DEPARTMENT OF THE INTERIOR

REPORT

OF THE

CHIEF
 ASTRONOMER

FOR THE

IEAR ENDING MARCH 31

1909

PRINTED BY ORDER OF PARLIAMENT

OTTAWA
PRINTED BY C. H. PARMELEE, PRINTER TO THE KING'S MOST
EXCELLENT MAJESTY
1910
[No. 25a-1910]

CONTENTS.

Pate.
Report of the Chief Astronomer. 5
Appendix 1. Report by Otto Klotz, LL.D., on Seismology. Temelnim Magnet- ism and Gravity 19
2. Report by J. S. Plaskett, B.A., on Astrophysical work 143
Appendix A-By W. E. Harper, M.A. 2.5
B-By J. B. Cannon, B.A. 245
(-By R. E. DeLury, Ph.D. 251
D-By R. M. Motherwell, M.A. 257
E-Detailed Measures. 278
3. Repurt hy R. M. Stewart, M.A., on Meridian Work and Time Service. 555
Appendix A-Rate of the Standard (lock of the Dominion Observatory 582
4. Report by J. Macara, Esq., on Latitude and Longitude work. 587
LIST OF HLUSTRATIONS.
Appendix 1.-Otto Klotz, LL.D.-Seismology, Terrestrial Magnetism and Giravity.

1. Magnetic Hut, Ottawa 142
2. Diurnal Variation Curve. 142
3. Diurnal Variation Curre 142
4. Diurnal Variation Curve 142
5. Survey Curve 142
f. Chart showing Magnetic Declination
Appendix 2.-J. S. Plaskett, B.A.-Astrophysical Work.
6. Diagram of Refraction through Prism. 153
7. New Single-Prism Spectrograph. 164
8. New Single-Prism Spectrograph. 164
9. Spectrograph Box. 166
10. New Ningle-Prism Spectrograph, ready for use 168
if. Long-focus Objectives with three prisms. 174
11. Short-focus Objectives with three prisms. 174
\&. Objectives tested with one prism. 174
12. Spectro-Comparator. 178
13. Diagram of Spectro-Comparator. 178
14. Diagram of Spectro-Comparator. 178
15. Form of Silvering on prism 178
16. C'elostat House. 208
17. Cœlostat Telescope Mechanism, looking north. 208
18. Celostat Telescope Mechanism, looking south 208
19. Velocity Curve of β Orionis 222
Appendix A.
20. Final Velocity Curve of θ Aquilæ. 232
21. II. Deslandres' Observations. 234
22. Deslandres' 1902 Observations. 234
25a-1 1

Appendix A-Continued.
Page.
20. Alieghen: Observations. Ottawa Curve 234
21. Velocity Curve of ϵ Herculis 288
22. Telocity C'urve of η Boötis. 244
Appendix B.
23. a Coronæ Borealis, Curve from Hydrogen lines and Calcium line. 250
24. Velocity Curve of a Coronæ Borealis 250
Appendix C.
25. Solar Spectrograph 252
26. Rear end of Solar Spectrograph 253
27. Slit Mechanism of Solar Speetrograph 252
28. Front end of Solar Spectrograph. 252
29. Focal Curves of Solar Spectrograpis 254
30. Reproductions of Solar Spectra. 254
Appendix D.
31. Morehouse's Comet 258
32. Morehouse's Comet. 258
33. Morehouse's Comet 258
34. Morehouse's Comet 258
35. Morehouse's Comet 258
36. Morehouse's Comet 258
37. Stellar Camera 260
38. Determination of Focus 261
39. Zonal Dise 262
40. Zonal Differences of Focus 264
41. Zonal Differences of Focus 264
42. Zonal Differences of Focus. 264
43. Curvature of Field at different Zones. 264
44. Curvature of Field at different Zones 264
45. Chromatic Aberration Curve 267
46. Zonal Differences of Focus. 268
47. Star Photographs at different Separations. 268
Appendix 3.-R. M. Stewart, M.A.-Meridian Work and Time Service.

1. Floor of Transit Annex 586
2. Piers in Meridian Circle Room 586
3. Piers in Transit Room 586Appendix 4.-Longitude and Latitude Observations.Map showing the position of the various Astronomical Stations established.

REPORT
 OH THE

CHIEF ASTRONONER AND INTERNATIONAL BOUNDARY COMMISSIONER.

Department of the Interior.
Dominion Astronomical Obseblatory, Ottawa, Canada, May 1, 1909.

W. W. Cory, Esq.,
Deputy Minister of the Interior, Ottawa.

Sir,-I have the honour to present the report of the Astronomical Branch of the Department of the Interior for the year ending 31st March, 1909.

The correspondence in the twelve months was:-
Letters received. 1,841
Letters sent. 2,997
Accounts examined. 815
The work of the photographer was as follows:-
Surrey plates (developed), 8×10.. 360
" " 11 x 14 40
" « 16×20. 161
" " $4 \frac{3}{4} \times 6 \frac{1}{2}1,158$

Bromide prints " $4 \times 14 \ldots{ }_{24} 1,404$
" " $11 \times 14 \ldots \ldots1,208$
" " 16×20. 527
" " $9 \times 36 \ldots$.
" " $12 \times 30 \ldots \ldots$.
" " $24 \times 36 \ldots \ldots$.
" " $20 \times 24 \ldots \ldots$.
Blue prints " $24 \times 36 \ldots]_{10} \begin{array}{r}2,381 \\ 10\end{array}$

" " 5×7.. 3,338
" " 8×10.. 189

Total. 9,709

The Lhwury in March 31st last contained 3,400 volumes and 260 pamphlets. It 1 .creases by -everal hundred volumes each year, principally by exchanges with other *bservatories and by the hinding into rolumes of the scientific periodicals, so that -Iditional shelf space will be needed before very long. A card index of subjects and authors has been installed which has provel a great convenience.

The mechanical parts of a single-prism spectrograph designed by Mr. Plaskett for The avoidanee of flexure, and of the solar spectrograph, of 23 feet focus, to be used in tonnection with the coelostat, have been constructed in the workshop.

The pivots of the meridian circle, as received from the makers, having been found r.. be of too soft metal, rings of hardened steel were shrunk upon them, and turned to proper form. This was a very difficult piece of work on account of the extreme acenacy of figure which was required.

There were besides numerous small pieces of work for the Observatury, and many repairs and miuor alterations to field instruments for the Buundary and Geodetie Surveys, keeping two mechanics constantly employed.

The cquipment of the shop has been increased by a second lathe, avoiding thereby a considerable loss of the men's time. The workshop, which is in the basement of the building, is insufficiently lighted for the fine work which we require. It is also rathex inconveniently small. .

The practice of opening the Observatory to the public every Saturday evening lats been continued, and is much appreciated. An astronomer is always present on that evening to exhibit the large telescone. There are also many day-time visitors to the Observatory who have then an opportunity of seeing the other instruments.

The number of visitors registering in the book from April 1, 1908, to March 31, 1909, is 2,646 .

In this connection may be mentioned the meetings of the Ruyal Astronomical Society of Canada which are held monthly during the winter in the Normal School Hall or in the Public Library, when lectures on astronomical subjects are presented. The majority of these lectures have been given by officers of the Observatory. Lectutes are also given in the Observatory in the afternoon, alternating with the evening lectures in the city. These afternoon meetings serve a very useful purpose in the exchange of ideas among members of the staff.

TIME SERVICE.

The ordinary work in commection with the time scrvice has consisted, as in the past, of the necessary attention to the up-town service, the sending out of time signals to the telegrayh company, dropping of the time-ball on Parliament Hill, supplying of mean and sidereal time by telephone to those requiring it, oceasional rating of chronometers, testing of aneroid barometers, \&c., together with the maintenance of the clocks and upparatus at the Observatory. The city service has been extended by the installation of electric dials in the Mint and the Archives Building, which are operated by a master clock in the Mint controlled directly from the Observatory. The dials were started at noon on September 19, though the master clock was not put under control for some time subsequently. It was decided by the Public Works Department, contrary to the original intention, not to instal clocks in the Printing Bureau at present. There were also, as usual, changes and additions in the other Government Puildings. Below is a list of the number of elocks in operation:-

MiNUTE DINS.	$\begin{gathered} \text { March 31, } \\ 1909 . \end{gathered}$	$\begin{gathered} \text { March } 31 . \\ 1908 . \end{gathered}$
Parliament Building. .	49	46
East Block. . . .	36	35
West Block. .	-6:3	61
Langevin Block.	40	48
Post Office	20	20
Thistle Block. .	2	2
Ottawa Electric Company,	1	1
Mint. . .	. 16	.
Archives. .	.. 7	.
Observatory .	- 25	28
	270	241
Program clock. .	- 1	1
Seconds dials. .	- 3	2
Tower clocks.	2	2
Total electrically driven clocks..	. 276	246
Secondary master clocks. .	8	7
Primary clocks.. 4	4
Total. 250	257

TRAXSIT OBSERVATIONS.

Observations with the portable transits were taken on $1 \not 42$ nights, involving 251 determinations of clock error, as well as some observations for other purposes; on a number of nights two, and sometimes three, observers worked simultaneonsly, for determination of personal equation.

The relative personal equation of the Ottawa observers was in addition determined from the clock-curve, which was regular. The method of observation for clock-error was that described in last year's report, Appendix No. 3; the increase in accuracy over previons years was in the neighbourhood of 50 per cent. There were 150 exchanges for longitude, occupying 116 nights; exchanges were had irrespective of the weather at Ottawa, the clock error being when necessary interpolated from adjacent nights. An snatysis was made of the rate of the Sidereal Standard as shown by the observations; the probable variation of daily rate appears to be between 01 sec . and $\cdot 02 \mathrm{sec}$. per day; the adrantage of having a completely uniform temperature is markedly shown. An approximate investigation was made, by observations suited to the purpose, of the causes underlying personal equation in micrometer observations. Mr. Stewart found in his own case a tendency to set the morable wire always to the same side (the left) of the star, by a quantity in the neighbourhood of a second of are, depending on the magnitude of the star; north stars at upper culmination would thus be observed too soon, others too late. This affects the observed clock-error, and more markedly the azimuth. It was found that this would approximately explain the difference in personal equation of two of the observers. but not completaly that of the third.

meridiax circle.

The piers in the meridian circle room and the transit room have been rebuilt, their bases being sunk deeper into the earth and a system of drainage into a specially prepared cistern being installed, the cistorn being pumped out from time to time. During wet periods there has proved to be a great aecumulation of water in the cistern;
though the latter holds in the neighbourhood of 1,200 gallons it has on a number of occasions been filled to overflowing in a single night, apparently by surface water entering under the foundation walls of the building. This is very undesirable, as in that case the water becomes backed up around the footings of the piers. The only remedy would seem to be a proper drain surrounding the outside walls to carry off the surface water.

Provision has been made in the collimator piers for underground lenses to serve as permanent marks, over which may be adjusted the long-focus collimating lenses for the azimuth marks; pits have also been provided to allow access to the underground marks. The positions for the azimuth marks have been accurately determined and marked.

The mechanism for opening the roof shutters has been installed and works satisfactorily; the iron wall shutters have been replaced by wooden ones; wire frames have been made for the louvres in the walls to exclude snow, and have been in place during the past winter; the piers have been encased in felt and wood, with an airspace, to avoid sudden changes in temperature; an extension was made to the main instrument pier to provide for observations by reflection.

The meridian circle itself was in the beginning very unsatisfactory in almost all respects. When the graduated circles were received from the makers after having bern repaired it was found that owing to irregularities in the bearings on axis and circles, the plane of the graduations was not perpendicular to the axis, nor was the distance from graduations to end of axis the same for both circles. While the adjustment of these errors was in progress it was found that the pivots were soft; it was therefore necessary to turn down the pivots and fasten upon them hardened steel bushings. Owing to the lack of lathes and grinders of the size requisite to handle the axis this proved a most arduous undertaking, but has at length been successfully a complished. In this connection I wish to express my appreciation of the very great kindness of Mr. A. H. W. Cleave, of the Royal Mint, who was good enough to offer us the use of his workshop and even to have alterations made in his machines which made it possible to handle the work. Had it not been for his kindness the work could hardly have been done in Canada. There is still a great deal of work to be done on the instrument before it will be in a condition to do effective work. The countermises are unsatisfactory, and will require to be replaced by new ones; the bearings σ_{i}^{2} the vertical circle require to be scraped and polished; alterations are necessary in the micrometers of the circle microscopes; the double spider lines in right ascension and declination micrometers and circle microscopes are at unsuitable and varying distances; in addition there is a multitude of small details that require alterations. When these have all been completed, however, the instrument will probably do efficient work. It is hoped that it may be ready for systematic work in both right ascension and declination by the beginning of the year.

For further details reference may be had to Mr. R. M. Stewart's report, in Appendix No. 3.

WORK OF THE ASTROPHYSICAL DIVISION.

The principal work in this division has been observation by the spectroscope of the radial velocities of spectroscopic binaries for the determination of the elements of their orbits. Five orbits have been thus determined: η Bootis, θ Aquilæ, a Coronso Borealis, ϵ Herculis; β Orionis. In only the first of these have the observations been well satisfied by a velocity curve due to simple elliptic orbits. In two of the others irregularities show which are explained fairly well on the hypothesis of the presence of a third body. Four stars with early type spectra δ Herculis, γ Aquarii, 乞 Andromedæ, and ξ Persei, have been examined and their velocities found to be variable, but not enough observations have been made to determine the law of variation. Twelve other binary systems are under observation.

Considerable time has beeu spent in testing and adjusting the instruments and in experimenting on the best methols of observation. Mr. Plaskett investigated the fields given by different types of camera objectives for spectrographs, and the effect of increased slit width upon the accuracy of radial velocity work. Dr. DeLury examined the errors of the plane grating of the spectrograph of the coelostat. Mr Motherwell investigated the aberration of the eight-inch doublet of the stellar camera, and proved that the halos which the lens gives around the images of stars are due to spherical aberration, which may be corrected by slight refiguring of the lens.

Other work in this division has been micrometric measurements of double stars, comet photographs, observations of occultations of stars, and solar photography. This work as well as all the other astronomical work has greatly suffered from the dense smoke from forest fires which prevailed during a great part of last summer.

Fuller details of this work will be found in Mr. Plaskett's report, Appendix No. 2.

DIVISION OF GEOPHYSICS.

Continuous records have been obtained by the Bosch seismograph of earth movements. Some forty-ninc carthquakes were recorded during the twelve months from April 1, 1908, to April 1, 1909, including five of some severity. Ordinarily the record of an earthquake shors that waves of three kinds are received. These are called the first preliminary, the second preliminary, and the long waves. They are distinguished from one another on the seismograph sheet by differences in form and amplitude, and the times of first arrival of the waves of each type may be measured off from the sheet very nearly.

It is supposed that the three waves have their origin at the same instant of time at the centre of disturbance, and that the difference in time of arrival is due to a difference in the mode of transmission through the earth's crust, whether by longitudinal or transverse vibrations through the depths of the earth, or near the surface, and that corresponding to the different modes or paths of transmission are different but defiuite velocities.

These velocities have been found by many observations within pretty close limits. Hence the difference of time between the first arrival of the different waves gives immediately the distance of the origin of disturbance. The actual position of the origin may often be determined by drawing a circle on a terrestrial globe with centre at the place of observation and radius equal to the distance of the origin. Where this circle passes through a regiou of known seismic activity, the probable origin of the disturbance may be placed.

Besides the records of earthquakes, numerous minor tremors, called microseisms. have been registered. An account of these, with an inquiry into their probable causes will be found in the report of Dr. Klotz, which forms Appendix No. 1 to this report.

Dr. Klotz concludes that the microseismic vibrations of the pendulums of the seismograph are closely connected with the gradients of barometric pressure, and that their amplitudes increase with the steepness of the gradient.

Microseisms are not due to the dynamical effect of the movement across the continent of areas of high or low pressure, nor to the direct dynamical effect of winds.

Microseisms registered at Ottawa alnost invariably co-exist with 'lows' over the Gulf of St. Lawrence with steep gradients over the St. Lawrence valley.

They arise from movements of large areas of the earth's crust, and are related to the geological structure by which probably their period is determined.

The meteorological conditions on which they appear to depend are not local; the variations of local barometric pressure shown by the micro-barograph cause local bendings of the earth's crust which are exhibited on the seismograms by deflection of the zero of the instrument, but the irregularities thus caused are easily distinguished by their irregularity from the real microseisms.

9-10 EDWARD VII., A. 1910

It has $1 . m$-mge-tent that the fact that the periorl of most of the microseisms marly agron - anis, that of the pendulums, indicates that the record is due to air curreuts within the instrument or to other instrumental eause. This explanation, howwe. cammet staml, in view of the evidence addned by Dr. Klotz, of co-incident occurronne with the 'lows' on the eastern cuast.

AUX1LLARY BUILDDCK OF THE UBSERI ATOLY.

Wuring the past year the coelostat hous has been completed, and the coclostat ustalled, with its spectrograph. As stated above a carcful examination has been made of the plane grating of this instrument, by which certaiu defects have been indicated. The making of this necessary examination has delayed the making of the observations in the sun which were contemplated.

The building for the standardizing of tapes and other measures of length has been completed, but the apparatus for making comparisons has not yet been installed.

Means will be provided for tests of measures up to 50 metres in length.
(iround was broken for the residence of the Chief Astronomer about the middle of March last. This building will stand a short distance to the east of the Observatory.

Work was begun last summer on the grading of the grounds surrounding the Olservatory, a much needed improvement. Owing to the excessive dryness of the latter part of the summer it was not thought advisable to do any sodding, which has been postpmed until this season.

FIFLD ASTROSOMICAL WORLi.

Latitule and longitudes were determined at twenty-seven stations during the scison of 1 Pho.

Two stations on the southern boundary of British Columbia, one near the southem boundary of Manitoba in the neighbourhood of Lake of the Woods, and three on the Ontario-Minnesota border, were observed for purposes of the boundary surveys. The other pints were observed for geographical purposes, and comprise three points in Ontario, eight in Qucbec. eight in New Brunswick, and two in Nova Scotia. The longitudes of the two most westerly stations werc determined by telegraphic signals from Seattle, a point of known longitude: that of the others by signals from this Olservatory.

Observations of the magnetic elements were made at seventeen points in British Col umbia and at Winnipeg. Ottawa and Agincourt. The instruments used were the Tesdurpf magnetometer and the Dover dip-circle.

INTERSITIONAL BOINDARY SURVEYS.

On June :3. 1908, a treaty between His Majesty and the United States was ratified, which provides for the survey of the whole of the boundary line from the Atlantic to the Pacific.

The treaty livides the boundary line into eight sections, and prescribes the manner in which the survey of each section shall be carried out, and placed the carrying out of the work, except as regards the fourth section, in the hands of two commissioners who shall be 'expert geographers or survevors.'

The several sections are as follows:-

1. In Passamaquoddy bay, from the open waters of the Bay of Fundy to the mouth of St. Croix river (at Joe's Point near St. Andrews. N.B.).

By the treaty of 1783 , the boundaries of the Tnited States mere defined as beginning at the mouth of St. Croix river and ascending that river to its source. Ther the description proceeds with the northeastern, northern. Western and southern boundaries of the United States, terminating on the Atlantic ocean at the northern

SESSIONAL PAPER No. 25a

boundary of Florida. The territory of the Tuited States was also to include all the islands within twenty leagues of the coast except such as have heretofore belonged to Ilis Majesty's province of Nova Scotia.' ('Nova Scotia' then included the preseut province of New Brunswick.)

Soon afterwards question arose as to which river was the St. Croix, mentioned in the treaty; it appears that three or more rivers bore that name. Commissioners were appointed under a special provision by treaty (1794) to decide which river was intended and to determine its mouth and its source.

The Commissioners in due course reported (1798) their decision identifying the St. Croix river of the treaty with the river which now bears the name, and placed its mouth opposite Joe's Point, the point at the southwestern extremity of St Andrews peninsula, opposite to the town of Robbinston, in Maine.

South and east of this point lies Passamaquoddy bay, being the western part of the Bay of Fundy, and includiug an extensive archipelago.

It will be observed that the decision of the Commissioners, placing the mouth of st. ('roix river at Joc's Point, left the jurisdiction over the islands of this archipelago, which are within twenty leagues of the Cnited States shores, to be determined by the fact whether they had previously belonged to the United States or to Nora Seotia.

Under the fourth article of the treaty of Ghent, 1811, Commissioners were appointed to determiuc to which of the High Contracting Parties the several islands belonged. These Commissioners rendered their decision in 181\% to the effect that Yoose. Dudley and Frederick islands belonged to the United States, and that all the other islands in Passamaquoddy bay, and the island of Grand Manan. in the Bay of Fundy, belonged to His Britannic Majesty. This decision, however, did not deterınine the locality of the boundary liue in the narrow waters between Campobello island and the islands allotted to the Cuitel States, and subsequently difficulties arose in regard both to smuggling and to fishery rights,

It was not until 1892 that provision was made by treaty for the determination of the boundary line in these waters, and commissioners were appointed to determine and mark the line.

This the Commissioners did in part but not wholly, since they failed to agree as regards the ownership of a certain island and of cortain fishing grounds.

By the treaty of 190 s . provision was made for the preparation on the behalf of each government of a 'case' to be submitted to the other, and in the event of their not arriving at an agrcement within one year of the date of ratification of the treaty, fur a reference of the question to arbitration. The cases of the two governments were duly presented on December 3 last, six months after ratification of the treaty.

These negotiations, or the arbitration which will result, if they do not result in an agreement, have reference only th the two specific points on which the Commissioners of 1892 differed. Their marking of other parts of the line is confirmed by the treaty. The present Commissioners are to renew the marks when necessary, and to lay out the remainder of the line when a decision of the disputed questions has been arrived at. Pending such decision no work has ret been done on this section.
2. The second section of the line is that along S_{t}. Croix river from its mouth to its source.

As ahrady -t:toll tho (ommissioners of 1798 determined the souree of this river as well as its mouth. This was sufficient to obviate disputes involving any large extent of territory, and no serious question is known ever to have risen. For this reason doubtless no survey of the river as an international boundary has been made, or indeed provided for, by any provions treaty. In its course the river expands into several large lakes in which as well as in the river itself islands exist, which may become of importance in the future. The treaty provides that the boundary line shall follow the thalweg, or middle of the main channel as naturally existing, except where such would confliet with the rocognized national character of an island. The boundary line is to
be marked whire possible by permanent monuments, and is to be shown by the Commissioners wif pocirate modern charts. Like provisions apply to all the sections of the boundary line.

It is proposed to send out two survey parties, an American and a Canadian party this summer to make the preliminary survey necessary for the settiug out of the permanent reference marks. They will operate in the navigable part of the river below the international bridge connecting St. Stephen and Calais.
3. The third section extends from the source of the St. Croix to the St. Lawrence river. An approximate description of this section of the boundary line is: along the meridian of the source of St. Croix river to St. John river, up the latter and one of its branches, St. Francis river, to a certain point; in a straight line to the southwest branch of St. John river; up the last to its source in the highlands (of the St. Lawrence); along the highlands to the source of Hall's stream (a branch of Connecticut river) ; down the last to the 45th parallel; and along the 45 th parallel to the St. Lawrence.

By the treaty of 1783 , the boundary line was to follow the due north line from the source of St. Croix river to the highlands dividing the waters flowing into the St. Lawrence from those flowing into the Atlantic ocean, and thence to follow the highlands to the source of Connecticut river; and follow the river to the 45 th parallel. and the parallel as far as the St. Lawrence.

Dispute arising as to the location of these highlands, this section of the boundary line remained undetermined for many years, the question about the year 1840 assuming a rery serious phase, though more than one nttempt had previously been made to \cdots atle it. By the treaty of $18+2$ the matter was finally disposed of, the definition alopted for the boundary, being a compromise between widely differing claims. The line was surveyed and marked with cast-iron monuments in the years 1843 to 1846, by a joint Commission.

For brevity in the above description of the boundary line. I have spoken of the meridian line of the source of the St. Groix and of the 45 th parallel. The boundary line does not accurately follow these astronomical lines, but follows the lines of old surveys, originally intended to coincide with them, but which show in places very large deviations from them. The perpetuating in this manner of the errors of the old surveys was dictated by reasons of convenience arising out of the fact that in many instances the country had been settled on either side up to the old surrey, and the lands were in private hands.

Is a result of complaints which had from time to time been receired, that some of the original monuments had been destroyed and that there was difficulty in places in finding the line, in 1890 an inspection, jointly with representatives of the state of New York was made of the line from Richelieu river to the St. Lawrence. This iuspection indicated that it was necessary to renew the original monuments, as well as to place new ones where the line had been in the first instance insufficiently marked.

Nothing, however, was done until 1902, when an agreement for co-operation in the work of renewal was made with the government of the state of New York with the concurrence of the Washington government and a joint re-survey of the line was inade, and new monuments of granite were erected.

In 1906 an agreement was made with the United States government for a joint re-survey of the rest of the line from Richelieu river to the St. Croix, and the work has since been actively prosecuted. The re-survey and renewal of monuments has been completed from Richelieu river to Hall's stream (covering the northern boundary of the state of Vermont) and along the meridian of the St. Croix river to the St. John. This has been done by a joint survey party representing both governments. The work so done will of course be available for the use of the Commissioners appointed under the new treaty.

It is proposed this year to proceed with the survey along the River St. John.

SESSIONAL PAPER No．25a
4．The fourth section covers the River St．Lawrence，the Great Laka and their connecting waters，from the intersection of the 45 th parallel by the River St．Law－ rence to the mouth of Pigeon river in Lake Superior．

A general and rather vague description of this part of the line was contained in the treaty of 1783 ．The sixth article of the treaty of Ghent，1814，provided for the appointment of Commissioners to determine the actual course of the line through the rivers and lakes，from the initial point in the St．Lawrence as far as the water com－ munication between Lake Huron and Lake Superior．The serenth article of the treaty provided that the same Commissioners should determine the line from the said water communication to the North West Angle of the Lake of the Woods．

The Commissioners made the necessary surveys and laid down the line on their maps，reporting in 1822 their agreement so far as their work under the sixth article of the treaty was concerued．They，however，were unable to come to a full agreement under the seventh article，and that part of the line remained undetermined until settled by the treaty of 1842 ．

Owing to the imperfections of the maps upon which the Commissioners under the treaty of Ghent drew their line，difficulty is found in accurately transferring it to modern charts．The present treaty provides for the ascertainment and accurate re－ establishment of the line，for the laying of it down on modern charts，and for the marking so far as practicable of the course of the line by buoys，monuments and range marks．

The carrying out of these provisions with respect to the fourth section of the boundary line is placed in the hands of the International Waterways Commission， which is composed of three Commissioners on the part of the Dominion of Canada and three Commissioners on the part of the United States．

5．The fifth section extends from the mouth of Pigeon river，up that river and through various lakes and rivers to the North West Angle of the Lake of the Woods．

The North West Angle of the Lake of the Woods was one of the governing points in the description of the boundaries of the United States in the treaty of 1783 ．Its location was ascertained without difficulty，but from the want of good maps when the treaty of 1783 was framed the line between the Lake of the Woods and Lake Superior was so vaguely defined as to leave room for widely different interpretations． Thus one contention was that the boundary line should ascend the St．Louis river at the head of Lake Superior，where Duluth now stands；another，that it should ascend the Kaministikwia．The Commissioners under the treaty of Ghent narrowed the question down to a choice between two water routes，both leading from Pigeon river to Rainy lake，and thence by Rainy river to Lake of the Woods．These two routes diverged a short distance up Pigeon river，passing one north and the other south of a considerable area almost surrounded by a series of lakes and rivers，now known as Hunter＇s island．By the treaty of 1842 the southern route was adopted．

No survey of the international boundary has been made along this section of the line．The Commissioners under the treaty of Ghent prepared maps to illustrate their report，but their surveys were imperfect．

The Commissioners under the present treaty having the duty of exhibiting the boundary line on modern charts will have to make a topographical survey over the whole distance．

6．From the North West Angle of the Lake of the Woods to the Rocky Moun－ tains．

The treaty of 1783 described the northern boundary of the United States after reaching the North West Augle as proceeding thence west along the 49th parallel of north latitude to the Mississippi river．

It was afterwards ascertained，however，that the North West Angle lay about twenty－five miles north of the 49th parallel，and that the Mississippi river did not extend so far north as the parallel by a considerably greater distance．

The ireats of 1 1 1 s provided that the boundary line should follow the 49 th parallel woi to the liveky Mountains. To provide for the difficulty as to the latitude of the North West Angle, it was agreed that the boundary line should be drawn due south from the angle of the lake to the 49 th parallel. Thus occurred the peculiar 'jog' which the maps show in the boundary line at Lake of the Woods.

An interesting point in this connection is that the Commissioners who surveyed the meridian south from the North West Angle in 1572 found that their line starting from the old monument marking the North West Angle crossed the line of boundary which had been drawn by the Commissioners under the treaty of Ghent along the inlet of the lake at the head of which the monument stands.

This meridian line and the 49 th parallel west as far as the Rocky Mountains were surveyed by a joint Commission in the years 1872 to 1874 . The line was marked by iron posts me mile apart so far as the old boundary of the province of Manitoba extended (from longitude 96° to longitude 99°). On the remainder of the line the monuments were farther apart, avcraging about three miles, and consistel of large mounds of carth or stones.

The re-survey of the line has the purpose of re-locating and repairing lost or damaged monuments, and establishing additional monuments wherever necessary to meet the requirements of modern conditions.

The doing of this was provided for in an administrative agreement between the governments, entered into in 1902. This agreement provided for a survey of the whole line from Lake Superior to the Gulf of Georgia, on the Pacific coast, but the completion of the portion west of the Rocky Mrountains being morc immediately pressing, operations were begun at that end, and the section east of the Rocky Mountains was not reached until last year. A Canadian party under Mr. J. J. McArthur began operations at Coutts, Alberta, which lies about one hundred miles east of the Rocky Mountains. The operations of the survey during the season covered one hundred miles east from Coutts, the section west of that place being left to an American party, under an ngreement between the Commissioners by which the line was divided into alternate sections of one hundred miles.
7. From the Rocky Mountains to the Gulf of Georgia.

By the treaty of 1846, the boundary line here also lies on the 49 th parallel. It was surveyed and monumented by a joint Conmission in the years 1859 to 1863. The monuments generally consisted of mounds of stones, though along a certain part of the line cast-iron monuments were placed. Owing to the exceedingly mountainous character of the country the survey was not a continuous one; the position of the parallel was determined by astronomical observation in some of the principal valless, and the line was cut out east and west from the astronomical stations as far as possible in the circumstances.

The survey made under the agreement of 1902 is continuous, from the summit of the mountains to Point Roberts in the Gulf of Georgia. Monuments of alluminium bronze, set in concrete bases, have been placed at average distances of tro miles along the whole length of the line, and a wide vista has been cut through the forest from monument to mouument. The ficld work was completed in 1907, with the exception of a short piece of triangulation in the Cascade Mountains, which was finished last year. The plans and other records of the survey have yet to be put into final shape for publication.
8. The eighth section is the water boundary from the 49 th parallel to the Pacific ocean.

By the treaty of 1546 the boundary line was to follow the 49 th parallel to the middle of the strait between Vancouser island and the mainland, and of the strait of Fuca to the Pacific ocean.

SESSIONAL PAPER No．25a

East of the southem extremity of Vancouver island and lying betwern it and the mainland lies an archipelago of considerable extent．Not many years after the treaty of 1846 the question arose to which emuntry these islands belonged．

The principal island in the group is the island of San Juan，and the question which arose is commonly referred to as the San Juan question．The group is separater from Vancouver island and the islands adjacent thereto by Haro strait，and is sep－ arated from the Washington shore and its adjacent islands by Rosario strait．Both countries claimed ownership of the group of islands between these straits and for several years there was joint occupation of San Juan island by military forces．

By the treaty of Washington，1871，it was agreed to refer the question to the decision of the Emperor of Germany，who decided in favour of the United States，that the boundary line should follow Haro strait．

In 1873 at＿a conference held at Washington by representatives of both countrins an agreement was reached as to the actual course of the line，in accordance with the Emperor＇s decision，and the boundary line was defined by a line drawn upon a chart， accompanied by a written description．

The present treaty in providing for the survey of this line follows accurately the wording of the protocol of the conference of 1873 ，excepting at one point only，where a short curved line is replaced by a straight line．

It is proposed during the present season to send two survey parties to make the hecessary surreys for the placing of reference monuments to perpetuate the points named in the treaty．

Mr．O．H．Tittmann，Superintendent of the United States Coast and Geodetic surver，and the writer were appointed in June last commissioners，representing re－ spectively the United States and His Majesty，for the carrying out of this treaty（ex－ cepting as regards the fourth section of the line）．

Canada－Alaska Boundary Line

This boundary is in two sections，the most northerly following the 141st meridian of west longitude from a point near the summit of Mt．St．Elias to the Arctic ocean， the other starting from Cape Muzon on Prince of Wales island in about latitude 54° 40^{\prime} ，crossing the sea to the entrance of Portland channel，ascending the channel to a certain point，and then following certain mountains．

This boundary was first defined by the treaty of 1825，between Great Britain and Russia．The treaty described the line from its point of commencement，the southern－ most point of Prince of Wales island，up Portland canal，and thence in a direction generally parallel to the coast to the 141 st meridian of longitude west from Green－ wich；thence along that meridian to the Aretic ocean．This definition of the bound－ ary was of course not affected by the transfer of Alaska to the United States in 1867.

No demareation had been attempted during the Russian occupation，but a few years after the transfer attention became directed to the boundary question．It was seen that the interpretation of the treaty as regards the southern part of the boundary， from Prince of Wales island to the 141st meridian，presented great difficulties，while the description of the remaining portion，following a definite astronomical line，the 141st meridian，was clear and unambiguous，and has never been the subject of con－ troversy．

Hence in subsequent discussions the boundary line has been divided into two parts，which have been dealt with separately．

It is not my intention here to go into detail concerning the points of the con－ troversy over the line from Prince of Wales to the 141st meridian．In 1892 a treaty was entered into between Great Britain and the Cnited States，the first article of which provided for the appointment of commissioners to make a survey of the region
a.juacent to the line with a view to the ascertaimment of the facts and data necessary for the permanent delimitation of the line in accordance with the spirit and intent of the then existing treaties.

The Commissioners made extensive topographical surveys of the mountains adjacent to the coast, and rendered a joint report to the two governments on December 31. 1895.

Although the treaty provided for the consideration of the boundary question, as soon as the report of the Commissioners had been received, the matter was not taken (ip until three years later, when it was discussed by the Joint High Commission, but without any action being detcrmined upon.

In 1903, by treaty, the matter was referred in the form of fire questions to a tribunal of six jurists, who held their sittings in London in September and October, 1903.

By their decision the line was to be drawn from Cape Muzon, on Prince of Wales island, in a straight line to a certain point off the mouth of Portland canal; up the canal to a certain point; then following certain mountain summits (which they marked out on the maps prepared by the survey made under the treaty of 1892) to Mt. St. Elias, which is near the 141st meridian.

The series of mountain summits selected by the tribunal was incomplete, in that between a certain summit north of Frederick sound and another north of Taku inlet a gap was left, some 120 miles in extent. In this gap the tribunal found the available topographical information not sufficiently complete to enable them to decide which were the mountains referred to in the treaty of 1825 , and the line as regards that portion was left undetermined.

In the following year a conference between the Commissioners charged with the duty of the demarcation was held, at which a recommendation was made as to the course which the line should follow across the gap, and in March, 1905, this recommendation was formally approved by both governments.

By this agreement the line follows southward from the peak north of Taku inlet, from summit to summit of seven intervisible mountains, till a point near Whiting river is reached. Another peak was selected near the southern end of the gap. These eight peaks lie nearly in a straight line between the two terminal peaks of the Award. Between the seventh and eighth of them a gap remains about 50 miles in length in which the agreement leaves the selection of peaks in the hands of the Commissioners, after necessary surveys are made, the peaks selected to be intervisible and none of them more than 2,500 metres distant from the straight line joining the terminal peaks.

Survey of the Boundary of the Coast Strip of Alaska.

The demarcation of the Award line was begun in 1904 and has been continued since as rapidly as possible.

The work of the season of 1908 comprised the marking of the line at Alsek river, on the southern branch of the Iskut river (a tributary of the Stikine) and on the Unuk river and its tributaries, besides the topographical survey necessary for the carrying out of the agreement of 1905 .

The Iskut work was carricd on by Mr. J. D. Craig, D.L.S., and that of the topographical survey by Mr. W. F. Ratz, D.L.S., while Mr. White-Fraser, D.T.S., and Mr. F. H. Mackie, D.L.S., worked on the Alsek and Unuk rivers respectively, in conjunction with American parties.

The topographical survey of the region between the peak above referred to near Whiting river and the mountains north of Frederick sound was begun by Mr Ratz in 1907, and completed by him last year, so that the Commissioners have been able to

SESSIONAL PAPER No. 25a

make a selection of summits which accord with the conditions of the agrecment of 1905 , and it is hoped that the demareation of this part of the line will be completed during the coming summer.

When this has been done little of the bommary of the coast strip of Alaska will be left fur demareation except a fifty-mile siretch near Mt. St. Wlias and two or threw unempleterl portions of a few miles each.

I regret to have to recorl the death of Mr. Ratz which oceurred in Ottawa or February 6. Mr. Ratz had been employed on the Alaska suryey since 1905. He earried out the demarcation of the line at Salmon river (Chilkat district), and in part between Taku inlet and Whiting river. During the last two years he was cngaged, as already stated, on the topographical survey between Whiting and Stikine rivers, not the least difficult section of a very difficult survey. His success in carrying this to completion in a relatively short time is a testimony of his capability as a surveyor as well as to his personal energy. His death, at the early age of 25 , is a serious loss to the profession and to the public service.

Survey of the 141st Meridian.

This survey and demareation is carried on in pursuance of the treaty of 1906.
This treaty does not alter in any way the boundary line as defined by the treaty of 1825 , but provides for the manner of making the survey and the demarcation merely.

Operations were begun in 1906 by ascertaining the position of the meridian at the crossing of the Yukon river by astronomical observations for longitude, using the telegraph for comparison of time.

The survey of the line south from the Yukon crossing was begun in 1907, and in 1908 continued southward to a point south of White river, a distance from the Yukon crossing of 225 miles. The placing of the permanent monuments on the line made good progress, as also the triangulation and topographical survey which is being made along the line.

Mr. A. J. Brabazon, D.L.S., was in charge of the Canadian parties engaged in this work.

the ceodetic survey of canada.

The work accomplished by the Geodetic Survey staff during the season of 1908 is briefly as follows:-

Two observing parties, measuring horizontal angles, were in the field during the whole season, but on account of the prevalence of dense smoke very little work was accomplished. The district covered lies between Brockville and Toronto.

Recounaissance surveys were conducted in the maritime provinces, in the province of Quebec, in western Ontario and along the international boundary west of Lake Superior. This latter reconnaissance was for the purpose of making a primary triangulation to control the survey of the international boundary along Pigeon river. The reconnaissance in the province of Quebec, which embraced all of that part of the province lying southeast of the St. Lawrence river from Montreal to a point some thirty miles below the city of Quebec, and also one row of triangulation stations to the northwest of the St. Lawrence river a sufficient distance back therefrom to secure high enough points to control the country to the southeast was most gratifying in its results; it was successful in securing an excellent system of quadrilaterals and large five and six sided figures with central points.

The work of signal building was continued west of Toronto as far as Woodstock or thereabouts. In the maritime provinces reconnaissance has been satisfactory. The stations for a tringulation extend from Chamcook mountain in the southwest corner

25a-2

9-10 EDWARD VII., A. 1910

. 1 New Branswid.s. to the northerly extremity of Cape Bretun island, embracing a district about fifty miles wide between those points, including the easturly portion of Prince Edward island. Chameook mountain is one of the primary triangulation stations of the United States Cuast and Geodetic Survey and in conjunction with Trescott Rock-another primary station of the same survey-direct conmection is made with the Geodetic Survey of the United States.

In 1903 two Geodetic levelling parties were employed and a line of levels was carried from Coteau Junction-thirty-eight miles southwest of Montreal-to Fort Erie via Hamilton, and also from Hamilton to London. The computations are now in progress and are sufficiently advanced to show that the results are of a high order of precision. The work has been carrice on by a double line of levels running forward and backward directions, the forward and backward levelling being independent of each other in every respect, and when possible, performed under different atmospheric conditions. The standard of accuracy adopted requires that the backward levelling shall correspond with the forward levelling within 0 '.017 $\sqrt{ } \bar{M}$, ' M ' being the distance in miles covered by the section. The dense smoke, so prevalent during the season of 1908 and which interfered so materially with the trigonometrical work, was found to be an assistance in precise levelling, inasmuch as the usual steadincss of the atmosphere-no doubt caused by smoke-made the observing of the graduations on the levelling rod much easier than in former seasons.

Consequent upon a discussion in parliament, in which was apparent a concurrence of opinion that an accurate survey of the better settled parts of Canada wonld be of practical benefit, the government, by order in council of April 20 last, formally instituted the 'Geodetic Survey of Canada,' and appointed the writer superintendent.

The following appendices are attached to this report:-
Appendix 1.-Report by Otto Klotz, LL.D., on seismological and magnetic work. Appendix 2.-Report by J. S. Plaskett, B.A., on the astrophysical work.
Appendix 3.-Report by R. M. Stewart, M.A.. on meridian work and time service. Appendix 4,-Report on observations for latitude and longitude by J. Macara.

> I hare the honour to be, sir,
> Your obedient servant,
> W. F. KING,
> Chief Astronomer and Boundary Commissioner.

APPENDIX 1.

REPORT OF THE CHIEF ASTRONOMER, 1909.

SEISMOLOGY, , TERRESTRIAL MAGNETISM AND GRAVITY

BY
OTTO KLOTZ, LL.D.

CONTENTS.

Page.
Seishology 23
Earthquakes recorded 26
Canadian Earthquakes 35
Microseisms 39
Record of Microseisms 45
Mareograms 57
Acceleration. 61
Terrestrial Magnetism 66
Description of Stations occupied. 68
Stations occupied 76
Collected Magnetic Results 84
Comparison at Agincourt. 140
Gratity 141
ILLUSTRATIONS.

1. Magnetic Hut, Ottawa. 142
2. Diurnal Variation Curve 142
3. Diumal Variation Curve 142
4. Diurnal Variation Curve. 142
5. Survey Curve. 142
6. Chart showing Magnetic Declination.$25 a-3 \frac{3}{2}$

APPENDIX I.
 SEISMOLOGY, TERRESTRIAL MAGNETISM AND GRAVITY, BY OTTO KLOTZ, LL.D.

Ottaifa, Ont., July 1, 1909.

W. F. Kisg, LL.D., C.M.G.,
Chief Astronomer,
Department of the Interior, Ottawa,

SIr,-I have the honour to make the following report of the work carried out a wer my charge, and which is classified under the three headings-Seismology, Terwestrial Magnetism and Gravity.

SEISMOLOGY.

Instruments.-The instruments which are in service are: two Bosch photographic wismographs, described in the report for 1906; a Callendar electric recorder; a Negretti and Zambra barograph; a Shaw-Dines micro-barograph, besides wet and dry bulb thermometers.

The Callendar electric recorder is from the Cambridge Scientific Instrument Company, England. It was installed in August 10, 1908, and has given satisfaction. It records the outside temperature. It is similar to the one used in connection with our standard sidereal Riefler clock for temperature control. In the report for 1907 Mr. R. M. Stewart gives an illustration of the recorder, tagether with a detailed lescription, so it is unnecessary to describe the other one. It may be mentioned, however, that the extreme possible range of outside temperature is confined within the range of the galvanometer wire along which the sliding contact balances the resistance of the platinum wire thermometer, wound on a mica frame. The thermometer is housed in a louvred shelter 2 feet 6 inches by 1 foot 8 inches and 2 feet B inches high with slanting double top, the whole being painted white; it is mcunted on four posts and the bottom is 4 feet above the ground in an open space with free circulation of air. It is 46 feet from the northwest comer of the transit house of the observatory: The lead-covered double leads are led from the thermometer in an iron -inch pipe under ground, then through the wall of the Observatory and finally into my room to the recorder. The range of resistance on the galranometer wire and covering the sheet which is daily renewed, is equivalent to 100°. that is, the readings extend from $-50^{\circ} \mathrm{C}$. to $+50^{\circ} \mathrm{C}$. or from $-58^{\circ} \mathrm{F}$. to $+122^{\circ} \mathrm{F}$., and this is represented in linear measure on the sheet by 20 cm ., so that $1^{\circ} \mathrm{C}$. is equivalent to 2 mm . The temperature records are very satisfactory, and the rapid oscillations of temperature on bright cloudless days is very marked. These fluctuations amount to several degrees within a few minutes, showing that the atmosphere is far from being homogeneous as far as temperature is concerned, but instead is permeated by thermal and density 'schlieren,' continuously shifting. The scale of the bridge-wire was determined by readings of several standard mercurial thermometers placed within the thermometer shelter.

Last March another platinum wire thermometer was installed; it is in the well at the bottom of the south collimator pier of the meridian circle. The leads of this
thermometer are led t. . \& speeial switch beside the reenrder, and every morning before taking off the sheet a reading is taken of this latter thermometer, which is subject. of eourse, to a very slow change of temperature.

Of the aneroid barograph with its weekly recorling sheet nothing further need be said. Beside it hangs the Greene standard mereurial barometer and by which the readings of the formor are checked.

In conmection with the study of the seismograms, especially of the mieroseisms and other records, such as movements of the position of the pendulum zero not attributable to earthquakes, a Shaw-Dines micro-barograph was installed last July (1908), also a Richard Frères statoscope. Although the latter works very well, its time-scals is too large (one revolution of the cylinder in less than an hour) for continuous use. The former is 'an apparatus designed to magnify and record the minor and sudden fluctuations of the atmosphere as opposed to the general atmospheric surges. It records the small variations on a scale magnified twenty fold, the general surges being practically obliterated throngh the operation of a small leak. It thus records comparatively rapid oseillations, and no others. The instrument consists of a small, closed vessel containing air, which communicates with a mahogany box containing mercury, on the surface of which flonts, mouth downwards, a light hollow cylindrieal bell. The air is enelosed in a large japanned metal chamber, the space between the two being filled with a non-conducting material. The movements of the bell are transmitted to the chart by means of a delicate system of leverage. The chart is wound round a drum aetuated by clock-work, and making one revolution in twenty-four hours.'

This instrument (micro-barograph) has given effieient service for the purpose for which it was desired, viz., in the first place to give a record of very rapid barometrie fluctuations with the aceompanying gusty winds, and secondly to enable one to make a eomparison of such reeord with the seismogram to determine the relationship, if any, between the micro-bardogram and seismogram. This has now been clearly and unequivocally established by simple ocular demonstrations. Whenever a closely serrated line with amplitudes of a sixteenth to quarter of an inch (about the maximum for very rapid oscillations) is found on the miero-barogram, the seismogram will show for the same time invariably an irregular rceord, not mieroseisms, which appear as a combination of tilting and horizontal movements, probably vertical movements too. They ean never be mistakeu for any phase of earthquake effeets nor for mieroseisms, about which more will be said hereafter. The service of this instrument has been wholly confined to interpretation of some of the disturbances reeorded by the seismograph and not for other meteorologieal purposes, as that is outside of our field.

The electric light 16 e.p.. $10+$ v., continues to serve for the seismograph, and is efticient although slightly reduced in brightness when the machinery using the motor, and the lights of the observatory are on. A 'detector' was installed in my room, on the wall opposite to my desk. The object is to show when, by aecident, the filament of the seismograph lamp should break, or othervise the light circuit be interrupted. This is effected by having two small 1-eandle power lamps in series, with the main lamp in the basement, and being themselves in parallel. The idea of having the two small lamps in parallel is that if one of them should give out, the eircuit would not be interrupted, but would show by the other small lamp burning mueh brighter. The scheme works very well.

In last year's report I spoke of the trouble that some of the electric lamps, neeessarily with single filament, gave by the vibrations set up in the filament and produced by the eleetric current alone. This has been nearly eliminated by the use of new lamps with shorter filaments. Oecasionally spots of a widened line are shown on the seismogram when the filament has oscillated for a few seconds. It is a rather peculiar phenomenon and was tiscussed in detail last sear.

SESSIONAL PAPER No. 25a

The two horizontal pendulums have remained in their respective positions N.-S. and E.-IV. during the year. The steel point of the N.-S. pendulum bearing against the lower support was found to have become somewhat blunted, so it was replaced by a spare point supplied by Bosch when the instrument was purchased. The effect of this was well shown in the record of microseisms whose amplitude although always small was distinctly increased by the decrease of friction at the point of lower support. For this same pendulum, as noted last year, the air-damping had been replaced by oil-damping, in the belief that the oil would be very much more efficient for the purpose of damping. Neither the damping by the oil nor the surface tension manifested themselves as conspicuously as anticipated. The experimental test was made with an immersion of 3 mm . by the aluminum vanc of the aluminum rod which extends from the 'bob, or mass. The damping co-efficient was practically the same as with the air damping. The oil used was ordinary bicycle oil with some clock oil.

As in previous years a record has been kept of the hygrometric condition inmediately without and within the seismograph room. The humidity although subject to small oscillations is in general dependent upon the season and the artificial heating of the bnilding during the colder months. The least humidity is during the winter. and the greatest during the summer, ranging from an average of 36 per cont in January to 75 per cent in July. Since the construction of an additional drain below the seismograph cement floor there has been no oceasion to use chloride of calcium for the absorption of moisture. The following are the bi-monthly means:-

Months.	Humidity.		Months.	Humidity.	
	Basement.	Seismograph Room.		Basement.	Seixmograph Room.
1908					
April 1 to $15 .$.	48.6		October 1 to 15..	61.7	57.9
"1 16 to end.	49.2	472	-" 15 to end.	$72 \cdot 2$	54.7
May 1 to 15.	587	60.7	November 1 to 15	$81 \cdot 3$	$48 \cdot 2$
" 16 to end..	72.4	$73 \cdot 1$	- 16 to end.	$4{ }^{4} 5$	$43 \cdot 2$
June 1 to 15.	$69 \cdot 3$	72.5	December 1 to 15.	40.9	$38 \cdot 6$
- 16 to end..	76.5	747	" 16 to end.	37%	36.0
			1909		
July 1 to 15.	$65 \cdot 1$	78.3	January 1 to $15 .$.	$39 \cdot 0$	$36 \cdot 3$
"16 to end..	71.3	$75 \cdot 6$	" 16 to end.	$38 \cdot 2$	37.0
Aug. 1 to $15 .$.	$67 \cdot 9$	73.8	February 1 to 15.	37.5	38.1
". 16 to end..	$64^{5} 5$	71.8	"116 to end	$36 \cdot 1$	340
Sept. 16 to 15 end.	60.9 67.6	71.4	March 1 to 15	38. 40	33.5 38.2
" 16 to end.	$67 \cdot 6$	$71 \cdot 5$	- 16 to end......	407	38.2

During the construction of the large dam across the Ottawa river above the Chaudière falls considerable blasting was done for the foundation in the limestone rock. It was desired to ascertain whether the shocks would be recorded by the seismograph. By request the engineer-in-charge, Mr. J. B. McCrae, kindly noted the time of discharge as given below :-

	h.	m.	8.	No. of holes.	Dynamite Sticks,
No. 1.	12	15	60	3	3
	12	17	30	5	5
3.	12	24	30	\pm	4
4.	12	29	00	11	11
5.	12	48	00	8	8
	12	52	30	16	16

The holes were 3 feet apart and about 15 inches deep; one stick of dynamite per bole, and the dynamite 50 per cent. The firing was electric. The nature of the limestone rock is more or less shaly. The distance from the Observatory to the dam is in round numbers 10,000 feet, or $3,050 \mathrm{~km}$. The seismogram for the noon hour was carefully examined for any effect of the above blasts, but it failed to reveal the slightest trace. If there was any it was masked by the very small microseisms that were present on that day. Beside the presence of the minute microseisms two other causes militated against obtaining a record; one, the lack of compactness of the rock over that distance, and the other the rery rapid oscillations that would be set up to which the seismograph could not well respond.

EARTHQUAKES RECORDED.

In the following table are given the earthquakes recorded here from January 1 , 1908, to March 31, 1909, the end of the fiscal year. On April 1, 1909, began the publication of monthly bulletins of earthquakes and the Göttinger nomenclature adopted by most earthquake stations was also adopted. The preceding three months for 1908 are added in order to have a complete list for that vear. Before the adoption of the above nomenclature fewer data were taken from the seismograms than subsequently, which is obvious in the table.

Göttinger Nomenclature or Designations.

Character of the earthquake-
$I=$ noticeable. $I I=$ conspicuous. $I I I=$ strong.
$d=$ (terræ motus domesticus) = local earthquake (sensible or felt),
$v=$ (" " vicinus) = near " (under 1000 km .)
$r=($ " " remotus) = distant " (1000 to 5000 km .)
$u=$ (" " ultimus) = very distant earthquake (over 5000 km .)
Phases-
$P=$ (undæ primæ) first preliminary tremors.
$S=$ (" secundæ) second preliminary tremors.
$L=$ (" longæ) long waves (principal portion).
$M=$ (" maximæ) greatest motion in principal portion.
$C=($ coda $)=$ trailers.
$F=$ (finis) $=$ end of visible disturbance.
Nature of the motion-
$i=$ (impetus) $=$ beginning.
$e=$ (emersio) $=$ appearance.
$T=$ period $=$ twice time of oscillation.
$A=$ amplitude of earth movement, reckoned from zero line.
$A_{k}=$ E-W component of A
$A_{s}=X-S$
A $\}$ measured in microns (μ).

SESSIONAL PAPER No. 25a
Record of the Earthquake Station, Dominion Astronomical Observatory, Ottawa, Canada. Latitude $45^{\circ} 23^{\prime} 38^{\prime \prime}$, Longitude $75^{\circ} 42^{\prime} 57^{\prime \prime}$ or $5^{\mathrm{h}} 02^{\mathrm{m}} 51^{s .8}$ W. Greenwich. Elev. 88^{m}. Time: Mean Greenwich, midnight to midnight. Instruments: Two Bosch photographic horizontal pendulums. Nomenclature: Göttinger. From January 1, 1908, to March 81, 1909.

Record of the Earthquake Station, Dominion Astronomical Observatory, Ottawa, Canada. Latitude $45^{\circ} 23^{\prime} 33^{\prime \prime}$. Longitude $75^{\circ} 42^{\prime} 57^{\prime \prime}$ or $5^{1 \mathrm{l}} 02^{\mathrm{m}} 51^{5} .8 \mathrm{~W}$. Greenwich. Eler. 83^{m}. Time: Mean Greenwich, midnight to midnight. Instruments: Two Bosch photographic horizontal pendulums. Nomenclature: Giöttinger. From Jannary 1. 190s, to Mareh 31, 1909-Con.

SESSIONAL PAPER No. 25a

Record of the Earthquake Station, Dominion Astronomical Observatory, Ottawา. Canada. Latitude $45^{\circ} 23^{\prime} 33^{\prime \prime}$, Longitude $75^{\circ} 42^{\prime} 53^{\prime \prime}$ or $5^{4} 02^{\mathrm{m}} 51^{\prime \prime} . \mathrm{W}$ W. Greenwich. Elev. 83^{m}. Time: Mean Greenwich, midnight to midnight. Instrumentn:
Two Bosch photographic horizontal pendulums. Nomenclature; fröttiager. From January 1, 190s, to Marels 31, 1909-Con.

Rucond of the Earthquake Station, Dominion Astronomical Observatory, Ottawa, Canada. Latitude $45^{\circ} 23^{\prime} 38^{\prime \prime}$, Longitude $75^{\circ} 42^{\prime} 57^{\prime \prime}$ or $5^{\mathrm{h}} 02^{\mathrm{m}} 51^{5} .8 \mathrm{~W}$. Greenwich. Eler. 83^{m}. Time: Mean Greenwich, midnight to midnight. Instruments : Two Bosch Ihotographic horizontal pendulums. Nomenclature: Göttinger. From January 1, 1908, to March 31, 1909-Con.

SESSIONAL PAPER No. 25a

Record of the Earthquake Station, Dominion Astronomical Observatory, Ottawa, Canada. Latitude $45^{\circ} 23^{\prime} 38^{\prime \prime}$, Longitude $75^{\circ} 42^{\prime} 57^{\prime \prime}$ or $5^{h 1} 02^{\text {DI }} 51^{\circ} .6 \mathrm{IV}$. Greenwich. Elev. $88^{\text {ma }}$. Time: Mean Greenwich, midnight to midnight. Instruments : Two Bosch photographic horizontal pendulums. Nomenclature: Göttinger. From January 1, 1908, to March 31, 1909-Con.

During this period of fifteen months sixty-two earthquakes were recorded and but one of them of Canadian origin, and that one in the vicinity of Ottawa. Popularly the severity of an earthquake is measured by the destruction of life and property, which is however by no means the criterion for the seismologist when considering it as a tectonic movement. There were three earthquakes by which much destruction was done: the two shocks of March $26-27$ by which Chilapa, on the Pacific slope of Mexico was destroyed; then the great disaster of Messina, also spoken of as the Calabrian earthquake; and the Persian one of January 23, 1909.

Most of the other quakes probably occurred at sea and hence give us no evidence from the epicentre or central area of disturbance unless it be through the breaking of submarine cables. However, with the great improvement of earthquake instruments in recent years, with increased sensitireness and more accurate time-scale, it
will now be possible to locate with a fair degree of accuracy every earthquake that is recorded at a number of widely scparated stations. There is yet room for improvement in sensitiveness, especially for recording the first preliminary tremors, and also in the time record; the clock correction, if any, should be within a second of time. The time-scale on our photographic seismogram is made by a shutter, actuated electrically by our normal standard mean time clock, and so far has never required a correction of a second. The light is cut off every minute for two seconds and the both minute is omitted in order to identify the hour.

With well marked phases on a seismogram and good time-scale, the distance to the epicentre of a tectonic quake can be obtained within say 100 km . or 60 miles. The direction of the seat of disturbance, however, can not be so well deduced. Were the matter through which the earthquake waves are propagated homogeneous, then the components of the two pendulums placed generally in the N..-S. E.-W. dircetions at each station would furnish some indication of the direction sought, and thus enable each station to obtain at least an approximate position for the cpicentre. The complete analysis of the seismograms is ret remote.

That the velocity of the first and second preliminary tremors or longitudinal and transverse waves respectively is a function of the distance is well illustrated in the accompanying table which has been compiled of the Messina earthquake. Time of occurrence at Messina is taken as $4^{\text {h }} 20^{\mathrm{m}}$ Greenwich mean time (Professor Rizzo). The seismogram records were obtained from the various subjoined stations, and the distances were directly taken from our 30 -inch globe with a flexible steel tape especially graduated to represent $10,000 \mathrm{~km}$. for the quadrant. A globe of this size with such a graduated tape is of great service in the study of earthquakes and their epicentres.
P. S. L. represent respectively the time of arrival of the first preliminary, the second preliminary, and the long waves.

MESSINA EARTHQUAKE.

		Middle				Velocit	y per M	mute.	s
	km.	kı.	h m s	h m s	h m \%	km .	km.	km.	
Uttawa.	7200	992	43104	43942		651	365		- 56
Washington.	7650	1116	43123	44030		672	373		-56
Tiflis	2550	128	42533	42950	43520	458	259	166	- 57
Cartuja.	1700	56	42335	42640	42750	474	255	217	. 54
Sarajevo..	740	10	42151	42309	42354	378	222	180	-59
Belgrade.	850	14	42209	42311	42412	395	267	202	-68
Laibach..	900	16	42218	42333	42416	391	254	211	- 65
Vienna	1100	24	42255	+2517	42616	377	208	175	-55
Cracow.	1400	38	42323	42559	4 4 4 4 1818	413	234	206	. 56
Hamburg	1750	60	42416	42718	42812	410	240	213	58
Aachen..	1600	50	42353	42638		412	241		-58
Toronto.	7500	1073	43112	43948	50000	$\stackrel{670}{\sim}$	379	187	. 57
Victoria	9550	1709	43312	44336	50636	\%23	405	205	-56
Mean Per second									

The ratio $\frac{S}{P}$ is pretty constant, with the exception of the thrce stations, Sarajevo, Belgrade and Laibach, which are all less than 1.000 km . from the epicentre, and for which the ordinates to the chords are small, from 10 to 16 km. not reaching to the supposed layer of isostatic adjustment.

SESSIONAL PAPER No. 25a

The degree of accuraey of the time element in the records for deducing velocities is of far more consequence for close stations than for very distant ones. However in the above, which comprise all the data available at the time, there does not appear to be any serious discrepancy in the reading of the various seismograms. The L waves show themselves conspicuously as being propagated over the same medium for all stations, that is, along the surface, by having the same velocity. Thus the velocity from origin to Cracow is the same as to Victoria, seven times as distant. Although there are some variations in the velocity of the surface waves, they are wholly independent of the distance, and most likely attributable to the difficulty of sometimes identifying the arrival of the long waves in the medley of the other waves and their reflections which precede.

As the time of the occurrence of the severe earthquake in Persia of January 23, 1909, was not reported, and the time service in those regions is in any case probably very unsatisfactory with reference to Standard or Greenwich time, an attempt has been made to determine the time of the occurrence at the epicentre. based on the press despatch that the epicentre was at Bahrein, and on the times of arrival of the first and second preliminary tremors (P and S) at various stations of which the records had been received. The geographical position of Bahrein is taken from Stieler's Hand Atlas, $\varphi=33^{\circ} 30^{\circ}, \lambda=49^{\circ} 30^{\circ} \mathrm{E}$. Greenwich. The distances are taken from our 30 -inch globe.

In the following table the computed transmission times V_{i}, V_{z} for the P and S are interpolated from the Wiechert-Zeppritz values compounded from the Indian earthquake of 1905, the Calabrian one of 1905, and the San Francisco one of 1906.

For L the velocity is taken at 4 km . per second.

EARTHQUAKE OF JANUARY 23, 1909.

Bahrein, Persia.
$\phi=33^{\circ} 30^{\prime}, \lambda=49^{\circ} 30^{\circ}$ E. OF GR.
GREENWICH TIME

Station.	Distance. km .	Ordinate. km.	Seismograms.			Computed.					Deduced time at Epicentre.		
			P	s	L	V_{1}		V_{2}			$P-V_{1}$	$s-V_{2}$	$L-B$
			hmos	h m 8	h m 8	m s	8	m s	3		h mis	h m s	h m 8
Ottawa	9750	1778	30113	31142		125	5423	38	3840	37	24813	24804	24723
Hamburg..	3830 +020	287 315	$\begin{array}{llll}2 & 55 & 14 \\ 2 & 55 & 33\end{array}$	$\begin{array}{llll}3 & 00 & 36 \\ 3 & 01 & 05\end{array}$	$\begin{array}{llll}3 & 03 & 12 \\ 3 & 04 & 56\end{array}$	7	${ }^{071} 12$	240	4015		. . 8807	.. 4756	- 4715
Aachen.	4020 3330	315 217	2 2 5538	30105 259 2	$\begin{array}{llll}3 & 04 & 56 \\ 3 & 04 \\ 3 & 41\end{array}$	$\begin{array}{lll}7 & 21 \\ 6 & 22\end{array}$	2113	106	96 16		- 4812	. 4759	+ 4811
"Sarajevo..	2920	168	25530	2 3 0009	$\begin{array}{llll}3 & 04 & 36\end{array}$	5	22110	$1{ }^{1}$	$2{ }^{4} 12$	10	4820 4838	4820 +845	5049 50
Cracow	3060	183	25408	25859		600	0010	13	43.		.. 4808	- + 16	026
Vienna	3200	200	25418	25910	30056	613	1311	107	713	20	. 4805	+ 4803	4736
Tiflis.	1030	21	${ }_{2}^{2} 5040$			219	194	404			. 4821		
Strassburg	3850	${ }_{2} 2$	25509	30026	30526	709	0912	20	4016	02	\therefore 4800	4716	4924
Laibach..	3300	213	${ }_{2}^{2} 5420$	25915	30417	$6 \quad 21$	2111	16	613	45	. 4759	. 4759	.. 5032
Belgrade.	2650	137	25826	25753	30142	$5 \quad 27$	27.9	92	4211	02	. 4759	- 1811	. .5040
Cartuja.	4820	450	${ }_{2}^{2} 5033$	30305	$\begin{array}{llll}3 & 07 \\ 3 & 30\end{array}$	820	2014	48	4890	05	. 4813	- 4817	4725
Washington.	10300	1972	30122	31205	330	1318		428		55	$\therefore 4804$. 4737	亿. 4705
Mean...... . . . 24811 2 480624848													

It will be observed from the above table that the mean time deduced from the P agrees within 5 seconds of the mean of the deduced time from the S, so that one feels justified in giving for the time of the occurrence of the quake in Persia $2^{\mathrm{h}} 48^{\mathrm{m}} 8^{8}$

[^0]Grceurich time. The agreement between the two independent values $P-V_{1}$ and \mathfrak{L} - V , for any station is satisfactory too; in several cases the times are absolutely co-incident. However, we cannot always be sure of individual seconds in reading P and S on the seismogram.

A greater difficulty we encounter when trying to read on the seismogram the arrival of the long waves, L, and this is manifested in the last column, which in the ideal condition we should expect to agree with the other two. The discordances in the last column of individual values from the general mean ($2^{h} 48^{m} 08^{s}$) of the other two columns is not attributable to the assumption of 4 km . as the velocity of the long waves per second, but rather to the reading of the various seismograms. For, taking $T=2^{h} 48^{m 0} 05^{6}$ as the time of the occurrence of the quake and solving by least squares for the velocity of the long waves we get 238 km . per minute, which is practically the same as 4 km . per second, the quantity used.

If we arrange $L-T$ in the order of magnitude and divide the resulting time into the respective distance of the station from the epicentre it will be found that there is a tendency for the greater distance to give the greater velocity; the extreme values being Hamburg 4.24 km ., and Belgrade 3.26 km . per second.

We may recall the table of the Calabrian or Messina quake, which gave for Belgrade 3.36 km ., and for Hamburg 3.55 km ., and the general mean 3.27 km . In no case for that quake was a velocity obtained as high as 4 km ., the highest being for Cartuja 3.61 km . per second.

Judging from our seismograms here, it is believed that the discordances obtained for the velocity of the long waves are mostly or wholly attributable to the uncertainty of identifying, midst the complexity of longitudinal and transverse waves and their reflections which precede, the arrival of the surface or long waves.

Some of the stations on this continent failed to get a record of the first preliminary tremors, due to lack of sensitiveness of the instrument. For distant quakes not only the diminished force of the longitudinal impulse comes into play, but also the horizontal component of that impulse, so that distance very materially militates against the recording of the first preliminary tremors.

The following tablc is a compilation of the two preceding ones, and arranged in order of distance with the corresponding middle ordinate to the chord, and the mean velocity of the first preliminary tremors, P, or longitudinal waves in kilometres jpr, minute.

FOR MESSINA AND BAHREIN EARTHQUAKES.

Place.	Distance.	Ordinate	Velocity P.	Place	Distance.	Ordinate.	Velocity P.
	km.	kın.	km .		km .	km.	km.
Sarajew	700	10	378	Vienna.	3,200	290	519
Belgrade	850	14	395	Laibach	3,300	213	532
Laibach..	900	16	391	Trieste..	3,330	217	507
Tillis..	1,030	21	407	Hamburg.	3,830	287	540
Vienna	1,100	24	377	Strassburg. . .	3,850	990	519
Cracow	1,460	38	413	Aachen.	4,020	315	542
Aachen.	1,600	50	412	Cartuja.	4,820	450	543
Cartuja.	1,200	56	474	Ottawa.	7,200	992	651
Hamburg.	1,750	60	410	Toronto	7,500	1,073	670
Tiflis.	2,650	12\%	458	Washington	7,650	1,116	673
Belgrale..	2,65i0	137	500	Victoria...	3,550	1,709	723
Sarajevo.	2,920	163	39%	Ottawa.	9,750	1,778	T 45
Cracew .	3,060	183	510	Washington..	$10,3 \mathrm{kl}$	1.972	778

There are some discrepancies in the table, notably the one for Sarajevo. From information received it would appear that it is mostly due to an error or inaccuracy
in time seale. If the phenomenal progress that scismology has made in recent years continues, such discrepancies will disappear and data of a high order of precision will be obtained, upon which a permanent structure can be raised.

There are now some 200 earthquake stations distributed over the earth, and the seismograms furnished by them are far from homogencous, and are far from equal merit and value for studying the geophysical problems for which they are obtained. The first order of precision to be aimed at is that of time. Seismology demands now that the time recorded should be accurate within at least one second. As standard time is now so widely distributed by telegraph, there scems no reason why the time of every earthquake station should not be controlled by the time from some astrunomical observatory. In order to be able to read to one second on the seismogram the time scale should be about 90 cm , to the hour, or 15 mm . to the minute; i.e., 1 mm . would represent 4 seconds. There is a limit to the speed of the revolving cylinder, for if it is too great, although the time could then be more accurately read, yet, waves with small amplitudes would become so flattened as to be scarcely recognizable. A further demand for precision, is that the instrument be highly sensitive in order that the first impulse of the first preliminary tremors is recorded, and that damping co-efficient should approach the limit of aperiodicity for the pendulum, in order that the seismogram may represent fairly well the earth movements and free from those of the pendulum itself.

CANADIAN EARTHQUAKES.

Looking at a geological map of Canada one is immediately impressed with the fact that the greater part of the Dominion, running from the Gulf of St. Lawrence past Hudson bay and on to Great Bear lake and the Arctic ocean, is composed essentially of archæan rock, that is, of the oldest formation on the earth. This is probably the largest area of archæan ruck on the earth, being closely followed by the Scandinavian peninsula and Fiuland. As earthquakes are intimately associated with the age of rock formation, the more recent being more subject to disturbances than the older ones, we may say that broadly speaking the vast area above referred to will always be fairly free from earthquakes, for its cempact and more or less homogeneous nature is not so well adapted to the adjustment of the strains of the earth's crust, which is the cause of earthquakes, as the newer formations are, which are intersected by dikes and faults, and which exhibit stratification and folding with, consequently, lines and surfaces of weakness.

In the St. Lawrence valley, westward from Quebec to Lake Huron, we have formations of the Palrozoic age, and also to the south of the St. Lawrence covering New Brunswick and Nova Scotia. In the whole of eastern Canada from Nova Scotia to near the mouth of the Mackenzie river, a distance of nearly 3,000 miles, no formations more recent than those of the Palæozoic age are found. In western Canadi the newer formations occur; the Great Plains being represented by the Cretaceous and Tertiary eras. The mainland Pacific coast of British Columbia is almost wholly 'coast granite,' while the interior is largely represented by the Miocene period of the Tertiary era. The nature, composition and structure of the formation itself may, per se, directly lead through gravitational effect to earthquakes. While on the other hand such formation may lend itself to the adjustment of stresses imposed upon it from neighbouring regions, e.g. the sea or ocean. So much is obvious, that whatever reason we may assign as the contributory cause of an earthquake, where it occurs is necessarily the weak spot for the area under strain. From historic records and of late years from instrumental records the seismic areas of the earth are fairly well known, but why the degree of seismicity should vary in different regions is open to considerably more elucidation. The Indo-Pacific archipelago, including Sumatra, Java, New Guinea and the Philippines is the most seismic region of the earth for the larger quakes, while the eastern coast of Canada is fairly immune.
$25 a-4$

The more or less severe, but not destructive, earthquakes that have visited eastern Canada are all associated more or less direetly with the 'Great Champlain and St. Lawrence fault,' running from the gulf up the river to Quebec and then curving southwesterly to Lake Champlain. Of these the quakes of $1663,1791,1860$ and 1870 are the most noted. The first one has gained a certain celebrity from its exaggerated description. This carthquake, which lasted about six months, occurred during the French occupation. We may regard the record of this as the beginning of our literature on seismology, and hence give it a place here, although its scientific value is rather circumseribed.

From a manuscript in the Jesuits' College at Quebee the editor of 'Hochclaga Depicta' took the following account of this quake:-
' On the 5th of February, 1663, about half past five in the evening a great rushing noise was heard throughout the whole extent of Canada. This noise caused the people to run out of their houses into the streets, as if their habitations had been on fire; but instead of flames or smoke, they were surprised to see the walls reeling backwards and forwards, and the stones moving, as if they were detached from each other. The bells sounded by the repeated shocks. The roofs of the buildings bent down, first on one side and then on the other. The timbers, rafters and planks cracked. The earth trembled violently, and caused the stakes of the palisades and palings to dance in a manner that would have been incredible had we not actually seen it in many places. It was at this moment every one ran out of doors. There were to be seen animals flying in every direction, children crying and screaming in the streets; men and women seized with affright, stood horror-struck with the dreadful scene before them, unable to move, and ignorant where to fly for refuge from the tottering walls and trembling earth, which threatened every instant to crush them to death, or to sink them into a profound and unmeasurable abyss. Some threw themselves on their knees in the snow, crossing their breasts and calling on their saints to relieve them from the dangers with which they were surrounded. Others passed the rest of this dreadful night in prayer, for the earthquake ceased not, but continued at short intervals, with a ccrtain undulating impulse, resembling the waves of the ocean, and the same qualmish sensations, or sickness of the stomach, was felt during the shocks as is experienced on a ressel at sea, . . . The violence of the earthquake was greatest in the forests, where it appeared as if there was a battle raging between the trees; for not only their branches were destroyed, but even their trunks are said to have been detached from their places and dashed against each other with inconceivable violence and confusion, so much so, that the Indians in their figurative manner of speaking, declared that all the forests were drunk. The war also seemed to be carried on between the mountains, some of which were torn from their beds and thrown upon others, leaving immense chasms in the places from whence they had issued, and the very trces with which they were covered sunk down, leaving only their tops above the surface of the earth; others were completely overturned, their branches buried in the earth and the roots only remained above ground. During this general wreck of nature the ice, upwards of six feet thick, was rent and thrown up in large pieces, and from the openings in many parts, there issued thick clouds of smoke, or fountains of dirt and mud, which spurted up to a very considerable height. The springs were either choked up or impregnated with sulphur,-many rivers were totally lost, others were diverted from their course and their waters entirely corrupted. Some of them became yellow, others red, and the great River of St. Lawrence appeared entirely white as far down as Tadousac. This extraordinary phenomenon must astonish those who know the size of the river, and the immense body of water in various parts, which must have required such an abundance of matter to whiten it They write from Montreal that during the earthquake they plainly saw the stakes of the picketing or palisades jump up as if they had been dancing; and that of two doors in the same room, one opened and the other shut of their own accord; that the
chimneys and tops of the houses bent like branches of trees agitated with the wind; that when they went to walk they felt the earth following them and rising at every step they took, sometimes sticking against the soles of their feet and other things in a very forcible and surprising manner. . . . From Three Rivers they write that the first shock was the most violent, and commenced with a noise resembling thunder. The houses were agitated in the same manner as the tops of trees during a tempest, with a noise as if fire was crackling in the garrets. The shock lasted half an hour, or rather better, though the greatest force was properly not more than a quarter of an hour; we believe there was not a single shock which did not cause the earth to open either more or less. As for the rest, we have remarked that, though this earthquake continued almost without intermission, yet it was not always of an equal violence. Sometimes it was like the pitching of a large vessel which dragged heavily at her anchors; and it was this motion that caused many to have a giddiness in their heads and qualmishness at their stomachs. At other times the motion was hurrie-1 and irregular, creating sudden jcrks, some of which were extremely violent; but the most common was a slight tremulous motion, which occurred frequently with little noise. Many of the French inhabitants and Indians, who were eye-witnesses to the scene, state that a great way up the river of Trois Rivières, about 18 miles below Quebec, the hills which bordered the river on either side, and which were of a prodigious height, were torn from their foundations and plunged into the river, causing it to change its course and spread itsclf over a large tract of land recently cleared; the broken earth mixed with the waters, and for several months changed the colour of the great River St. Lawrence, into which that of Trois Rivières disembogucs itself. In the course of this violent convulsion of nature, lakes appeared where none ever existed before; mountains were overthrown, swallowed up by the gaping, or precipitated into adjacent rivers, leaving in their places frightful chasms or level plains; falls and rapids were changed into gentle streams, and gentle streams into falls and rapids. Rivers in many parts of the country sought other beds or totally disappeared. The earth and the mountains were entirely split and rent in innumerable places, creating chasms and precipiccs whose depths have never yet been ascertained. Such devastation was also occasioned in the woods, that more than a thousand acres in one neighbourhood were completely overturned, and where but a short time before nothing met the eye but one immense forest of trees, now were to be seen extensive cleared lands apparently cut up by the plough . . At Tadousac, about 150 miles below Quebec on the north side, the effect of the earthquake was not less violent than at other places; and such a heavy shower of volcanic ashes fell in that neighbourhood, particularly in the River St. Lawrence, that the waters were as violently agitated as during a tempest. Near St. Paul's bay, about 50 miles below Quebee on the north side, a mountain about a quarter of a league in circumference, situated on the shore of the St. Lawrence, was precipitated into the river, but, as if it had only made a plunge, it rose from the bottom and became a small island, forming with the shore a convenient harbour, well sheltered from all winds. Lower down the river, towards Point Alouettes, an entire forest of considerable extent was loosened from the main bank and slid into the River St. Lawrence, where the trees took fresh root.
'There arc three circumstances, however, which have rendered this extraordialary earthquake particularly remarkable: the first is its duration, it having continued from February to August, thet is to say, more than six months almost without intermission. It is true, the shocks were not always equally violent. In several places, as towards the mountain behind Quebec, the thundering noise and trembling motion continued successively for a considerable time. In others, as towards Tadousac, the shock continued generally for two or three days at a time with much violence. . . . The second circumstance relates to the extent of this earthquake, which we believe was universal throughout the whole of New France, for we learn that it was felt from l'Isle Percée and Gaspé, which are situate at the mouth of the St. Lawrence to $25 a-4 \frac{1}{2}$
beyond Montreal, as also in New England, Acadia and other places more remote. As far as it has come to our knowledge, tbis earthquake extended more than 600 wiles in length and about 300 in breadth. Hence 180,000 square miles of land were conrulsed in the same day and at the same moment.
'The third circumstance, which appears the most remarkable of all, regards the extraordinary protection of Divine Providence which has been extended to us and our habitations; for we have seen near us the large openings and chasms which the earthquake occasioned, and the prodigious extent of country which has either been totally lost or hideously convulsed, without our losing either man, woman or child, or even having a hair of their heads touched.'

We might add a fourth circumstance, and that is, that the narrators of the above anticipated the sensationalism of our 'yellow' journals by two and a half centuries.

The following is a list of the slight local shocks oceurring in Canada from January 1, 1908, to April 30, 1909. The items were gathered from the daily press:-

1908.

May 12.-A very perceptible slock of earthquake was felt in Yarmouth, N.S., and vicinity a few minutes before 12 on Wednesday night. Houses shook and trembled and there was a loud report as of heavy thunder. No damage has been reported. It was bright moonlight and calm at the time. It was likewise felt in Digby, Amapolis and Shelburne counties.

June 16.-A distinet shock occurred at Ottawa, and was recorded by the seismograph at $3^{\text {h }} 41^{\mathrm{m}} 52^{3}$ p.m., the pulsations lasting 16 seconds. It was generally felt; windows rattled, and some heard a loud rumbling sound. On the Rossi-Forel scale the intensity would be designated by IV. It was felt over an area about 60 miles in diameter.

July 17.-Quite a distinct shock was felt at Arnprior at $2^{\mathrm{h}} 10^{\mathrm{mm}}$ a.m. A great many citizens felt it. The quake was accompanied by a noise similar to that of a large building falling.

August 8.-Despatches from the up-river section of New Brunswick report earthquake shocks in several places this morning. At Hartland there were three shocks at 1. 4 and 7 a.m. Plaster fell from the ceiling in one building. In Fredericton and vicinity there was a shock felt about 7 o'clock. Thunder and lightning and rery heary rain were experienced during the night.

November 30.-An earthquake travelling apparently from north to south threw the inhabitants of the town of Skidegate, Queen Charlotte islands, into a state of nervous apprehension in the afternoon of November 30, according to news brought south by the fishing steamer Celestial Empire, which reached Vancouver yesterday morning (December 9) from the northern halibut banks. It was estimated that the shock lasted fully seven seconds. No other tremors were felt, greatly to the relief of the pcople of the town, who became somewhat alarmed on observing that two Indian shacks had been thrown to the ground. The buildings knocked down were old, half-tumbled-down affairs.

1909.

January 11.-Nearly all parts of southern British Columbia and Washington Territory, across the international boundary, were shaken by an earthquake at 3.45 p.m., Pacific standard time of January 11, the quake lasting from 10 to 20 seconds. No damage was done but the alarm was very great. Beyond the breaking of some crockery in a few homes in Vietoria, there was little damage caused. Comox, Alberni, Pachena, Bamfield and other points report having felt the shock, Bamfield stating that two tremors were felt, while Estevan reports that no shock was experienced therc. At Port Townsend, across the boundary line, in many places where water pipes lay in the frozen ground, the earthquake broke the pipes and flooded houses,

¿ESSIONAL PAPER No. 25a

January 31-February 1.-Three distinct earthquake shocks were felt in Montreal last night. The first shock was felt at $11^{\mathrm{h}} 30^{\mathrm{m}}$ p.m., the second at $11^{\mathrm{h}} 45^{\mathrm{m}}$, and the third and most severe at $3^{\text {h }} 20^{\text {nh }}$ a.m. People were awakened all over the city. The rattling of glassware and crockery was heard distinctly. A pceuliar feature was the howling of dogs all over the city. Loud cracking as though houses were being severely strained was noticed everywhere. A number of houses are cracked as the result of the quakes, also some sidewalks.

Felruary 3.-At about 4 a.m. quite a number of people in Montreal were aronsed ly an unusual sound and a slight sense of vibration. which lasted only a very short time and was not repeated. It was less severe than the preceding one of two days ago.

Examining the geological areas for the above places it is not difficult to understand that local shocks may occur there. The complexity of the formations; the difSerences in composition, in density, in elasticity; the many faults and dikes; the num--rous surfaces of contact; the constant gravitational effect, all conspire towards the interruption of a continuous gradual adjustment of stresses and strains, so that at times these adjustments, though very minute, are abrupt and manifest themselves as local shocks. That these adjustments are very small is shown by the very small .celeration produced. Acceleration is the measure of intensity of an earthquake.

In the above local shocks there is only one, that for Ottawa, for which direct reasures were obtained. We find from them that the acceleration produced was $2 \cdot 4$: iillegals.

The unit of acceleration in the C. G. S system is called a 'gal', i.e., the acceleration of 1 cm per second, per second; henee for gravity at latitude 45° we have 980.60 cals. A millegal is the thousandth of a gal.

Small loeal shocks like the above may occur almost anywhere, at least in many Wacalities over the southern part of Canada from Nova Scotia to British Columbia,

It may be remarked, however, that when we reach the Pacific coast we enter upon ground adapted to tectonic or the larger quakes. Vancouver island, Queen Charlotte islands and the smaller islands all lie in comparatively shallow water, but immediately
the west lies the deep trough of the Pacific, adanted for breeding seismic disturhnuces on a large scale.

MICROSEISMI3.

In order to treat this subject as fully as the data and records here warrant, some if the matter published last year is here incorporated for the sake of completeness.

Under the designation microseisms, are included all pulsations not directly attributihe to what are generally known as earthquakes, which give abrupt, more or less violent, and momentary movements of the earth's crust, the effect of which may, however, cuntinue for some hours. Attempts have been made to classify these microseisms according to their cause, but so far without complete success. During the past year the writer has paid considerable attention to these disturbances, and in doing so has studied and compared the daily seismograms with our daily micro-barograms, our weekly aneroid barograms and also with the daily weather maps, which give the isobars at 8 a.m. for Canada and the United States, roughly between latitudes 25° and 55°, and the Atlantic and Pacific oceans. The micro-barogram exhibits particularly well very rapid fluctuations of pressure as manifested by local and often gusty winds, the counterpart of which is always represented on the seismogram by irregular movements and not by microseisms The average time of the beginning of the seismogram cheet is about 10 a.m., so that the above isobars and gradients dependent upon them are for a time preceding the former by two hours. From the examination of the local ! arogram alone not much information can be gathered as to the behaviour of the seismograph except when very rapid and marked fluctuations. say a millimetre or more, take place in the pressure, comparable with the 'pumping' of a mercurial
darometer at sea. The barometer may show little or no change in pressure at a given place, yet areas of 'High' and 'Low' (barometer) may be rushing along to the north and south of it, setting up vibrations or pulsations of the earth's surface that may be markedly felt at a given place by the seismograph. Similarly from a large rise or fall of the barometer during 24 hours at a given place alone, we can draw no gradients to determine the atmospheric movements; the position of the isobars and 'Highs' and Lows' being unknown. We have simply the record of the vertical movement of pressure at one point. The isobars on the Weather Map are drawn at intervals of onetenth inch difference of pressure. The normal to the isobars is called the gradient, and when spoken of, generally refers to the gradient between a 'High' and a 'Low' passing through Ottawa. An examination has been made during the year of the daily seismograms and the daily Weather Maps, including the isobars or position of 'Highs' or 'Lows' and the forecast for the Ottawa regions with reference to winds and storms. This examination furnishes the data upon which the conclusions depend. As the Observatory is not yet supplied with an anemometer and pressure gauge for camparison of the dynamical conditions, we are at present dependent upon the daily forecast.

It may be stated at the outset, before discussing the preceding data, that there is never a day in the sear on which some trace of microseisms can not be seen on a seismogram from a Bosch photographic seismograph. It is all a matter of degree. That microseisms should be ever present is but natural, for the earth is in a continual state of stress and strain, many varied and different causes contributing thereto. The term microseisms as here used excludes any deviations of the vertical or movements of the zero position of the pendulum. Some writers have divided microseisms into 'earth tremors' or 'pulsations,' and 'earth pulsations' or 'pulsatory oscillations.' The writer, however, from the seismograms at this station sees no reason for this division, as it is not at all evident from them that the contributory causes, whatever they may be, manifcst themselves in such a manner as clearly to differentiate themselves. Furthermore, from the examination of the seismograms the oscillations of the pendulum are excluded; on the one hand, from the frequent change of period on the same seismogram, which would be inadmissible for a pendulum, and on the other hand, if the pendulum were made to oscillate we should expect to see the damping effect in the decrease of amplitude, and a more or less sudden beginning, unless the cscillations of the earth particles themselves were of a period commensurable with that of the pendulum, which, of course, is sometimes the case. It is evident that a photographic registering apparatus with high magnification will record microseisms when a seismograph with mechanical registration will draw only a straight line.

Of the contributing causes to stresses and strains and manifesting themselves as microseisms, we may consider: secular cooling of the earth; unequal heating and the radiation during the day and night; statical effect of atmospheric pressure, areal or local; dynamical effect of atmospheric pressure, areal or local; precipitation, as rain or snow.

The vanishingly small effect of secular cooling, whatever its constants may bc, lecomes evident from the fact, that, although it is ever present, and its manifestations would be of a constant nature, the recorded microseisms are of the most fluctuating character both in time and magnitude, completely masking the effect of secular cooling. The daily alternations of unequal heating and radiation during the 24 hours are not shown by their effect on microseisms. The case of precipitation is similar in regard to microseisms to the preceding. It may be noted that the stresses set up over large areas, hundreds of miles in extent, by differential loading of rain, is small compared with that of barometric pressure. Taking an arca, say of a thousand miles with a rainfall of an inch, which is a pretty heavy rain, and decreasingly distributed, we would have a maximum pressure of a little over one-thirtieth of a pound per square inch. and the rain-pressure diminishing to zero for the edge of the

SESSIONAL PAPER No. 25a
area. An average barometric gradicnt, on the other hand, over such an area would be scveral times as great, due to a differential ntmospheric pressure equivalent to about three-tenths of an inch of the mercurial barometer. The rain-pressure may, however, make itself felt locally, as has been recorded at some stations. The result of a heavy rainfall soon fills the valleys and streams much beyond the direct precipation on them, so that this loading and bending of the surface may bcome a measurable quantity by an observing station in the neighbourhood. This effect is, however, one of tilting, of change of vertical or change of pendulum zero and not microseisms, the subject at the moment under discussion.

The effect of difference of atmospheric pressure and of change of atmospheric pressure may be manifested in two ways by the seismograph. We are here dealing with large areas, say 1,000 miles in extent, for local barometric conditions have little or nothing in common with microseisms. In the one case, considering the earth as having an elastic crust, the pier is tilted towards the area of greatest pressure, in consequence of which the pendulum will move in that direction, i.e., its zero line will be displaced. Besides this effect of statical loading, there appears to be no doubt, based on the records here, that vibrations are set up by this statical loading, quite apart from the dynamical effect of change of pressure. In the other case, by change of pressure over a wide area vibrations are set up on the earth's surface, and these may be produced by two allied causes. The one of these is the passage of Highs' and 'Lows' over the surface, equivalent to the dragging of a weighted meniscus over the surface, and the other is the winds set up or resulting from the atmospheric gradient due to difference of pressure. The winds would operate more probably by frictional resistance along the surface of the earth rather than by impact or uneven surface or obstructions. In studying various phenomena collectively in an investigation for correlation, considerable restraint must be exercised not to draw conclusions as to cause and effect from a limited number of coincidences, for a conclusion once drawn is apt to become an obsession to the investigator, and he is more or less blinded to facts that do not fit his theory.

In examining the records of microseisms the first question that presents itself is whether the recorded motion is that of the ground or of the pendulum; in the first case the pendulum acts as a steady mass or point, while in the latter case it is set oscillating either by impulses from the ground or by an undulatory movement of the ground. Let us consider the case of microseismic record of the 'sawtooth' type, where we see regular and almost wholly uniform oscillations kept up for hours and longer. If in this case the pendulum actually oscillates it will do so with the period inherent to it. After receiving the first impulse or impact let us suppose it to oscillate. If no further impact were received the oscillations would soon die out and the amplitudes would decrease in the known ratio of the damping coefficient. When a second impulse is given the pendulum will continue its uniform swings, provided the time interval from the preceding impulse is that of the period of the pendulum or a multiple thereof. Were this not the case, interference would occur and would be shown on the record. But such interference is not present in the microseismic records referred to aud we must conclude, even admitting that the diagram is a record of the oscillations of the pendulum, that it is in reality only a counterpart of the actual movements of the ground, that is, of horizontal to-and-fro motions of the earth particles. The pendulum can be kept swinging uniformly only by some force acting at intervals of the period of the pendulum. This may occur through the periodic oscillating movements of the earth particles; or the same effect may be produced by rythmic undulatory movements of the ground. Now, the period of microseisms recorded here lies usually between 5 and 6 seconds, which is also approximately the pariod of the two pendulums, and the period of the undulatory movements manifested in the 'principal portion' of tectonic earthquakes is 20 seconds or more, so that if we a lopt the hypothesis that the microseismic motions are undulatory and not horizontal displacements, we have to explain
a period only one-quarter of the general period of the earth's erust. The shorter period might perhaps be accounted for by the supposition that a thinner part of the crust of the earth is affected in the microseisms than is involved in the undulatory motion connected with macroseisms. As an analogy we may give the short period of the ripples in water from a breeze, and the much longer one of waves from a storm when a greater depth of water is involred in the motion.

This reasoning does not appear to furnish a conclusive reply to the question whether the microseisms are attributable to the horizontal or to the undulatory movements. However, the consideration of the simultaneous occurrence of microseisms, together with certain atmospheric or barometric conditions leads to the conclusion that microseisms are mostly attributable to horizontal displacements.

Haring made daily comparisons with the seismograms, local barograms and weather maps, the following conclusions hare been deduced:- It is beliered that identical atmospheric conditions prevailing over different parts of the earth's surface will not necessarily produce similar microseisms, as these are affected by the elasticity of the particular area under consideration, also by the geological formation, the presence of well-marked dykes, faults, and by the proximity of large sheets of water or the ocean. One effect of the proximity of the ocean caused by barometric pressure is the change of the level of the water, quite apart from the tides, and this change through loading or unloading along the coast produces a displacement of the pendulum zero, referred to in another place. In the sea, then, we have the dual effect of the direct barometric pressure and the correlated one of displacement of the water, while on land we have only the former. Barometric gradients orer the ocean necessarily produce a motion of the water. quite apart from that produced by the winds resulting from the gradients. However, the pressure effect on the ocean bottom remains constant, for any displacement of the water is exactly balanced by the change of atmospheric pressure. Different of course it is on land which suffers the change of barometric pressure.

The feature to strike one most in the above comparisons is that when marked microseisms are present we are almost certain to find that the daily weather map for the morning of the day of record gives for the following 24 hours an area of 'Low' about the Gulf of St. Lnwrence. That is, the condition of 'Low' in the gulf precedes the record of marked microseisus. The greater part of the gulf is less than 150 fathoms deep. Through it runs a 'deep' from the mouth of the St. Lawrence (Matane) along the south of Anticosti, passing between Cape Breton and Newfoundland, reaching a depth of 250 fathoms before joining the Atlantic ocean. This deep is over the eastern part of the great St. Lawrence and Champlain Fault, shown on the geological maps, for nearly 700 miles. The waters about Nova Scotia and Newfoundland are all within the 150 fathom line, so that the 'Lows' over the gulf and Sable island are over waters, the greater part of which are less than 150 fathoms deep. The distance from Ottawa to the gulf is about 700 miles, direction east-north-east; and from Ottama to the nearest broad waters of the Atlantic, off the state of Maine, 300 miles, direction east-south-east.

Next to the presence of a 'Low' in the gulf in importance as a phenomenon accompanying microseisms, we find the isobars which cut the valley of the St. Lawrence (in which lies the great fault) at right angles, so that the gradient is along the St. Lawrence valley, or in general parallel to the Atlantic coast, and to the line of the Alleghany mountains.

Furthermore, it is found that if a 'High' prevails along the south Atlantic coast, northward from Florida the microseisms are intensified.

The passing of 'Highs' and 'Lows' across the coast-line, i.e.. from land to water, is not found to be marked by the occurrence of microseisms. As the whole atmospheric movement is, for Canada and the Tnited States, from west to east, it is uncommon for a 'High' or 'Low' to crose the coast-line from the Atlantic to the continent.

SESSIONAL PAPER No. 25a
It appcars that the reversal of the position of 'Low' and 'High' with reference to the gulf for the former is not so closely associated with the subsequent appearanee of microseisms as obtains in the case first stated.

When there is a persistenee of 'Low' in the gulf and 'High' on the Atlantie coast to the south as indicated, the microseisms set up in the first instance become intensified in amplitude, so that the maximum microseisms are not necessarily coincident with the greatest difference of pressure, or the stecpest gradients. It appears that the difference of barometric pressure is in the first instance responsible for the microseisns, and when favourable conditions continue the microseisms will increase in amplitude, although the pressure difference may have decreased. Furthermore, another condition is that the line of 'High '-'Low' preserves its direction along the St. Lawrence valley.

When a 'Low' with even very steep gradients is to the west, say over the lakes, and 'High' on the lower St. Lawrence or gulf, microseisms are generally weak or even absent altogether, although there are exceptions. This is not the case when the 'Low' is to the east, especially when over the gulf. When the 'Low' with steep gradients moves up to Lake Erie by 8 a.m. of the day of the seismogram we may expect to see the beginning of marked microseisms, which increase as the 'Low' moves down the St. Lawrence towards the gulf. From the immediately preceding it is seen that the microseisms give no indication of the approach of a 'Low' or storm centre, but on the contrary, are the result of the passage of a 'Low' and especially of its presence in the gulf. Some investigators believe the mieroseisms may be the forerunner of coming weather conditions, and hope that this may assist in making forecasts. The seismograms examined here are not very encouraging on that point, the microseisms indicating rather 'that we have had-weather, than that we are going to have weather.'

The preceding remarks refer to the microseisms and not to the effect of bending or displaeement of the pendulum zero, brought about by unequal pressure over a large area. The writer is not as yet prepared to say whether the approach of a 'Low,' with the consequent lifting or rising of the earth's surface, is a distinctly measurable quantity as registered by our seismograph, for the measurements of the two components of the change of pendulum zero for the year have not yet been tabulated and critically compared with the movements of 'Highs' and 'Lows' in the eastern part of the continent.

By far the large majority of microseisms show themselves by a serrated record, 'sawtooth ' type. as I designate them; more rarely are they of the 'spindle' type, where the oscillations or rather the amplitudes rise and fall, increase and decrease, with certain cadence, as in the vibrations of a string between two fixed points. The interval between the maximum amplitudes is very variable, varying from one to several minutes. The rate of iuerease and decrease of the amplitudes is less than that produced by the damping of the pendulum, so that we can scarcely attribute it to the latter on the supposition that the pendulum itself is set in motion and the oscillation dies down by damping, to be renewed by a fresh impulse. This, however, would preclude a gentle inercase; instear there should be a more or less abrupt beginning, which is not the case. Intermittent rhythmic vibrations of the ground, nearly synchronizing with the period of the pendulum, setting the pendulum in motion could produce the phenomenon.

The validity of a supposed relationship between different phenomena, as cause and effect, is tested by predicting the effect when given the cause. This has been done with reference to the existence of a 'Low' in the gulf and a 'High' over the Atlantic coast to the south, or in general by taking the daily weather map with its isobars and from it predicting the resulting microseisms. The result has so far been satisfactory that in the large majority of cases the microseisms have fairly well answered in presence and magnitude the prediction. There are, however, still important out-
standing differences that require further explanation. Just why the 'Low' about the gulf should have such an influcnce in the production of microseisms is by no means apparent. The two main physical features are the shallow gulf and the St. Lawrence valley in which lies the great St. Lawrence and Champlain Fault, 700 miles long, already referred to. Also there is the generally parallel trend of the Atlantic coast, and that of the Alleghany mountains.

On frcquent occasions there is a 'Low' over the gulf, another 'Low' orer Arkansas, while one 'High' rests north of Lake Superior and another over Bermuda. When these conditions obtain with steep gradients we are pretty sure to have marked microseisms. The line joining the 'Lows,' then, lies in the St. Lawrence valley, while that of the 'Highs' is at right angles to the former. In this case the maximum strain is along the valley of the St. Lawrence, along the Great Fault, so that from a priori reasoning marked microseisms might be expected.

In concluding the present investigation of the well-marked microseisms recorded here, we will repeat, that the presence of a 'Low' over the gulf surrounded by steep or fairly steep gradients on a given morning is indicative of more or less well-marked microseisms following at Ottawa that day.

It has already been stated that the large majority of microseisms have a period of about 5^{a} with small fluctuations. The cause of the fluctuations is by no means apparent unless it be the varying depth of the earth's surface involved.

On some occasions the period changes to one of about one-half, or about 3^{3}, showing, however, a transition time during which there is an irregularity and interference, so that their period is unrecognizable. At present no explanation can be offered for this change. When the period is so short, the amplitudes are very minute, although visible on the sheet to the naked eye.

It is found that, broadly speaking, the microseisms are more numerous during the colder season than during the warmer one, and some have sought therein a relationship of cause and effect. In our climate here we have a large range of temperature, huring the year $1907-1908$, of $127^{\circ} \mathrm{F}$. $\left(96^{\circ}\right.$ and $-31^{\circ} \mathrm{F}$.). During February, when the thermometer reached its lowest and we had some continuously very cold weather, the seismograph showed no evidence thereof. More frequent microseisms might be expected during winter from the fact that the frozen ground better transmits pulsations, and that the act of freezing itself sets up stresses and consequent oscillations. From extreme cold it does not necessarily follow that the ground is frozen to any great depth. During the past winter there was very little frost in the ground, because an early and heary snowfall, subsequently accumulating to many feet. corered the earth with a mantle that cold could not penctrate.

From examination it is found that the strongest and most numerous microseisms were recorded during the months of January and February last (1909), while during thie period September, 1907, to April, 190s, October had the strongest, and the fewest and weakest were during the summer months of July and August, when the atmospheric barometric gradients were very long.

We are led to conclude that strong winds have little effect in causing microseisms by setting up pulsations over large areas of the earth's surface or crust, i.e., the dynamical effect by friction or impact is not the governing factor in the production of microseisms. We are dealing here with the larger effect of strong winds upon large areas and not the local effect upon buildings, which, as is well known, are set in oscillation, and thesc in turn are communicated to the ground. When the building within which the seismograph is housed is large, the oscillations of the former will be recorded.

When we compare the occurrence of mercseisms with the predicted strong winds of the daily forecasts, we find little or no conncetion between the two phenomena. Considering the two phenomena as independent events, we see that the probability of the simultaneous occurrence of the two events is as great as the actual happening.

SESSIONAL PAPER No. 25a
i.e., as far as the observations go there is very little to show any causal relationship between the two.

On the other hand we do find that the winds recorded here by the micro-barograph iuvariably show themselves on the seismograms, not by microseisms, but by irregular movements, including deviations of the zero line. Microseisms and these latter movements can never be mistaken for earthquake records.

Record of Microseisms for the period January 1, 1908, to March 31. 1909. Two Bosch photographic seismographs, mounted N.-S., E.-W. Magnification, 120. Sheet put on each day at about 10. a.m. Standard Time $=15^{\text {h }}$ G.M.T.

9-10 EDWARD VII., A. 1910

Recond of Microse-ui- fur the period January 1, 1908, to March 31, 1909. Two Bosch photographic seismographs, mounted N.-S., E.-W. Magnification, 120. Sheet put on each day at about 10 a.m. Standard Time $=15^{h}$ G.M.T.-Con.

SESSIONAL PAPER No. 25a

Record of Mierisciems for the period January 1, 190s, to March 31, 1909. Tw,
Bosch photographic seismographs, mounted $\mathbb{N} .-\mathrm{S} ., \mathrm{E} .-\mathrm{W}$. Magnification, 120.
Sheet put on each day at about 10 am . Standard Time $=15^{\mathrm{h}}$ G.M.T.-Con.

Fecord of Microseisms for the period January 1, 190s, to March 31, 1909. Two Bosch photographic seismographs, mounted N.-S., E.-W. Magnification, 120. Sheet put on each day at about 10 a.m. Standard Time $=15^{\text {b }}$ G.M.T.-Con.

SESSIONAL PAPER No. 25a

Recomp of Microseisms for the period January 1, 1908, to March 31, 1909. Two
Bosch photographic seismographs, mounted :N.-S., E.-W. Magnification, 120. Sheet put on each day at about 10 a.m. Standard Time $=15^{\text {h }}$ G.M.T.-Con.

Recond of Micoseism- for the period Jamary 1, 1908, to March 31. 1909. Two Bosch photographic seismographs, mounted N.-S., E.-W. Magnification, 120. Sheet put on each das at about 10 a.m. Standard Time $=15^{\mathrm{b}}$ G.M.T.-Con.

SESSIONAL PAPER No. 25a

Pacond of Mieroseisms for the period danuary 1, 190s, to March 31, 1909. Twu
Bosch photographic seismographs, mounted N.-S., E.-W. Magnification, 120. Sheet put on each day at about 10 a.m. Standard Time $=15^{\mathrm{b}}$ G.M.T.-Con.

Ricord of Microseisn- lew the period Jamuary 1, 1908, to March 31. 1909. Two Bosch photographic seismographs, mounted N.-S., E.-IW. Magnification, 120. Sheet put on each day at about 10 a.m. Standard Time $=15^{\text {b }}$ G.M.T.-Con.

SESSIONAL PAPER No. 25a

A table was compiled for the official year April 1, 1908, to April 1, 1909, in which were given day by day for cvery twelve hours, $8 \mathrm{a} . \mathrm{m}$. and $8 \mathrm{p} . \mathrm{m}$ eastern standard time, the position and pressure of the Low, as shown by the charts of the "Tracks of Centres of Low Areas' published in the United States Monthly Weather Review. In an adjoining column was entered the occurrence and intensity of microseisms on the respective date. The object was to determine if possible the relationship between the existing Low at any particular time and place with the prevailing microseisms at Ottawa. Unfortunately for the purpose in hand the published track of Lows ands generally at the gulf, sometimes near its west coast, and less frequently in Newfoundland, so that the presence of a Low immediately cast of the gulf, and which probably is the cause of many of the microseisms, is not noted, with the result that the Low in the west with which the microseisms are bracketed, being the only Low on the chart, is asked, so to speak, to account for the microseisms, when in reality they have nothing to do with it, but are due to the uncharted Low of the vicinity of the gulf or Newfoundland. The comparison between Lows and microseisms as above was consequently rery misleading. It resulted in frequently having strong microseisms associated with a Low in the gulf, which is generally the case, but the next day the micro-a-isms would probably persist, while the Low moved eastward beyond the sphere of the chart, yet they would in the tible appear opposite to a Low far in the west, with which it could not possibly be related. I have therefore omitted this tabulation.

The following table has been compiled from the charts 'Tracks of centres of Low Ireas.' published in the Washington 'Monthly Weather Review.' The object was to sre whether the dynamical effect of the daily movement of the Lows across the continent was manifested by microseisms, that is, whether the apparent velocity of translation of the Low produced microseisms, and whether the intensity of the latter was a function of the velocity. The consideration here is independent of the steepness of oradients accompanying a Low. We may have a Low persistent or stationary for some time and this would hence not belong to the above investigation. That same Low may however be surrounded by steep gradients, which, in turn, as shown elsewhere, will be conducive to the appearance of microseisms. The rapidity with which a Low travels across the continent, from west to cast, is quite independent of the gradients or isobars that accompany it. In the table, the first column gives the number of the Low for the respective month; the next column headed 'Beginning' gives the day of the month, forenoon-a-(at 8 a.m.) or afternoon-p-(8 p.m.) with barometer reading, when the Low began its course; the third column 'Ending' gives the date, foreunon or afternoon, with pressure when the Low ended or rather left the continent. The fourth column, 'Duration,' is the difference between the second and third, expressed in days. The fifth column, 'Distance,' gives the length of the track or path followed by the Low, and was obtained by following on the map with a graduated neasuring wheel, adapted for the purpose, the path of the Low from beginning to end across the continent. The odd miles in the distances must not be taken too seriously, they simply show the multiplication of a constant factor by the revolutions and part of a revolution of the wheel measuring the track. The sixth column which gives the division of 'Distance' by 'Duration,' expresses the apparent average daily velocity of the Low across the continent. Finally, the last column shows where the Low was lost to observation or ended as far as the continent is concerned. 'Gulf' refers to the waters and surroundings of the Gulf of St. Lawrence, while 'Atlantic' refers to the ocean along the continent from Maine to Florida. 'Interior' indicates that either the Low disappeared as such in the interior, or was lost to obserration in northeastern Canada:-

APRIL, 1908.

Sc.	Beginuing.		Ending.		Duration	Distance.	Apparent average daily velocity.	Disapue
		in.		in.	days,	miles.	miles.	
I	1a	29.70	3 a	29.04	2.0	1,700	850	(iulf.
II	3a	29.32	6 a	29.64	3.0	2,480	827	
III	6 p	2956	9 a	29.18	2.5	2,310	936	..
IV	8 p	2960	123	28.88	3.5	2,340	668	"
V	13a	2964	16a	29.58	3.0	2,560	853	,
VI	15 p	29.68	19 p	2914	40	3,024	756	"
VII	17 a	2944	19 p	29.14	2.5	2,832	1,183	"
VIII	20 p	2958	$29 . a$	29.72	85	4,576	538	
IX	2111^{11}	29. 46	29 a		7.5	4,016	535	
\underline{x}	$21 p$	29.90	23 p	29.78	2.0	896	448	Atlautic
NI	251	29.42	29 a	29.72	3.5	2,128	608	Gulf.
XII	25	29.36	299	29.72	3.5	2,048	386	
NIII	27.	29.70	30 p	29.24	3.0	2,704	901	Atlantic
						Mean	742	

May, 1908.

1	1a	29.08	$1 p$	2940	0.5	160	320	(iulf.
II	la	29.64	3 a	29.36	2.0	1,168	584	"
III	\%a	29.35	10a	29.32	8.0	3,536	442	-
IV	6 p	29.54	94	29.80	2.5	656	26.2	Interiom:
V	73	29.60	8 P	29.60	1.5	976	651	Gulf.
VI	8 a	29.53	13a	29.62	5.0	3,840	768	..
VII	9 p	29, 66	13a	29.62	3.5	2,704	793	"
VII	11.	29.64	18.	29.92	7.0	3,376	482	
IX	14p	29.66	20p	29.76	6.0	2,960	493	Atlantic.
X	18 a	29.46	19a	29.58	1.0	880	880	Interior-
XI	19 a	29.56	24:	29.98	5.0	3,264	653	(iulf.
XII	23 p	29.64	2 20	29.74	15	328	619	Interior.
XIII	24 a	39.92	31a	29.44	7.0	2,128	304	Gulf.
XIV	24 V	29, 58	27 a	29.64	2.5	2,144	858	.
VV	23 a	29.78	31a	29.44	6.0	3,104	517	
NVI	25 a	2970	27 p	29.54	2.5	976	390	Interior.
						Mean	56.4	

Junk, 190S.

I	1 a	23. 76	3 a		20	993	496	Gulf.
II	2.	29.48	4 p	29.52	2.5	1,450	580	Interior.
III	4 ta	29: 54	11p	$29 \cdot 86$	75	3,392	452	Gulf.
IV	8p	2970	17 a		8.5	2,720	$\$ 20$	"
V	17 a	$29 \cdot 52$	22a	2970	5.0	3,200	640	"
V1	2 ± 1	29.36	269	$29 \cdot 66$	3.5	3,120	891	"ivor
VII	2 ± 1	$29 \cdot 68$	271	$29 \cdot 62$	$3 \cdot 0$	$1,6 \leq 0$	560	Interior.
VIII	27\%	$29 \cdot 62$	30a	2982	2.5	1,840	736	Gulf.
						Mean.	584	

EESSIONAL PAPER No. 25a
Juty, 1908.

N	Begraming		Ending.		Duration.	Distanco.	Apparent average daily velocity	Disappearance	
		in.		in.	days.	miles.	miles.		
II	2 p	29) 72	9.	, .	fi 5	2,880	43	tiulf.	
	71	29.78	12p		5.0	2,230	54	Atlantic.	
111	9 a	29.88	$11 a \sim$		203.5	2,7964	278772		
IV	12a	299.88			Gulf.				
V	14 a	29.80	20 a23 a			60	2,704 3,232	539	Atlantic,
VI	18p	2986		$\therefore 0.0$	$4 \cdot 5$	2.784	619	(iulf. ${ }_{\text {A }}$ A lantic,	
VII	19p	29.90	$\begin{aligned} & 22 \mathrm{i} \\ & 26 \mathrm{p} \\ & 31 \mathrm{p} \end{aligned}$	30.042988	$2 \cdot 5$	1,408	317		
VIII	23,	29.68				1,216		Interio Atlantic.	
IX	${ }^{2919}$			30.02	3.0	1,45゙	485		
		2984	31 p30.						
						Mean...	491		

August, 1908.

$\begin{gathered} \text { II } \\ \text { III } \\ \text { IV } \\ \text { V } \end{gathered}$	1.	$29 \cdot 66$	3 a		20	960	+50	Gulf.
	1 p	$29+4$	10a	29.80	8.5	2,928	314	"
	10 p	$\because 9.56$	14 p	29.80	10	2,240	560	,
	15 a	29.80	19 a	29 60	4.0	2,528	632	$\stackrel{ }{ }$
	$20 a$	$29 \cdot 70$	24 a	29.98	4.0	2,440	610	"
						Man.	525	

SEPTEMBKR, 1908,

I	1.1	29.90	3 a		$2 \cdot 0$	1,424	712	(iulf.
11	41)		7 a		$2 \cdot 5$	1,960	784	"
III	63	29.84	7 a		10	1,024	1,024	
IV	Sia	29 sib	9 a	2902	10	736	736	Interior.
V	113		18a		7.0	2,320	331	Gulf.
VI	14p	$29 \cdot 66$	19a	29.78	4.5	2,080	462	Interior
VII	23,	$29 \cdot 82$	29 a		60	3,040	507	Gulf.
VIII	$2{ }^{2}$		30 p	2968	20	1,680	840	Interior.
						Mean.	674	

Octodsr, 198.

I	1 p	$29 \cdot 90$	2 p		1.0	704	704	Gult.
II	2 a	29.28	3p	29.56	1.5	360	373	Interi 9.
III	8 a		11p	29.68	35	2,240	1440	Gulf.
IV	sp	29.72	11p	29.68	3.0	2,544	848	
V	14 a	29.36	15a	$29 \cdot 30$	1.0	1,200	1,200	Interior:
VI	14 p	29.56	17 p		3.0	1,888	629	,
VII	15 p	$29+16$	${ }^{17} \mathrm{p}$	29.90	2.0	960	480	"
VIII	170p	29.68	${ }^{21} \mathrm{p}$		40	2,099	525	"
IX	20 p	$29 \cdot 58$	27 a	29.90	6.5	2,144	329)
X	26a		27 p		1.5	1,056	704	Gulf.
NI	2 F		30 p	2906	3.0	2,120	70%	,
						an....	649	

9-10 EDWARD VII., A. 1910
November, 1908.

No.	Butaving.		Ending		Duration	Distance.	Apparent average datly velocity.	Disapluearal -
		in.		in.	days.	miles.	miles.	
I	1 p	$29 \cdot 66$	4 p	$29 \cdot 20$	3.0	2,944	9×1	Sulf.
II	5 a	29.72	6 p	$29 \cdot 16$	$1 \cdot 5$	1,480	987	
III	8 p	$29 \cdot 66$	12a	29.46	3.5	2,400	686	,
IV	14a	$29^{4} 96$	15 a	29.60	1.0	1,480	1,480	,
V	16p	29.54	18p	2960	$2 \cdot 0$	2,304	1,152	
VI	17 p	29.50	203	29.88	2.5	2,336	934	
VII	${ }^{21 a}$	29.88	2.3	29.52	${ }_{2}{ }^{2} \cdot 0$	1,424	356 500	Inter in.
VIII	23 a	29.64	25s	29.52	2.0	1,000	500	.
IX	23 p	29.70 89.84	$26 a$	29.06 29.04	2.5	2,048 1,936	819 553	"
XI	$27 a$ $28 a$	29.84 29.901	30 p 30 p	29.04	3.5 2.5	1,936	793	
XII	293	29) 52	30 p	29.04	1.5	1,408	988	+
						Mean.	848	

December, 1908.

I	2p	30.06	4p	$29 \cdot 62$	$2 \cdot 0$	2,176	1,088	Gulf.
Ia	5 a	29.82	7 a	$29 \cdot 86$	$2 \cdot 0$	2,128	1,064	-
IIb	5 a	29.82	7 p	$29 \cdot 28$	$2 \cdot 5$	2,656	1,062	,
III	9 a	29.68	12 p	$29 \cdot 04$	3.5	2,640	754	"
IV	11a	$29 \cdot 50$	14 a	29.48	3.0	2,720	907	"
V	12p	29.06	16 a	$29 \cdot 72$	3.5	2,944	841	Interion
VI	14a	29.72	17p		3.5	640	183	Interior.
VII	16 a		$18 p$	29.42	$2 \cdot 5$	1,504	602	Atlantic.
VIII	18 a	29.86 $30 \cdot 00$	19a	$29 \cdot 94$	1.0	1,240	1,280	"
IX	21.	30.00	23 a		2.0	1,520	760	I
X	23.	29.78	26 a	29-28	3.0	2,240	747	Gulf.
XI	25.3	29.62	28 a	2966	3.0	2,880	${ }^{960}$	"
XII	28 a	29.40	31a	$29 \cdot 58$	3.0	2,540	853	"
						Mean. . .	R 54	

Jancary, 1909

I	2a	2970	6 a	$29 \cdot 36$	4.0	2,000	500	Gulf.
II	33	$29 \cdot 60$	5 p	$29 \cdot 84$	2.5	1,824	730	Interior:
III	3p	$29 \cdot 58$	6 a	$29 \cdot 36$	$2 \cdot 5$	3,008	1,203	¢fulf.
IV	7 a	$29 \cdot 66$	10p	$29 \cdot 86$	$3 \cdot 5$	1,328	379	Interior.
V	10a	29.92	119	$29 \cdot 80$	1.0	1,088	1,038	Gulf.
VI	12p	$29 \cdot 60$	15a	2966	$2 \cdot 5$	2,944	1,177	.
VII	$15 a$	$30 \cdot 00$	1 cisa	$29 \cdot 70$	3.0	2,608	869	
VIII	19a	2918	21a	2970	2.0	1,640	820	Interior.
IX	21 p	$28 \cdot 90$	269	$29 \cdot 56$	4.5	3,314	743	Gulf.
-	25 p	$29 \cdot 74$	27 p	29.30	$2 \cdot 0$	2,016	1,008	"
XI	27 p	$29 \cdot 72$	31a	29.12	$3 \cdot 5$	2,240	640	"
						an.	832	

SESSIONAL PAPER No. 25a
Fьиньянт, 1909.

No.	Beginning.		Ending.		Duration.	Jistance	Apparent average daily velocity.	Disappearanc
		in.		in.	days.	mile-	miles.	
I	3a	29.64	6 p	28.98	35	2,52x	729	
III	4 a	29.48	6 p	28.98	2.5	2,208	883	
III	5 Sa	29.36 29.60	7 p	29.70	2.5	2,600	1,070	Atlantic.
IV	71	$\begin{array}{r}29 \cdot 60 \\ 29 \\ \hline 29\end{array}$	7 p 10 p	29.70 29.30	$2 \cdot 0$ $3 \cdot 5$	1,800 2,760	640 789	
VI	11p	29.48 29.64	${ }_{10 \mathrm{p}}^{10}$	$29 \cdot 30$ 29.40	3.5	2,760 3,059	789 558	Interior. Gulf.
VII	13 a	29.5 K	17 a	29.40	40	3,136	784	,
VIII	16p	$29 \cdot 44$	20 p	28.94	4.0	3,536	884	"
IX	20 a	2966	25 p	29.02	$5 \cdot 5$	4,200	764	"
X	243	$24 \cdot 66$	27 p	29.58	3.5	3,168	905	.
						Mean..	825	

March, 1909.

The result of the comparison of the preceding table with the microseisms prevailing at corresponding dates may be briefly stated. There is a general relationship between the movements of Lows and microseisms, that is, that during the winter months when the average movement is greater than during the summer months, the microseisms are more frequent and stronger during the former period than during the latter, but when we look for an increase of microseisms with an increase of movement of Lows, we find that the two phenomena are by no means always synchronous. We are therefore obliged to deny the relationship of cause and effect between these two phenomena.

As is shown elsewhere the true relationship lies between the isobars and gradients, their geographic position, the ocean and the microseisms.

MAREOGRAMS.

Very recently through the kindness of Dr. W. Bell Dawson, Superintendent of the Tidal Survey, I had an opportunity of examining the mareograms of St. Paul island for the year 1904, and those for May-December, 1908, the latter, the latest received.

St. Paul is a small rocky island in Cabot strait, the main entrance to the Gulf of St. Lawrence, between Cape North in Cape Breton Island and Cape Ray in New foundlaud, but near to the former. It is almost surrounded by the 100 -fathom (183 meters)
line and lies just wutside and westward of the St. Lawrence Deep running from the Atlantic ocean (1,000 -fathom-line) to the mouth of the St. Lawrence. opposite Matane, a distance of about 630 miles ($1,014 \mathrm{~km}$.). Cabot strait. 65 miles wide, 250 fathoms deep, is the main entrance to the gulf; the other, the Strait of Belle Isle, is ouly 11 miles wide at its narrowest part and has less than 50 fathoms of water. The gulf itself is about 450 miles long in a N.W.-S.E. direction, and 350 miles in a N.E.-S.W. direction. The greater part of the gulf is less than 100 fathoms decp.

The object of the scrutiny of these mareograms was to examine the secondary oscillations, which are superposed on the regular tidal movements, and to see if any relationship exists between the occurrence and intensity of these secondary oscillations and the microseisms registered at Ottawa. For the study of the oscillations in the gulf, the mareograms of St. Paul scemed the most suitable.

Secondary oscillations have received considerable attention by various investigators, but so far without conclusive proof of their cause. Last year the Earthquake Investigation Committee of Japan issued a report on 'The secondary oscillations of Ocean Tides.' In the investigation 'Professor Omori was led to the conclusion that the bays or inlets oscillate like fluid penduhums with periods peculiar to their own.'

Records were obtained from many bays about the Japancse coast by specially designed portable tide-gauges and the results tabulated. The period of oscillation was computed by the formula $t=\frac{4 l}{\sqrt{g h}}$ where $l=$ length of bay, $h=$ mean depth, and $g=$ acceleration. The denominator represents the velocity of the long waves.

The observed and ealculated periods, although ranging for different bays very widely, from 9^{m} to 363^{m}, agree pretty well throughout. This part of the investigation scems to show conclusively that each bay has its own inherent period or note like a tuning fork, and will oscillate with its own period 'if it be excited by waves in the external sea having the synchronizing component.' From this it would follow that we can get little or no information about the period of the microseisms as dependent upon the periods of the bays, for microseisms with the same period obtain or prevail over very large areas, tens or hundreds of thousands of square kilometres in extent. However, 'as to the cause of the long waves which manifest themselves as secondary undulations,' the above report says, 'we may mention the wind, the cyclone, the earthquake, \&c.' In short, the report does not show that the change of atmospheric pressure is the direct cause of these secondary oscillations and is indicated by them.

Coming now to the mareograms of St. Paul island, it is found that:
(1) Secondary oscillations are always present throughout the year.
(2) The range or double amplitude raries, being greater in winter than in summer. The range running from 1 cm , to 30 cm .
(3) The period is practically constant throughout the year and jears (1904 and 1908), being about 4.6 min , deriating from this by only one or two-tenths of a minute, and this deviation may be partly due to difficulty in measuring the period accurately.
(4) Small oscillations in amplitude show less interference phenomena than do the larger ones.
(5) There is a fair correspondence between the occurrence of Lows with steep gradients in or about the gulf and large amplitudes for the secondary oscillations; but this coincidence is not nearly so well marked as in the relation between such Lows and microseisms.
(6) The cause of these secondary oscillations is in the main due to changes of barometric pressure.
(7) As the period of the oscillations is practically constant, and the disturbing cause rariable, the period must be a function of the topography and hydrography, that is, the depth of water and extent of basin.

SESSIONAL* PAPER No. 25a

Although the 100 -fathom line almost surrounds the island, yet one womld not be justified in using its dimensions for eomputing the period for the oseillations there. Such would give about 31 minutes.

The following table gives the period and range (double amplitude) of marengrams at St. Paul island. The dates are taken more or less at random. but always of such records where the pencil traeings were still elear, as in some cases they werc somewhat obliterated by inking in a smonth tidal curve:-

Secondary Oscillations on mareograms reeorded at St. Paul island, Cabot strait. The tide-shcets cover alternately 3 and 4 days. Time scale, $1^{h}=3$ inch. Vertieal seale, 1 in . $=1 \mathrm{ft}$.

Date.	Periond.	$\begin{aligned} & \text { Range } \\ & \text { Wints of } \\ & 1 / 20 \mathrm{ft} \text {. } \end{aligned}$	Datt.	Perionl.	Range Thite of $1 / 20 \mathrm{ft}$.	Date.	Period.	Range Units of $1 / 20 \mathrm{ft}$.
1904.	min.		1908.	min.		1908.	min.	
Jinn. 3	40	15	May 18.	4.5	4	Sept. 11.	46	12
- 9	1.0	20	(17 29	48	11	- 18.	$4 \cdot 8$	5
- 14	$3 \cdot 2$	17	June 2	$5 \cdot 0$	2	- 21.	45	3
- 27	40	5	- 7	46	2	- 25.	48	3
Feb. 7	$+5$	4	- 17.	4.6	7	(1) 29	4.8	2
Mar 4	46	6	- 21.	4 6	4	Oct. 2	4.6	6
- 23.	43	9	- 23.	45	t	- 6.	48	2
(1) 24	43	3	- 26	$4 \cdot 6$	3	- 9	$+5$	3
Apl. 16.	45	7	" 30.	45	2	- 14	4.3	3
"18	44	9	July 3 .	4.6	1	- 20	$4 \cdot 5$	
May $2 \ldots$.	48	3	" 7 ...	$4 \cdot 5$	2	- 24	48	3
- 8.	46	2	- 12.	+6	3	" 26.	46	2
"18.	46	2	- 14.	45	2	- 31	46	7
Tane 30.	46	$\stackrel{2}{2}$	${ }^{\prime} 17$.	46	${ }_{2}$	Nuv. 9.	46	3
July 3.	43 +3	$\frac{2}{3}$	- 20.	48 5.10	2	- 12.	4.8	8
A". 7	+ 3 +6	3	". $24 .$.	50 +6	2	$\begin{array}{r}116 \\ \hline 19\end{array}$	45	7
${ }_{\text {Aug. }} 8$	4.6 4.8	4	Aug. $31 .$.	46 4 4	$\stackrel{2}{2}$	-1. 19	+6	8
Sept. ${ }^{26}$	18 1.3 18	$\frac{1}{5}$	Aug. 3...	+4 +6	$\stackrel{2}{2}$	$\begin{array}{r}11 \\ \hline 1 \\ \hline\end{array}$	46 4 4	5
(12.	$+6$	3	- 14	$4 \cdot 3$	2	Dec. 1	4.6	5
Oct. 1.	$+3$	5	- 22	46	2	- 3	4 is	8
V18.	43	3	- 26.	$4 \cdot 3$	$\stackrel{2}{8}$			
Nov: 48.	45	4	- 29.	$4^{\circ} 6$	8			
- 15	$4 \cdot 3$	8	Sept. 1.	$4 \cdot 3$	$\stackrel{2}{2}$			
- 25.	45	5	" 4.	45	2			

Another examination of mareograms was made, and that for Trepassey, near Cape Race, Newfoundland, the extreme point jutting into the broad Atlantie It showed very marked secondary oscillations, excecding both in period and in amplitude thosu of St. Paul island greatly. While the mean period of the latter is 4.6 minutes, that of the former is 67.6 minutes, about 15 times as large; and the range reaches over three and a half feet, while for the other it seldom reacbes half a foot. The distanee apart of these two stations is about 300 miles, but the tidal movement coming from the southeast reaches them about simultaneously. The general movement of the atmosphere or areas of Lows and Highs is easterly, and the barometric conditions prevailing at the two stations are, allowing for time interval in passing from one to the other, fairly similar, yet we find these great differences in the seeondary oseillations. We must hence again eonelude that their period as well as amplitude must be dependent upon surroundings of the station, i.e., topography-hydrography, or depth of water and extent of basin. Land-locked basins, as shown by the mareograms of Halifax and other places, show little of secondary oscillations, and those shown are generally irregular, which is an experience quite different from that cited for the Japanese eoast.

Taking the above two stations which are exposed to the Itlantic, and noting their very different periods, there does not appear to be any very obvions comection between them and the microseisms.

Some investigators beliere that the breaking of the waves on the shore sets ur tremors in the earth's crust, which may manifest themselves to great distances. Tu this I am not at present prepared to give assent. My investigations have established more or less synchronous phenomena, but how they are related-as cause and effectis not yet fully determined.

The following table from the mareograms for Trepassey is similar to the preceding une for St. Paul island. It may be noted that at Trepasser there was at times a tertiary oscillation of a period of 2 minutes or less superimposed on the secondary oscillations. The selection of dates is more or less at random. The mean for each of the four months available is given, and it will be seen that the periods are about the same:-

Secondary Osclllations on mareograms recorded at Trepassey, Newfoundland. Time scale $1^{\mathrm{h}}=\ddagger$ inch. Vertical scale $1 \mathrm{in} .=6 \mathrm{ft}$.

After these various examinations we arrive at the following conclusions:-
(1) Microseisms are essentially due to meteorological phenomena, that is, to barometric pressure and the accompanying gradients.
(2) The amplitude of microseisms is largely a function of the steepness of the barometric gradient.
(3) Areas of low barometer with steep gradients, but west of Ottawa, have little effect in producing microseisms.
(4) Strong microseisms are almost invariably accompanied by steep gradients in the gulf, with the St. Lawrence valley, containing the Great Champlain fault, on a line of steep gradients.
(5) A well-marked Low sweeping up the Atlantic coast from Florida to Newfqundland is almost invariably accompanied by marked microseisms.
(6) Mieroseisms are but slightly, if at all, influenced by the movement of Lows across the continent.
(7) Mieroseisms are not produced by local winds, frictional excitation of the earth's surface.

SESSIONAL PAPER No. 25a
(8) Microseisms reprosent movements in vast blocks of the earth's crust, covering tens of thousands of square miles; and the period is possibly dependent on or modified by marked geological configuration and depth.
(9) Microseisms once produced may continue for a day or two when the immediate cause has passed.

ACCELER +TION.

The acceleration produced here by earthquakes for the period of the report, April 1, 1908, to March 31. 1909, has in all cases been small. The destructiveness of an carthquake is dependent upon the acceleration and this is measured by the absolute displacement of the earth particles and the period of the oscillation. The absolute displacement is obtained from the seismogram on which the magnified movement is read in terms of millimetres. This latter is converted into absolute measure by application of the magnification factor.

The general expression for the oscillation of a pendulum is $T_{0}=2 \pi \sqrt{\frac{L}{g}}$ where $T_{\mathrm{o}}=$ period, i.e., the oscillation to and fro, $L=$ length of the pendulum (in metres), $g=$ acceleration for the particular latitude, being for latitude $45^{\circ}, 9,806$ metres, and $\pi=3.1416$, or the ratio of the semi-circumference of a circle to the radius.

If in a horizontal pendulum we have observed its period, T_{o}, without damping of the pendulum, the deduced L is called the 'equivalent length,' being that of a simple pendulum having the same period.

As the square root of $g(9.51)$ is approximately the value of π, we obtain the approximate relation

$$
T_{0}=2 \sqrt{ } L, \text { or } L=\left(\frac{T_{0}}{2}\right)^{2}
$$

The magnification of the actual movement of the pendulum is effected in seismo. graphs either by a system of levers or by means of a mirror attached to the pendulum. The former method is adopted where there is mechanical registration by a stylus on smoked paper, or by a light glass tube drawn to a fine point and filled with ink, and the latter method for photographic registration as is the case for our seismograph. The magnification in the latter case is simply double the ratio of the actual length of the pendulum to the distance of the recording cylinder from the axis of oscillation of the pendulum.

We may regard the magnification to be produced by the extension of our simple pendulum of the above length L to the length J, which is ealled the 'equivalent indieator length,' so that the magnification or $V^{-}=\frac{J}{L}$. The determination of V for our Bosch photographic seismograph was made directly from measurements of the parts composing the horizontal pendulum and therefrom computing the length of the simple pendulum that would have the same period as the horizontal pendulum when the latter swung in a vertical plane. This deduced length divided into twice the distance of the recording cylinder gave $V=120$. Some of the heavy astatic Wiechert pendulums, weight $17,000 \mathrm{kgm}$. (ours is 200 gms .!) have a lever magnification of upwards of 2,000 .

As stated in a previous report, the period of the horizontal pendulum is simply a matter of adjustment of the axis about which it swings with reference to the vertical. We mas liere give an investigation that I made during the past year for tilting
and period of the mst-west pendulum, i.e., of the one giving the north-south component.

In the accompanying diagram E, N, S represent the three footscrews of the fur dulum stand. E, N the axis of rotation with reference to tilting done by footscrew s.
A is the vertical projection of the lower point of pendulum support.
B is the vertical projection of the upper point of pendulum support, when are int footscrew S reads 0°.
B^{\prime} similarly when are on footscrew S reads 90°.
(Note.-In linear measure the triangle A, B, B^{\prime} is much exaggerated in scalc; the angles are however to scale.)

The top of the base-plate is 92 mm . above the pier.
Lower support above top of base-plate, 27.5 mm .
Centre of bob above top of base-plate, 25 mm .
Distance between supports of pendulum, $\mathbf{1 6 6 . 7} \mathrm{mm}$.
Thread of footscrew very nearly $1 / 40$ inch, say $\frac{5}{8} \mathrm{~mm}$.
The tilting was done with the south footserew by turning it through 90°. A speisl brass arm, graduated through 90° into half-degree spaces and attached concentrically with the footserew, together with a fixed pointer, opposite the graduations, securely placed on the pier, were used in the experiments.

We have then in linear measure for 90° turn of the footscrew $\frac{1}{4} \times \frac{5}{8}=x^{\frac{4}{4}} \mathrm{~mm}$., and the angular measure will be θ, where $\sin \theta=\frac{5}{37} \div 355=.0004401$, hence $\theta=90^{\prime \prime} .8$.

Four measurements of raising and lowering by a quarter turn, or 90°, by south footscrew gave displacements of image at cylinder by pendulum mirror over point of lower support, respectively: $1^{\prime} 48^{\frac{z^{\prime \prime}}{}} 1^{\prime} 5^{\prime \prime}, 1^{\prime} 6^{\prime \prime}, 1^{\prime} 5 z^{\prime \prime}$, mean $1^{\prime} 5 \frac{z^{\prime \prime}}{}=438 \mathrm{~mm}$.

