A. 1910

DEPARTMENT OF THE INTERIOR

REPORT

OF THE

CHIEF ASTRONOMER

FOR THE

YEAR ENDING MARCH 31

1909

PRINTED BY ORDER OF PARLIAMENT

OTTAWA PRINTED BY C. H. PARMELEE, PRINTER TO THE KING'S MOST EXCELLENT MAJESTY

[No. 25a-1910]

h A

CONTENTS.

eport of the Chief Astronomer	5
ppendix 1. Report by Otto Klotz, LL.D., on Seismology, Terrestrial Magnet-	
ism and Gravity	19
2. Report by J. S. Plaskett, B.A., on Astrophysical work 14	13
Appendix A—By W. E. Harper, M.A.	25
B-By J. B. Cannon, B.A	15
C-By R. E. DeLury, Ph.D	51
D-By R. M. Motherwell, M.A	\$7
E—Detailed Measures	
3. Report by R. M. Stewart, M.A., on Meridian Work and Time	
Service	55
Appendix A-Rate of the Standard Clock of the Dominion	
Observatory	12
4. Report by J. Macara, Esq. on Latitude and Longitude work 58	27

LIST OF ILLUSTRATIONS.

Appendix 1.-Otto Klotz, LL.D .- Seismology, Torrestrial Magnetism and Gravity.

1.	Magnetic Hut, Ottawa 14	12
2.	Diurnal Variation Curve	42
З.	Diurnal Variation Curve	12
÷.	Diurnal Variation Curve	12
5.	Survey Curve	42
6,	Chart showing Magnetic Declination	

Appendix 2.-J. S. Plaskett, B.A.-Astrophysical Work.

1.	Diagram of Refraction through Prism	153
2.	New Single-Prism Spectrograph	164
3.	New Single-Prism Spectrograph	164
4.	Spectrograph Box	166
5.	New Single-Prism Spectrograph, ready for use	168
6,	Long-focus Objectives with three prisms	174
7.	Short-focus Objectives with three prisms	174
8.	Objectives tested with one prism	174
	Spectro-Comparator	178
	Diagram of Spectro-Comparator	178
	Diagram of Spectro-Comparator	178
	Form of Silvering on prism	178
	Cælostat House,	208
14.	Cœlostat Telescope Mechanism, looking north.	208
	Calostat Telescope Mechanism, looking south	208
	Velocity Curve of B Orionis.	

Appendix A.

	Final Velocity Curve of θ Aquilæ	
	M. Deslandres' Observations	
19.	Deslandres' 1902 Observations	234
	95. 11	

DEPARTMENT OF THE INTERIOR

Appendix A-Continued.

		L'AC	
		1 Curve	
22.	Velocity Curve of η Boötis		-14

Appendix B.

23.	a Coronæ	Borealis,	Curve	from	Hydrogen	lines	and	Calcium	line		250
24.	Velocity C	urve of a	Corons	e Bor	ealis						250

Appendix C.

25.	Solar Spectrograph	. 2	52
26.	Rear end of Solar Spectrograph	. 2	52
27.	Slit Mechanism of Solar Spectrograph	. 2	52
28.	Front end of Solar Spectrograph	. 2	52
29.	Focal Curves of Solar Spectrograph	. 2	54
30.	Reproductions of Solar Spectra	. 2	54

Appendix D.

31.	Morehouse's Comet	258
32.	Morehouse's Comet.	258
33.	Morehouse's Comet.	258
34.	Morehouse's Comet.	258
35.	Morehouse's Comet.	258
36.	Morehouse's Comet.	258
	Stellar Camera	260
38.	Determination of Focus	261
	Zonal Disc	262
	Zonal Differences of Focus	264
	Zonal Differences of Focus	264
	Zonal Differences of Focus	264
	Curvature of Field at different Zones	264
44.	Curvature of Field at different Zones	264
	Chromatic Aberration Curve	267
	Zonal Differences of Focus	268
47.	Star Photographs at different Separations	268

Appendix 3 .- R. M. Stewart, M.A .- Meridian Work and Time Service.

1.	Floor	of	Transit Anne:	ς,											586
			Meridian Circ												
3.	Piers	in	Transit Room	• •				• •						• •	586

Appendix 4 .- Longitude and Latitude Observations.

Map showing the position of the various Astronomical Stations established.

REPORT

OF THE

CHIEF ASTRONOMER AND INTERNATIONAL BOUNDARY COMMISSIONER.

DEPARTMENT OF THE INTERIOR, DOMINION ASTRONOMICAL OBSERVATORY, OTTAWA, CANADA, May 1, 1909,

W. W. CORY, Esq.,

Deputy Minister of the Interior, Ottawa.

SIB,-I have the honour to present the report of the Astronomical Branch of the Department of the Interior for the year ending 31st March, 1909.

The correspondence in the twelve months was :----Letters sent..... 2,997 Accounts examined. The work of the photographer was as follows :----Survey plates (developed), 8 x 10 11 x 14 40 16 x 20 161 Films 31 x 51..... 180 5 x 7 1,104 43 x 61..... 120 - 1,404 24 Bromide prints 4 x 14 1,208 527 9 x 36 469 12 x 30 61 x 36 60 24 20 23 x 24 2 381 Blue prints 9.4 x 36 10 10 Contact prints 4 х в..... 531 x 7 3,338 189 x 10 4,058 Transparencies 4 x 5

The Liberry on March 31st last contained 3,400 volumes and 200 pamphets. It [acrosses by second hundred volumes each year, principally by exchanges with other Subservatories and by the binding into volumes of the scientific periodicals, so that «Iditional shelf space will be needed before very long. A card index of subjects and acthors has been installed which has proved a great convenience.

The mechanical parts of a single-prism spectrograph designed by Mr. Plaskett for the avoidance of flexure, and of the solar spectrograph, of 23 feet focus, to be used in connection with the coelostat, have been constructed in the workshop.

The pivots of the meridian circle, as received from the makers, having been found ϵ be of too soft metal, rings of hardened steel were shrunk upon them, and turned to yroper form. This was a very difficult piece of work on account of the extreme accuacey of figure which was required.

There were besides numerous small pieces of work for the Observatory, and many repairs and minor alterations to field instruments for the Boundary and Geodetic Surveys, keeping two mechanics constantly employed.

The equipment of the shop has been increased by a second lathe, avoiding thereby a considerable loss of the men's time. The workshop, which is in the basement of the building, is insufficiently lighted for the fine work which we require. It is also rather inconveniently small.

The practice of opening the Observatory to the public every Saturday evening has been continued, and is much appreciated. An astronomer is always present on that evening to exhibit the large telescope. There are also many day-time visitors to the Observatory who have then an opportunity of seeing the other instruments.

The number of visitors registering in the book from April 1, 1908, to March 31, 1909, is 2.646.

In this connection may be mentioned the meetings of the Royal Astronomical Society of Canada which are held monthly during the winter in the Normal School Hall or in the Public Library, when lectures on astronomical subjects are presented. The majority of these lectures have been given by officers of the Observatory. Lectures are also given in the Observatory in the afternoom, alternating with the evening lectures in the city. These afternoom meetings serve a very useful purpose in the exchange of ideas among members of the staff.

TIME SERVICE.

The ordinary work in connection with the time service has consisted, as in the past, of the necessary attention to the up-town service, the scending out of time signals to the telegraph company, dropping of the time-ball on Parliament Hill, supplying of mean and sidereal time by telephone to those requiring it, occasional rating of chronometers, testing of ancorid barometers, &c., together with the maintenance of the clocks and apparents at the Observatory. The city service has been extended by the installation of electric dinks in the Mint controlled directly from the Observatory. The dials were started at noon on September 19, though the master clock was not put under control for some time subsequently. It was decided by the Public Works Department, contrary to the original intention, not to instal clocks in the other Government Pupiloings. Elevie as la, su sual, changes and additions in the other Government Pupiloings.

March	
1909.	 March 31, 1908.
Parliament Building	46
East Block	35
West Block	61
Langevin Block 48	48
Post Office	20
Thistle Block	2
Ottawa Electric Company 1	1
Mint	
Archives	
Observatory	28
-	
270	241
Program clock 1	1
Seconds dials	2
Tower clocks	2
to the second	
Total electrically driven clocks	246
Secondary master clocks	7
Primary clocks	4
Total	· 257

MINUTE DIALS.

TRANSIT OBSERVATIONS.

Observations with the portable transits were taken on 142 nights, involving 281 determinations of clock error, as well as some observations for other purposes; on a number of nights two, and sometimes three, observers worked simultaneously, for determination of personal equation.

The relative personal equation of the Ottawa observers was in addition determined from the clock-curve, which was regular. The method of observation for clock-error was that described in last year's report. Appendix No. 3: the increase in accuracy over previous years was in the neighbourhood of 50 per cent. There were 156 exchanges for longitude, occupying 116 nights; exchanges were had irrespective of the weather at Ottawa, the clock error being when necessary interpolated from adjacent nights. An analysis was made of the rate of the Sidereal Standard as shown by the observations: the probable variation of daily rate appears to be between '01 sec. and '02 sec. per day; the advantage of having a completely uniform temperature is markedly shown. An approximate investigation was made, by observations suited to the purpose, of the causes underlying personal equation in micrometer observations. Mr. Stewart found in his own case a tendency to set the movable wire always to the same side (the left) of the star, by a quantity in the neighbourhood of a second of arc. depending on the magnitude of the star; north stars at upper culmination would thus be observed too soon, others too late. This affects the observed clock-error, and more markedly the azimuth. It was found that this would approximately explain the difference in personal equation of two of the observers, but not completely that of the third.

MERIDIAN CIRCLE.

The piers in the meridian circle room and the transit room have been rebuilt, their bases being sunk deeper into the earth and a system of drainage into a specially prepared eistern being installed, the eistern being pumped out from time to time. During wet periods there has proved to be a great accumulation of water in the eistern

though the latter holds in the neighbourhood of 1,200 gallons it has on a number of costaines been filled to verifying in a single night, apparently by surfaces water entering under the foundation walls of the building. This is very undesirable, as in that case the water becomes backed up around the footings of the piers. The only remedy would seem to be a proper drain surrounding the outside walls to carry off the surface water.

Provision has been made in the collimator piers for underground leases to serve as permanent marks, over which may be adjusted the long-focus collimating leases for the azimuth marks; pits have also been provided to allow access to the underground marks. The positions for the azimuth marks have been accurately determined and marked.

The mechanism for opening the roof shutters has been installed and works satisfactorily; the iron wall shutters have been replaced by wooden ones; wire frames have been made for the lourres in the walls to exclude snow, and have been in place during the past winter; the piers have been encased in felt and wood, with an airspace, to avoid sudden changes in temperature; an extension was made to the main instrument pier to provide for observations by reflection.

The meridian circle itself was in the beginning very unsatisfactory in almost all respects. When the graduated circles were received from the makers after having been repaired it was found that owing to irregularities in the bearings on axis and circles, the plane of the graduations was not perpendicular to the axis, nor was the distance from graduations to end of axis the same for both circles. While the adjustment of these errors was in progress it was found that the pivots were soft; it was therefore necessary to turn down the pivots and fasten upon them hardened steel bushings. Owing to the lack of lathes and grinders of the size requisite to handle the axis this proved a most arduous undertaking, but has at length been successfully ccomplished. In this connection I wish to express my appreciation of the very great kindness of Mr. A. H. W. Cleave, of the Royal Mint, who was good enough to offer us the use of his workshop and even to have alterations made in his machines which made it possible to handle the work. Had it not been for his kindness the work could hardly have been done in Canada. There is still a great deal of work to be done on the instrument before it will be in a condition to do effective work. The counterpoises are unsatisfactory, and will require to be replaced by new ones; the bearings of the vertical circle require to be scraped and polished; alterations are necessary in the micrometers of the circle microscopes; the double spider lines in right ascension and declination micrometers and circle microscopes are at unsuitable and varying distances; in addition there is a multitude of small details that require alterations. When these have all been completed, however, the instrument will probably do efficient work. It is hoped that it may be ready for systematic work in both right ascension and declination by the beginning of the year.

For further details reference may be had to Mr. R. M. Stewart's report, in Appendix No. 3.

WORK OF THE ASTROPHYSICAL DIVISION.

The principal work in this division has been observation by the spectroscope of the radial velocities of spectroscopic binaries for the determination of the elements of their orbits. Five orbits have been thus determined: η Bootis, θ Aquile, a Coronas Boralis, ϵ Herculis, β Orbins. In only the first of these have the observations been well satisfied by a velocity curve due to simple elliptic orbits. In two of the others irregularities show which are explained fairly well on the hypothesis of the presence of a third body. Four stars with early type spectra δ Herculis, γ Aquarii, ϵ Andrande, and ξ Persei, have been examined and their velocities found to be variable, but not enough observations have been made to determine the law of variation, Twelve other binary systems are under observation.

Considerable time has been speut in testing and adjusting the instruments and in experimenting on the best methods of observation. Nr. Plaskett investigated the fields given by different types of camera objectives for spectrographs, and the effect of increased all width upon the accuracy of radial velocity work. Dr. DeLary examined the errors of the plane grating of the spectrograph of the ceelestat. Mr Motherwell investigated the abservation of the eight-ineh doublet of the stellar camera, and proved that the halos which the lens gives around the images of stars are due to spherical abservation, which may be corrected by slight refiguring of the lens.

Other work in this division has been micrometric measurements of double stars, comet photographs, observations of occultations of stars, and solar photography. This work as well as all the other astronomical work has greatly suffered from the dense smoke from forest first which prevailed during a great part of last summer.

Fuller details of this work will be found in Mr. Plaskett's report, Appendix No. 2.

DIVISION OF GEOPHYSICS.

Continuous records have been obtained by the Bosch seismograph of earth movements. Some forty-ninc carthquakes were recorded during the twelve months from April 1, 1908, to April 1, 1909, including five of some severity. Ordinarily the record of an earthquake shows that waves of three kinds are received. These are called the first preliminary, the second preliminary, and the long waves. They are distinguished from one another on the sciencograph abete by differences in form and amplitude, and the times of first arrival of the waves of each type may be measured off from the sheet very nearly.

It is supposed that the three waves have their origin at the same instant of time at the centre of disturbance, and that the difference in time of arrival is due to a difference in the mode of transmission through the earth's crust, whether by lougitudinal or transverse vibrations through the depths of the earth, or near the surface, and that corresponding to the different modes or paths of transmission are different but definite velocities.

These velocities have been found by many observations within pretty close limits. Hence the difference of time between the first arrival of the different waves gives inmediately the distance of the origin of disturbance. The actual position of the origin may often be determined by drawing a circle on a terrestrial globe with centre at the place of observation and radius equal to the distance of the origin. Mhere this circle passes through a regiou of known seismic activity, the probable origin of the disturbance may be placed.

Besides the records of earthquakes, numerous minor tremors, called microseisms. have been registered. An account of these, with an inquiry into their probable causes will be found in the report of Dr. Klotz, which forms Appendix No. 1 to this report.

Dr. Klotz concludes that the microseismic vibrations of the pendulums of the seismograph are closely connected with the gradients of barometric pressure, and that their amplitudes increase with the steepness of the gradient.

Microseisms are not due to the dynamical effect of the movement across the continent of areas of high or low pressure, nor to the direct dynamical effect of winds.

Microseisms registered at Ottawa almost invariably co-exist with 'lows' over the Gulf of St. Lawrence with steep gradients over the St. Lawrence valley.

They arise from movements of large areas of the earth's crust, and are related to the geological structure by which probably their period is determined.

The meteorological conditions on which they appear to depend are not local; the variations of local barometric pressure shown by the micro-barograph cause local bendings of the earth's crust which are exhibited on the seismograms by deflection of the zero of the instrument, but the irregularities thus caused are easily distinguished by their irregularity from the real microseisms.

It has been suggested that the fact that the period of most of the microselsmu marky agrees which that of the pendulums, indicates that the record is due to air currents within the instrument or to other instrumental cause. This explanation, however, cannot stand, in view of the evidence adduced by Dr. Klotz, of co-incident occurrence with the 'lows' on the eastern coast.

AUXILIARY BUILDINGS OF THE OBSERVATORY.

During the past year the co-lostat house has been completed, and the co-lostat installed, with its spectrograph. As stated above a careful examination has been made of the plane grating of this instrument, by which certain defects have been indicated. The making of this necessary examination has delayed the making of the observations on the sum which were contemplated.

The building for the standardizing of tapes and other measures of length has been completed, but the apparatus for making comparisons has not yet been installed. Means will be provided for tests of measures up to 50 metres in length.

Ground was broken for the residence of the Chief Astronomer about the middle of March last. This building will stand a short distance to the east of the Observatory.

Work was begun last summer on the grading of the grounds surrounding the Observatory, a much needed improvement. Owing to the excessive dryness of the latter part of the summer it was not thought advisable to do any sodding, which has been postponed until this season.

FIELD ASTRONOMICAL WORK,

Latitudes and longitudes were determined at twenty-seven stations during the season of 1905.

Two stations on the southern boundary of British Columbia, one near the southern boundary of Manitoba in the neighbourhood of Lake of the Woods, and three on the Ontaria-Minnesota border, were observed for purposes of the boundary surveys. The ether p-ints were observed for geographical purposes, and comprise three points in Ontario, eight in Quebee, eight in New Brunswick, and two in Nova Seotia. The longitudes of the two most westerly stations were determined by telegraphic signals from Seattle, a point of known longitude; that of the others by signals from this Observatory.

Observations of the magnetic elements were made at seventeen points in British Columbia and at Winnipeg, Ottawa and Agincourt. The instruments used were the Tesd-orpf magnetometer and the Dover dip-circle.

INTERNATIONAL BOUNDARY SURVEYS.

On Jone 3, 1908, a treaty between His Majesty and the United States was ratifiel, which provides for the survey of the whole of the boundary line from the Atlantic to the Pacific.

The treaty divides the boundary line into eight sections, and prescribes the manner in which the survey of each section shall be carried out, and placed the carrying out of the work, except as regards the fourth section, in the hands of two commissioners who shall be 'expert geographics or surveyors.'

The several sections are as follows :---

 In Passamaquoddy bay, from the open waters of the Bay of Fundy to the mouth of St. Croix river (at Joe's Point near St. Andrews, N.B.).

By the treaty of 1783, the boundaries of the United States were defined as beginning at the mouth of St. Croix river and ascending that river to its source. Then the description proceeds with the northeastern, northern, western and southern boundaries of the United States, terminating on the Atlantic ocean at the northern

boundary of Florida. The territory of the United States was also to include 'all the islands within twenty leagues of the coast except such as have heretofore belonged to His Majesty's province of Nova Scotia' ('Nova Scotia' then included the present province of New Brunswick.)

Soon afterwards question arose as to which river was the St. Croix, mentioned in the treaty; it appears that three or more rivers bore that name. Commissioners were appointed under a special provision by treaty (1794) to decide which river was intended and to determine its mouth and its source.

The Commissioners in due course reported (1798) their decision identifying the St. Croix river of the treaty with the river which now bears the name, and placed its mouth opposite Joe's Point, the point at the southwestern extremity of St Andrews perimisula, opposite to the town of Robbinston, in Maine.

South and east of this point lies Passamaquoddy bay, being the western part of the Bay of Fundy, and including an extensive archipelago.

It will be observed that the decision of the Commissioners, placing the mouth of St. Croix river at Joe's Point, left the jurisdiction over the islands of this archipelago, which are within twenty leagues of the United States shores, to be determined by the fact whether they had previously belonged to the United States or to Nova Seotia.

Under the fourth article of the treaty of Ghent, 1314, Commissioners were appointed to determine to which of the High Contracting Parties the several islands belonged. These Commissioners rendered their decision in 1817 to the effect that Mosee, Dudley and Frederick islands belonged to the United States, and that all the other islands in Passamaquoddy bay, and the island of Grand Manan, in the Bay of Fundy, belonged to His Britannic Majesty. This decision, however, did not determine the locality of the boundary line in the narrow waters between Campoleblo island and the islands allotted to the United States, and subsequently difficulties arose in regard both to sunggling and to fishery rights.

It was not until 1892 that provision was made by treaty for the determination of the boundary line in these waters, and commissioners were appointed to determine and mark the line.

This the Commissioners did in part but not wholly, since they failed to agree as regards the ownership of a certain island and of certain fishing grounds.

