the "aurea sectio"; there the tendency towards higher symmetry
as to a condition of greater mechanical stability, and the exclusion

of all irrational ratios in the periods of the symmetry-axes
1

).
There

1
)

Also in chemical synthesis something of this kind is often observed. Thus

from glycol-iodo-hydrine and zinc-dimethyl not the primary propyI-alcohol, but the

more symmetrically built isopropyl-alcohol is formed, and the same occurs, if nitrous

acid acts upon normal propyl-amine. On dehydrating isobutyl-alcohol, not the

unsymmetrically built dimethyl-ethylene, but the more symmetrical isomeride is

formed. The same compound is produced, if sodium acts upon a mixture of methyl-

and allyl-iodide, and in greater quantity than the unsymmetrical hydrocarbon, if

zinc-methyl acts upon allyl-iodide.

E. Krause and M. Schmitz (Ber. d. d. Chem. Ges., 52, 2150, (1919)) observed

in the case of symmetrically and unsymmetrically substituted #ry/-derivatives

of the metals stannum and lead remarkable differences in chemical behaviour

between the symmetrical and the unsymmetrical compounds. The influence of

the special symmetry of the molecule on its chemical properties is sufficiently

clear in these cases. Moreover, that a tendency towards the formation of symme-
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is no way to escape the urgency of this conclusion, and the only

question which may arise is: can we hope that further investigation

will enable us in future to remove this barrier?

In the author's opinion the contrast may be only of an apparent
nature in so far, as the products of living nature do not possess the

character of systems of absolute mechanical stability. The restless

process of growth and metabolism in living nature, the never

stopped current of consecutive events in the chain of life-evolution,

is rather based upon a certain lack of mechanical stability of the

stages arrived at successively. Highest mechanical stability corres-

ponds, however, only to highest possible symmetry under existing

conditions; and only because in living nature no such perfect

mechanical stability can be reached, the direction of natural events

seems to be contradictory to this principle. We shall return to

these questions later.

trical compounds exists, may be seen also in the case of the transition of 1-2-4-

chlovobenzene-disulphonic acid into the symmetrical 7-3-5-derivative
;
in the same

way, if p-chlorobenzene-sulphonic acid be treated with strong sulphuric acid at 200 C,

the symmetrical I-3-5-derivative is formed in excess; cf. S. C. J. Olivier, Receuil

des Trav. d. Chim. d. Pays-Bas, 37, 307, (1918); 38, 351, (1919).

In many polymerisation-processes: acetylene into benzene, cyanochloride and

cyanobromide into derivatives of cyanuric acid, etc., the increase of symmetry

undoubtedly plays an important part.. About the symmetrical structure of mixed

diazo-compounds, cf.: V. Meyer, Berl., Ber, 14. 2447, (1881); R. J. Friswell and

A. G. Green, Journ. Chem. Soc. London, 47, 924, (1885). Tentatives to elucidate

the part, which molecular symmetry plays with regard to many physical properties

of chemical compounds, have been made already on several occasions; thus,

e. g. with respect to the volatility of inorganic substances some indications are

given by O. Ruff, Ber d. d. Chem. Ges., 52, 1231, 1235, (1919).



CHAPTER VIII.

PASTEUR'^ LAW.

Pasteur's Discovery of the Fission of Racemic Acid. -- Mole-

cular Dissymetry and Optical Activity.
- - Fission-Methods. -

Spontaneous Crystallisation; Problems and Investigations.

Transition-temperature.
- - Partial Racemism. Physiological

action of Optical Antipodes.
- Enzyme-Action. - - Pseudo-

Racemism. Racemisation, its Mechanism and Equilibrium.
-

Pasteur's General Conclusions. The Theory of the Asymmetric
Atom. - - Pasteur's Law and Van 't Hoff-Le Bel's Theory;
Problems and Investigations. The Symmetry of Chemical

Molecules. Crystallonomical Relations; Problems and Data. -

Chemical Composition and Optical Rotatory Power. Asym-
metric Metal-atoms. Enantiomorphism of Cyclic Compounds. -

Enantiomorphous Configuration and Hemihedrism. Final

Remarks.

.... "Our knowledge of that aristocracy of chemical

compounds which possess, in addition to all the

commonplace and vulgar physical attributes, the dis-

tinctive seal of nobleness: optical activity."

Percy Frankland, (1891).

1. It was in 1848 that Pasteur, at the very beginning of his

scientific career, made his famous discovery that, when the sodium-

ammonium-sa\t of racemic acid: C 4 6#6 ,
was recrystallised from an

aqueous solution at lower temperatures, it deposited two kinds of

crystals, which were non-superposable mirror-images of each pther.The

organic acids set free from both kinds of crystals after careful selec-

tion, appeared to have the same composition as the racemic acid itself.

But the one, if dissolved in water, made the plane of a linear polarised

beam of light passing through its solution deviate through a certain
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angle in one direction, while the other acid under analogous circum-

stances made it deviate through the same angle, but in just the

opposite direction. The dextrogyratory acid was proved to be identical

with the ordinary, already well-

known, tartaric acid; the laevo-

gyratory acid appeared to be

another, isomeric tartaric acid,

unknown up to that date. Not

only both acids themselves, but

also the various salts derived

from them, appeared in each

case to have enantiomorphous

crystal-forms, while their che-

mical behaviour was always

identical. However, the solu-

tions of the left-handed crys-

tals made the plane of polarisa-

tion of a traversing polarised

light-beam constantly rotate in

just the opposite direction, to

that which solutions, prepared

from the right-handed crys-

tals, did 1
).

Seldom has a scientific discovery had such far reaching conse-

quences, as this one had. The connection between the non-super-

posable mirror-images of the crystal-forms of the isomeric substances

and the oppositely directed rotatory power of their molecules, seemed

proved beyond all doubt.

Neither could there be any doubt as to the structural identity

of the two tartaric acids, and the explanation given by Pasteur

himself 2
)

: that the arrangement of the atoms in the molecules

of both acids must necessarily be supposed to be related to each

other, as that of two "non-superposable" stereometrical figures,
-

led not only to the conception of a new kind of isomerism, but it

marked the very starting-point of our views concerning the spatial

arrangement of the atoms of chemical molecules in general; and

a quarter of a century later it opened the way to that new branch

x
)

L. Pasteur, Ann. de Chim. et Phys., (3), 24, 442, (1848); Compt. rend,

de 1'Acad. d. Sciences Paris, 26, 535; 27, 101, 367, (1848).
2
)

L. Pasteur, loco cit.

L. Pasteur. 18221895.
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of chemical science, which is now commonly indicated by the name

of stereochemistry
1

).

Pasteur 2
), as a consequence of his work on this "molecular dis-

symmetry", soon put the question to himself: are the atoms of the

right-handed compound to be considered as grouped on the spirals

of a dextrogyratory helix, or as placed at the summits of an irregular

tetrahedron ? Both views involve arrangements which are non-super-

posable with their mirror-images. However, the last step necessary

to lead to the general conception of the "plurivalent asymmetric

atoms", was not made by him. It was Van 't Hof f
3
)
and Le Bel 4

),

who in 1874 simultaneously and independently formulated the

important generalisation of the asymmetric carbon-atom, at once

making it possible to extend over the whole domain of organic

chemistry Pasteur's fundamental views on the spatial configu-

ration of the atoms. As we shall see, Pasteur's statement of the

case is, however, more general than that of the theory of Van
't Hof f and Le Bel.

It is to Pasteur's genius moreover, that we are indebted for

the general methods now in use for the fission of racemoids into

their optically active components
5
). They were the result of his

splendid and continual investigations during more than a full decade.

Before we go further into the conclusions of general significance,

to which the various facts gathered in this way have gradually led,

1
)

The innumerable investigations on the rotatory power of organic molecules,

its dependence on concentration, temperature, wave-length, chemical constitution,

etc., are not considered in detail in this chapter, although some data are occasionally

given for the purpose of illustrating other facts. For a full treatment of these

phenomena the author must refer the reader to the original papers of Th. S.

Patterson, P. Frankland, Ph. A. Guye, P. Walden, H. Rupe, and many
others; the results are dealt with e. g. in: H. Landolt's "Das Drehungsvermogen

organischer Verbindungen", in C. A. Bischoff und P. Walden's: "Handbuch

der Stereochemie"
',

in A. Werner's: "Lehrbuch dev Stereochemie" etc., and in

many fuller or more restricted textbooks on stereochemistry. Cf. also: Th. W.

J. van Marie, Proefschrift Leiden, (1919), where especially the relations between

the magnitude and direction of the optical activity and the configuration of a

series of acids derived from stereoisomeric sugars are considered.

2
)

L. Pasteur, Deux Lecons sur la Dissymetrie Moleculaire, professees devant

la Societe Chimique de Paris, (1860).
3
) J. H. van 't Hoff. Voorstel tot Uitbreiding der tegenwoordig in de Schei-

kunde gebruikte Structuurformules in de Ruimte, (1874).
4
) J. A. Le Bel, Bull, de la Soc. Chim. de Paris, (2), 22, 337, (1874).

5) L. Pasteur. Compt. rend., 36, 191, (1852); 51, 298, (1860); Ann. de

Chim. et Phys, (3), 38, 437, (1853); Deux Lecons, etc. loco cit.
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it seems better to deal more in detail with these various methods

of fission, and to consider at the same time the most important
facts relating to them, which have been detected since that period.

2. Spontaneous Fission of Racemic Compounds into their

Components by mere Crystallisation from Solutions.

The phenomenon first discovered by Pasteur, that a racemoid

by simple recrystallisation from a solution may deposit the crystals

of both its optically active components separately, has since been

observed in a restricted number of cases. It appeared, however, for

a considerable time to be quite fortuitous, whether the desired fission

of the racemic compound occurred in this way, because the special

circumstances under which it takes place seemed to be completely
unascertainable. Pasteur himself, who clung persistently to the

idea that molecular dissymetry could only be produced by the action

of living organisms, assumed that the fission by spontaneous crys-

tallisation was started by micro-organisms introduced from the

atmosphere. Since then it has been found that the phenomenon takes

place in cases, where the inactive mixture of the components is at

the same temperature less soluble than the racemic compound. This

signifies, that in those cases the racemic compound is the less

stable, or "metastable" solid phase with respect to the saturated, op-

tically inactive solution, in comparison with the crystalline mixture

of the active components. As, however, these relations are a function

of the temperature, it is necessary to consider this case more in detail.

The classical example of a fission of this kind is that of Scacchi's

sodium-ammonium-racemate 1
) : C^H4p6(NHl)Na -f- H20. If this salt

be recrystallised from aqueous solutions at temperatures below

27 C., it is deposited as a mixture of right-, and left-handed crystals

of the corresponding optically active tartrates (-f- 4H20), having
the axial symmetry D2 .

It was afterwards demonstrated by Van 'tHoff 2
), that this

!) A. Scacchi, Rendic. dell' Acad. di Napoli, (1865), 250; cf.: W. Sta-

del, Ber. d. d. Chem. Ges., 11, 1752, (1878); G. Wyrouboff, Compt. rend,

de 1'Acad. d. Sc. Paris, 102, 627, (1886); Bull, de la Soc. Chim., (2), 41, 210,

(1884); 45, 52, (1886).
2
) J. H. van 't Hoff and C. Van Deventer, Zeits. f. phys. Chemie,

1, 173, (1887); J. H. van 'tHoff, H. Goldschmidt, and W. P. Jorissen,
Zeits. f. phys. Chemie, 17, 49, 505, (1895); J. H. van 't Hoff, Vorlesungen

H. theor. u. phys. Chemie, II, (1899), p. 100; idem, Vorlesungen u. Spaltung und

Bildung von Doppelsalzen, (1897), p. 81
;
W. Meyerhoffer, Gleichgewichte der

Stereomeren, Leipzig, (1906).
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case of spontaneous fission is completely analogous to that of the

formation and decomposition of many double-salts, there being
a definite transition-temperature, above which the racemic compound
is stable, while on the contrary at a temperature below it, the equi-

molecular mixture of both tartrates is the more stable solid phase
in equilibrium with the optically inactive, saturated solution.

It was found that an equimolecular mixture of the dextro-, and

laevogyratory tartrates at 27,2 C. was transformed into Scacchi's

racemate, while three quarters of the water of crystallisation was set

free. This racemate, however, appears only to exist between 27,2 C.

and 36 C., because above 36 C. it is changed into a mixture of

sodium-racemate and ammonium-racemate
;
both these salts could

be obtained from a solution at 40 C. The transition-temperature

of a mixture of the right-, and left-handed salts into the two

mentioned racemates, lies at about 29,2 C.

In this case the transition-temperature was a minimum tempera-
ture for the field of existence of the racemate; however, this need

not always be the case. Thus, while e. g. potassium-sodium-racemate

(-J- 3H20) with its transition-temperature of 6 C., is quite

analogous to Scacchi's racemate in this respect
1
),

the rubidium-

racemate (+ 2 H20) was found 2
)
to have a transition-temperature

of 40,4 C., this, however, being for it a maximum temperature; so

that at temperatures above 40, 4 C. the spontaneous fission into the

optically active components occurs, while all the water of crystal-

lisation it set free. Evidently the occurrence of such a minimum

.or maximum transition-temperature for a racemate, is intimately

connected with the algebraic sign of the heat-effect accompanying
its formation, - - a fact completely in agreement with the law of

mobile equilibrium. In the cases mentioned, the heat-effect is of

course related also to the setting free of, or to the combination with,

some molecules of water of crystallisation ;
but also when this compli-

cation does not occur, the explanation as given here, must hold.

Thus, from an optically inactive solution of the right- and

left-handed methylmannosides (mpt: 193 C.), either a mixture of

the two active forms, or the racemic compound may be obtained,

according to the crystals being deposited below 8 C. or above

J
) J. H. Van 'tHoff, loco cit.

2
) J. H. Van 't Hoff, Vorlesungen it. theov. und phys. Chemie, II. (1899),

p. 104; J. H. Van 't Hoff and W. Miiller, Ber. d. d. Chem. Ges., 31, 2206. (1898).



209

15 C. 1

). The transition-temperature for the racemate (minimum)

evidently lies between 8 and 15 C., and the formation of the race-

mate from the antipodes must be an endothermic reaction.

A similar case 2
)
must be the spontaneous fission of the triclinic

racemoid of dimethyl-dioxyglutaric acid: CH2[C(OH)(CH9).(COOH)] 2

into its triclinic active components, when crystallising from a solution

in ether; from an aqueous solution the enantiomorphous salts could

not, however, be obtained, - - which proves that the special nature

of the solvent also plays a role in the matter.

For ammonium-bimalate the transition-temperature was deter-

mined by Kenrick 3
)
at 75 C. He was also the first who demon-

strated that in the field of stable occurrence of the racemate, its

solubility is influenced by the addition of one of the two components.

3. The relations which exist in these and similar cases with

respect to the solubility of the y
components and the racemic

compound, were first elucidated

by Bakhuis Roozeboom 4
)

in 1899.

The graphs of fig. 159 and

160 give an easy survey of these

relations. On the axis OX the

solubility of the dextrogyratory

component is represented by
Oa, on the axis OY that of the

laevogyratory component by

b'

Ob. The curve amb is the solu- a-' a

bility-curve for a temperature Fig. 159.

of t C., which in fig. i$p is

thought above, in fig. 160 below the transition-remperature of the

racemate, because of the fact that fig. 159 is drawn for the case

that the transition-temperature is a maximum temperature, in fig.ido

a minimum temperature for the racemate, in the sense explained
above. The solid phases in equilibrium with the saturated solutions

amb, are here the dextro-, and the laevogyratory components.

!) E. Fischer and L. Beensch, Ber. d. d. Chem. Ges., 29, 2927, (1896).
2
)

N. Zelinsky (Crystallographical investigations by R. Prendel), Ber. d. d.

Chem. Ges., 24, 4014, (1891).
3
)

F. B. Kenrick, Ber. d. d. Chem. Ges., 30, 1794, (1897); J. H. Van 't Hoff
and H. M. Dawson, Ber. d. d. Chem. Ges., 31, 528, (1898).

4) H. W. Bakhuis Roozeboom, Zeits. f. phys. Chemie, 28, 494, (1899).
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The isotherms a'6' are in the same way solubility-curves for

another temperature t' situated below (fig. 759) or above (fig. 160)

the transition-temperature under atmospheric pressure. At Q and P
they will meet the solubility-isotherm PrQ for the racemate, the

solubility of which is of course influenced by an excess of the right- or

left-handed component.
The point r is the optically inactive solution which is saturated with

.respect to the racemoid, the point of intersection x represents the

more concentrated, metastable, inactive solution which would be in

equilibrium with a mixture of

the components at the same

temperature, if this equilibrium

could be realised. This meta-

stable solution would be super-

saturated with respect to the

racemic substance.

At the transition-tempera-

ture itself, the solution T may
exist in stable equilibrium with

the racemic compound, or with

the right- and lefthanded com-

ponents. Thus on TQ are all

solutions which, at increasing

(or decreasing)temperatures, are

simultaneously saturated with respect to the racemate + excess of the

left component, and on PT are all solutions which behave in the

same way with respect to the racemate -f- excess of the right com-

ponent. If, perpendicular to the plane of the figure, a third axis OZ
be taken as temperature-axis, a complete survey of these relations

can be given in a tridimensional model.

The whole behaviour is completely analogous to that of ordinary

double-salts 1

), the only difference here being this, that the whole

figure is completely symmetrical with respect to the line OA bisecting

the angle between the axes OX and OY, in consequence of the iden-

tical chemical and scalar physical properties of both optically active

components.
As to the question whether racemic compounds be really present

in the liquid state, it may be briefly remarked here, that there is

x
)

H. W. Bakhuis Roozeboom, Zeits. f. phys. Chemie, 2, 513, (1888); 10,

145, (1892); F. A. H. Schreinemakers, ibidem, 9, 57, (1892).
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little probability of it. According to Kruyt and Van der Linden l

),

they seem to occur only to an unappreciable amount in the cases

studied up till now, if present in the liquid state.

Moreover, Shibata 2
) proved that the absorption of light of the

racemic complex cobalti-salts in aqueous solutions and that of their

optical antipodes under the same conditions, is exactly the same.

This fact seems also to indicate that no such racemic compounds

really exist in solutions to any appreciable degree.

We have seen that as long as the racemoid is stable, the concen-

tration of the metastable solution x which may possibly be in tempo-

rary equilibrium with a mixture of both components, will be greater

than that of the stable solution in equilibrium with the racemic

compound at the same temperature. As a complement of this, it may
be remarked that the reverse must be the case if the racemoid is no

longer the stabler solid phase, as is easily seen from the figures jj-p

and 160, when the inactive solution m is compared with /, which is a

metastable optically inactive solution, eventually in equilibrium with

the racemic substance at the same temperature. Here again the less

stable phase has always the greater solubility, as is observed in all

such cases.

Of course it would have also been possible to deduce all

these relations from sections through the tridimensional model

parallel to the coordinate-planes XOT or YOT respectively, i. e. by
means of temperature-concentration-diagrams. This is the method

principally followed by Van 't Hoff in his work on the formation

and decomposition of double-salts 3
).

4. The solution of the problem: why a number of racemoids

can be spontaneously resolved by crystallisation and separating
both kinds of enantiomorphous crystals separated from each other

by selection, while others cannot be separated in this way, must

evidently depend on the situation of the transition-temperature. If

this lies in the neighbourhood of the temperature of crystallisation

and within the range of temperatures where the substances can exist

!) T. Van der Linden, Ber. d. d. Chem. Ges., 44, 963, (1911); H. R. Kruyt,
ibid., 44, 995, (1911); A. Ladenburg, ibid., 44, 1677, (1911).

2
)

Y. Shibata, Journal of the College of Science Imp. Univ. Tokyo, 37, Art. 2,

p. 28. (1915); Y. Shibata and T. Maruki, Journ. of Coll. of Sc. Imp. Univ.

Tokyo, 41, (2), (1917).
3

) J. H. Van 't Hoff, Vorlesungen iiber Bildung und Spaltung von Doppel-

salzen, loco cit.
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without decomposition, there will be great probability that the

spontaneous fission mentioned above, really occurs, be it at higher

or at lower temperatures, and provided that supersaturation be

avoided in the case of lower temperatures. But if the transition-

temperature is too far removed from the ordinary temperatures of

crystallisation, it will in most cases be by no means possible to

resolve the racemoid into its components in the way described, and

then it becomes necessary to look for other methods of fission.

Cases of this kind are the most numerous: thus, e. g., that of racemic

acid itself and the dextro-, and laevogyratory tartaric acids, in

contrast with the case of their salts above dealt with. A similar

case is that, where no racemic compound could be obtained by com-

bining the two antipodes, although both the optically active compo-
nents be well-defined crystallised substances. Such cases are, for

instance: d-, and l-asparagine:
1

): CO(NHZ)CH2CH(NHZ)COOH +
H20, and the d-, and l-gulonic lactones 2

) (mpt: 181 C.): C6#10 6 ,

which all have the symmetry of the group D2 ,
but whose racemoids

have not so far been obtained from the combined antipodes. Here also

the temperature at which the inactive mixture is changed into the

racemic compound, when in contact with its solution, must be suppo-

sed to lie too far removed, to allow its formation from the components.
5. Fairly soon, however, it appeared that the transformation of

the racemic compound into its active components could also happen
under circumstances, in which the racemic compound itself must

be considered as undeniably stable.

Gernez 3
) first drew attention to the fact that from an optically

inactive solution of two active components, if supersaturated, the

excess of the solute was precipitated wholly as one of the active com-

ponents, if a small crystal of that component or of an isomorphous
or isodimorphous substance, was added to the supersaturated solution

as a nucleus of crystallisation. The same was demonstrated after-

wards by Purdie 4
)
in the case of zinc-ammonium-lactate, while in

1898 analogous results were obtained to a certain extent by Kipping
and Pope 5

), namely in so far, that on recrystallising sodium-ammo-

!) A. Piutti, Rend. Acad. d. Sc. Napoli, (3), 10, 69, (1904) ;
Gazz. Chim. It.,

34, //, 36, (1904).
2
)

E. Fischer and R. S. Curtiss, Ber. d. d. Chem. Ges., 25, 1025, (1892).
3
)

D. Gernez, Compt. rend, de 1'Acad. d. Sc. Paris, 63, 843, (1866); Jahres-

ber., (1866), p. 400.
4

)
T. Purdie, Journ. Chem. Soc. London, 63, 1143, (1893).

5) F. S. Kipping and W. J. Pope, Journ. Chem. Soc. London, 95, 103, (1909).
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ninm-racemate from solutions in the open air and in desiccators,

a preferential deposition of a little of the dextrogyratory salt was

repeatedly observed, probably under the influence of optically active

nuclei in the laboratory-dust.

A systematic study of some of these phenomena was afterwards

made by Ostromisslensky
1
),

but especially in cases where the

racemic compound is not the stable one in comparison with the

mixture of the components. He observed, that an inactive solution of

right-, and left-handed sodium-ammonium-tarirates, if supersaturated,

and inoculated at 6 C. by a nucleus of fci'ogatory asparagine, will

deposit exclusively the dextrogyratory tartrate. Because Gernez

had already demonstrated that a supersaturated solution of the

dextrogyratory tartrate does not start to crystallise by inoculation

with a crystal of the left salt, Ostromisslensky concludes from

this experiment, that the laevogyratory asparagine is structurally

more closely related to the right-handed sodium-ammonium-tartrate,

than even the left-handed tartrate itself..

In the same way a preferential crystallisation of the dextrogyratory

component was observed ,if in this case as a nucleus of crystallisation

small quantities of potassium-tartrate, sodium-tartrate, and ammonium-

malate were used; the direction of the rotary power of the salt deposited,

appeared in all cases to be the same as that of the introduced nucleus.

Even the monoclinic ammonium-tartrate, which, however, according

to Pasteur 2
), may also occasionally occur in a rhombic form, -

had the same effect
; therefore, it seems reasonable to suppose that

iso^'morphous substances can also produce the same effect. Most

remarkable is the fact, that substances which have no rotatory power
at all, may also be used as crystallisation-nuclei, and with the best

results, if only the inoculated crystal show a "non-superposable"
hemihedrism.

Thus, from an inactive solution of asparagine, by the introduction

of a crystal of glycocoll'. CH2(NH2)COOH, the one component
was deposited in excess, although not in all experiments. Here again
is a wide field open for investigation. If we adopt the view of Ostro-

misslensky, that the crystals of glycocoll are really hemihedral,

these experiments seem to prove indisputably, that the enantiomor-

phous nucleus exercises an exclusive, directional force, perhaps

*) I. Ostromisslensky, Ber. d. d. Chem. Ges., 41, 3035, (1908); Journ.
russ. phys. chem. Ges., 42, 102, 606, (1910).

2
)

L. Pasteur, Jahresber., (1854), p. 395.
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in the same way as in the experiments of Kipping and Pope l
),

in which a preferential deposition of the one or the other component
was obtained, when solutions of the sodium-ammonium-tartrates or

of sodium-chlorate, nearly saturated with dextrose or with levulose,

slowly crystallised. In all these cases the experiments were made
within a range of temperatures, where the racemic compound was

certainly no longer the stabler solid phase
2
). Ostromisslensky

now suggests that this condition must always be fulfilled, and even

to such an extent that in the occurrence of the phenomenon des-

cribed, he sees a new criterion for discriminating between true racemic

compounds and inactive, externally compensated mixtures in general.

On the other hand, experiments made by Werner 3
)
some years ago

on the spontaneous fission of inorganic molecules, apparently seemed

to prove the possibility of such a separation, even under circumstan-

ces where racemic compounds are supposed to be really stable. This

investigator found, that if the active components are only less soluble

than the racemic substance , the optically inactive, supersaturated

aqueous solution may be precipitated by the addition of alcohol, or of

a mixture of alcohol and ether, under preferential depositipn of one

of the two components, if only a slight excess of that active compo-

nent, or of an active substance isomorphous with it, be first added

to the solution. In such a way it appeared, for instance, possible

to separate the racemic oxalo-diethylenediamine-cobalti-bromide\

Co Br,

and the racemic dinitro-diethylenediamine-cobalti-chloride :

Co ^r%
2
\ci

(Eine)2 \

into their strongly active components
4
).

It also appears possible

to separate the last mentioned racemoid, by precipitation with

alcohol, after the addition of about 10% of the corresponding

active o^a/o-compound.

J
)

F. S. Kipping and W..J. Pope, Proc. Chem. Soc., 14, 113, (1898); Journ.

Chem. Soc. London, 73, 606, (1898); Zeits. f. Kryst., 30, 472, (1899); Chem. News,

75, 46, (1897); Cf. also: Ch. Soret, Archiv. des Sc. phys. et nat. de Geneve,

(4), 7, 80, (1899).
2
)

Of course the case of sodium-chlorate is not considered now.
3

)
A. Werner, Ber. d. d. Chem. Ges., 47, 1955, 2171, 2179, (1914).

4
)

Here and in the following, Eine is again used as an abreviation for ethvlene-

diamine;
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The analogous oxalo-diethylenediamine-chromi-szM, of which up till

now the fission into its active components could not be performed in

any other way, was readily separated by the addition of 10% of the

dextrogyrate oxalo-cobalti-salt, and precipitation with alcohol; in

this way the right-handed isomeride was obtained, while from the

mother-liquor the laevogyratory salt could easily be isolated. This

method of fission is undoubtedly closely related to that ofOstromiss-

lensky and Gernez, as by the rapid cooling of the solutions pre-

viously saturated at somewhat higher temperatures, supersaturation

will also be produced in this case to a greater or smaller degree.

But it may appear very doubtful indeed, whether the assumption
of ,,stable" racemoids under these circumstances may be considered

justified at all, where the author himself emphasizes that the anti-

podes; must be ,,less soluble" than the racemic compound: this, in

fact, seems to exclude any other view than that the racemoid is really

the less stable solid phase in contact with the saturated solutions.

According to Werner, racemic potassium-rhodium-oxalate:

would be separated into both its active components by spontaneous

crystallisation, if a solution of the salt saturated at its boiling point,

and after being rapidly brought to 90 C., is slowly cooled until room-

temperature is reached. Two kinds of crystals which would be enan-

tiomorphously related, would be deposited from the solution. After

selection under the microscope, a crystal of each kind, if it simply
remained in the saturated mother-liquor at room-temperature for a

long time, would slowly grow to rather large individuals.

However, these statements must, in the present writer's opinion, be

considered erroneous. For the solubility of the active components is

appreciably greater at room-temperature than that of the racemic

salt, the latter being, therefore, the stabler phase under the prevailing

conditions. Indeed, it was shown by direct experiments
1

),
that

a crystal of the active components, if brought into the saturated or

slightly supersaturated solution of the racemic compound, will

rapidly disintegrate and afterwards disappear completely. From
the solution, however, only the triclinic crystals of the racemic

compound can be obtained, which by their accidental development
can eventually make the impression of being non-superposable
with their mirror-images. Obviously the crystal-forms reproduced

*) F. M. Jaeger, Proceed. Kon. Acad. v. Wet., Amsterdam, 19, 20, 264,265,

(1917); Receuil des Trav. des Chim. Bays-Pas, 38, 171, (1919).
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in Werner's paper are merely distorted triclinic crystals of the

racemic salt. From a theoretical point of view it would, moreover, be

quite incomprehensible that the more soluble crystals of the optically

active components should grow in a solution of the less soluble

racemic compound, under conditions where the latter is obviously

perfectly stable.

The possibility of a spontaneous fission of this salt can, therefore,

not be considered as proved by Werner's experiments.

However, lately we succeeded to bring full evidence of a real

spontaneous fission in substances of this kind, in the case of potas-

sium-cobalti-oxalate. The transition-temperature was determined at

13,2 C. : above this temperature the mixture of the two antipodes
is the stabler phase in contact with the saturated solution, while

below 13,2 C. it is the racemic compound, which is in stable equi-

librium with it
1
).

6. As a result of all the investigations hitherto made on the

subject, we may say that the fact of the spontaneous fission of

racemoids into crystals of the optically active components, if recrys-

tallised from a suitable solvent, has been in many respects elucidated,

especially with respect to the part which the transition-temperature

has therein. But the behaviour of the supersaturated solutions in

contact with a nucleus of crystallisation, whether it be of a crystal

of one of the optically active components themselves or of an iso-

morphous or isodimorphous substance, still appears a rather puzzling

problem in many points. A solution supersaturated with respect

to the racemate is outside the sphere of existence of the racemate,

a fortiori and appreciably more supersaturated with respect to the

mixture of the components, since the last are less soluble under the

existent conditions. This may appear a fact which makes it seem

natural that a nucleus of one of the components, if introduced into

the supersaturated solution under these circumstances, will provoke

crystallisation; and something of an analogous character may be

imagined to take place in the case of the alcoholic precipitation

from aqueous solutions, as in Werner's experiments. But then

it still, remains entirely obscure, why in such cases exclusively the

one component is deposited: the way in which this directional in-

fluence of the introduced nucleus acts on the supersaturated solution,

J
)
F. M. Jaeger, Proceed. Kon. Akad. v. Wet., 21, 702, (1918) ;

Receuil des Trav.

des Chim. des Pays-Bas, 38, 171, (1919).
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still remains wholly outside the scope of mechanical explanation.

More and rigorously systematical observations and experiments

must be made, before the required insight into this problem can be

said to be obtained.

7. Fission of Racemoids by Combination with optically active

Substances.

As a rule the method of fission dealt with in the preceding para-

graphs, does not lead to the desired result, because for some reason

or other, circumstances do not appear favorable for spontaneous
fission. In such cases a second, and from a practical standpoint, the

most important method of separation, also found by Pasteur,

is made use of. It is by this method that most substances which may
occur in two non-superposable mirror-images, have up till now,

been resolved into their components.
The principle on which this method is founded, is, that when

two stereometrical arrangements which are non-superposable mirror-

inages A and A' of each other, are combined in a corresponding

way with another stereometrical complex /, being also different

from its mirror-image /', the two figures Af and A'f thus produced
will no longer be mirror-images of each other.

The truth of this can be easily demonstrated; for if Af be reflected

in a mirror, it is changed into its mirror-image A'f. This figure

A'f, however, is certainly different from A'f, because /and /'are

non-superposable mirror-images of each other. Therefore, Af and

A'f can never be mirror-images of each other, unless / and f be con-

gruent, which, however, is not the case.

If instead of /, we had used its mirror-image /', we should have

obtained the complexes Af and A 'f ;
of course, these again will not be

each other's mirror-images. But A'f' and Af, and in the same way
A'f and Af, are truly two pairs of such mirror-images. As we shall

see, this last fact can be made use of for obtaining both antipodes
of a racemoid by the same method of fission.

All right and left-handed isomerides have identical scalar pro-

perties, and also the same chemical constants. Thus they have the

same solubility in the same solvent, identical melting-, and boiling-

points, the same affinity-constants in their reactions with optically
inactive substances, the same densities, etc. Substances which are

not related as mirror-images, have, however, different solubilities

under similar circumstances. It will, therefore, be possible to separate
them by fractional crystallisation; thus e.g. Af and A'f, or Af and
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A'I' would be symbols for compounds which could be separated

in this way. Because only the less soluble compound can be obtained

perfectly pure in this way, while the other one always has some of

the less soluble substance adhering to it, the pure salts A/and A']'

can, properly speaking, only be obtained by successive combination J

)

of the racemoid AA' with / or /'.However, in practice the difference

of solubility is occasionally sufficiently great to allow a practically

complete fission of AA' by simply combining it with /.

If, however, the difference of the solubilities between Af and A'f

is not great enough, a useful modification of the method described

was proposed by Pope and Peachy 2
).

If only so little of / be

present, as to give precisely the theoretical quantity of the less

soluble compound Af, while the other component A' of the racemoid

be bound to some optically mactive substance p, giving with it a very

soluble compound A'p, then, if the solution is allowed to crystal-

lise slowly, a certain amount of Af will every moment be with-

drawn from the equilibrium-mixture in the remaining solution.

As a consequence, this equilibrium will be displaced so, that a new

quantity of Af is produced, which again will be deposited; etc.

The result is that Af is completely gained in the crystalline state,

while A'p remains in the mother-liquor, from which A can easily

be isolated afterwards. Pope and Peachy have used this method

e. g. to separate the racemic tetrahydro-quinaldine into its optically

active components, by means of the action of ammonium-bromo-cam-

phor-sulponate (1 mol.) on inactive tetrahydro-quinaldine-hydrochlo-

ride (2 mol.); etc.

If the combinations Af and A'f are sufficiently loose, it will after-

wards be possible to set A and A' free by fixing / and /' to another

substance 5, to which they have greater affinity. In such away
racemic bases may be separated by means of an optically active

acid, or racemic acids by means of an optically active base. This

method .is, however, not restricted to these two classes of compounds.

In later times Erlenmeyer
3
)
and Neuberg 4

)
have extended

the method to condensation-processes with optically active aldehydes,

nitrogen-compounds (hydrazine-deriv&tives) ;
etc. We will return

to those investigations later.

!) W. Marckwald, Ber. d. d. Chem. Ges., 29, 43, (1896).

2
)
W. J. Pope and S. J. Peachy, Journ. Chem. Soc. London, 75, 1066, (1899).

3
)
E. Erlenmeyer Jr., Ber. d. d. Chem. Ges., 36, 976, (1903).

4
)

C. Neuberg, Ber. d. d. Chem. Ges., 36, 1192, (1903).
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8. Pasteur's first fission of a racemoid according to the

method described, was the fission of the racemic acid itself into

the tartaric acids by the aid of the dextrogyratory base cinchonine J

).

Later he did this by means of quinidine and cinchonicine
,
which

bases are also both dextrogyratory. From the solution, the cincho-

nicine-l-tartrate crystallises first, being less soluble than the corres-

ponding d-tartrate. If quinidine be used, the d-tartrate crystallises first.

Since that time numerous fissions of racemic acids by means of

optically active bases have been made: the bases used were chiefly

natural alkaloids, as: strychnine, brucine, morphine, quinine, cincho-

nine, cinchonicine'2
'), etc., and more recently bases such as: ot-phenyl-

ethyl-amine
3
) , hydroxy-hydrindamine

4
), etc. On the other hand,

many racemic bases are resolved by means of optically active

acids: d-tartaric acid, l-malic acid, and since 1898, when Pope
and Peachy 5

) introduced some strongly optically active camphor-
derivatives for that purpose, especially by means of the camphor-

sulphonic, and the chloro-, resp. bromo-camphor-sulphonic acids.

Thus lactic acid'. CH3CH(OH)COOH, was separated by Jung-
fleisch 6

) by means of quinidine, and by Purdie and Walker 7
)

by means of strychnine.

Loven 8
) separated a-phenyl-ethyl-amine by means of l-malic

acid, while Pope and Read 9
)
made this fission by condensation

with d-oxymethylene-camphor . Ladenburg 10
)

in his famous syn-

thesis of coniine, was able to separate the obtained inactive base

into its optically active components by means of d-tartaric acid,

while Pope and Read 11
)
resolved hydroxy-hydrindamine by means

!) L. Pasteur, Compt. rend., 36, 191, (1852); Ann. de Chim. et Phys., (3),

8, 437, (1853).
2
)
L. Pasteur, Jahresber. f. Chern., (1860), p. 250.

3
)
W. J, Pope and J. Read, Journ. Chem. Soc. London, 95, 172, (1909); 103,

51, (1913); J. M. Loven, Ber. d. d. Chem. Ges. 29, 2313, (1896); W. Marck-

wald and R. Meth, ibid., 38, 801, (1905).
4
)
W. J. Pope and J. Read, Journ. Chem. Soc., 99, 2071, (1911); 101, 758,

(1912); 103, 447, (1913).

5) W. J. Pope and S. J. Peachy, Journ. Chem. Soc., 73, 893, (1898); F. S.

Kipping and W. J. Pope, ibid., 63, 548, (1893).

6) E. Jungfleisch, Compt. rend., 139, 56, (1904).

7) T. Purdie and J. W. Walker, Journ. Chem. Soc. London, 61,754, (1892).

8) J. M. Loven, Journ. f. prakt. Chemie, (2), 72, 307, (1905).

9) W. J. Pope and J. Read, Journ. Chem. Soc., 103, 451, (1913).