SESSIONAL PAPER No. 25a
Distance of image from mirror, $4,060 \mathrm{~mm}$. T Fence angle swept over by image $=a$, and $\tan \frac{a}{2}=\frac{219}{4060}=.054, \alpha=6 \cdot 12$ and the angle swept over by the pendulum $\frac{a}{2}=306^{\circ}$.
The upper point of support is 166.7 mm . vertically above the lower one. By the quarter turn of the footscrew we have an angular motiou of $90^{\prime \prime} .8$, hence the relative displacement of the upper point of support to the lower one will be x, where $\frac{r}{1667}$ $\tan 90^{\prime \prime} .8$, therefore $x=.073382 \mathrm{~mm},=B B^{\prime}$.

This displacement is in a plane, perpendicular to the axis of rotation $E N$. Reducing to the perpendicular of $A C$ this becomes .06509 mm .

Remembering that $A C$ is the normal position of the pendulum, we have in the triangle formed by the two positions of the upper point of support and the lower one due to readings of 0° and 90° on the footscrew, the angle at the apex $3^{\circ} 06^{\prime}$ from above, and the reduced opposite side .06509 mm ., hence the horizontal distance between the two points is d. where . $06599 \div d=\sin 3^{\circ} 06^{\prime}$, therefore $d=1.2036 \mathrm{~mm}$.

It follows that the angle betwren the prints of support and the vertical is γ, where $\tan \gamma=\frac{1 \cdot 2036}{166.7}-24^{\prime} 49^{\prime \prime} .25$.

By previous determination we have the distance from the centre of oscillation to the axis of rotation of the pendulum 66.774 mm ., hence the length of the equivalent pendulum is $L . \frac{66.774}{\sin 24^{\prime} 49^{\prime \prime} .25}=924 \times 4 \mathrm{~mm}$, therefore the period $=2 \pi \sqrt{\bar{L}}=6^{3} \cdot 10$ (g for $45^{\circ}=9506 \mathrm{~mm}$.)

By direct observation on the day of the above investigation, the period was found to be $6^{6} .15$, being in satisfactory agreement with the above value.

The method of deflection of image is more accurate for the determination of the period than direct observation.

For the above adjustment of pendulum $1^{\prime \prime}$ tilting was equivalent to a displacement of the image of 5.42 mm ., or 1 mm , deflection of image $=" .18 t$ tilting north-south. Similar experiments were carried out with the other pendulum, the $N-S$ one, giving the east-west component. The instrument is identical with the other; it is mounted ou the same pier, but its adjustment was different at the time.

For it was found a period of $12^{3} .56$, and 1 mm . deflection of the image represeutel a tilt of ".0444. As one can read to a tenth of a millimetre, we see that for the adjustment of the latter pendulum one can detect tilting of ".0044, which is equivalent to about 1 inch in 710 miles.

Without damping, a horizontal pendulum set in motion would coutinue to oscilInte for an indefinite time and with equal amplitudes, leaving out of consideration for the moment the effect of friction at the points of support. This latter would effect a reduction in amplitude in arithmetical progression.

As the principal function of the seismograph is to record the true movements of the earth, both in time and magnitude, it is essential that its own personality regarding swing should be obliterated as much as possible, that is, that it should subside unless sicted on by the earth movements. This is effected to a greater or less degree by air, oil or electro-magnetic damping. In our Bosch instrument an air chamber forms a cushion within which a vane of the pendulum moves.

The effect of damping is to reduce the amplitudes in geometrical progression instear of arithmetical, as in the case with friction. Friction will ultimately stop a pendulum, but with damping the amplitude curve is asymptotic, and hence the time infinite.

9-10 EDWARD VII., A. 1910

The "damping rati" ' is understood to be the ratio of the amplitude of a swing from the zero line to the next amplitude on the opposite side, as shown by the accompancing diagram.

Damping ratio $=\frac{A P}{B P^{\prime}}=\frac{B P^{\prime}}{C P^{\prime \prime}}=1: f$; hence in time $\frac{T}{2}$, where $T=$ period of damped pendulum we have the ratio $1: f$.

In time $2\left(\frac{T}{2}\right)$ the ratio $1: f^{2}$, and in general for $n\left(\frac{T}{2}\right)$ the ratio is $1: f^{n}$.
If we call $x\left(\frac{T}{2}\right)$ the time in which the amplitude is reduced $\left(\frac{1}{e}\right)$ th of its value. Where e is the base of the natural or Napierian logarithms, then for time $x\left(\frac{T}{2}\right)$ w. have 1: $f^{\prime}=1: e{ }^{1}$.

Let $\tau=x\left(\frac{T}{2}\right), \therefore x=\frac{2 T}{T}$, hence $1: f=1: e^{-\frac{1}{T}}=1: e_{-\tau}^{\frac{T}{T}}=e^{T}: 1$.
The quantity $e^{2^{\frac{\tau}{\tau}}}$ is generally designated by ϵ.
The effect of damping changes the period of the pendulum when swinging freely, and the relation between the two is expressed by

$$
T_{\mathrm{c}}=\frac{T}{\sqrt{1+\left(\frac{T}{2} \frac{\pi \tau}{}\right)^{2}}}
$$

in which T is the damped period.
The magnification of the earth movement of earthquakes, as recorded on the seismogram by the damped pendulum, is dependent upon the period of such earth movement, hence the magnification is not a constant quantity for interpreting the amplitudes. Professor Wiechert in his 'Theorie der automatischen Seismographen,' gives the following formula for the derivation of the magnification:-

$$
ひ=\frac{V}{\sqrt{\left\{1-\left(\frac{T_{r}}{T_{0}}\right)^{2}\right\}^{2}+4\left(\frac{T_{0}}{2 \pi \tau}\right)^{2}\left(\frac{T_{r}}{T_{0}}\right)^{2}}}
$$

SESSIONAL PAPER No. 25a
From relations we have found before, this may br put in the form

$$
x=\sqrt{\left\{1-\left(\frac{T_{i}}{T_{0}}\right)^{2}\right\}^{2}+4 \frac{V}{\pi^{2}+(\text { nat. } \log \epsilon)^{2}}\left(\frac{T_{0}}{T_{0}}\right)^{2}}
$$

of nsing the common logarithms we have

$$
\mathcal{x}=\sqrt{\left\{1-\left(\frac{T_{c}}{T_{0}}\right)^{2}\right\}^{2}+\frac{V(\cdot 733 \log \epsilon)^{2}}{1+(.733 \log \epsilon)^{2}}\left(\frac{T_{6}^{\prime}}{T_{0}^{\prime}}\right)^{2}}
$$

in which T_{o} is the period of the earth particles; T_{o} is the period of undamped pendulum; and the other -ymbols as previously designated.

It will be observed that this gives wide variations in the magnification, dependeut upon the relative values of T_{e} and T_{0}, and also upon the damping co-efficient. The value best suited for ϵ lies between 3 and 8 .

We nors come to the evaluation of the acceleration from the amplitude and period of the recorded earth movements. We have the general expression for normal acceleration $=\frac{r^{2}}{r}$, in which $r=\frac{2 \pi r}{T_{r}}$, and r is the amplitude, or half range of the oscillation measured on the seismogram, and expressed in microns or 11000 millimetres. The value of r is obtained by dividing the linear measure on the seismogram by the appropriate x for the particular period of T_{c}. The result is expressed in milligals, where 1 gal is the aeceleration of $1 \mathrm{~cm} .=10 \mathrm{~mm},=10,000 \mu$ per second, per second, and a milligal is ${ }^{1}$ ioou of a gal. Gravity would therefore be represented by 980.6 gal (for $\varphi=45^{\circ}$), so that approximately a milligal is the one millionth of gravity.

The acceleration Δg in milligals is given by the approximate formula $\Delta g=\frac{4 A}{T_{e}{ }^{2}}$, where A is the amplitude ($\frac{1}{2}$ range) expressed in microns, and T_{e} the period in seconds.

As Ottawa is several thousand miles from the nearest seismic area-the West Indies. Mevico or California-the acceleration produced here is always rery small, and of course the destructive earthquakes which have occurred there in recent years were not felt here.

During the year, April 1, 1908, to March 31, 1909, the greatest acceleration was produced by the earthquake of November 30, where the period was 10^{8}, and the amplitude 125μ. This gives an acceleration of 4.9 milligals or about the $1 / 200,000$ that of gravity.

For the disastrous Messina earthquake of last December the following accelerations have been computed. Most of the weekly or monthly earthquake reports received from other stations do not give sufficient data to compute the acceleration:-

In closing this part of my report, on seismology, I desire to express the hope that at no distant day, quarters will be erected for the machiue shop; for the operation of the machinery in the basement of the Observatory, as at present, is a menace to the satisfactory functioning of the seismograph.

TERRESTRINL MAGNETISM.

In continuation of the systematic magnetic survex of Canada begun last year, stations were occupied during the past summer, mostly in British Columbia, and the observations were made by Mr. C. A. French. The stations occupied were: Ottawa, Agincourt. Winnipeg, Banff, Golden, Revelstoke, Sicamons, Clinton, Barkerville, Quesnel, Alexandria, Williams Lake, Bridge Creek, Asheroft, Spence's Bridge, Nicola, North Bend. Agassiz, Vancouver, Victoria and Nanaimo. The magnetic observations were all made in a tent, carried along for the purpose. Instruments used were: Tesdorpf magnetometer 1977, Dover Dip circle 145, Dent Mean Time chronometer 511, and a six-inch Tronghton-Simms theodolite for azimuth, latitude aud time observations.

In order that the observations of the elements of terrestrial magnetism in different parts of the earth may be strietly intcr-comparable, it is essential that the constants of the instruments employed be referred to standard instruments, preferably at basal stations. By such comparisons, repeated from time to time, say at the beginning and end of the season of field work, one is enabled to give a homogeneity aud confidence to the results which wonld otherwise be lacking. and would militate against their value for incorporation in the general discussion of the difficult problems presented by terrestrial magnetism.

There are several departments of physical investigation in which little progress bas been made during the last fifty years in getting at the fundamentals underlying the elements involved. One of them is terrestrial magnetism. In 1904 the Carnegie Institution of Washington nndertook to attack the problem in a comprehensive manner, especially in supplying magnetic data for the accessible regions of the world not before occupied, and more particularly to make a systematic magnetic survey of the various oceans, for which purpose a specially built non-magnetic ressel, the Carnegie, has been bnilt and which was recently launched at Brooklyn. This work, combined with the Solar Research at Mt. Wilson, also under the auspices of the Carnegie Institution, shonld in the near future unravel some of the mysteries that have hitherto enshrouded that subtle force or energy-Terrestrial Magnetism.

Toronto is aud has been one of the principal magnetic stations in the world, : lthough the location of the instruments now, is not where the original ones were mounted. This change in 1898 to Agincourt, some 10 miles distant, was necessitated through the introduction of the electric cars in Toronto. Since beginning our systematic magnetic survey of Canada complete sets of magnetic observations-declination, inclination and horizontal intensity-have always been made with our field instruments at Aginconrt and compared with the results of the standard instruments there, thereby standardizing the former. A similar comparison was made with our Tesdorpf magnetometer 1977 through the kindness of Dr. L. A. Bauer, Director of the Deparcment of Terrestrial Magnetism, Carnegie Institution, at Washington, in April, 190s. with results practically identical with those at Agincourt.

For further compurisons, and more particularly for the comparison of different magnetic instruments, there has been erected during the past year on the Observatory grounds here. a magnetic hut, an illustration No. 1, thercof, accompanying this report. Its dimensions are 10×15 feet. It is scarcely necessary to say that no iron or stial of any description was used in the construction. The nails are all copper; hinges, \&c., of brass, all tested for non-magnetism before use. The two pillars for mounting the instruments are solid cedar posts surmounted by brass plates $11 \frac{1}{4}$ inches

SESSIONAL PAPER No. 25a

in diameter, which are grooved with three diameters, dividing the surface into sectors of 60^{\prime}, for the footscrews of the instruments. When observations are made at night. petroleum is used for illumination. There is al permanent azimnth mark about a quarter of a mile distant. The Observatory grounds are just outside of the city limits and the vicinity is fairly frce from traffic. The nearest approach of an electric ear line to the magnetic hut is 1,492 feet (45.5 m .). The ears rum from $6 \mathrm{a} . \mathrm{m}$. to 12 p.m. on this line. In order to test whether the current of the line exereised a magnetic influenee at the hut, observations were made for three days during the 24 hours for declination. There was no effect noticcable during the day-time when the ears were rmming, and for different positions of the cars on the line with reference to the lunt and power station; nor for the time after midnight. The change in declination for each 24 hours followed the general daily curve of eastern and western elongation. Further on will be found the record of these observations. In the future, observations will be made here with the field instruments at the beginning and close of the season': work.

The following 'Memorandum for Magnetic Obscrvations, 190s.' was issued to the observer:-
' In the selection of new stations regard should be had for future occupation for the same points.

The vicinity of trolley lines should be avoiled; the magnetic station should be at least a mile from the line.

The station selected is to be comnected by linear measure with established comers of lots or intersections of streets, so that it may be accurately re-established at any future time. The azimuth of two or more well recognized objects from the station is to be obtained, either by observation on the sum at abont 9 a.m. or 3 p.m.. or on Polaris, the former by observing the altitude, circle right and circle left. and the latter by noting the sidereal time when sighting on Polaris, circle right and circle left.

The nature of the ground, whether there are any rock exposures, and surrounding topographic features are to be noted.

A sketch is to be made for each station, showing its relative position, and that of the astronomic meridian.

The order of the observations in general are:-

1. Azimuth.
2. Declination.
3. Dip.
4. Oseillation.
5. Deflection.
6. Deflection.
7. Oscillation.
8. Dip.
9. Declination.

Suspension of weight and removal of torsion for fibre declinometer require partieular attention.

Th. mean of the times for dip, oscillations and deflections will be approximately the same when observing in the above order.

The observations are to be entered on the forms supplied.
Before leaving a station all the observations are to be reduced, with a sufficient degree of accuracy to ensure their reliability.

On your way west you" will go via Torontn, and at Agincourt (the Magnetie Observatory) tnke a full set of observations with both the Teadorpf and Dover, for the latter especially to obtain the value of A. not forgetting to note temperatures throughout all the observations. Particular attention will be paid to the determination of the declination and the constant of correction for the declination magnet. 10.
$25 a-6$

After all the observations have been satisfactorily made, you will proceed to Winnipeg and re-occupy the Carnegie Institution station in the park, the description of the station is hereto attached, also the former magnetic values. The azimuths given will be re-determined, and a full set of satisfactory magnetic observations taken.

Similarily Banff will be occupied, the necessary data are also attached.
The names of the other stations to be occupied are appended:-Golden, Revelstoke, Sicamous, Ashcroft, Clinton, Bridge Creek, Williams Lake, Alexandria, Quesnel, Barkerville, Spence's Bridge, Nicola, North Bend, Agassiz, Vancouver, Victoria, Nanaimo (Departure Bay).'

Description of Stations occupied.

Ottawa.-The station (not the magnetic hut) was situated in the southeastern part of the observatory grounds; it was 81 feet from the easterly limit and 53 feet from the southerly limit of the grounds. This station was occupied by the Carnegie Institution in October, 1906, and in 1907-1908 by our observers. It is now abandoned owing to the erection of the Director's house nearby. The reference object was the flag-staff on the central tower of the Parliament Buildings. True bearing, N. 16° $59^{\prime} .0 \mathrm{~W}$.

Agincourt.-The magnetic observatory.
Winnipeg.-Same station as occupied by the Carnegie Institution in 1906. It is in River Park, about half a mile east of park entrance, in the first cleared space beyond the grove of small trees that surround the entrance. It is about 15 paces from the top of the north bank of the Red river and in line of the fence bounding the buffalo pasture on the side adjacent to the river. It is about 330 feet southwest of the south corner of the pasture. Two grain elevators in the distance, and a small red barn in the pasture are seen nearly in line from the station. A red water tank is seen near the elevators aud a little to the west of the barn. The following true bearings were determined:-

$$
\begin{aligned}
& \text { Smokestack near International Elevator C. . . } 39^{\circ} 18^{\circ} .8 \text { E. of N. } \\
& \text { Pole on the red water tank. } 23^{\circ} 40^{\circ} .0 \mathrm{E} \text {, of N. } \\
& \text { West gable of a large white house. } 47^{\circ} 28^{\prime} \cdot 6 \mathrm{E} \text {. of N. }
\end{aligned}
$$

Banff.-The station is the same as that occupied by the Carnegie Institution in 1907. It is in the grounds of the National Park Museum, 292 feet south-southwest of the southwest corner of the museum building, midway between, aud in line with, the two small spruce trees near the north bank of Bow river and nearest to a pen used at present for ducks. The point was marked by a round pine stake (about two inches in diameter and about eight inches long) driven flush with the surface. The stake is $67 \frac{1}{2}$ feet from the northeast corner of the duck pen and $93 \frac{1}{2}$ feet from the southeast corner, and is about 10 feet north of bank of river, aud furthermore about in line with the west side of a one-story building in the rear of the Canadian Pacific Railway Museum on the north bank of the Bow river. The bearings of the following objects were obtained:-

Meteorological Observatory, Sulphur Mt. anemometer pole, $8^{\circ} 07^{\prime} \cdot 2 \mathrm{~W}$. of S .
Sanitarium hotel, bottom of flagstaff, east tower. $27^{\circ} 19^{\prime} .2$ E. of S.
Golden.-The station (1908) is on the property of Mr. Alexander, in a clearing on the south bank of the Kicking Horse river. It is about 200 feet east of the roadbed of the proposed Kootenay railway, and is midway between the ends of that portion of the bank along which is a breakwater consisting of a layer of small trees. From the station the top of the Columbia hotel is visible above the wooden bridge over th: Kicking Horse river, and the front of the Queens hotel is seen to the east of the firehall.

SESSIONAL PAPER No. 25a

The point is marked by a round wooden peg 2 inches in diameter, and projects about an inch above the ground. It is distant 190 fert 3 inches from the northeast corner of a vacant \log house; 261 feet 9 inches northeast from the southeast corner of a lot, one side of which is on Calgary street and the other parallel to the Kootenay Railway road-bed, and 234 feet southeast from the northeast comer of a lot adjacent to the first mentioned one. True bearings of the following reference objects were obtained:-
Bottom of pole on C. P. R. water tank. N. $36^{\circ} 51^{\prime} .1 \mathrm{~W}$.

The magnetic observations were taken 13 feet 3 inches southeast from station and in line with pole on tank. The soil is gravel.

Revelstoke.-The station is located on the Athletic grounds in the southwest part of the town. It is about 45 paces east of the bank of the Columbia river. The top of the Catholic church may be seen a little to the left of the line joining the station with the Canadian Pacific Railway water tank. The station is marked by a peg $2^{\prime \prime} \times 1 \frac{1}{2}$ " driven flush with the ground, and is 71 feet 8 inches from the northeast corner of the grand stand and 68 feet from the southeast corner. The true bearings of the following reference objects were obtained:-

> Bottom of pole on west water tank on mountain side. N. $33^{\circ} 28^{\prime} .1$ E.
> Top of belfry on school. $6^{\circ} 03^{\prime} .8 \mathrm{~W}$.
> Bottom of pole on Court House. N. $18^{\circ} 53^{\prime} .7 \mathrm{~W}$.

The magnetic observations were taken at a point 8 feet 3 inches southwest from station and in line with water tank.

Sicamous.-The station is located in a clearing on the south side of the Canadian Pacitic Railway, and on the east side of the narrow part of Shuswap lake. The Canadian Pacific Railway hotel may be seen between the pump-house and the first telegraph pole to the west of the semaphore. It is almost directly in line with the north end of the Bellevue hotel. The spot is marked by a round post about 2 inches in diameter, driven so as to project 3 inches above ground. It is 18 feet 9 inches from a large poplar tree and southeast of it, and is 14 feet from another round post about $1 \frac{1}{2}$ inches in diameter, which is in line with the station and tree. It is 172 feet from the east end of the Canadian Pacific Railway bridge.

The true bearings of the following points were obtained:-

> Top of pyramid over east bay window, C.P.R. hotel. S. $67^{\circ} 56^{\prime} .7 \mathrm{~W}$. North end of pcak of Bellevue hotel. S. $39^{\circ} 39^{\prime} .0 \mathrm{~W}$.

The magnetic observations were taken 9 feet southeast from station and in line with Canadian Pacific Railway hotel.

Clinton.-The station is in the southeast part of the town in a field owned by Mr. Smith. It is on a slight elevation about 30 paces to the south of the road leading to the cemetery. It is marked by a brass nail in a fir stake $2^{\prime \prime} \times 4^{\prime \prime}$, driven 18 inches into the ground and projects 7 inches. It is $143 \frac{1}{2}$ feet northwest of the post which marks the northwest corner of the cemetery, and 144 feet southwest from the south large gate-post.

The true bearings of the following reference objects were obtained:-

> Top of church tower, Indian reservation. S. $70^{\circ} 07^{\prime} \cdot 3 \mathrm{~W}$. Pole on cottage, rear of Provincial Land Office.. N. $88^{\circ} 18^{\prime} \cdot 7 \mathrm{~W}$. Pole on cottage (Dr. Sanson's).............

The magnetic observations were taken 25 feet northeast from station and in line with spire on Catholic church.

Barkerville.-The station is in a small clearing on the west side of the road which leads from the south of the town. It is about 336 feet (by way of road) from the
bridge which crosses the ditch constructed for convering water used for mining purposes, which is about 45 paces from the sonth end of the bridge which crosses the river (nor dug). The station is marked by a brass tack in the top of a fir post $3^{\prime \prime} \times 4^{\prime \prime}$ which projects 3 inches above the ground. It is 39 fcet from the middle of the road and 37 feet from a spruce. tree which is to the south of it, and in line with a point slightly to the east of the Presbyterian church.

The following true bearings werc determined:-

Pole on Fire Hall. Pole on Masonic Hall. West gable on belfry Presbyterian church. N. $44^{\circ} 59^{\circ} .5 \mathrm{~W}$.	

The magnetic observations were taken 12 feet east from the station and in line with the pole on the Fire Hall.

Quesnel.-The station is on government properts, north of the town. It is about $\beta 18$ paces from the ferry cable, and is marked by a brass tack in a fir post $2^{\prime \prime} \times 4^{\prime \prime}$, driven so as to project 8 inches above ground. It is 15 feet from the bank of the Fraser river, and 76 feet 8 inches northwest from the corner post of the fence around a small field which is adjacent to the post office property. There are three clumps of spruce trees abont 75 feet sonth, and are so situated that the Catholic chnrch and post office may be seen between the easterly pair; the pole of Reid's store between the westerly pair; and the grist mill to the right of the westernmost oue.

The following true bearings of reference objects were obtained:-

Bottom of cross on chnreh. Gable of wing of post office.	

The magnetic observations were taken s fcet northwest from station and in line with pole on Reid's store.

Alexandria.-The station is on a waste piece of land in the northwest corner of a field belonging to Mr. Anders. The field is on the west side of the government road opposite the post office and farm bnildings, and borders on the Fraser river. It is marked by a brass tack in a fir post 5 inches in diameter, which projects 8 inches above ground. It is about 95 feet northeast from the end of the trail which leads to the post office landing; 56 fect from the bank, and 57 feet southeast from a forked tree. The soil is a layer of sandy loam over gravel.

The following true bearings of reference objects were obtained:-

$$
\begin{aligned}
& \text { West chimney on Mr. Anders' house. S. } 73^{\circ} 20^{\prime} .7 \mathrm{E} \text {. } \\
& \text { Spire, Catholic church, Indian reservation. S. } 3^{\circ} 30^{\circ} \cdot 0 \mathrm{~W} \text {. }
\end{aligned}
$$

The magnetic obserrations were taken 12 feet northwest from station and in line with west chimney on Mr. Anders' house.

Williams Lake.-The station is sonthwest of the town on property belonging to the Cariboo Trading Company. The point is marked by a brass nail in a fir post $4^{\prime \prime} \times 4^{\prime \prime}$, which projects 7 inches above ground. It is about 132 paces west of the Government Road, and a line joining it with the centre of the school passes over the entire length of a fairly large irrigation ditch. A telegraph pole obscures the lower part of the pole on the top of the school. The station is 87 feet from the point where the ditch branches into two, one taking a northwest direction and the other a southwest one. The ground is cosered with stoncs and borlders. The soil is of a soft, black nature.

The following true bearings of reference objects were obtained:-
Top of north chimney on large frame house. . . S. $22^{\circ} 12^{\prime} .0$ E.
Top of small pole on sehool. N. N. $8 s^{c} 20^{\prime} .5$ E.
Bottom of pole on ventilator C. T. Co.'s barn. . . . N. $7^{c} 52^{\prime} \cdot 5$ E.
Bottom of pole over bay-window, white house W. of hotel.
N. $6^{\circ} 38^{\prime} .1 \mathrm{~W}$.

The magnetic observations were taken 25 feet nortliwest from station and is- line with chimney on large frame house.

Bridge Creek.-The station is located on property belonging to Stephenson Bros., and is on the south edge of a fir grove which is in a field to the northwest of the ranch buildings, being 145 fect from the point where the irrigation ditch passes under the fence adjacent to the Cariboo road, and about at right angles to it. It is marked by a brass nail in a fir post $4 \frac{1_{2}^{\prime \prime}}{} \times 4^{\prime \prime}$, which projcets 7 inehes above ground.

The true bearings of the following reference objects were obtained:-

$$
\begin{aligned}
& \text { N.W. corner of chimney on N. of dwelling house.. S. } 28^{\circ} 30^{\prime} \cdot 1 \mathrm{E} \text {. } \\
& \text { Gable of house situated to N.W. of dwelling house. . S } 1 t^{\prime} 38^{\prime} .9 \mathrm{E} \text {. } \\
& \text { Chimney on machine shop in open field.. S. } 14^{\circ} 16^{\prime} .4 \mathrm{~W} \text {. }
\end{aligned}
$$

The magnetic observations were taken 12 feet northwest from station and in line with the central reference object.

Asheroft.-The station is the same as that occupied by the Carnegie Institution in 1907. The station is in a field in the southern part of the town, owned by the British Columbia Express Company. It is 100 feet east of the bank of the Thompson river, about 1,000 feet from the Canadian Pacifie Railway track, and about 500 feet from the nearest building. The station is marked by a brass serew in the top of a fir post $3 \frac{1}{2}^{\prime \prime} \times 3 \frac{2^{\prime \prime}}{} \times 30^{\prime \prime}$, set so as to project 11 inches above the ground.

The following true bearings were determined:-

The magnetic observations were taken 14 feet west from the station and in line with the Presbyterian church spire.

Spence's Bridge.-The station is a little less than half a mile west of the railway station, in a field belonging to Mr. Clemes. It is marked by a brass nail in a fir post $t^{\prime \prime} \times 4^{\prime \prime}$ projecting 12 inches above ground, and is 61 feet 5 inches from the north corner post of the cemetery and almost in line with the diagonally opposite post, and is 110 feet 7 inches from the east corner post and 115 feet from the west corner post. (The diagonals of the cemetery are almost N.-S. and E.-W.)

The following true bearings of reference objects were obtained:-
Corner of post of water tank on mountain side. N. $42^{\circ} 21^{\prime} .8 \mathrm{~W}$.
Centre of circle on white cross (being headstone
on grave in cemetery on opposite side of river. N. $11^{\circ} 27^{\prime} \cdot 4 \mathrm{~W}$.
Pole on C. P. R. water tank. N. $64^{\circ} 31^{\prime} .6$ E.
Bottom of post marked 'Yard Limit' on C.P.R. S. $27^{\circ} 47^{\prime} \cdot 6 \mathrm{~W}$.
The magnetic observations were taken at a point 25 feet west from station, and in line with pole on Canadian Pacific Railway water tank. Soil, loose sand and gravel.

Nicola.-The station is opposite the Canadian Pacific Railway station in a field owned by Mr. House. It is marked by a brass nail in a fir post $2^{\prime \prime} \times 4^{\prime \prime}$, projecting I inches above ground. The point is about 165 paces southwest of the end of the ' Y : 62 feet east of a small irrigation ditch and 22 feet north of a line joining the botton of the north row of stakes in the fence along the south boundary of the field.

The magnetic observations were taken 12 feet northeast from station, and in line with chimney on house. Soil, fine gravel.

North Bend.-The station is southwest of the town on the property of Mr. Phinister. It is on a waste piece of land beyond the first enclosure at the rear of the post office, and is about 650 feet from the Canadian Pacific Railway tracks. It is marked by a brass nail in a fir post $4^{\prime \prime} \times 4^{\prime \prime}$, projecting 12 inches above ground. The point where the line through the station and the pole on the Canadian Pacific Railway water tank, intersects the continued line of the straight rail fence running northwesterly from the northwest corner of the post office is 38 feet from the station, and 86 feet from the end of the fence.

The following true bearings of reference objects were obtained:-

$$
\begin{aligned}
& \text { Pole on C. P. R. water tank. } \\
& \begin{array}{l}
\text { N. } 25^{\circ} \\
\text { Small pole on south end of Mountain View hotel. }
\end{array} \text { N. } 46^{\circ} \text { E. } \\
& \text { Small pole on west end of C. P. R. hotel. } \\
& \text { N. } 59^{\circ} .9 \text { E. } \\
& \text { Bottom of cross on Catholic church. } \\
& \text { N. } 88^{\circ} 57^{\prime} \cdot 1 \text { E. }
\end{aligned}
$$

The magnetic observations were taken 8 feet southwest from the station and in line with the pole on the water tank.

Agassiz.-The station is on the grounds of the Agassiz Agricultural Association. It is marked by a fir stake $2^{\prime \prime} \times 4^{\prime \prime}$ driven flush with the ground. It is about 9 fect inside the race-track and is 165 feet 10 inches from the point in the east fence which is 167 feet from the northeast corner of the grounds, and 173 feet 10 inches from the point in the west fence which is 165 feet from the northwest corner of the grounds; the abore distances to the east and west fences are in the same straight line.

The following true bearings of the reference objects were obtained:Gable of porch in front of Presbyterian church. .S. $27^{\circ} 42^{\prime} .0 \mathrm{~W}$. Gable of building in southwest corner of grounds. S. $60^{\circ} 49^{\prime} \cdot 1 \mathrm{~W}$. Top of ventilator on hop barn. N. $56^{\circ} 17^{\prime} .8 \mathrm{~W}$.
The magnetic observations were taken 31 feet northeast from the station and in line with the Presbyterian church. Soil, sandy loam.

Yancouver-Brockton Point.-The station is on the Government Lighthouse Reserve, on which is also the small Dominion Astronomical Observatory, used as a reference station for longitudes in British Columbia. It is 43 feet southerly from the southwest corner of the observatory building (office part), and eight feet due west from the produced line of the west end of building.

The following true bearing of the distant reference object was obtained:-
Steeple Catholic Indian mission church, North Vancouver, N. $50^{\circ} 22^{\prime} .6$ E.
The magnetic observations were taken at the above point.

Vietoria.-The Coast and Geodetic Survey station of 1903, as deseribed in the C. \& G. S. report of 1903 , p. 1003 , is as follows:-' On the southeastern edge of the eity, about 500 feet in a southwesterly direetion from the flagpole in Dr. Millin's yard (Dallas road and Dallas ave.) and 12 feet from the edge of the bluff overlooking the beaeh, between Holland point and Finlayson point. The station is marked by a $2^{\prime \prime} \times 4^{\prime \prime}$ fir stub set flush with the ground. The flagpole in Dr. Millin's yard bears $65^{\circ} 03^{\prime} .3$ east of true north; Raee Roeks lighthouse bears $43^{\circ} 18^{\prime} .8$ west of true south.'

The following was reeeived from the Carnegic Institution:-'L. A. Bauer, of the Carnegie Institution, re-oceupied this station in August, 1907, having found a fir stub projeeting about 2 inehes in the loeality deseribed above. However, two sets of azimuth observations gave for the azimuth of the first mark $64^{\circ} 53^{\prime} \cdot 1 \mathrm{E}$. of N., and the seeond mark $43^{\circ} 12^{\prime} \cdot 3 \mathrm{~W}$. of S. Apparently there are two stubs in elose proximity which it will be well to investigate if the station is re-oeeupied.'

A stub or peg was found projecting slightly above ground, evidently the one found by Dr. Bauer, of the Carnegie Institution. This peg, being badly deeayed and broken, was replaeed by one $4^{\prime \prime} \times 4^{\prime \prime}$, set flush with the ground.

The following true bearings of referenee objeets were obtained:-

$$
\begin{aligned}
& \text { Flagpole in Dr. Millin's yard. N. N. 64 } 51^{\circ} .0 \text { E. } \\
& \text { Race Roeks lighthouse. S. } 43^{\circ} 13^{\prime} .7 \mathrm{~W} \text {. } \\
& \text { Buoy on Brotehy ledge. S. } 72^{\circ} 20^{\prime} .9 \mathrm{~W} \text {. }
\end{aligned}
$$

The magnetie observations were taken 12 feet northeast from the station and in line with the lighthouse.

Nanaimo.-The station is on the side of Jesse island, which faces south and west. It is marked by a fir post whieh projeets 18 inehes above ground, and has a mound of earth and stones around it one foot in height. It is about 45 paees from the edge of the bank, and 160 paees from the eliff near the northwestern part of the island.

The following true bearings of referenee objects were obtained:-
Pole on water tank at Breekin mine. S. $8^{\circ} 16^{\prime} .7 \mathrm{~W}$.
Chimney on west end of large white house at northwest part of bay.. S. $86^{\circ} 01^{\prime} .0 \mathrm{~W}$.
The magnetic observations were taken 12 feet north from the station and in line with the pole on the water tank.

To oeeupy the stations between Asheroft and Barkerville required a stage-drive of fully 500 miles.

On September 4, 1908, a magnetie storm manifested itself at Williams lake, as shown. by the following readings for deelination, magnet ereet. The observations began at $16^{\mathrm{h}} 30^{\mathrm{m}}$ Paeific Standard Time; this would be equivalent to $0^{\mathrm{h}} 30^{\mathrm{m}}$ (a.m.) freenwich Mean Time of September 5.

The needle was very unsteady also on the following day (5th). On Scptember 11 and 12, while at Asheroft, the needle showed unsteadiness. There was a fine auroral display on the evening and night of September 11.

The following readings of the declination magnet show the disturbances at Ashcroft on September 11, 190s.

Time-Pacific Standard-eight hours slow on Greenwich.

The range of deelination at Williams lake on September t, during the $1^{\text {h }} 40^{\mathrm{mm}}$ of observation, was $50^{\prime} \cdot 6$; and at Asheroft on September 11, dnring $1^{\text {b }} 04^{\mathrm{m}}$, was $33^{\prime} \cdot 9$. On the afternoon of September 12, at Asheroft, the magnet was quite steady. The observations at neither place were snfficiently continuous to obtain the cxtreme range, east and west, that the magnet attained.

The magnetic storms of those days were undoubtedly world-wide. Dr. C. Chre: of Kew, makes note of them in 'Nature,' of September 24, 1908. Referring to the declination, he syys: 'The extreme ensterly position was reached at about 2.53 a.m.,

SESSIONAL PAPER No. 25 a

and the extreme westerly position at about $5.14 \mathrm{a} . \mathrm{m}$. on September 12 , the total range of declination being ahont $1^{\circ} 27^{\prime}$. The movements on September 12 were the most rapid. Between 1.24 a.m. and 1.46 a.m. there was a westerly movement of about 51^{\prime}, followed in the comrse of the next eight minutes by an casteriy movement of about 35^{\prime}, while between $2.58 \mathrm{a} . \mathrm{m}$. and $3.28 \mathrm{a} . \mathrm{m}$. thero was a westerly movement of about 5n'. There were no large movements after 6 a.m.

9-10 EDWARD VII., A. 1910
TABLE I.
Stations occupied during 1908. The declinations are all reduced to $10.30 \mathrm{a} . \mathrm{m}$. local time for the position of the average meridian

SESSIONAL PAPER No．25a

茦黄

8
8
8

商
范

	$\begin{aligned} & \text { ging } \\ & \text { 首 }=== \end{aligned}$											$\begin{aligned} & \infty= \\ & \frac{2}{n}= \\ & \frac{2}{x}= \end{aligned}$	
｜${ }^{\infty}$	：900 \＄\＆ ๕	｜ic｜	盛盛	＋	¢	-1 E E	ज\％		\％	92	¢		＂人 \％ \％

si
$==$

s

ल	）${ }_{8}$	䅋
⿹ㅗㄱ	数	ㅂ1ㄴ

\because	58
호	혼
\bullet	产
9980	E

[^1]
Clinton，B．C．．

Barkerville，B．C

Quesnel，B．C．
Alexandria，B．C．
Bridge Creek，B．C

9-10 EDWARD VII., A. 1910

SESSIONAL PAPER No．25a

$\begin{aligned} & \text { 谷 } \bar{x} \\ & \text { 空 } \end{aligned}$	$\begin{aligned} & 9 \\ & 0 \\ & \underline{x} \\ & \underline{y} \end{aligned}$	$$	篤	$\begin{aligned} & \frac{5}{\hat{x}} \\ & \underline{x} \end{aligned}$	$\stackrel{5}{5}$	寠会亳	管	$\frac{15}{15}$	5
$\therefore=0$		9\％		\pm		（15\％		\％ิ\％	
\％$=$		$\stackrel{\stackrel{\rightharpoonup}{+}}{\mathrm{O}}==$		む		会＝		$\begin{aligned} & \dot{b} \\ & \text { b } \end{aligned}=$	
15－2xt	－	¢0 $x=000$	∞	\％ 0	\cdots	\％	\cdots		
零平二枵可	9		9	会家	\％	＝	7		
E	F	T	E	E	τ	2	K		

9-10 EDWARD VII., A. 1910
This table gives a resume of Table I, tugether with the values of the horizontal intensity observed with Dover 145 .

Plaee.	Latitude.	Longitude.	Year.	$\begin{gathered} \text { Month } \\ \text { \& } \\ \text { day. } \end{gathered}$	Declination.		$\begin{aligned} & \text { Month } \\ & \text { \& } \\ & \text { day. } \end{aligned}$	Dip.		$\begin{aligned} & \text { Month } \\ & \text { \& } \\ & \text { day. } \end{aligned}$	Hor. force Units.	Instrument.
	-	6	1908	July 16-20 .	-		$\begin{array}{cc} \text { July } & 17-18-30 \\ \cdots & 17 . . \end{array}$	78	$\begin{array}{r} 13.0 \\ 13.0 \end{array}$	$\begin{array}{cc} \text { July } & 16-18 . . \\ \square & 17 \ldots \end{array}$	$\begin{array}{r} -13121 \\ -13060 \end{array}$	1977145
* Wimuipeg, Man.,Carnegie Instit't'n Stn	$49 \quad 52$	$97 \quad 9$			13	58.6						
Banff, Alta., Carnegie Institution Sin...	5110	115 35		- 22-24.	26	3'6	$-\quad 23-24$. $=\quad 25$.	74	$58 \cdot 1$ 59.3	- ${ }_{\text {- }}$ 22-24..	15955 -15942	1977 145
Golden, B.C.	5118	$116 \quad 57$		- 27-30	26	$3 \cdot 5$	$=27-29$. $=$	74	$42 \cdot 8$ $+40 \cdot 1$	1	16160 16142	1977 145
Lievelstoke, B.C.	$51 \quad 0$	11812		Aug.3-4-5	25	486	Aug. 1-3-4. \sim	74	16.1 16.6	Aug. 1-3-4..	- 16501	1977 145
Sicamons, B. C.	50 int	11859		$=6.10$	25	52-8	$\begin{array}{rr}\square & 6-7-8 . . \\ =\quad 10 . .\end{array}$	73	51.8 55.4	" 6-9.	-16775 -16785	1977 145
Clinton, B.C	316	12135		- 13-16	26	26.4	" $\%$ $14-15$.	73	$27 \cdot 6$ $25 \cdot 1$	0 $14-15$	17042 -17223	1977 145
Barkerville, 13.C.	213 4	12130		- 22-24	28	$7 \cdot 3$	$\begin{array}{lr}\text { \% } & 29-23 . \\ \text { II } & 21 .\end{array}$	74	$58 \cdot 0$ 57.6		15708 15694	1977
Quesnel, 12.C	$52 \quad 59$	12232		- 26-28	28	19.0	- 26-27.	74	51.1 +9.0	$\begin{array}{rr}\square & 26-27 \\ =\quad 28\end{array}$	15863 -15913	1977
Alexandria, B.C.	5235	122 2k		tug. 30- ept. 1	38	$16 \cdot 2$	Sept. ${ }^{30-31}$	74	$\begin{aligned} & 20 \cdot 9 \\ & 18 \cdot 4 \end{aligned}$	Sept. ${ }^{30-31}$	$\begin{array}{r} 16388 \\ -16468 \end{array}$	1977 145
*Willians Lake, (150 mile post) B.C..	526	12156		Sept. 3-5.	28	$52 \cdot 8$	") $3-5$ 1	74	123 124	7 $3-5$ $=$ 5	-16518 -16507	1977 145
Bridge Creek, (100 mile post) B.C	5139	$121 \quad 27$		8-9		474	" 8-9.		$35 \cdot 1$	- 8-9	17172	1977

SESSIONAL PAPER No. 25a

Asherofl, B.C., Camegie Institution Stu	S10	4	121	17			1115		163		$\begin{gathered} 11-12.14 \\ 12 \ldots \end{gathered}$	73	261 268	$\cdots{ }^{\prime \prime} \begin{gathered}14-15 \\ 12 .\end{gathered}$	17220 17208
$\mathrm{S}_{\text {Jwnce's }}$ Bridge, B.C. .	50	25	121	21			17-18.	26	394		$1-18$ 18	72	58.9 57.6	7% $=16-17$	$\begin{array}{r}17370 \\ \hline 17414\end{array}$
Nicola, B.C.	50	9	190	4		"	19-21.	25	3.0		19-30.	72	54 534		$\begin{array}{r} 17546 \\ -17529 \end{array}$
North Bend, B.C	49	52	121	27		"	25-25.	25	480	".	$23-25$ $36 .$.	72	$32 \cdot 1$ $31 \cdot 2$	- 24.25	17972 17946
\ddagger Agassiz, B.C.	49	15	131	45		Oct.	1-2	25	23.6	$\text { Sept } 28$	$\begin{array}{cc} 28 & 0+1,2 \\ 38.2 \\ & \end{array}$	71	$\begin{aligned} & 349 \\ & 36 \cdot 1 \end{aligned}$	$\begin{array}{lll} \text { Oct. } & 1 & 2 . \\ \text { Sept. } & 28 \end{array}$	$\begin{array}{r} 18919 \\ 18902 \end{array}$
Vabconver, B.C., (Brockton Point) . .	49	18	123	7		"	5 8	25	23:3	Oct.	$\begin{array}{r} 6.8 . \\ 3 . \end{array}$	71	42.4	Oct. $7-\mathrm{s}$.	$\begin{array}{r} 18782 \\ -18659 \end{array}$
Victoria, B.C., Carnegie Institution Stn	48	25	123	21			13-14.	24	3. 0		1214 10	71	19.3 17.0	$\cdots \begin{gathered}13-14 . \\ \\ \square\end{gathered}$	$\begin{array}{r} 18763 \\ -18.79 \end{array}$
Nanaimo, B.C., (Jesse Island)	49	13	193	52			17-18	25	$15 \cdot 3$	".	rer $\begin{array}{r}18 \\ 18 \\ 18\end{array}$	71	$20 \cdot 2$ $21-5$	". . 18	$\begin{gathered} -18827 \\ .18786 \end{gathered}$
Ottawa, Ont., Carnegie Institution Stn.	45	24	75	43			2525		485 W	Nov.	. 2	75	41.9	2-5	15156
Ottawa, Ont., (Hut).	4)	24	75	43		"	20.23-26		505 W					Nov. 23-97.	-15157

In the report of 189 , the Department of the Interior published the magnetie data that had been obtnined in conneetion with the survey and exploration of Dominion lands between the years 1881 and 1890 . The declination was generally obtained by means of a long compass neelle attached to the lower plate of a transit-theodolite within a narrow box, fitting into a groove, while inclination and total force (intensity) were obtained by a Kicw Dip Circle, the constants of which had been determined at the Toronto Magnetic Observatory.

The observations extended in latitude from Port Arthur $45^{\circ} 26^{\prime}$ to Lake Lindeman $59^{\circ} 47^{\prime}$ near the head waters of the Yukon, aud in longitude from Eastmain, $78^{\circ} 29^{\prime}$, to Lake Lindeman, $135^{\circ} 05^{\prime}$. The number of stations distributed over this vast area was 204 , but by no means uniformly distributed, the most of them lying along exploratory routes.

In 1883 Sir J. II. Lefroy published his observations in Canada made in 1843-44, covering 314 stations.

These two publications are the only ones up to the present of extended magnetic observations in Canada, except the publications of the Cnited States Coast and Geodetic Survey, which are partly based on the above data and partly on the observations by officers of that survey.

It is thought desirable to bring together the whole of the magnetic data available m our office and publish it.

For the present it is considered more desirable to publish the actual observations than to defer until a reduction has been made to a uniform epoch. The data for most of the stations aud many areas, are far too limited to justify such a reduction by themselves. The prineipal difficulty encountered in reducing to a common epoch, or in reducing from one epoch to another is that of secular variation. Although the existence of secular variation has been known since the days of Gellibraid, 275 years ago, yet its explanation is still unknown. Here is a case where nature absolutely refnses to allow itself to be put in a straight jaeket of uathematical formulæ, but instead, pursues its apparently erratic course to the dismay of investigators. As Huxley has well said, that 'our mathematieal skill is no guarantee of the quality of the grist,' adding that, 'as the grandest mill will not extraet wheat flour from peascods, so pages of formuke will not get a definite result out of loose data.'

The element, for which for practical purposes, information is from time to time required is the declination, due to the fact that nearly all the older survess were made with chain and compass, so that in re-tracing or re-establishing an old survey line it is frequently necessary to know the amount of change of the position of the needle, in short, the secular variation for the interval of time. It is impossible to give a general formula fron which to deduee the informatiou desired. However, as the original compass survey was at best but an approximation, the secular variation deduced from some eupirical formula covering the area under consideration will furnish data for the re-establishment of old survey lines run by compass with a degree of aceuracy quite in keeping with the bearing of the original line. The application of secular variation is most applicable in the re-survey of 'timber limits,' where seldom a definite line of reference is available, of which the magnetic bearing at the time of the timber limit survey is given. Such limits generally border a stream or river, the direetion of the other sides was mostly made dependent upon the general course or trend of the river. What was accepted at the time by the surveyor as the general course of the river it is impossible subsequently to determiue, so that laying off angles with a transit from the river is out of the question, and we fall back on the compass line as eorrected for secular variation for re-determining the boundaries of an old timber limit.

For the re-establishment of lot lines in eastern Canala, whieh was originally almost completely wooded, and where the original survess were all made by chain and compass, the ease is somewhat different. Here 'eoncessions' and 'side-roads' were

SESSIONAL PAPER No. 25a

the governing factors for the directions of the lot lines, and these former ones were the ones to be opened up first, before the blazes and marks of the original survey were lost and obliterated. Hence in re-running a lot line at present with a compass, one would need only observe the actual magnetic bearing of the governing concession line and apply the difference between it and its original bearing, to the original bearing of the lot line for obtaining its present magnetic direction. Nowadays, however, no surveyor's outfit in Canada is confined to a compass, in fact this instrument on Jacob's staff is obsolete, and the transit-theodolite is used, with which the proper angle would be turned off from the governing line for the lot line irrespective of the magnetic bearing of either.

There are other cases besides those of timber limits and original lot lines. These refer to subdivision lines abutting on original lot lines or other subdivision lines, all run at different periods, the maps thereof showing the magnetic bearing for each line when surveyed, which for a closed figure is, on the face of it, a mathematical impossibility. Such cases, personally well known to the writer, tax the ingenuity and skill of the surveyor, armed with theodolite, compass, secular variation, 'deeds' and plans, to do justice to all parties aud lines concerned. It may be noted that while the secular variation in general is but a few minutes per year, the daily or diurnal variation is several times that nmount. This indicates the importance of noting the time of day when an observatiou for declination is taken. A disregard of this precaution is equivalent to probably several years displacement theoretically of the year of observation. Conversely, most of our old survey data do not include the time of day when the direction of a line had a certain magnetic bearing, hence with meagre data with reference to different periods or years for a given place, as is the case for many of the stations hereafter given, it is obvious that in the attempt to deduce secular variation therefrom or a general expression for the declination at a given time, we cannot hope to attain more than a rude approximation; much more so when we wish to carry the determination beyond the limits of observation, that is, when we extrapolate instead of interpolate.

The diurnal variation reaches its extreme value eastward at about 8 a.m, and westward at about 1.30 p.m., crossiug the average magnetic meridian for the place at about $10.30 \mathrm{a} . \mathrm{m}$. This applies to the southerly part of Canada; in the higher latitudes, the time interval of elongation from the magnetic meridian is increased.

Stations.

In the grouping of our stations, lying between the Atlantic and Pacific oceans and extending to Hudson bay and the Aretic ocean, it was considered more desirable to group them by political divisions as far as possible, i.e., by provinces, than to bound the groups by parallels of latitude and meridians of longitude. In any case we will have contiguous stations falling into different groups. To the general public, to the surveyor, the engineer, the grouping by provinces will be more acceptable than any other scheme.

Canada has hence been divided into the following groups:-
Quebec and Labrador; Nova Scotia, including Cape Breton and Prince Edward Island; Ontario; Hudson bay and surrounding territory; Manitoba; Saskatchewan and Alberta; British Columbia; and Yukon and Northwest Territories, these latter extending from the 60th parallel to the Arctic ocean and west of Hudson bay.

In each of these groups the stations have been arranged in order of longitude, so that, in general, the tabulation will show, considering west declination positive and east declination negative, an algebraic decrease of declination with an increase of longitude.

The agonic line, or line 'without an angle,' i.e., the line joining the points at which the direction of the magnetic meridian is coincident with that of the astronomic
meridian, passes at the present time somewhat to the west of Schreiber on the Canadian Pacific Railway, and west of Windsor. Places to the east of it have west declination, and those to the west have east declination.

In the table of compiled magnetic elements,-declination, inclination, horizontal and total intensities,-the column 'Observer' gives the source of the information, indicated by abbreviation, when the observer himself is not given.

The data opposite to the abbreviations C.I., C.S. and L.S., are taken from

TABLE
MAGNETIC
Nova
C. I.-Carnegie Institution.

SESSIONAL PAPER No. 25a

'United States Magnetic Tables and Magnetic Charts for 1905', by L. A. Bauer, and published by the United States Coast and Geodetic Survey, 1908.
C.I. refers to observations made by officers of the Carnegie Institution.
C.S. refers to observations made or published by the United States Coast and Geodetic Survey.
L.S. refers to obserrations by the United States Lake Survey.

III.

RESULTS

Scotia,

TABLE
MAGNETIC
Quebec-
C. I.-Carnegie Institution.
C. S.-Coast Survey.

Place.	Latitude.	Longitude.	Year.	Month and day.		Declination.
Battle Harbour, Caribou is-l						
Grady, Labrador.	$53 \quad 48 \cdot 2$	$\begin{array}{lll}56 & 25 \cdot 3\end{array}$	1881	Aug. 3,4....		39 08.8 ${ }^{11}$
Turnavik, Labrador	$55 \quad 14 \cdot 9$	59.190	1881	July $28,29$.		$40-22.84$
" ${ }^{\prime}$	$55 \quad 14 \cdot 6$	$69 \quad 20 \cdot 3$	1896	July $20 .$.		$38 \quad 26.4$
Nain, Labrador.	$56 \quad 32 \cdot 7$	$61 \quad 40 \%$	1881	Aug. 11 to 18		$4450 \cdot 2$
Gaspé Basın. Rivière du Loup.	$48 \quad 50.0$	$64 \quad 30 \cdot 6$	1832			
	$\begin{array}{ll}47 & 51 \cdot 0\end{array}$	$\begin{array}{lll}69 & 25.0\end{array}$	1876			
	$\begin{array}{ll}47 & 50 \cdot 0\end{array}$	$6433 \cdot 0$	19067			2038.7 W
Brandypot island	47 463.0 16	$\begin{array}{ll}69 & 42.0 \\ 70 & 32.0\end{array}$	1830			
St. Thomas, Montmagny	46 59.0 15 34.4	$70 \quad 33 \cdot 0$	1876	Aug. 24,25..		17 50.1W
Megantic	$45 \quad 34 \cdot 4$	$70 \quad 53.2$	$1!\mathrm{M}) 7$	$\begin{array}{r} \text { Sept. } 20,21, \\ 23,24 \ldots \ldots \end{array}$		16 33'2
Alphonse	$48 \quad 21 \cdot 0$	$\begin{array}{ll}70 \\ 71 & 510\end{array}$	${ }^{1906}{ }^{7} 7$			21 54.0"
Tring Jct	$46 \quad 15.5$	71000	1907	Sept. 26, 27.		$17 \quad 22 \cdot 2$
	$48 \quad 25 \cdot 0$	$\begin{array}{ll}71 & 03.0\end{array}$	1906.7			2017 1.
Chicoutimi Quebec.	$46 \quad 48 \cdot 6$	$71 \quad 13 \cdot 3$	1845			
	$46{ }^{\prime \prime} 48 \cdot 0$	$71 \begin{array}{ll}71 & 1+0\end{array}$	$1906 \cdot 2$			17 53.0W
"	$46 \quad 49 \cdot 5$	71142	1842	Sept. 1.		14120 "
	$46 \quad 48 \cdot 4$	7114.5	1859	July 19.		$1617.0{ }^{17}$
	"		1879	Sept. 16, 19.		$1713{ }^{15}$
Bėcancour	$\begin{array}{ll}46 & 22.0 \\ 45 & 22.9\end{array}$	$\begin{array}{ll}71 & 33.9 \\ 71 & 76.8\end{array}$	1876	Aug. 17, 18.		15435.1
Sherbrooke...	$45 \quad 23 \cdot 9$	$71 \quad 56.2$	1907	Sept. 14, 16, 17, 18.		$15 \quad 59 \cdot 9$
Richmond Jet.	$45 \quad 41 \cdot 0$	72 03:0	1876	Aug. 15		1659.6
Peribonka.	$48 \quad 46.0$	7205.0	1906.7			$20.55 \cdot 7$
	45020	72070	1812			
Stanstead	45	7212.0	1842			
Roberval.	4831.0	$72{ }^{7} 14.0$	19067			19445 W
Mistassini............	48 54.0	72	19067			1920.5 "
Lake Mempbremagog.	4501.0	72150	1815			
Lake Edward.	$47 \quad 40.0$	$\begin{array}{ll}72 & 15 \cdot 0\end{array}$	1906.7			19344 W
Three Rivers.	$46 \quad 21.0$	$\begin{array}{ll}72 & 32.0 \\ 72\end{array}$	1842			
	$46 \quad 21 \cdot 0$	72	19067			15.261 W
Farnbam.	$\begin{array}{ll}45 & 16 \cdot 1 \\ 46 & 02 \cdot 0\end{array}$	$\begin{array}{cc}73 & 01 \cdot 5 \\ 73 & 03 \cdot 0\end{array}$	1907 1842	Sept. 9, 10,11		15 124"
	46020	7303.0	1842			
St. Johns	4517.0	$73 \quad 150$	1812			
Montreal.	$4531 \cdot 0$	$73 \quad 30 \cdot 0$	1833			
St. Helens island, Montreal	$4531 \cdot 1$	$73 \quad 31 \%$	1842	Sept. 19	831 a	8576 W
" " "	"	"	1843		
"	"	"	"			
" \quad " .	"	"	"			
Montreal, The Mountain......	45310	$\begin{array}{lll}73 & 33\end{array}$	1845			
Montreal.	$45 \quad 31 \cdot 0$	$73 \quad 320$	1843			
	$45 \quad 30 \cdot 0$	$73 \quad 33.0$	1838			
\cdots.	$\begin{array}{lll}45 & 30 \cdot 3\end{array}$	$\begin{array}{ll}73 & 34 \cdot 9\end{array}$	1859	July 20.		1221.0 W
			1879	Sept. 25		13 40.5.1
	"	$73 \quad 35 \cdot 0$	1896.8			14 19.0n
"		"	19057			14 40'1"
	"	"	1406%			

IV.

RESULTS.

Labrador.

MAGNETIC

Qcebrc-
C. I.-Carnegie Institution.
C. S.-Coast Survey.

[^2]SESSIONAL PAPER No. 25a
IV-Con.
RESULTS-Con.
Labrador-Con.

Month and day.	$\begin{gathered} \text { Hour } \\ \text { and } \\ \text { minute. } \end{gathered}$	Dip.	Month and day.	$\begin{aligned} & \text { Hour } \\ & \text { and } \\ & \text { minute. } \end{aligned}$	Hor, intens.	Total intens,	$\begin{gathered} \text { Teın- } \\ \text { perature } \end{gathered}$	Observer.
April 30.	p. m.	$77 \quad 03 \cdot 1$	$\begin{array}{\|c\|c\|} \hline \text { April } 30 . . \\ \text { " } & 30 . \\ " & 30 . \end{array}$			$\begin{array}{r} 6302 \\ 6297 \\ 6261 \end{array}$		J. H. Lefroy.
		76 08 76 50 8						C. I. ${ }^{\text {J. }}$
		76 76 76 29			1432			J. H. Lefroy. C. I.
May 3.		$76 \quad 55 \cdot 4$	May 3..			6273		J. H. Lefroy.
		7704			1392			C. I.
May		$\begin{array}{ll}76 & 38.5\end{array}$			1417			
		$\begin{array}{ll}76 & 29-5\end{array}$	May 5		1441	6880		J. H. Lefroy.
May 6..	Noon.	$\begin{array}{llll}75 & 07 & 0\end{array}$	May 6.			6450		J. H. Lefroy.
			" 6.			6399		
May ${ }^{1}$	p. in.	$\begin{array}{ll}76 & 44 \\ 77 & 29\end{array}$	11 1			6378		"
"	p. m.	$\begin{array}{ll}77 & 29 \\ 77 & 16\end{array}$	11 1 8.			6418 6415		"
			118.			6433		
May 9.	300 p	$\begin{array}{lll}77 & 19 & 1\end{array}$	" 9.			6351		"
" 10.	11 00a	$77 \quad 03.8$	" 10.			6374		"
			"10. 11			6383		"
May 11..	p. m.	778	"1 11 11			6429 6403		"
.		$76 \quad 41.8$			1430			C. I.

TABLE
MAGNETIC
C. I. - Carnegie Institution.
L.S.-Lake Survey.

Onta
C.S.-Coast Nurvey.

Plac ${ }^{\text {- }}$	Latitude.	Longitude.	Year.	Month and day.	$\begin{gathered} \text { Hour } \\ \text { and } \\ \text { minute. } \end{gathered}$	Declination.
	, .					- .
Hawkerhury	$45 \quad 36.0$		19067			11513 W
Cornwall...	$45 \quad 02 \cdot 0$	$74 \quad 50 \cdot 0$	1845			
Williamsburg.	44 " 55.0	75 " 070	1843			
	4.532 .0	$75 \quad 22 \cdot 0$	1843			
Fox Point, Ottawa river	4.532 .0	7522.0	1843			
Prescott. . .	$4435 \cdot 0$	$75 \quad 30 \cdot 0$	1843			
Brockville	$4435 \cdot 9$	$75 \quad 40 \cdot 7$	1907	Sept. 2, 3, 4.		$10 \quad 3 \mathrm{~L} 2$
trock	4432.0	7541.0	1845			
Otawa	-	$75+120$	185i			
Ottawa.	$\begin{array}{r}45 \\ +5 \\ +5 \\ \hline\end{array}$	75 75 75 12.9	1907	June 3.		$12 \quad 36 \cdot 5$
- (C.L.S.).	45240	$75 \quad 43 \cdot 0$	1908	Nox. 2, 5, 26		$\begin{array}{lll}12 & 48 \cdot 5 \mathrm{~W}\end{array}$
" (Magnetic hnt).				- $20,23,26$		$12505 \cdots$
Kingston Jct	$44 \quad 15.2$	$76 \quad 28.0$	1907	Aug. 27, 28		$\begin{array}{ll}14 & 16.9 \\ 36 & 46-1\end{array}$
" (R, M1, College*).	$4413 \cdot 8$	$\begin{array}{ll}76 & 28 \cdot 2 \\ 76 & 28\end{array}$		- $20,21$.	$36 \quad 46.4$
" (Artillery Barracks*).	$44 \quad 13.0$	$76 \quad 28.6$	1842			
"	".	"	1818		
"	".	"				
" $\quad .$.	"	"	1845	-		
Kingston (Stewart point)	$4412 \cdot 0$	76 " 29.0	"			
Kingston (Stewart point)	4.120	$76-20$				
Kingoton (Barracks)	4413.0	76.29 .2	1907	Aug. 25		*30 07-4
Kingston Junction.	44150	$76 \quad 29 \cdot 0$	1906.7			$18 \quad 26 \cdot 0 \mathrm{~W}$
Kingston (The Common)	4413.0	$76 \quad 30 \cdot 0$	1845			
Renf̈rew	$45{ }^{\prime \prime} 29 \cdot 0$	$76 \quad 40 \cdot 0$	$1906 \cdot 7$			11.13 .6 W
Sharbot lake.	44.46 .4	$\begin{array}{lll}76 & 41.2\end{array}$	1907			$11 \quad 28.7$
Pembroke.	15 49-3	77 07 7	"			$\begin{array}{lll}10 & 16.7\end{array}$
Belleville.	4409.0	$\begin{array}{ll}77 & 25.0\end{array}$	1843			
Chalk river.	46 4600	$77 \quad 26 \cdot 0$	$1906 \cdot 8$			$10 \quad 20 \cdot 2 \mathrm{~W}$
Barry bay	+5 28.8	77 40 ${ }^{7}$	1907	Aug.		$\begin{array}{ll}08 & 46.3 \\ 9 & 05\end{array}$
Madawaska	4530.0	77590	19067			9 05 12
Cobourg.	$43 \quad 56.0$	$78 \quad 100$	1843			
Peterborough	$44 \quad 18.0$	$\begin{array}{ll}78 & 180 \\ 78 & 39\end{array}$	19067			8816.1
Kinmount	$44 \quad 48.0$	78 78 78 10	19067			$\begin{array}{ll}8 & 29 \cdot 7 \\ 8 & 44 \cdot 3\end{array}$
Mattawa.	16 19 16	$78+10$	1307	July 23, 24		
Little river	$46 \quad 154$	78440	1843			-...
Joe lake	45 ${ }^{15} 32$	78 " 6.5	1907	Aug. 6, 7		$7^{\prime \prime} 3{ }^{\circ}$
Niagara village	43150	79 04.0	1843			
Niagara Falls.	$4304 \cdot 0$	79 05'0	$18+1$			
Sigara	"	,	1845			-
South side of Trout lake.	46 "185	79 "18.0	1843			
Agineourt (Mag. Obsy.).	43 470	79160	1405			$5 \quad 40 \cdot 3$
"		"	$1906 \cdot 8$			5 6 6
"	"	"	1908	July 9, 11.		$\begin{array}{ll}6 & 2.2 \\ 5 & 59.0\end{array}$
Emsdale	$45 \quad 3200$	$79 \quad 18 \cdot 0$	$1906 \cdot 7$			5 59.0 7 52.2

*Local disturbance.

SESSIONAL PAPER No. 25a
V.

RESULTS.

RIO.

TABLE
Magnetic
Onta

[^3] ** For January -July, October-December; 9 months.

SESSIONAL PAPER No. 25a
「-Con.
RESULTS-Cor.
$\mathrm{RtO}-\mathrm{Con}$.

observations for the year.

9-to EDWARD VII., A. 1910
TABLE
MAGNETIC
C. I. - Carnegie Institution.
L. S.-Lake Survey.

Onta
C. S.-Coast Survey.

Place.	Latitude.	Lougitude.	Year.	Month and day.	$\begin{gathered} \text { Hour } \\ \text { and } \\ \text { minute. } \end{gathered}$	Decliuation.
	\cdots,					$\cdots \quad$.
Toronto, Agincourt.	$43 \quad 47$	$79 \quad 16$	1899	12 months.		526.5 W .
" "	*	"	1900	"		$5 \quad 27.8$
" "	"	"	1901	"		${ }_{5}^{5} \quad 29.4$
" "	"	"	1902	"		$\begin{array}{ll}5 & 31.7 \\ 5 & 33 \cdot 7\end{array}$
"	"	".	1904	10		$\begin{array}{ll}5 & 33.7 \\ 5 & 36.4\end{array}$
".	"	"	1905	12 "		$5+2 \cdot{ }^{-1}$
"	"	"	1906			5 55.6
" ${ }^{\prime}$			1907	July 18,19,20		$5 \quad 50.6$
North Bay	46 $18 \cdot 3$	79.247	1907	July, 18, 19,20		0855.6
	$46 \quad 19.0$	$\begin{array}{ll}79 & 26.0 \\ 70 & 11.0\end{array}$	19068			8442 .
Barrie.	4781.0	79811.0	1813	\cdots		
New Liskeard	$4731 \cdot 0$	7942.0	1906.8			$8 \quad 50 \cdot 0$
Timagami sta..	47 +6 +6 $11 \cdot 0$	$\begin{array}{ll}79 & 47.0 \\ 79 & 48 \cdot 0\end{array}$	${ }_{18}^{1906} 8$			$1154 \cdot 4$
Lake Nipissing ${ }^{\text {E }}$	$4611: 0$	$79 \quad 48.0$	1843			
Hamiton, in yard of Farmers	$43 \quad 16.0$	$79 \quad 50 \cdot 0$	1812			
Englehart	$47 \quad 50 \cdot 0$	79 " $52 \cdot 0$	1845 1906.8			905
Penetanguishene	$44 \quad 47 \cdot 0$	79 55.0	1906.7			658.9
P	"	7958.0	1843		-	
"	"	+	1825			
"	"	"	1844			
"	"	"	${ }^{\prime \prime}$			
" - 1	"	"	"			
Timagami inn	46 " 580	80 "020	$1906 \cdot 8$			$11 \begin{array}{ll}11 & 26\end{array}$
Rose point . .	$4519 \cdot 1$	$80 \quad 023$	1907	July 31, Aug.		
Twin lake	$48 \quad 160$	$80 \quad 17 \cdot 0$	1906			6 $49 \cdot 1$ 7 4
Simeoe.	42510	$80 \quad 18.0$	1906 '8			439.7
*Ricollet falls..	$45.57 \cdot 0$	80300	1843			
Berlin..	$43 \quad 20$	80 " 31.0	1906 \%			$5 \quad 27 \cdot 9$
Owen Sound..	$4+35 \cdot 0$	80 500	19067			$\begin{array}{ll}5 & 45 \cdot 8\end{array}$
Sudbury.	+6. 30.0	$\begin{array}{ll}81 & 00 \cdot 0 \\ 81\end{array}$	19067			6 6 26.8 "
	46290	$81 \quad 00 \cdot 0$	1907	July 10, 16,17		$65 H^{-9}$
Small island, Lake Huron	4555.5	81020	1813		
" "	"	"	"		-.	
Hyde Park Je	42 " $59 \cdot 0$	81 "19.0	$1906 \cdot 8$			$\begin{array}{ll}3 & 26 \cdot 8\end{array}$
Stokes bay...	4459.0	$81-220$	1905.8			${ }_{6}^{6} 14 \cdot 8=$
Southanipton.	44300	$\begin{array}{ll}81 & 230 \\ 81 & 38.0\end{array}$	1905.8		${ }^{6}$ 5 04.5 \%
Kincardine.	41110	$\begin{array}{ll}81 & 38.0\end{array}$	1905 -			5 12.4"
Frazer bay, Lake Huron.	+6 00.0	8140.0	1843			
Goderich, in garden font of hill	43 " $45 \cdot 0$	81 " 41.0	1845			
" "	"	"	"			
" . ${ }^{\text {a }}$	"	"	"			
"	43 " 46.0	$81{ }^{\prime \prime} 42 \cdot 0$	19067			415.5
" a unile S. of Town Hall	43 +4.0	81 43.0	1863			
Cove island	$45 \quad 20.0$	$81 \quad 43 \cdot 0$	1860.7			$38^{3} \cdot 6$
		81 H40	$1905 \cdot 7$			$7{ }^{7} \quad 02$!
Goderich.	43440	81 44.0	$1905 \cdot 8$			420%
Cape Ipperwash, Lake Huron.	$43 \quad 13.0$	820000	1860			
Kettle point..	4313.0	8201.0	$1905 \cdot 8$			3436
Fort La Cloche, Lake Huron.	$46 \quad 07 \cdot 0$	$82 \quad 03.0$	1843	May 18	833 a	2100 .
	"	"	1844		

[^4]SESSIONAL PAPER No. 25a
V-Con.
RESULTS-Con.
Bto-Con.

9-10 EDWARD VII., A. 1910
TABLE
MAGNETIC
C. I.-Carnegie Institution
L. S.-Lake Survey.

Onta
C. S.-Coast

Place.	Latitude.	Longitude.	Year.	Month and day.	$\begin{aligned} & \text { Hour } \\ & \text { and } \\ & \text { minute. } \end{aligned}$	Declination.
	-	,				- .
Biscotasing	$\begin{array}{ll}47 & 18 \cdot 0\end{array}$	$82 \quad 08.0$	$1906 \cdot 7$			$\begin{array}{llllll}3 & 07.2 \\ 2 & 12.8\end{array}$
Chatham.	42 24:0	$82 \quad 10.0$	$1906 \cdot 8$			$213 \cdot 8$ "
Providence bay	$45 \quad 40.0$	$82 \quad 17 \cdot 0$	1905.7			426.4
Sarnia, garden near the ferry. .	45.58 .0	82220	1845			
" "	$45{ }^{\prime \prime} 580$	$82 \quad 22.0$	1845			
" ${ }^{\prime \prime}$						
Snake island, Lake Huron	$4610 \cdot 0$	$82 \quad 400$	1843			
"						
Algorna.	$46 \quad 110$	$82 \quad 50 \cdot 0$	1906.8			435.4 W .
Great Duck island	4588.0	$82 \quad 56.9$	$1905{ }^{\circ}$			222.8
Amherstburg.	4206.0	$83 \quad 03 \cdot 0$	1845			
Missisagi straits	$45 \quad 54.0$	$83^{\prime \prime} 1+0$	19057			4064
*Cockburn island	45.520	$83 \quad 21.0$	$1905 \cdot 7$			2113 E.
Chaplear.	$47 \quad 50.0$	$83 \quad 27 \cdot 0$	$1906 \cdot 8$			$404^{\circ} 0 \mathrm{~W}$.
	$\begin{array}{lll}47 & 49 \cdot 6\end{array}$	$83 \quad 27.0$	1907	July 11,12,13		$3{ }^{3} 47 \cdot 0$
Thessalon point, Lake Huron .	$46 \quad 17 \cdot 0$	$83 \quad 330$	1843	May 19.....	3-26p	$0 \quad 114$
Missinaibí.	48 " $20 \cdot 0$	$84^{\prime \prime} 07 \cdot 0$	19067			$5 \quad 391$
Sault Ste. Marie.	$4630 \cdot 9$	$84 \quad 21.5$	1844	Nov. 4.	9-56a	$1{ }^{1} 14 \cdot 1$ E.
"	"	4.	10-05a	$\begin{array}{llll}0 & 51-1 & \\ 1 & 08 \cdot 2\end{array}$
" ${ }^{\prime \prime}$....			185	. $4 . .$.		
Pointe aux Pins, LakeSuperior	$46 \quad 29 \cdot 9$	$84 \quad 290$	1843			
" ${ }^{\text {n }}$	n	"	"			
Sinclair harbour	47 " $22 \cdot 0$	$84^{\prime \prime} 42 \cdot 0$	$1906 \cdot 6$			2414 w.
Parisian island	$4639 \cdot 0$	$8442 \cdot 0$	$1906 \cdot 6$			23 \% 6
Gros Cap.	$4632 \cdot 0$	84 43.0	1841			
Pointe aux Crépen, Lake Super'r	$46 \quad 58 \cdot 0$	84 44:0	1843	May 21.	5-08p	3 02-8 E.
Mamainse point	47020	$84 \quad 47 \cdot 0$	1906.6			$\begin{array}{llllll}0 & 34.7 \\ 1 & 30\end{array}$
Michipicoten, Lake Superior.	$47 \quad 560$	84506	1880	Jly 21. Sep, 9		$1{ }^{1} 20.5 \mathrm{~W}$.
" "	$47 \quad 56 \cdot 2$	84540	1843	May 23.....	9-55a	$\begin{array}{ll}0 & 20-3 \mathrm{E} \text {. }\end{array}$
" " .	"	"	,			
" \quad "	"	"	1844			
" "	"	"	"	+... \cdot...		
" "	"	"				
Gargantua I.	47 " $34 \cdot 0$	$84 \quad 58.0$	${ }_{1964}^{185}$			
*Cape Gargantua, L. Superior	$47 \quad 36 \cdot 9$	85050	1843	May 21.	2-15p	038.0 E.
" \quad "	"	"	"			
White river	$48{ }^{\prime \prime} 36 \cdot 0$	85 " 18.0	$\stackrel{11}{1904}$			
Michipicoten I	$47 \quad 42.0$	$85 \quad 46 \cdot 0$	1906.7			$1{ }^{1} 44^{-2}$ E
Caribou I. No 1	$\begin{array}{ll}47 & 20.0\end{array}$	$85 \quad 50 \cdot 0$	1906.7			$1{ }_{1}^{16.6} \mathrm{~W}$.
Otter island	$48 \quad 06 \cdot 0$	8603.0	1906.7			$407 \cdot 3$ "
*S.E. of Otter I., Lake Superior	$48 \quad 07 \cdot 0$	$86 \quad 07 \cdot 0$	1843		
Tip-Top.	$48 \quad 15 \cdot 0$	$86{ }^{\prime \prime} 08 \cdot 0$	1871			
Oiseaux bay.	4822.0	$86 \quad 10 \cdot 0$	$1906 \cdot 7$			11 41
Rivière Blanche, Lake Superior	4831.7	8614.0	1844	Oct 21.	3-51p	215.2 E
\cdots	"	"	"			
Pic, Lake Superior.	48 " $35 \cdot 3$	$86^{\prime \prime} 15 \cdot 0$	1843			
" 1	"	"				
" $" 1$............	"	"	1844	Oct. 18	10-38a	5133
" n.	"	"	"	" 18......	11-06a	5225
	"	"	"			

[^5]SESSIONAL PAPER No. 25a
V-Con.
RESULTS-Con.
RHO-Cor.

C. I.-Carnegie Institution.
I. S.-lake Survey.

MAGNETIC
Onta

Place.	Latitude.		Longitude.		Year.	Month	Hour and	Declination.
Pic, Lake Superior	48	$35 \cdot 3$	N6	$15 \cdot 0$	1845			
Peninsula harbor..	48	42.0	86	200	19067			453.7 W
	48	44.0	86	28.0	1824			
*Black Rock		41.0	86	30.0	19067			1926.4 W
Pic island.		42.0	86	$34 \cdot \mathrm{e}$	19067			$245 \cdot 8$
Sunday harbor		37.0 49.0	86	59.0	19067			$1{ }^{1} 21.0$ "
Schreiber ${ }^{\text {a }}$,	48	49.0	87	18.0	19067			$0224{ }^{\prime \prime}$
"Battle island, Lake Superior	48	45.0 45.0	87	33.0	1843			
"		45.0 45.0	87	$\begin{aligned} & 33.0 \\ & 33.0 \end{aligned}$	1843 1843			
"	48	45.0	87	$33^{\circ} 0$	1906.7			1576 W
Simpson island, L. Superior.		49.0	87	$45^{\circ} 0$	1843	May 27	6-30a	$5 \quad 44 \cdot 8 \mathrm{E}$
		49.0	87	45.0 48.0	1843			
Isle St. Ignace.	48	46.0 38.0	87 88	$48 \cdot 0$ 06.0	1906.7			$4^{-1511 .}$
Spar Point island		38.0 36.0	88	06.0 08.0	1906%			$\begin{array}{ll}2 & 00 \cdot 2 " \\ 6 & 12.0\end{array}$
${ }^{*}$ Porcupine island		38.0	88	09.0	$1906 \cdot 7$			$2130 \cdot 1 \mathrm{~W}$
Nipigon		01.0	88	16.0	19067			1 17. t E
Roche de Bont ids.	48	31.0	88	21.0	19067			$0 \quad 29.4 \mathrm{~W}$
Big Edward island		22.0	88	38.0	$1906 \cdot 8$			$\begin{array}{ll}3 & 28.4 \mathrm{E}\end{array}$
Porphyry point	48	${ }^{21.0}$	88	38.0	19068		\ldots	316.2 "
Five miles east of Thunder cape	48	$20^{20} 0$	88	52.0	1843			
" "	48	20^{20}	88	52.0	1843			
Thunder harbor.		19.0	88	53.0	$1906 \cdot 8$			214.0 E
Port Arthur.		26.0	89	$12 \cdot 6$	1884			
Fort William	48	23.5	89	135	1843	May 29.	$5-32 \mathrm{p}$	$6 \quad 14 \cdot 3 \mathrm{E}$
-	48	23.5	89	135	1843	30	4-12p	$6{ }^{6} 41 \cdot 9$ "
" .	48	$23 \cdot 5$	89	135	1843	30	4.17p	656.6
"	48	23.5	89	$13 \cdot 5$	1843	- 31	$9-11 \mathrm{a}$	$646 \cdot 1$ n
"	48	$23 \cdot 5$	89	13.5	1824			$905 \cdot 0$ "
"	48	23.5	89	13.5	1825	May 12.		$717 \cdot 5$ "
"	48	23.5	89	13.5	1844	Oct. 11.		5014.
.	48	235	89	13.5	1844			
"	18	23.5	89	13.5	1844			
	48	23.5	89	$13 \cdot 5$	1845			
Fort Willism school	48	24.0	89	140	$1902 \cdot 8$. . .		$3 \quad 49 \cdot 9 \mathrm{E}$
Fort William mission.	48	24.0 24.0	89	14.0 14.0	$1902 \cdot 8$ 1906			3 $32 \cdot 9 ⿱ 艹$ 3 37
Sturgeon bay.	48	11.0	89	18.0	1906.8			${ }_{2} 18.1^{\prime \prime}$
*Victoria island.	48	05.0	89	21.0	1906.8			0 313 ${ }^{\prime \prime}$
Dog portage	48	39.0	89	30.0	1843			
"	48	39.0	89	30.0	1843			
"	48	39.0	89	$30^{\circ} 0$	1814			
"	48	39.0	89	30^{-0}	1844			
Pigeon	48	39.0	89	30^{-0}	1844			
Pigeon river.	48	n0.0	89	34.0	$1906 \cdot 8$			2448 E
*Portage Ecarte. .	48	25.0	89	44.0	1843		
	48	25.0	89	44.0	1843	
Prairie portage	48		90 90	$01 \cdot 5$	1813 $18+3$
"	48	57.5	90 90	01.5 015	1813 1814			
"	48	57.5	90	01.5	1844			
	48	57.5	90	01.5	1844			
S. W. of Savanne portage	48	53.0	10	$03 \cdot 3$	1825	May 21		$9 \quad 23.9 \mathrm{E}$
" "		"			1843	June 6	7-52a	$8 \quad 06.3$ "
" ${ }^{\circ}$		"		"	1844	Oct.	7-12p	7 23.1"

SESSIONAL PAPER No. 25a
V-Con.
RESULTS-Con.
rto-Con.

9-10 EDWARD VII., A. 1910
TABLE
MAGNETIC
C. I.-Carnegie Institution.
L. S.-Lake Survey.
C. S. - Coast Surrey.

[^6]SESSIONAL PAPER No. 25a
V-Con.
RESULTS--Con.
R1O-Con.

MAGNETIC

Hudsox Bay and

SESSIONAL PAPER No. 25a
VI.

RESULTS.

Surrounding Terbitory.

9-10 EDWARD VII., A. 1910
TABLE
MAGNETIC
Hudson Bay and

[^7]SESSIONAL PAPER No. $25 a$
V I-Con.
RESULTS-Con.
Surrounding Territomy - Con.

9-10 EDWARD VII., A. 1910
TABLE
MAGNETIC
Hudson Bay and

Place.	Latitude.	Longitude.	Year.	Month and day.	Hour and minute.	Declination.
York Factory	$56 \quad 59 \cdot 9$	$92 \quad 260$	1846			
-13s)	".	"	1847			
	"	"	1857			
" - 80 ¢	"	,	"		10-15	
"	"	*	1884	Sept. 12	$\text { to } \begin{gathered} 11-53 a \\ 9.20 \end{gathered}$	$6 \quad 45 \cdot 0 \mathrm{E}$
-	"	"	"	13.	to 9-46a	$632 \cdot 0$ "
Shanty narrows, Lac Seul.	$50 \quad 29 \cdot 3$	92 51. 57	1885	Aug. 1.	5-33P	$654{ }^{\text {¢ }}$ \%
" the Shamattow and	"	"	"	" 2	7-47a	715%
Jet. of the Shamattawa and Hayes rivers.	$56 \quad 21 \cdot 0$	$93 \quad 00 \cdot 0$	1843	July 22	6-15p	$\begin{array}{cc}10 & 00 \cdot 0{ }^{\prime \prime} \\ 12 & 19.6\end{array}$
".	"	"	"	" 28		
" "	"	*	"			
English river.	$50 \quad 38 \cdot 9$	$93 \quad 102$	1885	July 29	$5-30 \mathrm{p}$	$9 \quad 21.0 \mathrm{E}$
"	"	"	"			
Camping lake, English river.	$50 \quad 38 \cdot 1$	$93 \quad 24 \cdot 1$	"	July 26	9-40a	$8 \quad 20 \cdot 0$.
White" Mud portage	(5) $33 \cdot 0$	93 \#4 6	1843	July 31	7-19a	$10 \quad 51 \cdot 0 \mathrm{E}$
" ${ }^{\text {" }}$	"	"	"			
"	"	-	"			
" 1 . ${ }^{\text {a }}$	"		"			
Tide lake, Fnglish river.	$50 \quad 20.6$	$93 \quad 57 \cdot 0$	1885	July 18	6-15p	$924 \cdot 8 \mathrm{E}$
		0	1	, 19	-30a	9238.1
Devils Landing Place	$5424 \cdot 0$	$94 \quad 1600$	1844	Aug. 1	8-24a	11 49'4"
${ }^{\prime \prime}$	"	*	"			
Grassy narrowz, English river..	$50 \quad 107$	$94 \quad 022$	1885	July 15	$5-10 \mathrm{p}$	$9280 \ldots$
Fort Churehill.	58 73 13	$9414 \cdot 0$	1546	June 29	a.m.	12 430 E.
硣	"	"	"	July 1	p.m.	$1129^{\circ} 0$
" $\quad . .$.	"		"			
" \quad.......	"	"	"	.		
Long portage	55 "140	94 "22.0	1819	Sept....		i1 104 E.
Loak portage			$18+3$	July 20.	5-42a	$\begin{array}{ll}12 & 59.4\end{array}$
	"	,	"	Aug. 2, ..	6-29a	12 13• ${ }^{\prime \prime}$
".....	"	"	"	
" - . ${ }^{\text {a }}$	"	"	"	,	
English river	$50 \quad 16 \cdot 0$	$94 \quad 306$	1885	July 12...	8-10a	9447 E .
"	"	"	\cdots			
	$50 \quad 21 \cdot 8$	$94 \quad 39 \cdot 3$	"	\% 9....	6-00p	$10 \quad 21 \cdot 2 \mathrm{E}$.
" -1.......	"	"	"			
" .	$50 \quad 14 \cdot 5$	$94 \quad 59 \cdot 3$	"	July 5 ,	$9-56 \mathrm{a}$	$9 \quad 0 \pi^{\circ} 0 \mathrm{E}$.

SESSIONAL PAPER No. 25a
VI-Con.
RESULTS-Con.
Surrounding Territori--Con.

Month and day.	$\begin{aligned} & \text { Hour } \\ & \text { and } \\ & \text { minute. } \end{aligned}$	Dip.	Month and day.	$\begin{gathered} \text { Hour } \\ \text { and } \\ \text { minute. } \end{gathered}$	Hor. intens.	Total intens.	Temperature	Observer.
		- ,					。	
Feb. 9		$83 \quad 429$						Dr. J. Rae.
April 25.		83						D
Sept. 18.		83 47.0						
Aug. 9.		$83 \quad 53 \cdot 0$				6466		Blakiston.
		6463		"
Sept. 11..	to $\begin{aligned} & 3-40 p \\ & t-18\end{aligned}$	$83 \quad 472$	Sept. 11....	to $\begin{gathered}4-10 p \\ 3-45\end{gathered}$		6419		Otto Klotz.
" 11.	to $4-56 \mathrm{p}$	$\begin{array}{lll}83 & 467\end{array}$	11.	to $4-10 \mathrm{p}$		6423		"
Aug. 1	to $6-20 \mathrm{p}$	$79 \quad 163$	Aug. 1.	to $6-50 \mathrm{p}$		6557	59	Th. Fawcett.
" 2	to $\begin{gathered}8-00 \\ 8-503\end{gathered}$	$79 \quad 14 \cdot 9$	" 2	to $\begin{aligned} & \text { 9-00 } \\ & 9-32 \mathrm{a}\end{aligned}$		6520	78	
July 28	400 p	83856	July 22.			6503		J. H. Lefroy.
"1 22.		$83 \quad 41 \cdot 6$	II 28.			-6534		"
" 28		$83 \quad 30 \cdot 2$	" 22			6504		"
			" 28.			6496		"
July 29.	to $\begin{gathered}5-50 \\ 6-30 \mathrm{p} \\ 7-36\end{gathered}$	$79 \quad 10 \cdot 8$	" 29 ..	to $\begin{gathered}6-40 \\ 7-10 \mathrm{p} \\ 7-36\end{gathered}$		6486	74	Th. Fawcett.
- $29 . \ldots$	to $\begin{gathered}8-10 \mathrm{p} \\ 4-40\end{gathered}$	$79 \quad 13 \cdot 0$	29.	to $\begin{gathered}8-10 \mathrm{p} \\ 11-05\end{gathered}$		6474	71	"
- 26.	to $\begin{gathered}11-60 a \\ 4-00\end{gathered}$	$79 \quad 161$	- 26 .	to $\begin{gathered}11-48 \mathrm{a} \\ 4-30\end{gathered}$		6477	75	"
" 26.	to $4-28 \mathrm{p}$	$\begin{array}{lll}79 & 18 & 2\end{array}$	" $26 .$.	to 5-05p		6463	67	
" 21.	1.00 p	83029	" 21			6552		J. H. Lefroy.
" 21.		83 11.6	${ }^{1} \quad 31$			6511		
31.		$83 \quad 00 \cdot 0$	1) 21.			-6484		"
	6-15		" 31	7-30		-6472		"
July 18...	$\text { to } \begin{gathered} 7-25 \mathrm{p} \\ 9-30 \end{gathered}$	$79 \quad 20 \cdot 0$	" 18....	to $\begin{gathered}8-05 p \\ 10-40\end{gathered}$		-6460	60	Th. Fawcett.
19.	to 10-35a	$79 \quad 22 \cdot 9$	(19..	to 11-25a		-6486	63	
Aug. 1		$82 \quad 50 \cdot 0$	Aug. 1			. 6.576		J. H. Lefroy.
	5-00			6-00		6512		
July 15...	$\text { to } \begin{aligned} & 5-50 \mathrm{p} \\ & 7-30 \end{aligned}$	$79 \quad 09 \cdot 3$	July $15 \ldots$	to $\begin{gathered}6-30 p \\ 8-15\end{gathered}$		-6429	74	Th, Fawcett.
$\square 15$.	to $8-00 \mathrm{p}$	79	15.	to $8-50 \mathrm{p}$		-6471	65	
June 10 18	- \cdot. ${ }^{\text {a }}$.	84 84 84 4	Dr. J. Rae.
July 1 .		84 84 84			"
" 1.		8453.8						"
" 4.		84 44'5						
July 19.		$82 \quad 13.9$						Franklin.
(1) 20.	,	$82 \quad 21 \cdot 3$	Aug. 2			-6566		J. H. Lefroy.
Aug. 2		$8232 \cdot 2$				654)		..
			July 20			6568		"
			Aug. 2....			-6534		,
July 12.	to $\begin{array}{r}9-06 \\ 9-45 a\end{array}$	$79819 \cdot 0$	July 12.	to $10-46$		6405	83	Th. Fawcett.
	10-50			0-00				
12.	$\text { to } \frac{11-52 a}{6-00}$	$79 \quad 13 \cdot 6$	- 12..	to $\frac{0-35 \mathrm{p}}{7-30}$		6414	75	*
9.	$\text { to } \begin{gathered} 7-00 \mathrm{p} \\ 8010 \end{gathered}$	$79 \quad 259$	" 9...	to $\begin{gathered}\frac{7}{7}-5 \% \mathrm{p} \\ 7-00\end{gathered}$		6435	54	"
119	to ${ }^{8-10 p}$	79 18\%	" 10.	to $\begin{gathered}\text { 7-2va } \\ 0-10\end{gathered}$		-6457	64	"
115	to 11-10a	798080	- 5....	to $0-32 \mathrm{p}$		-6464	89	"

9-10 EDWARD VII., A. 1910
 TABLE
 MAGNETIC

Hudson Bay and

Place.	Latitude.	Longitude.	Year.	Month and day.	$\begin{gathered} \text { Hour } \\ \text { and } \\ \text { minute. } \end{gathered}$	Declination.
	- ,					- ,
		$9530 \cdot 0$ " "	$\begin{gathered} 1843 \\ \text { "" } \end{gathered}$	Aug. 3..	5-10p	1031.5 E .
Hell Gate, Upper portage.	$54 \quad 42 \cdot 0$	$96 \quad 10 \cdot 0$	"			
" 1 " ...	"	"	"		...	
" ${ }^{\prime \prime}$ - ...	"	"	"			
East" end Split "lake, Nelson	"	"	"		+ .	
East end Split lake, Nelson river.	$56 \quad 13 \cdot 3$	$\begin{array}{lll}96 & 18 & 8\end{array}$	1884			
South end of White Fall portage.	$54 \quad 23 \cdot 3$	$96 \quad 31.0$	1843	Aug. 5	3-36p	1732.0 E .
South end of White Fall portage.	"	"	"			
Nelson river.	$55 \quad 20 \cdot 8$	$\begin{array}{lll}97 & 06 & 3\end{array}$	1884		
Hairy lake, mouth of R. Echimamish	$54 \quad 20 \cdot 0$	$97 \quad 28.0$	1848	July 15...	4-00p	$18 \quad 437 \mathrm{E}$.
Hairy lake, mouth of R. Echinamish.	"	"	"			
Nelson river, on an island of granite..	$54 \quad 16.8$	$\begin{array}{lll}97 & 46.4\end{array}$	1884	July 27..	5-40p	1611.0 E .
Nelson river	$54 \quad 50 \cdot 1$	$\begin{array}{lll}98 & 11.8\end{array}$	1884			
Duck Nest, Lake Winnipeg	$53 \quad 15 \cdot 5$	$\begin{array}{lll}97 & 33 \cdot 5\end{array}$	1886	Aug. 3...	8-45a	16416 E .
Old N゙orway House.	$53{ }^{\prime \prime} 41 \cdot 6$	$98{ }^{\prime \prime} 01.4$	1819			
"			1813	,		
" \quad.	"	"	"			
Norway House.	$53 \quad 59 \cdot 6$	$98 \quad 08.9$	1843	July 13 .	6 45p	$16 \quad 21.9 \mathrm{E}$
"	53		"	" $13 \ldots$	7-04p	16 0-0
	"	"	"	\% 13...	${ }_{7-30 \mathrm{p}}^{7-10 \mathrm{p}}$	$\begin{array}{ccc}15 & 58 \cdot 6 & \prime \prime \\ 15 & 12.1\end{array}$
	"	"	"	" 13.	7-30p	1512.1
" 1 +.... +........	"	"	"	...		
	"	"	1844	Sept. 6.	5-22p	14510 E .
	"	"	"	" 7.	9-12a	1522.1
" $\quad . .$.	"	"	"			
" \quad.	"	"	"			
"	"	"	"		...	\because
" $\quad . \quad$.....	\cdots	"	1884	July 22.	$4-30 \mathrm{p}$	$1455 \cdot 0 \mathrm{E}$.
" \quad.	"	"	"	1 24.	4-30p	1459.0
"	"	"	"	Oct. 4	$3-15 \mathrm{p}$	1500.0 "
" \quad.	"	"	"			- .

[^8]
SESSIONAL PAPER No. 25a

VI-Con.
RESUCTS-Con.
Surrounding Tebhitory-Con.

TABLE

MAGNETIC

C. I.-Carnegie Institution.

Mani

[^9]SESSIONAL PAPER No. 25a
VII.

RESULTS.
toba.

Place.	Latitude.		Longitude.		Year.	Month and day.	$\begin{aligned} & \text { Hour } \\ & \text { and } \\ & \text { minute. } \end{aligned}$	Declination.	
									,
Wesleyan Mission, Berens riv. Fort Garry		22.6		12.0	1843	July 8.	6-52p	11	$13 \cdot 3 \mathrm{E}$ 20.7
		$53 \cdot 2$	97	15.6	1843	June 29.	5-11p	15	$27 \cdot 6$
"		"		"	"	11.0	7-18p		$121^{\prime \prime}$
.		"		"	"				
\% -		"		"	"				
		"		"	"			
"		"		"	"				
Winnipeg, C.P.R. station		53.5		08.0	$18 \stackrel{3}{82}$				
Winnipeg "					$\stackrel{\text { ¢ }}{1908}$				
Winnipeg						$18,20 \text {. }$	10-30a	13	58.6
Near Leaf river, Lake Winnipeg.		31.6		18.0	1843	July 10...	8-03a	19	$12 \cdot 2 \mathrm{E}$
" " "		"			"				
" " .		"		"	"		...		
$"$ "		"		"	"	. . .	\ldots	.	.
Four miles south of War Path river, Lake Winnipeg		"		"	"				
		18.3		14.6	1886	Sept. 22.	9.0013		48.4
End "of Long point," Lake Winnipeg.		"		"	"				
		025		27.5	1886	Sept. 9	8-45a	15	$39 \cdot 1 \quad 1$
North" side of Long" point, Lake Winnipeg.		"		"	"				
		042		$44 \cdot 5$	1886	Sept. 6.	8-45a	17	318
North end of "Limeston" bay, Lake Winnipeg.		"		"	"				
		$53 \cdot 8$		48.7	1886	Aug. 19.	8-15a	15	13.8
Lake Winnipeg.	53	31.9		12.0	1843	Aug. 14	x-14a	17	$073 \ldots$
.		"		"	"				
		"		"	"				
Grand Rapids, east end.		08.4		27.0	1843	Aug. 15	4-14p		$12 \cdot 9$
" "		"			181				
1.		"		"	1814	Sept. 2.	$9-43 \mathrm{a}$	17	25.0 H
" "1 ...		"		"	"				
" 11		"		"	"				
" ${ }^{\text {\% }}$ -		"		"	"				
H. B. Co's. post, Grand Rapids Cross lake	53	13.4		29.0	1884	July 17	615 p	15	38.0
		$10 \cdot 1$		$34 \cdot 0$	1843	Aly. 16	9-34a	18	03.7
"		"		"	"				
"		"		"	"		,		
		"		"	"				
\% 1		"		"	"				
"		"		"	"				
Brandon.	49	500		$57 \cdot 0$	1884	July 18.	$5 \cdot 42 \mathrm{p}$	14	$46 \cdot 5$
" ${ }^{\text {a }}$.		"		"	"	1. 19.	9.02 a	15	04.8
" -						19	11-32a	14	${ }^{4.9}$
" \quad.	49	520		58.0	19067				(4) 2 -

SESSIONAL PAPER No. 25a
V II-Con.
RESULTS-Con.
тов. - Con.

9-10 EDWARD VII., A. 1910

TABLE
 MAGNETIC
 Mani

C. I.-Carnegie Institution.

SESSIONAL PAPER No. 25a
VII-Con.
RESULTS-Con.

C. I-Carnegie Institution.

SESSIONAL PAPER No. 25a

VIII.

RESULTS.
and Alberta.

9-10 EDWARD VII., A. 1910
TABLE

MAGNETIC

C. I.-Carnegie Jnstitntion.

Saskatchewan

Place.	Latitude.		Longitude.		Year.	Month and day.	$\begin{aligned} & \text { Hour } \\ & \text { and } \\ & \text { minute. } \end{aligned}$	Declination.		
			.							
Northwest of Reaver hills...	31	320	103	42.6	1820	June 28.	7-9Ma	20	$09 \cdot 0$	
"				"	"					
Fort Qu* ${ }^{\circ} \mathrm{pl}$		$46 \cdot 3$	103	4-1	"	July 5.	3-00p	19	30-0	"
					"	- 10.	7-301a	19	40^{-0}	,
On Touchwood and Qu'Appelle trail.		125	103	538	"	$\begin{aligned} & \mathrm{J}_{\text {nue }} 30 . \\ & \mathrm{Jnly}_{1} \\ & 1 . \ldots . . \end{aligned}$	7-30p 5	19	$\begin{aligned} & 50 \cdot 0 \\ & 50 \cdot 0 \end{aligned}$	"
Touchwood hills, H. B. Co's post.		21 i	104	(tu) 0	,	June 28	$6-00 \mathrm{p}$	18	33.6	"
On bank, Saskatchewan river		18.7	104	04.7	1884					
H. B. Co's post, Stanley	55	254	104	189	1888	Sept. 15	$8-10 a$	23	$38 \cdot 2$	
" "		$\stackrel{ }{\square}$		$\stackrel{ }{4}$	\cdots	- 15.	8-30a	22	$53-9$	"
Mountain portage		384	104	$19^{\circ} \mathrm{O}$	"	13.	$3-40 \mathrm{p}$	20	10%	,
		33.4	104	19.2		- 13	3-50p	21	04-1	"
* Little Rock Portage.		30.0	104	340 	1843	dug. ${ }_{\text {din }}$ in 31.	+18p	16	350 163	"
".		.		.	,.	- 31.	5-10p	17	014	"
Regina.	50	274	104	350	1884	Juis 21.	90.3	18	4.8	"
"		".		"	"	(1) 21	9-07p 3.62 p	18	$32 \cdot 3$ to. 5	..
$\stackrel{\square}{4}$		".			"	". 21.		18	418	"
East end of (ireat Devil's portage		260	104	360	19067			19	$12^{\circ} 0$	"
		40 +	104	478	1843	Sept. 1	$9-27 \mathrm{a}$		48.5	"
" -		"		"	"					
West of Fort a la Corne. 21 miles below forks of Saskatchewan river.		097	104	$50: 3$	1884	May 26.	$3-4 \mathrm{p}$	21	50.0 F	
	53	130	104	516	1844	Aug. 27.	4-4tp	24	45.0	"
"		"		"	"					
"		"		".	1×09				$30^{\circ} 0 \mathrm{E}$	
Trout Falls portage.	55	429	104	$58 \cdot 8$	1888	Sept.	3-30p		457	*
Black Bear Island lake..		"		"	"	"	$3-50 \mathrm{p}$	22	520	"
		12.5	105	35 亏	"	" 2.	9-15a	21	$1+0$	"
Pine portage					(1)	- 2	1-29p	21	320	"
	55	$43^{\circ} 0$	106	$00 \cdot 0$	1843					
					..					
Carlton House.	52	$50 \cdot 8$	106	$32 \cdot 0$	1844	Aug. 26.	9-00a		55	
		"		"						
Knee lake - Local disturbance.	55	$50 \cdot 8$	106	334	1888	Aug. 26.	9-30a	27	19.6	

SESSIONAL PAPER No. 25a
VIII-Con.
RESULTS-Con.
and Alberta-Con.

SESSIONAL PAPER No. 25a
VIII-Con.
RESULTS-Con
and Alberta-Com,

Month and day.	$\begin{aligned} & \text { Hour } \\ & \text { and } \\ & \text { minute. } \end{aligned}$	Dip.	Month and day,	$\begin{aligned} & \text { Hour } \\ & \text { and } \\ & \text { minute. } \end{aligned}$	Hor. intens.	Total intens.	Tem perature	Observer.
$\begin{aligned} & \text { Aug. } 26, \ldots \\ & \text { Sept. } 4 \ldots . . \end{aligned}$	$\text { to } \begin{gathered} 11-20 \\ 11-43 \mathrm{a} \\ 1-30 \mathrm{p} \end{gathered}$	$\begin{array}{ll}80 & 45 \cdot 8 \\ 80 & 38.8\end{array}$	$\left\lvert\, \begin{array}{cc} \text { Aug. } & 26 \ldots . \\ \text { Sept. } & 4 \ldots \\ " 1 & 4 \ldots . \\ " 1 & 4 \ldots \end{array}\right.$	$\begin{gathered} 11-48 \\ \text { to } 12-06 a \end{gathered}$		$\begin{aligned} & 6529 \\ & 6537 \\ & 6505 \\ & 6477 \end{aligned}$	65	Th. Fawcett. J. H. Lefroy.
July 18.	$\text { to } \begin{gathered} 7-50 \mathrm{p} \\ 6-50 \end{gathered}$	7705						W. F King.
. 18 ..	$\text { to } \begin{gathered} 7-30 \mathrm{p} \\ 5-50 \end{gathered}$	$\begin{array}{cc}77 & 02: 3\end{array}$	\ldots					"
- 20.	to $\begin{gathered}6-35 p \\ 2-30\end{gathered}$	$76 \quad 513$		3. 00				
Aug. 19.	to $\begin{gathered}3-60 p \\ 3-35\end{gathered}$	$80 \quad 39 \cdot 8$	Aug. 19.	to $\begin{aligned} & 3-30 \mathrm{p} \\ & 5-15\end{aligned}$		6419	76	Th. Fawcett.
$\begin{array}{r}11 \\ \hline .\end{array}$	to $4-00 \mathrm{p}$	$\begin{array}{ll}80 & 3+2 \\ 78 & 16 \cdot 6\end{array}$	$\begin{array}{r}17 \\ \hline\end{array}$	to $5-40 \mathrm{p}$		6426 6495	73	J. H. Lefroy.
Sept. 7	p. m.	$80 \quad 112$	Sept. 7			6481		J. H. Laroy.
			"			6482		"
			"			6438		"
.			$117 .$.			6159	.	"
Aug. 11.	$(5-45$	79 56-1	Aug. 11....	to $+3-35 \mathrm{p}$		6371	75	Th. Fawcett.
. 11	$\underset{\substack{6-35 \\ 4-00}}{ }$	$79 \quad 581$	111.	to $\begin{gathered}7-04 \mathrm{p} \\ 5-35\end{gathered}$		6371	66	"
May 8	to $5-30 \mathrm{p}$	$\begin{array}{cc}76 & 32 \cdot 5 \\ 80 & 09.1\end{array}$	May 8	to 6-30p		6122	58	Otto Klotz.
Sept. 9.	$6-30$ $7-30$	$\begin{array}{ll}80 & 09 \cdot 1 \\ 80 & 10 \cdot 5\end{array}$	Rept. - 			6776 6471		J. H. Lefroy.
			9			6454		
.......	- .. \cdot		9			6449		"
			"119.			6412		".
\cdots. 6			" 9	.-		6440-.	
.... . .			- 9		6469	"
4....		$\cdots 9$.		6.42	- .-.	"
	.		9			6439	...	J. Franklin.
July i1.		79 55 0						
Aug. 5	$\text { to } \begin{aligned} & 2-06 \mathrm{p} \\ & 242 \end{aligned}$	$80 \quad 11 \cdot 9$	Aug. 5	to $\begin{gathered}2-36 \mathrm{p} \\ 3-10\end{gathered}$		6427	68	Th. Fawcett.
" 5.	$\text { to } \begin{gathered} 3-68 \mathrm{p} \\ 9-45 \end{gathered}$	$80 \quad 13 \cdot 3$	"	to $3-35 \mathrm{p}$		6429	60	"
Nov, 1....	to $10-10 a$	$77 \quad 52+3$						W. F. King.
- 2.	to 11-40a	$77 \quad 46 \cdot 4$						E. Deville.
								E. Devill.
....... ...	+ + .							"
......		- .						"
Aug. 23		$78 \quad 281$						J. H. Lefroy.
			"1 23.			6548		
			23.			6585		"
Sept. 13.	7-00a	$80 \quad 37 \cdot 0$	Sept. 13.			64.2		"
			11 13 13	. . .		6470		"
			$\begin{array}{ll} 13 \\ " & 13 \\ \hline \end{array}$			6457 6420	… ...	"
July 25...	$\text { to } \quad \begin{aligned} & 1-20 \\ & 1-55 \mathrm{p} \end{aligned}$	$75 \quad 50 \cdot 1$						W. F. King.

SESSIONAL PAPER No. 25a
VIII-Con.
RESULTS-Con.
and Alberta-Con.

9-10 EDWARD VII., A. 1910
TABLE
MAGNETIC
Saskatchewan

"Local disturbance.

SESSIONAL PAPER No. 25a
V II I-Con.
RESULTS-Con.
and Alberta-Con.

9-10 EDWARD VII., A. 1910
TABLE
MAGNETIC
C. I.-Carnegie Institution.

Saskatchewan

Place.	Latitude.		Longitude.		Year.	Month and day.	$\begin{aligned} & \text { Hour } \\ & \text { and } \\ & \text { minute. } \end{aligned}$	Declination.	
	。		-					-	,
Fort Edmonto		$32 \cdot 0$	113	$30 \cdot 1$	1888	May 17	$1-30 \mathrm{p}$		28.7 F
		"		"	"				
At north branch, Pipestone creek.		$04 \cdot 3$	113	355	1880	Sept. 25...	600 p	25	$14 \cdot 4$
Mosquito creek.		$22 \cdot 4$	113	$48 \cdot 8$	"	Aug. 20	7-00p		$03.0{ }^{\prime \prime}$
Forks of the Athabaska.....		13.0		\%3\%	1844				
		13.0 02.9		${ }^{53.0}$	1888	Aug 7 July 19	$\begin{aligned} & 4-4 p \\ & 1-50 p \end{aligned}$	23	53.7 ".
Fourth base on $5^{\text {ch }}$ meridian...		$21 \cdot 3$		$00^{\circ} 0$	1883				
Land survey station Athabaska river. Crossing of Pembina river		+3.0	114	$00 \cdot 2$	184	Aug. 9	9-10a		29*1"
		08.2		$00 \cdot 2$	"	14	9-42a		23.0 .
Mouth of Lesser Slave lake...		29.0	114	03.5	1888	June 4.	noon.		29.5 "
Land survey station..				03.5	1883	$\text { May } 9$	$3-15 p$	27	25.3 .1 45.4%
Land survey station...........					188				
		"		"	"				
Near Eort Calgary		08.0 39.0		${ }^{0+} 0$	1880 184				
Poplar island....		39.0		$10 \cdot 7$	1844	July 9	9-30a		298 ${ }^{\prime \prime}$
Morleyville, Kocky Mit.		105	114	$18 \cdot 5$	1880				
Fort A"ssiniboine"		${ }_{21} 17$		$\stackrel{11}{28} 4$	184.4	Aug. 11.	$7-02 \mathrm{a}$	24	39.0
Falls of the Peace river Swan point, Lesser Slave lake.. Sulphur monntain. Banff					"				
	88	$24 \cdot 2$	114	$51 \cdot 1$	"	July 10	10-38a	30	22.011
		26°	115	03.1	-	Aug. 6.	10-00a	26	$19 \cdot 0$
		09.0		$34 \cdot 0$	1907.5				53.5."
				"	"				
Tunnel mountain	51	10.0	115	37.0	1908	July 22-24.			5.6"
Fort Vermilion.	58	$2+5$	115	$58 \cdot 6$	1844	July 11....	6-31p		$40^{\circ} 0$ "
"......		"		"	"				
" $\quad .$.		"		"	"			
"		"		"	"				
Fort of Lesser Slave lake. . . .	58	$32 \cdot 6$	116	$00 \cdot 0$	"	Aug. $3 .$.	5-37p		$52 \cdot 5$.
Fort of "		"		"	"				
" " .		"		"	"				
Land survey station...........	55	$32 \cdot 5$	116	08.6	1883				
On Peace river. Opposite River Cadotte. Island opposite Baril river Land survey station.	57	19.0	117		184	July 17.	8-39a	28	53.011
	56	47.0	117	017	"	" 19	9-17a		${ }^{03.011}$
	57	57.0	117	0.7	83	" 15...	8-22a		$56^{\circ} 0 \mathrm{n}$
	56	08°	117	50.6	1883				
Fart Dunvegan.		55.6	118	28.5	18.4	July 23.	10-05a		080
		"			"		$5-49 \mathrm{p}$		$24^{\circ} 0$
		"			"				
				"	"				
		"							

SESSIONAL PAPER No. 25a
V I I I-Con.
RESULTS-Con.
and Alberta-Con.

9-10 EDWARD VII., A. 1910

TABLE
MAGNETIC
C. I -Carnegie Institution.

Battish

Place.	Latitude.		Longitude.		Year.	Month and day.	$\begin{gathered} \text { Hour } \\ \text { and } \\ \text { minute. } \end{gathered}$	Declination.	
			。					-	
Akamina station. -Wigwam river section.		91.0 00.0		04.0 45.0	1861	Aug. ${ }^{2}$ 2 ...		23	12.6 E
						July15, Aug.		23	52.0
Camp No. 11 Joseph's prairie, Camp No. 14		07.0		16.0	"				
		31.0		35.0	"				
Stephen, Pureky mountains ...		$27 \cdot 0$	116	17%	1886	May 14	4-00p	23	55.0
Near Leanchoil, along C.P.R.. Between Palliser and Golden, C.P.R.		13.8	116	$37 \cdot 9$	\cdots	" 28	4-5p	23	$33 \cdot 0$
		$17 \cdot 9$		51.7		June 4	11-00a	25	40.0 -
Golden.		$18 \cdot 0$		57.0	1908	July 27.30		26	
		"			"				
One mile north of Golden.		18.8	116	58.5	1886	June	5-54p	25	37.0 E
Keefe and Clarke siding Glacter.		30.9 16.0	${ }_{117}^{117}$	$\begin{array}{r} 20 \cdot 4 \\ 28 \cdot 0 \end{array}$	1907.8	- 18	9-21a	26	$\begin{aligned} & 34 \cdot 0 \quad \text { "1 } \\ & 57 \cdot 1 \ldots \end{aligned}$
Near Rogers pass, along C.P.R.		$17 \cdot 6$	117	310	1886	June 30.	2-45p	25	$27 \cdot 5$.
Near Revelstoke, along C.P.R. Revelstoke		$00 \cdot 1$		11.9	1908	Aug. 15....	4-23p	27	17.5 48.6
		$00^{\circ} 0$		120	1908	Aug. 3, 4, 5.		25	48.6
Inchwointum station sicamous		${ }_{00} 0 \cdot 0$		280	18860	Nov. 13		20	17.0
		50.0		59.0	1908	Aug 6-10		25	$52 \cdot 8$
Sicamous narrows........... 120 yds. west of station 1569 of traverse.		497	118	$59 \cdot 6$	1885	Oct. 21	11-20a	24	$46 \cdot 2$ n
		"		"	"				
		447		145	"	$1 \times$	$4-50 \mathrm{p}$		$37 \cdot 5$
Lake Shusway, Blind bay		"		"	"				
		$51 \cdot 0$		$10 \cdot 5$	\cdots				
Southwest end of Salinon Arm, Lake Shuswap.		"		"	"				
		459		$19 \cdot 9$	"	Sept. 25.	5-10p	24	55.9 E
" "		"		"	"	- 27.	$t-15 p$		46^{-9}.
"		"		"	"				
"		"		"	"				
Littl. Shuswap,		$48 \cdot 6$	119	41.2	"	Sept. 13..	4.45 p	25	07.5 E
Ashtnolaon station. On Ashtnolawn river. 350 yds , south of station 1289 traverse.					1860	Aug. 17, 18.			$4+0$
	49	10.0	120	$110 \cdot 0$		July ...			$10^{\circ} 0$
		$38 \cdot 9$		$06 \cdot 9$	1885	Sept.	$4-(6) p$		59-4"
"		"		*	"				

[^10]IX.

RESULTS.
Columbia.

9-10 EDWARD VII., A. 1913
TABLE
MAGNETIC
C. I.-Carnegie Institution.

Britise

SESSIONAL PAPER No. 25a
IX-Con.
RESULTS-Con.
Columbia-Com.

9－10 EDWARD VH．，A． 1910
TABLE
MAGNETIC
C．I－Carnegie Institution．
C．S．－Coast Survey．
Baitish

Place．	Latitude．	Longitude．	Year．	Month and day．	$\begin{gathered} \text { Hour } \\ \text { and } \\ \text { minute. } \end{gathered}$	Declination．
	。	－，				，
Alexandria	52350	$122 \cdot 28 \cdot 0$	190＊	$\left\{\begin{array}{l} \text { Aug. } 30 \\ \{\text { Sept. } 1 \end{array}\right\}$		$28 \quad 10^{-2}$
Fort Alexandria	$52 \quad 33 \cdot 0$	122 29：0	1833			
Quesnel．．．．．	$52 \quad 59.0$	12232.0	$19 \mathrm{M18}$	Aug．26－28．		28 190
		＂	＂			
Port Hammond	$49 \quad 121$	$12238 \cdot 9$	1885	May 26.	6－38p	$22 \quad 46 \cdot 2 \mathrm{E}$ ．
或．．．						
Camp Semianu．	49010	$122{ }^{16} 0$	1857			
Station Semianu	49007	$123 \quad 462$	1857			
$\stackrel{\text { wir }}{\text { Port Moody }}$	$4917 \cdot 0$	122 52．6	1885	June 3.	145p	$22 \quad 45 \cdot 8 \mathrm{E}$ ．
New Westminster	4， 130	$122 \quad 53.0$	1862		4．55p	$22 \quad 46 \cdot 3$
Vancouver．．．．	$49 \quad 18.0$	$\begin{array}{lll}123 & 0 \\ 12.9\end{array}$	$1898 \cdot 4$			$2 \pm 300 \mathrm{E}$ ．
Vancouver（Brockton Pt．）．	49180	$12307 \cdot 0$	1908	Oct．5－8		25 $23 \cdot 3$
Burrard inlet	49 16．0	123100	1859			
Victoria（C．1，station）．	48250	12321.0	1908	Oct．13， 14.		24340
＂．\ldots ．．．．．．．．	4825.0	12321.0	1907%			$24 \quad 15 \cdot 2$
＂	4826.0	$123 \quad 25.0$	1858			
＂${ }^{\text {I }}$ ．	$48 \quad 25 \cdot 8$	$123 \quad 22.2$	1880			
Victoria，Laurel point	$48 \quad 25.4$	$123-22.5$	1862			
Esquimalt．．．	4825.0	123 26．0	1881.8			$22 \quad 55.6$
．．．	$4826 \cdot 0$	12327 ú	1859			
＂	＂	＂	1862			
＂	＂	123 ＂ 28	1842.7 1898.3			$23+2 \cdot 9$
Nanaimo（Jesse island）	$49 \quad 13.0$	$123 \quad 52 \cdot 0$	1908	Oct．17， 18		$25 \quad 153$
r－1 ${ }_{\text {－}}$						
Departure bay，Vancouver I．	49 49 49 12.6	$\begin{array}{ll}123 & 57.0 \\ 123 & 58.5\end{array}$	1881 1800	Oct． 7		$23 \quad 556$ E．
ansimo	49 19 19 19	123 124 18.5	1880 186.4			
Stuart lake．	54.27 .0	12420.0	1833			
Fraser lake．	5403.0	$124 \quad 40 \cdot 0$	1833			
Bayne sound（Maple spit）．．．．．	4928.0	124 $45 \cdot 0$	1898.			24857 E ．
SiN＂（Beak point）．．．	4936.0	12451.0	$1898 \cdot 6$	．．．．．．．．．．	．	24141
Union	4936.0	124540	${ }_{1900} 198$			25 50.6 26
Union（1）	4936.0	124 ＂540	19046			$26 \quad 00 \cdot 9 \mathrm{E}$ ．
Union（2）		＂				$26 \quad 17 \cdot 4$
Waddington harbour．．	50.54	$\begin{array}{ll}124 & 49 \cdot 5\end{array}$	1881	July 30		$25.22 \cdot 0$
Henry bay，Vancouver island．．	49.36 .0	12451.0	1860	．．．．．．．．．		
Hecate bay，	$49 \quad 15 \cdot 0$	125060	1861			
Port Neville．	$50 \quad 310$	$\begin{array}{lll}126 & 04^{\prime} 0\end{array}$	1860			
Anchorage cove，Kingcome inlet	50.52 .8	$126 \quad 117$	1881	Aug． 3		25 $42 \cdot 7$
Nootka sound，Vanc ver island	$49366^{\circ} 0$	$126 \quad 370$				．．．．．．．．．．．
侕	＂		1798			
riendly cove，	498	$126 \quad 375$	1881	Sept． 27		$23 \quad 362$
Beaver harbou．	$50+3.0$	$127 \quad 25.0$	1860			
North harbour，Quatsino sound	$50 \quad 294$	$\begin{array}{ll}128 & 03.6\end{array}$	1881	Sept．24． 25.		24
Port McLoughlin．．．．．．．．．．．	52084	$12810 \cdot 3$	＂	Aug． 7.		$2642 \cdot 9$

SESSIONAL PAPER No. 25a
I X -Con.
RESULTS-Con.

Colvmbia-Con.

9-10 EDWARD VII., A. 1910
TABLE
MAGNETIC
British

SESSIONAL PAPER No. 25a

I X.-Con.
RESCLTS.-Con.
Colembla-Con.

SESSIONAL PAPER No. 25a

\mathbf{X}.

RESULTS.

Northwest Tefritories.
Latitude 60).

9-10 EDWARD VII., A. 1910
TABLE
MAGNETIC
Yekon and
Thim. (North of

SESSIONAL PAPER No. 25a

X -Cor.
RESULTS-Cun.
Northwest 1 dries-Con.
Latitude 60°).

Comparison at Agincourt.
On July 9, 1903, a series of readings were taken with magnet 10 , Tesdorpf magnetometer 1977, magnet erect, and maguet inverted.

$$
\begin{aligned}
& \text { The resulting declination July } 9 \text {, at } 14^{\mathrm{h}} 33^{\mathrm{m}} \text { was. . . } 6^{\circ} 01^{\prime} \cdot 4 \text { IT } \\
& \text { Observatory standard magnetometer. } 5^{\circ} 57^{\prime} \cdot 6 \\
& \text { Similarly on July } 11 \text { at } 14^{\text {h }} 05^{m} \text {, Tesdorpf. } 6^{\circ} 03^{\prime} \cdot 1 \\
& \text { Obsarvatory 6 } 6^{\circ} 00^{\prime} \cdot 4 \\
& \text { Meau difference } \mathrm{O} \text { - T.. } 3^{\prime} .2
\end{aligned}
$$

Heuce west declinations as observed with the Tesdorpf instrument must be numerically decreased by $3^{\prime} \cdot 2$, and east declinations increased numerically by the same amount.

For horizontal intensity the following comparisons were obtained:-

This is equivalent to $.00061 H$, which is the quantity to be deducted from observed values of $I 1$. In figures $2,3,4$, are shown the observations made for ascertaining the effect, if any, of the electric car service already referred to. The smooth curves drawn exhibit the diurnal variation clearly, showing the hours of the day when it changes most rapidly.

It will be seen that for April 24.1909 , the range was nearly 17 minutes of arc.
In figure 5 , is shown a curre based upon the one of the preceding date. This curve represents the actual liue that would be run by a surveyor with a compass in trying to lay down a true N.-S. liue, starting at $7 \mathrm{a} . \mathrm{m}$, of that day, getting half-mile sights, theu resetting at hour intervals, always with the same magnetic reading of the compass without getting back-sights on the preceding station. The scale of offsets is much exaggerated in the figure.

The result would be that after ruming six miles by evening, he would be 104 links or about 69 feet west of the line on which he started in the morming.

This shows the theoretical inaccuracy of a compass line due to diurnal variation aloue. Of course with the ordinary surveyor's compass it is not possible to read to single minutes, far less to fractions thereof such as enter into the above curve. But the point is, one cannot get away from the important effect of diurnal rariation, though it be masked by larger errors of reading. When compass lines are, or were, run in the open a fairly straight line could be run by using back-sights or simply 'picketing' the line, but this condition was rarely the case; the most of the compass lines were run through the woods, the trees being 'blazed' along the line, those on the line were 'notched' and left standing, and the compass simply put on the other side of the obstruction and the line continued on the same bearing as uear as it was possible to read the needle.

The actual magnetic bearings of the astronomic north and south line at Ottawa on that day were:

SESSIONAL PAPER No. 25a

For the coming season it is intended to send the observer along the northern shore of the St. Lawrence from Quebec eastward to Blane Sablon, near the western entrance of the strait of Belle Isle. The data from this territory are very meagre. so that the magnetic elements to be derived on this stretch of.about 750 miles will be of particular value.

The accompanying map shows the position of the various stations given in the table, and the direction of the magnetic meridians at the respective stations or places.

> GRAIITI,

Duriug the past season no member of the staff was available for making gravity obseryations.

> I have the honour to be, sir, Your obedient servant

OTTO KLOTZ.

Fis. 1-Magnetic Hut, Ottawa.
Klotz-Terrestrial Magnetism. $\frac{\text { Diumal Variation Curve }}{\text { Ottawa }}$

Klotz-Tkreatrial Magentisu,

Klotz-Terrestrial. Magnetism.

- Diumal Variation Curve

APPENDIX 2.

REPORT OF THE CHIEF ASTRONOMER, 1909.

ASTROPHYSICAL WORK

BY
J. S. PLASKETT, B.A.

CONTENTS.

Page.
Introduction 147
Papers published during the year 150
The Spectrographs 151
The Design of Spectrographs for Radial Velocity Determinations 152
The Optical Parts 153
Mechanical Design. 161
The New Single-Prism Spectrograph 163
The Optical Parts 163
The Guiding Telescope 164
The Comparison Apparatus 164
Slit and Slit Diaphragms 164
The Mechanical Parts 165
The Spectrograph Box 165
The Supporting Cradle 166
Temperature Control 167
Adjustment of the Instrument 168
The new Spectrograph in practice 169
Camera Objectires for Spectrographs. 170
Measurement and Reduction of Stellar Spectra 175
The Spectro-Comparator 177
Measures of β Geminorum 183
The Cœlostat Telescope 207
Radial Velocities 209
Binaries under Observation. 210
New Spectroscopic Binaries 210
δ Aquilæ. 212
The Orbit of β Orionis, 214
Lines in β Orionis. 215
Summary of Measures 216
Summary of Mean Velocities per night 221
Appendix A.-IV. E. Harper.
The Orbit of θ Aquilæ 225
Measures of θ Aquilæ. 226
Summary of Corrections 231
Final Elements. 232
Previous Observations 233
Additional Note on Allegheny Determination 235
The System of ϵ Herculis. 236
Early Observations of ϵ Herculis 235
Ottawa Measures of ϵ Herculis 239
Normal Places. 240
The Spectroscopic Binary η Boötis 241
Previous Observations 241
Ottawa Observations 242
Elements of Orbit 244
SESSIONAL PAPER No. 25a
Appendix B.-J. B. Cannon.
Page.
The Spectroscopic Binary a Coronx Borealis. 245
Lines Measured. 245
Measures of a Coronge Borealis 246
Elements 249
Appendix C. - R. E. DeLury.
The twenty-three foot Solar Spectrograph 251
Optical Parts 251
Mountings. 251
slit Attachment 252
Camera and Plate Holders. 253
Guide Plate for the Sun's Image 253
Some Results 254
Appendix D.-R. M. Motherwell.
Double Star Measures 257
Comet 1908 c (Morehouse) 258
Occultations of Stars by the Moon. 259
Instruments used on Boundary and Geodetic Surveys 260
Aberration of the Stellar Camera Objective 260
Tests for Spherical Aberration 261
Testing for Chromatic Aberration 266
Changing the Distance between the Components of the Outer Combination 267
Tables 268
Appendix E.-Measures.
β Orionis-
Record of Spectrograms. 278
Measures 286
A Aquile-
Record of Spectrograms 378
Neasures 380
є Herculis-
Record of Spectrograms. 406
Measures. 409
η Boïtis-
Record of Spectrograms. 454
Measures. 455
a Coronæ Borealis -
Record of Spectrograms 482
Measures f84
δ Aquila
Record of Spectrograms 535
Measures. 536
ILLUSTRATIONS.
Page.

1. Diagram of Refraction through Prism. 158
2. New Single-Prism Spectrograph 164
3. New Single-Prism Spectrograph. 164
4. Spectrograph Box 166
5. New Single-Prism Spectrograph, ready for use 168
6. Long-Focus Objectives with three prisms. 174
7. Short-Focus Objectives with three prisms 174
8. Objectives tested with one prism 174
9. Spectro-Comparator. 178
10. Diagram of Spectro-Comparator. 178
11. Diagram of Spectro-Comparator. 178
12. Form of Silvering on prism 178
13. Cœlostat House 208
14. Celostat Telescope Mechanism, looking north 208
15. Celostat Telescope Mechanism, looking south 208
16. Velocity Curve of β Orionis 222
17. Final Velocity Curve of θ Aquilæ 232
18. M. Deslandre's Observations 234
19. Deslandres' 1902 Observations 234
20. Allegheny Observations. Ottawa Curve. 234
21. Velocity Curve of ϵ Herculis. 238
22. Velocity Curve of η Boötis 244
23. a Coronæ Borealis, Curre from Hydrogen lines and Calcium line. 250
24. Velocity Curve of a Coronæ Borealis 250
25. Solar Spectrograph 252
26. Rear end of Solar Spectrograph 252
27. Slit Mechanism of Solar Spectrograph 252
28. Front end of Solar Spectrograph 259
29. Focal Curves of Solar Spectrograph 254
30. Reproductions of Solar Spectra 254
31. Morehouse's Comet 258
32. Morehouse's Comet 258
33. Morehouse's Comet 258
34. Morehouse's Comet 258
35. Morehouse's Comet 258
36. Morehouse's Comet 258
37. Stellar Camera 260
38. Determination of Focus 261
39. Zonal Dise. 262
40. Zonal Differences of Focus 264
41. Zonal Differences of Focus 264
42. Zonal Differences of Focus 264
43. Curvature of Field at different Zones. 264
44. Curvature of Field at different Zones 264
45. Chromatic Aberration Curve 267
46. Zonal Differences of Focus 268
47. Star Photographs at different Separations 268

APPENDIX 2.

ASTROPHYSICAL WORK BY J. S. PLASKETT, B.A.

Ottall. March 31. 1:W1:

W. F. Kıng, C.M.G., LL.D., Chief Astronomer, Department of the Interior, Ottawe.

Sir,-I have the honour to submit the following report upon the work carried on in the Astrophysical Department and in the other departments of the work of the Observatory under my direction during the past year.

It gives me pleasure to report satisfactory progress in all lines and to state that the work accomplished both in quality and quantity shows gratifying improvement over the records of previous years. As in previous years also it has been found necessary to spend considerable time in preparatory work, in testing, adjusting, and perfecting the instruments and appliances used, and in experimenting to determine the best methods of procedure. Although the time spent on such work necessarily diminishes the quantity of routine work accomplished, it is in my opinion time well -pent, if through such investigations and experiments we are in a position to do a larger quantity of more accurate work. Consequently, much of my time during the past year has been devoted to investigations bearing on improvements in instruments and methods, of which full details will be given later.

It gives me much pleasure to be able to speak in the highest terms of the very satisfactory work done by my assistants, Messrs. Harper, Motherwell, DeLury, Cannon and Parker.

As heretofore, the principal work has been the determination of the radial velocities of stars by means of the spectroscope, and in this work observations have been chiefly confined to known spectroscopic binaries for the determination of the elements of their orbits. However, observations on some stars with early type spectra have also been secured during times when sufficient binaries have not been available, and in measuring up the plates we have found the velocities of four of these stars to be variable; δ Herculis, γ Aquarii, \& Andromede, ξ Persei. The two latter. it has since been learned, had been previousy found variable at the Terkes Observatory, but not published, so that our discovery was independent.

The elements of the orbits of five spectroscopic binaries have been obtained, least squares corrections being applied in every case. The stars are θ Aquilæ, a Coronæ Borealis, η Boötis, ϵ Herculis, β Orionis. These stars will be discussed in detail below, but it may be of interest to mention that only in one case, η Boötis, have the observations been entirely satisfied by velocity curves due to simple elliptic orbits. In θ Aquilæ and ϵ Herculis a secondary disturbance due possibly to a third body, has been present. In a Coronæ Borealis the elements deduced from the hydrogen lines and the calcium, K, line differ from those obtained from the magnesium $\lambda+481.4$. while in β Orionis the amplitude of the velocits seems to be variable. This latter is of especial interest on account of the measures made at Yerkes and Lick Oliservatories showing its velocity to be constant within the apparent errors of observation.

Besides the binaries above, whose orbits have been determined, there are twelve others under observation, on three or four of which the work is well adranced. On the remainder, however, a considerable number of observations are still required. About 90 per cent of the binaries observed here are stars of early type, in the majority of which the lines in the spectra are broad and diffuse, in some cases unsymmetrically so, and consequently difficult of measurement. In such cases the agreement among the lines in a plate is poor and the error of measurement is high, the probable errors of single plates being as great as 7 km , per second in some cases. It is evident that, unless there is a large range of velocity, the elements of the orbits of such stars are subject to considerable uncertainty, and indeed in sereral cases the star has had to be abandoned on this account after considerable work had been done on it.

The instrumental equipment for this work has been increased since my last report by the addition of a new single-prism spectrograph designed by myself, and constructed, except the optical parts, entirely in our own workshop. Owing to press of repair and other work it was not completed and put into commission until about the first of March, but it has fulfilled all expectations both as regards shortening of exposure time and in respect to its stability and freedom from flexure. The displacement of the spectrum lines produced by a revolution of 180°, this producing the maximum amount of flexure, is quite unmeasurable and is not even certainly risible under high power magnification; there is no question but that it is the most stable singleprism spectograph ever constructed. The difference between it and the previous instrument, which was for its type a rigid example, is very marked, the displacement in the early instrument being equivalent to a velocity of over 100 km . per second.

My investigation on the fields given by different types of camera objectives for spectrographs was completed, and a concise account of the performance of all the objectives tested will be given below and will also appear in the Astrophysical Journal in May. Since my previous report a new single material Brashear objective for the new single prism spectrograph has been received and tested. Its angular aperture is about 50 per cent greater than the original one and when received, owing to the greater difficulty in correction, it had a small amount of positire aberration. By the kindness and through the skill of Mr. McDowell this aberration was finally removed and the objective is now practically perfect for its purpose. A special short focus objective by Ross has also been received and tested, giving beautiful definition and a fairly flat field. Thus, the requirements for all types of camera objectives have been successfully met, and there are now available suitable objectives for all classes of radial velocity and other spectroscopic work.

The investigation on the effect of increasing the slit width on the errors of measurement in radial velocity work has been continued with the two different dispersions now available. The new single-prism spectrograph and a short focus objective with the three prism instrument have been tested, giving results that bear out and extend those previously obtained. It is shown that, so far as early type spectra are concerned. both accidental and systematic errors approach a minimum value for a slit 0.051 mm . wide and that the use of a narrower slit, instead of increasing the accuracy as has generally been supposed, has to a certain degree the opposite effect, to say nothing of the proportional increase of exposure required. A detailed report of this work will be postponed to allow it to be finally completed.

In presenting the work on radial velocities and allied investigations in detail, I have adopted the same plan as last year, of having each observer give the details and results of the work he has been engaged on. Consequently, below will be found, besides my own remarks on radial velocities in general, my description of the new spectrograph, the inrestigations on camera objectives and on the effect of slit width, and the orbit of β Orionis, the orbits of θ Aquilx, η Boötis and ϵ Herculis by Mr. Harper, and the orbit of a Corone Borealis by Mr. Cannon. Mr. Parker, the third obserrer in radial relocity work, besides measuring many miscellaneous plates, speut
a great deal of time on the binary τ Tauri, but owing to difficulties due to causes outlined above was unable to obtain a satisfactory orbit and further observations next season will probably be necessary.