By the treaty of 100x, provision was made for the preparation on the behalf of each government of a 'case' to be submitted to the other, and in the event of their not arriving at an agreement within one year of the date of ratification of the treaty, for a reference of the question to arbitration. The cases of the two governments were duly presented on December 3 last, six months after ratification of the treaty.

These negotiations, or the arbitration which will result, if they do not result in an agreement, have reference only to the two specific points on which the Commissioners of 1892 differed. Their marking of other parts of the line is confirmed by the treaty. The present Commissioners are to renew the marks when necessary, and to hay out the remainder of the line when a decision of the disputed questions has been arrived at. Pending such decision no work has yet been done on this section.

2. The second section of the line is that along St. Croix river from its mouth to its source.

As already -tc+ed the Commissioners of 1708 determined the source of this river as well as its mouth. This was sufficient to obvitate disputes involving any large extent of territory, and no serious question is known ever to have risen. For this reason doubtless no survey of the river as an international boundary has been made, or indeed provided for, by any previous treaty. In its course the river expands into several large lakes in which as well as in the river itself islands exist, which may become of importance in the future. The treaty provides that the boundary line is shall follow the thalway, or middle of the main channel as naturally existing, except where such would conflict with the recognized national character of an island. The boundary line is to

be marked where possible by permanent monuments, and is to be shown by the Commissioners of poetrate modern charts. Like provisions apply to all the sections of the boundary line.

It is proposed to send out two survey parties, an American aud a Canadian party this summer to make the preliminary survey necessary for the setting out of the permanent reference marks. They will operate in the navigable part of the river below the international bridge connecting St. Stephen and Calais.

3. The third section extends from the source of the St. Croix to the St. Law-rence river. An approximate description of this section of the boundary line is: along the meridian of the source of St. Croix river to St. John river, up the latter and one of its branches, St. Francis river, to a certain point; in a straight line its to the south-west branch of St. John river; up the last to its source in the highlands (of the St. Lawrence); along the highlands to the source of HAI's strema (a branch of Connected river); down the last to the 45th parallel; and along the 45th parallel to the St. Lawrence.

By the treaty of 1783, the boundary line was to follow the due north line from the source of St. Croix river to the highlands dividing the waters flowing into the St. Lawrence from those flowing into the Atlantic ocean, and thence to follow the highlands to the source of Connecticut river; and follow the river to the 45th parallel, and the parallel as far as the St. Lawrence.

Dispute arising as to the location of these highlands, this section of the boundary line remained undetermined for many years, the question about the year 1840 assuming a very serious phase, though more than one attempt had previously been made to orthe it. By the treaty of 1842 the matter was finally disposed of, the definition scipted for the boundary, being a compromise between widely differing claims. The line was surveyed and marked with east-iron monuments in the years 1843 to 1846, by a joint Commission.

For brevity in the above description of the boundary line. I have spoken of the meridian line of the source of the St. Croix and of the 45th parallel. The boundary line does not accurately follow these astronomical lines, but follows the lines of old surveys, originally intended to coincide with them, but which show in places very large deviations from them. The perpetanting in this manner of the errors of the old surveys was dictated by reasons of courseline arising out of the fact that fin many instances the country had been settled on either side up to the old survey, and the lands were in private hands.

As a result of complaints which had from time to time been received, that some of the original monuments had been destroyed and that there was difficulty in places in finding the line, in 1890 an inspection, jointly with representatives of the state of New York was made of the line from Richelien river to the St Lawrence. This iuspection indicated that it was necessary to renew the original monuments, as well as to place new ones where the line had been in the first instance insufficiently marked.

Nothing, however, was done until 1902, when an agreement for co-operation in the work of renewal was made with the government of the state of New York with the concurrence of the Washington government and a joint re-survey of the line was made, and new monuments of granite were erected.

In 1906 an agreement was made with the United States government for a joint resurvey of the rest of the line from Richellen river to the St. Croix, and the work has since been actively prosecuted. The re-survey and renewal of monuments has been completed from Richellen river to Holl's stream (covering the northern boundary of the state of Vermont) and along the meridian of the St. Croix river to the St. John. This has been done by a joint survey party representing both governments. The work so done will of course be available for the use of the Commissioners appointed under the new treaty.

It is proposed this year to proceed with the survey along the River St. John.

4. The fourth section covers the River St. Lawrence, the Great Lakes and their connecting waters, from the intersection of the 45th parallel by the River St. Lawrence to the mouth of Piecon river in Lake Superior.

A general and rother vague description of this part of the line was contained in the treaty of 1783. The sixth article of the treaty of Ghent, 1814, provided for the appointment of Commissioners to determine the actual course of the line through the rivers and lakes, from the initial point in the St. Lawrence as far as the water communication between Lake Huron and Lake Superior. The seventh article of the treaty provided that the same Commissioners should determine the line from the said water communication to the North West Angle of the Lake of the Woods.

The Commissioners made the necessary surveys and laid down the line on their maps, reporting in 1822 their agreement so far as their work under the sixth article of the treaty was concerned. They, however, were unable to come to a full agreement under the seventh article, and that part of the line remained undetermined until settled by the treaty of 1842.

Oving to the imperfections of the maps upon which the Commissioners under the treaty of Ghant drew their line, difficulty is found in accurately transforring it to modern charts. The present treaty provides for the ascertainment and accurate reestablishment of the line, for the laying of it down on modern charts, and for the marking so far as practicable of the course of the line by buoys, monuments and range marks.

The earrying out of these provisions with respect to the fourth section of the boundary line is placed in the hands of the International Waterways Commission, which is composed of three Commissioners on the part of the Dominion of Canada and three Commissioners on the part of the United States.

5. The fifth section extends from the mouth of Pigeon river, up that river and through various lakes and rivers to the North West Angle of the Lake of the Woods.

The North West Angle of the Lake of the Woods was one of the governing points in the description of the boundaries of the United States in the rest yof 1783. Its location was ascertained without difficulty, but from the want of good maps when the treaty of 1783 was framed the line between the Lake of the Woods and Lake Superior was so vaguely defined as to leave room for wildly different interpretations. Thus one contention was that the boundary line should ascend the St. Louis river at the head of Lake Superior, where Duluth now stands; another, that it should ascend the Kaministikwia. The Commissioners under the treaty of Ghent narrowed the question down to a choice between two water routes, both leading from Figeon river to Rainy lake, and thence by Rainy river to Lake of the Woods. These two routes diverged a short distance up Pigeon river, passing one north and the other south of a considerable area almost surrounded by a series of lakes and rivers, now known as Hunter's island. By the treaty of 1542 the southern route was adopted.

No survey of the international boundary has been made along this section of the line. The Commissioners under the treaty of Ghent prepared maps to illustrate their report, but their surveys were imperfect.

The Commissioners under the present treaty having the duty of exhibiting the boundary line on modern charts will have to make a topographical survey over the whole distance.

6. From the North West Angle of the Lake of the Woods to the Rocky Mountains.

The treaty of 1783 described the northern boundary of the United States after reaching the North West Angle as proceeding thence west along the 49th parallel of north latitude to the Mississippi river.

It was afterwards ascertained, however, that the North West Angle lay about twenty-five miles north of the 49th parallel, and that the Mississippi river did not extend so far north as the parallel by a considerably greater distance.

The treats of 1818 provided that the boundary line should follow the 49th parallel west to the Rocky Mountains. To provide for the difficulty as to the latitude of the North West Angle, it was agreed that the boundary line should be drawn due south from the angle of the lake to the 49th parallel. Thus occurred the peculiar 'jog' which the mars show in the boundary line at Lake of the Woods.

An interesting point in this connection is that the Commissioners who surveyed the meridian south from the North West Angle in 1873 found that their line starting from the old monument marking the North West Angle crossed the line of boundary which had been drawn by the Commissioners under the treaty of Ghent along the inlet of the lake at the head of which the monument stands.

This meridian line and the 49th parallel west as far as the Rocky Monutains, were surveyed by a joint Commission in the years 1872 to 1874. The line was marked by iron posts one mile apart so far as the old boundary of the province of Manitoba extended (from longitude 96% to longitude 96%). On the remainder of the line the monunets were farther apart, averaging about three miles, and consisted of large mounds of carth or stons.

The re-survey of the line has the purpose of re-locating and repairing lost or damaged monuments, and establishing additional monuments wherever necessary to meet the requirements of modern conditions.

The doing of this was provided for in an administrative agreement between the governments, entered into in 1902. This agreement provided for a survey of the whole line from Lake Superior to the Gulf of Georgia, on the Pacific coast, but the completion of the portion west of the Rocky Mountains being more immediately pressing, operations were begun at that end, and the section east of the Rocky Mountains was not reached until last year. A Canadian party under Mr. J. J. McArthur began operations at Courts, Albertu, which lies about one hundred miles cast of the Rocky Mountains. The operations of the survey during the season covered one hundred miles east from Courts, the section west of that place being left to an American party, under an agreement between the Commissioners by which the line was divided into alternate sections of one hundred miles.

7. From the Rocky Mountains to the Gulf of Georgia.

By the treaty of 1846, the boundary line here also lies on the 49th parallel. It was surveyed and monumented by a joint Commission in the years 1859 to 1863. The monuments generally consisted of mounds of stones, though along a certain part of the line cast-iron monuments were placed. Owing to the exceedingly mountainous character of the country the survey was not a continuous one; the position of the parallel was determined by astronomical observation in some of the principal valleys, and the line was cut out east and west from the astronomical stations as for as possible in the circumstances.

The survey made under the agreement of 1902 is continuous, from the nummit of the mountains to Point Roberts in the Golf of Georgia. Mounneants of alluminjum bronze, set in concrete bases, have been placed at average distances of two miles along the whole length of the line, and a wide vista has been cut through the forest from monument to monument. The field work was completed in 1907, with the exception of a short juece of triangulation in the Cascade Mountains, which was faitshed last year. The plans and other records of the survey have yet to be put into final shape for publication.

8. The eighth section is the water boundary from the 49th parallel to the Pacific ocean.

By the treaty of 1846 the boundary line was to follow the 49th parallel to the middle of the strait between Vancouver island and the mainland, and of the strait of Fuen to the Pacific ocean.

East of the southern extremity of Vaneouver island and lying between it and the mainland lies an archipelago of considerable extent. Not many years after the treaty of 1846 the question arose to which country these islands belonged.

The principal island in the group is the island of San Juan, and the question which arcse is commonly referred to as the San Juan question. The group is separated from Vancouver island and the islands adjacent thereto by Haro strait, and is separated from the Washington shore and its adjacent islands by Rosario strait. Bodi countries claimed awareship of the group of islands by Rosario strait. Bodi several years there was joint occupation of San Juan island by military forces.

By the treaty of Washington, 1871, it was agreed to refer the question to the decision of the Emperor of Germany, who decided in favour of the United States, that the boundary line should follow Haro strait.

In 1873 at a conference held at Washington by representatives of both countries an agreement was reached as to the actual course of the line, in accordance with the Emperor's decision, and the boundary line was defined by a line drawn upon a chart, accommanied by a written description.

The present treaty in providing for the survey of this line follows accurately the wording of the protocol of the conference of 1873, excepting at one point only, where a short enred line is replaced by a straight line.

It is proposed during the present season to send two survey parties to make the hecessary surveys for the placing of reference monuments to perpetuate the points named in the treaty.

Mr. O. H. Tittmann, Superintendent of the United States Coast and Geodetic Survey, and the writer were appointed in June last commissioners, representing respectively the United States and His Majesty, for the carrying out of this treaty (excepting as regards the fourth section of the line).

Canada-Alaska Boundary Line

This boundary is in two sections, the most northerly following the 141st meridian of west longitude from a point near the summit of Mt. St. Elins to the Arctic ocean, the other starting from Cape Muzon on Prince of Wales island in about latitude 54' 40', crossing the sea to the entrance of Portland channel, ascending the channel to a certain point, and then following certain mountains.

This boundary was first defined by the treaty of 1825, between Great Britain and Russia. The treaty described the line from its point of commencement, the southernmost point of Prince of Wales island, up Portland ennal, and thence in a direction generally parallel to the coast to the 1414 meridian of longitude west from Greenwich; thence along that meridian to the Arctic ocean. This definition of the boundary was of course to affected by the transfer of Alaska to the United Status in 1867.

No demarcation had been attempted during the Russian occupation, but a few years after the transfer attention became directed to the boundary question. It was seen that the interpretation of the treaty as regards the southern part of the boundary from Prince of Wales island to the 141st meridian, presented great difficulties, while the description of the remaining portion, following a definite astronomical line, the 141st meridian, was clear and unambiguous, and has never been the subject of controversy.

Hence in subsequent discussions the boundary line has been divided into two parts, which have been dealt with separately.

It is not my intention here to go into detail concerning the points of the controversy over the line from Prince of Wales to the 141st meridian. In 1892 a treaty was entered into between Great Britain and the United States, the first article of which provided for the appointment of commissioners to make a survey of the region

adjucent to the line with a view to the ascertainment of the facts and data necessary for the permanent delimitation of the line in accordance with the spirit and intent of the then existing treaties.

The Commissioners made extensive topographical surveys of the mountains adjacent to the coast, and rendered a joint report to the two governments on December 31, 1895.

Although the treaty provided for the consideration of the boundary question, as soon as the report of the Commissioners had been received, the matter was not taken "p until three years later, when it was discussed by the Joint High Commission, but without any action being determined upon.

In 1903, by treaty, the matter was referred in the form of five questions to a tribunal of six jurists, who held their sittings in London in September and October, 1903.

By their decision the line was to be drawn from Cape Muzon, on Prince of Wales island, in a straight line to a certain point off the mouth of Portland canal; up the canal to a certain point; then following certain mountain summits (which they marked out on the maps prepared by the survey made under the treaty of 1892) to Mt. St. Elias, which is near the 141st meridian.

The series of mountain summits selected by the tribunal was incomplete, in that between a certain summit north of Frederick sound and another north of Taku inlet a gap was left, some 120 miles in extent. In this gap the tribunal found the available toppersphical information not sufficiently complete to enable them to decide which were the mountains referred to in the treaty of 1825, and the line as regards that portion was left undetermined.

In the following year a conference between the Commissioners charged with the duty of the demarcation was held, at which a recommendation was made as to the course which the line should follow across the gap, and in March, 1905, this recommendation was formally approved by both governments.

By this agreement the line follows southward from the peak north of Taku inlet, from summit to summit of seven intervisible mountains, till a point near Whiting river is reached. Another peak was selected near the southern end of the gap. These eight peaks lie nearly in a straight line between the two terminal peaks of the Award. Between the seventh and eighth of them a gap remains about 50 miles in length in which the agreement leaves the selection of peaks in the hands of the Commissioners, after necessary surveys are made, the peaks selected to be intervisible and none of them more than 2.500 metres distant from the straight line joining the terminal peaks.

Survey of the Boundary of the Coast Strip of Alaska.

The demarcation of the Award line was begun in 1904 and has been continued since as rapidly as possible.

The work of the season of 1908 comprised the marking of the line at Alsek river, on the southern branch of the Iskut river (a tributary of the Stikine) and on the Unuk river and its tributaries, besides the topographical survey necessary for the carrying out of the agreement of 1905.

The Iskut work was carried on by Mr. J. D. Craig, D.L.S., and that of the topographical survey by Mr. W. F. Ratz, D.L.S., while Mr. White-Fraser, D.T.S., and Mr. F. H. Mackie, D.L.S., worked on the Alsek and Unuk rivers respectively, in conjunction with American parties.

The topographical survey of the region between the peak above referred to near Whiting river and the mountains north of Frederick sound was begun by Mr Ratz in 1907, and completed by him last year, so that the Commissioners have been able to

make a selection of summits which accord with the conditions of the agreement ω 1905, and it is hoped that the demarcation of this part of the line will be completed doring the coming summer.

When this has been done little of the boundary of the coast strip of Alaska will be left for demarkation except a fifty-mile stratch near Mt. St. Elias and two or three uncompleted portions of a few miles each.

I regret to have to record the death of Mr. Retz which occurred in Ottawa on Fedward 6. Mr. Ratz hab been employed on the Alaska survey since 1905. He earried out the demarcation of the line at Salmon river (Chilkat district), and in part between Taku inlet and Whiting river. During the last two years he was engaged, as already stated, on the topgraphical survey between Whiting and Stikher rivers, not the least difficult section of a very difficult survey. His success in earrying this to completion in a relatively short time is a testimony of his capability as a surveyor as well as to his personal energy. His death, at the early age of 25, is a serious loss to the profession and to the public service.

Survey of the 141st Meridian.

This survey and demarcation is carried on in pursuance of the treaty of 1906.

This treaty does not alter in any way the boundary line as defined by the treaty of 1825, but provides for the manner of making the survey and the demarcation merely.

Operations were begun in 1906 by ascertaining the position of the meridian at the crossing of the Yukon river by astronomical observations for longitude, using the telegraph for comparison of time.

The survey of the line south from the Yukon crossing was begun in 1907, and in 1908 continued southward to a point south of White river, a distance from the Yukon crossing of 225 miles. The placing of the permanent monuments on the line made good progress, as also the triangulation and topographical survey which is being made along the line.

Mr. A. J. Brabazon, D.L.S., was in charge of the Canadian parties engaged in this work.

THE GEODETIC SURVEY OF CANADA.

The work accomplished by the Geodetic Survey staff during the season of 1908 is briefly as follows:---

Two observing parties, measuring horizontal angles, were in the field during the whole season, but on account of the prevalence of dense smoke very little work was accomplished. The district covered lies between Brockville and Toronto.

Reconnaissance surveys were conducted in the maritime provinces, in the province of Quebec, in western Ontario and along the international boundary west of Lake Superior. This latter reconnaissance was for the purpose of making a primary triangulation to control the survey of the international boundary along Pigeon river. The reconnaissance in the province of Quebec, which embraced all of that part of the province lying southeast of the St. Lawrence river from Montreal to a point some thirty miles below the city of Quebec, and also one row of triangulation stations to the northwest of the St. Lawrence river a sufficient distance back therefrom to secure high enough points to control the country to the southeast was most gratifying in its results; it was successful in securing an excellent system of quadrilaterals and large five and six ided figures with central points.

The work of signal building was continued west of Toronto as far as Woodstock or thereabouts. In the maritime provinces reconnaissance has been satisfactory. The stations for a tringulation extend from Chamcook mountain in the southwest corner

25a-2

(a) New Branowick, to the northerly extremity of Cape Breton island, embracing a district about fifty miles withe between these points, including the easterly portion of Prince Edward island. Chameook mountain is one of the prinnery triangulation stations of the United States Coast and Geodetic Survey and in equipmention with Trecott Rock—another primary station of the same survey—direct connection is made with the Geodetic Survey of the United States.

In 1905 two Geodetic levelling parties were employed and a line of levels was carried from Coteau Junction—Thirty-eight miles southwest of Montreal—to Fort Erie via Hamilton, and also from Hamilton to London. The computations are now in progress and are sufficiently advanced to show that the results are of a high order of precision. The work has been carried on by a double line of levels running forward and backward leveling the forward and backward levelling being independent of each other in every respect, and when possible, performed under different atmospheric conditions. The standard of accuracy adopted requires that the backward levelling shall correspond with the forward levelling within 0°-017 $\sqrt{M_i}$. 'M' being the distance in miles covered by the section. The dense sucks, so prevalent during the season of 1908 and which interfered so materially with the trigonometrical work, was found to be an assistance in precise welling, insuch as the usual steadiness of the atmosphere—no doubt caused by smoke—made the observing of the graduations on the levelling rod much easier than in former seasons.

Consequent upon a discussion in parliament, in which was apparent a concurrence of opinion that an accurate survey of the better settled parts of Canada would be of practical benefit, the government, by order in council of April 20 last, formally instituted the 'Geodetic Survey of Canada,' and appointed the writer superintendent.

The following appendices are attached to this report :--

Appendix 1.—Report by Otto Klotz, LL.D., on seismological and magnetic work. Appendix 2.—Report by J. S. Plaskett, B.A., on the astrophysical work.

Appendix 3.—Report by R. M. Stewart, M.A., on meridian work and time service. Appendix 4.—Report on observations for latitude and longitude by J. Macara.

> I have the honour to be, sir, Your obedient servant,

> > W. F. KING,

Chief Astronomer and Boundary Commissioner.