*<>) A. Ladenburg, Ann. der Chemie, 247, 85, (1886).
u

)
W. J. Pope and J. Read, Journ. Chem. Soc. London, 101, 758, (1912).
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of the active &-bromo-camphor-7r-sulphonic acid. The tri-ethylene-

diamine-cobalti-bromide :

[Co(Eine)3}Br3 + 3H20,

was resolved into its optically active components by Werner *)

by means of its d-bromo-tartrate, and the same method can be used

in the case of the corresponding rhodium-salt. 2
)
The latter, and

also the corresponding chromi-salt, may also be separated by the

aid of sodium-d-camphor-nitronate
3
),
while potassium-rhodium-oxalate,

and the corresponding chromi-sa.lt 4
), can be split by means of

strychnine
5
).

The very strongly rotating components of these salts

themselves can in their turn be used for the fission of externally

compensated organic compounds; thus Werner and Basyrin
6
)

succeeded in separating the racemic a-x'-dimethyl-succinic acid:

COOH.CH(CH3).CH(CH3).COOH, which till then had not been

resolved by any other means, into its antipodes by the aid of the

optically active tri-ethylenediamine-cobalti-salt. The number of these

examples can easily be augmented. A review of fissions made up
to 1894 was given by Win t her 7

),
while numerous instances can

be found in all larger works on stereochemistry, thus in that of

Bischoff-Walden 8
),

that of Werner 9
),

etc. The number of experi-

ments in this direction has since increased very rapidly.

The application of the method is universal, but in every case

the difficulty is the choice of the optically active compound suited

for the purpose. Everything depends upon the finding of favorable

solubility-relations between the newly formed compounds : commonly
the greater the difference in solubility is, the better the separation

will succeed. Moreover, suitable conditions for crystallisation play an

important role in this; often the compounds formed can only be

obtained as syrups, or do not form well developed crystals. Every
one who has had occasion to make experiments of this kind, knows

!) A. Werner, Ber. d. d. Chem. Ges., 45, 121, (1911); F. M. Jaeger, Proceed.

Kon. Akad. van Wet. Amsterdam, 17, 1271), 1915); Receuil des Trav. Chim. d.

Pays-Bas, 38, 171, (1919).
2
)

A. Werner, Ber. d. d. Chem. Ges., 45, 1228, (1912).
3
)

A. Werner, ibidem.
4

)
A. Werner, Ber. d. d. Chem. Ges., 45, '865, (1912).

5) A. Werner, Ber. d. d. Chem. Ges., 47, 1945, (1914); 45, 3061, (1912).

6
)

A. Werner and M. Basyrin, Ber. d. d. Chem. Ges., 46, 3229, (1913).

7) Ch. Winther, Ber. d. d. Chem. Ges., 28, 3000, (1895).

8) C. A. Bischoff and P. Walden, Handbuch der Slereochemie, (1894).

9
) A. Werner, Lehrbuch der Stereochemie, Jena, (1904).
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the disillusioning obstacles often presented to him and the serious

difficulties to be overcome.

9. Attention must be drawn to another difficulty which may
crop up, namely, that the optically active component often does not

combine directly with each of the two active components contained

in the racemoid separately, but with the whole racemic compound
as such, which combination then above or below a certain transition-

temperature may be changed into a mixture of the two different

compounds which are contained in it. The behaviour of such a

partial racemic compound,
as it is called, is then quite

analogous to that of a race-

mic compound above or

below its transition-tempe-

rature, except that the typical

symmetry of the solubility-

relations is lost, because the

pseudo-racemiccompoundno

longer splits up into com-

ponents which are mirror-

images of each other.

The first example of this

kind was found by Laden- Fig. 161.

burg ^ in the case of strych-

nine-racemate, and of the salt formed from quinine and methylsuccinic

acid. The first substance appears at 30 C. to have a (maximum)

transition-temperature. Above 30 C., therefore, it is split up into

strychnine-d-tartrate and strychmne-l-tartrate.

The solubility-relations existing in such cases were first fully

understood and explained by Bakhuis Roozeboom 2
).

The sym-

metry of our former figures is of course now lost (fig. 161), while

J

)
A. Ladenburg and collaborators: Ber. d. d. Chem. Ges., 27, 75, (1884);

31, 524, 937, 1969, (1898); 32, 50, (1899); 36, 1649, (1903); 40, 2279, (1907) ;

41, 966, (1908); Ann. der Chemie, 364, 227, (1909); E. Fischer, Ber. d. d. Chem.

Ges., 27, 3225, (1894). F. S. Kipping, Journ. Chem. Soc. London, 95,408,

(1909); M. Levi-Malvano and A. Mannino, Atti Rend. Acad. Lincei Roma,
(5), 18, //, 144, (1909); A. Windaus and C. Resau, Ber. d. d. Chem. Ges.,

48, 861, (1915); F. W. Kiister, Ber. d. d. Chem. Ges., 31, 1847, (1898); A,

Findlay and E. M. Hickmans, Journ. Chem. Soc. London, 91, 905, (1907); 95,

1386, (1909). H. Dutilh, Proceed. Kon. Acad. v. Wet. Amsterdam, 12, 393, (1910).
2
)

H. W. Bakhuis Roozeboom, Zeits. f. phys. Chemie, 28, 502, (1899).
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the solubility-curve TS for the mixture no longer coincides with

OA, because of the difference in solubility of the dextro-, and lae-

vogyratory component. QT might even lie wholly to the right of

OA, and in that case the temperature-range MT in which no solu-

tions of the pure racemoid can exist, will become yet greater, the

racemoid being continually decomposed by gradual precipitation

of the laevogyratory salt, until at the transition-temperature corres-

ponding to T, the fission is finally completed.

Of course, the solution which corresponds to this transition-tem-

perature, does in general not necessarily contain equal quantities

of the dextro- and laevogyratory compounds; this can only be

the case approximately, when the difference of their solubilities

at the temperature under consideration is very slight.

If the splitting-up of the partial racemate does not occur, or cannot

be produced in some way, partial racemism may, therefore, also be

an obstacle for the successful fission of a racemoid by this method.

Many cases of partial racemism have since been observed: strych-

nine-racemate, tetrahydro-papaverine-d-tartrate
l
), l-menthyl-mandelic

ether 2
), etc.

Ladenburg 3
)
found for $-pipecoline-bitartrate a partial racemism

at higher temperatures, while a fission occurred at lower tempera-

tures. For bmcine-biracemate 4
)

a transition-temperature of 50 C.

was found, below which the partial racemate can exist, while at

higher temperatures fission takes place. Levi-Malvano and

Mannino found partial racemism with some santonine-salts 5
),

while Windaus und Resau 6
)
met with a partial racemic com-

pound in the case of (3-cholestanol and pseudo-coprosterol. The

number of such cases increases from year to year.

10. Fission of Racemoids by the aid of living Organisms.

The third method of fission also proposed by L. Pasteur 7
),

!) W. J. Pope and S. J. Peachy, Zeits. f. Kryst. u. Min., 31, 11, (1900);

Journ. Chem. Soc. London, 73, 902, (1898).
2
)

A. Findlay and E. M. Hickmans, Journ. Chem. Soc. London, 91, 909,

(1907).
3
)

A. Ladenburg, Ber. d. d. Chem. Ges., 27, 75, (1884).

4
)

A. Ladenburg, Ber. d. d. Chem. Ges., 40, 2279, (1907).

5
)

M. Levi-Malvano and A. Mannino, Atti Rend. Acad. Lincei Roma, (5),

18, //, 144, (1909).

6) A. Windaus and C. Resau, Ber. d. d. Chem. Ges., 48, 861, (1915).

7) L. Pasteur, Compt. rend, de 1'Acad. d. Sc. Paris, 32, 110, (1851); 36, 26,

(1853); 37, 110, 162, (1853); 51, 298, (1860).
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is that by means of living organisms, by bacteria, moulds, yeasts, and

by a number of very complicated organic substances belonging

to the proteids, named ferments or enzymes.

Pasteur 7
),

as is well known, was originally engrossed by the idea

that the production of single optically active substances was the

very prerogative of life. To this view of vitalism, which supposes
that in vital agency, special asymmetric forces play a directional

role, a number of experiments must be referred, made by him in

later years, and which were as unsuccessful as all other attempts
made since then by a number of chemists, to produce directly an

optically active substance from an inactive material by mere

chemical action. In the next chapter we shall return to these

interesting and fundamental questions in detail
;

it suffices here to

point out the fact that, guided by this preconceived idea, Pasteur

started to investigate more accurately the action of various moulds

on solutions of calcium- and ammonium-racemates
,

after he had

accidentally observed that these can grow in them. He tried to

answer the question, as to what would be the behaviour of the two

components of the racemate under the influence of the living

organism.

He found that the originally inactive solution became gradually
laevogyratory ;

the organism (Penicillium glaucum) had evidently
selected for its nutriment that form of the tartaric 0aW-molecule

which suited best its particular needs. Although this selective con-

sumption of one of the antipodes by living organisms has often been

found, it must, however, be recognised that the selective fermen-

tations as a general phenomenon, have not yet been studied

exhaustively in a sufficiently systematic way
1
). In numerous cases

we do not know whether the culture used was of only one species,

nor to what species the organisms belonged in many cases.

Neither is there certainty as to whether the organism merely

decomposes one active component of the mixture more rapidly
than the other, or whether it leaves one of them entirely intact.

Most probably there is only a great difference of rate of velocity.

It may be thought most remarkable, that such a relatively minute

difference between two molecules should be sufficient to cause such

a fundamental difference in the behaviour of a living organism, if

brought into contact with it. More recent experiments, however, have

*) As an interesting contribution, however, see: W. Pfeffer, Jahrb. f. wiss.

Botanik, 28, 205, (1892).
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not only proved this fact beyond all doubt, but from E. Fischer's

work l
) on the selective fermentation of sugars under the action

of yeasts, it seemed to follow that the action of every living organism

corresponds to only a definite, very exclusive, special arrangement
of the atoms in the chemical molecules.

However, in recent times serious doubt has arisen, as to whether

the specificity of the action of organisms, as brought to the fore

by Fischer, and illustrated by his often quoted simile of lock and

key, should really be maintained. The way for further investigations

should be left open, but at any rate it seems nearer to the truth

to suppose that only great differences in speed of activity take

place
2
). Indeed, the experiments of Neuberg 3

)
on the action of

bacteria, and those of Pringsheim
4
)

on that of moulds on

racemoids, seem strongly to confirm this last view.

That from a physiological point of view there are undeniable

differences in the behaviour of living organisms towards enantio-

morphously related substances with which they are brought into

contact, is proved quite conclusively, and the same is also the case

for the human organism. Thus Piutti 5
) already many years ago

drew attention to the fact that of both the isomeric optically

active asparagines the one component is sweet, the other insipid;

and Menozzi and Appiani
6
).
found the same fact in the case

of ghitaminic acid. According to Fischer 7
),

l-valine is insipid or

weakly bitter, but d-valine is sweet, and the racemic compound also.

d-Leucine has undeniably a sweet taste, while l-leucine is insipid

or weakly bitter; d-phenyl-alanine is very sweet, the other antipode,

however, only a little bitter. But such a contrast is not always

present: d- and l-alanine, for instance, possess the same taste.

With intra-peritoneal injection of optically active acids, l-tartaric

acid appeared to be the most poisonous, while the ^-antipode

showed only half the toxic effect of the former, and racemic

1
)

E. Fischer and collaborators, Ber. d. d. Chem. Ges., 27, 2031, 2985,3228,

3479, (1894); 28, 1429, 1508, 3031, (1895); Zeits. f. physiol. Chemie, 26, 60, (1898).

2
)

K. Fajans, Zeits. f. phys. Chemie, 73, 25; 75, 232, (1910).
3

)
C. Neuberg, Biochem. Zeits., 18, 431, {1909).

4
)

H. Pringsheim, Zeits. f. physiol. Chemie, 65, 96, (1910).

5) A. Piutti, Compt. rend, de 1'Acad. d. Sc. Paris, 103, 134, (1886); L.

Pasteur, ibid., p. 138.

6) A. Menozzi and G. Appiani, Atti R. Acad. Lincei, (5), 2, 77, 421, (1893).

7) E. Fischer, Ber. d. d. Chem. Ges., 39, 2328, (1906).
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acid accordingly only a quarter of it
l
).

For dogs and rabbits

l-camphor is about thirteen times as toxic as d-camphor.
2
)

Poulsson 3
)
observed that from the racemic polypeptides twice as

much was necessary for nutrition, as when the optically active

form was used, while tewgyratory nicotine (from tobacco) is twice

as poisonous as the synthetic fe/rogyratory alkaloid 4
).

Artificial adre-

naline is much less active than is the natural product, which is endowed

with rotatory power. The mydriatic action of atropine upon the

pupil of the eye is apparently specific for the natural base, while

its mirror-image does not show this property. The dextrogyratory

cocaine seems to paralyse the nerves of the tongue much more rapidly

than the laevogyratory alkaloid does. The sensitiveness of the ureter

for tewgyratory hyoscyamine, scopolamine, epi-nephrine ,
or camphor,

appeared to be undeniably greater than for the corresponding dextro-

gyratory isomerides, while the racemic forms had a middle action

upon this organ
5
).
From this and similar examples it is evident

that in the assimilation-process of higher animals also, enantio-

morphously related molecules are by no means equivalent.

Remarkable instances of the different chemical action of dextro-

and laevogyratory antipodes are stated also with respect to the

phenomena of chemotaxis, observed in the case of moving bacteria 6
).

Pasteur himself gave an explanation which, if followed, enables

us to bring this phenomenon within the scope of the arguments

given in the foregoing paragraphs referring to the second method

of fission. According to Pasteur's view, this selective action must

beyond any doubt depend on the dissimilar interaction of asymmetric
bodies contained in the cells of living organisms, with the molecules

of each of both active components. Thus the different action of the

dextro- and laevogyratory asparagines on the tongue would be

caused by the different chemical action of both antipodes upon an

asymmetric substance present in the tissue of the gustatory nerve.

!) C. Chabrie, Compt. rend. Acad. Paris, 116, 1140, (1893).

2) G. Bruni and G. A. Pari, Gazz. Chim. Ital., 38, //, 1, (1908).

3) E. Poulsson, Archiv. exp. Path. u. Pharm., 27, 309, (1890); Ion, 2, 188,

(1910). Cf. also: C. Neuberg and J. Wohlgemuth, Ber. d. d. Chem. Ges.,

34, 1745, (1901); Zeits. f. physiol. Chemie, 35, 41, (1902); P. Mayer, Bioch.

Zeits., 1, 39. (1906); P. Albertoni, Archiv. f. exp. Path. u. Pharm., 15, 272.

4) A. Pictet, A. Rotschy, and A. Mayor, Ber. d. d. Chem. Ges., 37, 1225, 1234,

(1904).

5) D. I. Macht, Journ. of Pharm. and Exp. Therapeuthics, 12, 255; (1918).

6) H. and E. G. Pringsheim, Zeits. f. physiol. Chemie, 97, 175, (1916).

IS
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Something analogous seems to occur with respect to the odour of

dextro-and laevogyratory isomerides. We found that d-and l-limonene,

even after rigorous purification, have decidedly different odours;

and Werner and Conrad *) separated the dimethyl-ether of trans-

hexahydrophtalic acid by means of quinine into its antipodes, and pro-

ved that the dextrogyratory compound possesses a comparatively

strong odour, while the laevogyratory component is almost odourless.

For as-and nms-isomerides, moreover, this fact had already been

stated formerly, illustrating therefore the influence of molecular

symmetry also in this respect : the cis-hexahydrobenzylamine-carboxylic

acids are strongly odoriferous liquids, while the corresponding

/raws-derivatives are odourless solid substances/ 2
)

Porter and Hirst 3
) found a strong selective absorption of

the dextro- and laevo-gyratory components of some red, orange,

and yellow amino-diphenyl-alkyl-carbinols, asymmetric dyes which

they prepared from p-amino-benzophenone by the aid of the

Grignard-reaction. This fact may probably be of interest for

the explanation of the selective colouring of living tissues in

microscopy by means of different substances.

The living organism, according to Pasteur, thus uses the one

component of the externally compensated mixture or compound,
because its physiological action has been adapted to a special

nutriment; and to the same cause must also be attributed the

different action on the human body of nicotines, atropines, and

adrenalines, which have another configuration than the natural

products.

These views have become most probable, since Buchner 4
) proved

that from yeast-cells, after grinding and crushing them with sand,

a clear juice could be obtained after filtering, from which a special

ferment, zymase, could be isolated, which produces fermentation

as well as the living cells themselves, and that a second sugar-inverting

ferment, invertase, is also present in these cells. As zymase and

!) A. Werner and H. E. Conrad, Ber. d. d. chem. Ges., 32, 3052, (1899).
2
)

S. Fraenkel, "Die Arzneimittel-Synthese" ,
3e Aufl., Berlin, (1912), p. 128.

3
)

C. W. Porter and C. T. Hirst, Journ. Amer. Chem. Soc., 41,

1264, (1919).

4) E. Buchner, Ber. d. d. Chem. Ges., 30, 117, 1110, 2668, (1897); 31,209,

568, (1898); 33, 3307, 3311, (1900); E. Buchner and R. Rapp, ibid., 31, 1084,

1090, (1898); 32, 127, 2086, (1899); 34, 1523, (1901); E. Buchner and A. Spitta,

ibid., 35, 1703, (1902); E. Buchner and W. Antoni, Zeits. f. physiol. Chem.,

44, 206, (1905); 46, 136, (1905); etc.
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invertase are life-less chemical substances, the view that the special

phenomena of fermentation are not directly connected with the

life-process itself, but can be produced by such characteristic

substances present in the cells, has now become certain.

Fischer l

)
confirmed that ct-methyl-glycoside is decomposed by

invertase, while @-methyl-glycoside is not; with emulsine, however, just

the reverse occurs. The enzyme has thus undoubtedly a "selective"

action, in the same way as this was formerly stated in the case of

living organisms. This apparently selective action must most

probably also be referred to a great difference in the velocity of

action, when several enzymes are made use of for the attack of

the same kind of substances.

Dakin 2
) found that /^//-handed benzyl-mandelic ether is much

more rapidly hydrolysed by lipase (from the liver), than the dextro-

gyratory antipode, and that in general the ethers of optically active

acids are, in both enantiomorphous configurations, decomposed by it

with very differing velocities
;
the differences in velocity can amount

to 50% and 130% of the values observed in the case of the other

antipode.

Herzog and Meier 3
)

stated that mould-cultures, after being

killed by means of acetone er methyl-alcohol, will oxidize dextro-

gyratory tartaric acid much more rapidly than the laevogyratory

isomeride, and the same appeared to be the case with other oxy-

acids, although not to so high a degree. A similar difference in velocity

of attack was found by Abderhalden and Pringsheim,
4
) if the

juice of pressed cells of Aspergillus Wentii or of Allescheria Gayoni
were used for the decomposition of polypeptides, like leucylglycine,

into their optically active forms. After this, it can hardly be doubted

any longer that as a matter of fact a common explanation of the

"specific" attack of living organisms or of enzymes can be

1) E. Fischer, Ber. d. d. Chem. Ges., 27, 2985, 3230, 3479, (1894); 28, 1429,

1508, 3031, (1895).

2) H. D. Dakin, Journ. of Physiol., 30, 352, (1904); 32, 199, (1905); cf. also:

A. MacKenzie and A. Harden, Proceed. Chem. Soc. London, 19, 48, (1903).
3

)
R. O. Herzog and A. Meier, Zeits. f. physiol. Chem., 59, 57, (1909).

*) E. Abderhalden and H. Pringsheim, Zeits. f. physiol. Chem., 59, 249,

(1909); 65, 180, (1910); cf. also: G. Bredig and K. Fajans, Ber. d. d. Chem. Ges.,

41, 752, (1908); and about the dependance of the fermentative action of yeast

on its feeding either with definite amtno-acids, or with other nitrogen-compounds

(naphtionic acid, metanilic acid, etc.), cf. : H. Pringsheim, Ber. d. d. Chem. Ges.,

39, 4048, (1906); Biochem. Zeits., 3, 121, (1907).
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given, and that this must consist in different velocities of attack.

Most of these reactions appear intrinsically to be true reversible

or semi-reversible reactions *) : thus glycose is changed by maltase

into maltose (or rather into iso-maltose)
2
)

in this way; kefir-lactase

acting on a mixture of glycose and galactose, produces iso-lactose, etc.

The same is true for the action of lipase, of emulsine, and of a

number of other animal or vegetable enzymes.
The close analogy with the effect of yeasts on sugars, formerly

stated by Fischer 3
), is evident; thus from i-glycose the /^-handed

component may for instance be obtained by means of yeast, because

yeast attacks the d-glucose, while during the same time it does not

attack the l-glucose, or only to an unappreciable extent; in the

same way as in Pasteur's original experiments the d-ammonium-

tartrate was attacked almost exclusively by Penicillium glaucum

during warm weather, but not the laevogyratory salt. It happens
in many cases, that if a substance can be fermented both by emulsine

and by invertase, the behaviour of both enzymes towards the antipo-

des is just opposite. Whether this may be considered to be a general

rule, is not certain. Fischer stated that all enzymes fermenting

maltose, act in an analogous way on a-glucosides
4
)

Of course, the disadvantage of this method of fission is, that half

of the material is destroyed, only one of the optically active com-

ponents being preserved. Moreover, the substances must be such,

that living organisms can grow in their solutions; because of the

exclusively selective action, it is often a difficult matter to find the

right organism to effect the desired separation.

11. Although in the next chapter we shall return to the details

of the method, a few words must again be said on a fission-method,

as used by some investigators, which method is founded on the

*) Literature on the reversibility of enzyme-action; A. Croft Hill, Journ. Chem.

Soc, London, 73, 634, (1898) ; 83, 578, (1903) ; J. H. Kastle and A. S. Loevenhart,

Amer. Chem. Journal, 24, 491, (1900); M. Hanriot, Compt. rend, de 1'Acad. d.

Sc. Paris, 132, 212, (1901); H. Pottevin, Compt. rend., 136, 767, (1903); E. Bour-

quelot and M. Bridel, Ann. de Chim. et Phys., 28, 145, (1913); W. M. Bayliss,

Journ. Physiol., 36, 221, (1907); 43, 455, (1912); 46, 236, (1913).
2
)

E. Fischer, Ber. d. d. Chem. Ges., 32, 3617, (1899) ;
Zeits. f. physiol. Chemie,

26, 60, (1898); E. Fischer and E. F. Armstrong, Ber. d. d. Chem. Ges., 35, 3144,

(1902).

3) E. Fischer, Ber. d. d. Chem. Ges., 23, 2620, (1890).

4) E. Fischer, Zeits. f. physiol. Chemie, 26, 69, 79, (1898).
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differences in the velocity of formation or decomposition of com-

pounds of the types Af a.nd.A'f.

Marckwald and MacKenzie 1

) succeeded, after a number of

unsuccessful experiments of other investigators
2
), in demonstrating

that, if x-ethoxy-propionic acid, racemic mandelic acid, etc., be com-

bined with l-menthol to form an ether, and if the reaction be stopped
after a certain lapse of time insufficient to complete the change,

the acid set free from the ether by saponification was endowed

with rotatory power.
The same appeared to be the case if racemic mandelic acid were

heated with l-menthyl-amine, so as to form the corresponding amide.

In the portion which was not changed into amide, an excess of

the laevogyratory acid was found to be present. It should be noted,

that the compound which was formed more rapidly by etherification,

appeared also to be more rapidly decomposed by saponification,

which is in accordance with the fact that we have to deal here with

a reversible action, leading to a state of dynamical equilibrium.

This fission of the racemoid is of course only a partial one. We
shall return to this subject in the next chapter, when we are

dealing with the problem of asymmetrical synthesis in general.

12. Till now we have dealt only with those cases, in which

either an externally compensated mixture of both components or a

true racemic compound of them was present.

However, another difficulty for obtaining the two components
in a perfectly pure state, besides the obstacles already mentioned,

is this, that the two components may occasionally form together an

uninterrupted series of mixed-crystals, this series behaving, therefore,

as a single solid phase of continually varying composition.
This phenomenon discovered in 1897 by Kipping and Pope 3

)
in

the case of some camphor-deYivates, was named pseudo-racemism.
Since Bakhuis Roozeboom 4

)
in 1899 published the paper in

which he indicated the way to discriminate with certainty the three

classes: racemic compounds, externally compensated mixtures, and

!) W. Marckwald and A. MacKenzie, Ber. d. d. Chem. Ges., 32, 2130, (1899).

34, 469, (1901); W. Marckwald and R. Meth, Ber. d. d. Chem. Ges., 38,

801, (1905).
2
)

L. Simon, Bull, de la Soc. Chim., (3), II, 760, (1894); P. Frankland and

Th. S. Price, Journ. Chem. Soc. London, 71, 253, (1897); etc.

3
)

F. S. Kipping and W. J. Pope, Journ. Chem. Soc. London, 71,973,989, (1897).

*) H. W. Bakhuis Roozeboom, Zeits. f. phys. Chemie, 28, 494, (1899).
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pseudo-racemic mixed-crystals, the pseudo-racemic mixtures have

also been the subject of some investigations
l
) ; however, it is also

very necessary in this case, that more extended and systematic

researches be made to further our rudimentary knowledge in many
directions.

Kipping and Pope
2
)
described the irans-7r-camphanic acid as a

first example of such pseudo-racemic mixtures; the active and inac-

tive substances have very similar crystal-forms .and appearance:

Active: Monoclinic; a : b : c = 1,9110 : 1 : 1,4627; /3
= 695'.

Inactive: Monoclinic; a : b : c ='1,8105 : 1 : 1,4502; /3
= 674r.

The same was the case with the active and inactive trans-campho-

tricarboxylic-anhydrides. The investigators mentioned come to the

conclusion, that the crystals of the inactive substance are not homo-

geneous, but merely complicated intercalations of crystals of the

(f-and /-components; the bad and multiple reflexes of the light on

some faces, observed during the measurements, their striation,

etc., remind us very much of similar peculiarities, met with in

mixed-crystals and in crystalline aggregations as, for instance, are

found in some amethyst-crystals. The angular values of inactive and

active crystals are very analogous; small, but perfectly distinct

differences are, however, actually present, which the authors at-

tribute to the disturbing effect of the intercalation.

In so far, such pseudo-racemic mixtures appear closer related to

the so-called layer-crystals than to the true homogeneous mixed-

crystals between strictly isomorphous salts.

Ostromisslensky
3
) considers the formation of pseudo-racemic

mixtures from the d- and /- components as a transformation of the

antipodes into a second, dimorphic and holohedral modification.

Pseudo-racemic mixed-crystals can only form an ^interrupted series

of mixtures; however, Ostromisslensky thinks
%
it possible, that

the active antipodes eventually form solid solutions with a racemic

compound, in the same way as some compounds can be homoge-

!) J. H. Adrian!, Akad. Proefschrift, Amsterdam, (1900) ;
Zeits. f. phys. Chemie,

33. 453. (1900); 36. 168. (1901); Proceed. Kon. Akad. v. Wet. Amsterdam 9. 483.

(1900); J. Minguin and E. G. de Bollemont, Compt. rend, de 1'Acad. d.

Sciences Paris, 132, 1573, (1901); J. Minguin, Bull. d. 1. Soc. Chim., (3), 27, 888,

(1902); Compt. rend., 124, 86, (1897).

2
)

F. S. Kipping and W. J. Pope, Journ. Chem. Soc. London, 69, 931,

(1896); etc.

3
)

I. Ostromisslensky, Journ. d. russ. phys. chem. Ges. St. Petersburg,

42, 102, 606, (1910).
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neously mixed to some extent with their products of dissociation

The racemic compounds would, in his opinion, never crystallise

in forms differing from their mirror-images. And finally he draws

attention to the fact that, in contradiction to Gernez' views 1

),

iriboluminescence may be used as a criterion to discriminate between

an externally compensated mixture and a true racemic compound.
If the active form shows triboluminescence, the racemic compound
does not] at the transition-temperature of a mixture, the pheno-
menon of triboluminescence suddenly disappears. Further investiga-

tion of these relations seems to be highly desirable, and certainly

his conclusions cannot be adopted as being of general validity.

As further examples of this kind, Kipping and Pope mention

the d- and l-camphorsulphonic-chlorides, and the corresponding
bromides 2

) ;
carvoxime 3

) ; dipentene-tetrabromide
4
) ; u-bromo-camphoric-

anhydride
5
); carvon-tribromide 6

), etc. Among Minguin's camphor-
derivatives 7

)
there are certainly also to be found some interesting

examples of this kind.

If Bruni's 8
) suspicion is correct, that the so-called "double-salt"

of d-ammonium-tartrate and l-ammonium-malate ,
described by Pas-

teur 9
),

is really a mixed-crystal, we should have here an object

intermediate between a pseudo-racemic mixed-crystal and a

partially-racemic compound, as defined by Fischer 10
), who draws

attention to the fact that these salts are only antipodes with

respect to one half of their molecule. The corresponding d-tartaric

acid and l-malic acid themselves do not form such a double

compound or pseudo-racemic mixture. Fischer proposes to give
in that case a special name to the phenomenon stated above, and

!) D. Gernez, Compt. rend, de 1'Acad. d. Sc. Paris, 147, 11, (1908); L. Tschu-

gajeff, Ber. d. d. Chem. Ges., 34, 1820, (1901); A. Imhof, Phys. Zeits., 18,78;

374, (-1917).

2
)

F. S. Kipping and W. J. Pope, Journ. Chem. Soc. London, 63, 565, (1893).

67, 359, (1895).
3
)

P. Beyer, Zeits. f. Kryst., 18, 198, (1890); J. H. Adriani, loco cit.

4
)

C. Hintze, Ann. der Chemie, 227, 278, (1885).

5) O. Aschan, Acta Soc. Scient. Fenn., 21, (V), 193, (1896); F. J. Wiik, ibid.,

203, 205, (1896).

6) Th. Liebisch, Ann. d. Chemie, 286, 142, (1895).

7) J. Minguin, loco cit.

8
)

G. Bruni, in: W. Meyerhoffer, Gleichgewichte der Stereomeren, (1906), p. 62.

9) L. Pasteur, Jahresberichte, (1853), p. 417.

10) E. Fischer, Ber. d. d. Chem. Ges., 40, 944, (1907).
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to call it partial pseudo-racemism. However, here also it appears

very desirable to make more investigations in this direction to

establish beyond all doubt the real occurrence of such "partial"

pseudo-racemism, and its true significance.

Beautiful examples of true pseudo-racemism were further found

by Marckwald and Nolda x
)
in the case of active amy/-derivati-

ves: 1-, and 2-amyl-3-nitro-phtalic ethers', barium-act.amyIsulphate
(+ 2H20)', act.amyl-carbamate', etc. Finally by Riiber 2

)
in the case

of dextro- and laevogyratory (3-phenyl-glyceric acid (mpt. : 141C.).
As the components of such mixed-crystals cannot be in general

completely separated by repeated crystallisations, at least if

the number of these be not infinitely great, or in practice: exceedingly

great, a separation will certainly not be reached in our case,

where the solubilities of both components are equal. Therefore,

pseudo-racemism may also be mentioned amongst the serious obstacles

eventually met with in the fission of racemoids into their optically

active components
3
).

13. Autoracemisation.

A phenomenon often observed in working with optically active

substances is, that the rotatory power of such a solution, especially

if it be heated to a higher temperature, gets gradually smaller

and smaller until finally it has become inactive. The velocity

of this change can vary within wide limits : there are solutions which

even on boiling preserve their full rotatory power, but there are

also cases where it is destroyed within a few minutes. Thus, Wer-
ner 4

)
observed that tris-a-dipyridyl-ferro-salts of the type:

lose half of their original and very high rotatory power in about half

an hour
;
in the case of the carbonato-diethylenediamine-cobalti-salts

5
)

:

(C03)

(Eine) 2

it diminishes in about eight days and at room-temperature, to

half its original value, while at 90 C. it is destroyed completely in

a very short time. Also the complex chromi-trioxalates 6
)

:

J
)
W. Marckwald and E. Nolda, Ber. d. d. Chem. Ges., 42, 1583, (1909).

2
)

C. N. Riiber, Ber. d. d. chem. Ges., 48, 823, (1915).

3
)
W. J. Pope and J. Read, Journ. Chem. Soc. London, 97, 987, (1910).

4
)

A. Werner, Ber. d. d. Chem. Ges., 45, 434, (1912).

5) A. Werner and MacCutcheon, Ber. d. d. Chem. Ges., 45, 3283, (1912).

6) A. Werner, Ber. d. d. Chem. Ges., 45, 3065, (1912).
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lose their rotatory power rather rapidly, in aqueous solution much
faster than in a mixture of acetone and water.

In the case of this chromium-salt, Werner during its fission

observed another phenomenon, which may be briefly mentioned here.

With the exception of a very small portion, the inactive substance

appeared to be completely activated by the usual method into one

of the antipodes; but, if the potassium-strychnine-S3.lt, used in these

experiments for the purpose of separation into the optically-active

components, was recrystallised from water, the antipode obtained

turned out to be laevogyr&tory ,
while the same experiments carried

out in alcoholic solutions, gave the ^^rogyratory component.
The explanation of this strange phenomenon, as given by Werner,

is, that the active salts come into existence only during the process

of crystallisation itself, while the solutions evidently have a strong

tendency to get rapidly inactive by autoracemisation. In water the

laevogyratory component is less soluble than the other one; but

it is just the dextrogyratory salt that crystallises first from alcohol.

If the alcoholic, racemic solutions, therefore, be concentrated on

the waterbath, the less soluble active salt is deposited, and the

equilibrium of the remaining optically active mother-liquor is now

rapidly restored by autoracemisation, so that a new quantity of

the one antipode is formed again, which is precipitated now by
sufficient addition of alcohol, since it is the less soluble component.
In this way the whole amount of salt can, by the occurring and

successive displacements of the equilibrium, and by the removal

of the less soluble antipode
1
), be finally completely converted into

one of the two optically active components.

Undoubtedly the mechanism of such autoracemisation includes an

intermediate stage of temporarily detaching of the groups from the

central metal-atom. The already mentioned triethylenediamine-

cobalti-, and the corresponding rhodium-salts can, however, be boile'd

in solution without the rotatory power of it perceptably diminishing.
On closer examination it is found that the phenomenon described

is really connected with the reaching of a state of equilibrium between

the two enantiomorphously related molecules in the solution, equili-

brium being arrived at if the molecules of both components be

present in equal number.

A. Werner, Ber. d. d. Chem. Ges., 45, 3064, (1912).
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The phenomenon mentioned is, as already said, called racemisation

or auto-racemisation l
).

It can also be a serious obstacle in the

'attempts to produce the optical antipodes from a racemoid, and it

may be the cause of many difficulties during the study of optically

active substances.

That this is really a case which is wholly comparable with other

cases of thermal equilibrium
2
), could be demonstrated, among other

ways, by the auto-racemisation of the ethers of optically active bromo-

succinic acid 3
).
Walden found, for instance, that dextrogyratory

dimethyl-bromo-succinate lost its activity at ordinary temperatures

in about four years, the dextrogyratory isobutyl-bromo-propionate

and the corresponding methyl-phenyl-bromo-acetate in three years,

while in the case of the ethers of hydroxy- or chloro-acids, the auto-

racemisation took place much less rapidly. At higher temperatures

the process is appreciably accelerated.

Because the system no longer alters with varying temperature,

when optical ^activity is once established, the heat-effect of the

change of an atomistic configuration into its enantiomorphous one

must be zero. There is, moreover, every reason to suppose, that in the

reversible reaction:
dr^l,

the velocity-constants k and k' of both

opposite changes are equal. The kinetic equation, expressing the

relation between the time t elapsed and the quantity transformed,

may be written:

//r
- = k (ax) k'x = k (a2x),

which, on integration, gives:

In-
t c

From measurements made by Gadamer 4
)
on the racemisation-

j
,

a
In ^= constant,

t a 2x

l
)
A rigorous distinction between racemisation and autoracemisation can

npt be made.
2
\ J. A. Le Bel, Compt. rend., 87, 213, (1878); Bull, de la Soc. Chim., (2),

31, 104, (1879); J. Lewkowitsch, Ber. d. d. Chem. Ges., 15, 1505, (1882); cf.

also: A. F. Holleman, Receuil des Trav. d. Chim. d. Pays-Bas, 17,323, (1918);

A. MacKenzie and H. Wren, Journ. Chem. Soc., 115, 602, (1919); etc. More

especially the influence of hydrolysis by alkalies is concerned here.

An exhaustive review of the phenomena of auto-racemisation has been given

by P, Walden, in his book: Optische Umkehr-Erscheinungen, Braunschweig,

(1919), page 160183.

3) P. Walden, Ber. d. d. Chem. Ges., 31, 1416, (1898). Cf. also: J. H. Van

'tHoff, Vorles. u. theor. u. phys. Chemie, //, p. 122, (1899).
4
) J. Gadamar, Archiv der Pharmacie, 239, 294, (1901).
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velocities of hyoscyamine and of scopolamine under the influence

of sodium-hydroxide and of tropine respectively, Herz
*)

calculated

the racemisation-constants from this equation; he found for

hyoscyamine (at 5 C.) with sodium-hydroxide: 6,5. 10 3
,
with tropine:

2,2. 1(H2
;
for scopolamine with sodium-hydroxide: 0,77. 10~2

,
and

with tropine: 1,9. 10~2 at 2 to 4 C.

Commonly, racemisation is started by heating : the presence of

some other substances, be it as a solvent or not, often seems to

have an accelerating effect. Thus Jungfleisch
2
) found, that tartaric

acid becomes more 'rapidly racemised if heated in the presence

of some aluminium-tartratc, than if heated alone. Often racemisation

occurs in an appreciable degree, when a chemical reaction takes place ;

thus, for instance, Pope and Harvey 3
)
demonstrated that dex-

trogyratory a-c-tetrahydro-$-naphtylamine became partially race-

mised, while it was transformed into the acetyl-, benzoyl-, or benzyli-

dene-deriva.tives. Fischer 4
) observed that, if trimethylamine reacts

with dextrogyratory ethyl-u-bromo-propionate, the ethyl-trimethylami-

no-propionate produced racemises more rapidly, if the quaternary
ammonium-salt is present. Marckwald and No Id a 5

) found that

d-amyl-bromide is much more rapidly racemised if silver-acetate

be present, than if this is not the case.