Work with the coelostat telescope in spectroscopic investigatious of the sun has made satisfactory progress, although not as much has been accomplished as we had hoped. This has been due to various unavoidable constructional delays in having the 23 -foot spectrograph and its attachments completed, to a long delay while the solar research laboratory was torn up for the installation of underground pipes and an electric pump for draining the trausit house piers, and to a very thorough investigation of some peculiar properties in the plane grating used as the dispersion piece in the spectrograph. This investigation, which is fully described by Dr. DeLury below, showed that only by masking part of the grating could even fair definition be secured, while the best definition is necessary for accurate results in the determination of the solar rotation. A number of plates for this purpose have been secured and some preliminary measures by Dr. DeLury will be given. An illustrated description of the coelostat telescope and mechanism will be given by myself, and a description of the spectrograph and attachments by Dr. DeLury.

Mr. Motherwell has used the equatorial on three half nights per week in micrometric measures of double stars and has obtained a number of good measures, although his, as well as all other work with the telescope, has been much handicapped by the exceptionally poor observing weather of last fall and early winter. For nearly four months, smoke and cloud prevented almost all observations. This was especially unfortunate on account of the presence of Morehouse's comet, an especially interesting object, photographically, which this bad weather prevented from being photographed here more than half a dozen times. However, Mr. Motherwell will give an account in Appendix D of the double star measures obtained, of the occultations of stars by the moon observed, and of the photographs of the comet secured.

A full account of an interesting and useful investigation by Mr. Motherwell on the aberration of the $8^{\prime \prime}$ Brashear Photographic Doublet, used in making the comet pictures, will be given. When this instrument was first tested by me, soon after the Observatory was completed, it was found to give halos around the stars of medium intensity, while in the brighter stars this halo had become so fully exposed as to make images of uniform intensity and of large diameter. This difficulty I ascribed to spherical aberration, but this diagnosis was opposed by the makers of the lens.

I suggested to Mr. Motherwell as a suitable and useful subject for investigation to determine by Hartmann's method of extra-focal exposures the amount of spherical aberration present. His thorough tests showed the lens to have negative aberration to the extent of about 3.5 mm ., which in our opinion was quite sufficient to account for the halo observed. A suggestion of Mr. McDowell that it was due to chromatic aberration was found by Mr. Motherwell not to be the case. The matter remained in abeyance for some time, when on a further suggestion from Prof. Hastings the separation of the elements of the front component was changed to remove the halo, supposedly a 'ghost' due to internal reflections. However, a test showed no improvement on the original positions in the slight change proposed. Further correspondence with Mr . Mc Dowell resulted in a suggestion from him to increase the separation by about 2 mm ., which would practically remove the aberration. On this being done and the distance adjusted so that the aberration was removed, the halo disappeared which was a striking confirmation of our contention that it was caused by aberration. A recent letter from Mr. McDowell admits that we were right as he had proved by refiguring a lens giving a similar halo.

In consequence, the objective will be sent to Alleghney to have this aberration removed and with its already very flat field we should have an unequalled star camera. In this regard, I would urge upon you the desirability of supplying the camera with a separate mounting. Its attachment to the equatorial telescope results in seriously
limiting its usefulness; for when star photographs are being made, no work, other than the guiding, can be done with the equatorial. A separate mounting, however, would enable the two to be used independently and much more use could be made of the camera than is possible at present.

The quantity of repair and other work has increased so greatly, that the two mechanicians, Mr. Mackey and Mr. Lucas, the latter haring been appointed since my last report, have not been able to keep up with all the work required. Repairs and minor alterations in the field instruments used in the Geodetic and Boundary Surveys, occupy about one-half their time, leaving the remainder for new work. The new single-prism spectrograph, the mechanical parts of the solar 23 -foot focus spectrograph, and new hardened steel pivots on the meridian circle are the principal pieces of work accomplished. Besides these are numerous smaller picces of work. Scarcely a day passes that some work does not come in.

The equipment of the machine shop has been increased bs a 14 inch by 7 foot Hendry Norton lathe, which is installed and in use. With two lathes there is now no possibility of delaying work for lack of tools. The lathe is the tool most used in machine work and frequently cases occurred where both men required the lathe at the same time; in consequence the work could not be done to the best adrantage. The workshop is too small for the tools and the amount of work done, and moreover the light in it is not of the best. It is desirable that, as soon as possible, provision be made for a suitable workshop above ground with ample room and light. The necessity and economy of a suitably equipped workshop for the Observatory are so evident, and the probability of an increase in its capacity being required is so great, as to justify the question of a more suitable location than the present one being earefully considered.

The field instruments and others of a portable nature have been most carefully looked after by Mr. Motherwell, who has kept a careful record of their movements. This work has become, with the increase in the staff and in the number of instruments, one of considerable labour and trouble and takes much of his time in the spring and fall,

The Saturday open nights of the telescope for the public continue to be well patronized, the average attendance on fine nights being upwards of fifty, and much intelligent interest is manifested by many of the visitors in astronomy. This interest is further fostered by the papers presented at the evening meetings of the Royal Astronomical Society of Canada, of which the majority are given by officers of the Observatory. It may not be amiss here to refer also to the ralue of the work done by the members of the Observatory staff in the afternoon or technical lectures given alternately with the evening ones. These lectures and papers presenting in most cases original work in different lines of astronomy have been of great value, not only in keeping us acquainted with each other's work but also in encouraging researches along original lines which have been frequently of distinct ralue to science.

The following papers by members of the staff of the Astrophysical Division have been published since the date of the last report:-

1. The spectroscopic Binary ، Orionis, by J. S. Plaskett and W. E. Harper, Astrophysical Journal XXVII., p. 272, May, 1908.
2. Effect of increasing the slit-width upon the accuracy of Radial Velocity Determinations, by J. S. Plaskett, Astrophysical Journal XXVIII., p. 259, Nov., 1908.
3. The spectroscopic Binary ψ Orionis, by J. S. Plaskett, Astrophysical Jourual XXVIII., p. 266, November, 1908.
4. The Orbit of © Orionis, by J. S. Plaskett, Astrophysical Journal XXVIII., p. 274, November, 1908.
5. The Astronomical and Astrophysical Society of America, by J. S. Plaskett, Journal of the Royal Astronomical Society of Canada II., p. 255, September-October, 1908.

SESSIONAL PAPER No. 25a

6. The Reduction of Cadmium by Mercury and the Electro-Motive Force of Cadmium Amalgam, by R. E. DeLury and G. A. Hulett, Journal of the American Chemical Society, volume 30, No. 12, p. 1805, December, 1908.
7. Comet 1908 (Morehouse), by R. M. Motherwell, Journal of the Royal Istronomical Society of Canada III., p. 28. January-February, 1909.
8. The Orbit of 6 Aquile, by W. E. Harper, Journal of the Roval Astronomical Society of Canada VII., p. 87, March-April, 1909.

Besides the above the following papers are to appear shortly, the work on them having been completed and sent to the publishers:-
9. Camera Objectives for Spectrographs, by J. S. Plaskett, Astrophysical Journal, May, 1909.
10. The Spectroscopic Binary β Orionis, by J. S. Plaskett, Astrophysical Journal, July, 1909.
11. The design of Spectrographs, by J. S. Plaskett, Journal of the Astronomica' Society of Canada, May-June, 1909.

In addition to the above the Astrophysical Division have sent in the titles of the following seven papers to be read before the Royal Society of Canada at their meeting, May 25, 1909 :-
12. A new Single Prism Spectrograph, by J. S. Plaskett.
13. Slit width and Errors of Measurement in Radial Velocity Determinations, by J. S. Plaskett.
14. The spectroscopic Binary β Orionis, by J. S. Plaskett.
15. The System of ϵ Herculis, by W. E. Harper.
16. Aberration of a Stellar Camera Objective, by R. M. Motherwell.
17. Convection and Stellar Variation, R. E. DeLury.
18. The Orbit of a Corone Borealis, by J. B. Cannon.

In general the work represented by these papers will appear in detail below, arranged sometimes in a little different form, and including as a rule the whole of the original measurements and data which were abbreviated or left out in the published papers.

THE SPECTROGRAPHS.

During the year just passed the Ottawa spectrograph, illustrated and described in the 1907 report, has been used almost entirely, the new single-prism spectrograph not having been ready for service until about March 1, 1909. The former instrument has been used mostly in the single-prism form, the three prisms having been used only for some plates of β Orionis and a few cthers. The spectrograph has not been changed in auy way since the last report, and its performance has continued satisfactory. Nothing further need be added about this instrument, except that towards the close of the year the Zeiss Tessar objective of 300 mm . focus, referred to in the last report, was temporarily mounted for the purpose of continuing the tests on the effect of slitwidth on errors of setting so far as applies to a dispersion of three prisms with a short focus camera. This mount will be placed in a permanent form as soon as time can be found in the workshop, and used on solar type binaries too faint to be obtained with the long focus camera.

Before proceeding to describe the new single-prism spectrograph, which was briefly referred to in my last report, it has seemed desirable to enter more fully than was there done into the principles on which its design was based, and for this purpose I can not do better than give here a paper on 'The Dcsign of Spectrographs,' which I read at an afternoon-technical meeting on May 25, 1908, and which will appear in the May-June number of the Journal of the Royal Astronomical Society of Canada.

THE DESIGN OF SPECTROGRAPHS FOR RADIAL VELOCITY DETERMINATIONS.
Read before R.A.S.C., May 28, 1908.
The subject of spectroscopy is so broad that one can not hope in a single paper to do more than touch upon a single aspect of it, and, even then, one must further limit his treatment to a particular application of this phase. Consequently, I propose to present some considerations bearing upon the design of spectrographs suitable for the accurate determination of stellar radial velocities. This branch of spectroscopy is comparatively new and is still probably only in the experimental and tentatire stage. The present practice in this line has, however, reached a certain uniformity and the general theoretical principles governing the design of spectroscopes may be applied to the case under consideration, modified, of course, in many ways by the experience of the various observers. The question is one of a judicious combination of theory and experience, and I propose to present my own views, founded, of course, on theoretical considerations, but modified partly by the practice of other spectroscopists, partly by my own experience in the worl and by the results of special inrestigations bearing on the most suitable form and dimensions of the instrument.

- The determination of the radial relocities of stars by means of the spectroscope is one of the most exacting of astronomical investigations, and requires the closest attention to all details to ensure aecurate values. This will be more readily recognized when the smallness of the displacement of the spectral lines on which the velocity depends is known. Thus, in the Ottawa Spectrograph a relocity of 20 km . per second, which is greater than the average velocity of the stars, causes a displacement at H_{γ}, the centre of the measurable range, of about $1 / 2 \pi 00$ inch for the single-prism, and about $1 / 400$ inch for the three-prism form of the instrument. The aceidental errors arising in the measurement of this displacement, in spectra with good lines, are, however, not so much to be feared as systematic displacements of the lines as a whole, of which no evidence is giren in the measurements, caused by flexure of the parts of the spectrograph, by temperature changes in the prisms and lenses and also in the metal frame, by faulty adjustment of the focal positions of camera and collimator, as well as by numerous other causes. Some idea of the magnitudes of these displacements may be gained from the following figures. An hour's exposure in one of the modern spectrographs introduces flexure displacement equivalent, in some positions of the telescope, to a relocity of 10 km , per second. A change of temperature of $1^{\circ} \mathrm{C}$. in the prism displaces the lines by about 20 km ., which may be increased further by the expansion of the metal parts. An inaccuracy in the focal setting of the camera of only 0.1 mm . $1 / 250$ inch, may, when combined with poor guiding, cause a displacement of about 5 km . It does not follow that such displacements necessarily cause a corresponding error in the relocity as they may be compensated for, partially at any rate, by a similar displacement of the comparison lines. But the possibility remains, and inaccurate results can only be precented by constant and careful attention to all details. It becomes, therefore. a question of equally great importance with proportioning the optical parts to give accurately measurable spectra in the shortest possible exposure time, to so design the whole instrument that systematic errors due to the abore or other causes may be prorided for and eliminated as far as possible.

The design of a spectrograph may be most conreniently attacked under two separate headings:

1. The character and proportions of the optical parts.
2. The mechanical connection of these parts into a symmetrical and stable whole. "ith suitable auxiliary devices for controlling the temperature, applying comparison. \&e.

The Optical Parts.

' Up to the present, prisms of dense flint glass have been the sole dispersing medium used for radial velocity work. Gratings, so useful in other branches of spectroseopy, have not yet been applied in this work, ehiefly on account of the division of the incident pencil into a number of spectra with the conscquent loss of light, and also on account of the difficulty of maintaining their position invariable without distorting the surface. Prisms have very decided advantages over gratings in this respect as, when set at minimum deviation, a small angular rotation of the prism will scarcely displace the spectrum lines, while with a grating the angular displacement of the lines is double that of the prism. The optical parts of a spectrograph are then:-1. The slit, whose width is usually between 0.025 and 0.051 mm ., one and two thousandths of an inch, on which the star image is condensed by the telescope. 2. The collimating lens placed at its focal distance from the slit and consequently rendering the incident pencil parallel. 3. The prism or prisms placed at minimum deviation for some particular wave-length usually near H_{γ}. 4. The camera lens which forms an image of the spectrum on the photographic plate.
'As the terms dispersion, resolving power, purity, de., will be frequently used and as the prism angle, thickness of base, \&c., require computing, it seems preferable to give here a short synopsis of the theory involved and the formule used, particularly as these are not readily available in a suitable form or collected together in one place.
'When a pencil of parallel white light is incident upon a prism, the direction is changed, the light is deviated, and it is also decomposed into its constituent colours forming a spectrum, the wave-lengths of the light giving rise to these colour-sensations, diminishing as you go from red to violet. The fundamental formula determining the direction after refraction is, i being the angle of incidence, r of refraction,

$$
\sin i=\mu \sin r
$$

μ is the index of refraction which varies for different materials and for different wave lengths in the same material, increasing as the wave length diminishes. In all spectroscopes the prisms are used at the position of minimum deviation, which, it may be easily shown, requires the angles of incidence and emergence to be equal. The discussion will therefore be confine l to this particular case, resulting in a considerable simplification.

Fig. 1.
If a is aperture of incident pencil just filling prism,

$$
\begin{gathered}
l=a \sec i \\
t=2 l \sin \frac{A}{2}=2 a \sec i \sin \frac{A}{2}
\end{gathered}
$$

9-10 EDWARD VII., A. 1910
'If θ the deviation and μ the index are given to find A or the angle of the prism,

$$
\begin{aligned}
& \text { in } \frac{A+\theta}{2}=\mu \sin \frac{A}{2} \text { and reducing and simplifying } \\
& A=2 \sin ^{-1} \sqrt{\left.\sqrt{\sin ^{2} \frac{\theta}{2}+\left(\mu-\cos \frac{\theta}{2}\right.}\right)^{2}}
\end{aligned}
$$

- The dispersion of a prism is usually defined as the ratio of the change in deviation to the change in wave length or $\frac{d \theta}{d \lambda}$. As the deviation varies with the index of refraction and as the latter varies with the wave length we may put

$$
\begin{gathered}
\frac{d \theta}{d \lambda}=\frac{d \theta}{d \mu} \cdot \frac{d \mu}{d \lambda}, \text { but } \\
\mu=\frac{\sin \frac{A+\theta}{2}}{\sin \frac{A}{2}} \\
\therefore \frac{d \theta}{d \mu}=\frac{2 \sin \frac{A}{2}}{\cos \frac{A+\theta}{2}}=\frac{2 \sin \frac{A}{2}}{\cos i} \\
=\frac{2 \sin \frac{A}{2}}{1-\sin 2}=\frac{2 \sin \frac{A}{2}}{1-\mu^{2} \sin ^{2} \frac{A}{2}}, \\
\text { also } \frac{d \theta}{d \mu}=\frac{2 \sin i}{\frac{\mu}{\cos i}}=\frac{2}{\mu} \tan i .
\end{gathered}
$$

- To obtain $\frac{d \mu}{d \lambda}$ we require a relation between λ and μ. The simplest is obtained from Hartmann's interpolation formula.

$$
\begin{gathered}
\mu=\mu_{0}+\frac{c}{\lambda-\lambda_{0}} \\
\therefore \frac{d \mu}{d \lambda}=-\frac{r}{\left(\lambda--\lambda_{0}\right)^{2}} \text { and consequently } \\
\frac{d \theta}{d \lambda}=\frac{d \theta}{d \mu} \cdot \frac{d \mu}{d \lambda}=-\frac{c}{\left(\lambda-\lambda_{0}\right)^{2}} \cdot \frac{2 \sin \frac{A}{2}}{\sqrt{1-\mu^{2} \sin ^{2} \frac{A}{2}}}
\end{gathered}
$$

- Let us now consider resolving power or the ability of the prism to separate lines close together in the spectrum. Lord Rayleigh has shown, in the case of the image of

SESSIONAL PAPER No. 25a

an infinitely narrow slit produced at the focus of a telescope lens, that the linear distance ξ of the first diffraction minimum from the principal maximum is given by the equation.

$$
\frac{a \xi}{m \lambda f}=1
$$

where a is the aperture and f the focus of the lens and m is a constant, 1.0 for rectangular and 1.2 for circular apertures.

$$
\frac{\xi}{f}=m i
$$

$\frac{\xi}{f}$ is then the least angular distance at which two rays can be seen separated. Calling the angle $d \theta$ we have

$$
d \theta=\frac{m \lambda}{a}
$$

For the case of a prism we have

$$
\begin{gathered}
a=l \cos i, t=2 l \sin \frac{A}{2} \\
\therefore \frac{t}{a}=\frac{2 \sin \frac{A}{2}}{\cos i}=\frac{d \theta}{d!}
\end{gathered}
$$

Combining we get the minimum condition of resolution

$$
t=\frac{m \lambda}{d \mu}
$$

Again, omitting the constant m, we have

$$
d \theta=\frac{t d \mu}{a}=\frac{\lambda}{a}
$$

and multiplying by $\frac{a}{d} \lambda$ we get

$$
a \frac{d \theta}{d \lambda}=, \frac{d \mu}{d \lambda}=\frac{\lambda}{d \lambda}
$$

where $\frac{\lambda}{d \lambda}$ is the minimum value which permits resolution of close lines. $\frac{\lambda}{d \lambda}$ or the ratio between the mean wave length of a pair of lines which can just be resolved in a spectroscope and the difference in wave length between the two components is called the resolving power of the spectroscope and is usually designated by the letter R.
'The linear dispersion $\frac{d s}{d \lambda}$ where $f=$ focal length of camera is

$$
\frac{d s}{d \lambda}=f \cdot \frac{d \theta}{d \lambda}=f \cdot \frac{R}{a} .
$$

'The resolving power R refers to infinitely narrow lines through an infinitely narrow slit. When, as necessarily occurs in practice, neither of these two conditions holds. we speak of the purity of the spectrum or the practical resolving power for wide slits. Schuster has given a simple expression for the purity which is always a fraction of the theoretical resolving power R. This expression has been elaborated bs Wadsworth
and later still schuster has given tables for determining the purity. But as no appreciable error will be introduced in the relative values used in this work, it has seemed preferable to adhere to the simple form. If $d=$ slit width and $\psi=$ angular aperture of the collimator $=\frac{a}{f}$, the Purity $P=\frac{\lambda}{d \psi+\lambda} . R$.
'We have now obtained all the formulæ necessary to compute the data for any optical system and to compare the efficieney of different forms of spectroscopes. To take a concrete case, which is more applicable for our purpose than a general discussion, I propose to consider the question of the most suitable aperture to be given a singleprism spectrograph which is being constructed for the Dominion Observatory. The present spectrograph, which is arranged to be used with either one or three prisms, has a collimator of 35 mm . aperture, 525 mm . focus and two cameras, one for each form of 525 mm . focus. It performs excellently for both purposes, but when, as often happens, both single and three prisms are required on the same night, the change from one form to the other is somewhat tedious, requiring 15 or 20 minutes, and moreover, what is far more important, such change involves uncertainties as to the temperature conditions of the optical parts and therefore corresponding uncertainties as to the accuracy of the velocities obtained.
' In order to fill the collimator lens completely with star light its aperture ratio $\frac{a}{f}$ must be the same as that of the equatorial. The aperture ratio of the Ottawa telescope is 1 to 15 , consequently the focal length of the collimator must be 15 times the aperture. This aperture is limited on the lower side by the condition that sufficient purity must be obtained, purity being proportional to the aperture at a practicable width of slit, to so separate lines and blends of lines that sufficiently accurate identifications of lines and the true wave lengths of blends may be obtained. It is limited on the upper side by the difficulty of obtaining homogeneous prisms of large size, by the increased absorption of such prisms, and by the increased size and weight of the instrument. In all the spectrographs used in radial velocity work the apertures lie between 30 and 51 mm ., and these seem to be about the practical limits. It remains to determine the most suitable.
"The basis of the discussion" rests upon the results obtained for the effectire diameter of the star image given in my paper on "The Star Image in Spectroscopic Work,' No. II, which was read here last fall and published in the Astrophysical Journal, March, 1908. The results of a number of experiments, photographs of star images, spectra and trails, went to show that only very rarely is the effective diameter of the image less than 2 secs, of are (about 0.055 mm .) at the focus of the refractor. Generally the diameters of images and the widths of spectra and trails are considerably greater, increasing to over 0.1 mm . with longer exposures. As the theoretical diameter of the central disc is only $0.57^{\prime \prime}$ (about 0.015 mm .) and, as the condensing system of visual objective and photographic correcting lens is practically perfect, the enlargement in diameter is undoubtedly due to atmospheric disturbances. These consist probably partly of a blurring or spreading out of the central dise and partly of small displacements in all directions from its mean position. In consequence there results considerable loss of light at the slit jaws with the widths usually employed, and further experiments showed that the proportion transmitted varied almost directly with the width until this reached 3 or 4 secs. I reproduce below part of the table for slit transmission given in the paper referred to:-

[^11]
SLIT TRANSMISSION.

slit Width.

Linear mm.	Angular secs.	Observed.	Corrected for loss by diffraction.
0.025	0.91	100	
0.051	182	40	
0.076	2.73	27	50
0.102	3.64	25	35

'This table shows that if the slit width can be increased the exposure is proportionally diminished, double the slit width halve the exposure, which means, of course, an increase in the output and in the practical range of the equipment. But on the other hand, a widening of the slit, other conditions remaining unchanged, decreases the accuracy of measurement of the resulting spectra. This loss of accurace is due to two causes: first, diminished purity rendering uncertain identifications and wave lengths of blends; second, increased diffuseness of the spectral lines rendering measurements more difficult. We will take up these two considerations separately and find under what conditions the slit may be widened without loss of accuracy.

- The equation for $1^{\text {urity }}$ of spectrum, $P=\frac{\lambda}{d \psi+\lambda} \cdot R$, shows that the purity is almost proportionally diminished as the slit width is increased as $d \psi$ is, even for slit 0.025 mm ., nearly ten times λ. To increase the purity of a spectrum only two courses are open-to diminish the slit width or increase the resolving power. As we wish to widen the slit the resolving power of the spectroscope must be increased, which maybe done in three ways.

1. By increasing the aperture of the prism or prisms $R=\frac{\lambda}{d \lambda}=a^{a} \frac{d \theta}{d \lambda}$ or R varies directly with the aperture.
2. By increasing the number of prisms.
3. By shifting the region of spectrum under observation towards the violet. The resolving power varies inversely as the cube or slightly higher power of the wave length. This will be seen directly when we compute resolving powers, but it followz at once by differentiating Cauchy's form of dispersion formula.

$$
\begin{gathered}
\mu=A+\frac{B}{\lambda^{2}}+\frac{C}{\lambda^{4}}+\ldots \text { or simply } \\
\mu=A+\frac{B}{\lambda^{2}} \\
\frac{d \mu}{d \lambda}=-\frac{2 B}{\lambda^{3}} .
\end{gathered}
$$

'The use of the second method increases the dispersion which is usually not allowable on account of the proportional increase of exposure time entailed. The third method can not be used with a refractor and glass prisms on account of the strong absorption of ultra violet light by the glass of the lenses and prisms. With a reflector and a quartz or ultra-violet glass spectrograph it might be applicable. We are therefore practically limited to the use of a larger prism and consequently larger collimator and camera lenses.

- The size of prisms in use in radial velocity work, as previously stated, lies between about 30 and 51 mm . Pris'ns of 51 mm , aperture are successfully used in the Yerkes Spectrograph, but Frost's experience as also that of Hale in large spectro-hetiograph prisms shows that the limit is nearly reached.
'In discussing the necessary conditions for using a wider slit, let us take as an example a comparison between the efficiencies of single-prism spectrographs of 35 mm ., the aperture of the present instrument, and 51 mm . aperture, the latter having been decided upon, after careful consideration, as the aperture of the new instrument. A spectrograph of such aperture, outside of considerations of the homogeneity of larger prisms, is the practical limit as regards size and weight that can be attached to a 15 -inch equatorial.
-The glass generally used for the prisms is Jena glass 0.102, Dense Silicate Flint. and this was chosen for the spectrographs here. It is very colourless considering its density and dispersion. The indices of refraction of the particular melting from which the present prisms were made, as furnished by the makers, are as follows:-

-From these values substituted in the IIartmann formula $\mu=\mu_{0}+\frac{c}{\lambda-\lambda_{0}}$ we obtain the values of the three constants μ_{0}. c and λ_{0}.

$$
\begin{aligned}
& \lambda_{o}=.00002190 . \\
& \mu_{o}=1.61146 .
\end{aligned}
$$

$$
\log c=6.115595 .
$$

-From these constants were ealculated for a number of wave lengths μ and $\frac{d \mu}{d \lambda}$. From ${ }^{d} \mu$ d_{λ}, R was obtained for prisms of 35 and 51 mm . aperture, and of refracting angle $63^{\circ} 50^{\prime}$, this being the angle required to deviate the ray at minimum, $\lambda 4415,60^{\circ}$. The formule nsed were previously derived and arc:

$$
\begin{gathered}
\frac{d \mu}{d \lambda}=-\frac{c}{\left(i-\lambda_{0}\right)^{*}} \\
R=t \frac{d \mu}{d \lambda} \text { where } t=2 a \sec \frac{A+\theta}{2} \sin \frac{A}{2} .
\end{gathered}
$$

	Wave Length.	μ	$\frac{d \mu}{d \lambda}$	$\text { Prismi } \stackrel{R}{\stackrel{R}{2}} \text { inı. }$	Prisin $\stackrel{R}{R 1}$ min),
4862.		166643	189919	14420	21010
4550.	1.6667	2:43	18450	26910
4415		1.6501	2636	20780	30280
4341.		1.6521	2822	22250	32480
4102.		1.67!	3490	27520	40100
4000		1.6833	3983	31400	45750
3970.	,	1.645	4119	32380	+7180

'The resolving power for the two apertures obtained, the purity of spectrum for different slit width is readily calculated from $P=\frac{\lambda}{d \psi+\lambda} \cdot R, \psi$ in this ease, being 115 or 0667 . The results are given in the following table for the wave length 4341 or H_{γ}, this being the usual central ray.

PL゙RITY OF SEECTKUM.

- These figures show that with the larger prism the slit may be made 50 per cent wider and still have practically the same purity of spectrum, and consequently the same accuracy of velocity determinations.
'The slit transmission table previously given showed that an increase in slit width of 50 per cent when below 0.076 mm . increased the quantity of star light transmitted by nearly 50 per cent; consequently, other conditions being equal, half as many more spectra could be made in a given time. But an increase in the size of the prism means, also an increase in the quantity of light absorbed by the glass of the prism, although the amount reflected will be the same. We can obtain an accurate knowledge of the quantity of light absorbed in the two prisms of O .102 glass from Vogel's experiments (Astrophysical Journal, V., p. 75), who showed that H_{γ} light transmitted through 100 mm . of 0.102 glass suffered absorption of about 47 per cent. The absorption for prisms of 35 and 51 mm . aperture, average length of path 39 and 57 mm . respectively,
may be readily calculated by the formula $I_{1}=I_{0} K^{u}$, where x is thickness of glass for which absorption is required, α is thickness for which percentage transmitted is K, I_{0} intensity of incident, I_{1} of transmitted beam. We obtain for prism of 35 mm , aperture 78 per cent, of 51 mm , aperture 71 per cent transmission. If 100 be intensity of incident pencil for small prism, then 150 will be intensity of pencil giving equal purity with large prism. After transmission intensities will be 78 and $150 \times .71$ or 106.5 , respectively, and the required exposures will be inversely proportional or as 3 to t, a very considerable gain. Even when the slight additional absorption in the thicker camera and collimator lenses is considered a substantial saving of time will result by the use of the larger prism.
- We have tacitly assumed in the foregoing discussion that a decrease of purity entails loss of accuracy in the velocity values. This is undoubtedly true for complex spectra such as those given by solar or allied type stars, spectra in which are hundreds of lines and in which every decrease in purity means increased uncertainty in the wave lengths of the more complex blends of lines thereby produced. In the case of earlytype stars, however, such as those of the hydrogen or helium groups, where there are only few lines, and these single, there can be no trouble with blends, and the question of the purity of the spectrum has not so much weight. On such grounds there would be no material advantage in using the larger aperture. However, a consideration of the second effect produced by widening the slit-the increased diffuseness of the spectral lines-will show a similar advantage for the larger aperture even where purity floes not come into question.
' This may be best shown, as before, by considering a special case and we may take the same example with advantage. The present single-prism spectrograph has a collimator objective of 35 mm . aperture and 35×15 or 525 mm . focus. The camera has a focus of 525 mm ., and therefore the image of the slit on the plate will be of the same size, and the minimum width of line will be the width of the slit. The new spectrograph will have a collimator of 51 mm . aperture and 51×15 or 765 mm . focus. The camera will be of about 455 mm . focus. Hence the image of the slit on the plate will be diminished in the proportion of 455 to 765 or about $\%$. If the camera were of the same focus as the one now in use, 525 mm ., the image of the slit would be diminished to about $7 / 10$. Hence the slit can be made in the one case 5%, in the other 10%, the width with the present spectrograph, and have the lines of the same width, and consequently equally accurately measurable. The gain in efficiency is thus about equal under the latter consideration and that of the maintenance of equal purity, and we may therefore consider that a decided advantage may be obtained in stars of all types by increasing the aperture of the prism. Such conclusions are, of course, subject always to the test of actual use under similar external conditions before they can be accepted as final.
'However, some experiments that I made here last winter on the effect of widening the slit upon the accuracy of velocity determinations" substantiate the above conclusion, and I will therefore give a short summary of some of the results reached. As previously stated, when the slit is widened, the purity is diminished and the lines become broader and more diffuse. To simplify the investigation, the question of the effect of purity was eliminated by choosing a star, β Orionis, for the test whose lines are single and moderately sharp. There remains, then, only the question of the effect of the increasing breadth and diffuseness of the lines on the accuracy of the measures. Evidently such a question can only be settled by making and measuring a number of spectra at each slit width. Six plates were made for each slit width $0.025,0.038,0.051,0.076 \mathrm{~mm}$. for two dispersions, (a) single-prism 525 mm . camera, (b) three-prism 525 mm , camera and six each at slit widths $0.025,0.051$ and 0.076 mm . for a dispersion of three prisms and camera of 275 mm . focus. In all 66 plates were made, of which I have to thank Mr. Harper for measuring 18 and thus lightening the considerable labour involved. Owing to the different dispersions, different lines were measured in the three sets, but as the main dependence can be placed on the three lines Mg $\lambda 4481 \cdot 400$, He $\lambda 4471.676, H_{\gamma} 4340.634$, the results from these three lines only are given. Computations using all the star lines measured were also performed without, however, changing the conclusions reached.
'There are evidently two kinds of error to be considered, accidental and systematic. Under the first will be considered the accidental errors of the setting of the microscope wire on the individual lines in a plate, resulting in a mean velocity for that plate differing from the true velocity in a greater or less degree depending upon the quality of the lines. The systematic error of a plate is the displacement of the star lines as a whole with respect to the comparison lines. This may be due, as previously stated, to one or more of several causes-change of temperature, flexure, faulty adjustment or aberrations in the optical train, \&c. As the lines are in general equally affected, such displacement will not be apparent in the measure of a single plate. It is only by comparing the velocities of a number of plates of a star of constant velocity that such an error can be detected.
'To compare the accidental errors for the different slit widths it will be necessary, to prevent systematic displacements from affecting the result, to treat the measures for each of the six plates for one slit width separately, to obtain the residuals from the mean velocity of each plate and finally the probable error of measurement of an average star line from these residuals. Some idea of the relative magnitude of the sys-

[^12]SESSIONAL PAPER No. 25a
tematic errors may be obtained by treating the velocities from each of the six plates. However, this result will not be that due to systematic error only, as the velocity from each plate will also be affected by accidental errors. The results of the measures and computations are given below:-

PROBABLE ERRORS.

Dispersion.	Slit Width.	Aceidental Prob. Error, Average Line.	Systematic Prub. Error, Single Plate.
Single Prism...	$0 \cdot 025$	$\pm 4.5 \mathrm{~km}$.	$\pm 1.78 \mathrm{~km}$.
	188 051	24 23	27 3.0
	-076	23 +3	3.9
Three Prisms	1-025	± 23	± 15
	-038	21	1.3
525 mm . Camera.	${ }^{0.51}$	$2 \cdot 5$	0.7 0.9
	076	$2 \cdot 1$	$0 \cdot 9$
Three Prisms.	$0 \cdot 025$	± 2.9	± 21
	-0.1	$2 \cdot 9$	$3 \cdot 11$
275 min. Camera ...	-076	3.8	29

'These results were to a considerable extent unexpected. The great difference in the apparent quality for measurement of the spectra made with slit 0.025 and 0.076 mm , especially with the single-prism, would lead one to expect a marked increase in the errors of setting, but this is not very distinetly shown, not at all in the higher dispersion. The systematic errors, however, are very markedly increased in single-prism plates, so much so as to prohibit the use of slits wider than 0.051 mm . In a higher dispersion spectroscope this increase has disappeared, and, so far as the rather small number of plates shows, it is slightly more accurate in the case of dispersion (b) to use slits 0.051 and 0.076 mm . than slits 0.025 and 0.038 mm . It is evident that these results corroborate the conclusions previously reached, by showing that increase in resolving power removes or diminishes the loss of accuracy when the slit is widened. Consequently, with the 50 per cent greater resolving power and the 60 per cent greater ratio of collimator to camera focus, it is probable that the slit-width may be increased 50 per cent without affecting the accuracy of the results and with a corresponding increase in the output.

Mechanical Design.

'The question of the most favourable dimensions of the optical parts having been discussed, there remains the mechanical structure connecting these parts into one stable whole. Owing to the attachment of the instrument to a moving telescope and the consequent varying direction of gravity on the parts, the prevention of flexure is one of the most difficult of the problems to be overcome, and this is especially the case where the instrument is to be attached to a telescope of moderate size, where its weight can not exceed a certain small limit. The weight of our spectrograph complete with temperature case, attaching truss, \&c., can not much exceed 100 lbs ., and the problem is consequently a much more difficult one than in the case of the Yerkes cquipment, for example, where the spectrograph weighs about 500 lbs . Most of the early and some of the recent spectrographs have lacked sufficient stiffness and stability to prevent line displacements due to flexure of the parts. A displacement of the camera and plate of only one one-thousandth of an inch is equivalent in a singleprism spectrograph to a velocity of about 50 km . per second. It is evidently a difficult $25 a-13 \frac{1}{2}$
matter in the extended form of a single-prism instrument to reduce this flexure to an inappreciable amount. No material is perfectly rigid and when we consider that even its own weight deforms the strongest material available, the difficulty of the problem will be realized.
'Until very recently all spectrographs were attached to and overhung the end plate of the telescope and thus, like a beam fixed at one end, were subjected to the maximum amount of flexure. An improvement in the principle of attachment was applied at the Lick Observatory recently, in which the spectrograph proper is made self-contained and is held in an independent cradle at two points of support. It is thus like a beam supported at both ends and the flexure is thereby much reduced.
'The original spectroscope belonging to the Observatory was by Brashear of an adjustable universal type and was not, for this very reason, suitable for radial velocity determinations. Braces were added to stiffen the frame as much as possible, but it could not be freed from flexure. Many of the results obtained were uncertain and its use was discontinued as soon as a new combined one and three-prism spectrograph, designed by myself and very satisfactorily constructed by Mr. Mackey in the Observatory workshop, was completed.
'This instrument, whose general form is readily obtained from the figures, page 78 in my report to the Chief Astronomer for 1906-7, has many original features, has given excellent satisfaction and produced reliable results. It is, as will be noticed, a form of the first class mentioned attached only to the end plate of the telescope. It was designed and partly constructed before anything was learned of the new type. Moreover it was desired for the sake of economy of time and money to combine single and three-prism instruments in one (since found by experience to be a mistake), and this could not be advantageously effected in the new form.
'The form of truss designed has some advantages over previous instruments, and has probably less flexure than any other of the same type and weight. The main difference lies in the close grouping of the triangular truss at the lower end and the addition of the substantial diagonal brace, which serves the two purposes of stiffening the outer end of the prism box and lower end of the camera when used in three-prism work, and of tying the outer end of the camera when used with a single prism. The maximum flexure of the three-prism instrument is equivalent to 1.8 km . only, while the maximum flexure of the modern Bonn three-prism instrument, the only one for which data have been published, is about 70 km . For an hour's exposure with the Bonn instrument there is a flexure of 7 km ., while a similar exposure with both single and three-prism forms here shows no appreciable flexure. The maximum flexure with our single prism is much greater, about 100 km ., equivalent to a linear displacement of about $1 / 400$ inch. This great difference in the two forms is due to two causes. First, to the threefold greater kilometre value for the same linear displacement. Second, to the much more extended form of the single-prism instrument. Calculations have shown that the amount of flexure is nearly that caused by the actual extension and compression of the truss members due to their own weight, and consequently it can not be avoided or much reduced in this form of instrument. However, the flexure occurring during a two hour's exposure is only slight except at such great hour angles as are rarely used.
' Both forms of instrument are frequently required on the same night, for stars of varying brightness and type. The time lost in making the change from single to three prism or vice versa, and the uncertainty in the temperature conditions prevailing after the change, close temperature regulation being equally as important, perhaps more important than avoidance of moderate flexure, were considerations leading to the decision, which had the approval of Dr. King, to design and construct a separate singleprism spectrograph, with separate temperature control and attaching stand, so that the change could be made in a minute or two, and without disturbance of temperatire.

SESSIONAL PAPER No. 25a

' Besides using a larger prism for the reasons fully entered into above, the opportunity was taken of changing the mode of attachment to the telescope. Curtiss, of Ann Arbor, designed a form of single-prism instrument modelled after the Lick pattern, which has two points of support, one near the slit and the other near the base of the prism. The spectrograph proper consists of a triangular brass box with angles of about $120^{\circ}, 30^{\circ}, 30^{\circ}$. The prism is at the obtuse and the slit and camera at the acute angles of the triangle. The camera end hangs out unsupported and flexure will still occur though in a much diminished degree.
'The form I have designed and am now having constructed in the workshop follows that of Curtiss in that it is of the box form, but the design and construction of the box and the method of attachment to the telescope are different. The box is made of hard cast-steel plates (saw steel) much stiffer than brass, is rigidly braced and cross braced, and is provided with three points of support in a cradle of T iron attached to the end plate of the telescope. Two of the points are similarly situated to those of Curtiss, while the third acts near the camera end. The two first are attached by a kind of universal joint, so that no strain can be induced in the box by any bending of the cradle. The third support, near the camera, consists of a pair of counterbalancing levers, one on each side of the box, arranged to equalize the pressure on the three supports in any position of the telescope without it being possible to ever induce any strain in the box itself. By this means it is believed that no measurable or even noticeable flexure will oceur.
' A simple triangular box of this form without projections of any kind is much more readily adapted for temperature regulation than the complicated shape of the regular truss form. Moreover, any stratification in the temperature case is much less likely to oceur, and if it does, can not do nearly so much harm as if it were aeting on only one member of the truss. A further improvement will be the introduction of a non-conducting material, such as vulcanized fibre in the supporting arms between the cradle and the box, so that heat will not be conducted away at these points and unequal temperature and possible distortions take place.
'In the present spectrograph, conduction throngh the arms of the truss is so great as to cause a gradual drop of the temperature in the prism box, as the outside temperature falls, of about $0.1^{\circ} \mathrm{C}$. every one or two hours. The distance between the spectrograph box, which will be entirely covered with thick felt, and the inside of the feltlined outer case will be uniform, the heating wires will be uniformly distributed, and consequently little difficulty with inequalities of temperature should result.
'Although until the instrument is completed and tested, no definite statement can be made. I have little doubt that the new spectrograph will be a considerable improvement over the present or any existing single-prism instrument.'

THE NEW SINGLE-PRISM SPECTROGRAPH.
The Optical Parts.-After the dimensions of the optical parts of the new instrument had been determined as above they were ordered from the J. A. Brashear Co., in the early part of 1908.

Some correspondence was carried on in regard to the 'Isokumatic' Collimator objective in reference to the yellowish colour of the middle component. It was, however, decided to use it in preference to the less absorbing ordinary objective, on account of the flatter colour curve given by the former. Consequently an 'Isokumatic' of 51 mm . (2 inches) free aperture and 765 mm . focus was ordered and received at the same time as the other optical parts, sbout the end of last March. Although no direct tests have as yet been made, there is no question of its being a first class objective, as otherwise the good definition now obtained would not be possible. The prism of Jena glass 0.102 had its angle $63^{\circ} 30^{\prime}$ computed, so that the central ray for this instrument $\lambda 4325$ had a deviation of 60°. The length of the side of the prism was made 110 mm .,
so as to transmit the fril pencil from the collimator, and the height 57 mm , in order that any effect produced by pressure or unequal temperature of the supports might be minimized. The prism is a beautiful piece of glass and the tests have shown it to be of first rate optical quality, and fears as to its possible lack of homogeneity groundless.

The camera objective, owing to the excellent performance of the Brashear Single Material in the previous instrument, was chosen of the same type and is of 57 mm . aperture, a sufficient margin above 51 mm . to transmit the full usable pencil, and 455 mm . focus. It was tested soon after being received and, although it gave a flat field, the definition was not as good as that given by the original objective, and a preliminary test showed this to be due to spherical aberration. The objective consists of two widely separated converging elements of very light crown glass, and consequently the resulting positive aberration can ouly be removed by departure from spherical surfaces. The amount to be removed in the case of the original objective of 45 mm . aperture and 525 mm . focus was quite within the possibilities of ordinary figuring, but when the aperture ratio is increased to so large an extent as from $f 12$ to $f 8$, it becomes a much more difficult problem to deal with. In this case it was only after the introduction of a special method and with the great personal skill of Mr. McDowell in figuring, that the aberration was finally removed, and the objective gave practically perfect definition and a widely extended flat field. A full description of the tests, with the plotted fields resulting from different objectives, is given in full in another place.

The Guiding Telescope.-Instead of reflecting the light used for guiding down a tube parallel with the collimator and there further reflecting it to the guiding telescope so placed as to also receive light reflected from the front surface of the prism, the guiding telescope has in this case been placed about 15 cm . above the slit, where star light coming from the inclined speculum-metal jaws is reflected by a right-angled prism to a small objective placed at its focal distance along the optical path from the slit. The resultant parallel pencil is then received by the bent guiding telescope shown, Fig. 2, which can be rotated to any convenient direction. Two reflections are hereby avoided, resulting in some saving of light and probably better definition. It had been found in the previous instrument that the method of guiding by light reflected from the front prism surface was never used, and consequently in the new spectrograph this needless complication was omitted. It may be said, however, that the position of the guiding telescope is in some positions of the equatorial, not quite so convenient as if it were lower down.

The Comparison Apparatus.-Experience has shown that in actual work more than one metal is never used as electrode, and consequently the rotating wheel with four sets of electrodes used previously has been omitted here, and one pair of adjustable electrodes of the alloy of iron and vanadium, whose spectrum is exclusively used for comparison, has been substituted. These terminals are mounted on a brass plate which swivels on two points attached to the top of the guiding telescope, and when not in use is simply turned back upon the latter, thus leaving the star light unobstructed. Directly below the terminals in the optical axis is screwed the short tube shown, in the upper end of which is a piece of ground glass and in the lower a small condensing lens with an angular aperture twice that of the collimator. Both of these are adjustable and ensure in every case a uniform pencil of spark light incident upon the collimatot objective and prism.

Slit and Slit Diaphragms.-The slit is of the Huggins type of reflecting slit, with polished speculum metal jaws inclined at an angle of $3 \frac{1}{2}^{\circ}$, so that the reflected pencil of star light and consequently the prism which intercepts it is entirely out of the way of the direct pencil. One jaw is fixed and the other movable micrometrically, a single division representing .001 inch (.025 mm .). The slit has a tangent screw slow motion to enable it to be placed exactly parallel to the refracting edge of the prism, and is very

Plaskett-Astrophysica.

Fig. 2-New Single-Prism Spectrograph.

Fig. 3-New Single-Prism Spectrograph.

SESSIONAL PAPER No. 25a

rigidly attached to the end of the heavy collimator tube. To the end of this tube is also screwed the attachment holding the sliding diaphragms, which serve to limit the star and comparison spectra, Rectangular openings of the proper width, in this ense a single opening 0.4 mm . for star spectrum and two openings 1.5 mm . separated by a tongue 0.45 mm . for comparison spectrum, are placed directly opposite one another on a plate which is moved by means of a knurled wheel transversely between stops across the slit. To expose the spark spectrum all that is necessary is to turn down the spark apparatus, turn the knurled wheel above mentioned about a quarter turn, and close the switch which controls the current through the step-up transformer used for producing the spark, this switch being on the telescope tube about a foot above the spark apparatus. To change back to star spectrum the operations are reversed, the whole cycle occupying only about ten seconds.

The Mechanical parts.-As outlined above the instrument consists essentially of two parts-1. A rigid, hollow, triangular shaped, steel box containing at the obtuse angle the prism, and at the two acute angles the slit and plate and comprising the spectrograph proper; 2. The T iron frame or cradle attached to the end plate of the telescope, in which the spectrograph proper is flexibly supported, and which serves to keep it collimated without flexure of this support producing any stresses in the box itself.

The Spectrograph Box.-The box consists of two triangular shaped plates made of hard saw steel about 1.7 mm . thick forming the sides, while the edges consist of plates of the same material and thickness, 79.4 mm . ($3 \frac{1}{3}$ inches) wide. In addition to the edges there are a number of internal braces and supports of the same material, well shown in Fig. 4, which gives a good idea of the construction of the box. These braces as well as the edges of the box have pieces of small angle iron securely riveted along both edges, to which the side plates are firmly screwed. These angle irons are not shown in the figure, as the frame was first put together, the angles then riveted on and finally the plates screwed to these angles and to the internal castings, the heads of the screws being shown on the side of the box in Fig. 2. It was constructed in this manner to prevent as far as possible any internal stresses in the frame of the box. In addition there are iron castings A, B, C, D, E, F, Fig. 4, planed to exactly the same width as the edges and braces. A, may be called the main casting, having a hole bored through the centre through which the principal supporting shaft passes. The two legs projecting from the triangular part are bored out to fit the collimator and camera tubes. The casting, D, is also bored out for the collimator tube and forms the end plate of the box, while the casting, F, is bored out to carry the upper end of the camera tube. C, and, E, have clearance around them and do not touch the collimator tube, the upper support being attached to the centre of C. The part, B, has the third supporting shaft screwed into the centre of each side, and also forms the connection between the box proper and the camera end. The latter is made separate, so that camera objectives of different focal lengths may be used if desired.

The prism is mounted in a separate cast-iron cell, but is prevented from touching the metal at any point by facings of hard rubber about 3 mm . thick, and is kept in its adjusted position by hard rubber stops. It is held firmly in this position in the cell by the gentle pressure produced by three small clamp screws passing through the top of the cell and bearing upon one of the facings of hard rubber 3 mm . thick, above mentioned, resting on top of the prism. The base of the cell is surfaced flat, and rests in its compartment on one of the side plates, to which it is rigidly attached by five screws passing through slotted holes to permit of adjustment for minimum deviation.

Collimator and camera tubes are provided with racks and pinions for adjustment, their position being read on millimetre scales, the one attached to the camera being provided with a vernier, reading to tenths of a millimetre. The collimator tube is provided with two clamp screws, one at the top and one at the bottom bearing, while

9-10 EDWARD VII., A, 1910

the camera tube has a single clamp screw at the front end. The pinion and clamp wheels and the scales are well shown in Figs. 2 and 3. The camera attachment, whose form and constructiou can be fairly well obtained from Figs. 2 and 3, is built in box form of the same material, and is firmly screwed to the casting, B, Fig. 4, it and the spectrograph box thus forming what is to all intents and purposes one continuous piece. Between the sides of the camera box, swivels the plate holder attachment which is quite similar in form to the one used with the other spectrograph. It consists essentially of a semi-cylinder 79.4 mm . long, 101.6 mm . diameter, piroted along its axis between the sides of the box to permit a wide range in plate inclination. This cylinder is construeted from a seetion cut from a piece of 4 -inch brass tubing, on the ends of which pieces of heary brass plate are screwed and soldered, and on the plane of section is fastened the brass camera back provided with serews for clamping the holders firmly in place. The plate holder carrier has solidly constructed ways permitting lateral movemeut of about 15 mm ., enabling a number of narrow spectra to be made side by side on the same plate if desired. The axis on which the camera back rotates is prorided with knurled clamping wheels, while other screws moving in concentric slots euable adjustment and firm clamping to be cffectel in any desired position, read off on graduations on the cylinder.

As will readily be seen from its design and construction and from the character of the material from which it is made, this spectrograph is exceedingly rigid and the flexure produced by changes of position, however supported, would be very small. This flexure, however, is reduced to a vanishingly small quantity by the new supporting system used in this instrument. The self-contained spectrograph box is, as has been indicated above, supported flexibly ou three points in the carrying cradle.

The Supporting Cradle.-This truss made of $18^{\prime \prime}$ T steel is attached at the upper end to a heavy ring easting, which is fastened by the same three swivel bolts used for the other spectrograph to the end plate of the telescope, the mode of attachment being shown in Fig. 3, which with Fig. 4, well shows the form of the truss. It is evident that the ouly flexure of this truss in a direction parallel to the sides of the speetrograph will be that due to the extension of one arm and compression of the other in each pair, and this will hence be very slight. Owing to the fact that these two pairs of trusses had to be separated about 20 cm . at the lower end, to admit the spectrograph with outside temperature case between them, it is evident that flexure in a direction at right angles, parallel to the moremeut in right ascension, will be greater. This is minimized as much as possible by joining the two ends by a solid webbed casting and by introducing cross braces at the upper end of the truss as shown. At small hour angles, however, which it is desirable for many reasous to use as far as possible, the component of the weight in this direction will be rery small and the flexure negligible. Even at large hour augles which are sometimes required, the flexure cannot be great. In-any ease from the method of attaching cradle and box, to be presently described, no flexure of the cradle can induee any stresses in the box and the only effect of such flexure will be to slightly alter the axis of eollimation of the spectrograph. This ean not, howerer, induce any displacement of the spectral lines, not only on account of its relatively small magnitude but also because it can oceur practically only parallel to the spectrum lines and to the refracting edge of the prism, which will have no effeet on the position of the line.

The principal and central support and conncetion between cradle and lox consists of a shaft 1 inch (25.4 mm .) diameter passing through the hole in the main casting. This shaft is left the full size of the hole only for about 2 mm . at the centre, so that the box is free to swivel in every direction around the centre to the extent of 2 or 3 degrees. This swivelling motion is, howerer, limited, by projecting poiuts on the shaft at the ends of the hole, to one parallel to the motion in right ascension and to the slit, rotation around the axis of collimation being prevented. Consequently any flusure of the cradle can not induee any distorting stress in the box.

The upper supporting shaft has a transverse hole in the centre through which a pin serewed into casting C passes, thus allowing longitudinal motion parallel to the axis of collimation as well as swivelling motion in every direction.

The third point of support eonsists of shafts rigidly screwed into the centre of each side of casting, B. A second short shaft at each side carried by plates serewed to the eradle, as shown (Figs. 2 and 8), is placed about 2.5 cm . from the first in a dircetion which, if produced would nearly pass through the centre of mass of the box. A lever attached to these two shafts at each side in such a way as to allow more than sufficient motion without binding, carries a counterbalancing weight, the combined resultant upward thrust of the two on the box being computed to equal the proportional part of the weight that should be carried by this support.

The box is hence carried equally on the three supports withont any possibility of distortional stresses occurring in it due to flexure of the cradle, the only effect of such flexure being to slightly change the axis of collimation, which at the utmost can only induce displacements of the second order in the position of the spectral lines.

Temperature Control.- Every precaution having been taken, successfully as will be scen later on, against flexure, there remains, as the other main cause of systematic displacements possibly more dangerous than flexure, displacement due to ehanges of temperature in the optical and mechanical parts of the instrument. The changes in temperature between day and night or even between evening and morning at Ottawa are considerable, averaging about $8^{\circ} \mathrm{C}$. for the former and 6° for the latter. In many cases the temperature in the dome becomes $10^{\circ} \mathrm{C}$. lower than that in the temperature case, rendering satisfactory maintenance of constant temperature in the case a difficult matter.

As mentioned in the two previous reports, sueh difficulty was experienced and the temperature in the prism box dropped gradually about $0 \cdot 1^{\circ} \mathrm{C}$. per hour as the temperature in the dome became lower. When practically the whole of the inside of the case was covered with the beating coils this drop was not so great, but was not entirely overcome. It was believed to be due to the conduction of the heat through the metal parts of the attaching truss, the collimator tube, \&c., exposed to the outside air and that, although the temperature inside the case undoubtedly remained nearly constant, the temperature inside the prism box would diminish with the lowering of the outside temperature owing to the greater loss of heat through the exposed supports.

To overcome this as far as possible in the new instrument all of the shafts attaching the box to the cradle were cut at points about 3 cm . from the box, just inside the onter case, were bored out and threaded, and a piece of vulcanized fibre separating the ends about 7 mm , screwed in. This fibre, seen dark on the shafts in Fig. 3, is a poor conductor of heat, prevents direet metallic conduction from the box inside the temperature ease to the cradle outside, and the only part of the spectrograph exposed is the slit head. The temperature inside the outer case is automatically controlled by a pair of electric contact thermometers placed not, as in the previous instrument, one on each side of the prism box, but one in the front near the upper end and one at the back near the camera.

Each of these thermometers controls the beating coils in the corresponding half of the outer case. It was hoped by thus arranging the thermometers and coils to keep the temperature over the whole interior of the casc more nearly uniform than previously. These thermometers act in exactly the same way as in the former instrument described in the 1907 report. When the temperature in the case rises the mereury in the open capillary makes contact with an adjustable platinum wire and the resulting battery current attracts the armature of a relay, thus breaking the heating circuit; similarly when the temperature falls the mercury recedes from the platinum terminal, the relay armature is released and current is turned on the heating coils. In practice the regulation is very good, current in the coils as indicated by pilot lamps being turned on and off every few seconds. To smooth down any remaining irresu-
larities the whole exterior of the spectrograph box is covered with a layer of half-inch thick felt, small hinged doors being made over the indexes and scales of collimator and camera.

The temperature case is in this instrument constructed of wood chiefly on account of its greater ease of construction, of its greater heat insulating power, and of the smaller danger of short circuits in the heating coils over one made of aluminum. Moreover, owing to the simple form of the spectrograph, a wooden case can easily be made amply strong. This case is made of $\frac{1}{4}$-inch thick pine, lined inside with felt about $\frac{3}{8}$-inch thick and is divided into three sections, the line of junction of the body of the case necessarily following the supporting shafts. The third section, which was necessary for constructional reasons, is a small box-shaped piece at the camera end. All joints between the sections and the joints around the doors in the case, necessary for the adjustment and clamping of collimator and camera and of the contact wires in the thermometers, are carefully padded with felt to be air-tight. This case, which is shown in Fig. 5, is attached securely to the supporting cradle and does not touch the spectrograph proper, the openings around the end of the collimator tube and the supporting shafts being made large enough for free clearance and at the same time heattight by washers of felt.

On the felt lining on the inside of this case is stretched about 1,200 feet No. 28 single silk covered German silver wire, arranged in four circuits of 300 feet each, two of these circuits in multiple are controlled by each of the electrical contact thermometers, each governing the coils in its own section of the case. This wire is distributed as uniformly as possible over the inside of the case, the space between the felt coverings of the case and spectrograph being about 2.5 cm . and uniform throughout. By the division of the heating coils into two sections, their uniform distribution, and the uniform space between spectrograph and case, the temperature throughout the case should be maintained nearly uniform and not much trouble with unequal temperature should occur. There is no question that some method of mechanical stirring of the air inside the case would give better results, but the difficulty of additional weight and complication with possible vibration prohibit its use.

The temperature control so far as it has been tested works admirably. There is as before a slight drop in the temperature of the prism box when the external temperature drops rapidly, but that does not last long, and by applying the control in the afternoon, thoroughly ventilating the dome so that considerable of the cooling will have taken place, the temperature remains steady for the night.

Adjustment of the instrument.-After the instrument was completed there were several adjustments to be made before any measurable spectra could be obtained. The first of these was to set the slit at the principal focus of the collimator lens. This was done by Schuster's method of alternate focussing of collimator and observing telescope on the same spectral line, the prism being placed alternately to one side and the other of the position of minimum deviation. This method gives satisfactory results, successive values agreeing within two or three-tenths of a millimetre and the mean of several being taken. The prism was easily set to minimum deviation for the line Fe, 4325.9. This particular line was chosen on acount of the very irregular results given by the line H_{β} in the numerous measures of β Orionis, and the consequent determination to shift the central line towards the violet in the new instrument. The measures above referred to show that more accordant results are obtained with the lines to the violet end of the spectrum than with H_{β}, and as resolving power, purity, and linear dispersion are all greater there, this should result in a further increase in accuracy. The camera focus is determined in precisely the same way, as with the previous instrument, by making adjacent spectra through the refracting edge and base half of the prisms, and determining the focus by the continuity of the lines. A slit is cut in the side of the spectrograph box into which a semicircular diaphragm can be

Fig, 5-New Single.Prism Spectiograph, ready for use.

SESSIONAL PAPER No. 25a
placed and rotated, so as to occult first one and then the other half of the light pencil. The inclination of the plate, determined of course at the same time, is about $16^{\circ} \cdot 5$, the same as with the first objective of this type.

A very curious and at the same time very useful property of the new spectrograph is the constancy of focus of the system for different temperatures. With the two previous instruments, the focal setting increased with increase of temperature about .012 mm . per degree centigrade. Between the temperatures of 0° and 20°, all so far tested in the new spectrograph, the camera setting remains unchanged at 27.69 as determined by a number of careful tests. This with the absolute constancy and rigidity of the new instrument is a point of very great value in obtaining accurate results, as it obviates the necessity of testing the focus each time the instrument is used with the possibility of mistakes in the determination of the true setting. It is difficult to explain why there should be this difference, although it is probably due to the fact that the parts connecting camera objective and plate are of steel in the new instrument instead of brass, whose coefficient of expansion is greater. At any rate the combination of brass collimator tube, whose setting is uncbanged, and steel camera tube gives settings for camera focus constant at all temperatures so far observed. If the collimator tube had been steel or the camera tube brass, there would have undoubtedly been a change in the setting with change of temperature.

The New Spectrograph in practice.-As stated above the instrument was only completed in the beginning of March, and consequently has not been in use long enough to enable its advantages and disadvantages to be fully determined. There is, however, no question that spectra of better quality for measurement will be obtained with it than with the single-prism form of the previous instrument in which the lines were occasionally, especially with the longer exposures somewhat blurred and diffuse, due to flexure or temperature change or both. As will be seen later, flexure in the new instrument is absent, and owing to its compact form any temperature changes should have much less effect on line displacements. As a matter of fact the temperature regulation is much better with the new instrument and no spectra yet obtained, even with very long exposure, show any trace whatever of diffuseness of the lines. Again, the constancy of the camera focus is another factor tending to better results, as one is always sure of the true focus and no fear of systematic displacements due to poor focus can arise.

Tests have been made similar to those of last year, on the relative freedom from accidental and systematic errors of spectra made at different slit-widths. These show, that on the whole in early type stars with this instrument more accurate values are obtained with a slit about 0.051 mm . wide than with slits narrower or wider. The comparative exposures required with the new instrument at slit-width 0.051 mm , and the previous single-prism instrument at slit-width 0.038 mm ., which gives about the maximum accuracy obtainable with it in early type stars, shows an advantage, so far as can be at present determined, of about 25 per cent for the new instrument. To offset this, however, it must be stated that, owing probably to the increased absorption of the larger prism, the intensity of the spectrum at the violet end is appreciably less and for equal intensity of the K line, sometimes required, most of the advantage will be lost. In the case of stars in which the extreme violet is not required, however, there is a considerable saving in time and increase in output by the use of the new instrument. This loss in the violet may be due possibly to other causes than absorption of the prism, such as in the guiding or the position of the corrector and form of the colour curve, and if such is the case, and tbis will be shortly tested, it may to a great extent be overcome.

Careful tests of the flexure of the new instrument have been carried out showing exceedingly satisfactory results. The method of testing was to attach the spectrograph to the telescope, the latter being pointed to the meridian. If the telescope is
turned in declination pointing first to the south and then to the north horizon, it is evident that the spectrograph will have rotated in its own plane through 180°, and there will have been induced in it the maximum possible double flexure. In these two positions spectra were made through a suitable slit diaphragm, the one used for focussing in which the adjacent spectra touch each other being the best, as any displacement of the line between the two exposures will at once be evident. Three sets of exposures of the comparison spark were made on the one plate, by sliding the camera back in its ways between exposures, two for flexure and one with the spectrograph stationary for comparison. Examination of these plates showed no measurable flexure. In some of the lines a very slight displacement could just be detected under high power magnification, but this if due to flexure was quite beyond measurement. As a matter of fact, on the plate being given to Mr. Harper with the request to select from the three the spectrum in which no movement had occurred, he found it impossible to determine which spectra were affected by flexure. As the flexure present during any reasonable exposure can only be a small fraction of that given by the method abore described, it is quite evident that the spectra will be absolutely free from any line displacement due to flexure of the spectrograph. It may be of interest to state that flesure tests made of the instrument with the counterbalancing weights remored, and with consequently only two points of support, also showed remarkable freedom from flexure. Although the flexure was slightly more perceptible it was again quite immeasurable, showing the great stability and rigidity of the form of coustruction adopted.

The previous single-prism spectrograph showed when first constructed a flexure of about .035 mm ., equivalent to a velocity of 70 km . per second. When tested at the same time as the new one it was found the flexure had increased to nearly . 060 mm ., equivaleut to over 100 km . per second. As a displacement of the sharp comparison lines equivalent to a velocity of two or three kilometres would be measurable, it is at once seen how much more stable the new instrument is. It is, so far as I can learn, more stable than any other single-prism spectrograph in existence.

The new single-prism instrument, owing to its greater aperture and its design, is necessarily heavier than the three-prism spectrograph and some changes were necessary in the arrangement of the counterweights for balancing. As will be seen from Figs. 2 and 5, the centre of mass is considerably to the left of the optical axis, and in order to properly balance in declination, weight would have to be added to the opposite side of the tube near the object glass. Consequently rods for carrying weights were attached to both north aud south sides of the tube near the objective, and the telescope can now be easily placed in good balance whatever attachmeut is used.

A counterweighted stand for attaching and detaching the new spectrograph, and for carrying it when not in use is provided. It is of quite similar construction to that used with the previous instrument, and allows the spectrograph to be fastencd to the telescope in about a minute. With the separate relay box and set of plug contacts, both spectrographs may be maiutained at constant temperature, and the change from one prism to three prisms or vice versa made in two or three minutes without disturbance of the temperature regulation in either case.

There will now be given the results of the tests of the new 'Single Material' and the 'Ross Special Homocentric' lenses, and, for completeness, the whole paper, as it will later be published in the Astrophysical Journal, will be given.

CAMERA OBJECTIVES FOR SPECTROLRAPHS.

It is well known that the camera objectives in general use in stellar spectrographic work have a very limited field of good definition, not exceeding in general 2°, which covers, in the usual dispersion of three prisms, about 200 tenth-metres. While this is a sufficient range for spectra of the second type, which are rich in lines, it is not sufficient for early-type spectra which may contain only one or two lines in this region, and in which, consequently, the errors of measurement will be high. As practically

SESSIONAL PAPER No. 25a

the whole photographic region of the spectrum, Π_{β} to K, may be obtained in one exposure with either refractor or reflector, it is evident that a considerable gain in the measurable material in such spectra would be obtained, without increase in exposure time, if a camera lens giving a considerably wider field were available.

Various attempts at the solution of this problem have been made, of which the most successful known to me is that described by Hartmann.* This objective made by Zeiss, known as the 'Chromat,' is constructed of the same material as the prisms, and is composed of two simple meniscus elements, one positive, one negative, separated by a small air space. As there is no chromatic correction the spectra are brought into foens by inclining the plate towards the violet about 16° from the normal to the axis with a dispersion of three prisms. According to Hartmann this objective gives a flat field of 14°. A Zeiss 'Chromat' has been in use in Ottawa for considerably over a year, entirely fulfilling expectations and giving, after slightly increasing the separation of the elements, the whole field used, from H_{β} to H_{δ} (about 8°), almost absolutely flat with excellent definition. There can be no doubt that the field would extend farther if necessary.

Unfortunately, as was learned upon inquiry from Zeiss, this type of objective camot be successfully made of a larger angular aperture than about $f 12$. This was confirmed by the performance of a shorter focus lens of the same type (aperture ratio f8) constructed by Brashear which gave inferior defiuition. More recently, however, Ross Limited, London, have designol and constructed especially to conform to our requirements a lens similar in form to their 'Homocentric,' consisting of four separated elements, but following the principle of the 'Chromat' in being entirely made of the prism material and consequently requiring inclination of the plate to bring the spectrum into focus. This lens, which will be more fully discussed later, gives, at an aperture ratio of $f 5.6$, excellent definition and a flat field. The above remarks apply to a dispersion of three prisms for which this type is especially adapted. If it were used with one prism, in addition to the limitations as to aperture, the plate inclination required (about 50°) would be inconvenient and practically inadmissible in radial velocity work.

There are consequently required short-focus objectives giving a flat field with three prisms, and objectives giving a flatter field than the regular triplet with a single prism. This need, together with what had already been accomplished by Hartmann and Zeiss, was laid before the J. A. Brashear Co. who, with their usual willingness, put their best efforts at our disposal and, in collaboration with Prof. Hastings, produced two eminently suceessful objectives. In both of these the employment of one kind of glass only is followed, although not, as in the 'Cbromat,' of the same material as the prisms, and the consequent chromatic differences in focus are overcome by incliuing the plate. The objective first produced, to which they have given the name 'Single Material' is composed of two widely separated positive elements of crown glass of the lowest dispersion aud is especially adapted for use with one prism, giving exquisite defiuition and a field flat within 0.1 mm . over the whole visible and considerably into the ultra-violet spectrum. The other is similar to the 'Chromat' in form but made of light crown glass, giving also a flat field and good definition with three prisms with a plate inclination of only slightly over half that of the 'Chromat.'

The limiting aperture ratio of the former of these objectives is about $f 8$, of the latter $f 12$, so that evidently they can not supply the need of short-focus lenses of $f 6$ or thereabouts for either single or three-prism work.

The only prospect of success in this respect scemed to lie in some of the modern anastigmat photographic leuses, and a number of different makes were accordingly obtained for trial. The definition of several of these, though good enough for ordinary

[^13]
9-10 EDWARD VII, A. 1910

photographic work, would not stand the critical test of spectrum photography owing probably to some residual spherical aberration. Two, however, the Ross 'Homocentric' and the Zeiss 'Tessar,' gave good definition and the forms of their fields were accordingly determined.

It may not be out of place to give a brief description of the method employed in determining the fields of the ten lenses tested. The dispersion for eight of them was produced by the Ottawa spectrograph, having the following optical constants:-Hastings 'Isokumatic' collimator objective of 35 mm . aperture and 525 mm . focus; one or three prisms of Jena glass 0.102 , angles $63^{\circ} 50^{\prime}$ each; ray at minimum deviation $\lambda 4415$. Two of the objectives were tested with a new single-prism spectrograph having 'Isokumatic' collimator of 51 mm . aperture and 763 mm , focus, O. 102 prism of angle $63^{\circ} 30^{\prime}$, ray at minimum $\lambda 4325$.

The positions of focus in different parts of the field were determined by a modification of Hartmann's method* of extra-focal exposures. By means of a revolvable semi-circular diaphragm behind the collimator lens and an occulting diaphragm in front of the slit, a narrow strip of spectrum, photographed through the half of the prisms near the refracting edge, was placed between and touching two narrow strips made through the base half of the prisms. Evidently, when the plate is in the focus of the camera lens for any particular line in the spectrum, the adjacent portions of this line will be continuous, while, if not in focus. the central section will be displaced to red or violet of the outside sections, the direction and magnitude of this displacement giving a measure of the position of the focal point for the line in question. Two such plates, one inside and one outside the focus, will suffice to determine the torm of the field. In order to avoid the labour of measurement and computation and on account of the diffuseness of the lines and consequent inaccuracy of measurement, when the plate is more than a millimetre from the focus, I have generally preferred to make a number of spectra, by the method outlined above, at camera settings about 0.25 mm . apart within and without the focus. Five of these have in general sufficed to determine the focal curve and, as the camera back can be moved laterally, they can all be made on one plate, thus allowing ready comparisons. Simple inspection of these spectra under a microscope or even by a hand magnifier enables the focus of any line to be determined to about 0.05 mm . by observing at which of two successive spectra the central section has opposite displacements with respect to the outside sections. Interpolation to the above accuracy can then generally be made. This takes only one-tenth the time and is probably equally as accurate as the method of measureing the lispl:acements and computing the distance from focus. I may say that the camera settiag in our regular work is always determined in this way, enabling the plate to be certainly placed considerably within 0.1 mm . of the true focus.

This metkod is probably open to the objection that it will not give the true focal point when the system has aberration, but it must be remembered that, to prevent systematic displacements in radial velocity work due to non-uniform illumination of the collimator objective, this method, which determines the focus by the absence of such displacement, is certainly the one that should be used. Moreover, in this case tests at full aperture, so far as the focus can be determined by definition, confirmed the results of the former method, and there is no reason to doubt the accuracy of the focal curves determined.

[^14]SESSIONAL PAPER No. 25a
The following ten lenses, given in the order of procuring and testing, were tested for their curvature of field.

OBIECTIVES TESTED FOR FIFLD.

Number	Objective.	Aperture.	Fozal Length.	Tested with dispersion of
1....	Brashear Single Material.	45	525	1 Prism, 3 Prisms.
2..	Zeiss Chromat.	55	525	3 Prisms.
3	Ross Homocentric	40	254	3 Prisms.
4.	Zeiss Tessar	48	305	3 Prisms.
$5 \ldots$	Brashear Light Crown...	45	525	3 Prisms. 3 Prisms,
	" O. 102 ("Chromat ").	45	375	3 Prisms.
	" Triplet	57	480	New 1 Prism, 3 Prisms.
9	Single Material	57	457	New 1 Prism.
10.	Ross Special Homoentric	40	254	3 Prisms.

The form of field of each of the lenses is given in the accompanying figures where the horizontal lines represent differences of focus of one millimetre, the wave length and angular distance from the optical axis are shown by the vertical lines, and the diameters of the circles representing the observed points are 0.2 mm . Wherever the curves are not horizontal indicates that the inclination of the plate holder required changing slightly, but this of course has no effect on the form of the field. In order to group the curves according to the type and purpose of the objectives, the order given in the above table has been changed and those of longer focus used with a dispersion of three prisms will be first considered (Fig. 6).

Brashear Single Material (No. 1.)

This consists of two simple converging lenses, the front double convex, the rear convex meniscus, of crown glass of lowest index, separated by nearly one-third the focal length. As will be seen later. this objective gives a beautiful field with one prism, but is strongly concave towards the lens with three prisms, with about the same curvature of field as the regular Hastings Triplet. The inclination of the plate towards the riolet is slightly over 5°. Allowing deviation from focus of 0.1 mm ., slightly over 2° of field is usable.

Zeiss Chromat (No. 2).

This consists of two strongly curved meniscus elements of Jena glass O. 102, the front diverging, the rear converging and of about half the focus of the combination. When received it gave a field convex towards the lens as shown in the upper curve. When the separation between the elements was increased from 2.25 to 4.5 mm . the field became almost absolutely flat orer the whole 8°, giving at the same time excellent definition. Inclination of the plate towards the violet about 16°.

Brashear Light Crown (No, 5).

This is a lens of the same form as the 'Chromat' except that it is made of light crown glass. With the original separation the field was concave but became flat on decreasing the separation from 4.8 to 3.2 mm . This change in separation resulted in loss of defining power. The objective was re-figured at the new separation and gave good definition and field flat over practically the whole range. Inclination of plate to the violet about 9°.

Brashear Telescope Flint (Ño. 6).

In objective similar to the previous one only made of telescope flint glass. The field was originally convex but became flat on increasing the separation from 4.8 to $\pi .9 \mathrm{~mm}$. Refiguring did not give so much improvement as in the light crown objective. Field is now practically flat. Inclination of plate to the violet is about 13.5°.

> Brashear Triplet (Hastings) (No. s).

This is a lens of the same type as used in the Mills, Bruce and Lowell spectrographs. The field is, as shown, strongly concave towards the objective with a usable portion, allowing deviation of 0.1 mm ., of about 2.5°. The definition at the centre of the field is about the same as in the 'Chromat,' but towards the margins even when in focus is much inferior.

All the above objectives are of relatively long focus, small angular aperture, about $f 12$, tested with dispersion of three prisms. Let us now examine the fields given by shorter focus objectives, using the same dispersion (Fig. 7).

> Ross Homocentric (No. 3).

This standard photographic objective gives good definition but a strongly concave field. An increase in separation from 59 to 124 mm . appears to flatten the field, bnt at the expense of defining power and the lens is not usable at the increased separation. Useful field is not more than 2°.

Zeiss Tessar (No. 4).

This objective was one of the standard form taken from the stock of Bausch and Lomb. It gives good definition and a field very slightly convex. This convexity is remored by an increase in separation from 41.0 to 41.7 mm ., but with a slight loss in defining power, so that it is probably preferable to use it at the normal separation. Another lens of the same series, aperture, and focus was tested, giving practically the same field but considerably poorer definition. This is of interest as showing the differences between the performance of two objectives presumably identical and indicates the desirability of specially selecting and testing the lens to be used from a number.

Erashear 0. 102 ('Chromat') (No. 7).

This objective of the same type and material as the Zeiss Chromat but of larger angular aperture, gives a field nearly flat with a separation of 6.3 mm ., but with poor definition even after refiguring. This shows that this type can not be successfully constructed of larger aperture ratio than f11, say. Inclination of the plate to the violet about 16°.

Ross Special Homocentric (No. 10).

This objective was, by the kindness of the makers, Messrs. Ross, Limited, tspecially computed and constructed for us. It has an aperture ratio of $f 5 \cdot 6$, is of practically the same form as their Homocentric, but with all four elements of $O .102$ glass. It gives beautiful definition and a field nearly flat, usable over 8°. Change of separation is without appreciable effect on the form of field. Inclination of plate to the violet about 16°.

Two types of objectives of medium and long focus have been tested with a dispersion of one prism (Fig. 8).

Fig. 6-Long Focus Objectives with three prisms.

Plaskrtt-Anthophysics.

Fig. 7 -Short Focus Objectives with three prisms.

$25 a-$ p. 174

Brashear Single Material (Nos. 1 and 9).

Both of these objectives, whose form was described above, are of the same type, No. 1 of an aperture ratio $f 11.5$; No. 9, f8. When used with three prisms they give the strongly concave field shown in Fig. 6, but with a single prism the field is almost absolutely flat over the whole range of visible and as far into the ultra-violet spectrum as the prism will transmit. The definition given is excellent and the objectives leave nothing to be desired for single-prism work. The inclination of plate to the violet is about 16°. I am glad to express here my appreciation of the efforts, as well as my admiration for the skill of Mr. MrDowell in figuring these objectives. As both components are converging, the only means of removing the positive spherical aberration is by departure from spherical surfaces. While, as Mr. McDowell says, this was comparatively easy for No. 1, of the smaller angular aperture, it taxed even his skill to remove it entirely in the other, and it was only after a second trial and the use of a special device that the objective was finally made perfect.

Brashear Triplet (No. 8).
This, as with three prisms, gives a field concave towards the objective but with considerably less curvature. The usable field is somewhat over 2°. Definition good.

The final results of the investigation may be summarized as follows:-
For a dispersion of three prisms with a camera of fairly long focus two objectives are much superior to the others, the Zeiss 'Cliromat' and the Brashear Light Crown. The former gives a flatter field and slightly better definition than the latter, but on the other hand the smaller plate inclination of 8° instead of 16° and the smaller absorption of the Brashear are an advantage. The definition of either of these is fully equal to the regular triplet in the centre of the field and much superior at the margins.

For short-focus lenses with three prisms both the Zeiss 'Tessar' and the Ross 'Special Homocentric' give good definition and flat fields. The Ross can be used of shorter focus than the Tessar, and gives exquisite definition, but the field of the Tessar is flatter and the plate is normal to the axis.

In single-prism work the Brashear 'Single Material' is much superior to the type of Triplet usually employed, both in definition and extent of field and can not be surpassed or even equalled for its purpose.

MEASUREMENT AND REDUCTION OF stellar Spectra.

With the exception of some plates measured on the spectro-comparator, which will be fully described below, all of the measurements have been made with the Toepfer microscope, and reduced by the modified Hartmann method previously described and explained. When the new single-prism spectrograph was brought into use it was found necessary to obtain tables, similar to those previously prepared, for the reduction of the spectrograms.

As before, plates of the comparison spectrum were made at three temperatures, as far separated as the time and season would permit, and these plates were measured.
From these measures the constants of the Hartmann interpolation formula $\lambda-\lambda_{0}=\frac{c}{s-s^{\circ}}$ were computed, using as the three standards different sets of lines, for the purpose of determining which would give the best agreement over the whole range of spectrum. It was not thought necessary, after the work of Mr. McTean, described in the 1907 report, to use the complete formula,

$$
s_{0}-s=\begin{gathered}
c \\
\left(\lambda-\bar{\lambda}_{0}\right){ }^{a}
\end{gathered}
$$

as he showed that with the previous single-prism instruments, the best agreement was given when $a=1$.

25a-14

9-10 EDWARD VII., A. 1910

It was found that standards chosen at the middle and near the ends of the spectrum gave the best agreement on the whole and these, with the measures corresponding and the constants for the three temperatures, are given.

TABLE OF CONSTANTS.

Temp. C.	4864943	4341-162	$3930 \cdot 450$	x_{*}	\log.	t。
	8_{1}	${ }_{2}$	${ }^{3}$			
$2 \cdot 8$.	$75 \cdot 9840$	50.9383	$20 \cdot 5074$	176.9410	5-4249320	2229.851
8.6..	759851	50.4168	20.4543	176.9954	$5 \cdot 4250393$	$2230 \cdot 595$
$15 \cdot 6 .$.	$75 \cdot 9557$	$50 \cdot 8696$	$20 \cdot 3763$	$176 \cdot 9751$	5-4248560	$2231 \cdot 943$

Forming the differences between the $s^{\prime 8}$ and the log. of the ratio we have:

$\begin{gathered} \text { Temp. } \\ \text { C. } \end{gathered}$	$s_{1}-s_{2}$	$8_{2}-8_{3}$	$\mathrm{S}_{1}-\mathrm{Sa}_{3}$	$\log \frac{s_{1}-s_{2}}{s_{1}-s_{3}}$
$\begin{array}{r} 28 . \\ 86 \\ 156 \ldots \end{array}$	$25 \cdot 0457$ $25 \cdot 0683$ 250861	$\begin{aligned} & 30.4309 \\ & 30.4625 \\ & 30.4933 \end{aligned}$	$55 \cdot 4766$ $55 \cdot 5308$ $55 \cdot 5794$	$\begin{aligned} & 9 \cdot 65462 \\ & 965459 \\ & 9 \cdot 65452 \end{aligned}$

The changes in these differences and in the log. of the ratio are only about half those given with the other single-prism spectrograph. This is undoubtedly due to the fact that the camera setting remains unchanged with change of temperature in the new instrument, and, consequently, only the change in the angular dispersion appears, instead of that due to angular dispersion plus that due to increase in distance of the focal plane from the camera objective.

Averaging up the differences as far as possible, an increase of temperature of $1^{\circ} \mathrm{C}$. increases $s_{1} \cdots s_{s}$ by .008 revolution, and diminishes $\log \frac{s_{1}-s_{2}}{s_{1}-s_{0}}$ by $\cdot 00001$.

Forming an arbitrary series with these differences from the last two columns of the previous table, keeping them as close as possible to the observed values and computing 2nd and 3rd columns we have for differences of 10°.

Again, taking the arbitrary equidistant ralues of s_{z} for these four temperatures, which make the micrometer reading for the iron line at minimum deviation $\lambda 4325.9$

SESSIONAL PAPER No. 25a
as near as possible to 50.0000 , we obtain the following values for $s_{1} s_{2} s_{3}$ and from them the three constants of the formula:-

Temp. C.	${ }^{3}$	s_{2}	s_{3}	s_{0}	$\log e$	X
-10.	$75 \cdot 9260$	50.9190	20-5515			
0.	75.9514	$50 \cdot 9200$	20.5031	$176 \cdot 9129$	5-4250327	2229197
+10 .	$75 \cdot 9891$	$50 \cdot 9210$	20.4546	176.9736	5. 4248342	$2231 \cdot 163$
+20 .	76.0205	$50 \cdot 9220$	$20 \cdot 4060$	$177 \cdot 0327$	5. 4246277	2233-137

From these constants were computed the micrometer readings for all the star and comparison lines employed, and in addition the velocities corresponding to one revolution of the micrometer screw for each star line. This latter is obtained by differentiating the dispersion formula and applying Doppler's principle resulting in

$$
v=\frac{299860}{\lambda} \cdot \frac{\left(\lambda-\lambda_{0}\right)^{2}}{c}
$$

The velocities per revolution, as compared with those for the original single prism, are given for a few lines below to give some indication of the difference in dispersion.

> Velocities per Revolution.
> Temperature $+10^{\circ} \mathrm{C}$.

Wave Length.	Old One Prism.	New One Prism.
4861.527	1454.4	1604.5
4713.308	1336.6	1473.7
4549.766	12096.0	1332.1
4181.400	1156.5	1273.9
4395.286	1091.1	1201.3
4340.634	1050.1	1155.8
4260.640	990.6	1089.9
4202.161	947.7	1042.3
4143.928	905.4	995.4
4101.890	875.2	961.9
4026.352	821.5	902.4
3970.177	728.1	858.3
3933.825	756.0	830.9

These velocities show that the new instrument has very approximately ten per cent less linear dispersion than the old. This, of course, is due almost entirely to the shorter focus camera lens used, as the prisms are nearly alike and the angular dispersion similar.

The Spectro-comparator.

The Spectro-comparator, which was briefly referred to in my last report, has not been used except on a few plates of β Geminorum more to test the capabilities of the instrument than for the purpose of obtaining definite measures of the velocity of this star. Before giving these measures, however, it may be well to shortly describe the instrument, its principle and the methods of measurement. These have been very fully described by its inventor, Dr. Hartmann, in the publications of the Astrophysical Observatory of Potsdam, Volume XVIII., Part 1, and consequently need not be gone into in great detail here.

The principle of measurement depends upon the direct comparison in a special form of double image microscope of the star spectrum, whose velocity is required with a standard spectrum of the sun, whose velocity at the instant the spectrum was made.
can be readily computed. The difference in the displacements of the star and the sun lines with respect to the same metallic comparison lines on each plate is measured by a micrometer screw, and this linear displacement can be at once converted into kilometres by multiplication by a known or easily computed constant. By adding to this radial velocity that of the sun with respect to the earth, with the proper sign, we obtain the velocity of the star with respect to the earth, and this can be readily reduced to the sun in the well known way.

The instrument of which a photograph is shown in Fig. 9 and diagrams in Figs. 10 and 11 was constructed by Zeiss in a very workmanlike manner. It consists essentially of a table T, Fig. 10, which carries at E_{1} and E_{3} the standard solar and the star spectrum respectively, and of a single ocular double objective microscope carried above the table on the bracket R, Fig. 11, which combines and compares the images of the two spectra.

The table T, which as Fig. 11 shows, is inclined at 45° to the horizontal for convenience in measuring, slides at its lower portion on the steel eylinder $Z 35 \mathrm{~mm}$. diameter and at its upper part on the steel bar J. It is moved on these bearings over a range of 12 em . by rack and pinion of which the knurled wheel is shown at K and is clamped in any position, read off on the scale and vernier N, by the clamp screw near κ. At the upper part of the table a carriage B, slides transversely in ways, adjustment being made by the screw G, while a secondary carriage A_{y}, having a slit 1 cm . wide and 12 cm . long, through which the star spectrum is illuminated by the plane mirror shown in Fig. 11 is oriented by the tangent screw D, and the opposing spring F, so that the spectrum, clamped on it may be placed parallel to the motion of the table T. The carriage B_{1}, which carries the standard or fundamental solar spectrum, has an orienting table A_{1}, adjusted by the serew D_{1} and spring F_{1}, and slides in ways parallel to the motion of the table T. It is moved by means of the micrometer screw S of 0.5 mm . pitch, having a range of movement slightly over 2 cm . The head is divided into 100 parts so that the movement of the sun spectrum can be read direct to 0.005 mm . and estimated to 0.0005 mm .

The double microscope, Fig. 11, by which these two spectra arc observed is supported by the bracket R on which the arm R_{1} slides, moved by the serew H, the position being read on the seale W. The tubes carrying the objectives $O_{1} O_{2}$ are attached at a fixed distance from one another to a plate L, movable in ways on the arm R_{1} by the serew Q. At the upper ends of the objective tubes, which are provided with rack and pinion movement for focussing, are the prisms $P_{1} P_{z}$, which reflect the light from the spectra on E_{1} and E_{2} to the compound prism P, P. On the hypothenuse of the prism P, is a surface silvered in the form shown in Fig. 12, and the two prisms are then

Fig. 12.
semented together with Canada Balsam. The proper proportioning of the widths of the silver strips enables one to sce, on looking through the eyepicee. a narrow strip of

Fig. 9 -Spectro-Comparator.

Fig. 10.

Fig. 11.

SESSIONAL PAPER No. 25a
star spectrum between and tonching two strips of sun spectrum, and also on cither side a narrow strip of the star comparison between and tonching strips of sun comparison spectrum. The compound prism $P_{4} P_{4}$, with the eyepiecc, is carried on a slide U moved by rack and pinion V, so that the distance between the eyepiece and the objectives and consequently the magnification of the two spectra may be changed at will. This is to enable them, even though of different dispersions, to be made apparently identical in the field and hence readily and accurately comparable.

The adjustment of the spectra on the machine is a comparatively simple matter, only taking a few moments. The standard or fundamental solar spectrum usually made on a lantern or process plate in order to obtain sufficient contrast, is placed on its carriage, and clamped by a pair of spring microscope clamps. The carriage is then moved by the pinion K until the centre of rotation of the orienting arrangement is directly under the microscope 1, which is in this ease at the reading 132.3 on the scale N.

The whole microscope system is now moved by the screw Q until the solar spectrum is centrally situated with respect to the central silver strip in the field. By moving the carriage back and forwards the spectrum can be rapidly oriented. The star spectrum may be similarly oriented while it is made central by the serew G. There then remains only to adjust the magnification of the separate spectra, the comparison lines of the two appear coincident in the whole extent of the field of view. By moving the ocular by the rack and pinion V, the magnification of one spectrum is increased and of the other decreased. This will cvidently disturb the focus, but this can be easily corrected by adjusting the objectives O_{1} and O_{2} by their focussing screws seen in Fig. 9. This will again slightly change the magnification and the process may need to be repeated, but a little practice soon enables one to equalize the apparent dispersion very quickly.

Before making any measurements it is necessary to divide the fundamental solar spectrum into regions, indicated by small ink dots, and numbered for identification. These regions are so chosen that there is a slight overlapping of the field in adjacent regions with the magnification to be employed. The dots, which are brought under the wire in the measurement, are placed, as nearly as possible, in the centre of a group of good solar lines and at the same time so that the field includes a number of good comparison lines. The regions selected in a series of good fundamental solar spectra made on May 14, 1908, on Seed process plates are given in the following table. In addition in the third column of the table are given the velocities corresponding to one revolution of the micrometer screw. These velocities were computed from the measurement of lines on the fundamental spectrum by the micrometer screw of the comparator. These linear measurements were used to obtain the constants of the Hartmann formula, and from these constants the velocities corresponding to the wave length of each region were computed.

Exposed May 14, 1908.

No. of Region.	Wave Length.	Vel. per Rev. S.	No. of Region.	Wave Length.	Vel. per Rev. S.
1.	48070	$582 \cdot 1$	14	4374.5	
2.	4807.0	$555 \cdot 4$	15.	$4346 \cdot 5$	$352 \cdot 1$
3.	4754.0	531.9	16	4322.8	$341 \cdot 8$
4	$4709 \cdot 6$	512.0	17.	$4298 \cdot 2$	3311
5.	4669.0	494.0	18	4273.3	$320 \cdot 4$
6.	$4628 \cdot 7$	$476 \cdot 0$	19.	4249.9	$310 \cdot 4$
-	+590.2	459.1	20.	4226.8	$300 \cdot 6$
8.	45546	443.2	21.	$4206 i^{\circ} 0$	2917
9.	4523.9	$42 y \cdot 7$	22.	4184.3	$282 \cdot 1$
10.	44920	4157	23.	$4157 \cdot 2$	
11.	$4+603$	4017	24.	4139.5	263.4
12.	$4+29 \cdot 6$	$3 \times 8: 3$	25.	41178	2557
13.	$4402 \cdot 1$	$376 \cdot 2$		4099.0	$246 \cdot 7$

$\log f=\log \cdot \frac{1}{2 \Sigma \frac{1}{3}}$

	Region.	3	4	5	6	7
13.				$1 \cdot 37646$	1.42045	1.47137
14				1-32312	$1 \cdot 36175$	1.40594
15.			1. 21332	$1 \cdot 27409$	1. 30846	1.34727
16.		$1 \cdot 1757$	1.20095	$1 \cdot 22877$	1.25961	1. 29412
17		$1 \cdot 13 \times 13$	116116	$1 \cdot 18647$	$1 \cdot 21436$	1.24533
18		1. 10239	1.12355	$1 \cdot 14671$	1.17207	1. 20008
19.		1.06833	$1 \cdot 08786$	110914	1.13236	1.15784
20.		1.03576	1.05385	1.07349	1.09483	1.11815
21.		1.00457	1.02139	1.03958	1.05928	1.08072
22		0.97422	0.99028	1.00710	1.02535	1.05514
23		$0 \cdot 94533$	0.95996			
24		$0 \cdot 91718$	$0 \cdot 93098$			
25		0.88998	$0 \cdot 90288$			
26	$0 \cdot 86348$	0.87555			

The magnification of the two spectra may be varied between about 10 and 40 fold by means of two pairs of objectives and three oculars. Moreover, by suitably varying these the silver strips on the prism may be varied in apparent width to suit star spectra of different widths. It has been found that a magnification of about 20 seems to give better and easier measurements than either higher or lower powers, and it has generally been used, although tests have been made with different powers.

When the plates have been adjusted as described above, the line in the centre of the field is set on the dot towards the red end at which it is deemed advisable the measurement should begin. This is determined by the appearance of the star spectrum and of its comparison lines. It has not been generally taken lower down than No. 5 at wave length $\lambda 4669$, as below that the comparison spectrum is not so good and no gain in accuracy would result. Towards the violet end the measurement is carried until the star spectrum becomes too weak for accurate comparisons, frequently about dot 20 , wave length $\lambda 4227$. However, in a well exposed star spectrum the measurement could be extended over the whole range on the plate from H_{β} to $H \delta$, although in my opinion nothing would be gained in accuracy by such procedure over that obtained by the use of a less number, say 12 or 15 regions. The measurement proceeds according to a regular scheme of alternation of star and comparison settings,

SESSIONAL PAPER No. 25a
so that at each region there are two settings on the star and two on the comparison lines, one by forward and one by backward rotation of the screw in each case. As soon as the measurement is completed, both star and fundamental spectra are reversed on the machine to overcome personality in the settings and the same regions are again measured.

It has been my experience that the most difficult part of the measurement is the determination of the point of coincidence of star and fundamental spectrum. Although with solar type stars of a considerable range in type, there is so little difference in the lines as to cause no trouble, nevertheless there are frequently apparently accidental irregularities in some of the lines in a region which render it difficult to determine the exact point of coincidence. The field extends over a considerable angle, and the eye can only observe at the most two or three lines at a time. These may be brought into the best coincidence, while lines in another part of the field may be better suited by a slightly different setting, and the best average is sometimes troublesome to obtain. These irregularities are chiefly due, I think, to irregular deposition of the silver grains Iin the comparatively coarse structure of the fast plates, to local distortions of the photographic film, to possibly non-uniform intensity of the star spectrum throughout its width and to other causes of a similar nature rather than to constant differences in the spectrum of star and sun. Such differences can be noted in the case of some lines, but these seem to be few compared with the accidental deviations observed. This difficulty does not exist to so great an extent with regard to the emission lines. Provided the comparison spectra are of nearly the same intensity, coincidences can be easily, quickly, and accurately obtained. The accidental deviations observed in the apparent positions of star lines serve to explain the comparatively high residual sometimes obtained in the direct measurement of good lines in solar type spectra.

After the measurement is completed the reduction of the separate measures to velocities is a simple matter. The difference in the settings for coincidence between emission and absorption spectra, multiplied by the velocity per revolution at the region under consideration gives the velocity at once. These differences are, however, tabulated for both positions of the plate, and the mean of the two for each region multiplied by the velocity factor gives the velocity for the region, while the velocity for the plate is obtained from the mean of the regions.

This considers all the regions as of equal weight, whereas such is not the case. In some parts of the spectrum the lines are more numerous or of better quality, and moreover as the dispersion increases, as we go towards the violet, greater weight should be given. There are then two courses open, to give weights according to the quality of the regions, increasing these as we go towards the violet, or to give weights proportional to the dispersion. The latter method is much simpler, and should give practically the same values as the more complex method and better values than the simple mean. Moreover, Hartmann has developed a very simple method of obtaining the velocity from the differences. If we call the differences with red to right d_{1} and with red to left d_{2}, then the mean $d=\frac{1}{2}\left(d_{1}+d_{2}\right)$, which multiplied by the velocity factor s, gives velocity $s d$ for the region. Its weight is proportional to $\frac{1}{8}$, and hence the weighted mean relocity can be very simply represented by $\frac{\mathbf{\Sigma} d}{\frac{1}{3}}$, As $d=\frac{1}{2}\left(d_{1}+d_{j}\right)$ we

$$
\mathrm{x} \frac{1}{8}
$$

can avoid taking the means of the differences by changing it to $\frac{\Sigma d_{1}+\Sigma d_{2}}{2 \Sigma \frac{1}{s}}$. If we take the velocity values per revolution of the fundamental spectrum and form the expressions $\log \left(\frac{1}{2 \Sigma \frac{1}{s}}\right)$ between all the regions which are likely to be used, the only pro-
cedure necessary to obtain the weighted meau velocity is to add all the differences together and add to the logarithm of the sum the tabulated value of the above expression. To the velocity of which this sum is the logarithm, must be added the computed radial velocity of the sum when the spectrum was made, and we have the radial velocity of the star with respect to the earth, which reduced for diurnal and annual motion will give us the velocity with respect to the sun.

As mentioned previously, onty a few plates of β Geminorum made with the threeprism spectrograph have been measured, principally as a test of the capabilities of the instrument. It can practically be used only with spectra of the second and third classes, those with numerous well defined lines, allied to the spectrum of the sun. Our single-prism spectrograph has been almost entirely employed on stars of early type spectra, which can not be economically or accurately measured with the spectrocomparator. However, work on some solar type spectroscopic binaries with a shortfocus camera on the three-prism spectrograph is about to start, and for the measurement of such spectra the comparator is especially suited.

One spectrum of β Geminorum No. 1373, of only moderately good quality, was selected as a test plate and has been measured fifteen times with different fundamental spectra, different arrangements of objectires and oculars and with two different ocular prisms.

The measures and their summary given below enable an estimate of the accuracy obtainable in measurement to be formed. Further ten additional plates of β Geminorum have been measured with constant conditions in the comparator, which enables an estimate to be formed of the instrumental errors to be expected in the making of the spectra. These also with a summary are given below:-

SESSIONAL PAPER No. 25a

SOLAR WTANHA1kn 136if,
Oberver
Medaburer J. s. P.

3 (FEMINOREM 13R.3.
Solar Standard 1 fit.
Observer
Measurer ,f. $\therefore . \mathbf{P}$.

SESSIONAL PAPER No. 25a
β GEMHNORLM 1373.
Solah Stanibart 1461.
()bserver
Measurer ; J. S. P.

Region.	d_{1}	$d=$	d	1	'
3	, 0.95	. 051	-023	$24 \cdot 96$	-1.06
4	45	52	48	$22+10$	$+1.80$
5	47	53	50	2249	+141
6	50	4	49	21.73	$+237$
7	53	53	53	2276	-114
8	49	51	50	20.95	$+2 \cdot 95$
9	58	63	60	24.5	- ${ }^{1} 68$
10	14	68	63	$2 \pi \cdot 21$	-1.31
11	64.	59	60	23 47	-0. 43
12	65	61	63	$24 \cdot 10$	-0.20
13	67	62	64	24.01	$-0 \cdot 10$
14	68	72	70	$2: 68$	-1.78
15	69	62	66	$23 \cdot 69$	+021
16	79	65	72	$25 \cdot 29$	-1.39
17	68	69	69	$23 \cdot 78$	+0.12
18	68	76	72	$24 \cdot 26$	-6.36
19	74	14	7	24.43	-0.53
20	71	72	73	2361	+0.29
21	77	14	75	$28 \cdot 72$	$+0.18$
22	78	79	78	$24 \cdot 16$	-0.26
23	79	81	80	24.26	-0 36
24	88	88	86	$25 \cdot 57$	-167
25	91	82	86	2497	-0.07
	1526	1503	Mean..	2390 +..

$\Sigma d=3029 \quad \log =48130$
$\log \left(\mathrm{V} s-\mathrm{V}_{0}\right)=1=1.88001$
$\mathrm{V}_{8}-\mathrm{V}_{0}=+23.99$
$V_{0}=+0.35$
$V a=-219$
$T d=-0.16$
$V=+2 \cdot 23$

3 GEMNNORUM 1373
ज()
Measurer ; J. S. P.

SESSIONAL PAPER No. 25a
今 GFMLNORUM 1873.
Solar Standabis 1462 .

Fiegion.	$\bar{\alpha}_{1}$	d_{2}	d	V	\cdots
1	052	05.1	-051	25 41	-0 7
3	4	+9	49	23.72	+0.96
3	5	50	52	24.50	+9.14
4	17	47	4	21.64	+3.04
5	50	54	5	$23 \cdot 39$	-1.23
$\stackrel{1}{6}$	52	51	5	22.8\%	+1.83
7	60	54	3	24.48	+0.20
,	6.	57	37	23.88	-0.81)
9	61	63	62	25.46	-0.72
10	6.5	$6 \pm$	6	25.21	$0^{\circ} 53$
11	64	61	63	246	$+6.03$
13	73	70	71	$27 \cdot 16$	248
13	74	66	70	26.27	-1.67
14	67	69	68	34.94	-0.26
15	65	64	66	$23 \cdot 69$	+0.93
16	7	67	70	24.58	-0.10
17	70	69	69	37.77	-0.98
18	72	72	72	24.26	+0.42
1.9	74	74	74	-4.48	-0'25
20	\%	76	7	24.90	-0 2
21	8	79	81	25.62	-0.94
22	$8:$	8	82	25.40	-0.72
33	8 8,	79	81	24.50	$+011$
34	$8:$	81	82	24.88	+0.31
25	94	87	90	$26 \cdot 13$	-145
	168*	16.36		$+24.68$	

$\Sigma d=331$
$\log =\cdot 20086$
$\begin{aligned} \log f & =1.8755 \\ \log (\mathrm{~V}-\mathrm{V} \rho) & =1 \cdot 392+3\end{aligned}$

$$
\begin{array}{rl}
\text { Vo } V_{0} & +2468 \\
V 0 & +0 \cdot 60 \\
V_{n} & -21 \cdot 97 \\
V d & 0.16
\end{array} \quad V=308
$$

f(iEMINORCM 1373.
Solah Stavinarin 1462.
Observer
Measurer J. S. P.

SESSIONAL PAPER No. 25a

8 (iEMINORUM 1373.
Solat Stanbart, 1462.

3 GEMINORUM 137\%

Solar Standard $1+62$.
High Power Objeetiv.
Low Power Ocular.
Observer
Measurer J. S. P.

\& (:FMINOHUM 1373.

GOLAK STANHAKH 1465.
Olmerver,
Measurer, J. S. P.

9-10 EDWARD VII., A. 1910
β GEMINORUM 1373.
Solar : tandard 1468.
Observer
Measurer J. S. P.

SESSIONAL PAPER No. 25a
β GEMINORUM 1373.
Solar Standard 1517.
High Power.
$\underset{\text { Measurer }}{\text { Otserver }}\}$ J. S. P.

$\Sigma \mathrm{d}=2940$
$\begin{array}{ll}\log = & 46835 \\ \log f= & 91360\end{array}$
$\log \left(\mathbf{V}_{\delta}-\mathbf{V}_{o}\right)=1.38195$

$$
\begin{aligned}
\mathbf{V} s-\mathbf{V}_{0} & =+2410 \\
\mathbf{V} o & =+0 \cdot 5 \pm \\
\mathbf{V} a & =-21 \cdot 9 i \\
\mathbf{V} d & =-0 \cdot 16
\end{aligned}
$$

$\mathbf{V}=+2.51$

9-10 EDWARD VII., A. 1910
-31FMINORUM 1373
SoLAB STANuARTI 1519.
Observes I J. S, P.
Measurer

$$
\begin{aligned}
& \mathrm{\Sigma d}=2261 \\
& \mathrm{~V}_{s}-\mathrm{V}_{0}=+24.77 \\
& V_{o}=+0.41 \\
& \mathrm{Va}=21.97 \\
& V d=-0 \cdot 16 \\
& \log =35430 \\
& \log j=1.03958 \\
& \operatorname{lng}\left(\mathrm{~V}_{8}-\mathrm{V}_{0}\right)=1 \cdot 39388 \\
& r= \pm 0 \cdot 72 \\
& V^{+}=+3 \cdot 05
\end{aligned}
$$

SESSIONAL PAPER No. 25a
4 GFMINORUM 1373.
S(HAK Si'AND.AR1) 1526.
$\left.\begin{array}{l}\text { Observer } \\ \text { Measurer }\end{array}\right\}$ J. S. 1:

Region.	d_{1}	12	d	V	0
3	146	048	047	23.22	+170
1	53	51	52	24.75	+0.17
7	50	51	51	23.41	+1.61
8	59	57	28	25:71	0.79
4	57	60	58	$24 \cdot 92$	0.00
10	59	55	57	$23 \cdot 69$	1.23
11	64	64	64	$25 \cdot 11$	0.79
13	68	68	68	26.41	1.48
13	72	70	71	$26 \cdot 71$	1.79
14	67	72	70	: 354	$0 \cdot 57$
15	68	72	711	24.65	0.27
16	73	64	71	2427	+0.65
17	73	73	73	$24 \cdot 17$	$+0.75$
18	78	81	80 80	25.63	-0.71
19	83	81	82	$25 \cdot 45$	-0.53
20	79	83	81	$24 \cdot 35$	$+0.57$
21	88	84	81	$25 \cdot 09$	$-0 \cdot 17$
	1147	1139	Mean.	-24.92	.

$$
\Sigma d=2286
$$

$\mathrm{lug}=35 \mathrm{tan}$
$\log f=1.63958$
$\log \left(V_{8}-\mathrm{V}_{0}\right)=1 \cdot 39866$
$\mathrm{V} s-\mathrm{V}_{0}=+25 \cdot 04$

$$
V=-3 \cdot 29
$$

- GEMINORUM 1373

Solar Standard 1524.
Obscrver. I J. S. P.
Mesurer.

| Region. | | |
| :---: | :---: | :---: | :---: |
| | | |

$\Sigma \mathrm{d}=2219$
$\log =34616$
$\log f=1.03958$
$\log (\mathrm{~V}-\mathrm{V} 0)=1.38574$
$\mathrm{~V}_{8} \cdot \mathrm{~V}_{0}=\div 24.31$
$\mathrm{~V}_{0}=+0.23$
$V a=-21.97$
$\bar{V} d=-0 \cdot 16$
$V=-241$

SESSIONAL PAPER No. 25a
GEMINORUM 1306.
Ohserver,
Measurer, J. S. P .

$\left.\begin{array}{l}\text { Whserver } \\ \text { Neasurer }\end{array}\right\}$ J. 心. P.

Region.

SESSIONAL PAPER No. 25a

今

9-10 EDWARD VII., A. 1910
β GEMINORUM 1433.
Observer
Measurer J. S. P.

Region.	d_{1}	d_{2}	d	1	r
3	061	060	- 061	$28 \cdot 76$	$\div 2.80$
4	66	67	66^{6}	30.39	$\bigcirc 1.17$
5	66	65	66	$29 \cdot 69$	$+1.87$
6	66	67	66	2906	+2.56
7	68	75	72	$30 \cdot 92$	-0.64
8	74	78	76	31.84	-0.28
9	80	77 80	78	31-95	-0.39 -0.46
10	78 79	80 83	89	31.62 31.69	-0.06 -0.13 -1.73
11	79 86	$\frac{83}{87}$	81	31.69 $33 \cdot 29$	-0.13 -1.73
12	86	88	87 84	$33 \cdot 29$	-1.73
13	87	82	84 86	3150	+0.06
14	86	86 88	86	$32 \cdot 64$	-1.08
15	85	88	87 88	$31 \cdot 23$	+0.33
16	92	88 94	88	30. 91	-0.65
17	93	$\stackrel{94}{95}$	93 95	32.05	-0.49
19	42	94	93	30.70	-0.86
20	100	39	100	32.34	-0.76
21	104	96	100	$31 \cdot 68$	-0.07
22	107	103	105	$32 \cdot 52$	-0.96
23	108	106	107	$32 \cdot 45$	-0.89
24	114	108	111	3300	-1.44
25	118	114	116	$33 \cdot 67$	$-2 \cdot 11$
	2005	1987		$-31 \cdot 56$	

$$
\Sigma d=3999 \quad \log =-60119
$$

V s-Vo $=+31 \cdot 62$
$V o=+0.33$
$\mathrm{Va}=-28.83$
$\stackrel{V}{\mathrm{~V}}=-0.09 \quad \mathrm{~V}=+3.03$

SESSIONAL PAPER No. 25a

β (:EMINORUM 1452.
$\left.\begin{array}{l}\text { Observer } \\ \text { Measurer }\end{array}\right\}$ J. S. P.

$\left.\begin{array}{l}\text { Observer } \\ \text { Measurer }\end{array}\right)$ J．$\stackrel{P}{ }$

SESSIONAL PAPER No．25a
f（iEMHNORUM 1ヶで
Somar Staniathi 1530.
Observer
Measurer ，A．S．

Kıugion．	d_{1}			ObserverMeasurer i，A A． 1 ．	
			d	V	1
5	053	056	（120）	27.17	＋394
6	61	63	62	2951	$+160$
7	71	69	71	3214	-1.08
8	67	67	6	29.69	142
9	70	73	71	$30 \cdot 51$	－ 0.60
10	73	73	73	3035	0.76
11	${ }_{7}^{76}$	77	77	30.93	－0．18
12	75	80	78	30^{-29}	$0 \cdot 82$
18	83	86	85	31.98	$0 \cdot 87$
$1 \pm$	89	85	88	$32 \cdot 11$	130
15	88	92	90	3169	－0．58
16	95	98	94	3213	－1．02
17	96	$9{ }_{7}$	96	31.81	${ }^{0} 70$
18	100	103	102	32.68	－1．57
19	104	102	103	31.97	${ }^{0} \cdot 86$
21	104	$\begin{aligned} & 103 \\ & 108 \end{aligned}$	104 111	$31 \cdot 26$ $32 \cdot 38$	－ $0 \cdot 15$
	115	108	111	32．38	$1 \cdot 27$
	1422	1499	Mean．	－31 11	．
		$\log ($	$\begin{aligned} & 455(4 \\ & 03958 \\ & 49458 \end{aligned}$	$r= \pm 0.94$	
	$\begin{array}{r} -\mathrm{V}_{0}= \\ \mathrm{V}_{0} \end{array}$				
	$\mathrm{V} a$ $\mathrm{~V} d$				

9-10 EDWARD VII., A. 1910
β GEMINORUM 1500.
Solar Standahd 1519.
$\left.\begin{array}{l}\text { Observer } \\ \text { Measurer }\end{array}\right\}$ J. S. P.

SESSIONAL PAPER No. 25a
$\beta 1: F M I N O R U M 1502$
Observer
Measurer J. S. P.

3 GEMINOHLM 152%.
Solar Stanhakib 1506 .
Observer
Measurer ,I. S. P .

STMMARY OF COMPARATOR MEASURES OF \&GEMINORUK 1373.

Solar Standard.	No, of Regions.	Velocity.	Residual O - C .	$\begin{aligned} & \text { Probable error } \\ & \text { of } \\ & \text { Single Region. } \end{aligned}$
1360	25	+293	-0.21	± 110
1461.	25	+302	-0.31	0.71
1461....	28	+2.23	+0.49	081
1462....	22	+2.85	-0 13	${ }^{0} 81$
1462....	25	+3.03	-0.31	${ }_{0}^{0.77}$
1462....	23	+3.18	0.46	$0 \cdot 79$
1462...	26	$+2.50$	+0.22 +0.20	0.68 0.74
$1462 \ldots$	23 23	+ +2.52 +2.31	0.20 +0.41	0.74 1.02
$1465 . .$.	23 23	$+2 \cdot 31$ $+2 \cdot 30$	+0.41 +0.42	1.02 0.80
1468.	23	$+2 \cdot 30$ $+2 \cdot 51$	+0.42 +0.21	0.80 0.79
1519	17	$+3.05$	-0.33	0. 72
1520..	17	+3.29	-0.57	${ }^{0} 6.65$
1524.	17	$+2 \cdot 41$	$+0.31$	$0 \cdot 84$

Mean velocity +272 . Mean P. F. ± 0.80.
Probable error of single measure $= \pm 0.24 \mathrm{~km}$.
Probable error of mean velocity $= \pm 0.065 \mathrm{~km}$.

SESSIONAL PAPER No. 25a

SUMMARY OF MEASURES OF 11 PLATES OF β (:EMINORUM.

Plate No.	No. of Regions.	Velocity.	Residual.	$\begin{aligned} & \text { Prubable error } \\ & \text { of } \\ & \text { Single Region. } \end{aligned}$
1306..	23	+1.84	$+0 \cdot 37$	± 0.63
1373.		2.72	-0.51	0.80
1417	23	1.41	+0.80	$0 \cdot 68$
1424.	23	1.58	+9.63	$0 \cdot 88$
1443	23	303	-0.80	$0 \cdot 84$
1452	23	1.70	$+0.51$	$0 \cdot 74$
1460..	23	$3 \cdot 19$	-0.98	$1 \cdot 14$
$1+72$.	17	$1 \cdot 99$	+0.29	0.94
1500.	17	2.03	$+6.18$	0.81
1502..	23	$2 \cdot 43$	-0.22	$0^{0.93}$
1527........	16	$2 \cdot 3$	$-0 \cdot 16$	$0 \cdot 77$

Mean velocity $+221 . \quad$ Mean P. F. ± 0.83.
Probable error of plate $= \pm \mathbf{0 . 4 0}$.
Probable error of mean $= \pm 0.12$.

As the summaries and probable errors above show, the error of setting on a single region is on the average in the several measures of the plate No. $1373 \pm 0.80 \mathrm{~km}$., and only slightly greater ± 0.83 for the other plates. Hartmann obtaiued a probable error of $\pm 0.67 \mathrm{~km}$., somewhat smaller than above. The difference may be due partly to his greater skill and experience in measurement and partly possibly to better quality of spectra. If a better spectrum than 1373 had been selected and it were measured with the best of the fundamental spectra, I have no doubt the probable error would be considerably diminished.

The measures of the 11 plates of β Geminorum give an indication of the systematic discrepancies to be expected in the production of the spectra, although some allowance should be mate for accidental errors of measurement. A total range of nearly 1.8 km . is shown and the probable error of a plate is $\pm 0.40 \mathrm{~km}$. These plates were made under average conditions, no special care being taken, and the plates are of average quality only. A systematic difference between these measures and other determinations by the old method of measurement at this, and other observatories of slightly over a kilometre +3.5 km . with micrometer microscope, +2.2 km , with comparator is present. Thesc plates have only been measured by the comparator, and hence it cannot be determined yet whether this difference is in the plates or in the method of measurement, but the latter seems the more probable. It is interesting to note in this connection that there is a gradual and systematic increase in the velocity of the different regions from the red to the violet in all the star plates measured, but no explanation of the cause of this discrepancy can be offered. It is unquestionable that if this were removed the probable error of a single region would be materially reduced. Finally, it is probable that, as mor experience is gained with the instrument, the accuracy of the measures will be considerably increased.

THF COELORTITT TELFASOPF:.

Although the optical and mechanical parts of this instrument have been ready for nearly two vears, the shelter and connecting passage and tunnel were not finally completed until about July, 1908, and it was not possible to make any use of the installation until some time after that date. The spectrograph, which is described by Dr. DeLury in Appendix C , was erected and adjusted as soon after as possible, but owing to the inferior quality of the grating, the work has been much handicapped.

The telescope itself performs admirably and as it has not yet been described, it seems desirable to mention here its principal features.

Essentially the optical parts of the installation consist of the coelostat mirror, which reflects the sun's light in a southerly direction to a secondary plane mirror, which in turn reflects the beam north to a concave mirror forming a solar image 80 feet south in the basement of the observatory building.

A general view of the coelostat and secondary mirror, and of the shelters and connecting passages for the beam is given in Fig. 13. The coelostat and secondary mirror are covered by a house on wheels, which can be easily rolled back (and is thus shown in the figure) by a convenient mechanism over the louvred passageway which contains the concave mirror. Between the latter and the basement of the Observatory is another ventilated passage and a tunnel. The house and passages are constructed of wood, corered with galvanized iron painted white, and all very thoroughly ventilated by galvanized iron lourres to prevent as far as possible temperature stratification or disturbance in the course of the beam. It would have been preferable to continue the rentilated passage along the whole course of the beam from the coelostat to the Observatory wall, but this was not possible on account of the necessity of a driveway. This difficulty was overcome by making a tunnel for the last 20 feet, or so, through which the beam passes to the focus. As the latter is usually five feet or so outside the wall, this leaves an unventilated distance of about 15 feet, which apparently has no very serious effect on the definition.

A general view of the telescope looking north is given in Fig. 14, and another riew looking south towards the Observatory in Fig. 15. The coelostat has a plane mirror 20 inches in diameter which rotates on an axis, in or parallel to its plane, which is parallel to the axis of the earth and driven by clockwork at half the diurnal rate. The whole instrument is moved bodily east and west by the sheave and cable, shown in the figures, on cast-iron ways resting on a cement pier. The purpose of this movement is to enable the coelostat mirror to receive the sun light more nearly normally by placing it towards the west in the morning and the east in the afternoon. The ways are long enough to permit of sufficient movement to prevent any interception of the return beam from the concave, which passes under the secondary mirror.

The beam of sunlight from the coelostat mirror is reflected in a constant direction so long as the declination remains the same, but evidently any change in the declination of the incident light entails a similar change in the direction of the reflected light, and it is necessary to have a movable secondary mirror to receive this beain and direct it towards the image forming concave. This change of direction of the reflected beam, due to the change of declination of the sun, is provided for by attaching the mirror to a carriage rolling on ways in a north and south direction, the mechanism for changing the position of the secondary being identical with that used for moving the coelostat and the concave mirror, and being well shown in the figures. During the winter when the sun is low in the sky, the secondary has to be brought close to the coelostat, and in the summer away from it. The secondary mirror, also of 20 inches diameter, can be quickly adjusted in inclination by quick and slow motions so as to send the beam directly to the concave mirror.

The latter of 15 inches diameter and 80 feet focus is movable in the north and south direction over ways about 20 feet long, in order to be able to rary the position of the image for different purposes. It is also adjustable vertically and has slow motions provided for moving around a rertical and horizontal axis in order to place any desired part of the image, say, on the slit of the spectroscope or in any other required position. The beam of light from this mirror passes directly under the secondary mirror through the opening in its support, and is inclined downward $3 \frac{1}{2}^{\circ}$, the same inclination being given to the ways on which the concave mirror carriage moves. This inclination was adopted in order to enable the coelostat to be raised a little above

Fig, 14-Colostat Telescope Mechanism, looking noth,

$25 \mathrm{a}-\mathrm{p}, 208$
Fig. 1in-Celostat Telescope Mechanism, looking south.

SESSIONAL PAPER No. 25a

the surface of the ground, and to keep the beam some distance away from the roof of the tunnel.

The coelostat was made by the J. A. Brashear Co., in 1905, for eclipse purposes, and the secondary and concave mirrors in 1907. The designs and drawings for the remainder of the mechanical parts were made by myself, while the mechanism was constructed by the Victoria Foundry. It was found necessary, owing to the vibration of the secondary mirror support and carriage by the wind, to design one of a heavier pattern, which has been constructed by the same firm since the photographs were made, and entirely overcomes the difficulty.

The definition given by this equipment is much better than was expected from the somewhat unfavourable conditions, such as the low position of the coelostat, and the presence of the unventilated tunnel through which the beam passes. Its location north of the Observatory is also objectionable on account of radiation or convection from the building, affecting the beam between coelostat and sun. However, as the position of the installation was the only one available, we were forced to make the best of these adverse conditions and as the result shows successfully. In the early morning and the late afternoon when the mirrors are in their normal condition the definition is very good, but this is soon deteriorated by the irregular figure produced by the heating action of the sun on the mirrors. However, by keeping them shielded from the sun's rays except during actual use, this causes no especial difficulty in solar rotation work.

bidial velocities.

The work of determining the radial velocities of stars has been actively carried on during the last year, the addition to the staff enabling a considerable increase in the number of measurements made, and in the amount of computational work accomplished. So far as observing is concerned, however, the weather has not been as good as in the previous year. In April and May there were considerably fewer observing nights, many of them also being rendered practically useless by haze. June, July and August were good, but they were followed by three months in which very few useful spectra were obtained owing to continuous dense smoke at first and afterwards to cloudy weather. The remainder of the year has been of about average quality. There have been photographed in the year, 1,010 spectra, 18 sun for use with the spectrocomparator and 992 star spectra on 160 nights. Of these 218 have been made with the three-prism, 698 with the one-prism and 94 with the new one-prism spectrograph.

Of these spectra, 775 have been measured and reduced. Probably a number of spectra made previous to April 1, 1908, have also been measured during the past year, but we have no record of the exact number.

Detailed measures, which in this report have all been collected together at the end (Appendix E), have been made of 635 plates, of which 581 are used in obtaining the orbits of the five binary stars discussed below. The other 54 are measures of two stars whose orbits are not yet completed. The remaining 138 plates measured are chiefly of spectroscopic binaries under investigation, but they also include a number of plates of some early type stars not known to be binaries.

The five binaries discussed below with the number of plates used for each are:-

Star.	Right	Ascension	Declination.		No. of Plates.
		m.			
β Orionis	5		-8°		273
${ }^{8}$ Aquila.	20	06.2	-1	7	$54 .+43$ in 1908
a Corone Borealis..	15	$30 \cdot 4$	$+27$	3	103
¢ Herculis,	16	$56 \cdot 5$	+31	4	106
η Boötes.	13	49.9	+18	54	45

The 34 measures of δ Aquile which follow are given for the reason that there seems little prospect of obtaining an orbit and little use, owing to the uncertainty of the results and the small range in velocity, in carrying the work on this star any further.

The binaries under observation here at present are given in the following table. In two of these stars τ Tauri, B.D. $-1^{\circ} 1004$, and ν Orionis, the work is well advanced, but on many of the others not much has yet been done:-

BINARIES UNDER OBSERVATION.

The majority of these stars have, as will be noticed, early type spectra and in many of them the lines are very diffuse; consequently many plates are required before a satisfactory orbit can be obtained, an example of this being given in the preceding table of the binaries completed, where the average number of plates used is well over 100.

In the measures of stars not known to be binaries, those that were observed haring in every case spectra of the hydrogen or helium type generally with diffuse lines, the following four stars were discovered to be variable in their velocity:-

NEW SPECTROSCOPIC BINARIES.

	Star.	R. A.	Deelinat		Mag.	Type.
		h. m.				
${ }^{\circ} \mathrm{Herculis}$		$17 \quad 11$	+24	57	37	VII b
γ Aquarii .		$\begin{array}{ll}22 & 165\end{array}$			41	VII ${ }^{\text {a }}$
${ }^{\text {- Andromedie }}$		$\begin{array}{ll}23 & 33 \cdot 2\end{array}$	+ 42		44	
§Persei.....		$\begin{array}{lll}3 & 52.4\end{array}$	- 35	30	4.4	I b

In addition to the above, β Orionis is definitely announced as of binary character, but as it is more fully discussed later, nothing more need be said about it here.

δ Herculis.

Practieally the ouly lines measurable in this spectrum are the hydrogen series, and these are very diffuse and difficult to measure. Consequently, the measures are

SESSIONAL PAPER No. 25a
subject to much uncertainty, and it was only after several plates had been obtained that its binary character was established. The velocities are as follows:-

Plate Number.	Date.		Velocity.	Plate Number.			Velocity.
	1907.		27935		1903.		
$\begin{aligned} & 839 \\ & 894 \\ & 929 \end{aligned}$	June July	$\begin{array}{r}12.79 \\ 27 \\ \hline 9.74\end{array}$			March	16.93 13.83	
				1480 1495	April	13.83 15.89	73 -47 -47
				1512		22.89	-57
	1908.			1532	May	15.85	47
1392	March	8.89	59				

The variability in ita velocity was discovered by Mr. Harper.

$$
\gamma \text { Aquarii. }
$$

This star is of the hydrogen type, having Mg. 4481, Fo 4549, Ca 3934, in addition to the hydrogen lines, and the measures are consequently much more reliable than the previous star. They are:

Plate Number.	Date.		Velocity.	Plate Number.	Date,		Velocity.
	1908.		- 18		1908.		
1745	July	2986			August	17.81	- 40
1770	dugust	5. 81		1847	*	28.70	- 7
1779		781		1858	-	31.77	+ 23

Its variability was discovered by Mr. Cannon.

1. Andromeda.

The spectrum of this star is similar to that of γ Aquarii, having the hydrogen Mg. 4481, and K lines, alhlough possibly not so well defined. Its variability was discovered by Mr. Cannon, and it was announced in the Journal of the Royal Astronomical Society of Canada, Vol. II., No. 5. I learned afterwards that it had been informally announced by Prof. Frost at the Put-in-Bay meeting of the Astronomical and Astrophysical Society of America. Although present at the meeting, I had taken no notes and had forgotten its announcement. The discovery here was consequently entirely independent. The velocitins of all the plates measured here are given:

Plate Number.	brate.		Velocity.	Plate Number.	Date.	Velocity.	
	1908.		${ }^{6}$		1908.		
1772	August 587				November 9.58		
1781	"		11+12	1963	" 13.60	+ 14	
1832			1969	" $\quad 16 \cdot 69$	$\begin{array}{r}\text { + } \\ +\quad 29 \\ \hline 13\end{array}$		
1922	Octsber $\begin{array}{r}26.87 \\ 9.76\end{array}$			36	1971	- $\quad 20.59$	-13
1928 1939	"12.71		14 6	1977 1995	December $\begin{array}{r}21.53 \\ 2\end{array}$	[+1 $+\quad 1$	
1930	$19 \cdot 63$,	1000	December 25		

\leqq Persei.
The spectrum of this star is of the helium type, and is principally characterized by the extreme breadth and diffuseness of the lines. Frost and Adams, in 1903, published the measures of some plates which agreed well within errors of observation in giving it a positive velocity of 85 km . per second. They surmised that later plates might show the velocity to be variable. Consequently, I thought it desirable to obtain a few plates here, and their measures by Mr. Cannon soon showed that the star was a binary. I have since learned personally from Prof. Frost that this had been a long time established by them. The following are all the relocities measured here:-

Plate Number.	Date. G. M. T.	Velocity.	Plate Number.	Date, G, M. T.	Velocity:
	190\%			1908.	
1946	October 30.37	- 120	1974	November 20.83	- 45
1953	Norember 6. 66	- 143	1998	December ${ }^{2} 69$	- 32
1958 1964	$\begin{array}{rr} \hline " & 9 \cdot 77 \\ " & 13 \cdot 65 \end{array}$	3 $-\quad 2$	1999	$\cdots \quad 472$	- 51

§ Aquila.

Mr. Parker has spent considerable time at work on δ Aquilæ without being able to obtain a period, and it looks as if the small range, combined with the poor quality of the spectrum, will preveut any orbit being determined. Mr. Parker has also been unfortunate in the other binary on which he has been engaged, τ Tauri, which has very bad lines in its spectrum and over which he has spent a great deal of time. He lias, however, determined the period as nearly 1.5 days, but it has not been thought desirable to complete the work until further plates are secured next season. Consequently no measures of it will be given in this report, but a summary of the measures and some data concerning δ Aquilx are given below, while the detailed measures are given in Appendix E.

This star ($a=19^{h} 20^{m}, 5, \delta=2^{*} 55^{\prime}$) was discorered to be of rariable relocity by Campbell and Curtis from observations made at the Lick Observatory in 1900-03.* Observations were begun upon it here in August, 1906, and since then some thirtyfour plates have been measured and computed. δ Aquilæ is taken as the trpical star in Group XI., according to Miss Maury's classification.t. The principal lines iu the spectrum are those of hydrogen, iron, magnesium and titanium. All, and especially those of hydrogen, are broad and not defined, the region measured beiug from H_{β} to λ 4005. These will be found in Table I. The range of resulting radial velocities, as seen in Table II is not large (-15 to -47 kms .), and, as yet the period cannot be determined from the curve of the present observations.

[^15]SESSIONAL PAPER No. 25a
TABLE I.
Painchral lines measured in δ Agtile.

Wave-Iength.	Element.	Wave. Length.	Element.
$4861527 \ldots \ldots$	H	4274922.	Ti\& Cr
$4549.766 . \ldots$	Fe ¢ Ti	4271760.	
4534 -139......	$\mathrm{Ti}^{\text {i }}$	4260640.	Fe
4501 448...	$\mathrm{Ti}^{\text {i }}$	4246.996.	Y
4481-400.. ..	$\mathrm{Mg}^{\text {a }}$	$4227 \cdot 010 .$.	Fe
$4443 \cdot 976 . .$.	Ti	$4216.351 .$.	Fe
4404 927...	Fe	4198 794.	Fe
4395.286.	Ti, V, Zy.	4143.928.	$\stackrel{\mathrm{Fe}}{\mathrm{H}}$
$4374.905 .$.	${ }_{\mathrm{H}}^{\mathrm{T}}$	4102 000..	H^{H}
4340.634.	H	4071901.	Fe
4325.939.	Fe	4073.756..	$\mathrm{Fe}^{\text {er }}$
$4320-992$.	So	4045.975.	Fe
$4282722 .$.	Fe	$4005 \cdot 429$.	Fe

TABLE II.
Table of Observations of δ Aquile.

THF OHBE OF β ORIOXIS.
As was mentioned in my report of last year, under a description and discussion of the effect of slit-width on the errors of setting, this star showed such a difference in the mean velocities obtained on two nights (mean of 10 plates on March $20,24.9 \mathrm{~km}$.; mean of 12 plates on March $24,20.6 \mathrm{~km}$.)' as to lead to a strong suspicion of the variability of its velocity. This suspicion was strengthened by plates obtained on other uights up to April 13, 190s, and it was decided on account of its brightness and its interesting history to follow it closely as soon as it again came into position where it could be observed.

The radial velocity of β Orionis was first determined at Potsdam by Vogel and scheiner* in the years 1858-1891, in the beginning of photographic determinations of radial velocity. From their measures of the 14 plates, velocities varying between about +3 and +34 kms . per second were obtained. They suspected a variation in the star's relocity due to orbital motion, bnt were unable to obtain eridence of its periodicity, and the accuracy of these early measures was scarcely sufficiently high to decide the question. The uext published measures of the star's relocity were by Frost and Adams \dagger from plates obtained in 1901-1902. They found values ranging betreen +14.9 and +23.4 km ., but they attribnted this range to the character of the lines in the star's spectrum and concluded that their results showed no indication of variability in velocity. The measures of 5 plates of β Orionis obtained at the Liek Observatory \ddagger indiate a range of 10 km . from +15 to +25 km ., in its velocity, but Campbell and Curtis in discussing these measures attribute this range to the small number of lines available, to their poor quality, and to over-exposure of some of the negatives. They consiler that proper exposure would considerably reduce the observed range, and conclude that their results do not give any evidence of variability of velocity. However, a recent personal communication from Prof. Campbell informs me that they have suspected variation, but owing to press of their regular programme have not followed up the matter.

There seemed to be no question of the smallness of the range in velocity, if any, and it was evident that the only hope of obtaining anything definite, considering this and the fairly large accidental errors of a velocity determination owing to the character of the lines of the spectrum, was to obtain several plates on each night the star was observed and use their mean velocity as the velocity of the star at their mean epoch. As the star is bright, a spectrum can be obtained in ten minntes or less with the three-prism spectrograph, and in abont two minutes with the one-prism. Consequently not much time is required to obtain half a dozen plates and unless the period is very short no error due to change of phase can enter. The probable error of a night's observation will by this means be considerably reduced and a much better chance obtained of determining its period of variation.

Plates were accordingly obtained whenever possible until the star became inaccessible in April, 1908, and observations were continued during the present season until March 23, 1909. Owing to the very smoky and cloudy weather last fall, very few plates were obtained until December. In all 273 plates, obtained on 54 nights, have been used in this discussion. Of these 150 were made with a dispersion of three prisms, 123 with one prism. The investigation on slit-width in the last report showed that lower probable errors were obtained with the higher dispersion and it was used wherever possible. However, the star was also observed with the one-prism spectrograph when our programme would not permit the use of three prisms, Three-fourths of the observations and all the measurements were made by myself in order to avoid as far as possible any chance of systematic discrepancies.

[^16]
SESSIONAL PAPER No. 25a

The star β Orionis is of the helium type, Miss Maury's VI.c, and has fairly well defined lines of hydrogen and helium, the magnesium $\lambda 4481$ and the calcium $I I$ and k. It also contains lines due to silicon, oxygen and carbon and a few faint metallic lines. In my early measures for slit-width effeet eight lines were measured in the three-prism plates and seven in the single-prism plates.

Lines measured in β Orionis.

Three-Prism Plates.	One-Prism Plates.
4862 HI	4862 H
4481 Mg	4481 Mg
4472 He	4472 He
4388 He	4341 H
4341 H	4102 H
4131 Si	4026 He
4128 Si	3934 Ca
4102 H	

It was found, however, that lower probable errors were obtained where the three best lines $\lambda 4481,4472,4841$ only were used than when more or all of the measured lines were discussed. Consequently in the later plates only the three lines mentioned above have been measured and in general four comparison lines, thus considerably lightening the labour. Considerable difference in the quality of the negatives for measurement, cren when taken under, so far as could be judged, identical conditions, has been noticed; this difference seems to lie prineipally in the character of the lines themselves. They are sometimes sharply defined and symmetrical, at others not so sharp and apparently stronger at one side. Sometimes also the contrast between then and the continuous spectrum appears considerably diminished. These changes seen almost too marked to be due entirely to instrumental or photographic effects, and one would be inclined to attribute part at any rate to changes in the spectrum. No evidence can be found, however, of any dependence of this quality of the lines upon the phase of the orbit.

In the measurements the lines were weighted according to their apparent quality and the weighted mean velocity used. In combining the separate plates on each night they were also weighted, partly according to their quality and partly according to the internal agreement of the measures, and finally the resultant mean velocity for the night was similarly weighted for use in the grouping and discussion.