APPENDIX 1.

REPORT OF THE CHIEF ASTRONOMER, 1909.

SEISMOLOGY, TERRESTRIAL MAGNETISM AND GRAVITY

by OTTO KLOTZ, LL.D.

.

CONTENTS.

	PAGE.
SEISMOLOGY	23
Earthquakes recorded	26
Canadian Earthquakes	35
Microseisms.	39
Record of Microseisms	45
Mareograms	57
Acceleration	61
TERRESTRIAL MAGNETISM	66
Description of Stations occupied.	
Stations occupied.	
Collected Magnetic Results.	
Comparison at Agincourt.	140
GRAVITY	141

ILLUSTRATIONS.

1.	Magnetic Hut, Ottawa	142
2.	Diurnal Variation Curve	142
3.	Diurnal Variation Curve	142
4.	Diurnal Variation Curve	142
5.	Survey Curve	142
6.	Chart showing Magnetic Declination	

APPENDIX I.

SEISMOLOGY, TERRESTRIAL MAGNETISM AND GRAVITY, BY OTTO KLOTZ, LL.D.

OTTAWA, ONT., July 1, 1909.

W. F. KING, LL.D., C.M.G., Chief Astronomer, Department of the Interior, Ottawa,

SH,--I have the honour to make the following report of the work carried out order my charge, and which is classified under the three headings--Seismology, Tervestrial Magnetism and Gravity.

SEISMOLOGY.

Instruments.—The instruments which are in service are: two Bosch photographic seismographs, described in the report for 1906; a Callendar electric recorder; a Negretti and Zambra barograph; a Shaw-Dines micro-barograph, besides wet and dry bulb thermometers.

The Callendar electric recorder is from the Cambridge Scientific Instrument Company, England, It was installed in August 10, 1908, and has given satisfaction. It records the outside temperature. It is similar to the one used in connection with our standard sidereal Riefler clock for temperature control. In the report for 1907 Mr. R. M. Stewart gives an illustration of the recorder, together with a detailed description, so it is unnecessary to describe the other one. It may be mentioned, however, that the extreme possible range of outside temperature is confined with a the range of the galvanometer wire along which the sliding contact balances the resistance of the platinum wire thermometer, wound on a mica frame. The thermometer is housed in a louvred shelter 2 feet 6 inches by 1 foot 8 inches and 2 feet 6 inches high with slanting double top, the whole being painted white; it is mounted on four posts and the bottom is 4 feet above the ground in an open space with free circulation of air. It is 46 feet from the northwest corner of the transit house of the observatory. The lead-covered double leads are led from the thermometer in an iron 3-inch pipe under ground, then through the wall of the Observatory and finally into my room to the recorder. The range of resistance on the galvanometer wire and covering the sheet which is daily renewed, is equivalent to 100°, that is, the readings extend from - 50°C. to + 50°C. or from - 58°F. to + 122°F., and this is represented in linear measure on the sheet by 20 cm., so that 1°C. is equivalent to 2mm. The temperature records are very satisfactory, and the rapid oscillations of temperature on bright cloudless days is very marked. These fluctuations amount to several degrees within a few minutes, showing that the atmosphere is far from being homogeneous as far as temperature is concerned, but instead is permeated by thermal and density 'schlieren,' continuously shifting. The scale of the bridge-wire was determined by readings of several standard mercurial thermometers placed within the thermometer shelter.

Last March another platinum wire thermometer was installed; it is in the well at the bottom of the south collimator pier of the meridian circle. The leads of this

thermometer are led to a special switch beside the recorder, and every morning before taking off the sheet a reading is taken of this latter thermometer, which is subject, of course, to a very slow change of temperature.

Of the aneroid barograph with its weekly recording sheet nothing further need be said. Beside it hangs the Greene standard mercurial barometer and by which the readings of the former are checked.

In connection with the study of the seismograms, especially of the microseisms and other records, such as movements of the position of the pendulum zero not attributable to earthquakes, a Shaw-Dines micro-barograph was installed last July (1908), also a Richard Frères statoscope. Although the latter works very well, its time-scale is too large (one revolution of the cylinder in less than an hour) for continuous use. The former is 'an apparatus designed to magnify and record the minor and sudden fluctuations of the atmosphere as opposed to the general atmospheric surges. It records the small variations on a scale magnified twenty fold, the general surges being practically obliterated through the operation of a small leak. It thus records comparatively rapid oscillations, and no others. The instrument consists of a small, closed vessel containing air, which communicates with a mahogany box containing mercury, on the surface of which floats, mouth downwards, a light hollow cylindrical bell. The air is enclosed in a large japanned metal chamber, the space between the two being filled with a non-conducting material. The movements of the bell are transmitted to the chart by means of a delicate system of leverage. The chart is wound round a drum actuated by clock-work, and making one revolution in twenty-four hours."

This instrument (micro-barograph) has given efficient service for the purpose for which it was desired, viz. in the first place to give a record of very rapid barometric fluctuations with the accompanying gusty winds, and secondly to enable one to make a comparison of such record with the sciencegram to determine the relationship, if any, between the micro-barogram and seismogram. This has now been clearly and unequivceally established by simple ocular demonstrations. Whenever a closely serrated line with amplitudes of a sixteenth to quarter of an inch (about the maximum for very rapid scellations) is found on the micro-barogram, the asimogram will about for the same time invariably an irregular record, not microssius, which appear as a combination of titting and horizontal movements, probably vertical movements too. They can never be mistaken for any phase of earthquake effects nor for microssisms, about which more will be said hereafter. The service of this instrument has been wholly confined to interpretation of some of the disturbances recorded by the seismegraph and net for other meteorological purpose, as that is outside of our field.

The electric light 16 e.g., 104 v., continues to serve for the seismograph, and is efficient although slightly reduced in brightness when the machinery using the motor, and the lights of the observatory are on. A 'detector' was installed in my room, on the wall opposite to my desk. The object is to show when, by accident the filament of the seismograph lamp should break, or otherwise the light circuit be interrupted. This is effected by having two small 1-camps in series, with the main lamp in the basement, and being themselves in parallel. The idea of having the two small lamp in parallel is that if one of them should give out, the circuit would not be interrupted, but would show by the other small lamp burning much brighter. The scheme works very well.

In last year's report I spoke of the trouble that some of the electric lamps, necessarily with single filament, gave by the vibrations set up in the filament and produced by the electric current alone. This has been nearly eliminated by the use of new lamps with shorts filament. Occasionally spots of a widened line are shown on the seisnogram when the filament has oscillated for a few seconds. It is a rather peculiar obnomenon and was discussed in detail has typer.

The two horizontal pendulums have remained in their respective positions N-8-3, and E-W. during the year. The steel point of the N-8- pendulum hearing against the lower support was found to have become somewhat blunted, so it was replaced by a spare point supplied by Bosch when the instrument was purchased. The effect of this was well shown in the record of microseisms whose amplitude although always small was distinedly increased by the decrease of friction at the point of lower support. For this same pendulum, as noted has typer, the air-talwamping had been replaced by oil-damping, in the belief that the oil would be very much more efficient for the purpose of damping. Neither the damping by the oil nor the surface twoins manifested themselves as compicuously as anticipated. The experimental test was made with an immersion of 3mm, by the aluminum rate of the aluminum rol which extends from the 'bob', or mass. The damping co-flictent was practically the same as with the air damping. The oil used was ordinary bicycle oil with some clock oil.

As in previous years a record has been kept of the hydrometric condition immediately without and within the seismograph room. The humidity although subject to small oscillations is in general dependent upon the season and the artificial heating of the building during the colder mouths. The least humidity is during the winter, and the greatest during the summer, ranging from an average of 36 per cent in January to 75 per cent in July. Since the construction of an additional drain below the seismograph cement floor there has been no occasion to use chloride of calcium for the absorption of moisture. The following are the bi-monthy means:—

÷	Hu	midity.		Hu	nidity.
Months.	Basement.	Seismograph Room.	Months.	Basement.	Seismograph Room,
1908 April 1 to 15	58 7 72:4 69:3	45.7 47.2 60.7 73.4 72.5 74.7	October 1 to 15 " 15 to end November 1 to 15 " 16 to end December 1 to 15 " 16 to end 1909	$ \begin{array}{c} 61 \cdot 7 \\ 72 \cdot 2 \\ 81 \cdot 3 \\ 44 \cdot 5 \\ 40 \cdot 9 \\ 37 \cdot 7 \end{array} $	57.9 54.7 48.2 43.2 38.6 36.0
July 1 to 15 " 16 to end Aug. 1 to 15 " 16 to end Sept. 1 to 15 " 16 to end	71 · 2 67 · 9	$73 \cdot 3 75 \cdot 6 73 \cdot 8 71 \cdot 8 71 \cdot 4 71 \cdot 5 $	January 1 to 15	$\frac{36.1}{38.0}$	

During the construction of the large dam across the Ottawa river above the Chaudière falls considerable blasting was done for the foundation in the limestone rock. It was desired to ascertain whether the shocks would be recorded by the selismograph. By request the engineer-in-charge, Mr. J. B. McCrae, kindly noted the time of discharge as given below :—

	h.	m.	8.	No. of holes.	Dynamite Sticks.
No. 1. 2.	12 12	15 17	00 30	3	3
3	12	24 29	30 00	11	4
5		48 52	00	8 16	8

The holes were 3 feet apart and about 15 inches deep; one stick of dynamite per hole, and the dynamite 50 per cent. The firing was electric. The nature of the linnestone rock is more or less shalty. The distance from the Observatory to the dam is in round numbers 10,000 feet, or 3,050 km. The seismogram for the noon hour was carefully examined for any effect of the above blasts, but it failed to reveal the slightest trace. If there was any it was masked by the very small microssims that were present on that day. Beside the presence of the minute microssims two other causes militated against obtaining a record; one, the lack of comparteness of the rock over that distance, and the other the very rapid oscillations that would be set up to which the seismograph could not well respond.

EARTHQUAKES RECORDED.

In the following table are given the earthquakes recorded here from January 1, 1908, to March 81, 1909, the end of the fiscal pear. On April 1, 1909, began the publication of monthly bulletins of earthquakes and the Göttinger nomenclature adopted by most earthquake stations was also adopted. The preceding three months for 1908 are added in order to have a complete list for that year. Before the adoption of the above nomenclature fewer data were taken from the seismograms than subsequently, which is obvious in the table.

Göttinger Nomenclature or Designations.

Character of the earthquake-

 $\begin{array}{ll} I = {\rm noticeable}, & II = {\rm conspictous}, & III = {\rm strong}, \\ d = ({\rm terme \ motus \ domesticus}) = {\rm local \ extrhunke} \ ({\rm sensible \ or \ felt}), \\ v = (& a & vicinus & {\rm local \ extrhunke} \\ v = (& a^{-a} & vicinus & {\rm local \ extrhunke} \\ u = (& a^{-a} & vicinus & {\rm local \ extrhunke} \\ u = (& a^{-a} & ultimus & {\rm local \ extrhunke} \\ \end{array} \right) = very \ distant \ extrhunke \ ({\rm core \ food \ km}) \\ \end{array}$

Phases-

P = (unde prime) first peliminary temors. S = (" secunds) second preliminary temors. L = (" longe) long waves (principal portion). M = (" namine) greateste motion in principal portion. C = (coda) = trailers.F = (finis) = end of visible disturbance.

Nature of the motion-

 $\begin{array}{l} i = ((\operatorname{imptus}) = \operatorname{beginning.} \\ e = (\operatorname{control}) = \operatorname{appearance.} \\ T = \operatorname{period} = \operatorname{twise time of oscillation.} \\ A = \operatorname{amplitude of earth movement, reckoned from zero line.} \\ A_{\mu} = E \cdot W \operatorname{component} of A \\ \\ \end{array} \right\} \text{measured in microns } (\mu). \end{array}$

RECORD of the Earthquake Station, Dominion Astronomical Observatory, Ottawa, Canada. Latitude 45° 28′ 38′, Longitude 75° 42′ 57° or 5° 02° 51′-8 W. Greenwich. Elev. 83°. Time: Bean Greewich, midnight to midnight. Instruments: Two Bosch photographic horizontal pendulums. Nomenclature: Göttinger. From January 1, 1908, to March 31, 1909.

-								
No.	Date.	Char.	Phase.	Time.	Period.	ANPL	TUDE.	REMARKS.
			I hase.		Teriou,	AE	A_N	RL9A885
	1908.			h. m. s.	ь	μ.	μ.	_
1	Feb, 1	I	P_L_F	$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
2		1	F^P F	$\begin{array}{ccccccccc} 3 & 28 & 12 \\ 3 & 35 \\ 4 & 06 \end{array}$				
3	9	1	P L F	$\begin{array}{ccccccccc} 9 & 15 & 08 \\ 9 & 27 \\ 9 & 42 \end{array}$				
4	. 11	Ι	F	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$				
5	» 14	Ι	P N L F	$\begin{array}{ccccccccc} 9 & 01 & 04 \\ 9 & 08 & 18 \\ 9 & 14 \\ 9 & 40 \end{array}$				
6	» 14	Ι	F^{P}	$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
7	Mar. 3	1	$\frac{P}{F}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				
8		Ι	F^P F	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	20			
9	. 5,	Ι	F^{e}	$ \begin{array}{ccc} 14 & 46 \\ 15 & 03 \end{array} $				
10		I	P S L F	$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
11	. 26 . 27	II	P M_E M_N F	$\begin{array}{cccccccccccccccccccccccccccccccccccc$			175	Chilapa, Mexico, destroyed
12	. 27	II	P S L M F	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		70	83	Same epicentre as above.
13	April 19	I	e_{iS}^{e}	8 - 16 - 09 8 - 24 - 14	58	25	5 10	Well-marked microseisms mask the P.
14	April 23	I		9 - 00 0 - 07 - 36 0 - 52	8 20	7	2	Microseisms mask the P.
15	May 3 .	I	F S L F	2 - 16 1 - 11 - 20 1 - 35 2 - 30	8 22	3		P unrecognizable in the small microseisms. The L of 22° continue for 10 min.

Recons of the Earthquake Station, Dominion Astronomical Observatory, Ottawa, Canada, Latitude 45° 23′ 38″, Lougitude 75° 42′ 57″ or 5th 02^m 518.8 W. Greenwich, Elev, 83″, Time: Jean Greenwich, midnight to midnight. Instruments: Two Bosch photographic horizontal pendulums. Xomenclature: Göttinger. From January I, 1908. March 31, 1909–Con.

No.	Date.	Char.	Phase	Time.	Period.		ITUDE.	Remark«,
						$A_{\mathcal{E}}$	A_{y}	
	1908.			h. m. s.	8.	μ	μ	
16	May 5	I	$\stackrel{P}{\stackrel{L}{\underset{F}{\overset{L}{}}}}$	$\begin{array}{cccc} 6-40 & 14 \\ 7-19-\ldots \\ 8-30-\ldots \end{array}$	5 27	6 	8	Microseisms throughout sheet. L not conspicuous till 7 ^h 19 ^m and continue then for 15 mi- nutes.
17	May 15	Ilr	iP Pr iS		$ \begin{array}{c} 12 \\ 10 \\ 10 \end{array} $	3	2	On N-S. component for <i>iP</i> period 3 ^s to 4 ^s .
			$eL \\ M \\ F$	8 - 50 - 48 8 - 53 - 30 11 - 10	33	140	110 [°]	Shorter periods of 5 ^o 5 super- imposed on L of 33 ^o . Epicentral distance 4400 km.
18	June 14		$eN \\ eE \\ F$	$6 - 0_1^2 - 36$ 6 - 09 - 38 6 - 33	2.6	8	6	Phases unrecognizable.
19	June 16	Id	F	$\begin{array}{ccc} 20 - 41 - 52 \\ 20 & 42 - 04 \end{array}$	2		8	Some windows rattled. Felt in the Observatory and in many places in the city.
20	June 18	I	P iS L M	$\begin{array}{c} 10-46-38\\ 10-52-16\\ 11-01-28\\ 11-08-\ldots \end{array}$	4:8 6:6 8:5	2 4 6	2 4 7	Epicentral distance 3800 km.
21	June 30	ſ	F c M F	12 - 00 17 - 51 - 30 17 - 57		8	6	
22	July 2	I		18 - 20 13 - 07 - 22 13 - 15 13 - 16	58	2		
23	July S	I	F P S M	13 - 28 12 - 58 - 16 13 - 04 - 52 13 - 20	6 10 10			L not well marked. Distance of epicentre 4900 km.
24	July 16	Ĩα	F P S M M	14 - 11 17 - 00 - 30 17 - 08 - 52 17 - 11 17 - 54	5 7 6		2	Epicentre 6800 km. Severe earthquake reported from Arica, Chile, but no time stated.
25	July 19	1	F e F	18 - 00 14 - 13 - 40 14 - 19	5.3			
26	July 26							The first well-marked "saw- tooth" microseisms, period
27	August 14	11	iP iS	$0 - 49 - 48 \\ 0 - 55 - 40 \\ 1 - 55 - 40$	5·7 8	10		5 ⁴ .2, since May 10.
			L M_X M_E	1 - 00 - 08 1 - 02 - 16 1 - 03 - 53 1 - 08 - 16	22	71	41	Superimposed by shorter period waves.
00	1		P IP	2 - 25 10 - 56 - 00	7.6			Distance to epicentre 3900 km.
28	Aug. 17	11	$iS \\ L$	11 - 03 - 07 11 - 12	4 0 7			
			M L _E L _X	11 - 12 - 12 11 - 30 11 - 36	32 29		10	$L_{\mathcal{V}}(L_{L})$ well-marked undulatory.
				11 - 37 11 - 41 13 - 30	20 21		8	Distance to epicentre 5400 km.
				13 - 30				Distance to epicentre and kin.

RECORD of the Earthquake Station, Dominion Astronomical Observatory, Ottawa, Canada, Latitude 45° 29° 38″, Longitude 75° 42′ 57″ or 5th 02th 51′ 8 W. Greenwich, Elev, 83″, Time: Mean Greenwich, midnight to milhight. Instruments: Two Bosch photographic horizontal pendulums. Xomenclature: Güttinger, From January 1, 1908. March 31, 1909—Con.

	Date.	Char.	Phase	Time.	Period.	AMPL	ITCDE.	Remarks.
						A _E	$A_{_{\rm N}}$	
	1908.			h. m. s.	s.	μ	μ	
9	Ang. 18	I	$\overset{c}{\overset{M}{F}}$	$\begin{array}{c} 11-16-08\\ 11-20-40\\ 11-40-\ldots \end{array}$		4		Press despatches report an earth quake at Eureka, California at about 11 ^a = 3 a.m. Pacif Standard, for which the adjoin ing is apparently the record Distance to Eureka 3800 km.
0	Aug. 19	Ι	eP? e8? M F	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6 8 	7	6	Devence to Future come Rul
1	Aug. 20	I I	$\overset{c}{\overset{L}{F}}$	10 - 21 10 - 43 11 - 33 19 - 31	16-20		2	Phases not distinguishabl E-W component the bette shown.
	Aug. 22		e S! M F	19 - 36 - 22 19 - 42 - 00 20 - 15	8	6		
	Aug. 23		F^{e}	19 - 22 - 28 19 - 26	57			
4	Aug. 29	I	$\stackrel{e}{\stackrel{M}{\underset{F}{\overset{L}}}$	18 - 15 - 18 18 - 24 - 10 18 - 25 19 - 00 6 - 43 - ?	5-6 20	6		
5	Sept. 21	I _w	$e \\ S \\ L_N \\ M_{1N} \\ M_{2N} \\ M_{JN} \\ M_{1E} \\ M_{2E} \\ M_{2E} \\ F$	$\begin{array}{c} 6-43-?\\ 6-55-47\\ 7-07-40\\ 7-09-32\\ \cdot 12-16\\ \cdot -14-44\\ \cdot -14-40\\ \cdot -16-08\\ \cdot -18-14\\ 9-00- \cdot \end{array}$		50 37 25	8 16 16 12	The microseisms mask the P ar interfere with the other phase
6	Sept. 24	I	e cL F	1 - 05 1 - 09 - 40 1 - 21	16	3	2	
7	Oct. 13	1	iP iS	5 - 13 - 26 5 - 19 - 02	8.5	29	14	iL uncertain.
			M _N ME ME "	5 - 35 - 50 5 - 38 - 00 6 - 52 - 38 7 - 03 - 52 $\dots - 6 - 24$ $\dots - 9 - 24$	8-3 8		35 6	Epicentre 3700 km. A second shock appeared befor the other had wholly died on
8	Nov. 2	I	F P S	-12 - 40 8 - 00 5 - 37 - 56				NS. component unreadable de to stray microseisms.
9			$\begin{array}{c} L\\ M\\ F\end{array}$	5 - 54 - 20 6 - 43 7 - 40	20 20	6 14		Some L of 32 ^a Epicentre 6300 km.
	Nov. 4	I	e F P	8 - 54 - 9 - 20	12			
		1	8? L M	7 - 31 - 50 7 - 38 - 16 7 - 46 - 35	. 6 	14		Strong microseisms prevail- and partly mask N-S compo- ent.