The process of autoracemisation is very difficult to explain from

the standpoint of the doctrine of directional valency-unities, as

proposed by Van 't Hof f. A rational explanation was suggested

in some cases by supposing intermediate tautomeric changes, e. g.

in the cases where transitions from the "ketonic" into the "enolic

form and vice versa are possible. Another explanation was given

by Werner 6
), fitting in with his views on valency and affinity,

by supposing a gradual increase of the amplitude of vibrating radicals

round their equilibrium-positions in space, if the temperature
becomes higher.

The consequent influence of the solvent can hardly be doubted,

!) W. Herz, Jahresber. der Schles. Ges. fur vaterl. Kultur, Mai 1911.

2
)

E. Jungfleisch, Compt. rend, de 1'Acad. d. Sc. Paris, 85, 805, (1877).
3
)
W. J. Pope and A. W. Harvey, Journ. Chem. Soc. London, 79, 74, (1901);

Proc. Ch. Soc., 16, 74, 206, (1890).
4
)

E. Fischer, Ber. d. d. Chem. Ges., 40, 5000, (1907).

5) W. Marckwald and E. Nolda, Ber. d. d. Chem. Ges., 42, 1583, (1909).

6
) A. Werner, Beitrage zur Theorie der Affinitat und Valenz, Zurich, (1891);

cf. also: P. W a Id en, Optische Umkehr-erscheinungen, loco cit.
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as already stated in the case of the complex chromi-oxalates. Nef *)

sees a connection between the tendency for racemisation and the

binding and loosening of water-molecules from active organic mole-

cules containing hydroxyl-groups, under intermediate formation

of unsaturated compounds. Another way of explaining this interes-

ting phenomenon was indicated by Erlenmeyer Jr.
2
) by his theory

of "asymmetrical induction", developed by this author for the

purpose of elucidating the occurrence of optically active isomerides

in the case of some ethylene-deriv&tives, and more especially in the

case of the isomerism of cinnamic acid. He supposes, that the

molecules of an optically active substance have always a directing

influence on the molecules of other substances present; they give

them such a configuration in space, that the modified molecules

come in as great a stereometrical contrast as possible to those of

the original active molecules present, so that the directing forces

which start from the last ones, may be neutralised in their actions

as completely as possible by the forces starting from the induced

molecules. It may then easily be understood that in the case of a

single optically active substance, final equilibruim will be reached,

when half the number of molecules originally present are converted

into their optical antipode. We will return to Erlenmeyer's

views more in detail, when dealing with the isomerism of sub-

stituted ethylene-deriv&tives in general (see pag. 268).

Von Halban 3
), and also Frohlich and Wedekind 4

), have

demonstrated by means of kinetic measurements, that in the case of

optically active derivatives of pentavalent nitrogen, autoracemisation

is, indeed, intimately connected with an intermediate detachment

of groups, and their successive recombination with the plurivalent

central atom. Here the active substance undoubtedly appears to be

decomposed into a tertiary amine and an alkyl-halogenide, until a

dynamical equilibrium is reached. It is easily understood, therefore,

that the velocity of racemisation in these cases appears to be a con-

1) J. U. Nef, Ann. der Chemie, 335, 191, (1904); Cf. also: O. Rothe, Ber.

d. d. Chem. Ges., 47, 843, (1914); P. Pfeiffer, ibid., 47, 1586, (1914).

2) E. Erlenmeyer Jr., Biochem. Zeitschr., 97, 198, 231, 244, (1919).

3) H. von Halban, Ber. d. d. Chem. Ges., 41, 2417, (1908); Zeits. f. Elek-

trochem., 13, 57, (1907).

4) E. Wedekind and E. Frohlich, Ber. d. d. Chem. Ges, 38, 3438, (1906);

40, 1646, (1907); E. Wedekind and F. Paschke, Ber. d. d. Chem. Ges, 41,

2659, (1908).
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stitutive property. Thus, for instance, the active normal butyl-methyl-

benzyl-phenyl-ammonium-iodide appeared to racemise in chloroform-

solution much more slowly than the corresponding isobutyl-deriv&tive

did under similar circumstances; and analogous results were obtained,

if bromoform was used as a solvent. The reaction appeared to be

monomolecular, with a rather high temperature-coefficient.

25. The general conclusions to which Pasteur finally arrived,

may be briefly summarised as follows:

1) If the atoms of a chemical molecule be "dissymmetrically"

arranged, this molecular "dissymmetry" implies the possibility of

the existence of two opposed configurations of the molecule. Both

isomerides have the same chemical properties, but they are always
endowed with equal, but oppositely directed rotatory power. The

presence of molecular dissymmetry, therefore, reveals itself by this

rotatory power of the molecules, and is wholly determined by their

chemical nature.

2) When the atoms of a chemical molecule are dissymmetrically

arranged, this is at the same time betrayed by the occurrence of

non-superposable crystalline forms with both isomerides.

Let us now see, in how far these general conclusions, which are

generally considered as constituting together Pasteur's law, are

really justified and confirmed by experience.

In the first instance we may ask: when has a chemical molecule

such a "dissymmetrical" arrangement of its atoms as to make the

existence of two enantiomorphously related isomerides possible?

Pasteur himself does not speak very definitely about the special

conditions under which this occurs, and he only postulates that

the atomic configuration shall be "non-superposable" with its mir-

ror-image.

The first attempt to give a more concrete explanation of these

conditions was successfully made in 1874 by Van 't Hoff x

)
and Le

Bel 2
), who independently of one another introduced into chemical

science the conception of the so-called "asymmetric atoms", and

thus became the very founders of modern stereochemistry. For of

course, an explanation of this kind of phenomena must involve the

primary supposition of a stereometrical arrangement of the atoms

1
) J. H. Van 't Hoff, Voorstel tot uitbreiding der tegenwoovdig in de

'

scheikunde

gebruikte struktuurformules in de ruimte, Utrecht, (1874); La Chimie dans I'Espace,

(1874); Die Lagerung der Atome im Raume, (1877).
2

) J. A. Le Bel, Bull, de la Soc. Chim. Paris, (2), 22, 377, (1874).
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R;

in the molecule, i.e. of the necessity of making use of stereometrical,

instead of plane structural formulae for the representation of

molecular composition and configuration.

As Van 't Hoff's method of demonstration appears more

suitable for its purpose than Le Bel's, we shall chiefly use the

former in developing the following reasonings.

According to Van 't Hof f, the four valencies of the carbon-atom

may be considered as forces issuing from the carbon-atom, and

like "vectorial" quantities, determined by magnitude and direction

in space. As to their size, we dare not hazard a guess, as nothing

certain is known about it, and further it is highly probable that it

varies considerably with the special nature of the groups connected

with the carbon-atom. As to

the direction, however, Van
't Hoff makes the simple

supposition, that in compounds
in which the four carbon-

valencies are saturated by
four identical substitutes, the

four forces are directed like

the lines joining the centre of

a regular tetrahedron with its

corners. Thus the configu-

ration of compounds such as

methane: CH, tetra-methylme-

thane: C(CH3), carbon-tetra-iodide: C/4 , etc., may be represented

by a scheme such as in fig. 162. This arrangement of atoms possesses

of course a high degree of symmetry: if the groups Rt
be sup-

posed to behave as substitutes having spherical symmetry, the

whole arrangement possesses at least the symmetry of the group
TD . Indeed, the supposition that the groups Rt always behave in

this respect, as if they had the greatest possible (spherical) sym-

metry, except in the case when they are non-superposable with

their mirror-images, is of vital interest for the facts to be discussed

in the following pages.

If, for instance, the group ^ were to be considered as fully asym-

metrical, it might happen that the molecule as a whole had no planes

of symmetry at all, and only axial symmetry. In that case, if no

axes of the second order were present, the arrangement would cer-

tainly differ from its mirror-image, and two enantiomorphously

Fig. 162.
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related isomerides would also be possible in such a compound e.g.

as CX^Oa/?'.

We shall consider such cases afterwards. But if the substitutes /?,

do not differ from their enantiomorphous configurations, no isomerism

of this kind has ever been observed, and, therefore, this fact can

be used in most cases as an argument to prove the hypothesis
of the maximum symmetry of every such substitute. Van 'tHoff

himself undoubtedly felt this: therefore, he introduced into his theory
the ideas about the special

nature of the single, double,

and threefold bond between

atoms, and he supposed,

amongst other things, that

the radicals Rlt if linked

to the carbon-atom by a

single tie, can freely rotate

round an axis coinciding

with the direction of that

bond. If Rl really rotates

very quickly in the way
just suggested, its properties will indeed appear as though it had

a spherical symmetry of its own. l
)

If now the same hypothesis be applied to all kinds of radicals

which may eventually replace the group Rlf it is obvious that the

rather high degree of symmetry of the arrangement already suggested,
cannot be preserved if the four radicals are no longer equal.

The compound C(R1)3R
f

will have a symmetry which, at the

greatest, could only be that of the group C^\ and for a compound:
(^

/

)2
at the greatest it could be that of the group C* (fig: 163).

A compound: C(R1 )Z
R /R //

can, at the best, have the symmetry

1
) However, as already mentioned, the only exception to this is, when the

substitutes R^ which are linked to the central atom, are themselves of a confi-

guration, which differs from its mirror-image. In such cases, R^ can be brought
to coincidence with its mirror-image only by a reflection in a plane, or by an

inversion, or most generally: by a rotation round an axis of the second order. The

asymmetric substitutes R
l must, therefore, in all arguments bearing upon configu-

rations of molecules in space, be denoted in the molecular formula by the symbols
d-and /- (dextro- and laevogyr&tory respectively), to avoid confusion. Afterwards

we shall consider a case, where the necessity of this becomes very evident.

Cf. on these topics also: W. J. Pope, Presid. Address to the Chem. Sect, of the

Brit. Assoc. for the Advane, of Sciences, (1914).
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of the group S, while a molecule: CR^R'R'R" has ordinarily

no other symmetry than that of group C
x(= A)\ i.e., it does not

possess any symmetry-properties at all. Such a molecule can,

therefore, exist in two enantiomorphously related configurations,

because it does not possess any symmetry-property of the second

order whatsoever.

Van 'tHoff calls a carbon-atom, the four valencies of which

are saturated by four different univalent atoms or radicals, an

asymmetric carbon-atom. He was able to indicate the presence of

at least one such asymmetric carbon-atom in all compounds which

in the liquid or gaseous state exhibit the power of deviating the

plane ofvibration

of the polarised

light. Since then,

this hypothesis
has proved valid

in a great num-

ber of cases; and

it was by this

conception of the

plurivalent . asymmetric atoms, that a rational definition of the

circumstances under which Pasteur's "molecular dissymmetry"

occurred, seemed now to be given, thus enabling the science of

stereochemistry to be founded, as we know it to-day.

It should be remarked, that by substituting for R
l
other radicals

R f

, R", R'", etc., a gradual distortion of the molecule takes place:

not only are the distances of the radicals R^, R', R" ,
R" f

,
etc. from

the central carbon-atom undoubtedly different, but as a consequence
of the mutual attractions and repulsions of the substitutes, the

forces issuing from the carbon-atom will certainly deviate from

those supposed in the case of fig. 162, provided always, that we

accept the rather rough mechanical image proposed by Van 't Hof f.

In the case of a compound: CR^R'R'R"', the "regular" tetrahedral

arrangement of fig. 162 will have quite disappeared ;
it will be replaced

by a wholly zVregular one. This must be firmly kept in mind, even

though it should appear equally true, that the two imaginary arrange-

ments a and b in fig. 164. would again seem to be enantiomorphously

related, if we had the power to replace the radicals R by different

groups without thereby producing a distortion of the original molecule

Such a symmetrical arrangement of different groups round
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the central carbon-atom is of course very improbable, although
it need not be considered as wholly impossible.

15. According to the Van 't Hoff-Le Bel-theory therefore,

the possibility always exists of a chemical substance occurring in

two enantiomorphously related isomerides, as soon as a plurivalent

asymmetric atom of the kind just described is present in its molecules.

As already pointed out, this doctrine has proved admirably far

reaching: for not only have hundreds of such carbon-compounds
been since resolved into their antipodes, but also in the case of other

plurivalent atoms than carbon, it has been proved to hold absolutely.

J. H. Van 'tHoff.

18521911.
J. A. Le Bel.

Its truth was upheld in the case of the asymmetric pentavalent

nitrogen-atom, as Le Bel, Kipping, Pope, Wedekind, Aschan,
and many others, have demonstrated in a series of admirable

investigations
!

).

l
) J. A. Le Bel, Compt. rend, de 1'Acad. d. Sc. Paris, 112, 725, (1891); E.

Wedekind, Zur Stereochemie des funfwerttgen Stickstoffs, Leipzig, (1899);
W. J. Pope and S. J. Peachy, Journ. Chem. Soc. London, 75, 1207, (1899);

79, 828, (1901); W. J. Pope and A. W. Harvey, Proceed. Chem. Soc. London,
17, 120, (1901); Proc. Cambr. Phil. Soc., 12, 466, (1904); H. O. Jones, Journ.
Chem. Soc., 83, 1400, (1903); E. Wedekind and E. Frohlich, Ber. d. d. Chem.

16
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Pope, Kipping and their collaborators were also able to prove
the validity of these views in the case of the asymmetric tetravalent

sulphur-atom
l
),

of the asymmetric selenium-atom 2
), of the asym-

metric tin-atom 8
), while the work of Kipping 4

)
on the asymmetric

silicon-atom has also splendidly confirmed the applicability of this

doctrine in these cases. Moreover, for the pentavalent phosphorus-

atom, if asymmetric, the analogous fact was proved by Meisen-

heimer and Lichtenstadt 5
),
and by Kipping

6
), and for arsonium-

compounds of this kind 7
) may be so in nearest future

;
so there

can be no doubt whatever as to the general correctness of the view,

that all higher-valent atoms (valency>3) may eventually reveal

the said phenomenon.
As the subject of the application of Van 't Hoff-Le Bel's-

theory to organic chemistry, and to the numerous particulars and

special cases of isomerism in this field, e. g. with unsaturated com-

pounds and the derivatives of /n'valent nitrogen, etc.,
- - is too

large to be dealt with in detail in this book, the reader must for

that purpose be referred to the many excellent text-books on stereo-

chemistry now in use. It need only be remarked that a final result

as to the arrangement of the radicals round the asymmetric

pentavalent nitrogen-atom, could up to now not be obtained from

the study of the- possible isomerides in the case of such compounds
as: N v

(obcde), Nv
(aJ>cd), and N v

(aJ>c).
8
) Much work in this field

remains yet to be done.

16. The foregoing leaves the impression, that the truth of

Ges., 38, 1838, 3438. (1905); M. Scholtz, Ber. d. d. Chem. Ges., 37, 3627, (1904);

38, 1289, (1905); F. S. Kipping, Journ. Chem. Soc. London, 83, 873, 918, (1903);

O. Aschan, Zeits. f. phys. Chemie, 46, 293, (1903); A. W. Harvey, Journ.

Chem. Soc., 87, 1481, (1905), W. J. Pope and J. Read, Journ. Chem. Soc. London,

101, 519, (1912).

*) W. J. Pope and S. J. Peachy, Journ. Chem. Soc., 77, 1072, (1900); S.

Smiles, ibid., 77, 1174, (1900).

?) W. J. Pope and A. Neville, Journ. Chem. Soc., 81, 107, 1552, (1902).
3
)
W. J. Pope and S. J. Peachy, Proceed. Chem. Soc., 16, 42, 116, (1900);

Cf.: A. Werner, Lehrbuch der Stereochemie, p. 316.

4
)

F. S. Kipping, Journ. Chem. Soc., 91, 209, 717, (1907); 93, 457, (1908);

95, 69, 408, (1909).

5) J. Meisenheimer and L. Lichtenstadt, Ber. d. d. Chem. Ges.,44,356,(191 1),

6) F. S. Kipping and F. Challenger, Journ. Chem. Soc. London, 99, 626, (1 191).

7) T. F. Winmill, Journ. Chem. Soc., 101, 718, (1919); Proceed. Chem. Soc.

28, 931. Optically active compounds were not yet obtained.

8) F. S. Kipping, Journ. Chem. Soc. London, 83, 873, 918, (1903).
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Pasteur's first postulation, namely: the general and constant

connection between molecular dissymmetry and optical activity,

has been firmly established by experiment ;
and also, that the doctrine

of the so-called "asymmetric plurivalent atoms", as proposed by
Van'tHoff and Le Bel really gives in most cases a sufficient and

rational explanation of the significance of this molecular dissym-

metry. In general features this is true: nevertheless there remain

some difficulties, which can best be elucidated if we go somewhat

further into the essentials of Van 't Hoff's idea.

Properly speaking, the doctrine of the asymmetric carbon-atom

deals with two factors at the same time, which are superposed the

one upon the other, without it being quite certain that they must

necessarily always be mutually connected. For Van 't Hoff's

conception not only contains the idea of the dissymmetrical arrange-

ment of atoms or radicals in the molecules; but it lays stress also

on the chemical differences which, according to these views, must

necessarily co-exist between the substitutes, which are dissymme-

trically placed round the asymmetric atom under consideration.

This last view is, however, by no means justified: in the preceding

chapters we have often met with geometrical complexes and arran-

gements in space of identical structural units, which nevertheless

represented stereometrical configurations differing from their mirror-

images. It turned out that such arrangements, built up of identical

units, could still appear in enantiomorphously related forms. The

condition of the "dissymmetrical configuration" in Pasteur's

meaning of the word, including the possibility of the occurrence of

right-, and left-handed isomerides, is, therefore, by no means exclusi-

vely dependent on a difference between the constituting unities of

the complex considered. Even if they are identical, the molecule as

a whole may possibly manifest such a non-superposable symmetry
of its configuration.

In the same way we may put the question: can different atoms

or radicals eventually be arranged in such a way round a plurivalent

atom, as to form a higher symmetrical complex not differing from

its mirror-image? The answer must certainly be that they can: in

such a case we should have to imagine that the four different sub-

stitutes /?,, R', R", R'" placed round the central atom, notwith-

standing their difference in chemical nature, were placed at the

corners of a regular tetrahedron or of another symmetrical figure,

no appreciable distortion being caused for some reason or other.



244

This arrangement is not very probable, but its possibility cannot

be at present denied, because we do not know anything as to how the

chemical forces between the substitutes act, and such a contest of

attracting and repulsing forces may be imagined, which would exactly

produce the rather strange and certainly very rare arrangement
foreseen in this connection.

It will be clear from this, that in each of the supposed cases, the

plurivalent central atom would be only partly asymmetrical, if the

last word is used in the meaning of Van 't Hof f's theory: for in the

case first mentioned, the non-superposable arrangement exists,

but not the contrast in chemical nature of the asymmetrically arran-

ged substitutes; in the second case, the chemical differences between

the substitutes, as postulated by Van 't Ho f f and Le Bel, are pre-

sent, but the arrangement of the whole is in this hypothetical molecule

such as to make the occurrence of two non-superposable, isomeric

molecules impossible here. The last case may be almost accidental,

but of the first several instances are now known and have been

already sufficiently studied, as we shall soon see. And in this case

it has indeed been fully confirmed that the optical activity of the

moleciile is not so much due to the chemical contrast between the

substitutes round the central atom, as to the degree of symmetry,
or dissymmetry, of their arrangement in space.

From this it appears necessary in all problems in the domain

of stereochemistry, to find out in each case : what is the influence

of the one, and what of the other of the two factors considered above?

We must investigate whether in the case ot Pasteur's law, the

observed properties of the molecule are principally governed by
the non-superposable arrangement of the constituent radicals, or

by their chemical contrast, or by both causes. Only when we shall

have succeeded in separating both these factors out of the fullness

of their common manifestations, we can hope to get a clearer insight

into the true significance of Pasteur's law, and of the part played

by Van 't Hoff-Le Bel's suggestive theory in explaining it
1

).

17. With respect to the fact that the occurrence of optical

antipodes can also take place, when only the arrangement of the

atoms is different from its mirror-image, independently of the special

circumstance that certain chemical differences of the substitutes

x
)

F. M. Jaeger, Proceed. Ron. Akad. v. Wet. Amsterdam, 17, 1217, (1915);

18, 49, (1915); Chemisch Weekblad, 14, p. 706732. (1917); 20, 244, 263, (1917);

Receuil des Trav. Chim. des Pays-Bas, 38, 171, (1919).
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are present or not, we can now at once infer that every chemical

molecule must be considered to be resolvable into enantiomorphously

related components, when the stereometrical configuration of its atoms

possesses only axial symmetry.

If, however, the configuration of the molecule be such, that it has

either axes of the second order, or one or more planes of symmetry,
there is no possibility of antipodes occurring; the case, where there

exists a symmetry-centre in the chemical molecule is, of course,

also included.

Properly speaking, only the cases where a single asymmetrical

carbon-atom, or more generally: a single plurivalent asymmetrical

atom, is present in a chemical molecule, fall under the simple idea

of Van 't Hoff-Le Bel's theory, because only in such cases

is the dissymmetry of the molecule immediately evident, at least,

if we disregard for the moment the highly exceptional and very

improbable case of an arrangement which will accidentally appear

abnormally symmetrical. When, however, several asymmetrical atoms

in the molecule are present, and especially when we have to deal

with so-called cyclic compounds, or with such possessing double

bonds in their molecules, the symmetry of the stereometrical con-

figuration must be studied carefully, so as to be certain that the

conclusions drawn about the eventual occurrence of antipodes are

really right. Many erroneous statements on this subject are to be

found in works on chemistry ;
and although the full discussion of this

matter cannot be given here, this being more the special subject

of text-books on stereochemistry, rather than that of the present

volume, - -
yet it seems desirable to treat some important cases

here more in detail, because of the great significance of these views,

and for the purpose of illustrating the general applicability of the

doctrine of symmetry as developed in the previous chapters, also

to problems of the kind just mentioned.

18. Before recapitulating these, it is perhaps better first to

make a few remarks on the optical activity of carbon-compounds
which possess only one asymmetrical carbon-atom.

The theory of Van 'tHoff and Le Bel has been tested experi-

mentally in a great number of cases, and its correctness has been

fully confirmed.

In all the compounds investigated, the asymmetrical carbon-atom

was always linked to at least one other carbon-atom; and the

question may arise, whether the conclusions drawn from that theory
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will also be valid in cases, in which no other carbon-atoms

whatsoever are linked directly to the asymmetrical one?

Swarts 1
), who first tried to solve this question, prepared

fluoro-chloro-bromo-acetic acid: CFClBr.COOH, which by means of

strychnine was resolved into its antipodes, the optical activity of which

was measured, but appeared to diminish rather rapidly because

of progressing racemisation. On carefully heating both antipodes,

carbon-dioxide was split off, and fluoro-chloro-bromo-methane:

CFClBrH resulted. The product obtained appeared, however, to be

quite wactive, its constitution evidently involving a great tendency
to autoracemisation.

It was only recently that convincing proof was also given of the

truth of the theory in cases like this. Pope and Read 2
)
succeeded

in resolving chloro-iodo-methane-sulphonic acid: CHCIJ(S03H) into

its antipodes, and in measuring the optical activity of its ammonium-

salt: (M) D appeared to be about 44 in aqueous solution. In this

way full evidence was given, that the question put above must be

considered as completely answered in the affirmative.

19. Up till now no general rules have been found as to the

magnitude of the rotatory power of those compounds which have

only one single asymmetric carbon-atom. At first the opinion was,

that the greater 'the chemical difference between the four groups or

atoms linked to the asymmetric carbon-atom was, the greater the rota-

tory power would appear to be. However, all kinds of irregularities

and exceptions became gradually known; for instance, it proved
that the salts of active acids had often just the opposite rotatory

power or a feebler one, than the acids themselves, although the

introduction of the metal-atom in place of the hydrogen-atom of

the carboxyl-group augmented in many cases the chemical contrast

between the four substitutes.

Guye 3
) especially tried to give a rational explanation of this

and similar phenomena, by the compelling idea of the asymmetry-

product. His theory starts with the hypothesis, that the degree of

J
)

F. Swarts, Bull, de la Soc. Chim., (3), 15, 1134, (1896); Mem. de 1'Acad.

roy. de Belgique, 54, (1895); Bull, de 1'Acad. Belg., (3), 31, 38, (1895).
2
)
W. J. Pope and J. Read, Journ. Chem. Soc., 105, 811, (1914); Proc. Cam-

bridge Phil. Soc., 17, 475, (1914).
3
)

Ph. A. Guye, Compt. rend, de 1'Ac. d. Sc. Paris, 110, 744, (1890) ; These,

Paris, (1891); Confer, dev. la Soc. Chim. Paris, (1891); Compt. rend, de 1'Acad.

d. Sciences, Paris, 116, 1378, 1451, (1893).
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molecular dissymmetry depends on the difference in mass of the

four substitutes linked to the asymmetric carbon-atom. If the masses

of the four substitutes be supposed to be concentrated at the corners

of an irregular tetrahedron, which shall represent in outlines the

configuration of the four substitutes round the central asymmetrical

carbon-atom, then the gravitation-centre of the whole complex will

seem to be shifted towards the heaviest substitute, its position being

determined with relation to the planes which pass respectively

through every edge of the tetrahedron and the middle of the opposite

edge. If the distances of this gravitation-centre from the six planes

thus obtained be known, its position in space will be absolutely

determined. Guye concludes from these reasonings that a substi-

tution in an active molecule always produces a change of algebraic

sign of the rotatory power, whenever the gravitation-centre of the new

product, in comparison with that of the original molecule, is dis-

placed by the substitution in such a way that it arrives at the

opposite side of one of the six planes mentioned above; if after

substitution the centre of gravitation remains at the same side of

the six planes as it was before, the algebraic sign of the rotation

will remain unchanged. If d
lt

d
2 ,

d3> . . . .dQ be the distances of the

gravitation-centre from each of the six planes mentioned above,

the product: P d^d^d^d^d^ will be, according to Guye's views,

a measure for the dissymmetry of the chemical molecule 1

).
The

algebraic sign of the product will change from positive to negative,

and conversely, and with it that of the rotatory power of the molecule,

when the number of factors out of this group of six which are changed
from positive to negative and conversely, happens to be an odd one.

Indeed, if one of the four substitutes obtain the same mass as one

of the others, one of the factors d becomes zero, and therefore so

does also P: i. e. the activity disappears, and experience often

confirms this. If instead of the one antipode, the enantiomorphous
one be considered, the number of factors d which change their signs,

is always odd; thus the activity also changes its sign from positive

to negative and conversely
2
).

1
)

About an application of these views to compounds which contain a pentava-
lent asymmetric nitrogen-atom, see: M. B. Thomas and H. O. Jones, Journ.
Chem. Soc. London, 89, 280, (1906).

2
)
Fora more general form of argumentation, cf. : W. Nernst, Theoretische

Chemie, (1898), p. 325.
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If M!, m?i ,
m3 and w4 be the masses of the four substitutes, Guye's

formula may be reduced also to the form:

P = (m1
~ m2) (m^ m3) (m^ w4) (m2 m3) (m? w4) (m3 mj.

The same considerations can be used here: thus, if two of the

masses become equal, P becomes zero, etc.

However, it is just in this respect that the weak point of Guye's

suggestive theory lies : for if the asymmetric carbon-atom be linked

to two isomeric radicals A and A', which accidentally possess equal

masses, the molecule can yet have optical activity, as has been

shown by direct experiments.
Thus Fischer and Flatau 1

) succeeded in performing the fission

of propyl-isopropyl-cyano-acetic acid'.

C

into its antipodes, and demonstrated that these have a rather large

specific rotation (11), notwithstanding the equality of mass of

the propyl-, and isopropyl-groups.

Indeed, the mass-differences of the substitutes appear to have

quite a secondary importance for the magnitude of the specific

rotatory power of the molecules, as may be seen from the following

examples
2
).

Werner 3
) in his beautiful investigations on complex inorganic

salts exhibiting optical activity, has first demonstrated, that deriva-

tives of the atoms of trivalent Co, Cr, Rho, Fe, etc., which all have

the coordinative number six, and which belong to the type:
Me {(X")3]

R3 ,
in which X" is a bivalent acid radical or a base, can

be resolved by suitable means and under favorable circumstances,

into two enantiomorphously related antipodes which, although all

substitutes X" are here equal and thus have the same mass, exhibit

an enormous rotatory power, surpassing all that has been observed

up till now in carbon-compounds. These optically active salts belong
to the most interesting and remarkable objects chemistry offers,

!) E. Fischer and E. Flatau, Ber. d. d. Chem. Ges., 42, 981, (1909).

Numerous instances of this were mentioned already by Walden in 1895; cf. :

Zeits. liir phys. Chemie, 17, 712, (1895), and P. Freundler, Bull, de la Soc. chim.

(4), 18, 6, (1894).
2
)

A. Werner, Ber. d. d. Chem. Ges., 45, 121, (1912); 47, 1960, 3093,

(1914); etc.
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and their physical properties are so wonderful, that their detailed

study will still reveal many surprises.

Fig. 165 for example may give some impression of the enormous

rotatory power and rotatory dispersion of the triethylenediamine-

cobalti-salts, which may be compared with the dispersion-curve

Fig. 165.

Rotatory dispersion of some optically active Triethylenediamine-Cobalti-salts.

of ordinary cane-sugar, represented by the almost straight line

beneath
*). Often abnormal dispersion-phenomena are also observed

here, e. g. in the case of the corresponding triethylenediamine-deri-

vatives, of the complex trioxalates of cobalt, chromium, rhodium,

1) F. M. Jaeger, Proceed. Kon. Akad. v. Wet. Amsterdam, Vol. 17, 1231, (1915);

Receuil des Trav. Chim. d. Pays-Bas, 38, 171, (1919). On other physical properties

of these complex salts, as magnetic susceptibility, absorption, etc., conf. e.g.:

the recent paper of E. Rosenbohm, Zeits. f. phys. chemie, 93, 692, (1919).
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and indium, and also in the case of some trimalonates of these metals1
) :

many other properties, moreover, make such dissymmetrical com-

pounds highly promising objects for research.

If we examine more closely the atomistic arrangement of these

complex salts, as deduced from Werner's coordination-theory, it

appears that these molecules are by no means unsymmetrical : for

instance, the triethylenediamine-cobalti-complex has the symmetry

represented in the accompanying figures, (fig. 166). It appears that

the stereometrical configuration has a ternary axis A 3 and three

heteropolar binary axes situated in a plane perpendicular to A 3 .

Fig. 166.

The Symmetry of the Ions: [Me(X
//

)3].

This symmetry is that of the axial group D3 , and, therefore, the

arrangement must be different from its mirror-image.

Here we have an excellent example of a molecule composed of

even identical units, which possesses a rather highly symmetrical

configuration, and which, notwithstanding this, may be obtained

in two enantiomorphously related modifications, because its sym-

metry belongs to the groups which have only symmetry-properties
of the first order. The enormous rotatory power of these compounds
is, therefore, merely due to the non-superposable arrangement as

such, and to the special nature of the central metallic atom, not,

!) F. M. Jaeger, Proceed. Kon. Akad. v. Wet. Amsterdam, Vol. 17, 1224, (1915).

19, (Aug.) (1917); 21, 203, (1918); Receuil des Trav. d. Chim. d. Pays-Bas, 38,

171, (1919); F. M. Jaeger and W. Thomas, Proceed. Kon. Acad. v. W. Amster-

dam, 21, 215, 227, 698, (1918); Revue generate des Sciences, 30, 298, (1919).
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however, to any chemical contrast between the groups round the

plurivalent atom 1
).

That the special nature of the central metal-atom also takes a

predominant part in this, can be seen on comparing the magnitude
of the molecular rotation of some analogously composed salts of

the metals Cr and Co:

Cr

Co

(Eine)
Br, (M)D = ca. 1100; (M)c = ca. 545

Br, (M)D = ca. 2525; (M)c = ca. 906,
(Eine\

the rotation of the cobalti-salt being about double that of the corres-

ponding chromi-sdilt.

From the following examples
2
) :

[Cr(Eine)9}I MD=+37S; {Cr(Eine)3} (SCN)3 , [^=+335.
[Co(Eine)8}I9 ,

MD= + \072; {Co(Eine)3} (SCN)9 , [M] J>=+781.
{Rho(Eine)3}

73 ,
MD= +329 ; {Rho(Eine)3 } (SCN)3 , [M]D= +335.

the remarkable fact is best elucidated that the Rho-sailts exhibit

about the same rotation as the CV-salts, although the atomic weight

of rhodium is about twice that of chromium.

The author, however, cannot agree with the Swiss investigator

in the reasonings by which he thinks to have proved that the algebraic

sign of the rotation in the case of the derivatives of the triethylene-

diamine-rhodium-ion is also the opposite to that of the rotation

shown by the cobalti-salts of analogous stereometrical configuration.

Werner, (loco cit. p. 1229) going on the supposition that salts

derived from optically active ions of analogous constitution will

combine with the same optically active substance to form compounds
which will always show a relativity comparable degree of solubility

3
),

1
) Cf.: W. J. Pope, Presid. Address to the Chem. Section, Brit. Assoc. Rep.

(1914): "It must however be insisted, that the observed optical activity is the

result of the enantiomorphism of the molecular configuration ;
the asymmetry

of a particular atom is not to be regarded as the cause of the optical activity, but

merely as a convenient geometrical sign of molecular enantiomorphism."
2
)

A. Werner, Ber. d. d. Chem. Ges., 45, 2134, 1236, (1912); F. M. Jaeger,
Proceed. Kon. Akad. v. Wet., 17, 18, 19, 20, and 21

;
Chem. Weekbl., 14, 718, (1917) ;

Receuil des Trav. d. Chim. d. Pays-Bas, 38, 171, (1919); Revue generate des

Sciences, 30, 298, (1919).
3
)

As Werner, Ber. d. d. Chem. Ges., 45, 1229, (1912), first suggested, those

antipodes which combine with the same optically active acid or base into

the less soluble compound, should always be those of corresponding stereometrical

configuration. Therefore, according to this author, the laevogyratory Rho-sa\ts

should correspond to the dextrogyratory Co-salts, and vice versa.
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has concluded that the laevogyratory rhodium-salts and the dextro-

gyratory cobalti-salts which are set free from the less soluble haiogeno-

d-tartrates, must possess the same configuration in space. Therefore,

according to this author, if in the triethylenediamine-complex of

the cobaltt-salts the central cobalt-atom be replaced by the rhodium-

atom, not only the size of the specific rotation would be altered,

but even its direction would be reversed. However, Werner does not

give any plausible argument to support his starting-point regarding

a direct connection between the configuration of the molecules and

their solubility. Moreover, this view seems to be quite fortuitous,

as the solubility of compounds is so highly complicated a constitutive

property of matter, that even where rules for homologous compounds

apparently universally valid seem to be established, the most unex-

pected and surprising facts often appear to make them illusory after-

wards. The crystal-form of the substances, on the contrary, is a pro-

perty much more directly connected with their geometrical character,

i. e. with their atomic configuration in space, than is the case with

their solubility. If in the chloro-d-tartrate of an optically-active tri-

ethylenediamine-cobalti-ion of definite configuration, the central

Co-atom, under complete preservation of the existent arrangement
of the radicals, be replaced by a Rho-atom, which, according to our

investigations, will replace it quite isomorphously, then it must

be obvious that the resultant rhodium-salt will appear perfectly

isomorphous with the original chloro-d-tartrate. Experience, however,

now proves beyond any doubt, that both the less soluble chloro-d-

tartrates of the Rho-, and Co-salt possess quite different crystal-forms,

the one being triclinic-pedial, the other monoclinic, while their

parameters do not show the least analogy. Moreover, direct analysis

proves that the chloro-d-tartrate of the Co-salt crystallises with five,

that of the Rho-salt with four molecules of water, a fact which

is also in full agreement with the absence of direct isomorphism
between both derivatives. Both chloro-d-tartrates , therefore, cannot

have an analogous configuration, but they must necessarily possess

antilogous configurations. This is the simple and true explanation

of the fact that the cobalti-, and rhodium-salts, set free from the

less soluble chloro-d-tartrates, also show optical rotations of opposite

algebraic signs. In contradiction to Werner's, our conclusion,

therefore, is that the cobalti- and rhodium-salts with the same direc-

tion of rotation possess also the same arrangement of the constituent

radicals in space. The influence of replacing a central cobalt-atom
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by a rhodium-atom, is, therefore, manifested only by the change in

magnitude of the specific rotation, but not by a change of its

direction. As long as no urgent experimental data are available to

compel us into another way, it is of importance to construct our

plan of the mutual dependence of natural phenomena as simply
and transparently as possible; and the conception of the relations

between optical activity and configuration of molecules, as explained

in the above, seems to us really a simpler and more perspicuous one

than that proposed by Werner. For this reason the algebraic signs

of the rotation of the rhodium-salts are here taken identical with

those of the corresponding cobalti -salts l

).

In a recent paper, Smirnoff
2
) demonstrated, that the introduction

of three molecules of one of both possible optically active x-pro-

pylenediamines into the complex ions of platinum-, or cobalti-sa\ts

of the same type as was dealt with here, has the remarkable

effect that to each of both optically active diamines only one of

the two possible, enantiomorphous spatial configurations of the

complex ion corresponds, the number of isomerides obtained

in this way being, therefore, reduced to two in stead of four. From
this fact it must be also concluded that the spatial arrangement
of the substitutes round the central metallic atom of the complex,
is determined by the special molecular symmetry or dissymmetry
of those substitutes themselves, and that the molecular dissym-

metry of the three substitutes will, therefore, determine, which of

the two possible enantiomorphous configurations of the complex
will be exclusively assumed in each case. This fact is wholly com-

parable with a "partly asymmetrical synthesis" of an inorganic

molecule, which synthesis is of the same type as that of organic

compounds, considered more in detail in the last chapter of this book.

20. From the foregoing it is evident that for the considerations

regarding the eventual possibility of the separation of a chemical

substance into two enantiomorphously related antipodes exhibiting

opposite rotatory power, the question as to the special stereometrical

configuration must in each case be brought to the fore. If the con-

ception of Van 't Hoff and Le Bel as to the direction of the four

carbon-valencies be adopted, and, keeping that in mind, the stereo-

metrical "model" of the molecule be constructed, we have only

!) F. M. Jaeger, Proceed. Kon. Akad. v. Wet. Amsterdam, Vol. 20, 264, 265,

(1917); Chemisch Weekblad, 14, 728, (1917).

2) A. P. Smirnoff, Helvet. Chimica Acta, 3, 177, (1920).
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to make sure that the configuration thus obtained has no axis

of the second order, nor any symmetry-plane, nor a centre of

symmetry
1
).