The record of the observations and the individual plate measures are given in Appendix E, where all the measures are collecterl together, while a summary of the velocities, \&e., is given in the following table:-
β ORIONIS.
Summari of Measures

Plate Number.	Date.		G. M.T.	J ulian Date,	Velocity.	Residual.
	1908					
$1241 \mathrm{a} . .$.	Jamuary .	20	15.02	2,417,961 63	+23.3	- 24
1241 b .	"	20	15.06	961.63	+20.9	$0 \cdot 0$
1241 c	4	20	$15 \cdot 10$	961.63	-25.4	+ 4.5
1242 a	"	20	15'12	961.63	+23.7	-2.8
1242 b	"	20	1515	961.64	+25.9	+ 5.0
1242 c	"	20	$15 \cdot 18$	961.64	+19.7	-1.2
1243 a .	*	20	15.24	961.64	+21.3	a +0.4
1243 b ...	"	20	$15 \cdot 27$	961.65	+23.5	2.6 $+\quad 2.9$
1243 c .	"	20	$15 \cdot 30$	961.65	+24.8	a +3.9 $+\quad 3.6$
1244 a .	"	20	15.43	961.66	+24.5	+ 3.6
1244 b .	"	20	$15 \cdot 47$	961.66	+16.5	-4.4
1244 c .	"	20	$15 \cdot 50$	961.66	+26.4	+ $5 \cdot 5$
1245 a .	"	20	$15 \cdot 52$	961.66	a -250 -21.8	4.1 $+\quad 0.9$
1245 b...	.	20	15.54	961.66	+21.8	+ 0.9
1245 c........	.	20	$15 \cdot 56$	$961 \cdot 66$	-20.5	-0.9
1247a	"	20	$16 \cdot 15$	961.68	+23.8	- 99
1247 b.	"	20	$16 \cdot 17$	961.68	+313	$+104$
1247 c .	"	20	$16 \cdot 19$	961.68	+19.0	-1.9
1248 a .	"	20	$16 \cdot 25$	961.68	+11.6	-93
1248 b	"	20	$16 \cdot 27$	961.68	+58	-15'1
1248 c	"	20	$16 \cdot 29$	961.68	+361	-15.2
1249 a .	.	20	16.35	961.69	+140	-69
1249 b.	,	20	$16 \cdot 37$	961.69	$\bigcirc 160$	-4.9
1249 c	"	20	$16 \cdot 39$	961.69	+24.2	-3.3
1285 a	.	27	$15 \cdot 45$	96868	+15.3	-5.8
1285 b...	"	27	15.51	96866	+19.2	-19
1285 c	.	27	$15 \cdot 57$	$968 \cdot 67$	+17.9	1.2 $-\quad 3.2$
1286 a	"	${ }_{27}^{7}$	$16 \cdot 03$	968.67	+213	$+\quad 02$ $+\quad .4$
1286 b	*	27	$16 \cdot 09$	968.67	+18.7	2.4 $-\quad 3.2$
1286 c	"	27	$16 \cdot 15$	$968 \cdot 67$	+24.3	3.2 $+\quad 3.0$
1289 a	.	27	17.13	968.72	+18.1	3.0 $-\quad 3.3$
1289 b .	+	27	$17 \cdot 17$	968.72	$-19 \cdot 9$	- 2.3
1289 c.	"	27	$17 \cdot 21$	$968 \cdot 72$	-27.8	-6.6
1290 a	"	27	$17 \cdot 21$	968.73	-15 6	- 56
1290b	"	27	$17 \cdot 28$	968.73	+216	- 04
1290 c .	"	27	$17 \cdot 32$	$968 \cdot 73$	+16.1	-5.1
1405.	March	20	11.51	2.418,021 50	$+23 \cdot 1$	- 14
1406.	M	20	1207	021.50	+24.3	- 0.2
1407.	"	20	$12 \cdot 21$	021.51	$+214$	-311
1408.	"	20	12.32	$021 \cdot 2$	+249	-0.1
1409.	"	20	1246	021.53	+280	-3.
1410.	,	20	13.00	021.54	+23.3	- 1.2
1411.	.	30	13.12	021.55	+23.5	- 1.0
1412.	.	20	$13 \cdot 27$	021.56	+24.9	+0.4
1413.	1	20	$13 \cdot 47$	$021 \cdot 57$	$+27.5$	-3.0
1414.	.	20	$13 \cdot 57$	021.58	+26.9	$\begin{array}{r}\text { a } \\ +2.9 \\ \hline\end{array}$
14:6,	,	24	12.03	025.50	+19'2	- 29
1427 .	"	24	$12 \cdot 15$	025.51	+21.1	- 1.0
1428.	"	24	$12 \cdot 23$	025.52	$+19 \cdot 2$	-29
1129.	"	24	$12 \cdot 36$	025.52	+21.6	- 0.5
1430.	"	24	12.42	025.53	$+18.8$	$\begin{array}{r}1.3 \\ -3.5 \\ \hline\end{array}$
1431.	"	24	1252	025.53	+18.6	- 3.5
1433.	"	24	$13 \cdot 16$	02555	+17.5	4.6 $-\quad 9.8$
1434.	"	24	$13 \cdot 32$	$025 \cdot 56$	+19.3	- 2.8
1435.	"	24	$13 \cdot 39$	$025 \cdot 57$	$+16.1$	6.0 $-\quad 4.9$
1436.	"	24	13.46	025.57	$+17.2$	4.9 -4.9
1437.	"	24	$13 \cdot 56$	025.58	+18.7 +18.0	- -4 -4.1
1438.	"	21	$14 \cdot 07$	025 08	+18.0	- $4 \cdot 1$
1439.	"	30	12.19	$031 \cdot 51$	+14.4 +14.4	- 4.1 $-\quad 4.1$
1440.	"	30	$12 \cdot 29$	$031 \cdot 59$	+14.4	4.1 -40
1441.	"	30	$12 \cdot 38$	031.53	$+14.5$	- 40
1442.	,	30	$12 \cdot 49$	031.53	$+170$	-1.5
1448.	April....	3	$12 \cdot 16$	035.51	+249	+1.5
1449. ${ }_{145}$	"	3	$12 \cdot 28$	035.52	+27.9	+8.5 $+\quad 8.7$
1450. 1451	"	3 3 3	12.40 12.53	035.53 $035 \cdot 53$	+ +321 +271	+ +8.7

SESSIONAL PAPER No. 25a
β ORIONIS.
Stmmatr or Meastres - Continued.

9-10 EDWARD VII., A. 1910
30RIONIS.
S'muary of Meastres-Comfinued.

Plate Number.	Date.	G. M. T.	Julian Date.	Velocity.	Residual.
	1509.				
2124.	. ${ }^{\text {anuary }} .12$	12.09	2,418,319 51	+20.5	-15
2125..	" 12	$12 \cdot 12$	2, 319.51	-21.3	-0.7
2126	12	$12 \cdot 15$	319.51	-27.2	+ 50
2127.	12	$12 \cdot 18$	$319 \cdot 51$	-25.5	+35
2128.	13	$15 \cdot 36$	$320 \cdot 65$	+30.2	+6.1
2129...	13	$15 \cdot 41$	320.65	$+15.7$	-8.4
2130....	13	$15 \cdot 46$	320.66	+28.8	+ 4.7
2141.	15	1454	324.69	+18.6	+73
2142,...	15	15-11	322.63	-24.5	-11
$2143 .$.	15	$15+15$	$322 \cdot 63$	-272	+13
2144	15	$15 \cdot 19$	322.64	+21.8	-41
2151.	16	$12 \cdot 25$	323.52	-314	+53
2152	16	$12 \cdot 36$	$323 \cdot 52$	+27.6	+15
2153	16	12.44	$323 \cdot 53$	-34.4	+8.3
2154	16	$12 \cdot 52$	$323 \cdot 13$	$-40 \cdot 9$	+14.8
21505	$4 \quad 16$	$12 \cdot 59$	323.54	+33.0	+6.9
2156	$\cdots \quad 16$	13.12	$323 \cdot 55$	$+35 \cdot 8$	+97
2157...	17	13.48	324.57	+29.9	a +3
$2153 . \ldots$	17	$13 \cdot 56$	$324 \cdot 58$	+26.2	+0.2
2161 ...	18	$12 \cdot 41$	325.53	+371.	$+11.5$
${ }^{2162} \ldots$	18	$12 \cdot 46$	325.53	+313	+5.7
2163	18	12.51	325.53	+283	+ $2 \cdot 7$
2164	18	13.06	325.54	+35.8	+10.2
2165.	18	$13 \cdot 10$	325.55	$+31.2$	+5.6
9166.	18	$13 \cdot 14$	325.55	$+305$	4.9 +4.
2177	26	$10 \cdot 36$	$333 \cdot 4$	+24.6	+34
2175	26	$10 \cdot 51$	$333+45$	-17.8	-3.4
2179	26	$10 \cdot 56$	33346	+24.9	+37
2180	26	11.01	$333 \cdot 46$	-23.5	+23
2181	26	$11 \cdot 11$	333.4?	+22.4	+1.2
218?	26	$11 \cdot 16$	$333 \cdot 47$	+16.2	-50
2183.	26	11.21	$333 \cdot 47$	$-20 \cdot 5$	-07
2184.	28	$11 \cdot 21$	$335 \cdot 47$	+16.3	36
$2185 .$.	28	11.25	335.48	+22:2	- $3 \cdot 3$
$2186 .$.	28	11.29	$335 \cdot 48$	$+142$	$5 \cdot 7$
2187 ...	28	11.41	335.48	+143	- 5.6
2188....	${ }_{98}$	11.44	335.49	+10.6	$\begin{array}{r}\text { - } \\ -9.3 \\ \hline\end{array}$
${ }_{2195} 18 .$.	28 29	11.47 12.53	33549 336.54	a +18.4 +149	0.9 $-\quad 4.3$
2196	29	$12 \cdot 57$	336.54	+179	-13
2197	29	13.01	$336 \cdot 54$	$+26.4$	+72
2198	29	13.05	$336 \cdot 54$	+22.1	+29
2201.	30	$12 \cdot 29$	33752	+14.0	-47
2202.	30	12.41	337.53	+17.3	-14
2203	30	12.45	337.53	+25.0	+6.3
2204.	30	12.48	337. 53	+142	- 4.5
$2205 .$.	30	$15 \cdot 47$	337.66	$+210$	+2.3
2206 ...	30	$16 \cdot 04$	337.67	$+22 \cdot 6$	+ 4.1
22007.	30	16.24	337.68	$\begin{array}{r}\text { a } \\ +22.3 \\ \hline 19\end{array}$	+3.8
2211...	31	$17 \cdot 16$	338.72	+19.8	-1.2
2212..	31	17.20	$338 \cdot 72$	+23.2	+16
2213...	". 31	$17 \cdot 24$	338.73	$+16.9$	-26
2214...	" 31	17.29	338.73	$+16.6$	-2.0
2215	February ${ }_{2}^{2}$	$11 \cdot 14$	340.47	+24.8	+ 46
2216.	"	11.23	340.48 340.48	+2311	+ $2 \cdot 9$
2217....	2	$11 \cdot 26$	$340 \cdot 48$	+236	+3.4
2218 . .	2	11.29	340.48	$+22.5$	+23
$2219 .$.	${ }_{2}^{2}$	11.41	340.49	+16.5	-3.7
$2220 .$.	2	11.45	340.49	+21.5	+ 1.3
2236.	6	$12 \cdot 29$	34452	+18.2	- $7 \cdot 7$
2239.	6	$12 \cdot 50$	344.53	$+30.0$	- 5.9
2240 .	6	$12 \cdot 52$	344.53	+210	4.9 -4.0
2241...	6	1612	344.68	+21.9	-4.0
2242...	6	$16 \cdot 43$	344.70	$+19.1$	-6.8
2243 ..	7	$15 \cdot 11$	345.63	+21.0	$-5 \cdot 1$
2244 ...	- 7	$15 \cdot 25$	31564	-21.9	-42

SESSIONAL PAPER No. 25a

β ORIONIS
Sumaini of Measurky, - 'ontinued.

Plate Number.	Date.	G M.T.	Julian Date.	Velocity:	Reaidual.
	1909.				
2245.	February. .	$15 \cdot 37$	2,418,345.65	$+18.0$	-81
2249	" 8	$13 \cdot 32$	$346 \cdot 56$	$+31.6$	+ $5 \cdot 2$
2250	8	$13 \cdot 36$	$346 \cdot 56$	+25.9	0.0
2251.	8	$13 \cdot 41$	$346 \cdot 57$	$+21.8$	- 41
2252.	8	14.01	346.58	$+17.6$	-8.3
23.3.	8	1405	$346 \cdot 58$	$+24 \cdot 1$	- 1.8
2234	8	14.09	346.59	$+23.3$	- 2.6
2265	10	$12 \cdot 07$	348.50	+29.6	$\begin{array}{r}\text { a } \\ +4.4 \\ \hline\end{array}$
2266	10	$12 \cdot 12$	348.51	$+23 \cdot 3$	-1.9
2267	10	$12 \cdot 16$	318.51	+16.9	-8.3
22688	10	$12 \cdot 21$	348.51	$+12.8$	-12.4
2269.	10	1233	$348 \cdot 52$	+ 20.3	- 4.9
2270	10	$12 \cdot 37$	348.53	+23.0	- 2.2
2272	11	11.26	34948	+18.9	-5.8
2273.	11	11.32	349.48	$+33.4$	+ 8.7
2274	11	$11 \cdot 35$	349.48	+30.8	+6.1
2275	11	11.38	$349 \cdot 49$	$+19.7$	- 50
2276	11	$11 \cdot 46$	349.49	$+17.3$	- 74
2277.	11	11.49	349.49	+23.5	-12
2278	13	12. 27	351.59	+22.2	- 14
2279	13	12.49	351.53	$+22.0$	-1.6
2280.	13	$12 \cdot 53$	351.54	+211	- 22
2284	20	$12 \cdot 29$	$358-52$	$+17.7$	-14
2285	20	$13 \cdot 05$	$358 \cdot 54$	+ 22.6 +19.8	+ +0.5
2286.	30	$15 \cdot 12$	358.63	$+19.8$	+07
23588	21	$12 \cdot 51$	359-53	+21.0	+ 23
2989	21	13.07	35954	+18.2	-05
2990.	21	$13 \cdot 17$	$359 \cdot 55$	+184	-0.3
2291	" 21	$13 \cdot 27$	359.56	+18.7	$0^{0} 0$
2292.	22	$12 \cdot 02$	360.50	+197	+11
2293	22	$12 \cdot 15$	360.51	+25.1	a +6.5 +1.6
2294	22	$12 \cdot 30$	$360 \cdot 52$	$+20.2$	+1.6
2295	22	12.45	360.58	$+20.2$	+16
2309.	27	$11 \cdot 85$	$365 \cdot 48$	+22.0	$\begin{array}{r}1.4 \\ -3.8 \\ \hline\end{array}$
2311.	28	11.56	$366 \cdot 50$	+22.2	- $3 \cdot 8$
2312..	98	$12 \cdot 07$	$366 \cdot 50$	+22.0	- 40
${ }_{2313} 3$	28	$12 \cdot 18$	346.51	+23.7	- 23
2311....	28	$12 \cdot 27$	$366 \cdot 52$	$+25.3$	${ }^{0} 7$
${ }_{2}^{2315}$.	28	12.39	366.53	+22.4	3.6 $-\quad 3.9$
${ }^{2316}$..	$\cdots \quad 28$	12.50	366.58	+22.8	- 3.2
2317.	March..... ${ }_{2}$	11.05	$368 \cdot 46$	+25.9	0.0
2318	- ${ }^{2}$	$11 \cdot 19$	368.47	+24.4	- 15
2319	2	11.29	368.48	+24.2	- 1.7
2320	8	11.36	368.48	+21.6	-4.3
2364.	" 18	$12 \cdot 12$	379.51	+18.6	-11
2365.	" 13	$12 \cdot 24$	$379 \cdot 52$	-18.4	- 13
2366	13	$12 \cdot 36$	379.58	+20.3	+0.6
2367	13	$12 \cdot 46$	379.53	$+176$	- $2 \cdot 1$
2368.	13	$12 \cdot 57$	$379 \cdot 54$	$+19 \cdot 3$	- 0.4
${ }^{2372}$	15	11.45	$381 \cdot 49$	+16.9	-1.8
2373	15	11.56	38150	$+205$	+1.8
2374.	15	12.05	$381 \cdot 50$	+17.6	-11
${ }_{2}^{2375 .}$	15	12.13	381.51	+18.9	+0.2
2376.	15	$12 \cdot 21$	381.52	$+16.2$	- 2.5
2386.	18	11.42	38.49	$+19.5$	$1 \cdot 1$
2387.	18	11.52	$38+50$	+20.0	- 06
${ }_{2} 3888$	18	12.02	$384 \cdot 50$	+21.7	+1.1
2389	18	$12 \cdot 12$	384.51	$+21.0$	+ 0.4
2390.	30	$12 \cdot 16$	386.51	+22.2	- 211
2391.	20	12.26	386.52	$+18.3$	-6.0
2392	20	12.38	38653	+23.4	- 0.9
2393	20	12.48	386.53	$+21.9$	$2 \cdot 4$
2394.	20	12.58	$386 \cdot 54$	+23 1	-1.2
$2397 .$.	21	$13 \cdot 38$	387.56	+23.9	-1.6
2398.	21	$13 \cdot 48$	$387 \cdot 57$	$+25.2$	-0.3
2399.	21	$14 \cdot 00$	387.58	+248	-07

β ORIONIS.
Sumyary of Measures - Continued.

Plate Number.		Date.	G.M.T.	Julian Date.	Velocity.	Residual.
		1909.				
2400.	March	. . . 21	14.14	2,418,387-59	+25.5	0.0
2402		22	$11 \cdot 51$	388.49	-26.0	0.0
2403	"	22	$12 \cdot 02$	$388 \cdot 50$	+250	-1.0
2404.	"	22	$12 \cdot 13$	388.51	+21.1	-4.9
2405.	"	22	$12 \cdot 35$	388.52	+21.2	- 4.8
2420.	"	23	$11 \cdot 46$	389.49	+23.1	-3.0
2421	"	23	$11 \cdot 57$	389.50	-24.4	- 1.7
2422.	"	23	12.05	389.50	-25.9	- 0.2
2423.	"	23	$12 \cdot 13$	389.51	-26.2	$+0.1$
2424.	"	23	$12 \cdot 27$	38952	-25.5	-066
2425.	"	23	12.38	$389 \cdot 53$	$+25 \cdot 7$	$-0 \cdot 4$

In the preceding table are given the plate number, the Greenwich mean and Julian dates, the weighted mean velocity for the plate, and finally the residual obtained by scaling from the final velocity curve. The velocities on each night were obtained by taking the weighted means of the plate velocities, the weights being assigned, as before stated, partly on the basis of apparent quality, partly according to the internal agreement of the measures. In the following table of mean velocities are given various dataconcerning the observations of each night, as the date, Julian date, velocity, phase, the number of plates, the dispercion used. the weight assigned and finally the residual obtained by scaling from the curve:-
β ORIONIS.
Summary of Mean Velocitiey per Night.

It was not difficult to trace periodic changes in the velocities thus determined, and comparatively early in the present season the period was found to be very nearly 21.90 days. The Potsdam observations, however, did not group themselves satisfactorily with this period, and owing to their probably inferior accuraey were not considered. The Yorkes observations showed a fairly satisfactory arrangement, although there were some discrepant single plates, due possibly to accidental errors of setting on the rather

9-10 EDWARD VII., A. 1910

broad lines of the spectrum, or to another cause to be referred to later on. The Lick observations, extending over seven years, followed the velocity eurve determined as closely as could be expected, although as there are only five plates this agreement may be accidental. It was found, however, that a period of 21.87 instead of 21.90 days was required to bring the Lick observations forward to onrs.

Although some discrepancies are to be expected on account of the small range in velocity and the relatively high errors of measurement, still it was felt that all the irregularities noted could not be explained on the above grounds. Consequently, although sufficient evidence had been secured of the binary character of β Orionis and sufficient data to obtain the elements of the orbit by the end of January, it was deemed desirable to continne the observations in the hope of finding a clue to some of the anomalies. The later observations revealed some peculiar and interesting featnres in the star's motion which served, if not to explain the cause of the irregularities, at least to indicate a reason for their existence.

The phase of minimuin velocity due January $30-31$ followed prediction, but the succeeding maximnm, due February 6-7, although present, was of much lower amplitude than those previously obtained. The curve already drawn showed a range of velocity between about +17 and +29 km . The maximum of February 6 reached only abont 23 km ., and the succeeding minima and maxima until the end of the observations were as follows:-+19.5.+23.0; $+18.5,+24.5 ; 19.0,+24.5$. All of these values, as well as the previous ones, depend upon several plates, and there is no doubt in my mind that they indicate, if not a change in the amplitude of the velocity enrve, certainly some progressive shift in the position of the absorption maximum of the lines measnred due to some physical cause in the star's atmosphere. If it is a change in the amplitude of the motion, it may be due to the presence of a third body and will probably be periodic. If an epoch of low amplitude occurred in 1901-1902 this, together with the fact of their only making one plate per night and the consequently higher accidental errors, would form a sufficient explanation why Frost and Adams with the high accuracy of their work were unable to find any periodicity in the motion. Furthermore, a change in the amplitude is probably accompanied by changes in the other elements of the orbit, which may account for the slight change in the period requisite when the Lick observations are brought up to the same epoch as those at Ottawa.

If all the Ottawa observations are plotted continuously on cross-section paper, they form a curve somewhat similar to the trace given by two beating tuning forks. It shows curves similar to the velocity curve of Fig. (16) periodically repeated with gradually inereasing amplitude, then with a sudden diminution followed by another gradual increase. The observations have not been sufficiently continuons or extended to decide whether this variation in amplitude is periodic. and in any case the very small range combined with the comparatively poor quality of the spectrum for measurement wonld render such a determination difficult and uncertain even if a very large number of plates were obtained.

I have, therefore, thought it preferable now, as all thise successive curves have, so far as can be determined, the same form, to consider the variations in amplitude as accidental or, if youl like, as due to errors in measurement: and to obtain a mean curve and from it the elements of the orbit by grouping together into normal places the mean velocities obtained on the 54 nights nuder discussion. The period chosen was that mentioned above, 21.90 days, which best suited our own and the Lick observations and which under the conditions cannot probably be improved upon. The initial phase T_{o} was taken as Julian day 2, $117.961 \cdot 0$. The basis of grouping into the normal places was the phase, the total difference in phase in the nights in a group being kept generally less than half a day, exeept in three gromps where the velocity changes but slowly.

$25 a$ p. 222

SESSIONAL PAPER No. 25a

These normal places with other data are given in the table below, and the places themselves are indicated by circles on the velocity curve Fig. (16) corresponding to the final elements.

NORMAL PLACES 3 ORIONIS.

No.	Mean velocity.	Mean phase.	No. of nights.	No. of plates.	Total diff, of plase.	Weight.	Weight used in solution.	Residual O-C
1	$22 \cdot 06$	0. 414	3	35	048	17	3	+102
2	$18 \cdot 51$	2350	3	15	$0 \cdot 24$	9		-124
3.	$18 \cdot 59$	$3 \cdot 266$	3	14	$0 \cdot 15$	7		-060
4.	18.92	+481	5	22	$0 \cdot 69$	17		+0.27
5	18.06	5.210	3	12	$0 \cdot 30$	10		-0.47
6.	$20 \cdot 51$	7.45	4	25	0. 62	15		-0.10
7	29.76	8.200	2	10	$0^{0} 27$	5		+0.61
8.	24.63	9160	\pm	16	0.63	11		+0.65
9.	$2+90$	10.024	4	10	. 0.46	7		-0.26
10.	24.91	11-265	6	31	- 1.66	16		-1.10
11	$26 \cdot 28$	$13 \cdot 253$	10	39	1.81	23	1	+0.34
12	$24+9$	$16 \cdot 567$	3	22	1.52	12	,	-0.03
13	2334	$18+31$	3	10	0.67	8		- 17
14	2060	20740	1	12	0.00	6	\pm	148

With these normal places and by the graphical method developed by you, described in last year's report, the elements given below were readily determined, with which the observations seemed to agree closely. However, owing to the considerable differences in the weight of the normal places, which could not very well be allowed for in a graphical solution, and to the advantages demonstrated by previous experience, it was felt desirable to apply a least squares correction to these elements.

For coefficients of the corrections the equations developed by Lehmann-Filhés* werc used, and from these and from the ephemeris obtained from the normal places and preliminary elements, the following observation equations were derived. All of the elements except the period, which was considered as closely determined as possible from the range of velocity present and the short interval used, were included in this solution and an unknown of coefficient unity for the velocity of the system was added.

OBSERVATION EQUATIONS β ORIONIS.

[^17]From these observation equations the following normal equations were obtained:-

$$
\begin{aligned}
& \text { 6 } 833 x-0 \cdot 558 y+1 \cdot 110 z-0 \cdot 041 u-0 \cdot 213 u-1 \cdot 132=0 \\
& -0558 x+3.755 y+0.085 z-0.466 u-0192 u+0185=0 \\
& +1 \cdot 110 x+0 \cdot 055 y+3 \cdot 254 *+0 \cdot 192 u-3 \cdot 072 v-0 \cdot 211=0 \\
& -0 \cdot 041 x-0466 y+0 \cdot 192 z+3 \cdot 363 u-0 \cdot 202-1 \cdot 192=0 \\
& \text {-0.213x-0.192y-3.072z-0.202u-3.118u-0009=0 }
\end{aligned}
$$

From the elimination there resulted the following ralues of the unknowns with their probable errors:-

When these are applied to the preliminary values we obtaiu:
ELEMENTS OF \& ORIONIA.

Name.	Symbol.	Preliminary.	Corrected.
Ecentricity		0. 20	${ }_{0} 296 \pm 059$
Half Amplitude.	K	3.75	$3 \cdot 771 \pm 210 \mathrm{~km}$.
Lengitude of Apse..	$\stackrel{\omega}{T}$	7 \% 80	J D, 2, 417,96880
Period.	U	$21 \cdot 90$	21.90 dys .
V-locity of System.	γ	-22.444	${ }^{-22} 616 \pm 158 \mathrm{~km}$
Projection of Semi axis	sin	1,100,300	$1,108,900 \mathrm{~km}$.
Maximum Velocity	$\stackrel{N}{N}$	+26.	- 18.09 km .
dimmum elocity			

It will be noticed that except for the eccentricity the changes in the elements are very small and a comparison between the residuals from the corrected ephemeris and from substitution in the observation equations shows that the solation is satisfactory enough, as there are none greater than .25 km . It was not deemed necessary to make a second solntion considering the assumptions mule in combining the observations. That the solution has improved the elements was shown at once on comparing th.. curves and is also evident by the reduction of $\mathbf{\Sigma p r v}$ from 3.58 to 3.16 .

The probable error of a normal place of nnit weight is $=0.10 \mathrm{~km}$. The probable error of a night obtained by scaling from the curve is ± 1.80. The probable crror of a plate obtained with a dispersion of three prisms is $\pm 1.96 \mathrm{~km}$.. with dispersion of one prism $\pm 3.22 \mathrm{~km}$, and including all the plates $\pm 2.62 \mathrm{~km}$. If, as was done, the observations are divided into two sets-those before and those after January 29, 1909, when the sudden change in amplitude was moticed-and separate curves and elements are obtained roughly for these sets, the probable error of a night reduces to $\pm 1.37 \mathrm{~km}$. with a proportional reduction in the probable errors of single plates, and this would probably be not much greater than 1 km . if the amplitude remaiued constant. For the two sets mentioned above, it may be of interest to compare the maximum and minimum relocities. Those of the first set are +17 and +29 and of the second +19 and +23.5 .

This solution must, however, owing to the peculiar behaviour of the star, be regarded as preliminary only. It is ouly when many more observations have beeu secured and the star has been closely followed for some time that any more definite idea of the nature of the changes taking place may possibly be obtained, and it is proposed in the future to follow it as closely as the other work on hand will permit.

I have the honour to be, sir.
Your obedient servant,
J. S. PLASKETT.

APPENDIX A.
ORBITS OF A AQFILAE, є HERCVLIS, AND η BOÖTIS.
W. E Harper.

the orbit of θ squile.
The star θ Aquilat $\left(a=20^{\mathrm{h}} 06^{\mathrm{m}}, 2,8=-1^{\circ} 07^{\prime}\right.$, photographic magnitude 3.6) was discovered to be a spectroscopic binary by M. Deslandres* in 1902. From the twentysix plates secured he obtained a period of 16.7 days and eccentricity about 0.6 . As the results obtained by him were regarded as only provisional, the star was placed on our observing list here in May, 1907, when the singlc-prism spectrograph was ready for use. In all forty-five measurable plates were secured that year and from these, prelininary values of the elements were obtained. + For convenience of reference these are given here:

$$
\begin{aligned}
P & =17 \cdot 17^{\mathrm{d}} \\
y & =-26 \cdot 7^{\mathrm{kmi}} \\
e & =0 \cdot 725 \\
\omega & =20^{\circ} \\
T & =1907, \text { Oct. } 2 \cdot 15 \text { G.M.T. } \\
& =\mathrm{J} . \text { D. } 2,417,851 \cdot 15 \\
a \sin i & =8,455,500^{\mathrm{kmp}}
\end{aligned}
$$

As unfavourable weather prevented the seenring of spectrograms iu all its phases, particularly near the time of periastron passage, work was resumed on it this year with the cbject of filling up any gays in the curve. Fifty-two spectrograms were sccured this vear and these have been combined with those of last year to determine the orbit. Some half-dozen plates of last year in which the agreement among the various lines was not all that could be desired were remeasured, but only two, Nos. 924 anl 959, were changel in velocity appreciably. Plates 1038 and 1050 which had not been measured last year are also added.

Four of the plates Nos. 1001, 1100, 1101 and $179 \pm$ were made with the three-prism spectrograph, whose linear dispersion at I_{γ} is 10.1 tenth-metres per nillimetre. The balance were all made with the single-prism spectrograph which at H_{γ} has a linear dispersiou of 30.2 tenth-metres per millimetre and gives the whole visible spectrum in sharp focus. The region used for velocity determinations is that lying between and including H_{β} and K. The plates used were Seed 27.

The spectrum is of the type VII a, and in the portion used the $M g$ line (λ 4481) and $K(\lambda 3933)$ are best defined. The hydrogen lines are fairly well measurable, especially H_{γ}, the line $\lambda 4549$ is fairly sharp as are also the silicon lines. In addition to those given in Table I. some faint metallic lines also appear in some of the plates. The velocities corresponding to one revolution of the micrometer screw (0.5 mm . pitch) are also attached.

[^18]TABLE I
Lises in θ Audilat.

Practically all the plates made have been used in the discussion, even although one or two have not been of the best quality, No. 805 being a case in point. In the preliminary curve for this year ($P=17.120$) No. 873 gave an abnormally high residual (-28 km .) and following out a suggestion of Mr. J. S. Plaskett, to whom I am much iudebted for help during this work, the result was omitted from consideration in the least-square solution, as an excessive residual tends to distort the elements out of all agreement with the mean values, as obtained from the remaining observations.

The following table gives all the data of the plates, the phase being reckoned from periastron, Julian Day 2.417.781.504, using the period finally determined, 17.112 days.

TABLE: II.
Measures of θ Aqutl.z:

SESSIONAL PAPER No. 25a
TABLE 1 F .
Mgasthes of θ Autile-Continued.

The observations of 1900° and 1900 were grouped separately and the period which suited best was $17-120$ days. The phases for this period were computed, being reckoned from an initial epoch T_{0}, Julian Day 2,417,727, the date of the first observation. The observations of the two years were now combined and grouped into 18 normal places. Weights were assigned to these groups depending not only upon the sum of the weights of the individual plates, but upon the number of nights involved. The maximum weight was taken as 5. In the weighting of the individual plates, not only the quality of the plate per se, but the agreement among the various lines was taken into account. The groups are given in Table III.

TABLE III. Normal Places.

Mean Phase.	Mean Velocity.	Wt.	Mean Phase.	Mean Velocity.	Wt.
1.09	$-22 \cdot 3$	3	$5 \cdot 49$	$-31 \cdot 3$	
$2 \cdot 13$	-11.7	1	6.47	-382	3
$2 \cdot 66$	- 0.7	3	$7 \cdot 96$	-48.9	2
3.09	-13 3	1	9.46	-445	1
3.42	-24 9	2	10.73	-40.5	2
372	-343	3	12.05	-36.4	2
4.31	+51.0	1	13.93	-37.4	5
454	-33.6	1	$16 \cdot 28$	-33.0	2
4.72	+225	3	17.05	$-26 \cdot 7$	3

Using the graphical method* of Dr. King, various values of e and ω were tried, those finally decided upon as suiting the grouped observations best being $e=.680$, $\omega=20^{\circ}, K=49 \mathrm{~km}$, an l time of periastron passage, $T, 4.30$ days from initial epoch. Thus for preliminary clements we have:

$$
\begin{aligned}
& P=17 \cdot 120 \text { days } \\
& e=0.680 \\
& \omega=20^{\circ} \\
& T=J u l i a n \text { Day } 2,417,731 \cdot 30 \\
& K=49 \mathrm{~km} . \\
& \gamma=-25 \cdot 3 \mathrm{~km} .
\end{aligned}
$$

With these elements it was decided to make a least-square solution for the normal places. Vsing the differential equation of Lehmann-Filhés \dagger

$$
\begin{aligned}
\delta\left(\frac{d z}{d t}\right) & =\partial \gamma+(\cos u+e \cos \omega) \delta K+\left[\cos \omega-\frac{\sin u \sin v}{1-e^{2}} \cdot(2+e \cos v)\right] K \delta e \\
& -[\sin u+e \sin \omega] . \quad K \delta \omega-\sin u(1+e \cos v)^{2}(t-T) \cdot \frac{K}{\left(1-e^{2}\right)^{\frac{2}{2}}} \cdot \hat{\delta} \mu \\
& +\sin u(1+e \cos v)^{2} \frac{K}{\left(1-e^{2}\right)^{\frac{2}{2}}} \cdot \mu \delta T
\end{aligned}
$$

eighteen observation equations were formed, connecting the six unknowns with the residuals between the observed and computed values of the relocity. To make the observation equations homogeneous the following substitutions were made:-

$$
\begin{aligned}
x & =\delta \gamma \\
y & =\delta K \\
z & =10,000 \delta \mu \\
u & =100 \delta e \\
v & =10 \delta T \\
u & =10 \delta \omega
\end{aligned}
$$

[^19]SESSIONAL PAPER No．25a
There result the following normal equations：－

$$
\begin{aligned}
& 40.000 x+9.571 y-15.91+z-11.075 u+5.696 v+4.9-1 w+18.200=0 \\
& +16.015 y-19.340 z-13.924 u+6.444 r+2.043 w-6.419=0 \\
& +242.6997 z+11.554 u-327.0018 x+255 \cdot 472 u+14 \cdot 267=0 \\
& +19.651 u-4.122 v+1.212 w-4.459=0 \\
& +4.56 .538 v-372.23+i c-36.352=0 \\
& ++13.9 \text { た } 6 \%-102.105=0
\end{aligned}
$$

Whence the corrections to the first approximations：

$$
\begin{array}{ll}
\delta \gamma=-0.6 \mathrm{kw} . & \delta e=+.011 \\
\delta T=+2.1 \mathrm{~km} . & \delta T=+.184 \text { days. } \\
\delta P=-.004 \text { days. } & \delta \omega=5^{0} .27
\end{array}
$$

The resulting elements with their probable errors，as determined at a later stage， are：
$\left.\begin{array}{ll}\left.\begin{array}{ll}P=17.116 \text { days } & \pm .008 \text { days．} \\ e=0.691 & \pm .017 \\ \epsilon=25^{\circ} \cdot 27 & \pm 2^{\circ} .1 \\ T=J . D .2 .417,731 \cdot 43 \pm & \pm .100 \text { days．} \\ K=51.1 \mathrm{~km}, & \pm 3.20 \mathrm{~km} . \\ \gamma=-25.9 \mathrm{~km} . & \pm 0.6 t \\ A=83.0 \mathrm{~km} . & \\ B=19.2 \mathrm{~km} . & \end{array}\right\} \text { Final elements（simple solution）．}\end{array}\right\}$

The residuals from the curve using these corrected values of the elements seemed themselves to lie on a curve，which repeated itself approximately twice during the period of the principal star and having an amplitude of about 8 km ．The way the residuals from the observed velocities grouped themselves was not mere chance，there was no doubt that there was some secondary disturbance．The assumption was therefore made that there was a third body whose period was commensurable with the period of the principal star，it going through all its phases in half the time required for that of the principal star．The orbit of the third body was considered circular and the secondary curve taken to cross the primary from above at a time T^{\prime} ，Julian Day 2，417，732．634．Taking K^{\prime} as 4 km ．and considering θ as the angle at any time from T^{\prime} the extra terms in the differ－ ential equation are：

$$
-\sin \theta \delta K^{\prime}+\frac{2 \pi}{P^{\prime}} \cdot K^{\prime} \cdot \quad \cos \theta \cdot \quad \delta T^{\prime \prime}
$$

Correcting now our values of the computed velocity for each of the eighteen normal places by an amount representing that due to the third body we have a new set of eighteen observation equations connecting the eight unknowns．In these equations，for sake of homogeneity，we put

$$
\begin{aligned}
& x=\partial \gamma \\
& y=\delta K \\
& z=\frac{100 \mathrm{~K}}{\left(1-e^{z}\right)_{2}} \cdot \partial \cdot 4 \quad=13525 \cdot 67 \text { 万ो } \mu \\
& u=K \text {. de } \\
& v=\frac{K}{\left(1-e^{2}\right)} \cdot \text { и. } \quad \grave{ }=49 \cdot 355 \partial T . \\
& \omega=\boldsymbol{K} \cdot \hat{\nu} \omega \\
& y^{\prime}=\partial K^{\prime \prime} \\
& v^{\prime}=\frac{2 \pi}{l^{\prime \prime}} \cdot \hbar^{\prime \prime} \cdot \Delta T^{\prime}=2.937 \Delta T^{\prime} .
\end{aligned}
$$

There result the following normal equations:-

$$
\begin{aligned}
& 40.000 x+9.391 y-16 \cdot 283 z-22 \cdot 704 u-3 \cdot 111 v+0.405 z+7 \cdot 526 y-3 \cdot 34 v^{z}+33 \cdot 400=0 \\
& +15 \cdot 353 y-19 \cdot 92 t z-28 \cdot 003 u+3 \cdot 284 v+0 \cdot 016 w+11 \cdot 548 y^{\prime}+2 \cdot 222 v^{\prime}-50 \cdot 73 i=0 \\
& +176 \cdot 181 z+20 \cdot 361 u-62767 v+43 \cdot 949 w-7 \cdot 554 y^{\prime}-27 \cdot 991 v^{\prime}-30 \cdot 492=0 \\
& \begin{aligned}
+82.772 u-2 \cdot 485 v+0.072 v & -22165 y^{\prime}-4273 v^{\prime}-102.683
\end{aligned}=0 \\
& \begin{array}{rrr}
+82.772 u & -2.485 v+0.072 v \\
& -24.411 v & -17105 u
\end{array} \\
& +17.037 m \\
& \begin{array}{rl}
-10.776 v^{\prime}+9.934 & =0 \\
1.950 & 54.446
\end{array}=0 \\
& \begin{aligned}
19.533 z^{\circ}-1.088 & =0
\end{aligned}
\end{aligned}
$$

Whence the following corrections are obtained:-

$$
\begin{array}{ll}
\delta y=-0.01 \mathrm{~km} . & \delta T=+.0^{2} 0 \text { days. } \\
\delta K=-1.4 \mathrm{~km} . & \delta \omega=+0^{\circ} .12 \\
\delta P=-.0017 \text { days. } & \delta K^{\prime}=-1.3 \mathrm{~km} . \\
\delta e=+.007 & \delta T^{\prime}=+.159 \text { days. }
\end{array}
$$

The resulting values of the elements with their probable errors, as determined at a later stage, are:

	17.114 days	$\pm .008$ days	
-	0.698	$\pm .017$	
$\omega=$	$25^{\circ} \cdot 39$	士: $2^{\circ} .45$	
$T=$	J. D. 2,417,731-464	$\pm .092$ days.	
$K=$	49.7 km .	$\pm 3.31 \mathrm{~km}$.	First approximation (solution
$\gamma=$	-25.91 km .	$\pm 0.66 \mathrm{~km}$.	(with secondary oscillation.)
$T^{\prime \prime}=$	J. D. 2,417,732.793	$\pm .349$ days.	
$K^{\prime}=$	2.7 km .	$\pm 1.02 \mathrm{~km}$.	
$A=$	81.04 km .		
$B=$	18.36 km .		

The size of the corrections in some of the elements, and the fact that the residuals (computed-observed) as obtained direct were not in all cases in close agreement with those obtained from the differential equation, i.e., by substituting the ralues of the corrections in the observation equations, made another solution necessary. The values of ω and γ were, however, considered established as the corrections were very small and the remaining six unknowns were, with the last elements as the basis, formed anew into eighteen observation equations. In these equations

$$
\begin{aligned}
& y=\delta K \text {. } \\
& z=\frac{100 K}{\left(1-e^{2}\right)^{\frac{1}{2}}} \partial \mu \quad-\quad 1353+86 \partial \mu \\
& n=K . \partial e \\
& v=\frac{K}{\left(1-\frac{\left.e^{2}\right)^{2}}{2}\right.} \cdot \mu \cdot \delta T=496906 \partial T \text {. } \\
& y^{\prime}=\delta K^{*} \text {. } \\
& \hat{v}^{\prime}=\frac{2 \pi}{P} \cdot K^{\prime} \cdot \delta T^{M}=1.9825 \delta T^{\prime} .
\end{aligned}
$$

There result the following normal equations:-

$$
\begin{aligned}
14.733 y-19.889 z-28.221 u+3.499 v+11.503 y^{\prime}+.938 v^{\prime}+1.153 & =0 \\
+174.454 z+23.938 u-61.517 v-10.663 y^{\prime}-26.344 v^{\prime}+17.185 & =0 \\
+87.120 u-4.059 v-23.403 y^{\prime}-2.458 v^{\prime}+7.668 & =0 \\
+23.708 v+.794 y^{\prime}+9.359 v^{\prime}-9.616 & =0 \\
+21.411 y^{\prime}+1.290 v^{\prime}+1.868 & =0 \\
+18.584 v^{\prime}-4.992 & =0
\end{aligned}
$$

SESSIONAL PAPER No. 25a
Whence the corrections:

$$
\begin{array}{ll}
\delta K=-0.02 \mathrm{~km} . & \delta T=+0.039 \text { days. } \\
\delta P=-0.0022 \text { days. } & \delta K^{\prime}=-0.05 \mathrm{~km} . \\
\delta e=+0.0037 & \delta T^{\prime}=+0.080 \text { days. }
\end{array}
$$

The corrected values of the elements with their probable errors, as determined at this stage, are:

$P=$	17.1121 days	$\pm .005$ days	
$\begin{aligned} & e= \\ & \omega= \end{aligned}$	$\begin{gathered} 0.6943 \\ 25^{\circ} .39 \end{gathered}$	$\pm .013$	
$T=$	J. D. 2,417,731.503	$\pm .070$ days	
$K=$	$\begin{aligned} & 49.68 \mathrm{~km} . \\ & 25.91 \mathrm{~km} . \end{aligned}$	$\pm 2.28 \mathrm{~km}$,	Second approximation (solution with seeondary oscillation).
$T^{\prime \prime}=$	J.D. 2,417,732.873	$\pm .416$ days	
$K^{\prime}=$	2.65 km .	$\pm 0.86 \mathrm{~km}$.	
$A=$	80.84 km .		
$B=$	18.52 km .		

This solution should have been sufficient, but when substituting directly in the observation equations and comparing the residuals with those obtained in the ordinary way, there was one fairly large difference 0.40 km ., two were 0.30 km . and the rest varied between 0.0 and 0.2 km . Furthermore, the probable errors of some of the quantities, particularly K, seemed too large. It was decided then to compute the probable errors corresponding to the previous corrections made. They are collected in the accompanying Table IV.:-

TABLE IV.
Summary of Corrections.

Elements.	Preliminary Values.	First Corrected Values.	Second Corrected Values.	Third Corrected Values.
P.	$17 \cdot 120 \mathrm{~d}$	$17 \cdot 116 \mathrm{~d} \pm .008$	$17.114 \mathrm{~d} \pm .008$	$17.112 \mathrm{~d} \pm .005$
	$0 \cdot 680$	${ }_{0} .691 \pm .017$	$0.698 \pm .017$	$0 \cdot 6943 \pm{ }^{\text {¢ }}$-013
$\stackrel{\omega}{T}$	J. D. ${ }^{20}{ }^{2+17731-30}$	$25^{\circ} \cdot 27 \pm 2^{20} 1$	$25 \cdot 39 \pm 2 \cdot 4$	
\boldsymbol{T} K.	J. D. 241773130	$\ldots 731 \cdot 434 \pm 100$	$\ldots 731 \cdot 464 \pm 992$	
\boldsymbol{K}.	$\begin{aligned} & 49.0 \mathrm{~km} . \\ & 25.3 \mathrm{~km} . \end{aligned}$	$\begin{gathered} 51.1 \mathrm{~km}, \pm 3.20 \mathrm{~km} . \\ -25.9 \mathrm{~km} . \pm 0.64 \mathrm{~km} . \end{gathered}$	$49.7 \mathrm{~km} . \pm \overline{3} 31 \mathrm{~km}$. $2.91 \mathrm{~km} . \pm 0.66 \mathrm{~km}$.	$49.68 \mathrm{~km} . \pm 2.28 \mathrm{~km}$.
		Assumed.		
T		2417732.634	...752.793	$\ldots 732 \cdot 873 \pm 416$
$\stackrel{K^{\prime}}{\Sigma_{p u x}}$	485 km .	$\begin{aligned} & 40 \mathrm{~km} . \\ & 292 \mathrm{~km} . \end{aligned}$	$27 \mathrm{~km} . \pm \frac{ \pm}{25 \mathrm{~km} .} 102 \mathrm{~km} .$	$\begin{aligned} & 2 \cdot 65 \mathrm{~km} . \pm \overline{0} \cdot 86 \mathrm{~km} . \\ & 235 \mathrm{~km} . \end{aligned}$

The values for P, γ, T^{\prime} and K^{\prime} were now considered determined. The probable errors, especially those in K, did not seem to be as low as they should be. As the probable error in ω in the later determination was larger than in the preceding one, it was thought advisable to take e, ω, T and K and see if by another solution lower probable errors would be had, and a better agreement between the ephemeris and equation.

As before, for the sake of homogeneity, let

$$
\begin{array}{rlr}
x & =\delta K & =49 \cdot 68 \partial e \\
y & =K \partial e & =49 \cdot 68 \partial \omega \\
z & =K \partial \omega & K \\
u & =\frac{K}{\left(1-e^{2}\right)^{\frac{2}{2}}} \cdot \mu \partial T & =48 \cdot 9307 \partial T .
\end{array}
$$

And the resulting normal equations are:

$$
\begin{aligned}
14.480 x-28.036 y-\quad .077 z+3.931 u-3.236 & =0 \\
85.685 y+\quad .387 z-3.660 u+4.604 & =0 \\
17.243 z-17.072 u-1.533 & =0 \\
24.149 u+.080 & =0
\end{aligned}
$$

from which corrections result as follows:-

$$
\begin{aligned}
& \delta K=+0.29 \mathrm{~km} . \\
& \delta e=+0.0009 \\
& \delta \omega=+0^{\circ} .1743 \\
& \delta T=+0.0013 \text { days }
\end{aligned}
$$

The final elements, taking into account the secondary oscillation, are then as follows. The Allegheny results as discussed later are, for purposes of comparison, given here:-

OTTAWA.

$P=$	$17.112 \pm .005$.	$17.117 \pm .0042$
e	$0.695 \pm .010$	$0.685 \pm .011$
T	$25^{\circ} \cdot 57 \pm 1^{\circ} \cdot 54$	$17^{\circ} .53 \pm 1^{\circ} .58$
$T=$	J. D. 2,417,781.504 $\pm .024$	1907, Aug. 28, $697 \pm .08 \pm$ dys.
K	49.97 km . $\pm 1.35 \mathrm{~km}$.	44.69 km . $\pm 1.15 \mathrm{~km}$.
γ	$25.91 \mathrm{~km} . \pm 0.66$	- 30.10 km
$A=$	81.31 km .	73.88 km
$B=$	18.63 km .	15.50 km .
$a \sin i=$	$8,452,100 \mathrm{~km}$.	$7,665,000 \mathrm{~km}$.
$P^{\prime}=$	8.556 days	8.558 days.
$T^{\prime}=$	J.D. $2,417.782 .873 \pm .416$	1907, Sept. $9, \cdot 176 \pm .368$ days
=	time when secondary crosses	primary from above.
$K=$	2.65 km , ± 0.86	$2.39 \mathrm{~km} . \pm 0.77 \mathrm{~km}$.
$a^{\prime} \sin i^{\prime}=$	$311,800 \mathrm{~km}$.	$281,000 \mathrm{~km}$.

What seems peculiar is that the least-square solution diminished the period in each case, although from a comparison of the 1907 and 1908 observations, when plotted the period would seem to be fixed about 17.120 days. The snccessive approximations in each case decreased the sum of the squares of the residuals, as seen from Table IV. The final approximation gave $\leq p v v=236.3 \mathrm{~km}$., practically the same as the previous one. The agreement, however, between the equation and ephemeris is much improved, the greatest difference being 0.27 km . ; the average 0.15 km . and the probable errors are much lower. Table V. contains the phases for the normal places, reckoned from periastron with the period finally adopted, $1 \mathrm{i} \cdot 112$ days; the corresponding velocity with its weight, and the residuals as computed directly.

SESSIONAL PAPER No. 25a
TADLEE V.
Nohmal Placks.

No.	$\begin{gathered} \text { Mean Phase from } \\ T \end{gathered}$	Mean Velocity.	W't.	Residuals $\mathrm{C}-\mathrm{O}$
1.	$13 \cdot 810$	-22.33	3	$+1.85$
2	14.871	- 11.75	1	+4.21
3	$15 \cdot 378$	-066	3	$+0.85$
4.	15.740	+13.33	1	-3.21
5	$16 \cdot 143$	$+24.87$	2	-1.55
6.	16.385	+34.34	3	-0.44
7.	0.019	+51.00	1	+0.38
8.	$0 \cdot 166$	+33.60	1	+4.75
9.	0. 346	+22.48	3	-3.03
10.	1.102	-31.31	2	+5.95
11...	2107	- 38.20	3	
12...	3.533	-48.93	2	$+1.93$
13.	$5 \cdot 070$	-44.50	1	-117
14.	6. 357	-40.50	$\stackrel{3}{2}$	-1.53
15....	$7 \cdot 694$	-3642	2	-2.39
16	${ }^{4} 527$	-37.38	5	$+0.36$
17.	11.932	-33.00	2	+0.07
18. ...	12.713	-26.74	3	$-2 \cdot 31$

The curve representing the final elements is shown in Fig. 17, the dotted lines being the velocity curves of the primary and secondary components and the heary continuous line the resultant of these two. The final solution reduces the quantity $\mathbf{\Sigma p v}$ of the residuals for the normal places from 485 to 238.3 . The least-square solutions, with the assumption of a scoondary disturbance, scem, therefore, to have materially improved the values of the elements. The probable error of a normal place of weight unity as determined by $r= \pm .6745 \sqrt{\frac{\overline{\sum p v v}}{n-\mu}}$ where n is the number of normal places and μ the number of unknowns is $\pm 2.75 \mathrm{~km}$. The probable error of a plate as derived from the residuals in last column, Table II., which are scaled directly from the curve is for the 1907 observations $\pm 4.5 \mathrm{~km}$., and for those of $1908 \pm 3.5 \mathrm{~km}$. Grouping the two years together the probable error of a plate is $\pm \pm .0 \mathrm{~km}$.

Previous Observations.

There remains a discussion of M. Deslandres observations of 1901 and 1902. These were tried in connection with our 1907 observations to determine the period more accurately than could be done by using our own alone. The only period which suits Deslandres' observations alone is the one which he suggests, riz., 16.7 days. If the two observations of 1901 were omitted the other observations will give a better eurve when a period of 17.112 days is used. Fig. 18 shows Deslandres' observations using his period of 16.7 days. Fig. 19 shows his 1902 observations using our period of 17.112 days. He suggested an eccentricity of about 0.6 ; such a value for e with $K=45 \mathrm{~km}$. and $\omega=27^{\circ}$, gives a curve represented by the broken line in Fig. 18, while a similar value for K and ω, with an eccentricity 0.4 is represented in the continuous curve and appears to suit the observations as well as, if not better, than the other. The velocities he gives as relative only; I have addel 14 km , to each to bring them into agreement with the general run of mine.

As his measures depended upon one line onls, $\lambda 44$, and ammang themselves gave a more or less uncertain determinstion of the elements. I deeided in my preliminary determination to confine myself to our own observations. Duw that a definite solution las been secured, it is well to look at them anew. For convenience the data is repro-

9-10 EDWARD VII., A. 1910

duced here, the tenth of a day being assumed. As stated before, 14 km . is added to each velocity determination. The phase with the period 16.7 days is reckoned from the date of first observation of 1902, being Julian Day 2,417,964.4, the phase with the period 17.112 days is reckoned from my own periastron time.
M. DESLANDRES OBSERVATIONS.

	Julian Date	Phase: $P=16 \div$	$\begin{aligned} & \text { Phase } \\ & 17 \cdot 112 \end{aligned}$	Velucity.
2.415,568 5		47	10221	+ 11
$583 \cdot 5$		3.0	8109	+34
964.4.		$0 \cdot 0$	$12 \cdot 545$	- 2
9694	$5 \cdot 0$	0. 133	- 36
971.4	.	70	${ }_{2}^{2}+33$	-46
982.4	13	13433	- 6
9897		8.3	3.321	- 40
2,416,010 4		12.6	7.209	- 39
$011 \frac{1}{4}$. $\quad .$.	13.6	8. 209	-36
$012+$	$1+6$	9.209	- 43
015.4.		0.9	12.209	- 25
$020 \cdot 4$. $029 \cdot 3$.		3.9 14.8	0.097 8.997	
$029 \cdot 3$. $040 \cdot 3$.		14.8 9.1	8.997 .885	- 31 (?
049 047 0.3 .3.		${ }^{9} 1$	2.885	- 46\%
047 3.		$16 \cdot 1$	8. 885	- 24
$048 \cdot 3$.		0.4	10885	- 7
0523.		44	14885	+39
0543.		6.4	16.885	- 44
057.3.		$9 \cdot 4$	$2 \cdot 773$	- 48
$069 \cdot 3$.		47	14.773	+ 10
0713.	67	16.73	26
0723.		77	- 6661	50
${ }^{1076.3}$		11.7	4.661	- 47
0863.		50	14661	+ 2
0883.		7.0	16.661	- 15
2,416,095 3 .		14.0	6549	54

It is rather hard to say how best to make use of these early observations. Though the measures are liable to accidental errors of considerable magnitude they may, owing to the interval of some six years which has elapsed betreen the two series of observations, have an important bearing on whether or not any changes in the elements have taken place during that time. Our 1903 observations seemed to be slightly greater positive than the relocities for 1907 for the corresponding phase. This may have been accidental, the difference being at most less than 2 km . If the absolute velocities of Deslandres' obserrations were known, it would decide whether the velocity of the system has been changing or not during these six years.

If his two observations of the year 1901 are as they appear in his paper, we must conclude that the period has been changing during the interval. If we omit these two and use the remaining twenty-four of 1902 with our elements we get what appears on the face of it to be a much better agreement of the observations with the curve. There is one discrepancy. The observations fall short of the curve by a common amount, 1.5 days. The number of periods elapsed between the two epochs is in round numbers 125. By increasing the period $\frac{1 \cdot 5}{125}$ or .012 days, this would be remedied, but while this value of 17.124 days would not make much difference in Deslandres' observations, the least-square solution in our own shows it to be improbable. Here is a suggestion: Is it not probable that the presence of the third body will cause a rotation of the line of apsides similar to that caused by the sun and moon on the earth? A motion of the apse line in the direction of ω decreasing and at the uniform rate of $\frac{.012}{17 \cdot 112} \times 360^{\circ}$ or $0^{\circ} .2524$ per perind would account for this discrepancy. This motion, if it exists,

SESSIONAL PAPER No. 25a

would, in addition to decreasing ω and conscquently the slope of the curve near periastron, also cause the maximum positive velocity to increase and the maximum negative velocity to decrease numerically.

These questions seem to call for further work on the star at some future time. I do not think the data is sufficient at present to make any definite assertion regarding any clange in the elements themsclves.

Additional Note on the Allegheny Determination of the Orbit.

Since the foregoing was completed, No. 7 of Vol. I. of the Publications of the Allegheny Observatory has come to hand, containing the orbit of this same star as determined by Mr. Robert H. Baker. It is possibly the first case where two observers, working with different instruments and entirely independent of each other, have completed a discussion of an orbit at about the same time.

A comparison of the results is interesting. In some cases the agreement is remarkable, for instance the secondary oscillation; in other cases the agreement is not what might be expected. Speaking generally, I may say the reason for the differences exists in the observations themselves, the values Mr. Baker has determined suiting his observations best, while the same may be said of our own. There is a gap in the Allegheny observations near periastron passage. The first normal place, phase 0.16 days, depends upon two plates made the same night, the weights of the plates being about one-half the average weight assigned to a plate. The next normal place falls at phase 0.85 days and depends on two plates made on separate nights. These have relatively low weights also. In this interval of 0.7 days additional observations might, and I feel safe in saying, would tend to change the form of the curve. Our observations for phase 0.16 days depend upon one plate made in 1907 and three made in 1908, the plates being a little below the average weight. We have observations, however, for phase 0.34 days depending upon five plates made in 1907 and four made in 1908, the plates being all of average quality, and it is at this point that additional observations would be an advantage to the Allegheny data.

Looking at the results more in detail we see that Mr. Baker's value for γ is about 4 km , more negative than ours. The greater positive velocities secured here, account in a measure for this. There may be an explanation also if the velocity of the system be changing, as suggested previously. The bulk of Allegheny observations were made in 1907, while ours are about equally distributed over 1907 and 1908. There is a minor cause in the assumed wave-lengths of the lines used, causing a systematic difference in the two series of velocities. The wave-lengths given in the first part of my report are those at present universally accepted: those given in Mr. Baker's work are sometimes greater, sometimes less, but on the whole would yield a velocity more negative than would those in use here.

The differences are indicated in the accompanying table:-

On the average a difference of from 1 to 2 km . would be thus accounted for. In certain stars, by examining the trend of the residuals of the various lines and changing their assumed wave-lengths accordingly, a better agreement among the lines themselves can be secured, but unless there are valid reasons therefor it would seem better to retain a constant set of values. Mr. Baker no doubt has good reasons for the change, and the question of absolute velocity is not the most important one.

The probable error of ati average plate here is ± 4.0, at Allegheny ± 3.3. The Seed 23 plates used at Allegheny have an advantage over those used here as, being of a finer grain, the spectrum lines would be easier to measure. Our greater number of observations around periastron ought to have much weight, however, in the consideration of the differences between the two results.

The Allegheny observations, with a correction for T to bring the times of periastron passage into coincidence, and the addition of 3 km . to each velocity, being a systematic difference, are plotted in Fig. 20, the curre shown representing the elements as determined here. A glance suffices to show that such a curve does not suit the obserrations as well as their own curve, and it wonld seem, therefore, that some further work on the subject would be necessary to explain the discrepancies.

THE SYSTEM OF E HERCULIS.

$$
a=16^{\mathrm{h}} 56^{\mathrm{m}} \cdot 5, \delta=31^{\circ} 4^{\prime}
$$

This star was announced as a spectroscopic binary by both the Lick and Yerkes astronomers in 1903. The two plates secured at Lick showed both the Mg. and H_{γ} lines as broad and diffuse. On the three plates secured at Yerkes, Adams noticed evidences of the composite nature of the spectrum.

Work was commenced on the star here May 2t, 1907, and np to the present some one hundred spectrograms have been secured. After quite a number of these had been measured, the period was found to be in the neighbonrhood of four days. The observations seemed to group themselves into four sets, showing that the period was very close to the integral number. Thus quite an interval elapsed before observations were scenred in the intermediate phases.

When in 1905 the curve was fairly complete an attempt was made to bring up the five early observations so as to determine the period with greater accuracy. The period which suited our 1907 and 1908 observations best was 4.012 days. The early observations, made about the same date in 1903, required an increase in the period of $.003 t$ days. As the Lick observations wer based on the $M g$ line alone and the Yerkes were for the brighter component and were regarled as provisional ouly, it was decided to confine our attention to our 1907 and 1908 plates alone.

Keeping the two rears separate these wre groupel into eighteen normal places. When an att mpt was made by the graphical method of Dr. King to obtain preliminary values of the elements it was found that no simple elliptic curre would suit. Having previously found in θ Aquilx that the assumption of a secondary disturbance due to the presener of a third body would acount very well for deriations in the oscillation curve, a similar assumption was made iu regard to this star. Here, however, the residuals from the most suitable elliptic curve seemed to reneat themselves thrice in the period of the main star. It was therefore assumed that there was this third body, if so we may speak of it, revolving about the bright star in a period one-third that of its primary, the two in turn revolving about the other component of the system. This was the theory first acted npon.

After a great many trials the set of elements which gave a resultant cnrve in best agreement with the observations were th\& following:-

$$
\begin{aligned}
& P=4 \cdot 012 \text { days } \\
& e=.10 \\
& K=56 \mathrm{~km} . \\
& \omega=210^{\circ} \\
& T=J . D \cdot 2,417,721 \cdot 512 \\
& \gamma=-28.15 \mathrm{~km} . \\
& K^{\prime}=12 \mathrm{~km} . \\
& T^{\prime}=\text { J.D. } 2,417,722 \cdot 162 \\
&=\text { ime where secondary crosses primary from above. }
\end{aligned}
$$

SESSIONAL PAPER No. 25a

With these elements a set of eighteen observation equations were formed connecting the eight unknown elements with the residuals. These were transformed into normal equations and the solution gave the following corrections to the elements necepted as preliminary. The new values are also given:-

The new set of elements decidedly improver the agreement as is indicated by a decrease in the sum of the squares of the residuals from 1044 to 715 , over thirty per cent. When, however, the residuals were computed directly and compared with those obtained by substitution in the observation equations the differences in most cascs were larger than they should be, showing that another solution was necessary. Such a solution has as yet not been made.

Before the work had been carried thus far, observations had been made on the star in 1909. To bring these into agreement with the curve the period would need to b . increased to 4.023 days; this period if used would utterly destroy the agreement of the first two years. It seemed then that the period was a varying quantity.

At this stage it was decided to review the plates for evidences of the spectrum of the other component. From time to time in measuring, notes had been made regarding any evidences of duplicits, with corresponding velocities, but now the plates werd examined critically with this object in view. Out of the hundred odd plates only six showed the doubling of the lines. Two of them showed H_{γ} doubled, two $H \delta$ doubled and two both $H \delta$ and K. The instrument used in almost every case was the singlcprism spectrograph which has'a dispersion at Π_{y} of 30.2 tenth-metres per millimetre. At $\Pi \delta$ the instrument should theoretically resolve lines differing in wave-length by 1.2 tenth-metres. This corresponds to a velocity of 90 km . per second. In practice. however, owing to various causes, a separation corresponding to a much greater difference in velocity would be necessary before the lines could be seen as doubled. The maximum separation found to exist is approximately 160 km . Hence, we can understand how such a small percentage of the plates showed the duplicity of the lines. In the case of these six plates the velocities corresponding to the two components are tubulated in the column of remarks. Table II.

In Vol. I.. No. 13 of the Allegheny Publicatiens, which cam6 to hand while the plates were being reviewed, Mr. Robert II. Baker discussed the spectroscopic componmats of 2 Lecerte. His blended curve being very similar to that of ϵ Herculis, it seemed possible that the systems might be similar and that his explanation might answer in the case before us. The velocities, while very rough approximations at best, were plotted for each component and elements were obtained for the components as follows:-

9-10 EDWARD VII., A. 1910

	Flements.	Brighter component.	Fainter component.
Maximum pos, vel		+64 km .	+ 40 km .
Maximum neg. "			- 96 ."
\boldsymbol{K}, \ldots.		101 "	68 ${ }^{\prime \prime}$
c. . . .	(1)	13	15
w......		210°	30^{2}

Physical conditions in the system itself might serve to explain the curious form of the curve, but the two previous theories have much more evidence to support them. The change in the period, if real, would lend strength to the theory of a disturbing satellite. The presence of this third body would tend to cause the line of apsides to rotate, varying the form of the curve and consequently the elements.

Tables I. and II. give all the data of the plates. The residuals for each plate are scaled directly from the curve; the other columns are self-explanatory. Table III. gives the eighteen normal places, the phases being reckoned from the final periastron. The curve, Fig. 21, represents the corrected values of the elements on the assumption of a disturbing body; the dotted lines representing the primary and the secondary, and the heavy continuous one the resultant of the two.

Further work on the star is necessary. Spectrograms of the star at times of maximum velocities are now being secured on plates of fine grain, and it is hoped that some further evidences of the doubling of the lines will thus be secured.

TABLE I.
Early Obsertations of e Herculis.

Tulian Date.	Phase.	Velocity.	Residual.	Observatory.	Remarks.
2,416,235 688	3.046	58		Yerkes,	.
242.718	2.052	- 4.3			
$259 \cdot 910$	3-193	- 70		Lick.	Mg. line.
262-827	$2 \cdot 098$	-34			"
272664	3.910	$\stackrel{32}{94}$		Yerkes.	
616.680	$2 \cdot 837$	-24"		Lick.	Mg.line, not very good.
658-849	867	- 31*	.	"	Mg. line.

- Kindly communicated by Professor Campbell.

TABLF: 11.
Ottawa Measures of e Hercelis.

TABLE II.
Otrawa Meascres of e Herculis.-Continued.

No, of Plate.	Julian Date.	Phase.	Velocity.	Wt.	Residual.	Remarks.
	1908.					
1757.	2,418,154.795	0.096	-94.3	5	- 4.8	
1760.	$155 \cdot 701$	1.001	$-22 \cdot 1$	3	$\bigcirc 0 \cdot 4$	
1761.	$159 \cdot 586$	0.873	-28.6	8	- 22	
1774	$161 \cdot 649$	2.937	-24.0	7	+2.5	
1782	$169 \cdot 701$	${ }_{2} \cdot 964$	- 30.0	7	-8.7	
1793.	173612	2862	-47.8	5	-14.1	
1818	$178 \cdot 585$	$3 \cdot 8.8$	-92.4	7	a +42 +0.0	
1838	$181 \cdot 660$	$2 \cdot 904$	$-24 \cdot 0$	8	0.0 -2.8	
1844. 1853.	182.588	3.811 2.790	-48.9 -6.1	8	2.8 +16.0	
1853.	$185 \cdot 578$ $189 \cdot 604$	${ }_{2}^{2 \cdot 790}$	6.1	5	+16.0	
1866.	189.604	2804	$-20 \cdot 1$	4	+ 20	
1903.	216. 550	1.667	$+11.2$	4	-19.9	
1905.	217.516	$2 \cdot 627$ $2 \cdot 667$ 1	21.0 -10.0	5	+37.8	
1917.	- $220 \cdot 531$	- 1.628	-10.0 +18.1	2	a +81 $-\quad 91$	
1926.	$227 \cdot 593$	0.665	- 24.8	4	+8.3	
1961..	$259 \cdot 140$	0411	-70-3	,	-14.2	
${ }_{1}^{1983}$	272422	1.356	-30.9	5	-33.0	
1993	$278 \cdot 461$	3:382	-30.0	5	+20.0	
	1909.					
2263.	2,418,346 923	3.629 3.664	435 -43.3			
2264.	316.958	3. 664	-39.3		
${ }_{2}^{2305}$.	$360 \cdot+899$ $360 \cdot 942$	${ }_{1}^{1.507}$	-183 -164		+...	
2327.	369883	2.512	+ 49.5			
2328.	$369-935$	$2 \cdot 664$	12-5			
$2370 .$.	379 788 379.808	0.379	-780		,	
$2371 .$.	$379 \cdot 808$	$0 \cdot 399$	-54 3		...	
2384	$381 \cdot 814$	2.405	$+36.4$..	
2385.	381.833	2.424	+38.4			
${ }_{2455}^{2454 .}$	$397 \cdot 836$ 397	2376 241	$\begin{array}{r}390 \\ -39.8 \\ \hline\end{array}$: . .		

TABLE III.
Normal Places.

SESSIONAL PAPER No. 25a

THE SPECTROSCOPIC BINARY η BOÖTIS.
This star ($a=13^{\mathrm{h}} 49^{\mathrm{m}} \cdot 9, \delta=+18^{\circ} 54^{\prime}$, photographic magnitude $3 \cdot 8$) was announced as a spectroscopic binary by Moore in L. O. B. 70, 1905. The thirteen measures given extended over the years $1897,1899,1901,1903,1904$ and 1905. Of these, four were approximate, the remaining nine definite. Besides these measures there were available the recently published measures*, six in all, by Kustner of the Bonn Observatory.

Work was commenced on the star here June 25, 1906, and from that time uutil the date of the last plate mentioned, March 20,1909 , forty-five plates were secured. The determination of the orbit depends then on these sixty-four plates, thirteen of the Lick Observatory, six of the Bonn and the remaining forty-fire of our own.

Some objection might be taken to the grouping of observations from different observatories in view of the possibility of a systematic difference in the results used, but it has been decmed expedient by the writer to use these early observations in conjunction with our own to make a preliminary determination of the orbit. Meanwhile plates of the star in the required phases will continue to be made with the now threeprism spectrograph. and when all phases are complete, which cannot be before January, 1910, a new detcrmination of the elements will be made using our three-prism plates alone. The comparison of results ought to be worth the extra labour involved.

The star is of solar type. XIVa according to Miss Maury's grouping, ard thus permits of accurate velocity detcrmination. As a rule about fifteen lines were measured on each plate. The plates up to No. 752 were made with the Universsl spectroscope, and were reduced by means of the Hartmann interpolation formula. From that time the plates were made with either the new single or the three-prism spectrograph, and were reduced from tables used here in which the micrometer settings for zero displacement of the lines are tabulated. Eleven were made with the former, twenty-one with the latter. The plates used were Seed 27 . Our own plates made at the commencement of our work are weighted one-half; later plates with the Universal spectroscope, the single-prism plates, most of those made at Bonn, as well as those of 1897 and 1899 made at Lick, are weighted unity, while the later plates of Lick Observatory and our own new three-prism plates are weighted three.

The following tables contain all the data of the plates. The phases are reckoned from the period and periastron finally adopted and the residuals are sealed directly from the curve representing the final elements:-

OBSERVATIONS AT LICK OBSERVATORY.

[^20] OBSERVATIONS AT BON工 OBSERVATORY.

Julian Date.	Phas:	Velocity:	Weight.	Residuat.
$2,416,2584$.	14.9	- $7 \cdot 6$	3	$\div 07$
6,595.5.	352.0	22	1	± 5.2
6,608-5	$365 \cdot 0$	- 42	1	-3 3
6,994-4	255.6	-3.4	1	-04
7,234 7	0.6	- 6.2	1	-15
7,369 4	1383	+ $3 \cdot 9$	1	-0.4

OTTAWA OBSERVATIONS.

The observations when plotted gave a period about 492 days. Using this period they are combined into twenty-one groups, no group including observations of different periods. Preliminary elements were determined by the graphical method* of Dr.

[^21]
SESSIONAL PAPER No. 25a

King and, using these, twenty-one observation equations of the form of LehmannFilhés were formed. They were then transformed into the following normal equations, where for sake of homogeneity these substitutions were made:

$$
\begin{aligned}
x & =\partial \gamma \\
y & =\partial K \\
z & =K \cdot \partial e \\
u & =K \cdot \partial \omega \\
v & =1000 \cdot \frac{K}{\left(1-e^{2}\right)^{2}} \cdot \delta \mu \\
w & =\mu \cdot \frac{K}{\left(1-e^{2}\right)^{2}} \cdot \partial T .
\end{aligned}
$$

The normal equations are:-

The solution of these equations gave as corrections:

$$
\begin{aligned}
& \delta y=-.02 \mathrm{~km} . \\
& \delta K=+.43 " \\
& \delta K=+.050 \\
& \delta e=-1^{\circ} .025 \\
& \delta \omega=-3.32 \text { days } \\
& \delta P=+320 \text { " }
\end{aligned}
$$

The sum of the squares of the residuals for the normal places was reduced from 186.1 to $122 \cdot 7$, and the agreement between equation and ephemeris residuals was considered satisfactory. These are given in the accompanying table of normal places:

NORMAL PLACES.

The probable error of a plate as determined from the last two columns of the table, giving the data of the plates and using the formula $r= \pm .6745 \sqrt{\frac{\sum p v v}{\Sigma p-1}}$ is $=1.04$ km . per second. The curve, Fig. 22, is plotted from the corrected elements given in the following table. These are considered close approximations to the true values until observations in all phases of the star have been secured with the three-prism spectrograph when a final determination will be made:-

ELEMENTS OF ORBIT.

Elements.	Graphical.	Corrected.

$$
1
$$

APPENDIX B.

THE SPECTROSCOPIC BLNARY, a CORON.E BOREALIS.
J. B. Caxions.

The star α Coronæ Borealis ($\alpha=15^{\mathrm{h}} 30^{\mathrm{m}} ; \delta=+27^{\circ} 3^{\prime}$), was discovered to be a binary by Hartmann from measures of six plates taken at Potsdam in 1902 and 1903.* It was under observation at this Observatory during the years 1907 and 1908. In all 103 plates were secured, 46 in 1907 and the remaining 57 in 1908; the instrument used being the single-prism spectroscope.

This star belongs to the class $\mathrm{I} a 2$ in the Vogel classification. The spectrum shows the dark lines, $H_{\beta}, H_{\gamma}, H_{\delta}, H_{\epsilon}$, the magnesium line $\lambda 4481$, the iron line $\lambda 4549$, the calcium line $\lambda 3934$ and a few other very faint lines. The hydrogen lines are all vers broad and diffuse and very difficult of accurate measurement. H_{ϵ} is so diffuse that it has not been measured at all. The line $\lambda 4481$ varies in character, in some plates well defined, in others diffuse. The line $\lambda 4549$ is very faint and has only been measured in a very few cases. The line $\lambda 3934$ is in general a fairly good line, being weighted about the same as H_{γ} and $H \delta$. In the measurement of nearly every plate it was found that the lines $\lambda 4451$ and $\lambda 4549$ gave entircly different velocities from the H lines and K. It was decided therefore to consider only $H_{\beta}, H_{\gamma}, H_{\delta}$ and K in the first measurements and the elements determined in this treatment are from the consideration of these alone.

The lines measured, together with the velocities per recolution of the micrometer screw (0.5 pitch). are given in Table I.

TABLE I.
Lines (meastre:i) in a Coron.e Borbalis.

Element.	Wave-Length.	Velocity per revolution.
Hydrogen. .	4861527	1451
" ..	4340.634	1044
cium	4101.890	868
cium	3933.825	749

These lines vary in quality and were weighted accordingly. The whole plate was then weighted, regard being had, first, to the appearance of the spectrum, and second and more particularly, to the number of lines measured and the agreement in the measurements. The velocities found were plotted successively and gave a period of between seventeen and eighteen days. Trials of several periods ranging between these, gave 17.35 as the most satisfactory. There were available measurements of three plates of 1902 and ten of 1903 taken at Potsdam*, and it was found that on plotting these with the observations obtained here that if the period were increased to 17.355 days, they would, with one exception, lie very close to the curve. Table II. contains

[^22]the number of the plate, the Julian date, the phase-computed from the time of periastron finally accepted, and period 17.355 days,-the weight of the plate, the velocity and the residual between the observed velocity and that computed from the corrected elements.

In order to obtain observations in which the errors might be reduced and a curve drawn showing smaller residuals, the one hundred and three observations were combined into fourteen groups. Plates of both years were combined indiscriminately. those at nearly the same phase being grouped together. The weight of each plate (Table II.) was taken into account and the weighted mean of each group computed. with the mean phase.
(Table III. contains the mean phase from T mean velocity, weight and residual of these normal places.)

TABLE II.
Measures of a Coron e Borealis.

Plate No.	Year.	Julian Day.	Puase.	Wt.	Velocity.	Residual.
784	1907.	2, $417,720 \cdot 74$	13.041	4	- 40	+12.5
790	"	$725 \cdot 63$	$0 \cdot 576$	4	+32	$0 \cdot$
794	.	72575	0.696	3	+44	-10.
800.	"	$725 \cdot 72$	2. 666	3	-17	+17.
808	${ }^{\prime}$	$735 \cdot 69$	10.656	3	-37	-15 .
813	"	737.64	$12.5>1$	4	- 30	+ 3.
830	"	738.74	13.681	2	-26	${ }^{-}$
837.	"	73973	$14 \cdot 671$	4	-17	-3.5
845.	"	$740 \cdot 69$	$15^{\cdot 641}$	3	-11	-8.
950	"	$741 \cdot 69$	16.641	4	$+11$	- 1.5
861.	.	$747 \cdot 67$	5. 266	2	+17	- 4.5
869.	.	748.64	6236	4	+9	-4.5
880	"	752.65	10246	1	-41	+20.
898	.	75362	11.216	2	-27	-3.
842	.	$754 \cdot 64$	$12 \cdot 236$	4	-28	-1.
912.	*	761.64	1.876	2	+25	-13.5
917	"	762.64	2.876	3	+30	-2.5
919	"	765.65	5. 886	3	+8	0.
927.	"	766.61	6.846	3	- 5	- $4 \cdot 5$
336.	"	$767 \cdot 58$	$7 \cdot 816$	4	+8	-15.
939	,	769.68	9.916	3	-29	-10.
941	*	$770 \cdot 64$	10876	1	-30	-7.
944	-	773.62	13.851	2	-26	$+05$
951	,	77562	15.851	3	-19	-15
$956 .$.	-	$777 \cdot 67$	0546	3	-32	${ }^{0}$
973.	"	78958	11.466	${ }_{3}^{2}$	-16	- 9.
978.	\%	791-54	14.421	3	-24	+1.5
$986 . . .3$	\%	794.69 839.77	0.216 10.386	2	-12	$+16$.
1060 and 1061 1006	I'	$839 \cdot 77$ $800 \cdot 69$	$10 \cdot 38$ 6.216	2	-25 -14	
1006	"	800.69 803.63	$6 \cdot 216$ $9 \cdot 156$	$\stackrel{2}{2}$	-14 -7	-18 $-\quad 85$
1017	"	81063	16.161	1	-14	+13.
1022.	\ldots	811.66	$17 \cdot 151$	1	+ 5	-15.
1026	"	$815 \cdot 50$	3.676	3	+30	- 4
1032	"	825.57	13.741	2	-22	3.5 -0.5
1037	"	$831 \cdot 67$	${ }_{2} \cdot 486$	2	+3n	-0.5
1047 and 1048.	"	837 850.56	8.356 +016	4	-15	+ 5. $+\quad 2.5$
1083 and lost		2,418,010.92	+ +016 8186	4	- 26 $-\quad 5$	P $+\quad 25$ $+\quad 05$
1402.	1708.	-,418,017.87	15136	3	-17	$\pm 1{ }^{\circ}$
1493	"	$047 \cdot 80$	10336	3	- 6	-15.
1571 and 1572	"	096.69	7181	3	-15	$+12.5$
$1581 .$.	*	$098 \cdot 73$	9.221	1	- 5	-10.
1601.	"	$105 \cdot 71$	16.201	3	+ 7	+5.5
1608.	"	110.58	3.716	3	+9	+17.
1623 and 1624	"	115.69	8.831	3	-14	+1.
1628 and 1629	"	$117 \cdot 64$	10.776	3	-11	-11.5
1638 and 1639	"	$119 \cdot 66$	12796		-21	- 65
1646 and 1647	*	120.68	13.816	3	-21	-4.5
1652. and 1657	"	124.64 126	- ${ }^{\text {2 }}+2 \times 21$	3 3	+42 +27	-11.
1655		129.70	5. 481	3	+12	- ${ }^{\text {. }}$

SESSIONAL PAPER No. 25a
TABLE 1I.
Mensures or' " Corone Bobealis-Continurd.

TABLE III.
Normal Places of a Corone Borealis.

	No.	Mean Phase.	Mean Velocity.	Wt.	Residual.
1		12656	-29.77	6	-2.37
2.	.	13.777	-23.54	2	- 234
3		14.664	- 18.50	3	- $2 \cdot 29$
4	;	$15 \cdot 831$	- 5.77	$2 \cdot 5$	- 0.36
5.		16.723	+ 5.00	15	-622
$6 .$.		0. 556	+ 34.63	4	- $2 \cdot 17$
7.		2. 302	+ $37 \cdot 14$	6	-0.71
8		$3 \cdot 559$	+ 24.33	3	-266
9		$5 \cdot 657$	+ 11.10	4	2. 47
10		6. 250	$\begin{array}{r}\text { 2 } \\ -\quad 21 \\ \hline\end{array}$	4	-146
11	,	7. 968	- 6771	4	- 165
12		9-44	-1727	2	-0.31
13.		10517	- 22.21	3	-0.25
14....		11.000	- 24.35	3	+0.75

From the radial velocity curve the elements of the orbit were determined by the graphic method of Dr. King.* These were:-

$$
\begin{aligned}
& P=17 \cdot 355 \text { days } \\
& T=J . \text { D. } 2,417,725 \cdot 55 \\
& K=33 \mathrm{~km} . \\
& \epsilon=.28 \\
& \omega=309^{\circ} \\
& \gamma=0 \mathrm{~km} .
\end{aligned}
$$

[^23]To obtain elements which would give a curve more nearly suiting the normal places, a least-square solution was made. On the advice of Mr. Plaskett, the period 17.355 days was taken as fixed, and the fourteen observation equations (formed by the method of Lehmann-Filhes") were determinel without considering $\delta \mu$. From these the following normal equations result:-

Where

$$
\begin{aligned}
x & =\delta \gamma \\
y & =\delta K \\
z & =K \delta \\
u & =-K \delta \omega \\
v & =\frac{K \mu \partial T}{\left(1-e^{2}\right)^{2}} .
\end{aligned}
$$

The solution of the abore equations gave the corrcctions to the element:-

$$
\begin{aligned}
& \delta \gamma=+.635 \mathrm{~km} . \\
& \delta K=-.031 \mathrm{~km} . \\
& \delta e=-.015 \\
& \delta\left(\omega=-3^{\circ} . .66\right. \\
& \delta(0)=-.449 \text { days. }
\end{aligned}
$$

and hence the following new elements:-

$$
\begin{aligned}
& \gamma=+.635 \mathrm{~km} . \\
& K=32.969 \mathrm{~km} . \\
& e=.265 \\
& \omega=305^{\circ} .24 \\
& T=2,417.72 .101 \mathrm{~J} . \mathrm{D} . \\
& P=17.355 \text { days. }
\end{aligned}
$$

An ephemeris computed with these clements reduces the value of $\mathbf{\Sigma p v e}$ from 498.94 to 217.35 , but the differences found between these residuals and the observation equation residuals were in some cases rather large, and at a suggestion by Mr. Harperwhom I owe much for other valuable suggestions as weli-a second solution was made. This time δK was omitted owing to the small correction obtained in the first solution, and the new observation equations contain only four unknowns, and hence only four normal equations follow:-

$$
\begin{aligned}
48 x+2 \cdot 0615 y+1 \cdot 1149 z+2 \cdot 0989 u+6 \cdot 1200-n & =0 \\
+24 \cdot 8703 y+2750 z+3566 u-9 \cdot 4127-n & =0 \\
+19 \cdot 7284 z+18 \cdot 6666 u-58754-n & =0 \\
+19 \cdot 217 u-44691-n & =0
\end{aligned}
$$

in which

$$
\begin{aligned}
x & =\delta \gamma \\
y & =-K \delta e \\
z & =-K \delta \omega \\
u & =\frac{K \mu j T}{\left(1-e^{2}\right)^{\frac{1}{2}}} .
\end{aligned}
$$

The solution gives the corrections:-

$$
\begin{aligned}
& \delta \gamma=-.137 \\
& \delta e=+.012 \\
& \delta \omega=-1^{\circ} .558 \\
& \delta T=-.0475
\end{aligned}
$$

[^24]
SESSIONAL PAPER No. 25a

The probable error of a normal place of unit weight was computed and found to be ± 3.07, that of a plate as determined from the re-idual for each plate scaled from the curve to be $\pm 5.3 \times 6$. The probable error of each clement was also computed and is attached to the final values below, the values obtained after applying the corrections found in the second least-squares solution:-

```
    \(\gamma=\quad+.498 \mathrm{~km} . \pm .330 \mathrm{~km}\).
    \(K=32.969 \mathrm{~km}\).
    \(e=.27 \% \pm .0012\)
    (1) \(=303^{\circ} .68 \pm 4^{\circ} .25\)
    \(T=2,417,725 \cdot 054\) J. D. \(\pm \cdot 187\)
    \(P=17.355\) days
\(a \sin i=7.560,00 n\)
```

These values give a second reduction of $\mathbf{\Sigma p v e}$ from 217.35 to 207.7 and satisfactory differences between equation and ephemeris residuals, the arerage being .08 . The curve shown is drawn from the above elements and the circles show the position of the observed normal places.

Since the completion of the foregoing treatment of the binary, from the point of view of the hydrogen lines and the calcium line, λ 8934. all the plates have been reviewed, and the magnesium line $\lambda 4481$ carefully measured where measurement was possible, with the intent of determining in what respects the orbit deduced from this line might differ from that already determined from the other lines. The method of treatment was exactly similar to that formerly followed. The period was taken as before- 17.355 days. The observations were grouped into normals, the same plates being taken together as in the former treatment and the relative weights assigned as before. The normals were plotted, and the best curve possible drawn through them, or rather the graphic method of Dr. King was emplosed to obtain the elements of the orbit, the velocity curve corresponding to which best suited these normal places.

The elements thus found were as follows:-

$$
\begin{aligned}
& \gamma=+6.69 \mathrm{~km} . \\
& K=33 \mathrm{~km} . \\
& e=-35 \\
& P=17.355 \text { days. } \\
& (1)=316^{\circ}
\end{aligned}
$$

Comparing these with the corresponding elements from the other lines, the main differences are seen to be in the values of γ and e.

In the work which has been done on the radial velocities of stars other than binary, zome stars have been found, certain of whose lines gave consistently different velocities from other lines. Among them is o Ceti, the emission and absorption lines giving a considerable difference in the value of the radial velocity; so with nearly all Nove. Nova Aurige has been discussed at some length by several astronomers and a similar phenomenon has been noted. Explanations have been suggested as to the cause of the different displacement of different lines. These consist chiefly of two,-first, a lagging envelope producing the lines of less displacement towards the red end of the spectrum, and second, an ever-expanding envelope coming from a continuously productive source. How far such conditions would go to explain a state of affairs such as we find in a Coronæ, it is difficult to say. We may also look upon the system as receding with a velocity of 6.69 km , per second-the velocity given by the magncsium line-and constantly expelling hydrogen and calcium vapors, the velocity of expulsion affected by the periodic recurrence of physical conditions. brought about by the changing relative positions of the stars in the orbit, which conditions fail to influence magnesium in any way so far as changes in the lines are concerned. This is quite plausible, for in
the spectroscopiri study of the Sun's surface, regions have hern found, such as sunspots, the spectra of which show certain lines considerably affected in character and position, while other lines denoting other elements remain unchanged.

After the first part of this work had been completed, Mr. Jordan issued from the Allegheny Observatory his publication on the Orbit of a Coronæ Borealis. Comparing his results with those obtained here from the lines $H_{i}, H_{\gamma}, H_{\delta}$ and K, it was seen that, although on the whole they agreed fairly well, there was considerable difference in the values of e. This is largely due no doubt to the fact that Mr. Jordan used the line $(\mathrm{Mg}) \lambda 4481$, together with the above lines in the determination of his elements. However, the fact that the plates we obtained here were measured by several men and all agreed that the Mg line gave large discrepancies seems to justify the separate treatment.

The accompanying curves represent-Fig. 23, the hydrogen and calcium curve, and Fig. 24 the curve from the hydrogen and calcium lines, and that from the magnesium lines.
Plankett-Antrophysics.

APPENDIX C.

THE TWENTY-THREE FOOT SOLAR SPECTROGRAPH.

Ralph E. DeLury.

This instrument is adapted for analyzing with great dispersion the light of the sin and of laboratory sources, such as the electric spark, are, flame, \&c., and is primrily intended for investigating the conditions in the sun. It is situated in the basement of the Observatory in the Solar Research Room, which is connected on the north side by a cement tunnel to the louvred passage of the Coelostat House from which the image of the sun is directed to the spectrograph, and on the east side to the Chemical Laboratory, which is used also as a photographic dark-room in which are developed the photographs of the spectra taken in the spectrograph. The spectrograph may bc described under the following heads:- (a) Optical Parts; (b) Mountings; (c) SlitAttachment; (d) Camera and Plate-Holders; (e) Guide-plate for the Sun's Image.

(a) Optical Parts.

The optical parts are:-a slit with metal jaws 1.3 in . (3.4 cm .) long, mounted so as to leave $1 \mathrm{in} .(2.5 \mathrm{~cm}$.) clear, and provided with a micrometer, for adjusting the width of the slit, reading to thousandths of an inch; a six-inch (15 cm .) collimating lens of $22 \mathrm{ft} .10 \mathrm{in} .(695.5 \mathrm{~cm}$.) focal length for yellow light; and one of the earlier Michelson plane gratings of speculum metal having a 4.25 in . by 4.75 in . $(10.8 \mathrm{~cm}$. by 12 cm .) surface ruled 12,700 lines to 1 in . (500 lines to 1 mm .). These parts are arranged after the plan described by O. Von Littrow in 1863 (see Kayser Handbuch ler Spectroscopie 1, 513). In this arrangement the slit is placed at (or near) the focus of the lens and the dispersing system (in this case the grating) is placed on the other side of the lens in such a manner that the dispersed light returns through the lens which focuses it near the slit, as illustrated in Fig. 25, which represents a vertical section through the middle of the spectrograph and mountings. S is the slit, L the lens, placed at its focal distance from the slit and G is the reflecting grating placed just behind the lens L, and tilted so that its ruled lines are parallel to the shit. The beam of light to be examined passes through S spreading out to fill L, which renders it parallel before it reaches G, which disperses it and reflects or diffracts it back through L. By tilting the top of the grating slightly towards the slit the diffracted light is rade to pass back through the lens which focuses it below the slit where it may be examined with an eye-piece or photographed in the plate-holder (C). By rotating G about a vertical axis on either side of the normal, the different parts of the different orders of spectra are diffracted back through the lens L, and by sliding the lens forvard or backward the light of the different wave-lengths may be focussed sharply at C.

(b) Mountings.

The two tilting movements of the grating mentioned in (a) were provided in the cell of the grating by the John A. Brashear Co., from whom it was purchased. The forward tilt is given by screw J and suitable springs pressing against the back of the grating; and a screw placed on the side gives the means for adjusting the lines of the grating parallel to the slit. The grating in the cell rests on the stand G^{\prime}, the axis of which fits into a cylindrical socket in the bottom of
the end, B, of the spectrograph, and by turning a handle $K^{\prime \prime}$ (Fig. 26), attached to a worm which works in the toothed sector, k, which is attached rigidly to the axis of G^{\prime}, the grating may be rotated about this axis which passes through the centre of the plane of the grating, thus reflecting any desired part of the spectrum of any order through the lens to C. By means of the vernier-pointer, V, readings to tenths of a degree may be made on the graduated are E and a record of these readings with the corresponding wave-lengths of the spectra reflected to C is kept, so that by turning $\boldsymbol{K}^{\prime \prime}$ until V points to the proper angle, any desired wave-length may be reflected to the centre of C and the grating may be clamped in this position by tightening the scrensclamp K^{\prime}. The lens may be shifted and clamped at any focus by means of the handle U, and the position of the pointer F is read on a millimetre scale attached to the bottom of B, as shown in Fig. 24. Ordinarily the side represented in Fig. 26 is facing downwards and a mirror is placed below the scale and the are so that the reading may be made conveniently. In addition to these movements of the grating and lens, the mountings permit of rotation of the spectrograph as a whole about its axis, i.e., about the line joining the centre of the slit and the centre of the lens. This idea was suggested by Mr. Plaskett (Report Chief Astronomer for the year ending March 31, 1907. p. 58) and employed by Newall (Monthly Notices 68, 7, Nor., 1907), and used also in the spectrograph mounted vertieally and used with the vertical telescope of the Mount Wilson Solar Observatory. It faeilitates the study of the rotation of the sun, by enabling the observer to reflect the limbs of the sun at opposite ends of any diameter always tangentially to the slit, as described in detail under (c), in Fig. 25, A and B are the two ends resting on the supports A^{\prime} and B^{\prime} which rest on the cement piers P and P^{\prime} built on the cement floor. The end A is of half-inch cast brass. It has a V groove running around its circular rim into which the semi-circular cast-iron support A^{\prime} is bevelled to fit. The back of A is a rectangular box 3 in . by 11 in . by 14 in ., over which the wooden box O is tightly serewed and clamped. The axis of B, which is of 'ast-iron, rests in a cylindrical bearing in the brass support B^{\prime}. The box on B projects 3 in . on top and 16 in . on the sides and bottom to give good support for the lens and grating and to provide a surface to which the box O is screwed tightly. The bottom of B is milled smooth to give easy bearings for the grating and lens mountings. The box O is painted black on the inside and is provided with diaphragms, M, to prevent as much as possible the diffused light reflected from the lens and grating from striking the photographic plate in the holder, C. There is a hinged door, D, just above the grating and lens so that these may be eonveniently reached.

The spectrograph thus rests at its two ends on the supports A^{\prime} and B^{\prime} on which it may be rotated about its axis. The rim of A is toothed (T, Fig. 25) and into these teeth fits a gear attached to T^{\prime} (Fig. 27), which is supported in A^{\prime} and which may be turned by means of the handle T^{\prime} (Figs. 27 and 28). The circular face of A is graduated in degrees and by means of the vernicr attached to A^{\prime} the angle may be read to tenths of degrees. This is necessary in determining the 'East and West' line by allowing the image of the sun to drift across the face of A tangentially to some arbitrary line on A. From this angle read on the vernier, the position of the diameter of the sun's dise which lies in the plane of the sun's equator, is easily found since the inclination of these two lines to each other at any time is known, and hence the arbitrary line on A may be made parallel to any required diameter of the sun's image.

The mountings were constructed by the Victoria Foundry Co. from designs madin accordance with the suggestions of Mr. Plaskett who supervised the construction of the spectrograph. The mechanisms for rotating the grating and the spectrograph were skillfully eonstructed by Messrs, Mackay and Lueas.
(c) Sit-Attachment.

The slit-attachment is shown in Fig. 27. It was designed by Mr. Plaskett and made by the John A. Brashear Co., , , h, c, d are 45° reflecting prisms mounted on

Fig. 25 Solar Spectrograph.

Fig. 26-Rear end of Solar Spectrograph.
Plaskett-Astrophysics.

Fig. 27-Slit Meehanism of Solar Spectrograph.

Fig. 28-Front End of Solar Spectrograph.

SESSIONAL PAPER No. 25a

brass plates which aro supplied with racks and pinions e, e, \because. Whin the sun's image is placed concentric with the circular front of the spectrograph, the prism d is moved to take the light from any desired point near the sun's past limb and reflects it to the prism c, which direets it down through the slit to the lens and grating. In a similar way the larger prism, a, reflects to the west limb through the prism b, whose tapering ends form a V-shaped space into which the tapering end of c fits closely, so that the spectrum from the east limb is placed closely between two strips of the spectrum from the west limb. The widths of these strips may be varied by moving the plate holding the prisms b and c back and forth, and by means of two little slides placed directly over the ends of the slit. When desired the shutter, f, may be used to keep the light passing through the slit from reaching the lens. In place of the plate bearing the prisms b and c, the attachmeut, h, may be used and by meaus of two adjustable serews which serve as stops between which it may be shifted so that two spectra of any desired widths may be taken in succession, the one being placed between two strips of the other, the V-shaped openings and the V-shaped slides providing the means for adjusting the widths of the strips. The prism arrangement is intended for obtaining plates for measuring the rotation of the sun or for any investigations where it is desirable to take the spectra simultaueously, while the attachment, h, is designed for taking spectra in succession, and of course the time of an exposure will be less in usiug it than in using the prisms which diminish the intensity of the light considerably.

(d) Camera and Plate-holders.

The plate-hollers are made to take a $2.5 \mathrm{in} . \times 12 \mathrm{in}$. plate, a hinged back with three springs pressing the back of the plate at its edges holding the plate firmly in place without danger of bending it. The plate-holder, C, Fig. 28, is slid into the frame C^{\prime}, Fig. 27, and clamped, as shown in Fig. 28. The frame C' can be raised or lowered by rack and pinion as shown, so that several strips of spectra may be put side by side on the same plate, and spaced as desired by reference to the millimetre scale on the right hand side. The plate-holder fits over a 1.5 in . opening in A, Fig. 27. The frame C^{\prime} may be tilted slightly so that the plane of the photographic plate may be made to follow more closely the focal surface of the lens.

(e) Guide-plate for the Sun's Image.

In Fig. 28 is shown the guide-plate R, serewed tightly over the slit-attachment. R has a number of concentric circles and a diameter scratched on its surface and blackened so as to be easily visible. These circles are concentric with the circular front of the end-piece A. The figure shows the sun's image placed concentric with these circles. At each end of the diameter of these circles is a small rectangular opening, back of which is a little slotted silver-plated shutter which runs in bevelled slides. These shutters may be adjusted by means of the millimetre scales ou the edges of the two rectangular openings, so that the slots are tangential to the sawe circle whose diameter is read off directly, the distance between the uearest ends of the rectangular openings being 200 mm . In the same manner the diameter of the solar image is measured. Back of these slots the prisms are adjusted to give the maximum brightness in the light reflected from the grating, and thus the spectrum from a point in the image near one limit may be placed betweeu two strips of the spectrum from a part of the image at the other end of the diameter. To get any desired latitude on the sun's dise, the image is allowed to drift across the guide-plate tangentially to the diameter-the arbitrary line mentioned above-scratched on the plate and the veruser reading taken of the angle correspouding to this 'east and west line' which makes a known angle at any time with the sun's equator. The handle $T^{\prime \prime}$ is then turued to place the diameter in the desired position. One slit will thus be placed at a certain latitude north of the
sun's equator and the other at the same latitude south of the equator, and the displacement of the spectral liues resulting therefrom will give a measure of the rotation of the sun in this latitude by turning $T^{\prime \prime}$ so that the slits are placed at the same latitude, but on the opposite sides of the equator to those of the former position the same displacement should result if: (1) the sun's equator has been accurately determined, (2) the image in both cases is concentric with the circles on the guide-plate, and (3) the rotation of the sun is the same for the same latitude in both hemispheres. Taking the mean of the two measures from plates taken in succession would eliminate most of the errors introduced.

SOME RESULTS.

The spectrograph was mounted in August, 190s. The cement piers, P, P^{\prime} (Figs. 26, 27, 23), are made so as to make the axis of the spectrograph coincident with the axis of the concave mirror in the coclostat house, when the image from it is placed in the middle of the face, A, of the spectrograph, P being a few inches higher than P^{\prime}, giving the proper incliuation (about $3 \frac{1}{2}^{\circ}$). The spectrograph was adjusted and numerous test photographs were taken in the various parts from $\lambda 3800$ to $\lambda 6000$. To keep the light reflected back from the surfaces of the lenses from striking the photographic plate the ordinary method of putting a strip across the lens, parallel to the plate, was tried; also, in some tests, the lens was tilted forward so as to throw the reflected light below the photographic plate. This latter method does not alter the character of the lines very much and possesses the advantage of doing away with the strip which masks the central part of the grating and lens. It was soon found that the character of the spectral lines in the different orders from either the left or right inclinations of the grating was not as good as desired. By directly reflected light the grating appears to have three areas of different reflectiug powers and it was found that the spectra from these areas did not harmonize. The best spectra were obtained by masking the two smaller areas and using the remaining strip which constituted the right three-fifths of the grating. Even from this part of the grating the spectral lines are poor. In the first and second orders the spectra from the grating tilted to the right are much more intense than those obtained when the grating is tilted to the left, while the reverse is the case in the third order, and furthermore the lines are sharper when the grating is tilted to the left. Consequently the rotation plates obtained were made with the grating tilted to the left and the left two-fifths of the grating masked together with the central strip placed over the face of the lens to cut off the reflected light. The focal curves, for left and right inclinations of the grating were obtained in the first three and part of the fourth orders, for the whole grating with the central strip masked. These are plotted in Fig. 29, the dotted lines being the photographically determined eurves and the continuous lines, those visually determined. It will be seen that the locus of the foci for any wave-length in the different orders, instead of being a straight line of constant focus, is a curve (nearly a straight line) of varying focus. This is very likely due to the character of the reflecting surfaces between the scratches on the grating, for it may be assumed that the diamond scratching-point distorted the strips between the scratches in such a way as to make one side of the surface slightly convex and the other slightly concave, as might easily happen since on oue side of the diamond-point the speculum is scratched or furrowed, while on the other side it is not. At any rate the grating is uot what it should be for the work planned for this spectrograph. This work must necessarily deal with the exact positions and character of the spectral lines and any large or small changes in these. It is chiefly the minute changes that are of interest at present in solar investigations, and the very best possible definition of the spectrum lines is required for a satisfactory measurement of these changes. It is hoped that a uew grating of first quality may soon be secured, as such is necessary to yield satisfactory results. Everything else is now in readiness for the careful study of solar problems.

Fig. 29-Focal Curves of Solar Spectugraph.

H

Part of sun-spot Plate, L 405 , showing emission in K and H. Scale of the original $1 \mathrm{~A} . \mathrm{U} .=1.11 \mathrm{~mm}$.

SESSIONAL PAPER No. 25 a

In addition to rotation-plates, plates of the sun spot spectra were obtained whenever the conditions were suitable. Samples of both are shown in Fig. 30. In the following table the measurements of a sample rotation-plate (L 413) are given. In taking these plates long exposures (10 or 12 minutes in the third order near 4300) were necessary owing to the fact that a very small area of the grating was used. During this interval the sun's image would become blurred and distorted, thus allowing light from different points on the sun's surface to pass through the slits. The poor values in the following table are probably partially due to this cause and partially also to aberrations produced by some of the curious properties of the grating and to the very poorly defined lines produced. Many of the lines were so poor that measurements of them were not made and many of the finer lines were spread out and weakened so as to be almost invisible. It is hoped that the new grating will remedy these defects.

Measurements of plate L $413,0^{\circ} \cdot 0$, slits 226 mm , apart, diameter of the sun 232 mm.:-

λ	Mean of 5 mm . readings middle strip	Mean of 5 mm . readings lower strip.	Mean of 5 mm . readings upper strip.	Mean difference.	$2 \delta \lambda$	Velocity km . per sec.
$4136 \cdot 678$	2.9828	3.0314	3. 0430	0.0544	$0 \cdot 0488$	1.77
$4137 \cdot 156$	$3 \cdot 5233$	$3 \cdot 5650$	3.5931	557	499	1.81
4140.089	6. 7876	6. 8342	$6 \cdot 8411$	500	448	1.62
4147.836	15.4109	15.4623	$15 \cdot 4711$	558	500	1.81
$41.49 \cdot 533$	17.2990	17.3517	173520	529	174	1.71
$4150 \cdot 111$	18.2771	18.3254	$18 \cdot 3411$	513	160	$1 \cdot 66$
$415+\cdot 071$	$22 \cdot 5768$	22.6215	22.6324	502	450	$1 \cdot 62$
$415+667$	23.0205	23. 0724	23.0828	571	512	185
$4154 \cdot 976$	$23 \cdot 3789$	23. 4309	23.4333	532	477	1.72
$4157 \cdot 948$	26.6898	$26 \cdot 7408$	$26 \cdot 7492$	452	405	1.46
$4157 \cdot 948$	26.6868	26.7431	26.7558	627	562	2.03
$4158 \cdot 059$	27.814	278550	27.8718	490	439	$1 \cdot 58$
$4163 \cdot 818$	33.2268	33.2844	$33 \cdot 2919$	604	542	1.95
+169.110	$39 \cdot 1097$	$39 \cdot 1550$	39.1763	560	502	1.81
4171.068	$41 \cdot 2808$	$41 \cdot 3317$	$41 \cdot 3462$	587	526	$1 \cdot 89$
4174.095	44.6767	447188	4.7331	489	438	$1 \cdot 57$
$4175 \cdot 806$	$44^{4} 6005$	46.6480	46.6549	510	457	1.64
4176.739	47.6361	47.6580	476990	524	470	1.69
$4179 \cdot 025$	$50 \cdot 1899$	50.2346	$50 \cdot 2450$	499	447	1.60
4179.025	501928	$50 \cdot 2358$	50.2405	4.54	407	1.47
$4181 \cdot 919$ $4182 \cdot 548$	$53 \cdot 4269$ $5+1376$	$53 \cdot 4799$ $54 \cdot 1827$	$53 \cdot 4878$ $54 \cdot 1958$	571 517	512 +63	184 1 1 66
$4182 \cdot 548$ $4187 \cdot 204$	$5+1376$ $59 \cdot 3360$	$54 \cdot 1827$ $59 \cdot 3872$	$54 \cdot 1958$ $59 \cdot 3987$	517 570	+63 511	1.66 1.83 18
$4187 \cdot 943$	$60 \cdot 1723$	60.2212	60.2388	570 577	511 517	1.83 1.85
$4187 \cdot 943$	$60 \cdot 1754$	$60 \cdot 2203$	$60 \cdot 2+23$	562	514	$1 \cdot 81$
$4196 \cdot 372$	69.5688	$69 \cdot 6076$	69.6247	474	425	1.52
+199.267	72.7938	728540	72.8663	664	596	${ }^{2} 13$
$4199 \cdot 267$	72.8065	72.8626	72.8720	608	545	1.95
4201.089	74.8526	74.9020	74.9137	553	496	1.77
4202.919	76.8960	76.9398	$76 \cdot 9+92$	485	434	1.55
4903.730	77.8073	77.8667 78.8003	77.8677	599	537	
+204.622	78.7510 81.7826	78.8003 81.8279	$78 \cdot 8116$ $81 \cdot 8413$	550	493	1.76
+207.291 $+208 \cdot 766$	$81 \cdot 7826$ $83 \cdot 4393$	$81 \cdot 8279$ $83 \cdot 4904$	$81 \cdot 8.113$ $88 \cdot 4972$	520 545 505	466 488	1.66
$4208 \cdot 766$ +213.812	$83 \cdot 4393$ $89 \cdot 0824$	$83 \cdot 4904$ $89 \cdot 1385$	834972 891469	545	488	1.74 1.92
+216.351	91.9078	$91 \cdot 9656$	$91 \cdot 9645$	593	532	1.89
$4220 \cdot 509$	$96 \cdot 5071$	96.6150	96.6305	557	499	1.77
$4233 \cdot 328$	$110 \cdot 4159$	$110+651$	110.4745	539	483	1.71
$4236 \cdot 112$	$113 \cdot 1064$	$113 \cdot 1574$	$113 \cdot 1659$	563	496	1.76
+236.279	11.32910	113.3460	$113 \cdot 3567$	604	549	1.92
4236.279	113.2911	$113 \cdot 3482$	$113 \cdot 3563$	612	549	1.94
+238.970	116.3636	$116 \cdot 1092$	116.4177	499	447	1.58
+246.966	126.2158	126.2723	$126 \cdot 2819$	613	550	1.94
4258.774	$139 \cdot 0965$	$139 \cdot 1464$	$139 \cdot 1514$	524	470	1. 66
$4265 \cdot 418$ +268.915	$147 \cdot 6064$ $150 \cdot 7909$	$147 \cdot 6630$ $150 \cdot 8440$	$147 \cdot 6666$ $150 \cdot 8464$	581	524	1. 84
+268.915 4271.325	$150 \cdot 7909$ $153 \cdot 4834$	$150 \cdot 8440$ $153 \cdot 5+26$	$150 \cdot 8464$ 1.33 .5454	${ }_{6}^{543}$	+87 544	1.71 191
4271.934	$154 \cdot 6658$	154.7190	153.5454 154.7275	to6 593	544	1.91 1.87

Measurements of Plate L 413 (Continued).

s	Mean of 5 mm. readings middle strip	Mean of 5 mm . readings lower strip	Mean of 5 mm . readings upper strip.	Mean difference.	20λ	Velocity km . per sec.
4274.958	157.5662	157.6159	1576230	0.0533	0.0478	$1 \cdot 68$
4279.643	$162 \cdot 8316$	$162 \cdot 8856$	$162 \cdot 8923$	074	515	1.81
$4282 \cdot 565$	$166 \cdot 1090$	1661575	$166 \cdot 1650$	523	469	1.64
4283-169	$166 \cdot 7867$	166.8456	$166 \cdot 8437$	580	520	1. 82
$4287 \cdot 566$	1717201	171.7671	171-7684	475	427	1.49
$4288 \cdot 310$	$172 \cdot 5555$	172.6182	$172 \cdot 6188$	630	565	1.98
$4289 \cdot 525$	$173 \cdot 9153$	$173 \cdot 9697$	173.9714	553	496	1.73
4289.885	174.3185	$174 \cdot 3698$	174.3829	579	519	1.82
$4290 \cdot 080$	174.8803	174.9256	$174-9400$	525	475	1.66
4390-377	$175 \cdot 0671$	$175 \cdot 1189$	$175+1366$	557	499	1.74
4291.114	176.2785	176.3263	$176 \cdot 3375$	534	498	1.67
4295.383	181.0754	181.1309	$181 \cdot 1437$	619	555	1.94
$4300 \cdot 211$	185.9150	185.9642	185.9754	548	491	1.71
$4300 \cdot 211$	184.7011	184.7533	1847603	557	499	1.74
4302692	$187 \cdot 1850$	187.5400	187.5453	577	517	1.80
4312.462	$200 \cdot 4632$	$200 \cdot 5002$	$200-5203$	571	512	1. 78
4316.962	$205 \cdot 6104$	$205 \cdot 6557$	2056737	543	487	1.69
4320.947	$207 \cdot 9588$	207.9978	$207 \cdot 0193$	498	446	$1 \cdot 65$
4321.119	$208 \cdot 1885$	$208 \cdot 2350$	208-2553	567	508	1.76
4331.811	$230 \cdot 2219$	$220 \cdot 2719$	$220 \cdot 2817$	549	492	${ }_{1} .71$
4337.216	2263078	2263617	226.3729	595	538	1.85
4338.084	2272093	$227 \cdot 3348$	$227 \cdot 3580$	530	475	1.64
4338.430	$227 \cdot 6796$	227.7315	227.7403	563	505	1.75
4339.617	229.0152	229.0619	229.0751	533	478	1.65
4339.582	$229 \cdot 3068$	$229 \cdot 30559$	$229 \cdot 3787$	605	542	1.87
4343861	233.7958	$233 \cdot 8477$	$233 \cdot 8647$	604	542	1.87
$4344 \cdot 451$	234.4621	$23+5066$	234.5309	567	508	1.74
4344670	231.7029	2347509	23.47669	567	508	175
4344.670	234.7023	$234 \cdot 7510$	234.7679		513	
4351.216	242.0735	242'1259	$242 \cdot 1400$	595	533	1.84
4351.216	242.0719	$242 \cdot 1223$	$242 \cdot 1343$	564	506	- 1.74
					Mean .	1.77

The scale, which is practically constant over the whole plate, is $1 \mathrm{~A} . \mathrm{U} .=1.115$ mm ., hence $2 \delta \lambda=\frac{\text { mean difference }}{1.115}$. The velocity is $\frac{\delta \lambda}{\lambda}$ (Velocity of light) $=$ $299860 \frac{\delta \lambda}{\lambda} \mathrm{~km}$. per second. Heliographic latitude of the centre of the sun's dise was $6^{\circ} 26^{\prime}$ when plate $L 413$ was taken, consequently the velocity at the equator, as determined by this plate is $\frac{232}{226} \cdot 1.7 \% \cdot \frac{1}{\cos 6^{\circ} 26^{\prime}}=1.83 \mathrm{~km}$. per second. This value is the linear velocity of the sun's limit at the equator, as measured, and will evidently give the synotic period of the rotation, the value for which is 1.86 , as given by Adams. To reduce to the sidereal period requires the addition of 0.14 km ., making the velocity 1.97 km . The generally accepted value is approximately 2.05 km . per second, and the defieioney in the present case may be safely ascribed to errors introduced by the grating.

APPENDIX D.

DOUBLE STAR MEASURES. PIOTOGRAPHS OF COMET MOREHOUSE. OCCULTATIONS OF STARS BY THE MOON. FIELD INSTRUMENTS. ABERRATIONS OF THE STELLAR CAMERA OBJECTIVE.

I. M. Motherwell.

DOUBLE STAR MEASURES.

Three half nights each week have been deroted to mierometer and photographic work, including the series of tests made on the camera objective. Mricrometer work has consisted principally of the determination of the position angles and distances of visual double stars, the working list being prepared from Burnhan's Catalogue of Double Stars. An endeavour is being made to measure only those which have not been measured for some time or whose motion is such as to require frequent measurements.

The flar micrometer used, is the Warner and Swasey type, and it has been found rather unsatisfactory in the determination of position angles owing to there being no quick-motion serew for moving the position cirele. A self-registering attachment would be a great improvement as the present arrangement requires the frequent use of a hand-lamp which dazzles the ere. Considerable difficulty has also been experienced in keeping the eye-piece clear of frost in the winter, each setting of the micrometerhead or position-circle requiring several clearings of the glass.

Following are the measures made during the past year, each measure being the mean of eight settings for position angle and four double-distance measures:-

Star No.	Date.	Position Angle.	Distance.	Star No.	Date.	Position Angle.	Distance.
		-	"			-	"
151.	1908786	2790	134	7117.	$1908 \cdot 464$	$298 \cdot 2$	Cloudy.
269	1908765	113.9	5.78	7318.	$1908 \cdot 317$	$184 \cdot 3$	$3 \cdot 81$
1427	1908'921	$313 \cdot 9$	$3 \cdot 28$		$1908 \cdot 575$	$186 \cdot 8$	4.01
1750	1908-921	$244 \cdot 1$	$17 \cdot 24$	7429.5	$1909 \cdot 429$	$252 \cdot 9$	9-39
$2040 .$.	$1908 \cdot 921$	$218 \cdot 8$	+21	7450.	$1908 \cdot 575$	$15 \cdot 2$	8.70
2043.	$1908 \cdot 921$	328.5			$1908 \cdot 617$	$14 \cdot 3$	9.21
2536.	$1908 \cdot 996$	$305 \cdot 3$	273		1908-631	$14 \cdot 0$	9.58
3398	1908 -996	6.4			$1909+12$	$14 \cdot 9$	8.91
452	1909 3 41	43.3	260		1909.429	13.9	$9 \cdot 32$
4530.	$1909 \cdot 086$	139.6	612	7451	$1908 \cdot 317$	$255 \cdot 4$	$16 \cdot 64$
4890	$1908 \cdot 247$	196.3	$5 \cdot 14$		$1908 \cdot 464$	254.1	1711
	$1909 \cdot 086$	1967	488		$1908 \cdot 575$	2.48	16.57
	$1909 \cdot 303$	197.0	5.11		$1908 \cdot 617$	2256.0	1617
5011	$1908 \cdot 247$	45.5	1.88		1908 681	254.6	$16 \cdot 6$
5014.	1909202	2359	3.50		1908.575	$288 \cdot 9$	321
	$1909 \cdot 303$	2340	3.39	7604.	1908464	211.9	$17 \cdot 12$
	1909341	335.5	3.40		$1908 \cdot 497$	211.9	1685
5125..	1908:304	$146 \cdot 5$	$3 \cdot 43$		$1908 \cdot 575$	2140	16.5
5319.	$1908 \cdot 304$	$176 \cdot 9$	2. 50	7642.	1908.575	898	1.77
	$1908 \cdot 426$	177.3	2.78	7915.	1908.439	18.2	503
5837	$1908 \cdot 977$ $1909 \cdot 183$	$245 \cdot 2$	30.78		$1905 \cdot 492$ $1905 \cdot 617$	20.0	588
	$1909 \cdot 183$ 1907202	24.4 4	31.50 31.89		1908617 1904247	18.4	548 388
.....	$\begin{array}{r} 1903 \cdot 212 \\ 1909 \cdot 399 \end{array}$	264.8 $29+3$	31.89 31.09	5388.		117	
	1909.399 1909	$\begin{array}{r}29+3 \\ 358 \\ \hline\end{array}$	Too frosty		1908484 $19065 \cdot 183$	1114	3 3 89
70ヶ3..	$1909 \cdot 183$	$111 \cdot 1$	(0o frosy		1903 -394)	$116 \cdot 4$	3 :2

9-10 EDWARD VII., A. 1910

Star ${ }^{\text {Nob }}$	Date.	Position Angle.	Distance.	Star No.	Date.	Position Angle.	Distance.
		-	"			\sim	"
5126..	$1908 \cdot 247$	$68 \cdot 6$	305		1908 6.41	$338 \cdot 7$	$27 \cdot 47$
5126.	1909 -30S	$68 \cdot 1$	3.50		$1908 \cdot 765$	$339 \cdot 3$	26.50
	1909 '399	66.5	$3 \cdot 27$	9034.	$1908 \cdot 541$	$51 \cdot 9$	7.84
5705.	1909-303	$32 \cdot 2$	3.37		$1908 \cdot 581$	$50 \cdot 5$	$8 \cdot 50$
5809.	$1908 \cdot 977$	27.6	21.86	9087	$1908 \cdot 541$	7. 41	5.90
	1909:078	28.0	$25 \cdot 17$		$1708 \cdot 581$	$7 \cdot 38$	$5 \cdot 88$
	1909.086	30.7	$24 \cdot 90$		$1908 \cdot 641$	7.24	$5 \cdot 68$
	1909-202	27.6	$24 \cdot 89$		1908765	$7 \cdot 12$	$5 \cdot 91$
	$1909 \cdot 303$	$28 \cdot 3$	$25 \cdot 33$	9167.	$1908 \cdot 541$	154.8	$0 \cdot 84$
6080.	1908426	$308 \cdot 5$	$2 \cdot 80$		1908-613	$154 \cdot 5$	0.89
6038	1908.426	$108 \cdot 8$	6.28	960.4	1908.541	9.7	2.81
	1909.078	$107 \cdot 8$	$5 \cdot 72$		1908 6:3	$10 \cdot 5$	$2 \cdot 75$
	$1909 \cdot 202$	106.8	$6 \cdot 06$	9693.	$1908 \cdot 492$	$138 \cdot 6$	$4 \cdot 07$
	$1909 \cdot 303$	$106 \cdot 7$	6. 57		$1908 \cdot 522$	$138 \cdot 0$	$3 \cdot 74$
6035	$1909 \cdot 078$	178.9	$16 \cdot 32$		$1908 \cdot 575$	$138 \cdot 3$	
	$1909 \cdot 086$	181:7	$16 \cdot 10$		1908-681	$138 \cdot 6$ $137 \cdot 8$	$4 \cdot 01$ $3 \cdot 93$
	$1909 \cdot 183$ $1909 \cdot 399$	$179 \cdot 3$ $179 \cdot 4$	$16 \cdot 50$ $16 \cdot+1$		1908613 1908680	$137 \cdot 8$	3.93
	1909-399	$179 \cdot 4$ $359 \cdot 2$	16.41 2.60	9905.	1908600 $1908 \cdot 600$	$271 \cdot 1$	
6211.	1908.226 $1909 \cdot 360$	$359 \cdot 2$ $119 \cdot 0$	2.60 2.99	9969.	1908600 1908641	155'7	Cloudy.
6386.	1909-360	119.0	2.99 33.08	94777.	1908 641	1701	4.31 +31
7927.	1908.617 1908.631	127.0 $125 \cdot 3$	38.08 33.24	,	1908.765	1710 171.8	+31 3.50
	$1909 \cdot 429$	126.5	33.21	10061.	1908 765	$185 \cdot 3$	7-18
7930.	1908'617	$180 \cdot 8$	$24 \cdot 94$	10072.	$1908 \cdot 613$	$212 \cdot 2$	Hazy.
	1908 631	$180 \cdot 5$	24.93	10305.	$1908 \cdot 592$	$74 \cdot 2$	"
8003	$1908 \cdot 309$	$312 \cdot 4$	415	10385.	1908-581	111.0	$3 \cdot 51$
	$1908+45$	$313 \cdot 3$	$4 \cdot 17$	10685.	1908 522	164.6	$1+89$
8082.	1908 309	$22 \cdot 8$	$8 \cdot 11$	10709.	$1908 \cdot 618$	$158 \cdot 3$	$3 \cdot 39$
	1908 426	$22 \cdot 6$	7.98	10742.	$1908 \cdot 613$	$349 \cdot 2$	$22 \cdot 90$
	$1908+439$	$25 \cdot 4$	7.91		$1908 \cdot 765$	$351 \cdot 5$	$23+89$
	$1908+45$	$24 \cdot 4$	$7 \cdot 95$	10773.	1908-522	$309 \cdot 3$	$3 \cdot 37$
8308.	1908.309	258.5	$2 \cdot 67$	1908-511	$307 \cdot 9$	
	$1908 \cdot 45$	$258 \cdot 7$			1908.581	$307+5$	3.71
	1908-617	$259 \cdot 7$	2.53		1908780	307:8	$3 \cdot 44$
8364.	$1908 \cdot 617$	81.6 -8.9	2. 71		$1908 \cdot 805$	308.8	3.18
	1908746	78.2	2.8	10901.	$1908 \cdot 613$	$112 \cdot 6$	5.68
	1908765	$79 \cdot 4$	$2 \cdot 70$		1908 - 4.41	$112 \cdot 0$	$5 \cdot 61$
	$1909+429$	78.2	3.00	13043.	1908765	34'3	5.91
8384.	1908624	79.0	1.49	12733.	1908765	$160 \cdot 1$	3.09
8404....	$1908 \cdot 631$	338.4	$27 \cdot 15$				

COMET 190SC (MOREHOLSE).
This comet was visible for over three months, but dense smoke and unusually cloudy weather prevented any attempt at obtaining an extensive series of photographs. Single exposures were made on seven different nights, with the Brashear Doublet attached to the equatorial telescope. A filar micrometer was used in guiding and was very satisfactory in preventing drifting but, owing to the smallness of its field, did not permit of the head of the comet being shifted appreciably from the centre of the camera field. Had it been possible to so shift the head, more of the tail would have been included in the photograph.

The following table gives the date and duration of each exposure:-

Plate.	Eastern Standard Tinie.	Beginning of Exposure.		Duration.		Remarks.
31.	October 1608.			1		Very smoky. Clear Clear but unsteady. Very clear. Clear, high wind.
32.	-119.		10	1		
33.	II 31	7	25	0		
34.	November 1.	7	15	0	55	
35.	" 13	6	15	,	0	
$36 .$.	26		30	1	25	

Fic. 31 \& 32 -Murehonse's Coniet.

Fig. 33 \& 3 --Morehouse's Comet.

Fig. 35 \& 36 -Morehonse's Comet.

An exposure of one hour was made on October 20, but the smoke was too dense. In the course of the exposure the head of the comet passed over an eighth magnitude star without perceptibly dimming it.

Fig. 31. The dense smoke accounts for the faintness of this photograph, but still it is the most interesting one of the sct, on account of the knots in the tail about one and a half degrees from the head. This portion seems to have separated from the head and drifted off while new matter has been given out. There has also probably been a motion southward on the part of this detaehed mass, greater than that of the comet as the new matter in the tail comeets with the north side of the knots, while the southern part is altogether clear of the tail. The curved form of the central and southern portions of the detached mass is also worthy of notice. The new matter is connected to the head by a narrow neek and on either side rays extend back about 0.5 degrecs.

Fig. 32. This photograph is even more faint than Fig. 31, but the head shows considerable detail. The new portion of the tail spoken of in Fig. 31 has apparently been forced back by the rays on either side, they being joined together now just back of the head. Although only three days have elapsed between these exposures we can readily see that, during this interval, the comet has been very active internally.

Figs. 33 and 34 indicate a continuation of this activity. Fig. 33 shows several distinct knots in the tail about one to one and a half degrees from the head. Beyond these the tail gradually widens out, being uniform on the north side but broken on the south side. Fig. 34, one day later, shows the same knots farther away from the head and more diffused. They scem to have been separated from the nucleus, the bright portion next to the head in Fig. 33 broadening out here into a fan-shaped tail. Beyond the knots the tail has widened slightly.

Fig. 35 shows a very bright tail extending out about two degrees with short rays on both sides of the head. As in Fig. 33 the north side of the tail is uniform, while the south side shows several offshoots. The comet was apparently in a very active state at this time, but thirteen days elapsed before I had an opportunity for another exposure, and Fig. 36 shows a much fainter and divided tail. Evidently the activity has become much less, the faintness of the tail being partly due to its division into two parts, but more particularly to a change in the conditions governing the state of the comet's head. Are these changes in appearance due to some internal state or are they due to changes in the surrounding medium?

While this set of photographs can lay no claim to completeness, it demonstrates clearly the necessity for frequent exposures at as close intervals as possible if we wish to know with any degree of accuracy the changes actually taking place. It also shows that these exposures should not be too long, otherwise one plate might be a combination of several phases.

No other comets were visible here in 190s, but several exposures were made toward the close of the year in search of Halley's comet. The end of July or the early part of August, 1909 , should see the discovery of this famous celestial visitor. Photography will doubtless first reveal its presence and on account of this it is desirable that the stellar camera should be available for work every night. With the present mounting of the camera this means the suspending of all work with the equatorial at such times when the comet may be observed. This is much to be regretted as both the equatorial telescope and the camera are excellent instruments, and it is hoped that a separate mounting may be provided for the camera at an early date. Halley's comet will not return for at least seventy-five years, but every year brings with it new comets; so if our Dominion Observatory is to take a foremost place in the discovery and study of these strange visitors, the equipment necessary for camera work should be provided at once.

OCCLLTATIONS OF STARS BY THE MOON.

The observations of occultations have been made mostly with the 15 -inch equatorial telescope as its superior mounting and clock-work render it much more satisfac-
tory than the $4 \frac{1}{2}$-inch Cooke telescope. Predictions have been made by the graphical method of Wm. F. Rigge, but less than 10 per cent of the predicted occultations were observed owing to cloudy weather. Following are the observations:-

OCCULTATIONS OF STARS BY THE MOON.

Date.	Pbenomenon.	Star.	Limb.	G.M. Time of observation.		
1908.				h.	m.	8.
April 9.	Disappearance.	η Cancri.	Dark		53	$53+2$
" 13.	P "'	, Virginis		7	2	$55 \cdot 6$
	Reappearance,		Bright.	8	8	365
June 11...	Disappearance.	a^{1} Libree.	Dark	13	44	$23 \cdot 3$
12.	Reappearance	ν^{2} Scorpi		11	28	$11 \cdot 1$
October 13.	Reappearance. Disappearance..		Bright.	12	0 52	16.8
November 1.	Disappearance..	γ Capricorni.	Dark.	${ }^{10} 5$	32	16.8 1.8
1909.						
January $7 .$.			Bright.	12		15.8
March 12.		β^{1} Scorpii.		16	35	6.1
	Reappearance,	$56 B$ S'scorpil	Dark.	17	25	37.8
	Disappearance..	$56 B$ Scorpii.	Bright	16	35	$54 \cdot 7$
	Reappearance. .		Dark.	17	24	50.0
March 14	Disappearance..	63 Ophiuchi.	Bright.	16	12	$3 \cdot 1$
	Reappearance. . .		Dark..	17	30	$57 \cdot 4$

INSTRUMENTS USED ON THE BOUNDARY AND GEODETIC SURVEYS.
The instruments used on these surveys have all been carefully catalogued and stamped, an index system being used which shows the office number, description of instrument, price, date of receival, name of maker, location and disposal of each instrument. A separate account is also kept of the instruments as taken out by each party in the spring, so that each man can readily see what instruments he is held responsible for.

Following is a list of the principal instruments used during the season of 1908:-

Name of Instrument.	Number Used.	Name of Instrument.	$\begin{aligned} & \text { Number } \\ & \text { Used. } \end{aligned}$
Barometers.	20	Heliotropes.	8
Balances	5	Levels..	11
Binoculars.	18	Plane Tables.	5
Cameras..	18	Sextants.....	2
Chronometers.	14	Tapes..	25
Clinometers.	4	Telescopes	9
Compasses	25	Transits	47

ABERRATION OF THE STELLAR CAMERA OBJECTIVE.
The stellar camera used in the Dominion Observatory, Ottawa, for photographing star clusters, nebule, comets, or any other celestial objects covering a wide field, is fitted with a Brashear photographic doublet of 203 mm , aperture and 1060.3 mm , focus. The camera tube (Fig. 37) is bolted to the telescope tube opposite to its place of attachment to the declination axis. This method of mounting is rather unsatisfactory, however, as the telescope tube intercepts a large portion of the light on the west side of the plate.

The effective field has a diameter of about $11^{\circ} 20^{\prime}$, so the camera is well adapted in this respect to its work. The tube containing the objective is nickelled and moves freely in the main metal tube, the position of focus being adjusted by a rack and pinion with a clamp screw to hold it in the required position. This position is read on

Fig. 37 -Stellar Camera.

SESSIONAL PAPER No. 25a

a millimetre scale. A metal shutter covers the objective and the plates are held in a metal frame fitted with springs. When accurate guiding is required the mierometer wires in the telescope are used, the great focal length of the refractor, as compared with the camera, rendering the guiding a simple matter.

The following description of the lens is given by Dr. Brashear:-
'The general construction is that which was first found by Petzval years ago, and has proven itself quite the best, where great angular aperture with sharp definition is required. The curves have been somewhat modified from our experience in the construction of other lenses-particularly those made for Dr. Max Wolf, of Heidelberg, Germany. It departs, however, from the ordinary practice of opticians in being corrected for short wave-lengths of light. This would be quite objectless in a camera which is to be used for portraits, but is not withont moment in astronomical photography. The materials employed were specially choscn for their transparency, the flint being very light and the crown very white. The focal lengths of the front and rear combinations are in a ratio of about 7 to 12, while the focal length of the system is very nearly five times the aperture. The focal length we may find very slightly modified: indeed it is our custom to balance the inevitable zonal difterences of magnification, which difficulty is found the most formidable to all constructors of astronomical photographic objectives.'

The camera gives a more uniformly defined field than most cameras of this type, but the definition is not sufficiently sharp to produce clear cut images. When a long exposure is made to reach faint stars there are three resulting forms of image. The fainter stars give a clear cut image, the next in brightness give an image with a dark centre surrounded by a halo, while the brighter stars give an image of uniform density but much enlarged. This variation in the images must be due to aberration, either spherical or chromatic, producing, instead of point images, discs of sensible size, possibly with a centre somewhat more intense than the surrounding portion. The difference in the appearance of the images of stars of different brightness on the negative is thus readily explained by the light of the fainter stars not being sufficient to form a halo, as in the next brighter stars, while in the very bright stars the light is strong enough to make the halo as dense as the central portion. The only question is whether this aberration is spherical or chromatic.

The most simple test for the presence of zonal errors in a lens is that of Hartmann, the theory involved being very simple, and the equipment for the experiment

Fig. 38.
being within reach of any one. This method involves the determination of the point of intersection of rays of light passing through the lens at opposite ends of a diameter and equidistant from the centre.

Let L (Fig. 38) be the lens under test and consider tro rays passing through a, b, so that $0 a=0 b$. These rays converge to a point A which is called the focus of these rays. If these rays are intercepted at A we find them in a single point, but if intercepted at E_{1} or E_{2} we find them separated by a distance d_{1} or d_{2}. These distances may be measured with a micrometer, or photographic plates may be placed at E_{1}, E_{v} and the distances between the resulting images measured. This latter method has beeu employed in the present test.

Measuring the distances $0 A_{2}, 0 . A_{2}$ and d_{2}, d_{2}, we can easily obtain the correct position of focus.

$$
\text { Let } \begin{array}{rlr}
0 A_{1} & =A_{1} & E_{1} F_{1}=d_{1} \\
0 A_{2} & =A_{2} & E_{2} F_{2}=d_{2} \\
0 A & =A &
\end{array}
$$

Then $A=A_{1}+\frac{d_{1}}{d_{1}+d_{2}}\left(A_{2}-A_{1}\right)$. This is a simple geometrical property requiring no proof.

Again, consider two rays passing through at a^{\prime}, b^{\prime}. If the lens is correctly ground these two rays will converge to the point A as did a and b, and so with rays from all parts of the lens. But unfortunately this is a difficult condition to obtain, the best of lenses being but a close approximation to it. In place of converging to A, a^{\prime} and b^{\prime} converge to some other point, say A^{\prime}, giving what is called zonal aberration, so that if we focus our camera for a and b, it is out of focus for a^{\prime}, b^{\prime}, and we get a disc about our image.