Ruconu of the Earthquake Station, Dominion Astronomical Observatory, Ottawa, Canada. Latitude 45° 23′ 38°, Longitude 75′ 42′ 57″ or 5° 02™ 51°.8 W. Greenwich. Elev. 83™. Time: Mean Greenwich, midingkit to midnight. Instruments: Two Eesch photographic horizontal pendulums. Nomenclature: Göttinger. From January 1, 1908, March 31, 1909-Con.

No.	Date.	Char.	Phase	Time.	Period.	Ampl.	A _N	Remarks.
	1908.			h. m. s.	я,	μ	μ	
41	Nov. 6	Ι	e L	23 - 02 ? 23 - 14 ?				Very strong microseisms pre- vailed, 10 μ , and almost mask N-S component.
42	Nov. 9	I	ME Mx F iP L F	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		6	10 	Small microseisms mask N-S component except P. No M distinguishable. Epicentrepro
43	Nov. 11	I	$\stackrel{c}{\stackrel{L}{L}}_{M}$	$\begin{array}{c} 13-39-10\\ 13-44-40\\ 13-56-\end{array},$	5 			bably 6,500 km.
44	Nov. 12	I	F e	15 - 25 13 - 51	1-3	1		Very weak : phases unrecog- nizable.
45	Nov. 19	I	$F \\ e \\ M_{\mathcal{E}}$	15 - 00 5 - 46	15 15	··· · 6		No phases recognizable.
46	Nov. 22	I	F , L L	6 - 26 6 - 45 - 36 6 - 55 - 12 8 - 09 - 24	8 16 20	$\frac{1}{2}{2}$		Not recognizable in N-S com- ponent.
47	Nov. 23	I	F c M	8 - 30 13 - 04 - 20 13 - 54	 6 22			
48	Nov. 30	Ι	F P? L MN	15 - 00 21 - 49 - 48 21 - 56 21 - 57 - 30	 6		75	
49	Dec. 12	I	M_E F ϵL L_E	21 - 59 - 30 23 - 30 13 - 43 - 40 13 - 46	10 32	4		Microseisuns present.
50	Dec. 28 .	I	L_F iP	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	20 5-6	4	4 4	Strong microseisms, but mater- ially decreased after quake.
			$L \\ M_N \\ M_E \\ F_N \\ $	$\begin{array}{c} 4-39-42\\ 4-56-30\\ 5-00-\ldots\\ 6-10\\ 9-20-\ldots\end{array}$	20 16 16	18	10	Epicentre 7,100 km. Postscripts : Calabrian quake, 7,300 km
51	Dec. 28 1969. Jan. 12	I	P F P	23 - 22 - 05 24 - 00			6	No other phases recognizable, E-W component not recorded,
	Jan. 12	I	F	0 - 04 - 36 $0 - 22 \dots$ $10 - 26 - \dots$	4		4	Earthquake reported from Van- couver, B.C.
	Jan. 12	I		10 - 26 10 - 37 12 - 30 12 - 35	12-16		2	
54	Jan. 21	I	F ć Ms	12 - 33 12 - 55 21 - 43 21 - 47 - 30				No phases recognizable.

Recons of the Earthquake Station, Dominion Astronomical Observatory, Ottawa, Canada. Latitude 45° 29′ 88′, Longitude 75′ 42′ 57′ or 5th 02″ 51′.5 W. Greenwich, Elev. 83″, Time: Mean Greenwich, midnight to midnight. Instruments: Two Bosch photographic horizontal pendulums. Nomenclature: Göttinger. From January 1, 1908. to March 31, 1909-Con.

No.	Date.	Char.	Phase	Time.	Period.			Renaer».
	1909.			h. m. s.	в.	μ.,	μ.	
55	Jan. 23	I	$egin{array}{c} P & S & L & \ L & L & \ M_N & M_E & \ \end{array}$	$\begin{array}{c} 3-01-13\\ 3-11-42\\ 3-28\end{array}?\\ 3-32-\ldots\\ 3-35-\ldots\\ 3-35-\ldots\\ 3-37-\ldots\end{array}$	24 24 24 22		6	Epicentre estimated at 9,400 km.
56	Feb. 9	I	F e L F	4 - 50 12 - 01 12 - 06 12 - 21	20			Well-marked microseisms pre vail.
57	Feb. 16	Ι	P L M_N M_E	16 - 31 - 20? 16 - 54 - 20 16 - 55 - 00 16 - 55 - 40	6 6 7	 40	30	Epicentre 8,400 km.
58	Feb. 22	I	F P S LE M	$\begin{array}{c} 17-35-\ldots\\ 9-40-00\\ 9-45-06\\ 9-48-29\\ 9-52-40? \end{array}$	 7	20		Microseisms present. Epicentre 3,500 km.
59	Feb. 26	I	F P S L M F	11 - 20 16 - 5335 16 - 59 - 16 17 - 01 - 23 17 - 05 - 12 1738	12			Well-marked microseisms. Epicentre 3,900 km.
60	Mar. $\begin{array}{c} 12 \\ 13 \end{array}$	I	e L ME	23 - 42 0 - 07 0 - 14 1 - 38	20	6		
61	Mar. 13	I	F P S L M	14 - 42 - 20 14 - 52 - 40 15 - 16 - 32 15 - 19 - 30	20 27	6		
62	Mar. 18	I	$FeL \\ F$	$\begin{array}{c} 17-00-\ldots\\ 0-03-40\\ 0-20-\ldots\end{array}$	24			Irregularities due to winds ar microseisms mask the phase

During this period of fifteen months sixty-two earthquakes were recorded and but no of them of Canadian origin, and that one in the vicinity of Ottawa. Popularly the severity of an earthquake is measured by the destruction of life and property, which is howerer by no means the criterion for the scismologist when considering it as a tectonic movement. There were three earthquakes by which much destruction was done: the two shocks of March 92-87 by which Chilpap, on the Pacific alops of Mexico was destroyed; then the great disaster of Messian, also spoken of as the Calabrian certhquake; and the Persian one of January 93, 1009.

Most of the other quakes probably occurred at sea and hence give us no evidence from the epicentre or central area of disturbance unless it be through the breaking of submarine cables. However, with the great improvement of earthquake instruments in recent years, with increased sensitiveness and more accurate time-seale, it

will now be possible to locate with a fair degree of accuracy every earthquake that is recorded at a number of widely separated stations. There is yet room for improvment in sensitiveness, especially for recording the first preliminary tremos, and also in the time record; the clock correction, if any, should be within a second of time. The time-scale on our photographic seismogram is made by a shutter, actuated electrically by our ournal standard mean time clock, and so far has never required a correction of a second. The light is cut off every minute for two seconds and the 60th minute is omitted in order to identify the hour.

With well marked phases on a seismogram and good time-scale, the distance to the epicentre of a tectoric quake can be obtained within say 100 km, or 60 miles. The direction of the seat of disturbance, however, can not be so well deduced. Were the matter through which the earthquake waves are propagated homogeneous, then the components of the two pendulums placed generally in the N-S. E.-W. directions at each station would furnish some indication of the direction sought, and thus enable cach station to obtain at least an approximate position for the epicentre. The complete analysis of the esimograms is yet remote.

That the velocity of the first and second preliminary tremors or longitudinal and transverse waves respectively is a function of the distance is well illustrated in the accompanying table which has been compiled of the Messian earthquake. Time of occurrence at Messian is taken as $4^{+}20^{-}$ Greenvich mean time (Professor Rizzo). The seismogram records were obtained from the various subjoined stations, and the distances were directly taken from our 30-inch globe with a flexible steel tape especially graduated to represent 10,000 km. for the quadrant. A globe of this size with such a graduated tape is of great service in the study of earthquakes and their epicentres.

P. S. L. represent respectively the time of arrival of the first preliminary, the second preliminary, and the long waves.

Place. ta	ince.	to	P	8					
		Chord.			L	Р	8	L	Р
1	km.	km.	h m s	hms	h m s	km.	km.	km.	
	7200	992	4 31 04	4 39 42		651	365		156
	7650	1116	4 31 23	4 40 30	4 35 20	672	373	166	151
Fiflis Cartuia	2550 1700	128 56	4 25 33 4 23 35	4 29 50 4 26 40	4 35 20 4 27 50	458 474	259 255	217	5
Sartuja.	700	10	4 21 51	4 23 09	4 23 54	378	222	180	- 59
Belgrade.	850	14	4 22 09	4 23 11	4 24 12	395	267	202	•6
Laibach	900	16	4 22 18	4 23 33	4 24 16	391	254	211	.6
Vienna	1100	24	4 22 55	4 25 17	4 26 16	377	208	175	-5
Cracow.	1400	38	4 23 23	4 25 59	4 26 48	413	234	206	:5
Hamburg	1750 1600	60 50	4 24 16 4 23 53	$\frac{4}{4}$ $\frac{27}{26}$ $\frac{18}{38}$	4 28 12	410 412	240 241	213	5
Aachen	7500	1073	4 31 12	4 20 38	5 00 00	670	379	187	-5
Victoria	9550	1709	4 33 12	4 43 36	5 06 36	723	405	205	-5

MESSINA EARTHQUAKE.

The ratio $\frac{S}{P}$ is pretty constant, with the exception of the three stations, Sarajevo,

Belgrade and Laibach, which are all less than 1,000 km. from the epicentre, and for which the ordinates to the chords are small, from 10 to 16 km., not reaching to the supposed layer of isostatic adjustment.

The degree of accuracy of the time element in the records for deducing velocities is of far more consequence for close stations than for very distant ones. However in the above, which comprise all the data available at the time, there does not appear to be any serious diverse conspicuously as being propagated over the same medium for all stations, that is, along the surface, by having the same velocity. Thus the velocity from origin to Cracow is the same as to Victoria, seven times as distant. Although there are some variations in the velocity of the surface waves, they are wholly independent of the distance, and most likely attributable to the difficulty of sometimes identifying the arrival of the long waves in the medley of the other waves and their reflections which precede.

As the time of the occurrence of the severe earthquake in Persin of January 23, 1996, was not reported, and the time service in those regions is in any case probably very unsatisfactory with reference to Standard or Greenwich time, an attempt has been made to determine the time of the occurrence at the epicentre, based on the press depatch that the epicentre was at Bahren, and on the times of arrival of the first and second preliminary tremors (P and S) at various stations of which the records had been received. The geographical position of Bahren is taken from Stieler's Hand $Atlas, y = 33^{\circ}$ 30', $\lambda = 49^{\circ}$ 30' E. Greenwich. The distances are taken from our 30-inch globe.

In the following table the computed transmission times Γ_i , Γ_j for the P and Sare interpolated from the Wiechert-Zeppritz values compounded from the Indian earthquake of 1905, the Calabrian one of 1905, and the San Francisco one of 1906.

For L the velocity is taken at 4 km. per second.

EARTHQUAKE OF JANUARY 23, 1909.

BAHREIN, PERSIA.

 $\phi = 33^{\circ} 30', \lambda = 49^{\circ} 30' \text{ E. OF GR.}$

GREENWICH TIME.

Station.	Dis- tance.	Ordin- ate.		Se	isn.	nog	ran	18.				С	omp	nte	d.			3		luc Epi			e a	t	
	km.	km.	ł			8			L		V	1	V	2	I	3	ł	- I	1	2	6- P	2		L~s	В
			h n	8	h	m	8	h	m	8	ш	8	m	8	m	s	h	m	8	h	m	8	h	m	8
Ottawa	9750		3 01			11	42	3	28			54		38		37	2	48	13	2	48	04	2	47	4
Hamburg.	3830		2 55				36		03	12		07	12	40		57		48	07		47			47	
Aachen	4020		2 53				05		04			21		06		45		48	12			59		48	
Frieste	3330 2920	217 168	$\frac{2}{2}$ $\frac{54}{51}$				$\frac{42}{09}$		04 03		6	22		22		52		48	20					50	
Sarajevo	3060		2 54				59	3	05	30		52 00	10	$\frac{24}{43}$		10		48	38			45		50	2
Vienna	3200		2 54				10	÷.	$\dot{0}\dot{0}$	Éè	6		11	40 07		$\dot{2}\dot{0}$			08 05			16			
Ciflis.	1030	21		40		.13	10	0	00	50	2	19		04		20		48 48			48	03		47	3
trassburg	3850	250	2.52			óò	$\dot{26}$	3	05	$\dot{26}$		09		40		$\dot{0}\dot{2}$	••	48	00		47	46		<u>49</u>	
aibach	3300	213	2 5		2	59	15		04			21	11	16		45		47	59			59		49 50	
Selgrade	2650	137	2 58	26			53			42	5	27	9	42		02			59			11		50	
Cartuja	4820	450	2 5t			03	05	3		30		20	14	48	20	05		48	13			17		47	
Washington	10300	1972	3 01	22	3	12	05	3	30		13	18	24	28	42	55		48	04			37		47	
											Mean	n.					2	48	11	9	48	06	2	48	-

It will be observed from the above table that the mean time deduced from the Pagrees within 5 seconds of the mean of the deduced time from the S, so that one feels justified in giving for the time of the occurrence of the quake in Persia 24 spaces

^{*} Times evidently one minute too late.

Greenwich time. The agreement between the two independent values $P - V_1$ and $S - V_1$ for any station is satisfactory too; in several cases the times are absolutely co-incident. However, we cannot always be sure of individual seconds in reading P and S on the seismogram.

A greater difficulty we encounter when trying to read on the seismogram the arrival of the long waves, L₁ and this is manifested in the last column, which in the ideal condition we should expect to agree with the other two. The discordances in the last column of individual values from the general mean $(2^{\pm} 45^{m} 08^{s})$ of the other two columns is not attributable to the assumption of 4 km. as the velocity of the long waves per second, but rather to the reading of the various seismograms. For, taking $T = 2^{\pm} 48^{m} 08^{s}$ is the time of the occurrence of the quake and solving by least squares for the velocity of the long waves we get 238 km. per minute, which is practically the same as 4 km. per second, the quantity used.

If we arrange L-T in the order of magnitude and divide the resulting time into the respective distance of the station from the epicentre it will be found that there is a tendency for the greater distance to give the greater velocity; the extreme values being Hamburg 4.24 km., and Belgrade 3.26 km. per second.

We may recall the table of the Calabrian or Messina quake, which gave for Belgrade 3.36 km., and for Hamburg 3.55 km., and the general mean 3.27 km. In no case for that quake was a velocity obtained as high as 4 km., the highest being for Cartig 3.61 km. per second.

Judging from our seismograms here, it is believed that the discordances obtained for the velocity of the long waves are mostly or wholly attributable to the uncertainty of identifying, midst the complexity of longitudinal and transverse waves and their reflections which precede, the arrival of the surface or long waves.

Some of the stations on this continent failed to get a record of the first preliminary tremors, due to lack of sensitiveness of the instrument. For distant quakes not only the diminished force of the longitudinal impulse comes into play, but also the horizontal component of that impulse, so that distance very materially militates against the recording of the first preliminary tremors.

The following table is a compilation of the two preceding ones, and arranged in order of distance with the corresponding middle ordinate to the chord, and the mean velocity of the first preliminary tremors, *P*, or longitudinal waves in kilometres per minute.

Place.	Distance.	Ordinate,	Velocity P.	Place.	Distance.	Ordinate.	Velocity P.
Sarajevo Belgrade Laibach Tiffis Vienna Cracow . Aachen Cartuja. Hamburg Tiffis .	1,600 1,700 1,750 2,550	km. 10 14 16 21 24 38 50 56 60 128	km. 378 395 891 407 377 413 412 474 474 474 410 458	Vienna. Laibach. Trieste. Hamburg. Strassburg. Aachen. Cartuja. Ottawa. Toronto. Washington	3,830 3,850 4,020 4,820 7,200 7,500 7,650	km. 200 213 217 287 290 315 450 992 1,073 1,116	km. 519 532 507 540 549 542 573 651 670 670 672
Belgrade Sarajevo. Cracow	2,650 2,920 3,060	137 168 183	500 396 510	Vietoria Ottawa. Washington	9,550 9,750 10,300	1,709 1,778 1.972	723 745 778

FOR MESSINA AND BAHREIN EARTHQUAKES.

There are some discrepancies in the table, notably the one for Sarajevo. From information received it would appear that it is mostly due to an error or inaccuracy

in time scale. If the phenomenal progress that seismology has made in recent years continues, such discrepancies will disappear and data of a high order of precision will be obtained, upon which a permanent structure can be raised.

There are now some 200 earthquake stations distributed over the carth, and the seismograms furnished by them are far from homogeneous, and are far from equal merit and value for studying the geophysical problems for which they are obtained. The first order of precision to be aimed at is that of time. Seismology demands now that the time recorded should be accurate within at least one second. As standard time is now so widely distributed by telegraph, there seems no reason why the time of every earthquake station should not be controlled by the time from some astronomical observatory. In order to be able to read to one second on the seismogram the time scale should be about 90cm. to the hour, or 15mm. to the minute; i.e., 1mm, would represent 4 seconds. There is a limit to the speed of the revolving cylinder, for if it is too great, although the time could then be more accurately read, yet, waves with small amplitudes would become so flattened as to be scarcely recognizable. A further demand for precision, is that the instrument be highly sensitive in order that the first impulse of the first preliminary tremors is recorded, and that damping co-efficient should approach the limit of aperiodicity for the pendulum, in order that the seismogram may represent fairly well the earth movements and free from those of the pendulum itself.

CANADIAN EARTHQUAKES.

Looking at a geological map of Canada one is immediately impressed with the fact that the greater part of the Dominion, running from the Gulf of St. Lawrence past Hudson bay and on to Great Bear lake and the Arctic ocean, is composed essentially of archizen rock, that is, of the oldest formation on the earth. This is probably the largest area of archizen rock on the earth, being closely followed by the Seandinavian peninsula and Finland. As earthquarks are intimately associated with the age of rock formation, the more recent being more subject to disturbances than the older ones, we may say that broadly speaking the vast area above referred to will always be fairly free from earthquakes, for its compact and more or less homogeneous nature is not so well adapted to the adjustment of the strains of the earth's crust, which is the cause of earthquakes, as the newer formations are, which are intersected by dikes and faults, and which exhibit stratification and folding with, consequently, lines and surfaces of weakness.

In the St. Lawrence valley, westward from Quebec to Lake Huron, we have formations of the Palgozoic age, and also to the south of the St. Lawrence covering New Brunswick and Nova Scotia. In the whole of eastern Canada from Nova Scotia to near the mouth of the Mackenzie river, a distance of nearly 3,000 miles, no formations more recent than those of the Palæozoic age are found. In western Canada the newer formations occur; the Great Plains being represented by the Cretaceous and Tertiary eras. The mainland Pacific coast of British Columbia is almost wholly ' coast granite,' while the interior is largely represented by the Miocene period of the Tertiary era. The nature, composition and structure of the formation itself may, per se, directly lead through gravitational effect to earthquakes. While on the other hand such formation may lend itself to the adjustment of stresses imposed upon it from neighbouring regions, e.g. the sea or ocean. So much is obvious, that whatever reason we may assign as the contributory cause of an earthquake, where it occurs is necessarily the weak snot for the area under strain. From historic records and of late years from instrumental records the seismic areas of the earth are fairly well known, but why the degree of seismicity should vary in different regions is open to considerably more elucidation. The Indo-Pacific archipelago, including Sumatra, Java, New Guinea and the Philippines is the most seismic region of the earth for the larger quakes, while the eastern coast of Canada is fairly immune.