If this be done, the compound will be such as to be

possibly resolved into enantiomorphous isomerides. But if one of

the symmetry-properties of the second order mentioned be found in

the model, the substance will not be resolvable into two enantio-

morphously related isomerides, not even if there were eventually

several asymmetric carbon-atoms present in it. A few instances

may be exemplified here to make this clear.

21. The oldest known example of a compound which cannot

be resolved into enantiomorphous isomerides, although it possesses

several asymmetrical carbon-atoms, is. meso-tartaric acid:

COOH

*CHOH

*CHOH

COOH
Evidently the one half of the molecule is here the mirror-image

of the other half; or what is the same thing: the stereometrical

configuration of atoms has here a plane of symmetry, and, therefore,

it cannot differ from its mirror-image. Formerly this was explained

by saying, that the rotatory effect of the one half of the molecule

was counterbalanced by that of the other half, and such molecules

were, therefore, said to be inactive and non-resolvable "by internal

compensation".The explanation given here is, however, better, because

it does not introduce any superfluous hypothesis, but elucidates

the fact merely as a direct consequence of 'the general doctrine of

symmetry. It simply states, that no enantiomorphism of stereome-

trical arrangement can ever occur, when the configuration of atoms

as a whole shows any symmetry-element of the second order 2
).

The same is true with trioxyglutaric acid:

1
)

The "plane of indirect symmetry", as mentioned by Ladenburg and by

Groth in the discussion of the impossibility to resolve certain diketo-pipevazines

into antipodes, corresponds to no other operation than inversion. Such molecules

cannot be separated into enantidmorphous modifications, because they have an

inversion-centre, which is equivalent to a binary-axis of the second order; they

are, therefore, congruent with their mirror-images. It is quite superfluous to

introduce here any new name.
2
)
A case similar to that of meso-tartaric acid, etc., has also been studied by
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COOH
I

'CHOH

CHOH

-CHOH

COOH
although a little modification of what was said above will be neces-

sary here, because the middle one of the three carbon-atoms is in a

somewhat peculiar position relative to both the others. For although
the carbon-atom in the midst of the molecule is not asymmetrical,
it has, however, an influence on the number of possible isomerides, as

a second inactive and non-resolvable isomeride may occur here, which

also is inactive "by internal compensation", but which differs from

the first by the interchange in space of the substitutes H and OH:
COOH COOH

CHOH CHOH

HCOH and HOCH

CHOH CHOH

COOH COOH
Of course, we shall therefore have, as in the cases of the meso-tar-

Werner in the case of tetra-ethylenediamine-p-amino-nitro-dicobalti-bromide:

(Eine)2 Co^ ^Co (Etne)2 Br^.

Indeed, besides the d-, 1-, and rac. compound, an inactive, non-resolvable

isomeride could be obtained; cf . : Ber. d. d. Chem. Ges., 46, 3674, (1913).

Another case, in which, however, an enormously great molecular rotation was

observed, perhaps the greatest hitherto found, is that of tetra-ethylenediamine-

n-amino-peroxo-cobalti-cobalte-nitrate and its derivatives:

III ^x^2^-\ IV

(Eine) 2
Co^ Co (Eine\

Although four optically active isomerides and two racemic compounds, according

to the molecular structure of the substance, may be expected, only two active and

one racemic form have been found. For the corresponding tetrabromide, the molecular

rotation was observed: [M]D = 68550. If the second cobaltum-atom be reduced

from tetra-valency to a trivalent atom, the rotatory power is considerably

diminished, and we have the same case as mentioned above, because the structure

of the molecule is now a symmetrical one. Cf. : A. Werner, Ber. d. d. chem.

Ges., 47, 1961, (1914).
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taric acid and tartaric acids mentioned above, not only two active

and one inactive form besides the racemic compound, but two active

and two inactive isomerides. A carbon-atom as found here in the

midst of the molecule of trioxyglutaric acid, is called a pseudo-asym-
metrical carbon-atom.

As to the number of isomerides which can be expected when the

number of asymmetric and pseudo-asymmetric carbon-atoms in

the molecule is known, the following data may suffice.

If n be the number of true asymmetric carbon-atoms in the mole-

cule, Na the number of the possible optically active isomerides,

Nj that of the possible inactive and non-resolvable isomerides, and

Nr the number of racemic compounds, we have in the various cases

the following relations:

a) If no reduction of the number of isomerides occurs, neither

by "internal compensation", nor by the presence of a pseudo-asym-
metric carbon-atom in the molecule, then generally:

Na
= 2n ,

and Nr
=

J Na
=

J. 2", while Nt
= 0.

b) If internal compensation occurs, without the influence of a

pseudo-asymmetric carbon-atom, then:

Na
= 2- J

,
Nr
=

J. 2-', and Nt
= 2~2 ~*-

c) If there be a pseudo-asymmetric carbon-atom, these numbers

become :

n 1 n 1 n 1

Na = 2n
~ 1 2~*~; Nr

= ^ (2-* 2~^~); and Nt = 2~*~.

22. In the case considered here, the impossibility of the fission

of the mesotartaric acid and of the two inactive trioxyglutaric acids

was an immediate consequence of the existence of a symmetry-

plane in their atomistic arrangement. The same, however, must

occur if the arrangement has a mirror-axis or a symmetry-centre

among its symmetry-elements. Such cases can occur, as soon as

asymmetric carbon-atoms are units of a cycle of atoms. A few selected

instances may further explain this.

If there be only a single asymmetrical carbon-atom in the ring,

the influence produced by that atom is in principal features the

same as that in open-chain compounds with a single asymmetric

atom. In such cases the plane of the ring can, of course, never be a

symmetry-plane of the molecule, and the number of isomerides is two,

not counting the racemic compound. If, however, there be two or more

asymmetric carbon-atoms, more detailed examination is necessary.
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Ladenburg 1
) drew attention to the fact that the trans-modifi-

cation of the diketo-piperazines (A), is not resolvable into enantiomor-

phous isomerides. He, and later Groth 1
), explained this by indi-

cating the existence of a "plane of indirect symmetry" ; however,

the symmetry-operation corresponding to it is nothing but an

inversion, as has already been indicated. The trans-iorm of 3-6-

dimethyl-2-^-diketo-piperazine (irans-alanyl-anhydride) (A), has an

inversion-centre, and thus shows the symmetry of the group /. The

as-form (B), however, evidently has a single polar binary axis A%. t

perpendicular to the plane of the ring; it possesses, therefore, only
axial symmetry (C2):

.CO ^ ^
Km

NK. 1

A.

(trans-iorm)

B.

(cts-iorm) .

and accordingly, its arrangement must differ from its mirror-image.

Indeed, Fischer and Raske 2
) have shown that these compounds

exist in four isomeric forms : a laevo- and a dextrogyratory isomeride

and a racemic compound, all three corresponding to the cis-

form, and one inactive ^<ms-isomeride, which can not be resolved

into optically active antipodes.
3
)

Pope and Read 4
) tried to demonstrate the same with 3-6-

1
)
A. Ladenburg, Ber. d. d. Chem. Ges., 28, 1955, 3104, (1895) ;

P. Groth,

ibid., 28, 2510, (1895). Cf. the note" on page 254.

2
)

E. Fischer and K. Raske, Ber. d. d. Chem. Ges., 39, 467, 3981, (1906);

In the original paper the substances are discerned as: l-4-diketo-2-5-dimethvl-pipe-

razines.

8
)

In the same way trans-cyclopentane-diol has recently been separated into

its optically active components by Ch. van Loon (Proefschrift Delft, (1919),

p. 49.) by means of l-menthyl-isocyanate, after the method indicated by
R. H. Pickard, Journ. Chem. Soc., 85, 685, 1904); 89, 93, 467, 1254, (1906).

4
)
W. J. Pope and J. Read, Journ. Chem. Soc., 101, 2325, (1912); C. Stoehr

and collaborators, Journ. f. prakt. Chemie, (2), 55, 49 77, (1897).

17
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dimethyl-piperazine
2
) itself, but without result. Afterwards they made

it probable,
x
)
that here not the j-6-, but the 2-<5-a's-derivative was

present, which, of course, cannot be split up, because it has a single

plane of symmetry perpendicular to the plane of the ring, and

passing through both JV7/-groups:

The molecule evidently possesses the symmetry of the group
of the second order S.

In the case of the isomeric 3-j-diketo-2-6-dimethylpiperazines,

T

CH 3

1<
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in this respect ;- but investigations of this kinds have been started

now in the author's laboratory. As a method to determine the

configuration of such cis- or ^ms-isomerides, when they have

the character of alcohols, attention may be drawn to that developed

by Boeseken 1

),
which is based upon the measurement of the

electrolytic conductivity of the solutions of such hydroxy-compounds,

containing boric acid.

Another instance of a similar kind is found in the case of

methane-'2
), and of tetra-methylene-derivsitives of special configuration.

Let us imagine molecules such as:

C[{d-C(abc)} 2 {l-C(acb)h] or [CH.{d-C(abc)}] 2[CH.{l-C(acb) j] 2 ,

which are represented by the stereochemical models in fig. i6j
and i68\

Fig. 167. Fig. 168.

Such molecules possess no less than four or eight asymmetric car-

bon-atoms, and also have they neither an inversion-centre, nor a

plane of symmetry. Notwithstanding this, these compounds can

never be resolved into optically active antipodes, because both

molecules have a single quaternary mirror-axis Z~4 , perpendicular
to the plane of the ring in the second, and placed vertically in the

1) J. Boeseken, Proceed. Royal Acad. Amsterdam, 16, 216, (1913); 19,

1647, (1916); Receuil des Trav. d. Chim. des Pays-Bas, 3439, (1914 '20); etc..

2) G. Hartwall, Dissertation, Helsingfors, (1904).
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first formula. Having thus a symmetry-element of the second order

in their atomistic arrangement, the configuration of the molecules

must be congruent with its mirror-image (group C4), and, therefore,

no fission of the proposed kind can be possible here. l

)

We find an analogous case of the presence of such a mirror-axis

in the molecule, if we consider the following configuration:

The symmetry is here also C4 ;
but if the two groups X linked at the

same carbon-atom be made different (e.g. X and H), the mirror-axis

X4 will disappear, and the molecule, being now completely asymmetri-

cal, may be resolved eventually into optically active antipodes.

Even if the molecule had simply the formula:

XHC
CH

CH 2
/ \CH

/CH 2

CHX

the possibility of a separation into antipodes must be present.
2
)

If in the cases of fig. i6j and 168, one or two of the asymmetric
carbon-atoms are changed into higher symmetrical radicals, the

molecules obtained will be resolvable, notwithstanding the fact that

the number of asymmetrical carbon-atoms is now diminished.

23. Should there be also a pseudo-asymmetrical carbon-atom

1
)

The groups (C(a6c)} are unsymmetrical, and thus are different from their

mirror-images. To avoid confusion, it is better, therefore, to discriminate them

pairwise by the prefixes d-, and /-; just because d-C(abc) and l-C(abc) (or: l-C(acb))
V

are nonsuperposable, the molecule has not the symmetry D
2

or C
2 ,

as per-

haps would appear at superficial examination, but that of group C
4 ,

as already

mentioned.

The conclusion of E. Mohr, Journ. f. prakt. Chem., (2), 68, 378, (1903), is

erroneous in this respect.
2
)

O. Aschan, Ber. d. d. Chem. Ges., 35, 3396, (1902).



261

in the ring, then the number of optically inactive, non-resolvable

isomcrides will be increased, exactly as in the case of the open-

chain-derivatives formerly discussed.

Thus, Wislicenus succeeded in obtaining three isomerides of

2-^-dimethyl-cyclopentane-1-carboxylic acids. l
)
Two of them are cis-

as-forms (/ and //; mpts: 30 C, resp. 77 C); and as each of them

has the symmetry of the group 5, they cannot be resolved into

optically active antipodes. That there are two of these "internally

compensated" isomerides, is explained by the fact, that the carbon-

atom to which the group COOH is linked, is a pseudo-asymmetrical

one, while both the neighbouring carbon-atoms are really asymmetric.
The third isomeride (///, mpt : 50C) is a cis-trans-form ;

it must

represent a racemic compound, because its configuration is wholly

I.

asymmetrical (group A), and under favourable circumstances it

must, therefore, be possible to resolve it into two enantiomorphously
related components. Up till now this fission has, however, not been

performed.
In this connection the investigations of Von Baeyer

2
)

and

Perkin 3
)

on the hexa-hydrophtalic-, -isophtalic- ,
and -terephtalic-

acids may be mentioned here. While both (cis-, and trans-) hexa-

hydro-terephtalic acids have the symmetry S, and thus are not

resolvable into optically active antipodes, while the same is the case

with the cis-isomerides of the corresponding phtalic-, and -isophtalic-

acids, the trans-hexa-hydrophtalic-, and the corresponding hexa-

hydro-isophtalic acids have, however, the axial symmetry of the

group C2 . In accordance with this, Werner and Conrad 4
)
succeeded

1) J. Wislicenus, Ber. d. d. Chem. Ges., 34, 2572, (1901).
2
)

A. Von Baeyer, Ann. der Chemie, 245, 103, (1888); 251, 258, (1889); 258,

l; 145, (1890).
3
)
W. H. Perkin Jr., Journ. Chem. Soc. London, 59, 798, (1891).

*) A. Werner and H. E. Conrad, Ber. d. d. Chem. Ges., 32, 3046, (1899).
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in resolving the trans-hexa-hydrophtalic acid by means of its quinine-

salt, and measured the optical rotation of both antipodes.

Here the fission of trimethylene-dicarboxylic acid by Buchner
and Von der Heide 1

), and that of the corresponding tricarboxylic

acid, may again be mentioned, as being also in full accordance with

the theoretical predictions.

24. Again another remarkable case is found in the inosites,
2
)

which have the composition: C&HQ(OH}^, and which must be con-

sidered to be hexa-hydroxy-hexa-hydro-benzenes. Besides a racemic

substance which, according, to Wyrouboff 3
), crystallises in the

holohedral class of the monoclinic system, two optical antipodes:

OH' H

^^Ji fi^Xj

F :P^H-

are known, which crystallise (+ 2H20) in the rhombic system,

although no hemihedral forms could hitherto be obtained. The

molecule of this cyclic compound does not possess, properly speaking,

an asymmetric carbon-atom at all, at least not in the sense of Van
't Hoff's and Le Bel's theory. The whole configuration, however, is

such, that there is only a single binary axis of the first order, the

direction of which is indicated in the formula by a dotted line. The

symmetry of both molecules is, therefore, that of the cyclic group C2 ;

the atomistic arrangement, having thus only axial symmetry, must

be different from its mirror-image, and the occurrence of the dextro-

and laevogyratory forms of inosite is in this way easily explained,

notwithstanding the fact, mentioned above, that no true asymmetric
carbon-atoms are really present.

Of course optically inactive, non-resolvable modifications will be

also possible in the case of the inosites. If the subsitutest be placed,

as follows for instance:

!) E. Buchner and R. Von der Heide, Ber. d. d. Chem. Ges., 38, 31 12, (1905).

2) L. Maquenne, Ann. de Chim. et Phys., (6), 29, 271, (1893); G. Tanret,

Cojnpt. rend, de 1'Acad. des Sc. Paris, 109, 908, (1899).
8

)
G. Wyrouboff, Bull, de la Soc. Miner., 25, 169, (1902).
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or

T. IT.

the symmetry of these molecules is a rather high one : in a compound
of formula /, there is a homopolar trigonal axis perpendicular to the

plane of the ring, three homopolar binary axes (including 60) in

the plane of the ring, and three vertical planes of symmetry passing

through the trigonal axis and bisecting the angle between two suc-

cessive binary axes; moreover, there is a symmetry-centre, and the

whole symmetry is that of class D%. In a molecule of formula //

there is a heteropolar senary axis perpendicular to the plane of

the ring, and six vertical planes of symmetry passing through it,

but there is no symmetry-centre, and the whole configuration has

the symmetry of the class C%. As both configurations have symme-

try-elements of the second order, there is, of course, no possibility

of resolving the optically inactive substance into active antipodes,

the arrangements being both congruent with their mirror-images.

The same would be true for inosites with configurations as:

and

in.

where /// has the symmetry of class C^, and IV that of the class S,

both belonging to those figures, which are superposable with their

mirror-images. Inosites of this kind should, therefore, not be resolvable.

Such is the inactive, non-resolvable inosite: phaseomannite
l

) which,

!) G. Tanret, Compt. rend, de 1'Acad. d. Sc. Paris, 84, 393, (1877); 86,486,

(1878); Ann. de Chim. et Phys., (5). 23, 391, (1881); V. Von Zepharovitsch,
Sitz. Ber. d. Akad. d. Wiss. Wien, 58, (//), 121, (1868); A. Villiers, Compt. rend.,

84, 393, (1877); G. Wyrouboff, Bull, de la Soc. Min., 25, 160, (1902); J. V. Lewis,
Proceed. Cryst. Soc. London, 2, 49, (1882); Ref.: Zeits. f. Kryst., 1, 406, (1877); 2,
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according to Villiers' and Von Zepharovitsch' investigations,

crystallises in the holohedral class of the monoclinic system ;
further

quercine (mtpt: 301 C.), and cocosite (mpt: 350 C.), which show

the same crystallographical symmetry. Somewhat similar is the

case of quercite: C6#7(0#) 5(mpt. : 225 C.), which crystallises in the

domatic class of the monoclinic system
J
) .

The case of the optically active inosites is very well suited for

the purpose of giving full evidence, that not the presence or absence

of an asymmetric carbon-atom in the chemical molecules, but

only the special circumstance, according to which the atomistic

configuration of the molecule as a whole has only axial symmetry or

not, is a decisive one for answering the question, whether the

molecule may be considered as resolvable into optically active

components or not. As a full proof, that even the existence oino

carbon-atom whatsoever is necessary for this, we will mention here

Werner's dodecamine-hexol-teira-cobalti-bromide: 2
)

n'pro
Co\

HQ CoiNH^

in which the complex: Co
(HO),

evidently plays the same role

as the triethylenediamine-complex does in the luteo-salts mentioned

previously. The molecular rotatory power of the active components
of this substance amounts to a value of about 47600; its rotation-

dispersion is, moreover, remarkably abnormal.

25. In this respect some other examples are of interest, which

are related to cases, where double bonds between carbon-atoms form

part of the peculiarities of the molecules, or where a single carbon-

atom is common to two different rings (see p. 260).

A case of the first kind was already mentioned by Van 't Hoff,

namely in carbon-derivatives of the following structure:

A\ /A

B B

190, (1878); 3, 105, (1878); 6, 276, (1881); 39, 316, (1904); G. Friedel, Compt.
rend, de 1'Acad. d. Sc. Paris, 105, 95, (1887); G. V. Barker, Journ. Chem. Soc.

London 91, 1789, (1907).
1
)

G. Prunier, Ann. de Chim. et Phys., (5), 15, 1, (1878); Compt. rend., 85,808,

(1878). There are agreeing measurements made by J. V. Lewis, H. deSetiarmont,
W. G. Hankel, C. Bodewig, and R. de Neufville; cf. also: R. Bohm, Archiv.

der Pharmac., 235, 662, (1897).
2
) A. Werner, Ber. d. d. Chem. Ges., 47, 3087, (1914).
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Indeed, a closer examination of the stereometrical model of this

molecule will clearly show, that it is completely asymmetrical:

/A

Therefore, its configuration must be different from its mirror-

image, although no true asymmetric carbon-atoms are present here.

Examples of the special case where a carbon-atom links two rings,

have been given already on page 260.

Especially in cyclic compounds, the presence of such double bonds

can be of interest for the question of the resolvability of the molecule

into optically active antipodes.

Pope, Perkin and Wallach x
) prepared and studied the i-methyl-

cyclohexylidene-^.-acetic acid :

H

This molecule has no symmetry at all, and indeed it appeared
to be resolvable into optical antipodes by the aid of brucine.

The dibromo-zddition-compounds preserved their activity also,

and the same was found for the corresponding hexanes. The p-dextro-

acid could be obtained in tetragonal crystals, measured by Halli-

mond, but these did not exhibit any trace of hemihedrism.

A case similar to this, is that of ^.-oximino-cyclohexane-carboxylic

acid :

:N OH

!) W. J. Pope, W. H. Perkin Jr., and O. Wallach, Journ. Chem. Soc. Lon-

don, 95, 1789, (1909); W. J. Pope and W. H. Perkin Jr., Journ. Chem. Soc.

99, 1510, (1911); A. E. Everest, Chem. News, 100, 295, (1909); J. E. Marsh,
Proceed. Chem. Soc., 27, 317, (1911); P. F. Frankland, Journ. Chem. Soc. Lon-

don, 101, 654, (1912).



266

which was prepared by Kay and Perkin l

), and which was first

split up, by means of morphine, by Mills and Bain 2
).

This molecule has apparently a plane of symmetry perpendicular
to the plane of the ring, which passes through the groups C02H
and the nitrogen-atom. The fact, however, that the English investi-

gators succeeded in splitting up this molecule into optical antipodes,

seems to indicate that the complex :
=N OH is, in some way, situated

^^symmetrically with respect to the plane of the ring, so that the

symmetry-plane mentioned above is in reality not present in the

molecular configuration. But as an optical isomerism of this kind

has never been found in analogous cases, this substance and its

derivatives deserve yet a minute and thorough examination.

Somewhat different, because one of the carbon-atoms may
be concerned as asymmetrical, is the case of the fission of the acid:

which is an isomeride of the acid investigated by Pope, Wall ach,

and Perkin, and which melts at 41 C.; it was separated by
Marckwald and Meth 3

) by means of the acid cinchonine-saHts.

Some remarks may be made in this connection on the isomerism

which, according to some investigators, would occur in ethylene-

compounds of a constitution like:

In general such ethylene-compounds are supposed to be symmetrical

with respect to the plane passing through both the double-bound

carbon-atoms and all substitutes X, Y, Z, etc.
;
the study of a great

number of ethylene-deriva.tives seemed hitherto to have confirmed

this view.

However, in the last ten years, Erlenmeyer Jr. pointed out,

!) F. W. Kay and W. H. Perkin Jr., Journ. Chem. Soc., 89, 1640, (1907).

2
)
W. H. Mills and A. M. Bain, Journ. Chem. Soc., 97, 1866, (1910).

3
)
W. Marckwald and R. Meth, Ber. d. d. Chem. Ges., 39, 1175, (1906).
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that in the cases mentioned above, and especially in that of the

isomeric cinnamic, allo-cinnamic
,
and iso-cinnamic acids 1

),
an

isomerism should be possible, which occasionally should create

the possibility of resolving the compound into optically active

isomerides. It may be, that a special nature of the substitutes

X, Y, and Z can be the cause of such an exception of the rule,

that ethylene-derivatives have generally a plan-symmetrical con-

figuration. Although this problem, which is of the highest im-

portance with respect to our views of the stereometrical arran-

gement of the atoms in wnsaturated carbon-derivatives in general,

is yet of a dubious character, however, if Erlenmeyer's obser-

vations may be supposed to be exact, - - it then can hardly be

doubted, that he has been able to demonstrate 2
), that the bromina-

tion of the mixed zinc-salt of d-phenyl-lactic acid and inactive

cinnamic acid gives a dibromo-cinnamic acid, which appears to be

towgyratory; while, if the mixed salt of cinnamic acid and

l-phenyl-lactic acid be employed, a ^^rogyratory dibromo-cinnamic

acid is formed. This fact, in combination with the other, that he

could regenerate the free cinnamic acid 3
),
now showing a real optical

!) E. Erlenmeyer Jr. Ber. d. d. Chem. Ges., 36, 23401, (1903); 38, 2562, 3496,

(1905); 39. 788, 1570. (1906); E. Erlenmeyer Jr., C. Barkow, and O. Herz,
Ber. d. d. Chem. Ges., 40, 653, (1907); E. Erlenmeyer Jr. and A. Arnold, Ann.

der Chemie, 337, 329, (1904). Cf. also: C. Liebermann and B. Halvorsen,
Ber. d. d. Chem. Ges., 36, 176, (1903); W. Marckwald and R. Meth, Ber. d. d.

Chem. Ges., 39, 1176, 1966, 2598, (1906); E. Biilmann, Ber. d. d. Chem. Ges.,

42, 182, 1443, (1909); 43, 568, (1910); 44, 3152, (1911); E. Erlenmeyer Jr. and

G. Hilgendorff, Biochem. Zeits. 74, 137, (1916); 77, 55, (1916).
2
)

E. Erlenmeyer, Jr., Biochemische Zeitschr., 97, 198, 231, 244, 261, (1919);

See however: W. Marckwald and R. Meth, Ber. d.d. chem. Ges. 39,

1176, (1906).
3
)

E. Erlenmeyer and G. Hilgendorff, Biochem Zeits., 35, 134,

(1911); 43, 445, (1912). Starting from Storax-cinnamic acid, first the dibromide

was prepared, which by destination with water-vapor was changed into racemic

phenyl-bromo-lactic acid. This was separated into its optical antipodes by
means of the cinchonine-salts. Each of the optically active acids was then

reduced by sodmw-amalgame, and the optically active phenyl-lactic acid thus

obtained, changed into cinnamic acid by crystallisation from strong hydrochloric

acid. This cinnamic acid was optically active (in alcohol, about 30'), and

gave by addition of bromine and boiling with water and sodium-hydroxide,

C6//3 CH CH CCONa,
finally the so^twm-salt of phenyl-oxy-acrylic acid'. \ /

which was also optically active and showed a rotation opposite to that of

the phenyl-bromo-lactic acid originally used. The optically active cinnamic
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activity, seems to prove, that the presence of the optically active

phenyl-lactic acid has induced a definite stereometrical arrangement
in the molecule of the cinnamic acid, so that its configuration can

no longer be explained as a molecule with "double bonds" between

the unsaturated carbon-atoms, but as having two free affinities.

A similar "asymmetrical induction" seems to be also observed by
him and his collaborators in the presence of other optically active

molecules like d-, or l-tartric acids, etc. Cinnamic acid is, according

to his experience, only therefore usually optically wactive, because

it is a "racemic" compound of its two optical antipodes, which,

however, tend to change very easily into one another.

In its molecules the two unsaturated carbon-atoms are situated

in a plane parallel to that of the four other substituents : C RH5 ,

C02H, H, and H', or to that of three of them and one of the empty

places at the corner of the tetrahedra corresponding with each of

the unsaturated carbon-atoms
;
in the last case, the four substituents

are evidently dispersed in space as situated in the corners of an

tVregular tetrahedron. According to Erlenmeyer, the six possible

forms of the different isomeric cinnamic acids hitherto observed,

might then possibly be represented schematically as follows:

H

COOH H' COOH COOH

Storax-a-Cinnamic Acid. Storax-B-CinnamicAcid. TriclinicCinnamicAcid.

acid is much more soluble in ether than an intentionally prepared mixture

of' inactive cinnamic acid -\-
active phenyl-bromo-lactic acid with the same

rotation.

Also from d-phenyl-bromo-lactic acid the mixed zinc-salt:

C6H5 CH(OH) CH2 COO Zn COO CH = CH CQH5

was prepared by reduction with zinc and alcohol] although the calculated

rotation of this salt should be less than -\- 138', it showed, a rotation of

-f- 55', i. e. about four times the expected value; a deviation which in fact

can only be explained by the supposition of the cinnamic acid being activated.

From this salt an optically active cinnamic acid could finally be isolated, which

showed a specific rotation of -}- 148', and even hemihedral crystalform.
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HO,C H' H0
2 C HO,C

A 1 1 o
-
Cinnamic Acid . Uebermanns IsocinnamicAcid.

Henmeijeft Isocinnamic Add .

The discovery of the optically active forms of cinnamic acid,

which even in the crystalline state should exhibit the non-super-

posable hemihedrism usually met with in the case of optical anti-

podes, will, if really confirmed in future, certainly have as a conse-

quence, that our ordinary views about the configuration of

wwsaturated organic molecules, must be modified in many respects,

and, therefore, these investigations deserve the greatest attention

of workers in this field. If true, doubtless also other cases of this

kind must be found, where such a stereometrical isomerism occurs.

As Erlenmeyer has suggested, in the light of his conceptions,

it seems even possible to give an explanation, at least in several

cases, of the phenomena of autoracemisation, of partially asym-
metrical synthesis, and of the Waiden-inversion. But a thorough
control of these remarkable results is highly desirable in any case,

before his views can be generally adopted.
The agreement, in by far the largest number of cases, of theory and

experience may be considered as an argument, that the representa-

tion of molecules by our stereometrical formulae, as proposed by
and derived from the original hypothesis of Van 't Hof f and Le

Bel, perhaps modified in some details of secondary inpor-

tance, - - allow us to give a fairly exact account of the most funda-

mental geometrical properties of such carbon-derivatives. In this

respect these formulae may be conjectured as something more than

mere outlines, and as really corresponding in at least the most

salient features to the true configuration of the atoms in space.

26. After these considerations, we may now proceed to the

second part of Pasteur's law, in so far as it connects the molecular

dissymetry with the appearance of enantiomorphous, hemihedral

crystal-forms of the two isomerides, and also examine more closely

the general validity of this conclusion.

Since Pasteur discovered the occurrence of such enantiomorphous-
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ly related, hemihedral crystalforms in the case of both tartaric

acids, and since he confirmed his original view by the study of a

great number of their crystallised derivatives, the question as to

the necessary mutual dependence of both phenomena has been

discussed several times by different authors.

While there seemed to be no justifiable doubt about the validity
of Pasteur's view that molecular dissymmetry is always the cause

of optical activity in the sense employed in the foregoing, serious

doubt has arisen in later times as to the correctness of Pasteur's

conclusion that molecular dissymmetry is necessarily connected

with the occurrence of enantiomorphous hemihedral crystalforms.
The reason of this is obvious. In fact, optical activity is a property

existing also in the amorphous state, in solution and in molten

masses. It is, therefore, a property which is directly and intimately
connected with the individuality of the single molecule and its

particular stereometrical configuration. The
'

crystalform, however,

is one of the many ways in which the symmetrical and periodical

arrangement of the crystal-molecules, or at least, of the crystal-

units, manifests itself.

It may be, and more recent experience seems to support this

view, -- that the crystal-molecules are identical with the chemical

molecules; or even that the conception of a single molecule in crystals

no longer holds. But also if this were true, the crystalline form,

while depending on the rather complicated arrangement of these

crystallographical units, is strictly speaking only a second-hand

phenomenon with respect to the interatomistic forces, which deter-

mine the stereometrical configuration of the atoms in the molecule.

There are many substances known, which crystallise in well-developed

hemihedral forms differing from their mirror-images, but which

do not exhibit any rotatory effect in solution or in the liquid

state: sodium-chlorate, rhombic magnesium-sulphate, etc., are well-

known instances of this. Why should not the reverse eventually

be possible?

Then, there seemed to be a number of apparent exceptions to

Pasteur's law, which gradually amounted to a considerable group.

Thus, Beeke *) in 1889 gave a review of about seventy cases of op-

tically active substances, not exhibiting hemihedral crystalline forms.

However, in his opinion Pasteur's theory must be still adopted,

F. Becke, Tscherm. Min. u. Petr. Mitth., 10, 464, (1889}; 12, 256, (1891).
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because there are a much greater number of valid cases, and

because the absolute proof of the presence or absence of hemi-

hedrism in many crystallographical researches was, or could not,

be given as a consequence of the rudimentary development of

the crystals, etc. Of course, the first argument is of no significance,

where just the special question is put, whether the connection of

both phenomena be a necessary one?

With respect to the absence of rotatory power in many hexa-

gonal and tetragonal crystals of these optically active substances,

he also agrees with the explanation of this given by Mallard 1

)

and Wyrouboff
2
), who, from their observations of crystals

exhibiting rotatory power, had already concluded that all these

crystals were really pseudosymmetrical intercalations, and warned

in 1894 against the dogmatic view, that an obligatory connection

between optical activity and hemihedrism should really exist. In 1896

and 1897 Walden 3
) again drew attention to the fact that the

number of cases in which a rotatory effect in solution was not

combined with the occurence of hemihedral crystalforms, increased

more and more, their number gradually approaching that of the

cases in which such hemihedrism was concisely determined.

He was, therefore, convinced that optical activity in solution or

in the liquid state in general, and the hemihedrism of the crys-

talline forms are phenomena of a different order, which have no

direct causal relation, although they often appear combined and

going parallel to each other.

On the other hand, Traube 4
) brought forward, that the excep-

tions mentioned by Walden are undoubtedly partially explained

by the fact that the corresponding crystallographical data are

very incomplete and rudimentary; the cause of this being, that

the most suitable circumstances were not found for the develop-

ment of hemihedral faces in the crystals, or that the investigation

was only applied to the external form, without the use of other

physical methods of research, as: pyro-electrical observations,

corrosion-figures, etc. He emphasizes the fact that only then a con-

vincing proof of the incorrectness of Pasteur's conclusion could

!) E. Mallard, TraiU de Cristallographique, II. p. 330, (1884).

2
)

G. Wyrouboff, Ann. de Chim. et Phys., (6), 8, 416, (1886); (7), 1, 10, (1894);

A. Descloizeaux, Ann. des Mines, (5). 14, 18.

3) P. Walden, Ber. d. d. Chem. Ges., 29, 1692, (1896); 30, 98, (1897).

*) H. Traube, Ber. d. d. Chem. Ges., 29, 2446, (1896); 80, 288, (1897).
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be given, if the apparently holohedral crystalform of an optically

active compound really showed corrosion-figures agreeing with

holohedral, but not with hemihedral symmetry; this demonstration

was, however, not given at that time, because in all cases in

which apparently holohedral crystalforms were mentioned, no

corrosion-figures could be obtained suitable for the purpose.
27. Experience has since shown, that hemihedrism could

really be found in a large number of cases, even in many of those

formerly looked upon as exceptions. It is a wellknown fact, that

hemihedral crystalline substances under special circumstances will

show the development of such hemihedral forms, which will remain

latent under other circumstances of crystallisation. Calcium-bimalate-

crystals do not ordinarily show hemihedral faces; but if some free

nitric acid be added to the saturated solution, they then constantly

appear. According to Pasteur 1
)

also the ammonium-salt, if crys-

tallised from pure water, does not exhibit hemihedral forms
; however,

these appear, if the substance be previously melted and then

recrystallised from the same solvent. Indeed, very minute amounts

of impurities or other substances purposely added to the solutions,

can influence to a rather high degree this tendency towards the

manifestation of hemihedral faces in such crystals.

Although many examples given by Waldenhave
thus lost their importance as arguments in this

principal question, however, the problem can by
no means be considered to be as yet finally settled.

In a crystallographical investigation of an

optically active ketone, lupeon: C3lHi8 (mpt:
170 C.), prepared in Van Romburgh's laboratory

by N. Cohen, the present author 2
)
found a sub-

stance which crystallises readily from acetone in

very beautiful, apparently holohedral rhombic

Crystafforms and crystals (fig. 16?). The corrosion-figures obtained

corrosion-figures on the faces of the prism, showed undeniably the
of Lupeon. existence of a horizontal plane of symmetry, and

they were, moreover, situated on adjacent prismfaces in such a

way, that the existence of two vertical planes of symmetry in the

crystals could not be doubted. The corrosion-figures were, therefore,

*) L. Pasteur, Jahresber. f. Chemie, (1852), p. 176; (1853), p. 410.

2
)

F. M. Jaeger, Zeits. f. Kryst. u. Miner., 44, 568, (1908); Cf.: N. H. Cohen,

Rec. des Trav. d. Chim. d. Pays-Bas, 28, 368, (1909).
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in full agreement with the apparently holohedral symmetry of the

crystals, as inferred from their geometrical form. Groth points
l
)

to the desirability of confirming this result by etching two adjacent

pyramid-faces. In any case, if hemihedrism here is also assumed,

it appears to be so feebly expressed, that no convincing proof

of its existence could hitherto be given; the optical rotation in

chloroform-solution, however, amounts here to: \a]D = + 63, 1.

This appreciable rotation surely bears no relation to the imper-

ceptible degree of hemihedral development.

In an analogous way it was found 3
)
that cholestenon: C27

#440,

(nipt: 78 C.), prepared by Windaus, crystallises each time from

ethylacetate in the prismatic class of the monoclinic system. Here

also there can be no doubt about the apparent holohedrism of the

crystal-form. It is possible that in molecules of such a magnitude

the influence of the asymmetric carbon-atom is almost effaced, and

that, therefore, its presence is by no means revealed in the crystalline

form of the compound.
28. With respect to the manifestation of hemihedrism, the

question may be asked, whether the two factors differentiated in

the above, namely: the influence of the stereometrical arrangement
on the one side, and that of the chemical inequality of the sub-

stitutes on the other side, have not a very different importance
in causing the occurrence of crystallographical hemihedrism and

that of optical activity respectively?

Now the study of compounds which contain partially asym-
metric atoms (p. 244) might give some insight into this question.

Investigations were, therefore, made in this laboratory into the

optical and crystallonomical properties of the salts of the trivalent

triethylene-diamine-cobalii-ion : [Co(Eine)^} ,
first prepared and

studied by Werner. Indeed, all substituents round the central

Co-atom are identical here: it will thus be only the influence of

the non-superposable configuration, that would be expressed in

the properties of the derivatives. We get rid here, therefore, of the

influence, which is in all these cases combined with the chemical

differences between the substitutes, as we have already explained

in dealing with the rotatory power of these substances.

Notwithstanding the enormous rotation which these optically

1) P. Groth, Chemische Krystallographie, III, p. 526, (1910).

2) F. M. Jaeger, in Groth's Chem. Krystall., Ill, 536, (1910); A. Windaus,
Her. d. d. Chem. Ges., 39, 2008, (1906).

18
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active salts exhibit, it was now found l
) that, although in some

cases enantiomorphism really manifested itself, this was, however,

reduced in several instances to an undetectably feeble degree.

The d- and l-bromides : {Co(Eine)3}
Br3 -f- 2#20, did not show

under any circumstances of crystallisation, the slightest indication

of hemihedrism; while in the case of the iodides: [Co(Eine)3}I3

-f- Hf>, and of the rhodanides: [Co(Eine)3}(SCN)3 ,
even the

corrosion-figures obtained were in full accordance \vith holohedral

symmetry, instead of being a proof of hemihedrism. If enantio-

morphism be present here, it is evidently manifested to such an

extremely slight degree, that it is not detectable by any crystallo-

graphical method at hand.