Take two rays at a distance $0 a$ from the centre but on a diameter perpendicular to a, b, and consider their focus. If the lens is symmetrical for this zone, then the four rays will meet at the point A, their common focus, but if not symmetrical there will be two different foci for the two pairs of rays. This difference is called axial astigmatism and can be revealed in the Hartmann test for aberration.

Fig. 39-Zonal Dise.

SESSIONAL PAPER No. 25a

The lens is covered with a zone plate of the form shown in Fig. 39. The apertures are placed in ten zones of $15,25,35,45,55,65,75,85,94$ and 98 mm . radius respectively. Each pair of openings is duplicated by a second pair at right angles in order to determine the axial astigmatism. In the case of the zones of $15,25,35,45$, $55,65,85$ and 94 mm . radius, symmetrical pairs of apertures are placed 90° apart, but in the zones of 75 and 98 mm . radius the apertures are only 45° apart, so the outer part of the lens is more thoroughly tested than the centre. This is necessary owing to the greater amount of light admitted by the outer zones.

By making an exposure at E_{1} and another at E, we can determine two positions of foeus for each of the ten zones, these two positions being perpendicular to each other. An extra aperture in the zone plate enables one to identify the angle for the several zones and so avoid confusion in the determination of astigmatism.

- The first zonc plate used had apertures of 10 mm ., but the diffraction at the edges was so great that in place of solid dark spots there were cireular dark rings which did not permit of accurate measurement. The second zone plate used had a diameter of 203 mm . with apertures of 5.5 mm . These plates were made of medium weight bristol board. Exposures of 6 minutes were made on Capclla. In order to avoid as much as possible chromatic aberration, Seed Process plates were used, their band of sensitiveness being narrow and confined chiefly to the blue and violet light beyond λ 4600. A plate with a wider range of sensitiveness would give images so elongated radially by chromatic aberration as to render accurate measurements very difficult or impossible.

All measures were made on the Zeiss comparator, the graduations reading to thousandths of a millimetre and readily estimated to ten thousandths. Test plates were first made with 4×5 Seed plates, to determine the correct time of exposure, a plate-adapter being used in the regular plate-holder. The positions corresponding to E_{a} and E_{z} were at 22 mm . and 67 mm ., respectively, on the focussing scale on the camera tube. This gave the distance $A_{9}-A_{1}$ equal to 45 mm . In the appended results the focus given is that which would be used in setting according to the above mentioned scale. The actual focus of the camera was determined as follows:-The telescope was set midway between Castor and Pollux and a photograph taken, with the camera at its usual focus (47.5 mm . on the scale) and the zone plate removed. The distance between the images on the photographic plate was measured and found to be $d=79.5260 \mathrm{~mm}$.

From the Ephemeris we have-

> R. A. Dec.

Castor, $7^{\mathrm{h}} 28^{\mathrm{m}} 43^{\mathrm{s}} .9+32^{\circ} \quad 5^{\prime} 28^{\prime \prime} \cdot 13$
Pollux, $7^{\mathrm{h}} 39^{\mathrm{m}} 41^{8} .254+28^{\circ} 14^{\prime} 56^{\prime \prime} .34$
The difference in R. A. is $0^{\text {h }} 10^{\mathrm{m}} 57^{3} \cdot 384=2^{\circ} 44^{\prime} 20^{\prime \prime} .76$
Zenith distance of Castor is $57^{\circ} 54^{\prime} 31^{\prime \prime} .87$
Zenith distance of Pollux is $61^{\circ} 45^{\prime} 3^{\prime \prime} .6$
From $\cos a=\cos b \cos c+\sin b \sin c \cos A$, we have $a=4^{\circ} 30^{\prime} 48^{\prime \prime}$
$=$ the distance between Castor and Pollux.
Hence, from the cotangent of a and the value of d we have the focus required

$$
f=1060 \cdot 3 \text { millimetres. }
$$

When the correct time of exposure had been obtained, the regular \& x 10 plates were used and a series of exposures made at E_{1} and E_{2}. Although the original object in view was to test for spherical aberration at the centre, this was extended to cover the whole field of the lens and images were made extending across the plate from south to north, in order to determine the curvature of field. Nine images were obtained within the focus and nine without, their respective positions being:-

Position	A, $5^{\circ} .3$ from	cent			.
"	B, 4°	"	"	"	
"	C, $2^{\circ} \cdot 5$	"	"	"	"
"	D, 1°	"	"	"	"
"	E, at centre.				
"	F, 1° from	centre		no	end.
"	G, $2^{\circ} .5$	"	"	*	"
"	H, 4°	"	"	"	"
"	I, $5^{\circ} \cdot 5$	"	"	"	"

Owing to the uncertainty of the weather, exposures at positions $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ and E were made on one plate without the focus, and then exposures were made on another plate at the same positions within the focus. Exposures at F, G, H and I were then made on two other plates. This unfortunately caused a slight change in the adjust-* ment of the camera and the result was an unaccountable dip in the curvature of the field. Further test plates were made at positions E, F and H. which showed clearly that the dip was not due to any fault of the lens, the resulting curve being quite uniform, as shown in Figs. 43 and 44.

The several plates were first measured for aberration and astigmatism. A summary of the results is given in the appended tables and curves. As stated before, the positions E_{1} and E_{2} correspond to 22 mm . and 67 mm . on the scale attached to the camera. The eamera was set at 47.5 mm . to determine the focus $f=1060.3 \mathrm{~mm}$. So we have $A=1034.8 \mathrm{~mm}$. and $A_{2}-A_{1}=45 \mathrm{~mm}$. To obtain the actual focus for each zone in the following results we must add 1034.8 mm . to each given focus.

Position A shows a negative aberration of 3.61 mm .

$"$	B	$"$	$"$	$"$	3.82 mm.
$"$	C	$"$	$"$	$"$	3.75 mm.
$"$	D	$"$	$"$	$"$	3.63 mm.
$"$	E	$"$	$"$	$"$	3.60 mm.
$"$	F	$"$	$"$	$"$	3.63 mm.
$"$	G	$"$	$"$	$"$	3.64 mm.
$"$	H	$"$	$"$	$"$	3.82 mm.
$"$	I	$"$	$"$	$"$	3.63 mm.

Such a marked aberration, extending so uniformly across the field, shows beyond any doubt the cause of the diffuse appearance of the images already referred to. The curves in Figs. 40 and 41, each division representing 1 millimetre, show very clearly the magnitude of the aberration and its uniformity across the field from south to north. Another plate R, made on the east side of the field, shows a similar aberration, curve P, Fig. 42, representing it graphically.

Taking the mean focus for each zone we find the astigmatism so small as to be neglected at the centre of the field but increasing as we move outward. A closer examination reveals the fact that where $\varsigma=0^{\circ}, 90^{\circ}, 67^{\circ} \cdot 5$ and $157^{\circ} \cdot 5$, the astigmatism is the greatest. This is due to the varying angle of incidence of the rays on the plate in the sereral positions A, B, C, etc. This variation in angle affects the distance between the images in the respective zones inversely as the angles they make with the north and south line. Thus (see Fig. 39) when $\varphi=0^{\circ}$, the change in distance is greatest; when $\varphi=90^{\circ}$, the change in distance is least; when $\varphi=45^{\circ}$, the change is almost the same as when $\varphi=135^{\circ}$. So we see that the apparent variation in astigmatism is due to the position of the plate and consequent distortion of some of the images rather than to any defect in the lens.

As already stated, the Seed Process plate used has its maximum sensitiveness about $\lambda 4300$ in the blue light. Thinking perhaps the lens had originally been tested with yellow light, owing to the difficulty of obtaining monochromatic light in the blue, it was consequently decided to test the lens by visual or yellow light. Cramer Iso-

Fig. 40 -Zonal Differences of Focus.

Fig. 41-Zonal Differences of Focus.

Plaskett Antrophysics.
L

Fig. 42-Zonal Differences of Focus.

Fig. 43-Curvature of Field at different Zones.
2045
75

SESSIONAL PAPER No. 25a

chromatic plates were substituted for the Seed Process plates and a yellow screen was placed just above the plate-holder to cut out the blue and violet light. The Cramer plate was used as it has a band of sensitiveness in the yellow-green light about $\lambda 5650$, as well as the band of sensitiveness to blue and violet light possessed by all plates. Thrce exposures were made within the focus and three without, their positions being:

> Position I, 50^{\prime} from centre to south.
> $" / ~ M f$, at centre.
> " N, 50^{\prime} from centre to north.

The exposure in each case was 5 minutes.
Comparing these with positions Λ to I, we find the aberration less by about 0.6 mm.

\[

\]

But it is not small cnough to indicate any special adjustment of the lens surface to yellow light. The uniformity of the aberration is shown in L, M, N, Fig. 42. The astigmatism is similar to that shown by the Seed Process plate.

A uniform increase of about 3.5 mm , in the focus, as compared with the blue light, is due partly to refraction of the light in passing through the yellow screen. The screen being about 6 mm . thick, the refraction would lengthen the focus by about 2 mm ., the refractive index of glass being about 1.57 . The remaining 1.5 mm . is due to the difference in focus of bluc and yellow light.

Combining the results of positions A to I (see table XIV.), we have the focus of each zone of the lens at nine different points extending from $5^{\circ} .3$ on one side of the centre to $5^{\circ} .5$ on the other side. Figs, 43 and 44 show the curvature as given from these foci, the coordinates being the diameter of the field in degrees and the zonal foci in millimetres. As in the case of the aberration these curves are very uniform, indicating a difference of about 2.5 mm . between the focus at the edge of the field and that at the centre.

Since the zonal foci of the lens vary so much from the centre to the edge no one position of focus is suitable to all the lenses. To obtain a uniform field and at the same time get as sharp a definition as possible, we must study the effect produced by the various zones when out of focus.

If we set, for example, the camera at the focus of the zone with radius of 65 mm ., then other zones will be out of focus and there will be dises or circles of confusion about each image. The density and size of these circles depend on the extent to which the several zones are out of focus and also on the area of these zones. The diameter of these circles of confusion may be determined as follows:-

$$
d=2 r \frac{\left(F-F_{0}\right)}{F_{0}}
$$

where d = diameter of circle of confusion,
$r=$ radius of zone,
$F=$ focus of zone,
$F_{o}=$ focus at which the camera is set.
This determines for us the circles of confusion but it does not give us any idea of the effect on the image. A circle of confusion of $20^{\prime \prime}$ diameter and produced by a zone of 15 mm . radius would not be nearly so injurions to the image as one of the same diameter produced by a zone of 75 mm . radius. We see that simply determining the circles of confusion for the several zones will not give us the effect of the circles on the images, and so will not aid us in adjusting the camera to obtain the best images
massible under existing conditions. We must determine at what position of focus the lens is most efficient. The following formula by Hartmann gives a test for the efficiency of a lens at various foci:-

$$
\begin{aligned}
T & =\frac{200000}{F_{0}{ }^{2}} \cdot \frac{\Sigma r^{2}\left(F-F_{0}\right)}{\Sigma r} \\
\text { where } T & =\text { efficiency of lens, } \\
F & =\text { focus of zone, } \\
F_{0} & =\text { focus at which the camera is set, } \\
r & =\text { radius of zone. }
\end{aligned}
$$

(100000 is introduced simply to transfer the decimal point and so avoid exceedingly small numbers.) According to this test an objective is moderately good when T is greater than 1.5 , good when T is between 0.5 and 1.5 , and exceedingly good when T is less tban $0 \cdot 5$. But as this criterion of efficiency refers to telescope objectives where the field of view and angular aperture are small, it is not an accurate test for photographic objectives of wide aperture.

Using the above formula, the best positions of focus at the several positions, A, B, C, etc., were obtained. Table XV. gives these foci, the diameters of the circles of confusion, and the efficiency of the lens. Curve S, Fig. 44, shows the combincd results for the several positions A to I. From this curve it may be concluded that the best uniform field would be obtained by setting the camera at 25.75 mm . or 26.0 mm .

Testing for Chromatic Aberration.

Although the foregoing tests revealed a much greater spherical aberration than is consistent with the production of good negatives, objection was taken to the statement that this aberration was the cause of the observed defects in the images. Accordingly it was decided to test for chromatic aberration also,

The camera was detached from the telescope and mounted on a table, tbe source of light being an arc-lamp about 400 yards distant. The spectrograph was placed with the slit at the focus of the camera which was in line with the collimation tube. A cardboard dise was placed over the camera objective, the light entering through two oblong openings, 3 mm . by 8.5 mm ., symmetrically placed on a common diameter.

Exposures were made with the slit first inside the camera focus and then outside, isochromatic plates being used to obtain the D lines. Images of the slits in the dise were thus obtained as produced by light of various wave-lengths. By measuring the distances between these images at twelve points and applying the Hartmann formula the focus of the camera was obtained for twelve different wave-lengths, as shown in the following table:-

Wave-length.	Focus.	
$\lambda 5893, D$.		mm .
5500.	41.24	"
5180.	40.38	"
$4880 H_{\beta}$	39.30	*
4737.	39.07	"
4520.	38.62	\%
4370.	38.73	"
4230.	38.79	"
4115..	39.00	"
4020.	39.71	"
$3938,{ }^{\text {L }}$.	39.98	"
3780.	40.88	"

SESSIONAL PAPER No. 25a

Fig. 45 represents graphically the various foci and the chromatic aberration. The minimum focus is about I_{γ} and, while there is a range of 3.12 mm . in focus in the region between $\lambda 5893$ and $\lambda 3750$, there is less than 1 mm . range in the photographic region.

Comparing this with the test for spherical aberration we have-
(a) Minimum spherical aberration of -3.6 mm .
(b) Maximum chromatic aberration in photographic region of 1 mm .

Even if we allow for the chronatic aberration of 3 mm , at $\lambda 5893$, the light herc is not rich enough in actinic properties to produce the observed halo. It seemed, therefore, unnecessary to continue the investigation re chromatic aberration.

Changing the Distance between the Components of the Outer Combination.

Prof. Hastings, of Yale University, who had been kept informed of the results of these tests, suggested that there might be sufficient internal reflection between the components of the objective to produce the observed halo and that this might be eliminated by increasing or decreasing the separation. Although we still felt that the defect was due to spherical aberration, this suggestion coming from the designer of the lens claimed our most careful attention and a series of tests were accordingly made. The original separation (one thickness of a postage stamp) was removed and new separations of various thicknesses used. Little blocks built up from bristol board were used until the best adjustment was obtained, after which hard rubber blocks were used.

The following table shows the tests and results:-

[^25]Curve α, Fig. 46. shows the aberration with a separation of 0.004 inches, curve β shows the aberration with a separation of 0.132 inches, and curve γ shows the aberration with a separation of 0.070 inches. Figure 47 shows cuts of the Pleades takon with the different separations.

Examining the above table it is seen that increasing the stparation, shortened the focus and changed the aberration. Coincident with the change in aberration there was a decided change in the star images. Aberrations of -3.6 mm . and +2.4 mm . were accompanied by a very marked halo, while with an aberration of -0.5 mm . the halo was negligible. Changing the separation to 0.070 inches has undoubtedly improved the objective as the field remained practically unchanged, and the halo was so small as to be neglected. But that this improvement has been effected by the removal of internal reflection does not seem at all probable. On the contrary, the above results seem to me to be but additional proof that the observed halo has been caused by spherical aberration, as was stated at the beginning of this appendix. It is not at all likely that the aberration and the halo would disappear simultaneously if the halo were caused by internal reflection.

Note--Since the conclusion of the above work a communication has been received from the makers of the objective, stating that they also believe the defect to be due to spherical aberration and expressing their willingness to remove it without additional charge.

TABLE I.
Zonal Focl: Position A.

Radius of Zone	ϕ	d_{1}	d_{2}	Focus.	Mean.	Astigmatism.
mm	135	$0 \cdot 6333$	$0 \cdot 6938$	21.47	21.66	+0.20 -0.19
25...	0	1.0432	$1 \cdot 1627$	21.28		-0.37
	90	1.0746	$1 \cdot 1201$	2203	$21 \cdot 65$	+0.38
35.	45	1.5131	1.5651	$22 \cdot 12$		+0.23
	135	1. 4948	${ }^{1} \cdot 6115$	21.66	21.89	-0.23
45.	0 90	1.9259	2.0621 1.9715	${ }_{22} 21.73$	20.17	-0.44
	90	1. 9921	1.9715	22.62	$22 \cdot 17$	+0.45
55.	45	$2 \cdot 4355$	2. 3599	$22 \cdot 86$	29.60	+0.26
	135	$2 \cdot 4166$	$2 \cdot 4523$	$22 \cdot 34$	$22 \cdot 60$	-0.26
65.		$2 \cdot 8795$	$2 \cdot 8646$	$22 \cdot 56$	22.61	-0.05
	90	$2 \cdot 9851$	$2 \cdot 72388$	$22 \cdot 66$	$22 \cdot 61$	$+0.05$
75.	22.5	$3 \cdot 4195$	$3 \cdot 1358$	$23 \cdot 17$		-0.15
	67.5	$3 \cdot 5344$	3.0497	$24+16$		$+0.54$
	1125	$3 \cdot 4794$	$3 \cdot 1066$	$\frac{23.77}{}$		+0.15
	157.5	$3 \cdot 3935$	$3 \cdot 2266$	${ }_{2} 23.07$	$23 \cdot 62$	-0.55
85.	45	$4 \cdot 0807$	$3 \cdot 3663$	$24 \cdot 66$		+0.29
	135 0	4.0195 +5566	$3 \cdot 4899$ $3 \cdot 7376$	${ }_{2}^{24} 4.09$	$24 \cdot 37$	-0.28
94	90	45566	$3 \cdot 7376$		2472
98.	22.5	$+8567$	3.72×0	$25 \cdot 46$		+0.20
	$67 \cdot 5$					
	112%	48157	38320	25.06	25.26	-0.20

Plaseett-Asteophysics.

Plaskett-Anthophysics.

Focus 4.0
Separation-Tissue Paper.
No Dise.

Focus 26.5
Separation-0 132 inches.

Eocus 470
Separation-Tissue Paper.
$\frac{1}{4}-i n$, Disc.

Focus $36 \cdot 5$
Separation-0.070 inches.

Fit. 47-Star Photographs at Different Leparations.

SESSIONAL PAPER No. 25a

TABLE II.
Zonal Foci: Position B.

Radius of Zone.	ϕ	d_{1}	d_{2}	Foens.	Mean.	Astiguatism.
15 mm25.	45	mm.	mm_{0}	22.77		
	135	$0 \cdot 6625$	0.635	${ }_{22}^{22.62}$	$22 \cdot 69$	+0.08 -0.67 0.
	0	1.1061	1.1020	$22 \cdot 54$		-0.22
25.35.	90	11238	1.0793	22.99	$22 \cdot 76$	+0.23
	45	1. 5766	1.5057	23.02		+0.10
35.	135	1.5\% 40	1.5298	32.82	22.92	-0.10
45.	0	$2 \cdot 0353$	$1 \cdot 9518$	$22 \cdot 97$		-0.25
	90	2.0708	1.8979	$23 \cdot 48$	23.22	$+0.26$
$55 .$.	45	2.5308	2.2741	23.70		$+0.14$
	135	$2 \cdot 5358$	${ }^{2} \cdot 3375$	23.42	23.56	-0.14
65	0	3.0385	${ }^{2} \cdot 7147$	$23 \cdot 77$		-0.22
	90	3.0850 3.5797	2.6503	$24 \cdot 21$	$23 \cdot 99$	+0.22
75	22.5	3.6489	2.9584	${ }_{24}^{24} \cdot 85$		-0.07 +0.28
	1125	3.6175	$2 \cdot 9892$	$2+\cdot 64$		+0.07
	157.5	$3 \cdot 5760$	3.0462	$2+30$	$24 \cdot 57$	-0.27
85,......	45	42251	$3 \cdot 2505$	$25 \cdot 43$		+0.12
	135	4.2075	3.3061	$25 \cdot 20$	$25 \cdot 31$	-0.11
94	0	4.7707	3. 5186	25.90		-0.28
98.	${ }^{90}$	4.8840	3. 4186	$26 \cdot 47$	$26 \cdot 18$	+0.29
	22.5	5.0522	3. 5470	96.44		-0.07
	67.5	5.0494	3. 4501	26.71		+0.20
	112.5	$5 \cdot 0914$	3.5125	$26 \cdot 63$		$+0.12$
	$157 \cdot 5$	5.0384	3.5950	$26 \cdot 26$	$26 \cdot 51$	-0.25

TABLE III
Zonal Foci: Position C.

TABLE IV.
Zonal Foci: Position D.

TABLE V.
Zonal Foct: Position E.

SESSIONAL PAPER No. 25a
TABLE VI.
Zonal Foet: Position F.

Radius of Zone.	ϕ	d_{1}	d_{2}	Focus.	Mean.	Astigmatism.
	45	$\mathrm{mim}_{0.7396}$	mm. 0.6078	24.70	… $9.5 \cdot$.	+0.11
	135	$0 \cdot 7315$	0.6130	$\begin{aligned} & 24 \cdot 48 \\ & 24 \cdot 60 \end{aligned}$	2459	-0.11
		1. 2304	1.0127	24.60		-0.04 +0.04
35.	45	1.7274	1.4155	24.73	$24 \cdot 64$	$+0.01$
$45 .$.	135	1.7267	1.4160	24.72		0.00
	090	2.2431	1.7927	2501	24.72	-0.03
		$2 \cdot 2483$	1.7875	25.07		+0.03
55.	46135	2.7507	2.1330	$25 \cdot 35$	2504	+0.01-0.01
		${ }^{2} \cdot 7761$	${ }_{2} \cdot 1567$	25-33		
65.	135 0	3.3281	2. 4797	$25 \cdot 79$	$25 \cdot 34$	$\begin{aligned} & -0.01 \\ & -0.01 \end{aligned}$
	90	3.3124	$2 \cdot 4826$	25.82	2580	$+0.02$
75.. +		$3 \cdot 9083$	${ }^{2} .7731$	$26 \cdot 31$	-0.02 +0.02
		$3 \cdot 9215$$3 \cdot 9230$	- ${ }^{\text {- } 7751}$	$26 \cdot 35$		$+0.02$
	$67 \cdot 5$ 112.5		2.77942.7826	$26 \cdot 34$	+0.01-0.03
85..	$\begin{aligned} & 112.5 \\ & 157.5 \end{aligned}$	$3 \cdot 9134$		$26 \cdot 30$	26.33	
	135	4. 50134.5709	3.0286	27.02	27.02	$\begin{array}{r} -0.03 \\ 0.00 \end{array}$
			3.0376	$27 \cdot 03$		$\begin{array}{r} +0.01 \\ +0.04 \end{array}$
94.	135 0	5.1894	3.2095	27.80	2784	
	90	5.2240	3. 2063	27.88		$\begin{array}{r} -0.04 \\ +0.04 \end{array}$
	$\begin{array}{r} 22.5 \\ 67.5 \\ 112.5 \end{array}$	$\begin{aligned} & 5.4615 \\ & 5.4831 \\ & 5.4816 \\ & 5.4797 \end{aligned}$	3. 2621	$28 \cdot 17$		-0.05
			3.2448	$28 \cdot 27$	28-22	$\begin{aligned} & +0.02 \\ & +0.05 \end{aligned}$
				$28 \cdot 21$		${ }_{-0.01}$

TABLE VII.
Zonal Foci: Position G.

Radius of Zone.	ϕ	d_{1}	d_{2}	Focus.	Mean.	Astigmatism.
	455	$\operatorname{mm}_{0 \cdot 7307}$	mm.	21.29	… $24 \cdot 25$	+0.04+0.08
		$0 \cdot 7256$	0.6228	24.22		
	135	1-1958	1.0336	2414	-24-24	-0.10
	90	1-2129	$1 \cdot 0297$	$24 \cdot 34$		+0.10
35.	45	1.70391.6495	1.4425	$24 \cdot 37$	24:36	+0.01-0.01
	135		1.4109	24.35		
45.	0	$2 \cdot 2025$	1.8339	24.55	- 24.65	-0.10+0.10
	90	2.2164	$1 \cdot 8137$	24.75		
55.	+15	$2 \cdot 7151$	${ }_{2}^{2.1758}$	25.90	24.97	+0.10 +0.03
		${ }^{2} \cdot 7339$	2. 1962			$\begin{aligned} & +0.03 \\ & -0.2 \end{aligned}$
65	90	3.2652	2. 5402	25.31	. 25.43	$\begin{aligned} & -0.62 \\ & -0.12 \end{aligned}$
	$\begin{aligned} & 22 \cdot 5 \\ & 67 \cdot 5 \end{aligned}$	$3 \cdot 8418$	2.8348	$25 \cdot 89$	$25 \cdot 43$	$\begin{array}{r} -0.07 \\ +0.10 \end{array}$
		$3 \cdot 8710$	$2 \cdot 8123$	26.06	-	
	$\begin{array}{r} 67.5 \\ 112.5 \end{array}$	$3 \cdot 8743$	$2 \cdot 8281$	26.01		$+0.05$
	157.5	$3 \cdot 8565$	3.0808	$\begin{aligned} & 25.88 \\ & 26.72 \end{aligned}$	$25 \cdot 96$	-0.08
		+ 5039			$26 \cdot 68$	+0.04
	4585	+5072	$3 \cdot 1024$	$\begin{aligned} & 26.72 \\ & 26.65 \end{aligned}$		-0.03
$91 . \ldots \ldots$98	0	$5 \cdot 1099$	3.2893	27.38	$27 \cdot 51$	+0.13
	$\begin{aligned} & 90 \\ & 22 \cdot 5 \\ & 67 \cdot 5 \\ & 112 \cdot 5 \\ & 157 \cdot 5 \end{aligned}$	$\begin{aligned} & 5 \cdot 1685 \\ & 5 \cdot 3913 \\ & 5 \cdot 4340 \\ & 5 \cdot 4248 \\ & 5 \cdot 3990 \end{aligned}$	$\begin{aligned} & 3 \cdot 2472 \\ & 3 \cdot 3340 \\ & 3 \cdot 3009 \\ & 3 \cdot 3093 \\ & 3 \cdot 340 \end{aligned}$	$\begin{aligned} & 27.64 \\ & 27.80 \\ & 28.09 \\ & 27.96 \\ & 27.78 \end{aligned}$		
						$\begin{array}{r} -0.08 \\ +0.12 \end{array}$
					.	
					27.88	$+0 \cdot 08$ $-0 \cdot 10$
					$27 \cdot 88$	-0.10

9-10 EDWARD VII., A. 1910
TABLE VIII.
Zonal Fool : Positios H.

TABLE IX.
Zonal Foct: Position I.

Radius of Zone.	ϕ	d_{1}	d_{2}	Focus.	Mean.	Astigmatism.
$15 \mathrm{~mm}$.	4	${ }_{0}^{\mathrm{mm}} \mathbf{0}$. 6675	$\mathrm{mma}_{0.6798}$	$22 \cdot 29$	$\cdots 22.15$	+0.14
	45					
	135	0.65801.0786	0.6869	${ }_{21} 22.02$		-0.13
	0		$1 \cdot 1508$$1 \cdot 1005$		$22 \cdot 30$	-0.53+0.51
25......	90 45	1.1344		21.8		
35.................	45 135	1.57618	1.6551	$22 \cdot 32$	22.48	+0.1 +0.16
$45 . \ldots \ldots \ldots \ldots$.	135	1.9937	2.0341	22.27		-0.16 -0.55
$55 .$	90	20805	$1 \cdot 9245$	$23 \cdot 38$$23 \cdot 34$		-0. +0.56
	45	2.5249	2.3421		$22 \cdot 82$	+0.16
	135	2.5131	2. 3998	$23 \cdot 34$ 23.02		-0.16
65	0	${ }_{2} 2.9778$	${ }_{2} .8823$	$23 \cdot 02$ 23.06	$23 \cdot 18$	-0.59+0.60
	90	3.1123	$2 \cdot 6623$	$23 \cdot 06$ $24 \cdot 25$		
	$\begin{aligned} & 22 \cdot 5 \\ & 67 \cdot 5 \end{aligned}$	3. 5401	$3 \cdot 1225$2.9877	$\begin{aligned} & 24 \cdot 25 \\ & 23 \cdot 91 \end{aligned}$	236	+0.60 -0.30
		$3 \cdot 6580$		$\begin{aligned} & 23 \cdot 91 \\ & 24.77 \end{aligned}$	$\begin{array}{r} 0.00 \\ +0.56 \end{array}$
	112.5	$3 \cdot 6314$$3 \cdot 5107$	$3 \cdot 0360$	$\begin{aligned} & 24.77 \\ & 24.51 \end{aligned}$		+0.30
	$\begin{aligned} & 157 \cdot 5 \\ & 45 \end{aligned}$		$3 \cdot 3275$	23.67	$24 \cdot 21$	$\begin{array}{r} -0.54 \\ +0.20 \end{array}$
85.		$4 \cdot 2245$			
	45 135	+.1720	$3 \cdot 4060$	$\begin{aligned} & 24.77 \\ & 25.77 \\ & 25.20 \end{aligned}$	…2497	-0:20
94	$\begin{array}{r} 0 \\ 90 \end{array}$	47029	3.6958		$25 \cdot 20$	
98.	$\begin{array}{r} 22 \cdot 5 \\ 67.5 \\ 112.5 \\ 157.5 \end{array}$	$5 \cdot 0145$	36885	$25 \cdot 93$		+0.15
		$4 \cdot 9712$	37578	$25 \cdot 63$	2578	-0.15

SESSIONAL PAPER No. 25a
TABLE X.
Zonal Foci: Position L.

TABLE XI.
Zonal Foct : Position M.

TABLE XII.
Zonal Foei: Position N.

TABLE XIIL
Zosal Foct: Position R.

Radius of Zone.	ϕ	d_{1}	d_{2}	Focus.	Mean.	Astigmatism.
15 mm$25 . .$.	45	${ }_{0}^{\mathrm{mm}} \mathbf{0} 6950$	$\mathrm{mmm}_{0} 65$.			
	135	$0 \cdot 6707$	${ }_{0} \cdot 6506$	22.84	$23 \cdot 02$	+0.18 -0.18
	0	$1 \cdot 1187$	$1 \cdot 1000$	22.69		$-0 \cdot 23$
	90	1.1413	1.0780	$23 \cdot 14$	$22 \cdot 92$	$+0.23$
35	45	1.6051	1.5079	$23 \cdot 20$		+0.08
45.	135	1.5904	1.5168	23.03	$23 \cdot 12$	-0.09
	0	2.0648	1.4508	$23 \cdot 14$		$-0 \cdot 30$
	90	${ }_{2}^{2.0968}$	1.8769	23.74	23.4	+0.30
55	45	25811	2.2793	23.90		$+0.12$
	185 0	2.5683 3.0716	$2 \cdot 3143$	$23 \cdot 67$	$23 \cdot 78$	-0.11
75	90	3.0716 3.1285	$2 \cdot 7009$ $2 \cdot 6173$	23.97	$24 \cdot 22$	-0.28 +0.28
	22.5	3.6463	2.9964	24.70		-0.09
	67.5	$3 \cdot 6927$	$2 \cdot 9238$	$25 \cdot 11$		+0.32
	112.5	$3 \cdot 6642$	$2 \cdot 9616$	2489		$+0 \cdot 10$
	157.5	$3 \cdot 6180$	3.0345	$24 \cdot 17$	2479	-0.32
85.	45	$4 \cdot 2992$	3.2352	25.68		$+0.15$
	135	4.2542	3. 2864	$25 \cdot 39$	$25 \cdot 53$	-0.14
94	0	48501	3.5156	$26 \cdot 09$		-0.30
	90	4.9240	3.3600	26.68	26•39	+0.29
$98 .$.	22.5	$5 \cdot 1406$	3.5317	$26 \cdot 67$		-0.12
	67.5	$5 \cdot 2145$	3. 4394	$27 \cdot 12$		$+0 \cdot 33$
	112.5	5.1649	3.4780	26.89		$+0 \cdot 10$
	157.5	$5 \cdot 1125$	3.5791	$26 \cdot 47$	2679	$-0 \cdot 32$

SESSIONAL PAPER No. 25a
TABLE XIV.
Zonal. Foel.

Poxition.

TABLE XV.

TABLE XVI.
Zonal Test.
Settings $6 \cdot 5$ \& $51 \cdot 5$; Separation 0.132 inches.

TABLE XVII.
Zosal Test.
Settings 16.5 \& 61.5 ; Separation 0 070 inches.

SESSIONAL PAPER No. 25a
TABLE XVIII.
Settings 16.5 and $61.5 ; 0.077$ Sepahation

Radius of Zone.	ϕ	d_{1}	d_{2}	Focus,	Mean.
15. 25. \qquad 35.		mm,	mm.	$19 \cdot 38$	$19 \cdot 38$
	${ }_{15}$		$\begin{aligned} & 0.7561 \\ & 0.7540 \end{aligned}$		
	130	$\begin{aligned} & 0.5717 \\ & 0.5830 \end{aligned}$			
	90	$1 \cdot 3335$	1.2662	19•35	$19 \cdot 36$
	455		1.7745	$19 \cdot 31$	
		1. 3365	1.7831 2.2832	19.25	
		1.7208	$2 \cdot 2832$ $2 \cdot 2750$	$19 \cdot 34$	$19 \cdot 30$
	+155	1.7228 2.0918	${ }^{2} 7819$	$19 \cdot 39$ $19 \cdot 31$	$19 \cdot 37$
		$2 \cdot 0009$	$2 \cdot 7681$$3 \cdot 2762$	$19 \cdot 36$	19:34
	90	2.4909		19.44	
	22.567.5	2.8593	$3 \cdot 2844$	$19 \cdot 41$	19.43
		$2 \cdot 8637$	3.7774	$19 \cdot 39$	
	112.5	${ }^{2} \cdot 8707$	$3 \cdot 7829$	$19 \cdot 42$	$19 \cdot 40$
85.	157.5	2.8585 $3 \cdot 2567$	$3 \cdot 7694$	$19 \cdot 41$	
	45 135	32742	$4 \cdot 2702$	$19 \cdot 53$$19 \cdot 59$	$19 \cdot 48$
94.	0	$3 \cdot 6387$	${ }^{+} 7187$		
98	$\begin{aligned} & 90 \\ & 22 \cdot 5 \\ & 67 \cdot 5 \end{aligned}$	$3 \cdot 6456$	4.7240	$19 \cdot 59$ $19 \cdot 60$	$19 \cdot 60$
		$\begin{aligned} & 3.7942 \\ & 3.8191 \\ & 3 \cdot 7988 \end{aligned}$	$\begin{aligned} & 4 \cdot 9030 \\ & 4 \cdot 9054 \\ & 4 \cdot 8918 \\ & 4 \cdot 8958 \end{aligned}$	$\begin{aligned} & 19.63 \\ & 19.63 \end{aligned}$	
	$\begin{array}{r} 112.5 \\ 157.5 \end{array}$			19.63	
				1966	$19 \cdot 64$

9-10 EDWARD VII., A. 1910
 BOREALIS AND ¿AQUILA.
β ORIONIS.
RECORD OF SPECTROGRAMS.

SESSIONAL PAPER No．25a
等

内囚

9-10 EDWARD VII., A. 1910

SESSIONAL PAPER No. 25a

RECORD OF SPECTROGRAMS. - Contirued.

SESSIONAL PAPER No. 25a

 8

SESSIONAL PAPER No. 25a
供

न-W TGIT TITGY GV GY
Q日:

\qquad

β ORIONIS $1241 a$.
1108. Jan. 20.
G. II. T. $15^{\mathrm{h}} 00^{\mathrm{ma}}$
$\left.\begin{array}{l}\text { Observed by } \\ \text { Measured by }\end{array}\right\}$ J. S. Plaskett.

β ORIONIS I2 $41 b$.
1308. Jan. 20.
G. D. 'T. $15^{\mathrm{L}} 00^{\mathrm{m}}$
$\left.\begin{array}{l}\text { Observed by } \\ \text { Measured by }\end{array}\right\}$ J. S. Plaskett.

Wt.	Mean of Settings.	Corrected Star Settings.	$\begin{aligned} & \text { Disppt } \\ & \text { in rev } \end{aligned}$	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	$\begin{aligned} & \text { Dispt } \\ & \text { in rev }{ }^{\text {nts }} \end{aligned}$	Velocity.
	54.7354					$53 \cdot 1094$			
2	54.0270				3	45.2712	2755	0368	+38 41
3	54.0008	-0048	0350	+40.28	2	45.2684			
1	$53 \cdot 4328$	4360	-0857	$+38 \cdot 54$					

β ORIONIS $1241 c$.
$\left.\begin{array}{l}\text { Measured by } \\ \text { Oloserved by }\end{array}\right\}$ J. S. Plaskett.
1908. Jan. 20.
(F. M. T. $15^{\text {h }} 90^{\mathrm{ma}}$

Wt.	$\begin{gathered} \text { Mean } \\ \text { of } \\ \text { Settings. } \end{gathered}$	Corrected Star Settings.	Dispt in res ${ }^{n}$	Velocity.	Wt.	$\begin{gathered} \text { Mean } \\ \text { of } \\ \text { Settings. } \end{gathered}$	Corrected Star Settings.	$\begin{aligned} & \text { Disppt } \\ & \text { in reves } \end{aligned}$	Velocity.
$\stackrel{2}{1}$	54.7640 54.0552 540360 53.4715	$\begin{aligned} & 0130 \\ & +4485 \end{aligned}$	$\begin{gathered} 0448 \\ 0462 \end{gathered}$	$\begin{array}{r} +51-56 \\ +52.83 \end{array}$	3	$\begin{aligned} & 53 \cdot 1358 \\ & 45 \cdot 2960 \\ & 45 \cdot 2952 \end{aligned}$	$\cdots \cdot 2727$	0340	$+3549$

SESSIONAL PAPER No. 25a

190s. Jan. 20.
G. M. T. $1 \mathrm{~N}^{\mathrm{h}} 1 \mathrm{~m}^{\mathrm{mm}}$

1908. Jan. 20.
G. M. T. $15^{\mathrm{b}} 15^{\mathrm{m}}$

Observed by
Mcasured by J. S. Plaskett.

s ORIONIS 1242%.
$30 R 1 O N I S$ 12\%\%.

Radial velocity
23.7.
$\left.\begin{array}{l}\text { Observed by } \\ \text { Measured by }\end{array}\right\}$ J. S. Plaskett.

Wt.	Mean of Setting .	Corrected Star Settings.	$\begin{aligned} & \text { Dispt } \\ & \text { in rev } \end{aligned}$	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	$\begin{aligned} & \text { Dispet } \\ & \text { in revn } \end{aligned}$	Velocity.
2	$54 \cdot 7430$					$53 \cdot 1110$			
1	54.0320				3	$45 \cdot 3740$	2783	0896	+4134
21	$54 \cdot 0078$ $53 \cdot 4467$	0078 4467	03 mm	$+4376$		55.2692		
$1 \frac{1}{2}$	53.4467	4467	0444	$50 \cdot 75$					

1908. Jan. 20.
G. M. T. $15^{\mathrm{h}} 15^{\mathrm{m}}$

Observed by
Measured by J. S. Plaskert.

Wt.	Mean of Settings.	Corrected Star Settings.	$\begin{aligned} & \text { Diчp } \\ & \text { in rever } \end{aligned}$	Velocity.	Wt.	Mean of Settings.	Corrected Star Setrings.	Disp ${ }^{f}$ in revin	Velocity:
2	547111					$53 \cdot 0790$			
1	$54 \cdot 0022$				2	$45 \cdot 2307$	2655	0268	$+2797$
3	53.9678	9940	0292	+33.61	2	45.2378			
2	$53 \cdot 4174$	4500	0477	$+54 \cdot 55$					

9-10 EDWARD VII., A. 1910
3 ORIONIS 1243 .

1900 Jan. 20.
G. M. T. $15^{h} 9$

Observed by 'J, S. Plaskett,
Measumed by

3 ORIONIS 1243 \%
1900. Jan. 20.
G. M. T. $15^{h} 27^{3}$

Observed by (J. S. Plaskett.
Measured by
Measured by ; J. S. PLaskET.

Weighted mean.

Va.... .. $17 \cdot 93$
V'd........ - ${ }^{\text {a }}$

Radial velocity.
-23.5
1908. Jan. 20.
(4. M. T. $155^{6} 27^{\circ}$
β ORIONIS $1243 c$.
Observed by Measured by J. S. Plaskett.

Wt.	Mean of Settines.	Corrected Star Smtings.	$\begin{aligned} & \text { Disy }{ }^{2} \\ & \text { in reve } \end{aligned}$	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	$\begin{aligned} & \text { Dispt } \\ & \text { in rey } \end{aligned}$	Velocity.
2	547244				2	53.0980			
$\stackrel{2}{2}$	54.0125	O¢A 0	0302		3	+5.2705	2520	0433	+4519
2	53.4295	4445	0422	48.26					

EESSIONAL PAPER No, 25a
Is TaR ORIONIS 1244%
G. M. T. $15^{2} 47^{\mathrm{m}}$

Wt.	$\begin{gathered} \text { Mean } \\ \text { of } \\ \text { sertings. } \end{gathered}$	Corrected Star Settings.	$\begin{aligned} & \text { Bisp, } \\ & \text { in rever } \end{aligned}$	Velocity.	Wt.	Mean of Setring x.	Corrected Star Settinge	$\begin{aligned} & \text { Disp } \\ & \text { in revan } \end{aligned}$	Velocity.
$\begin{aligned} & 2 \\ & 2 \\ & 3 \\ & 2 \end{aligned}$		$\begin{array}{r} 1056 \\ 4410 \end{array}$	$\begin{aligned} & 0338 \\ & 0387 \end{aligned}$	112043.11	2322	33.099845.36854.5611	2811	0424	+4129
					Weighterl mean (4) 59	d mean.	.		$42 \mathrm{s2}$
						$\mathrm{V}_{\text {d }} \ldots$		17:93	
						Curvature		$\cdot 28$	
						dial velocity		24. 5

3 ORIONIS 1244 b.
194N. Jan. 2^{20}

* t .	$\begin{gathered} \text { Mean } \\ \text { of } \\ \text { Settings. } \end{gathered}$	Corrected Star Settings.	$\begin{aligned} & \text { Disp }{ }^{2} \\ & \text { in rev } \end{aligned}$	Velocity.	Wt.	Mean of Setting*.	Corrected Star S.ttings.	$\begin{gathered} \text { Disp } \\ \text { in revos } \end{gathered}$	Velocity,
$\begin{aligned} & y \\ & 2 \\ & 3 \\ & 2 \\ & 2 \end{aligned}$		$\begin{array}{r} 9990 \\ -4340 \end{array}$	0292 0317	33.61 +36.25	2 3 2	231050 45.2630 $45 \cdot 2632$	2323	. 0336	$+35 \cdot 07$
					Radial velocity +16.5				

β ORIONIS $1244 c$.

19:4 J. Jan. 20.
(i. M. T. $15^{\mathrm{h}} 47^{\mathrm{mm}}$
$\left.\begin{array}{l}\text { Observed by } \\ \text { Measured by }\end{array}\right\}$ J. S. Plaskett.

Wt.	$\begin{gathered} \text { Mean } \\ \text { of } \\ \text { Settings. } \end{gathered}$	Corrected Star Settings.	$\begin{aligned} & \text { Disp } \\ & \text { in reven } \end{aligned}$	Velocity.	Wt.	Mean of Setting\%.	Corrected Star Settings.	$\begin{aligned} & \text { Disp } \\ & \text { in rev }{ }^{\text {nn }} \end{aligned}$	Velocity.
2 2 3 2	54.7336 54.0231 54.0019 $53 \cdot 4595$	0090 4460	0392 .0437	+4511 +49.97	2 3 2	$53 \cdot 1058$ $45 \cdot 2684$ $45 \cdot 2638$	2780	0393 ...	+41.02 $+\cdots \cdots$
									+4475
$25 a-21 \frac{1}{2}$					Radial velocity.				$+26 \cdot 4$

3 ORIONIS 1245 a.
1908.Jan. 34.
G. M. T. $15^{5 h} 53^{2 n}$
$\left.\begin{array}{l}\text { Observed by } \\ \text { Measured by }\end{array}\right\}$ J. S. Plaskett.

W t .	Mean of Settings.	Corrected Star Settings	$\begin{aligned} & \text { Disp, } \\ & \text { in rel } \end{aligned}$	Velocity.	W't.	Mean of Settings.	Corrected Star Set.tings.	Disp ${ }^{t}$ in rev ${ }^{\text {na }}$	Velocity.
$\begin{aligned} & 2 \\ & 1 \\ & 3 \\ & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & 54 \cdot 7272 \\ & 54 \cdot 0156 \\ & 53 \cdot 0966 \\ & 53 \cdot 4315 \end{aligned}$	$\begin{aligned} & 0091 \\ & +430 \end{aligned}$	$\begin{array}{r} 0392 \\ 0407 \\ \hline 040 \end{array}$	$\begin{array}{r} 45.12 \\ 46.54 \end{array}$	2 3 2	$53 \cdot 1018$ 45. 2650 $45 \cdot 2622$	2763	- 0376	$+39 \cdot 24$ \ldots
									$+43 \cdot 27$

\& ORIONIS 12456.
1908. Jan. 20.
G. M. T. $15^{\mathrm{h}} 53^{\text {mo }}$
$\left.\begin{array}{l}\text { Observed by } \\ \text { Measured by }\end{array}\right\}$ J. S. Plaskett.

Wt.	Mean of Settings.	Corrected Star Settings.	$\begin{aligned} & \text { Dispt } \\ & \text { in res } \end{aligned}$	Velocity:	Wt.	Mean of Settings.	Corrected Star Settings.	$\begin{gathered} \text { Disp }{ }^{\text {Di }} \\ \text { in } \text { rev }^{\text {sh }} \end{gathered}$	Velocity.
2 2 3 2	$\begin{aligned} & 54 \cdot 7467 \\ & 540342 \\ & 54 \cdot 0124 \\ & 53 \cdot 4430 \end{aligned}$	$\begin{array}{r} 00 \pi 4 \\ 4340 \end{array}$	$\begin{array}{r} 0376 \\ .0337 \end{array}$	$\begin{array}{r} 4327 \\ 3858 \end{array}$	2 3 2	$\begin{aligned} & 53 \cdot 1202 \\ & 45 \cdot 2774 \\ & 45 \cdot 2760 \end{aligned}$	2750	0363	$+37 \cdot 89$

β ORIONIS 1245 c
$\left.\begin{array}{l}\text { Observed by } \\ \text { Measured by }\end{array}\right\}$ J. S Plaskett.
1908. Jan. 20.
G. M. T. I $5^{\mathrm{h}} 53^{\mathrm{m}}$

- SESSIONAL PAPER No. 25a
β ORIONIS 1249 α.

190భ. Jan. $20 .{ }^{\text {G/ }}$

Weighterd mean +32.35
$\mathrm{V}_{a} \ldots$
$\mathrm{~V}_{d} \ldots$
Curvature.

17.48
$-\quad 09$
$-\quad 28$
$-\quad+140$

β ORION1S 1217a.
1908. Jan. 20.
G. 11 . T. $16^{\text {h }} 17^{\text {mi }}$

β ORIONIS 1247 b.
1908. Jan. 20.
G. M. T. $16^{\mathrm{b}} 17^{\mathrm{m}}$

Observed by
Measured by j J. S. Plaskett.

| Wt. | Mean
 of
 Settings. | Corrected
 Star
 Settings. |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |

MORIONIS 1247 R
1908.Jan. 20.
G. M. T. $16^{\mathrm{h}} 17^{\mathrm{m}}$
β ORIONIS 1248α.
Observed by
Measured by J. S. Pt.I*KKTT.

1:98. Jan. 20
G. M. T. $16^{\mathrm{h}} 27^{\mathrm{m}}$

Observed by
Measured by ,J. S. Plasket.

Wt.	$\begin{gathered} \text { Mean } \\ \text { of } \\ \text { Settings. } \end{gathered}$	Corrected Star Settings.	$\begin{aligned} & \text { Diwp }{ }^{\text {e }} \\ & \text { in rev } \end{aligned}$	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	$\begin{aligned} & \text { Disp }{ }^{t} \\ & \text { in reve } \end{aligned}$	Velocity
2	54.7473				2	55.1167			
2	53.9942	9900	0211	$+24.28$	3	45.2792	2735	0318	$+3632$
1	$53 \cdot 4267$	4220	0197	$22 \cdot 53$					
				Radial velucity $\overline{11.6}$					

β ORIONIS 1248%
1908. Jan. 20.
G. M. T. $16^{h} 27^{m}$
$\left.\begin{array}{l}\text { Otherved by } \\ \text { Measured by }\end{array}\right\}$ J. S. Plaskgtt.

Wt.	$\begin{gathered} \text { Mean } \\ \text { of } \\ \text { Settings. } \end{gathered}$	Corrected Star Settings.	$\begin{aligned} & \text { Disp } \\ & \text { in rey } \end{aligned}$	Velucity.	Wt.	Mean of Settings.	Corrected Star Settings.	$\begin{aligned} & \text { Disp, } \\ & \text { in rev } \end{aligned}$	Velocity.
2	54.7402				2	53.1140			
1	54.0234				3	$45 \cdot 2584$	2660	0273	$+2849$
1	$53 \cdot 9742$	9760	0071	817 87	2	$45 \cdot 2770$			
1	$53 \cdot 4253$	4260	0237	$27 \cdot 10$					

Weighted mean		$+24 \cdot 15$
V_{a}	$-17 \cdot 98$	
V_{d}	09	
Curvature	-28	
Radial velocity	- .	$+5$

SESSIONAL PAPER No. 25a
β OHIONTS 1248 c.
IMNE. Jan. 20.
G. M. T. $16^{\mathrm{h}} 27^{110}$

Oliserved by
Measured by J. S. Pi.askett.

3 ORIONIS 1249%.
1408. Jan. 20.
G. M. T. $16^{\text {b }} 35^{m}$

Observed by
Measured by J. S. Plaskett.

β ORIONIS 1245c.
1908. Jan. 20.
G. M. T. $16^{\mathrm{h}} 37^{\mathrm{m}}$

Observed by
Measured by J. S. Piaskets.

Wt.	$\begin{gathered} \text { Mean } \\ \text { of } \\ \text { Settings. } \end{gathered}$	Corrected Star Setting	Dispt in revin	Velocity.	Wt.	$\begin{gathered} \text { Meaur } \\ \text { of } \\ \text { Settings. } \end{gathered}$	Corrected Star Settings.	$\begin{aligned} & \text { Disp } \\ & \text { in rev } \end{aligned}$	Velocity.
2 2 2 2 2	$\begin{aligned} & 54 \cdot 7362 \\ & 54 \cdot 0240 \\ & 58 \cdot 9998 \\ & 53 \cdot 4435 \end{aligned}$	0040 443	-0342 -0451	$\begin{array}{r} +39 \cdot 36 \\ 51 \cdot 57 \end{array}$	$\stackrel{2}{3}$	$53 \cdot 1092$ $45 \cdot 2925$ $45 \cdot 2704$	-2760	- 0873	+3898 $+\ldots$
		.		Weigh	d mea 17	- $42 \cdot 6$	
	$=$			Radial velocity +242					

3 ORIONIS 1285a.

1tes. Jan. $\because=-$
12. M. T. 15 30

Ohserved by J. S. Pbaskett.
Measured by W. E. Harper.

W゙t.	Mean of Settings	Corrected Star Settings,	$\begin{aligned} & \text { Wisp }{ }^{\text {i }} \\ & \text { in rev } \end{aligned}$	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Disp ${ }^{t}$ in rev ${ }^{\text {na }}$	Velocity.
2 2 12 12	$56+26+2$ $515 \cdot 2207$ $55 \cdot 45$	$\begin{array}{r} 2768 \\ 4083 \end{array}$	$\begin{array}{r} 0470 \\ 0589 \end{array}$	$\begin{array}{r} 3517 \\ +39 \cdot 88 \end{array}$	2 11 2^{2}	$\begin{aligned} & 54.8480 \\ & 423191 \\ & 423130 \end{aligned}$	3130	- 0520	+3261 $\cdot \quad \cdots$
					Rad	velocity.	,	$+15$	

β ORIONIS 1285 $\%$
1908. Jan. 27.
G. M. T. $15^{\mathrm{h}} 30 \mathrm{~m}$

β ORIONIS I285 c.
1908. Jan. 27.
G. M. T. $15^{\mathrm{t}} 30^{\mathrm{m}}$

Weighted mean.		$+39 \cdot 38$
$\mathrm{V}^{\text {a }}$	-20.08	
Vd	16	
Curvaturt..	30	
adial velocity		1

3 ORLONTS 1286,
1908. Jan. 27.
(: M. T. $16^{7 \prime} 09^{\prime \prime}$

3 ()RIONIS 120if

190s. Jant, 2_{5}^{2}.
G. M. F. $16^{\prime \prime} 04$

3 ORIGNIS 1286°
1908. Jan. 27.

G IL. T. $16^{\circ} 0 \%$

Observed by J. S. Plaskett.
Neasured by W. E. Harter.

Observed by J. S. Plaskett.
Meazured by W. F. Harper.

Wt.	Mean of Settings.	Corrected Star Settinge.	$\begin{aligned} & \text { Dispt } \\ & \text { in rev } \end{aligned}$	Velocity.	Wt.	$\begin{gathered} \text { Mean } \\ \text { of } \\ \text { Settings. } \end{gathered}$	Corrtcted Star Settings.	$\begin{aligned} & \text { Disppt } \\ & \text { in revot } \end{aligned}$	Velocity.
2 2 2 2	$\begin{aligned} & 57 \cdot 3761 \\ & 56 \cdot 2915 \\ & 56 \cdot 2610 \\ & 55 \cdot 3894 \end{aligned}$	$\begin{aligned} & 3898 \\ & 4175 \end{aligned}$	$\begin{array}{r} 0600 \\ -0631 \end{array}$	$\begin{array}{r} +4490 \\ +6.68 \end{array}$	2 2 2	$\begin{aligned} & 54 \cdot 8777 \\ & 42 \cdot 3443 \\ & 42 \cdot 3548 \end{aligned}$	3296	-0686	+4302
					Radial velocity +24.3				

3 OREONIS 1284 a
1908. Jan. 27.
G. M. T. $17^{\mathrm{b}} 17^{7}$

1908. Jan. 27.
G. M. T. $17^{\text {h }} 17^{\mathrm{ni}}$

Observed by J. S. Plaskett: Measured by W. E. Harprk.
f ORIONIS 1289 b

Weiglited mean	
Va	-20.08
V_{d}	
Curvature	30

Radial velocity
$+199$

3 ORIONIS 1289 c.
1908. Jan. 27.
G. M. T. $17^{h} 17^{\text {m }}$

Observed by
Measured by
IJ. Plaskett.

Wt.	Mean of Settings.	Corrected Star Settings.	$\begin{aligned} & \text { Disy }{ }^{t} \\ & \text { in rev } \end{aligned}$	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	$\begin{aligned} & \text { Dispe } \\ & \text { in reven } \end{aligned}$	Velocity.
2 2 3 2	$\begin{aligned} & 57 \cdot 3608 \\ & 56 \cdot 2675 \\ & 56 \cdot 2378 \\ & 55 \cdot 3721 \end{aligned}$	2900 4200	0602 0656	+45.05 48.54	2 3 2	$\begin{aligned} & 54 \cdot 8612 \\ & 42 \cdot 3602 \\ & 42 \cdot 3378 \end{aligned}$	-3425'	0815	+5111
Weighted mean. $V_{d} \ldots \ldots . .$. $V_{d} \ldots \ldots . .20 \cdot 08$ Curvature........									
Radial velocity..... $+27 \cdot 8$									

3:03. J.an. 27.
に. M. T. $17^{\text {h }} 2^{8 / m}$

A OHIONIS 1290 a.
Oberved by
Measured by \}J. S. Plaskktt

Wt.	$\begin{gathered} \text { Mean } \\ \text { of } \\ \text { Settings. } \end{gathered}$	Corrected star Setting -	$\begin{aligned} & \text { 1) hisp, } \\ & \text { in rei.. } \end{aligned}$	Velocity.	Wt.	$\begin{gathered} \text { Mean } \\ \text { of } \\ \text { Settings. } \end{gathered}$	Corrected Star Settings.	$\begin{gathered} \text { Disp } p^{t} \\ \text { in reven } \end{gathered}$	Velocity.
$\begin{aligned} & \frac{2}{2} \\ & \frac{2}{3} \end{aligned}$	$\begin{aligned} & 57 \cdot 3519 \\ & 56 \cdot 2658 \\ & 56 \cdot 2260 \end{aligned}$	2810	$00^{0} 02$	$+3756$	2 2 2	$5+8582$ 42.3288 +2 3308	3156	10546	$\begin{array}{r}3+24 \\ \hline\end{array}$
				Weighted mean.... $2008-36 \cdot 28$ \mathbf{V}_{d} 19 Curvature......... 19					
				Radial velocity.... $+15 \cdot 6$					

s ORIONIS 12906 .
190\%. Jan. 27.

© ORIONIS 1290 c
1990. Jan. 27.
(i. M. T. $17^{\mathrm{h}} 28^{\mathrm{m}}$

Observed by
Measured by J. S. Plaskett.

9-10 EDWARD VII., A. 1910
8 ORIONIS 1405.

Wt.	Mean of Settings.	Corrected Star Settings.	$\begin{aligned} & \text { Diy: } \\ & \text { in res. } \end{aligned}$	Velocity.	WL.	$\begin{gathered} \text { Mean } \\ \text { of } \\ \text { Settings. } \end{gathered}$	Corrected Star Settings.	$\underset{\text { in rev }{ }^{\text {Di }}}{\text { Disp }}$	Velocity.
$\begin{aligned} & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 1 \frac{1}{2} \end{aligned}$	$\begin{aligned} & 43 \cdot 3300 \\ & 61-3.02 \\ & 61 \cdot 3121 \\ & 59 \cdot 7292 \end{aligned}$	$\begin{aligned} & 3064 \\ & -72364 \end{aligned}$	$\begin{aligned} & 1259 \\ & 1271 \end{aligned}$	$\begin{array}{r} 32 \cdot 65 \\ 52 \cdot 60 \end{array}$	2 2 2	58. 7869 $36 \cdot 2090$ $36 \cdot 1858$	2170	- 1265	$+4448$
		-			Weighted mean.				4837
					Radial velocity.				$+231$

1908. Mar. 20.
G. M. T. $12^{\mathrm{h}} \theta^{7 \mathrm{~m}}$

Obshrved by
Measured by J. S. Plaskett.

3 ORIONIS 1406 .

S ORIONIS 1407.
1908. Mar. 20.
G. M. T. $12^{\mathrm{h}} 21^{\mathrm{m}}$

Observed by
Ieasured by J. S. Plaskett.

SESSIONAL PAPER No. 25a

β ORIONIS 140 G.
1908. Mar. 30.
G. M. T. $12^{\text {h }} 32^{\text {min }}$

Miselter by , J. S. Plaskett.
Measured by

β ORIONIS 1409.
Observed by
Measured by J. S. Plaskett.
G. M. T. $12^{\mathrm{h}} 16^{\mathrm{m}}$

β ORIONIS 1410 .
1908. Mar. 20.
G. M. T. $13^{\mathrm{h}} 00^{\mathrm{m}}$
$\left.\begin{array}{l}\text { Observed by } \\ \text { Measured by }\end{array}\right\}$ J. S. Plaskett.

Wt.	Mean of Settings.	Corrected Star Settings.	$\begin{aligned} & \text { Dispt } \\ & \text { in rev } \end{aligned}$	Velocity.	Wt.	$\begin{gathered} \text { Mean } \\ \text { of } \\ \text { Settings. } \end{gathered}$	Corrected Star Settings.	$\begin{gathered} \text { Disp } \\ \text { in revni } \end{gathered}$	Velocity.
2	$63 \cdot 3280$				2	58.7856			
2 2 2	$61 \cdot 3492$ 61.3050	-3010	1205	$+49 \cdot 81$	$\stackrel{2}{2}$	362229 36.1906	2365	1360	$+47 \cdot 82$
$1 \frac{1}{2}$	69.7178	7136	1171	$47 \cdot 91$					

Weighted mean		$+48.57$
V_{a}	-24-8i	
Vd	14	
Curvature	- 28	

Radial velocity
$+233$

9-10 EDWARD VII., A. 19:0
OORFONIS 1111.
1908. March 20.
G. M. T. $13^{\text {h }} 12^{\text {min }}$

Observed ty .J. S. Plaskeit.
Measured hy W. E. Harper.

Weighted mean

Gurvature.............
Radial velocity....................... $-23 \cdot 5$
β ORIONIS 1412.
1908. March 20.
G. M. T. $13^{\text {b }} 27^{m}$

Olserved by .I. S. Plaskett. Measured by W. E. Harper.
Wt. $\left.\begin{array}{c}\text { Mean } \\ \text { of } \\ \text { Settings. }\end{array} \begin{array}{c}\text { Corrected } \\ \text { Star } \\ \text { Settings. }\end{array}\right)$

B ORIONIS 1413.
1908. March 20.
G. M. T. $13^{\mathrm{t}} 47^{\mathrm{m}}$

Observed by J. S. Plasketr.
Measured by W. E. Hallezz.

Wt.	$\begin{aligned} & \text { Mean } \\ & \text { of } \\ & \text { Settings. } \end{aligned}$	Corrected Star Settings.	$\begin{gathered} \text { Disp } \\ \text { in } \mathrm{rev}^{\text {ns }} \end{gathered}$	Velocity.	Wt.	Mean of Settings.	Corrected Star Setting:	$\begin{gathered} \text { Mi } \\ \text { in }{ }^{2} \text { R.w. } \end{gathered}$	Vei. ty.
2 3 $1 \frac{1}{2}$	$63 \cdot 3873$ $61 \cdot 3699$ $59 \cdot 7810$	$61 \cdot 3083$ $59 \cdot 7205$	1278 1240	$1 \% 8$ +52.83 50.73	2 2 2	$58 \cdot 8412$ $3 \cdot 3010$ $36 \cdot 2495$	$36 \cdot 2455$	1550	+54.50
				Radial velocity..			$+27 \cdot 5$		

SESSIONAL PAPER No. 25a

1908. March 20
(7. M. T. $13^{14} 57^{\mathrm{mi}}$
$\beta 0$ RIONIS 1414.
by J. N. PiAnknt?
Measured by W. F. Harper.

Wt.	$\begin{aligned} & \text { Mean } \\ & \text { of } \\ & \text { setting } \end{aligned}$	Comrected Star Nettings.	$\begin{aligned} & \text { Disp } \\ & \text { in rever } \end{aligned}$	Velucity.	Wi.	Mean of Settings.	Corrected Star Settings.	$\begin{aligned} & \text { Dispe } \\ & \text { in reve } \end{aligned}$	Velocity.
2 3 2	$63 \cdot 3927$ 61.3695 59.7945	613015 59.7270	1210 1350	50.02 53.38	2 2 2	$\begin{aligned} & 28 \cdot 8185 \\ & 36 \cdot 2981 \\ & 3525 \div 2 \end{aligned}$	$36 \cdot 2350$. 1445	$\cdots+5440$
Radial velocity .+. +26.9									

β ORIONIS 1426 .
1908. March 24
G. M. T. $12^{\mathrm{h}} 03^{\mathrm{m}}$

Observed by J. S. Plaskett.
Measured by W. E. Harper.

Wt.	Mean of Settings.	Corrected Star Setting .	$\begin{aligned} & \text { Disp } \mathrm{p}^{\mathrm{t}} \\ & \text { in rev } \end{aligned}$	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	$\begin{aligned} & \text { Disp }{ }^{t} \\ & \text { in rev }{ }^{\mathrm{pa}} \end{aligned}$	Velocity.
2 2 11 4	$63 \cdot 3455$ 61.2946 59.7192	$\begin{aligned} & 612780 \\ & 59.7040 \end{aligned}$	0975 1075	+40.35 43.98	2 1 2 2	$\begin{aligned} & 58 \cdot 7985 \\ & 36 \cdot 1955 \\ & 36 \cdot 1592 \end{aligned}$	$36 \cdot 2300$	1345	$+49.05$
Radial velweity.............. $+19 \cdot 2$									

β ORIONIS 1427.

1908. March 24.
G. M. T. $12^{\text {h }} 15^{\text {ron }}$

Observed by J. S. Plaskett. Measured by W. E. Harper.

Wt.	Mean ot Settings.	Corrected star settings.	$\begin{gathered} \text { Disp }{ }^{2} \\ \text { in revn } \end{gathered}$	Velocity.	Wt.	$\begin{aligned} & \text { Mean } \\ & \text { of } \\ & \text { Settings. } \end{aligned}$	Corrected Star Settings	$\begin{aligned} & \text { Disp } \\ & \text { in rev, } \end{aligned}$	Velocity.
2	63.3382					58:7912			
2 1	$61 \cdot 2918$ 59	61.2798 59.7098	0993	41.09 +46.35	2	36. 2085	$36 \cdot 2340$	1435	$+6045$
1	$59 \cdot 7208$	59.7098	1133	$46 \cdot 35$	2	$36 \cdot 1682$			

3 ORIONIS 1428.
1908. Marcl 24
G. M. T. $122^{2} 3^{\prime \prime}$

Observed on, T. \&. Pthaskett.
Measured hiver

Wt.	Mean of Settings	Currected Star Settings.	$\begin{aligned} & \text { Disp } \\ & \text { in rev } \end{aligned}$	Velocity.	Wt.	$\begin{gathered} \text { Mean } \\ \text { of } \\ \text { Settings. } \end{gathered}$	Corrested Star Settings.	$\begin{aligned} & \text { Dispp } \\ & \text { in res } \end{aligned}$	Velocity.
$\frac{9}{2} 11$	$\begin{aligned} & 63 \cdot 3148 \\ & 61 \cdot 2682 \\ & 59 \cdot 6971 \end{aligned}$	$61 \cdot 2772$ $59 \cdot 7060$	0967 1095	40.01 44.86	2 2 2	58.7726 $36 \cdot 1838$ $36 \cdot 1522$ $36 \cdot 152$	36.2235	1350	+ 47.47
									$+44^{\prime} 03$
					Radial velocity.....			. .	$+19 \cdot 2$

β ORIONIS 1429.
1908 March 24.
G. M. T. $12^{\mathrm{h}} 36^{\mathrm{m}}$
$\left.\begin{array}{l}\text { Observed by } \\ \text { Measured by }\end{array}\right\}$ J. S. Plaskett.

Wt.	Mean of Settings,	Corrected Star Settings.	$\begin{aligned} & \text { Dispt } \\ & \text { in revin } \end{aligned}$	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Dispt in rev ${ }^{\text {ti }}$	Velocity.
2 2 1_{1}^{1}	63.3133 61.2675 59.6988	$61 \cdot 2825$ 59	-1195	-42.21 48.89	2 2 2	$58 \cdot 7619$ 36.1559 $36 \cdot 1282$	$36 \cdot 2215$	- 1310	$+4606$
					Radial velocity $\ldots \ldots \ldots \ldots \ldots \ldots \ldots+21 \cdot 6$				

β ORIONIS 1430.

1908. March 24.
G. M. T. $12^{\mathrm{h}} 42^{\mathrm{m}}$

Obsersed by
Measured by J. S. Plaskett.

Wt.	Mean of Settings.	Corrected Star Settings.	$\begin{gathered} \text { Disp } \\ \text { in rev } \end{gathered}$	V elocity.	Wt.	Mean of Settings.	Corrected Star Settings.	$\begin{aligned} & \text { Dispt } \\ & \text { in rever } \end{aligned}$	Velocity.
2 2 1 $1 \frac{1}{2}$	$63 \cdot 3288$ $61 \cdot 2808$ 59 5068	61.2795 59.7075	0995 1110	a +4117 45.41	${ }_{2}^{2}{ }_{2}^{1 \frac{1}{2}}$	58.7792 36. 1830 36. 1581	36.2190	1285	± 4518

SESSIONAL PAPER No. 25a

190s. March 24.
(: 31. T. $12^{6} 52^{2 \mathrm{~m}}$

10RIONIS 1431 .
Observed by
Meanured by J. S. Pıaskett

β ORIONIS 143.
1908. Mareh 24.
G. M. T. $13^{\mathrm{h}} 16^{\mathrm{m}}$

Observed by
Measured by J. S. Plaskett.

Wt.	Mean of Settings.	Corrected Star Settings.	$\begin{aligned} & \text { Disp } \\ & \text { in rev } \end{aligned}$	Velocity.	W't.	Mean of Settings.	Corrected Star Settings.	$\begin{aligned} & \text { Disp } \\ & \text { in rev }{ }^{\text {ns }} \end{aligned}$	Velocity,
2	$63 \cdot 3394$				2	$58 \cdot 7740$			
2	$61 \cdot 2791$	612816	1011	+41.84		36-1666	36.2106	1201	+42.23
$1 \frac{1}{2}$	$59 \cdot 6956$	59.7020	1055	$43 \cdot 16$	\%	$36 \cdot 1490$			

3 ORIONES 1434 .
1908. March 24.
G. M. T. $13^{\mathrm{h}} 32^{\mathrm{m}}$

Oheprved by
Measured by J. S. Plaskett.

Wt.	$\begin{gathered} \text { Mean } \\ \text { of } \\ \text { Settings. } \end{gathered}$	Correoted Star Settings.	$\begin{aligned} & \text { Disppt } \\ & \text { in res }{ }^{\text {ni }} \end{aligned}$	Velocity.	W't.	$\begin{gathered} \text { Mean } \\ \text { of } \\ \text { Settings. } \end{gathered}$	Corrected Star Settings.	Disp ${ }^{6}$ in reven	Velocity.
2	$63 \cdot 3430$				2	58.7969			
2	$61 \cdot 2968$	61.2790	0985	+40.76	1	36.2018	36.2210	1305	+45:88
1	$59 \cdot 7385$	597215	1254	$51 \cdot 30$	2	36174			

3 ORIONIS 1485.
1908. March 24.
G. M. T. $13^{\mathrm{h}} 39^{\mathrm{n}}$

Observed by
Measured by J. S. Plaskett.

Wt.	Mean of Settings.	Corrected Star Settings.	Disp ${ }^{2}$ in res ${ }^{\text {nh }}$	Velocity.	Wt.	Mean of Spttings.	Corrected Star Setting :	$\begin{aligned} & \text { Dispep } \\ & \text { in rev } \end{aligned}$	Velocity.
2	$63+3082$				2	$58 \cdot 7515$			
$\frac{2}{1}$	$61-2508$	61.2727	0922	-38 15	1)	$36 \cdot 1366$	$36 \cdot 2126$	1221	-4293
1	59 6ã6!	597084	1069	$43 \cdot 32$	2	$36 \cdot 1180$			
				Radial velocity...... $16: 1$					

β ORIONIS 1436 .
1908. Narch 24.
G. M. T. $18^{h} 48^{n m}$

Wt.	Mean of Settings.	Corrected Star Settings.	$\begin{aligned} & \text { Dispi } \\ & \text { in revin } \end{aligned}$	Velocity.	W't.	Mean of Settings.	Corrected Star Setting-	$\begin{aligned} & \text { Disp } y^{2} \\ & \text { in rer } \end{aligned}$	Velocity.
2 2 $1 \frac{1}{2}$	$63 \cdot 3496$ 61.2902 $59 \cdot 7106$	$\begin{aligned} & 61.2769 \\ & 59.6876 \end{aligned}$	$\begin{array}{r} 0957 \\ 0921 \end{array}$	39 39 37	2 1. 2	$\begin{aligned} & 58-8130 \\ & 36-2066 \\ & 36-1699 \end{aligned}$	$36 \cdot 2310$	1405	$\cdots+49.40$ \cdots
				Radial velocity...		...		$17 / 2$	

β ORIONIS 1437.

1908. March 24
G. M. T. $13^{\mathrm{h}} 5.6^{\mathrm{m}}$
$\left.\begin{array}{l}\text { Observed by } \\ \text { Neasured by }\end{array}\right\}$ J. S. Plaskett.

Wrighted mean .	
V_{a}	- 24.36
V_{d}	16
Curvature.	28

Radial velocity.
187

SESSIONAL PAPER No. 25a
1908. March 24.
G. М. T. $1^{14 \mathrm{H}} 0 \mathrm{f}^{\mathrm{m}}$

Wt.	$\begin{gathered} \text { Mean } \\ \text { of } \\ \text { Settiegs } \end{gathered}$	Corrected Star Settings.	$\begin{aligned} & \text { Diay } \\ & \text { in revern } \end{aligned}$	Velocity.	Wt.	Mean of Settings.	Corrected Star Sottings.	$\begin{aligned} & \text { Wiep } \\ & \text { in rever } \end{aligned}$	Velocity.
$\begin{aligned} & 2 \\ & 1 \frac{1}{2} \\ & 1 \end{aligned}$	$\begin{aligned} & 63+3.504 \\ & 61 \cdot 3018 \\ & 59 \cdot 7345 \end{aligned}$	61.2780 59	0975 1160	$40 \cdot 54$ 4746	2 $1 / 2$ 2	$58 \cdot \times 022$ $36 \cdot 2016$ $36 \cdot 1744$	$36 \cdot 2170$	1265	+44 48
Radial velocity +180									

BORIONIS 1439 .
1508. March 30 .
G. I. T. $12^{6} 19^{\mathrm{m}}$

HOR1ONIS 1438.
Ohserved by
Measured by J. S. Plaskbitr.

β ORIONIS 1440 .
1908. March 30.
G. M. T. $12^{42^{40}}$

Ohserved by
Measured by J. S. Plaskemt.

3 ORIONIS 1441.
1908. Mar. 30
G. M. T. $12^{h} 38^{\mathrm{m}}$

Observed by
Measured by J. S. Plaskett.

W:	Mean of Settings.	Corrected Star Settings.	$\begin{aligned} & \text { Disp } \\ & \text { in } \mathrm{rev}^{\mathrm{t}} \end{aligned}$	V Velocity.	Wt.	$\begin{gathered} \text { Mean } \\ \text { of } \\ \text { Settings. } \end{gathered}$	Corrected Star Spettings.	$\begin{aligned} & \text { Dispt } \\ & \text { in reve } \end{aligned}$	V Velucity.
3 2 1	$\begin{aligned} & 63 \cdot 4150 \\ & 61 \cdot 3622 \\ & 59 \cdot 7768 \end{aligned}$	$\cdot .3042$	0919 -0910	-3788 $+37 \cdot 12$	$\stackrel{2}{1 \frac{1}{2}}$	$\begin{aligned} & 58 \cdot 8640 \\ & 36 \cdot 2522 \\ & 36 \cdot 2426 \end{aligned}$	1620	-1139	$-39 \cdot 93$
					Radial velocity -14.5				

β ORIONIS 1442.
1908. Mar. 30. G. M. T. $12^{\text {h }} 49^{\mathrm{m}}$
$\left.\begin{array}{l}\text { Observed by } \\ \text { Measured by }\end{array}\right\}$ J. S. Plaskett.

Wt.	Mean of Settings.	Corrected Star Settings.	$\begin{aligned} & \text { Disp } \\ & \text { in reve } \end{aligned}$	Velocity.	Wt.	Mean of Settings.	Corrected Star Settinge.	$\begin{aligned} & \text { Dispte } \\ & \text { in rev } \end{aligned}$	Velocity.
$\begin{aligned} & 2 \\ & 2 \\ & 13 \end{aligned}$	63•3596 $61+3220$ $59 \cdot 7322$	$\begin{array}{r} 3175 \\ 7220 \end{array}$	$\begin{aligned} & 1022 \\ & 0982 \end{aligned}$	$\begin{array}{r} -43 \cdot 36 \\ 40 \cdot 06 \end{array}$	2 $1 \frac{1}{2}$ 2	$\begin{aligned} & 58 \cdot 8129 \\ & 36 \cdot 1715 \\ & 36 \cdot 1666 \end{aligned}$	$15 i 2$	- 1091	+38.25
					Radial	velocity:..			-17.0

3 OKIONIS 1448 .
1908. April 3.
G. M. T. $12^{\text {b }} 16^{\text {m }}$

Observed by
Measured by J. S. Plaskett.

SESSIONAL PAPER No. 25a
1908. April 3.
G. M. T. $12^{\mathrm{h}} 28^{\mathrm{m}}$
β ORIONIS 1419.
\qquad

β ORIONIS 140.
$908 . A$ pril 3.
G. M. T. $12^{\text {h }} 40^{\mathrm{m}}$
$\left.\begin{array}{l}\text { Observed by } \\ \text { Measured by }\end{array}\right\}$ J. S. Plaskeit.

Wt.	Mean of Settings.	Corrected Star Scttings.	$\begin{aligned} & \text { Viape } \\ & \text { in revon } \end{aligned}$	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	$\begin{aligned} & \text { Dispp } \\ & \text { in revin } \end{aligned}$	Velocity.
$\begin{aligned} & 2 \\ & 2 \\ & 17 \end{aligned}$	63.3316 61.3992 59.7388	61.312t	1319 146	5453 +69.85	2 1 2	58.7768 36.2008 $36 \cdot 1714$	$36 \cdot 2325$	1420	$+49.18$
					Radial velocity +392				

1908. April 3.
G. M, T. $12^{\mathrm{h}} 53^{m}$

Wt.	Mean of Settings.	Corrected Star Settings.	$\begin{aligned} & \text { Disp } \\ & \text { in rev } \\ & \text { res. } \end{aligned}$	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Disp ${ }^{4}$ in revin	Velucity:
2 2 $1 / \frac{1}{3}$	$\begin{aligned} & 63 \cdot 3301 \\ & 61.3062 \\ & 59 \cdot 7310 \end{aligned}$	$61 \cdot 3007$ 59.7260	- 1202	+ +4969 52.98	2 1 $1 \frac{1}{2}$ 2	58.7860 $36 \cdot 2164$ $36 \cdot 1830$	$36 \cdot 2275$	1370	+4847

Curvature.
-28
Radial velocity

8 ORIONIS 145
lshes. Auril 4.
(i. M. T. $12^{46} 19$

Wt.	Mean of Settings.	Corsected Star Settings.	$\begin{aligned} & \text { Disp } \\ & \text { in res } \end{aligned}$	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	$\begin{aligned} & \text { Disp }{ }^{t} \\ & \text { in rev. } \end{aligned}$	Velocity.
2	63.3698				2	$58 \cdot 8305$			
3	$61 \cdot 3515$	61.3069	1264	+5225	2	$36 \cdot 2996$	36.2580	1638	-57 59
2	$59 \cdot 7708$	$59 \cdot 7224$	1254	$51 \cdot 51$	2	$36 \cdot 2358$			

Ohserved by (J. S. Phaxkkts.
Measured by
β ORIONIS 1458.
1908. April 4.
G. M. T. $12^{2} 28^{m}$

Radial velocity -274

3 ORIONIS 1459.
1908. April 4.
G. M. T. $12^{\mathrm{h}} 38^{\mathrm{m}}$

SESSIONAL PAPER No. 25a
1908. April 13.
G. M. T. $12{ }^{12} 10^{m}$
\&ORIONIS 1464.
G. M. T. ${ }^{121} 10^{\mathrm{m}}$

Olnerved by
Measured by

β ORIONIS $14 \pi 0$.
1908. April 13.
G. M. T. $12^{\text {hi }} 22^{\mathrm{m}}$
$\left.\begin{array}{l}\text { Observed by } \\ \text { Measured by }\end{array}\right\}$ J. S. Plaskhtt.

Wt.	$\begin{gathered} \text { Mean } \\ \text { of } \\ \text { Settings. } \end{gathered}$	Corrected Star Settings.	$\begin{aligned} & \text { Disppt } \\ & \text { in revim } \end{aligned}$	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	$\begin{aligned} & \text { Disp } \\ & \text { in rev } \\ & \text { rev } \end{aligned}$	Velocity.
	$\begin{aligned} & 63 \cdot 3425 \\ & 61 \cdot 3570 \\ & 61 \cdot 3030 \\ & 59 \cdot 7213 \end{aligned}$	$\begin{aligned} & 3230 \\ & 7449 \\ & \hline \end{aligned}$	11107	45.63 +9.03		$\begin{aligned} & 58 \cdot 7861 \\ & 36 \cdot 1305 \\ & 36 \cdot 1485 \end{aligned}$	1700	-1219	-42.73
					Weighted$\begin{gathered}\text { mean } \\ \mathrm{V}_{a} \\ \mathrm{~V}_{\text {a }} \ldots \ldots \\ \text { Curvature }\end{gathered}$				
					Radial velocity........			..	$+25 \cdot 0$

β ORIONIS 1471.
1908. April 13.
C. M. T. $12^{\text {h }} \mathrm{atm}^{\text {m }}$

Observed by
Measured by I. S. Plaskett.

Wt.	Mean of Settings.	Corrected Star Settings.	$\begin{aligned} & \text { Dispt } \\ & \text { in rev } \end{aligned}$	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Disp, in rev ${ }^{\text {ne }}$	V elasity
1.	$63 \cdot 3504$					58.7960			
21	$61 \cdot 3036$	3156	1083	$+4258$	14	$36 \cdot 1611$	-1876	1395	$+48 \cdot 89$
$1 \frac{1}{1}$	$59 \cdot 7275$	7400	1162	$47 \cdot 40$					

β ORIONIS 1873.
1908. Sept.
G. M. T. $21^{b^{\prime}} 22^{m}$

Observed by J. B. Cannos. Measured by J. S. Plassett.

Wt.	Mean of Settings.	Corrected Star Settings.	$\begin{aligned} & \text { Disp } \\ & \text { in } r e \mathrm{y}^{\mathrm{n}} \end{aligned}$	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	$\begin{aligned} & \text { Disp } \\ & \text { in reves } \end{aligned}$	Velocity.
$\begin{aligned} & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \end{aligned}$	633948 $61 \cdot 4080$ $61 \cdot 2458$ $59 \cdot 6682$	$\begin{array}{r} 2495 \\ -6722 \end{array}$	004 is 0208	$\begin{aligned} & +218 \\ & +8.46 \end{aligned}$	2 2 1	$\begin{aligned} & 58 \cdot 8286 \\ & 361061 \\ & 35.9859 \end{aligned}$	9890	0168	$-5 \cdot 87$
					Weig	$\begin{gathered} \text { d mean } \\ V_{a} \\ V_{d} . \\ \text { Curvatu }^{2} \end{gathered}$	\cdots	24	$\begin{array}{r} 308 \\ +25.29 \\ +\quad 09 \end{array}$
						dial velocit		-	$+28 \cdot 2$

1908. Sept. 7.
(i. M. T. 22210^{m}
β ORIONIS 1874.

Observed by J. B. Cannon. Measured by J. S. Plaskett.

1908. Oct. 13.
G. M. T. $21^{\text {L }} 19^{\text {mi }}$

3 ORIONIS 1935.
Mbserved by
Measured by ,I. S. Plaskft.

Weighted mean
2.00
$\stackrel{V}{i}$
$+2066$
Curvature
-
Radial velocity
$+183$

Observed by Meanured by $/$ J. S. Plaskett.
1908. Oct. 13.
G. M. T. $21^{\text {h }}+{ }^{(1)}$

3 ORIONIS 1937.
1908, Oct, 13.
(8. I. T. $22^{\mathrm{b}} 19^{\mathrm{m}}$

3 ORIONIS 1938.
1908. Oct. 13.
(i, D. T. $22^{24} 47^{\mathrm{m}}$
Observel by it.
Measured by

Wt. \begin{tabular}{c}

Rean
of
Settings

\hline
\end{tabular}

SORIONIS 197 K .

190s. Nun, 21
G. M. T. 12 $2 \boldsymbol{q}^{\prime \prime}$

Observed by (J. S. Plaskett.
Measured by

β ORIONIS 1979.
1908. Nov. 21
G. M. T. $18^{\mathrm{h}} 43^{\mathrm{m}}$

Observed by
Measured by J. S. Plaskeit.

Wt.	Mean of Settings.	Corrected Star Settings.	$\begin{aligned} & \text { Dispt } \\ & \text { in rey } \end{aligned}$	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	$\underset{\text { in } \text { rev }^{\text {nis }}}{\text { Dispt }}$	Velocity.
2	63.3061				2	$58 \cdot 7652$			
${ }_{1}^{2}$	61.3300				2	36.1120			
$\frac{12}{12}$	61.1662 59.6141	2174 6591	0353	+14 39		$36 \cdot 0187$	0587	0106	$+372$

β ORION1S 1980.
1598. Nov. 21.
G. M. T. $19^{\mathrm{b}} 00^{\mathrm{m}}$
$\left.\begin{array}{l}\text { Observed by } \\ \text { Measured by }\end{array}\right\}$ J. S. Plashett.

Wt.	$\begin{gathered} \text { Mean } \\ \text { of } \\ \text { Settings. } \end{gathered}$	Corrected Star Settinge.	$\begin{aligned} & \text { Disp } \\ & \text { in rev } \end{aligned}$	Velocity.	Wt.	$\begin{aligned} & \text { Mean } \\ & \text { of } \\ & \text { Settings. } \end{aligned}$	Corrected Star Settings,	$\begin{aligned} & \text { Disp } \\ & \text { in rev } \end{aligned}$	Velocity.
2	$63 \cdot 3533$				2	58.7995			
0	61.2382	2480	-0357	+14.72	11	$36 \cdot 0917$	1090	0609	$+2134$
2	$59 \cdot 6646$	-6745	0507	$20 \cdot 58$					

1948. Nov. 21.
(.) M. T. $19^{\mathrm{h}} 33^{\mathrm{m}}$

$\left.\begin{array}{l}\text { Obeerved by } \\ \text { Measured by }\end{array}\right\}$ J. S. Plaskett.

कु ORIONIS 1984.
$\left.\begin{array}{l}\text { Observed by } \\ \text { Measured by }\end{array}\right\}$ J. S. Plaskett.
1948. Nov. 28.
G. M. T. $16^{\text {h }} 05^{\text {m }}$

β ORIONIS 1985.
Observed by
1908. Now 28
(f. M. T. $16^{\text {h }} 34^{\text {m }}$

Measured by $\}^{\text {J. S. S. Plaskett. }}$

Wt.	$\begin{gathered} \text { Mean } \\ \text { of } \\ \text { Settings. } \end{gathered}$	Corrected Star Settings.	$\begin{aligned} & \text { Dispt } \\ & \text { in rever* } \end{aligned}$	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	$\begin{aligned} & \text { Disp } \\ & \text { in rev } \end{aligned}$	Velocity.
$\begin{aligned} & 2 \\ & 2 \\ & 3 \\ & 2 \\ & 2 \end{aligned}$	63.4401 $61 \cdot 4112$ 612867 $59 \cdot 7043$	2527 6713	0405 0475	1665 +19.37	2 2 12 12	$58 \cdot 8418$ $36 \cdot 1728$ 36. 1352	1155	0674	+23.63
					Radial velocity......... 22%				

β ORIONIS 1986.
Observed by
1908. Nov. 2 S .

Meazured hy f.J. S, Plaskett.
G. M. T. $1^{\text {h }} 0 \mathrm{~B}^{\mathrm{m}}$
areaticu by)

β ORIONIS 1987.
1908. Dee. 1.
(G. M. T. $17^{\text {in }} 53^{\text {nu }}$
$\left.\begin{array}{l}\text { Observed by } \\ \text { Measured by }\end{array}\right\}$ J. S. Plaskett.

β ORIONIS 1988.
190S, Dec. 1.
G. M. T. $18^{h} 18^{\text {i }}$
$\left.\begin{array}{l}\text { Observed by } \\ \text { Measured by }\end{array}\right\}$ J. S. Plaskett.

SESSIONAL PAPER No. 25a
A ORIONIS 1989.
1908. Dec. 1.
G. M. T. $18^{\mathrm{h}} 36^{\mathrm{m}}$
$\left.\begin{array}{l}\text { Obseried by } \\ \text { Measured by }\end{array}\right\}$ J. S. Plesskett.

Wt.	$\begin{gathered} \text { Mean } \\ \text { of } \\ \text { Settings. } \end{gathered}$	Corrected Star Settings.	$\begin{aligned} & \text { Disp } \\ & \text { in rev } \end{aligned}$	Velocity.	WV.	$\begin{gathered} \text { Mean } \\ \text { of } \\ \text { Settings. } \end{gathered}$	Corrected star Settings.	$\begin{aligned} & \text { Disp } \\ & \text { in rev } \end{aligned}$	Velocity.
2 2 2 2 $\frac{1}{2}$	$63 \cdot 3437$ 61.3587 61.2166 59.6620	2335 6760	-0212	874 +2129	2 2 1 $1 \frac{1}{2}$	$\begin{aligned} & 58 \cdot 7973 \\ & 36 \cdot 1794 \\ & 36 \cdot 1287 \end{aligned}$	- $1010{ }^{3}$	0535	$+1875$
					Radial velocity............				$+161$

β ORIONIS 199\%.
$\left.\begin{array}{l}\text { Observed by } \\ \text { Measured by }\end{array}\right\}$ J. S. Plaskett.
1908. Dec. 1.
G. M. T. $18^{\mathrm{h}} 52^{\mathrm{m}}$

Wt.	Mean of Settings.	Corrected Star Settings.	$\begin{aligned} & \text { Disp }{ }_{\text {in }}^{\text {in rev }} \end{aligned}$	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	$\begin{aligned} & \text { Disp } \\ & \text { in rev } \end{aligned}$	Velocity,
3 2	63.3478 $61 \cdot 3679$ $61 \cdot 2397$ $59 \cdot 6724$	$\begin{aligned} & 2520 \\ & 6830 \end{aligned}$.0397 .0592	+1636 24.15	1	$58 \cdot 8000$ $36 \cdot 1850$ $36 \cdot 1648$	1320	-0839	+29.41
					Radial velocity $+23 \cdot 1$				

β ORIONIS 2008.
1408. Dec. 5.
G. M. T. $16^{17} 10^{m}$

Observed by J. B. Cannon. Measured by J. S. Plaskett.

Wt.	Mean of Settings.	Corrected Star Settings.	$\begin{aligned} & \text { Dispt } \\ & \text { in revis } \end{aligned}$	Velocity.	Wt.	$\begin{gathered} \text { Mean } \\ \text { of } \\ \text { Settings. } \end{gathered}$	Corrected Star Settings.	$\begin{aligned} & \text { Disp } \\ & \text { it rev } \end{aligned}$	Velocity.
3 13	$\begin{aligned} & 63 \cdot 3465 \\ & 61 \cdot 3640 \\ & 61.2456 \\ & 59 \cdot 6764 \end{aligned}$. 2215	$\begin{aligned} & 0110 \\ & .0553 \end{aligned}$	$\begin{array}{r} +16 \cdot 95 \\ +22.62 \end{array}$	1	$58 \cdot 8090$ $36 \cdot 2298$ $36 \cdot 2074$	1715	${ }^{-1} 0810$	$\underline{+28 \%}$
					Radial velocity. $+22 \cdot 6$				

1908. Dee. b .
G. M. T. $16^{\text {¹ }} 22^{\circ}$

1909. Dec. J.
G. M. T. $16^{\text {h }} 38^{m}$

Observed by (J. S. Plaskett.
Measured by
OHIONIS 2005 .
Observed by in I. S. Plasketr.
Measured by

β ORIONIS 2006 .
Observed by
1908. Dec. 5.
(4. M. T. $16^{\prime \prime} 53^{\prime \prime \prime}$ Measured by j J. S. Plaskert.

SESSIONAI. PAPER No. 25a
1908. 150. 21.
(3. M. T. $15^{\prime \prime} 24^{\prime \prime \prime}$
s ORIGNIN 2004 .

(1)RIONIS 2000.
19018. Dec. 21.
G. M. T. $15^{\mathrm{h}} 29^{m}$

Observed by T. H. Parker.
Measured hy J. S. Plaskett.

β ORIONIS 2057.
1908. Vec. 21.
G. M. T. $16^{\mathrm{h}} 54^{\mathrm{m}}$

Observed by T. H. Parker.
Measured by J. S. Pl.sskett.

β ORIONIS 9066.
1908. Dec. 22,
G. M. T. $17^{\mathrm{h}} 52^{\text {m }}$

SESSIONAL PAPER No. 25a
β ORIONIS 20:7.
1903. Dec. 22.
G. M. T. $18^{\mathrm{h}} 02^{\mathrm{m}}$
$\left.\begin{array}{l}\text { Observed by } \\ \text { Measured by }\end{array}\right\}$ J. S. Plaskktt.

β ORIONIS 206S.
1908. Dec. 22.
G. M T. $18^{\mathrm{h}} 14^{\mathrm{m}}$

Observed by ; J. S. Plaskett.
Measured by

β ORIONIS 2070.

1908. Dec. 23.
G. M. T. $14^{\mathrm{h}} 00^{\mathrm{m}}$

Ohserved by W. E. Hakper.
Measured by J. S. Plaskett.

Wt.	$\begin{gathered} \text { Mean } \\ \text { of } \\ \text { Settings. } \end{gathered}$	Corrected Star Settings.	$\begin{aligned} & \text { Disp } \\ & \text { in rev } \end{aligned}$	Velocity.	Wt.	$\begin{gathered} \text { Mean } \\ \text { of } \\ \text { Settings. } \end{gathered}$	Corrected Star Settings.	$\begin{aligned} & \text { Disp, } \\ & \text { in rev } \end{aligned}$	Velocity.
3 2 3 3 $1 \frac{1}{2}$	$63 \cdot 2758$ 612947 $61 \cdot 1996$ $59 \cdot 6100$	2490 6580	-0685	3832 +2516	$\stackrel{2}{2}$	58. 7363 36. 1449 $36 \cdot 1500$	- 1990	1085	+3815
-23 Radial velocity 20.9									

9-10 EDWARD VII., A. 1910
3 ORIONIS 2071.

1508, Dec. 98.
G. M. T. $14^{1 /} 40^{n}$

Observed by W. E. Habper.
Measured by J. S. Plaskktt.

Wt.	$\begin{gathered} \text { Mean } \\ \text { of } \\ \text { Suttings. } \end{gathered}$	Corrected Star Settings.	Disp ${ }^{1}$ in revm	Velocity.	Wt.	Mean of S-ttings.	Corrected Star Settings,	Disp ${ }^{t}$ in rev ${ }^{\text {H/ }}$	Velocity,
$\begin{aligned} & \frac{2}{2} \\ & \frac{3}{3} \\ & 1 \end{aligned}$	(63) 3263 $61 \cdot 3499$ $61 \cdot 2612$ $09 \cdot 6928$	$\begin{aligned} & 2589 \\ & 6920 \end{aligned}$	$\begin{array}{r} 1775 \\ 0935 \end{array}$	$\begin{array}{r} 32.04 \\ +38.25 \\ \hline \end{array}$	2 2 1	$\begin{aligned} & 58 \cdot 7844 \\ & 362102 \\ & 36 \cdot 2124 \end{aligned}$	1164	- 1059	$+37 \cdot 23$
					Weig			$\begin{array}{r} -7 \cdot 36 \\ \cdots \quad 28 \end{array}$	$\begin{array}{r} -3432 \\ -\quad 12 \end{array}$
						1 velocity			26.8

[908. Dec. 23.
(土. M. T. $15^{\text {h }} 08^{\mathrm{m}}$

Oberted by J. B. Cannox. Measured by J. S. Pliskett.

190世. Dec, 23.
G. M. T. $15^{\text {h }}$ 압

3 ORIONIS 2073.

SESSIONAL PAPER No. 25a
1908. Dec. 26.
G. M. T. $1^{1 / 5} 50^{m}$

190k Dec. 26.
G. M. T. $16^{\mathrm{h}} 00^{\mathrm{m}}$

SORIONIS $20 R 6$.

Ohmerved by IJ. S. Plaskent.
M-asured by f.

3 ORIONIS 2076.

3 ORIONIS $20 \% 7$.
1908. Dee 26,
(,$~ M$. T. $16^{\text {h }} 09^{11}$

- Measerved by IJ, S. Plaskett.

W't.	```Mean of Settings.```	Corrected star Settings.	$\begin{aligned} & \text { Disp } \\ & \text { in res } \end{aligned}$	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings	$\begin{aligned} & \text { Dispt } \\ & \text { in rev } \end{aligned}$	Velocity.
2	63.3424				2	58.7943			
3	$61 \cdot 2612$	2450	6445	26.66	11	36.2132	21152	1177	+4138
					Radial velocity $-22 \cdot 5$				

1908. Dee 26.
G. M. T. $16^{\mathrm{h}} 18^{\mathrm{mm}}$

3 ORIONIS 2079.
1908. Dec. 27.
G. M. T. $14^{\mathrm{h}} \mathrm{G} 7^{\mathrm{m}}$

1908. Dec. 27.
G. M. T. $\quad 15^{h} 10^{m}$

Wt.	Mean of Settings.	Correeted Star Settings.	$\begin{aligned} & \text { Dispe } \\ & \text { in reve } \end{aligned}$	Velocity.	Wt.	Mean of Setting:	Corrected Star Settings.	$\begin{aligned} & \text { Disp } \\ & \text { in rev } \end{aligned}$	Velucity.
2	$63 \cdot 3504$ 61.3730				2	58.8064 $36 \cdot 18: 3$			
3 1	$61 \cdot 3054$ $59 \cdot 7017$	2780 6790	0975 .0825	4081 3375	$\frac{1}{1}$	$36 \cdot 1975$	2095	- 1190	+4184
Radial velocity.... +297									

SESSIONAI PAPER No. 25a

1908. Dec. 31.
(7. M. T. $15^{h} 19^{\mathrm{m}}$

B ORIONIS 2082.

Wt.	Mean of Settingn.	Corrected star Settings.	$\begin{aligned} & \text { Disp } \\ & \text { in reven } \end{aligned}$	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	$\begin{aligned} & \text { Disp } \\ & \text { in rev } \end{aligned}$	V elocity.
2222	54.7142				2	58.0938			
	54.0115 58.9684	-9790			2	45. 28660	3xis	0368	+3853
	- 53.4146	+ 4235	0224	25.84 37.03				
Radial velocity +2277									

β ORIONIS 2083.

194k. Dec. 31.
G. M. T. $15^{h} 23^{m}$

Observed by W. E. Harper.
Meanured by J. S. Plaskett.

Observed by W. E. Harper.
Measured by J. S. Plabkett.

SORIONIS 2034.

Observed bv W. E. Harper.
Measured by J. S. Plasketr.

1908. Dec, 31.
(7. M. T. $15^{\text {h }} 29^{m}$

Weighted mean.	$+34 \cdot 01$
Va..	10.77
$V d$.	
Curvature	- 28
Radial velocity	23.0

ЗORION1N 2OS5.

140\%. Dec. 31.
(., M. T. $15^{\mathrm{h}} 5 i^{\mu}$

Observed by W. E. Habrer,
Measured by J. S. Plaskett.

3 ORIONIS 20192.
1909. Jan. 6.
G. M. T. $16^{\mathrm{h}} 49^{\mathrm{m}}$

Observed by W. E. Harprr.
Measured by J. S. Plaskett.

Wt.	Mean of Settings.	Corrected Star Settings.	$\begin{aligned} & \text { Disp } \\ & \text { in res } \end{aligned}$	Velocity.	Wt.	M+an of Settings.	Corrected Star Settings.	$\begin{aligned} & \text { Dispt } \\ & \text { in rev } \end{aligned}$	Velocity.
$\begin{aligned} & \begin{array}{l} 2 \\ 2 \\ 3 \\ 1 \frac{1}{2} \end{array} . \end{aligned}$	$\begin{aligned} & 5+7150 \\ & 540102 \\ & 53.9756 \\ & 53 \cdot 4128 \end{aligned}$	$\begin{array}{r} 9860 \\ -4230 \end{array}$	$\begin{aligned} & 0294 \\ & 0328 \end{aligned}$	$\begin{array}{r} -33 \cdot 92 \\ 37 \cdot 60 \end{array}$	$\stackrel{2}{1 \frac{1}{2}}$	$\begin{aligned} & 53 \cdot 0905 \\ & +5 \cdot 2713 \\ & 45 \cdot 2734 \end{aligned}$	-2730	- 024	$+25 \cdot 44$
					Weighted mean 				-32.72
					Radial velocity............. +191				

3 ORIONIS 2093.
1909. Jan. 6.
G. M. T. $16^{1} 53^{\mathrm{m}}$

Observed by W. E. Harper.
Measured by J. S. Plaskett.

Wt.	Mean of Settings.	Corrected Star Settinge.	$\begin{aligned} & \text { Disp,t } \\ & \text { in rever } \end{aligned}$	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings-	Dispt in rever	Velocity:
$\begin{aligned} & 2 \\ & 2 \\ & 3 \\ & 1 \frac{1}{2} \end{aligned}$	$\begin{aligned} & 5+7120 \\ & 5+.0046 \\ & 53 \cdot 9727 \\ & 58 \cdot 4136 \end{aligned}$	$\begin{array}{r} 92601 \\ -4250 \end{array}$	$\begin{aligned} & 0294 \\ & 0348 \end{aligned}$	$\begin{array}{r} 33.92 \\ 39 \cdot 89 \end{array}$	2 2 2	$\begin{aligned} & 53 \cdot 0884 \\ & 45 \cdot 2787 \\ & 45 \cdot 2773 \end{aligned}$	2750	0263	$+27 \times 3$
					Radial velocity 1919.6				

SESSIONAL PAPER No. 25a
forIONIN 20.4.
1909. Jan. 6.
G. M. T. $17^{\mathrm{h}} 13^{\mathrm{m}}$

Wt.	$\begin{gathered} \text { Mean } \\ \text { of } \\ \text { Scttings. } \end{gathered}$	Corrected Star Setting .	$\begin{aligned} & \mathrm{D}_{1 \times 1}, 1^{\prime} \\ & \text { in } \mathrm{v}+\mathrm{v}^{\prime \prime \prime} \end{aligned}$	Velocity.	W't.	Mean of Settmges	Corrected Star Settings.	$\begin{aligned} & \text { Disp } \\ & \text { in rev.". } \end{aligned}$	Velocity.
2	547235				2	531074			
$\stackrel{2}{3}$	54.0160 $63 \cdot 9467$	9850	0284	32.77		4.i 2957	2430	0343	$+35 \cdot 81$
2	$53 \cdot 4193$	4143	0241	$27 \cdot 63$					

1909. Jan. 6.
G. M. T. $17^{\text {h }} 16^{m}$

Olmerved by W. E. H.abret.
Measured liy I. S. Plaskett:
andial velocity

3 ORIONIS 2095.
Olmerved by W. E. Hikieh.
Measured by J. S. Plasketi.

3 ORIONIS 2105.
1909. Jan. 7.
G. M. T. $12^{11} 49^{\text {m }}$

Observed by
Measired by J. S. Plaskett.

Weighted mean		$+30 \cdot 57$
V_{a}	-13.59	
Va	- 11	
Curvature	- $\cdot 28$	
Radial velocity.		+16

1904 Jan .7.
(シ. M. T. $13^{\text {b }} 01^{m}$
$\left.\begin{array}{l}\text { Olserved by } \\ \text { Measured by }\end{array}\right\}$ J. S. Plaskett.

3 ORIONIS 2107.
1969. Jan. 7.
it. M. T. $13^{1 \mathrm{n}} 04^{\mathrm{mm}}$
$\left.\begin{array}{l}\text { Observed by } \\ \text { Measured by }\end{array}\right\}$ J. S. Plaskett.

1909. Jan. 7.
G. M. T. $13^{\mathrm{h}} 07^{-\mathrm{m}}$

Observed by
Measured by J. S. Plaskett.

SESSIONAL PAPER No. 25a
\& ORIONIS 2111.
1903. Jan. 7.
G. M. T. $16^{\text {in }} 27^{\text {m }}$

Observed by
Measured by J. S. Plaskett.

Wt.	Mean of Settings	Corrected Star Settings	$\begin{aligned} & \text { Dispt } \\ & \text { in rev } \end{aligned}$	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	$\begin{gathered} \text { Diop }{ }^{\text {b }} \\ \text { in rev } \end{gathered}$	Velocity:
	63. 3019					587700			
${ }_{2}^{2}$	61.3278				1 ${ }^{\frac{1}{2}}$	36.2038	2023	0693	$+2446$
2	612471 59.6883	2315 6760	0829	$34 \cdot 37$ $43 \cdot 81$	2	36.2253		

Weighted mean	$+3316$
$\mathrm{V}_{\text {a }} \ldots$	13.59
$\mathrm{V}_{\text {d }}$	-11
Curvature.	28
Radial velocity.	$+19 \cdot 2$

β ORIONIS 2112.
1:109. Jan. 7.
(i. M. T. $16^{\text {b }} 37^{\mathrm{m}}$
$\left.\begin{array}{l}\text { Observed by } \\ \text { Measured by }\end{array}\right\}$ J. S. Plaskett.

β ORIONIS 2114.
1909. Jan. 7.
G. M. T. $16^{\text {h }} 56^{\mathrm{m}}$

Observed by
Measured by J. S. Plaskett.

Wt. \begin{tabular}{c}

Mean
of
Sottings.

\hline
\end{tabular}

; ORIONIS 2117 .
1909. Jan. 8.
G. M. T. $154{ }^{\prime \prime}$

Observed by T. H. Parker.
Measured by J. S. Plaskett.

3 ORIONIS 2118.
1409. Jan, 8.
G. M. T. $15^{\mathrm{h}} 52^{2 m}$

Observed by T. H. Palker.
Measured by J. S. Plaskett.

1909. Jan. 12
G. M. T. $11^{\mathrm{h}} 55^{\mathrm{m}}$

3 ORIONIS 2129.

Wt.	Mean of Settinge.	Corrected Star Settings.	$\begin{aligned} & \text { Disp } \\ & \text { in reve } \end{aligned}$	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	$\begin{aligned} & \text { Disp }{ }^{t} \\ & \text { in reve } \end{aligned}$	Velocity.
2 2 $1 / 2$ 2^{2}	$\begin{aligned} & 54 \cdot 7074 \\ & 53 \cdot 9968 \\ & 53 \cdot 9694 \\ & 53 \cdot 4238 \end{aligned}$.9735 4275	0303 -0493	$\begin{array}{r} +38.80 \\ 54.97 \end{array}$	2 2 2	$53 \cdot 0858$ 45. 2886 $45 \cdot 2856$	- 2905	0316	$+34.92$

今 OFIIONIX 2123.
1905. Jan. 12
G. M. T $11^{\text {He }}$ [9

3 ORIONIS 2124.
1909. Jan. 12.
G. M. T. $12^{\text {h }} 09^{m}$

Observed by
Measured by J. S. Piankett.

Wt.	Mean of Settings.	Corrected Star Settings.	$\begin{aligned} & \text { Disp } \\ & \text { in reven } \end{aligned}$	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	$\begin{aligned} & \text { Disp } \\ & \text { in revis } \end{aligned}$	Velocity.
2 2 3 $1 \downarrow$	$54 \cdot 7008$ $53 \cdot 9528$ $53 \cdot 9598$ $58 \cdot 4100$	$\begin{array}{r} 9700 \\ 4225 \end{array}$	$\begin{aligned} & 0268 \\ & 0443 \end{aligned}$	$29 \cdot 90$ $+49 \cdot 39$	2 2 2	$\begin{aligned} & 53 \cdot 0750 \\ & 45 \cdot 2813 \\ & 4.2783 \end{aligned}$	2905	0316	+34 +92

1 ORIONIS 2125.
1909. Jan. 12.
G. M. T, $12^{\mathrm{h}} 12^{\mathrm{m}}$

Observed by
Measured by J. S. Plaskett.

Wt.	Mean of Settings.	Corrected Star Settings.	$\begin{aligned} & \text { Disp } \\ & \text { in } \mathrm{re} \mathrm{v}^{\mathrm{tan}} \end{aligned}$	Velocity.
2 2 2	$\begin{aligned} & 53.0858 \\ & 45.2870 \\ & 45.2840 \end{aligned}$	2905	0316	-34 92

Curvature. 98
Radial velocity...................... $-21 * 3$

9-10 EDWARD VII., A. 1910
β ORIONIS 2126.
1909. Jan. 12.
G. M. T. $12^{\mathrm{h}} 15^{\mathrm{m}}$
$\left.\begin{array}{l}\text { Observed by } \\ \text { Measured by }\end{array}\right\}$ J. S. Plaskett.

1909. Jan. 12
G. M. T. $12^{\text {h }} 18$

1909. Jan. 13.
G. I. T. $15^{4} 36^{m}$

SESSIONAL PAPER No. 25a
1909. Jan. 13.
(., M. T. $15^{h} 41^{m}$
β ORION IS 2129.

W^{*} t.	Mean of Settings.	Corrected Star Settings.	$\begin{aligned} & \text { Dispé } \\ & \text { in rev } \end{aligned}$	Velucity.	W't.	Mean of Nettings.	Corrected Star Settinge.	$\begin{aligned} & \text { Disp } \\ & \text { in rest } \end{aligned}$	Velocity.
2 2 21 21 12	$\begin{aligned} & 54 \quad 7082 \\ & 54 \cdot 0002 \\ & 53 \cdot 9730 \\ & 53 \cdot 4061 \end{aligned}$	9748 40688	$\begin{array}{r} 0316 \\ 0286 \end{array}$	+ +36.54 +32.86	$\stackrel{2}{2}$	$\begin{aligned} & 03 \cdot 0893 \\ & 4 \cdot \cdot 29,8 \\ & 45 \cdot 2852 \end{aligned}$	2810	-0221	+23-2i
		-		Weighted mean. \mathbf{V}_{a} Vd..... Curvature $\begin{array}{r}15.81 \\ .09 \\ -28 \\ \hline\end{array}$					+31 90
				Radial velocity					+157

1909. Jan. 13.
(土. M. T. $15^{1 \mathrm{t}} 46^{\mathrm{ma}}$

3 ORIONIS 2130.

Wt.	Mean of Settings.	Corrected Star Settings.	$\begin{aligned} & \text { Disppl} \\ & \text { in rev } \end{aligned}$	Velocity.	Wt.	$\begin{gathered} \text { Mean } \\ \text { of } \\ \text { Settings. } \end{gathered}$	Corrected Star Settings.	$\begin{aligned} & \text { Disp } \\ & \text { in rev } \end{aligned}$	Velocity.
2 2 2 1	$\begin{aligned} & 54 \cdot 6985 \\ & 53 \cdot 993 \\ & 53 \cdot 9782 \\ & 53.4029 \end{aligned}$	$\begin{aligned} & 9880 \\ & 4115 \end{aligned}$	0448 0333	$+51 \cdot 82$ $+38 \cdot 26$	2 2 2	$\begin{aligned} & 53 \cdot 0813 \\ & 45 \cdot 2892 \\ & 45 \cdot 2940 \end{aligned}$	-2984	-0395	-4148
					Radial velocity.............. 28 s				

β ORIONIS 2142.
1909. Jan. 15.
G. M. T. $15^{\mathrm{h}} 1 \mathrm{l}^{\mathrm{m}}$

Observed hy W. E. Harper.
Measured by J. S. Pbaskett.

Wt. \begin{tabular}{c}

Mean
of
Settings.

\hline
\end{tabular}

9-10 EDWARD VII, A. 1910
\& ORIONIS 2141.
1:998.
Observed by J. B. Caxxon,
Measured by J. S. Plaskett.

W't.	Me.on of Settings.	Corrected Star Setting-	$\begin{aligned} & \text { Disu, } \\ & \text { in rev } \end{aligned}$	Velocity	Wt.	```Mean of Settings.```	Corrected Star Settings.	$\begin{aligned} & \text { Disp } \\ & \text { in } R=v^{n \prime \prime} \end{aligned}$	Velocity.
2 2 2 1	$\begin{aligned} & 36.6150 \\ & 54.7025 \\ & 539628 \\ & 33.9821 \end{aligned}$	$\begin{aligned} & 4778 \\ & 3975 \end{aligned}$	$\begin{array}{r} 0346 \\ -0193 \end{array}$	-40.02 $22 \cdot 18$	2 2 3	$\begin{aligned} & 33 \cdot 0735 \\ & 45 \cdot 2772 \\ & 4.2775 \end{aligned}$	294)	. 0351	- $36 \cdot 815$
					Radial velocity				18.6

1909. Jan. 15.
G. II. T. $15^{\prime \prime} 15^{\text {m }}$

Observed by J. B. Casson, Measured by J. S. Plaskett.

Wt.	Mean of Settings.	Corrected Star Settings.	$\begin{aligned} & \text { Dispt } \\ & \text { in reving } \end{aligned}$	Velocity.	Wt.	$\begin{gathered} \text { Mean } \\ \text { of } \\ \text { Settings. } \end{gathered}$	Corrected Star Settings.	$\begin{aligned} & \text { Disp } \\ & \text { in rev } \end{aligned}$	Velocity.
$\begin{aligned} & 2 \\ & 2 \\ & 3 \\ & 3 \\ & \mathrm{I}_{2} \frac{1}{2} \end{aligned}$		$\begin{aligned} & 9814 \\ & 40 \pm 0 \end{aligned}$			$\stackrel{2}{6}$	53.0946			
			0412	476	2	45. 30062	3061	0472	- $49 \cdot 56$
						eighted mean		16. ${ }^{+}$	4408
						$\mathrm{V}_{\text {a }}$		1650 $-\quad .94$	
						Curva	ture.	- 28	
						Radial vel	locity +	$5 \cdot 2$

3 ORIONIS 2144.
1909. Jan. I5.
G. M. T. $15^{19^{1}}$

Observed by J. B. CAnnon.
Measured by J. S. Plaskett.

Wt.	Mean of Settings.	Corrected Star Settings.	$\begin{aligned} & \text { Disp } \\ & \text { in rev } \end{aligned}$	Velocity.	Wt.	$\begin{aligned} & \text { Mean } \\ & \text { of } \\ & \text { Settings. } \end{aligned}$	Corrected Star Settings.	$\begin{aligned} & \text { Disp } \\ & \text { in rev } \end{aligned}$	Velocity.
2	it 7053				2	53.0782			
1	$53 \cdot 9672$.9750	0318	-36.78	2	4. 2845	2920	0351	-3476
1	$53 \cdot 4103$	4200	0118	$48 \cdot 03$					

SESSIONAL PAPER No. 25a
1909. Jan. 16.
(土, M. T. $12^{\mathrm{h}} \mathrm{Ls}^{\mathrm{m}}$
\% ORTONI' 2151
1909. Jan. 16.
(i. M. T. $12^{\mathrm{h}} 35^{\mathrm{n}}$
$\left.\begin{array}{l}\text { Mhserved by } \\ \text { Mearnured hy }\end{array}\right\}$ J. S. I'

\checkmark ORIONIN 2152.
Olserved by 1J. S. PL.AskETT.

3 ORIONIS 2153.
1909. Jan. 16.
6. M. T. $12^{21} 44^{m}$

Ohserved by IJ. S. Plaskett.
Measured by I

Wt.	$\begin{gathered} \text { Mran } \\ \text { of } \\ \text { Settings. } \end{gathered}$	Corrected Stal Settings.	$\begin{aligned} & \text { Dispy } \\ & \text { in wevi* } \end{aligned}$	Velocity.	Wt.	$\begin{gathered} \text { Mean } \\ \text { of } \\ \text { Settings. } \end{gathered}$	Corrected Star So-ttings.	$\begin{aligned} & \text { Dispet } \\ & \text { in } r \in v^{11+} \end{aligned}$	Velocity.
2	$51 \cdot 7003$				2	$53 \cdot 0787$			
$\stackrel{2}{2}$	540022				2	45.2970			
2	53. 97×6	9886	0454	5251	3	55. 3131	3100	0511	-53.66
1.	$53 \cdot 4072$	4160	0378	43.4					

9-10 EDWARD VII., A. 1910
1909. Jan. 16.
G. M. T. $1^{9 \mathrm{~h}} 5^{\mathrm{m}}$
$\left.\begin{array}{l}\text { Observed by } \\ \text { Measured by }\end{array}\right\}$ J. S. Plaskett.

β ORIONIS 2155.
1909. Jan. 16.
G. M. T. $12^{\mathrm{h}} 59^{\mathrm{m}}$
$\left.\begin{array}{l}\text { Observed by } \\ \text { Measured by }\end{array}\right\}$ J. S. Plaskett.

Wt.	$\begin{gathered} \text { Mean } \\ \text { of } \\ \text { Settings. } \end{gathered}$	Corrected Star Settings.	$\begin{aligned} & \text { Disppe } \\ & \text { in rev } \end{aligned}$	Velocity.	Wt.	$\begin{gathered} \text { Mean } \\ \text { of } \\ \text { Settings. } \end{gathered}$	Corrected Star Settings.	$\begin{aligned} & \text { Disppt } \\ & \text { in rev } \end{aligned}$	Velocity.
2	56.6278				2	53. 4202	4220	9438	$49 \cdot 23$
2	54.7078				$\stackrel{2}{2}$	53.0880			
2	540014				2	4. 29940			
2	$53 \cdot 9853$	9875	0443	-51.03	2	4. 313%	3130	0541	+53.66

β ORIONIS 2156.
1309. Jan. 16.
G. M. T. $13^{\mathrm{b}} 12^{\text {nin }}$

Obsen ved by t, J. S. Plaskrat.
Measmred by

Wt.	Mean of Settings.	Corrected Star Settings.	$\begin{aligned} & \text { Disp } \\ & \text { in rev } \end{aligned}$	Velocity.	Wt.	$\begin{gathered} \text { Mean } \\ \text { of } \\ \text { Settings. } \end{gathered}$	Corrected Star Settings.	$\begin{aligned} & \text { Disp } \\ & \text { in rev } \end{aligned}$	Velocity.
2	54.7101				${ }_{2}^{2}$	53.0934			
4	$53 \cdot 9856$	984	0413	+47.77	3	45. 3214	3140	0551	+ 8.91
Radial velocity $+35 \cdot 8$									

SESSIONAL PAPER No. 25a
β ORIONIS $21 \pi \%$.
1909. Jan. 17.
(i. M. T. $13^{14} 48^{\prime \prime}$

Obwerved by
Measured by .f. S. Plaskets

β ORIONIS $21 . \mathrm{K}$.
1909. Jan. 17.
G. M. T. $13^{\mathrm{L}} 56^{\mathrm{m}}$

Olserved by
Measured by J. S. Plaske.t.

$\begin{aligned} & \text { Dispé } \\ & \text { in revnu } \end{aligned}$	Velocity.	Wt.	Me:n of Settings.	Corrected Star Settings.	$\begin{aligned} & \text { Dispy } \\ & \text { in revin } \end{aligned}$	\checkmark elocity.
$\begin{aligned} & 0403 \\ & 0348 \end{aligned}$	$\begin{array}{r} 46.61 \\ +39.99 \end{array}$	$\begin{aligned} & 2 \\ & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & 53.0642 \\ & 45 \cdot 2874 \\ & 45 \cdot 2947 \end{aligned}$	3010	${ }^{-1 \cdot 0} 21$	$+4421$
Radial velocity............... \cdot. 26.2						

β ORIONIS 2161.
1909. Jan. 18.
G. M. T. $12^{\text {h }} 41^{\text {m }}$

9-10 EDWARD VII., A. 1910
1909. Jan. 18.
G. M. T. $12^{h} 46^{\mathrm{m}}$

Observed by
Measured by

β ORIONIS 2163.
1909. Jan. 18.
G. M. T. $12^{\mathrm{h}} 51^{\mathrm{m}}$
1909. Jan. 18.
(G. M. T. $13^{\mathrm{h}} 0 \mathrm{~B}^{3}$
$\left.\begin{array}{l}\text { Observed by } \\ \text { Measured by }\end{array}\right\}$ J. S. Plaskett.

Weighted mean

$-1751+4605$
$\cdots \cdot 28$
$\cdots+08$
$+28 \cdot 3$

$\$$ ORIONIS 216.t.

1909. Jan. 18 ,
G. M. T. $13^{\mathrm{h}} 10^{\mathrm{mm}}$

今 ORIONIS 2165.

3 ORIONIS 2166.
1909. Jan. 18
G. M. T. $13^{\mathrm{h}} 1 \mathrm{t}^{\mathrm{m}}$
$\left.\begin{array}{l}\text { Observed by } \\ \text { Measured by }\end{array}\right\}$ J. S. Plaskett

Wt.	Mean of Settings.	Corrected Star Settings.	$\begin{aligned} & \text { Displ} \\ & \text { in revus } \end{aligned}$	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Dispt in $r e v^{n 9}$	Velucity.
2 2 1 1 1 1	$\begin{aligned} & 54 \cdot 7106 \\ & 53 \cdot 9998 \\ & 53 \cdot 9796 \\ & 53 \cdot 4221 \end{aligned}$	$\begin{array}{r} 9805 \\ 4225 \end{array}$	0373 $04+3$	+43.14 +50.95	2 2 3	$53 \cdot 0896$ 4. 3060 $45 \cdot 3184$	3065	0471	$+4946$
									$\begin{aligned} & +48.25 \\ & +\quad .08 \end{aligned}$
					Radial velocity .			- .	$30 \cdot 5$

1909. Jan. 20
G. A. T. $10^{\mathrm{h}} 36^{\mathrm{m}}$

9-10 EDWARD VII., A. 1910

3 ORIONIS 2178.
1:09. Tan. 26
G. M. T. $10^{11} 51$

Observed by
Measured by J. S. Plasekit.

β GRIONIS 2179.
1909. Jan. 26.
G. M. T. $10^{\mathrm{h}} 56^{\mathrm{m}}$
$\left.\begin{array}{l}\text { Observed by } \\ \text { Measured by }\end{array}\right\}$ J. S. Pl.askett.

β ORIONIS 2180.
1909. Jan. 26.
G. M, T. $11^{\mathrm{b}} 01^{\mathrm{m}}$

Observed by
Measured by J. S. Plaskett.

Wt.	$\begin{gathered} \text { Mean } \\ \text { of } \\ \text { Settings. } \end{gathered}$	Corrected Star Setting.	$\begin{aligned} & \text { Dispp } \\ & \text { in revin } \end{aligned}$	Velucity.	Wt.	Mean of Settings.	Corrected Star Settings.	$\begin{aligned} & \text { Disp } \\ & \text { in reven } \end{aligned}$	Velocity.
2	$54 \cdot 7250$				2	$53 \cdot 1036$			
$\stackrel{2}{21}$	54.0212				11	45-2950		040	
1	53.4420	4270	0488	+59.08	12		2998	0405	+ 4253

SESSIONAL PAPER No. 25a
1909. Jan. 26.
G. M. T. $11^{\mathrm{h}} 11^{\mathrm{m}}$
; ORIONIS 2181.
Ubserved by
Measmred by J. S. Plaskitu:

子 ORIONIS 218?

1909. Jan. 26.
G. II. T. $11^{\mathrm{h}} 16^{\mathrm{m}}$

Observed by iJ. S. Plaskeit.
Meatured by

3 ORIONIA 2183.
1909. Jan. 26.
(i. M. T. $11^{\mathrm{h}} 21^{\mathrm{m}}$

Observed by IJ. S. Plaskett.
Measured by \quad J.

β ORIONIS 2184.
1909. Jan. 28.
G. M. T. $11^{\mathrm{h}} 21^{\mathrm{m}}$
$\left.\begin{array}{l}\text { Observed by } \\ \text { Measured by }\end{array}\right\}$ J. S. Pl.ssektr.

Wt.	Mean of Settings.	Corrected Star Settingz.	$\begin{aligned} & \text { Disp }{ }^{t} \\ & \text { in rev } \end{aligned}$	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	$\begin{aligned} & \text { Disp } \\ & \text { in rever } \end{aligned}$	Velocity.
$\begin{aligned} & 2 \\ & 2 \\ & 3 \\ & 1 \end{aligned}$	$54 \cdot 7322$ $54 \cdot 0224$ $56 \cdot 0007$ $53 \cdot 4160$	9800 +3940	-0368	a +42.56 18.16	2 2 2	$53 \cdot 1120$ $45 \cdot 3111$ $45 \cdot 3122$	2947	…0358	+3759
Radial velocity $-16^{3} 3$									

3 ORIONIS 2185.
1909. Jan. 28.
G. M. T. $11^{\mathrm{h}} 25^{\cdots}$
$\left.\begin{array}{l}\text { Observed by } \\ \text { Measured by }\end{array}\right\}$ J. S. Plaskett.

3 ORIONIS 2186.
1909. Jan. 28.
G. M. T. $11^{\mathrm{b}} 29 \mathrm{~m}$
$\left.\begin{array}{l}\text { Observed by } \\ \text { Measured by }\end{array}\right\}$ J. S. Plaskett.

Wt.	Mean of Settings.	Corrected Star Settings.	$\begin{aligned} & \text { Disp } \\ & \text { in rev } \end{aligned}$	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	$\begin{aligned} & \text { Disp } \\ & \text { in rev } \end{aligned}$	Velocity.
2 2 2 1	$54 \cdot 7073$ $54 \cdot 0002$ $53 \cdot 964$ $53 \cdot 4020$	9735 4060	-0343	$+35 \cdot 04$ 31.44	$\stackrel{2}{2}$	$\begin{aligned} & 53.0851 \\ & 45.2893 \\ & 45.2888 \end{aligned}$	2930	0341	+35.81
Radial velocity $+14{ }^{\prime 2}$									

\& ORIONTS 2187.
1909. Jan. 28,
G. M. T. $11^{\circ} 41^{1 m}$
$\left.\begin{array}{l}\text { Observed by } \\ \text { Measured by }\end{array}\right\}$ J. S. Plaskett.

Wt.	$\begin{aligned} & \text { Mean } \\ & \text { of } \\ & \text { Settings. } \end{aligned}$	Corrected Star Settings.	$\begin{aligned} & \text { Disppt } \\ & \text { in } r+v^{n o} \end{aligned}$	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	$\begin{aligned} & \text { Dispe } \\ & \text { in reve } \end{aligned}$	Velocity.
2	$5+7131$				2	$53 \cdot 6944$			
2	$53 \cdot 9731$	9705	0273	$+3157$	9	45. 2883	2908	0318	+33 39
$1 \frac{1}{3}$	03'4183	4140	0358	$41 \cdot 14$					

ß ORIONIS 2188.
1909. Jan. 28.
G. M. T. $11^{14} 44^{\mathrm{mi}}$

Observed by
Measury by , J, S. Pliskett.
β ORIONIS 2189.
1909. Jan. 28.
G. M. T. $11^{\mathrm{h}} 47^{\mathrm{mm}}$

Observed by
Measured by J. S. Plaskett.

Gozerved by J. B. Gannos.
1909. Jan. 29.
G. M. T. $12^{\text {h }} 33^{\text {n. }}$

Measured by J. S. Plaskett.
1909. Jan. 29.
G. M. T. $12^{\mathrm{h}} 57^{\mathrm{m}}$.

Observed by J. B. Caxnon. Measured Ly J. S. Plaskett.

3 ORIONIS 2197.
1909. Jan. 29.
G. M. T. $13^{\mathrm{t}} 01^{\mathrm{m}}$

Observed by J. B. Cannon.
Measured by J. S. Plaskett.

SESSIONAI. PAPER No. 25a
β ORION1S 2198.
1904. Jan. 29.
G. M. T. $13^{11} 05^{m}$

Olnerved by J. 13. Cannon.
Measured by J. S. Plaskett:

Wt.	Mean of Settings.	Corrected star S. ttings.	$\begin{gathered} \text { Dispt } \\ \text { in rever } \end{gathered}$	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	$\begin{aligned} & \text { Disp } \\ & \text { ill } \mathrm{rev} \mathrm{v}^{\mathrm{n} *} \end{aligned}$	Velocity.
2	54.7170				2	$53 \cdot 0924$			
2	$54 \cdot 0100$				$\stackrel{3}{2}$	4. $2 \times 2 \mathrm{il}$			
$\stackrel{2}{1+1}$	53.9896	9840	${ }^{0} 0408$	47 -384	2	(5) 2927	2992	0403	42.32

β ORIONIS 2201.
1909. Jan, 30.
(r, I. T. $12^{\mathrm{h}} 29^{\mathrm{ma}}$
$\left.\begin{array}{l}\text { Ohserved by } \\ \text { Measured by }\end{array}\right\}$ J. S. Plankett.

Wt.	$\begin{gathered} \text { Mean } \\ \text { of } \\ \text { Settings. } \end{gathered}$	Corrected Star Settings	$\begin{aligned} & \text { Disppt } \\ & \text { in rev } \end{aligned}$	Velocity.	Wt.	$\begin{gathered} \text { Mean } \\ \text { of } \\ \text { Settinga. } \end{gathered}$	Corrected Star Settings.	$\begin{aligned} & \text { Dirpt } \\ & \text { in rev } \end{aligned}$	Velocity.
	54.7157					530957			
2	54.0093				2	$45 \cdot 2906$			
3	$53 \cdot 9791$ $53 \cdot 4193$	- 9730	0298	$3+46$ +3999	2	45.2884	2914	0325	+3418
1	534193	+4130		3999					

; ORIONIS 2202.
1909. Jan. 30.
G. M. T. $12^{\mathrm{h}} 41^{\mathrm{m}}$
$\left.\begin{array}{l}\text { Observed by } \\ \text { Measured lyy }\end{array}\right\}$,J. S. Plaskett.

Weighted mean..... +3857
$\mathbf{V}_{a} \ldots \ldots \ldots \ldots-21051+0 .$.
Curvature...... . - 28
Radial velocity

9-10 EDWARD VII., A. 1910

β ORIONIS 2203.
1509. Jan. 30.
G. M. T. $12^{\text {b }} 45^{\text {n }}$
$\left.\begin{array}{l}\text { Observed by } \\ \text { Measured by }\end{array}\right\}$ J. S. Plaskett.

Wt.	Mean of Settings.	Corrected Star Settingヶ.	$\begin{gathered} \text { Dispt } \\ \text { in rev } \end{gathered}$	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	$\begin{aligned} & \text { Disppt } \\ & \text { in rev } \end{aligned}$	Velocity.
2	$54 \cdot 7115$				2	53.0902			
2	53.9970				2	55. 2408			
${ }^{1}$	53.9941 53.4224	9950 +240	0518 015 18	$\begin{array}{r} 59.91 \\ +\quad 5263 \end{array}$	2	452822	2950	0361	$+37 \cdot 91$

3 ORIONIS 2204.
1909. Jan. 30.
G. M. T. $12^{\mathrm{h}} 48^{\mathrm{m}}$
$\left.\begin{array}{l}\text { Observed by } \\ \text { Measured by }\end{array}\right\}$ J. S. Plaseets.

Wt.	Mean of Settings.	Corrected Star Settings.	$\begin{aligned} & \text { Dispi } \\ & \text { in revint } \end{aligned}$	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Disps in rev ${ }^{\mathrm{nm}}$	Velocity.
$\begin{aligned} & 2 \\ & 2 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 54 \cdot 7152 \\ & 54 \cdot 0046 \\ & 53 \cdot 9.39 \\ & 53 \cdot 4054 \end{aligned}$	$\begin{array}{r} 9712 \\ -4034 \end{array}$	$\begin{array}{r} 0280 \\ -0252 \end{array}$	$\begin{array}{r} -3238 \\ 28 \cdot 96 \end{array}$	2 2 2	$\begin{aligned} & 53 \cdot 0017 \\ & 45 \cdot 2933 \\ & 4.2969 \end{aligned}$	2972	-0383	-4022
	,								
				Radial velocity 14.2					

3 ORIONIS 2205.
1909. Jau. 30.
G. M. T. $15^{\mathrm{h}} 47^{\mathrm{m}}$
$\left.\begin{array}{l}\text { Observed hy } \\ \text { Measured by }\end{array}\right\}$ J. S. Plaskett.

SESSIONA - PAPER No. $25 a$

β ORIONIS 2206.
1904. Jan. 30.
G. M. T. $16^{\mathrm{h}} 0 f^{\mathrm{m}}$
$\left.\begin{array}{l}\text { Observed by } \\ \text { Measured by }\end{array}\right\}$ J. S. Plaskett.

β ORIONIS 2207.
1900. Jan. 30. G. M. T. $16^{\mathrm{h}} 24^{\mathrm{m}}$

Ohserved by
Measured by J. S. Plasketr.

Wt.	Mean of Settings.	Curracted Star Settings.	$\begin{aligned} & \text { Disp } \\ & \text { in reve } \end{aligned}$	Velocity.	Wt.	Mean of Settings.	Corrected star Settings.	Disp ${ }^{t}$ in revey	Velocity.
2	$63 \cdot 3410$				2	58.7983			
$\stackrel{2}{8}$	61.3604 61.3037				,	$36 \cdot 1943$			
$1 \frac{1}{2}$	59-7308	7160	1195	4889		3.207	-02	1121	+39-41

β ORIONIS 2211.

1969, Jan. 31,
G. M, T. $17^{\mathrm{h}} 16^{\mathrm{m}}$

Observed by W. E. Hakper.
Measured by J. S. Plaskett.