25a - 4

The more or less severe, but not destructive, earthquakes that have visited eastern Canda are all associated more or less directly with the 'Great Champhain and St. Lawrence fault,' running from the gulf up the river to Quebec and then curving southwesterly to Lake Champlain. Of these the quarks of 1663, 1791, 1860 and 1870 are the most noted. The first one has gained a certain celebrity from its exaggerated description. This carthquake, which lasted about six months, occurred during the French occupation. We may regard the record of this as the beginning of our literature on seismology, and hence give it a place here, although its scientific value is rather circumseribed.

From a manuscript in the Jesuits' College at Quebec the editor of 'Hochclaga Depicta' took the following account of this quake:--

' On the 5th of February, 1663, about half past five in the evening a great rushing noise was heard throughout the whole extent of Canada. This noise caused the people to run out of their houses into the streets, as if their habitations had been on fire; but instead of flames or smoke, they were surprised to see the walls reeling backwards and forwards, and the stones moving, as if they were detached from each other. The bells sounded by the repeated shocks. The roofs of the buildings bent down, first on one side and then on the other. The timbers, rafters and planks cracked. The earth trembled violently, and caused the stakes of the palisades and palings to dance in a manner that would have been incredible had we not actually seen it in many places. It was at this moment every one ran out of doors. There were to be seen animals flying in every direction, children crying and screaming in the streets; men and women seized with affright, stood horror-struck with the dreadful scene before them, unable to move, and ignorant where to fly for refuge from the tottering walls and trembling earth, which threatened every instant to crush them to death, or to sink them into a profound and unmeasurable abyss. Some threw themselves on their knees in the snow, crossing their breasts and calling on their saints to relieve them from the dangers with which they were surrounded. Others passed the rest of this dreadful night in proyer, for the earthquake ceased not, but continued at short intervals, with a certain undulating impulse, resembling the waves of the ocean, and the same qualmish sensations, or sickness of the stomach, was felt during the shocks as is experienced on a vessel at sea. . . . The violence of the earthquake was greatest in the forests, where it appeared as if there was a battle raging between the trees; for not only their branches were destroyed, but even their trunks are said to have been detached from their places and dashed against each other with inconceivable violence and confusion, so much so, that the Indians in their figurative manner of speaking, declared that all the forests were drunk. The war also seemed to be carried on between the mountains, some of which were torn from their beds and thrown upon others, leaving immense chasms in the places from whence they had issued, and the very trees with which they were covered sunk down, leaving only their tops above the surface of the earth; others were completely overturned, their branches buried in the earth and the roots only remained above ground. During this general wreck of nature the ice, upwards of six feet thick, was rent and thrown up in large pieces, and from the openings in many parts, there issued thick clouds of smoke, or fountains of dirt and mud, which spurted up to a very considerable height. The springs were either choked up or impregnated with sulphur,-many rivers were totally lost, others were diverted from their course and their waters entirely corrupted. Some of them became vellow, others red, and the great River of St. Lawrence appeared entirely white as far down as Tadousac. This extraordinary phenomenon must astonish those who know the size of the river, and the immense body of water in various parts, which must have required such an abundance of matter to whiten it They write from Montreal that during the earthquake they plainly saw the stakes of the picketing or palisades jump up as if they had been dancing; and that of two doors in the same room, one opened and the other shut of their own accord; that the

chimneys and tops of the houses bent like branches of trees agitated with the wind: that when they went to walk they felt the earth following them and rising at every step they took, sometimes sticking against the soles of their feet and other things in a very forcible and surprising manner. . . . From Three Rivers they write that the first shock was the most violent, and commenced with a noise resembling thunder. The houses were agitated in the same manner as the tops of trees during a tempest, with a noise as if fire was crackling in the garrets. The shock lasted half an hour, or rather better, though the greatest force was properly not more than a quarter of an hour; we believe there was not a single shock which did not cause the earth to open either more or less. As for the rest, we have remarked that, though this earthquake continued almost without intermission, yet it was not always of an equal violence. Sometimes it was like the pitching of a large vessel which dragged heavily at her anchors; and it was this motion that caused many to have a giddiness in their heads and qualmishness at their stomachs. At other times the motion was hurried and irregular, creating sudden jerks, some of which were extremely violent; but the most common was a slight tremulous motion, which occurred frequently with little noise. Many of the French inhabitants and Indians, who were eye-witnesses to the scene, state that a great way up the river of Trois Rivières, about 18 miles below Quebec, the hills which bordered the river on either side, and which were of a prodigious height, were torn from their foundations and plunged into the river, causing it to change its course and spread itself over a large tract of land recently cleared; the broken earth mixed with the waters, and for several months changed the colour of the great River St. Lawrence, into which that of Trois Rivières disembogues itself. In the course of this violent convulsion of nature, lakes appeared where none ever existed before; mountains were overthrown, swallowed up by the gaping, or precipitated into adjacent rivers, leaving in their places frightful chasms or level plains; falls and rapids were changed into gentle streams, and gentle streams into falls and rapids. Rivers in many parts of the country sought other beds or totally disappeared. The earth and the mountains were entirely split and rent in innumerable places. creating chasms and precipices whose depths have never yet been ascertained. Such devastation was also occasioned in the woods, that more than a thousand acres in one neighbourhood were completely overturned, and where but a short time before nothing met the eye but one immense forest of trees, now were to be seen extensive cleared lands apparently cut up by the plough . . At Tadousac, about 150 miles below Quebec on the north side, the effect of the earthquake was not less violent than at other places; and such a heavy shower of volcanic ashes fell in that neighbourhood, particularly in the River St. Lawrence, that the waters were as violently agitated as during a tempest. Near St. Paul's bay, about 50 miles below Quebec on the north side, a mountain about a quarter of a league in circumference, situated on the shore of the St. Lawrence, was precipitated into the river, but, as if it had only made a plunge, it rose from the bottom and became a small island, forming with the shore a convenient harbour, well sheltered from all winds. Lower down the river, towards Point Alouettes, an entire forest of considerable extent was loosened from the main bank and slid into the River St. Lawrence, where the trees took fresh root,

⁴ There are three circumstances, however, which have rendered this extraordinary cardinguake porticularly remarkable: the first is its duration, it having continued from February to August, that is to say, more than six months almost without intermission. It is true, the shocks were not always equally violent. In several places, as towards the mountain behind Quebee, the thundering noise and trembling motion continued successively for a considerable time. In others, as towards Tadousae, the shock continued generally for two or three days at a time with much violenee. . . . The second circumstance relates to the extent of this cartiquake, which we believe was universal throughout the whole of New France, for we learn that it was fiel from Fisle Perece and Gaspć, which are situate at the mouth of the St. Lawrence to 25a-43

37

beyond Montreal, as also in New England, Acadia and other places more remote. As far as it has come to our knowledge, this earthquake extended more than 600 miles in length and about 300 in breadth. Hence 180,000 square miles of land were convolsed in the same day and at the same moment.

[•] The third circumstance, which appears the most remarkable of all, regards the extraordinary protection of Divine Providence which has been extended to us and our habitations; for we have seen near us the large openings and chasma which the earthquake occasioned, and the prodicions extent of country which has either been totally lost or hideously corrulsed, without our losing either man, woman or child, or even having a hair of their heads touched?

We might add a fourth circumstance, and that is, that the narrators of the abovanticipated the sensationalism of our 'yellow' journals by two and a half centuries.

1908.

May 12.—A very perceptible shock of earthquake was felt in Yarmouth, N.S., and vicinity a few minutes before 12 on Wednesday night. Houses shock and trembled and here was a load report as of heavy thunder. No damage has been reported. It was bright moonlight and calm at the time. It was likewise felt in Digby, Annapolis and Shelburne counties.

¹ June 16,—A distinct shock occurred at Ottawa, and was recorded by the esismograph at 3^b 41^m 52^a p.m., the pulsations lasting 16 seconds. It was generally felt; windows rattled, and some heard a load rumbling sound. On the Ressi-Forel scale the intensity would be designated by IV. It was felt over an area about 60 miles in diameter.

July 17.—Quite a distinct shock was felt at Arnprior at 2^h 10^m a.m. A great many citizens felt it. The quake was accompanied by a noise similar to that of a large building falling.

August 8.—Dispatches from the up-river section of New Brunswick report earthquake shocks in several places this morning. At Hartland there were three shocks at 1, 4 and 7 a.m. Plaster fell from the ceiling in one building. In Fredericton and vicinity there was a shock felt about 7 o'clock. Thunder and lightning and very heavy rain were experienced during the night.

November 30.—An earthquake travelling apparently from north to south three the inhabitants of the town of Skidegate, Queen Christotic islands, into a state of norrous apprehension in the afternoon of November 30, seconding to news brought south by the fishing steamer Celestial Empire, which reached Vancouver yesterday morring (December 9) from the northern halibut banks. It was estimated that the shock lasted fully seven seconds. No other tremors were felt, greatly to the relief of the people of the town, who become somewhat alarmed on observing that two Indian shacks had been thrown to the ground. The buildings knocked down were old, halftumblel-down affairs.

1909.

January 11.—Nearly all parts of southern British Columbia and Washington Territory, acress the international boundary, were abaken by an earthquake at 3.1. pm., Pacific standard time of January 11, the quake lasting from 10 to 20 seconds No damage was done but the alarm was very great. Beyond the breaking of some creckery in 6 few homes in Victoria, there was little damage caused. Como, Alberni, Pachena, Bamfield and other points report having felt the shock, Bamfield stating that two tremors were felt, while Estevan reports that no shock was experimend there. At Port Townsend, across the boundary line, in many places where water pipes lay in the frozen ground, the earthquake broke the pipes and dooded houses.

January 31-February 1.—Three distinct earthquake shocks were felt in Montreal last night. The first shock was felt at 11% 30° p.m., the second at 114 45° , and the third and most severe at 3° 20° gam. People were awakened all over the city. The ratiling of glassware and erockery was heard distinctly. A peculiar feature was the howling of dogs all over the city. Lood eracking as though houses were being severely strained was noticed everywhere. A number of houses are eracked as the result of the unakes, also some sidewalks.

February 3.—At about 4 a.m. quite a number of people in Montreal were aroused by an unusual sound and a slight sense of vibration, which lasted only a very short time and was not repeated. It was less severe than the preceding one of two days ago.

Examining the geological areas for the above places it is not difficult to understand that local shocks may occur there. The complexity of the formations; the differences in composition, in density, in elasticity; the many faults and dikes; the numrows surfaces of contact; the constant gravitational effect, all compiler towards the interruption of a continuous gradual adjustment of stresses and strains, so that at times these adjustments, though very minute, are abrupt and manifest themselves as local shocks. That these adjustments are very small is shown by the very small cceleration produced. Acceleration is the measure of intensity of an earthquake.

In the above local shocks there is only one, that for Ottawa, for which direct acasures were obtained. We find from them that the acceleration produced was 2-4 willcrafts.

The unit of acceleration in the C. G. S system is called a 'gal', i.e., the acceleration of 1cm per second, per second; hence for gravity at latitude 45° we have 980.60 cals. A millegal is the thousandth of a gal.

Small local shocks like the above may occur almost anywhere, at least in many localities over the southern part of Canada from Nova Scotia to British Columbia,

It may be remarked, however, that when we reach the Pacific coast we enter upon ground adapted to tectonic or the larger quakes. Vancouver island, Queen Charlotte islands and the smaller islands all lie in comparatively shallow water, but immediately to the west lies the deep trough of the Pacific, adapted for breeding seismic disturbnices on a large scale.

MICROSEISMS.

In order to treat this subject as fully as the data and records here warrant, some of the matter published last year is here incorporated for the sake of completeness.

Under the designation microseisms, are included all pulsations not directly attributthe to what are generally known as earthquakes, which give abrupt, more or less violent, and momentary movements of the earth's crust, the effect of which may, however, ontinue for some hours. Attempts have been made to classify these microseisms according to their cause, but so far without complete success. During the past year the writer has paid considerable attention to these disturbances, and in doing so has studied and compared the daily seismograms with our daily micro-barograms, our weekly aneroid barograms and also with the daily weather maps, which give the isobars at 8 a.m. for Canada and the United States, roughly between latitudes 25° and 55°, and the Atlantic and Pacific oceans. The micro-barogram exhibits particularly well very rapid fluctuations of pressure as manifested by local and often gusty winds, the counterpart of which is always represented on the seismogram by irregular movements and not by microseisms The average time of the beginning of the seismogram sheet is about 10 a.m., so that the above isobars and gradients dependent upon them are for a time preceding the former by two hours. From the examination of the local harogram alone not much information can be gathered as to the behaviour of the seismograph except when very rapid and marked fluctuations, say a millimetre or more, take place in the pressure, comparable with the 'pumping' of a mercurial

barometer at sea. The barometer may show little or no change in pressure at a given place, yet areas of 'High' and 'Low' (barometer) may be rushing along to the north and south of it, setting up vibrations or pulsations of the earth's surface that may be markedly felt at a given place by the seismograph. Similarly from a large rise or fall of the barometer during 24 hours at a given place alone, we can draw no gradients to determine the atmospheric movements; the position of the isobars and 'Highs' and Lows' being unknown. We have simply the record of the vertical movement of pressure at one point. The isobars on the Weather Map are drawn at intervals of onetenth inch difference of pressure. The normal to the isobars is called the gradient, and when spoken of, generally refers to the gradient between a 'High' and a 'Low' passing through Ottawa. An examination has been made during the year of the daily seismograms and the daily Weather Maps, including the isobars or position of ' Highs' or 'Lows' and the forecast for the Ottawa regions with reference to winds and storms. This examination furnishes the data upon which the conclusions depend. As the Observatory is not yet supplied with an anemometer and pressure gauge for camparison of the dynamical conditions, we are at present dependent upon the daily forecast.

It may be stated at the outset, before discussing the preceding data, that there is never a day in the year on which some trace of microseisms can not be seen on a seismogram from a Bosch photographic seismograph. It is all a matter of degree, That microscisms should be ever present is but natural, for the earth is in a continual state of stress and strain, many varied and different causes contributing thereto. The term microscisms as here used excludes any deviations of the vertical or movements of the zero position of the pendulum. Some writers have divided microseisms into 'earth tremors' or 'pulsations,' and 'earth pulsations' or 'pulsatory oscillations.' The writer, however, from the scismograms at this station sees no reason for this division, as it is not at all evident from them that the contributory causes, whatever they may be, manifest themselves in such a manner as clearly to differentiate themselves. Furthermore, from the examination of the seismograms the oscillations of the pendulum are excluded; on the one hand, from the frequent change of period on the same seismogram, which would be inadmissible for a pendulum, and on the other hand, if the pendulum were made to oscillate we should expect to see the damping effect in the decrease of amplitude, and a more or less sudden beginning, unless the oscillations of the earth particles themselves were of a period commensurable with that of the pendulum, which, of course, is sometimes the case. It is evident that a photographic registering apparatus with high magnification will record microseisms when a seismograph with mechanical registration will draw only a straight line.

Of the contributing causes to stresses and strains and manifesting themselves as microseisms, we may consider: secular cooling of the earth; unequal heating and the radiation during the day and night; statical effect of atmospheric pressure, areal or local; dynamical effect of atmospheric pressure, areal or local; precipitation, as rain or snow.

The vanishingly small effect of secular cooling, whatever its constants may be, becomes evident from the fact, that, although it is ever present, and its manifestations would be of a constant nature, the recorded microscisms are of the most fluctuating character both in time and magnitude, completely masking the effect of secular cooling. The daily alternations of unequal heating and radiation during the 24 hours are not shown by their effect on microscisms. The case of precipitation is similar in regard to microscisms to the preceding. It may be noted that the stresses set up over large areas, hundreds of millies in extent, by differential loading of rain, is small compared with that of barometric pressure. Taking an area, say of a thousand milles with a rainfall of an inch, which is a pretty heavy rain, and decremaingly distributed, we would have a maximum pressure of a little over one-thirtieth of a pound per square inch, and the rain-pressure diminishing to zero for the edge of the

area. An average barometric gradient, on the other hand, over such an area would be several times as great, due to a differential tamospheric pressure equivalent to about three-tenths of an inch of the mcreurial barometer. The rain-pressure may, however, make itself felt locally, as has been recorded at some stations. The result of a heavy rainfall soon fills the valleys and streams much beyond the direct precipation on them, so that this loading and bending of the surface may become a measurable quantity by an observing station in the neighbourhood. This effect is, however, one of titting, of change of vertical or change of peudulum zero and not microseisms, the subject at the moment under discussion.

The effect of difference of atmospheric pressure and of change of atmospheric pressure may be manifested in two ways by the seismograph. We are here dealing with large areas, say 1,000 miles in extent, for local barometric conditions have little or nothing in common with microseisms. In the one case, considering the earth as having an elastic crust, the pier is tilted towards the area of greatest pressure, in consequence of which the pendulum will move in that direction, i.e., its zero line will be displaced. Besides this effect of statical loading, there appears to be no doubt, based on the records here, that vibrations are set up by this statical loading, quite apart from the dynamical effect of change of pressure. In the other case, by change of pressure over a wide area vibrations are set up on the earth's surface, and these may be produced by two allied causes. The one of these is the passage of Highs' and 'Lows' over the surface, equivalent to the dragging of a weighted meniscus over the surface, and the other is the winds set up or resulting from the atmospheric gradient due to difference of pressure. The winds would operate more probably by frictional resistance along the surface of the earth rather than by impact or uneven surface or obstructions. In studying various phenomena collectively in an investigation for correlation, considerable restraint must be exercised not to draw conclusions as to cause and effect from a limited number of coincidences, for a conclusion once drawn is apt to become an obsession to the investigator, and he is more or less blinded to facts that do not fit his theory.

In examining the records of microseisms the first question that presents itself is whether the recorded motion is that of the ground or of the pendulum; in the first case the pendulum acts as a steady mass or point, while in the latter case it is set oscillating either by impulses from the ground or by an undulatory movement of the ground. Let us consider the case of microscismic record of the 'sawtooth' type, where we see regular and almost wholly uniform oscillations kept up for hours and longer. If in this case the pendulum actually oscillates it will do so with the period inherent to it. After receiving the first impulse or impact let us suppose it to oscillate. If no further impact were received the oscillations would soon die out and the amplitudes would decrease in the known ratio of the damping coefficient. When a second impulse is given the pendulum will continue its uniform swings, provided the time interval from the preceding impulse is that of the period of the pendulum or a multiple thereof. Were this not the case, interference would occur and would be shown on the record. But such interference is not present in the microseismic records referred to and we must conclude, even admitting that the diagram is a record of the oscillations of the pendulum, that it is in reality only a counterpart of the actual movements of the ground, that is, of horizontal to-and-fro motions of the earth particles. The pendulum can be kept swinging uniformly only by some force acting at intervals of the period of the pendulum. This may occur through the periodic oscillating movements of the earth particles; or the same effect may be produced by rythmic undulatory movements of the ground. Now, the period of microseisms recorded here lies usually between 5 and 6 seconds, which is also approximately the period of the two pendulums, and the period of the undulatory movements manifested in the 'principal portion' of tectonic earthquakes is 20 seconds or more, so that if we adopt the hypothesis that the microseismic motions are undulatory and not horizontal displacements, we have to explain

a period only one-quarter of the general period of the earth's crust. The shorter period might perhaps be accounted for by the supposition that a thinner part of the crust of the earth is affected in the microseisms than is involved in the undulatory motion connected with macroseisms. As an analogy we may give the short period of the ripples in water from a breeze, and the much longer one of waves from a storm when a greater depth of water is involved in the motion.

This reasoning does not appear to furnish a conclusive reply to the question whether the microscisms are attributable to the horizontal or to the undulatory movements. However, the consideration of the simultaneous occurrence of microscisms, together with certain atmospheric or barometric conditions leads to the conclusion that microscisms are mostly attributable to horizontal displacements.