From this it becomes evident, that in this case there is surely

no rational proportion present between the enormous optical

activity of the molecules on the one hand, and the undetectable

hemihedrism on the other. The cause of this can only be the identity

of the dissymmetrically arranged substitutes: C2H^(NH2) 2
.

It becomes highly probable, therefore, that, while the optical

activity appears to be chiefly caused by the non-superposable atomic

arrangement as such, the enantiomorphism of the crystalline forms

seems to be more especially governed by the chemical contrast between

the substitutes placed round the plurivalent central-atom.

The occurrence of hemihedrism in some cases of this kind

proves, however, that the chemical contrasts between the sub-

stitutes mentioned, cannot be exclusively the cause of it. But it

seems highly probable that it is the preponderant factor, just as

the non-superposable configuration itself is for the rotatory power
of the molecule.

In the case of the potassium-rhodium-tri-o%alales\ [R/io(C? 4)3}K3 ,

which represent a similar case of symmetrical arrangement, the

enantiomorphism of both antipodes is certainly present; in that

of the corresponding cobalti-, and indium-salts also 2
). However,

there 'is also here a somewhat abnormal case, in so far, as the optically

active compounds belong to a much higher symmetrical system

1
)

F. M. Jaeger, Proceed. Kon. Akad. v. Wet. Amsterdam, Vol. 18, 52, 56,

63, 65, 67, (1915); Zeits. f. Kryst. u. Miner., 55, 209, (1915) ;
Chemisch Weekblad,

14, 718727, (1917); Receuil des Trav. d. Chim. d. Pays-Bas, 38, 171, (1919).

2
)

F. M. jaeger, Proceed. Kon. Akad. v. Wet. Amsterdam, Vol. 20, 263, (1917) ;

21, 203, 698, (1918); Chem. Weekblad, 14, 727, (1917); Receuil des Trav. d. Chim.

d. Pays-Bas, 38, 171, (1919); Revue generate des Sciences, 3.0, 298, (1919).
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(trigonal), than the racemic compound (triclinic). The symmetry
of the active components is Z)3 (fig. 170), while that of the racemic

compound is 7, the ternary and the three binary axes of the

dextro- and laevogyratory components being changed into a single

binary axis of the second order in the case of the optically inactive

crystals. The hemihedrism of the optically active forms is, notwith-

standing the enormous rotatory power, here only betrayed by

Fig. 170. Racemic and optically active crystals of Potassium-Rhodium-Oxalate.

the occurrence of a trigonal bipyramid; not even a single "trape-

zohedral" face was ever met with in these salts, as is the case

for instance, with dextro- and laevogyratory quartz-crystals.

A review of the remarkable rotatory dispersion of some of these

complex trioxalates is given in fig. iji.

Pope and Peachy
l
)
have studied the crystal-forms of the right-

and left-handed components of tetrahydroquinaldine-hydrochloride:

C10H13N, HCl -\- H20', although the molecular rotation for sodium-

light in alcoholic solution was almost 141, and in aqueous solution

122, the crystals of both antipodes (rhombic) not only showed

no trace of hemihedrism, but the corrosion-figures on (001 j,
ob-

tained by means of alcohol + water, were in full agreement with

holohedral symmetry. If, however, in the molecule:

CH - CH = C - CH 2 CH,

CH CH = C NH - CH . (CH 3),

W. J. Pope and S. J. Peachy, Journ. Chem. Soc. London, 75, 1066, (1899).
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whose molecular rotation for Sodium-light was about 85 at 20 C.,

the hydrogen-atom of the NH-group were substituted by a benzoyl-

radical, the rotation got the opposite algebraic sign and was

simultaneously increased enormously, its value amounting now to

00 1800 00 5000 5100 5200 53003WO 5500 5600 5?00 5800 MOO 6000 6100 6200 6300 6<tfiO 6500 6600 b?00 6800 6500 7000 flkttfow '/////7s .

Fig. 171.

Rotatory Dispersion of some complex Oxalates of trivalent Metals.

814; at the same time the hemihedrism of the crystalline forms

now appeared clearly manifested.

From these data it becomes evident, that the connection between

molecular dissymmetry and crystallographical hemihedrism, as sup-
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posed by Pasteur, may be hidden in many cases to such an extent,

that it may be doubtful as to whether it be present in such cases

at all. Surely in most cases a parallelism between both phenomena
is present: where the dissymmetry of the molecule is betrayed

by the rotatory power of the molecules, there is exhibited in

most cases also a non-superposable hemihedrism of the crystalline

forms. But this need not always be the case. The greater the

chemical contrast between the substitutes round the asymmetric
atom present in the moleciile, the greater chance will there evi-

dently be, that crystallographical hemihedrism will appear to accom-

pany the rotatory power of the substance. For the magnitude of

the rotatory power of the molecule, this chemical contrast between

the substitutes is only of secondary significance: here it is the non-

superposable stereometrical arrangement and the special nature

of the plurivalent central-atom, which are the preponderant condi-

tions. In this way we get a little more insight into the mechanism

of optical activity and its dependence on molecular configuration,

as the beginning of a fuller understanding of the relation between

Pasteur's law and Van 't Hoff-Le Bel's ingenious theory
1
).

29. The above remarks bring to the fore another general

question regarding optical activity and non-superposable hemihe-

drism. It is a wellknown fact, that there are a number of sub-

stances which crystallise in undeniably enantiomorphous crystal-

forms, but which behave quite differently with respect to

polarised light.

According to Pope 2
)

three classes of substances may be

distinguished, as:

a. Compounds exhibiting a rotatory power only in the molten

or dissolved state, which, therefore, must be an immediate mani-

festation of the dissymmetry of the molecules.

b. Compounds whose crystals show a rotatory power and

hemihedrism, but whose solutions are optically inactive.

c. Substances which exhibit a rotatory power, both in solution

and in the crystalline state. Among classes b and c a further

distinction can be made between such crystals, the rotatory power
of which is caused by pseudo-symmetrical intergrowth (Chapter VII),

1
)

F. M. Jaeger, Proceed. Kon. Akad. v. Wet. Amsterdam, Vol. 17 and 18,

(1915), loco cit; Chem. Weekblad, 14, 726, 727, (1917); Receuil d. Trav. d. Chim.

d. Pays-Bas, 38, 171, (1919).

2) W. J. Pope, Zeits. f. Kryst. u. Miner., 27, 406, (1896).
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and where it is a characteristic property of their structure. The

rotatory power of the last mentioned group may be quite different,

and in opposite directions in the crystals and in the liquid state,

as far as the rotation of the crystalline substance is an inherent

property, and not caused by pseudo-symmetrical intercalation.

Thus, according to Wyrouboff 1
), while for instance the

rubidium-salt of dextrogyratory tartaric acid deviates the plane of

vibration of the polarised light to the right, if dissolved in water,

the crystals of the substance are nevertheless laevogyratory. It is

difficult to give a rational explanation of such facts, as the

hypothesis of Liebisch 2
), who attributes the phenomenon to

the circumstance that in aqueous solution the salt is evidently

dissociated, while in the crystalline state it is not, -- can hardly
be maintained, considering Rimbach's measurements 3

)
on the

subject. This author found, that rubidium-d-tartrate, if not dissociated,

shows in solution a rotatory power of: a = + 25,63; and if

totally dissociated, of <x, + 19,51, The crystals, however, are

strongly laevogyratory: # being: 10,7, so that the influence

of the spiral molecular arrangement in the crystals far outweighs
that of the molecules themselves.

With respect to group a, the absence of rotatory power in the

crystals of these substances may be considered to be a quite

accidental case, and of only secondary importance. As a rule we

may suppose, that substances of this kind will ordinarily behave

like those of group c.

We have now, therefore, only to draw attention to the compounds
of group b. Their number is not very great, and of many of

them it could be shown to be 'at least probable, that the rotatory

power of their crystals is in numerous cases really caused by

pseudo-symmetrical intergrowth of lamellae 4
),

in the same way
as rotatory power is exhibited by the wellknown mica-piles of

Von'Reusch. In the previous chapter (p. 186, etc.) we have dealt

witht hese facts more in detail.

In every case, --as soon as crystals of sodium-chlorate, sodium-

bromate, sodium-dihydrophosphate, Schlippe's salt, sodium-uranyl-

J
)

G. Wyrouboff, Journ. de Phys., (-3), 3, 451, (1894).
2
)

Th. Liebisch, Gvundzuge der physik. Krystallographic, (1896), p. 428.

3
)

E. Rimbach, Zeits. f. phys. Chemie, 16, 671, (1895).

4) G. Wyrouboff, Ann. de Chim. et Phys., (4), 8, 412, (1886). E. Mallard,

Bull. Soc. Miner., 7, (1884); 8, (1885); cf. also Chapter VII.
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acetate 1

), etc., are dissolved in water, the optical activity entirely

disappears. From this the conclusion has often been drawn, that

the optical activity is merely due to the spiral arrangement of the

crystal-molecules, this involving a laevo-, respectively a dextro-

gyratory helicoidal assemblage, which breaks down as soon as the

crystals are dissolved 2
).

However, Barker and Marsh 3
) have recently drawn attention

to the fact that among these substances there are a number,
which should have binary helicoidal axes, especially those belong-

ing to the rhombic and monoclinic system. Such assemblages
should only exhibit true enantiomorphism if the constituting

units of the structure have themselves a non-superposable sym-

metry
1
). According to these authors, this will apply to such cases

as sodium-chlorate and -brornate, because their heteropolar ternary
axes are always combined in pairs. They conclude from their

reasonings, that molecules such as NaCl03 , MgSO^-\-7H2 } etc.,

must themselves have an enantiomorphous configuration.

To gain such a conception of the stereometrical configuration

of inorganic salts such as the above mentioned, the authors take

into account Werner's coordination-schemes. As might, however,

be expected in advance, they only succeed in finding such stereo-

chemical formulae in a few cases; thus in the case of magnesium-

sulphate (+7 Hff), and of sodium-chlorate, while in far the most

cases too little is known about the true constitution of the salts

considered, to make such an attempt successful. Even in the

case of the two salts mentioned, their suppositions seem rather

J
)

For sodium-uranyI-acetate, however, the pseudosymmetrical character seems

also to be proved beyond any doubt.
2
)

It was discussed, however, by the author (Proceed. Kon. Acad. Amsterdam,
Vol. 20, 268, (1917); Chem. Weekblad, 14, 723, (1917), that in systems of trueanti-

podes sometimes phenomena may be observed, which are completely analogous to

those found in the case of sodium-chlorate; etc. The optically active forms of

potassium-rhodium-trioxalate show abnormal rotation-dispersion, their specific

rotation passing through zero for a wave-length of 5970 A. U. For light of this

special wave-length the ternary system of solvent and both antipodes behaves in

apparently the same way as the binary system built up from the components:
solvent + sodium-chlorate. This is valid, however, only for that one, singular

point of the system, and only for a definite temperature and pressure.
3
)

Th. V. Barker and J. E. Marsh, Journ. of the Chem. Soc. London, 103,

837, (1913).
4
)

Cf.: St. Kreutz, Elemente der Krystallstruktur, I, p. 83,90, (1915).
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hypothetical: thus for magnesium-sulphate -\- 1 H20, one of the

seven molecules must be considered as "constitution"-water, and

the oxygen-atom is thought always to take the place of two

coordination-loci, being, in their opinion, a substitute of a dyad
character. When the atom is thought to be in the centre of eight

coordination-places, distributed in space as the corners of a cube,

they demonstrate that of the three possible arrangements for

the atom-complex: (SO4 ,
H2O)", two will have the symmetry Cj

and 5, (7 and //: fig. 772), but only one that of the axial group
>
3 ;

/// in fig j/2.

In their opinion, to (MgSO if
H20)+6 H2 could, therefore, only

be attributed the configuration ///; and in an analogous way

they deduce for the CIO'A-, resp. BrO'3-ion a configuration quite

analogous to that of Werner's triethylenediamine-salts (Z)3), in

OH OH

^
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might be thought entirely comparable to the temperature, at

which the racemic compound is resolved by spontaneous crystalli-

sation, just as this occurred in the case of sodium-ammonium-

racemate below its transition-temperature.

Although the idea is quite original, it can hardly be denied, as was

already said, that there is much artificiality in the application of the

coordination-theory in such cases. Notwithstanding this, one fact

may perhaps be brought to the fore, which might support the

above mentioned view in some respect: the addition-compound
of ethyl-piperidine and propyl-iodide (or of propyl-piperidine and

ethyl-iodide), i. e. the ethyl-propyl-piperidonium-iodide (mpt: 276 C.),

which was studied by De Brereton Evans 1
), presents apparently

a case quite analogous to that of sodium-chlorate in so far, as it

Fig. 173.

Ethyl-pYopyl-piperidonium-iodide.

can easily be obtained in enantiomorphous crystals of monoclinic

symmetry, both of which, however, give absolutely inactive so-

lutions here. The crystal-forms are reproduced in fig. i?j a and b\

they have the symmetry of the group C2 .

Just as in the case of sodium-chlorate, it was here also noticed,

that when a few large crystals separated from the solution, these

be the racemic form of this salt, and its transition-temperature

were nearly always of the same kind, whereas a large crop of

small crystals generally consisted of both forms in about equal

numbers.

Now in the case considered, there is indeed some probability,

that to the enantiomorphism of the crystalforms, corresponds a

real enantiomorphism of the atomic arrangement in the constituent

molecules : for, probably, we have to deal here with a derivative of

1) C. de Brereton Evans, Journ. Chem. Soc. London, 71, 522, (1897).
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a pentavalent, asymmetric nitrogen-atom which, as we have seen,

can in many cases exhibit a true molecular dissymmetry (p. 241).

There is some probability here, therefore, that the explanation

suggested above is valid in this case, and the great analogy of this

behaviour with that of the sodium-chlorate-crystals could also

easily persuade us to adopt in the last case a similar inter-

pretation of the phenomenon, as might be given for the piperi-

donium-deriva.tive .

In any case it seems worth while to keep these facts in mind,

and to gather more instances before rejecting completely the ideas

discussed above.

30. If we review once more, what the considerations dealt

with in this chapter have led to, we may say that the meaning
of Pasteur's famous law has become appreciably clearer after

all the investigations of the last decenniums, than it must have

appeared at the time when it was first formulated by the great

French discoverer. We may perhaps state these results in the

most concise way by summarising the typical features as follows :

1). An atomic arrangement in chemical molecules which has

only axial symmetry, involves the property of a possible fission

into enantiomorphously related isomerides endowed with optical

rotatory power.

2). If a chemical compound possesses a single asymmetrical

plurivalent atom (^>3) in the sense of Van 't Hoff and

Le Bel's theory, all conditions are present to make the com-

pound resolvable into such enantiomorphously related isomerides

endowed with optical rotatory power.

3). The possibility of a fission as indicated is, however, not

necessarily restricted to the special case of the existence of

an asymmetrical plurivalent atom; it is, contrary to this view,

merely dependent upon the presence of a stereometrical configura-

tion* which has only axial symmetry, and this may also occur if

no asymmetric atoms whatsoever, in the sense of Van 'tHoff

and Le Bel's theory, be present. Conversely: even if several of

such asymmetric atoms be present in the molecule, it may
occasionally be optically wactive and non-resolvable into enantio-

morphous antipodes.

4). The magnitude of the optical rotation seems to be deter-

mined much more by the configuration in space, than by the chemical

contrast between the substitutes; the nature of the plurivalent
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central atom, however, appears to be also of predominant signifi-

cance therein.

5). The non-superposable hemihedrism of the two antipodes in

the crystalline state, as postulated by Pasteur, is a phenomenon-
which in most cases runs parallel to the occurrence of optical

rotatory power, but it is not always necessarily manifested

with it. It is undeniable, that there is often a parallelism between

the two phenomena, but sometimes it may seem that there is no

such parallelism. The
. degree of non-superposable hemihedrism

seems to be chiefly dominated by the chemical contrasts between

the different substitutes, and perhaps has only an indirect relation

to the absolute magnitude of the optical rotatory power as

exhibited by the molecule in the dissolved state.

6). The general agreement between experience and theoretical

deduction as founded on the conceptions of Van 'tHoff and

Le Bel's theory regarding the stereometrical configuration of

the atoms in the molecules, proves that these stereometrical

formulae are not merely rough schemes, but that they even give

a fairly exact idea of the really existing geometrical relations in

such molecules, especially with respect to their configuration in space.

In the following chapter some other problems intimately con-

nected with Pasteur's law will be considered more in detail.



CHAPTER IX.

PASTEUR'S LAW (continued).

The Production of Racemic or Externally Compensated Sub-

stances from Inactive Materials. -- Chemical Reactions in which

Optically Active Substances take a Part. -- The Rotatory Power

of the Reaction-products in comparison with that of the original

Substances. The Waiden-Inversion: Facts, Problems, Explana-
tions. Reaction-velocity of Antipodes attacking Optically

Active or Inactive Substances. Artificial and Natural, or Sym-
metrical and Asymmetrical Synthesis. Production of Optically

Active Substances from Inactive Materials, influenced by other

Optically Active Substances. Partial and Complete Asymmetri-
cal Synthesis. The Final Problem. Experiments on Partial

Asymmetrical Synthesis. The Directional Influence of Asym-
metry or Dissymmetry, already existing, upon the Resulting

Dissymmetry of the Molecule. Asymmetrical Conditions during

Synthesis. Problems to be solved in Future.

"Les produits artiftciels n'ont done aucune dissymetric

moleculaire] et je ne saurais indiquer I'existence d'une

separation plus profonde entre les produits nes sous

I'influence de la vie, et tous les autoes .... II y a la

des mysteres, qui preparent a I'avenir d'immenses

travaux et appellent des aujourd'hui les plus serieuses

meditations de la science''.

L. Pasteur, 1860.

1. In the preceding chapter we have already had occasion

^to draw attention to the fact that special methods alone enable

us to obtain optically active substances from racemic compounds
or from externally compensated mixtures. Indeed, in all our

chemical reactions, as seen in our laboratories, we can only pro-
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duce optically inactive substances, if we start from the ordinary,

optically inactive reagents. The explanation of this is, that the

mechanical stability of both enantiomorphous atomic configurations

with respect to forces which have themselves a symmetry of the

second order, is evidently the same, and, therefore, the chance

that both enantiomorphous molecules be produced by such forces,

is the same also. Thus in our ordinary chemical reactions between

optically inactive molecules, equal quantities of both molecules

will be produced in a certain lapse of time; or at least, the acci-

dental deviations from equal quantities will be so slight that the

final product will appear optically inactive, even if examined by
our most exact experimental methods.

On the other hand, because, starting from optically inactive

materials we can in our chemical laboratory-processes only pro-
duce optically inactive substances l

) which, if resolvable at all,
-

can be separated into their antipodes by only a few and, moreover,
delicate and tiresome manipulations, --we can from this assume,

that in all probability the agencies which play a role in such

chemical processes, have really such symmetry-properties of the

second order, and that in consequence they determine chemical

and physical conditions during the reaction, which do not differ

from the mirror-images of these special circumstances.

Of course, conditions are different when optically active mole-

cules take part in the reaction. Here we can distinguish three cases:

a. An optically active substance acts upon an optically inactive,

non-resolvable compound, in such a way, that there is merely a

substitution of one of the atoms or radicals placed round the

asymmetric carbon-atom of the active molecule by another atom
or radical.

b. An optically active compound acts upon an optically inactive

substance in such a way, that a new asymmetric carbon-atom is

produced in the active molecule besides the one already present.

c. An optically active compound acts upon another optically

active substance, or upon an inactive, racemic or externally com-

pensated substance.

We shall consider these three cases subsequently in the following

paragraps.

2. If an optically active molecule acts upon an optically

J. A. Le Bel, Bull, de la Soc. Chim. Paris, 22, 346, (1874).
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inactive, non-resolvable substance in such a way, that one of the

atoms or radicals placed round the asymmetric carbon-atom is

substituted by another group or atom, then a product will generally

be obtained, which itself is also endowed with rotatory power.

Whether this will be greater or smaller than that of the original

substance, cannot be predicted, because general rules concerning

the influence of the chemical nature of substitutes on the magnitude
of the specific or molecular rotation of the molecule in solution,

have up till now not been established with great success. l

)
As

already mentioned, a number of experimental investigations of

this kind have been made by Guye, Walden, Patterson,

Frankland, Rupe and many others; but definite laws which

might hold in al cases, have not yet been found.

If no racemisation occurs during the reaction, we can suppose

that the new configuration in space will in general correspond

to that of the original antipode; however, this is certainly not

always the case, as a change of place of the radicals round the

asymmetrical atom during the reaction must indeed be considered

a strong possibility
2
).

Racemisation under such circumstances is

not seldom observed, especially if a phenyl-group be directly

linked to the asymmetrical carbon-atom; - - so that the final

reaction-product appears to be inactive. This sustains the view

that a certain "mobility" of the substitutes round the asymmetric

atom must be supposed to exist, which under favourable circum-

stances may lead to a complete interchange of place between

the four radicals round the asymmetrical central-atom, and to a

final rearrangement in such a way, as to reproduce the enantio-

morphous configuration of the original molecule.

But even if no such change of configuration as is pictured

here, takes place during the process, we are by no means certain,

that the optical rotation of the obtained product will not have

the opposite algebraic sign to that of the original molecule.

x
)

The theoretical development of the phenomenon of optical rotation is yet

far from being accomplished; see about this: G. H. Livens, Phil. Mag., (6), 25,

817, (1913); 26, 362, 535, (1913); 27, 468, 994, (1914); 28, 756, (1914) ;
M. Born,

Dynamik dev Krystallgitter, (1915); H. Rupe, Ann. der Chem., 409, 327, (1915);

414, 99, 111, (1917).
2

)
Cf. also: Ch. van Loon, Proefschrift Delft, (1919), p. 74. The reduction

of indene-oxide gives mixtures of cis- and trans-hydrtndene-l-2-diol, in which the

5-isomeride is predominant if the solutions be acid, but in which the ^raws-

compound preponderates in alkaline solutions.
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Instances of this are wellknown: the salts of many optically

active acids show a rotation opposite to that of the acid itself,

and the same may be the case when organic optically active bases

are transformed into their salts by addition of ordinary in-

organic acids.

Thus the zinc-salt of dextrogyratory lactic acid l
) is itself laevo-

gyratory, arid the same is true for the sodium-salt of dextrogyratory

ot-nitrocamphor ; laevogyratory glycerinic acid gives a dextrogyratory
calcium-salt 2

). The chlorohydrate of dextrogyratory a-amino succinic

acid is laevogyratory
3

;
and the opposite rotations of the derivatives

of aspartic acid are wellknown, according as theH of the COOH-group
be replaced by metal-atoms, or that a salt be formed by addition of

an acid to the amino-group
4
). In these cases the circumstances

during the chemical process are such as to make a rearrangement
of the original molecule highly improbable, because with a few pre-

cautions any change of temperature may be avoided. The problem
of-explaining the change of sign of the rotatory effect after sub-

stitution, cannot be solved at present, as we are still waiting for a

sufficient dynamical explanation of the molecular rotatory power
in its dependence on the dissymmetrical arrangement of the atoms

in the molecule. Here lies a problem of the highest interest and urgen-

cy for mathematical physicists, and it is to be hoped that some

advance will be made in this difficult matter within not too remote

a future.

3. In this connection we have, however, to consider a pheno-
menon which is also of high importance for the problems with

which we shall have to deal further-on in this chapter. I mean
the remarkable inversion discovered by Walden 5

)
in 1896, and

which may best be elucidated by some examples.
If in laevogyratory malic acid, the hydroxy/-group be replaced

by chlorine, a dextrogyratory chloro-succinic acid results. This in

itself is not particularly remarkable, because in accordance with

what has been said above, both substances can have analogous

J
)

E. Fischer and A. Skita, Zeits. f. physiol. Chemie, 33, 190, (1901).
2
)

E. Fischer and W. A. Jacobs, Ber. d. d. Chem. Ges., 40, 1068, (1907).
3

)
E. Fischer and K. Raske, Ber. d. d. Chem. Ges., 40, 1053, (1907).

4
)

V. Meyer and P. Jacobson, Lehrb. d. Organ. Chemie, 2e Aufl., I, 2, 778,

779, (1913).

5) P. Walden, Ber. d. d. Chem. Ges., 29, 133, (1896); 30,2795,3146, (1897);

32, 1833, 1855, (1899); 40, 2470, (1907); etc.; Optische Utnkehr-Erscheinungtn,

Braunschweig, (1919).
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configurations in space, notwithstanding their opposite rotations.

But if this chloro-succinic acid is transformed into malic acid again,

the last appears to be this time the dextrogyratory antipode. In

this process there must have occurred at least one inversion, as

the dextro- and laevogyratory malic acids have certainly enan-

tiomorphous configurations. It is, however, questionable whether

the inversion took place during the change of the malic acid into

the chloro-succinic acid, or during the transformation of the last

acid into the final dextrogyratory malic acid. Moreover, it is most

remarkable, that evidently the inversion is intimately connected

with the particular nature of the substance by which the chloro-

succinic acid is finally transformed into the malic acid', for if

silver-oxide or silver-carbonate be used for this purpose, the final

product is the dextrogyratory malic acid, while, when potassium-

hydroxide or ammonia be used in the reaction, the original laevo-

gyratory acid is reproduced.

Quite independently of the question, as to whether or not a

rearrangement of the groups round the asymmetrical carbon-atom

takes place in the transformation of l-malic into d-chloro-

succinic acid, or in that of the latter into one of the enantio-

morphous malic acids, an "inversion" must obviously have occur-

red during the process.

It is possible, as has been pointed out by several investigators
1
),

to pass through a complete cycle of such changes, if the corresponding

reactions be only suitably chosen. As an example of this, the

following cycle may be mentioned:

+ KOH
] ftPMr\Cf\7YZl "tT\T\7&

aspartic acid

laevogyratory

laevogyratory

bromo-succinic acid
PBr

dextrogyratory

malic acid

+ Ag2

laevogyr&tory

malic acid

+

+

dextrogyratary

bromo-succinic acid

+ KOH

If laevogyratory aspartic acid be treated with nitrosyl-bromide,

it is changed into the laevogyratory bromo-succinic acid
; this, however,

*) P. Walden, loco cit.; Journ. de Chim. phys., 9, 164, 176, (1911); A. Mac
Kenzie and G. W. Clough, Journ. Chem. Soc. London, 93, 811, (1908); 95, 777,
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will be changed by an aqueous solution of ammonia into the dextro-

gyratory aspartic acid. By the same succession of reactions the latter

will now be transformed into the original laevogyratory acid, etc.

These highly remarkable "inversions" have been observed almost

exclusively in cases in which the atoms and radicals: Cl, Br, OH,
and NH2 ,

when linked directly to the asymmetric carbon-atom,

are replaced by a cyclic of substitutions; however, as has already
been said, the occurrence of a change of the optical rotation from

positive to negative, or vice versa, is greatly dependent on the

reagents employed in the transformations. *)

Fischer 2
) has made an application of the inversion produced

by the mutual substitution of halogen-atoms, and the ammo-group,
for the purpose of obtaining both the antipodes of racemic

polypeptides, as for instance in the case of l-alanyl-glycine.

A certain, although small number of regularities have been

found. Thus the substitution of hydroxyl-groups in hydroxy-acids

and their ethers by Cl or Br, is commonly connected with a change
of the rotatory effect from positive to negative, and vice versa,

if PC15 and PBr5 be used in the reaction. An exception to this

rule, which in many cases appears to hold good, was found by
Guye and Jordan 3

), who showed that the laevogyratory isobutyl-

ether of normal-a-hydroxy-butyric acid: CH3.CH2.CH(OH).COOC^H9 ,

was transformed by PC75 into a laevogyratory chlorinated, but

by PBr5 into a dextrogyratory brominated derivative. However, even

in this instance it is by no means certain, that these two cases also,

correspond to a real difference in configuration; for it is quite

possible, that if both Cl and Br come into the same place in space

(1909); 97, 1016, 2564, (1910); 101, 390, (1912); P. F. Frankland, Journ. Chem.

Soc. London, 103, 713, (1913); B. Holmberg, Ber. d. d. Chem. Ges., 45, 1713,

(1912); Journ. f. prakt. Chemie, 87, 456; 88, 553, 590, (1913); B. Holmberg and

K. J. Lenander, Arkiv for Kemi, Min., och Geol., 6, (1916) and (1917); B. G. W.

Clough, Journ. Chem. Soc. London, 113, 526, (1918); P. Karrer and W. Kaase,
Helv. Chim. Acta, 2, 436, (1919); W. P. Wynne, Chem. News, 108, 146, (1913).

J
)

Cf.: O. Lutz, Ber. d. d. Chem. Ges., 41, 841, (1908); Zeits. f. phys. Chemie,

70, 256, (1909); B. Holmberg, Journ. fur prakt. Chemie, N. F., 87, 471;

88, 553, (1913).
2
)

E. Fischer, Ber. d. d. Chem. Ges., 39, 2895, (1906); 40, 489, (1907); Cf.

also: E. Fischer and K. Raske, Ber. d. d. Chem. Ges., 40, 1051, (1907); E.

Fischer and H. Scheibler, ibid., 41, 889, 2891, (1908); 42, 1219, (1909); E.

Fischer, H. Scheibler and R. Groh, Ber. d. d. Chem, Ges., 43, 2020, (1916);

E. Fischer, Chem. Zeitg., (1910), p. 825.

3
)

Ph. A. Guye and Ch. Jordan, Bull, de la Soc. Chim., (3), 15, 495, (1806).

19
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as the HO-group formerly occupied, the respective substitution-

products could yet have oppositely directed rotations.

Moreover, in replacing halogen-atoms by hydroxyl-groups, the

remarkable difference between the action of Ag2 and KOH, as

already stated above, has been repeatedly observed. According to

Biilman 1
)

this difference of action is intimately connected with

the fact, that the reaction with silver-compounds goes on very

rapidly, while that with potassium-hydroxide on the contrary very

slowly. The rapid change would occur without a change of con-

figuration, the slow one with a rearrangement of the atoms in space.

Mercuric oxide also seems to act upon halogenated acids in the

same way as silver-oxide.

The change of an amino-3.cid into an hydroxy-acid by means

of nitrous acid, is a very quick reaction
; therefore, no change of

configuration would take place here, and Biilmann concludes,

that the aspartic acid and the malic acid in plants would have

the same spatial arrangement of the groups placed round the

asymmetric carbon-atom.

4. But here we touch the crucial point of the problem under

consideration: for how can we be sure whether the original asym-
metrical configuration has been changed during the process or not ?

If the reactions without change of configuration be named normal,

and those accompanied by such a change abnormal substitutions,

we may ask: when must a chemical reaction be considered as a

-normal and when as an abnormal one?

The answer to this question has occupied a number of chemists,

because it is evidently closely related to the particular views on

the mechanism of substitution in such asymmetric molecules, and

several explanations of the Waiden-inversion have been suggested

by various authors. 2
)

Some of them, especially Armstrong, Gadamer, and

1
)
E. Biilmann Ann. der Chemie, 338, 335, (1911).

2
)

H. E. Armstrong, Journ. Chem. Soc. London, 69, 838, 1399, (1896); E.

Fischer, Berl. Ber., 40, 492, (1907); Ann. der Chemie, 381,312, (1911) 386,374,

(1911); 394, 352, (1911); J. Gadamer, Chem. Zeitg., 34, 1004, (1910); 36, 1327,

(1912); J. A. Le Bel, Journal de Chim. phys., 9, 323, (1911); A. Werner, Ber.

d. d. Chem. Ges., 44, 873, (1911). E. Biilmann, loco cit.; P. F. Frankland,
loco cit., p. 738; cf. also: G. Senter, Journ. Chem. Soc. London, 107, 638,

(1915); 109, 1091, (1916); S. Arrhenius, Theorien der Chemie, 2e Aufl., (1909),

p. 83; E. Mohr, Chem. Zeitg., 36, 984, 1912); P. Pfeiffer, Lieb. Ann., 383,

\23, (1911).
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Fischer, make the supposition, that during the reaction instable

intermediate compounds must necessarily be formed, in order to

preserve a continuous asymmetry of the molecule while the

substitution takes place; and Fischer points out, that precisely

the substitutes NH2 , OH, Cl, etc., with which the Waiden-inver-

sion ordinarily occurs, are those which have a "residual affinity".

This enables them to form such intermediate compounds, which

are then later decomposed, and the place vacated by the old

substitute is occupied by the new one, or by one of the three

already present.

Werner makes a suggestion to account for the phenomenon

by supposing that the other substitutes have a guiding influence

which tries, by means of attraction, to bring the new substitute

into the range of the three others; the mechanism, as proposed

by this author, does not involve any reference to the fact that

one group would take the place formerly held by another.

The most recent investigations of Debye *)
on the molecular

structure of the graphite-crystal, made by means of Ron tgen-

rays, also throw some new light on the problem under conside-

ration. Debye was able to demonstrate that the carbon-atom

not only acts with four equal valencies which are directed in

space as supposed by Van 't Hoff, but that this atom can

also act with three valencies of equal strength, while the fourth

is considerably reduced in comparison with the others, acting in

a direction perpendicular to the plane of the last, and with only a

very slight intensity. If this be true, we might suppose that during
the chemical process a passing detachment of the radical takes

place, and that as soon as the new substitute arrives, the resti-

tution of this fourth reduced valency into the original state of

four equal valencies can occur towards the one or towards the

other side of the plane of the three others, both these events

finally leading to two enantiomorphous tetrahedron-configurations.

Evidently the view exposed here has some analogy with

H o 1 1 em a n
'

s attempt to give an explanation of the W a 1 d e n-

inversion from the standpoint of the electron-theory
2
).

J
)

P. Debye, Phys. Zeits., 18, 291, 483, (1917).

A review of the numerous attempts to explain the mechanism oi the

W a 1 d e n-inversion is published by P. Walden in his monography: Optische

Umkehr-Erscheinungen, Braunschweig, (1919), page 112159.

2) A. F. Holleman, Receuil des Trav. d. Chim. d. Pays-Bas, 32, 125, (1913).
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Such an intermediate detachment of the radicals round the

asymmetric atom, but under simultaneous formation of ethylene-

derivatives, was also previously proposed by Nef *)
in his explana-

tion of phenomena of rearrangement in general. It still, however,

remains unexplained, why such a change of place does not always
lead to complete racemisation, as both antipodes have the same

mechanical stability.

However, all these suggestions can hardly be considered other-

wise than made "pour besoin de la cause", and to be hypotheses
which in general appear quite arbitrary, although perhaps they are

useful in some special cases. Frankland, in his summary of

the facts observed up till now with respect to the remarkable and

highly important phenomenon of the Walden-inversion, is un-

doubtedly quite right, when he states: "it appears that there

does not exist at the present time any criterion by which the

relation between the configuration of an optically active compound
and that of its derivative, can be decisively ascertained". All

assumptions as to the occurrence or non-occurence of a change
of configuration during such a substitution, appear to be merely

arbitrary and hypothetical.

Such assumptions for instance are: that the change of rotatory

power from positive to negative, and vice versa, if PC15 or PBr5

act upon hydroxy-acids or their ethers, is really accompanied by
an inversion of the configuration round the asymmetric carbon-

atom; that eventually the same takes place when the halogen-

acids: HCl, HBr, etc., themselves act upon such hydroxy-acids
2
);

that the same occurs when SOC1.2 acts upon such molecules 3
) ;

that NOBr and HN02 , acting upon ammo-acids, do not cause a

change of configuration
4
); that, on the other hand, the substitution

of NH2 by a halogen-atom is commonly accompanied by a change
of configuration; etc. etc.

The question is undoubtedly enormously complicated. In truth,

every substitution of an atom or radical by some other, must

always have a distortion of the molecule as a necessary conse-

!) J. U. Nef, Journ. Amer. Chem. Soc., 30, 746, (1908).
2
)
A. MacKenzie and H. B. P. Humphries, Journ. Chem. Soc. London, 97, 121,

(1910); A. MacKenzie and H. Wren, ibid., 97, 1355, (1910).
3
)
A. MacKenzie and F. Barrow, Journ. Chem. Soc. London, 99, 1923, (1911).

R. H. Pickard and J. Kenyon, Ber. d. d. Chem. Ges., 45, 1592, (1912).
4

)
E. Biilmann, Ann. der Chemie, 388, loco cit., (1911).
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quence; and every thing evidently depends on the relative effect

of this distortion in comparison with that necessary to cause a

real interchange of place leading to a consequent inversion of the

stereometrical arrangement round the asymmetric carbon-atom.

The important recent researches of Senter 1

)
demonstrate con-

vincingly that the difficulty is yet much greater than has been

hitherto realised, and that the phenomenon itself is also much more

complicated than was at first thought. This author found that, if

in optically active ammonium-phenvl-chloro-acetate the chlorine-atom

is sustbituted by an amino-group, optically active products will

result, whose rotation is positive or negative, according to the special

nature of the solvent taken as reaction-medium. He stated, for

instance, that if water were used as a solvent, the product had the

opposite direction of rotation to that of the original substance
;

whereas if aceto-nitrile were the solvent, the resulting amino-derivative

showed a rotation of the same kind as before.

Later a dozen optically active solvents were investigated in

this way, and the fact referred to above was clearly confirmed.

Senter concludes that it is becoming more and more evident,

that a satisfactory explanation of the Waiden-inversion is not

likely to be reached at present, and that it must be considered

premature to enter now upon a full discussion of the significance

of the results obtained with respect to this highly interesting

phenomenon which, beyond all doubt, also plays an important
role in the chemical synthesis of the living organisms.

5. Now we have to consider the two remaining cases: when
an optically active molecule acts upon an inactive one so as to

produce a new asymmetric carbon-atom in the already active

molecule, and the other case, when an optically active molecule

acts upon another optically active substance, or upon a substance

which is either externally compensated or racemic.

Indeed, among these reactions we can safely include those,

where an optically active substance also acts upon a racemic or

an externally compensated substance. For as racemic compounds

1) G. Senter, Journ. Chem. Soc. London, 107, 638, (1915); G. Senter and H. D.