9-10 EDWARD VII., A. 1910
1903. Jan. .il.
(G. M. T, $17^{11} 20^{m}$

Observed by W, F. Harper.
Measured by J. S. Plaskett.

W2.	Mean of Settings.	Corrected Star Settings.	$\begin{aligned} & \text { Disp } \\ & \text { in re }{ }^{t n n} \end{aligned}$	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	$\begin{aligned} & \text { Disp } \\ & \text { in rever } \end{aligned}$	Velocity.
${ }_{2}$	54 7084				2	53.0894	\cdots		
1	53.9833 $53 \cdot 4274$	$\begin{array}{r} 9835 \\ 4273 \end{array}$	0403 0491	46.61 56.42	14	45. 2886	2923	1839	-35 60
									$45 \cdot 12$
					Radial velocity. -232				

3 ORIONIS 2213.
1909. Jan. 31.
(․ M. T. $17^{\mathrm{h}} 24^{10}$

Observed by W. E. Harper.
Measured by J. S. Plaskett.

Wt.	Mean of Settings.	Corrected Star Settings.	$\begin{aligned} & \text { Dispt } \\ & \text { in rev } \end{aligned}$	Velocity.	Wt.	$\begin{gathered} \text { Mean } \\ \text { of } \\ \text { Settings. } \end{gathered}$	Corrected Star Settinge.	$\begin{aligned} & \text { Dizp } \begin{array}{l} \text { Dip } \\ \text { in } \mathrm{F} \in \mathrm{v} \end{array} . \end{aligned}$	V elocity.
2 2 2 1	$\begin{aligned} & 54 \cdot 7118 \\ & 540115 \\ & 53 \cdot 9797 \\ & 33 \cdot 4258 \end{aligned}$	$\begin{array}{r} 9737 \\ 4190 \end{array}$	$\begin{array}{r} \because 0305 \\ 0408 \end{array}$	$\begin{array}{r} 35.27 \\ 46.88 \end{array}$	2 2 2 2	$\begin{array}{r} 53 \cdot 0904 \\ 45.2938 \\ 45.2925 \end{array}$	- 2923	0334	-3507
			-		Weighted mean$\begin{aligned} & \mathrm{V}_{a}, \ldots \\ & \mathrm{V}_{d}+\ldots \\ & \text { Curvature } \\ & \hline \end{aligned}$				$37 \cdot 91$
					Radial velocity			-160

3 ORIONIS 2214.
1909. Jan. 31.
G. II. T. $17^{\mathrm{h}} 29^{\mathrm{m}}$

SESSIONAI PAPER No. $25 \mathrm{a}^{\circ}$

3 OKIONIS $2: 15$

1!w 1 . Feb. 2.
(i. M. T. $11^{11} 14^{\text {m }}$

Obocrved by
Meaxueed by f. S. Plasketi.

β ORIONIS 2216.
1609. Fel. 2.
(i. M. T. 11) 23^{10}

Observed by),J.S. Plaskett.
Measured by

β ORIONIS 2217.
1909. Feb. 2.
(.) M. T. $11^{\mathrm{h}} 26^{\mathrm{m}}$

Observed by
Measured by J. S. Plaskett.

Wt.	Mean of Settings.	Corrected Star Settings.	$\begin{aligned} & \text { Disppt } \\ & \text { in rev } \end{aligned}$	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Dispt in revin	Velocity.
2	54.7143				2	53.0916			
Radial velocity. 23.6									

9-10 EDWARD VIH., A. 1910
β ORIONIS 2218.
1909. Feb. 2.
G. M. T. $11^{\mathrm{h}} 29^{\mathrm{m}}$
1909. Feb. 2.
G. M. T. $11^{\mathrm{h}} 41^{\mathrm{m}}$
$\left.\begin{array}{l}\text { Mbserved by } \\ \text { Measured by }\end{array}\right\}$ J. S. Plaskett.

$+44$ $+\quad 14$
$+22.5$
β ORIONIS 2219.

β ORIONIS 2220.

1909, Feb. 2. G. M. T. $11^{\mathrm{h}} 45^{\mathrm{m}}$

Observed by
Measured by J. S. Plaskett.

Wt.	$\begin{gathered} \text { Mean } \\ \text { of } \\ \text { Settings. } \end{gathered}$	Corrected Star Settings.	$\begin{aligned} & \text { Disp }{ }^{t}{ }^{2} \\ & \text { in revin } \end{aligned}$	${ }_{2}$ Velocity.	Wt.	$\begin{aligned} & \text { Mean } \\ & \text { of } \\ & \text { Settings. } \end{aligned}$	Corrected Star Settings.	$\begin{aligned} & \text { Disp } \\ & \text { in rev } \end{aligned}$	Velocity.
	54. 7143				2	53.0952			
2	54.0073				2	40.2908			
3	53.9847	9800	0368	+ 42.56	2	$45 \cdot 2967$	3000	0411	$+43 \cdot 16$
1	$53 \cdot 4305$	$\underline{+250}$	0468	$53 \cdot 78$					

β ORIONIS 2220^{*}

1909, Feb. 2.
G. M. T. $11^{\mathrm{h}} 45^{\mathrm{m}}$
β ORION1S 2236.

1909, Feb. 6.
G. ML T. $12^{\mathrm{h}} 29^{\mathrm{m}}$
$\left.\begin{array}{l}\text { Observed by } \\ \text { Measured by }\end{array}\right\}$ J. S. Plaskett.

β ORION1S 2239.

1909, Fub. 6.
G. IL. T. $12^{\mathrm{h}} 50^{\mathrm{m}}$
$\left.\begin{array}{l}\text { Observed by } \\ \text { Measured by }\end{array}\right\}$ J. S. Plaskett.

Wt.	Mean of Settings.	Corrected Star Settings.	- Disp ${ }^{t}$ in rev ${ }^{\mathrm{ma}}$	Velocity.	Wt.	Hean of Settings.	Corrected Star Settings.	$\begin{aligned} & \text { Dispp } \\ & \text { in revos } \end{aligned}$	Velocity.
2	54.7144				2	53.0925			
2	53.9443	9810	0378	-43.72	2	$45 \cdot 3043$	3012	0423	-44.42
112	$53 \cdot 4083$	4052	0270	$31 \cdot 03$					

V_{a}	$\ldots . .$.
$\mathrm{V}_{d} \ldots . . .22$	
Curvature....	$-\quad 28$

Radial velocity

9-10 EDWARD VII., A. 1910
1909. Feb. 6.
(i, M. T. 12 b iz

Observed by
Measured by J. S. Plaskett.

β ORIONIS 2241.
1906. Feb. 6.
(i. M. T. $16^{\text {h }} 12^{\text {ma }}$

3 ORIONIS 2240.
-
Observed by
Measured by J. S. Plaskett.

Weighted mean..

ighted mean.	$-22 \cdot 73$	$+45 \cdot 19$
V_{d}	- 30	
Curvature	- 38	
Radial velocity. .		$+219$

8 ORIONIS 2242.
1909. Fcb. 6.
G. M. T. $16^{\mathrm{h}} 43^{\mathrm{m}}$
$\left.\begin{array}{l}\text { Observed by } \\ \text { Measured by }\end{array}\right\}$ J. S. Plaskett.

Corrected Star Settings	$\begin{aligned} & \text { Disppt } \\ & \text { in revens } \end{aligned}$	Velocity.
2104	1199	$+42 \cdot 16$

Weighted mean $+42 \cdot 36$

Radiol velocity

8 ORIONIS 2243.
1909. Feb. 7.
G. M. T. $15^{\mathrm{h}} 11^{\mathrm{m}}$
$\left.\begin{array}{l}\text { Obaured by } \\ \text { Measured by }\end{array}\right\}$ J. S. Plaskett.

W't.	Mean of Settings.	Corrected Star Setting F .	$\begin{aligned} & \text { Dispt } \\ & \text { in revan } \end{aligned}$	Velocity.	Wt.	Mean of Settings.	Corrected Star Scettings	$\begin{aligned} & \text { Disp, } \\ & \text { in rev } \end{aligned}$	Velocity.
2	63.3350				2	58.7918			
2	61.2972	2872	1065	$+4+03$	2	36.1874	2085	1180	$+417$
					Radia	velocity.	\ldots.	21.0

β ORION1S 2244.
1909. Feb. 7.
G. M. T. $15^{\mathrm{k}} 25^{\mathrm{m}}$
$\left.\begin{array}{l}\text { Observed by } \\ \text { Measured by }\end{array}\right\}$ J. S. Plaskett.

β ORIONIS 2245.
1909. Feb. 7.
G. M. T. $15^{h} 37^{\mathrm{m}}$

Observed by
Measured by f, S. Plaskett.

Wt. \begin{tabular}{c}
Mean

of

Settings.

\quad

Corrected

Star
Settings.

\hline
\end{tabular}

15H9. Fels N.
G. M. T. $13^{h} 32^{\text {n }}$

β ORIONIS 2250.
1909. Feb. 8.
G. M. T. $13^{i} 36^{m}$

\& ORION Is 2251.
1909. Feb. 8.
(i. M. T. $13^{\text {h }} 41^{m}$

SESSIONAL PAPER No. 25a

1sk!. Feb. 8.
(i. M. T. $14^{\text {th }} 01^{\text {m }}$

4 ORIONIS 2252

1909. Feb, 8
(i. N. T. $\left.14^{6} 0\right)^{m}$

Observed by T. H. Parker.
Meabured by J. S. Plankett.

Wt.	Mean of Settings.	Corrected Star Suttings.	$\begin{aligned} & \text { Misp } \\ & \text { in rev } \end{aligned}$	Velocity.
2	53.0882			
13	45.2980	2958	0363	+3875

3 ORIONIS 2253.

Olserved by T. H. Parkek. Measured by J. S. Plaskett.
β ORIONIS 2254.
1569. Fieb. 8
(i. M. T. $1 \ddagger^{\text {h }} 0 g^{m}$

Wherved by T. H. Parker. Measured by J. S. Plaskett.

1909. Feb. 10.
G. M. T. $12^{\mathrm{h}} 0 \pi^{\text {n }}$

Ohserved by W. E. Harper.
Measured by J. S. Pliskett.

Wt.	Mean of Settings.	Corrected Star Settings.	$\begin{aligned} & \text { Dispe } \\ & \text { in rever } \end{aligned}$	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	$\begin{gathered} \text { Disp, } \\ \text { in } \mathrm{rev} \mathrm{v}^{\mathrm{n}} \end{gathered}$	V elocity.
	$54 \cdot 6987$					$53 \cdot 0767$			
2	$53 \cdot 4911$				2	$45 \cdot 2770$			
2	$53 \cdot 9691$	9800	0368	$+12.56$	2	45'2980	3146	0357	+58.49
11.	$53 \cdot 4197$	4310	0528	$6 \% 67$					

β ORIONIS 2266.

19w9. Feb. 10.
G. M. T. $12^{\mathrm{h}} 12^{\mathrm{m}}$

Observed by W. E. Harper.
Measured by J. S. Plaskett.

β ORIONIS 226:.
1909. Feb. 10.
G. M. T. $12^{\mathrm{h}} 16^{\mathrm{n}}$

Observed by W. E. Harpre.
Measured by J. S. Plaskett.

Wt.	Mean of Settings.	Corrected Star Settings.	$\begin{aligned} & \text { Disp } \\ & \text { in rev } \end{aligned}$	Velocity.	Wt.	$\begin{aligned} & \text { Mean } \\ & \text { of } \\ & \text { Settings. } \end{aligned}$	Corrected Star Settings.	$\begin{gathered} \text { Disp }^{t} \\ \text { in rev } \end{gathered}$	Velocity.
2	547055				2	53.0068			
2	53 9744	9780	0318	$+1025$	2	$45 \cdot 2991$	3007	0418	$+4889$
$1 \frac{1}{2}$	53.4070	4100	0318	36.54					

SESSIONAL PAPER No. 25a
1909. Feb. 10.
(k. M. T. $12^{\mathrm{h}} 21^{\mathrm{m}}$

Wt.	$\begin{gathered} \text { Mean } \\ \text { of } \\ \text { Settings. } \end{gathered}$	Corrected Star Settings.	$\begin{aligned} & \text { Dispt }{ }^{t} \\ & \text { in revom } \end{aligned}$	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	$\begin{aligned} & \text { Disp } \\ & \text { in rev } \end{aligned}$	Velocity.
2 2 2 1 $1 / 2$	$\begin{aligned} & 54 \cdot 7108 \\ & 54 \cdot 0029 \\ & 53 \cdot 9702 \\ & 5 \cdot .4186 \end{aligned}$	$\begin{aligned} & 9 e 90 \\ & 4160 \end{aligned}$	$\begin{aligned} & 0058 \\ & -0378 \end{aligned}$	+2984 4344	2 2 2	53.0920 45.2948 45.2962	2450	. 0361	$+37 \cdot 91$

3 ORIONIS 2369.
1904. Feb. 10.
(G. M. T. $12^{\mathrm{h}} 33^{\mathrm{m}}$
1909. Feb. 10.
G. M. T. $12^{\mathrm{h}} 37^{\mathrm{m}}$

Observed by W. E. Harper.
Measured by J. S. Plaskett.

$\stackrel{3}{\circ}$ ORIONAS 2270.

β ORIONIS 222.
1909. Feb. 11.
G. 31. T. $11^{\text { }} 26^{\text {¹ }}$

Observed by
Measired by

§ GRIONIN 2273.
1909. Feb. 11.
G. M. T. $11^{4} 32^{2 m}$

Ohserved by
Measured hy J. S. P'askktt.

W't.	Mean of Settings.	Corrected Star Settings.	Disp ${ }^{6}$ in revono	Velocity.	Wt.	$\begin{gathered} \text { Mean } \\ \text { of } \\ \text { Settings. } \end{gathered}$	Correctecl star Settings.	$\begin{aligned} & \text { Dizy } \\ & \text { in rev } \end{aligned}$	Velocity:
2	54.7188				2	53.0875			
2	54.0025				9	4. 5.2844			
$\stackrel{2}{1}$	53.9970 53.4268	9890 +280	0528 0498	61.04 57.23	2	4.) 30046	3048	0509	$+5345$
					Radial velocity........ \ldots. 33.4				

β ORIONIS $22 \pi 4$.
1509. Feb. 11.
G. M. T. $11^{\text {h }} 35^{\text {mi }}$

Observed by
Measured by ,J.s. Pt..askkit.

W t .	$\begin{aligned} & \text { Mean } \\ & \text { of } \\ & \text { Settings. } \end{aligned}$	Corrected Star Settings.	$\begin{aligned} & \text { Disp } \\ & \text { in res } \end{aligned}$	Velocity.	IV'.	$\begin{gathered} \text { Mean } \\ \text { of } \\ \text { settings. } \end{gathered}$	Corrected Star Sottings.	$\begin{aligned} & \text { Dispt } \\ & \text { in } 1 \mathrm{e}^{\mathrm{tio}} \end{aligned}$	Velocity.
2	54.7114				2	330881			
${ }_{2}^{2}$	54.0044 53.9812	9610	0978	+4372	2 2 2	4. 3071	3130	$\cdots 0540$	$+56.81$
121	584353	4360	0.78	66. 42					+50 81
									+ 4372
									+ 10
					Hadial velocity				$+30 \cdot 8$

1909. Feb. 11.
G. M. T. $11^{\text {h }} 3 \mathrm{~s}^{\mathrm{m}}$

Ohawrved by
Menanred by

3 ORIONIS 2276.
11999. Feb, 11.
G. M. T. $11^{\mathrm{b}} 46^{\mathrm{mm}}$
$\left.\begin{array}{l}\text { Ohserved by } \\ \text { Measnred by }\end{array}\right\}$ J. S. PLaskkTT.

Wt.	Mean of Settings.	Corrected Star Settings.	$\begin{aligned} & \text { Dispiz } \\ & \text { in revy } \end{aligned}$	Velocity.	Wit.	$\begin{aligned} & \text { Mean } \\ & \text { of } \\ & \text { sut } \mathrm{ting} \% \end{aligned}$	Corrected Star Settings.	$\begin{aligned} & \text { I } \begin{array}{l} \text { isp, } \\ \text { in } \mathrm{rev} \end{array} . \end{aligned}$	V elucity.
2 2 2 1	54.7082 53.9963 58.9792 53.4083	9849 4086	0408 0313	$-47 \cdot 19$ $35 \cdot 96$	$\frac{3}{2}$	$\begin{aligned} & 53.0843 \\ & 4.3824 \\ & 45.2 \times 35 \end{aligned}$	2947	0838	-3is!
									$\begin{array}{r} +111 \\ -\quad 10 \end{array}$
					Radial velocity...			-..	173

β ORIONIS 2277.
1909. Feb. 11.
(G. M. T. $11^{\mathrm{h}} 49^{\mathrm{m}}$
$\left.\begin{array}{l}\text { Observed } \\ \text { Measured by }\end{array}\right\}$ J. S. Plasketr.

β OKIONIS 228.

19wr). Fieb. 13.
G. M. T. $12^{\prime \prime} 27^{\prime \prime}$
$\left.\begin{array}{l}\text { Oinserved by } \\ \text { Mrasured by }\end{array}\right\}$ J. S. Plaskett.

8 ORIONIS 2279.
1903. Feb. 13.
G. A. T. $12^{\mathrm{h}} 40^{\mathrm{m}}$

Observed by
Measured by J. S. Plaskett,

Wt.	Mean of Settings.	Corrected Star Settings.	$\begin{aligned} & \text { Disp } p^{k} \\ & \text { in revin } \end{aligned}$	Velocity.	W\%.	$\begin{aligned} & \text { Mran } \\ & \text { of } \\ & \text { Settings. } \end{aligned}$	Corrected Star Settings.	$\begin{aligned} & \text { Disp } \\ & \text { in rev } \end{aligned}$	Velucity.
9	63.3312				2	58-7858			
$\stackrel{2}{3}$	61.3531				${ }^{2}$	$36 \cdot 1657$			
2	$59 \cdot 7212$	7180	1215	4971		30 109s	1.83	1088	$+37 \cdot 78$

3 ORIONLS 2280.
1909. Feb. 13.
G. M. T. $12^{\mathrm{h}} 53^{\mathrm{m}}$

Wt.	$\begin{gathered} \text { Mean } \\ \text { of } \\ \text { Settings. } \end{gathered}$	Corrected Star Settings.	$\begin{aligned} & \text { Disp } \\ & \text { in rev } \end{aligned}$	Velocity.	Wt.	$\begin{aligned} & \text { Mean } \\ & \text { of } \\ & \text { Setting } x . \end{aligned}$	Corrected Star Settings.	Disp ${ }^{c}$ in rev ${ }^{14}$	Velocity.
2 2 3 2	633520 $61 \cdot 3710$ 613192 $59 \cdot 7314$	$\begin{array}{r} 2940 \\ -7105 \end{array}$	$\begin{aligned} & 1135 \\ & -11 \neq 0 \end{aligned}$	$\begin{array}{r} 74.92 \\ -46.92 \\ 46.64 \end{array}$	2 2 1	$\begin{aligned} & 58 \cdot 8035 \\ & 3.1748 \\ & 36 \cdot 1848 \end{aligned}$	$\cdots 3042$	1137	+39.85
Radial velocity................. +21.4									

SESSIONAL PAPER No. 25a
1909. Feb. 20.
G. M. T. $12^{\text {h }} 299^{\mathrm{mm}}$
β ORIONIS 2284.

Radial velocity. +177
β ORIONIS 2285.
1949. Fel. 20.
G. M. T. $13^{\mathrm{h}} 05^{\mathrm{m}}$

3 ORIONIS 2286.
1909. Feb. 20.
G. M. T. $15^{n} 12^{\mathrm{m}}$

Observed by
Measured by J. S. Plaskett.

Wt.	Mean of Settings.	Corrected Star Settings.	$\begin{aligned} & \text { Dispe } \\ & \text { in revint } \end{aligned}$	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	$\begin{aligned} & \text { Disp } \\ & \text { in rev } \end{aligned}$	Velocity.
2	$63 \cdot 3440$				2	58.7989			
2	$61 \cdot 3648$				1	$36 \cdot 1571$			
2	61-3160	3320	1197	+ 49.34 41.08	$1 \frac{1}{2}$	$36 \cdot 1733$	168.4	1203	$+4216$
1	$59 \cdot 7233$	7245	'1007	41.08					

1909. Feb. 21.
G. M. T. $12^{14} 5^{n}$

Ohserved by
Measured by f. S. Pidakemt.

1909. Feb. 21.
G. M. T. $13^{\mathrm{b}} 07^{\mathrm{m}}$

3 ORIONIS 2eas.
Ohserved by
Neasured by J. S. Plaskktt.

$+18 \cdot 2$
1909. Feb. 21
G. M. T. $13^{\mathrm{h}} 17^{\mathrm{m}}$
G. M. I. 13 (\%

SESSIONAL PAPER No. 25a
β ORIONIS 2201.

190: Feb. 21.
(f. M. T. $13^{\mathrm{m}} 27^{1 \mathrm{~m}}$

Olserved by (.I. S. I'IAshKTt.
Meapured by

154 (5), Feb. 22.
G. M. T. $12^{\text {b }} 02^{n}$

1:1099, Feb. 22
(8. A1. T, $12^{\mathrm{h}} 15^{\mathrm{m}}$

\qquad

Ohserved by T. H. Pirizz.
Measured by J. S. Pl.askett.

3 ORIONIS 2203.
Observed by T. H. Paker.
Measured by J. S. Plaskett.

β OR1ON1S 2294.
1909. Feb. 29.
G. M. T. $12^{\mathrm{b}} 30^{\mathrm{mi}}$

Observed by T. H. Parker.
Measured by J. S. Plaskett.

Wt.	Mean of Setting.	Corrected Star Settings.	$\begin{aligned} & \text { Dispt } \\ & \text { in rev } \end{aligned}$	Velocity.	Wit.	Mean of Settingr.	Corrected Star Settings.	$\begin{aligned} & \text { Disp } \\ & \text { in revi } \end{aligned}$	Velosity.
$\begin{aligned} & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 1_{1}^{1} \end{aligned}$	63. 3495 63. 3 кi 8 fi] 3121 59.7381	3210 7458	$\begin{aligned} & 10 * 7 \\ & -1 \geqslant 20 \end{aligned}$	$\begin{array}{r} 4481 \\ 4986 \end{array}$	2 2 2	58. 8022 36. 1610 36. 1809	1720	1234	- 13.43
				Radial velocity $\ldots . . \ldots \ldots . .6 . . .20 \cdot 20$					

β OR1ONIS 2295.
1049. Feb. 22.
G. D1. T. $12^{\mathrm{h}} 42^{\mathrm{m}}$

Ohserved by T. H. Pabker:
Measured by J. S. Plaskett.

Wt.	$\begin{aligned} & \text { Hean } \\ & \text { of } \\ & \text { Settings. } \end{aligned}$	Corrected Star Settings.	Disp ${ }^{4}$ in rev ${ }^{\text {ns }}$	Velocity.	Wt.	Mean of Settings.	Corrected Star Settinge.	$\begin{aligned} & \text { Disp }{ }^{t} \\ & \text { in rev } \end{aligned}$	Velocity.
$\begin{aligned} & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & 68 \cdot 3622 \\ & 613780 \\ & 61 \cdot 3248 \\ & 59 \cdot 7345 \end{aligned}$	$\begin{array}{r} 3280 \\ 7344 \end{array}$	$\begin{array}{r} 115 i \\ -1106 \end{array}$	+4. 69 $4.5 \cdot 11$	$\stackrel{2}{2} 1$.	$58 \cdot 8095$ $36 \cdot 16 \pi 7$ 361881	-1726	1245	+4364
Radial velocity $\div 20.2$									

β OR1OXIS 2309.
1909. Feb. 27.
G. M. T. $11^{\mathrm{n}} 35^{\mathrm{m}}$
$\left.\begin{array}{l}\text { Observed by } \\ \text { Measured by }\end{array}\right\}$ J. S. Plaskett.

Wt.	Mean of Settings.	Corrected Star hettings.	Dispt in revens	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	$\begin{aligned} & \text { Disp } \\ & \text { in rev } \end{aligned}$	Velocity.
2 2 2 1 1	$\begin{aligned} & 633682 \\ & 61 \cdot 3790 \\ & 61.3288 \\ & 59.7498 \end{aligned}$	3240 .7460	1117	46.04 +43.85	2 2 2 2	5s 8129 $36 \cdot 1491$ 36'1814	… 185	1364	+47 81
				Radial velocity +220					

SESSIONAL PAPER No. 25a
β ORIONIS 2311.

1909, Feb. 2%.
G. M. T. $11^{\mathrm{H}} .36^{\mathrm{m}}$
$\left.\begin{array}{l}\text { Ohserved by } \\ \text { Measured by }\end{array}\right\}$ J. S. Plaskett.

Wt.	$\begin{gathered} \text { Me-an } \\ \text { of } \\ \text { Settings. } \end{gathered}$	Corrected Star Settings.	$\begin{aligned} & \text { Disp } \\ & \text { in } \text { rev }^{\mathrm{m}} \end{aligned}$	Velucity.	Wt.	Mean of Settings.	Corrected Star settings.	$\begin{aligned} & \text { IVim, } \\ & \text { in rever } \end{aligned}$	Velocity.
$\begin{aligned} & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 1 \frac{1}{2} \end{aligned}$		$\begin{array}{r} 2940 \\ 7: 50 \end{array}$	$\begin{aligned} & 1135 \\ & 1285 \end{aligned}$	$\begin{array}{r} 4692 \\ +\quad 52.63 \end{array}$	$\frac{2}{2}$	$\begin{aligned} & 587792 \\ & 3 \mathrm{H}^{-1567} \\ & 361805 \end{aligned}$	2180	1275	$+4483$
Radial velocity +222									

3 ORIONIS 2312.
1909. Feb. 98.
G. M. T. $12^{\mathrm{h}} 07^{\mathrm{m}}$

Observed by
Measured by for S. Plakkett.

Wt.	$\begin{gathered} \text { Mean } \\ \text { of } \\ \text { Settinga } \end{gathered}$	Corrected Star Settings.	$\begin{aligned} & \text { Disp } \\ & \text { in rev } \end{aligned}$	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	$\begin{aligned} & \text { Disp }{ }^{\text {D }} \\ & \text { in revn } \end{aligned}$	Velocity.
$\begin{aligned} & 2 \\ & 2 \\ & 3 \\ & 2 \end{aligned}$	63.3345 61.3567 61.2980 $59.73+2$	$\begin{array}{r} 2890 \\ 7260 \end{array}$	1045	$\begin{array}{r} 4485 \\ +3.04 \end{array}$	2 2 2 2	$\begin{aligned} & 58 \cdot 7913 \\ & 36 \cdot 1739 \\ & 36 \cdot 2948 \end{aligned}$	2251	-1346	$+47 \cdot 33$
Radial velocity.... $\ldots \ldots \ldots \ldots+220$									

1!n9. Fieb. 28.
G. M. T. $12^{\mathrm{h}} 18^{\mathrm{m}}$

Ohserved by
Measured by J. S. Plasketr.

Wt.	$\begin{gathered} \text { Mean } \\ \text { of } \\ \text { Settings. } \end{gathered}$	Corrected Star Settings.	$\begin{aligned} & \text { Disp.t } \\ & \text { in } 1 \mathrm{ev}^{\mathrm{nb}} \end{aligned}$	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	$\begin{aligned} & \text { Dispt } \\ & \text { in res } \end{aligned}$	Velocity.
2 2 2 1	63.3394 613602 61.3112 597515	3000 7435	1195 1470	a +49.10 60.21	2 2 1	$\begin{aligned} & 58 \cdot 7911 \\ & 36 \cdot 1740 \\ & 36 \cdot 1806 \end{aligned}$	-2026	1121	$+3941$
Radial velocity. $+23 \cdot 7$									

15w9. Feb. 28.
(i. M. T. $12^{\mathrm{h}} 2^{-\mathrm{m}}$

β ORIONIS 2315.
1906. Feb. 28
G. M. T. $12^{\text {h }} 39^{\mathrm{m}}$
$\left.\begin{array}{l}\text { Observed by } \\ \text { Measured by }\end{array}\right\}$ J. S. Plaskets.

F ORIONIS 2314.

1909. Feb. 28.
G. M. T. $12^{\mathrm{h}} \mathrm{s} 0^{\mathrm{m}}$

-

Observed by
Measured by J. S. Plaskett.
\& ORIONIS 2316.

$\left.\begin{array}{l}\text { Observed by } \\ \text { Measured by }\end{array}\right\}$ J. s. Pl.askktt.

Radial velocity....... 22.8

Observed by
DHasured by $\}$ J. S. Plaskemt.
19199. Mar. 2.
(i. ML. T. $11^{\text {b }} 20^{\text {ㅁ }}$

SORTUNIS 2318.
1:49. Мат. 2.
$\left.\begin{array}{l}\text { Observed by } \\ \text { Measured by }\end{array}\right\}$ J. S. Pla*kett.
G. II. T. $11^{1 / 19} 19^{m}$

Wt.	$\begin{aligned} & \text { Mean } \\ & \text { of } \\ & \text { Settings. } \end{aligned}$	Corrected Star Nettings.	$\begin{aligned} & \text { Disp, } \\ & \text { in } \mathrm{r} \in \mathrm{v}^{\mathrm{t}} \end{aligned}$	Velocity:	Wt.	Mean of Settings.	Corrected Star Setting:	$\begin{aligned} & \text { Dispt } \\ & \text { in } r e v^{\text {nt }} \end{aligned}$	Velocity.
2 2 2 2	63.3626 $61-3 \times 04$ $61-3217$ $59 \cdot 7622$	$\begin{array}{r} 3210 \\ 7640 \end{array}$	$\begin{aligned} & 1087 \\ & 1402 \end{aligned}$	$\begin{array}{r}44 \\ -61 \\ 64 \\ \hline\end{array}$	$\frac{9}{2}$ $1 \frac{1}{2}$	59.8075 361516 36.1860	-184tit	-1385	+48 a^{4}
1909. Mar: 2. (i, M, T. $11^{\text {h }} 29^{m}$									$50 \cdot 33$
			Radial velocity....						$\begin{aligned} & \text {......... }+24.4 \\ & \begin{array}{l} \text { by } \\ \text { by jJ. S. Plaskett. } \end{array} \end{aligned}$
				30 FIO	15231	Obsprved byMeasured by j J. S. Plaskett.			
Wt.	$\begin{aligned} & \text { Mean } \\ & \text { of } \\ & \text { Settings. } \end{aligned}$	Corrected star settings.	$\begin{aligned} & \text { Disp } \\ & \text { in rever } \end{aligned}$	Velocity.	W't.	Mean of Settings.	Corrected Star Setting:	$\begin{aligned} & \text { Disp } \\ & \text { in } r e v^{p 1} \end{aligned}$	Velocity.
$\begin{aligned} & 2 \\ & 2 \\ & 2 \\ & 1 \frac{1}{2} \end{aligned}$	63. 3438 61 3600 61.3i90 597476			46.87 5759	222	$\begin{aligned} & 587920 \\ & 36 \cdot 142 \\ & 36 \cdot 1763 \end{aligned}$		1363	-4, 77
		$\begin{aligned} & 32311 \\ & 76 \% \end{aligned}$	$\begin{array}{r} 1137 \\ -1112 \end{array}$						
									$+50 \cdot 12$
				Radial velocity $\ldots+242$					

β ORIOXIS 2320.
1909. Mar. 2
(i. M. T. $11^{\text {h }} 36^{\text {m }}$
$\left.\begin{array}{l}\text { Observed by } \\ \text { Mensuied by }\end{array}\right\}$ J. S. Plaskett.

Weighted mean		$+475$
V^{1}	$-25 \cdot 61$	
V_{d}	- 02	
Curvature	- 28	
Radial velocity		$+21.6$

β ORIONIS 2364.
1909. Mar. 13
G. M. T. $12^{\mathrm{h}} 12^{\mathrm{mm}}$

Ohserved by
Measured by
J. S. Plaskett.

1909. Mar. 13
G. M. T. $12^{\mathrm{H}} 24^{\mathrm{m}}$

Wt.	$\begin{aligned} & \text { Mean } \\ & \text { off } \\ & \text { Settings. } \end{aligned}$	Corrected Star Settings.	$\begin{aligned} & \text { Disp } \\ & \text { in rev } \end{aligned}$	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	$\begin{gathered} \text { Dispp } \\ \text { in revin } \end{gathered}$	Velocity.
$\begin{aligned} & 2 \\ & 2 \\ & 3 \\ & 2 \end{aligned}$	$\begin{aligned} & 63 \cdot 3760 \\ & 61.3876 \\ & 613228 \\ & 597507 \end{aligned}$	3120 -7425	-0997	1111 +8.4	$\begin{aligned} & 2 \\ & 2 \\ & 1 \frac{1}{2} \end{aligned}$	$\begin{aligned} & 58 \cdot 8161 \\ & 36 \cdot 1348 \\ & 36 \cdot 1591 \end{aligned}$	1765	1284	$+450$
									$+4425$

13 ORIONIS 2336.
1909. Mar. 13
G. M. T. $122^{3} 36^{\mathrm{m}}$
$\left.\begin{array}{l}\text { Observed by } \\ \text { Measured by }\end{array}\right\}$ J. S. Plaskett.

Velocity.	Wt.	Mean of Setting*:	Corrected Star Settings,	$\begin{aligned} & \text { Disp,t } \\ & \text { in revent } \end{aligned}$	Velocity.
$\begin{array}{r} +427 \\ 50.4 \end{array}$	2 2 $1 / 2$ 12	$\begin{aligned} & 58-8112 \\ & 361406 \\ & 36 \cdot 1692 \end{aligned}$	1814	1333	$+467$
					- $46 \cdot 21$
	Radial velocity...				$+203$

1909. Mar. 13.
G. M. T. $12^{\text {h }} 46^{\text {" }}$
β ORIONIS 2367.
$\left.\begin{array}{l}\text { Observed by } \\ \text { Nleasured by }\end{array}\right\}$ J. S. Plaskett.

Wt .	Mean of Settings.	Corrected Star Settings.	$\begin{aligned} & \text { Disy, } \\ & \text { in rev } \end{aligned}$	Velocity.	Wt.	$\begin{gathered} \text { Mean } \\ \text { of } \\ \text { Settings. } \end{gathered}$	Corrected Star Settings.	$\begin{aligned} & \text { Disp, } \\ & \text { in revinu } \end{aligned}$	Velocity.
2 2 21 21 $1 \frac{1}{2}$	$68 \cdot 3600$ $61 \cdot 3738$ 61.3086 $59 \cdot 7297$	3125 7409	1002 1162	a ++130 47.40	$\stackrel{2}{2}$	$\begin{aligned} & 58 \cdot 7981 \\ & 36 \cdot 1272 \\ & 36 \cdot 1460 \end{aligned}$	$\cdots 1710$	1229	$+4310$
					Radial velocity $+17 \cdot 6$				

1909. Mar. 13.
G. M. T. $12^{\mathrm{h}} 57^{\mathrm{m}}$

Observed by
Measured by J. S. Pi,sskett.

3 ORIONIS 2373.
1909. Mar. 15.
G. M. T. $11^{\mathrm{h}} 50^{\circ \mathrm{m}}$

3ORIONIS 2374.
1909. Mar. 15.
G. M. T. $12^{14} 05^{\mathrm{m}}$
$\left.\begin{array}{l}\text { Observed by } \\ \text { Measured by }\end{array}\right\}$ J. S. Plaskett.

SESSIONAL PAPER No. 25a

1909. Mar. 15.
(\&. M. T. $12^{\mathrm{h}} 13^{\mathrm{m}}$

AORIONIN 2375.

\#ORIONIS 2376
1909. Mar. 15.
G. M. T. $12^{\text {Li }} 21^{\mathrm{m}}$
$\left.\begin{array}{l}\text { Otserved by } \\ \text { Measmed by }\end{array}\right\}$ J. S. Plashett.

Weighted mean
$\mathbf{V}_{a} \ldots \ldots$.
$\mathrm{V}_{\mathrm{c}} \ldots \ldots \ldots$ - 14
Curvature 28
Radial velocity.
162
3 ORIONIS 2386 .
1900. Mar. 18.
G. II. T. $11^{\mathrm{h}}+2^{\mathrm{m}}$

Observed by tJ. S. Plaskert.
Measured by i.

9-10 EDWARD VII., A. 1910
3 ORIONIS 2357.
1909. Mar. 18
(i. M. T. $11^{\mathrm{h}} 52$
$\left.\begin{array}{l}\text { Olserved by } \\ \text { Dleasured by }\end{array}\right\}$ J. S. Plakkett.

Wt.	$\begin{aligned} & \text { Me.an } \\ & \text { of } \\ & \text { Settings. } \end{aligned}$	Corrected star Settings.	$\begin{aligned} & \text { Dispt } \\ & \text { in revonn } \end{aligned}$	Velocity.	Wt.	Mean of Settinge	Corrected Star Settings.	Dispt ${ }^{t}$ in rev ${ }^{n+5}$	Velocity:
$\begin{aligned} & 2 \\ & 2 \\ & 2 \\ & 1-1 \end{aligned}$	$63 \cdot 3645$ $61 \cdot 3782$ $61 \cdot 3205$ $59 \cdot 7465$	$\begin{array}{r} 3200 \\ -7480 \end{array}$	$\begin{aligned} & 1077 \\ & 1242 \end{aligned}$	$\begin{array}{r} +4439 \\ +50.66 \end{array}$	2 2 1	$\begin{aligned} & 588071 \\ & 36-1581 \\ & 36 \cdot 1681 \end{aligned}$	1625	1144	$+49 \cdot 10$
									-45-53
					Radial velocity -20.0				

1909. Mar. 18.
G. M. T. $12^{(120}$
β ORIONIS 2388.
Observed by
Heasured by J. S. Plaskett.

Disp ${ }^{\text {s }}$ in res ${ }^{\text {ne }}$	Velocity.	W t.	Mean of Setting .	Corrected Star Settings,	$\begin{aligned} & \text { Dispt } \\ & \text { in reven } \end{aligned}$	Velocity.
${ }_{1242}^{1157}$	$\begin{array}{r} 47 \cdot 69 \\ +50 \cdot 66 \end{array}$	$\begin{aligned} & \frac{2}{2} \\ & 1 \frac{1}{2} \end{aligned}$	$58 \cdot 8001$ $36 \cdot 1635$ 36-1828	1715	1235	$+43 \cdot 29$
			Radial velo	ity.......	-21.7

β ORIONIS 2339.
1:M9. Mar. 18.
G. M. T. $12^{\mathrm{b}} 12 \mathrm{~m}$

SESSIONAL PAPER No. 25a
β ORIONIS 2390.
1909. Mar. 20.
(v. M. T. $12^{\mathrm{h}} 16^{\mathrm{m}}$

$\beta 0$ RIONIS 2391.
1909. Mar. 20.
G. M. T. $12^{\mathrm{h}} 26^{\mathrm{m}}$

Observid by

3 ORIONIS $2: 92$.
1909. Mar. 20.
G. M. T. $12^{\mathrm{h}} 3 \mathrm{~s}^{\mathrm{m}}$

Observed by j S. Plasketr.
Measured by

Wt.	Mean of Settings.	Corr-cted Star Settings.	$\begin{aligned} & \text { Disp } \\ & \text { in rev } \end{aligned}$	Velocity.	Wt.	$\begin{gathered} \text { Mean } \\ \text { of } \\ \text { Settings. } \end{gathered}$	Corrected Star Settings.	Disp ${ }^{\text {e }}$ in rev ${ }^{\text {nin }}$	Velocity.
2	63.375				2	58:8197			
3	61-3352	3320	1197	+49-3t	2	$36+1862$	1815	1334	$+4676$
$1 \frac{1}{3}$	59.7575	7460	1222	4985					

Radial velocity +284

1!09. Mar. 20.
G. II. T. $12^{1 /}+8^{m}$

Observed by
Measured by J. S. Plaskett.

β ORIONIS 2397.
$\left.\begin{array}{l}\text { Observed by } \\ \text { Measured by }\end{array}\right\}$ J. S. Pliskett.
1909. Mar, 21.
G. II. T. $13^{\mathrm{h}} 388^{\mathrm{m}}$

β ORIONIS 239N．

1904．Mar， 21.
G．M．T． $13^{\text {h }} 4 \mathrm{~s}^{m}$

Obwerved by
Measured by J．S．Plaskitt．

β ORIONIS 2394．

1905．Mar． 21.
G．M．T 14^{n}

Observed by
Measured by ，J．S．Plaskett．

Weighted mean		$-50 \cdot 18$
Va．．	－24 76	
V_{d} ．	－ 32	
Curvature	－ 28	
Itadial velocity		－24

3 ORIONIS 240 m

19053．Mar， 21.
G．M．T． $14^{\text {b }} 14^{\text {tin }}$

Observed by（．J．S．Plaskntt．
Measured by

Wt．	Mean of Settings．	Corrected Star Settings．	$\begin{aligned} & \text { Dispy } \\ & \text { in rev } \end{aligned}$	Velocity．	Wt．	$\begin{gathered} \text { Mean } \\ \text { of } \\ \text { Settings. } \end{gathered}$	Corrected Star settings．	Disp： in res ${ }^{\text {bin }}$	Velocity：
2	63.335				2	$58 \cdot 80 \% 1$			
2	61．3713	ズィ0			2	36.1516			
$1 \frac{1}{2}$	$54 \cdot 7490$	Thise	1342	51.74					48.8

9-10 EDWARD VII., A. 1910
β ORIONIS 2402.
1909. Mar. 22.
G. M. T. $11^{1 / 51 m}$

Observed by
Measured by J. S. Plaskett.

Wt.	Mean of Settings.	Corrected Star Settings.	$\begin{aligned} & \text { Disp } \\ & \text { in rev } \end{aligned}$	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	$\begin{gathered} \text { Disp } \\ \text { in } \mathrm{rev} \\ \text { van } \end{gathered}$	Velocity.
$\begin{aligned} & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 14 \end{aligned}$	$\begin{aligned} & 63 \cdot 3584 \\ & 61 \cdot 3737 \\ & 61.3370 \\ & 59.7510 \end{aligned}$	$\begin{aligned} & 3410 \\ & 7560 \end{aligned}$	$\begin{aligned} & 1287 \\ & 1322 \end{aligned}$	$\begin{array}{r} +5305 \\ +53.92 \end{array}$	2 2 $1 \frac{1}{2}$	$58 \cdot 8043$ $36 \cdot 1477$ $36 \cdot 1712$	- $17 \stackrel{3}{7}$	1300^{-}	+ +581
									51.14
					Radial velocity				$26^{\circ} 0$

β ORIONIS 2403.
1919. Mar. 22.
G. M. T. $12^{\text {h }} 02^{\mathrm{mm}}$

Observed by
Measured by f. S. Pliskett.

β ORIONIS 2404.
1909. Mar. 22.
G. M. T. $12^{2_{\mathrm{h}}} 13^{\mathrm{m}}$

Observed by
Measured by J. S. Plaskett.

SESSIONAL PAPER No. 25a

3 ORIONIS 2405.

190日. Mar. 22.
G. M. T. $12^{\mathrm{h}} 35^{\mathrm{m}}$

Observed by 1.J. S. Plaskett.
Measured by

β ORIONIS 2420.
1909. Mar. 23.
(4. M. T. $11^{\mathrm{b}} 46^{\mathrm{m}}$

Observed by
Measured by J. S. Plaskett.

Wt.	Mean of Settings.	Corrected Star Settings.	$\begin{aligned} & \text { isppt } \\ & \text { in rev } \end{aligned}$	Velocity.	Wt.	Jlean of Settings.	Corrected Star Settings.	$\begin{aligned} & \text { Disp } \\ & \text { in rev } \end{aligned}$	Velocity.
$\stackrel{2}{2}$	$\begin{aligned} & 63 \cdot 3586 \\ & 61 \cdot 3757 \end{aligned}$				2	58.8059 $36 \cdot 1332$			
1.	$61-3160$	3190	1067	+4399	2	36-1699	-1889	1408	$+493$
									+ 4814
					Radial velocity				$+23 \cdot 1$

β ORIONIS 2421.
1909. Mar. 23.
(f. M1. T. $\quad 11^{1 / 2} 57^{m}$

Ohserved by
Mleasured by J. S. Plaskett.

Wt.	$\begin{gathered} \text { Mean } \\ \text { of } \\ \text { Settings. } \end{gathered}$	Corrected Star Stetting:,	$\begin{aligned} & \text { Dispt } \\ & \text { in rer } \end{aligned}$	Velocity.	Wt.	$\begin{gathered} \text { Mean } \\ \text { of } \\ \text { Settings. } \end{gathered}$	Corrected Star Settings.	$\begin{aligned} & \text { Disp }{ }^{t} \\ & \text { in rev } \end{aligned}$	Velocity.
2 2 2 21 $1 / 4$	$\begin{aligned} & 633700 \\ & 61 \cdot 3809 \\ & 61 \cdot 3418 \\ & 59 \cdot 7447 \end{aligned}$	$\begin{array}{r} 3358 \\ -7350 \end{array}$	$\begin{aligned} & 1235 \\ & 1152 \end{aligned}$	$\begin{array}{r} +50.92 \\ +49.99 \end{array}$	2 2 2	$58 \cdot 8151$ 36. 1310 $36 \cdot 1608$	1820	1339	+1.46 .93
					Weighted mean				+49.36
					Radial velocity +24.4				

9-10 EDWARD VII., A. 1910
1999. Mar. 23.
G. M. T. $12^{4} 05^{\mathrm{m}}$

$$
\text { G. М. T. } 13^{\mathrm{b}} 05^{\mathrm{m}}
$$

3 OR1ONIS 2422.

1:099. Mar. 23.
G. M. T. $12^{12} 13^{m}$

Observed by
Measured by

3 ORIONIS 2423.

3 ORIONIS 2424.
1949. Mar. 23.
G. M. T. $12^{h} 27^{110}$

Observed by
Measured by J. S. Plaskett.

Wt.	$\begin{gathered} \text { Mean } \\ \text { of } \\ \text { Settings. } \end{gathered}$	Corrected Star Settings.	$\begin{gathered} \text { Dispt } \\ \text { in revis } \end{gathered}$	Velocity.	W't.	Mean of Settings.	Corrected Star Settings.	$\begin{aligned} & \text { Disp } \\ & \text { in rev } \end{aligned}$	Velocity:
$\begin{aligned} & 2 \\ & 2 \\ & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & 6 \cdot \cdot 3787 \\ & 6 \cdot \cdot 3936 \\ & 61 \cdot 3330 \\ & 597696 \end{aligned}$	$\begin{array}{r} 3170 \\ 7551 \end{array}$	1047 1313	4317 +6356	2 2 2	$\begin{aligned} & 58 \cdot 8225 \\ & 36 \cdot 1500 \end{aligned}$ $36 \cdot 2082$	2104	1623	$\div 56.89$
Radial veloeity...... $\div 36 \cdot 2$									

SESSIONAL PAPER No. 25a

β OHIONIS 2425.
1909. Mar. 23.
(f. M. T. $12^{\text {b }} 38^{m}$

Gbserved by J. R. GasNos:
Measured by J. S. Plasketr.

SESSIONAL PAPER No. 25a

 $=:=2===+2$

* AQUIL.玉 103

19n\%. Rept. 12.
(E. I. T. $15^{\mathrm{h}} 15^{\mathrm{m}}$

* AQUILLE 1050 .

1907. Sept. 18
G. M. T. $14^{\mathrm{b}} 45^{\mathrm{m}}$

Observed by J, N. Tribble.
Measured by J, B. Cannon,

Wt.	Mean of Nettings.	Corrected Star Settings.	Displacement in Revolutions.	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displacement in Revolutions	V Vlocity
2	54 7834				$\frac{1}{2}$	$27 \cdot 3601$	4161	(4, 25	3.04
1	$53 \cdot 9733$	9818	0120	$+1381$	2	$27 \cdot 1906$			
2	531041 45.2469				$\frac{13}{2}$	11.7684	8670	0156	$+11 \cdot 68$
$1 \frac{1}{2}$	$45 \cdot 2273$	2340	1153	1597					
Kadial velocity - 8.0									

Weighted niean	$-96 \cdot 06$ $-92 \cdot 14$
V_{a}	22.14 $-\quad 14$
$\underset{\text { Curvatu }}{\text { d }}$	14 28
Radial velocity.	48.6

* AQUHL.E 1050.*
$190 \bar{T}$. Sept. 18.
G. M. T. $14^{\text {b }} 45^{\mathrm{m}}$

Observed by J. N. Thibbie, Measured by J. B. Cannon.

Wt.	Mean of Settings	Corrected Star Settings.	Displacement in Revolutions.	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displace. ment in Revolutions,	Velocity.
	73.0040				2	53.1850			
$1^{\frac{3}{2}}$	72.8394	8450	0198	$-28 \cdot 73$	2	45.2417			
1	72. 4318				13	45.1800	2119	0268	27.98
2	54.7082				${ }^{\frac{1}{8}}$	27.8593	3996	0136	$-11 \cdot 28$
$\frac{1}{2}$	53.9314	9651	0044	5.06	2	$27 \cdot 2003$		

Weighted mean	$-22 \cdot 43$
V_{e}	-22.14
V_{d}	- 14
Curvat	
Radiul velocity.	- 5

SESSIONAI PAPER No. 25a

190k. May 15.
G. M. T. 20^{41} $4^{\prime \prime \prime}$

\# A1)UILLAE 154.
1908. May 18.
(i, M. T. $20^{4} 49^{\text {mi }}$

(6 AQUIL.E $15 \% 6$.

Wt.	Mean of Settings.	Corrected Star Settinge,	Displacement in Revolutions.	Velocity:	Wt.	Mean of Settings.	Corrected Star Setting.	Displacement in Revolutions	Velocity.
$\begin{aligned} & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \end{aligned}$	54.7569				4	$45 \cdot 1970$	1900	0487	-50.84
	$53 \cdot 8904$ $53 \cdot 1029$	8976	9722	$88 \cdot 10$	2	$11 \cdot 8650$ $11 \cdot 5975$	720	. 0744	$-55 \% 2$
				Weighted mean					$9 \cdot 34$
								+21 62	
						ci......			
					dial	locity.		-	$8 \cdot 0$

θ AQUIL E 1583.
1908. June 5.
G. M. T. $9^{\mathrm{h}} 42^{\mathrm{mi}}$

θ AQUILEE 1604.
1908. June 12.
G. M. T. $19^{\mathrm{h}} 32^{\mathrm{ma}}$

Observed by T. H. Pakiker.
Measured by C. R. Westland.

Wt.	Mean of Settings	Correeted Star Settings.	Displacement in Revolutions.	Velocity.	Wt.	$\begin{aligned} & \text { Mean } \\ & \text { of } \\ & \text { Settings. } \end{aligned}$	Corrected Star Settings.	Displacement in Revolutions.	Velocity.
$\begin{aligned} & 2 \\ & \frac{1}{3} \\ & 2 \\ & 2 \\ & 2 \\ & 1 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \end{aligned}$	730175				2	45.2995			
	72.8819	\$ 236	0212	-3076	1	$45 \cdot 2281$	2022	0365	-38.11
	72.4848				1	377627	7265	0253	$27 \cdot 21$
	57.8373 57 57974	7895	0373	44.91	2 1	$37 \cdot 4655$ $27 \cdot 413$	3832	$\cdot 0274$	$-23 \cdot 78$
	547562				2	$27 \cdot 2746$	0	207	-20
	$53 \cdot 9652$	9492	0206	-23.71	1	11.8637	8176	0341	$-25 \cdot 54$
	53120 N				2	11.5542			
					Weighted mean................. is 58				$-29 \cdot 64$
						$\begin{aligned} & \mathbf{V}_{d} \ldots \ldots . . . \\ & \mathbf{V}_{d} \ldots . . \end{aligned}$		$+18.58$	
						Curvature	 -	
					Radial	velocity.			11.4

SESSIONAL PAPER No. 25a
1908. June 12.

- AQUIL F: 1605.

G, M. T. $20^{\text {h }} 15^{\text {m }}$

W't.	$\begin{aligned} & \text { Mean } \\ & \text { of } \\ & \text { Setting } \end{aligned}$	Corrected Star Settings.	Displace. ment in Revns.	Velocity.	Wt.	$\begin{gathered} \mathbf{M t e a n ~}_{\text {of }} \\ \text { Settings. } \end{gathered}$	Corrected Star Settings.	Displace: ment in Revir.	Velocity.
2	72.9907				2	53.0714			
$9^{\frac{1}{2}}$	$72 \cdot 8128$	8345	0303	$-43 \cdot 96$	2	45.2430			
2	$\pi 2+181$				1	45.1817	2124	0263	$27 \cdot 45$
2	54.7935	7934	0334	$-40 \cdot 21$	1	$43 \cdot 5027$ 27.3562	361	0507	
1	56.6375				2	${ }^{27} \cdot 2410$	doly	007	4×00
$\stackrel{2}{2}$	54.7009				1	11.7999	7149	0545	4156
1	$53 \cdot 9117$	9500	0198	$-22 \cdot 78$	2	$11 \cdot 5108$			

- AQUIL.E 162%.

19n8. June 22.
G. M. T. $18^{\mathrm{t}} 35^{\mathrm{m}}$

Observed by T. H. Paliker. Measured by W. E. Harper.

9-10 EDWARD VII., A. 1910
© AQUILE 1626.*
1906. Satee 22.
G. M. T. $1 s^{1} 35^{2}$

Wt.	Mean of Settings.	Corrected Star Settings.	Displacement in Revis.	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displacement in Revis.	Velocity.
1	$57 \cdot 8369$ $57 \cdot 8165$	8025	02 ± 3	$-29 \cdot 26$	$\frac{1}{2}$	$37 \cdot 7667$ $29 \cdot 8124$	7962 7624	$\begin{aligned} & 03 \times 3 \\ & 0685 \end{aligned}$	-36.92 -60.90
3	54.7682				2	29.6441			
2	58.9534	9294	0404	-4650	1	27.4266	3746	'0380	-32.98
$\stackrel{2}{2}$	$53 \cdot 1347$ $45 \cdot 3077$				2 2	27. 11.8604	-7864	$06 \overline{0}$	-4868
${ }^{1 \frac{1}{2}}$	45.2463 3.9960	2123	0264	$-2 \cdot 56$	2	11.5823			
						Weighted mean.			- $41 \cdot 03$
									28
						Radial velocity.			$-26 \cdot 3$

1908. June 24
G. M. T. $19^{14} 46^{n}$

Ohserved by W. E. Harrer.
Measured by
4 AQUIL.E 163 .

[^26]-

SESSIONAL PAPER No. 25a

θ AQUIL.E 1643.
1908. June 26 .
G. M. T. $19^{\mathrm{h}} 42^{\mathrm{m}}$

Observed by T. H. Parker. Measured by W. E. Harper.

Wr.	Mean of Settings.	Corrected Star Settings.	Displacement in Revns.	Velucity.	Wt.	$\begin{aligned} & \text { Mean } \\ & \text { of } \\ & \text { Settings. } \end{aligned}$	Corrected Star Settinge.	Displacement in Revns.	Velocity.
$\begin{aligned} & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & 57.8751 \\ & 57.8285 \\ & 54 \cdot 7850 \\ & 53 \cdot 9798 \\ & 53.1545 \\ & 45 \cdot 3226 \\ & 4 \cdot 2498 \end{aligned}$	7742 9370 2008	$\begin{aligned} & 0526 \\ & 0828 \\ & 0.6 \\ & 0879 \end{aligned}$	$\begin{aligned} & 63 \cdot 33 \\ & -3775 \\ & -39 \cdot 57 \end{aligned}$	2 2 1 2 3 2	$38 \cdot 0110$ 37.7647 274172 27.3150 11. 5661	$\begin{array}{r} 7131 \\ -3588 \\ 8040 \end{array}$	0416 0538 0474	-4010 -46.70 $35 \cdot 50$
									$\begin{aligned} & -4290 \\ & -\quad .09 \\ & -\quad 28 \end{aligned}$
					Radial velocity			$-30 \cdot 0$

θ AQUIL.E 1651.
1908. June 27.
G. M. T. $18^{h} 45^{m}$

Observed by J, S. Plaskett, Measured by W. E. Harper.

Wt.	$\begin{gathered} \text { Mean } \\ \text { of } \\ \text { Settings. } \end{gathered}$	Corrected Star Settings.	Displacement in Revns.	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displacement in Revns.	Velocity.
2	57.86440				1	30.8717	-8126	-0630	-56.571
1	57.8292	7946	0322	$-38 \cdot 77$	2	$29 \cdot 6583$			
$\stackrel{2}{21}$	$54 \cdot 7825$				1.	$29 \cdot 6105$	5510	-0479	-42.53
${ }_{2}^{21}$	$53 \cdot 9715$ $53 \cdot 1535$	9320	0378	$-43 \cdot 51$	13	$27 \cdot 4256$	3590	-0536	$46 \cdot 52$
2	- 45.3175				12	- 27.4903	4182	-0551	-4265
$\frac{1}{2}$	45.2365	1926	0461	-4813	2	15.4707			
${ }_{1}^{2}$	$38 \cdot 0075$ 37.7459				3	11.8646	7958	0556	$-41 \cdot 64$
$\frac{1}{2}$	37.7459 30.9295	6973	053	-53 40	2	11-5760			

- AใLIL.E 1659.

1905, July 3.
G. M. T. $1 \mathbf{1}^{\text {h }} 30^{\prime \prime}$

Observed by W. E. Harper.
Measured by J. B. Cansos.

Wit. \begin{tabular}{c}

Mean
of
settings.

\hline
\end{tabular}

* AQE IL.E 1679

1908. July 8.
(i. M. T. 1と 49^{m}

- AQUIL.E 1691.

1908. July 10.
G. M. T. $19^{\mathrm{n}} 30^{\mathrm{m}}$

SESSIONAL PAPER No. 25a

1908. July 10.
G. 3. T. $19^{\mathrm{b}} 30^{\mathrm{m}}$

Ohsemed by T. H. Parker.
Mra-ured by J. B. Cansos.

A AQUILAE 1696.
1908. July 11.
G. M. T. $19^{\mathrm{n}} 10^{\mathrm{m}}$

Observed by J. S. Plasketr. Measured by W, E. Harper.

Wt.	Mean of Settings	Corrected Star Settings	Displace ment in Revolutions.	Velocity.	Wt.	$\begin{gathered} \text { Mean } \\ \text { of } \\ \text { Settings. } \end{gathered}$	Corrected Star Settings	Displacement in Revolutions.	Velocity.
2	57.8543				12 $\frac{1}{2}$	$45 \cdot 2351$	-1991	-0396	-41 34
1	$55 \cdot 8215$	7968	0300	-3612	2^{2}	29.6333			-41
2	547344				1	29.6020	3676	0813	-27 54
2	53.9587	9274	0424	$48 \cdot 80$	2	11.8235	7982	-0532	$-39 \cdot 85$
2	53.1422				2	11.5825			
2	4.) 3096								

Weighted mean	-40 40
V_{a}	
V_{d}	12
Curvature.	28
Radial velocity	$-34 \cdot 2$

9-10 EDWARD VII., A. 1910
© AQUTLE 1704.
1908, July 1.
G. M. T. $19^{h} 37^{\mathrm{n}}$

Observed by T. H. Parkrr.
Measured by J. B. Casnon.

Wt.	Mean of Settings.	Corrected Star Settings.	Displact. ment in Revolutions.	Velocity.	Wt.	Mean cf Settings.	Corrected Star Settings.	Displacement in Revolutions.	Velocity.
						53-1318			
$\frac{1}{2}$	72.8608	8565	1083	-1205	2	4. 3027			
${ }_{2}{ }^{2}$	72.4491				1	45.2546			
2	57.8483				${ }^{\frac{1}{2}}$	27.4155	3555	0561	- 48.69
$2^{\frac{1}{2}}$	57.8073 $54-7666$	7883	$038:$	$-46 \cdot 35$	2	273060 11.8718		05ab	
2	53.9556	9296	- 0402	-4627	$2{ }^{2}$	11.5838	7508	¢00	41.6

- AQUIL E 1708.

1908, July 14.
G. M. T. $18^{\mathrm{t}} 19^{\mathrm{m}}$

Wt.	Mean of Settings.	Corrected Star Settings.	Displacement in Revolutions.	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displacement in Revolutions.	Velocity.
1	$73 \cdot 0051$					$45 \cdot 2705$			
1	$72 \cdot 8307$	8351	0297	$-43 \cdot 09$	2	$45 \cdot 2015$	2045	0342	-35 70
1	72.4410				$1 \frac{1}{2}$	27.3918	3786	0430	-37.32
2	$54 \cdot 7316$ $53 \cdot 9435$	9505	0193	-22 21	${ }_{2}^{2}$	27.2622	-8199	. 0315	-23:58
2	$53 \cdot 1072$				2	11.5364	,		

Weighted mean.		$-30 \cdot 83$
V	+534	
V_{d}		00
Curvature		- 28
Radial velocity		$-25 \cdot 8$

SESSIONAL PAPER No. 25a
θ AQUILAE 1716.

1908, July 15.
G. M. T. 1 sh $^{n} 2 t^{\prime \prime \prime}$

Observed by W. E. Hampkr.
Measured by J. B. Canson.

- AQUILAE 1727.

1908. July 25.
G. BI. T. $16^{\text {b }} 29^{\text {an }}$

Observed by J. S. Plaskett.
Measured by W. E. Harper.

Wt.	Mean of Settings.	Corrected Star Settings.	Displacement in Revolutions.	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displacement in Reyolutions.	Velocity.
2	73.0229				2	$45 \cdot 2811$			
1	72.8498	\$385	0263	-3816	2	$45 \cdot 2157$	2082	0305	31.84
1	$72 \cdot 4507$				${ }^{2}$	27.3982	3715	0411	$35 \cdot 67$
2	54.7506 53.9420				2	27.2733			
$\begin{aligned} & 2 \\ & 2 \\ & 2 \end{aligned}$	$53 \cdot 9420$ $53 \cdot 1227$	9323	0375	$43 \cdot 16$	${ }_{2}^{2 \frac{1}{2}}$	11. 11.5282	8011	0503	-37.67
					2	11.53 ± 3			
									$-37 \cdot 52$
					Radial velocity			-	$-37 \cdot 5$

- AQL1L.E 173π.

1548. July 26.
G. M. T. $17^{\mathrm{h}} 38^{\mathrm{m}}$

A AQUIL.E 1731.
1908. July 26 .
G. M. T. $18^{\mathrm{h}} 07^{\text {m }}$

Observed by
Mleasured by W. E. Hatrem.

SESSIONAL PAPER No. 25a

* AqUIL. 1732.

1908. July 27.
(i. M. T. $18^{10} 13^{10}$

Observed by J. S. Plaskhit.
Measured by W. E. Harper.

Wt.	Mean of Settingn.	Corrected Star Settings.	Displacement in Revolutions.	Velonity.	Wt.	Mean of Settings.	Corrected Star Settinge.	Displacement in Revolutions.	Velocity.
2	$57 \cdot 6860$				1	450540	2035	0352	$36 \cdot 75$
$\frac{1}{8}$	57.6422	7856	0412	4960	$\stackrel{2}{11}$	29-4.4.5			28.47
2	53.7915	9405	0293	3372	$\frac{12}{17}$	$11 \cdot 6850$	8115	0099	- 741
2	$52 \cdot 9636$ 451239				2	113507			
					Radial velerity				

- AQUIL.E 1733 .

1905. July 27.
(1. M. T. $20^{\circ} 10^{\mathrm{m}}$

Wt.	Mean of Settings.	Corrected Star Settings.	Displace ment in Revolutions.	Velocity.	Wt,	Mean of Kettings.	Corrected Star Settings.	Displacement in Revolutions.	Velocity.
2222	57. 8173	7993	${ }^{2} 273$	$32 \cdot 87$	1	$53 \cdot 9094$ $33 \cdot 1007$	9241	0457	-52.60
					Rat	al velocity	 - 4	$0 \cdot 7$

θ AQLIL.E 1736.

1904, Julv 25.
G M. T. 18 08m

Observed by I W. E. Harper.
Measured by j

W t.	$\begin{gathered} \text { Mean } \\ \text { of } \\ \text { Settings. } \end{gathered}$	Corrected Star Settings.	Displacement in Revolutions.	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displacement in Revolutions.	Velocity.
2 1 2 2	$\begin{aligned} & 54 \cdot 7033 \\ & 53 \cdot 9012 \\ & 53 \cdot 0681 \end{aligned}$	-9418	-0280	$-32 \cdot 23$	2	$\begin{aligned} & 37 \cdot 9039 \\ & 37 \cdot 6815 \end{aligned}$	7368	-0179	-1725
					Radial velocity. $-30-1$				

θ AQUILAE 1747.
1908. July 30.
G. M. T. $17^{\text {h }} 47^{\mathrm{m}}$

Observed by
Measured by W. E. Harprr.

Wt.	Mean of Settings.	Corrected Star Settings.	Displacement in Revolutions.	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displacement in Revolutions.	Velocity.
$\begin{aligned} & 2 \\ & 2^{\frac{1}{2}} \\ & 2 \\ & 2 \\ & 2 \\ & 2 \end{aligned}$	73.0586				2	$45 \cdot 2720$			
	$72 \cdot 8916$	8438	0210	$-30 \cdot 47$	$1 \frac{1}{4}$	15. 1954	-1970	. 0417	43.53
	$72 \cdot 4899$				$\frac{1}{2}$	27.3662	3783	-0313	$29 \cdot 77$
	$54 \cdot 7537$ 53.9640	-9538	0160		2	27. 2345	8237	0287	- 21.50
	$53 \cdot 1210$				$2^{\frac{1}{2}}$	11.4640			
	-								
					Radial velocity			-31-1	

(AQUILLE 1755.
1908. July 31.
G. M. T. $17^{\mathrm{b}} 52^{\mathrm{m}}$
$\left.\begin{array}{l}\text { Observed by } \\ \text { Measured by }\end{array}\right\}$ W. E. Harper.

Wt.	Mean of Settings.	Corrected Star Suttings.	Displacement in Revolutions.	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displacement in Revolutions.	Velocity.
2	57.9005				2	$29 \cdot 6870$			
1	57.8680	7968	0300	-3612	1	27.4678	3771	-0355	$30 \cdot 81$
2	45-3421				2	27.3373			
112	45 2829 296625	2144 $\cdot 5744$	-0243	2537 21.78	1	11.8987 11.5900	8159	0355	$-26 \cdot 59$
					Radial velocity..... -30.5				

SESSIONAL PAPER No. 25a
θ AQLILE 1756.
1908. July 31.
G. II. T. $18^{\mathrm{h}} 19^{\mathrm{m}}$

Observed by
Measured by W: E. Harper.

Wt.	Mean of Settings.	Corrected Star Settings.	Displacement in Revolutions.	Velocity.	Wt.	Mean of Settings.	Corrected star Settings.	Displacement in Revolutions	Velocity.
2	$73 \cdot 1090$				2	4. 3718			
$2^{\frac{1}{2}}$	72.9433	8464	0184	-26.70	2	45.3132	2150	0237	24.74
2	$72 \cdot 5395$ $54 \cdot 8279$				$\frac{1}{2} \frac{1}{2}$	${ }_{2}^{27}+5107$	3881		$21 \cdot 27$
$1 \frac{1}{2}$	540425	9526	0172	$19 \cdot 80$	2	11.9418	8239	0275	-20.60°
2	$53 \cdot 2054$				2	11.6251	-30		

Weighted mean	$-23 \cdot 42$
V_{a}.	- 2.59
V	- 15
Curvature.	
Radial velocity	-26.4

θ AQLIL.E 1762.

1908. Aug. 5.
G. M. T. $14^{\mathrm{b}} 50^{\mathrm{m}}$

Observed by J. S. Plaskett.
Measured by T. H. Parker.:

9-10 EDWARD VII., A. 1910
A AQUIL.E. 1766.
1908. Auk. 5.
G. M. T. $16^{\text {id }} 29^{\mathrm{m}}$

A AOUIL E 1767 .

190k. Ang. 5.
1). M. T. $17^{\mathrm{n}} 18^{\mathrm{m}}$

Observed by .I. S. Plaskett.
Measnmed by W. E. HAMPER.

190k. Aug. 5.
1:. M. T. $15^{\mathrm{h}} 48^{\mathrm{m}}$

Obs-rved by J. S. Plankett,
Measured by W. E. Hakper.

A AQUHLE 1769.

SESSIONAL PAPER No．25a

1：H8 Ang． 7.
G．M．T． 17^{7}
θ AりでしL，E 1766.

Wt．	Mean of Setting．	Corrected Star Settings．	Displace． ment in Revolutious．	Velocity．	W＇t．	Mean of Settings．	Corrected Star Settings．	Displace． ment in Revolutions．	Velocity．
2	$73 \cdot 0105$				2	$53 \cdot 1270$			
2	$72 \cdot 8237$ $72+393$	8311		－4： 9	1				
2	54.7287				2	11.5727	8100	－ 314	+1.08 -30.64
112	339542	9413	02.5	3280	2	11.5703		，	
					Radial velocity ．．．．．．．．．．．．-41 ＋				

－AQLIL．き 1777 ．

190s．Aug．7．
G．M，T． $17^{11}+{ }^{2}$

Observed by T．H．Parike．
Measured by W．E．Harpke．

a AQtILEE 1 1\％89．
1908，Aug． 17.
G．N．T． $1 \mathrm{~s}^{11} 1 \mathrm{Nm}^{\mathrm{m}}$
Observed by
Measured by W．F．Harper．

9-10 EDWARD VII., A. 1910
(A AQU'IL.E 1789.)
1905. Ang. 17.
(i. M. T. $18^{1} 18^{\mathrm{n}}$

Observed by
Measured by i W. E. Harper.

Wt.	Mean of S-ttings.	Corrected Star Nettings.	Displace. ment in Revolutions.	Veloc'ty.	Wt.	Mean of Settings	Corrected Star Settings.	Displacement in Revolutions.	Velocity.
$\begin{aligned} & 2 \\ & 1 \\ & 2 \\ & 2 \frac{1}{22} \\ & 2 \\ & 2 \end{aligned}$	578769575754.789054.007854.007853453150				$\begin{aligned} & 1 \\ & 2 \\ & 1 \\ & 2^{\frac{1}{2}} \end{aligned}$	4. $2 \cdot 266 \pi$ 37.9966 37.7940 $29 \cdot 8666$ $29 \cdot 6395$	2271	-0116	$12 \cdot 11$
		8105	0163	$-20 \cdot 15$					$\begin{array}{r} 202 \\ -\quad 436 \end{array}$
		9618		$9 \cdot 21$			$\begin{array}{r} 7526 \\ 8260 \end{array}$	0021	
								- . . .	
Weighted mean...... -991									
					($\mathrm{V}_{\text {a }}$				10.39
					Radial veloclty $-20 \cdot 8$				

θ AQUILE 1594^{*}.
1908. Aug. 19.
G. M. T. $16^{\text {h }} 45^{\text {tin }}$
$\left.\begin{array}{l}\text { Observed by } \\ \text { Measured by }\end{array}\right\}$ W. E. Harper.

Wt.	Mean of Settings.	Corrected Star Settings.	Displacement in Revolutions.	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displacement in Revolutions.	Velocity.
2	111.6998				2	68-7143			
$\frac{1}{2}$	111.3210	1330	0193	-11-19	2	63.3902			
$\frac{2}{2}$	1102983				4	61.2072	2159	0286	11%
2	71.8920 71.8568				2	$60 \cdot 3880$ $36 \cdot 0921$			
11	71.8568 69.5153	8664 $53 \% 3$	0392	1729 673	$\frac{1}{2}$	$36 \cdot 0921$ $35 \cdot 9450$	9631	0427	-14.90

Weighted mean	-12-41
V_{a}	-1121
Va	12
Curvature.	28
Radial velocity.	-240

*Plate made with three-prism spectrograph.

SESSIONAL PAPER No. 25a
H AOUILE 1799.
1908. Aug. 20.
(t. M. T. $15^{\mathrm{h}} 15^{\mathrm{m}}$

Observed by
Neasured by $;$ W. E. Harper.

Wt.	Mean of Settings.	Corrected Star Settings.	Displace. ment in Revolutions.	Velocity.	Wt.	Mean of Settings	Corrected Star Settings.	Displacement in Revolutions.	Velocity.
2	$72 \cdot 9899$				2	4. 2480	26.44	-0257	+2683
$2^{\frac{1}{2}}$	72.8610	8811	0163	+23.63	2	37.9470			
${ }_{2}^{2}$	72.4241 57.8029				1	37.7533 29.6165	7655	- 108	-10.41
1	57. 8095	$8387{ }^{\circ}$	0119	-14.33	2	29.5490	6167		
2	$54 \cdot 7304$				$\frac{1}{2}$	$27+145$	40.51	0075	651
$\stackrel{2}{2}$	53.9533 53	9751	0053	- 6.11	: 4	27.2560 11.8457	8229	0155	$-13 \cdot 90$
2	$45 \cdot 2572$				2	11.5300			
					Curvature - 28				
					Radial velocity. + + ${ }^{4} 4$				

O AUUTIL.E 1800.
1908. Aug. 20.
(i. M T. $15^{\mathrm{L}} 4 \mathrm{i}^{\mathrm{m}}$

Observed by (W. E. Harper.
Measured by

Wt.	Mean of Settings.	Corrected Star Settings.	Displace meut in Revolutions.	Velocity.	Wt.	Mean of Settings	Corrected Star Settings.	Displacement in Revolutions.	Velucity.
2	73.0033				$1 \frac{1}{2}$	$45 \cdot 2531$	2537	0150	$+15 \cdot 66$
$2^{\frac{1}{2}}$	728582	8648	0000	0.00	1	$27 \cdot 4586$	4290	0164	+14.23
${ }_{2}^{2}$	72.4383				2	$27 \cdot 2762$ 11.9005			
1	$5+7379$ $53 \cdot 9710$	9747	0049	+ 564	1	11.9005	8700	0186	+13'93
${ }_{2}^{2}$	$53 \cdot 1090$				1	59.6690	6736	0009	-123

9-10 EDWARD VII., A. 1910

A AQUIL.E 1801.
1908 . Aug. 20.
G. A. T. $16^{4} 42^{m}$
$\left.\begin{array}{l}\text { Observed by } \\ \text { Measured by }\end{array}\right\}$ W. E. Harter.

- AQUIL E: 1807.

1s0x. Aug. 21.
G. M. T. $13^{h i} 5 i^{m}$

Observed by J. B. CAnnos.
Measured by W. E. Hatrer.

SESSIONAL PAPER No. 25a

1908. Aug. 21.
G. M. T. $1^{\text {h }} 32^{\mathrm{m}}$
\qquad

190\%. Aug. 31.
G. 31. T. 13^{h} 2N

Olservel by J, B. Cisnos.
Measured by W. F. Hagikk.

W't.	Mean of Settings.	Corrected Star Settings.	Dixplacement in Revolutions.	Velocity.	Wt.	$\begin{gathered} \text { Mean } \\ \text { of } \\ \text { Settings. } \end{gathered}$	Corrected Star Settings.	Displace. ment in Revolutions,	Velocity.
2	729966				2	45.2833			
$2^{\frac{1}{4}}$	$72 \cdot 8760$ $72 \cdot 4343$	8818	$01 \% 0$	$2+67$	1	4. 2779	2698	0305	31.84
? 2	57.8783	8783	$0 \div 15$	6200	1	37.8077	7478	0431	41 (\%)
${ }^{2}$	57.8294				$\frac{1}{2}$	27.4 .42	4226	0100	$8 \cdot 68$
12 $\frac{1}{3}$	54.7475 54.01 .0	0110	0412	4712	$\stackrel{2}{1}$	27 11.2753	9014	0500	$+37 \cdot 45$
2	$53 \cdot 1145$				2	11:512			
Radial velucity 26.0									

θ AQUILE 1811.
1908. Aug. 22
G. M. T. $15^{\text {h }} 29^{\mathrm{ma}}$

Wt.	Mean of Settings.	Corrected Star Settings.	Displacement in Revolutions.	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displacement in Revolutions.	Velocity.
2	$72 \cdot 9587$				2	$45 \cdot 2600$			
$\frac{3}{2}$	72.8387	8901	0253	$+3671$	1	45.2775	2911	0524	54.70
2^{-}	$72 \cdot 3930$				1	27.4871	4580	0454	$39 \cdot 43$
2	54.7138 53.9876				2	27.2762 11.9679			
2	$53 \cdot 9876$ $53 \cdot 0885$	0134	0436	$50 \cdot 18$	${ }_{2}^{2}$	11.9679 11.55587	9170	0656	$+49^{\prime} 13$
	$53 \cdot 0885$								
				Weighted mean 4 + 47.86					
				V_{d}......................				-12-50	4.86
								- $\quad 03$	
				Curvature... $\quad 28$					
				Radial velocity +850					

θ AQUIL E 1812.
1908. Aug. 29.
G. M. T. $15^{\mathrm{h}} 56^{\mathrm{m}}$
$\left.\begin{array}{l}\text { Observed by } \\ \text { Measured by }\end{array}\right\}$ W. E. Harper.

Wt.	Mean of Settinge.	Corrected Star Settings.	Displacement in Revolutions.	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displacement in Revolutions.	Velocity.
	72.9892				2	45-2531			
$\frac{1}{2}$	72.8897	9116	0468	$+6791$	1	45.2633		$\because 0451$	4708
2	72.4190				3	27.5378	-4728	-0602	$52 \cdot 25$
2	54.7430 54.0200				$\stackrel{2}{2}$	$27 \cdot 3121$ 12.0073			$\cdots 78.61$
$\begin{aligned} & 1 \\ & 2 \end{aligned}$	54.0200 53.1145	0182	0484	$50 \cdot 71$	$\stackrel{2}{2}$	12.0073	-9163	0649	$+48 \cdot 61$
				Weighted mean................. $12 \cdot 50$. +52.08					
					$\mathrm{V}_{a} \ldots \ldots \ldots$				
					Curvature........... - 28				
					Radial velocity $+39 \cdot 1$				

SESSIONAL PAPER No. 25a
1908. Aug. 22. (ง. M. T. $16^{\circ} 21^{\mathrm{m}}$
θ AQUILA 1813.

Wt.	$\begin{gathered} \text { Mean } \\ \text { of } \\ \text { Setting } \end{gathered}$	Corrected Star Settings.	Displacement in Revolutions.	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displacement in Revolutions.	Velocity.
	72.9817				2	45-2804			
1	72.8487	8179	0131	$19 \cdot 01$	1	45.2807	2739	0352	36.75
2	727465	8839	0571	6875	$\frac{3}{2}$	${ }_{29}^{29 \cdot 7215}$	6886	0897	$79 \cdot 74$
$\frac{2}{2}$	57.8120		007	6875	2	27.4825	4387	0221	19 -18
2	547342				2	27.2904			
,	540030	0118	$0+20$	$48 \cdot 34$	$2 \frac{1}{2}$	$11 \cdot 9879$	9218	0704	+52.73
2	$53 \cdot 1022$				2	$11 \cdot 5733$			

θ AQUIL 1814.

1908 , Alig. 23.
G. M. T. $15^{\mathrm{h}} 48^{\mathrm{m}}$
$\left.\begin{array}{l}\text { Observed by } \\ \text { Measured by }\end{array}\right\}$ W. E. Harper.

Wt.	Mean of Settings.	Corrected Star Settings.	Displacement in Revolutions.	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displacement in Revolutions.	Velocity.
2	$73 \cdot 0102$				2	531312			
$\frac{1}{2}$	72. 8535	8541	0103	-1494	2	$45 \cdot 3009$			
2	72.4415				1	45.2574	2301	0086	8.98
1	57.8425	8098	0175	$27 \cdot 07$	$\frac{1}{2}$	27 27 15137	3856	-0270	23.44
2	54.7607				2	11.9226	8286	0228	-17.08
2	$53 \cdot 9771$	9581	'0117	$13 \cdot 47$	2	11.6012			

9-10 EDWARD VII., A. 1910

- AC2UIL.E 1815.

1508. Aug. 23.
G. M. T. $16^{\mathrm{h}} 18^{\mathrm{m}}$
$\left.\begin{array}{l}\text { Observed by } \\ \text { Measured by }\end{array}\right\}$ W. E. Hakpes.

Wt.	$\begin{aligned} & \text { Mean } \\ & \text { of } \\ & \text { Settings, } \end{aligned}$	Corrected Star Settings.	Displace ment in Revolutions.	Velocity.	Wt.	Mean of Settings,	Corrected Star Setting\%,	Displacement in Revolutions.	Velocity.
2	$73 \cdot 0307$				13	$45 \cdot 2656$	2192	0195	20.36
1	$72 \cdot 8645$	3438	0210	$30 \cdot 47$	2^{2}	$38 \cdot 0157$			
3	$72 \cdot 4655$					377910	7348	0193	$19 \cdot 18$
$\stackrel{3}{13}$	57 57 55165					296320 29.6646	5663	-0336	
13	57.8167	7936	0332	$39 \cdot 97$	2	29.6646			
2	54.7766				8	$27 \cdot 4726$	1036	-6091	-90
$2^{\frac{1}{4}}$	$54 \cdot 6057$ $53 \cdot 1516$	9686	0012	138	$\stackrel{2}{2}$	27.315\%			13 3
${ }_{2}$	$53 \cdot 1516$ $45 \cdot 3210$				2	$11 \cdot 5870$	832-4		13 si

θ AOUTL.E 1822.

1918. Aug. 24.
G. M. T. $16^{\mathrm{h}} 51^{\text {tm }}$

Observed by
Measured by W. F. HakPer.

Wt.	Mean of Settings.	Corlected Star Settings.	Displacement in Revolutions.	Velocity.'	Wt.	Mean of Settings.	Corrected Star Settings.	Displacement in Revolutions.	Velucity.
2	73.0306								
1	$72 \cdot 8615$	8505	0143	20.75	$1 \frac{1}{2}$	45.2305	2169	0218	2276
2	72.4567				2	37.9830			
2	${ }_{57} 5 \cdot 8371$				1	37.7598	7360	0187	$18 \cdot 03$
1	57.8167 54.7177	8090	0178	21.43	2	$27 \cdot 4280$ $27 \cdot 2862$	3884	0233	2014
2	$53 \cdot 9567$	9471	0227	$26 \cdot 13$	21	11.8689	$8 \dot{8} \boldsymbol{2}$	0242	18-13
2	$53 \cdot 1254$				2	11.5489			

SESSIONAL PAPER No. 25a

19 ung Aug. 27.
G. M. T. $14^{\prime \prime} 02^{\circ}$

A AMULL.E 1835.

A AgCLLL.E. 1864.

Wr.	$\begin{aligned} & \text { Mean } \\ & \text { of } \\ & \text { settings. } \end{aligned}$	Corrected star Kettings.	Displace ment in Revolutions.	Vilocity.	Wt.	Mean of setting .	Corrected star Setturs.	Displacement in Revolutions.	Velocity
2	73 u324				112	4.5 272	2317	0070	7.33
	72-8740	8326	1122	17.73	2	29 993:9			
2	-2 th3\%				$1 \frac{1}{4}$	$29+8930$	8174	1135	12.08
2	57 Ntisti				1	294-635 ${ }^{2}$	5×80	0129	$11 \cdot 49$
	2783.81	7959	0369	$37 \cdot 26$,	$29 \cdot 6787$			11.
2	2.4 7×01				1	27.4701	316	0310	27.93
$2 \frac{1}{2}$	St. 01015	9616	11002	$9 \cdot 46$	2	27.3350			
2-	381516				$\frac{1}{2}$	11.9352	N 24	0260	19.58
2	45.3191				2	116205			

θ AQUIL.E 1864.*
1908. Sept. 3.
G. M. T. $16^{\mathrm{t}} 17^{\mathrm{m}}$

* Independent measurement.

1908. Sept. 8.
G. M. T. $12^{\mathrm{b}}+2^{\mathrm{m}}$

Observed by J. S. Plaskett.
Measured by T. H. Parker.

Wt.	Mean of Settings.	Corrected Star Settings.	Displacement in Revolutions.	Velocity.	Wt.	Mean of Settings	Corrected Star Settings.	Displacement in Revolutions.	Velocity.
11112112	$\begin{aligned} & 73 \cdot 0022 \\ & 72.8789 \\ & 72 \cdot+437 \\ & 54.740 \\ & 54.0395 \\ & 5 \cdot 1178 \end{aligned}$	8850$\cdot 0356$	$0202$$0658$	$+29 \cdot 31$$7573$	2$1 \frac{1}{2}$11212	$\begin{aligned} & 45 \cdot 2770 \\ & 45 \cdot 3101 \\ & 27 \cdot: 014 \\ & 27.2778 \\ & 12 \cdot 0038 \\ & 11 \cdot 5614 \end{aligned}$			
							3067	0680	$70 \cdot 99$
							4694	-0268	$49 \cdot 34$
							. 9496	-0982	
			-		Weig	ed mean			7. 55
						$\mathrm{Y}_{\mathrm{a}} .$		17.08	
						Curvatur	- 2	
						dial velocit	y	+5	$0 \cdot 6$

SESSIONAL PAPER No. 25a

G, M. T, $12^{\mathrm{h}} 42^{\mathrm{m}}$

190s. Sept. 8.
G. M. T. $13^{\mathrm{h}} 40^{\mathrm{m}}$

Observed by J. S. Plaskett.
Measured by T. H. Parker.

Wt.	$\begin{gathered} \text { Mean } \\ \text { of } \\ \text { Settings. } \end{gathered}$	Corrected Stsr Settings.	Displacement in Revolutions.	Velocity.	Wt,	Mean of Settings.	Corrected Star Settings.	Displacement in Revolutions	Velocity.
2$2^{\frac{1}{2}}$$2^{2}$21$1 / 2$2	73.0136				14	$45 \cdot 3045$	- 3014	- 0627	$65 \cdot 45$
	72.9175 72.4645	9105	0457	$+66 \cdot 31$	1	27.5001	4706	- 0580	$50 \cdot 34$
	$54 \cdot 7+28$				12.	11.9869	9574	1060	+7939
	54.0359	0350	0652	7504	2	115444			
					Curvature.... - 28				
						dial velocity			

θ AQUIL E 18 \%
1908. Sept. 11.
G. M. T. 15^{h}

Wt.	Mean of Settings	Corrected Star Settings.	Displacement in Revolutions.	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displacement in Revolutions.	V clocity.
22$2^{\frac{1}{4}}$2222	$73 \cdot 0192$				2	45.2692			
	72.8480	8396	1232	$-36 \cdot 56$	1	4. 22233	2277	0119	1148
	72.4503				1	273789	3712	0.414	$35 \cdot 98$
	53.9497	9515	0183	2106	${ }_{12}^{2}$	27. 24.8406	-8283	03:11	1730
	$58 \cdot 1104$					11.5249			
					Radial velocity			-47.7	

SESSIONAL PAPER No. 25a

9-10 EDWARD VII., A. 1910

SESSIONAL PAPER No. 25a
e HERCULIS 786.
1907. May 24.
G. M. T. $18^{\mathrm{h}} 25^{\mathrm{m}}$

Observed by J. S. Plaskett.
Measured by W E. Harper.

\dot{B}^{E}	$\begin{gathered} \text { Mean } \\ \text { of } \\ \text { Settings. } \end{gathered}$	Computed Wave Length.				3 $\frac{3}{8}$ $\frac{3}{51}$	\geqslant	Mean of Settings.	Computed Wave Length.				-
2	$73 \cdot 9685$	$4891-134$					3	52.5955	$4460 \cdot 292$				
${ }_{1} 1 / 2$	$73 \cdot 1420$	$4871 \cdot 413$					3	47.6274	4379 -348				
2	$72 \cdot 6821$	$4860 \cdot 564$	607	527	920	$-56 \cdot 76$	${ }_{2}^{2}$	$45 \cdot 0505$	4339626	714	634	920	$-63 \cdot 4$
${ }_{2}^{2}$	$56 \cdot 5256$ $53 \cdot 8061$	$4528 \cdot 760$ $4480 \cdot 945$	98	404	415		3	$44 \cdot 1325$	$4325 \cdot 827$				

Weighted mean.	-5653
V_{a}	
$\mathrm{V}_{\text {d }}$	-34
Curvature	28
Radial velocity	$-55 \cdot 4$

HERCULIS 801.
1907. May 31. G. M. T. $17^{\mathrm{h}} 38^{\mathrm{m}}$

Observed by J. S. Plaskett.
Measured by C. R. Weatland.

Wt.	Mean of Settings.	Corrected Star Settings.	Displacement in Revolutions.	Velocity.	Wt.	Mean of Settings.	Corrected Star Setting3.	Displacement in Revolutions.	Velocity.
2	730174				1	$58 \cdot 9504$	-9078	-0620	71.36
2	72.8193	8105	0543	-78.79	2	$53 \cdot 1565$			
2	$72 \cdot 4559$				2	$45 \cdot 2192$	-1557	-0830	-86.65
2	$54 \cdot 7825$				2	45.3368			

Weighted mean.	$-80 \cdot 45$
Va	- 68
$\mathrm{V}_{\text {d }}$	- 02
Curvatur	- . 28

e HERCULIS 810.
1907. June 8.
G. M. T. $19^{\mathrm{h}} 28^{\mathrm{m}}$

Observed by J. S. Plaskett. Measured by C. R. Westland.

Wt.	Mean of Settings.	Corrected Star Settings.	Displace. ment in Revolutions.	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displace ment in Revolutions.	Velocity.
2	$72 \cdot 9982$				3	$53 \cdot 9506$	8942	-0756	- 87.02
	72.8130	8281	0367	-53.25	2	$53 \cdot 1734$			
2	72.4367				2	$45 \cdot 3626$			
2	54.7931				1	$45 \cdot 2150$	1556	0831	-8676

HERCLLAS 816.
15w 5 . June 10
(i. M. T. $17^{\text {b }} 47^{\prime \prime}$

Observed by J. S. Plaskett Measured by W. E. Harper.

ϵ HERCULIS 827 .
1907. June 11.
(8. M. T. $1.5^{\text {h }} 39$

Obmerval by
Measured by W. E. Harper.

є HERCULIN 38 .
1907. June 12
G. M. T. $18^{h} 35^{\text {bi }}$

Ohset ved by J. S. Plaskett.
Measired by W. F. Harpeh,

SESSIONAL PAPER No. 25a

The mean of the two measurements, 617 used.
e HERCULAS 877 .

(. M. T. $1 \mathbf{N}^{\mathbf{n}} \mathbf{2 0}$

14n. Inur 13.
(i. M. T. $1 \mathbf{s}^{h} \geq 5^{m}$

Observed by W. E:. Hakpk
Measured by C. R. Westhast.

W't.	Mean of Settings.	Corrected Star Settings.	Displace ment in Revolutions.	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displacement in Revelutions.	Velocity.
2 2 2 2	$\begin{aligned} & 54.7 .28 \\ & 53.926 \\ & 53.1442 \end{aligned}$	8948	0750	86:32	$\stackrel{2}{3}$	$\begin{aligned} & \text { 4.) } 3226 \\ & \text { 4. } 196 \% \end{aligned}$	1472	0915	$-95 \cdot 52$
					Fadial velocity .			+...	957

ϵ HERCULIS 817.
Measured by T. H. Pakkef.

Mean of two measurements, -832 used.
1907. June 14.
G. M. T. $1 \mathrm{i}^{\mathrm{b}} 43^{\mathrm{m}}$

є HERCULIS 851.

HERCULIS 86%.
1997. June 20.
G. M. T. $16^{\mathrm{h}} 3 \mathrm{i}^{\mathrm{m}}$

Observed by W. E. Harper.
Measured by J. N. Tribble.

Weighted mean	31.26
V a	- 633
Vd.....	- 07
Curvature	- 28

SESSIONAL PAPER No. 25a

- \& HERCUTIS 862

1907. June 20.
G. M. T, $16^{13} 37^{\text {mi }}$

Observed by W. F. Harper. Measured by T. I. Parker.

Wt.	Mean of Settings.	Corrected Star Settings.	Displace. ment in Revolutions.	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displacement in Revolutions	Velocity.
$\begin{aligned} & 1 \\ & 1 \\ & 2 \\ & 2 \end{aligned}$	$73 \cdot 0166$				1	45•2182	1950	. 0437	$45 \cdot 62$
	72.8604	-8527	0121	-1755	2	43-5599	\cdots		
	$72 \cdot 4557$ $45 \cdot 2969$			1	$27 \cdot 4358$ $27 \cdot 2991$	- 3833	-0293	-25.43
Mean of measurements, $-34 \cdot 5$ used					Radial velocity............... $-34 \cdot 2$				

c HERCULIS 871.

1907. June 21.
G. M. T. $18^{\mathrm{h}} 10^{\mathrm{m}}$

Observed by J. S. Plaskett.
Measured by J. N. Tribble.

Wt.	$\begin{aligned} & \text { Mean } \\ & \text { of } \\ & \text { Settingx } \end{aligned}$	Corrected Star Settings.	Displacement in Revolutions.	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displace. ment in Revolutions.	Velocity.
12	72. 3582				$1 \frac{1}{1}$	4. 1420	-1655	0732	$76 \cdot 39$
2	72.3957				$\frac{1}{2}$	${ }_{27}^{27} 2.3558$			
${ }_{2}^{17}$	72.7847 $45 \cdot 2501$	8357	0291	$42 \cdot 22$	$\frac{1}{2}$	$27 \cdot 3658$	3578	-0641	-55.63

Weighted mean..	-58 78
	-6.49
$\mathrm{V}_{\text {d }}$	- 19
Curvature,	
Radial velocity...	$-65 \cdot 7$

є HERCULIS 881.
1907. J une 25.
G. M. T. $16^{h} 04^{m}$
$\left.\begin{array}{l}\text { Observed by } \\ \text { Measured by }\end{array}\right\}$ W. E. Habper.

Wt.	Mean of Settings.	Corrected Star Settings.	Displacement in Revolutions.	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displacement in Revolutions.	V elocity.
2	$49 \cdot 4200$ $45 \cdot 2146$	1775	(612	-63 89	$\frac{3}{11}$	$\begin{aligned} & 27 \cdot 3185 \\ & 27 \cdot 2462 \end{aligned}$	$\cdot 3189$	-1030	$-89 \cdot 40$
					Radial velocity $-80 \cdot 4$				

(HENCLLIN
1954. July 8
1). M. T. 16^{2}

19世\%. June 27 .
G. M. T. $16^{\text {h }} 32 m$

- HERCLLLN
e HERCUIIS 913.

1907. July 4
G. M. T. $16^{6} 18^{\prime \prime \prime}$

W\%.	Mean of Settinga	Corrected Star Settings.	Displacement in Revolutions.	Velocity:	W't.	$\begin{gathered} \text { Mean } \\ \text { of } \\ \text { Settings. } \end{gathered}$	Corrected Star Settings.	Displace. ment in Revolutions.	Velocity.
22131814$\frac{1}{2}$	$72 \cdot 9365$				2	$45 \cdot 2319$			
	72. 3632				1	45.1886	2403	0084	8.79
	72.7804	8172			2	27 27	-1763	-0202	-1760
	53.9156	935	11019	115					
Weighted mean -612									
						Va -10	0.92
						Vd ${ }^{\text {dur }}$		14
						Curacia			
						dial seleci	y, .	.. -1	17.5

Kadial velocity

Observed by J. S. Plaskett.
Measured by J. N. Tribble.

SESSIONAL PAPER No. 25a
1907. July 9.
G. M. T. $1 t^{\mathrm{h}} 32^{\mathrm{m}}$

EHERCULIS 928.
Ohserved by
Measured by
M. N. Tribale.

Wt.	Menn of Settings.	Corrected Star Settings.	Displacement in Revolutions.	Velacity.	Wt.	$\begin{gathered} \text { Mean } \\ \text { of } \\ \text { Settings. } \end{gathered}$	Corrected Star Settings.	Displacement in Revolutions	Velocity.
13	54.0238				1	45.2855	27.5	-0388	49•90
$2^{\frac{1}{2}}$	$\begin{aligned} & 54 \cdot 0319 \\ & 45 \cdot 2815 \end{aligned}$	0375	0672	\% 91	1	- 29.6773			$+4442$
Weighted mean +53.31									
						$\mathbf{V}_{d} \ldots \ldots$	-1126 $-\quad 11$	
						Curvatil	e..... ...		
						dial velocit	ty.	\cdots.... +	416

* HERCULIS 928."

1907. July 9.
G. MI. T. $14^{\mathrm{h}} 32^{\mathrm{m}}$

Observed by J. N. Thibbie.
Measured by W. F. Harper.

є HERCULIS 937.
1907. July 10.
G. M. T. $14^{\mathrm{h}} 55^{\mathrm{m}}$

* This result used.

Wt.	$\begin{gathered} \text { Mean } \\ \text { of } \\ \text { Settings. } \end{gathered}$	Corrected Star Settings.	Displacement in Revolutions.	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displacement in Revolutions.	Velocity.
1	$72 \cdot 9735$				1	$45 \cdot 2284$	2288	0199	$-20 \cdot 83$
1	$72 \cdot 8361$	8261	0054	+ 784	2	27.2965			
2	45-2832	,			$\frac{1}{2}$	$27 \cdot 4291$	4545	0420	$-36 \cdot 60$

9-10 EDWARD VII., A. 1910

HERCLLIS 98,
(i, M. T. $14^{\text {h }}$:

Observed by J. S. Plaskett.
Measured by W. E. Harper.

Wt.	Mean of Setting	Corrected Star Settings.	Displace ment in Revolutions.	Velocity.	Wt.	$\begin{gathered} \text { Mean } \\ \text { of } \\ \text { Settings. } \end{gathered}$	Corrected Star Settings.	Displacement in Revolutions.	Velocity.
$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 546678 \\ & 53 \cdot 8654 \\ & 53 \cdot 0405 \end{aligned}$	-9382	0316	-3637	2 1	$\begin{aligned} & 45 \cdot 2121 \\ & 45 \cdot 1485 \end{aligned}$	2100	- 0287	$-29 \cdot 96$
					Weighted mean. . 33.16 $V_{a} \ldots \ldots . .$. -11.49 $V_{d} \ldots . . .$. $\ldots .$. -.09 Currature $\ldots .$. \ldots -28				
					Radial velocity			$-45 \cdot 0$	

(HERCLLIA 952.

15W5. July 18.
G. M. T. $16^{10} 10^{m}$

Ohserved by W. E. Harpalu. Measured by J. N. Tribble

Wt.	$\begin{aligned} & \text { Mean } \\ & \text { of } \\ & \text { Settings. } \end{aligned}$	Corrected Star Settings.	Displacement in Revolutions.	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displacement in Revolutions.	Velocity.
2	729883 724271				$\frac{1}{2}$	53.9283 45.2698	-9333	0365	42.01
1	$72 \cdot 8008$ 54.0238	8208	$04+0$	-63.85	1	$45 \cdot 2109$	9147	0240	-25.05
					Weighted mean. V_{c} $\mathrm{V}_{\mathrm{e}} \ldots$.				
					Radial velocity .			$57 \cdot 6$	

6 HERCULIS 957.
1907. July 20.
G. M. T. $16^{1} 39^{\mathrm{m}}$

Olshrved by J. S. Plaskett.
Measured by J. N. Tribble.

Wt.	Mean of Setting?	Corrected Star Settings.	Displacement in Revolutions.	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displacement in Revolutions.	Velocity,
2	729599				2	$45 \cdot 2827$			
1	72.3852 $72 \cdot 8265$	8315	012 x	1834	2	$45 \cdot 2473$ $27 \cdot 31+1$	2482	0100	000
${ }_{2}^{1}$	$54 \cdot 0154$				$\frac{1}{2}$	$27 \cdot 5080$	-5158	0193	$+16 \cdot 82$
1	53.9642	WH2	0076	8.77					
					Weighted mean.$V_{a} \ldots \ldots .$.$V_{d} \ldots \ldots . .$.Curvatur				
					Radial velocity - $3 \cdot 9$				

SESSIONAL PAPER No. 25a
1907. Aug. 1.
(i. M. T. $17^{11} 20^{\text {m }}$
¢ HERCUEIS 976.

Wt.	$\begin{gathered} \text { Mean } \\ \text { of } \\ \text { Suttings. } \end{gathered}$	Corrected Star Setting.	Displacement in Revolutions.	Velocity,	Wt.	$\begin{aligned} & \text { Mean } \\ & \text { of } \\ & \text { Setting } \end{aligned}$	Corrected Star Settings.	Displacement in Revolution	Velowity.
2 $\frac{1}{2}$ 2 3		$\begin{aligned} & 8443 \\ & 5595 \end{aligned}$	$\begin{aligned} & 0205 \\ & 0103 \end{aligned}$	29.74 11.85	2 1 2 1 $\frac{1}{2}$	$45 \cdot 2806$ $45 \cdot 24 \mathrm{an}$ 27.2821	$\begin{array}{r} 2384 \\ +1110 \end{array}$	0002 010	$\begin{aligned} & 0+10 \\ & \vdots \% \end{aligned}$
					Radi	velocity			26.8

є HERCLLLS 979.
1907. Aug. 3.

-Plate not used in the results.
ϵ HERCLLIS 9m\%.
1907. Ang. 6.
(3) ㄴ. T. $17^{\text {i }} 35^{\mathrm{man}}$

Wt.	Mean uf Settings.	Corrected Star Se-ttings.	Displacement in Revolutions.	Velocity.	Wt.	Mean of Settings.	Corricted Star Settings.	Displacement in Revolntions.	Velocity.
$\stackrel{2}{1}$	$\begin{aligned} & 72 \cdot 6897 \\ & 72 \cdot 5573 \end{aligned}$	784	. 0122	$+17 \cdot 75$	2 1	$\begin{aligned} & 44 \cdot 9542 \\ & 44.9849 \end{aligned}$	2833	-0244	$+25.63$
					Radial velocity $+6 \overline{2}$				

є HERCULIS 1018.
1907. Aug. 22.
(i. N. T. $10^{\mathrm{h}} 49^{\mathrm{m}}$

6 HERCLLIS 1062.
1907. Sept. 20.
G. M. T. $14^{h} 37^{\mathrm{m}}$
\& HERCULIS 1391.
1908. March 9.
G. M, T. $20^{\mathrm{h}} 50^{\mathrm{m}}$

Observed by W. E. Harerr.
Measured by J. N. Tribble.

Wt.	Mean of Settings,	Corrected Star Bettings.	Displacement in Revolutions.	Velucity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displacement in Revolutions.	Velocity.
2 2 2 2 1	54.7583 53.9358 $53 \cdot 1215$ $45 \cdot 2735$ 452460	$\begin{aligned} & 9253 \\ & \cdots \\ & 2061 \end{aligned}$	1445 0326	-5122 $34 \cdot 03$	$2^{\frac{1}{2}}$ $2^{\frac{1}{2}}$	27.3570 $27 \cdot 2385$ 11.7667 $11 \cdot 4840$	$\begin{aligned} & 3650 \\ & \because 7897 \end{aligned}$	$\begin{array}{r} 0566 \\ 0.6617 \end{array}$	$\begin{gathered} 49 \cdot 13 \\ -76 \cdot 21 \end{gathered} .$
					Radial velocity......... -28.6				

SESSIONAL PAPER No. 25a
1908. March 16.
(i. M. T. $21^{h}+2^{n 0}$

є HERCULIS 1 Hs.
$\left.\begin{array}{l}\text { Observed by } \\ \text { Measured by }\end{array}\right\}$ W. E. H.arper.

Wit.Mean of Settings.

є HERCULIS 1483.
1908. April 13.
G. M. T. $21^{\mathrm{b}} 35^{\mathrm{m}}$
$\left.\begin{array}{l}\text { Observed by } \\ \text { Measured by }\end{array}\right\}$ W. E. Harper.

9-10 EDWARD VII., A. 1910
© HERCULIS 1404.
1:108. April 15.
(8. M. T. $20^{\text {h }} 40^{\text {m }}$

c HERCULÍs 1511.
1908. April 22.
6. M. T. $\quad 20^{\text {I }} 33^{\mathrm{m}}$

Observed by J. S. Plaskett.

Radial velocity ... $\quad-34 \cdot 8$

SESSIONAL PAPER No. 25a
© HEIKCCLIS 1511 .

1!no. April ze
(i. M. T. $20^{\text {1 }} 53^{\mathrm{m}}$

Ohacerved by J. S. Plaskikt.
Measured by T. 11. Parkel.

- HERCULIS 1531.

1908. May 15.
G. M. T. $19^{\mathrm{h}} 29 \mathrm{~m}^{\mathrm{m}}$

Observed by W. E. Harper.
Measured by T. H. Parker.

є HERCULIS 1531.*
1908. May 15.
G. M. T. 19^{h} gym

Obser ved by
Measured by W. E. Harper.

Wt.	$\begin{gathered} \text { Mean } \\ \text { of } \\ \text { Settings. } \end{gathered}$	Corrected Star Settings.	Displacement in Revolutions.	Velocity.	Wt.	$\begin{gathered} \text { Mean } \\ \text { of } \\ \text { Settings. } \end{gathered}$	Corrected Star Settings.	Displacement in Revolutions.	Velocity.
21312	+5. 2620				2	$15 \cdot 3652$			
	$45 \cdot 1435$				1	$15 \cdot 3325$			
	$27 \cdot 2702$ $27 \cdot 1935$	3206	00220	7986	$\frac{1}{2}$	11.7025 11.4650	7530	0984	-73.70
					Weighted mean				7740
						Va...		$+387$	
						$\stackrel{V}{d}$ Curvatur		-	
* Check mea*arement					Radial velocity....			... -7	$73 \cdot 9$

є H1RRCLLIS 1510 .
1908. May 18
G. M. T. $18^{*} 25^{m}$

Observed by
Measured by T. H. Parker.

Wt.	$\begin{gathered} \text { Mean } \\ \text { of } \\ \text { Settings. } \end{gathered}$	Corrected Star Settings.	Displace. ment in Revolutions.	Velocity.	Wt.	$\begin{aligned} & \text { Mean } \\ & \text { of } \\ & \text { Settings. } \end{aligned}$	Corrected Star Settings.	Displacement in Revolutions.	Velocity.			
1$\frac{1}{1}$12	$\begin{aligned} & 72.9755 \\ & 72.8876 \\ & 724074 \\ & 45.2650 \end{aligned}$	8724 $100{ }_{4}^{7} 6$			$\frac{1}{4}$	45-2462	2547	0160	16.70			
				-11.02	$\frac{2}{4}$	+3.5333						
					$\frac{1}{2}$	$25 \cdot 4414$	4003	0077	+ 668			
Radial velocity. . . . +14.2												

e HERCULIS 1540,*
1908. May 18
G. M. T. $18^{\mathrm{n}} 25^{\mathrm{m}}$

Ohserved by T. H. Parker.
Measured by W, E. Harfer.

$$
\text { eter } 0
$$

$\left.$| Corrected |
| ---: | ---: | ---: |
| star |
| settings. |\quad| Displace- |
| :---: |
| ment in |
| Revolutions. | \right\rvert\, Velocity.

1408. May 20. G. M. T. 14^{h}

Wt.	Mean of Settings.	Corrected Star Settings.	Displacement in Revolutions.	Velocity.	Wt.	$\begin{gathered} \text { Mean } \\ \text { of } \\ \text { Settings. } \end{gathered}$	Corrected Star Settings.	Displace. ment in Revolutions	Velocity.
2 $\frac{1}{2}$ 2 2	54.7596 53.9253 53.0461 $43 \cdot 5702$	-9050	0618	71.13	$\frac{1}{2}$ 1 $\frac{7}{2}$ 1		$\begin{aligned} & 3230 \\ & 3780 \end{aligned}$	0896 0953	$\begin{array}{r} 7777 \\ -7376 \end{array}$

SESSIONAL PAPER No. 25a
(HERCULIS 1547.

є HERCULIS 1517 .
1908. June 1.

Observed by T. H. Parker
Measured by W. E. Harper.

Wt.	Mean of Setting	Corrected Star Settings.	Displacement in Revolutions.	Velocity.	Wt.	$\begin{gathered} \text { Mean } \\ \text { of } \\ \text { Settings. } \end{gathered}$	Corrected Star Settings.	Displacement in Revolutions.	Velocity.
2^{2}	$\begin{aligned} & 5+7282 \\ & 53 \cdot 8856 \\ & 53 \cdot 1018 \end{aligned}$	8946	0722	-8310	2	$\begin{aligned} & 45 \cdot 2689 \\ & 45 \cdot 1598 \end{aligned}$	-1652	\cdots	-7673
					Radial velocity - $88 \cdot 1$				

є HERCULIS 1573.

1908. June 3.
G. M. T. $17^{\text {b }} 3 \xi^{m}$

Wt.	$\begin{aligned} & \text { Mean } \\ & \text { of } \\ & \text { Settings. } \end{aligned}$	Corrected Star Settings.	Displacement in Revolutions.	Velocity.	Wt.	$\begin{gathered} \text { Mean } \\ \text { of } \\ \text { Settings. } \end{gathered}$	Corrected Star Settings.	Displacement in Revolutions.	Velocity.
	72.9422				2	$53 \cdot 1190$			
1	$72 \cdot 8323$	8513	0135	-19 59	2	45.2571			
2	$72+216$				$1 \frac{1}{2}$	45.2517	2382	0005	9.52
2	54.7443				1	27.4595	4062	0064	$-5 \cdot 55$
$\frac{1}{2}$	$53 \cdot 9692$	9645	0053	$6 \cdot 10$	2	272999			

(HERCULAN 15~R
1908. Junㄹ
G. M. T. IT :

Observed by I W. E. HaltPER.
Measured by ;

* Check measurement.

© HERCELIS 158°.
$1908 . J$ une 5.
G. M. T $18^{\mathrm{b}} 40^{\mathrm{mm}}$

Observed by
Measured by T. H. Parker.

SESSIONAL PAPER No. 25a

- HERCLTAS $16 \%{ }^{\circ}$

14nes. June 12.
(i. M. T. $18^{12} 35^{\prime \prime \prime}$

Olatred by T. H. Pabkik.
Measured by W. E. Harrek.

© HERCLISA 1625.
190%. June 22.
12. 31, T, $17^{\mathrm{L}} 27^{\mathrm{m}}$

Oliserved by J. S. Plaskett.
Measured by W. E. Harper.

© HERCULIS 1630.

150\%. June 24.
(i. M. T. $16^{\mathrm{h}} 27^{\text {" }}$

Observed by J. S. Plaskett.
Measured by W. E. Harper.

Wt.	Mean of Settings.	Corrected Star Settings.	Displace ment in Revolutions.	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displacement in Revolutions.	V elueity.
2	$73 \cdot 0647$				2	$45 \cdot 3237$			
1	729033	8481	0167	2423	2	45.275	20.4	0313	3268
${ }_{9}^{2}$	$72 \cdot 5011$				$1 \frac{1}{2}$	27.4458	3860	0266	23.04
${ }_{11}$	54.7925				2	27.3065			
11	$53 \cdot 9978$ $53 \cdot 1602$	9484	0214	$24 \cdot 63$	2	11.8987	8362	0152	-11.38

9-10 EDWARD VII., A. 1910
1908. June 26.
G. M. T. $16^{h 1} 46^{\circ}$
1908. June 27.
(i, M. T. $17^{1 /} 07^{\text {nin }}$
1908. June 27.
G. M. T. $17^{\mathrm{h}} 0^{-7}$

- HERCULIS 1649 .

Observed by i TV. E. Harper.
Measured by

є HERCULIS 1648.

* HERCULIS 1648.*

SESSIONAL PAPER No. 25a

¢ HERCULIS 1649.
1908. June 27.
G. M. T. $17^{\text {h }} \mathrm{g}^{\mathrm{m}}$

Wt.	Mean of Settings.	Corrected Star Settings,	Displaceinent in Revolutions.	Velucity.
2	51.7470			
1	54.0110	0063	0365	+42.01
9	53.1164			
$\stackrel{3}{14}$	$45 \cdot 2902$			
$1 \frac{1}{2}$	$45 \cdot 2737$	2571	0184	19•21

Oliserved by J. S. Plaskett.
Meavured by W. F. Harpek.

Check measurement.

© HERCLLIS 16Js.

1908, July 1.
G. M. T. $16^{15} 15^{\text {mi }}$

Observed by J. S. Plaskbtt.
Measured by J. B. Cannon.

Wt.	Mean of Settings.	Corrected Star Settings.	Displacement in Revolutions.	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displacement in Revolutions.	Velocity.
2	54.7746				1	27. 5156	4756	0630	$54 \cdot 68$
2	54.0547	0247	0549	6319	3	27.2893			
2 2 2	53.1395 45.3045				${ }_{3}{ }^{2}$	11 1154291	85	'0357	+2676
1	45.2795	2490	0103	1075					

e HERCULIS : 653 .*
1908. July 1.
G. M. T. $16^{\text {b }} 15^{m}$

$\begin{aligned} & \text { Wt. } \\ & \vdots \end{aligned}$	Mean of Settings.	Corrected Star Settings.	Displacement in Revolutions.	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displacement in Revolutions.	Velocity.
2	547392	$99+3$$2387$	0245	+28.20	$\frac{1}{4}$$\frac{2}{2}$12		$\begin{array}{r} 4400 \\ \cdots \cdot \\ \hline 8856 \end{array}$	$\begin{array}{r} 0274 \\ +\quad .03+2 \end{array}$	$\begin{array}{r} 2378 \\ +2561 \end{array}$
	$53 \cdot 9887$ $53 \cdot 1055$								
	$45 \cdot 2625$ $45 \cdot 2276$								
					Weighted mean is +21.90				
						$\mathrm{V}_{\text {d }}$	948 $-\quad 06$	
						Curvat	ure.	- 28	
- Check neasbrement.					Radial velocity.............. $+12 \cdot 1$				

9-10 EDWARD VII., A. 1910

- 11 ERCCLLIS 1653.*

1 1 M K K July 1
Ohserven by J. S. Plasketi.

1. M. T. $16^{1} 15$

Measured by W. E. Harref.

- HERCULIS 1661.

19018. July 3.
G. M. T. $19^{\mathrm{h}}+40^{\mathrm{m}}$

Olserved by T. H. Parker.
Measured by J. B. Cassos.

Wr.	Mean of Settings.	Corrected Star Settings.	Displacement in Revolutions.	Velocity.	Wt.	$\begin{gathered} \text { Nean } \\ \text { of } \\ \text { Settings. } \end{gathered}$	Corrected Star Settings.	Displacewent in Revolution	Velucity.
2 23 2 2	$\begin{aligned} & 54 \cdot 7681 \\ & 53 \cdot 9294 \\ & 531436 \end{aligned}$	3004	0694	79×8	2 1	$\begin{aligned} & 452998 \\ & 452548 \end{aligned}$	2268	0119	$-13 \cdot 61$
					Radial velucity			-6in 4	

є HERCULIs 1661.

190s, July 3.
G. M. T. $19^{\mathrm{h}} 40^{\mathrm{m}}$

SESSIONAL PAPER No. 25a

- HERCTLAS 1 Gik.

1908. July 6.
(4. 11. T. $17^{\mathrm{h}} 35^{\mathrm{m}}$

Wit. $\begin{gathered}\text { Mean } \\ \text { of } \\ \text { Settings. }\end{gathered} \quad \begin{gathered}\text { Corrected } \\ \text { Star } \\ \text { Settings. }\end{gathered}\left|\begin{array}{c}\text { Bisplace. } \\ \text { Revolutions. }\end{array} \quad \begin{array}{c}\text { Velocity. }\end{array}\right|$

1:Wh. July 6.
(3. M. T. $17^{\mathrm{i}} 35^{\mathrm{m}}$

9-10 EDWARD VII., A. 1910
c HERCLLIS 1675.
1908. July 8.
G. M. T. $15^{\text {ti }} 4$

Observed hy J. B. Cannon:
Measured by W. E. Habpkr.

Wt.	Mean of Settings.	Corrected Star Fettings.	1isplace ment in Revolutions.	Velucity	Wt.	Mean of Setting:	Corrected Star Setting:	Displacement in R -volutions.	Velocity.
2	73.0235				3	45.2541			
1	$72 \cdot 8670$	8534	0114	-1654	$1 \frac{1}{2}$	45.2271			
4	72.4544				$1{ }_{9}$	27.4307	4076	0050	- 434
$\stackrel{2}{1}$	54.7415 33.9786	9803	0105	-12.08	1	$27 \cdot 2697$ $11 \cdot 8571$	8308	(226	-16.93
	$53 \cdot 1090$				2	11.5305			
					Radial velocity \quad - $17 \cdot 9$				

© HERCULIS 1675.*

1908. July 8.
G. M. T. $15^{h} \overline{7}^{-1}$

Observed by .T. B. Cannon.
Measurd by W. E. Harper.

[^27]SESSIONAL. PAPER No. 25a

1!00\%. July \%
(i. M. T. $16^{\mathrm{h}} 32 \mathrm{~m}$

Observed by
Measared by ,I. B. Cannon.

Wt.	$\begin{gathered} \text { Mean } \\ \text { of } \\ \text { Settings. } \end{gathered}$	Corrected Star Settings.	Jisplace ment in Revolutions.	V+lacity.	Wt.	Mran of Settings.	Corrected Star Settings.	Displacement in Revolutions.	Vrlucity.
2	54.8885				1	$27 \cdot 5711$	4031	0095	8.25
11	540948	498	0200	$23 \cdot 02$	2	27.41 .52			
2	\%3.2536				1	$12 \cdot 0878$	8489	0025	187
1	45.3866	23×6	0031	324					

Weighted mear	- 10.64
V_{a}	- 11.15
V d	14
Curvature	28
Radial lelocity	-222

ϵ HERCLLIS 16 s 2.

1908, July 9.
G. M. T. $17^{\mathrm{h}} 12^{\mathrm{m}}$
$\left.\begin{array}{l}\text { Observed by } \\ \text { Measured by }\end{array}\right\}$ W. E. Harper.

| Corrected |
| ---: | ---: | ---: |
| Star |
| Settings. | | Displace- |
| :---: |
| ment int |
| Kevolutions. |\quad Velocity.

SESSIONAL PAPER No. 25a

19MR, July 11.
(i, M, T, 16^{14} 5*m

Observed hy J. S. Plaskktt.
Aleasured by W, Fi. Hisherer.

є HERCL LIS 1699.
11908. July 13,
(7.)1. T. $16^{\mathrm{h}} 19 \mathrm{~m}$

Wt.	$\begin{gathered} \text { Mesm } \\ \text { of } \\ \text { Settings. } \end{gathered}$	Corrected Star Settings.	Displacement in Revolutions.	Velocity.	W't.	Mean of Settings.	Corrected Star Settings.	Displacement in Revolutions.	Velocity.
1	72.9161					27.33866 27.2138	3706	0513	+44 53
	$\begin{aligned} & 72 \cdot 7681 \\ & 72 \cdot 3520 \end{aligned}$	811	14037	-5.37	$\stackrel{2}{15}$	11 21.8987	9057	0543	$+40 \cdot 6$
1	$45 \cdot 1245$	2333	1403	- $3 \cdot 55$		11.4045			
Radial velocity									93

Observed by J. S. Plasket?.
Measured by J. B. Cisnon.

1900. July 13
G. M. T. $16^{\mathrm{h}} 19^{\mathrm{mm}}$
e HERCLLLS 1699.*

Wt.	Mean of Nettings.	Corrected Star Settings.	Displacement in Revolutions.	Velocity.	Wt.	$\begin{gathered} \text { Mean } \\ \text { of } \\ \text { Settings. } \end{gathered}$	Corrected Star Settings.	Displacement in Revolutions.	Velocity.
1	728786				1	52.9980			
	72.7350	24is	(0000)	$0 \cdot 6$	2	$45 \cdot 1721$			
	72.3211				1	$45 \cdot 1655$	2670	0283	+29.54
2	$5 \cdot 6267$				1.1	118655	9317	0813	$+60 \cdot 14$
1	63-8710	9856	0158	-1818	2	11.4450			

Radial velocity

Observed by J. S. Plaskett.
Measured by W. E. Harper.

9-10 EDWARD VII., A. 1910
HERCULIS 1707 .
1908. July 14.
G. M. T. $17^{\text {h }}+2^{\text {m }}$

Observed by W. E. Harper.
Mearured by J. B. Cassos.

€ HERCULIS 1712.
1908. July 15.
G. M. T. 17^{b}
$\left.\begin{array}{l}\text { Observed by } \\ \text { Measured by }\end{array}\right\}$ J. B. Cassos.

SESSIONAL PAPER No. 25a
HEROULIS 1713.
1908. July 15.
(\%. M. T. $17^{\mathrm{h}} \mathrm{f}^{\mathrm{m}}$

Observed by W. E. Harper.
Measured by J. B. Cannon.

ϵ HERCULIS 1719.

1905. July 16
G. M. T. $17^{\text {b }} 25^{\mathrm{m}}$

Wt.	Mean of Settings.	Corrected Star Settings.	Displacement in Revolutions.	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displacement in Revolutions.	Velocity.
2	$54 \cdot 7686$				1	$27 \cdot 4669$	4142	0077	- 6.68
2	53.9945	9675	0023	2'65	2	$27 \cdot 2995$			
2	$53 \cdot 1399$ $45 \cdot 3019$				2	11.9217	85.62	- 0048	+ 3.59
$\stackrel{2}{1 \frac{1}{2}}$	$45 \cdot 3019$ $45 \cdot 2698$	2368	0019	- 1.98	2	11.5731		

HERCLLIN 1723.
1908. July 24
G. M. T. $14^{\text {h }}$

Observed by
Measured by

Wt.	Mean of Settings.	Corrected Star Settings.	Displace ment in Revolutions,	Velocity.	W't.	Mean of Settings	Corrected Star Settings.	Displacement in Revolutions.	Velocity.
2	729270				2	530155			
$\frac{1}{1}$	72.7558	8416	0232	3366	2	45.18011			
1	$72 \cdot 3561$. .			$1 \frac{1}{2}$	45.1312	2248	0139	-14.51
4	$59 \cdot 7270$ $58 \cdot 9509$				2	$37 \cdot 8697$ $37 \cdot 6784$			
1	$58 \cdot 9550$ 57 57351	0377 818%	0030 0080	$\begin{array}{r}366 \\ -963 \\ \hline\end{array}$	$1{ }^{1} \frac{1}{2}$	$37 \cdot 6784$ $27 \cdot 3058$	7674 3654	0127 0275	+12-24
1	57 57.5079 5.	818%	0080	$9 \cdot 63$	1	27.3058 27.1684	3854	0275	
2	$5 t^{6} 656$				1	11.7619	8374	0140	1049
$1 \frac{1}{2}$	$5.3 \cdot 87.22$	9665	0033	380	2	$11 \cdot 4310$			
					Weighted mean Ya.......... Curvature. .				
					Radial velocity . . .				23.8

SESSIONAL PAPER No．25a

1！日内 July ${ }^{25}$ ．
（．M．T． $17^{\prime \prime}-3{ }^{\prime \prime \prime}$

HEKCULIS 17シャ．

Ohnerved by of．S．Phasketr．
Measured by W．E．Hakper．

1908．July 24
（土．M．T． $16^{\text {h }} 5 \mathrm{~s}^{\mathrm{m}}$

Wt．	Mean of Siettings．	Corrected Star Setting＊	Displace－ ment in Revolutions．	Velocity．	Wt．	$\begin{gathered} \text { Mean } \\ \text { of } \\ \text { Settings. } \end{gathered}$	Corrected Star Settings．	Displace ment in Revolutions．	Velocity．
3	73.0485				2	53.1465			
1	72.8867	8482	0166	－24＊8	2	45.3092			
2	72.4827				$1 \frac{1}{2}$	$45 \cdot 2845$	2500	－0113	＋1180
1	57.8605 57.8630	8279	（M011	$+132$	1	${ }_{27} 7 \cdot 4567$	＇4100	－0026	$2 \cdot 26$
2	54.7767				12	11.8964	8496	（0）18	1．85
1	53.9481	－9635	0043	725	2	11.5340			

Weighted mean	-237
$\mathrm{V}_{a} \ldots$.	1471
V_{d}	． 21
Curvatore．	28
Aadial velocity．	－ 17.6

9-10 EDWARD VII., A. 1910
e HERCLLIS $173 \pm$.
1908. July 28.
G. M. T. $17^{\mathrm{h}} 12^{\mathrm{m}}$

є HERCLLIS 1737.
1908. July 29.
G. M. T. $14^{\mathrm{h}} 22^{\mathrm{m}}$

SESSIONAL PAPER No. 25a

1904. July 29.
G. M. T. $15^{\mathrm{h}} 08^{\mathrm{m}}$

190k. July 23.
G. M. T. $18^{\mathrm{h}} 05^{\mathrm{m}}$

Observed by J. B. Cannos.
Measured by W, E. Harper.

Wt.	$\begin{gathered} \text { Mean } \\ \text { of } \\ \text { Settings. } \end{gathered}$	Corrected Star Settings.	Displacement in Revolutions.	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings,	Displacement in Revolutions.	Velocity.
2$2^{3}$223	730345	8670	0022	+ 319	2	540317 $53 \cdot 1037$	-0317	0619	$-71 \cdot 25$
	72.8884 72.4567				21	$53 \cdot 1037$ $45 \cdot 2694$			
	54.7492					$\begin{aligned} & 45 \cdot 2694 \\ & 45.2692 \end{aligned}$	2734	$034 \bar{i}$	$+36 \cdot 2 \dot{3}$
	54.0298								
Weighted meanin +55.91									
					$\begin{aligned} & \mathbf{V}_{d} \ldots \\ & \text { Curvature } \end{aligned}$				
					Radi	velocity		$\ldots+$	$40 \cdot 2$

є HERCULIS 1746.
1908, July 30.
G. M. T. $17^{\circ} \mathrm{OG}^{\mathrm{m}}$
$\left.\begin{array}{l}\text { Observed by } \\ \text { Measured by }\end{array}\right\}$ W. E. Harper.

Wt.	$\begin{gathered} \text { Mean } \\ \text { of } \\ \text { Settings. } \end{gathered}$	Corrected Star Settings.	Displacement in Revolutions.	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displacement in Revolutions	Velocity.
$\begin{aligned} & 2 \\ & 2 \\ & 2 \\ & 2 \end{aligned}$	54.7460 $53 \cdot 9640$ $53 \cdot 1102$	9628	0070	$8 \cdot 06$	2	45 45 45 4 2689	2390	-0003	$+0 \cdot 31$
					Radial velocity ..				

1906. Jily 31.
(i, M. T. 150
ϵ HERCULIS 1 \%̄T.
1907. July 31.
G. M. T. $19^{\text {n }} 05^{\text {n }}$
$\left.\begin{array}{l}\text { Observed by } \\ \text { Measured by }\end{array}\right\}$ W. E. Hahper.

1908. Aug. 1.
G. M. T. $16^{\text {b }}{ }^{\text {m }}$

Olserved by J. S. Plashetr.
Measmred by W. E. Harper.

Wt.	$\begin{gathered} \text { Mean } \\ \text { of } \\ \text { Settings. } \end{gathered}$	Corrected Star Settings.	Displacement in Revolutions.	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displace. ment in Revolutions.	Velocity.
${ }_{2}^{2}{ }^{\frac{1}{2}}$	$\begin{aligned} & 54.7274 \\ & 53.9500 \\ & 53.0979 \end{aligned}$	9643	(1155	635	2 1	$\begin{aligned} & 45.2642 \\ & +5.2251 \end{aligned}$	2345	0043	449

SESSIONAL PAPER No. $25 a^{\circ}$
1906. Aug. 5.
(i. M. T, $14^{i} 10{ }^{\text {m}}$

CHERCLLAS 1761.

(HERCULIN $17 \pi 4$.
19ns. Ang. 7.
(4. M. T. $15^{1 / 2} 35^{m}$

Observed by T. H. Pakike.
Measured by W: E. Harfer.

9-10 EDWARD VII., A. 1910

є HERCULIS 1793.

1!08. Aug. 19.
(r. M. T. $14^{\text {h }} 41^{\mathrm{ma}}$

$\left.\begin{array}{l}\text { Ouserved by } \\ \text { Measured by }\end{array}\right\}$ W. E. Harprb,
leasured by

Weighted mean.	-30.09
V_{a}	-17.29
V_{d}	15
Curvature	28

є HERCULIS 1818.

1908 Aug. 24.
G. M. T. $14^{\mathrm{h}} 03^{\mathrm{mm}}$

SESSIONAL PAPER No. 25a
(HERCCLIS 183%
1908. Aug. 27.
G. M. T. $15^{\mathrm{h}} 50^{\mathrm{m}}$

(HERCULIS 1844.
1908. Aug. 28.
G. M. T. $14^{\mathrm{h}} 07^{\mathrm{mo}}$

Wt.	Mean of Settings.	Corrected Star Setting	Displacement in Revolutions,	Velocity.	W't.	$\begin{gathered} \text { Mean } \\ \text { of } \\ \text { Settings. } \end{gathered}$	Corrected Star Settings.	Displacement in Revolutions,	Velocity.
$\begin{aligned} & 2 \\ & 2^{\frac{1}{2}} \\ & 2 \\ & 1 \\ & 2 \end{aligned}$	73.03 .0				2	$45 \cdot 1750$	- 1561	. 0829	-86. 23
	$72 \cdot 8382$	8158	0490	$-71 \cdot 10$	$\frac{1}{2}$	$27 \cdot 3755$	'3441	-0685	- 5946
	$72 \cdot 4677$				${ }^{2}$	$27+2780$			
	54.0522 53.9207			-81-45	$\stackrel{1}{2}$	11.7.205	7394	1120	-89 79
	$\begin{aligned} & 53 \cdot 9207 \\ & 45 \cdot 2925 \end{aligned}$	8973		-8145					
Radial relocity 98.9									

e HERCULIS 1853.
1908. Aug. 31.
G. M. T. $13^{\text {h }} 52^{\text {m }}$

Wt.	$\begin{gathered} \text { Mean } \\ \text { of } \\ \text { Settings. } \end{gathered}$	Corrected Star Settings.	Displacement in Revolutions.	Velocity.	Wt.	Mean of Settings.	Corrected star Settings.	Displacement in Revolutions.	Velocity
$\begin{aligned} & 2 \\ & { }_{2}^{2} \\ & \hline \end{aligned}$	$\begin{aligned} & 54 \cdot 0330 \\ & 539830 \\ & 45 \cdot 2716 \end{aligned}$	9788	0100	$+1151$	${ }^{1}{ }^{4}$	$45 \cdot 2510$ 27.4040 $27 \cdot 2340$	2530 4166	.0143 .0040	+14.93 $+\quad 3.47$
Radial velocity 6.1									

9-10 EDWARD VII., A. 1910

є HERT'L'LIS 1NTiti.
19 M S. Sept. 4.
ir. M. T. 1432 M

- HERCELIS 1:6ns.

19世6. Oct. 1.
(i. M. T. $13^{\text {b }} 12^{m}$

* HERCULIS 1908.

1908. Oct. 1
(8. M. T. $13^{\circ} 12^{\prime \prime}$

Wt.	Mean of Settings.	Corrected Star Setting	Displace ment in Revolutions.	Velocity.	Wt.	Mean of Sottings.	Corrected Star Settings.	Displacement in Revolutions	Velocity.
2 $\frac{1}{4}$ $\frac{3}{8}$	$\begin{aligned} & 57 \cdot 8380 \\ & 57 \cdot 8364 \\ & 53 \cdot 0120 \end{aligned}$	$\begin{aligned} & 8255 \\ & 4881 \end{aligned}$	$\begin{aligned} & 0113 \\ & 0183 \end{aligned}$	13.60 21.06	2^{2}	$\begin{aligned} & 54.0527 \\ & 45 \cdot 3017 \\ & 45 \cdot 3040 \end{aligned}$	2673	0285	-3195
					Weighted mean$V_{a} \ldots$$V_{d}$.Curvature.				
	1 hoos int				Raulial velocity $\mathrm{N}^{\text {-1 }}$				

SESGIONAL PAPER No. 25a

- HERCMESN 19RO.

190k. Oct. 2.
15. M. T. $122^{16} 23^{m}$

c HERCULIS 1905.*

Wt.	Mean of Settings.	Corrected Star Settings,	Sisplacement m Revolutions.	Velocity.	Wt.	$\begin{aligned} & \text { Mean } \\ & \text { of } \\ & \text { Settings. } \end{aligned}$	Corrected Star Settings.	Displacement in Revolutions.	Velocity.
2 $2^{\frac{1}{2}}{ }_{2}$		8923	025	+39.90	1 2 $1 / 2$	$\begin{aligned} & 54 \cdot 0557 \\ & 45-3540 \\ & 45 \cdot 3672 \end{aligned}$	$\begin{gathered} 9924 \\ 2868 \end{gathered}$	$\begin{gathered} 0222 \\ \cdots \quad \\ 0481 \end{gathered}$	$\begin{aligned} & +35 \cdot 55 \\ & +50.22 \end{aligned}$
Radial velocity ... $\ldots \ldots+236$									

Check measurenient.
e HERCULIS 1906.
1908. Oct. 2.
G. M. T. $13^{\text {b }} 18^{m}$

e HERCLLIS 1904:-
G. 11. T. W2 15180

Weighted mean.	115	
Va	.	-16.17
V_{4}		23
Curvature		28
Radial velocity		-15.5

* Chech measurement.