Having made daily comparisons with the seismograms, local barograms and weather maps, the following conclusions have been deduced :- It is believed that identical atmospheric conditions prevailing over different parts of the earth's surface will not necessarily produce similar microseisms, as these are affected by the elasticity of the particular area under consideration, also by the geological formation, the presence of well-marked dykes, faults, and by the proximity of large sheets of water or the ocean. One effect of the proximity of the ocean caused by barometric pressure is the change of the level of the water, quite apart from the tides, and this change through loading or unloading along the coast produces a displacement of the pendulum zero, referred to in another place. In the sea, then, we have the dual effect of the direct barometric pressure and the correlated one of displacement of the water, while on land we have only the former. Barometric gradients over the ocean necessarily produce a motion of the water, quite apart from that produced by the winds resulting from the gradients. However, the pressure effect on the ocean bottom remains constant, for any displacement of the water is exactly balanced by the change of atmospheric pressure. Different of course it is on land which suffers the change of barometric pressure.

The fasture to strike one most in the above comparisons is that when marked microasisms are present we are almost certain to find that the daily weather map for the morning of the day of record gives for the following 24 hours an area of 'Low' about the full of St. Lwwence. That is, the condition of 'Low' in the gulf precedes the record of marked microseisms. The greater part of the gulf is less than 150 fathoms deep. Through it runs a 'deep' from the mouth of the St. Lawrence (Matane) along the south of Anticosti, passing between Cape Breton and Newfoundland, reaching a depth of 250 fathoms before joining the Atlantic ocean. This deep is over the eastern part of the great St. Lawrence and Champlain Fault, shown on the geological maps, for nearly '700 miles. The waters about Nova Sectia and Newfoundland are over waters, the greater part of which are less than 150 fathoms deep. The distance from Ottawn to the gulf is about '700 miles, direction east-north-east; and from Ottawa to the nearest broad waters of the Atlantic, off the state of Maine, 200 miles, direction east-avoith-east.

Next to the presence of a 'Low' in the gulf in importance as a phenomenon accompanying microseisms, we find the isobars which cut the valley of the St. Lawrence (in which lies the great fault) at right angles, so that the gradient is along the St. Lawrence valley, or in general parallel to the Atlantic coast, and to the line of the Allechary mountains.

Furthermore, it is found that if a 'High' prevails along the south Atlantic coast, northward from Florida the microseisms are intensified.

The passing of 'Highs' and 'Lows' across the coast-line, *i.e.*, from land to water, is not found to be marked by the occurrence of microssiums. As the whole atmospheric movement is, for Canada and the United States, from west to east, it is uncommon for a 'High' or 'Low' to cross the cost-line from the Atlantic to the continent.

It appears that the reversal of the position of 'Low' and 'High' with reference to the gulf for the former is not so closely associated with the subsequent appearance of microscisms as obtains in the case first stated.

When there is a persistence of 'Low' in the gulf and 'High' on the Athantic coast to the south as indicated, the microssims set up in the first instance become intensified in amplitude, so that the maximum microscisms are not necessarily coincident with the greatest difference of pressure, or the steepest gradients. It appears that the difference of harometric pressure is in the first instance responsible for the microscisms, and when favourable conditions continue the microscisms will increase in amplitude, although the pressure difference map have decreased. Furthermore, another condition is that the line of 'High'-'Low' preserves its direction along the 8K Lawrence valley.

When a 'Low' with even very steep gradients is to the west, say over the lakes, and 'High' on the lower St. Lawrence or gulf, microscisms are geneurally weak over even absent altogether, although there are exceptions. This is not the case when the 'Low' is to the east, especially when over the gulf. When the 'Low' with steep gradients moves up to Lake Erie by 8 a.m. of the day of the seismogram we may expect to see the beginning of marked microscisms, which increase as the 'Low' moves down the St. Lawrence towards the gulf. From the immediately preceding it is seen that the microscisms give no indication of the approach of a 'Low' and especially of its presence in the gulf. Some investigators believe the microscisms may be the forerunner of coming wather conditions, and hope that this may assist in making forecasts. The seismograme examined here are not very encouraging on that point, the microscisms indicating rather 'that we have had-weather, than that we are going to have weather.'

The preceding remarks refer to the microscisms and not to the effect of bending or displacement of the pendulum zeo, brought about by unequal pressure over a large area. The writer is not as yet prepared to say whether the approach of a 'Low,' with the consequent lifting or rising of the earth's surface, is a distinctly measurable quantity as registered by our seismograph, for the measurements of the two components of the change of pendulum zero for the year have not yet been tabulated and critically compared with the movements of 'Highs' and 'Lows' in the eastern part of the continent.

By far the large majority of microseisms show themselves by a serrated record, 'exattoot' type, as I designate them; more rarely are they of the 'spindle' type, where the oscillations or rather the amplitudes rise and fall, increase and decrease, with certain endence, as in the vibrations of a string between two fixed points. The interval between the maximum amplitudes is very variable, varying from one to several minutes. The rate of increase and decrease of the amplitudes is less than that produced by the damping of the pendulum, so that we can scarcely attribute it to the latter on the supposition that the pendulum itself is set in motion and the escillation dies down by damping, to be renewed by a fresh implus. This, however, would preclude a gentle increase; instead there should be a more or less abrupt beginning, which is not the case. Internittent rhythmic vibrations of the ground, nearly synchronizing with the period of the pendulum, setting the pendulum in motion could produce the phenomenon.

The validity of a supposed relationship between different phenomena, as cause and effect, is tested by predicting the effect when given the cause. This has been done with reference to the existence of a 'Low' in the gulf and a 'High' over the Atlantic coast to the south, or in general by taking the daily weather map with its isobars and from it predicting the resulting microseisms. The result has so fin been satisfactory that in the large majority of cases the microseisms have fairly well answered in presence and magnitude the prediction. There are, however, still important out-

standing differences that require forther explanation. Just why the 'Low' about the gulf should have such an influence in the production of microscisms is by no means apparent. The two main physical features are the shallow gulf and the St. Lawrence valley in which lies the great St. Lawrence and Champlain Fault, 700 miles long, already referred to. Also there is the generally parallel trend of the Atlantic coars, and that of the Alleghany mountains.

On frequent occasions there is $\delta^{-1} Low^{-1}$ over the gulf, another 'Low' over Arkansas, while one 'High' rests north of Lake Superior and another over Bermuda. When these conditions obtain with steep gradients we are pretty sure to have marked microseisms. The line joining the 'Lows' then, lies in the St. Lawrence valley, while that of the 'Highs' is at right angles to the former. In this case the maximum strain is along the valley of the St. Lawrence, along the Great Fault, so that from a priori reasoning marked microscients might be expected.

In concluding the present investigation of the well-marked microseisms recorded here, we will repeat, that the presence of a 'Low' over the gulf surrounded by steep or fairly steep gradients on a given morning is indicative of more or less well-marked microseisms following at Ottawa that day.

It has already been stated that the large majority of microscisms have a period of about 5^s with small fluctuations. The cause of the fluctuations is by no means apparent unless it be the varying depth of the earth's surface involved.

On some occasions the period changes to one of about one-haft, or about 3^o, showing, however, a transition time during which there is an irregularity and interference, so that their period is unrecognizable. At present no explanation can be offered for this change. When the period is so short, the amplitudes are very minute, although visible on the sheet to the naked eye.

It is found that, broadly speaking, the microscisms are more numerous during the colder season than during the warmer one, and some have sought therein a relationship of cause and effect. In our elimate here we have a large range of temperature, during the gener 1007-1008, of 127°F. (00° and -31°F.). During February, when the thermometer reached its lowest and we had some continuously very cold weather, the seismograph showed no evidence thereof. More frequent microscisms might be expected during winter from the fact that the frozen ground better transmits pulsations. From extreme cold it does not necessarily follow that the ground is frozen to any great depth. During the past vinter there was very little frost in the ground, because an early and heavy snowfall, subsequently accumulating to many fect, covered the earth with a mantle that cold could not penetrate.

From examination it is found that the strongest and most numerous microsesisms were recorded during the months of January and February last (1909), while during the period September, 1907, to April, 1908, October had the strongest, and the fewest and weakest were during the summer months of July and August, when the atmospheric barometric gradients were very long.

We are led to conclude that strong winds have little effect in causing microseisms by setting up pulsations over large areas of the earth's surface or crust, i.e., the dynamical effect by friction or impact is not the governing factor in the production of microseisms. We are dealing here with the larger effect of strong winds upon large areas and not the local effect upon buildings, which, as is well known, are set in oscillation, and these in turn are communicated to the ground. When the building within which the seismograph is housed is large, the oscillations of the former will be recorded.

When we compare the occurrence of mucro-seisms with the predicted strong winds of the daily forecasts, we find little or no connection between the two phenomena. Considering the two phenomena as independent events, we see that the probability of the simultaneous occurrence of the two events is as great as the actual happening.

i.e., as far as the observations go there is very little to show any causal relationship between the two.

On the other hand we do find that the winds recorded here by the micro-barograph invariably show themselves on the seismograms, not by microseisms, but by irregular movements, including deviations of the zero line. Microseisms and these latter movements can never be mistaken for earthquake records.

RECORD of Microseisms for the period January 1, 1908, to March 31, 1909. Two Bosch photographic seismographs, mounted N.-S., E.-W. Magnification, 120. Sheet put on each day at about 10. a.m. Standard Time =: 15⁶ G.M.T.

				1		1
		N-S.	Comp.	E-W.	Comp.	
	Date.	Period.	Max. Amp.	Period.	Max. Amp.	REMARKS.
	1908.	8.	μ	8.	μ	
Jan. "	1 2	5.7	8	5.8	8	Decreasing towards following morning. Almost wholly quiescent. Almost quiescent.
	4 5	5.2	7	5.4	8	Increase gradually, reach a maximum about mid night, then decrease.
	6 7 8 9	5.5 5.5 5.5	4	5 5 5 5 5 5 5 5	4	Maximum about 8 a. m., Jan. 8.
	10 11 12	5.6 5.5 5.5	2	5.6 5.5 5.5	24	Small.
	13 14 15 16	5.5	3-4		4	Increase about midnight. Present but weak. Slight microseisms scattered throughout.
	17 18 19		2		2	Scarcely any.
	20 21 22	5.5 5.5 3.0 5-3	2 2 4	5.5 5.5 5.5	22	
	23 24 23 26	5-5 5-5 5-5		5.5 5.5 5.7	47	Two hours at beginning and end of sheet weakest Decreasing. Small, of usual saw-tooth type, not so well express
	27 28	5.2	4	5.2	4	ed by N-S component. Present throughout.
	29 30 31				2	Slight throughout.
Feb.	1 2 3	5.7	$^{6}_{6}$	6.3	6 6	Earthquake occurs, microseisms after quake. Not so strong as yesterday.
	4 5					Scarcely any. Weak.
	7 8 9	5.2	2	6.0	2	Small. Very slight.
	10 11 12					Scarcely any. Very few and weak,
	13 14 15					Small and fairly evenly distributed. Very few.
	16 17	5·3 5·5	3 3 3		5	Scarcely any.

Recomp of Microscism- for the period January 1, 1908, to March 31, 1909. Two Bosch photographic seismographs, mounted N.-S., E.-W. Magnification, 120. Sheet put on each day at about 10 a.m. Standard Time=18⁶ G.M.T.-Co.

	27.00		11.117	o	
	2-8	Comp.	E-W.	COMP.	
Date.					REMARKS.
THEFT	Period.	Max. Amp.	Period.	Max. Amp.	
		amp.		Amp	
1908.	м,	11	4.	u	
Feb. 19			112.2	1.1.1.1	Very minute, increase after 3 a. m.
20	0.1		6.8	4	Fairly strong by E-W component.
	6.0		6.5	4	
23					Very weak.
1b. 19 20 21 22. 23. 24. 25. 26.					Weak.
25					. Practically quiescent. . Very minute.
07					Small.
28 28 29 March 1					. Very weak.
. 29					Slight traces.
March 1					Very slight traces.
	3:0		3.0		Very weak.
· · · · · · · · · ·					Apparently quiescent.
- 5 ··	112.2.1			5	Almost perfectly quiescent.
. 6	9.9	3	6.0	9	
. 9					Almost quiescent till about 3 a.m., when micros-
					set in, reading 3µ.
. 10	57		6.9	4 2	
12		1 î		ĩ	
13					Very slight.
10 11 12 13 14 15 16 17					
14 15 16 17 19 20 21 22 23 24 26					Practically quiescent.
17					Quiescent.
- 18					Very minute.
19					10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
20	5.7	· · · ·	1 6 2		Minute. Small.
22		÷	0.5	1 . ² .	Very slight.
23					
. 24				<u>.</u>	Small.
26		+		*	Decrease after 7 p.m. Small. Continue between the two earthquake
20					records of Chilapa, Mexico.
27					. Very minute.
- 28		2			Minute.
29 30	1.0				
				3	Strongest during night.
April 1	4 6	4	4.8	2	Increase after 6 p.m.
			1	the second	. Less strong.
. 3	3.2	6	7.5	6	
5		3		. 3	Gradually decreasing.
					Minute.
6 7 8 9					Very minute. Minute.
7 9 10 12 13 14	1 2.5		3-5 6-3 5-0 6-2 6-0 6-0	2	. Millutes
10	5.2	ĩ	6 3	2	
. 11	5.5	4	5.0	3	
12	5.7	6	6.2	4 5	
13	0.7	1	6.0	3	Decreasing.
15	5.3		7.5		. By following morning period for both 3.7.
- 16	4.2			2	Decrease.
15 16 17 18	5.5	4	5.5	4 5	
6 18	6.0	-1	2.3	,	

RECORD of Micressisms for the period January 1, 1905, to March 31, 1900. Two Bosch photographic esismographs, mounted N.-S., E.-W. Magnification, 120. Sheet put on each day at about 10 and. Standard Time = 15⁶ G.M.T.-*Oon.*

	N-S.	Сомр.	E W.	Comp.	
Date.	Period.	Max. Amp.	Period.	Max. Amp.	Кемавкя.
1908.	×	μ	8,	μ	
1 10					
Apr. 19		4			Minute, increase after 6 s.n.
20. 21. 22. 23. 24. 25.	5'3	4		3	
	5.2	3	5.5	2	Very minute, and decreasing.
- 24	5.0	2	5.0	2	Quiescent after noon.
20		1		· · · · · · · · · · · · · · · · · · ·	Almost quiescent. Small.
. 27		2		2	Stronger after 6 a. m.
28	6.6		7.5	5	
30		2	1	3	
May 1	5.3	23	6:0	2	
23	5.3	5	6 3	-1	
· · · · · · · · · · · · · · · · · · ·	5.7	5	6.0	4	Strongest during night. Decrease after 1 a. m.
. 6	5.5	2	6 0	2	Decrease after 1 a. m.
. 5	5.5	3	6.0	2	Minute
9	55	3	6.0	2	Simile.
10	515	4	5.7	3	Demonstrate
12	3-5	ĩ	7.0	4	Decreasing.
·· 13	4 0				Very minute.
- 15.	4.0				
16	5.2	1			Very small.
18					Almost quiescent.
· 19					
20.					Almost wholly onjescent
- 22.					Practically quiescent.
. 23			70		Almost quiescent.
- 25					Almost quiescent.
26					Quiescent. Slight traces
- 28					Quiescent.
29	2.7		4.6		Very minute.
					" " " " " " " " " " " " " " " " " " "
June 1 2					Practically quiescent.
. 3			7 0	2	a succession discontration
* 4					Very small. Practically quiescent.
• 6					0.0
7					Faintest traces.
8 9					
. 10					Practically quiescent. Perfectly quiescent. Quiescent. Practically quiescent. Quiescent. Small. scattered.
12					Perfectly quiescent. Quiescent. Practically quiescent. Quiescent. Small, scattered.
. 13					Practically quiescent.
- 15					Small, scattered.
- 16					Small.
17	5.5				Very minute. Decrease after midnight.
					a contract internation

RECORD of Microscients for the period January 1, 1908, to March 34, 1909. Two Bosch photographic scientographs, mounted N.-S., E.-W. Magnification, 120. Sheet put on each day at about 10 a.m. Standard Time = 15° G.M.T.-Con.