K. Drew, 109, 1091, (1916); G. Senter and S. H. Tucker, Journ. Chem. Soc.

London, 109, 690, (1916); G. Senter and G. H. Martin, ibidem, 111, 447, (1917);

113, 140, (1918); G. Senter, H. D. K. Drew, and G. H. Martin, ibid., 113,

151, (1918).; G. Senter and S. H. Tucker, Journ. Chem. Soc. London,

.113, 140, (1918).
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in solutions are at any rate dissociated to a large extent, in some

cases totally, into their optical antipodes, and as inactive mixtures

will of course only act, therefore, as if their right- and left-handed

components were completely free,
- - the action of such inactive,

resolvable substances upon optically active ones thus belongs here,

and not among the cases dealt with in the preceding paragraphs.
In the first place we may remark that in general the affinity-

constants of two antipodes A and A' with respect to another

substance B, appear to be the same in all cases, even if B itself

is an optically active compound. In the last case, however, there

will be a certain difference of reaction-velocities, because the products
formed are no longer mirror-images of each other. The speed with

which AB is formed, need not be the same as when AB' is

produced.
l
)

Therefore, if an optically active compound B acts upon a

racemic or externally compensated substance AA' (or A + A'),

and if the reaction, be stopped at a well-chosen moment before

completion, it will turn out, that wwequal quantities of AB andA'B
will have been produced during that lapse of time, and thus, if the

mixture AB + A'B be isolated and B removed from it, the sub-

stance AA' obtained will no longer be optically inactive, but will

show a positive or negative rotation, because there is now some

excess of one of the antipodes A or A'. Of course, if the original

compound AA' which has not yet combined with B, be examined

now, it will also show an optical activity which is opposite to that

found with the portion of AA' attacked, because there is now an

excess of the other antipode A' or A in the mixture.

l
)

L. Mam lock, Stereochemie, page 33, (1907); A. Werner, Neuere An-

schauungen auf dem Gebiete dev anoYganischen Chemie, 3e Aufl., page 313,

(1913); A. F. Ho 11 em an, Receuil des Trad. d. Pays-Bas, 32, 175, (1913);

J. Stark, Jahrb. fiir Electr. und Radioact., 11, 206, (1914). Of course, the

fact .that the affinities are the same between A and B, and between A' and B,

need not exclude the possibility of unequal reaction-velocities in both cases. In

the reactions:

A + B ~^LAB, and: A' + B~j*~ A'B.

the velocities are characterised by he velocity-constans Aj and k^, and k
2
and

k'
2

. The affinities, however, are expressed by a relation of the form: RTlnK,
in which the equilibrium-constant K is the same for both reactions and equal to

*i *2_JL or to JL.
k'l k'2

Now (j k\] and (kz
k'

9)
can very well be different from each other, while

the quotients are in both cases the same.
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It has been stated in a few cases l

) that the chemical affinity

of both enantiomorphous molecules of the same compound is the

same, even towards an optically active compound. Fischer 2
)

had observed that there is no difference in the inversion-velocity

of cane-sugar by dextro- or laevogyratory camphoric acid. But as

the inversion-velocity is directly proportional to the concentration

of the //-ions, this result cannot astonish us. The same appeared
to be the case if saccharose were hydrolyzed by d-, and l-camphor-

(B-sitlphonic acids. 3
)

The two antipodes of an active acid will also divide an opti-

cally active base equally between them: in the end there will

be 50% of the one salt and 50% of the other, if only the quantity
of the added base be sufficient to neutralize the acid, and the

reaction have time to reach its final equilibrium.

6. A question of importance is: will there be a difference

in the reaction-velocity of two antipodes when the reaction takes

place in an optically active solvent? For if there be an active

compound in any solvent, we always have to deal with such an

active medium. Such an effect might be expected e. g., if both

antipodes had a different solubility in the active solvent, or a different

diffusion-velocity. As to the solubility, we have indeed some

experimental data which seem to indicate that the influence of

such a medium, if present at all, can only be very slight.

Tolloczo 4
) investigated the question whether racemic acid and

racemic mandelic acid, if partitioning between an inactive and an

optically active solvent, would show a partial separation into

their antipodes. If water and laevogyratory amyl-alcohol were used

as solvents, no effect could be detected in the case of racemic

acid, nor in that of the mandelic acid.

He concludes that the process of solution is in this case not

accompanied by the formation of any stronger or weaker com-

pounds between solute and solvents.

Goldschmidt and Cooper
5
)
determined the solubility of the

.!) W. Marckwald and A. Chwolles, Ber. d. d. Chem. Ges., 31, 783, (1898).
2

)
E. Fischer, Ber. d. d. Chem. Ges., 32, 3617, (1899). Cf. also: W. Marck-

wald and A. MacKenzie, ibid., 33, 208, (1900).
3
)

R. Caldwell, Proceed. Roy. Soc. London, 74, 184, (1904).
4

)
St. Tolloczo, Zeits. f. phys. Chemie, 20, 412, (1896).

3
)

H. Goldschmidt and H. C. Cooper, Zeits. f. phys. Chemie, 26, 714, (1898) ;

H. C. Cooper Amer. Chem. Journ., 23, 255, (1900).
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optical antipodes of carvoxime in dextrogyratory limonene as a solvent,

and could not find any distinct differences. The partial separation
of an externally compensated mixture of the ammonium-sodium-

tartrates in solutions of dextrose, as described by Kipping and

Pope J

), seems, however, a fact in contradiction to this, so that a

new investigation of the solubilities under these circumstances

appears necessary. On diffusion-velocities of active substances in

optically active solvents no investigations have hitherto been made.

The experiments on the solubilities of such antipodes in active

solvents just referred to, may give some insight into the causes

of the negative results hitherto obtained in all attempts to

find a difference in reaction-velocity for both antipodes, if optically

active liquids be used as solvents.

The influence of the solvent on the reaction-velocity is still a

very obscure problem. It may be a pure "catalytic" one 2
),

in the

sense in which this expression is commonly used, when there is

no further explanation possible for the questions at hand.

If so, the final equilibrium will not be influenced by the

presence of such a solvent, and there seems to be only a slight

chance that any positive result can be expected from the experi-

ments indicated above.

Secondly, the solvent may really take an active part in the

reaction, for instance by means of the intermediate formation

of unstable compounds with the molecules of the reacting sub-

stances. In such cases also an influence upon the final state of

equilibrium will be present, or at least, may be present. If

B represents the solvent, such a case may occur when there is

an appreciable difference in solubility between the thus formed

compounds ABn and A'Bn in the optically active medium. But

as we have seen in the preceding pages, this difference, if present

at all, seems in general not to be very great, and even in this

more favourable second case, therefore, no great expectations of

positive results in experiments of the above mentioned kind

should be entertained.

Experiments to demonstrate the existence of such differences

in reaction-velocity, if the processes go on in a dissymmetrical

medium, have already been made from time to time.

*) F. S. Kipping and W. J. Pope, Proceed. Chem. Soc. London, (1897). p. 113.

2
) J. H. Van 't Hof f, Vorlesungen uber theoretische und physikalische Chemte,

I, (1898), p. 210, 216, 218.
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Thus Boyd l
)

tried to reduce benzoyl-formic acid by means of

hydrogen in aqueous solutions of dextrogyratory tartaric, or laevo-

gyratory mandelic acid; the mandelic acid produced in this reduc-

tion was completely inactive, or its activity corresponded to that

of the active acid used in excess.

Kipping
2
) studied the reaction between KCN or HCN,

and benzaldehyde, in an alcoholic solution of optically active

camphor, or the reduction of pyruvic acid in an aqueous solution

of d-glycose; the results were equally negative. E. and O. Wede-
kind 3

) investigated the addition of allyl-iodide to methyl-benzyl-

aniline in optically active limonene as a solvent, but they could

only obtain optically inactive products, and the same was true,

when they used as solvents l-menthol or l-chloro-methyl-menthyl-ether.

From these experiments it may be concluded that it is highly

improbable that a positive difference in reaction-velocity would

be observed in the case of both antipodes, when optically active

liquids are used as solvents, namely, so long as they do not

themselves take part in the reactions. This may also be concluded

from the experiments of Bredig and his collaborators: thus

Bredig and Balcom 4
) stated, that d- and l-campho-carboxylic

acids are split into camphor and carbon-dioxide equally quickly
when dissolved in d-, or in l-limonene. But, as we shall see later,

as soon as optically active bases (like quinine, quinidine, nicotine,

etc.) are used in this case as solvents, which undoubtedly take

part in the reaction, combining with the acids to form inter-

mediate compounds, the differences in reaction-velocity of

both antipodes can clearly be demonstrated.

7. Thus, if the components A and A' really combine with

the active molecule B, a difference in reaction-speed will most

probably be found, notwithstanding the equal affinity of both

antipodes towards B, because there is some guiding influence of

the pre-existing dissymmetry of B in the formation of the com-

pounds AB and A'B.

It is on this principle that the new method of fission of race-

moids, proposed in 1899 by Marckwald and MacKenzie 5
),

!) D. R. Boyd, Inaug. Dissert., Heidelberg, (1896).
2
) F. S. Kipping, Proceed. Chem. Soc., 16, 226, (1900).

3
)

E. and O. Wedekind, Ber. d. d. Chem. Ges., 41, 456, (1908).
4
)

G. Bredig and R. W. Balcom, Zeits. f. phys. Chemie, 41, 740, (1908).

5) W. Marckwald and A. MacKenzie, Ber. d. d. Chem. Ges., 32, 2130, (1899).
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was founded; and it is this difference in the velocity of forma-

tion, as a consequence of the directing power of a pre-existing

dissymmetry, which doubtless gives the explanation of the apparent
difference between artificial and natural synthesis, with which we

shall now have to deal somewhat more in detail.

Indeed, in the preceding chapter we have had occasion to see,

how in the laboratory optically active substances can only be

obtained from inactive materials, if one of the special methods

of fission proposed by Pasteur is suitably applied. If in artificial

synthesis we start with optically inactive materials, we only can

get optically inactive compounds, even when a new asymmetrical
carbon-atom is produced in the molecule under investigation.

Our synthetic products are always racemic substances or exter-

nally compensated mixtures; and the explanation of this has

always been given by drawing attention to the fact that in

reactions, in which only symmetrical causes play a role, enantio-

morphously related molecules must have the same mechanical

stability. This very assumption has been the principle which led

to the discovery of our usual fission-methods by Pasteur.

It must, however, be clear on closer examination that, properly

speaking, in these niethods of fission we in the end always make
use of the phenomena of life, as manifested in the chemical syn-

thesis which occurs in the cells of animals and plants. If we leave

the method of fission by spontaneous crystallisation aside for the

moment, we can only use for our purpose: either the combination

of racemoids with the optically active acids or bases which are

isolated from plants or animals; or we make use of the apparently
selective action of ferments and enzymes, which also are only pro-

duced by living cells.

The living plant or animal, in striking contrast to what we

observe in our laboratory-experiments, seems to produce directly

from inactive materials such as carbon-dioxide, water, ammonia,

hydrocyanic acid, etc., the optically active substances which are met

with in its organism, unaccompanied by their optical antipodes.

The majority of proteids are laevogyratory, the bile-acids dextro-

gyratory. Plants always produce the same optically active coniine,

nicotine, strychnine, etc., and the quantitative experiments of

Brown and Morris J
) on the formation of the carbohydrates

H. T. Brown and G. H. Morris, Journ. Chem. Soc. London, 63, 604, (1893).
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in plants seem to prove beyond doubt, that exclusively d-glucose

and d-fructose are produced in vegetable cells, not their laevo-

gyratory antipodes. The direct production of optically active sub-

stances, therefore, seems to be the very prerogative of life; and

the cases are extremely rare, where racemic compounds are met
with in the living tissues.

An exception of this is found in the case of pinene, extracted

from the leaves of Myristica fragrans Htn, which, according to

Van Romburgh 1

), is sometimes laevogyratory, sometimes

dextrogyratory,
- - it being impossible to tell under what particular

circumstances the one or the other of the antipodes is produced.
In a recent publication

2

) Hess and Weltzien try to de-

monstrate that, although in the animal organisms commonly a

real asymmetrical synthesis takes place, in plants, however, also

"symmetrical" synthesis may occur, especially in so far as con-

cerns the formation of alkaloids. Thus, coniine and methylconiine

are found in Conium maculatum in both the active forms or as

racemic compound. The atropine obtained from Atropa belladonna,

although possessing in its molecule the asymmetrical carbon-atom

of the radical of tropic acid, is optically wactive. The same is

the case with laudanine and scopoline. They emphasize, that

direct experiments clearly show, that this optical inactivity cannot

be caused by autoracemisation during the process of separation

of these bases from the plants.

Neuberg 3
) found, that an inactive pentose was execreted by

the human organism in some cases of so-called "pentosuria",
-

which, however, according to af Klercker, is a mixture of the

racemic compound with an excess of the laevogyratory component,
4
)

while Elliot and Raper 5
)

find it more closely related to a

dextrogyratory ribose, than to a racemic arabinose, as Neuberg
thinks it to be.

*) Private communication to the author by prof. P. van Romburgh. The

occurrence of d-asparagine in Fumaria, as mentioned in literature, seems to be

erroneous; cf.: H. Pringsheim, Zeits. f. physiol. Chemie, 65,89, (1910).
2
)
K. Hess and W. Weltzien, Ber. d. d. Chem. Ges., 53, B, 119, (1920).

3) C. Neuberg, His-Engelmann's Archiv, Physiol. Abth., (1902), p. 544;

idem, Der Harn, I, p. 370, (1911); Ber. d. d. Chem. Ges., 33, 2243, (1900).

4) K. O. af Klercker, Deutsches Archiv. f. Klin. Medizin, 81, 284, (1912).

Cf. also: R. Luzzatto, Archiv. i. exper. Pathol. und Pharmakol., Suppl. Bnd.,

(1908), p. 366.

5) J. H. Elliot and H. S. Raper, Journ. Biol. Chem., 11, 211, (1912).
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From this the impression is left that, notwithstanding the

enormous development of organic synthesis since the days of

Liebig and Wohler, there still remains a deep gulf between

natural and artificial synthesis. The plant, that mysterious and

highly complicated laboratory, produces from the simple inactive

constituents of the atmosphere and the soil, even within a very
limited range of low tempereatures, the necessary carbohydrates,

proteids, etc., in their optically active forms.

"I know of no more profound difference than this between common
substances and those produced under the influence of life",

-

Pasteur wrote again in 1860; and apparently he was quite justified.

Natural, in contrast to artificial synthesis, thus appears to be

a strictly "one-sided" or "asymmetrical" synthesis, and, moreover,
also of a very exclusive nature. All attempts to isolate laevogyratory

glucose or fructose from plants, have hitherto failed l
), neither has

there been any success with any of the other optically active

products of vegetable or animal bodies. A living world, the

mirror-image of the one known to us, seems to be a grotesque

phantasy
2

).
What would be the consequences of an eventual sudden

inversion of all synthesis in plants and animals, as we now know
it? "What world would be presented to our eyes",

- asks

Pasteur, "if the cellulose turned from a right-handed to

a left-handed, the blood-albumine from a laevogyratory to a dextro-

gyratory substance?" Indeed, if such circumstances could be realised

in the living tissues, investigations of unlimited range would be

open to the future, and at present such questions are worthy
of the most careful attention of scientists. However, so far, we

can only state the rigorous and remarkable constancy of character

of the chemical world in plants and animals. The living world

is "specific" in its dissymmetry, and its dissymmetrical specificity is

of the highest degree. For Pasteur, chemical compounds of

one-sided dissymmetry could not arise, save under the influence of

life; and in this difference between artificial and natural synthesis,

the great master of natural science saw the most characteristic

!) E. Fischer, Ber. d. d. Chem. Ges., 27, 3230, (1894).
2
)
A case, however, in which at least dextro- and laevogyratory structures

seem to occur simultaneously in nature, was found by Delsman with Balanus

balanoides while in process of cleavage; cf. : H. C. Delsman, Tijdschr. der

Nederl. Dierk. Vereen., (2), 15, (1917).
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property which, in his opinion, establishes perhaps to-day the only

sharp line of demarcation between the chemistry of inanimate

and that of living nature.

However, this contrast, so striking in aspect, is only an apparent
one. Pasteur's vitalistic views were for a comparatively short

time again adhered to by a number of partisans, especially

by biological investigators. To these this asymmetrical synthesis
in living organisms appeared to be quite inconceivable, and they
were obliged to suppose a particular dissymmetry of the forces and

influences acting in the living cells, different from those which take

part in our synthetic laboratory-processes. Vital agency would include

possibilities which are not only phenomenally, but also essentially,

different from those offered to us by the so-called "dead" forces.

It is hardly necessary to repeat here the interesting controversy
between vitalists, chemists, philosophers, etc., which was started

in 1898 and 1899 by Japp's address to the British Association

on "Stereochemistry and Vitalism" l

), to show the interest widely

provoked by these problems.

And although, as we shall see, the last and most fundamental

problem here is as yet only solved indirectly, and the striking

evidence of the possibilities must again be ascertained by direct

experiment, it can no longer be denied that during the last twenty

years the apparent barrier between artificial and natural synthesis

has mostly been removed, and that it has become more and

more evident, that in this respect also a fundamental contrast

does not exist.

9. E. Fischer 2
)
was the first who pointed out the fact,

that so strong a contrast between natural and artificial synthesis,

as believed by Pasteur, must not be imagined. He drew attention

to the fact that artificial synthesis also is evidently one-sided,

as soon as there are several asymmetric carbon-atoms in the attacked

molecule. Indeed, if this were not true, the progressing conden-

!) F. R. Japp, Chem. News, 77, 139, 149, (1898); G. F. Fitz Gerald, Nature

58, 545, 59, 76, (1898 and 1899); C. O. Bartrum, ibid., 58, 455; H. Spencer,

ibid., 58, 592; 59, 29; K. Pearson, ibid., 58, 495; 59, 30, 125; G. Errera, ibid.

58, 616; W. M. Strong, ibid., 59, 53; F. S. Kipping and W. J. Pope, ibid., 59,

53; P. F. Frankland, ibid., 59, 30; F. J. Allen, ibid., 58, 520; F. R. Japp,

ibid., 58, 616; 59, 29, 54, 101; C. Ulpiani and S. Condelli, Gazz. Chim. Ital.,

30, /, 344, (1900).
2
) E. Fischer, Ber. d. d. Chem. Ges., 27, 3230, (1894).
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sation of glycerose, formaldehyde, or acroleine-bromide, would neces-

sarily lead to all sixteen possible isomeric aldoses and all the eight

ketoses. Instead of this, besides x-acrose, only a single racemic hexose

is obtained
;
and this clearly proves that there is a certain preferential

direction in the synthesis of these sugars under these conditions.

The same must be the case in the important cyanohydrine-rezction ;

when a certain dissymmetry of the reacting molecule pre-exists,

the addition of HCN no longer occurs in a symmetrical way. Thus,

in using man-nose, the one antipode of mannoheptonic acid l
)
was

obtained to an amount of 87%, whereas of the other no appreciable

quantity was found.

With this evidence Fischer undoubtedly for the first time

brought clearly to the fore the essential features of "asymmetric"

synthesis in general. Natural synthesis in the living organism

takes place in a one-sided way, because it occurs under collaboration

of optically active molecules; the dissymmetrical arrangement of

such molecules taking part in the chemical processes has a guiding

influence, and thus a single optically active compound of a whole

set of isomerides is formed in greater quantity than the others.

However, it would perhaps be preferable to draw attention

more particularly to the differences in speed
2
) in the process of

synthesis of the isomeric substances. For the possibility of life-

processes is at bottom, - - from a chemical point of view, --a

question of the mutual regulation of reaction-velocities : the orga-

nism cannot stop its physiological functions for a single moment.

It produces and consumes continually, and these processes of

synthesis and metabolism, of waste and production, must all go

on with definite, well regulated mutual velocities, if the life-

process is to be carried on. at all. A state of completed "reaction-

equilibrium" is never, therefore, reached: only a kind of apparent

"dynamical constancy". Now it is most probable that other iso-

merides than those found in the vegetable cells, are formed

simultaneously in the synthetic process, but at an incomparably

smaller rate. It is possible, that there are exceedingly small

!) E. Fischer, Ber. d. d. Chem. Ges., 22, 370, (1889).
2
) Erlenmeyer's hypothesis of "asymmetrical induction" (Bioch. Zeits., 97,

198, 231, 244, (1919)) for the explanation of partially asymmetrical synthesis, is

by no means contradictory to the views here exposed about the difference of

velocity of the possible reactions to be considered in such cases; in fact both ways

of explanation are wholly compatible with each other; cf. : loco cit., p. 241, etc.
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amounts of these isomerides formed in a certain period, or perhaps
that they are slowly eliminated, while the other antipode is taking

part successfully in the common physiological reaction-scheme of

the organism, obtained during a long period of evolution. It is

more a question of strongly deviating velocities, than of extreme

differences of quantity. If complete equilibrium could ever be

reached during these processes, perhaps in the end we should really

meet with equal or comparable quantities of both isomerides. But

as has already been said, such a state will never be reached, as

the life-process is continuously going on.

Now Fischer supposes that the asymmetric substances in the

chlorophyll-grains primarily combine with the carbon-dioxide, or

with the formaldehyde produced from it; and the following conden-

sation to form sugars will then occur in an asymmetrical and

preferential way, because of the directing influence of the pre-

existing molecular dissymmetry. The products formed are used

up in the life-process of the plant as fast as they are made.

The "asymmetric forces" of Pasteur need not be looked for

outside the organism, for they are determined by the chemical

system in its cells, and these dissymmetrical influences in the

living organism itself far outweigh the dissymmetrical agency of

externally applied forces. All attempts to counterbalance or even

to surpass these chemical directing influences, have hitherto

completely failed. Pasteur himself 1
) refers to these somewhat

phantastic and unsuccessful experiments, when he tried in 1854

to influence the particular dissymmetry of vegetable synthesis

by means of a clock-driven heliostat and reflector, which reversed

artificially the diurnal motion of the sun in the sky.

They were unsuccessful of course : for what is this feeble influence

compared with the enormous power of atomic attraction? He

had, as has been occasionally said, still to deal with the one-

sided agencies in all their irresistible strength, as they were deter-

mined by the dissymmetry of the chemical system in the living cells

from the beginning of evolution. As has strikingly been remarked:

starting with a definite optically active compound, there is some-

thing analogous to "heredity" in the further progression of dis-

symmetrical configurations in a series of successive reactions. Perhaps
if the original optically active substance had been the antipode

L. Pasteur, Revue Scientifique, (3), 7, 3, (1884).
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of that which was the beginning of all the existing one-sided

chemical synthesis in plants and animals, we should now be

living in a world which would be the very mirror-image of this

world, - - and, of course, not a happier one than the present is.

But here the last and most fundamental problem forces itself

insistently on us: what was the origin of that first optically

active substance which determined and predestinated the direction

of natural synthesis for all later times?

In contrast with the contentions of vitalism, and quite in the

line of what was said with respect to our present conception of

the analogy between natural and artificial synthesis, we can only

guess that the formation of that first dissymetrical molecule-

species was certainly not connected with that of the first "living"

particle. Indeed, the formation of such an optically active mole-

cule, either alone and unaccompanied by its antipode, or together

with its racemic compound, can within the scope of our present

views only have occurred by dissymmetrical influences outside all

living organisms.
1
)

The dissymetrical synthesis under such conditions is the only

true "asymmetrical synthesis"; we will distinguish it from that

previously mentioned, by the name "complete" asymmetrical

synthesis.

Until such a complete asymmetrical synthesis has been directly

performed with success, we cannot claim that we absolutely under-

stand natural synthesis in its full significance. We will return to

this problem later on.

9. Experiments on partial "asymmetric synthesis", as discussed

above, have, however, been successfully made during the last

twenty years. One of the first attempts of this kind was made

in 1894 by Simon 2
), who prepared the ether from inactive

lactic acid and laevogyratory amyl-alcohol', saponification by means

of KOH of the ether formed, gave, however, only an inactive

acid. Simon concludes that evidently no partial separation of

the racemic compound has taken place. If he had not completed

the reaction, but had stopped it, before equilibrium was reached, or

1
) However, Pasteur seems in later years to have given up these ideas to

some extent; cf.: Bull, de la Soc. Chim. Paris, 41, 219, (1884); A. Cotton, Journ.

de Chim. phys., 7, 86, 87, (1909).
2
)

L. Simon, Bull, de la Soc. Chim. Paris, (3), 11, 760, (1894).
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if he had used a quantity of alcohol insufficient for total etherifi-

cation, the result might perhaps have been better.

Frankland and Price x

) made analogous experiments in 1897

with inactive glycerinic acid and tewgyratory amyl-alcohol, but

they also obtained a negative result. The laevogyratory amyl-alcohol

was then combined with inactive dibenzoyl-glycerinic acid
; although

the ether could be obtained in beautiful crystals, no fission of

the acid was found after saponification.

The first positive results were obtained in 1899 by Marckwald
and MacKenzie 2

),
who heated racemic mandelic acid with l-

menthol at 155 C. for one hour; the remaining, not attacked

acid appeared to be /a^ogyratory, while a dextrogyratory acid was

obtained from the ether-mixture after incomplete saponification.

This experiment clearly shows that the velocity of etherification

of laevogyratory mandelic acid with l-menthol is smaller than that of

the etherification of the dextrogyratory acid, and that, in accordance

with this fact, the ether of the more rapidly formed dextrogyratory
acid is also more rapidly decomposed by saponification than the

ether of the laevogyratory acid. This, of course, agrees with the

character of the saponification-process, as that of an "equilibrium"-
reaction: the ether which is more rapidly formed, must also be

saponified more quickly, should the equilibrium-constant remain

unchanged.
Fischer 3

)
drew attention to the fact that his famous experi-

ments of the action of emulsine on the mixture of both the

enantiomorphous fi-methyl-glycosides, or those of the action of the

yeast-ferments on both the corresponding ot-methyl-glycosides, demon-

strate the same principle as was brought to the fore by Marck-

wald and MacKenzie. The remark is undoubtedly true (Chapter

VIII); the so-called "specificity" of enzyme-action is, indeed, only
based upon a great difference in the rate of attack of either

antipode by the same ferment or enzyme, which are always them-

selves dissymmetrical substances.

*) P. F. Frankland and A. S. Price, Proceed. Chem. Soc., 133, 9, (1897);

Journ. Chem. Soc., 71, 353, (1897).
2
)
W. Marckwald and A. MacKenzie, Ber. d. d. Chem. Ges., 32, 2130,

(1899); Cf. also: F. S. Kipping and W. J. Pope, Proceed. Chem. Soc., (1898),

p. 113.

3
)

E. Fischer, Ber. d. d. Chem. Ges., 32, 3617, (1899); W. Marckwald and

A. MacKenzie, ibid., 33, 208, (1900).

20
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Marckwald and MacKenzie l

)
determined the ratio of

etherification- and saponification-velocities of the laevo-, and dextro-

gyratory mandelic acids with respect to l-menthol, at a value of 0,90.

If the saponification be completed, the free acid obtained is inactive,

which is a fresh proof, that both antipodes have the same affinity

for the optically active menthol. Laevogyratory octyl-alcohol was

etherified somewhat more rapidly by dextrogyratory tartaric acid

than the corresponding dextrogyratory octyl-alcohol', however, the

last is etherified more rapidly by laevogyratory tartaric acid,-as would

be expected. The velocities of the saponification differ in this

case appreciably more than the velocities of the etherification, a

difference much more pronounced here than in the case of the

merithol-mandelates mentioned above.

In the year 1900 Cohen and Whiteley
2
)

and later Kip-

ping
3
) made some unsuccessful experiments of the same kind,

and equally unfortunate were the attempts of Fischer and his

collaborators 4
)

in 1910, as well as those of Scholtz. 5
)

Cohen and Whiteley started with the l-menthyl-eihers of

mesaconic acid and of phenyl-crotonic acid, and reduced them by
addition of hydrogen-atoms at the double bond, thus producing a

new asymmetric carbon atom (denoted by *) in the molecule :

CH3.C(COOC10H19 )
: CH.COOC10H19 -> CH3.CH(COOC1oH19).CH2.COOC1oH19

->CH3.CH (COOH) .CH2-COOH .

C6H5 .CH: C(CH3).COOC10H19-> CQH5.CH2 .CH(CH3).COOCWH19

->C6H5.CH2 .CH (CH3)COOH.

Analogous reactions take place if bromine be added to the double

bond of the l-menthyl-, or l-ainyl-eiher of cinnamic acid:

C6H5 .CH: CH.COOC10H19 -> CeHg.CHBr.CHBr.COOCjoHjg

> C6H5.CHBr.CHBr.COOH

or if l-menthyl-rac.pyruvate be reduced by hydrogen:

CH3.CO.COOC10H19 -> CH3.CHOH.COOC10Hi9 > CH3.CHOH.COOH.

!) W. Marckwald and A. MacKenzie, Ber. d. d. Chem. Ges., 34, 469, (1901).

2
) J. B. Cohen and C. E. Whiteley, Proceed. Chem. Soc., 16, 212, (1900);

Journ. Chem. Soc., 79, 1305, (1901).
3
). F. S. Kipping, Proceed. Chem. Soc., 16, 226, (1900).

4
)

E. Fischer, Ber. d. d. Chem. Ges., 34, 629, (1901); E. Fischer and M.

Slimmer, Ber. d. d. Chem. Ges., 36, 2575, (1903); Sitzb. Ak. der Wiss. Berlin,

(1902), p. 597.

5) M. Scholtz, Ber. d. d. Chem. Ges., 34, 3015, (1901).
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Something analogous was formerly proposed by Hartwall, l
)

who expected a one-sided synthesis by the reduction of the citraco-

nates and mesaconates of optically active alcohols, such as menthol

or borneol] but he did not make experiments in this direction.

Kipping studied the addition of hydrogen to quinine-pymvate,

quinine-levulinate, bomyl-pyruvate, or to its oxime, and to bornyl-

benzoyl-formate ; however, his results were as negative as those of

Cohen and Whiteley.
Because of technical difficulties Fischer and Slimmer's

attempts to produce a one-sided cyanohydrine-synihesis with helicine:

H
/C^p (C2H30) 4C6H7 5

C6H4 (^ ,
and with tetracetyl-helicine: >0

\OC6H11 6 C6H4 -C8,
had at last to be given up. In the last case the apparently

positive result was produced by the admixture of a strongly

optically active condensation-product in the oxy-phenyl-ethyl-carbinol

finally obtained.

Scholtz 2
) started with N-methyl-a-pipecoline, and combined

laevogyratory amyl-iodide with it; the unattacked base, however,

proved to be absolutely inactive.

In 1904 Marckwald, 3
) starting with inactive methyl-ethyl-

malonic acid, finally obtained an optically active valeric acid in

the following way.
He prepared from the first compound the acid brucine-salt

,
the

solution of which was evaporated and the less soluble product

separated from it. This was then heated to 170 C, carbon-dioxide

driven off, and the brucine removed from the residue.

The valeric acid thus obtained was a mixture of the racemic

and of 10% of the laevogyratory acid. Tymstra 4
) found, that

the final product yields more than 25% excess of laevogyratory

acid, if heating is done in vacuo; the temperature must in that

case not be higher than 100 120C. Cohen and Patterson 5
)
are

right in their criticism, when they contend that the first stage of

x
)

G. Hartwall, Inaug. Dissert., Helsingfors, (1904).

2
)

M. Scholtz, Ber. d. d. Chem. Ges., 34, 3015, (1901).

3
)
W. Marckwald, Ber. d. d. Chem. Ges., 37, 349, (1904).

4
)

S. Tymstra Bzn., Ber. d. d. Chem. Ges., 38, 2165, (1905).

5) J. B. Cohen and T. S. Patterson, Ber. d. d. Chem. Ges., 37, 1012, (1904);

W. Marckwald, ibid., 37, 1368, (1904).
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Marckwald's process is in reality nothing but Pasteur's second

fission-method of racemoids l

).

They compare the reaction with the case in which ordinary

racemic acid was first resolved by brucine, and then the less soluble

tartrate obtained was reduced to brucine-malate: in this case, after

saponification, undoubtedly an optically active malic acid should be

found. However, if Marckwald had heated the originally ob-

tained mixture of the brucine-salts immediately, and in such a

way that heating was stopped before the splitting-off of carbon-

dioxide was fully completed, he undoubtedly would have found

an excess of the left antipode in the residue, after the brucine

was removed from it.

An attempt of Marckwald and Meth 2
)

to render optical

activity to ethyl-a-chloro-phenyl-acetate by heating it with two

molecules of brucine, and to isolate the unattacked ether from

the reaction-mixture, had no -

positive result. But when the

amide-formation was used, the velocity of which, according to

Menschutkin's investigations, is to a high degree dependent
on the chemical constitution of the reacting molecules, they found

that there was a considerable difference in velocity, if l-menthyl-

amine and racemic mandelic acid were used in the process. Indeed

the non-attacked acid appeared to be laevogyratory, and, therefore,

the ratio of the velocities Vd : Vi was about: 0,86 in this case,

If a-phenyl-ethyl-amine: C6H5.CH.(NH2).CH3 ,
was heated with

l-quinic acid at 165 for 4| hours, and if the quinate of this base,

before being transformed into amide, was decomposed by NaOH, the

base finally obtained appeared to have an excess of about 3% of

the dextrogyratory component. The ratio of the velocities, at which

combination with the laevogyratory acid took place, was here :

Vd : V
l
= 0,88.

The velocity of racemisation of two compounds of the same

optically active base with a left-, or right-handed acid, will also

appear to be different, if they be heated above their racemisation-

temperature.

1
)

Another explanation of this reaction was given by E. Erlenmeyer Jr., by

means of his theory of" asymmetrical induction"
;
cf. : Bioch. Zeits., 97, 218, (1919).

For example, it was demonstrated, that this synthesis may be performed as well

by the aid of d-tartaric acid, instead of brucine; cf. : loco cit., p. 242, 243.

*) W. Marckwald and R. Meth, Ber. d. d. Chem. Ges., 38, 801, (1905).



309

Such facts were already met with in Fischer's experiments
on the transformation of sugars.

Marckwald and Paul !

)
heated racemic mandelic acid and

brucine for ten hours at 150 C.
;
when the molten mass, after

solidification, was dissolved in water, and the acid set free by
means of sulphuric acid and extraction with ether, it appeared
to be dextrogyratory.

Since 1904 MacKenzie and his collaborators 2
)
have by an

abundant series of investigations brought full experimental proof

and the exhaustive demonstration of the possibility of such one-

sided synthesis under the directing influence of pre-existent mole-

cular dissymmetry.
If l-menthyl-benzoyl-formate was treated with ethyl-magnesium-

iodide, and then the compound obtained by the aid of water:

OH
C6H5-C^COOC10H19

C2H5

saponified by potassium-hydroxide, the phenyl-ethyl-glycolic acid

produced, appeared to be laevogyratory. If, however, instead of

C2H5MgJ, the corresponding C 6H5MgBr was used in this reaction,

the benzilic acid obtained was absolutely inactive.

The l-menthyi-ether of pyruvic acid was reduced by ^4/-amalgama
and a little water, and the product decomposed by alcoholic caustic

potash: a tewgyratory lactic acid resulted.

Fractional saponification of l-menthyl-rac. mandelate gave almost

always a dextrogyratory mandelic acid ;
it was proved by a series

of controlling experiments, that the result was affected by the

racemizing influence of the alkali, and that the quite opposite

results previously found in many cases, could be simply explained

by the shorter or longer duration of this racemizing action of

the saponifying base. The relative velocities of saponification of

l-menthyl-, or l-bornyl-d-, resp. -l-mandelates by dilute hydrochloric

acid, were also measured. It appeared that the l-bornyl-ethers are

saponified much more quickly than the corresponding l-menthyl-

ethers, and that in both cases the derivatives of the dextrogyratory
mandelic acid are the more rapidly saponifiable.

1) W. Marckwald and D. M. Paul, Ber. d. d. Chem., 38, 810, (1905).
2
)

A. MacKenzie, Journ. Chem. Soc. London, 85, 378, 1004, 1249, (1904);

A. MacKenzie and H. B. Thompson, Journ. Chem. Soc., 91, 789, (1907); A.

MacKenzie and H. Wren, ibid., p. 1215, (1907); A. MacKenzie and H. A.

Miiller, ibid., p. 1814, (1907).
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The following dates, obtained with a 0,07725 normal hydrochloric

acid-solution at 40 C, may give some idea of these differences:

Reaction-constant

k:

l-bornyl-l-mandelate 81,2

l-menthyl-l-mandelate 28,5

(time in minutes)

Reaction-constant :

k:

l-bornyl-d-mandelate 84,9

l-menthyl-d-mandelate 35,6

(time in minutes)

The ratio of the velocities is here in both cases :

for the &owy/-ethers, -=1,046;

for the menthyl-ethers,
-~- = 1,250.

If fumaric acid be transformed into the l-bornyl-eiher ,
and then

oxidized with potassium-permanganate in acetic acid-solution, a

laevogyratory bornyl-tartrate was obtained, from which an also laevo-

gyratory tartaric acid was set free. Better results were again

obtained, when the acid ether of borneol, or the neutral ether of

menthol were used for this purpose; and it was also proved, that

in using the oppositely rotating borneol, an excess of the dextro-

gyratory tartaric acid finally resulted.

In a recent, highly interesting paper, Smirnoff 1

) published

the results of an investigation on complex salts of the type:

{ Pt(d-Propeme)3}X4> { Pt(l-Propeme) 3 }X^, {
Co(d-Propeme) 3 }

X3 ,

and
{ Co(l-Propeme)3 }X3 ,

in which the substitutes, therefore, were optically active u-propy-

lene-diamines. He demonstrated that only two, in stead of the

expected four series of isomeric salts were observed in each case;

that these salts could not be separated into optical antipodes, and

that the fission of the analoguous salts derived from the racemic

a-propylene-diamine, gave the same isomerides as were obtained

from the optically active bases. These facts prove, that with a

special configuration of the active u-propylene-diamine, only one

of the two possible, enantiomorphous configurations of the complex

ion seems to be compatible. The specific dissymmetry of the

substitutes directs, therefore, also here the synthesis of the spatial

complex into one special direction: a true partially-asymmetric

1) A. P. Smirnoff, Helvet. Chim. Acta, 3, 177, (1920) ;
L. Tsc hug a jef f

and W. Sokoloff, Ber. d. d. Chem. Ges., 40, 3464, (1907); 42, 57, (1909).



311

synthesis of an inorganic molecule being performed here, wholly

analoguous to the cases dealt with above.