1948. Oct. 5
(G. M. T. $122^{6}+5^{m}$

Oinerved tiv T. H. Parker.
Measured by W. E. Habper.

ϵ HERCCLIS 1917.
Observed by T. H. Parker.
Measured by W. E. Harper.

є HERCLLIS 1926.
1908. Oct. 12.
(i. M. T. $14^{\mathrm{h}} 15^{\mathrm{mm}}$

Observed by T. H. Pakkkr.
Measured by

SESSIONAL PAPER No. 25a

1!はス. Oct. 12.
(5. M. T. $14^{b 15}$

¢ HERCULIS 1961.

9-10 EDWARD VII., A. 1910

- HERCELIS 1961**

1smis. Nin 28
(i. M. T. $1,{ }^{-2} 33^{n}$

Observed by W. E. HARFEM.
Measured by J. B. Cisxon.

Weight-d mean	-68.24
Veig...	- +70
V d.	- 23
Curvature	- 28
Radial velocity	-73.4

є HERCULIS 1983.
1908. Nov. 26.
(8. M. T. $10^{\mathrm{H}} 07^{\mathrm{m}}$

Observed by W. E. Habper.
Measured by J. B. Canson.

e HERCULIS 1993.

190s. Dec. 2.
G. M. T. $11^{\text {h }} 05^{\mathrm{m}}$

Observed by J. B. Cannon.
Measured by W. E. H.irper.

Wt.	$\begin{gathered} \text { Mean } \\ \text { of } \\ \text { Settings. } \end{gathered}$	Corrected Star Settings.	Displacement in Revolutions,	Velocity:	Wt.	$\begin{gathered} \text { Mean } \\ \text { of } \\ \text { Settings. } \end{gathered}$	Corrected Star Settings.	Displacement in Revolutions.	Velocity
$\begin{aligned} & 2_{1}^{3} \\ & 2_{2}^{3} \end{aligned}$	$73 \cdot 0015$ $72 \cdot 8197$		0368	-53.51	2	$54 \cdot 0327$ $45 \cdot 3945$	9273	0159	
	72.4371			-03 51	1	${ }_{45}$	2173	$\cdot 0416$	$-43 \cdot 68$
					Weighted mean.				$30 \cdot 57$
								+112	
						urvature.			-28
					Radi	1 velocity			30^{-0}

SESSIONAL PAPER No. 25a:
1549. Feb. 8 . HFRCLILIK 226.
(i. M. T. $22^{6} 0 \mathrm{sm}^{\mathrm{m}}$

Observed by
Meanured by W: E. Harpkr.

Wt.	$\begin{aligned} & \text { Mran } \\ & \text { of } \\ & \text { Setting z. } \end{aligned}$	Corrected star Serting	Displact. ment in Revolutions,	Velocity.	Wt.	Mean of Nettings	Corrected Star Settings.	Dixplacement in Revolutions.	Velocity.
2		7305	0416	6049	1	$\begin{array}{r} 4 \cdot 2382 \\ 2 \cdot 5582 \\ 27.4495 \end{array}$	$\begin{array}{r} 1897 \\ 5058 \end{array}$	$\begin{aligned} & 0692 \\ & 0560 \\ & 0 \end{aligned}$	$\begin{gathered} 79 \cdot 51 \\ 49 \cdot 56 \end{gathered}$
		8891				121170 11.8145	1096	0391	$-29 \cdot 56$
Weighted mean. - $60 \cdot 54$									
								$\begin{array}{r} 1719 \\ +\quad 16 \end{array}$	
						Curvat	ure	-	28
						dial veloci	tv...	$43 \cdot 5$

E HERCULIS 2264.

1909. Feb. 8.
(i. M. T. $23^{\text {b }}$

Wt.	$\begin{gathered} \text { Mean } \\ \text { of } \\ \text { Settings. } \end{gathered}$	Corrected Star Settings.	Displacement in Revolutions.	Velecity.
	728680			
$\frac{1}{2}$	72.6942	7400	0321	$-46 \cdot 67$
1	72-3157			
2	54.0053 53.8918	8878	0504	-64 07
2^{2}	45. 3020		00.4	-64 07

Observed by
Measured by ; W. E. Harper.

Wt.	Mean of Settinge.	Corrected Star Setting.	Displacement in Revolutions.	Velocity.
1	45.2202	2118	0471	-5412
	27.5152	5061	$0 \% 51$	-49.29
2	$27 \cdot 4062$			
1	12.0368	0711	0776	$-58 \cdot 66$
2	$11 \cdot 7743$			

є HERCLLIS 230\%.
190\%. Fis 2 2
G. M. T. $2 \mathbf{1}^{5} 33^{m}$

Wt.	$\begin{gathered} \text { Mean } \\ \text { of } \\ s_{1}-t \text { ting } \end{gathered}$	Corrected Star Settings,	Displacement in Revolutions.	Velocity:	15 t	Mean of Settings.	Corrected Star Settings.	Displacement in Revolutions.	Velucity.
$\begin{aligned} & 2 \\ & 2^{\frac{1}{2}} \\ & 2 \\ & 2 \\ & 14 \\ & 2 \end{aligned}$	$\begin{array}{r} 72 \cdot 9872 \\ 72.8275 \\ 2 .+233 \\ 7.8428 \\ 5.8125 \\ 540365 \end{array}$					53-965 58	9111	0321	$-37-13$
		7571	0150	2181		$\begin{aligned} & 453275 \\ & 45.2636 \end{aligned}$	2295	0291	-3087
					$2^{\frac{1}{2}}$	$27+4794$	4953	0665	- $58 \quad 22$
		7522	0303	-36 63		27.3812			
					ighted mean.				$36 \cdot 09$
								- 15	
						Curva	ture.. -	28
						adial seloc	ity	$18: 2$

ϵ HERCULIS 23и.
1909. Feb. 29.
G. MI. T. $22^{\mathrm{s}} 36^{\mathrm{m}}$

SESSIONAL PAPER No. 25a

- HERCULIS 2327.
(. M. T. $21^{212 m}$

Observed by J. B. Cannon.
Measured by W. E. Habrer.

Wt.	Mean of Settings.	Correctel Stur Settings.	1 Birplach ment ill Revolutichas.	V chanaty.	Wt.	Mean of Settings.	Corrected Star Settings.	Displacement in Revolutions	Velocity
2	72 :385\%				2	45'2988			
2^{2}	72. 8030	7800	-10079	1149	$1 \frac{1}{4}$	$45 \cdot 3043$ $12 \cdot 6685$	2991 1891	$0+02$ 0414	$\begin{array}{r}12.21 \\ +30.51 \\ \hline\end{array}$
2	54-0227				2^{2}	$11 \cdot 6875$			
4	53.9890	9681	1224	+2870					
					Radial velocity			-49.5

HERCULIS 2328

190\%. March 2.
(i, M. T. $22^{\text {L }} 26^{\text {in }}$

Observed by J. B. Casnos
Measured by IV. E. Harper.

Wt.	Mean of Settings.	Corrected Star Settings.	Displace ment in Revolutions.	V Velocity.	Wt.	$\begin{gathered} \text { Mean } \\ \text { of } \\ \text { Settings. } \end{gathered}$	Corrected Star Settings.	Displace ment in Revolutions.	Velocity.
1	53.9935				2	$45 \cdot 264$			
1	$53 \cdot 9260$	9343	0091	$10-52$	$\frac{1}{2}$	$45 \cdot 2350$	2642	0058	56

* HERCU LIS 2370^{*}

1909. Darch 13.
G. M. T, $18^{\mathrm{n}} 35^{\mathrm{mo}}$

Observed by J. S. Plaskett.
Measured by J. B. Cannox.

[^28]e HERCULIS 2371.
1909. March 13.
G. M. T. $19^{\mathrm{k}} 23^{\text {mi }}$

Observed by J. S. Plaskett.
Measured by J. B. Cannon.

Wt.	Mean of Settings.	Corrected Star Settings.	Displacement in Revolutions.	Velocity.	Wt.	Mean of Settings	Corrected Star Settings.	Displacement in Revolutions.	Velocity
2 4 2	$\begin{aligned} & 58.8462 \\ & 58.7184 \\ & 50 \cdot 9411 \end{aligned}$	6911	0741	-94.31	2^{1}	$\begin{aligned} & 50 \cdot 8549 \\ & 3+7589 \\ & 34 \cdot 6926 \end{aligned}$	8847 7401	$\begin{aligned} & 0538 \\ & 0820 \end{aligned}$	$\begin{aligned} & -62 \cdot 27 \\ & -79 \cdot 00 \end{aligned}$
									$71 \cdot 66$
					Radial velocity 14.3				

6 HERCULIS 234.
1909. March 15.
G. M. T. $19^{\mathrm{h}} 32^{\mathrm{m}}$

Observed by W. E. Harper.
Measured Ey J. B. Cassos.

Wt.	Mean of Settings.	Corrected Star Settings.	Displacement in Revolutions.	Velocity.	Wt.	Mean of Settings,	Corrected Star Settings.	Displacement in Revolutions.	Velocity.
$\stackrel{2}{4}$	$\begin{aligned} & 58 \cdot 8228 \\ & 58 \cdot 7768 \end{aligned}$	729	10077	+9:82	2	$\begin{aligned} & 50.9196 \\ & 50.9081 \end{aligned}$	9094	$\cdots \quad 0309$	$-2+19^{\circ}$
					Radial velocity -364				

є HERCLLIS 238\%,

1909. March 15.
G. M. T. $20^{\mathrm{h}} 30^{\mathrm{mim}}$

Observed by W. E. Harber
Measured by J. B. Canson:

Wt.	Mean of Settings.	Corrected Star Settings.	Displacement in Revolutions.	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displacement in Revolutions.	Velocity
2	58.8349					509261	- 9091	-0206	-23.84
${ }^{\frac{1}{4}}$	58.7924	764	0112	1429	$\frac{1}{4}$	$34 \cdot 8678$	- 8413	0192	+18.50

SESSIONAL PAPER No. 25a

є HERCULIS 2454.
1909. March 21.
G. M. T. $20^{\mathrm{h}} 05^{\mathrm{m}}$

Observed by t.J. B. Cannon
Measured by

ϵ HERCULIS 2455.
1909. March 31.
G. M. T. $20^{\mathrm{h}} 39^{\mathrm{m}}$

Observed by
Measured by J. B. CAsnos:

Weighted mean.		$+15 \cdot 15$
Curvature	30	

OBSERVING RECORD AND DETAILED MEASL'RES OF $ッ$ BOÖTIS.
P. -Plaskett.

Pi,-Parker.
H.-Hakper.
C. Casson.
T. -Terbele.

SESSIONAL PAPER No. 25a
1906. June 25.
(4. M. T. $15^{\text {h }} 55^{\mathrm{m}}$
η BOOTLS 398.

η BOOTIS 313.

19065 . June 27.
Q. $\mathrm{M}, \mathrm{T}, 14^{4} 3 \mathrm{SF}^{\mathrm{m}}$

3	Mean of Settings.	Comprated Wave Length.				$\begin{aligned} & \text { 范 } \\ & \frac{3}{5} \\ & 3 \end{aligned}$	3	Mean of Settings.	Computed Wave Length.	$\begin{aligned} & 2 \\ & 3 \\ & 3 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$			-
2	$70 \cdot 0228$	4549-704					1	587715	4425.974	982	608	374	25.31
2	$70 \cdot 0646$	4550-199	143	766	377	+24.84	2	$57 \cdot 7472$	$4415 \cdot 579$	571	244	327	22.20
2	68.8922	$4586 \cdot 429$	408	965	443	29.28	2	56.7110	$1405 \cdot 195$	194	951	243	16.80
1	$68 \cdot 4773$	4531.556	552	202	350	$23 \cdot 13$	3 S	$56 \cdot 6837$					
1	$68 \cdot 3445$	$4530 \cdot 057$	057	781	273	$18^{\circ} \mathrm{OH}$	2	55.7498	4395689	6975	286	410	27.96
2	$68 \cdot 2790$	$4529 \cdot 300$	297	807	490	$32 \cdot 38$	1	54.5449	$4383 \cdot 928$	970	720	250	$17 \cdot 07$
38	682356						1	515162	$4383 \cdot 650$				
	67.7616	$4523 \cdot 337$	345	855	490	$32 \cdot 38$	1	$53 \cdot 1281$	$1370 \cdot 320$	356	856	501	31.30
3	$65 \cdot 2295$	4494.746					1	$52 \cdot 9142$	4368.285	320	840	480	32.92
1	$64 \cdot 1575$	$4482 \cdot 928$	924	434	490	$32 \cdot 88$	2	51.2105	$4352 \cdot 272$	312	006	366	21.08
1	$63 \cdot 5802$	4476.631	631	214	420	28.09		$48 \cdot 3264$	4325.902				
2	63.5399	$4776 \cdot 193$					2	47.8181	$1321 \cdot 348$	368	992	376	26.05
1	$63 \cdot 2805$	$4473 \cdot 381$	377	47	420	28.10	2	$47 \cdot 1611$	4315.529	545	178	367	$25 \cdot 46$
2	$62 \cdot 66005$	4466.698					35	$46 \cdot 3197$					
2	$59 \cdot 7122$	4435639	654	184	470	3177	1	$46 \cdot 342$	$4308 \cdot 296$	296	023	273	1897
1	58.9422	4427.719	720	420	310	$20 \cdot 98$	2	46^{-1418}	$4346 \cdot 521$	513	153	360	2502

Radial velocity
0.0
η BOÖTIS 318 c ．
1906．June 29.
G．M．T． $14^{\mathrm{h}} 21^{\mathrm{m}}$

Observed by J．S．Plabakett．
Measured by J．N．Tribble．

$\stackrel{3}{3}$	Man of Settings．	Computed Wave Length．				$\frac{8}{\frac{8}{4}}$	\geq	$\begin{gathered} \text { Mean } \\ \text { of } \\ \text { Settings. } \end{gathered}$	Computed Wave Length．				－
21	65－1913	4584018					14	468204	$4383 \cdot 596$				
2	62.3803	$4550 \cdot 121$	205	766	439	$+2893$	15	45.5865	4371.738	806	312	494	29.78
2	62．3321	$4549 \cdot 552$					1	45.4158	$4370 \cdot 111$	177	856	321	22.03
$\frac{1}{2}$	60.7998	4531.584	664	202	462	30.59	1	45．2187	4368.238	302	＋840	462	31.84
$1 \frac{1}{4}$	60．5480	4528.712					13	12.2886	4340.901	941	634	307	$21 \cdot 20$
	$60 \cdot 0766$	$4523 \cdot 289$	377	855	522	3461	$1 \frac{1}{2}$	39.4436	$4315 \cdot 255$				
1.	57.5359 54.2713	$4494 \cdot 635$ $4459 \cdot 185$					1_{3}^{1}	38．6660	4308394	390	023	367	$25 \cdot 53$
1.	542713	4459.185					3	37.0462	$4294 \cdot 299$				
1.1.	53.9012 51.5610	4455.264 $430 \cdot 869$	384 985	962	． 222	$28 \cdot 40$	1	${ }^{35 \cdot 7398}$	4283－122	106	721	385	$28 \cdot 95$
$\frac{1}{2}$	51.5610 $50 \cdot 0693$	$4430 \cdot 869$ 4415	985	678	307 .416	90．78	12	${ }^{33} .0517$	$4260 \cdot 643$				
${ }_{1}^{2}$	50.0623	4415.601	709	293	416	28.25	1	28.9306	4227.475	463	010	453	$32 \cdot 12$
${ }_{2}^{1 \frac{1}{2}}$	50.0089 49.0242	4415.084 $4405 \cdot 227$	＇331	951	＇380	25.87	1 2	$25 \cdot 2131$ 22.947	4198.823 4181.919	819	403		－28 78
1	46.8536	＋383．917	－001	720	281	${ }^{20} 02$			4181919				
							Radial veiocity						
											．	$+$	

η BOOTIS 326.
1906．July 4.
G．M．T． $14^{4} 50^{\mathrm{m}}$

$\stackrel{3}{2}$	Mean of Settings．	Computed Wave Length．	这			$\begin{aligned} & \text { 穼 } \\ & \frac{3}{9} \\ & > \end{aligned}$	3	$\begin{gathered} \text { Mean } \\ \text { of } \\ \text { Settings. } \end{gathered}$	Computed Wave Length．		年		－
2	$47 \cdot 9535$	1321280	292	992	300	$+20.97$	1	$62 \cdot 1243$	$4459 \cdot 686$	724	304	420	28.22
2	72.9821	4584.067					2	617085	4455.266	300	962	338	$22 \cdot 74$
1	72.0410	4572.552	528	156	372	24.32	1	$61 \cdot 3025$	$4450 \cdot 975$	097	654	43	29.81
2	$70 \cdot 1726$	4550127	126	766	360	2368	2	$59 \cdot 0672$	4427.735	743	420	323	21.86
2 S	$70 \cdot 1316$						2	57.8787	$4415 \cdot 645$	638	293	345	23.42
2	68.9985	4536325	325	965	360	23.79	2	56.8425	$4405 \cdot 219$	251	951	300	20.43
1	$68 \cdot 3839$	$4539 \cdot 186$	187	80^{7}	380	$25 \cdot 15$	38	$56 \cdot 8102$					
3	$68 \cdot 3512$	$4528 \cdot 807$					2	$55 \cdot 8790$	$4395 \cdot 702$	710	286	424	28.91
1	$67 \cdot 8624$	$4523 \cdot 173$	165	855	310	$20 \cdot 55$	3	546865	4384.041	060	720	340	$23 \cdot 25$
2	$65 \cdot 9783$	4501.798	786	448	338	$22 \cdot 47$	2	$54 \cdot 6501$	$4383 \cdot 688$				
3	65．3427	4494.706					${ }^{2}$	$53 \cdot 4072$	4371.721	752	312	440	30.18
2	$63 \cdot 6949$	4776.593	584	214	370	24.75	1	53.0457	$4368 \cdot 273$	300	840	460	$31 \cdot 55$
2	63.6582	4776195						$51 \cdot 3477$	$4352 \cdot 284$	308	006	302	20.80
2	$63 \cdot 3995$	$4473-387$	407	－957	40	$30 \cdot 15$	3	50.1222	1340.944	960	634	326	$22 \cdot 49$
2	62.7750	4466.648					3	48.4705	4325.922				
	$62 \cdot 8070$	4466.982	061	771	290	19.45	3	$47 \cdot 3080$	$4315 \cdot 523$	523	178	345	$+23.94$
2	626324	$4465 \cdot 118$	158	712	446	$29 \cdot 92$	38	$46 \cdot 4662$					

SESSIONAL PAPER No．25a

η BOOTIS 332.

1906．July 6.
G．M．T． $15^{\mathrm{h}} \mathrm{u}^{\mathrm{m}}$

Observed by J．As．PlaskETT．
Measured by J，N．Tribelk．

ジ	Mean of Settings．	Computed Wave Length．				$\frac{1}{4}$		$\begin{gathered} \text { Mean } \\ \text { of } \\ \text { Settings. } \end{gathered}$	Computed Wave Length．				－
3	$65 \cdot 1677$	$458+687$					2	49.0105	$4405 \cdot 903$	327	951	376	$25 \cdot 60$
1	64.2090	$4572 \cdot 978$	370	156	214	－1403	2	49－9783	$4415 \cdot 602$				
2	$62 \cdot 3 \cdot 21$	＋150． 733	149	766	383	$25 \cdot 23$	$1 \frac{1}{2}$	46.8362	43×4.534	908	720	238	16.25
2	$62 \cdot 3108$	$1550 \cdot 244$					1	46.0199	$4376 \cdot 656$				
$1 \frac{1}{2}$	60.7734	$1538 \cdot 258$	690	202	48	32.27	2	$45 \cdot 2045$	436×866	298	840	158	3143
12	60 5228	＋529 354						422765	4341.509	949	634	315	21.66
2	$57 \cdot 5194$	1495 －363					13	39.4279	4315.792				
$1 \frac{1}{2}$	$54 \cdot 8062$	465.776	206	972	228	1531	2	$38 \cdot 6569$	4308.959	125	023	102	29.97
1	54．5412	4462.942	366	977	389	2315	2	$37 \cdot 6252$	$4299 \cdot 954$				
1	54.2551	459.893						37.0706	$42: 50 \cdot 148$	620	278	34	24.22
2	53.8852	445.966	390	962	428	$22 \cdot 07$		33.0416	1261155				
1	53． 4774	451.659	979	597	482	$32 \cdot 45$	2	$33 \cdot 0766$	4261419	923	523	＋09	28.14
$\stackrel{2}{2}$	51.5874	4431.472	－888	678	210	14.21	1^{13}	$28!1049$	4227808	371	010	361	$25 \cdot 59$
2	$51 \cdot 2451$	4428473	893	420.	473	$32 \cdot 02$	2	$2+3115$	4192.463	103	678	425	$+30 \cdot 37$
$1{ }_{9}{ }^{3}$	$51 \cdot 0727$	4426719	135	805	330	22.37		22.9365	$4182 \cdot 232$				
2	$50 \cdot 0457$	416.282	702	293	409	$27 \cdot 76$							
Weighted mean．．．．．．．．．．．． 2460 													
Radial velocity．．．．．．．．．．．．．－1\％													

7 BOÖTIS 366.

1906．Aug． 6.
G．M．T． $14^{\mathrm{h}} 5^{\mathrm{m}}$

Observed by W．E．Harfer．
Measured by J．N．Tribble．

el	Mean of Settings．	Computed Wave Length．				家	$\stackrel{ }{2}$	Mean of Settings．	Computed Wave Length．				$\frac{3}{8}$
21.	$65 \cdot 2814$	4584.018					1 ${ }^{1}$	$46 \cdot 8746$	4383－831	871	720	151	$10 \cdot 42$
1	$64 \cdot 2565$	$4572 \cdot 121$					$1 \frac{1}{2}$	46.8483	1388.577				
2	$62 \cdot 4060$	4549.971	039	766	273	$+18.00$	1	45． 6093	4371.677	707	312	395	$27 \cdot 11$
$\stackrel{2}{2}$	$62 \cdot 3706$	4549 －ั 2					$1 \frac{1}{2}$	45.2419	$4368 \cdot 182$	210	840	370	$25 \cdot 38$
$1 \frac{1}{2}$	$60 \cdot 8339$	4531.583	495	302	293	$19 \cdot 34$	1	16.0709	4376.090				
$1{ }^{1}$	$60 \cdot 5846$	4528.704					$1 \frac{1}{2}$	423186	$4340 \cdot 924$	－936	634	302	$20 \cdot 85$
$2^{\frac{1}{2}}$	60．1077	$4523 \cdot 221$ 4994.670	307	855	452	$29 \cdot 97$	1.	$39 \cdot 4696$	$4315 \cdot 255$				
	57．5747	4494.670					${ }_{2}^{12}$	$38 \cdot 6818$	$4308 \cdot 308$	296	023	273	18.99
	$53 \cdot 9251$ $53 \cdot 5350$	4455.161	247 131	962 597	2×5 534	$20 \cdot 18$ $35 \cdot 98$	${ }_{2}^{2}$	37.0702	$4294 \cdot 292$				
13	53－3107	$4451 \cdot 047$ $4459 \cdot 249$		597			${ }_{1}^{2}$	33.0764 28.9385	$+260 \cdot 658$ +227	349	010	339	24.03
$1{ }^{2}$	51.5845	$4430 \cdot 779$	859	678	181	12.25	12	$25 \cdot 2344$	4198.838	－830	403	427	25.48
2	50.0855	4415－538	602	293	309	21.09		243315	4192.055	－047	－678	369	$+263 \pi$
$2^{\frac{1}{2}}$	$50 \cdot 0371$	$4415 \cdot 051$					2	$22 \cdot 9657$	4181.919				
2	490520	$4405 \cdot 195$	251	951	300	$20 \cdot 12$							
Radial velocity．													

19nti, Aug. 8. G. M. T. $14^{h} 1$.									Observed byMeasured by W. E. Hakfen.				
\underline{L}	Mean of Settings.	Computed Wave Length.		药		$\begin{aligned} & \frac{3}{3} \\ & \frac{3}{4} \\ & 3 \end{aligned}$	\geqslant	Mean of Settings.	Computed Wave Length.				$\frac{2}{4}$
2	72.9730	1584.279					2	$59 \cdot 0301$	$4497 \cdot 683$	683	420	263	1780
$\stackrel{\square}{2}$	71.4967	4566.264	114	726	388	25.33	3	$57 \cdot 8275$	4415.472	456	24	212	$14+3$
!	71.3535	4564.535					3	56.7962	$4405 \cdot 149$	149	951	198	13.48
	$70^{\circ} 688{ }^{\circ}$	4556559	539	302	337	2214	38	56.7738					
	$70 \cdot 1445$	$4550 \cdot 683$	083	766	317	20.85	2	55.8252	4395.551	567	286	291	19 कf
35	$70 \cdot 1072$						2	54 6869	4383.963	995	720	275	1881
\because	68.9701	4586273	233	965	268	$17 \cdot 71$	1	54.6080	43×3683				
\cdots	68.3516	4529.057	017	897	210	$13 \cdot 90$	1	$53 \cdot 3464$	4371.570	602	312	240	19.89
:	$68 \cdot 3336$	4528881					1	$53 \cdot 1912$	4370.093	125	856	269	18. 45
1	680462	4525 , 13	505	295	210	1395	1	$52 \cdot 9897$	$4368 \cdot 180$	-210	810	830	25.38
\because	67.8440	4523.237	171	8.5	329	21.24	2	$52 \cdot 1188$	4859.963	-979	784	190	$13 \cdot+1$
2	65.9487	4501.743	743	431	312	20.74	2	52.0196	4359.033	050	732	318	2187
3	65.3170	$4494 \cdot 693$					2	51.2852	$4352 \cdot 180$	180	006	154	11.9
\because	$64 \cdot 1450$	4481782	806	391	215	1438		48.4145	4325.973				
\because	63.6316	4476186					3	$47 \cdot 1450$	4314668	660	353	307	21.30
1	63.0377	$4470 \cdot 518$	558	3041	258	$17 \cdot 28$	3	48.4512	$4320 \cdot 302$	270	939	331	$22 \cdot 93$
2	62.7485	4466659					35	$46 \cdot 3963$					
2	${ }_{62} \cdot 7757$	4666.943 459	983	771 301	212	14.22 19.08	2	4. 8470	4294632	552	273	279	$19 \cdot 50$
9	620833	4459.540	58s	304	284	19.08	2	448210	4294.409				
1	62.0545	$4459 \cdot 233$ $440 \cdot 865$					2	41405	4288.580	. 500	134	306	25.58
\because	$61 \cdot 2637$ $59 \cdot 7795$	$4450 \cdot 865$ $443)^{\circ} \cdot 386$	913 406	596 184	$\begin{array}{r} 317 \\ 222 \\ \hline \end{array}$	21.33 15.00	1	$42 \cdot 5767$	$4275 \cdot 360$	'280	922	33.8	-25 199
								Va...				-22	83
								$\mathrm{V}_{\text {d }} \ldots$				-	
								Curvat	. . .				30
Radial velocity.... \& -													

7 BOOT1S 657.
$1 \cdot \%$ March 8.
(i. II. T. $1^{\text {sh }}$ finn

Weighted mean.		-18-92
$\mathrm{V}_{a} \ldots$	+13.75	
V_{d}.	+ 09	
Curvature		50

ク BOOTIS 670.

150). Narch 97

Ir M. T. $18^{t} 3:{ }^{n}$

η BOÖT1S 691.
190 ${ }^{-1}$ April ${ }^{-1}$
G．M．T． 188^{10}

خ BOÖTIS 731 ．

1907．April 19.
G．is T． $18^{\mathrm{h}} 35^{\mathrm{m}}$

\pm	Mean of Settings．	Computed Wave Length．		这		$\begin{aligned} & 3 \\ & \frac{3}{8} \\ & \frac{8}{9} \end{aligned}$		$\begin{aligned} & \text { Mean } \\ & \text { of } \\ & \text { Settings. } \end{aligned}$	Computed Wave Length．		运		苞
12	729712	$4584 \cdot 004$					2	26． 7843	4405.001	． 001	951	． 050	＋ 340
1	$71 \cdot 9874$	$45 \pi 1 \cdot 996$	106	116	010	-0 （65	3	56.7769	4404927				
2	$70 \cdot 1315$	4549777	776	776	－010	＋ 0.66	1	55.8147	$4395 \cdot 409$	386	286	－100	$+6.83$
$1 \frac{1}{3}$	$70 \cdot 1200$	4549641					2	54.6220	4383.766				
$1{ }^{1}$	$68 \cdot 9540$	4535965	965	965	000	－00	12	546211	4383－757	720	720	000	． 00
1	68.3433	$4528 \cdot 888$	887	807	080	$+5.38$	$1 \frac{1}{2}$	$53 \cdot 1719$	4369.837	806	856	050	-3.43
1	$68 \cdot 3355$ $63 \cdot 3442$	$4528 \cdot 798$ 4473.043						$48 \cdot 4312$ $48 \cdot 4336$	$4325 \cdot 956$ $4325 \cdot 977$				
11.	63.3442 62.7670	4473.043 4466.826	＇007	957	050	$+335$	1	48.4336 +6.4205	4325.977 4308.075	959	939	020	$+1.38$
1	69.5922	4464952	902	772	130	＋8．74	12	46.4160	4308.036	033	023	＇010	＋ 066
1.	61.6492	4454.916	892	969	070	－+72	2	408494	42600646				
$1 \frac{1}{2}$	58.8439	4425.761	755	805	050	-3.38	$1{ }^{1}$	408433	4260－595	590	640	050	-350
2	57－8\％24	$4415 \cdot 399$	393	298	100	＋ 6.80							
Radial velocity ．．．．．．．．．．．．．．．．－ 3.8													

? BOMTIS 739.
1907. April 2ti,
(i. .11. T. $17^{\mathrm{l}} 30^{\mathrm{mm}}$

Wherved by J. S Plankett.
Measured by W. E. Hakpar.

\geqslant	$\begin{aligned} & \text { Mevan } \\ & \text { of } \\ & \text { Settingex. } \end{aligned}$	Computed Wave length					\geqslant	$\begin{gathered} \text { Mean } \\ \text { of } \\ \text { Settings. } \end{gathered}$	Computed Wave Length.				-
3	700827	$4.49 \cdot 75$	796	7 (iti	N0	+ 1.98	2	57.7755	1415358	373	293	080	$5 \cdot 43$
	70.0699	4549604					3	56.7328	4404911				
11.	68 9152	4536.057	105	985	040	$+265$	3	36.7369	$4404 \cdot 943$	961	951	010	$+0.68$
1	68.4980	4531213	252	202	(15)	- 3 . 31	${ }_{2}^{2}$	53. 7610	$4395 \cdot 296$	326	286	040	+ +273
-	$68 \cdot 2387$	4528.736					2	515688	$43883 \cdot 616$				
1	67.7681	4522804	845	855	010	066	2	545705	4383.670	7201	730	630	$+205$
1	65.8880	4501514	548	508	040	- $2 \cdot 66$	1	$5 \cdot 1335$	4369 -862	926	sinf	070	+ +480
2	65.2791	4494.730					2	51.2440	+352.066	126	0046	120	+ 8.26
1	65 26865	4194590	620	550	90	$+466$	-	54. 0165	4340719	74.	634	140	+ $4 \cdot 66$
1.	63 6012	4476.313	334	214	120	+ $8 \cdot 04$,	483872	4325.910				
$1 \frac{1}{2}$	$63 \cdot 5860$	$4176 \cdot 149$					2	48.3885	4325.922	969	939	030	$+207$
1	632995	4773.023	037	957	1180	$+5 \cdot 37$	1	47.8122	4321.020	042	2	050	+3.46
2	62.7133	4466729					3	16.3798	4308.051				
23 ${ }^{\frac{1}{2}}$	61.6094	4454963	972	962	010	+967	$\stackrel{2}{2}$	46.3865	$4308 \cdot 110$	133	023	110	763
$1 \frac{1}{2}$	61.2057	4150	707 430	597	110	+ 741	2	408133	F200 641				
$1 \frac{1}{2}$	$58 \cdot 9633$	4427425	430	420	010	$+067$	2	408102	$4240 \cdot 612$	610	640	031	-211

१ BOOOTIS 752.

19NT, May 7.
G. M. T. $14^{\circ} 20^{m}$

\geq		Computed Wave Length.		这		$\frac{5}{\frac{5}{6}}$	2	Mean of Settings.	Computed Wave Length.				+
1	$73 \cdot 0097$	4584071					1	$61 \cdot 2811$	$4450 \cdot 747$	807	597	210	
${ }_{2}^{14}$	$72 \cdot 0492$	$4572 \cdot 350$	392	112	280	+1831	13.1	$59 \cdot 0410$	$4+27.514$	570	420	150	$10 \cdot 15$
2	$70 \cdot 1677$	4549.830	866	776	100	6.60	3	57.8548	$4415 \cdot 473$	533	293	240	$16 \cdot 30$
1	$70 \cdot 1520$	4549.640					3	56. 8036	$4404 \cdot 951$	021	951	670	$4 \cdot 77$
1	$69 \cdot 0077$	$4536 \cdot 228$	286	965	320	$21 \cdot 18$	3	0.6. 7947	4404863				
112	$68+5945$	4531.433	492	202	290	19.20	2	55.8355	4395.380	456	286	170	11.62
3	683596	+528.720					2	$54 \cdot 6312$	$1383 \cdot 638$	720	720	000	
	683767	$45.98 \cdot 917$	987	807	180	11.92	2	$54 \cdot 6284$	$43 \times 3 \cdot 646$				
$1 \frac{1}{2}$	67.8727	4523121	1195	-55	340	$22 \cdot 54$	2	$53 \cdot 2125$	$4370 \cdot 014$	116	856	260	1784
1	657679 $65 \cdot 3486$	$4499 \cdot 332$ 44946 182	399	129	270	$17 \cdot 98$	1	51.3040	$4352 \cdot 054$ 4340815	166	906	160	11.00
	65 - 3500	$4494 \cdot 679$	750	550	200	$13 \cdot 34$	3	$48 \cdot 4356$	4325 827	9×4	684	300	$20 \cdot 70$
$1 \frac{1}{2}$	$63 \cdot 3679$	$4772 \cdot 994$	057	957	100	670	$1 \frac{1}{2}$	47.8955	$4320 \cdot 987$	122	992	130	960
1	62.7800	4466.663					3	$46+197$	$4307 \cdot 917$				
2	62.62 Na	4463	102	772	330	$22 \cdot 11$	${ }^{2}$	$46+370$	$4308 \cdot 068$	223	023	200	$+13 \cdot 88$
2	61.6907	$44.55 \cdot 667$	132	962	170	114	2	$40 \cdot 8503$					

П BOITIS 760 .

190\%. May 14.
G. M. T. $15^{1} 5$.

1907. May 20.
G. M. T. $16^{\mathrm{h}} 25^{\mathrm{m}}$

H BOOTIS 764.

3	$\begin{gathered} \text { Mean } \\ \text { of } \\ \text { Settings. } \end{gathered}$	Computed Wave Length.				$\begin{aligned} & 2 \\ & \frac{8}{5} \\ & \frac{3}{3} \end{aligned}$	2	Mean of Settings.	Computed Wave Length.				$\begin{aligned} & \stackrel{3}{2} \\ & \frac{2}{2} \\ & \stackrel{2}{2} \end{aligned}$
2	768697	4586.673	521	191	330	$+21 \cdot 52$	1	$57 \cdot 5027$	H59. 583	604	304	300	2023
11.	76.8647	4586 '638	208	018	190	$12 \cdot 39$		$56 \cdot 0608$	4450.947	967	597	370	24.13
1	$76 \cdot 5408$	$458+329$	018	618	400	26.08	12	53-4276	$4435 \cdot 127$	444	18.4	260	178
1	76.2327	$4582 \cdot 137$						52.0857	$4427 \cdot 6 \overline{0}$	666	420	246	16.65
2	76.0246	$4580 \cdot 696$					$1 \frac{1}{21}$	51.8037	4426.026	038	608	430	29.11
1	73.6800	$4564 \cdot 218$	149	439	210	13.75	$2 \frac{1}{2}$	$49 \cdot 9630$	$4415 \cdot 519$	323	293	231	15.62
11.	72. 5669	4526. 532	42	202	270	17.76		499173	4415260				
	72.2443	$455 \cdot 592$	837	257	280	$18 \cdot 42$	2	$48 \cdot 1222$	405168	171	451	220	15.60
1	72.0388	+559.913	864	594	270	17.76	2	46.3847	4395539	539	256	253	17.25
21	716337	$4550 \cdot 080$	946	766	280	18.42	$1 . \frac{1}{2}$	$4+2712$	$43 \leq 4.005$	105	720	285	$20-14$
	71. 5812	$45.49 \cdot 791$						+3.4159	4379392				
	695816	+536.314	295	965	330	21.81	$1 \frac{1}{2}$	41.9670	4371.648	652	312	340	$23 \cdot 30$
	$68-4979$	$4529 \cdot 079$	071	807	270	17.87	2	$39 \cdot 7680$	4360.064	074	784	290	19 ¢ 0
2	675440	$4522 \cdot 147$	155	855	300	$19 \cdot 89$	1, $\frac{1}{2}$	39-5791	4359.078	056	732	354	$24 \cdot 28$
	65.3760	$4508 \cdot 673$	685	455	230	$15 \cdot 30$	1	$35^{4} 4112$	+353.015				
11	$6+3050$	4501799	818	448	370	24.64		382760	4352.317	336	006	330	22.70
2	$63 \cdot 2326$	4494.979	904	664	330	2201	2	36.0640	4340.994	1104	634	370	$25 \cdot 53$
	$63 \cdot 1922$	4494.724					1	33.0691	4325 -962				
$1 \frac{1}{2}$	$61 \cdot 1145$	$14 \times 1-693$	710	400	310	20.74	$1 \frac{1}{2}$	331252	4326.247	239	939	300	20.76
2	60.2770	$4176 \cdot 506$	524	214	310	$20 \cdot 74$		$32 \cdot 1120$	$4321 \cdot 238$	226	-992	234	$16 \cdot 20$
11.	597526 $59+1917$	4473.277 4469.858	297 876	957	340 356	22.78 23.85	$1 \frac{1}{2}$	30.9360	$4315 \cdot 473$	458	. 178	280	$19 \cdot 40$
1	$59+1917$	4469.856	876	520	356	23.85	2	29-4608	$4308 \cdot 313$	293	023	2.0	18.72
1	$58 \cdot 4205$	$4165 \cdot 137$	162	72	390	$26 \cdot 13$	$\stackrel{\square}{2}$	25.2745	4288 -450	424	134	290	$20 \cdot 27$
							Weighted mean. $3 .$. . $20 \cdot 26$						
								$V_{d} \ldots$		$\begin{array}{r} 16.77 \\ -\quad 10 \end{array}$		
							Va.... Curvature............. $-\quad 10$						
								Radial velo	city...			$+$	-91

Weighted mean.
$\left.\begin{array}{l}\text { Observed by } \\ \text { Measured by }\end{array}\right\}$ W. E. Harprr.

7 1300TIS 769．
1547．May 23．
1：M．T． $16^{\mathrm{h}} 51^{\mathrm{mm}}$

Oberved by J．S．PLALんatt．
Measured by W．E．H．wiser，

$\underset{y}{5}$	Mean of Sictings．	Computed Wave Leugth．	$\begin{aligned} & 3 \\ & \text { 要云 } \\ & \text { 坒 } \\ & 8 \end{aligned}$	$\frac{y}{2}$		范	$=$	Mcan settings．	$\begin{aligned} & \text { Conputed } \\ & \text { Wave } \\ & \text { Length. } \end{aligned}$				－
2	72 3：51	4.554627	5017	257	250	16.47	2	57． 5847	459959	644	304	310	22.91
1t	$72 \cdot 1497$	4553.084	． 964	594	37.	2438	1	$51^{\circ} \cdot 8629$	4455219	272	962	（319	$20 \cdot 69$
3	71．715i	＋550－129	006	766	340	16.60	$1 \frac{1}{4}$	52．1541	44271566	720	420	340	$20 \cdot 31$
1．2	$71 \cdot 6651$	4549777					9	50.0535	4415.548	548	208	505	$20 \cdot 70$
2	6：$\cdot 6739$	$4536 \cdot 338$	255	［Hi．）	210	$19 \cdot 20$	2	$49 \cdot 9998$	4415244				
2	6．5984	$45.29-180$	107	807	3061	$19 \cdot 86$	1_{9}^{1}	48.2090	410\％164	211	951	250	17•73
2	$68 \cdot 5477$	$4528 \cdot 8.11$						Is 15 x ¢ ${ }^{\text {a }}$	4104876				
2	67.6870	4523－161	105	85.5	250	16.55		434978	$4879 \cdot 372$				
1	fif－ 51236	4515.805	768	5188	230	$17 \cdot 10$	$1 \frac{1}{2}$	420517	4371.654	702	312	350	26.75
1	$66 \cdot 4035$	4514789	736	476	260	1726		417560	$4370 \cdot 074$	116	850	260	$17 \cdot 85$
2	$63 \cdot 3054$	4494.898	894	$6 i 4$	230	$15 \cdot 34$	1	41.3810	4368116	160	840	320	$21 . \%$
15	63.2838	4494768						384541	4352949				
1	60－3530	4476	481	21.	270	1899		383357	$4852 \cdot 182$	244	006	240	16.54
2	598848	4783304	337	957	． 380	2546	］	$32 \cdot 1922$	$4321 \cdots 09$	293	992	3×1	20.76
$1 \frac{1}{2}$	59 2733	4499814						30.9890	$4315: 312$	408	178	231）	＋15．92
2	is trist	4this 004	062	72	290	$19 \cdot 48$		$30 \cdot 9143$	4315192				
Radial velocity ．．．．．．．．．．．．．．+14													

1907．May 23.
f．A．T． $1 \psi^{1} 0$ sm $^{\mathrm{m}}$

Observed by W．E．Haliper．
Measured by J．N．Tribble．

9-10 EDWARD VII., A. 1910
η BOÖTIS \%9.
1907. May 24.
G. M. T. $15^{h} 01^{\text {II }}$

Observed by J. S. Plaskett.
Measured by J, N. Tribble.
η BOÖTIS 7S3.

190\%. May 29.
G. M. T. $16^{6} 46^{2}$

Observed by J. S. Plashetr.
Measured by W. F. Harper.

SESSIONAL PAPER No. 25a

1907. May 31.
G. M. T. $14^{\mathrm{h}} 54^{\mathrm{m}}$

BOÖTIS 797.

Wt.	Meau of Settings.	Corrected Star Settinge.	Displace. ment in Revolutions.	Velocity.
2	$72 \cdot 9660$			
2	72.8399	8829	0181	$+2626$
2	$72 \cdot 4047$			
2	57.8365	$8+10$	0142	$17 \cdot 10$
2	57.8055	-	
2	$50 \cdot 14129$			
$1 \frac{1}{2}$	49.3909	3987	0283	28.72
1	48.7877	7855	0215	$23 \cdot 53$
2	$48 \cdot 7722$ 47.0514	0483	'0352	$37 \cdot 45$
2	45.2777			
$\frac{13}{9}$	45.2658	2617	0230	23.56
2	$43 \cdot 5481$	

Observed by J. S. Plabkett.
Measured by C. R. Westland.

Wt.	Mean of Settings.	Corrected Star Settings.	Displacement in Revolutions.	Velocity.
2	$43 \cdot 0819$	0711	0208	$21 \cdot 20$
2	40. 5728	5506	0301	$29 \cdot 86$
2	39.7707	7517	0249	$24 \cdot 50$
	$39 \cdot 7551$			
${ }_{1}^{1} \frac{1}{2}$	37.3501		0839	$32 \cdot 51$
2	36.5196	4893	0271	$25 \cdot 77$
$1 \frac{1}{2}$	35.4969	4631	0355	$33 \cdot 40$
2	$35.46+1$			
$1 \frac{1}{2}$	31.6032	T560	0151	$13 \cdot 65$
2	$30 \cdot 1736$			
2	$27 \cdot 3086$			
${ }_{2}^{1 \frac{1}{2}}$	267220 26.7084	6579	0296	$+25 \cdot 48$

Weighted mean		$+25 \cdot 50$
V_{a}	$-20 \cdot 10$	
V_{d}	- 05	
Curvature.	- 28	
Radial velocity	...	+ 51

1907. June 10.
G. MI. T. $14^{\mathrm{h}} 10^{\mathrm{mm}}$

3 BOOTIS 812
Oloserved by J. S. Plasketr.
Measured by W. E. Harprr.

\sum	Mean of Settings.	Computed Wave Length.		告			3	$\begin{gathered} \text { Mean } \\ \text { of } \\ \text { Settings. } \end{gathered}$	Computed Wave Length.				$\frac{3}{5}$
2	72. 8854	4864 874					2	$43 \cdot 0742$	$4308 \cdot 544$	560	-023	'537	$37 \cdot 37$
2	$72 \cdot 7643$	+8i2.010	047	527	520	+32.08	2	42.0980	$4294 \cdot 278$				
$1 \frac{1}{2}$	57.8020	$4500 \cdot 549$	386	766	620	$40 \cdot 85$	1	41.3355	$4283 \cdot 269$	285	722	-563	39.00
2	577617	$4549 \cdot 811$					2	$40 \cdot 5595$	$4272 \cdot 188$	204	760	-444	31.12
2	53.0646	4466.768					$1 \frac{1}{2}$	39.7652	$4260 \cdot 968$	987	527	460	$32 \cdot 34$
$1 \frac{1}{2}$	$52 \cdot 9887$	4655474	412	772	640	$42 \cdot 94$	2	$39^{\prime} 7401$	$4260 \cdot 615$				
2	52.4971	4455.617	562	962	600	$40 \cdot 32$	2	39.0561	$4251 \cdot 055$	067	643	424	29.89
2	$52 \cdot 2073$	4452249					$1 \frac{1}{2}$	37.8028	$4233 \cdot 770$	778	462	-316	22.37
2	$49 \cdot 3623$	4405.394	391	908	483	32.84	2	373322	$4227 \cdot 356$	364	010	'354	25.06
2	48.7661	+1395. 225	826	426	400	25.28	$1 \frac{1}{2}$	$35 \cdot 2093$	$4198 \cdot 927$	924	494	- 330	30.70
2	45.9963	$4352 \cdot 404$	412	957	455	31.44	2	34.6878	4192067	068	-678	330	$27 \cdot 70$
2	$45 \cdot 2575$	$4341 \cdot 177$					2	31.9631	4156.989	989	- 623	-366	$26 \cdot 35$
2	$45 \cdot 2518$	4341.089	099	634	465	$32 \cdot 08$		30.9498	$4144 \cdot 262$	'262	-928	-334	$+2+11$
$1 \frac{1}{2}$	44^{2697}	$4326 \cdot 286$	299	939	360	$24 \cdot 91$	2	$27 \cdot 3112$	$4099 \cdot 919$				
								$\mathrm{V}_{\text {d. }} \ldots$.					
								Curvature............. $=.28$					
								Radial velocider	ity.				$7 \cdot 2$

190... -lathe 21
(i. M. T 14^{h}. $2 \cdot m$

Observed by J. S. Plaskett. Measured by W. E. Harper.

η BOÖTIS 891.
190ヶ. June 27 .
G. M. T. $1 \psi^{\text {h }} 50^{\circ} \mathrm{m}$

Ouserved by in. E. Hakrks.
Measured by

SESSIONAL PAPER No. 25a

- BOOTLS 919.

1907. July 8. G. M. T. $15^{\mathrm{h}} 09^{\mathrm{m}}$

Observed loy J, S. Plaskett.
Measured by T. H. Раrkkr.

Wt.	Mean of Settings.	Corrected Star Settings.	Displace. ment in Revolutions.	Velocity.	W't.	Mean of Settings.	Corrected Star Sottinge.	Displace. ment in Revolutions.	Velocity.
2	59.8099				1	428898	2798	0206	21.27
1	5. 8572	620	$03 \overline{2}$	12.38	,	$43 \cdot 5460$			
1	2466611				1	43.0888	$0 \% 58$	0255	25.98
1	$55 \cdot 1526$	1576	0324	$37 \cdot 77$	1	41.3060			
${ }_{1}^{12}$	$5+7393$ 50. 0034				1	$40 \cdot 5805$ 39 8.93	${ }_{7}^{5415}$	0356	35.31
1	50.0306	6296	0235	22.55	1	39.9860			
1	$49+064$	1034	$03 \% 0$	$39 \cdot 31$	1	$37 \cdot 3568$	3318	0180	46.04
1	$49 \cdot 1127$ i8.8040				12	$36 \cdot 5317$	5047	- 425	49.11
1	48.8040 487675	8020	0292	$31 \cdot 68$	1	354581			
$1{ }^{12}$	487675 46.0327				1	35.2228	1928	0438	41.08
1	-	274	03837	$40 \cdot 10$ $+5 \cdot 62$	1	$31 \cdot 2048$ $30 \cdot 9164$	7713	0232	+21.01
1	$45^{\circ} 2825$								

ク BUÖTIS 918.*

190\%. July \&
G. M. T. $15^{\mathrm{h}} 0 \mathrm{q}^{\mathrm{mm}}$

Wt.	Mean of Settings.	Corrested Star Setting*.	Displac. ment in Revolutions.	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displacement in Revolutions,	Velocity.
1212	590510				2	44.3211	2820	0228	23.55
1	590784	0634	0227	-27.74	2	$43 \cdot 5749$			
${ }_{9}^{2}$	5281889	8520	0252	$30 \cdot 34$	2	$43 \cdot 1211$	0798	0827	3332
$\stackrel{2}{1}$	578388 56.8542	8392	024	29.04	2	41.8827	8380		
2	566862				2	+0.6093	5590	0331	3283
1	$55 \cdot 1704$	$1+64$	0212	24.72	2	39.8204	1694	0345	3395
$\stackrel{2}{11}$	$5 \cdot 6562$				$1 \frac{1}{2}$	39.7579			
$1 \frac{1}{2}$	52.8790	8.310 +347	0246	2340	2	39.1058	0583	$03 \% 0$	$36 \cdot 11$
$\stackrel{2}{2}$	$52 \cdot+827$ $52 \cdot 2770$	4347	0399	+5.13	2	$38 \cdot 0112$ $37 \cdot 3845$	3295		
2	500580	0280	0179	$19 \cdot 69$	2	$36 \cdot 5511$	4940	0318	3903 $30-24$
2	$49+332$	+012	0350	$38 \cdot 22$	2	$35 \cdot 4884$			
2	48. 8006			11	35.5990	4706	0430	40.46
2 2	$45.31+0$ ti 3180	2800	$0+13$	$43 \cdot 12$	$1 \frac{1}{1}$	35. 2561	1973	0483	+ 45 \% 06.

"Check measurement.

ๆ BOÖT1S 95\%.
19\%. July 18.
(;. D1. T, $13^{n} 57^{n+}$

Oluserved by J. N. Tmbsle. Measured by W. F. Harpen.

η BOÖTIS 950.*
190\%. July 18.
G. M. T. $13^{\mathrm{b}} 57^{\mathrm{m}}$

Observed by J, N. Tribble.
Measured by T. H. Pabker.

[^29]
SESSIONAL PAPER No. 25a

刀 HONTIN 9\%
1907. Aug. 1
(3. M. T. $13^{\text {n }} 39^{\mathrm{m}}$

Mbserved by; W: E. Harpek.
Meayured by;

η BOOTLS 990.
1907. Aug. 7.
G. M. T. $13^{\mathrm{h}} 58^{\mathrm{m}}$

Olserved by J. S. Plaskett.
Measured by W. E. Harper.

Wt.	Mean of Settings.	Corrected Star Settinzs.	Displace. ment in Revolutions	Velocity.
2	68.8751			
$1 \frac{1}{3}$	68.0457	9557	0875	$37 \cdot 45$
2	676516	5636	0768	$32 \cdot 87$
${ }_{2}$	64.6597	5717	$06+1$	$26 \cdot 92$
2	61.4950			
$1 \frac{1}{2}$	60.5500 58.9771	5045	0777	31.62
2	58.9771	9111	0833	33.57
1	58.6538	62901	0878	$35 \cdot 38$
2	56.4377			
1	50.6835	0820	0726	27.66
$1{ }_{2}^{2}$	$48 \cdot 1930$	2266	0553	$+32 \cdot 07$
			
Weighted mean.				$+32 \cdot 66$
$\mathrm{V}^{\text {V }}$			-23.09	
			- 28	
Curvature...			- $\cdot 28$	
Kadi	al velocity.	9.0

9-10 EDWARD VII., A. 1910

				η BOOT1S 1231. Observed by in. W. Harfer. Measured by					
W\%.	Mean of Settings	Currected Star Settings.	Displacement iu Revolutions.	Velucity:	We.	Meau of Settings.	Corrected Star Settings.	Displacement in Revolutions.	Velocity.
		S147	0221	2661	$2^{1 \frac{1}{2}}$	$44 \cdot 2401$ $41 \cdot 3012$	2266	(1396	$33 \cdot 67$
$1 \frac{1}{2}$	¢ 4.7515				2	$40 \cdot 514$	'5060)	029	$25 \cdot 69$
$\stackrel{1}{1}$	58.124×18	504S	0256	29 us	$\stackrel{2}{2}$	$39 \cdot 7446$ $39 \cdot 7099$	6959		30) 40
2	$52 \cdot 3986$	$37!10$	O358	40.49	$1 \frac{1}{2}$	$39 \cdot 1059$. 9925	U23s	$23 \cdot 23$
$\frac{9}{9}$	52.2705					33^{-9716}			
${ }_{11}$	49.3963	9788	0313	34. 43	$\stackrel{2}{1}$	$37 \cdot 2765$	2430	1258	24.74
${ }^{1 \frac{1}{2}}$	493 San ?	$33+0$	0334	$36 \cdot 4$	$1 \frac{1}{2}$	364496	4350	$02 \% 2$	$25 \cdot 87$
$\stackrel{2}{13}$	48.8031	7170	0258	28 cif	$\stackrel{1}{1}$	35.4474	443	(1233	2192
2	45.2816				$1 \frac{1}{2}$	$35 \cdot 1325$	1150	U3411	-3172
$1 \frac{1}{2}$	45 2195	21160	03.7	$34 \cdot 14$					
Radial velocity 3.3									

η BOÖTIS 1231.*

1908 . Jau. 14.
(i. M. T. $22^{2 \mathrm{~b}} 00^{\mathrm{m}}$

Observed by W. E. Harrer.
Measured by T. H. Parker.

Wt.	$\begin{gathered} \text { Mean } \\ \text { of } \\ \text { Settings. } \end{gathered}$	Corrected Star Settings.	Displacemeut in Revolutions.	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displace. ment in Revolutions	Velocity.
2	59-8174				1	44.2521			
1	57.8144	N0184	0182	$-21 \cdot 11$,	41.2816			
1	$54 \cdot 6785$				1	404983	5032	0227	2251
1	$53 \cdot 1182$								
1	52.8153		0171	$19 \cdot 42$	2	39.6850	6915	-0393	3473
${ }^{1 \frac{1}{2}}$	52-3882	3872	0276	31:21	$1 \frac{1}{2}$	37.9558			
${ }_{1}^{2}$	$52 \cdot 2645$ $50 \cdot 0076$				1	$37 \cdot 2517$ $36 \cdot 4318$	2767	-0321	33-66
1	$50 \cdot 0076$ $49 \cdot 9827$				1	36.4318	4358	0264	$25 \cdot 00$
$\stackrel{2}{1}$	$49 \cdot 9827$ $49 \cdot 363$	9847	0251	$27 \cdot 94$	2	$35+251$			
1.	$49 \cdot 3633$				1	35. 3991	1041	0264	24×4
1.	$\begin{array}{r}49 \cdot 3360 \\ 49 \cdot 1028 \\ \hline\end{array}$	3390	0272	20.70	1	30.8642 30.8449			
1	- 48.7675				1	30.8449 29.14×64	8543	0213	-19.12
1	487450	7485	0155	16.81					

SESSIONAL PAPER No. 25a

η 1360TLS 12:4.
1908. Jan. 27.
(1. M, T. $20^{\mathrm{H}} 12 \mathrm{~m}$

Oberved by
Measured by W. Fi. Harper.

7 BOOTIS 1307.
1908. Jan. 29.
G. M. T. $21^{\mathrm{B}} 14^{\mathrm{m}}$

Observed by J. S. Plaskert. Measured by C. F. Westland.

Wt.	Mean of Settings.	Corrected Star Settings.	Displacement in Revolutions	Velocity.	Wt.	Mean of Settings	Corrected Star Settings.	Displacement in Revolutions.	Velocity.
	767556					$59 \cdot 7720$	7402	0662	$27 \cdot 12$
11	76.3539	3649	059\%	-27. 37	2	58.4380	4030	15067	23.02
2	75.0276				2	57.5179	4802	0715	2886
2	74.9901	9980	${ }^{14} 560$	29.92 30	${ }_{6}$	$56 \cdot 8023$	7628	0637	35-59
${ }_{2}^{2}$	74.0588 73.4219	16840	11666	3002	2	$26 \cdot 3977$ $56 \cdot 0711$	0300	0629	$25 \cdot 15$
2	72.6605	6620	0726	$32+1$	2	$50 \cdot 0571$			2015
3	71.7218	72018	-6614	$27 \cdot 24$	2	49.9803	9258	0851	32.70
9	69.6614	6052	0590	25.81	2	$48 \cdot 1479$	0854	0685	26.01
2	$68 \cdot 4241$	9154	0765	$33 \cdot 31$	2	$46 \cdot 4938$			
3	68.5710	5620		$28 \cdot 53$	9	46.4076	3415	0734	$27 \cdot 56$
2	$68 \cdot 6280$,	38.3121	2251	0810	$28 \cdot 88$
2	$67 \cdot 654$	6427	0742	$32 \cdot 03$	2	36.2864			
2	64.3451	3251	0594	2508	2	361037	0107	0798	28.06
$\stackrel{2}{1} \frac{1}{2}$	$61-3704$ $60-2939$	2634	0748	30.75	$\stackrel{2}{2}$	$33 \cdot 1978$ $38 \cdot 2792$	-0938	0781	-26.96

Weighted mean		-2832
\vee_{a}	+2495	
V_{d}	+ 13	
Curvature.	- . . .	'28
Radial velocity.	. .	3.5

η BOOTIS 1332.

Feb. 17. 1948.
G. M. T. 22 b

Observed by J. S. Plaskett.
Measured by C. R. Westlasi.

η BOOTIS 1357 .
1908. Feb. 24.
G. M. T. $19^{\mathrm{h}} 106^{\mathrm{m}}$

Observed by
Measured by W. E. Hakrer.

Wt.	$\begin{gathered} \text { Mean } \\ \text { of } \\ \text { Settings. } \end{gathered}$	Corrected Star Settings.	Displacement in Revolutions.	Velocity.	W'.	$\begin{gathered} \text { Mean } \\ \text { of } \\ \text { Settings. } \end{gathered}$	Corrected Star Settings.	Displacement in Revolutions.	Velocity
2	76.7176				$\frac{1}{1}$	676130	6450	0719	$30 \cdot 99$
1	$76 \cdot 3250$	3710	0537	-24 59		63.2135	2395	${ }_{6} 800$	$29 \cdot 33$
$2^{\frac{1}{2}}$	$74 \cdot 9671$ $73 \cdot 3855$	0101	0539	2442		$61 \cdot 3207$			
2	73.3845 72.1053	'1450			1	$60 \cdot 2534$ $58 \cdot 3903$	2750 +073	0632	25.97
$1{ }^{2}$	71.6970	7365	${ }^{0} 0587$	$25 \cdot 06$ $20 \cdot 34$	$\frac{1}{2}$	$58-3903$ 56 1395	4073	0524	$21 \cdot 27$
2	71.1225				1	56.0048	0208	0721	28.84
2	68.5883					520625	0730	0528	2059
$\frac{1}{2}$	68.5422	5762	0515	2235	2	$49 \cdot 9913$			
$\frac{1}{2}$	$67 \cdot 9892$.0212	0683	$29 \cdot 44$					

Weighted mean.		$-25 \cdot 27$
${ }^{\text {V }}$	$+1826$	
$\mathrm{V}_{\text {d }}$	T 16	
Curvature	- 28
Radial relocity		-71

SESSIONAL PAPER No. 25a
η Bocitisi 1+4i.
IShes. March :an.
(8. M. T. 21 ${ }^{\text {² }}$

Ohaeraed by : W. F. Hatipht.
Mearared by:

Kegion.	Setting* I.		$\begin{aligned} & \text { Dhfferener } \\ & \text { in } \\ & \text { Revolution: } \end{aligned}$	Sittings II.		$\begin{gathered} \text { Wifference } \\ \text { in } \\ \text { Revolutions. } \end{gathered}$	Meant Difference	Velocity
	Star.	Comparison.		Star.	Comparinon			
4	395	424	02,	-350	324	126	275	-12. 88
5	410	435	(125)	336	314	029	235	$10 \cdot 57$
6	411	437	036	346	3041	094	2×0	12.23
7	417	+4i	029	330	$3: 1$	0019	190	815
8	441	465	024	317	24,	021	2:25	$9+3$
9	450	471	021	320	22, 41	(130)	255	10.45
10	435	475	0411	304	246	028	340	-1360
					Standard...	,	33	
					Wrighted in			-1072
					Radial veloc	ty		- 7.0

1903. Mar. 30
G. II. T. $21^{\text {h }} 52$

Olserved by II. E. Harper.
Measured by C. R. Westland.

-Check measurement.
Radial velocity:
75

7 BOÖTIS 1513.
1908. May 4.
G. M. T. $18^{\mathrm{B}} 13^{\mathrm{m}}$

Observed by
Measured by W. E. Harrer.

Wt.	Mean of Settings.	Corrected Star Settings.	Displace. ment in Revolutions.	Velocity.	W t.	Mean of Settings.	Corrected Star Settings.	Displace. ment in Revolutions.	Velocity.
2	75 1164				2	$63 \cdot 3747$			
2	74.2116	2076	0087	$+3 \cdot 91$	1	633747	3635	0061	2.55
2	$73 \cdot 4946$				1	$60 \cdot 3917$	3785	0109	4.47
2	$72 \cdot 8120$	8070	0080	$3 \cdot 55$	1	59.8668	8533	0189	$7 \cdot 71$
1	72.5446	5394			2	588243			
2	72.2822	2770	0131	$5 \cdot 82$	2	58.5330	5188	0112	45.4
2	71.8622	8567	$01: 8$	5.63	1	$56 \cdot 8700$	8540	0081	$3 \cdot 24$
$1 \frac{1}{2}$	69.7922	7857	0155	$6 \cdot 76$	2	$56 \cdot 3934$			
1	69.0562	0492			2	$53 \cdot 9788$			
$\stackrel{1}{2}$	$68.70+0$ 68.6835	6967	0159	$6 \cdot 92$	1	$52 \cdot 1672$	1482	0164	$6 \cdot 36$
	67.7903	7823	0150	6. 46	1	481835 46.446	1680	0087	$+3 \cdot 30$
1	65.3145	5350	0056	2.37					
				Weighted mean.......... +491					
						V^{a}			-17
						Curvatu	re.......	
					Radia	velocity		6.7

SESSIONAL PAPER No. 25a

η BtoOTIS 1mis.
1548, May 33.
Oherved by J, S. Phaskett.
(i. 11 . T. $16^{1 /} 00^{m}$

Measured by T. Н. Ранкен.

BO.T1S 1538.

1908, May 25
G. M. T. $15^{h} 5 S^{m}$

Ohserved ly t T. H. Parker.
Measured by

Wt.

1908. May 23.
G. M. T. $15^{h} 58^{7 a}$

Obeersed by T. H. Parker.
Measured by W. E. Harper.

Wt.	Mean of Settings.	Corrected Star Settings.	Displacement in Revolutions.	Velocity.	Wt.	$\begin{aligned} & \text { Mean } \\ & \text { of } \\ & \text { Rettings. } \end{aligned}$	Corrected Star Settings.	Displace. ment in Revolutions.	Velocity
2	$76 \cdot 8899$				2	68 -725	8120	0255	10.99
1	$77 \cdot 2379$	3119	0364	-16.60		68.6957			
2	76.5803	6883	0351	$15 \cdot 93$	2	67.8170	4050	0368	$15 \cdot 73$
1	76.3967	4997	0263	$11 \cdot 91$	2	$64 \cdot 4485$	5294	0219	$9 \cdot 24$
2	$75 \cdot 1498$				2	$63 \cdot 3766$	4560	0325	$13 \cdot 52$
3	$74 \cdot 2572$	3557	0202	9.03	2	$63 \cdot 3594$			
2	73. 5255				1	$61 \cdot 3866$	1610	0253	10.37
2	72.3153	4168	-1201	$8 \cdot 81$	2	$60 \cdot 3764$	4489	0221	9.02
2	71.9030	9973	0300	13-20	2	59.8471	9186	0283	11.49
2	71.8607				1	$59 \cdot 2900$	3600	0311	13.78
2	71.2438				${ }^{2}$	58.8184	8874	0296	-11.96
$\stackrel{2}{2}$	69.8265 69.0278	9175 1768	9874	$\begin{array}{r} 15 \cdot 36 \\ 9 \cdot 76 \end{array}$	2	$36 \cdot 3496$			

- Different standard.

1908. June 22.
G. II. T. $14^{\mathrm{n}} 10^{\mathrm{m}}$

Ubeerved by J. S. Plaskett.
Measured by W. E. Harper.

VVt.	Mean of Settings.	Corrected Star Settings.	Displacement in Revolutions.	Velocity.	Wt.	$\begin{gathered} \text { Mean } \\ \text { of } \\ \text { Settings. } \end{gathered}$	Corrected star Settings.	Displacement in Revolutions.	Velocity
	$76 \cdot 8598$				2	67.8377	8610	0432	$18 \cdot 53$
2	76.5947	6227	0450	+20.47	2	65.5907	6127	0392	16.58
2	7 +2818	3110	-0440	1971	2	$64 \cdot 4965$	5180	0514	$21 \cdot 59$
2	740261	0526	947\%	$21 \cdot 32$	$\stackrel{2}{2}$	68.3773			
2	73.5353				2	60 0^{+210}	418	0439	$17 \cdot 91$
2	72. 8694	5954	0322	14.30	2	59.894 .5	9145	0522	$21 \cdot 24$
2	$72 \cdot 5840$	6100	-0353	$15 \cdot 64$	$\frac{2}{1}$	58.2143			
9	$72 \cdot 3438$ $71 \cdot 9275$	3693 4528	-0418	18.47 20.81	$\stackrel{2}{2}$	58. 87.48	8948	O620	$25 \cdot 04$
3	$71 \cdot 9275$	9528	-0472	$20 \cdot 81$	2	58.5401	5601	.0521	$20 \cdot 37$
2	71.2520					53.9551			
2	698502	874	0483	21.01	$\stackrel{2}{9}$	$32 \cdot 1673$	1880	1505	-19.34
3 2	687500 687025	7735	0400	$17 \cdot 28$	2	499791		-.. .

SESSIONAL PAPER No. 25a
η BOOTIs 1621.*
1908. June 22.
G. M. T. $14^{n} 10^{m}$

Observed by J. S. Plaskett.
Measured by J. B. Cannon.

Wt.	$\begin{aligned} & \text { Mean } \\ & \text { of } \\ & \text { Settings. } \end{aligned}$	Corrected Stac Settings.	Displacement in Revolutions.	Velocity.	Wt.	$\begin{gathered} \text { Mean } \\ \text { of } \\ \text { Settinge. } \end{gathered}$	Corrected Star Settings.	Displacement in Revolutions.	Velocity.
2	76.9515				3	67×975	8633	0455	20.88
2	76.6545	6195	10458	$+2084$	2	$65 \cdot 6520$	6150	0415	$17 \cdot 55$
2	$7+3483$	3118	0448	20.07	2	$64 \cdot 5563$	5168	0502	$21 \cdot 08$
2	it 0780	0418	03669	16.50	$\stackrel{2}{2}$	$63 \cdot 4410$			
2	73.5981				2	$60 \cdot 4878$	4438	0464	18.93
2	72.9294	8934	0302	1340	2	59.9466	9046	0423	17.22
2	72.6463	6103	0356	$15 \cdot 77$	2	588764			
2	72.4084 71.9888	3722 9527	${ }_{0}^{4347}$	${ }_{20}^{15 \cdot 34}$	2	$58 \cdot 9274$ $58 \cdot 594$	N859 $\mathbf{5 5 3 8}$	9531	${ }_{17}^{21} \cdot 71$
2	${ }_{71} 1.3110$	9527	0471	20.7	2	58.594 x of 0116			
2	$69 \cdot 9088$	8748	0487	$21 \cdot 18$	2	522260	1960	0585	$+22.64$
2	68. 8137	7802	0467	$20 \cdot 17$	2	50.0224		. ..	
					Weighted mean... -1891				
					$\mathrm{V}_{\text {a }}$				2475
					Curvature.				
					Radial velocity...........			-6.3

7 BOOTIS 1663.*
1908. July 6.
G. M. T. 14^{h} tom

Observed by J. S. Pliskett.
Measured by iV. E. Harper.

7 BOOTIS 1663.

1078, Jul 15.
G. M. T. $14^{\text {b }} 11^{\mathrm{m}}$

Region.	Setting* \mathbf{I}.		Difference in Revolutions	Settings II.		Difference in Revolutions	Mean Difference	Velocity:
	Star.	Comparison.		Star	Comparsion.			
6	435	3516	039	4.6	405	. 051	045	$\pm 21 \cdot 42$
7	426	386	040	445	407	03s	039	17.90
8	426	346	040	412	391	051	045	$19 \cdot 93$
9	445	395	053	439	392	047	050	$21 \cdot 50$
10	4 ± 5	400	048	434	395	039	04:	17.89
11	454	391	063	426	383	-043	$0{ }^{0} 3$	2131
12	+36	399	037	444	400	044	040	15.53
13	448	400	048	44	375	069	058	21.81
14	455	105	050	439	400	. 039	045	16.38
15	451	396	055	450	390	-660	057	40.05
16	161	391	070	451	345	056	063	21 2in
17	425	390	035	452	398	054	044	+14.5ti
				Weight	ed mean	+19		
				1520 S	tandard....	+	38	
				Y.		+19	. 53	
								$\begin{array}{r} 25 \cdot 71 \\ -\quad .24 \end{array}$
				Radial	velocity..		-....	64

SESSIONAL PAPER No. 25a

	η BuOTLS 1792	merved by W. E. Harper
1108, Aug. 19. (4. M. T. $13^{\text {b }} 18^{\prime \prime}$		Measured by T. H. Parker.

Region.	Settings 1 .		$\begin{array}{\|c} \text { Difference } \\ \text { in } \\ \text { Revolutions } \end{array}$	Settings II.		Difference in Revolutions	Mean Difference	Velocity.
	Star	Comparison.		Star	Comparison			
5	802	817	015	718	669	028	022	+1088
6	812	824	012	697	673	024	018	$8 \cdot 56$
7	815	834	019	710	671	039	029	13.31
8	829	346	017	693	670	023	026	$11 \cdot 51$
9	828	841	. 013	681	6ibl	021	-025	10.72
10	831	860	. 029	685	654	031	030	12.45
11	837	865	-028	682	644	038	-033	$13 \cdot 23$
12	842	868	026	687	654	033	029	$11 \cdot 25$
13	853	885	042	668	640	028	. 035	$13 \cdot 16$
14	865	895	030	660	619	041	-036	$13 \cdot 10$
15	864	302	039	636	609	-036	037	$13 \cdot 02$
16	876	909	083	637	391	046	C39	+13.29

η BOÖTLS 1867.
1908. Sept. 7.
G. M1. T, $12^{h} 57^{\circ}$

η BOÖTIS 2209.
1909. Jan. 30.
G. M. T. $18^{\circ} 37^{\mathrm{m}}$

Observed ly J. S. Plaskett.
Measured by J. B. Cannon.

Wt.	Mean of Settings.	Corrected Star Settings.	Displace. ment in Revolutions.	Velocity.	W't.	Mean of Setting .	Corrected Star Settings.	Displacement in Revolutions,	Velocity.
2	817544				1	67.6626	6721	0448	1935
1	80.5548	5722	$03: 8$	-1875	3	$66 \cdot 5389$	5481	0851	$15 \cdot 02$
2	76.7524					$64 \cdot 3381$	3469	0376	$15 \cdot 87$
1	76.7084	7234	0440	$20 \cdot 30$		61.3366			
1	76.3728	3878	0369	$16 \cdot 90$		61.1268	1347	0458	18.92
	75.0031	0159	0481	$21 \cdot 79$	2	59.7626		0355	14.55
	74.0754	0862	0414	2002	1	$58 \cdot 4051$	4151	0416	$18 \cdot 11$
	73.4156				$2^{\frac{3}{2}}$	52.0778	0920	0338	$13 \cdot 18$
1	$72 \cdot 6808$ $71 \cdot 7318$	6846 7410	0450 0412	2007 $18 \cdot 29$	${ }_{1}^{2}$	49 480854 48			
$\stackrel{2}{2}$	$\begin{aligned} & 71.7318 \\ & 68 \cdot 6164 \end{aligned}$	7410		$18 \cdot 29$		18 09:66	1130	0468	$-17-59$

Weighted mean.	$-19 \cdot 76$	
$\mathrm{V}^{\text {a }}$		+25.02
V_{d}		+ 20
Curvature.	- 28	

Radial velocity
η 130̈TIS 2283

19909．Teh 17.
（G．M．T． 20^{h} 30

7 BGOTIS 2396．
1909．March 20.
（土．M．T． $17^{\text {皃 }} 00^{\text {mi }}$

Observed by J，S．Plaskett．
Measured by J，B．Cannon．

OBSERVING RECORD AND DETAILED MEASURES OF a CORON.E BOREALIS.
P.-Plaskett.

RECORD OF SPECTROGRAMK.
Pi. -Parker.
H.-Harper.
C.-Cannos.
T.-Taibble

St.ar.		$\begin{aligned} & \frac{3}{4} \\ & \frac{4}{\#} \\ & \text { d } \end{aligned}$	Plate.	Date.	$\begin{aligned} & \text { Middle of Exposure } \\ & \text { (. M. T. } \end{aligned}$			Hour Angle at end.	Temperatche. Centigrade.					Seeing.	$\begin{aligned} & \frac{5}{5} \\ & \frac{2}{8} \\ & \frac{5}{6} \end{aligned}$	
								Roor		Prism	Box.					
								Beg.	End.	Beg.	End					
a Coronæ Borealis :		II.	Seed 27.	190-. h. m.					h. m.							
	784			May	2417		10		120 W.	$9 \cdot 0$	9.4	$16 \cdot 4$	16.4	001	Fair.	P
	790	.	" ..		29151	14	12	50 W.	8.9	-9.0	145	14.5	-001		P	
"	800 808	"	".	June	$\begin{array}{r}3117 \\ 816 \\ \hline 1\end{array}$	18	8	20W.	13.0 15.4	$12 \cdot 8$ 15	18.8	$18 \cdot 8$ $17 \cdot 2$. 001	Goor	P	
.	813	"	"	June	10.15	23	10	$1{ }^{1} 00$	$14 \cdot 8$	14.6	$18 \cdot 1$	$18 \cdot 1$	001		P	
"	830	"	"	- 11	1117	401	10	2 15W.	140	14.0	18.9	189	. 001	Fai	${ }_{\text {H }}$	
"	837 a	"	"	1) 1	1217 3	361	12	30 W.	$17 \cdot 0$	$16 \cdot 3$	$19^{\circ} 0$	$15 \cdot 0$	${ }^{0} 01$		P	
"	8376	"	"	-1	12175	52	12	242 W.	16.0	156	19.0	190	-001		P	
"	845	\cdots	"	. 1	13163	32	15	130 W.	$19 \cdot 8$	$19 \cdot 4$	$25 \cdot 8$	25.8	. 0012		H	
"	$850 a$	\cdots	"	1. 1	1416	391	12	1 40W.	21.6	21.4	23.3	$23 \cdot 3$. 0012		P	
"	8503	"	"	- 1	1416	52	5	150 W .	21.4	21.1	$23 \cdot 3$	23.3	. 0012	Good.	P	
"	8697	"	"	-	21151	10	15	50 W.	248	248	289	$28 \cdot 9$. 001	Hazy.	P	
\%	8696	"	"	\%	$2115+$	421	15	120 W.	248	246	289	29.0	001		P	
,	8922	"	"	- 2	2715	251	10	177 V .	21.2	209	245	24.5	-0012	Fair.	H	
	8920	"	\%	- 2	2715	37	5	1 255.	20.9	20.9	24.5	24.5	-0012	Clondy	T	
\%	$903 a$	"	"	${ }^{-1} 2$	28143	36	13	33W.	23.8	$23 \cdot 6$	$26 \cdot 4$	$26 \cdot 3$	-0012	Fair	P	
$\stackrel{\sim}{\sim}$	9033	"	"		2814	37	25	100 W .	23.5	228	$26 \cdot 3$ 29.0	$26 \cdot 2$ 28.8	-0012		P	
\cdots	912 912	"	"	July	$\begin{array}{r}415 \\ +15 \\ \hline 15\end{array}$	38 47	10	$\begin{array}{ll}2 & 00 \mathrm{~W} \\ 2 & 17 \mathrm{~W}\end{array}$	21.0 21.0	20.5 20.0	$29 \cdot 0$ 28			Good	H H	
	912 917	",	"	"	+15 515 515	47 20	5	${ }_{2}^{2} 175 \mathrm{~W}$	21.0 21.0	20.0 20.	288 26.4	28.6 26.4	. 0012		H	
\%	919	"	"	"	815	36	22	2 05W.	21.2	$21 \cdot$	22 4	$22 \cdot 1$	C012	Fa	P	
(11)	927	"	"	-	914	32	15	1 14W.	$23 \cdot 1$	23.1	24.5	24.5	0012		H	
$\stackrel{1}{1}$	9892	"	"		12162	25	10	415 W.	$22^{6} 6$	22.4	26.0	$26^{\circ} 0$	0012		P	
	9396	"	"	- 1	1216	33	21	420 W.	226	23.4	26.0	26.0	. 00019		P	
	9410	"	"	9	1315	25	10	3 15WV.	18.	18.0	25.2	250	-0012		T	
	9416	"	",	"	1315	32	3	3 20W,	$18 \cdot 0$	17.8	2 V 0	25.0	- 0012		T	
	9440	"	"	- 1	16143	37	13	1 42W.	25.5	25.5	$26 \cdot 8$	26.8	-0012	nst'dy	T	
\cdots	9443	"	"	${ }^{4}$	1614	49	6	153 W.	25.5	25.	$26 \cdot 8$	268	'0012		T	
-	951 a	"	"	- 1	18145	50	60	2 32W.	$26^{\circ} 0$	25.0	$23 \cdot 5$	285		Very hazy.	T	
	9514.	"	"	\cdots	1815	32	5	2 45TV.	22.5	225	255	28.5	-0012		H	
	956	"	"	-	2016	07	14	$3 \mathrm{30W}$.	$19 \cdot 2$	186	21.6	21.6	-0012	Good	$\stackrel{\mathrm{P}}{\mathrm{P}}$	
	956	.	"	-	20161	17	2	3 32W.	19.2	18.6	21.6	21.6	0012	"	P	
	$963 a$	"	"	-	2314	32	6	205 W.	$23 \cdot 2$	23.2	26.4	26.4	- 012		T	
	$963{ }^{\prime}$	"	" .	. ${ }^{\text {a }}$	2314	41	3	215 W .	22.6	$22 \cdot 6$	26.1	26.4	0012		T	
	$973{ }^{\text {a }}$		"	Aug.	114	06	12	${ }^{2} 15 \mathrm{~W}$.	21.3	21°	25.2	$25 \cdot 2$	0008		H	
	9736	"	"	"	114	18	8	2 26W.	21.0	19.5	25.2	25.2	0008		$\stackrel{\text { H }}{\text { P }}$	
	978	"	"	"	313	02	8	15 l 15W.	21.6		$24 \cdot 1$	24.1	0012		$\stackrel{\mathrm{P}}{ }$	
4	9×6	"	"	${ }^{\prime}$	6. 16	38	23	${ }_{5}^{5} 15 \mathrm{~W}$.	19-5	19.4	$23 \cdot 3$	${ }_{29}^{23.3}$	0012		H	
	1006		"	"	1216	36	12	5 31W,	23.0	$22 \cdot 5$	$29 \cdot 0$	29.0	. 0014	Unst' dy		
	1014	"	"	"	15150		7	420 W .	$22 \cdot 3$	19.5	$26 \cdot 3$	263	0014	$\begin{aligned} & \text { Very } \\ & \text { poor.. } \end{aligned}$	H	
	1017	"	.	11	22151	11	11	4.47 W .	18.7	$18 \cdot 5$	241	24.2	0014		H	
	1022		"	"	2314		62	446 W .	$22 \cdot 5$	21.4	27°	27.0	. 0014	Light clouds.	T	
,	1026	"	"		27120		13	257 W.	$18 \cdot 5$	18.5	$20 \cdot 6$	$20 \cdot 6$			H	
"	1032	"	"	Sept.	6.13	43	17	$\pm 15 \mathrm{~W}$.	19.0	18.5	21.0	21.0	- 0012	Good	T	
${ }^{4}$	1037	"	"	,	1214	39	18	537 W.	17.0	16.8	20.9	20.9			T	
*	1047	"	"	"	1812	50	30	417 W	15.0	15.0	171	17.1	-0012	Cloudy	T	
"	1048	*	" .	"	1813	16	16	$4{ }_{5}+36 \mathrm{~W}$.	15.0 22.0	$14 \cdot 2$	17.1 22.9	17.1 22.9		Fair.	T H	
"	1069 1061		\prime "		2013 2013		20	5 051 W 5 30 W	220	22.3	22.9	22.9			H H	
	1083		"	Oct.	113	4	16	5 55W.	$10 \cdot 5$	$10 \cdot 4$	$1+2$	142	0014		H	
	1084	"	.	.	114	01	27	(6 23W.	10 +	$10 \cdot 2$	142	14.1	. 0014	Hazy. .	H	

RECORD OF SPECTROGRAMS.-(Concluded).

Stak.		$\begin{aligned} & \text { s. } \\ & \text { 肖 } \\ & \text { en } \end{aligned}$	Plate.	Date.		$\begin{aligned} & \text { 霖 } \\ & \frac{\mathbb{4}}{3} \\ & \mathbf{y} \end{aligned}$	Hour Angle at end.	Temperature. Centigrade.				$\begin{aligned} & \frac{4}{4} \\ & \frac{\tilde{2}}{\frac{1}{6}} \end{aligned}$	Seeing.	$\begin{aligned} & 1 \\ & \frac{1}{4} \\ & \frac{2}{3} \\ & \frac{1}{0} \end{aligned}$
								Rootn.		$\frac{\text { Prism Box- }}{\text { Beg. End }}$				
								Beg.	End.					
				1908.	. h. m.	m.	h. m .							
Borealis :	$13: 3$	IL	Seed 27	Mar	92208	24	55W.	-15.0	15.0	1.0	10		Hazy..	${ }^{\mathrm{H}}$
U . .	1402	\because	".	${ }^{\prime \prime} 1$	162102		9W.	$12 \cdot 5$	-13.0	23	23		Good...	H
"	1493			Apr.	$\begin{array}{rr} 1519 & 18 \\ 18 \end{array}$		28 W .	- 3.0	-23	7.8				P
"	1565		Seed Process	June	$\begin{array}{lll} 118 & 00 \end{array}$		250 W.	157	146	21.4	$21 \cdot 3$			$\begin{aligned} & \mathrm{P} . \\ & \stackrel{\mathrm{P}}{1} \end{aligned}$
"	1566	"	Seed 27.		11842		3 13W.						Fair.	${ }^{\text {P }}$
.	1571	"	" ..	"	31632	15	57 W	14.9	15.0	18.4	184			P
"	1572	"	-	"	3165		120 W.	15.0	148	184	184			P
"	1581	"	"	"	51781		2 04W.	$17 \cdot 5$	17.0	24.6	24.6			H
\because	${ }_{1}^{1601}$	"	"	1	1216		154 W .	19.5	19.0	$25 \cdot 0$	25.0	. 0017		${ }_{\text {H }}$
".	1608 1623	"		" 1	1713		2 50F.	19.0 18.3	18.5	23.4	$23 \cdot 3$ $23 \cdot 8$. 0016		${ }_{\text {P }}^{\text {H }}$
".	1624	"	"	2	2216	13	${ }_{2}^{2}$ 105W.	18.0	18.0	23.8	23.8	. 0015	Grair..	$\stackrel{\mathrm{P}}{\mathbf{P}}$
*	1628	"	,	2	$2415 \quad 26$	18	15 W .	$21 \cdot 5$	21.5	$27 \cdot 5$	27.5	0015		P
"	1629	1	"	2	$2415 \quad 49$	15	135 W .	21.5	21.5	27.5	27.5	. 0015	"	P
.	1638	"	"	2	$2615 \quad 51$	15	1 48W.	$21^{\circ} 0$	205	30.0	$30^{\circ} 0$	0016	"	H
	1639	"	"	2	261604	8	157 W.	$20 \cdot 5$	21.0	$30 \cdot 0$	$30^{\circ} 0$	0016	"	H
.	1646	"		2	2716	10	220 W .	$20 \cdot 8$	$20 \cdot 5$	$23 \cdot 8$	$23 \cdot 8$	0014		P
1	1647	"	"		2716		230 W.	20.5					Fair	P
i	1652	"	" ..	July	$1 \begin{array}{lll}1 & 15 & 15\end{array}$		130 W.	23.6	23.6	25.8	25.8	0015	Cloudy..	$\underset{\mathrm{P}}{\mathrm{P}}$
\pm	1656	"			31517		$1 \mathrm{3cW}$.	23.0	21.9	$25 \cdot 5$	$25 \cdot 5$	001	Good...	H
\%	1665	"	"	"	61650		320 W.	240	23.8	26.	26.4			P
,	1674	"	"	"	81511	10	150 W.	190	19.3	$21 \cdot 8$	21.8		Fair	$\stackrel{\mathrm{C}}{\mathrm{H}}$
.	1683	"	"	1	1013	20	26 W .	25.0	24.5	27.5	27.5	0012	Goo	H
*	1684	"	"	1	101351	13	40 W.	24.5	24.5	$27 \cdot 5$	27.5	0012		${ }_{\text {H }}$
*	1692	"	"	1	111620		312 W.	27.7	27.5	30.1	30.1	. 0015		P
i.	1697 1698	"	"	1	$1315 \quad 26$		225 W.	20.0	19.9	$23 \cdot 1$	23.1	0015		P
4	1698						250 W.	19.9	196		231	0015		P
"	1711	"	"	1	151624		330 W.	$17 \cdot 5$	$17^{\circ} 0$	21.6		. 0015	Good.	C
"	1721	"	"	2	$2413 \quad 05$	15	48W.	240	240	264	26.4	0012		H
"	1722	"	"	2	$2413 \quad 21$	14	1 03W.	24.0	$24^{\circ} 0$	26.4	26.4	. 0012		${ }_{\text {H }}$
"	1739	"	"	2	$2915 \quad 34$		337 W.	$26 \cdot 6$	26.3	$30 \cdot 2$	30^{-2}	. 0015	Fa	P
"	1748	"	"	3	311388		200 W.	$23 \cdot 3$	23.1	26.0	26.0	0015	"	P^{1}
"	1749	"			$3114 \quad 00$		200 W.	23.0	92.6	$26^{\circ} 0$	26.0	0015	"	$\mathrm{P}^{\text {P }}$
"	1764 1773	"		Aug.	$\begin{array}{llll}5 & 15 & 37\end{array}$		410 W.	22.0	$21^{\circ} 6$	26.9	269	0015		P
"	1773 1775	"	"	"	714 25 16		3 O 3W.	$21 \cdot 5$	20.6	${ }_{23}^{23.6}$	23.6	0015	Hazy	$\mathrm{P}^{\mathbf{p}}$
"	177		"	"	7 16 18		5 05W.	19.1	19.0	23.6	${ }^{23} \cdot 6$	0015	Good	$\mathrm{P}^{\mathbf{1}}$
"	1797	"	"	" 2	201251		$2{ }^{2}$ 21W.	$19 \cdot 2$	19.0	23.1	23.1	0015	Fair.	${ }_{\text {H }}$
".	1798			2	201305		232 W	19°	18.8	$23 \cdot 1$	23.0	0015	Good	H
,	1809		"'	" 2	211254		2 22W	21.1	20	25.8		0015		C
,	1816	"	".	2	${ }_{24}^{21} 15017$	12	4 30w.	18.8	18.4	25.0		0015		C
(\%)	1817	"	.	2	2413		317 W .	$18 \cdot 2$	17.5		23.3	0015		H
-	1827	"	"	2	$2513 \quad 00$	14	2 49W.	20.6	$19 \cdot 3$	$26 \cdot$	$26 \cdot 0$	0015	Hazy	C
"	1836	"	"	- 2	271434	12	430 W .	$18 \cdot 3$	18.0	$23 \cdot 2$	23.2	0015	Good	
.	1842	"		" 2	281314	12	316 W .	$18 \cdot 5$	18.2	$23 \cdot 3$	$23 \cdot 3$	0015	"	
.,	1852			3	311317	15	$3 \mathrm{30W}$.	24.0	24°	28.0		0015	"	H
.	1861	"		Sept.	$312 \quad 50$	13	315 W.	186	18.8	21.2	21.1	0015		P
*	1865	"		-	$413 \quad 27$	26	405 W .	$20 \cdot 5$	$20 \cdot 3$	23.4	23.4	0015	Poor	P^{2}
.	1882	"	"	11	$1412 \quad 51$	13	400 W.	18.6	18.4	21.7	21.7	0015	Fair	P
.	1894		"	11	191202	13	$3 \mathrm{30W}$.	17.5	17.3	21.2	21.2	0015		P
*	1895	"	" .	" 1	$1912 \quad 17$	15	345 W.	$17 \cdot 3$	17.2	$21 \cdot 2$	21.2	0015	"	P
.	1896	"			$1912 \quad 32$	15	400 W.	17.2	16.8	$21 \cdot 1$	21.1	0015	"	P
"	1897	"	" .	1	$1912 \quad 50$	16	420 W.	16.8	$16 \cdot 5$	$21 \cdot 1$	21.0	0015		P
.	1949	"	" . .	Nov.	110	17	500 W	$2 \cdot 0$	0.6	$3 \cdot 8$	$3 \cdot 8$	0015	Good	C
*	1991	"	" ..	Dec.	21010	10	6 19W.	- 7.5	-8.2	-2.0	-2.0	. 0015	Windy	C
-.	1992	.	"	"1	$210 \quad 21$	13	630 W .	- $8 \cdot 2$	- 8.2	-2.0	-2.0	'6015		C

9-10 EDWARD VII., A. 1910
a CORON.E BORFALLIS, 784.
190. May 24.
G. М. T. $17^{\text {h }} 43$

	Mean of Settings.	Computed Wave Length.		等		2 $\frac{3}{5}$ $\frac{0}{8}$ $>$	3	$\begin{gathered} \text { Mean } \\ \text { of } \\ \text { Setting } \end{gathered}$	Computed Wave Length.				-
	72.9931	$4891 \cdot 192$					$1 \frac{1}{2}$	$27 \cdot 6301$	$4105 \cdot 162$				
2	$72 \cdot 7321$	$4861 \cdot 180$	187	527	340	2100		27.3080	$4101 \cdot 318$	410	890	450	-32 90
3	$72 \cdot 3165$	$4851-453$					12	$27 \cdot 1825$	1099'894				
2	47.6461	4379.418					${ }^{\frac{1}{2}}$	$15 \cdot 4180$	3969627	807	177	670	$-50 \cdot 77$
2	45.0940	4340.085	054	634	+580	$40 \cdot 02$	2	15-3605	3969 - 034				
2	$44 \cdot 1555$	$4335 \cdot 981$					3	$28 \cdot 1875$	4111853				
								Weighted 1	sean. .				
													7.68
									${ }_{\text {d }}$			-	
									Gurvature			-	28
								Kadial	velocity.			-	98

Observed by J. S. Plaskitt.
Measured by W. E. Harprr.
a CORONE BOREALIS, 790.
1907. May 29.
G. M. T. $15^{1 /} 14^{4}$

SESSIONAL PAPER No. 25a
a CORONEE BORF:NLIS, 74.

a CORON.E BOREALIS, SOO.
1907. May 31.
(1. S. T. $17^{\text {h }} 18^{\mathrm{m}}$

B	$\begin{gathered} \text { Mean } \\ \text { of } \\ \text { Settings. } \end{gathered}$	Computed Wave Length				$\begin{aligned} & \frac{3}{0} \\ & \frac{0}{5} \\ & \frac{1}{5} \end{aligned}$	+	$\begin{aligned} & \text { Mean } \\ & \text { of } \\ & \text { Settings. } \end{aligned}$	Computed Wave Length
$1 \frac{1}{2}$	$\begin{aligned} & 73 \cdot 2965 \\ & 72.8966 \\ & 63 \cdot 6950 \end{aligned}$	$\begin{aligned} & 4871+490 \\ & +862 \cdot 058 \\ & 4662 \cdot 143 \end{aligned}$	2021	1.527	494	+30 48	${ }^{1} 2^{\frac{1}{2}}$	$\begin{aligned} & 453314 \\ & 453203 \end{aligned}$	$\begin{aligned} & 43+1634 \\ & 4341 \\ & 463 \end{aligned}$

Oheerved by J. S. Plaskett.
Measured by W. E. Harper.

9-10 EDWARD VII., A. 1910
a CORON.E BOREALIS, 800°.
1907. May 31.
G. M. T. $17^{18}{ }^{10}$

Observed by J, S. Plaskett.
Measured by W. E. Harper.

a CORON.E BOREALIS, SOc.
1907. June 8
G. M. T. $16^{\mathrm{h}} 28^{\mathrm{m}}$

SESSIONAL PAPER No. 25a
a CORONA BUREALIS, 813.
1907. June 10.
G. M. T. $15^{\text {h }} 23^{\text {min }}$

Observed by J. S. Plaskett.
Measured by W. E. Harper.

	Mean of Settings.	Computed Wave Length.				家		$\begin{gathered} \text { Mean } \\ \text { of } \\ \text { Settings. } \end{gathered}$	Computed Wave Length.				突
	$72 \cdot 9500$ 72.7916 54.0328 53.9933	4864.729 $4860 \cdot 995$ $4482 \cdot 605$ 4481.433	$\begin{gathered} 047 \\ \div 20 \end{gathered}$	$\begin{array}{r} 527 \\ 400 \end{array}$	180 320	29 (12 $+[21 \cdot 40]$		$45 \cdot 2570$ $27 \cdot 4836$ $11 \cdot 9745$ $11 \cdot 654$	$4340 \cdot 581$ $4101 \cdot 565$ $3933 \cdot 25$ $3930 \cdot 072$	584 565 .505	$\begin{array}{r} 634 \\ .890 \\ -825 \end{array}$.050 .325 -320	$\begin{array}{r} -3.45 \\ -23 \cdot 76 \\ -23 \cdot 52 \end{array}$
Radial velocity $-33 \cdot 1$													

a CORON E BOREALIS, 813^{*}

1907 June 10.
(i. M. T. $15^{\text {h }} 23^{3}$

[^30]9-10 EDWARD VII., A. 1910
a CURON.E BOREALIS. 836 .
$19 W_{4} . \quad J$ une 11.
G. M. T. $17^{1} 46^{\mathrm{m}}$

a CORON E BOREALIS, 37 (a).
1907. June 12.
G. M. T. $15^{7 \mathrm{~h}} 30^{m}$

SESSIONAL PAPER No. 25a
a CORON. BOREAISS, 837 (h).
1907. June 12.
G. M. T. $17^{14} 48^{10}$

a CORON E BOREALIS, 84,
1907. June 13.
G. M. T. $16^{\text {h }} 32{ }^{\text {m }}$

	$\begin{gathered} \text { Mean } \\ \text { of } \\ \text { Settings. } \end{gathered}$	Computed Wave Length.				¢ ¢ ¢ 8	3	$\begin{gathered} \text { Mean } \\ \text { of } \\ \text { Settings. } \end{gathered}$	Computed Wave Length.				免
2	$73 \cdot 0911$	4875434						30-3756	$4135 \cdot 609$	374			
	$73 \cdot 1412$	4864.776					3	$30 \cdot 3142$	$4134 \cdot 852$				
1	$73 \cdot 0219$	4861.464	817	527	290	$+17 \times 9$	1	$27 \cdot 6096$	$4102 \cdot 126$	1.921	890	031	227
2	45-418	$4341 \cdot 360$						$27 \cdot 418$	$4100 \cdot 132$				
13.1	45-1224	$43+11^{\text {e }} 068$	$0 \cdot 86$ s	634	23.4	+16.14							
								Veighted	mean		+12		
									Va.				
									${ }_{4}$				10
									Curvature.				24
								Radial	velocity			.	

9-10 EDWARD VII., A. 1910
a CORON. E BOREALIS, 850 (a).
1907. June 14.
G. M. T. $16^{\text {h }} 39^{\mathrm{m}}$

Observed by J. S. Plaskett.
Measured by W. E. Harper.

$\dot{3}$	Mean of Settinge.	Computed Wave Length.						$\begin{gathered} \text { Mean } \\ \text { of } \\ \text { Settings. } \end{gathered}$	Computed Wave Length.				$\frac{3}{8}$
2 2 1 1 $1 \frac{1}{2}$	$\begin{aligned} & 73 \cdot 4113 \\ & 72 \cdot 9635 \\ & 72.8279 \\ & 54 \cdot 3973 \end{aligned}$	4875.689 $4865 \cdot 037$ $4861-845$ $4489 \cdot 656$	747	527	22	$13 \cdot 57$	1 1 2 2 2 2		$\begin{aligned} & 4482 \cdot 586 \\ & 4470 \cdot 405 \\ & 43+1 \cdot 590 \\ & 4341 \cdot 307 \end{aligned}$	$\begin{gathered} 1.040 \\ \cdots . \\ 0.879 \end{gathered}$	400	$\begin{gathered} 646 \\ \cdots \cdots \\ \hdashline 245 \end{gathered}$	$+[43 * 22]$ $+16 \cdot 90$
								Radial	velocity.			$+$	

a CORON.E BOREALIS, 850 (b).
1907. June 14.
G. M. T, $16^{\mathrm{h}} 52^{\mathrm{m}}$

Observed by J. S. Plaskett.
Measured by W. E. Habrer.

SESSIONAL PAPER No. 25a
α CORONA: BOREASIS, 861 (it).

a CORON.E BOREALIS, $869(a)$.
1907. June 21.
G. M. T. $15^{h 1} 10^{m}$

Observed by J. S. Plaskett.
Measured by W. E. Harrer.

9-10 EDWARD VII., A. 1910
a CORON.F: BOREALE. $8: 9$ (b).

SESSIONAL PAPER No. 25a
a CORON.E BOREALIS, SM8.
1907. Jume 26 .
G. M. T. $15^{h} 01^{\mathrm{m}}$

Wr.Mean of Scttings.

a CORON.E BOREALIS, 892 (a).
1907. June 27.
G. M. T. $15^{h} 25^{1 \mathrm{~m}}$
$\left.\begin{array}{l}\text { Observed by } \\ \text { Measured by }\end{array}\right\}$ W. E. Habper.

9-10 EDWARD VII., A. 1910
a CORON.E BOREALIS, 892 (ζ).
1407. June 27.
G. M. T. $15^{h} 25$

Observed by WV. E. Harper.
Measured by J. B. Cassos.

a CORON.E BOREALIS, 912 (a).
1907. July 4.
G. M. T. $15^{\mathrm{h}} 38 \mathrm{~m}$

Olserved by IIT, E. Harper.
Neasured by

Wt.	Mean of Settings.	Corrected Star Settings.	Displacement in Revolutions.	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displacement in Revolutions.	Velocity.
21$\frac{1}{1}$11111	$\begin{aligned} & 73 \cdot 4621 \\ & 730125 \\ & 72 \cdot 8823 \\ & 724506 \\ & 547496 \end{aligned}$	8823					0243	- 0.45	$+[62.73]$
			175	-2539					
							2818	- 0461	$+4813$
Weighted mean									$43 \cdot 58$
						$\mathrm{V}_{\text {d }}$		- 14	
						Cursa	ture. .	- 28	
						adial veloe		. +	24.5

SESSIONAL PAPER No. 25a
a COLON.E BOREALIS, 917 (a).
1907. July 5.
(8. M. T. $15^{17} 20^{\mathrm{m}}$

Observed by J. S. Plaskett. Measured by W. F. Harper.

Wt.	$\begin{gathered} \text { Mean } \\ \text { of } \\ \text { Settings. } \end{gathered}$	Corrected Star Settings.	Displacement in Revolntions.	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displacement in Revolutions.	Velocity.
2	$72 \cdot 9817$ 72.8755	9040	0392	-56 38	$\stackrel{2}{2}$	$53 \cdot 1159$ $45 \cdot 2826$			
11	72.4219	9040	0392		${ }_{2}^{2}$	+5.2955	2865	0478	+ 49.90
2	547410 $54-022$			[28.93]	2^{1}	27.4935	4460	0334	+2899
					Weighted mean \ldots.$V_{a} \ldots \ldots .$.$Y_{d} \ldots . .$.Curvature				$+4877$
					Radial velocity............... $+29 \cdot 9$				

a CORON E BOREALIS, 919.
1907. July 8
G. M. T. $15^{\mathrm{h}} 36^{\mathrm{m}}$

Observed by J. S. Plaskett.
Measured by W. E. Harper.

9－10 EDWARD VII．，A． 1910
a CORON゙モ BOREALIS， 927.

1907．July 9.
（土．M．T． $14^{\text {b }} 32$

Obserted by J．S．Plaskett．
Measured by W．F．Harper．

a CORON．E BOREALIS，927．＊＊

1907．July 9.
G．M．T． $14^{\mathrm{b}} 32^{\mathrm{m}}$

[^31]SESSIONAL PAPER No. 25a
a CORON.E BOREALIS, 936.

a CORON.E BOREALIS, 939 (a).
1907. July 12.
G. M. T. $16^{\mathrm{h}} 25^{\mathrm{ma}}$

Observed by J. S Plasikett.
Measured by W. E. Harper.

a CORON: E BOREALIS, 941 (a).

1907 July 13.
G. ML. T. $15^{\mathrm{h}} 25^{\mathrm{m}}$

Ohserved by J. N. Tribble.
M-asured by W. E. HARPER.
a CORON.玉 BOREALIS, 94 (a).
1907. July 16.
G. M. T. $14^{\mathrm{h}} 37^{\mathrm{m}}$

Observed by J, N. Tribble.
Meazured by W. E. Harper.

Wt.	Mean of Settings.	Corrected Star Settings.	Displacement in Revolutions	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displacement in Revolutions.	Velocity.
211$1 \frac{1}{2}$2	$72 \cdot 9844$				2	$45 \cdot 2506$	2292	0095	$-9 \cdot 94$
	72.8686	8938	0290	+42.08	$\frac{1}{4}$	27.4712	4048	0078	- 657
	$72 \cdot 2200$ $45 \cdot 2950$				2	$27 \cdot 3130$
Weighted mean....									
Va.............. . ${ }^{\text {a }}$ - 19.98									
Va 11									
					Radial velocity -20				

a CORON.E BOREALIS, 944 (a)*.
1907. July 16.
G. M. T. $14^{\mathrm{h}} 37^{\mathrm{ma}}$

Obeerved by J. N. Tribble. Measured by J. B. Cannos.

a (\%RON゙§ BOREALIS, 951 (t).
1907. July 18.
G. M. T. $14^{\mathrm{h}} 50^{\mathrm{m}}$

Observed liy J. N. Thabble. Measured by J. B. Cannon.

Wt.Mean of Settings.

a CORON.E BOREALIS, 951 (h).

1907 July 18.
G. M. T. 15^{h}

Wt.	Meau of Settings.	Corrected Star Settings.	Displacement in Revolutions.	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displacement in Revolutions.	Velocity.
2	$73 \cdot 0220$				1	53.8272	0264	02645	$\left[\begin{array}{lll}30 & 38\end{array}\right]$
$2^{\frac{1}{2}}$	72.8730	8616	0032	- 164	2	529927			
	$\begin{array}{lll}72 & 4539 \\ 54 & 627\end{array}$				$\stackrel{2}{7}$	$\begin{aligned} & 45 \cdot 1147 \\ & 45 \cdot 0.801 \end{aligned}$	2395	0008	$+835$
					Radial velocity 20.9				

Observed by J. N. Thibrte.
Measured by J. B. Canson.
1906. July 20.
G. M. T. $16^{\mathrm{b}} v_{i}^{\mathrm{m}}$
a CORON.E BOREALIS, 956 (a).

Wt.	$\begin{gathered} \text { Mean } \\ \text { of } \\ \text { Settings. } \end{gathered}$	Corrected Star Settings.	Displacement in Revolutions.	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displacement in Revolutions.	Velocity.
2 1 13	$72 \cdot 9$ 72 72 72.43 72.4128	8663	0418	+65-09	2 1 3	$\begin{aligned} & 45 \cdot 3021 \\ & 27 \cdot 5473 \\ & 27 \cdot 3199 \end{aligned}$	$\frac{2932}{5+93}$	0445	$\begin{array}{r} +4659 \\ +54.03 \end{array}$
Radial velocity....... $+32 \cdot 2$									

9-10 EDWARD VII., A. 1910

- COHON.E BOREALIS, ! $63(a)$.

a CORON . E BOREAL1S, 973 (a).

1907. Aug. 1.
G. M. T. $14^{1 /} 06^{\text {n }}$

Observed by
Measured by W. E. Habper.

W't.	Mean of Settings.	Corrected Star Lines.	Displacement in Revolutions.	Velocity	Wt.	Mean of Settings.	Corrected Star Lines.	Displacement in Revolutions.	Velocity.
$\begin{aligned} & 2^{\frac{1}{2}} \\ & 2 \end{aligned}$	$\begin{aligned} & 72 \cdot 9868 \\ & 72 \cdot 8440 \\ & 72 \cdot+220 \end{aligned}$	8210	0023	$\because 3.31$	2	$\begin{aligned} & 45 \cdot 2780 \\ & 45 \cdot 2568 \end{aligned}$	2624	0137	$+1434$
				Radial velocity -10%					

a CORON.モ BOREALIS, 973 (a) *.
1907. Aug. 1.
G. M. T. 14 $\mathbf{f}^{10} 0{ }^{\mathrm{ma}}$

[^32]SESSIONAL PAPER No. 25a
a CORON.E BOREMLLS, M3 (b).
1907. Aug. 1.
G. M. T. $14^{\mathrm{h}} 20^{\circ \mathrm{m}}$

Observed by W. E. Hanter.
Measured by J, B. Cannon.

Wt.	Mean of Settings.	Corrected Star Settings.	Displacement in Revolutions.	Volocity.	Wt.	Меаи of Settings.	Corrected Star Settings.	Displacement in Revolutions.	Velocity.
3	$\begin{aligned} & 73 \cdot 0342 \\ & 45 \cdot 3153 \end{aligned}$				$\frac{1}{2}$	$45 \cdot 2752$	- 2335	0052	$-5 \cdot 4$
						...			543
									20.98
						di....		$\begin{array}{r}14 \\ \cdot 28 \\ \hline\end{array}$
					Radia	veloeity.			26 s

1907. Aug. 3.
G. M. T. $13^{\text {h }} 02^{\text {m }}$

Observed by J. S. Plaskett.
Measured by W. E. Harper.

Weighted mean	- 3.08
V a.	$-20 \cdot 98$
V_{d}	- 08
Curvat	-28
Radial velocity	-244

a CORONAE BOREALIS, 986.
1907. Aug. 6.
G. M. T. $16^{\mathrm{b}} 38^{\mathrm{m}}$
$\left.\begin{array}{l}\text { Oiserved by } \\ \text { Measured by }\end{array}\right\}$ W. E. Harper.

Wt.	Mean of Settings	Corrected Star Settings.	Displacement in Revolutions.	Velocity.	Wt.	Mean of Settings.	Corrected Star Setting:	Displacement in Revolutions.	Velocity.
$\begin{aligned} & 2 \\ & 1 \\ & 1 \frac{1}{2} \\ & 1 \end{aligned}$	$72 \cdot 9297$				2	546972			
	72.8025	8363	- 0176	$+25 \cdot 57$	$1 \frac{1}{2}$	530647	...		
	53.9672	поно	$0+34$	$+[50.08]$	1	$45 \cdot 2437$	2877	0390	$+34 \cdot 00$
Weighted mean $+29 \cdot 7$									
						Va..		$-20 \cdot 96$,
						$\mathrm{V}_{\text {d }}$.		- 27	
						Curva	ture.	- 28	
					Kadial	1 v elocity		.	$8 \cdot 3$

9-10 EDWARD VII., A. 1910
a CORONむ BOREALIS, 98i;*
1907. Aug. 6.
G. If. T. $16^{\mathrm{b}} 38^{\mathrm{m}}$
$\left.\begin{array}{l}\text { Observed by } \\ \text { Measured by }\end{array}\right\}$ W. F. Harper.

*Check measurement.
a CORON.E BORFALIS, 1006.
1907. Aug. 12.
G. 31. T. $16^{\mathrm{m}} 36^{\mathrm{mm}}$
$\left.\begin{array}{l}\text { Observed by } \\ \text { Measured by }\end{array}\right\}$ W. E. Harfer.

Wt.	Mean of Settings.	Corrected Star Settings.	Displacement in Revolutions.	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displacement in Revolutions.	Velocity.
$\begin{aligned} & 2 \\ & 2^{\frac{1}{2}} \\ & 2 \end{aligned}$	72.8216				1	53.9092	53 9903	-0205	+[23.66]
	$72 \cdot 6801$ $72 \cdot 2641$	$72 \cdot 8664$	0016	$+2 \cdot 32$	${ }_{2}^{1}$	$\begin{aligned} & 45 \cdot 2372 \\ & 45 \cdot 21+0 \end{aligned}$	45-2504	$\cdot 0117$	+12-25
	$53 \cdot 9477$								
Weighted mean. +728									
Varvature......................... $\quad .28$									
Radial velocity $-1+0$									

a CORON E BOREALIS, 1014.
1907. Aug. 15.
G. M. T. $15^{\mathrm{h}} 09^{\mathrm{m}}$
$\left.\begin{array}{l}\text { Observed by } \\ \text { Measured by }\end{array}\right\}$ W. E. Harper.

Wt.	Mean of Settingy.	Corrected Star Settings.	Displacement in Revolutions.	Velucity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displacement in Revolutions.	Velocity. 16 -
${ }^{2} 2_{2}^{\frac{1}{2}}$	$72 \cdot 9915$ $72 \cdot 8396$ $72 \cdot+290$ $54 \cdot 7321$	72:8573	M,	$-10 \cdot 88$	2 2 2 ${ }_{\frac{1}{2}}$	53.9737 $53 \cdot 1065$ $45 \cdot 2707$ $45 \cdot 2197$	$53 \cdot 9813$ $45 \cdot 2226$	$\begin{gathered} 0115 \\ \cdots \cdots \\ 0161 \end{gathered}$	$\left\lvert\, \begin{gathered} +[13 \cdot 2 t] \\ \cdots \cdots \\ \cdots+16^{\circ} 81 \end{gathered}\right.$
Radial velocity $-7 \cdot 3$									

SESSIONAL PAPER No. 25a
a CORON.F BOREALIS, 1017.
1907. Ang. 22.
f. M. T. 15^{h}
a CORON.E BOREALIS, 1022.
1907. Aug. 23.
G. M. T. $14^{\text {h }} 46^{\mathrm{m}}$

Observed by J. N. Tribble. Measured by W. E. Harper.

Wt.	Mean of Settings.	Corrected Star Settings.	Displacement in Revolutions.	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displacement in Revolutions.	Velocity.
$\begin{aligned} & 2 \\ & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & 56 \cdot 6754 \\ & 54 \cdot 0042 \end{aligned}$ $53 \cdot 1214$	23.9960	0262	$+\left[\begin{array}{lll}30 & 16\end{array}\right]$		$\begin{aligned} & 45 \cdot 2780 \\ & 45 \cdot 2628 \end{aligned}$	45.2634	'0247	+25.78
				,					

a CORON.E BOREALIS, 1026.
1907. Aug. 27.
G. M. T. $12^{\text {b }} 06^{\mathrm{m}}$
$\left.\begin{array}{l}\text { Obsrrved by } \\ \text { Measured by }\end{array}\right\}$ W. E. Harper.

Wt.	Mean of Settings.	Corrected Star Settings.	Displacement in Revolutions.	Velacity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displacement in Revolutions.	Velocity.
2 ${ }_{2}^{2}$ 2 2 ${ }_{3}$	$\begin{aligned} & 73.0230 \\ & 7.93+4 \\ & 72 \cdot 4630 \\ & 54.0444 \\ & 54 \cdot 0000 \end{aligned}$	$\begin{aligned} & 72 \cdot 9232 \\ & \cdots \\ & \hdashline 3 \cdot 9844 \end{aligned}$	$\begin{gathered} 0584 \\ \cdots \\ 0146 \end{gathered}$	$\begin{gathered} +847 \\ +[1680] \end{gathered}$	2 2 2 2 4	45.2880 27.4870 27.2810 45.2840	$27 \cdot 4500$ $45 \cdot 2696$	$\begin{array}{ll} & 0281 \\ & 0310 \end{array}$	$\begin{aligned} & +32.50 \\ & +32.36 \end{aligned}$
					Radial	1 velocity	$30 \cdot 0$

9-10 EDWARD VII.. A. 1910
a CORON E BOREALIS, 1032.

Wi. $\begin{gathered}\text { Mean } \\ \text { of } \\ \text { Settings. }\end{gathered} \begin{gathered}\text { Corrected } \\ \text { Stiar } \\ \text { Settings. }\end{gathered} \begin{gathered}\text { Displace- } \\ \text { ment in } \\ \text { Revolutions. }\end{gathered} \quad$ Velocity.

Weighted mean...	- $4 \cdot 50$
\% ...	-17.34
$\mathrm{V}_{\text {d }}$	25
Curvature.	- 28
Radial velocity	-224

a CORON.E: BOREALIS, 1037.
1907. Sept. 12.
G. M. T. $14^{\mathrm{h}} 40^{\mathrm{m}}$

a CORON.E BOREALIS, 1047.
1907. Sept. 18
G. M. T. $12^{\mathrm{h}} 50^{\mathrm{m}}$

Wt.	Mean of Settings	Corrected Star Settings.	Displacement in Revolntions.	Velocity.	Wt.	Mean of Stettings.	Corrected Star Settings.	Displacement in Revolutions.	Velocity.
$\begin{aligned} & 2 \\ & 1 \\ & 1_{1}^{\frac{1}{2}} \end{aligned}$	$\begin{aligned} & 731431 \\ & 72.9930 \\ & 72 \cdot 5787 \end{aligned}$	$72 \cdot 8596$	052	755	2	$\begin{aligned} & 45 \cdot 3762 \\ & 45 \cdot 3585 \end{aligned}$	$45 \cdot 2560$	-0173	+1806
					Radi	1 velocity	 -	10.2

SESSIONAL PAPER No. 25a
a CORON.E BGREALIS, 104N.
1907. Sept. 1s.
G. M. T. $13^{h} 16^{\mathrm{m}}$

We.	Mean of Setting .	Corrected Star settings.	Displacement in Revolutions.	Velucity.	Wt.	$\begin{gathered} \text { Mean } \\ \text { of } \\ \text { Settings. } \end{gathered}$	Currected Star Suttings.	Displacement in Revolutions.	Velocity.
22$2^{2}$212	$73 \cdot 0030$					539418	53.9718	-0020	$+[2 \cdot 3 \cdot]$
	72.8640 72.4433	728695	$0 \mathrm{OH7}$	$6 \cdot 82$		33.0866 +5.1702			
	57.8023				1	+5.1457	+5 2339	$\because 048$	-500
	57.7850	${ }^{7} 7895$	-0373	$-(4401)$	1	27.3310	27.3870	-0256	$-22 \cdot 22$
	54.7113				2	$27 \cdot 1905$			
$\begin{aligned} \text { Weighted mean } \ldots . . . & .\end{aligned}$									
					Rautial selocity				19.6

Obscred by J. N. TRishee.
Measured by W. E. Harpke and J. B. Canson.

Raclial velocity
-196
α CORON E BOREALIS, 1060.
1907. Sept. 20.
G. M. T. $13^{\mathrm{t}} 35^{\mathrm{mm}}$

Wt.	Mean of Settings.	Corrected Star Settings.	Displace. ment in Revolutions.	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displacement in Revolutions.	Velocity.
	73.0090				2	$53 \cdot 0627$		\therefore..	
$\frac{1}{1}$	72.8367	72.8376	-022	$-39 \cdot 46$	2	45.2140			
$\stackrel{2}{2}$	$72 \cdot 4455$ $54 \cdot 6952$				1	+5.1690	$45 \cdot 2286$ 27.4192	. 0101	-10.54
2	$54 \cdot 6952$ 53.8872	53.9852	0346	-[39-82]	$2^{\frac{1}{2}}$	$27 \cdot 3412$ $27 \cdot 1682$	$27 \cdot 4192$	-0066	+5.73

Weighted mean.	-10.02
	$-14 \cdot 52$
V	
Curvature	28
Radial velocity.	-24.8

9-10 EDWARD VII., A. 1910
1907. October 1.
(F . M. T. $13^{\mathrm{h}} 44^{\mathrm{m}}$

a CORON.E BOREALIS, 1084.
1907. Oct, 1.
G. M. T. $13^{\text {h }} 56^{\mathrm{m}}$

Observed by W. E. Harpkr.
Measured by J. B. Cannon.

Wt.	Mean of Settings.	Corrected Star Settinge	Displace. ment in Revolutions.	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displace. ment in Revolutions	Velocity.
2	$\begin{aligned} & 72 \cdot 9048 \\ & 72 \cdot 8698 \\ & 72 \cdot 4285 \end{aligned}$	$72 \cdot 8852$	0204	$+2960$	2	$45 \cdot 2968$ 4 5. 2912	$45 \cdot 2680$	02:3	+3059
									$+30 \cdot 2 \pi$
					Radial verocity.				17.5

CORON E BOREALIS, 1393.

1908 March 9.
G. M1. T. $22^{\mathrm{h}} 08^{\mathrm{mi}}$

Wt.	Mean of Settings	Corrected Star Settings.	Displacement in Revolutions.	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displacement in Rervolutions.	Velocity.
2	54.8725				$2 \frac{1}{2}$	$27 \cdot 5088$	$27 \cdot 4056$	0070	- 6.08
13	$5 \cdot 0542$	58-9269	0429	-[19.38]	3	$27 \cdot 3499$ $11 \cdot 93+2$	11.8592		
$\stackrel{2}{3}$	$53 \cdot 2361$ $45 \cdot 3847$				1 ${ }^{\frac{1}{2}}$	11.9342	11.8522	- 0008	$+0.60$
2	$45 \cdot 3252$	$45 \cdot 2141$	0216	-2568					
Radial velocity ${ }^{\text {a }}$									

SESSIONAL PAPER No. 25a

a CORON.F BOREALIS, 1393*.
1908. March 9.
G. M. T. $22^{\mathrm{h}} 08^{\mathrm{m}}$

Observed by W. K. Hafrer.
Measured by C. R. Wentland.

Wt.Mean of Settings.

a CORON.E BOREALIS, 1393.
1908. March 9.
G. M. T. $22^{\mathrm{h}} 08^{\mathrm{m}}$

Radial velocity -14.8

[^33]a COROS E BORFAL1S, 1 tw.

19nc. March 16.
(E. N. T. $21^{\mathrm{b}} 02^{\mathrm{man}}$

Olserved hy
Measured by W E Harper.

a CORON.E BOREALIS, 1443.
1908. April 15.
(i. I. T. $19^{1 /} 18^{\mathrm{m}}$

Observed by J. S. Plaskett.
Measured by W. E. Habrer.

Wt. \begin{tabular}{c}
Mean

of

Settings.

Corrected

Star

Settings.
\end{tabular}

a CORON. E BOREALIS, 1498.*

1906. April 15.
(f. M. T, $19^{\text {b }} 18^{\mathrm{m}}$

Wr.	$\begin{gathered} \text { Mean } \\ \text { of } \\ \text { Settings. } \end{gathered}$	Corrected Star Settings.	Displace ment in Revolutions.	Velocity.	Wt.	Hean of Settings.	Corrected Star Settings.	Displacement in Revolutions.	Velocity.
213222	$72 \cdot 9717$				2	45.2237	45.2191	0196	$-20 \cdot 46$
	728800 72.4080	72×6678	0030	435	131	27.4633	$27 \cdot 4012$	0114	- 9.89
	$45 \cdot 2 \times 12$								
					Weigh	ed mean			9.85
								+ $5 \cdot 85$	
						d.......		- \times =	$.04$
Check measurement.					Radia	1 velucity	 -	43

1908. June 1.
(i. M. T. $18^{1 .}$

Observed by T. H. PaкккR.
Measured by W. E. Harper.

Corrected Star Settings.	Displacement in Revolutions.	Velocity.
$27+251$	0125	$+1085$
15. 4528	1105	813
1i 8338	0176	-913

$2 \cdot 59$
$10 \cdot 43$
$-\quad 20$
$-\quad 28$
$-13 \cdot 5$

a CORON.E BOREALIS, $156 t 6$.

190s. Jume 1.
G. M. T. $18^{1{ }^{\text {a }}}+2^{\mathrm{m}}$

Observed by
Measured by T. H. Pafkeh.

Wt.	Mean of Settings.	Corrected Star Settings.	Displacement in Revolutions.	Velocity.	Wt.	Mean of Settings,	Corrected Star Settings.	Displacement in Resolutions.	Velocity.
2	45.2929				$\frac{1}{2}$	27.4641	$27 \cdot 410{ }^{7}$	0019	-164
2	45. 2461	452267	0120	-12.52	2	$27 \cdot 316 n$			

Weighted mean	-10:34
V_{a}	$10 \cdot 43$
Va	- 20
Curvature.	- 28
Radial velocity	-202

a CORON.E BOREALIS, 1571.
1900. June 3.
(G. II. T. $16^{\text {in }} 32^{\text {nin }}$

Wt.	Mean of Settingz.	Corrected Star Settings.	Displacement in Revolutions.	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displace ment in Revolutions.	Velocity
2	$73 \cdot 4427$				1	27.4899	27.4253	0127	+ 11.02
1	72.9099	$72 \cdot 9760$	0112	$+1625$	2	27.3115			
2^{2}	74.2822 45.2815				$2^{\frac{3}{2}}$	15.4380 15	$15 \cdot 4464$	0269	2082
2	$45 \cdot 2437$	45.2358	0×29	303					

a CORON.I BOREALIS, $15 \pi^{2}$.
15148. June 3.
G. M. T. $16^{\text {h }} 32^{n}$

Weighted mean	- 3.98
$\mathrm{V}_{\text {a }} \ldots \ldots . .$.	-11.02
$\mathrm{V}_{\text {d }}$.	08
Curvature.	
Radial velocity	

a CORON.E BOREALIS, 152^{2}.
1908. June 3.
G. M. T. $16^{\text {m }} 52^{0}$

Obsprved by J. \& Plaskett.
Measured by C. R. Wiestland.

Wt.	Mean of Settings.	Corrected Star Settings.	Displacement in Revolutions.	Velocity.	W't.	Mean of Settings.	Corrected Star Settings.	Displacement in Revolutions.	Velocity.
2	54.7699					27.3380			
$2^{\frac{1}{2}}$	53.9965	$53 \cdot 9706$	0008	$+[116]$	$2^{\frac{1}{2}}$	15-5674	154394	0339	-26.24
$\stackrel{2}{2}$	53.1417				2	15. 5286			
	$45 \cdot 3179$ $45 \cdot 2866$	45-2423	0036	3.76	2	11.9767	11.8434	0080	599
1	27.4982	$27 \cdot 4073$	+0058	$\begin{array}{r}\text { (} \\ -\quad 460 \\ \hline\end{array}$				t ...

Wt.	Mean of Settings.	Corrected Star Settings.	Displacement in Revolutions.	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displacement in Revolutions.	Velocity.
$2^{\frac{1}{2}}$	$\begin{aligned} & 53 \cdot 9962 \\ & 54.7700 \end{aligned}$	$53 \cdot 9677$	-0021	$-[2 \cdot 41]$	2	27.3409 15.5560	15.4260	0473	-3661
2	453195				2	15.5286			
1	45.2856	$45 \cdot 2396$	-0069	+0.93	2	11.9830	11.801	0013	-9.74
${ }_{2}^{2}$	43.5855	27.4153		$+234$		11.6401		 ${ }^{\text {a }}$
Radial velocity - 198									

SESSIONAL PAPER No. 25a
a CORON E BOREALIS, $1,81$.
1908. June is.
(i. M, T. $17^{\mathrm{l}} 31^{\mathrm{m}}$

a CORON.E BOREALIS, 1601.
1908. June 12.
G. M. T. $16^{\mathrm{h}} 56^{\mathrm{m}}$

Observed by
Measured by W. E. Habper.

Corrected Star Settings.	Displacement in Revolutions.	Velocity.
4. 2568	0181	$28 \cdot 18$
27.4370	-0244	$+21+27{ }^{\circ}$

Weighted mean		$+2058$
V_{a}	-13.59	
$\mathrm{V}_{\text {d }}$	12	
Curvature	- 28	

9－10 EDWARD VII．，A． 1910
a COR（ON．E BOREMLIS，160s．

a CORON：モ BOREALIS， 1623.

1905．June 22.
G．M．T． $16^{\mathrm{h}} 27^{\mathrm{mon}}$

SESSIONAL' PAPER No. 25a
a (ORON.E BORFALIS, 1623.

Wt.	$\begin{aligned} & \text { Mran } \\ & \text { of } \\ & \text { Sitting } \end{aligned}$	(ourrected star Setting-	Displacement in Revolutions.	Velocity.
2	73.0044			
1	72. 8048	728598	ПейO	$7 \cdot 95$
$\frac{2}{2}$	72 +483			
2	53.9681	539531	0167	[19 22]
2	$53 \cdot 1381$			

a CORON.E BOREALIS, 1624.
1908. June 32.
G. MI. T. $16^{\mathrm{h}}+0^{\mathrm{m}}$

Wt.	Mean of Settings.	Corrected Star Settings.	Displace numt in Revolutions.	Velocity.
2	45.3000			
1	45.2624	$45 \cdot 2364$	0023	240
1	$27 \cdot 4675$	$27+195$	16024	215
	27.9274	11 \$594	(1083	519
2	115790			
Weighted mean.				
Weighted mean.				$16 \cdot 16$
			V_{d}.	-16
	urvature.		28
Radial velocity				180

Observad by J, K. PiAnkiktt.
Measured by J. B. Cannon.

Observed by J. S. Plaskett.
Measured by W. E. Harper.

Corrected Star Settings.	Displacement in Revolutions.	Velocity
$27 \cdot 4175$	-0049	+ 4.34
11.8612	-10998	+ $7 \cdot 34$

a CORON.E BOREALIS, 1628.
1908. June 24.
G. M. T. $15^{\mathrm{h}} 26^{\mathrm{m}}$

Ouserved by .J. S. Plaskett.
Meakured by J. B. Cannon.

Wt.	Mean of Settings.	Corrected Star Settiags.	Displacement in Revolutions	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displacement in Revolutions.	Velocity.
22221	$\begin{aligned} & 5+7 \times 38 \\ & 5.9+17 \\ & 53.1536 \\ & 45.3060 \\ & 45 \cdot 2761 \end{aligned}$				1	27.4598	$27+1.58$	0032	+27
		2. ${ }^{\prime}$ (11(4)	. 069	- $281 \cdot 33]$	${ }^{1 \frac{1}{2}}$	27 11.9908 11.9065	11.8705	0191	$+14.30$
		45.2436	0019	$+5 \cdot 12$	2	$11 \cdot 5432$			
					Weighted mean.......... 8 . 8.38				
									16.65
					Curvature			- ... -	
					Radia	velocity.	 -	86

a CURON.E BOREALIS. 1629.
1408. June 24.
(f. M. T. $15^{h 1} 49^{\mathrm{m}}$

a CORON.E BOREALIS, 1638 ,
1908. June 26.
G. M. T. $15^{\mathrm{h}} 51^{\mathrm{m}}$

Wt.	Mean of Settings.	Corrected Star Settings.	Displacement in Revolutions.	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displacement in Revolutions.	Velocity.
2	73.0800				112	4530488	$45 \cdot 2288$	0149	-1503
1	72. 9496	$72 \cdot 8476$	0172	-2496	2	$45 \cdot 3565$			
1	$72 \cdot 5-498$	2	$27 \cdot 4673$	$27 \cdot 3933$. 0198	-16. 51
2	$54 \cdot 8334$				3	$27 \cdot 3936$			
1	54.0511	539601	0×97	[11-31]	2	11.9239	$11 \cdot 862 \%$	0113	+ $8+16$
2	53.2007			3	11.5652	11.862	+... . .	.
					Weig	ted mean			10.00
									14 50
									11
						urvature.		28
					Radia	1 velocity.	+	$24 \cdot 9$

Observed by W. E. Harper.
Measured by J. B. Canion.
a SORON.E BOREALIS, 1629.
1908. June 26th.
G. M. T. $15^{\mathrm{h}} 51^{\mathrm{mi}}$
a SORON. BOREALIS, 168.
Observed by W. E. Hakyer.
Measured by J. B. Cannos.

W't.	```Mean of Settings.```	Corrected Star Settings.	Displacement in Revolutions.	Velocity.	Wt.	Mean of Settings.	Corrected Star Setting*.	Displacement in Revolutions.	Velocity.
1	73.0632				2	53.1470			
1	72.9112	$72 \cdot 8562$	0086	$-12 \cdot 48$	2	$45 \cdot 3037$			
1	72.5014 54.7831				$1 \frac{1}{1}$	$45 \cdot 2656$ 27	$45 \cdot 2376$ $27 \cdot 4169$	0011 .0043	115 +373
1	54.0126	53.976	0078	+ [8.98]	2^{2}	27.2799			
Radial velocity - 17									

SESSIONAL PAPER No. 26a
a CORON.E BOREALIS, 1646,
1908. June 27.
G. M. T. $16^{17} 20^{\text {" }}$

Wt.	$\begin{gathered} \text { Mean } \\ \text { of } \\ \text { Settings. } \end{gathered}$	Corrected Star Settings.	Displacement in Revolutions.	Velocity.	Wt.	Mean of Settings	Corrected Star Settings	Dinplace. ment in Revolutions.	Velocity.
$1 \frac{1}{1}$	$73 \cdot 0138$				1	4. 2225	45 2282	0105	-1095
	72.8550	$72 \cdot 8552$	0096	-13.92	2	45.2694			-
$\frac{17}{2}$	$72+403$				12,	27.472	27.4290	0164	$+1423$
2	54.7419 58.9706	$53 \cdot 9751$	0058	+[6171$]$	3 2	2, 118648	11.8931	0283	$21 \cdot 19$
2	53.0627 (4)			[617]	3	11.5348	11801	0×3	21.19

a CORON.E BOREALIS, 1646*.
1908. June 27.
G. M. T. $16^{4} 20^{\mathrm{m}}$

Wt.	Mean of Settings.	Currected Star Settings.	Displacement in Revolutions.	Velocity.	Wt.	$\begin{gathered} \text { Mean } \\ \text { of } \\ \text { Settings. } \end{gathered}$	Corrected Star Settings.	Displacement in Revolutions.	Velocity.
1	73.0388				2	45. 2924			
17	72.8666	$72 \cdot 8466$	0182	$-26 \cdot 11$	11	45.2510	$45 \cdot 2325$	0062	641
$1 \frac{1}{2}$	$72 \cdot 4615$				$1 \frac{1}{2}$	27.4381	$27 \cdot 4042$	0034	-3.05
2	$5 \cdot 7608$				3	27.2754			
$2^{\frac{1}{2}}$	$54 \cdot 0203$ 53.1283	540038	0340	$+[39 \cdot 13]$	1	11.9032	11.8575	0061	+ 529

Weighted mean	4.91
V_{a}	-14.98
V d.	11
Curvature.	
Radial velocity	

[^34]
a CORON E BOREALIS, 1632.