$\begin{array}{ c c c c c c } \hline \text{Date} & \begin{array}{ c c c c c } \hline \text{B-W-CORF} \\ \hline \hline Period & \begin{array}{ c c c } \hline \text{Max}_{pp} & \begin{array}{ c c c } \hline Period & \begin{array}{ c c } \hline \text{Max}_{pp} \\ \hline \hline Period & \begin{array}{ c c } \hline \text{Max}_{pp} & \begin{array}{ c c } \hline Period & \begin{array}{ c } \hline \text{Max}_{pp} \\ \hline \hline Period & \begin{array}{ c } \hline \text{Max}_{pp} & \begin{array}{ c } \hline Period & \begin{array}{ c } \hline \text{Max}_{pp} \\ \hline \hline \end{array} \\ \hline \hline \hline \hline \end{array} \\ \hline \hline \end{array} \\ \hline \hline \end{array} \\ \hline \hline \end{array} \\ \hline \begin{array}{ c } \hline 105 & s & \begin{array}{ c } \hline s & \begin{array}{ c } \hline s & \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \hline \end{array} \\ \hline \end{array} \end{array} \\ \\ \hline \end{array} \end{array} \\ \hline \end{array} \\ \hline \end{array} \end{array} \\ \\ \hline \end{array} \end{array} \\ \hline \end{array} \end{array} \\ \end{array} \end{array} \\ \hline \end{array} \end{array} \\ \\ \hline \end{array} \end{array} \\ \hline \end{array} \\ \hline \end{array} \end{array} \\ \\ \hline \end{array} \end{array} \\ \hline \end{array} \end{array} \\ \\ \hline \end{array} \end{array} \\ \hline \end{array} \end{array} \\ \\ \hline \end{array} \end{array} \\ \end{array} \\$						
Period Any, Any, Any, Period Any, Any, Any, Period Any, Any, Period 1008 s a b 1010 a b b 1011 a b b 1011 a b b 1012 a b b 1013 a b b 1014 a b b 1015 a b b 1015 a b b 1015 a b b 1015 a b b 1016 a b b 1017 a a b 1018 a a b 1019 a a a 1019 a <th></th> <th>N-S.</th> <th>Comp.</th> <th>E-W.</th> <th>Comp.</th> <th></th>		N-S.	Comp.	E-W.	Comp.	
Period Any, Any, Any, Period Any, Any, Any, Period Any, Any, Period 1008 s a b 1010 a b b 1011 a b b 1011 a b b 1012 a b b 1013 a b b 1014 a b b 1015 a b b 1015 a b b 1015 a b b 1015 a b b 1016 a b b 1017 a a b 1018 a a b 1019 a a a 1019 a <th></th> <th></th> <th></th> <th></th> <th></th> <th>DENIERO</th>						DENIERO
AupAup1005.s. μ 1005.s. μ 1006.s. μ 1007.s. </td <td>Date.</td> <td>Period.</td> <td></td> <td>Period.</td> <td></td> <td>RENARKS.</td>	Date.	Period.		Period.		RENARKS.
Justo a Snall 1000 a A for very minute. 21 A for very minute shown by N.S. component. 23 A for very minute shown by N.S. component. 24 A for very minute shown by N.S. component. 25 A for very minute shown by N.S. component. 26 Particularly quiscent. 27 A for very minute shown by N.S. component. 28 A for very minute shown by N.S. component. 29 A for very minute shown by N.S. component. 20 Particularly quiscent. 21 A for very minute shown by N.S. component. 22 A for very minute shown by N.S. component. 23 A for very minute shown by N.S. component. 24 A for very minute between 2 and 4 for the shown by N.S. component. 25 A for very minute shown by N.S. component. 26 A for very minute shown by N.S. component. 27 A for very minute shown by N.S. component. 28 A for very minute shown by N.S. component. 29 A for very minute shown by N.S. component. 21 A for very minute shown by N.S. component. 23 A for very minute shown by N.S. component. 24 A for very minute shown by N.S. component. 25 A for very minute shown by N.S. component. <th></th> <th></th> <th>Amp.</th> <th></th> <th>Aup</th> <th></th>			Amp.		Aup	
Justo a Snall 1000 a A for very minute. 21 A for very minute shown by N.S. component. 23 A for very minute shown by N.S. component. 24 A for very minute shown by N.S. component. 25 A for very minute shown by N.S. component. 26 Particularly quiscent. 27 A for very minute shown by N.S. component. 28 A for very minute shown by N.S. component. 29 A for very minute shown by N.S. component. 20 Particularly quiscent. 21 A for very minute shown by N.S. component. 22 A for very minute shown by N.S. component. 23 A for very minute shown by N.S. component. 24 A for very minute between 2 and 4 for the shown by N.S. component. 25 A for very minute shown by N.S. component. 26 A for very minute shown by N.S. component. 27 A for very minute shown by N.S. component. 28 A for very minute shown by N.S. component. 29 A for very minute shown by N.S. component. 21 A for very minute shown by N.S. component. 23 A for very minute shown by N.S. component. 24 A for very minute shown by N.S. component. 25 A for very minute shown by N.S. component. <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
3	1908.	8.	μ	8.	μ	
30. New Y quarks. 31. A few very must shown by N S component. 32. A few very must shown by N S component. 33. A few very must shown by N S component. 31. A few very must shown by N S component. 32. Prangent hour hy mean. 33. Prangent hour hy M.S component. 34. Prangent hour hy M.S component. 35. Prangent hour hy M.S component. 36. Prangent hour hy M.S component. 37. Prangent hour hy M.S component. 38. Quiescent. 39. Quiescent. 30. Quiescent. 31. Quiescent. 39. Quiescent. 30. Quiescent. 31. Quiescent. 31. Quiescent. 31. Quiescent. 32. Quiescent. 33. Quiescent. 34. Quiescent. 35. Quiescent. 36. Quiescent. 37. Quiescent. 38. Quiescent. 39. Quiescent. 30. Quiescent. 31. Quiescent. 32. Quiescent. 33. Quiescent. 3	June 19					Small.
22 A few very minute shown by N S component. 33 44 44 1 35 44 36 44 37 5 38 Proteinally quissent. 39 Proteinally quissent. 30 Proteinally quissent. 31 Proteinally quissent. 32 Quissent. 33 Quissent. 44 Quissent. 45 Quissent. 46 Quissent. 47 Quissent. 48 Proteinally quissent. 49 Proteinally quissent. 41 Proteinally quissent. 41 Proteinally quissent. 41 Proteinally quissent. 42 Proteinally quissent. 43 Proteinally quissent. 44 Proteinally quissent. 45 Proteinally quissent. 46 Proteinally quissent. 47 Proteinally quissent. 48 Proteinally quissent. 49 Proteinally quissent. 41 Proteinally quissent. 42 Proteinally quissent. 44 Proteinally quissent. 45 Proteinally quissent.	0. 20					Nearly quiescent.
33 44 1 34 44 1 35 44 1 36 1 1 37 1 1 38 1 1 39 1 1 30 1 1 31 1 1 30 1 1 31 1 1 30 1 1 31 1 1 30 1 1 31 1 1 30 1 1 31 1 1 31 1 1 31 1 1 31 1 1 32 1 1 33 1 1 34 1 1 35 1 1 36 1 1 37 1 1 38 1 1 39 1 1 30 1 1 31 1 1 32 1 1 33 1 1 34 1 1 35 <						A few very minute shown by N.S. component.
55	" 23					A few scattered shown by N-S component.
35	" 24	4.4	1			Practically quiescent.
23. Preteally quescent. 30. Preteally quescent. 31. Preteally quescent. 32. Preteally quescent. 33. Preteally quescent. 34. Preteally quescent. 35. Preteally quescent. 36. Preteally quescent. 37. Preteally quescent. 38. Preteally quescent. 39. Preteally quescent. 30. Preteally quescent. 31. Preteally quescent. 33. Preteally quescent. 33. Preteally quescent. 34. Preteally quescent. 35. Preteally quescent. 36. Preteally quescent. 37. Preteally quescent. 38. Preteally quescent. 39. <	26					H H
10 Very minute by N.S. component. 10 Prainally up N.S. 11 Prainally up N.S. 2 Minute 3 Minute 4 Minute 5 Minute 6 Minute 7 Minute 9 Minute 9 Minute 9 Minute 11 Minute 12 Minute 12 Minute 13 Minute 14 Minute 15 Minute 16 Minute 17 Minute 18 Minute 19 Minute 10 Minute 11 Minute 12 Minute 13 Minute 14 Minute 15 Minute 16 Minute 17 Minute 18 Minute 19 Minute 21 Minute 22 Minute 23 Minute 24 Minute 25 S 26 S 27 S 28 Mi	27					
3 Quissent. 4 Almost quissent, some minute between 2 and 4 a.m. (July 8. 5 Almost quissent, some minute between 2 and 4 a.m. (July 8. 6 Almost quissent, some minute between 2 and 4 a.m. (July 8. 8 Almost quissent, and the source of the source						
3 Quissent. 4 Almost quissent, some minute between 2 and 4 a.m. (July 8. 5 Almost quissent, some minute between 2 and 4 a.m. (July 8. 6 Almost quissent, some minute between 2 and 4 a.m. (July 8. 8 Almost quissent, and the source of the source	n 30					Practically quiescent.
4	. 2					
5						
7 Almost quiesent, some nimite between 2 and 4 am (38 S) 8 Yery minute, mostly shown by N-S component. Fractically quiesent. 10 Precision quiesent. (9) 11 Precision quiesent. (9) 12 Precision quiesent. (9) 13 Precision quiesent. (9) 14 Precision quiesent. (9) 15 Precision quiesent. (9) 16 Precision quiesent. (9) 17 Precision quiesent. (9) 18 Precision quiesent. (9) 19 Precision quiesent. (9) 22 Precision quiesent. (9) 23 Precision quiesent. (9) 24 5 25 5 26 1 27 5 28 1 29 1 20 1 21 1 22 Precision quiesent per plant 23 1 24 5 25 5 26 1 27 5 30 1 31 1 32 5 33 5 34 5 35 5 36 5 37 <	5					Minute.
3 a m. (July 3). 4 a m. (July 3). 10 a m. (July 3). 11 a m. (July 3). 12 a m. (July 3). 13 a m. (July 3). 14 a m. (July 3). 15 a m. (July 3). 16 a m. (July 3). 17 a m. (July 3). 18 a m. (July 3). 19 a m. (July 3). 20 a m. (July 3). 21 a m. (July 3). 22 a m. (July 3). 23 a m. (July 3). 24 b f m. (m. more distinct by N-S m. (July 3). 25 a m. (July 3). 26 b f m. (m. more distinct by N-S m. (July 3). 27 b f f m. (m. more distinct by N-S m. (July 3). 28 a m. (July 3). 29 a m. (July 3). 20 a m. (July 3). 21 a m. (July 3). 22 a m. (July 3). 23 a m. (July 3). 24 b f f f m. (m. more membrane). 25 a m. (July 3). 26 a m. (July 3). 27 b f f f f f f m. (m. more membrane). 28 a m. (July 3). 39 a m. (July 3). 30 <	6					Almost quiescent, some minute between 2 and 4
9						a.m. (July 8).
11						Very minute, mostly shown by N-S component.
13	. 10					Practically quiescent.
13						Quiescent.
$\begin{array}{c c c c c c c c c c c c c c c c c c c $. 13					
16						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	16					, a few very minute.
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $. 17					very minute throughout, more distinct by N-S component.
50	- 18					Very minute.
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	19					
32 33 35 3 60 4 50 4 50 4 50 4 50 4 50 70 71 <th71< th=""> <th71< th=""> <th71< th=""></th71<></th71<></th71<>	. 21					91
23.	. 22					
25. 0.2 4 5.2 4 5.2 4 First typical "assisted" micros for mentas invo more approximation of the second microscope and increases in the second microscope and micr						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	25					
gr 5.5 8 6.0 3 Strongest between 9 p.m. and 3 a.m. Period Ns sourcement periodicular Strongest between 9 p.m. and 3 a.m. Period Ns sourcement periodicular Strongest between 9 p.m. and 3 a.m. Period Ns sourcement periodicular Strongest between 9 p.m. and 3 a.m. Period Ns sourcement periodicular Strongest between 9 p.m. and 3 a.m. Period Ns sourcement periodicular Strongest between 9 p.m. and 3 a.m. Period Ns Sourcement periodicular Strongest between 9 p.m. and 3 a.m. Period Ns Sourcement periodicular Strongest between 9 p.m. and 3 a.m. Period Ns Sourcement periodicular Strongest between 9 p.m. and 3 a.m. Period Ns Sourcement periodicular Strongest between 9 p.m. and 3 a.m. Period Ns Sourcement periodicular Sourcement perio						
a 7 5 5 6 7 partially quiescent. 28		5.2	-1	5 2	4	First typical "sawtooth" micros. for months. Strongest between 9 p.m. and 3 a.m. Period
a gr. 5.5 3 6.0 3 Decrease, disappear after 12 p.m. 28. Practically unscent. 30. Practically unscent. 31. Almost quiesent. 31. Almost quiesent. 2. Low proving up Allania yastecks. Maximum about minipht. 3. Practically quiesent. 4. 4. 4. 6. 8.						N-S component pendulum 6".1, E-W compo-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	07	2.5		6.0	9	nent pendulum 10 [*] 1.
29.	28					Practically quiescent.
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$. 29				1	Quiescent.
Aug. 1 50 4 50 4 Low moving up Atlantic doa's from Hatteria. 2 5 0 4 5 0 4 1 Low moving up Atlantic doa's from Hatteria. minipht. 3 5 0 3 5 0 3 indight. minipht. minipht. minipht. minipht. To be a straight. To be a straint. To be a straint. To be a st						Almost oniescent.
3 5:0 3 5:0 3 midnight. 4 2 2 2 Practically quiesent. 5 3 5:0 3 Practically quiesent. 6 4 4 4 1 6 4 4 4 4 4 6 4 4 4 4 4 4 6 4	Aug. 1	5.0				Low moving up Atlantic coast from Hatteras.
4 2 2 5	. 2					midnight.
5						
8						Practically quiescent.
8	6					
9 1 Very minute.	8					
	. 9		. 1			

RECOUD of Microseisms for the period January 1, 1908, to March 31, 1909. Two Bosch photographic seismographs, mounted N.-S., E.-W. Magnification, 120. Sheet put on each day at about 10 a.m. Standard Time=156 G.M.T.-Con.

	N-S.	Сомр.	E-W	Сомр.			
Date.	Period.	Max. Amp.	Period.	Max. Amp.	R e m a r k s.		
1908.	8.	μ	8,	μ			
Aug. 12					Practically quiescent,		
м 13					Quiescent.		
" 14 " 15		1		1			
n 16					Not continuous.		
" 17 " 18	4:5				Almost quiescent.		
19					Very minute.		
и 20		1		1			
		2		2			
" 22 " 23		2		2	Strongest in forenoon. about 3 a.m. (Aug. 24).		
					Very small.		
» 25	3.7				Minute.		
н 23	3.1	1	3.7	1	Quiescent till about 2 a.m. (Aug. 27), then small, Low moving up Atlantic coast from Hatteras.		
	51	5	5.1	4	Decrease after 8 p.m.		
	5.0	1	5.0	1			
" 29 " 30					Very minute, and decrease. Practically quiescent.		
					r racionally quiescent.		
Sep. 1		·····i			Almost quiescent,		
" 2 " 3	3.8	1	3.8 5.0	1	Minute.		
. 4					A little stronger than yesterday. Practically quicscent.		
					Practically quiescent, save for fluctuations, not micros. caused by gusty wind.		
	5.5	2	6:0 5:0	1			
	5.0	1	5.0	···· i	Decreasing after midnight.		
u 10	5.0	ĩ	5.0	î			
" 11 " 12	5.0		5.0		Very small.		
. 13	0.0	1	10	2	Towards evening micros. appear, increase to mid- night, then decrease.		
. 14	4.7	1	4.9	1	Minute, Minute, increase.		
. 15	5.2	2	5.2	2			
	5.6 4-5	3	614 5-8	4	Maximum about 10 p.m.		
18	5.7	3	6.3	4			
. 19	5.9	4	6.6	5			
20	47	3 2	5.5	4 3			
20	6.1	1	6.8	2			
22	5.0	1	5-7	1			
- 24 25			7:5	1	Almost wholly quiescent, here and there micros.		
. 26	5-6	1	7.5	1			
27	5.2		5.7		Small; N-S component the stronger, being reverse		
. 28	5.5	1	5.7	1	of what it has been lately.		
. 29	5.0	2	5.0	1			
н 30	5.1	2	6.2	î			
Oct. 1	5.3	1	5.1	1	Marsham (Out 9) and all a star		
. 2	4.0	1	4-10	3	After 1 a.m. (Oct. 3) periods lengthen, and inteu- sity increases.		
	4.2	4	7.5 4 7	4	Increase after 9 p.m. Period of E-W component becomes shorter.		
· · · · · · · · · · · · · · · · · · ·	5 3	3	5.2	2	Decreasing.		
5	514	2	515	1	Minute.		
					1. A LEAD OF		

RECORD of Microseism- for the period January 1, 1908, to March 31, 1909. Two Bosch photographic sciencegraphs, mounted N.-S., E.-W. Magnification, 190, Sheet put on each day at about 10 an. Standard Time = 15^9 G.M.T.-Oon.

	N-S. Comp.	E-W.	Comp.	
Date.	Period. Max. Amp.	Period.	Max. Amp.	Remarks.
1908.	s . μ	8.	μ	
Oct. 7 9 10 12 13 14 15	5'3 2 4'6 5'3 2 5'6 3 5'2 1	5 2	2 2 2	Strongest about 8 p.m. Strongest about midnight. Strongest about midnight. Strongest about 9 p.m. Smill and well markel. Strongest about 9 p.m. Almost diasporte by following morning.
17	6.4 1		2	Almost quiescent. Almost quiescent till about 9 p.m. then become pretty well marked.
18 19 20 21. 23. 24. 26 27. 28. 29 30. 31	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 6.7\\ 6.6\\ 6.8\\ 7.8\\ 6.9\\ 5.5\\ 5.6\\ 6.1\\ 6.0\\ 4.3\\ 4.5\end{array}$		Very minute. Amost quiesent. Minute till 9 p.m., then increase. Decrease after 5 p.m. Decrease after 5 p.m., (Oct. 27). Scattered throughout, not continuous. Increase after 2 a. n., (Oct. 39). Begin small. After 5 a. n., (Nov. 1at), become
Nov. 1 2 3 6 7 9 10 11 12 13	5 6 6 6 6 5 5 4 5 5 4 5 5 8 10 5 5 7 3 2 5 5 7 3	55596983994 55555555555555555555555555555555555	4 8 8 2 2 6 4 2 1 1 1 8 4	very marked. "Sawtosh" type, very few of spindle form. Strongest during the night. Fairly quiescent till midnight, when micros set in and increase in intensity.
13	5-4 2 4-8 3 4-5 1 4-8 4 4-3 4 5-0 5 5-0 5 4-0 5	58 4653500 41653500 4143500 $41000000000000000000000000000000000000$	2 2 2 1 3 3 1 1 1 1 1 1 1 2 2 1	After 2 a.m., period changes markedly by de- creasing to 4. Increase after 7 p.m. Assimum about 7 p.m. Scarrely a trace. Almost quescent. " Decrease. Yory windy, shown by irregularity of zero line. New steel points for fa-Wcomponent."
2	5.1 5	4.5	3	Begin small, become well-marked by following morning.

RECORD of Microscisms for the period January 1, 1908, to March 31, 1909. Two Bosch photographic acisunographs, mounted N.-S., E.-W. Magnification, 120, Sheet put on each day at about 10 a.m. Standard Time=156 GMT.-Con.

	N-S.	Сомр.	$\mathbf{E}\cdot\mathbf{W}.$	Сомт.				
Date.	Period.	Max. Amp.	Period.	Max. Amp.	R имлика.			
1908.	8. μ		s.	μ				
Dec. 3	5.4	3	4.3	4				
······································	5 1 5 1	23	1:5	2 5	Begin small.			
- 5 - 6	5.1	4 3	4.5	6				
······································	5.1 5.2	5	4.6	8				
. 9	5·1 5·3	3	4.3 4.6	4				
· 10 · 11	5.8	3	4.5	4	Strongest about 7 p.m.			
12	5°6 5°5	4	4.6	5 5				
·· 13	5.3	° 3	4.6	5				
15	5'6	$\frac{4}{3}$	474.6	4				
. 17	5.3	3	4.5	5				
18 19	3·1 5·2	3	4 4 6·5	5 6				
. 20	6.2	2	6.6	5				
21	419 51	1	6.6 5.6	2				
23.	5.2	4	6.6	47				
. 25	516 516	2	6.3	4				
- 20	5.2	4	6.8	7	Strongest between 5 and 12 p.m.			
27	5.4 5.6	4	6 1 6 2	75	No difference of micros, before and after the earth			
29	4.3	2	4.7		quake (Messina).			
· · · · · · ·	5.4	ī	6.4	2	Small to minute.			
. 31					isman to minute.			
an. 1	5.5	2	5.9	3				
	5.1	ī	5.8	2				
· 3	5.0 5.0	1	5 4 6'3	1	Almost quiescent.			
	5.3	1	6.2	2				
. 6	513 419	2 2	6.0	3	Increasing.			
. 8	4.9	-	6 4	1	Almost quiescent.			
9 10	5 3		6.5	2	 perfectly quiescent. 			
. 11	5.0	1	6.2	2				
·· 12	5-3 5:1	1	8.6	22				
	5.4		6 6		Almost perfectly quiescent.			
·· 15	4:7	1 9	5.7 6.7	2 5				
			7.0	5	Wind effect shown by irregularities of zero line			
- 18			6.6	8	N-S component off. Maximum between 5 and 9 a.m. (January 19), N-S			
- 19	6.0	7	6-4	12	component off. Strongest in a long time.			
» 20	5.9	4	6.9	7				
- 21	5.4	2	6 0 6 7	3	Almost cease after 5 p.m. Fairly quiescent.			
23	5.7	1	5.9	1	Scattered, not continuous.			
··· 24 ·····	6.0	$\frac{2}{1}$	6·1 6 0	2	Wind makes zero line irregular.			
- 26	4-5	3	4.5	3	and money were the triegenat.			
- 27 25a—5	516	5	6.2	6 -				

51

RECORD of Microsedsne for the period January 1, 1908, to March 31, 1909. Two Bosch photographic seismographs, mounted N.-S., E.-W. Magnification, 120. Sheet put on each day at about 10 a.m. Standard Time=156 G.M.T.-Con.

	N-8.	Comp.	E-W.	Comp.	
Date.	Period.	Max. Amp.	Period.	Max. Amp.	R E M A B K S.
1909.	8.	u	8.	μ	
Jan. 28	5.8	5	6.8	7	
. 29 . 30	6.6 6.0	5	6 8 6 7	8	
	5.3	2	6.6	3	
Feb. 1	5.5	21	6 4 6 2	4.9	Decreasing.
. 3	5.2	1	5.8 5.2	ĩ	Almost quiescent.
4 · · · · · · · · · · · · · · · · · · ·	5.5	1	5.4	1	Minute.
. 6	3-5	1 2	4-6	1	
	$\frac{5.1}{5.4}$			25	Decrease after 8 p.m.
	5.2		6.5	8	Increasing.
10 11.	5.7	2			No light. Small.
- 12	5.4	1	519	1	
13		1	4-5 4-5	1	Minute. Very small.
14	6·2 3·7	1	6.8	2	Decreasing.
16 17	3.7	1 2	3.7 6.6	2	Periods decrease after 7 p. m.
	5.4	23	6.2	3	Begin small, but increase, particularly after 5 a.m.
- 19	5 9 5 1	3	618 64	53	(Feb. 19).
	5.7	2222	64		In general not as strong as yesterday.
22	5.6	1	6.2	i	Small.
25	2.8 2.8	1	62	1 6	Wind effect shown by irregularity of zero line. Wind effect shown by irregularity of zero line. After 4 30 p. m., micros. well-marked.
26	5.8	5	67	78	Decrease after 6 p. m.
27. 28			63	3	Decreasing.
March 1	5-3 5-5	1	519 615	2	
3	4.8		4.6	4	Small but after 5 a. m. (March 4) strong set in.
· 4 · · · · · ·	4.9	4	5 0 5 7	3	
6	5.4	2 2	6.2	2	Gradual decrease.
	5.7	2 3 3	6.3	4	" increase.
9	5.8			4	Decrease to small and minute.
. 10	5.3	1	515	1	Wind effect shown as heretofore.
12	5 2 5.6	î	6.0	1	
. 13	5.3	1	6.2	1	
· 14	5.2	1	6.4	1	
17	5.7	2 2	6·1 6·4	2	
	5.2	3		5	Increases to well marked. Maximum between 8 & 12 p. m.
" 19 " 20	518 519	3 4	615 7 0	ð 6	Maximum between 8 & 12 p m. Decreasing.
20 21	5.7	3	6.7	4	
23	5.5	3	6.8	5	Strongest between 6 & 9 p. m.
		2	6 4 5 8	2	Snow storm shows irregularity of zero line.
	5-3 5-4 5-5	- 2	6.6	1	onow sooral shows irregularity or zero line.
27	5:5	3	6.5	4 3	
28 29 30	5.2	3	6.2	3	
· 30 	5.3	2	6 2 6 4	2	
	04	-	04	- 1	

A table was compiled for the official year April 1, 1908, to April 1, 1909, in which were given day by day for every twelve hours, 8 a.m. and 8 p.m eastern standard time, the position and pressure of the Low, as shown by the charts of the 'Tracks of Centres of Low Areas' published in the United States Monthly Weather Review. In an adjoining column was entered the occurrence and intensity of microseisms on the respective date. The object was to determine if possible the relationship between the existing Low at any particular time and place with the prevailing microseisms at Ottawa. Unfortunately for the purpose in hand the published track of Lows ends cenerally at the sulf, sometimes near its west coast, and less frequently in Newfoundland, so that the presence of a Low immediately cast of the gulf, and which probably is the cause of many of the microseisms, is not noted, with the result that the Low in the west with which the microseisms are bracketed, being the only Low on the chart, is asked, so to speak, to account for the microseisms, when in reality they have nothing to do with it, but are due to the uncharted Low of the vicinity of the gulf or Newfoundland. The comparison between Lows and microseisms as above was consequently very misleading. It resulted in frequently having strong microseisms associated with a Low in the gulf, which is generally the case, but the next day the microseisnus would probably persist, while the Low moved eastward beyond the sphere of the chart, yet they would in the table appear opposite to a Low far in the west, with which it could not possibly be related. I have therefore omitted this tabulation.