Recently Weiss
*)

demonstrated that, when unsymmetrical

phenyl-p-tolyl-ketene : r
6

^
5^ C ~ CO, is treated with l-menthol

CHs-C^H^/
in absolute etherical solution, the addition-compound produced in

this case is exclusively the ^^rogyratory l-menthyl-phenyl-p-tolyl-

acetate. It seems, therefore, that under the prevailing conditions,

the directional influence of the pre-existing dissymmetry in the

laevogyratory menthol is strong enough to prevent completely the

formation of the corresponding laevogyratory antipode. The pro-

perties of the racemic and optically active l-menthyl-phenyl-p-tolyl-

acetates were already formerly described by MacKenzie and

Wi d do ws 2

),
-their identification thus being much facilitated.

10. From these experiments the correctness of the view is

proved beyond all doubt, that a pre-existing molecular dissymmetry
has a powerful guiding influence on the chemical synthesis in which

new asymmetric carbon-atoms are created. From this the one-sided

natural synthesis in plants and animals has not only become

conceivable, but the contrast between the natural synthesis by the

living organism and that by the chemist, as contended by vitalists,

has mostly vanished, since the one-sidedness of natural synthesis is

thus brought within the scope of chemical dynamics, it being now
reduced to a merely relative difference in reactionvelocities.

The important investigations on catalysis by B re dig
3
) and

his pupils during the last eight years before the war, have cor-

roborated these ideas most thoroughly, since the analogy of

chemical catalysis and the action of organic enzymes and ferments

was absolutely demonstrated by them.

It has been already repeatedly stated in the preceding pages
that ferment-, and enzyme-action is evidently not really a "specific"

one, but merely one differing quantitatively. Dak in found, that

benzyl-l-mandelate was decomposed by lipase (from the liver) about

1) R. Weiss, Monatshefte fur Chemie, 40, 391, (1919).

2) A. MacKenzie and S. T. Widdows, Journ. Chem. Soc. London,

107, 702, (1915).

3) G. Bredig and R. W. Balcom, Ber. d. d. Chem. Ges., 41, 740, (1908); G.

Bredig and K. Fajans, ibid., p. 752, (1908); G. Bredig, Verb. d. naturwiss.

Verein Karlsruhe, 25, (1913); K. Fajans, Zeitschr., f. phys. Chemie, 78, 25,

(1910); G. Bredig and P. S. Fiske, Bioch. Zeits., 46, 7, (1912); H. J. M.

Creighton, Zeits. f. phys. Chemie, 81, 543, (1913).
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40% more slowly than the corresponding dextrogyratory ether.

Herzog and Meier found this inequality of reaction-velocity

also, when the oxidizing ferments of many fungi and moulds

acted upon d-, or t-tartaric acids. According to Rosenthaler 1
),

emulsine produces an excess of dextrogyratory nitrite, if HCN be

added to benzaldehyde. If the higher molecular symmetry, and

therefore the optical inactivity of matter be considered a "more

probable state" than the non-superposable enantiomorphism of

the optically active molecules, - - a view strongly upheld by the

striking tendency for autoracemisation of optically active matter,
- then the materials and substances of the living world would

certainly have a lower degree of stability than those produced
outside the living organisms. In the light of the views mentioned

here, the significance of this becomes more evident, because the

matter more rapidly produced, will also be more quickly attacked

in the physiological processes of the organism, and these substan-

ces will, therefore, be more particularly suited for its never ceasing

needs. The presence of accelerating catalysts like enzymes and

ferments, is absolutely necessary in these assimilation-processes,

and the question may arise, if it will likewise be possible to imitate

the special mode of action of these catalysts by processes such

as met with in one-sided synthesis?

In point of fact, the experiments just referred to, have proved
this to be the case beyond all doubt.

Bredig and Fajans were able to show that the use of

laevogyratory nicotine as a solvent with catalytic action in the

decomposition of d- and t-campho-carboxytic acids, had the effect

that the dextrogyratory acid was more rapidly decomposed into

camphor and carbon-dioxide than the laevogyratory antipode. On
the other hand, the decomposition-velocity of both isomerides

appeared to be almost identical in optically inactive solvents, such

as aniline or acetophenone.

The following data may make this clear:

Dextrogyratory campho-carboxylic acid.

Solvent: Velocity-constant k:

Aniline 0,00676

Acetophenone 0,00128
l-Nicotine 0,00488

Laevogyratory campho-carboxylic acid.

Solvent: Velocity-constant k:

Aniline 0,00663

Acetophenone 0,00123
l-Nicotine 0,00434

!) L. Rosenthaler, Archiv. d. Pharmac., 249, 510, (1911); Bioch., Zeits. 14,

247, (1908); 19, 186, (1909).
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The velocity of decomposition of the dextrogyratory acid is about

13% greater than that of the laevogyratory acid. Also the enormously

accelerating influence of basic solvents such as aniline, in com-

parison with that of different neutral solvents like acetophenone ,

is strikingly proved by these figures: a fact which, beyond all

doubt, must be connected with the intermediate formation of a

compound between the basic solvent and the acid under con-

sideration.

The experiments, in which the campho-carboxylic acids were

dissolved in nitrobenzene or acetophenone, and then a smaller quantity
of l-nicotine was added, demonstrated that the effect of nicotine

is not to be attributed to the fact that it has merely the

function of a solvent. They then found:

d-acid -f- l-nicotine, dissolved in nitrobenzene: k = 0,00302', in aceto-

phenone: k = 0,00277
l-acid + l-nicotine, dissolved in nitrobenzene: k = 0,00270', in aceto-

phenone: k 0,00233.

The dextrogyratory acid in nitrobenzene decomposed with a

velocity of about 8% greater than the tewgyratory acid; in

acetophenone with a velocity about 17% greater. This result proves

again that the nature of the solvent has an appreciable influence

on the difference of velocities for both antipodes.

Fajans investigated in the same way -the velocity of decom-

position of the campho-carboxylic acids and bromo-campho-carboxylic

acids.

Besides nicotine, this author studied the influence of quinine

and quinidine, when added in small quantities to a solution of

the acids in acetophenone.

At 70 C. the ratio of the velocity-constants of the right- and

left-handed antipodes was found to be:

= 7^- = 1,19, in the case of nicotine,
ki

whereas in acetophenone at 75 C. it was:

for quinine :
= 1 ,46

for quinidine: f = 1,46.

In the catalytic action of quinine, half of the d^rogyratory acid

originally used was decomposed in 92 minutes, whereas the left acid

dwindled to half its original amount in 135 minutes. If instead

of quinine, quinidine were used as a catalyst, the
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acid was lessened to half its amount in 107 minutes, whereas the

laevogyratory acid dwindled to half its original concentration in

157 minutes.

The speed of the reaction of the inactive acid is intermediate

between the values obtained for the optically active components;
it is difficult to say whether or not it may be concluded from

the data, that there is still some racemized acid really existent in

the solution, or that it is completely dissociated into its components.
In the case of the bromo-campho-carboxylic acids, the right-handed

antipode is decomposed more rapidly, when quinidine is the catalyst,

whereas the left-handed antipode is on the contrary more readily

split up when quinine is present in the solution.

If the decomposition be stopped before complete fission of the

acid has been reached, the inactive acid originally used will show

an optical activity.

When quinine was used as catalyst in acetophenone as a solvent,

the portion of the acid not yet decomposed had become dextro-

gyratory (an excess of 14% of the d-acid being present after a

heating for 168 minutes), while the camphor produced in this

reaction was tewgyratory. But if under the same circumstances

(75 C.) quinidine were used as catalyst, the unattacked acid

had after 186 minutes of heating become laevogyratory ,
while

the camphor appeared to be ^^rogyratory.
In these experiments the active bases are neither comsumed in a

detectable quantity, nor does there exist a stoechiometrical relation

between the quantities of the bases added and that of the acid

attacked; there is merely an accelerating influence, so that the func-

tion is absolutely comparable with that of organic enzymes or ferments.

Indeed, here we have to deal with the complete analog of the

action of the organic catalysts, and their remarkable "specificity".

Bredig and Fiske treated benzaldehyde with HCN in the

presence of l-quinine or d-quinidine] the reaction took place in

chloroform as solvent. The base was removed by extracting the

solution by shaking it with 4-normal sulphuric acid, and the

mandelic acid thus obtained, when tested, appeared to be in reality

optically active. If the towgyratory quinine were used as a

catalyst, the acid was t^drogyratory, whereas with the dextrogyr&tory

quinidine, it was found to be laevogyratory. These facts remove

all doubt as to the fact that the remaining traces of adhering

base cannot be the cause here of the optical activity observed.
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Since the experiments of Marckwald and Paul, which

are in some respects perhaps comparable with those mentioned here,

never has the remarkable analogy of specific enzyme-action, and

that of much more simply built catalysts such as quinine, quinidine,

etc., been brought to the fore in such a striking way. Beyond
all doubt we have to deal in both cases with the unequal velocities

of decomposition of the compounds formed intermediately between

the two antipodes and the accelerating, dissymmetrical catalysts.

If only the ratio of both velocity-constants be supposed to far

surpass unity, the one-sidedness of enzyme-action will now be fully

conceivable, as there is an equilibrium between the free acids and

bases and the salts formed by their combination, and as the

quantities characteristic of the state of equilibrium are inversely

proportional to the constants of the reaction-velocities of both

opposite reactions. It follows that the specificity of the enzyme-
arid ferment-action is really of a quantitative, rather than of a

qualitative nature, it being founded on an appreciable difference

in reaction-, or rather in decomposition-velocity of the interme-

diately formed combinations between the substance attacked and

the dissymmetrical, catalysts.

11. After all that has been done hitherto in this field of

research, we can, therefore, safely claim to have a much clearer

insight into the significance of the one-sided synthesis of the

living organism. The occurrence of optically active substances

during that synthesis in living bodies, finds its explanation in

the fact that natural synthesis can never lead to a state of

completed chemical equilibrium, the produced substances being

continuously withdrawn from and used by the organism to suit its

physiological needs. In connection with the fact that such chemical

processes commonly proceed in several stages which cannot represent

states of complete equilibrium, but are only consecutive steps in

the whole chain of events, the apparent contrast between

natural and artificial synthesis is explained by the mere fact that

no highest degree of mechanical stability, and therefore no highest

degree of symmetry, can be expected in the synthesis performed

by the living organism. In natural synthesis rather a preference

appears for the formation of metastable intermediate products,

because the whole process of life is based upon the instability of

the conditions of the moment, and on the possibility of their uninter-

rupted change. Metastable products generally act much more ener-
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getically than the stable phases under the same conditions, and their

assimilation will, therefore, occur more easily and more rapidly in

the physiological processes of the living organism. Moreover, as soon

as such a lower symmetrical molecule, different from its mirror-

image, has once been created within the living cell, the one-sidedness

of further synthesis is not only fully conceivable, but it is even a

necessity, as we have seen above. Asymmetrical synthesis can

no longer be considered as being the prerogative of life, although
its typical one-sidedness is certainly acquired as the result of func-

tions slowly developed in the general course of organic evolution;

and the line line of demarcation traced by vitalists, can, at least

in principle, also be considered to have disappeared.

For although, as already stated, the one-sidedness of natural

synthetical processes is no longer to be regarded as inconceivable,

and although even these facts are now brought completely within

the scope of our laboratory-experiments, the great fundamental

problem of performing directly a complete asymmetrical synthesis,

remains yet to be solved.

It was Meyer 1

) who in 1903 again laid stress on this side of

the question, and who pointed quite rightly to the insufficiency

of the experiments made up till now for this purpose. His remarks

as to the special symmetry of the magnetic field in Boyd's experi-

ments are absolutely justified. With a magnetic field alone, a result

of this kind can never be expected; for the homogeneous magnetic
field has the symmetry Cg (Chapter V), and thus has a plane of

symmetry perpendicular to its lines of force. If, however, as proposed

by Meyer, a polarized lightbeam, having the symmetry C^, travel

through the magnetic field in a direction parallel to its lines of force,

the superposition of these two occurrences is equivalent to the

production of a physical cause compatible with the symmetry of

the group Cn where n is < 2. Indeed, the magnetic rotation of the

plane of polarisation of such a ray as is really observed in this case,

is a phenomenon having the symmetry C^ . This symmetry is not

qualified by the existence of any symmetry-element of the second

order, and in this case, when the phenomenon considered may be

simultaneously a cause of chemical action, the result might even-

tually be such as desired. The same is true, and in the authors

l
) ]. Meyer, Jahresber. der Schles. Ges. f. vaterl. Kultur, lie Abt., Dez.

(1903), p. 34; Chem. Zeitg., (1904), p. 41.
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opinion with perhaps a greater- chance of success, if a magnetic
field (C) be superimposed on an electric field (C), whether it be

an electrostatic field or an electric current.

The question occupying us here must, therefore, be treated

experimentally, either by searching for an intrinsically photo-
chemical reaction, for an electrolytical, or more in general: for

an electro-chemical process, in which a new asymmetric carbon-atom

is produced in the molecule, and which reaction, in the way described

above, can be dissymmetrically arranged, i.e. under circumstances,

the complex of which forms a system of causes non superposable

with its mirror-image. Indeed, if we compare these postulations

with the conditions hitherto created in the very few direct

experiments of this kind, we must come to the conclusion, that

no serious and well thought-out attempts in this direction must

be neglected in future.

Some of the plans to be followed have already been shortly

indicated in Chapter F; and some of these experiments have been

started in the author's laboratory
1

).
But no experiments in other

laboratories should be left untried, as this problem is an extremely

important one for the general development of our scientific concep-
tions in this sphere of research, and the experimental evidence

brought by others can only be adopted gratefully, as a help in over-

coming the very great experimental difficulties of such investigations.

All attempts, even those well thought-out, to bring about a

complete asymmetrical synthesis directly, have up till now only met

with negative results.

In Meyer's experiments the benzoyl-formate of laevogyr&tory

amyl-alcohol was reduced to the corresponding mandelate by sodium-

amalgama, in a magnetic field of 180 C. G. S., while a beam of

polarized light passed through the solution parallel to the lines

of force. The result was that only racemic mandelic acid could be

obtained. This negative result cannot be surprising, as the experi-

ment is badly conceived.

J
)
Some experiments of this kind were carried out in 1909 by Ph. A. Guye

and G. Drouginine (Journ. de Chim. phys., 7, 97, (1909). In superposed electric

and magnetic fields, they tried the addition of bromine to methyl/umarate or methyl-

cinnamate in chloroform-solution, but without observing any optical activity. Per-

haps the fields applied were too feeble; more probably, however, the cause of the

negative results may be explained by the fact that the applied forces were no

essential conditions for the occurrence of the chemical reaction considered.
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For this reduction does not essentially depend on the presence of

the magnetic field, nor on that of the light-energy; it is no photo-

chemical reaction in which the luminous energy is the necessary

condition for starting it
; and, moreover, the strength of the magne-

tic field applied, is much too small for such experiments.

Henle and Haakh 1
), therefore, tried a characteristic photo-

chemical process: the decomposition of some carboxylic acids by

light under production of carbon-dioxide, which reaction is appre-

ciably accelerated by the presence of uranyl-salts, and, - - as the

present author stated, also in many cases by that of ferric salts 2
).

The desired dissymmetry of the physico-chemical causes was obtained

either by rotating the plane of a beam of polarized light by a

magnetic field, or by producing circularly polarized light with the

aid of a mica-lamella, of V4 A, as often used in optics. In this way
the transformation of methyl-ethyl-cyano-acetic acid into methyl-ethyl-

aceto-nitrile, and that of symmetrical dichloro-dimethyl-succinic acid

into dichloro-dimethyl-propionic acid, was studied by them. The

results were negative, and only optically inactive products were

obtained in the reactions.

Such an experiment was carried out with circularly polarized

light alone by Freundler 3
), who studied the formation of amyl-

o-nitroso-benzoate from racemic diamyl-acetale of o-nitro-benzaldehyde

in a solution of r-amyl-alcohol:

/\ rTJ/OC5Hn /\ ^^ f^n ^
\OC5Hn

N02 > C5HU.OH H-

After an exposure of 400 hours, however, no optical activity whatso-

ever could be detected. Analogous experiments with solutions of

copper-tartrates, made by Cotton 4
),

had no better results. Experi-

ments with d- and l-potassium-cobalti-oxalates, which are reduced

by light-radiation into cobalto-oxalate and carbon-dioxide, are started

in the author's laboratory with the purpose of proving a different

reaction-velocity in the case that dextro-, resp. laevogyratory

circularly-polarized light is used.

*) F. Henle and A. Haakh, Ber. d. d. Chem. Ges., 41, 4261, (1908).

2
)

F. M. Jaeger, Proceed. Kon. Ak. van Wet. Amsterdam, 14, 342, (1911).

3
)

P. Freundler, Bull, de la Soc. Chim. Paris, (4), 1, 657, (1907); Ber. d. d.

chem. Ges., 42, 233, (1909).

4) A. Cotton, Journ. de Chim. phys., 7, 81, (1909).
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The experiments of Rosenthal, l

) who claimed to have hy-

drolyzed highly complicated carbohydrates in an oscillatory electro-

magnetic field, are not confirmed by later investigations, and may,
therefore, be passed over here.

12. However, an indirect proof of the possibility,
-- even of

the necessity,
- - of such complete asymmetrical synthesis on earth,

has been given by the reasonings and by some experiments of

Byk 2
). His suppositions are based on a number of facts which

were previously established by other investigators, and which,

when combined, seem to be adapted to prove the possibility of

such a one-sided formation of optically matter, as searched

for in the problem under consideration. He points out, that

a supposition as made in the discussion by Japp a.o., pre-

viously mentioned, can never explain the one-sidedness of natural

synthesis. Such a separation by mere chance, or by some acci-

dental cause such as whirl-winds, etc., of an optically active germ
from an externally-compensated mixture created by spontaneous

crystallisation, as it was supposed by some of the authors men-

tioned, would in the immeasurable periods of geological evolution,

even under the best conditions, only have led to an externally

compensated or a pseudo-racemic world, but never to the one-

sided material world we actually have. For it is no explanation,

and, therefore, not satisfactory to state the fact, that nature evidently
has found a way of avoiding the necessity to adapt the physiological

functions of the living organism to a double series of chemical pro-

cesses, both corresponding to one of the two possible antipodes of

the first optically active substance created in plants or animals. 3
)

It may be that nature once made its choice between the two series

apparently by mere chance; and it may be considered as certain,

that, if this choice at that critical moment had been the reverse of

the actual one, the whole living world would now show the mirror-

image of the present. But this "making its choice" can only be con-

sidered an anthropomorphic expression of the fact that accidentally

there existed special asymmetric chemical and physical conditions at

that critical moment, which were not of equal significance for the

preservation of both antipodes present. And as long as the possi-

1) J. Rosenthal, Sitzber. Akad. d. Wiss. Berlin, (1908), /, p. 20.

2
)

A. Byk, Ber. d. d. Chem. Ges., 37, 4696, (1904); Zeits. f. phys. Chemie, 49,

641, (1905).
3

)
W. J. Pope, Bull, de la Soc. Chim. Paris, (4), 25, 444

; (1919).
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bility of such a different interaction of chemical or physical forces

and enantiomorphous complexes of atoms has not been demonstrated

experimentally, the problem of the beginning of one-sided synthesis

in the vegetal and animal kingdoms must be considered to be a

yet unsolved mystery. No other causes can be taken into account,

therefore, when considering the origin of the first optically active

substance, than those physical causes outside the range of life, which

are dissymmetrical in themselves, in the sense explained in Chapter F.

Now Byk tries to prove, that such a one-sided cause has existed

on earth for immeasurable ages, and more particularly, that the

source of photochemical energy having the special dissymmetry

necessary for such complete asymmetrical synthesis, was the circularly

polarized light, reflected, while under the influence of terrestrial

magnetism
l
), at the surface of the seas and oceans 2

). He proves,

that the coincidence of the wave-length, for which light-absorption

is a maximum, and for which photochemical action is an optimum
3
),

also holds good, as Cotton demonstrated 4
),

in the case of the

cupri-alkali-salts of d-, and l-tartaric acids, which absorb right- and

left-handed circularly polarised light in a different way. From this

Byk concludes that the velocity of photochemical action must, there-

fore, be different, when such antipodes are attacked by circularly

polarized light of oppositely directed rotation. And he proves that

this must be true also for Fehling's solution, because the light-

absorption of the ions in dilute solutions must, as Ostwald 5
)
also

contends, be considered as independent of the presence of other

ions. From this it follows as a logical consequence, that in the case

of optical antipodes in an externally compensated mixture, it is

possible for the chemical process to go on at different velocities,

when these antipodes are attacked by circularly polarized light of

a definite direction of rotation. The author tries to demonstrate,

that on earth really all conditions have always been fulfilled for

causing a constant excess of circularly polarized light of a definite

direction of rotation. The possibility, even the necesssity, of the

1) H. Becquerel, Compt. rend, de 1'Acad. d. Sc. Paris, 108, 997, (1899).

2
) J. Jamin, Compt. rend, de 1'Acad. d. Sc. Paris, 31, 696, (1850).

) J. M. Eder, Sitzb. Akad. d. Wiss. Wien, 90, 1097, (1885); 92, 1346, (1885);

94, 75, (1886).
4
)

A. Cotton, Ann. de Chim. et Phys., (7), 8, (1896); Journ. de Chim. phys.

7, 94, (1909); MacDowell, Phys. Review, 20, 162, (1905).

5) W. Ostwald, Zeits. f. phys. Chemie, 9, 579, (1892).
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completely asymmetrical synthesis, according to Byk's views,

is, therefore, indirectly demonstrated and its experimental verifica-

tion is only a matter of finding out the suitable materials and

experimental arrangements. This solution must, therefore, probably
be sought in the field of photochemistry.

13. It is not our intention to consider in detail the different

ways in which, in the present author's opinion, the experimental

solution of the problem under consideration should be sought,

and investigations there-upon could be started.

A single suggestion, however, may find its place here.

From the substituted malonic acids of the type: CXY(COOH)2

the ether-salts of the composition:

COOMe

YCX

COO,>Alc

can be prepared, the aqueous solutions of which will of course

contain an equal number of dextro- and laevogyratory ions.

Now, if with a sufficient current-density, an electrolysis of this

solution is started, both these ions will split off carbon-dioxide to

form an ether of the type:

COOAlc

;x

YCX
I

COOAlc

and this decomposition, going on with equal velocities for both

kinds of stereometrical configurations, will, therefore, necessarily

lead to an optically inactive, product
]

).

If, however, this electrolysis be started in a very strong mag-
netic field, the lines of force of which are parallel to the -direction

of the current, and especially, if the metal Me be so chosen as

to increase the magnetic susceptibility of the solution, there may
be a good chance that under these dissymmetrical conditions,

the electrochemical decomposition of both enantiomorphously
related kinds of ions no longer occurs with the same velocity.

In that case an optically active product might be obtained at the

A. Crum Brown and J. Walker, Ann. der Chemie, 261, 110, (1890).
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electrodes, if the process be stopped before the decomposition of

the substance present is completed, and an excess of one of the

optically active components of the ether might be found in the

product finally obtained.

Experiments of this kind, especially with ferric salts of organic

acids, were already started, but they could not be continued because

of the unfavourable circumstances during the war, so that no definite

results were hitherto obtained. We intend to recommence these

investigations as soon as possible.

14. Our ideas concerning the problem of asymmetrical syn-

thesis in nature, have been much changed during the last decades.

Continual research leads us to believe that the hope need not

be given up of overcoming within a not too distant future all

experimental difficulties, and that the dynamics of the asymmetrical

synthesis will then be as accessible to us, as those of our common

laboratory-processes.

If these experiments should some day have a real positive result,

we shall then have completely solved one of the most fundamental

riddles in the chemical and biological sciences, and we shall once more

effectually have contributed to the final understanding of one of the

most important phenomena, which have puzzled scientists ever

since they have been able to think of problems on this level.

At the same time then we shall have gained a clearer insight into

the true significance and the value, which the principle of symmetry
has for the scientific description of the living and inanimate

worlds, thus contributing most effectually to the never ceasing

efforts of our race to increase our knowledge of the wonderful and

mysterious ways of that greatest of artists: Nature.
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Conrad (H. E.) 226, 261.

Constancy (of natural synthesis) . 300.

Constant forms 87.

Constants (velocity-) 294.

Construction (Church's) .... 168.
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Crystallography 23, 36, 82, 83, 84, 86,

87, 88, 101, 102, 104, 105, 138, 139,

141, 144.
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Degree (of dissymmetry) 99, 108, 206.

Degree (of symmetry) 122, 123, 124, 125.

Delphinium peregrtnum 201.
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Dimethyl-hexahydro-phtalate . . 226.

a-a'-Dimethylsuccinic acid .... 220.

Dimorphism . . .188, 197, 230, 280.

Dinitro-diethylenediamine-cobalti-
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331

Dubsky (J. V.) : 258.

Dutilh (H.) 221.

Dyacisdodecahedron . . .86, 87, 88.
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Eudendrium 57.

Euler (L.) . . 19, 20, 29, 127, 130.

Euler's theorems 19, 20, 29, 127, 130.

Euphorbia Wulfeni 162.

Evans (C. de Brereton) . . . .281.

Everest (A. E.) 265.

Evolutionary development 56, 201
, 202,

203, 303,319.
Evolution (of forms) 56, 201, 202, 203.
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332

Explanation (of crystallographical phe-

nomena) 136, 137.

Extended theory (of Sohn eke) 132, 133.

Eyde (S.) 109.

F.

Faces (possible) 79, 80.

Fajans (K.) 224, 227, 311, 312,313.

Falkenberg (H.) 201.

Fedorow (C. E. Von) 12, 75, 112, 126,

134, 137.

Fehling's solution ....... 320.

Feldspars . . . /T 176.
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Groth (P. Von) 138, 145, 158, 188,

198, 199, 254, 257, 273.
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Imaginary crystalfroms . . 54, 55, 68.
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Internal compensation . . . 254, 255.

Internal structures (of crystals) 150,

153, 154, 155, 156, 157.

Interpenetration (of crystals) 174, 175.

Interpenetration (of space-lattices) 132,

133, 145, 158, 159.

Intersecting axes 19, 29.

Intersecting planes 27, 28, 29, 30, 31.

Inversion 16, 20, 50, 58, 59, 91,. 102,

103, 254, 257, 295, 300.

Inversion-centre 16, 22, 24, 26, 58, 59,

91, 102, 103, 254, 257, 259.

Inversion-temperature 197.

Inversion (Walden-) 269, 284, 287,

288, 289, 290, 291, 292, 293.

Invertase 226, 227, 228.

lonisation-chamber 150.

Ions (complex) 249, 250, 251, 252, 253.

Ironsalts (complex) 110.

Irrational parameters 118, 120, 202.

Irregularities (of structure) . . . 104.

Isobutylalcohol 202.

Isobutyl-a-bromo-propionate . . . 234.

Isobutyl-methyl-benzyl-phenyl-ammo-
nium-iodide 237.

/-Isobutyl-woyw. a-hydroxybutyrate
289.

Isocinnamic acid . . . 267, 268, 269.

Isodimorphism . . . . 212, 213, 216.

Isolactose 228.

Isomaltose 228.

Isomerides (number of) 256.

Isomerides (symmetry of) . . . .201.

Isomorphism 139, 140, 180.

Isomorphous mixtures . . .192, 230.

Isomorphous substances 180, 212, 214,

216.

Isopropylalcohol 202.

Isopropylamine-platini-chloride . 198,

199.

Isopropyl-bromopropionate . . . 234.

Isotherms (solubility-). 209, 210, 221.

Isotropous system ..... 91, 92.

Isotropy (axis of) 23, 35, 43, 73, 89,

90, 91.

Iterson Jr. (G. Van) 166, 169, 170.

j

Jacobs (W. A.) 287.

Jacobson (P.) 287.

Jaeger (F. M.) 57, 101, 104, 139, 146,

158, 177, 180, 191, 193, 194, 196,

215, 216, 220, 244, 249, 250, 251,

253, 272, 273, 274, 277, 279, 317.

Jager (G.) 71.

Jamin (J.) 319.

Japp (F. R.) 301, 318.

Johnsen (A.) 89. 147, 151.

Jones (H. O.) 241, 247.

Jones (Owen) 5.

Jordan (C.) .53.

Jordan (Chr.) 289.

Jorissen (W. P.) 207.

Jungfleisch (E.) .... 219, 235.

Juxtaposition (of crystals). 174, 175.

K.

Kaase (W.) 289.

Kaleidoscope 3, 31.

Kaleidoscopical figures ... 3, 31.

Kapteyn (J. C.) 106, 111.

Karnojitzki (A.) 189.

Karrer (P.) 228, 289.

Kastle (J. H.) 228.

Kay (F. W.) 266.

Kaye (G. C. W.) . 147.

Kefir-lactase 228.

Keller (E.) 147.

Kelvin (Lord) 134, 141.

Kenrick (F. B.) 209.

Kenyon (J.) . 292.

Kepler (J.) 162, 163, 170.

Kerr (R.) 3.

Ketopiperazines 254, 257.

Ketoses 302.

Kinetic measurements . . 234, 236.

Kipping (F. S.) 212, 214, 219, 221,

229, 230, 231, 241, 242, 296, 297,

301, 305, 306, 307.

Kirchhoff (G.) 89.

Klein (C.) 182, 190, 192.

Klercker (K. O. af) 299.

Klocke (F.) 186.

Knipping (P.) 100, 146.

Koenen (A. Von) 190.

Kokscharow (N. Von) 192.
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Krause (E.) . 202.

Kreutz (St.) 76, 279.

Kruyt (H. R.) 211.

Kiister (F. W.) 221.

L.

Lacroix (A.) 180.

Labiates 55.

Lack (of stability) 203.

Lack (of symmetry-elements) 105, 108,

109.

Lactase 228.

Lactic acid . . 219, 287, 304, 309.

Lactones (gulonic) 212.

Ladenburg (A.) 211, 219, 221, 222,

254, 257.

Lame (G.) 162.

Lamellae (intergrown) . . 186 199.

Lamellae (twinning-) . . . 186200.
Lamellar aggregation 186, 189, 191,

194, 195.

Lamium purpureum 55, 56.

Landolt (H.) 206.

Lassaulx (A. Von) 182.

Lateral growth 167.

Lane (M. Von) 79, 100, 112, 146, 147.

Laudanine 299.

Lavizzari (L.) 89.

Law (Hauy's) 78, 79, 80, 83, 118,

121, 137.

Law (Pasteur's) 82, 204, 236, 282, 284.

Layercrystals. . 230.

Lead-derivatives (organic) .... 202.

Lecture-experiments (on superposition)

106, 107.

Lead-dithionate 184, 186.

Leadhillite 174.

Leadnitrate 184.

Leaves (disposition of) . . 160 170.

Leaves (symmetry of) 55.

Le Bas (G.) 139.

Le Bel (J. A.) 157,204,206,234,237,

238, 241, 242. 243, 244, 245, 253,

262, 269, 277, 282, 283, 285, 290.

Le Chatelier (H.) 190.

Lehmann (O.) 173, 174.

Lenander (K. J.) 289.

Leonardo Pisano 162.

Leonardo da Vinci 163.

Leptocyathus elegans 63.

Leucine 224.

Leucite .... 184, 190, 191, 193.

Leucylglycine 227.

Levi-Malvino (M.) . . . 221, 222.

Levulose 214.

Lewis (J. V.) 263, 264.

Lewkowitsch (J.) 234.

Lichtenstadt (L.) 242.

Liebermann (C.) .... 267, 269.

Liebig (J. Von) 300.

Liebisch (Th.) . . . 105, 231, 278.

Life-phenomena 203, 298, 302, 303, 304.

Light-absorption (of antipodes) .211.

Limit-forms 122.

Limits (of axial periods) 77, 78, 79, 80,

81, 83.

Limit-value 163, 165, 169.

Limonene 226, 296, 297.

Linck (G.) 185.

Linden (T. Van der) 211.

Lines (of force) . . .96, 97, 108, 109.

Lines (of ^-ray-spectra). . . 151, 152,

Lipase 227, 228,311.

Liquids (anisotropous) . . . 174, 175.

Lissajous (A.) 3.

Literature (on symmetrical arrange-

ment) 75, 76.

Literature (on morphological applica-

tions) 70.

Livens (G. H.) 286.

Living nature (symmetry in) 70, 71,

165, 200,300,312.
Loeb (J.) 57.

Loevenhart (A. S.) 228.

Logarithmic spirals. . . 167, 168, 170.

Loon (Ch. van) 257, 286.

Lorentz (H. A.) . . . . 97, 108, 186.

Loven (J. M.) 219.

Lupeon 272.

Luteo-cobalti-salts 110.

Lutz (O.) 289.

Luzula, campestris 47 .

Luzzatto (R.) 299.

M.

MacCutcheon .

MacDowell.
Mach (E.). . .

Macht (D. I.]

232.

320.

5, 6.

225.

MacKenzie (A.) 227, 229, 234, 288,292,

295,297,305, 306,309,311.

Madelung (A.) 189.

Magnesium (crystalform of) . . .144.

Magnesiumsulphate . . . 270, 279, 280.
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Magnetic field (symmetry of) 96, 97, 109,

316,317,321.

Magnetic induction 105.

Magnetic polarisation 110.

Magnetic susceptibility. . .249,321.

Magnetism (terrestrial) 319.

Malic acid 219, 231, 287,288, 290, 308.

Mallard (E.) 144, 171, 175, 182, 184,

186, 187, 188, 189, 190, 191, 192,

196, 197, 198, 199, 200, 271,278, 280.

Malonic acids (substituted) . . .321.

Maltase 228.

Maltose 228.

Malvino(Levi-). . . . .221,222.
Mamlock (L.) 294.

Mandelic acid 229, 295, 297, 305, 306,

308, 309, 314,317.
Mandelic acid (menthyl-amide of) 307.

Mannino (A.) 221,222.

Mannoheptonic acid 301.

Mannose 301.

Maquenne (L.) 262.

Marckwald (W.) 218, 219, 229,232,

235, 266, 295, 297, 305, 306, 307,

308,309,315.
Marie (Th. W. J. van) .... 206.

Marsh (J. E.) 265,279.
Martens (M. T.) 201.

Martin (G. H.) 293.

Maruki (T.) 211.

Mastixea arborea 47.

Mathematical treatment (of symmetry-
elements) 21, 29, 32, 58, 59, 66,67,

72, 73, 75, 76, 79, 80, 81, 119, 120,

121, 126, 127, 128, 135, 142, 143.

Matter (crystalline) 45, 54, 55, 57, 58,

59, 78, 79, 80, 81,86, 87, 88, 101,

102, 103, 104, 105, 113, 121, 132,

137, 138, 139, 140, 141, 144, 145

157, 200.

Matteucci (Ch.) 106.

Mayer (P.) 225.

Mayor (A.) 225.

Measurements (independent) . . . 83.

Medium (physical) 94, 98, 99, 101, 102,

103, 108, 109, 137, 145, 146, 158, 159.

Medusae 3.

Meier (A.) 227,312.
Meisenheimer (J.) 242.

Members (of a cycle) .... 160, 161.

Membranes (vibrating) 3.

Mendel (Gr.) 111.

Menozzi (A.) 224.

Menschutkin (N.) 308.

/-Menthol 229, 297, 305, 306, 307, 310.

/-Menthylamine 229, 308.

/-Menthylbenzoyl-formate .... 309.

/-Menthylcinnamate ....... 306.

/-Menthylcitraconate 306.

/-Menthyl-isocyanate 257.

/-Menthylmandelate 222, 306, 309, 310.

/-Menthylmesaconate 306.

/-Menthylphenylcrotonates .... 306.

/-Menthyl-phenyl-p-tolyl-acetate . 322.

/-Menthylpyruvate 306, 309.

Mercuric oxide 290.

Mercury 144.

Merohedrism 125.

Mesaconic acid 306, 307.

Meshes 116, 117, 118, 120, 121, 122, 164.

Mesotartaric acid. . . 254, 255, 256.

Metabolism 302.

Metal-atoms (partially asymmetric)

249, 250.

Metalplates (vibrating) 3.

Metanilic acid
, .227.

Metastable forms. . . .199,207,315.
Meth (R.) . . .219, 229, 266, 308.

Methane. . . 238.

Methods (of fission) 206, 207,208, 212,

216, 217, 218, 222, 223, 298, 308.

Methods (of X-ray experimenting) 1 45,

146, 147, 149, 150, 151, 152157.

Methylcinnamate 317.

Methylconiine 299.

Methylbenzylaniline ...... 297.

l-Methyl-cyclohexylidene-4-acetic
acid 265.

Methyl-ethyl-acetonitrile 318.

Methyl-ethyl-cyano-acetic acid . .318.

Methyl-ethyl-malonic acid .... 307.

Methylfumarate 317.

a-Methylglycoside 227, 305.

0-Methylglycoside 227,305.

Methyl-iodide 202.

AT-Methyl-a-pipecoline . . . . . .307.

Methylmannosides 208.

Methyl-phenyl-bromo-acetate . . 234.

Methylsuccinic acid. . . . . . .221.

Meyer (J.) 316,317.

Meyer (V.) 203,287.

Meyerhoffer (W.) 207,231.
Mica-lamellae 196, 318.

Mica-piles . . . . . . .186, 196,278.

Micro-organisms .... 205, 207, 222.

Mikola (S.) 3.

22
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Miller (A.) 79, 86, 87, 141.

Mills (W. H.) 266.

Mimetic forms 171. 172, 177, 178, 179,

180, 181, 182, 183, 187, 197, 198, 199.

Mimicry . . 171, 172, 177, 197200,
Minguin (J.) 230,231.

Minnigerode (B.) 53, 75.

Mirror. . . . 3, 5, 9, 10, 16, 27, 28.

Mirror-axis 20, 24, 25, 26, 30, 31, 49,

50, 51, 53, 54.

Mirror-caleidoscopes ....... 3.

Mirror-image 5, 6, 9, 10, 11, 15, 16,

17, 20, 97, 98, 254, 294, 300, 304, 319.

Mirror-image (of physical pheno-

mena) 96, 97, 98.

Mitscherlich (E.) 139.

Mixed-crystals (pseudo-racemic) 229

231.

Mixture (externally compensated) 207,

208, 214, 226, 229, 231, 298.

Mobile equilibrium 208.

Mobility (of radicals) 286.

Mobius (A. F.) 11, 75.