1:M8. July 1.
G. M. T. $15^{\mathrm{b}} 15^{\mathrm{m}}$

SESSIONAL PAPER No. 25a
a (\%)RON.E BORFKLLAS, 16N゙N.
1908. July 3.
(8. M. T. $15^{1 / 2} 17^{\text {mim }}$

Observed by W. E. HakPRe.
Measmed liy J. B. Cannon.

a CORON.E BORFALIS, 1657.
1908. July 3.
G. M. T. $15^{1 \mathrm{l}} 30^{\mathrm{m}}$

Wt.	Mean of Settings	Correctel Star Settings.	Displacement in Revolutions.	Velocity,	Wt.	Mean of Settings.	Corrected Star Settings.	Displace. ment in Revolutions	Velscity
$1^{\frac{1}{2}}$		546011		$+36.03$	1 2 1 2	$45 \cdot 2097$ 441900 $27 \cdot 3961$	452817 274586	0430 0460	$\begin{gathered} +44 \mathrm{Ni} \\ +39 \cdot 93 \end{gathered}$

a CORON E BOREALIS, 166\%̈.

1908 . July 6.
G. M. T. $16^{\text {in }} 5 \theta^{\text {min }}$

Observed by T. H. Parkeh.
Measured by J. B. Cannon.

a CORON AE BORE.ALIS, 1673
1908. July 8
G. M. T. $14^{h} 59 \mathrm{~m}$
$\left.\begin{array}{l}\text { Observed by } \\ \text { Measured by }\end{array}\right\}$ J. B. Canson.

1908. July 10.
G. M. T, $13^{\mathrm{h}} 34^{\mathrm{m}}$

Observed by W. E. Harper.
Measured by J. B. Cannon.

| Wt. | Mean
 of
 Settings. | Corrected
 Star
 Settings | Displace-
 ment in
 Revolutions. | Velocity. |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Weighted mean	- 1.89
V_{a}	$-19 \cdot 38$
$\mathrm{V}_{\text {d }}$	(6)
Curvature	28
Radial velocity.	21

SESSIONAL PAPER No. 25a

a CORON.E BOREALIS, 1684.

190\%. Julv 10.
G. M. T. $13^{\text {n }} 3 \mathbf{7}^{10}$

Obshred by IV. E. Harper.
Measured by J. B. Canson.

Wt.	Mean of Settings.	Corrected Star Setrings.	Displacement in Revolutions.	Velocity.	Wt.	Mean of Settings	Corrected star Setting:	Di-placement is Revolutions.	Velocity.
1.	73.0327				2	45:3003			
$1^{\frac{1}{2}}$	72.8347	72×73	-0089	+1291	1	+5.2694	45. 2421	0034	3.54
${ }_{9}$	72.4598				1.	27.474	$27 \cdot 4221$	0095	+ 7.81
2	54.7653 53.9629	539399	0299	$-[34 \div 1]$	2	27.2995 11.9048	11:8363	0151	${ }_{-11} 30$
2^{2}	53 -134?	38389	0298	$-[3441]$	2^{2}	11.5759	11 8nos		
					Weighted mean \qquad -4.59 V_{a}. \qquad -19:38 $-\quad .04$ Curvature				
					Radial velocity 151				

a CORON.E BOREAIIS, 1697.
1908. July 13.
G. M. T. $15^{\mathrm{h}} 36^{\circ}$

Observed by J. S. PLaskett.
Measured by J. B. Cassos.

Wt.	Mean of Settings.	Corrected Star Settings.	Displacement in Revolutions.	Velocity.	Wt.	Mean of Settings.	Conected Star Settinge.	Displacement in Refolutions.	Velocity.
1	72.973.				2	$45 \cdot 2596$			
$1^{\frac{1}{2}}$	72.8268 72.4159	728608	0040	-5.80	$1{ }^{1}$	45-2284	45.2424	0037	3.86 $+13 \cdot 11$
$\stackrel{1}{2}$	$72 \cdot 4159$ $5+7199$				1.	${ }^{27} \cdot \mathbf{4 2 1 8}$		0151	
1	53.9583	53 9628	0130	$+[1496]$	1	11.8656	11 8236	0278	-20.82
2	$53 \cdot 0846$				2	$11 \cdot 5495$			
					Radial velocity 28.6				

9-10 EDWARD VII., A. 1910
(a CORON.E BORF.ALIS, 169s.

```
    190s July :N
    G. M. T. 15 42"
```

W゙t.	Mean of Settings.	Corrected Star Settings.	Displacement in Revolutions.	Velocity	Wt.	Meant of Settings.	Currected Star Settings.	Displacement in Revolutions.	Velocity.
1	730061				2	$45 \cdot 2766$			
	72.8661	72.8691	0043	624	$1 \frac{1}{2}$	45.2388	45.2358	0029	3.03
1	724437				$1 \frac{1}{2}$	27.4391	27.4144	0018	-1.36
2	547384 53.9504	53.954	0154	17.72	${ }_{1}^{2}$	27.2716 11.8994	$11 \cdot 8619$	0105	+ 7.80
2	531069				2	11.3450	12		

a CORON.E BOREALIS, 1711.
1908. July 15.
G. M. T. $16^{\mathrm{h}} 24^{\mathrm{m}}$

Observed by
Measured luy
Measured by fo. B. Cannon:

25 5 SIONAL PAPER No. 25a
a FORON.E BOREMLSN, 1721

19n8. July 24.
(i. M. T. $133^{14} \mathrm{~m}^{m}$

Olserved by W. F. Hahreh.
Measured by J. B. Cannos.

Weightell mean.	+15 25	
V_{a}		30.68
V_{d}		04
Cursature		28
Radial velocity,		$5 \cdot 7$

a CORON E BORFALIS, 1722 .
19018. July 24.
G. M. T. $13^{n^{n}} 21^{\mathrm{mi}}$

Observed by IV. E. Harper.
Measured by J, B. Cannon.

9-10 EDWARD VII., A. 1910
a CORON.E BOREALIS, 1739.
1908. July 29.
G. M. T. $15^{\text {h }} 34^{\text {ma }}$

Observed by J. S. Plasketr.
Measured by J. B. Cannos.

a CORON゙.も BOREALIS, 1739.*
1908. July 29.
G. M. T. $15^{\mathrm{h}} 3 \mathrm{~m}^{\mathrm{m}}$

Observed by J. S. Plaskett. Measured by T. H. Pakker.

Wt.	Mean of Settings.	Corrected Star Settings.	Displace ment in Revolution:	Velocity.	Wt.	Mean of Settings.	Currected Star Settings.	Displacement in Revolutions.	Velocity.
2	73.0854				2	45.3015			
$3^{\frac{1}{2}}$	729133	$72 \cdot 8398$	0250	$-36 \cdot 27$	1	+5. 2452	452173	0214	$-22 \cdot 34$
$\stackrel{2}{2}$	$7 ? 5142$				\$	$27 \cdot 3747$	$27 \cdot 3581$	0545	$-36 \cdot 29$
$9^{\frac{1}{2}}$	54.0256	$53 \cdot 9103$	(1245	\cdots - 25 - 59$]$	1	27. 11.8647	11.8697	0183	+13.70
2	$53 \cdot 1456$				2	$11 \cdot 5022$			
Check measurement.					Radial velocity 394				

SESSIONAL PAPER No. 25a
a CORON.F BOREALIS, 1748 .

1908 , July 31.
(i. M. T. $13^{\mathrm{h}} 38^{\mathrm{m}}$

Ubserved by T. H. Ранкед.
Meaured ly J. B. Cannos.

Weighted mean	-19.53
Va	-20.98
V_{d}	14
Curvature	
Radial velocity	409

a CORON E BOREALIS, 1749.
1908. July 31.
G. M. T. $13^{\mathrm{h}} 38^{\mathrm{m}}$

Observed by T. H. Palker. Measured by J. B. Cannon.

Wt.	$\begin{gathered} \text { Mean } \\ \text { of } \\ \text { Settings } \end{gathered}$	Corrected Star Settings.	Displacement in Revolutions.	Velocity.	Wt.	Mean of Settings	Corrected Star Settings.	Displacement in Revolutions.	Velocity.
1	73-0321				2	1.) 27.24			
$\frac{1}{2}$	72.8767	$72 \cdot 8559$	0089	-11.91	13	4) 2364		0106	-11.07
1	$72 \cdot 4611$				1	$22^{-1}+144$	27.4188	0038	- $3 \cdot 30$
2	54.7470				2	272523			
1	$53 \cdot 9184$	539816	0118	+[13-58]	1	11.8314	$11 \cdot 8384$	0160	1198
2	53 1145			,	11.4999			

a CORON.E BOREALIS, 1773.
1906. Aug. 7.
G. M. T. $14^{2} 25^{\mathrm{m}}$

SESSIONAL PAPER No. 25a

a COHON.F HOREAJ, I
1908. Aug. 7.
(i. M. T. $1 \mathrm{j}^{\text {h }} 4 \mathrm{~m}^{\mathrm{m}}$

Observed hy T. II. Pakkze.
Measured by I. B, Cannon.

a CORON.E BOREALIS, 179s.

190s. Aug. 20.
G. M. T. $13^{\mathrm{h}} \mathrm{GF}^{\mathrm{m}}$

a CORGN゙.E BOREALIS, 1748^{*}
1908. Ang. 20 G. M. T. 13103

Observed is T. H. Yarker.
Measured ly . . . B. Cassos.

*Check measurement.
a CORON.E BOREALIS, 1809.
1908. Ang. 21.
G. M. T. $15^{\text {ti }} 01^{\text {th }}$

Observed by
Measured by

Corrected Star Settings.	Displacement in Revolutions	Velocity.
15.2488	0101	$+10+54$
274424	-0298	$+25 \cdot 87$
118762	0248	+1858

Weighted mean	$18 \cdot 54$
V_{a}	$-20 \cdot 00$
V d	25
Curvature.	
Radial velocity	

SESSIONAL PAPER No. 25a
a ('ORON. H BOREALIS, 1816.

1908, Ing. 24.
(i. 11. T. $13^{\text {h }} 12$.
a CORON.E ROREALIS, 1817.
1908. Aug. 24.
G. M. T. $13^{61} 27^{\mathrm{m}}$

Observed by W. E, Harper.
Measured by J. B. Cinnon.

Wt.	Mean of Settings	Corrected Star Settings.	Displacement in Revolutions.	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displacement in Revolutions.	Velocity.
1	73.0283				2	45.2794			
$1^{\frac{1}{2}}$	72.9461 72.4579	72.9283			1	45-2977	45• 29.5080	$\begin{array}{r} 054 \\ \cdot 0959 \end{array}$	$\begin{array}{r} +55 \cdot 64 \\ +83 \cdot 24 \end{array}$
2	54.7488				2	27.2603			
1	$54 \cdot 0279$	540227	-0599	+ [62 66]		11.9477	11.9257	0743	$+55 \cdot 65$
2	$53 \cdot 1145$				2	11.5205			
Weighted mean +68.45									
						V_{a}		-19.63	
						V_{d}		$-\quad 20$ $-\quad 28$	
				Radial velocity $+48 \cdot 3$					

« CORON.E BOREALIS, 1827.
1908. Ang. 25.
G. M. T. $13^{\text {b }}$
$\left.\begin{array}{l}\text { Observed by } \\ \text { Measured by }\end{array}\right\}$ J. B. Cannon
\qquad

19Ns. Alig. 26.
Observed by 1.1. B. Caxsos
Measured by ,
(i. M. T. $14^{\prime \prime} 34^{\prime \prime}$

a COROX.モ BOREALIS. 18+1.
1908. Alug. 28.
G. M. T. $13^{\text {b }}$

SESSIONAL PAPER No. 25a
a COHON: F: BORE.VI.Is, 142.
1sos. Jug. -
(i. M. T. $13^{\text {II }} 14^{\text {m }}$

Msserved by
Measured by f. B. Cinnon.

Wt.	$\begin{gathered} \text { Menn } \\ \text { of } \\ \text { Sittings. } \end{gathered}$	Correoted Nitar Suttings.	Displacement in Revolutions.	Velocity.	W't.	$\begin{gathered} \text { Mean } \\ \text { of } \\ \text { Settings. } \end{gathered}$	Corrected Star Settings	Displave ment in Revolutions.	Velonity.
	73 0092				2	4.5.2978			
1	72.8733	72:738	1999	$+1306$	1	4.) 28.38		0394	
2	$72 \cdot 4448$ $54 \cdot 7+62$				1	27.4705	$2 \div \cdot 4412$	10246	2482
	54.7462	540001	0353	[[39 63]		-7. 2762	119223	0709	$153 \cdot 10$
2	$53 \cdot 1214$				2^{4}	11.542			

a CORONE BOREDLIS, 1852.
1908. Aug. 31.
(i. M. T. $13^{h 1} 17^{\ldots}$

Observed by W. F. Hatref.

Wt.	Mean of Settings	Corrected Ntar Settings	Displacement in Revolutionw,	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displace. ment in Revolutions.	Velocity.
1	$73 \cdot 0311$				1	274462	27.423	0297	$+2578$
12	$72 \cdot 8743$	72×336	0112	$12 \cdot 89$	2	27.2515			
${ }_{2}^{1}$	$72 \cdot 4635$ $45 \cdot 2785$					11.8686 11.50 .65	11.8702	0188	+14.08
1	45.2366	$45 \cdot 2317$	10070	7.31					

a CORON. E. BOREALIS, 1852*.

1908 , Ams. 31.
G. M, T, $13^{\mathrm{b}} 17^{\mathrm{mm}}$

* Check Measurement
a CORON.モ BOREALIS, 1861.

1908. Sept 3.
G. M. T. $12^{\mathrm{b}} 50^{\mathrm{m}}$

SESSIONAL PAPER No. 25a
a CORONAE BOREALIS, 1860.

1908, sept, 4.
(ㄴ. M. T. $13^{4} 22^{\mathrm{m}}$

Observed by T. H. Parker.
Mensured by J. R. Cannon.

a CORON E BOREALIS, 1882

1908 Sript. 14.
(.). M. T. $12^{\mathrm{h}} 51^{\mathrm{m}}$

Observed by J. S. Plaskitt.
Measured by J. B. Cannon.

Wt.	Mean of Se-ttings	Corrected Star Settiugs	Displacement in Revolutions.	Velocity.	Wt.	$\begin{gathered} \text { Mean } \\ \text { of } \\ \text { Settings. } \end{gathered}$	Corrected Star Settings.	Displacement in Revolutions.	Velocity
1	$73 \cdot 0319$				2	$45 \cdot 3247$			
$1^{\frac{1}{2}}$	72.9043	73.8867	0219	$+3178$	1	45.3219	45.2008	0321	$+3351$
	$72+4692$				${ }^{\frac{1}{2}}$	$27+5853$	27.463	0337	+29.25
2	547787				2	27.3257			
$9^{\frac{1}{4}}$	$5+0006$	$5396+6$	1605	[5.99$]$	112	12.0035	11.8955	- 0451	$+33 \cdot 78$
2	581472				2	$11 \cdot 6135$		
				Weighted mean $15.95+3277$					
						V_{d}^{u}	$.23$	
								-_	
					al vel	city.	 +	$16 \cdot 3$

9-10 EDWARD VII.. A. 1910
a CORON.F: BOREALIS. 1883 .

11918 Supt. 14.
G. M. T. $13^{41} 0^{-1}$

Oberved by J. S. Plashetr.
Measured by I. B. Cannon.

a CORON E BOREALIS, 1894.
1405. Sept. 19.
6. D. T. $12^{\mathrm{h}} 02^{m}$

SESSIONAL PAPER No. 25a

$\begin{aligned} & 15 \text { Nos. Nept. } 19! \\ & \text { (:. M. T. } 12^{n \prime \prime} 17^{\prime \prime \prime} \end{aligned}$				Ohserved by J. S. Plasketr. Meanured by J. D. Casion.					
Wit.	Mean of Siettings.	Corrected Star hetting.	Displacement in Revolutions.	Velocity.	Wt.	Mean of Settings.	('orrecterl, Star Settingn.	Dinplacement in Revolutions.	Velocity:
2	$73 \cdot 0038$				9	45.2×14			
$\frac{1}{2}$	72.8573	72×633	001\%	-2 18	1	45.2429	4.) 2331	. 00326	3.76
2^{-}	72-4388				4	27.4293	27.4118	'00018	$0 \cdot 69$
2	54.7388				2	27.2643			
${ }^{\frac{1}{2}}$	$53 \cdot 9565$	54 9580	0118	$-[13+58]$	$1 \frac{1}{2}$	11.8895	118595	0081	$+6.07$
2	$53 \cdot 1120$				2	11.5373			
Weighted mean............ $+1 \cdot 26$									
						Va.....	 -	$14 \cdot 58$
						Vd....		.	. 22
						Curvature -	\cdots
				Radial velocity. -13 \&					

a CORON.E BOREALIS, 1896.

1:N8. Sept. 19.
G. M. I. $12^{\mathrm{h}} 30^{\mathrm{m}}$

Observed by J. S. Plaskett.
Measured by J. B. Cannon.

a CURON.E BOREAI,IS, 1897.
1908. Sept. 19.
G. M. T. $12^{\text {li }} 42^{m}$

Wt.	Mean of Settings.	Corrected Star Settings.	Displacement in Revolutions.	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displace ment in Revolutions.	Velocity
2	73.0197				2	$45 \cdot 3094$			
$2^{\frac{1}{2}}$	72.8664	$11 \cdot 8573$	0075	$-10 \cdot 88$	$1 \frac{1}{2}$	$45 \cdot 2797$	45.2439	0052	+543
2	$72 \cdot 4537$				1	27.4750	$27 \cdot 4097$	0629	- $2 \cdot 52$
2	54.7572				2	27.3122			
$2^{\frac{1}{2}}$	$\begin{aligned} & 53 \cdot 9924 \\ & 53 \cdot 1352 \end{aligned}$	53.9731	0033	$+[3 \cdot 80]$	1 2	$\begin{aligned} & 11.9309 \\ & 11.5892 \end{aligned}$	11.8492	0022	- 1.65
				Radial velocity					

« CORON.E BORFALIS, 1919.
1908. Sis. 1.

a CORONE BOREALIS, 1950.
1908. Nov. 1.
G. M. T. $10^{\mathrm{h}} 58^{\mathrm{m}}$

Observed by
Measured by J. B. Cannon.

Radial velocity........................ $-62 \cdot 5$

1900 Nor 1.
G. M. T. $11^{\text {b }} 14^{\mathrm{m}}$

Observed by!
Measured by ${ }^{\prime}$

SESSIONAL PAPER No. 25a

OBSERVLN(: RECOR1 IND DETAILED MEASLKR OF OACVUH...
P. Pinsketr.
H. H. Herek.
C. Cinnon.

P1.- PaRKER

RFCORD OF SPECTROGRAMS.

9-10 EDWARD VII. A. 1910
§ AULIL.E. अ※,
1100: A14.

§ AQLIL. 玉. 37 .
1906. Aug. 15.
G. M. T. $15^{\text {h }}$ fem

W't.	Mean of Settings.	Computed Wave Lengths.	Corrected Wave Lengths.	Normal Wave Lengths.	Displace. ment.	Velocity.
2	S 70.1969	4549.642				
2	$70 \cdot 1460$	4549.039	039	642	. 6103	-39.73
$3^{\frac{1}{2}}$	6is 8403	+533.723	753	168	415	$27 \cdot 43$
3 2	$68+118$	4.288 .757		798		
2	${ }_{64} 61638$	4481.013	953	400	H7	29.90
2	63.7291	$4476 \cdot 277$		185		
$2^{\frac{1}{2}}$	$63 \cdot 0 \% 06$	+469 152	162	545	185	32.36
	$\begin{array}{lll}62 & 8551 \\ 58 & 1412\end{array}$	4466835		727		
	58.1412 S 56.8682	4417 404 1027	670	038	368	24 ¢5
2	S 56.8682 54.6973	+4078.927 +383 606		720		
3	$50 \cdot 0813$	$43+0.115$	184	634	450	$31 \cdot 05$
3	48.5181	$4325 \cdot 926$		939		
3	S 46.5100	$4308 \cdot 081$				
2	449317	+294-318		301		
1	44.9073	4294138		301		
1	44.3830	4289.632	594	032	442	$-30 \cdot 85$

Weighted mean	$\begin{array}{r} -31.89 \\ -13.62 \end{array}$
$V{ }^{\text {d }}$	- 19
Curvature	
Radial velocity	

SESSIONAL PAPER No. 25a
5. 142111. V KNe?

1906, Aug. 24.
(: M. T. $155^{1 / 2}$
Ohserved ly ; W. E. Hahteh.
Measured by

б AQU IL.E. 34,
1906. Sept. 10.
G. II, T, $15^{\mathrm{h}} 30^{\mathrm{m}}$
$\left.\begin{array}{l}\text { Observed by } \\ \text { Measured by }\end{array}\right\}$ W. F. HARPER.

	Wt.	Mean of Settings.	Cumputed Wave Lengths.	Corrected Wave Lengths.	Nornal Wave Lengths.	Displace. ment.	Velocity,
1		$65 \cdot 2901$	4494811		738		
1		$64 \cdot 9719$	4481.396	360	400	040	267
1		$63 \cdot 6037$	4476296		-185		
9		$54 \cdot 5817$	$4383 \cdot 730$		-720		
		$49 \cdot 9026$	$4339 \cdot 632$	690	640	020	-138
3		$48 \cdot 3953$	4325.945		- 939	

Weighted nean	-2.00
$V_{n} \ldots \ldots$	-29 26
V_{1}	19
Curvature	24

§ . 1QUIL.E 399.
1906. Sept. 27.
G. M. T. $14^{\text {h }} 45^{\prime \prime}$

© AQUHL.E 413 .

1906, Oct. 23.
G. M. T. $13^{\text {h }} 459$

Wt.	Mean of Settings.	Computed Wave Lengths.	Corrected Wave Lengths.	Normal Wave Lengths.	Displace. ment.	Velocity
1	$70 \cdot 1315$	+549.642	'642	642	000	$0 \cdot 00$
1	S $70-1315$	4549.642				
2	$68 \cdot 3595$	4528.810	. . .	798		
1	$65 \cdot 3580$	4494.715		738		
2	641318	4181.159	190	400	210	-1404
1	63.6731	$4476 \cdot 145$		185		
3	S 56.8482	4404.927				
2	$5+6954$	4383.707		720		
1	$53 \cdot 7352$	4374.428	439	628	189	-12.94
1	$50 \cdot 1309$	4340.528	540	6 ± 0	100	-6.90
3	48. 5299	4325.938		939		
3	S 46.5280	4308.081				
1.	$46 \cdot 4975$	- +307.813	\$13	023	210	-14.61

SESSIONAL PAPER No. 25a
$\overline{5}$ ACEETL.E: Nus.
1907. May 31.
(s. M. T. $19^{\mathrm{h}} 0 \mathrm{l}^{\mathrm{ma}}$

8 AQUILE B18.
1907. June 10.
G. M. T. $19^{\mathrm{b}} 1 \mathrm{~m}^{\mathrm{m}}$

Observed by J. S. Plaskett.
Measured by T. H. Pareér.

Wt.	Mean of Settiugs	Corrected Star Settings.	Displacement in Revolutions,	Velocity.	Wt.	Mean of Settings	Corrected Star Settings.	Displacement in Revolutions.	Velocity.
2	57. 8253				1	15.9704	9304	0568	$59 \cdot 75$
1	57.7820	7780	0488	$-58 \cdot 7$	$?$	4. 3146			
$\stackrel{2}{2}$	$54 \cdot 7558$,	45-2333	1923	$0+64$	48.44
$\stackrel{2}{1}$	48.8030 487360				1	4, 274841			
1	487360 47	7034 +162	0606 0542	$65 \cdot 75$ 57	1	27 $2 i$ 27 4713	3520	0666	$-52 \cdot 60$

9-10 EDWARD VII., A. 1910

1:005. July 2.
(i, M. T. $18^{11} 12$

Moserved by! W. E. Harperk.
Measured by!
1907. July 8 .
G. M. T. $18^{\text {h }} 02^{\text {m }}$

SESSIONAL PAPER No. 25a
5 AOUTL.E 930.
1407. July 9.
(i. M. 'T. $16^{\text {h }} 33^{\mathrm{mm}}$

Obstrved by W. F. Harper.
Measured by T. H. Parker.

Wt.	Mean of St-ttings.	Corrected Star Settings.	Displace ment in Revolutions.	Velority,	Wt.	$\begin{aligned} & \text { Mean } \\ & \text { of } \\ & \text { Settings. } \end{aligned}$	Corrected Star Settings.	Dixplace. ment in Revolutions.	Velocity.
$\begin{aligned} & 2 \\ & 1 \\ & 2 \\ & 2 \\ & 1 \\ & 2 \\ & 2 \end{aligned}$	578333				1	$48 \cdot 7412$	7360	028)	31.40
	578169	$\times 129$	0139	1673	1	474795	4670	0034	18.63
	54.9				2	40.2875			
	53.9750 53.1198	9680	0018	02.07	1	4. 2244	2104	1283	29.54
	+8.7812				1	37.2898	2500	0268	25.70
		Weighted mean $17 \cdot 98$							
						$\mathrm{V}_{\text {c }} \ldots$	4	$2 \cdot 3$	
						Curchati		118	
					adial	elocity		- 15	

1907. July 10.
G. M. T. $11^{\mathrm{h}} 30^{\mathrm{mm}}$

Oleerved by J. S. Plaskeit. Measured by T. H. Parker.

§ A 21 IL. §. 966.
G. D. T. 1b 01

Observed by W. E. Hakper:
Measured by T. H. PıHERR.

© AQLIL.E 980.
1507. Aug. 3
(1. M. T. $14^{\text {h }} 40^{=}$

Observed by I. S. Pl.siskett.
Mea-ured by T. H. Parker.

Wt.	Mean of Settings.	Corrected Star Setting.	Displace. ment in Revolutions.	Velocity.	Wt.	Mean of Settings	Corrected Star Setlings.	Di-placement in Ri-volutions.	Velocity.
2	598416					16.0142	3765	10100	-10.52
	59.0484	0155	022\%	$27 \cdot 11$	2	45. 3113			
2	$\begin{array}{lll}57 & 8562 \\ 57 & 8448\end{array}$	8178	0036	10.83	1	15. 25999 44.2852	$\frac{2923}{268}$	0168 -0130	$17 \cdot 55$ 13.42
2	547701			10 so	2^{2}	435768	-108	(1)0	13.42
1	53.9962	9622	0026	-02'99	1	41.8349	7905	18387	$38 \cdot 93$
2	4.8043				$\frac{1}{2}$	27.4712	3986	0124	$-10 \cdot 76$
1	$47 \cdot 5163$	1803	$(1099$	-10.59					

SESSIONAL PAPER No. 25a

© AQUIL.E 982.

1! 407. Aug. 5.
G. M. T. $16^{\text {h }} 36^{\mathrm{m}}$

Observed by J. S. Plaskett, Measured by T. H. Parker.

Wt.	$\begin{gathered} \text { Mean } \\ \text { of } \\ \text { Settings. } \end{gathered}$	Corrected Star Settings.	Displacement in Revolutions.	Velocity	Wt.	Mean of Settings.	Corrected Star Settings.	Displacement in Revolutiona	Velocity,
2	57.8462				1	452591	2231	. 0156	-16.28
$\frac{1}{2}$	5.83889	8221	0047	$-05 \cdot 65$	2	44.2644	2274	0318	3284
1	$55^{5} \cdot 19690$	9515	0140	16.68	2	$43 \cdot 5 \% 47$			
1	56.6945				2	42.1445			
2	48.8009				1	41.8297	7872	0441	+436
1	17. 5019	4618	One ${ }^{\text {a }}$	-00.64	2	309363			
$\frac{11}{2}$	$46 \cdot 0159$ $45 \cdot 3083$	9312	(1)64	$+06 \cdot 31$	1	$30 \cdot 8976$	8317	0439	$-39-12$
	$45 \cdot 3083$								
Weighted mean... ${ }^{\text {m }}$-19 60									
						$\mathrm{V}_{0} \ldots$			9.42
						Curvature		,	
				Radial velocity -29.4					

§ AQUHLE 1034.

190\%. Sept. 6.
G. I. T, $15^{h} 44^{m}$

Observed by J. N. Tribble. Measured by T. H. Parker.

9-10 EDWARD VII., A. 1910
δ AQUHLEE 1049 (ft).
1907. Sept. 18.
G. M1. T. $8^{h} 56^{m}$

Weighted mean	- 3.66
$V_{\text {a }}$	- 24.00
V_{d}	
Curva	28
Radial velocity	-280

万 AQUIL E 1049 (b).
1907. Sept. 18 .
G. M. T. $8^{\mathrm{h}} 56^{\mathrm{mm}}$

Observed by J, N. Tribble.
Measured by T. H. Parker.

§ AQUIL.※ 1343.

19ns. May 18.
G. M. T. $20^{10} 06^{\mathrm{m}}$

Observed by W. E. Harper.
Mleasured by T. H Parker.

Wt.	Mean of Settings	Corrected Star Settings.	Displace ment in Revolutions	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displacement in Revolutions.	Velocity:
2	59-8118				2	$45 \cdot 2857$			
1	59.6115	60:9	0655	$80 \cdot 56$	1	$45 \cdot 1924$	1819	-0568	$59 \cdot 29$
${ }^{11}$	$37 \cdot 7867$ $56 \cdot 9378$	7867 9388	0401	$48 \cdot 28$ $31 \cdot 82$	$\frac{1}{2}$	$44 \cdot 2082$ 435501	1967	-6425	6456
$\varepsilon^{\frac{1}{2}}$	$56 \cdot 9378$ $56 \cdot 6665$	9388	0267	31.82	1	43.5501 39.9986	9811	-0352	3435
$\frac{1}{2}$	$55 \cdot 0793$			5351	$\frac{1}{3}$	37.2334	2131	0754	$72 \cdot 30$
1^{2}	$53 \cdot 9367$	9352	-0346	$39 \cdot 82$	2	37.9755			
2	$53 \cdot 1154$				2	$30 \cdot 8437$	8107	0649	$58 \cdot 27$
$1 \frac{1}{2}$	52.3898	3568	0280	31.66	$\frac{1}{2}$	27.3944	3544	0582	$-50 \cdot 50$
1	$51 \cdot 6895$	6860	0715	80.22	2	$27 \cdot 2870$			
					ial vel	city			$21 \cdot 9$

5 AQUILAE 1520 .
1504. May 22.
G. M. T. $20^{\text {h }} 3 \ddagger^{\prime \prime}$

Observed by W. E. Harper.
Measured by T. H. Parker.

W't.	Mean of Settings.	Corrected Star Settings	Displacement in Revolutions.	Velocity.	W't.	Mean of Settings	Corrected Star Settings.	Displacement in Revolutions.	Velocity.
2	$59 \cdot 8566$				2	$43 \cdot 5800$			
1	$53 \cdot 9680$	9260	0438	$-50-41$	1	$43 \cdot 5040$	4590	0742	75.90
2	$53 \cdot 1527$				${ }^{\frac{1}{2}}$	$42 \cdot 4743$	4268	. 0840	$85 \cdot 09$
$1^{\frac{1}{2}}$	$52 \cdot 4092$ $51 .-194$	-3682	0466 0996	52.70 89.31	2_{1}^{2}	$37 \cdot 3817$ $37 \cdot 3052$			
1_{2}^{2}	$51 \cdot 7194$ $50 \cdot 0548$	-6799	0796	$89 \cdot 31$	1	$37 \cdot 3052$ $30 \cdot 8480$	2552 7940	. 0336	32.22
$\stackrel{2}{2}$	$50 \cdot 0548$ $45 \cdot 3223$				$1^{\frac{1}{2}}$	$30 \cdot 8480$ $27 \cdot 4542$	7940 .3942	-0816	$73 \cdot 26$ -1597
$\stackrel{2}{1}$	$45 \cdot 3223$ $45 \cdot 2179$	1724	0663	$70 \cdot 54$	1	$27 \cdot 4542$ $27 \cdot 3097$	-3942	-0184	
					ial ve	ocity -	$40 \cdot 1$

9-10 EDWARD VII., A. 1910
§ AQUIL.E 1575.
G. M. T. T. $20^{\text {t }} 01^{\mathrm{ma}}$

Wt.	Mean of Settings	Corrected Star Settings.	Displacement in Revolutions.	Velocity.	Wt.	Mean of Settings	Corrected Star Settings.	Displace ment in Revolutions.	Velocity.
2	59.8247				2	$50 \cdot 0325$			
1	58.9976	9581	0581	-71.11	1	48.7496	7236	0404	43.95
8	$57 \cdot 7944$	7574	0473	$57 \cdot 04$	2	45.3116			
2	57.8347				${ }^{\frac{1}{2}}$	45.2466	2206	0281	$29 \cdot 12$
1	549 56377 56.6840	9027	0426	$50 \cdot 86$	1	44.2465 $43 \cdot 4300$	2215 4060	0508 0345	$52 \cdot 62$ $35 \cdot 60$
$\frac{1}{2}$	$55 \cdot 1020$	0700	0391	45%	2	41.3243			
1	53.9550	9250	0316	$35 \cdot 22$	$1 \frac{1}{2}$	$37 \cdot 3066$	2946	0301	-2924

5 AQUIL 玉 1575.
1908. June 3.
G. M. T. $20^{\text {h }} 01^{\text {m }}$

SESSIONAL PAPER No. 25a
ס AUUILI.E 1584.

1908. June 5.
 G. M. T. $20^{\mathrm{t}} 35^{\mathrm{m}}$

Observed by
Measured by T. H. Panker.

Wt.	Mean of Settings.	Corrected Star Settings.	Displacement in Revolutions.	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displace ment in Revolutions.	Velocity.
1	$59 \cdot \times 185$				1	451990	1958	0429	4478
1	59.6231	6140	0605	74.41	2	37.9604			
1	57.7645	7645	0623	$75 \cdot 00$	$\frac{1}{2}$	37.2349	2404	0484	46.41
2	56.6595				2^{2}	$36 \cdot 1205$	4255	0707	$67 \cdot 23$
1	53.9346	9376	-0322	$37 \cdot 06$	1	3.51146	1186	0304	$28 \cdot 51$
2	$53 \cdot 1106$				2	$35 \cdot 4265$			
1	$52 \cdot 3912$	3908	0240	$27 \cdot 14$	$1 \frac{1}{2}$	308236	8176	0580	$52 \cdot 08$
$\frac{1}{4}$	$51 \cdot 7032$	7022	0553	62.04	1	27×3774	3664	0462	$40 \cdot 10$
$1 \frac{1}{2}$	50.9223	9183	0348	$38 \cdot 69$	1	27.2576 18.8335			
1	50.0485				$\frac{1}{2}$	18.8335		0441	$-35 \cdot 23$
1	$\begin{array}{r}48.7062 \\ 45 \\ \hline\end{array}$	7012	1618	$67 \cdot 10$	1	18.8776		
Radial velocity 35.5									

§ AQUILLE 1633.
1908. June 24.
G. M. T. $18^{\mathrm{h}} 31^{\mathrm{mm}}$

Observed by W. E Harper.
Measured by T. H. Parker.

§ AQUTL.E 1642.
1945 . June 26 .

1. . M. T. $18^{h} 52^{m}$

W:	$\begin{aligned} & \text { Mean } \\ & \text { of } \\ & \text { Settings. } \end{aligned}$	Corrected Star Setting*.	Displacement in Revolutions.	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displacement in Revolutions.	Velucity.
2	59.8137				2	$43 \cdot 5225$			
1	59 594942				$2^{\frac{3}{2}}$	$42 \cdot 6036$	6166	0230	$23 \cdot 34$
1	589788	9748	0659	$80-46$		$12 \cdot 1050$			
	58.5962	5922	0057	$6 \cdot 93$	$\frac{1}{2}$	41.7834	7807	0352	3541
2	57. 8290				1	40.4726	4755	0413	$40 \cdot 96$
1	57.7667	7637	0631	75.97	2	39.7305 37.9465			
i	$56 \cdot 6748$ $53 \cdot 9205$	9215	0483	$55 \cdot 59$	1	37.9460 37.6986		. 0451	
	53-1059				1	3 \%. 2113	2218	16670	64.25
$!$	51.6633	6683	0892	100.08	$\frac{2}{3}$	35.4224			
1	48.7683 ts 7182	7272	0368	3994	2	$30 \cdot 8643$ 30.7867	7,0\%	-0849	
3	45.2623				1	27.3707	3691	0434	8064 -3767
1	45.1842	1967	0420		2	27.2482	,		
1	441888	2018	0574	$59 \cdot 29$					
Radial velocity.... - 398									

1905. June 27.
(i. M. T. $18^{\mathrm{h}} \mathrm{Og}^{\mathrm{ma}}$

Observed by
Measured by T. H. Pafker.
§ AQULL E 1650.
Observed by J. S. Plaskikt. Measured by T. H. Parker.

W゙t	$\begin{aligned} & \text { Mean } \\ & \text { of } \\ & \text { Settings. } \end{aligned}$	Corrected Star Settings.	Displacement in Revolutions.	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displacement in Revolutions.	Velocity.
2	59.8350				1	$4050 \mathrm{C}^{\text {c }}$	4×60	0400	$39 \cdot 68$
$\stackrel{2}{2}$	5.8130	7880	0388	-46.71	2	$39 \cdot 7571$			
1	35 56512 56804				$1 \frac{1}{2}$	$39 \cdot 6936$ $38 \cdot-283$	6636 7123	0532 0400	$52 \cdot 34$ $48 \cdot 70$
1	56.9804	9559	0096	$11 \cdot 40$	1	38.7283	7123	0400	48.70
1	$55 \cdot 1051$	0841	0411	4792	1	$37 \cdot 2502$	2362	0596	50.44
$\stackrel{2}{1}$	54.7645				1	36.4397	4257	0715	$67 \cdot 28$
$1 \frac{1}{3}$	${ }_{5}^{53} \cdot 9517$	9337	0361	41.55	2	35.4463			
8	$53 \cdot 1253$ 51.6990				2	$30 \cdot 9004$ $30 \cdot 854$			
1	51.6990 49.373	6860 3583	0715 0091	$80 \cdot 22$ $10 \cdot 21$	12	$30 \cdot 8548$ 27.3920	8248 3600	0508	45.70 45.65
2	48.7901				2	$27 \cdot 2785$			
1	$4 \times .740$	7270	0370	4014	9	24.8214	7912	0554	$46 \cdot 86$
2	45.2955				1	24.1059	0789	-0543	$45 \cdot 12$
2	45.2045	1835	0 Ō52	$57 \cdot 62$	2	24.8754			
1	44.2292	2077	0515	$53 \cdot 19$	$\stackrel{2}{2}$	22.5904			
$\frac{2}{2}$	43. 5514				1	22.5118	4788	0786	65.08
$\stackrel{2}{1}$	$49 \cdot 1240$				1	18.8332	7823	0609	-48.65
1	41 40 40	$\begin{aligned} & 2588 \\ & 6882 \end{aligned}$	0414 0610	41.40 60.79	2	18.8943			

SESSIONAL PAPER No. 25 a

ס AQUIL. E 16i6.

1908 June 27.
G. M. T. $1 \mathrm{~N}^{\mathrm{h}} 0 \mathrm{~g}^{\mathrm{m}}$

Observed by J. S. Phaskett.
Measured by T. H P.\&нкEI

Wt.	Mean of Settings.	Corrected Star Settings.	Displacement in Revolutions.	Velocity.	Wt.	$\begin{gathered} \text { Mean } \\ \text { of } \\ \text { Settings. } \end{gathered}$	Corrected Star Settings.	Displace. ment in Revolutions	Veiucity.
2	09.8256				2	45.2745			
1	57.7919	7829	0070	-8.42	12	$45 \cdot 2107$	2097	0290	$30 \cdot 27$
2	57.8327				1	$44 \cdot 2220$	2215	0377	38.94
${ }^{\frac{1}{2}}$	56.9519	4499	0206	2455	1	417726	7741	0575	5784
2	56.6750				2	412848			
2	54.7459				2	41.2964			
1	53.9418	9398	0300	$34 \cdot 53$	1	39.0028	9838	082.5	3175
1	53.7200	7215	0360	$40 \cdot 39$	2	37.96369			
1	$48 \cdot 7544$	7579	0079	$8 \cdot 57$	1	37.2796	2726	0162	-15 53
2	$48 \cdot 7663$				2	$35 \cdot 4331$		
					ial vel	city			21.9

万 AUUILE 16:
1908. July 8
G. M. T. $18^{19} 10^{\mathrm{m}}$

Wt.	Mean of Settings.	Corrected Star Settings.	Displace. ment in Revolutions.	Velocity.	We.	Mean of settings.	Corrected Star Settings.	Displacement in Revolutions.	Velucity.
2	$59 \cdot 8005$				2	$43 \cdot 5657$			
1	58.9967	0037	0370	-45.21	2	41.8142	7845	0471	4538
	58.5482 57.7767	7852	0427	51.88 51.89	$\stackrel{2}{2}$	41.3185			
2	57.8125				$1 \frac{1}{2}$	${ }_{37} \cdot 7667$	7297	0251	2410
1	56.9345	9415	0240	28.60	$1 \frac{1}{2}$	37.2799	2429	0459	4401
2	$56 \cdot 6620$				2	35.4685			
1	$53 \cdot 9232$	9322	0376	4327	2	30.9250			
2	$53 \cdot 1017$				1	$30 \cdot 8610$	8064	0692	$62 \cdot 14$
2	$53 \cdot 1317$				1	22^{-1311}	3611	0515	4470
1	51.7239	7039	0536	$60 \cdot 13$	2	27.3166			
1	48.7540	7370	0270	$29 \cdot 29$		24.9101			
2	487919				$1 \frac{1}{2}$	$24 \cdot 8730$	8080	0372	3150
1	$4 \cdot 1680$ $45 \cdot 3027$	4434	0270	28.89	2	$22 \cdot 6292$ $22 \cdot 5788$			
${ }_{1}^{2}$	$45 \cdot 3027$ $45-2398$	2138	0249	2599	$2{ }^{1 \frac{1}{2}}$	22.5788 18.9394	5063	0505	4181
1	$44 \cdot 2427$	2157	0435	44.93	1	18.9059	8 c 99	0335	-2676

© AQLIL.E. 169\%.
1402. July 10.
G. 11. T. $1 \$^{1 /} 3 i^{\prime \prime}$

§ AOZTIL.E. 1695.

190s. July 11.
G. . 1. T. $13^{41} 20$

Observed by J. S. Plankett.
Measured by T. H. Parker.

Wt.	Hean of Setting.	Corrected Star Settings.	Displacement in Revolutions.	Velocity.	Wt.	Mean of Settings.	Corrected Stiar Settings.	Displacement in Revolutions.	Velocity.
2	$59 \cdot 8.327$				2	45.3050			
1	$59 \cdot 6739$	6354	0391	-48 13	2	$45 \cdot 2435$	2210	0172	17.95
$\frac{1}{2}$	59.0715	0335	0396	48.39	${ }_{2}$	$4+2905$			
1	57.8545	8185	-0083	1119	$0^{\frac{1}{2}}$	44.2539	2224	0368	$37 \cdot 97$
2	57.8587					42. 1319			
${ }^{\frac{1}{3}}$	$56.977 \times$	9428	0233	27.77	$1 \frac{1}{2}$	41.8032	7749	0567	$57 \cdot 04$
$\frac{2}{1}$	$56 \cdot 7102$ $55 \cdot 1281$	0941	-0311	$36 \cdot 26$	2	39.7632 38.7665	7405	0118	11 - 49
2	51.7768	091	0311	50	2	$30 \cdot 9112$		018	11 +9
1	53 m 213	943	0225	2589	1	30.8476	81.46	${ }^{1} 610$	54.74 11.80
2	531442				1	$27 \cdot 4370$	3990	0136	11.80
1	52.1120	3790	. 0358	4048	2	27.2825		
1	$51 \cdot 795$	7085	'0490	54.97	2	- 18.88525			
$\stackrel{2}{1}$		445	0219	$23+3$	1	-18.8525	8124	0310	$-24 \cdot 5$

SESSIONAL PAPER No. 25a

1906. July 13.
(i. M. T. 12h $52^{\text {m }}$

ร HOU1L.E. 1753.

15ink. July 31.
(f. M. T. $16^{\mathrm{h}}+1^{\mathrm{m}}$

5 AQULLLE. 17 CR .

Rakial velocity
Observed by
Mpasured by ; T. H. Pakkiz.

Wrigited mean.

万 NOLTL.E 175H.*
$1908 . J u l y 31$.
(i. M. T. $17^{11} 17^{m}$

Wt.	$\begin{aligned} & \text { Mean } \\ & \text { of } \\ & \text { Settiugn. } \end{aligned}$	Corrected Star Settings.	Displacement in Revolutions.	Vehrity.	Wt.	Mean of Srettings.	Corrected Star Setting*.	Displacement in Revolutions.	Velocity.
2	54.7189				1	45-1899	2129	0254	26.98
1	53.9370	9575	012.3	-1415	$\frac{1}{2}$	44.2025	2255	1835	3481
2	$53 \cdot 0436$					+3.5112			
$2^{\frac{1}{2}}$	52.3557	3772	0376	+2. 52		37.9405			
2	48.7477					378294	2504	0384	33.82
	486932 $47 \cdot+122$	7219	0428	46.48	9	27.3766	3583	0270	$20 \cdot 84$
$5^{\frac{2}{2}}$	4T +192 $45 \cdot 2530$	1392	1552	376		27.2349			

Weighted mean.	-3605
\bar{V}_{1}	- 7.61
V_{d}.	
Curva	28
Radial velocity.	$44^{\circ} \cdot$

[^35]
SESSIONAL PAPER No．25a

19世木界 Aug．A．
（i．．11，T． $18^{\mathrm{h}} 00^{\mathrm{j}} \mathrm{m}$

Oharved by I．S．Plankett．
Measured ly T．Н．РАहке月．

Mean of Settings．	Corrected Star settings．	Displace－ n．ent in Revolutions．	Velovits．
ti） 4821	98.6	（4135 ${ }^{\text {a }}$	3．7
45.274			
5． 2148	216 K	（12）19	
＋4． 2346	2976	10216	2231
＋3．0328			
+1.887 +12791	7924	10349	$39+6$
30.8758			
－7．3845	3779	1361	1

§ A QUIL．E 1783．
1408. Aug． 15
（i．M．T． $1^{17^{\mathrm{h}}} \mathbf{3} \mathrm{s}^{\mathrm{m}}$

Oberved by J．S．Piashett．
Mensured by T．H．Parkkr．

Wt．	$\begin{aligned} & \text { Mran } \\ & \text { of } \\ & \text { Settings. } \end{aligned}$	Corrected star Setting．	Displace ment in Revolutions．	Velacity：	Wt．	Mean of Settings．	$\begin{aligned} & \text { Corrected } \\ & \text { Star } \\ & \text { settings. } \end{aligned}$	Displace－ ment in Kevolutions	Velocity．
2	57.8126				2	45.2802			
，	$57 \cdot 8193$	8023	024．5	29.49	1	45.245%	2404	0020	2018
$\stackrel{3}{1}$	54.7335				$\frac{1}{2}$	$4 \cdot 2265$	2305	088．	39.9
1	$53 \cdot 4473$		0125	14．38	${ }^{2}$	$43 \cdot 543.4$			
	53.0998				1	41.3061	2951	0021	≥ 10
0^{2}	$52 \cdot 4042$	4042	1076	$8 \cdot 5$	${ }^{\frac{1}{2}}$	$10 \cdot 5358$ $37 \cdot 97+3$	505\％	－0021	$2 \cdot 108$
2	51.7060	7120	－0453	51.05	1	$37 \cdot 2659$	2499	0384	$37 \cdot 30$
1	49.3467	3487	0213	$23 \cdot 25$	，	30.9025			
1	48.7663				1	298983	8643	0105	$3 \cdot 31$
12	48．7345	7360	02180	－30．38	${ }^{\frac{1}{2}}$	274506	41.6	－ 0010	9．815
1	47． 4838	1828 973	－0124	$\begin{array}{r} 13.26 \\ 7.67 \end{array}$		27.2458			

9-10 EDWARD VII., A. 1910
\& AQU'IL.E. 1837.
1!4is. Aug. 27.
(f. M. T. $15^{\mathrm{h}} 03^{\mathrm{mm}}$

Ohmerved by J. B. Casinos.
Measured by T. H. Рarker.

MERIDIAN WORK AND TINE SERVICE

By
R. M. STEWAR', M.A.

CONTENTS.

Page.
The Transit Annex. 559
The Meridian Circl. 563
Transit Observations 567
Personal Equation. 574
Time Service. 580
Appendix A.-Rate of the Standard Clock of the Dominion Observatory 582
HLLISTRATIONS.

1. Floor of Transit Amex. 586
2. Piers in Meridian Circle Room 586
3. Piers in Transit Room 586

APPENDIX 3.

REPORT OF R. M. STEWART, M.A., ON MERIDIAN WORK AND TIME SERVICF.

Ottawa, March 31, 1909.

W. F. King, Esq., LL.D., C.M.G.,
Chief Astronomer,
Department of the Interior, Ottawa.

Sir, - I have the honour to report as follows on the work carried out under my charge during the past fiscal year.

A great part of the year has been taken up with work in connection with the fitting up of the Transit Annex, including the reconstruction of the piers, and with tests and alterations of the Meridian Circle. As will be seen below, the latter has proved to be defective in many respects, necessitating a great deal of work in the alterations required before it can be made to perform creditably; among the most important and laborious of the operations were the renewing of the pivots and the truing up of the planes of the circles; further alterations still remain to be made. The usual amount of observation and computation has been done for determination of clock error, more particularly in connection with the operations carried on in the field for determination of longitudes. The question of personal equation was considered, and a special series of observations made in an attempt to discover the laws which it followed. The differences of personal equation found were in some cases comparatively large; the persoual equations of at least two of the observers appeared to be due to a tendeney always to set the movable wire asymmetrically with respect to a star image when estimating a bisection; in the case of one observer this error of bisection amounted to over a second of arc. The time service has been maintained as in the past, and has been extended to include the Mint and the Archives Building. An analysis was made of the rate of the Standard Sidereal Clock; an account of this is given in Appendix A below.

THE TRANSIT ANNEX.

The Transit Annex, which is located at the western end of the main building, consists of two rooms, the Transit Room and the Meridian Circle Room. The former is connected to the main building by two doors, one opening into the Chronograph Room, and through it into the Time Room, the other communicating with the main hall-way. In it are situated two piers for the portable astronomical transits belonging to the Observatory, the western one of which is also provided with two collimator piers. The inside dimensions of this room are 21 ft .4 in . in the meridian by 21 ft .9 in. in the prime vertical. The Meridian Circle Room, situated to the west of the former. communicates with it by two doors. It is 34 ft .3 in . by 15 ft .6 in , and contains the piers for the Meridian Circle and its two collimators; the instrument is situated somewhat to the south of the centre of the room.

The walls of the building are of stone, containing a number of lourred windows to allow circulation of air between the outside walls and the inner lining. The latter is of galvanizel iron, and covers the whole of the outer walls except the observing slits. The roof is a flat concrete one; between it and the galvanized iron ceiling is
an air-space of about two feet, through which the outer air circulutes freely by means of a number of small louvred openings. Ventilation of the room itself, when the observing slits are closed, can be controlled by a number of shafts which pierce the walls, terminating just above the floor in registers which may be opened or closed as desired. The observing slits, which extend downward to within three feet of the floor, are three feet in width; they are closed by vertical doors in the walls, and by shutters on the roof. The opening mechanism for these, which was installed during the past winter, is described below.

As mentioned in my last report, the Meridian Circle piers had suffered upheaval during the winter of $1907-8$, shortly after the instrument had been mounted. During the period between the early part of January and the end of March the level error changed from about ten seconds to nearly six minutes of are. During the next two weeks it rapidly decreased to about two and a half minutes, and thereafter continued decreasing with a gradually diminishing rate; by the middle of May it had reached a value of about one minute. As the graduated circles had been returned to the makers for repairs there was no convenient means of measuring the change of nadir point, i.e., the angular displacement of the piers in the meridian; it also, however, was no doubt considerable. The collimator piers were also displaced by a number of minutes. The two field-transit piers and the two collimator piers in the Transit Room fared even worse, having all been broken across in the basement a few feet above the floor.

The trouble was evidently due to the action of frost; if further confirmation were needed, it was supplied by an examination of the earth beneath the basement of the Transit Room, which was found to have been saturated with water and frozen. A drain had been provided to carry away surplus water, but the system of drainage was not sufficiently thorough. It was also evident that the foundations of the piers were not sufficiently protected. It was decided that the only satisfactory remedy lay in the reconstruction of all the piers, sinking their bases several feet deeper into the earth, and providing a system of drainage as thorough as could be installed. The matter was taken up by the Department of Public Works, and the demolition of the old piers-an undertaking of considerable magnitude in itself-was begun in May.

It had been previously decided that the azimuth marks for the Meridian Circle should depend on the same principle as those designed by Sir David Gill for the Cape Observatory, the primary marks consisting of lenses fixed some distance underground to ensure stability, while above would be movable marks capable of being adjusted accurately over the optical centres of the underground lenses. A similar arrangement would be required in the case of the collimator piers, to ensure the stability of the long-foens collimating lenses which form a part of the azimuth-mark system. As the original collimator piers had not been designed with this end in view, the necessity of reeonstruction afforded an opportunity of so altering the design as to facilitate the introduction of this principle. It was necessary also in this connection to consider the disposition of the collimators. If these were placed in a horizontal line it was found that it would be impossible to obtain a line of sight under them upon azimuth marks at a sufficient distance; nor was it considered advisable to raise the azimuth marks to the horizontal line and, by rendering them intervisible, use them as collimators, on account of the height to which it would then be necessary to build the azimuth piers. It was decided finally to do away with the south collimator, using the azimuth mark in its place, and placing a mounting for the other collimator on the north pier, above the collimating leus of the north azimuth mark. This was also advantageous in another respect, since the southern pier, being required only for the long-focus collimating lens, need not exteud so far towards the Meridian Circle, thus increasing the range of reflection observations towards the south; the north collimator would not interfere with those towards the north, on account of its greater distance from the telescope. It is possible, however, that the north collimator may also finally be dispensed with;
if, as scems likely, the azimuth marks should prove sensibly stable for consideralhe periods, it will be possible to control the collimation by readings on them, in conjunction with oceasional reversals of the Meridian Circle. Detcrminations of flexure might also be made by means of the azimuth marks. by an interchange of eye and object ends of the teleseope. Should this arrangement prove possible it will be of advantage; the lenses of the collimators being of only $4 . \frac{2}{2}$ inches aporture, the full aperture of the Meridian Circle is not made use of in readings upon them, and it is perhaps doubtful whether the line of collimation so obtained will coincide exactly with that depending on full aperture.

The footings of the reconstructed piers extend 162 feet below the level of the floor. Beneath the transit room is a basement with a concrete floor, which lies 10 feet below the upper floor, so that the transit piers extend 61 feet underground; the Meridian Circle and collimator piers, on the other hand, are surrounded with earth to a height of about 10 feet. All the piers are surrounded at the base by drains of broken stone. It was my with to have these drains continued to within a few inches of the surface, so that there could be no doubt as to the thorough drainage of the piers throughout their whole height; the Public Works Department, however, decided that drainage around the bases would be sufficient, and it was só done.* On account of the depth to which the piers were sunk, it was impossible to lead these drains to the sewage system; accordingly a special conerete cistern of about 1.000 gallons capacity was built below the level of the piers and the drains were led into this; a pipe leading from the cistern to a motor pump serves to empty it as often as necessary. A float connected to a light rod has been so arranged that the top of the rod may be flush with the basement floor when the eistern is empty; the length of rod projecting through the floor gives a measure of the depth of water in the cistern. The amount of water which collects in the cistern at certain seasons is remarkable; on several occasions this spring, immediately after or during a prolonged heavy rain, it has been filled overnight; this cireumstance, coupled with the fact that during periods of dry weather comparatively little water is collected, points to surface water as the source of the accumulation. It would appear that the surface drainage flows down beside the outside walls of the building and so under the foundations, often in considerable quantities; this being the ease, there would appear to be serious danger not only of finally blocking up the broken stone drains by accumulated silt, but also of undermining the foundations of the Transit House. This danger could probably be avoided by building a suitable drain to surround the tbree cxposed walls of the building.

The parts of the two collimator piers below the floor are similar. The footings are nine feet by six, the longer side being in the east-west direction. The western part of each pier is penetrated by a vertical pit three feet square, to allow access to the underground lens which will serve as the fixed mark; this part of the pier terminates some six feet below the level of the floor of the Meridian Circle Room, and the opening is corered by two hatchways, between which is packed mineral wool. The main part of the pier tapers upwards to the floor, where it measures three and a half feet in the meridian by two and a half in the prime vertical. Through the centre of this is a vertical shaft about six inches in diamcter, extending down to the level of the pit preriously mentioned, into which it opens by a small arch. At the bottom of the arch the underground lens will be fastened firmly to the concrete. with space underneath for a basin of mercury. Access is had to these when necessary by the pit at the side, while the necessary readings are taken from above through the small shaft.

Above the floor the piers are dissimilar. The northern one, which is intended to support both collimator and long-focus azimuth lens, is built with an overhang to the north. so as to allow as much space as possible to the south for observation of stars by reflection; the dimensions of the top are $5 \mathrm{ft} .41 \mathrm{in} . \mathrm{by} 2 \mathrm{ft} .4 \mathrm{in}$. The southern pier,

[^36]which will utimately be required only for the long-focus lens, tapers from the floor to a size of 20 inches by 28 inches at the top. It will also be necessary, however, to fasten a temporary frame-work to the southern pier to support a collimator until the azimuth mark piers shall have been built.

The foundations of the main telescope piers are intended also to carry a pier which rises to the level of the floor, to support the carriage upon which rests the mercury horizon for observation of stars by reflection. In the original pier this had not been included, but it was found that the cement floor was not sufficiently free from vibration to serve the purpose. This part of the pier is, at the floor level, 10 ft .6 in . in length by $1 \mathrm{ft} .10 \frac{1}{2} \mathrm{in}$. in width, extending 3 feet south of the axis of the Meridian Circle, and 7 ft .6 in . to the north. The foundation is in the form of a cross, with an extreme length of 13 feet, and width of 10 ft .6 in ., tapering upwards to within a foot of the floor, where the size is 10 ft .6 in . by 8 ft . The two columns supporting the bed-plates of the instrument are 2 ft .3 in . square at the floor, tapering to 1 ft .4 in . at the top, which rises to a height of 6 ft .2 in . from the floor. The inner faces of the piers, which are vertical, are at a distance of 3 ft .6 in .

In the Transit Room, the two transit piers and the two collimator piers, the latter forming part of the system of the western transit equipment, extend to the same depth as the Meridian Circle piers; as stated above, however, owing to the basement which underlies this part of the building, they are surrounded with earth to a height of only $6 \frac{1}{3}$ feet; the concrete cistern above referred to lies immediately to the south of the eastern transit pier. A floor plan of the Meridian Circle Room and Transit Room, howing the positions of the varions piers is given in Fig. 1; sections of the piers are shown in Fig. 2 and Fig. 3.

All the piers are protected above the level of the floor by a layer of thick felt; surrounding this, with the interposition of an air-space, is a casing of mood. These casings, as well as the piers themselves, are of course free from the floor; the space between piers and floor, instead of being vacant, is filled with felt. To promote cleanliness, as well as for increased comfort during the winter months, the original concrete floor has been covered by a wooden one.

To exclude snow from the spaces between the imer and outer walls and above the ceiling it was necessary to have winter coverings for the lourred openings. These were made in the fall of 1908 and have worked satisfactorily during the past winter. They consist of frames to fit on the outside of the openings, covered with copper wire gauze of a fairly fine mesh; for protection agannst accidents this is covered by a somewhat heavy galvanized iron mesh. It has been found that these, while affording a reasonable circulation of air, exclude the greater part of the snow; if a little snow drifts through, it is caught by the louvres and prevented from penetrating to the space inside the walls. To ensure a freer circulation of air during the summer, the frames are removed in the spring.

The roof shutters for covering the observing slit are divided into three seetions in the case of the Meridian Cirele, and into two in the case of each of the transit slits. An opening mechanism had previously been applied to the central section in the Meridian Circle Room; that for the other six sections was installed during the past winter. The mechanism works on the same principle as that at Greenwich; each section of the shatter is supported by the outer ends of two curved arms which are fastened by keyways on a shaft hung in bearings parallel to the slit; the other ends of these arms carry counterpoises approximately equal in weight to the shutter. Keyed on the shaft is another arm extending horizontally nearly to the wall, and connected by another nearly vertical jointed arm to a winch on the wall, which serves to open or close the shutters by turning a handle. The joint between every two sections is covered by an independent flap, which is raised by either shutter indifferently; the flap is prevented from falling back when open by a flat curved spring which presses against it near the hinge, and starts it down with the shutter when the latter is being closed.

SESSIONAL PAPER No. 25a
The vertical wooden wall-shutters, six in number, have been made in two scetions, closing respectively the lower and upper halves of the observing slits in the walls. Both scetions open outwards; either the upper section alone, or both, may be opened; the lower section, however, can not be opened alone; in gencral only the upper section need be open, except for reading on azimuth marks. The upper section is controlled by a rod bent at right angles near its upper extremity, and fastened by a flexible joint nearly in the centre of the shutter; when closed the horizontal part of the rod passes over a hook on the shutter and the vertical part springs into place between two hooks on the casement, holding the shutter firmly closed; when open it is held in a similar manner.

The difference of longitude between the middle of the obscrving slit in the Meridian Circle Room and the pier in the old transit hut was measured January 20, 1909. A theodolite was set up to the south of the old hut and set on the transit wires; the azimuth of a point on the wall of the transit annex was measured from this point and the distance chained. The resulting longitudes of the Meridian Circle and of the centres of the two transit piers, referred to the old pier, are as follows:-

Meridian Circle,	214.9	ft

The approximate latitude of the Meridian Circle, as obtained from a few pairs of stars observed in August, 1908, is $45^{\circ} 23^{\prime} 37^{\prime \prime} .6$; this may be in error by several tenths of a second.

The positions of the azimuth marks for the Meridian Circle were laid down in the carly part of last summer. The line of sight to the north mark passes through the pinery immediately to the north of the Obscrvatory; the pier will be situated just beyond the top of a ridge ruuning in the east-west direction, and within about 30 feet of the road which forms the southern boundary of the city; its distance from the collimating lens will be about 250 feet. It was originally intended to have the south azimuth mark, if possible, at a distance of about 300 feet, situated on the other side of the driveway which runs in a northwest-southeast direction past the western end of the Observatory. As this ground belonged to the Department of Agriculture it was necessary to have its consent to the erection of the mark, and this unfortunately proved impossible. It was therefore neccssary to locate the mark on the grounds of the Observatory; as the line of sight of the Meridian Circle crosses the above-mentioned driveway at an angle, the greatest distance obtainable was about 160 feet.

The piers and the buildings to protect them have been planned, but no provision has as yet been made for their erection.

THE MERIDLAN CIRCLE.

No observations were made with the Meridian Circle during the period covered by this report. The year has been occupied with the many alterations which were found necessary before the instrument could be got into condition to do creditable work. There is scarccly an essential part of the instrument which has not required alteration in at least some detail. Much of this work has been done; much still remains to do. It is hoped, however, if the repairs which still remain can be completed in the workshop in time, to be able to begin regular work in both right ascension and declination about the beginning of 1910 .

The graduated circles, which had been returned to the makers for repair of damages sustained in shipping, were rcceived in June. They were immediately mounted and their planeness tested by the same method as used previously, as described in my last report. It was found that the extreme deviation of the fixed circle from a true plane at right angles to the axis was now about .001 inch; that of the movable
circle was, however, 006 inch, a quantity large enough to throw the microscopes very slightly out of focus at the extreme points. It was also discovered that on reversing the instrument the microscopes were no longer in focus; in fact, the circles were unsymmetrically fixed on the axis by about one twenty-fifth of an inch; it developed later that this was at least partly due to the fact that in truing up the fixed circle, not only had the band carrying the graduations been turned down but also a cut had been taken off the bearing on the other side of the circle, without any compensating alteration on the movable circle.

To rectify the latter point, it would appear to be immaterial whether the circle were set farther out on the axis, or the end of the pivot shortened, or, what amounts to the same thing, the other pirot lengthened; the desideratum being that the distance from plane of graduations to end of pivot should be the same for both ends. Accordingly, as being the easiest undertaking, a bushing of hardened steel was made to fit into the hollow of the pivot corresponding to the movable circle, carrying a dise of the required thickness which fitted against the end of the pivot. This worked fairly satisfactorily, but as will be seen below, another alteruative was adopted later.

With regard to the other error of the circles, which we may for brevity designate the deviation from mean plane, it may be composed of two parts-(1) a divergence of the average plane of the graduations from true perpendicularity to the axis; (2) a deviation of the graduated band itself from the true plane form; the former may be remedied by alteration of the bearing surfaces between circles and axis, the latter only by re-graduation. If p be the perpendicular distance of the object glass of any microscope from the graduated band, and d the distance of the graduation set upon from the centre of the field, then the measured angle will be

$$
\theta=\frac{d}{p} .
$$

Differentiating with respect to θ and p

$$
\delta \theta=-\frac{d}{p^{2}} \partial p=-\theta \frac{\partial p}{p} .
$$

Hence the error in the angle measured by one microscope is proportional to that angle and to δp, which is the deviation from mean plane of the circle at that point. The maximum effective value of θ, provided settings of the telescope are made without regard to the position of the division marks in the field of the microscopes, and provided also that only one division mark is set on for each setting of the telescope, will be the same as the interval between successive graduations, in this case 5^{\prime}; also the value of p is 2.7 inches. Thus if p be .001 inch, the maximum error arising from this source of an angle measured by one microscope will be $\cdot 11^{\prime \prime}$. Further, this will be practically a constant error for any particular star, except as influenced by reversal of the instrument and more particularly by alterations of the position of the circle on the axis. If, however, as is practically always the case, angles be measured by a pair of opposite microscopes, the part of this error due to lack of perpendicularity of graduated band and axis will be eliminated, p being of opposite sign for the two microscopes. That part, however, which depends on deviations of the graduations from a true plane, will still remain; if the deviations are due to a simple bend of the circle along a diameter the effect will be reduced, though not eliminated, by reading four microscopes. It may be noted here that the error $\delta \theta$ varies inversely as p; hence the advantage of long focus microscopes; those on this instrument are probably too short.

All errors arising from deviation from mean plane may be eliminated by setting exactly on division marks, throwing the brunt of the measurement on the declination micrometer. In this case it is sufficient if the circles are nearly enough true that the graduations may be alwars in focus. This must, however, be qualified by the recollection that focal lengths, \&c., vary with temperature; hence it is desirable even in this

SESSIONAL PAPER No. 25a
case that the circles should be as true as pussible, in order that the wemens of refocussing may be reduced to a minimum.

Jraving regard to these facts, it was decided in the first place to attack the adjustment of the movable circle, as being the one most requiring it; it was also decided that the only feasible method lay in scraping the bearings between circle and axis, in conjunction with tests by a surface-plate. In order to save time, since the reconstruction of the piers in the meridian circle room was being proceeded with, it was decided to erect temporary piers outside for the necessary tests, and to shelter them by a wooden hut. Tn the meantime a special surface plate in the form of a ring was constructed, in order to make the necessary tests for flatucss of the bearing on the axis against which the circle was clamped.

As before, the lower southern mieroscope on the western pier was replaced by a steel rod sliding in bearings, one end of which could be brought into contact with the graduations when desired. A mark on this was set on with the microscope, which had been mounted with its axis perpendicular to the rod. Readings were taken at every 30° around the eirele; the latter was then shifted 90° on the axis and the process repeated; the same was done for positions of the circle 180° and 270° from its initial position.

Assume in the first instance that the graduations all lie in one plaue; also that the bearing surface on the circle and that against which it engages on the axis are true planes. Let the angle between the axis of the telescope and the normal to the surface of the bearing on the axis be $a^{\prime \prime}$, and let the plane containing these two lines intersect the position of the lower southern microscope when the pointer reading on the fixed circle is φ. Also let the normals to the plane of the graduations and the plane of the circle bearing (on the movable circle) include an angle $b^{\prime \prime}$, and, for the initial position of the movable circle, let χ be the pointer reading on the fixed circle when the plane containing these two normals cuts the lower sonthern mieroscope. Then, for the position of the telescope corresponding to a pointer reading θ on the fixed circle, the displacement from its mean position of the graduated band (on the morable circle), as measured by the microscope, will be

$$
a \cos (\theta-\varphi)+b \cos (\theta-\chi) .
$$

Taking a series of readings at intervals of 30° around the circle, and diminishing each by the mean of all, we shall have twelve equations of the form,

$$
a \operatorname{ens}(\theta-\varphi)+b \cos (\theta-\chi)=m,
$$

θ having the values $0^{\circ}, 30^{\circ}, 60^{\circ}$, \&c. For the second position of the circle we have twelve equations of the form

$$
a \cos (\theta-\varphi)+b \cos \left(\theta+\frac{\pi}{2}-\chi\right)=m^{\prime}
$$

and similarly for the two remaining positions. From these 48 equations we may determine a, b, φ and χ with considerable accuracy, thus obtaining a complete knowledge of the magnitude and location of the errors considered. Further, by substituting the values so found in the observation equations, we may from an examination of the residuals determine by how much the circle departs from the plane form.

The first test with the new surface plate showed a high spot at one point on the axis bearing; when this had been scraped off the deviation of the cirele was considerably lessened. The first set of measurements after this had been done gave a value of $9^{\prime \prime}$ for a and about $4^{\prime \prime}$ for $b_{\text {; in }}$ in one position of the circle on the axis this corresponds to a variation of over .002 inch, exclusive of irregularities. It was found also that the circle was distorted by the pressure of the serew collar which holds it against the axis, so that when the collar was forced home the irregularities reached a value of $7^{\prime \prime}$ on each side of the mean, as against about $4^{\prime \prime}$ when it was only moderately tight: this was found to be due to the faet that the circle bearing was not a plane; the same was true of the face of the serew collar and the face on the circle against which it bore.

For these latter, simo the ouly requirement was that they should be plane, one scraping, in conjunction with tests by a surface plate, was sufficient; in the case of the bcarings between circle and axis, however, on account of the difficulty of knowing just how much was taken off at a time, it was necessars to proceed by trial, taking care that both surfaces should always be plane when measurements were taken. In this way, after some half dozen trials, the values of a and b were each reduced to about $1^{\prime \prime}$.

Some preliminary measurements had previous to this been made for determination of pivot error; it had been assumed without testing that the pivots were hardened; it was aceidentally discovered, however, about the end of August, while the adjustment of the circles was still going on, that this was not the case. Such a serious defect as this had not been anticipated, though considering the many other imperfections of the instrument it should perhaps not have proved surprising.

After consideration, it was decided to turn the pivots down to a smaller size, and to force over them hardened steel bushings of the original diameter (4 inches). We were mueh handicapped by lack of previous experience in such operations, and by the lack of machines large cnough to accommodate the axis, but after sereral failures have finally succeeded in obtaining pivots which give every promise of being satisfactory.

Is the lathe at the Observatory was not large enough for the purpose, the axis was taken to a machine shop in the city, and the original pivots turned down to a diameter of about $3 \frac{3}{3}$ inches; they were then carefully ground with a very slight taper, to facilitate the foreing on of the bushings. Here again difliculty was encountered, as nowhere in the city was there a grinder capable of accommodating the instrument; inquiries in Montreal and Toronto were equally unavailing. The grinding was finally done in a lathe, by fastening a small portable motor-driven eutter-grinder in the toolpost of the lathe. The first bushings were made from forgings obtained from a local firm; after turning, boring and hardening these, they were ground inside to the required taper, and outside to very nearly the finished size, and then forced over the ground surfaces on the axis. They were then reground, and finished by using flour emery in a circular lap of gun-metal. Not until this final process was reached was it discovered that the metal was permeated by minute flaws which made the attainment of a perfect surface impossible.

At this stage Messrs. Warner and Swasey, the well known instrument makers of Cleveland, were communieated with; in their reply they very kindly gave a complete description of the processes they employed in finishing pivots. The details of the process were practically the same as had bcen followed here, with the exception that they advised making the bushings not from forgings, but from blocks cut out of bar steel, to insure as far as possible homogeneity and freedom from strains and flaws. Accordingly a bar of steel was obtained and new bushings made from it; on this occasion the use of the workshop at the Royal Mint, where large lathes were available, was very kindly offered by Mr. Cleave, and was thankfully accepted. Trouble was again expericonced with the lapping, it being found impossible to get a satisfactory surface. The Observatory mechanician, Mr. Mackey, who has had long practical experience in all linds of machine work, finally gave it as his opinion that the difficulty arose from the -anall inequalities left in the surface by the portable grinder employed, the machine not haring sufficient rigidity to ensure an even surface; as a matter of faet this proved in the end to be the case.

One of the machines at the Mint is a large grinder, sufficiently loug to carry the meridian circle axis, but capable of swinging only fourteen inches, while the largest liameter of the axis is eighteen inches. This machine Mr. Cleave very readily permitted to be altered by raising the centres to a sufficient height; in fact the work in monnection with the alteration was all performed at the Mint, and nearly all by his own workmen. When this had been done, the pivots were re-ground in it, and no further trouble was experienced in the lapping. At the same time, the tapered bearings on which the circles fit, were trucd up, as a slight cecentricity with respect to the
new pivots had been introdued; this made it necessary also to turn a corresponding amount off the faces against which the circles are clamped. Buring the process a small cut was also taken off the end of one pivot, to eliminate the asymmetry mentioned above in the positions of the circles.

In this comection I wish to express my apprcciation of the very great kinduess of Mr. Cleave in practically placing his whole workshop at our disposal. Itad it not been for his generous offer the work could hardly have been done in Canada.

As stated ahove a preat deal of work still remains to be done on the instrument. The two bearings on the axis, against which the circles are clamped, will doubtless require to be scraped, as will also the bearing on the fixed eircle; this alone will require considerable time. The comuterpoises are very unsatisfactory; a weight of about 350 pounds is at present counterpoised through a lever system by 10 pounds; with such a multiplication factor, especially with the arrangement used, the friction is so great as to prohibit effective control of the weight resting on the pivots; new counterpoises will require to be made. The right ascension micrometer, or rather the eye-piece slide driven by it, docs not work freely, and will require overhauling. Several of the micrometer slides in the circle microseopes do not work freely; the springs in these are also unsatisfactory. The double spider lines in right ascension and declination micrometers and circle mieroscopes are at unsuitable and varying distances, and will require to be renewed. Besides these, there are many other details which require attention. The necessary alterations can best be made at the Observatory, where personal supervision will be possible; as, however, the machine shop is alway* overerowded with work, it may take considerable time.

The observing couch, which was ordered some time ago, has been received. It is of somewhat different design from the ordinary form, and is intended to afford facility for quiek setting in any desired position, together with the possibility of easy adjustment after the observer has taken his place upon it. Four wheels, running upon the same tracks as the reversing carriage, carry a wooden frame-work which in its turn supports a central transverse axis. On the latter is pivoted a light steel frame, which is also supported near one end by two screws connected with the wooden frame-work; by rotating these the frame may be tilted through a small angle in either direction. On the same axis are mounted two movable leaves; each of these is supported near its outer end by two rack sectors which engage pawls fastened to the steel frame; the pawls engage in the raeks by their own weight, but may be released by a conveniently placed handle. The slow-motion screws are connected by means of a sprocket chain and bevel gears with two hand-wheels mounted one at each end of the transverse axis. The leaves of the couch can thus be quickly set in the approximate position required by means of the sectors, and after the observer has taken his place upon the couch he can tilt the whole upper frame into the proper position by means of the hand-wheels, whieh are always within easy reach. This slow motion has been found in practice to be a great convenience.

TRANSIT OBSERVATIONS.

Observations with the portable Cooke transit were condueted during the greater part of the year, as heretofore, in the temporary transit shed at the eastern end of the Observatory. About the end of January, however, the instrument was moved to the new Transit Room and set up on the western pier, where it has since remained. The difference in longitude between the new pier and the old is 199.9 feet, or 187 sec .

Observations were made on 142 nights, involving 281 determinations of clock error, as well as some observations for other purposes; on a number of nights two, and sometimes three, observers worked simultaneously, for determination of personal equation. The observations throughout the summer were principally for the purpose of longitude determinations at different points. As clock exchanges were frequently required with two different stations on the same night, sometimes at intervals of an
hour or two, it mould have been troublesome to arrange the observing so that it would not conflict with the exchanges. For this reason the two features were kept independent throughout the season, a separate chronograph being used for the exchanges; the latter were held at the hours most convenient to the field observers, irrespective of whservations or weather conditions at Ottawa; whenerer possible two determinations of clock error were made on every night, preferably, but not necessarily, about the time at which the exchanges were held; for nights on which no observations were obtained the clock error was interpolated from the two adjacent nights. This arrangement, which is of course permissible only with a clock of demonstrated reliabilits, has proved culite sufficiently accurate for all ordinary purposes; in the case of very important stations the interpolation from night to night might perhaps not be advisable; the independence of observations and exchanges is of advantage, especially on nights broken by clouds, in that it frees the observer from the interruptions and delay inseparable from au exchange. The number of exchanges was 156 , oceupying 116 nights; the observing was divided among Mr. Nugent, Mr. Smith and myself, the greater part being done by the two former. A first computation of the observations was made by Mr. Tobey; they were then recomputed by the observers, and a final check including oceasional recomputations was made.

The accuracy of determinations of level error during the summer was not up to standard. Early in the season the tip was broken off the level vial belonging to the transit; as no other good vial was available, and as several months were required before delivery of a new one, it was necessary to seal up the old one and continue using it. Though the mean ralue of a division was practically unaltered, it was found that the bubble had become rather sluggish and uncertain in its action, and considerable trouble was experienced with mcasurements of level error during the whole summer. The apparent probable error of a complete determination of level (comprising usually six independent measurements) was .011 sec .; that for 1907 was .006 sec ., and for the spring of 1909 , after renewal of the vial, .005 sec . This difference has probably quite an appreciable effect on the accuracy of the work.

The fluctuations in azimuth throughont the summer were reasonably small; adjustments in level were, however, frequently necessary; another peculiarity of the level crror was its tendency to progressive change during the evening's work, the western end of the instrument usually rising as the evening progressed; usually a compensating change took place in the opposite direction during the day, though the general tendency of movement throughout the summer was in the former direction. The average rate of elevation of the western pivot was .017 sec . (of time) per hour; the rate varied between -.016 sec , and 073 sec . per hour, being negative on 16 nights out of 89. There was no apparent connection between change of level and change of temperature during the hours of observation.

The method of observation was that deseribed in my last report; a set consisted of seven or eight southern stars well up towards the zenith, combined with three or four north stars between 70° and 80° declination; the telescope was reversed during the observation of each star; as a rule only one group of observations on each star was taken in each position of the instrument. The star-list used contained all the stars in Newcomb's Fundamental Catalogue between 10° and 40° and between 70° and 80° declination; the places of the Berliner Jahrbuch were used for all stars contained therein; for the other stars the places were taken from the Nautical Almanac, the Connaissance des Temps and the American Ephemeris without the application of any systematic correction; as the number of such stars was not very large, and as substantially the same list was used for the field observations, any resulting errors in the longitudes deduced would be small.

In the same way as described in my last report, the average discordance between two sets observed on the same night (after allowing for clock-rate) was used as a measure of accuracs; from this quantity the probable error of a single set may be

SESSIONAL PAPER No. 25a
deduced as follows:-The chance of an error x occurring in the first set on any particular night is

$$
\frac{h}{1 \pi} \cdot e^{-h^{2} x^{2}} \cdot \delta x
$$

where h is the measure of accuracy, and δx is the smallest quautity measured. Similarly the chance of an error $x+z$ oecurring in the second set is

$$
\frac{h}{\sqrt{\pi}} \cdot e^{-h^{2}(x+z)^{2}} \cdot \delta x
$$

The chance of both errors occurring on the same night is the product of these quantities; if we take into account the case where an error $x+z$ oceurs in the first set and an error x in the second the chance is doubled. Hence the number of pairs of errors x and $x+z$ occurring in Y nights is

$$
2 X \frac{h^{2}}{\pi} \cdot e^{-h^{2}\left(2 x^{2}+2 x z+z^{2}\right)} \cdot \delta \cdot c \cdot \delta x
$$

Hence the number of discordances z (irrespective of sign) occurring in N nights is

$$
\begin{gathered}
2 \lambda_{\pi}^{h^{2}} c-\frac{h^{2} z^{2}}{2} \cdot \delta x \int_{-n}^{+n} e^{-h^{2}\left(\sqrt{ } 2 \cdot x+\frac{1}{\sqrt{2}} \cdot z\right)^{2}} \cdot \delta x \\
\text { or } \bar{y} h \sqrt{\frac{2}{\pi}} \cdot e^{-\frac{h^{2} z^{2}}{2}} \cdot \delta x .
\end{gathered}
$$

Hence the sum of all discordances is

$$
x h \sqrt{\frac{2}{\pi}} \int_{0}^{\infty} e-\frac{h^{2} z^{2}}{2} \cdot z d z=\frac{\lambda^{2}}{h} \sqrt{\frac{2}{\pi}}
$$

and if the arerage discordance be denoted by Δ we have

$$
\Delta=\frac{1}{h} \sqrt{\frac{2}{\pi}} .
$$

But the probable error $r=\frac{.4769}{h}$; hence $r=.597 \mathrm{~s} \Delta$.
In the third column of Table I. are given the clock corrections obtained from each set throughout the summer; the fifth column gives the discordance (after allowing for clock rate) in every case where two sets were taken by the same observer on a single night; the average of all the discordances is . 033 sec., being practically the same for all three observers; the probable error deduced from this is .0197 sec . The value of Δ deduced in my last report for the old method of observation was .039 sec., corresponding to a probable error of .0233 sec ; as the weight, or efficiency, is inversely proportional to the square of the probable error, the increase of efficiency indicated is 40 per cent; and presumably this has arisen from the alterations in methods of observation and grouping of stars.

As stated above, howerer, the probable error of the measurement of level was . 011 sec. in 1908 as against .006 sec . in 1907 and previous years. If we assume that this effect enters for its full ralue in the observations of 1908 , we should, for a proper comparison, reduce the probable error of a set for the latter year accordingly; that is, we would have a probable error of .017 tsec . for 1908 , as against .0233 sec . for previous sears, an increase in efficiency of about 80 per cent.

9-10 EDWARD VII., A. 1910
TABLE I-TRANSIT OBSERVATTOAS IN 19世8

SESSIONAL PAPER No. 25a
TABLE I.-TRANSIT OBSERVATIONS IN 1908 -Coutinnen

9-10 EDWARD VII., A. 1910
TABLE I.-TRANSIT OBSERVATIONS IN 1908-Continued.

SESSIONAL PAPER No. 25a
TABLE 1.-TRANSIT ORSERVATIONS IN 1908.-Continued,

9-10 EDWARD VIH., A. 1910
TABLE I.-TRANSIT OBSERVATIONS IN 1908.-Continue ?.

[^37]
PERSONAL EQUATION.

An examination of the values of clock error for successive days, as given in the third column of Table I., shows that the differences of personal equation are not negligible. This was very clearly seen on plotting the results in a curve, using different coloured inks for each observer; it was also quite noticeable that the personal equation of N had suffered a sudden change between July 13 and July 16. To determine the values of the personal equations the summer was broken up into periods during whicis the curve appeared most regular; then for any one prriod the mean of the observations on each night was represented by the observation equation

$$
a+b t+c t^{2}+e=\Delta T
$$

t being the interval from a fixed epoch, a, b and c arbitrary constants, Δt^{\prime} the observed clock error, and e the personal eqnation of the observer referred to the standard obser-

SESSIONAL PAPER No. 25a
ver. It will be seen that this amounts to assuming that the elock-rate, during the period considered, varied uniformly with the time; the periods were so chosen, by inspection of the curve, that this condition should be approximately fulfilled; even if this were not the case the deduced values of e would still be trustworthy, provided the work of each observer were distributed fairly uniformly over the whole period. After combining the observation equations and delucing the values of e for N and CS, referred to S as standard, and also of a, b and c, these values were substituted in the observation equations and the residuals formed. As the average of the residuals for those parts of the summer incluted in the periods eonsidered was 022 sec , the largeut being .06 spe., it follows that the observations are fairly well represented by the formula. The relative personal equations derived for each period, with their probable crrors, are given in Table II. From these figures it would appear that during June and July the personal equation of CS underwent a gradual progressive change; from a consideration of the observations as a whole, however, and eonsidering the fact that, especially in the first period, the observations of CS were not distributed over the whole period, it was decided to treat the personal equations of $C S$ and of S as constant throughont the season, and to assume (as was evidenced by the clock-curve) a surden change in that of N about July 15. Combining the results for the whole season ou this assumption, the values of personal equation derived are as follows:-
$C S-S .034 \mathrm{sec}$.
N-S .113 sec . up to July 15 ; afterwards .048 sec.
As will appear below, it seemed likely from some later developments that the absolute personal equation of $C S$ was nearly zero; for this reason the above results were altered 80 as to make his observations the standard; the corrections to be applied to the clock errors of each observer were then as follows:-

$$
\begin{aligned}
& S \quad .034 \mathrm{sec} . \\
& \mathrm{X}-.079 \mathrm{see} \text { un to July } 15 \text {; afterwards }-.014 \mathrm{sec} . \\
& \text { CS } \quad .000 \text { see. }
\end{aligned}
$$

These corrections have been applied to form the last column in Table I.
To obtain the personal equations of the two field observers M^{*} and $J \dagger$, some additional observations were made, the field observers occupying a hut immediately to the south of the one in which the home observations were taken. The observations with M extended from September 14 to October 14; those with J, who did not return from the field until later, from November 21 to December 5. During a part of this time two of the home observers frequently observed together, in order to strengthen tho determination both of their own personal equations and of those of the field observers. This was rendered possible by the fact that the transit used (Cooke I) was fitted with an attachment which caused it to record over every alternate four revolutions (of the micrometer screw) throughout the field; one observer would follow the star over a group of contacts at a considerable distance from the centre of the field, the other over a group somewhat closer; after reversal the same series of observations was repeated in the reverse order; thus the observations of each observer were complete in themselves; the groups of contacts made by each observer were interchanged for alternate stars. Each observer also took an independent series of level readings; as it was found, however, that there was no systematic difference in this regard, the mean of all the level readings was taken in making the reductions.

The observations for M 's personal equation are collected in Table III.; those for that of J in Table IV. It is evident from Table IV. that for the November and December observations the personal equation of N had again suffered a decided change; those of S and $C S$, however, appear to have remained relatively unchanged; consequently in obtaining the personal equation of J only the observations of S and $C S$ have been used.

[^38]
9-10 EDWARD VII., A. 1910

The values of personal equation obtained above for the five observers engaged were applied throughout in the computations for longitude. Though perhaps not as accurate as might be desired, the agreement of the longitudes derived on different night-has been in general improved by their application, and there is at least no doubt of the real existence of personal differences of about the magnitudes indicated. It follows that it is never safe to assume the absence of personal equation with the transit micrometer, as was the tendency for some time after its introduction; though some of the differences involved above are small enough to be neglected except in the most refined work, several of them are of quite appreciable magnitude. They are, however, much smaller than the personal equations ordinarily occurring in key observations.

In considering à priori the question of personality with the transit micrometer, it would appear that there are two factors capable of affecting the result. On account of the motion of the star, there may be a tendency always to keep the moveable wire either ahead of or behind the star, irrespective of its apparent direction of motion; the distance between star and wire, expressed in angular measure, might be expected to be somewhat less for the more slowly moving stars, but this tendency would be, to some extent at least, counterbalanced by the greater value (expressed in time) of any particular angular interval for the latter class of stars; thus the tendency would be for the record to be made either too soon or too late by a quantity which might be sensibly the same for stars of all declinations; this is a personal equation of the same kind as the so-called 'reaction-time' in observations by eye and ear or with the telegraphic key, but it might be expected to be smaller. The second factor is the personal error of bisection, by virtue of, which an observer may tend always to set the wire either to the right or left of the centre of the star-image which he attempts to bisect; this effect would change sign with the direction of apparent motion, and its absolute value would be proportional to the secant of the declination, changing sigu at the zenith and at the pole; it might also be expected to vary with the magnitude. This error is also present in the case of estimation of transits across fixed wires; there is, howerer, so far as the variation with magnitude is concerned, the difference that in the latter case the tendency is usually to estimate the bisection of a bright star sooner than that of a faint one, irrespective of the direction of motion, while in the case of the transit micrometer, differences of magnitude will presumably simply have the tendency to increase or diminish the error of bisection.

Errors of the first class arise from the motion of the star, but are independent of its direction; those of the second class do not arise from the motion, but (when expressed as corrections to the time of transit) change sign with its apparent direction; the former will affect the time, but not the azimuth; the latter both, but more markedly the azimuth.

It had long ago been noticed by the writer that, for his own observations, it was impossible satisfactorily to combine observations of south stars with those of north stars at both upper and lower culmination; this for the reason that the stars at upper culmination, when combined with the south stars, gave values of clock error and azimuth consistently differing from those derived from the stars at lower culmination. This circumstance was explicable by supposing that the observations were affected by a systematic error of bisection, and by no other hypothesis except that of systematic catalogue error; it was found that the observations could be reconciled by supposing that the wire was set always to the left of the star by somewhat over a second of arc.

During the summer of 1908 it was decided to make some special observations to test, qualitatively at least, the validity of this hypothesis. In order to obtain as many independent tests as possible, several methods of observation were devised. The most obvious of all, the observation of transits of zenith stars facing alternately north and south, was impracticable with the telescope used, since the standards interfered with the froper manipulation of the micrometer wheels. The first nethod used was the

SESSIONAL PAPER No. 25a

mensurement of zenith distances; as the telescope was fitted with an erecting diagonal "ye-piece, this was comparatively simple. After setting on a star at some distance from the zenith, preferably a slow-moving north stir (the micrometer head having lieen previously turned so that the moveable wire was horizontal), the diagonal eyepiece was thrned in either direction about 45° from the vertical plane; on looking into it with the line joining the eyes horizontal, the micrometer wire appeared vertical. the direction of inereasing zenith distance being towards the right or left according to the direction in which the eye-piece had been turned. By making a number of settings with eye-piece alternately right and left the error of bisection was readily found. In this method the question is not complicated by the motion of the star, which appears to move along the wire, the motion in any case being very slow if high polars be chosen; thus the result is practically the simple error of bisection for a stationary object. By combining the results from different stars the variation depending on magnitude may also be found. The stars principally used were Polaris and λ Ursa Minoris; with the latter as many as a hundred settings could easily be made at one culmination. Several other stars of high declination were also used, the total number of bisections made being about 400. Observations of a similar kind on Polaris and λ Ursæ Minoris were also made by C. C. Smith.

The other methods used, which were three in number, all depended on the observation of transits. They were as follows:-
I. Observations of the same star (over different parts of the field) were made with the ordinary diagonal eye-piece (erecting), and also with a simple eye-piece of about the same magnifying power; as the apparent direction of motion is altered by interehanging the eye-pieces, the difference in times of transit (reduced to the meridian) was taken to be double the error of bisection. In this case the observations are not made under exactly similar conditions; with the direct eye-piece a movement of the hand-wheels appears, to an observer accustomed to the erecting eye-piece, to move the wire in the wrong direction, and there is no assurance \dot{a} priori that this will not alter the 'lag' effect, if this exists. The definition is also somewhat better with the direct eye-piece, which might tend to diminish the error of bisection in that case; the result might also be affected by the difference in the observer's position. On account of the use of the direct eye-piece, observations were not possible within 35° of the zenith; stars were observed near the equator and near the pole, both above and below. When reduced to equatorial interval it was found that the error of bisection was practically the same for polar and equatorial stars, the difference in times of transit being, as was expected, of opposite sign for north stars at upper culmination. Care was taken to have the magnitudes varied enough to determine the magnitude equation. The whole number of stars observed was 45 .
II. Observations of a few equatorial stars were made in the ordinary way, and also with the diagonal eye-piece turned through 180°, so that the observer faced upwards at an angle in looking into it. As before, the error of bisection was taken to be one-half the difference in the reduced times of transit. Theoretically this method is free from objection, as the conditions of observation are the same in both cases; practically, however, the difficulty of observing with the eye-piece down, without a suitable reclining chair, was found to be a very serious objection; only twelve stars were observed.
III. As in the case of the zenith distance observations above, the star was observed with eve-pieee both left and right, and also (over another part of the field) in the ordinary way. With eye-piece left the apparent motion of the star was upward, the wire appearing horizontal; with eye-piece right the motion was downward; the mean of these two observations was taken to be free from error of bisection; hence the error for the ordinary observation was derived. The number of stars observed was 43.

1a the several methods described above the results are indepeudent of catalogue piaces, and include both the absolute value of the error of bisection and its variation with magnitude. Computations were also made from the residuals of the southern Berliner Jahrbuch stars occurring in the ordinary observations to determine the magmitude equation in the ease of both S and $C S$; this involves the assumptien that the B. J. places are free from maguitude equatiou, which is probably very nearly the ease. The residual of each B. J. star in a set was diminished by the mean of all; the same was done with the magnitudes; there results for each star an observation equation of the form $b m=v, m$ being the magnitude of the star diminished by the mean magnitude for the set, v the residual dimiuished in the same way, aud b the unknown magnitude equation; the reduction to this form enables stars from different sets to be combined indifferently to obtain the value of $b, 170$ stars were used in deducing the magnitude equation of $S, 143$ for that of CS.

From the observations by S and $C S$ in October and November, on the nights on which the two observers worked simultaneously with the same instrument, a computation was made of their difference of personal equation and its variation with magnitude, on the supposition that it was wholly due to bisection error. This supposition appeared extremely probable from the fact that of 19 north stars (at upper culmination) and 43 south stars, every one of the north stars gave a negative difference in the sense $S-C S$, and every one of the south stars a positive difference. The signs of the differences for the north stars having been changed, each star furnished an observation equation of the form $a+b m=v \cos \delta$ for the determination of difference of bisection error, a and b being the quantities to be determined, m the magnitude, and v the observed difference. The 62 equations were combined by least squares, and a and b evaluated.

The results of all the observations and computations deseribed above are collected in Table V. In the case of the zenith distances the bisection errors, for the sake of uniformity, have been reduced to their equivalents in time; all the results are expressed in equatorial interval; the bisection error has throughout been considered positive when the wire is set to the apparent left of the star. The inter-agreement of the means is no doubt much closer than might have been expected from the varied nature of the observations and their comparatively limited number. The results, however, point very strongly to the reality of a large bisection error for the observer S, and to its variation with magnitude; the agreement for the two observers points to the probability that their personal equations arise almost wholly from this cause. For a set observed at the latitude of Ottawa ($45^{\circ} 24^{\prime}$), composed of north stars of magnitude 5.5 at declination 77° and south stars of magnitude 4 at declination 25°, which is about the average composition, the personal equation between S and $C S$ due to error of bisection, assuming the latter to be $.074 \mathrm{sec}-.0129(m-4)$, would be .036 sec .; the actual value as obtained directly above was .034 sec . The closeness of this agreement is, however, no doubt partly attributable to chance.

The observations of N in October, on the three nights when he worked simultaneously with S, appear to follow a similar law, the differences being all negative for the north stars, and nearly all positive for the south stars; for his observations in November and December, howerer, after the second change in his personal equation, this is not the case. The observations were considered too few to make a definite analysis; his magnitude equation during the early part of the summer, as deduced from the residuals, was - .0019 sec. per magnitude, a practically evanescent quantity.

It may be remarked that transits of stars near the zenith, observed with a broken type telescope. will be free from error of bisection when the telescope is reversed during the observation of each star. For an ordinary telescope the condition of elimination, so far as effect on the deduced clock-error is concerned, is that the sines of the mean zenith distances of south and of north stars should be proportional to the errors of bisection corresponding to their respective mean magnitudes, provided that the

SESSIONAL PAPER No．25a

zenith distances and magnitudes of individual stars do not differ widely from these means．As，however，the fulfiluent of this condition，even approximately，would be extremely difficult in actual practice，and as the resulting error varies fairly rapidly with changes in the conditions，the only practical remedy would appear to be the mea－ surement by each observer of his biscetion crror and the correction of each separate observation for it if large．Observations of both Polaris and λ Ursm Minoris at a single culmination，by the method outlined above，would be sufficient to determine whether the error and its variation with magnitude were sufficiently large to be taken into account；if so，further observations of the same kind could be made if desired．

In the measurement of azimuth by the transits of close circumpolars，the clock crror being supposed known，the error of bisection enters for more than its full value into the deduced azimuth．In this case the error might either be measured dircetly as above，and a correction applied，or it might be eliminated by observing with eye－ piece alternately left and right as described under III，above．

TABLE II．－PERSONAL EQUATIONS OF HODE OBSERVERS．

Period， 196.	CS－S	$\mathrm{N}-\mathrm{S}$	
	8	8	Preliminary．
June 1－20	-011 ± 021	－ 098 ± 016	
June 21－July 15	025 玉 014	099 ± 015	
Aug．2－31	046 ± 014	$007 \pm$ 士．015	
Sept．3－29．．	$056 \pm .018$	077 戸 019	
Oct．1－7．．	$050 \pm \cdot 016$	061 ± 022	
May 14 July 15		－ 113 ± 009	Adopted．
July 16 Oct． 13	$084 \pm 00 \%$	－048	

TABLE III．－PERSONAL EQUATION OF F．A．McDIARMID．

[^39]TABLE IV.-PERSONAL EQUATION OF W: C. JAQUES.

			ock C	ECTIOS:		Persox	Eqtati	of J.
		J.	s^{-}	$\mathrm{N}+$	C s	S-J	$\mathrm{N}-\mathrm{J}$	CS-J
1908.	h in	5	*	8	*	-	*	8
Nov. 21.	${ }_{0}^{0} 555$	$2 \cdot 319$	2.325	2-246		(100)	- 073	
- 26.	$23 \quad 50$	$2 \cdot 928$		2938	2988		- 050	000
	0 2	3.259 $3 \cdot 210$	$3 \cdot 287$ $3 \cdot 293$		$3 \cdot 307$ $3 \cdot 309$ $3 \cdot 65$	023 083		048
Dec. 2	$0 \quad 20$	3.516			3.664			148
	150	$3 \cdot 586$		3.502	3.611		-. 084	025
- 5	$\begin{array}{ll}23 & 05 \\ 0 & 55\end{array}$	3.947 $3 \cdot 920$	4015 +028	3.850 3.813	068	-. 097	
Means Weighted mean from observations of S and $C, 0061$ sec.								
						059	- 082	064

[^40]TABLE V.-ERRORS OF BISECTION.

TIME SERYICE.
The ordinary work in connection with the Time Service has consisted, as in the past, of the necessary attention to the up-town service, the sending out of time-signals to the telegraph company, dropping of the time-ball on Parliament Hill, supplying of mean and sidereal time by telephone to those requiring it, oceasional rating of chronometers, testing of aneroid barometers, \&c., together with the maintenance of the clocks and apparatus at the Observatory.

In addition to the daily time-signals to the telegraph company, the beats of the mean-time clock were on one occasion sent to a member of the Geological Survey staff at Blackwater, B.C., several hundred miles north of the main line of the Canadian Pacific Railway. On this occasion the transcontinental copper wire of the Canadian Pacific Telegraph was used as far as Vancouver; the signals were received at Blackwater satisfactorily.

During the winter season, unless required for special purposes, observations for time were taken usually not oftener than once a week, and occasionally at slightly
longer intervals, When required only for ordinary timc-keeping purposes (the clock error not being required more accurately than to within onc or two-tenths of a second) this is found amply sufficient with our Riefler Standard Clock.

Some trouble has been experienced with the maintenance of a perfectly uniform pressure within the case of the Sidereal Standard. During May, 1908, a leak at the rate of several millimetres per month developed; by careful resealing this was reduced, though not entirely eliminated; throughout the whole summer and the cnsuing winter a practically uniform leak of one millimetre per month persisted; as, however, the leak was uniform, it did not interfere seriously with the performance of the clock: no attempt was made to keep the pressure at its original value by periodical exhaustion, as it was considered that this would interfere with the continuity of rate. In March, 1909 , the electric seconds-contact failed; the necessity of dismounting the clock was taken advantage of to have it cleaned and oiled, after which it was again mounted and exhausted to a pressure of 688 millimetres. An analysis of its rate from June to October, 1908, is given in Appendix A below.

Reference was made in my last report to the proposed extension of the Time Service to the Printing Bureau, the Mint and the Archives Building. It was, however, later decided by the Public Works Department not to equip the Printing Bureau at present. A switch-room to contain the apparatus for serving the two remaining buildings was obtained in the Mint, and was fitted up under my supervision by the electricians of the Public Works Department; this work was completed on September 18. The master-clock for operating the dials was the one which had been formerly used in the basement of the Supreme Court Building as primary for the experimental system installed in 1902. For use as a secondary master-clock it required to be fitted with a minute-contact and a synchronization magnet, as well as with the cut-out described in my last report. This was done in the Observatory workshop, and the clock was set up in the switch-room at the Mint for regulation of rate on August 11. On September 19 at noon the dials in the Mint and Archives Building were started; the master-clock was not put under direct control from the Observatory until some little time later.

In the other departmental buildings there have, as usual, been changes and some additions to the dials in operation. The necessary attention to the system has in the main, as heretofore, devolved upon Mr. Robertson; Mr. Nugent has also frequently assisted in this work. Below is a list of the number of clocks in operation in the city and at the Observatory :-

	Mar. 31, '09.	Mar. 31, '0s.
Minute dials-Parliament Building.	49	46
East Block.	86	35
West Block.	63	61
Langevin Block..	48	48
Post Office. .	20	20
Thistle Block..	2	2
Ottawa Electric Co..	1	1
Mint. . . .	16	. .
Archives. . . .	7	.
Observatory..	2	28
Tower clocks.	2	2
Program clock. . .	1	1
Seconds dials ..	3	2
Total electrically driven clocks.	. 276	246

9-10 EDWARD VII., A. 1910

I have the honour to be, sir,
Your obedient servant,

R. M. STEWART.

APPENDIX A.

RATE OF THE STANDARD CLOCK OF THE DOMINION OBRERTATORY.

R. M. Stewart.

The construction of astronomical clocks has arrived at such a degree of perfection that, for the present at least, it is probably useless to look for much improvement in this direction. Attention requires to be directed more especially to the conditions under which the clock operates, with a view to keeping these as constant as possible. There are three main factors which influence the performance of a clock: (1) rigidity of mounting and freedom from vibration; (2) compensation for or elimination of variations in atmospheric pressure; (3) compensation for temperature.

The Sidereal Standard of the Dominion Observatory (Riefler No. 75) is of Riefler's well known primary type. The whole clock is enclosed in an air-tight glass cylinder to eliminate all changes of air pressure; it may be remarked here that the rate-variation due to barometer, if not eliminated, is very considerable, amounting in the present case to nearly half a second per day per inch change of barometer. The pendulum rod is of the particular composition of nickel-steel known as invar, whose temperature coefficient of expansion is rery small. The temperature compensation is effected by a short compound cylinder of brass and steel, upon which the pendulumbob is supported. The escapement is of Riefler's own type, one of the principal characteristics being that the impulse to the pendulum is given through the suspension spring; it combines many of the advantages of the two best fundamental types, the 'free' and 'gravity' escapements. The winding is electrical, and is operated automatically at intervals of 20 to 30 seconds.

Though the temperature-compensation of a good pendulum is sufficiently accurate for all ordinary purposes, the refinements of astronomical observations rake it necessary in addition to keep the temperature to which it is subjected as constant as practicable. It is considered by many authorities that a variation of a degree or two is not attended by any appreciable effects, but in our case the principle has been followed of aiming at a fairly high degree of refinement in temperature control. The temperature of the clock-room as a whole is kept nearly constant by means of a thermostat controlling an electric heater, while a fan keeps the air in constant circulation throughout the room. This. however, was not found to give the refinement desired, and a separate case was built around the clock. The temperature within the case is main-
tained slightly above that of the room by a Callender Electric Recorder，which controls a small electric heater，the air being kept in circulation as above by a small fan；the maximun variation is of the order of a tenth of a degree centigrade．

A good test of the rate of the clock is given by the longitude operations of the summer of 1908．Observations for clock error were made on every clear night for four and a half months，from the beginning of June＊up to the middle of October；in general at least two independent determinations were made on each night：the total number of nights was 91 ；three observers took part in the work，two of them obserr－ ing usually on alternate nights，and the third less frequently．

Owing to the continuity of the work and the accurate running of the clock，it was found possible to computc the relative personal equations of the observers from the regular observations．To do this，the season was broken up into convenient periods， averaging about a month in length，and a rigorous least square computation of the relative personal equations obtained for each；these separate values were combined with the results of some special observations for personal equation，and final values adopted．The application of these quantities t＂the observations gave cloek errors presumably free from relative personal equation．The general rate showed great uniformity throughout the season，with the exception of the latter part of July；as the rate in this period was so evidently anomalons，it has been left out of eonsideration in what follows．

In computing cluck－rates the effect of errors of observations must not be negleeted： where the observations from which the rate is computed are separated by only a short interval，the apparent effect of such errors may be considerable；this，however， decreases as the interval is increased．For this reason the rates in Table I．have been computed，as shown，for intervals of five days，so far as the observations would permit． The second column shows the observed daily rate in seconds for each period，the third the difference between each of these observed rates and their mean，the average differ－ ence being $\pm .015$ see．per day．Assuming a constant change of rate with the time and solving by least squares the rate－formula obtained is ${ }^{5} .0500-5.00023$（ T－Aug．S）； the rates computed from this formula are given in the fourth column，while the fifth gires the differences between these and the observed rates，the areage deviation being $\pm .013$ sec．

For the sake of comparison with another clock wi the same kind，and to show the effect of temperature－control，Table II．gives a similar analysis of the rate of the Inited States Naval Observatory clock（Riefler No．70）for a period of three months in 1904，as published by Prof．Eichelbergert；in this case one period of ten days is omittel；the average interval between observations is 4.2 days．As the variation of temperature during this test was considerable，a temperature－term is introduced in the computed rate．It will be observed that the mean deviation from computed rate is almost the same for both clocks；this may be taken to mean that the ideal performance （that is，the best performance of which the clock is capable）is practically the same in both eases；this is of course to be expected from two clocks of the same type and manufacture．So far as actual performance goes，however，they are to be judged by the residuals from mean，and not computed，rate，and here the Ottawa clock has a very decided advantage，its actual performanee being reasonably close to the ideal one．The reason is not far to seek；it lies in the absence of temperature－variations and their disturbing effeets．It would not be fair to close this comparison without stating that the United States Naval Observatory has now a new clock room，where，I believe，greater attention is paid to temperature control．

As mentioned above，the interval between observations for clock error will influ－

[^41]ence the accuracy of the deduced rate, owing to the effect of errors of observation. In general, the residual rate V (observed minus computed) will consist of three parts:(1) the actual variation of clock rate v_{1}, (2) an apparent part v_{2} depending on errors of observation and interval, (3) another apparent part v_{3} due to error in the personal equation employed (if the observations have been made by different observers). Hence
$$
V=v_{1}+v_{2}+v_{3}
$$
and, as may easily be shown, if the number of intervals considered be large,
$$
\left[V^{2}\right]=\left[v_{1}^{2}\right]+\left[v_{3}^{2}\right]+\left[v_{a}^{2}\right] ;
$$
or denoting the corresponding probable errors by R, r_{1}, r_{2} and r_{3}.
$$
R^{2}=r_{1}^{2}+r_{2}^{2}+r_{8}^{2}
$$

Now if r denote the probable error of a single determination of clock-error, ant if, on two nights separated by an interval of N days, there be made respectively n_{1} and n, determinations of clock error, we shall have for that particular interval

$$
r_{2}^{2}=\frac{\frac{1}{n_{1}}+\frac{1}{n_{2}}}{N^{2}} \cdot r^{2}
$$

The value of r for the observations considered, obtained by an independent method, is .020 sec . Substituting this value and deducing that of r_{2}^{2} for each of the intervals in Table I., and taking the mean, the result is

$$
r_{2}^{2}=(.0046)^{2}
$$

Again, if r^{3} denote the probable error of the value of personal equation employed, we have

$$
r_{s}=\frac{1}{N} \cdot r^{\prime} ;
$$

the value of r^{2} is .008 sec .
Also, the value of R obtained from the residuals in Table I. is .012 ; hence $r_{1}=\sqrt{R^{2}-r_{2}^{2}-r_{3}^{2}}= \pm .011$ sec.; this is the probable value of the actual accidental change in (daily) rate from one period of five days to the next.

Proceeding in exactly the same way, but using, instead of five-day intervals, all the observations available, the average interval being 1.47 days, the values of the quantities are as follows:-

$$
\begin{aligned}
& R=.025 \mathrm{sec} \\
& r_{2}=-0183 \mathrm{sec} \\
& r_{3}=.0054 \mathrm{sec}
\end{aligned}
$$

$$
\text { and hence } r_{1}=.016 \mathrm{sec} \text {. }
$$

Hence it appears that a clock is liable to small irregular fluctuations of rate from day to day, it being in the present case an even chance that such fluctuations shall lie within the limits $\pm .016 \mathrm{sec} . ;$ when, however, the interval is increased, the fluctuations tend to counterbalance one another.

It would appear also that the clock is liable in addition to anomalous changes of rate for longer or shorter periods; from July 16 to July 31 the average rate was -. 022 sec., as against .050 sec . for the remainder of the summer. It has been suggested that this is a peculiarity of invar pendulums, due to some not well understood irregularities in the interval constitution of the material; similar effects have been noticed in other Riefler clocks, but the question can hardly be considered definitely settled as yet. Such changes in rate are, however, for astronomical purposes, less objectionable than the irregular ones (here eliminated) due to irregular variations in temperature and pressure.

SESSIONA: PAPER No. 25a
TABLE I. DOMINION OBSERVATORY CLOCK.

	Date.	Daily Rate.	$\mathrm{O}-\mathrm{M}$	Computed Rate.	$\mathrm{O}-\mathrm{C}$
	1908.	8.	8.	s.	ง.
June	1.6	059	009	OHF5	- 006
"	6-11	061	011	064	- 003
"	11-17....	037	-. 013	063	. 026
	$17.21 \ldots$	469	019	062	007
"	21.26	072	022	060	012
"	26.31.	088	038	059	029
July	1-6.	049	- 001	0.8	-. 009
"	6-11.	05.	-005	057	- 002
"	11-16.	046	- 004	056	- 010
Aug.	0.5	083	033	051	032
"	5.9	042	022	050	022
"	9-15.	0.4	. 004	049	005
-	15.20..	049	- 001	048	001
-	$20-25 .$.	042	- 008	047	- 005
-	$25-30$.	012	-038	046	-. 034
"	30-35.	043	- 007	044	-. 001
Sep.	4.8	034	- 016	043	- 009
"	8.14.	049	- 001	042	. 007
1	14-19....	039	- 011	041	-. 002
n	19.25, \ldots	004	- 046	040	-. 036
	25.31	033	- 017	038	- 005
Oct.	1-6	033	- ${ }^{-017}$	037	-. 004
"	$6-11$	048	- 002	036	012
${ }^{1}$	11-15..	t6t1	011	035	026
	Mean.	0.50	± 015		$\pm \cdot 013$
	Range.		084		-068

Computed rate $=0500-00023(\mathrm{~T}-$ Aug. 8).

9-10 EDWARD VII., A. 1910
TABLE II.- テ. N. NAV゙AL OBSERVATORY CLOCK.

Stewait-Meridian Work anid Time Seryice.

Fig. 1-Floor Plan of Transit Annex

MERIDIAN CIRCLE.PIERS
Fig. 2 Piers in Meridian Circle Room.

Fig. 3-Piers in Transit Room.

APPENDIX 4.

REPORT OF THE CHIEF ASTRONOMER, 1909.

TABULAR STATEMENT OF LONGITUDE AND LATITUDE OBSERVATIONS.

By
J. MACARA.

CONTENTS.

Difference of Longitude:- Page.
Gateway-Seattle.
592
Boundary (Waneta)-Seattle 593
St. Jobn-Dominion Obserratory, Ottawa 594
Sprague-Dominion Observatory, Ottawa 595
Rainy River-Dominion Obserratory, Ottawa 596
Moncton-Dominion Obserratory, Ottawa 597
Fort Frances-Dominion Observatory; Ottawa 598
Truro-Dominion Observatory, Ottawa. 599
North Lake-Dominion Observatory, Ottawa 600
Nipigon-Dominion Observatory, Ottawa 601
Jackfish-Dominion Observatory, Ottawa 602
Halifax-Dominion Observatory, Ottawa 603
Matheson-Dominion Observatory, Ottawa 604
Neweastle-Dominion Observatory, Ottawa 605
Megantic-Dominion Observatory, Ottawa 606
Black Lake-Dominion Observatory, Ottawa 607
Foster-Dominion Observators, Ottawa. 608
Boiestown-Dominion Observatory, Ottawa 609
Woodstock-Dominion Observatory, Ottawa 610
St. Hyacinthe-Dominion Observatory, Ottawa 611
Fredericton-Dominion Observatory, Ottawa 612
Sorel-Dominion Observatory, Ottawa 613
St. Jerôme-Dominion Observatory, Ottawa 614
Rivière du Loup Station-Dominion Observatory, Ottawa 615
Edmundston-Dominion Observatory, Ottawa 616
Percé-Dominion Observatory, Ottawa 617
Campbellton-Dominion Observatory, Ottawa. 618
Longitude of Stations, Table of 619
Latitude of Stations, Table of. 619
Description of Stations 620
MAP.
Map showing position of Astronomical Stations established

APPENDIX 4.

TABULAR STATEMENT OF LONGITUDE AND LATITUDE OBSERVATIONS.

Dominion astronomical Observatory,
Department of the Interior,
Ottafa, Canada, March 31, 1909.

W. F. King, Esq., LL.D., C.M.G.,

Chief Astronomer, Ottawa.
Sir,--I have the honour to transmit herewith a tabular statement of the differences of longitude and the latitude results of stations observed in 1908. Annexed thereto is also a description of the stations occupied. A synopsis of the statement giving the longitude and latitude of the various stations will be found on page 619.

The accompanying map shows the position of the various astronomical stations established up to the date of this report.

> I have the honour to be, sir,
> Your obedient servant,
J. MACARA.
DHFFERENCE OF LONGITUDE BFTWEEN GATEWAY, D, C. AND SEATTLF

SESSIONAL PAPER No. $25 a$
DIFFERENCE OF LONGITUDE BETWEEN BOTNDARY (WANETA) R.C. AND REATTLE.

DFFFERENCE OF LONAITUDE: BFTWEEN ST JOHN, N.B, IND DOMINION OBSERVATOKY, GTTAWA

SESSIONAL PAPER No. 25 a
FIFFERENCE OF LONGITUDE BETWEEN SPRAG1E, MAN., AND DOMINION GBSERVATORY, OTTAWA

DIFFERENCE OF LONGITUDE BETWEEN RAINY RIVER, ONT.. AND DOMINION OBSERVATORY, OTTAWA

SESSIONAL PAPER No. 25a
DIFFERENCE OF LONGITUDE BETWER MONCTON, N.R., AND DOMINION OBSERVATORY, OTTAWA

Datr.		Mifferenceof Chonog:kar'h.		Clock Corrmetios		Diffrbencr of Loncitide							Tine Trans. mission.									
		Western Signals.	Fastern Signals,	Western Station.	Fastern Station.							r										
		m. \quad -		\checkmark	s																	
		43 12-813	4312741	$\begin{array}{r}3145 \\ +3.295 \\ \hline\end{array}$	3 +32.371 +31090		43 +3 +3 18	43 41.967				-010										
		13 43 4 4		a + +6.200	- 07.334		43 42-0xi			43 42012												
		¢ 3 18.73	43 1805						1. 999		2-079		-073									
		13 ar 121	43 19\% 985		a+$+40+95$$+3 \times 319$				皆.43\%		42.014											
		4310311	43 10.1xi																			

DFFERENC' OF LONGTTUDE BFTWEFN FORT FRANCES, ONT., ANB DOMINION OBSEKVATOKY, 'YTTAWA.

SESSIONAL PAPER No. 25a

DIFFERENCE OF LONGITUDE BETWEEN TRURO, N.S. AND DOMINION OBSERVATORY, OTTAWA

SESSIONAL PAPER No. 25 a
HFFERENCE OF LONGITUDE BETWEEN NTPIGON, ONT., AND DOMINION OBSERVATORY, OTY.AII I

DHFFEREDGF GF LAONGITUDE: BETWENN JAGKFISII, ONT, ANH IHMINHON GPAERV ATORY, OTTAWA

Date.	IDfyehence of (haromo giraph.			Cha'k Corhmation.		Phpykrener of Langitilut						Time of Transmission.
	Western Signals.		astern gnal	Weatern Station.	Pastern Station.	Western signalx.		$\begin{aligned} & \text { axterm } \\ & \text { iknals } \end{aligned}$		ran.	r.	
	a.			x	x	17. x	(1).	4.	m.	\sim	-	*
	$\begin{array}{ll}17 & 32 \\ 45 & 31-53 \\ 45 & \end{array}$		32.889	138.013	7. 5146	$\begin{array}{lll}45 & 61-886 \\ 45 & 01\end{array}$		(0) -6ty		01.744	-015	
	$\begin{array}{ll}45 & 31-514 \\ 45 & 30-869\end{array}$		$31-294$ 30 654	(37 117	: 7.436	45 01 45 101 183		${ }_{\text {i11 }}^{101613}$		61 61.723	606;	-1111
	45 30] Kk?		3006		$17 \cdot 44$	45 (11-835		11 608			010	116

SESSIONAL PAPER No. 25a

DIFFERENCE: OF LONGITUDE BETWEEN MATHFSON, ONT., AND GOMINION ORSERVATORY, OTTAWA

SESSIONAL PAPER No. 25a
DIFFERENCE OF LONGITUDF BETWEEN NEWCASTLE, N.B., AND DOMINION OBSERV ATURY, OTTAWA

DIFFERFACE OF LONGITUDE BETWEEN MEGANTIC, QUE., AND DOMINION OBSERVATORY, OTTAWA.

SESSIONAL PAPER No．25a

DIFFERENCE OF LONGITUDE BETWEEN BLACK LAKE，QUE．，AND DOMINION OBSERVATORY，OTTAWA．

DIFFERENCE OF LONGITUDE BETWEEN FOSTER, QUE., AND DOMINION OBSERVATORY, OTTAWA

SESSIONAL PAPER No. 25a
DIFFERENCE OF LONGITUDE BETWEEN BOIESTOWN, N.B., AND DOMINION ORSERVATORY, OTTAWA.

DFFERENA'E, GF LONGITUDE BETWEEN WOOHSTOGK, N.B. AND BOMINION OBSERVATORY, OTTAWA.

1bate.	Difkienek or Chtosograrli.		Clukt Corabction.		Diprarence of Lonatulik.				$\begin{aligned} & \text { Tiur } \\ & \text { of } \\ & \text { of raw } \\ & \text { misaim. } \end{aligned}$	
	Weatern Signals.	Bastern Stgnals.	Western Station.	Eastern Station.	$\begin{aligned} & \text { Westeru } \\ & \text { Signale. } \end{aligned}$	Eastern Signals.	Mean.	ε.		
	i1.	it. so	\cdots	it. $\%$	III. \%	mi. s.	17.) \%	s.	8.	
	${ }^{34} \quad 33013$	28 32 380	+869\%	11 690038	32.32 .899					
		38 38 38 38 3 3	1876 18.78		$\begin{array}{ll}32 & 32-891 \\ 32 & 32\end{array}$	$32.32 \cdot 688$	32.32 .791	013	163	
				41008 sank		32 32-648	$3232 \cdot 760$	918	112	

sESSIONAL PAPER No. 25a
DIFFERENCF OF LONGITUDE BETWEEN ST. HY ACINTHE, QUE. AND DOMINION OBSERVATORY, OTTAWA.

Date.	Differqnce or ChronoGRAPH.			Cumek Corpectron.			Diffrrence of Longitude.							Time of Transiminsion.
	Weatern Signals.		stern nals.	Western Station.		stern ation.		estern gnals.		stern nals.		ran.	\boldsymbol{r}.	
	m.		8.	n.		8.				8		\%.	8.	4.
	$\begin{array}{ll}12 & 37 \cdot 63\end{array}$		37-580	+8.804	-1	21.387		$07 \cdot 162$	11	07*389		19426	-031	
	12.38 .816		38.748	8.807 +8.837		22.530		07-479		$07 \cdot 411$ $97 \cdot 466$		7-44;	012	-034
	12 +2 103		$42 \cdot 035$	18837		25.733		$07 \cdot 533$				7-199	012	
Otheriens:	D. B. Nugett, C. C. Smith, K. M. Siewakt. F. A. MeDiarmid.						$d \lambda$$\lambda$$\lambda$							
							1 Hy	cinthe.						

DIFEERENGE OF LONGITUDE BETWEFN FREDERICTON, N.B , AND DOMINION OBSERVATORY, OTTAWA

SESSIONAL PAPER No. 25a
DIFFERENCE OF LONGITUDE BETWEEN SOREI, QU'Er, AND DOMINION ORSERVATORY, OTTAWA

DIFFERENCE OF LUNGITUDE BETWEEN ST. JEROME, QUE., AND IOMINION OBSERVATORY, OTTAWA

Datk.	Difference or Chronograph.			Clock Correction.		Difference of Longitudes,							TuneofTrans-mission.		
	Western Signals.	Eastern signale.		Western Station.	Easterin Station.	Western Signals.	Eastern Signals.		Mean.		r				
1908.	*		8.	8.	8.	m. ह.		8.	m. x		8.		s.		
Sept. 4	$\begin{array}{ll}7 & 13 \cdot 199 \\ 7 & 14 \cdot 187\end{array}$		13.001	+ 9.052	-12-194	$6 \quad 51 \cdot 953$	631845			6 51-849	,	0×4			
" ${ }_{\text {" }} 6$.	$\begin{array}{ll}7 & 14 \cdot 187 \\ 7 & 16 \cdot 010\end{array}$		14.070 15.890	+9098 +9.078 +9081	$-13 \cdot 087$ -14.781	$\begin{array}{lll}6 & 52 \cdot 022 \\ 6 & 52 & 148\end{array}$	$6 \quad 51.905$			51.463 52 0.08			-050		
Ohservers : West-C. C. Smith, D. B. Nugent, R. M. Strwart. East-F. A. McDiarmid.															

SESSIONAL PAPER No. 25 a

DIFFFRENCE OF LONGITUDE BETWEEN RIVIERE DU LOUP STATION., QUR, AND DOMINION OBSERVATORY, OTTAWA.

DIFFERENCE OF LONGITUDE BETWEEN EDMUNDSTON, N.B., AND DOMINION OBSERVATORY, OTTAWA

	Difyereng	H. Chuose-	Cume	cTios.		Hipr	KHENCK	Ias	Grrub		Timer
	Western Siguals.	Eastern Signalk.	Western Station.	Fastern Station.	Weaterin Nignals.		astern gnals.		Mean.	ε.	Trans mission.
19 mm	m. s.	m.	8	K.	m.		к		x	r.	π
September 19	29 16.621	29.16516					$33 \cdot 339$		33.653	073	(6) 1
7	$\begin{array}{ll}293 & 14.051 \\ 29 & 42.655\end{array}$		9.69% $+9 \cdot 654$ +9.654	- 60.768	$\begin{array}{ll}29 & 33.716 \\ -91 & 3\end{array}$		$33 \cdot 615$		$33 \cdot 665$	001	TE0
$\cdots 23$.	299 9.	29930.64,	$+9 \cdot 664$ $+9 \cdot 678$	$\begin{array}{r}600.621 \\ + \text { + } 400 \\ \hline 006\end{array}$	299 33.729 99 33.761		$33 \cdot 623$ $33 \cdot 673$		33.68% 33.18	021	1631 015
Observets: Weat - 1). 13. Nueknt, R. M. Stewalit, C. C. Smith. East-W. C. Jayues.					h. m. κ $d \lambda$ $\ldots . .$. \ldots \ldots 29						

SESSIONAL PAPER No. 25a
DFFERENCE OF LONGITUIDE BETWEEN PERCE, QUE., AND 1OMINION OBSERVATORY, OTYAWA.

BETWEEN CAMPBELLTON, N.B., IND DOMINION OPSERV ATORY OTTAWA

SESSIONAL PAPER No. 25a

$\begin{aligned} & \text { 烒 } \\ & \text { تٌ } \\ & \text { تn } \end{aligned}$:	

\qquad
 .

 empl

LOCAL POSITIONS OF ASTRONOMICAL STATIONS.

Guteway.-The pier is on the international boundary line 189.4 feet dite past of boundary monument No. 244 , and is 541.3 feet west of United States survey post No1. 25104 on boundary line.

Boundary (Waneta).-The pier is 21.5 fect due east of monmment No 151 on the international boundary line.

St. John.-The pier is 82 fect north and 1 it feet west of the uortheast eorner of Lombard and Southwork strects. Reference point is sontheast corner of T.C.R. grain clevator. Reference angle $188^{\circ} \cdot 44$ right from meridian at centre of pier to referchas print. Distance, 196.8 feet.

Sprague.-The pier is 6.50 .7 feet west and 1.4 feet north of the southwest corner of the Canadian Northern Railway station house.

Rainy River.-The pier is 111.2 feet north, and 51.3 feet west of the southwest coruer of 3rd street and Atwood ave.

Moncton.-Reference point is the northwest corner of the Intercolonial Railway hacksmith shop. N. $52^{\circ} 16^{\prime}$ E. from meridian through centre of pier. Distance, 1.378 chains.

Fort Frances.-The pier is 9.7 feet north and 189.2 feet east of the northeast corner of 4th street and Cornwall ave.

Truro.-The pier is 49.49 feet east and 64.13 feet south of gas-pipe marking the boundary of the I.C.R. yard at head of Miller street and Mr. Fraser's gate.

Forth Lake.-The pier is 272.5 feet east and 15.5 south of 'frog' lying between the Port Arthur and Duluth Railway main line and the southwest leg of the 'Y.'

Yipigon.-The pier is 47.8 feet west and 82.4 feet north of the northwest corner of the Canadian Pacific Railway station house.

Jackfish.-The pier is 225.5 feet north and 82.9 feet west of the southwest corner of the Canadian Pacific Railway station house.

Halifax.-The pier is 127.26 feet cast and 90.35 feet north of the southeast comer of Creighton \& Co.'s grocery store. It is also 63.23 fect east and 54.04 feet south of the gas pipe marking the boundary of the I.C.R. vard. Direction of said pipe from pier being $54^{\circ} 15^{\prime}$ from the meridian measured from the north through the west.

Matheson.-The pier is on the right of way of the Timiskaming and Northern Ontario Railway, and is 153.5 feet south and 178.0 feet east of the northeast eorner of 5 th ave. and Railway street.

Newcastle.-The pier is 14.16 feet east and 90.66 feet south of the intersection of Station and Gene streets.

Megantic.-The pier is 172.5 feet east and 72.6 feet north of the southwest corner of Maple ave, and McCauley street.

Black Lake.-The pier is 111.1 feet east and 190.8 feet north of the northwest corner of Whitney ave and the private way of the American Asbestos Company.

Foster.-The pier is 181.5 feet north and 480.3 feet west of the middle point of the crossing of the Boltorn Road and the Canadian Pacific Railway main line (Foster rrossing). The pier is about 80 feet north of the Canadian Pacific Railway station howse.

SESSIONAL PAPER No. 25a
Boiestown. The pier is 41.63 feet cast and 90.87 feet north from the northeast curner of T. Lyneh \& Co.'s supply store.

Woodstock. The pier is 132.5 feet rast and 100 feet south of the mortheas 1 corner of (ieorge and Main streets.

St. Hyacinthe.-The pier is 85 feet cast and 5 ff feet morth of the midhle point of the crussing of Broadway Road and the Canadian Pacifi- Railway main line, and is whout 400 feet from the station house.

Fredericton. The pier is on the river front 52.15 fert north and 67.0 feet whet of the northwest comer of Lamont's furniture warchonse at the corner of Regent and ('implell streets.

Sorel.-The pier is 194.9 feet west and 34.2 feet morth of the southeast corner of Ray and Vietoria streets.

St. Jerome.-The pier is 412.0 feet east and 102.4 feet sonth of the southeast corner of St. Antoine and St. Ame streets. It is on the Camadian Paeifie Railway right of way about 400 feet south of the station house.

Rivière du Loup stution.-The pier is 511.5 feet from the southeast corner of the I.C.R. machine shop. Angle from the north through the west $41^{\circ} 54^{\prime}$.

Edmundston.-The pier is 148.30 feet east and 12.04 feet north of the northeast corner of Temiseouata Railway station.

Percé.-The pier is 34.63 feet west and 72.28 feet sonth of the southwest eorner of Abraham Lenfesty's house.

Campbellon.-The pier is 18.27 feet east and 12.41 feet south of the southeast corner of the post offiee building.

Dominion Observatory.-The reference point of the longitudes observed in 1908 is a temporary transit house, the meridian of which is 0.12 east of the centre of the dome of the Observatory.

$$
>
$$

[^0]: *Times avidently one minute too late.

[^1]: Magnetic storm on afternoon of Sept． th ．
 Obervations for Dip were taken with Dover Dip Circle 145．The standerds on Tesdorpf Magnetometer 1977 prevented a reading being taken，

[^2]: *Local disturbance.

[^3]: * Observatory moved to Agincourt in September 1898. The mean is interpolated from 6 months.

[^4]: *Local disturbance.

[^5]: * Local disturbance.

[^6]: *Local disturbance.

[^7]: \rightarrow Local disturbance.

[^8]: * Local disturbance.

[^9]: * Local disturbance.

[^10]: - Local disturbance.

[^11]: - An able discussion of this subject on somewhat similar lines, to which I am much indebted, has been given bs Newall (M. N. 65, p. 608).

[^12]: - Since published in the Astrophysical Journal, Vol. XXTIII, p. 259.

[^13]: - Zeitschrift für Instrumentenkunde, September, 1904.

[^14]: - Zeitschrift für Instrumentenkunde, 24, 1, 1904.

[^15]: *L.O.B., 1903, A. J. XVIII., 306.
 † Annals Harvard College Observatory, Vol. 28.

[^16]: *Potsdam Publications, Band VII., p. 146.

 + Publications of the Yerkes Observatory, 2, 61.
 \ddagger Lick Observatory Bulletin No. 70.

[^17]: - A. N., No. 3242.
 $25 a-17$

[^18]: - Bulletin Astronomique XX., 129, 1903.
 \dagger Journal of the Royal Astronomical Society of Canada I., 357, 1907.
 $25 a-17 \frac{1}{2}$

[^19]: * Astrophysical Journal, XXVII., 125, 1908.
 \dagger Astronomische Nachrichten $32+2$.

[^20]: * Astrophysical Journal, 27-5-1908.
 $25 a-18 \frac{1}{2}$

[^21]: * A. J., 27-2-1908.

[^22]: * A. N., 163, 31, 1903.

[^23]: "Asfro. Journal, Vol. XXVII.

[^24]: -A. N., 136, 17, 1894.

[^25]: *Focus here refers to the scale on the camera tule.

[^26]: \qquad

[^27]: *heck measurement.

[^28]: - This plate and all following un- : Skwn hy the new single-prism Spectroscope.

[^29]: *Check measurement.

[^30]: Check measurement.

[^31]: ＊＊Check measuremeut．
 ＇Not used．

[^32]: ${ }^{*}$ Check measu ement.

[^33]: Check measurement.

[^34]: - Check measurement.

[^35]: Chipck measurement

[^36]: *This has since proved to be inadequate.

[^37]: ${ }^{*}$ The letters used to denote the observers are as follows:-R. M. Stewart, S: D. B Nugent, N ; C C. Smith, CS.
 \dagger On Oct. 9 , owing to a blown-out fuse, the winding circuit of the clock failed for a few minutes : though the pendulum continued to swing uninterrupted, the reading of the clock-face was changed.
 \ddagger The personal equation of N had changed between Oct. 15 and Nov, 21 ; hence the observations of N are not entered in the last column after Nov. 21.

[^38]: - F. A. McDiarmid.
 + W. C. Jaques.

[^39]: ＊With persoual equation +034 sec ．applied．
 \dagger With personal equation－ 014 ＂

[^40]: *With personal equation +034 sec. applied.

 + With personal equation - 014 sec. applied.

[^41]: ＊The observations made in May were not cousidered in thi－paper becauce the rate was affected by several changes of presure and a certain amount of direct disturbance due to adjustments and re－sealing．

 + Science，1907．p． 451.