Models (of molecules) 260.

Mohr (E.) 260, 290.

Molecular currents 107.

Molecular structure 79, 202.

Molecule (chemical) . .158, 159, 200.

Molecule (crystallonomical) . . . 135.

Molgula tubulosa 63.

Momentum (electric) 105.

Monoclinic symmetry 64, 83, 121, 122.

Monocotyledons 35.

Monomolecular reaction . . . 234, 237.

Morphine 219,266.

Morphology 3, 32, 36, 41, 46, 47, 55,

57, 60, 61, 62,63,65,70,71,74, 160.

Morphotropical action. . . . 138, 139.

Morphotropism 138, 139.

Morris (G. K.) . 298.

Moseley (H. G. J.) . . . . . . 151.

Motif. . 114, 115, 123, 124, 125, 126.

Motion (animal) ....... 56,57.

Motion (characteristic) 13, 14, 15, 16,

18, 19.

Motion (helicoidal) 13, 18, 19, 21, 29.

Motion (relation to symmetry) 13, 14.

Motion (types of) 13, 18.

Moulds 223, 224, 227, 312.

Miigge (O.) .89, 144, 173, 177, 179.

Miiller (H. A.) 309.

Miiller (J.) 70.

Miiller (W.) 208.

Multiple fruits . .161, 162, 166, 163.

Multiplication (of parameters) 140, 141.

Muscles 160.

Muscovite 174, 186, 196.

Mutation (retrograde) 202.

Mydriatic action (of atropine) . . 225.

Myristica fragrans 299.

N.

Naphtionic aciot 227.

Natrolithe 190.

Natural synthesis 298, 300, 301, 304.

Nature (living) 55, 56, 57, 112, 160

170, 202, 203, 301, 322.

Navicula dichyma 65, 69.

Naumann (C. F.) 74.

Nef (J. U.) 236, 292.

Nernst (W.) 247.

Netplane 115, 116, 118, 148,149,150,

153, 154157, 165, 170.

Network 116.

Neuberg (C.) . . 218, 224, 225, 299.

Neufville (K. de) 264.

Neville (A.) 242.

Newton (H. C.) 3.

Nicotine 225. 226, 297, 298, 312, 313.

Nickelsalts (complex) 110.

Niggli (P.) 76, 132, 147.

o-Nitrobenzaldehyde 318.

Nitrobenzene (as solvent) . . . .313.

a-Nitrocamphor (sodiumsalt) . . . 287.

Nitrogen(pentavalent)236, 242, 247,282.

Nitrogen (trivalent) 242.

Nitro-group 138.

Nitrosylbromide 288, 292.

Nitrous acid . . . 202, 288, 290, 292.

Nold (A.) 126.

Nolda (E.) 232,235.

Non-equivalence (of motions) 14, 34,

52, 82.

Non-equivalent operations 14, 34. 50,

51, 52, 82, 113.

Non-resolvable isomerides 257259,
261, 263.

Non-resolvable molecules 257, 258, 259,

261, 263.

Non-superposable configurations 205,

207, 217, 287, 240, 241
, 243, 244, 273,

312.

Non-superposable hemihed.imi 47, 48,

205, 213, 272, 273, 274, 277, 279, 283.

Nordenskjold (G.) 172.

Normal substitutions 290.
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Nucleus (of crystallisation) .2 1 2
,
2 1 3, 2 1 6 .

Number (of stereoisomerides) . . 256.

Number (of symmetrical operations) 45,

52, 82, 92.

Numerical data (statistic) . . . .111.

0.

Oak-leaf 7, 8, 56.

Octahedron 43, 87. 88.

/-Octyl-alcohol 306.

/-Octylrf-tartrate . 306.

Olie Jr. (J.) 147.

Olivier (S. C. J.) 203.

Olivine 68.

Onesidedness (of nature) . . 37, 300.

Ontogenetic explanations . . 165,166.

Open-chain derivatives 261.

Operations (symmetry-) 14, 15, 16, 22.

24, 33.

Optical activity 186, 187, 204, 205, 243,

245, 246.

Optical anomalies 178, 182, 184, 185,

186, 187, 188199.

Optical antipodes (affinity of) 294, 295,

297.

Optical antipodes (crystalforms of) 204,

205.

Optical antipodes (properties of) 204,

205, 211, 217, 225.

Optical antipodes (stability) 223, 224,

225, 226, 227, 232, 233, 234, 235, 236.

Orchidaceae 55, 201.

Order (1st) 13, 14,20.

Order (2nd) 15,20.

Organisms (living) 3, 35, 45, 54, 56,

57, 70, 71, 160170, 205, 222,223,

224, 225, 226, 228, 293, 299, 301,

302, 303, 304, 311, 312, 315, 319.

Organs (disposition of) . . 160 170.

Origin (of active matter) 305, 315321.

Orophocrinus stelliformis ... 62, 65.

Orpiment 174.

Orthogonal intersections. . . 167, 168.

Orthorhombic symmetry .... 69.

Orthostichies . . .160, 163, 166, 169.

Oscillatory electric field . . . .319.

Ostromisslensky(I.)213, 214, 215,230.
Ostwald (W.) 111,320.

Oxalo-diethylenediamine-chromi-
bromide 215, 251.

Oxalo-diethylenediamine-cobalti-
bromide 214,215,251.

Oxides (crystalforms of) 144.

4 Oximino-cyclohexane carboxylic acid

265.

Oxymethylenecamphor 219.

o-Oxyphenyl-ethylcarbinol .... 307.

Owen (E. A.) 147.

Owen Jones . 5.

P.

Packing (most closely) 139, 140, 141,

142, 143, 144.

Palladium-anticathode 151.

Pape (C.) 186.

Paphiopedilum Hookerae. . . . 55, 56.

Papilhonaceae 55, 56.

Parallelohedron 134.

Parallelepiped cells. . .116,117,118.
Parallel reflecting planes . . .22, 28.

Parallel symmetry-axes 119, 127,128.
Parameter 78, 83, 144.

Parameters (irrational) 119, 120, 163,

164, 165.

Parameters (of crystals) . . 78, 83, 144.

Parastichies 160, 161, 163, 164, 166, 169.

Pari (G. A.) 225.

Paris quadvifolia 35, 36.

Partial pseudoracemism 232.

Partial racemism . 204, 221
, 222, 231 .

Paschke (F.) 236.

Passiflora augustifolia 70.

Pasteur (L.) 82, 108, 204, 205,206,

206, 207, 213, 217, 219, 223, 225, 226,

228, 231
, 237, 240, 243, 244, 269, 270,

271, 272, 277, 282, 283, 284, 298,

300, 301, 303, 304,308.
Patterns (finite) 3.

Patterns (infinite) 112, 113, 123, 124,

129, 130, 131, 132, 133, 135.

Patterns (Rontgen-) 100, 103, 104, 144,

146, 180, 191, 192196.
Patterson (Th. S.) . . 206, 286, 307.

Paul (D. M.) 315.

Peachy (S. J.) 218, 219, 222, 241, 242,

274.

Pearson (K.) 301.

Pelagia perla 61.

Pelorium 201,202.
Pendulum (elliptic) 3.

Penetration (of crystals) . .174, 176.

Penicillium glaucum .... 223, 228.

Pennine . .190.
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Pentagonal dodecahedral symmetry
43, 44.

Pentagonal dodecahedron. . . 43, 44.

Pentagonal dodecahedron-group 43 46.

Pentagonal dodecahedron (tetrahedral)

Pentagonal icositetrahedron 86, 87, 88.

Pentagonal symmetry 61, 62, 163, 165,

169,201.

Pentamery . . . . . . .61, 164, 169.

Pentavalent nitrogen . . 236, 242, 247.

Pentose 299.

Pentosuria 299.

Pentremites orbignyanus . . . . 62, 65.

Period (of axis) . . . . 23,119,120.
Periodical repetition . . 113,114,162.
Periodnumber 24, 25, 26, 39, 42, 49, 50,

51, 53, 54, 65, 66, 69, 77, 81, 89, 120.

Perkin Jr. (W. H.) . .261,265,266.
Perowskite 184, 192, 193.

Perrier (A.) ........ 97, 100.

Pfeffer (W.) . 223.

Pfeiffer (P.) ..... 147,236,290.
Phaenoschisma acutum .... 62, 65.

Phaeodavia 46.

Phalaenopsis Schilleriana . . . .201.

Phase 149, 150, 154, 155.

Phase-differences . .149, 150, 154, 155.

Phaseomannite 263.

a-Phenantroline-derivatives . . .110.

Phenoles (substituted) 201.

Phenomena (chemical) 109.

Phenomena (diffraction-) 79, 146, 147,

148, 149, 150, 154, 155.

Phenomena (physical) 23, 47, 89, 90, 91,

92, 93, 95, 100, 105, 106, 107, 108,

109, 145, 146.

Phenyl-alanine 224.

Phenylbromolactie acid . . . 267, 268.

Phenylcrotonic acid 306.

a-Phenyl-ethylamine . . . .219, 308.

Phenyl-ethyl-glycolic acid .... 309.

^3-Phenylglycerinic acid 232.

Phenylgroup (influence of). . . . 286.

d-Phenyllactic acid 267, 268.

Phenyl-oxy-acrylic acid 267.

Phenyl--tolylacetic acid (/-men-

thylether of). . . 322.

Phenyl-p-tolylketene 322.

Phillipsite ... 181, 182, 183, 187.

Phlogopite 174.

Phosphorus-atom (asymmetric) . . 242.

Phosphoruspentabromide . 289, 292.

Phosphoruspentachloride . 289, 292.

Phosphorustribromide 288.

Photographical method 150.

Photochemical reactions 316, 317,318,
320.

Photochemistry .316, 317, 320, 321.

Phototropism 57.

Phyllotaxis 36, 112, 160, 162, 163,

164, 165, 166, 167, 169, 170.

Physical phenomena 23," 47, 89, 90,

9*, 92, 93, 94, 99, 103, 104, 105, 205.

Physical symmetry ... 92, 93, 319.

Physiological action (of antipodes) 224,

225.

Physiological processes 224, 225, 303,

312, 315, 316, 319.

Pickard (R. H.) 257, 292.

Pictet (A.) 225.

Pidgeon (H. A.) 106.

Piezoelectricity 105.

Pine-apple 161.

Pinene. . 299.

Pinus 161, 166, 167.

Piles (of crossed lamellae). 186, 196.

/3-Pipecolinebitartrate 222.

Piperidonium-derivatives . 281- 282.

Pisano (L.) 162.

Piutti (A.) 212, 224,

Plane (of symmetry) 5, 6, 26, 58, 59,

64, 66, 67, 68, 254, 259.

Plane (of gliding symmetry). . .143.

Plane (of indirect symmetry) 254, 257.

Plants (phyllotaxis in) . . 16CV-165.

Platinum-anticathode . . . 151, 152.

Platinum-compounds (complex) . 253.

Platinummetals 144.

Plato 1, 8.

Platonic polyhedra 43.

Platycodon grandiflorus 62.

Plotinos 2.

Plurivalent atoms 206, 240, 241, 242,

243, 244, 245, 282.

Podalyria cordata 55, 56.

Pohl (R.) . 146.

Pointsystem 1 15, 1 16, 1 17, 1 18, 121
,
145.

Polar forms 42, 43, 89.

Polarisation (dielectric) ... 98, 99.

Polarised light ..... 94, 95, 185.

Pole (of projection) 85.

Polemonium coeruleum 36.

Pollen-cells 47, 70, 74.

Polyclinum constellatum 60.

Polygoneae 74.

Polygonum amphtbium 47.
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Polyhedra 17, 18, 26, 40, 42, 55, 64,

68, 69, 87, 88.

Polymerisation 203.

Polymorphism 185, 188, 197, 198, 199,

200.

Polypeptides 225, 227, 289.

Polysymmetrical changes . 198, 199.

Polysymmetry 198, 199.

Polysynthetic twins 176.

Pope (W. J.) 112, 139, 141,145,212,

214, 218, 219, 222, 229, 230, 231,

232, 235, 239, 241, 242, 246, 251,

257, 258, 265, 266, 274, 277, 296,

301, 305, 319.

Poplar-leaf 4, 8.

Ponies furcata 61, 65.

Porter (C. W.) 4
226.

Position-isomerides .... 138, 139.

Positions (change of) 13, 14, 15, 16,

17, 19, 20.

Positions (parallel) 15.

Possible axes 80, 81.

Possible crystal-edges 80.

Possible faces 78, 79, 80.

Possible symmetries . . 12, 16, 26.

Potassium . 152, 153, 154, 155, 156.

Potassiumbichromate 37.

Potassiumchloride .... 152 156.

Potassiumchromi-oxalates 220, 232,

233, 249, 250, 274, 276, 297, 318.

Potassium-cobalti-oxalates 216, 249,

250.

Potassiumcyanide . . . 216, 249, 250.

Potassium-dithionate ... 184, 186.

Potassiumterrocyanide 184, 189, 194,

195.

Potassiumhydroxide. . 288, 290, 309.

Potassium-iridium-oxalate 250, 274,

276.

Potassiumpermanganate 310.

Potassiumrhodiumoxalates 215, 220,

249, 250, 274, 275, 276, 279.

Potassiumsodiumchromate . . . 198.

Potassiumsodiumracemate .... 208.

Potassium-strychnine-chromi-oxalate
233.

Potassiumsulphate . . 178, 179, 198.

Potassium-tartrate 213.

Potassiumtetrathionate ... 54, 55.

Pottevin (H.) 228.

Poulsson (E.) 225.

Precipitation (from solutions) 214, 215,

216.

Pre-existing dissymmetry 298, 302, 303,

309, 311,

Prehnite 190.

Prendel (R.) 209.

Preponderant factors .... 275, 277.

Preservation (of symmetry) . . . 57.

Price (Th. S.) 229, 305.

Primordial cells 167, 168.

Principal group 73, 74, 75, 82, 91 , 92, 98.

Principle (of Huyghens) . . . 148.

Principle (of symmetry) . .1.2, 322,

Pringsheim (E. G.) 255.

Pringsheim (H.) 163, 224, 225, 227,

299,

Process (of repetition) 2.

Projection (Gadolin's) 84, 85, 86, 87.

Projection (stereographical) . 84, 85.

Propeller 41, 42.

Proportio divina 163, 169, 201, 202.

Propylalcohol 202.

Propylalcohol (tsp) ....... 202.

Propylamine 202.

Propylamine-stannichloride . . . 199.

Propylene-diamine 253.

Propyl-iodide 281.

Propyl-isopropyl-cyano-acetic acid 248.

Propylamine-stannichloride . . . 199.

Propyl-isopropyl-cyano-acetic acid 248.

Propylpiperidine 281.

Proteids 223, 298, 300.

Prunier (G.) 264.

Przibram (R.) 57.

Pseudo-asymmetric carbon-atoms 256,

261

Pseudocoprosterol 222.

Pseudocubic space-lattices 176, 182,

192, 200.

Pseudoracemism . . . 229231, 232,

280, 319.

Pseudoracemism (partial) .... 232.

Pseudorhombohedron . . . . 182, 183.

Pseudosymmetry 122, 123, 171, 176,

177183, 197200, 271, 277, 278.

Pseudosymmetry (elements of) . 122,

123, 187, 188.

Purdie (T.) 212, 219,

Pyramidal hemihedrism ... 90, 91.

Pyrite 73, 175.

Pyritohedron 87, 88.

Pyro-electricity . .99, 100, 105, 271.

Pyro-inductive phenomena . 97, 100.

Pyrophyllite 174.

Pyruvic acid 297.
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Q.

Quartz 7, 8, 99, 100, 101, 102, 103,

104, 175, 184, 186, 194, 275.

Quaternary axis (of 1st order) 23, 81, 127.

Quaternary axis (of 2nd order) 21, 25,

26, 55, 260.

Quercine ........... 264.

Quercite 264.

Quinary axis 23, 25.

Quinic acid .......... 308.

Quinicacid (phenyl-ethyl-amideof) 308.

Quinidine . , 219, 297, 313, 314, 315.

Quinine 219, 221, 226, 297, 313, 314, 315.

Quinine-levulinate 307.

Quinine-pyruvate 307.

R.

Racemates .207, 208, 209, 210, 211,

214, 215, 216, 218, 229, 280, 294,

298, 308.

Racemic acid 204, 211, 219, 224, 225,

295, 308.

Racemisation 234, 235, 236. 286, 292.

Racemism (partial). . .220, 221,222.
Racemism (pseudo-) . . . .229 232.

Raecmoids. .207. 208, 209, 210, 211,

214, 215, 217, 218, 229, 234, 298, 308.

Radial arrangement. 168.

Radiation (of X-ray-bulb) .151, 152.

Radiolaries 3, 46, 55, 46, 60, 70, 85.

Raper (H. S.) . 299.

Rapp (R.) 226,
Raske (K.) ..... .257,287,289.
Rates (of growth) 166.

Rational cosines 80, 81,

Rational indices . . 78, 79, 118, 119.

Rational periods 23, 119.

Rays (Rontgen-) 79, 100, 101, 102,

103, 104, 112, 137, 141, 144, 145

157, 191, 192, 195.

Reaction-velocity 294, 296, 297, 298,

302, 312, 315, 318.

Read (J.) 219,232,242,246,257,258.

Reciprocal relations 97,107.
Reflection . . . 3, 9, 12, 15, 20, 50.

Reflections (characteristic) . . 15, 16.

Reflections (repeated) 3, 9, 22, 26, 27,

28, 29, 30, 31, 32.

Regularity (geometrical) . 2, 7, 8, 70.

Regularity (variable and invariable) 7, 8.

Regulation (of velocities) .... 302.

Reichenbach (H.) 111.

Relations (symmetry-) 21.

Relative symmetry 97, 98.

Religious symbols 37.

Repeat 114, 123, 124, 125, 126,129,
131.

Repetition (regular). . . . 2, 3, 5, 87.

Repetition (symmetrical) . 2, 3, 5, 6.

Resau (C.) ........ 221,222.
Residual affinities 291.

Retrograde mutation . . . . . . 202.

Retrogression 202.

Reusch (E. Von) . . . 186, 196, 278.

Reversibility. . . .197,198,208,228.
Review (of symmetry-groups) 74, 75.

Rhodium-anticathode 151.

Rhodiumsalts (complex) 220, 233, 250,

251,252,253.
Rhombicdodecahedron. . . . 87, 88.

Rhombic system ... 68, 69, 83, 122.

Ribose 299.

Riecke (E.) 126, 138.

Ries (A.) '. . . 198, 199.

Riiber (C. N.) 232.

Rimbach (E.) . . 278.

Rinne (F.) . . . .101, 147, 182, 196.

Rivina brasiliensis 47.

Rivina humilis 47.

Rocksalt 152157, 174, 200.

Rontgen-patterns 100, 101, 102, 103,

104, 144, 146, 180, 191, 192, 193,

194, 195, 196.

Ron tgen-radiation 79, 99. 100, 101,

102, 103, 112, 144, 145, 146, 147,

148, 150, 151, 153, 159, 191, 192,

195, 291.

Rohn (K.) 126:

Romburgh (P. Van). . . .272,299.
Rome de 1'Jsle (J. B. L.) . . . 172.

Roozeboom (Bakhuis, H. W.) 209,

210, 221, 229.

Roseiibohm (E.) 249.

Rosenbusch (H.) 89.

Rosenthal (J.) 319.

Rosenthaler (L.) 312.

Rotation (about axis) 8, 13, 14, 18, 19,

20, 23, 27, 34, 89, 90,91, 106, 107,

108, 119, 120, 127, 128.

Rotation-dispersion 249, 275, 276, 279.

Rotation (molecular) 246, 251, 275,

276, 286.

Rotation (optical) 110, 184, 185, 187,

205, 275, 282, 283, 286.
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Rotation (specific) 246, 248, 253, 286.

Rotatory dispersion 249.

Rotatory power 110, 184, 185, 186, 187,

188, 204, 206, 213, 232, 233, 234,

235, 246, 248, 250, 251, 270, 271,

273, 274, 277, 282, 283, 292.

Rothe (O.) 236.

Rotschy (A.) 225.

Roxburghia gloriosoides 36.

Rubidiumdithionate .... 184, 186.

Rubidiumnitrate 177.

Rubidiumracemate 208.

Rubidiumtartrate. 208, 278.

Ruff (O.) 203.

Rule (Joh. Muller's) 70.

Runge (C.) 147, 151.

Rupe (H.) 206,286.
Rutherford (E.) 111.

Rutile. 192, 193.

s.

Saccharose 295.

Sachs (J.) 36, 166,167,169.
Sadebeck (A.) 174.

Salt-hydrates 132, 133.

Santonine-salts 222.

Saponification . . . 304, 305, 306, 309.

Saurel (P.) 37.

Scacchi (A.) .... 187, 207,208.
Scalar properties . . . . 93,219,217.
Scales 160.

Scheelite 64, 99.

Scheffer (F. E. C.) 158.

Scheibler (K.) 289.

Schelderup (H.) 188.

Scherrer (P.) 147, 157.

Schiebold (E.) 147.

Schimper (K. F.) . . . 160, 166, 169.

Schlippe's salt 184,278.
.Schmitz (M.) . 202.

Schnorr (W.) 89.

Schoenflies (A.) 11, 37, 53,75,112,

126, 134, 135, 137.

Scholtz (M.) . . /.. 242, 306, 307.

Schoute (J. C.) 169.

Schreinemakers (F. A. H.) . . 210.

Schiitt (K.) 157.

Schwendener (S.) 166.

Scolezite 180.

Scopolamine 225, 235.

Scopoline ...... ....'. . 299.

Screw 42.

Screw-axis 31, 143.

Screwthread 9.

Section aurea 163, 169.

Sedentary life (of living beings) . 56.

Segments (rational)
'

78, 79.

Selective action (of ferments) 223, 224,

225, 227, 228, 298.

Selective action (of interference) . 149.

Selective colouring 226.

Selenium-atom (asymmetric) . . . 242.

Senarmont (H. de) 264.

Senary axis. . 23, 26, 81, 130, 143.

Senter (G.) 290, 293.

Sequence (of operations) .... 17.

Series (Fibonaccian) . . 162, 165.

Series (K-, L-, and M-) 151.

Series (of operations) . . 34, 50, 51.

Series (of reflections) 27, 28, 29, 30, 31.

Sets (of binary axes) .... 38, 39.

Shibata (Y.) 211.

Shifting (parallel). ... 14, 15, 28.

Shimizu (T.) 106.

Siegbahn (M.) ..... 150, 151.

Sign (change of) 251, 252.

Silica-structures 69.

Silicon-atom (asymmetric) .... 242.

Silver 144.

Silver-acetate 235.

Silvercarbonate 288.

Silver-iodide 59, 60.

Silver-oxide 288, 290.

Simon (L.) 229, 304.

Simplicity (of indices). ..... 79.

Simulative symmetry 177, 178, 179,

181, 183.

Simultaneous motion (of planes)

27, 28, 29, 30, 31.

Situs inversus 201 .

Sixfold symmetry 23, 26,81, 130, 143.

Skita (A.). 287.

Slimmer (M.) 306, 307.

Smirnoff (A. P.) 253.

Smits (A.) 158.

Snowcrystals 172, 173.

Sodium 152, 153, 154, 155, 156, 157,

202, 267, 317.

Sodium-ammoniumracemate 204, 207,

212, 213, 281.

Sodium-ammoniumtartrate 195, 207,

214, 296.

Sodiumbromate 184, 186, 278, 279.

Sodium-a-camphornitronate . . . 220.
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Sodiumchlorate 110, 184, 186, 194, 214,

270, 278, 279, 280, 281, 282.

Sodiumchloride 152 157.

Sodiumdihydrophosphate .... 278.

Sodiumhydroxide . . . 235, 267, 308.

Sodiumnitrate 280.

Sodiumperiodate 35, 184.

Sodium-phenyl-oxy-acrylate . . . 267.

Sodiumracemate 208.

Sodiumtartrate . ..... 208, 213.

Sodiumtripotassium-chromate . . 198.

Sodiumtripotassium-sulphate . . . 198.

Sodium-uranyl-acetate . . . 278, 279.

Sohncke (L.) 112, 121, 126,127,130,

131, 132, 133, 137, 145, 158, 186.

Sokoloff (W.) 310.

Solenoid 96, 106, 107, 108.

Sollas (W. J.) 138.

Solubility (of antipodes) 209, 210, 21 1,

215, 217, 218, 220, 221, 222, 232,

252, 294, 295.

Solutionbodies 89.

Solutionphenomena 89.

Solvents (active) 293, 295, 296, 297.

Solvents (influence of) 293, 295, 297.

Sommerfeld (A.) . . Ill, 146, 147.

Soret (Ch.) 99, 214.

Soret (J. L.) 5.

Space-lattices (definition) 116, 117, 118.

Space-lattices (properties) 116, 117,

118, 119, 120, 121, 122, 150, 152,

153, 165.

Space-lattices (significance of) 116,

121, 150, 152, 153, 158, 159, 162,

164, 165, 170.

Space-lattices (symmetry) 118, 119,

121, 153159, 188, 200.

Spacial arrangement . . . 203, 205.

Species 201.

Specific action (of enzymes) 224226,
305, 314.

Specific symmetry .... 93, 300.

Spectra of (Ron t gen-radiation) 151.

152.

Speed (of reaction) 110, 223,224,225,

226, 227, 228, 229, 232, 243, 235, 236,

294, 296, 297, 298, 302.

Spemann (H.) 201.

Spencer (H.) 301.

Sphere (of influence) . . . . 139, 140.

Sphere (of projection) 84, 85.

Spherical symmetry . . .74, 89, 238.

Spicula (of Radiolaries) .... 70, 85.

Spiral (Archimedian) . 161, 164, 170.

Spiral (genetic) . . 160, 161, 162, 164.

Spiral (logarithmic). . .167, 168, 170.

Spiral structure 160, 161, 168, 170, 206,

278, 279.

Spiral theory (of phyllotaxis) 160, 161,

168.

Spitta (A.) . . . . . . . . . . 226.

Spontaneous fission 204, 207, 207, 209,

211, 212, 214, 215, 216, 217, 281,

298.

Spring (V) 89.

Spyridibotrys trinacrma 60.

Stability (mechanical) 56, 57, 203, 285,

292, 298, 312.

Stadtlander (K.) 190.

Stadel (W.) 207.

Standardforms 7, 8.

Stannum-derivatives (organic) . . 202.

Starfishes 3, 57, 62.

Stark (J.) 146, 200, 294.

Statistic investigations . . . 106, 111.

Stenstrom (W.) 151.

Steinmetz (H.) 197, 198.

Stephanophyllia complicata .... 63.

Stephanophyllia elegans . . . 63, 65.

Stereochemistry 206, 220, 237, 242, 244,

245,301.

Stereometrical arrangement (of atoms)

237, 238, 239, 240, 241, 244, 245,

254, 255, 265, 267, 269, 270, 273,

279, 283, 293.

Stereoscope 5.

Sterohedron 134.

Stilbite 182.

Stirrer 41, 42.

Stoehr (C.) 257.

Stokes (G. G.) 98, 99.

Storax-cinnamic acid 267.

Striation 178, 190, 191.

String-galvanometer 109.

Strong (W. M.) 301.

Strontiumdithionate 184, 186.

Strontiumnitrate 184.

Strontium-hydrotartrate 37.

Structure (of crystals) . . 79, 126, 145.

Structures (regular) 126.

Struvite 59, 60.

Strychnine. . . .219,220,246,298.

Strychnine-racemate . . . .221, 222.

Strychnine-selenate 186.

Strychnine-sulphate. . . 184, 186, 194.

Strychnine-tartrates 221.
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Subgroups 74, 82, 91, 92, 98, 99, 105,

106.

Submicroscopical lamellae. 188 200.

Substitution (and crystalform) 138, 139.

Successive reflections 27, 28, 29, 30, 31,

32.

Sugar-acids 206.

Sugars . . . 224, 228, 202, 303, 309.

Sulphides (crystalforms of) ... 144.

Sulphurdioxide 150.

Sulphur-atom (asymmetric) . . . 242.

Sulphuric acid 202.

Sunflower 161, 166, 168.

Superposition (of hpysical causes) 95,

105, 106, 107, 108, 109, 110, 111, 316.

Supersaturated solutions 210, 212, 213,

215, 216.

Surface-density 118.

Susceptibility (magnetic) . . 249, 320.

Swarts (F.) 246.

Swietenia mahagoni 61.

Sylvine 152157, 174.

Symbols (fylfot-) 37.

Symbols (of groups) 37, 71.

Symmetry 1, 2, 7, 11, 12, 34.

Symmetry (aesthetic action) 2, 3, 5, 6.

Symmetry (apparent) 1 2 1
,
1 22, 1 76 1 83.

197200,
Symmetry (axis) 3, 9, 14, 15, 20, 22,

23, 27, 34, 35, 42, 43, 73, 89, 90, 91,

105, 113, 119, 126, 127, 128.

Symmetry (centre) 73, 103, 104, 118,

245, 256.

Symmetry (character). . . . 12, 18.

Symmetry (crystallonomical) 137, 138.

Symmetry (definition) . .11, 12, 15.

Symmetry (doctrine of) 2.

Symmetry-elements. ... 20, 22, 26.

Symmetry (maximum) 98.

Symmetry (mimetic) 122, 171, 176, 185,

187, 197, 198, 199.

Symmetry (minimum) 99.

Symmetry (molecular) 202, 203, 204,

236243, 247, 251, 254268, 312.

Symmetry (of natural forms) . . 7, 8.

Symmetry (of patterns) 99, 100, 101,

102, 103, 104.

Symmetry (physical) 88, 89, 96, 97, 98,

99, 100, 101, 316.

Symmetry-plane (diagonal) .57, 64, 66,

67, 68, 72, 73.

Symmetry-plane (horizontal) 5, 6, 58,

64, 66, 72, 73.

Symmetry-plane (vertical) 5, 6, 58, 64,

65, 72, 73.

Symmetry-principle 1, 322.

Symmetry-properties 11, 12, 20, 21, 22,

49, 82, 84, 245, 247.

Synoecum turgcns 63.

Synthesis (artificial) 298, 300, 301, 304,

309, 315.

Synthesis (asymmetric) 253, 284, 293.

299, 300, 301, 302, 304, 309, 310,

311, 315, 319, 321, 322.

Synthesis (natural) 298, 300, 301, 304,

311, 312, 315, 316, 319,

System (cubic) 83, 86, 121, 141, 142.

System (crystal-) . . 74, 82, 83, 84.

System (regular) .116, 129, 130, 131.

Systems (congruent) 8, 9, 10, 17, 19,

21, 31.

Systems (infinite) 17, 18, 19, 113, 129,

130, 131, 159.

Systems (limited) 17, 19, 28, 112, 113.

Systems (point-) 93, 115, 116, 130, 131,

132, 133.

Systems (symmetrical) 129, 130, 131,

132, 133.

Systems (unlimited) 17, 18, 19, 28,

93, 113.

T.

Talc 174.

Tammes (J.) 111.

Tanret (G.) '. . . 262, 263.

Tartaric acid 205, 211, 219, 223, 224,

227, 231, 235, 256, 268, 270, 297,

310, 312, 320.

Tartrates 205, 208.

Tautomeric changes 235.

Tendency (to higher symmetry) . 183.

Tendril 9.

Terada (T.) 148.

Teratology 201,202.

Ternary axis .... 23, 24, 81, 131.

Ternary symmetry 35, 201.

Tetartohedral forms . 55, 74, 82, 132.

Tetartohedrism. ... 82, 84, 91, 131.

Tetarto-symmetry 32.

Tetracetyl-helicine 307.

Tetra-ethyl-ammonium-stannichloride
199.

Tetra-ethylenediamme-/i-amino-nitro-
dicobaltibromide . . 255.



346

Tetra-ethylenediamine-/A-amino-peroxo-
cobalti-cobalte-salts 255.

Tetragonal axis 23, 25.

Tetragonal motifs 123, 124.

Tetragonal patterns 115, 123, 124, 129.

Tetragonal repeats 123, 124.

Tetragonal system 83, 121.

Tetrahedral-pentagonaldodecahedron

86, 87, 88.

Tetrahedron 11, 16, 43, 87, 88, 206,

238, 243, 268,' 291.

Tetrahedron-group 43, 44.

Tetrahexahedron .88.

a-c-Tetrahydro-/3 naphtylamine. . 235.

Tetrahydro-papaverine-d-tartrate . 222.

Tetrahydro-qninaldine 218.

Tetrahydro-quinaldine-hydrochloride

218, 274, 275.

Tetramethylammonium-platinichloride
199.

Tetramethylene-derivatives . . . 259.

Tetramethylmethane ...... 238.

Tetrapropyl-ammonium-platinichloride
199.

Thamnastvaea arachnoides .... 65.

Theorems (Euler's) 19, 20, 29, 127, 128.

Theorems (of rational parameters)

78, 79.

Theorems (of reflection) 148, 149, 150,

154, 155.

Theories (mathematical) 1.

Theory (Barlow-Pope's) 139, 140, 141,

142, 143, 144.

Theory (Bravais') . . 125, 126, 137.

Theory (crystalstructure) 18, 19, 113,

125, 126, 133, 135, 136, 139, 140,

141, 142, 143, 144, 145157, 158,

159.

Theory (Mallard's) . . . 187200.
Theory (phyllotaxis-) . . . 160170.

Theory (Stokes') 98, 99.

Theory (Van 'tHoff-Le Bel's) 157,

204, 205, 206, 234, 236, 238, 241253.
Thermal equilibrium 234.

Thionylchloride 292.

Thomas (M. B.) 247.

Thomas (W.) 250.

Thompson (H. B.) 309.

Tin-atom (asymmetric) 242.

Tolloczo (St.) . 295.

Torsion 92, 105, 106, 107.

Transformation (of coordinates) . 10.

Transformations (polymorphic) 197, 198.

TVaws-isomerides 257, 258, 259, 261,

262.

Transitionpoint 197, 198, 204, 207, 209,

210, 211, 212, 216, 220, 222, 281.

Transition (polysymmetric) 197, 198.

Transitiontemperature 197, 198, 204,

207, 209, 210, 211, 212, 216, 220,

222, 231, 281, 308.

Translation 13, 15, 18, 19, 28, 29, 113,

114, 126, 127, 128, 162.

Transversal growth 166.

Trapezohedron 40.

Traube (H.) 271.

Trialkali-hydroselenates . . . . . 198.

Trialkali-hydrosulphates 198.

Triammonium-hydrosulphate. . . 198.

Triboluminescence 231.

1 -2-3-5-Tribromotoluene . . . . .139.

1-2-4-6-Tribromotoluene 139.

Triceratium digitale 65, 69.

Triceratium pentacvinus 65.

Tnceratium Robertsianum . . 65, 69.

Trichites 172.

Triclinic symmetry . . . 56, 83, 121.

Trichlogin maritimum 61.

Tridimensional gratings. . 116, 147.

Tridimensional patterns 116, 147, 148.

Triethylenediamine-chromi-iodide 220,

251.

Triethylenediamine-chromirhodanide
251.

Triethylenediamine-cobalti-bromide

194, 195, 220, 233, 249, 250, 252.

274.

Triethylenediamine-cobalti-iodide 249,

251, 274.

Triethylenediamine-cobaltirhodanide

249, 251, 274.

Triethylenediamine-rhodiumbromide

220, 233, 252.

Triethylenediamine-rhodium-iodide
251.

Triethylenediamine-rhodiumrhodanide
251.

Triethylenediamine-salts (complex) 110,

220, 233, 250, 251, 264, 273, 274,

280.

Trigonal axis 23.

Trigonal system 83, 121.

Trigonal trapezohedron 40.

Trillings . .' . . 178.

Trimakmates (complex) .... 250.

Trimethylamine 235.



347

Trimethylene-dicarboxylic acids . 262.

Trimethylene-tricarboxylic acids . 262.

Trioxalates (complex) . . . 249, 250.

Trioxyglutaric acid . . 254, 255, 256.

Triphasia trifoliata 36.

Tri-a-phenantroline-salts 110.

Triphenylmethyl 158.

Tripotassium-hydroselenate . . . 198.

Tripotassium-hydrosulphate . . .198.

Tripotassium-sodiumchromate . . 198.

Tripotassium-sodiumsulphate. . . 198.

Tripropylamine-platinichloride . .199.

Tripropylenediamine-salts (complex)
253.

Tris-a-dipyridyl-ferrosalts .... 232.

Trisoctahedron 88.

Tristetrahedron 88.

Trithallo-hydrosulphate 198.

Triton cristatus 201.

Trivalent carbon-atom 158.

Trivalent nitrogen-atom .... 242.

Tropic acid 299.

Tropine . 235.

Tropism 57.

Tschermak (G.). . . , . . 76, 177.

Tschugajeff (L.) 231.

Tucker (S. H.) 293.

Tungsten-anticathode 151.

Turmaline 59. 60, 98, 100, 101, 102,

103, 184.

Tutton (A. E. H.) ...... 139.

Twinning 55, 104, 174, 175, 176, 177,

178, 192, 199.

Twinning-axis .... 174, 175, 176.

Twinning-laws . . . . 174, 175, 176.

Twinning-plane 174, 175, 176, 177,

179, 181.

Twinning (polysynthetic) .... 55.

Twins (completion-) 174.

Twins (compound) 174. 175, 176. 187.

Twins (cyclic) 175, 176.

Twins (polysynthetic) 175, 177, 187, 192.

Tijmstra. Bzn. (S.) 307.

Types (of space-lattices) 118, 119, 121,

153.

Types (of symmetrical figures) 74, 75.

Typical operations 19, 20.

u.

Ulpiani (C.) . .

Unary axis . .

Undosa undulata

. . 301.

. . 24.

61, 65.

Uniaxial crystals. . . 184, 185, 187.

Unit (of pattern) . . 114, 115, 117.

Unit-stere (theory of). ... 139, 140.

Unlimited systems ... 17, 18, 113.

Unrestricted forms 86, 87.

Unsaturated compounds 236, 242,

264269.
Unsymmetrical figures 36.

Uranyl-double-acetates 186.

Uranyl-magnesium-sodiumacetate 1 97.

Uranylsalts (photochemical catalysis

by) 318.

V.

Valency, . . 139, 140, 235, 242,291.
act. Valeric acid 307.

Valine . 224.

Vectorial properties 93,238.
Vectors (symmetry of) 93.

Vegard (L.) 147, 188.
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