The following table has been compiled from the charts 'Tracks of centres of Low Areas,' published in the Washington ' Monthly Weather Review.' The object was to see whether the dynamical effect of the daily movement of the Lows across the contiment was manifested by microseisms, that is, whether the apparent velocity of translation of the Low produced microseisms, and whether the intensity of the latter was a function of the velocity. The consideration here is independent of the steepness of gradients accompanying a Low. We may have a Low persistent or stationary for some time and this would hence not belong to the above investigation. That same Low may however be surrounded by steep gradients, which, in turn, as shown elsewhere, will be conducive to the appearance of microseisms. The rapidity with which a Low travels across the continent, from west to cast, is quite independent of the gradients or isobars that accompany it. In the table, the first column gives the number of the Low for the respective month; the next column headed 'Beginning' gives the day of the month, forenoon-a-(at 8 a.m.) or afternoon-p-(8 p.m.) with barometer reading, when the Low began its course; the third column 'Ending' gives the date, foreuoon or afternoon, with pressure when the Low ended or rather left the continent. The fourth column, 'Duration,' is the difference between the second and third, expressed in days. The fifth column, 'Distance,' gives the length of the track or path followed by the Low, and was obtained by following on the map with a graduated measuring wheel, adapted for the purpose, the path of the Low from beginning to end across the continent. The odd miles in the distances must not be taken too seriously, they simply show the multiplication of a constant factor by the revolutions and part of a revolution of the wheel measuring the track. The sixth column which gives the division of 'Distance' by 'Duration,' expresses the apparent average daily velocity of the Low across the continent. Finally, the last column shows where the Low was lost to observation or ended as far as the continent is concerned. 'Gulf' refers to the waters and surroundings of the Gulf of St. Lawrence, while 'Atlantic' refers to the ocean along the continent from Maine to Florida. 'Interior' indicates that either the Low disappeared as such in the interior, or was lost to observation in northeastern Canada :---

PRI		

Ne.	Begin	nuing.	En	ding.	Duration	Distance.	Apparent average daily	Disappearanc
							velocity.	
		in.		in.	days.	miles.	miles.	
I	1a 3a	29.70 29.32	3a 6a	29.04 29.64	2.0	1,700	850 827	Gulf.
III IV	6p 8p	29 56 29 60	9a 12a	29.18 28.88	2.5	2,480 2,340 2,340	936 668	
V VI	13a 15p	29 64 29.68	16a 19p	29.58 29.14	3.0	2,560 3,024	853 756	
VII	17a 20p	29 44 29 58	19p 29a	$29.14 \\ 29.72$	2.5 8 5	2,832 4,576	1,133 538	
IX	21p 21p	29.46 29.90	29a 23p	29.72 29.78	7.5	4,016 896	535 448	Atlantic.
XI XII	25p 25p	29.42 29.36	29a 29a	29.72 29.72	3.5 3.5	2,128 2,048	608 586	Gulf.
XII XIII	271	29.70	30p	29.24	3.0	2,704	901	Atlantic.
						Mean	742	
I	1a 15	29.08 29.61	1p 3a	29 40 29.36	0.5	160 1.168	320 584	Gulf.
				MAY,	1908.			
III	la 2a	29.64 29.35	3a 10a	29.32	8.0	3,536	442	1.0
IV V	6p 7a	29.54 29.60	94 8p	29.80 29.60	2.5 1.5	656 976	262 651	Interior. Gulf.
VI VII	8a 9p	29.53 29.66	13a 13a	29.62 29.62	5.0 3.5	3,840 2,764 3,376	768 795	
VIII IX	11a 14p	29.64 29.66	18a 20p	29.92 29.76	7.0 6.0	2,960	482 493	Atlantic.
IX X XI XII	18a 19a	29.46 29.56	19a 24a	29.58 29.98	1.0 5.0	880 3,264	880 653	Interior. Gulf.
XIII	23p 24a	29.64 29.92	25n 31a	29.74 29.44	1 5 7.0	928 2,128	619 304	Interior. Gulf.
XIV XV	24p 25a	29.58 29.78	27a 31a	29 64 29.44	2.5 6.0	$2,144 \\ 3,104$	858 517 390	
XVI	25a	29 70	27 p	29.54	2.5	976 Mean		Interior.
							PORT	
				JUNE,	1908.			
I	1a	29-76	Sa		2 0	992	496	Gulf.
III	2a 4a	29 48 29 54	4p 11p	29 52 29 86	$2^{\cdot 5}_{7 \cdot 5}$	1,450 3,392 2,720	580 452	Interior. Gulf.
IV V	8p 17a	29.70 29.52	17a 22a	29 70	8.5 5.0	3,200	320 640 891	
VI VII	22p 24p	29.56 29.68	26a 27 p	29.66 29.62	3.5	3,120 1,680	560	Interior.
VIII	27p	29.62	30a	29 82	2.2	1,840 Mean	- 736	:Gulf.
						mean	0.64	

No.	No. Beginning.		En	ding.	Duration.	Distance.	Apparent average daily velocity.	Disappearance
II III IV VI VII VIII VIII X	2p 7p 9a 12a 14a 18p 23a 29p 27a	in. 29:72 29:78 29:88 29:88 29:80 29:80 29:68 29:90 29:68 29:84	9a 12p 11a 15p 20a 23a 22a 26p 31p 30a	in. 29.56 30.04 29.88 29.32 30.02	days. 6 5 3 0 3 5 6 0 4 5 2 5 3 5 2 0 3 0 3 5 2 0 0 3 5 2 0 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	miles. 2,880 2,720 496 2,704 3,232 2,784 1,408 1,216 688 1,456 Mean	miles. 443 544 248 772 539 619 563 347 344 485 491	Gulf. Atlantic. Gulf. Atlantic. Gulf. Atlantic. Interior. Atlantic.
				August	, 1908.			
II III IV V	1a 1p 10p 15a 20a	29.66 29.44 29.56 29.80 29.70	3a 10a 14p 19a 24a	29-80 29-80 29-60 29-98	$2.0 \\ 8.5 \\ 4.0 \\ 4.0 \\ 4.0 $	960 2,928 2,240 2,528 2,440 Moan	480 344 560 632 610 525	Gult. a a a
				Septemb	kr, 1908.			
I III IV V VI VII VIII	1a 4p 8a 8a 1!a 14p 23a 28p	29.90 29.84 29.86 29.66 29.82	3a 7a 9a 18a 19a 29a 30p	29 02 29 78 29 68	$ \begin{array}{c} 2 \cdot 0 \\ 2 \cdot 5 \\ 1 \cdot 0 \\ 1 \cdot 0 \\ 7 \cdot 0 \\ 4 \cdot 5 \\ 6 \cdot 0 \\ 2 \cdot 0 \end{array} $	1,424 1,960 1,024 736 2,320 2,080 3,040 1,680 Mean	712 784 1,024 736 331 462 507 840 674	Gulf, " Interior. Gulf, Interior. Gulf, Interior.
				Остовы	3, 1908.			
I III IV V VI VII VIII VIII IX XI	1p 2a 8a 14a 14p 15p 17p 26a 27p	20:90 29:28 29:72 29:36 29:56 29:46 29:68 29:58	2p 3p 11p 15a 17p 17p 21p 27a 27p 30p	29:56 29:68 29:68 29:30 29:90 29:90 29:90	$ \begin{array}{c} 1 \cdot 0 \\ 1 \cdot 5 \\ 3 \cdot 5 \\ 3 \cdot 0 \\ 2 \cdot 0 \\ 4 \cdot 0 \\ 6 \cdot 5 \\ 1 \cdot 5 \\ 3 \cdot 0 \end{array} $	$\begin{array}{c} 704\\ 560\\ 2,240\\ 2,544\\ 1,200\\ 1,888\\ 960\\ 2,099\\ 2,144\\ 1,056\\ 2,120\\ \end{array}$	704 373 640 848 1,200 629 480 525 329 704 707	Gult. Interior. Gulf. Interior.

Mean....

649

JULY, 1908.

No.	Begin	ning.	En	ding	Duration	Distance.	Apparent average daily velocity.	Disappearai -
		in.		in.	days.	miles.	miles.	
I III IV VI VII VIII IX XI XII	1p 5a 8p 14a 16p 17p 21a 23a 23p 27a 28a 29a	29:66 29:72 29:66 29:54 29:50 29:50 29:88 29:64 29:70 29:84 29:70 29:52	4p 6p 12a 15a 20a 25a 25a 26a 30p 30p 30p	$\begin{array}{c} 29 \cdot 20 \\ 29 \cdot 16 \\ 29 \cdot 60 \\ 29 \cdot 60 \\ 29 \cdot 68 \\ 29 \cdot 52 \\ 29 \cdot 52 \\ 29 \cdot 04 \\ 29 \cdot 04 \\ 29 \cdot 04 \end{array}$	3.0 1.5 3.5 1.0 2.0 2.5 4.0 2.5 3.55 1.5	2,944 1,480 2,400 1,480 2,304 2,336 1,424 1,000 2,048 1,986 1,986 1,986 1,986 1,986	981 987 686 1,480 1,152 934 356 500 819 553 793 938 938 	Gulf.
							040	
				Decembe	:R, 1908.			
I IIIa IIIb III V VI VII VIII VIII XII XII	2p 5a 9a 11a 12p 14a 16a 21a 23a 25a 28a	$\begin{array}{c} 30 \cdot 06 \\ 29 \cdot 82 \\ 29 \cdot 62 \\ 29 \cdot 63 \\ 29 \cdot 60 \\ 29 \cdot 60 \\ 29 \cdot 72 \\ 29 \cdot 86 \\ 30 \cdot 00 \\ 29 \cdot 78 \\ 29 \cdot 62 \\ 29 \cdot 40 \end{array}$	4p 7p 12p 14a 16a 17p 18p 19a 23a 26a 28a 31a	29 62 29 86 29 28 29 44 29 48 29 72 29 42 29 94 29 94 29 28 29 66 29 58	$2 \cdot 0$ $2 \cdot 0$ $2 \cdot 5$ $3 \cdot 5$ $3 \cdot 5$ $2 \cdot 5$ $1 \cdot 0$ $3 \cdot 0$ 3	$\begin{array}{c} 2,176\\ 2,128\\ 2,656\\ 2,640\\ 2,720\\ 2,944\\ 640\\ 1,504\\ 1,504\\ 1,520\\ 2,240\\ 2,880\\ 2,560\end{array}$	$\begin{array}{c} 1,088\\ 1,064\\ 1,062\\ 754\\ 907\\ 841\\ 183\\ 602\\ 1,280\\ 760\\ 960\\ 853\end{array}$	Gulf. " " " " Interior. Atlantic. " Gulf. " "
						Mean	854	
				JANUAR	x, 1909.			
I III IV VI VII VIII X XI	2a 3a 3p 7a 10a 12p 15a 21p 25p 27p	29 70 29 60 29 68 29 98 29 98 29 98 29 90 29 98 29 80 29 18 28 90 29 74 29 72	6a 5p 6a 10p 11a 15a 18a 21a 26a 27p 31a	$\begin{array}{c} 29 \cdot 36 \\ 29 \cdot 84 \\ 29 \cdot 36 \\ 29 \cdot 86 \\ 29 \cdot 86 \\ 29 \cdot 66 \\ 29 \cdot 70 \\ 29 \cdot 70 \\ 29 \cdot 56 \\ 29 \cdot 30 \\ 29 \cdot 12 \end{array}$		2,000 1,824 3,008 1,328 1,085 2,944 2,608 1,640 3,344 2,016 2,240 Mean	500 730 1,203 379 1,088 1,177 869 820 743 1,008 640 832	Gulf. Interior. Gulf. Gulf. " Interior. Gulf. " "

NOVEMBER, 1908.

No.	Begini	ning.	En	ding.	Duration.	Distance	Apparent average daily velocity.	Disappearanc,
		in.		in.	days.	miles.	miles.	
I III IV VI VII VIII IX X	3a 4a 5a 7a 11p 13a 16p 20a 24a	$\begin{array}{c} 29 & 64 \\ 29 & 48 \\ 29 & 36 \\ 29 & 60 \\ 29 & 63 \\ 29 & 63 \\ 29 & 58 \\ 29 & 54 \\ 29 & 66 \\ 29 & 66 \\ 29 & 66 \end{array}$	6p 6p 7p 10p 17a 17a 20p 25p 27p	$\begin{array}{c} 28 & 98 \\ 28 & 98 \\ 29 & 70 \\ 29 & 70 \\ 29 & 30 \\ 29 & 40 \\ 28 & 94 \\ 28 & 94 \\ 29 & 02 \\ 29 & 58 \end{array}$	3 5 5 2 5 5 2 5 5 2 5 5 3 5 5 4 0 5 5 3 5 3 5 5 5 3 5 5 5 5 5 5 5 5 5 5 5	2,528 2,208 2,600 1,800 2,760 3,059 3,136 3,536 4,200 3,168 Mean	723 883 1,040 900 789 556 784 884 905 	Gulf. Atlantic. Interior. Gulf.
				MARCH	, 1909.			
I III IV VI VII VIII VIII IX XI XIII XIII XIV XV	28p Feb 28p Feb 1a 4p 5p 12a 16a 18a 18a 19p 22p 22p 22p 24p 26a	$\begin{array}{c} 29 & 38 \\ 29 & 60 \\ 29 & 65 \\ 29 & 78 \\ 29 & 98 \\ 30 & 22 \\ 29 & 88 \\ 29 & 76 \\ 29 & 76 \\ 29 & 76 \\ 29 & 54 \\ 29 & 70 \\ \end{array}$	2p 2p 5a 7p 7p 10p 14p 18a 20a 22a 26a 29a 29a	$\begin{array}{c} 29\cdot78\\ 29\cdot74\\ 29\cdot00\\ 29\cdot62\\ 29\cdot62\\ 29\cdot62\\ 29\cdot48\\ 29\cdot58\\ 29\cdot58\\ 29\cdot72\\ 29\cdot92\\ 29\cdot92\\ 29\cdot90\\ 29\cdot10\\ 29\cdot08\\ 29\cdot08\\ 29\cdot08\end{array}$	$\begin{array}{c} 2 \cdot 0 \\ 2 \cdot 0 \\ 4 \cdot 0 \\ 3 \cdot 0 \\ 5 \cdot 0 \\ 5 \cdot 5 \\ 3 \cdot 5 \\$	$\begin{array}{c} 1,664\\ 1,664\\ 3,744\\ 2,830\\ 2,016\\ 3,840\\ 2,560\\ 1,920\\ 3,040\\ 2,720\\ 2,720\\ 2,624\\ 2,720\\ 2,624\\ 2,720\\ \end{array}$	832 832 936 960 806 768 1,024 640 760 640 777 750 540 907	Atlantic. Gulf. " Atlantic. Interior. " Gulf.
						Mean	777	

FEBRUARY, 1909.

The result of the comparison of the preceding table with the microseisms prevailing at corresponding dates may be briefly stated. There is a general relationship between the movements of Lows and microseisms, that is, that during the winter months when the average movement is greater than during the summer months, the microseisms are more frequent and stronger during the former period than during the latter, but when we look for an increase of microseisms with an increase of movement of Lows, we find that the two phenomena are by no means always synchronous. We are therefore obliged to deny the relationship of cause and effect between these two phenomena.

As is shown elsewhere the true relationship lies between the isobars and gradients, their geographic position, the ocean and the microscisms.

MAREOGRAMS.

Very recently through the kindness of Dr. W. Bell Dawson, Superintendent of the Tidal Survey, I had an opportunity of examining the marcograms of St. Paul island for the year 1904, and those for May-December, 1908, the latter, the latest received.

St. Paul is a small rocky island in Cabot strait, the main entrance to the Gulf of St. Lawrence, between Cape North in Cape Breton Island and Cape Ray in Newfoundland, but near to the former. It is almost surrounded by the 100-fathom (153 meters)

line and lies just outside and westward of the St. Lawrence Deep running from the Atlantic occan (J,00-fathom-line) to the mouth of the St. Lawrence, opposite Matanc, a distance of about 630 miles (1,014km.). Cabot strait, 65 miles wide, 250 fathoms deep, is the main entrance to the gulf; the other, the Strait of Belle Isle, is only 11 miles wide at its narrowest part and has less than 50 fathoms of water. The gulf itself is about 450 miles long in a N.W.-S.E. direction, and 350 miles in a N.E.-S.W. direction. The greater part of the gulf i less than 100 fathoms deep.

The object of the scrutiny of these marcograms was to examine the secondary oscillations, which are superposed on the regular tidal movements, and to see if any relationship exists between the occurrence and intensity of these secondary oscillations and the microscisms registered at Ottawa. For the study of the oscillations in the sufi, the marcograms of St. Paul second the most suitable.

Secondary oscillations have received considerable attention by various investigators, but so far without conclusive proof of their cause. Last year the Earthquake Investigation Committee of Japan issued a report on 'The secondary oscillations of Ocean Tides.' In the investigation 'Professor Omori was led to the conclusion that the bays or intels oscillate like fluid penduluus with periods peculitar to their own.'

Records were obtained from many bays about the Japanese coast by specially designed portable tide-gauges and the results tabulated. The period of oscillation was $\frac{4}{4}l$

computed by the formula
$$l = \frac{1}{\sqrt{gh}}$$
 where $l = \text{length of bay}$, $h = \text{mean depth}$, and

g = acceleration. The denominator represents the velocity of the long waves.

The observed and calculated periods, although ranging for different bays very widely, from $\frac{90}{100} + 0.536^{23}$, argue perty well throughout. This part of the investigation seems to show conclusively that each bay has its own inherent period or note like a tuning fork, and will oscillate with its own period 'if it be excited by wares in the external sea having the synchronizing component.' From this it would follow that we can get little or no information about the period of the microscients as dependent upon the periods of the bays, for microscisms with the same period obtain or prevail over very large areas, tens or hundreds of thousands of square kilometres in extent. However, 'as to the cause of the long wares which manifest themselves as secondary undulations', the above report says,' we muention the wind, the cyclence, the arth-quake, 6cs'. In short, the report does not show that the charge of atmospheric pressure is the direct enuse of them.

Coming now to the mareograms of St. Paul island, it is found that:

- (1) Secondary oscillations are always present throughout the year.
- (2) The range or double amplitude varies, being greater in winter than in summer. The range running from 1cm. to 30cm.
- (3) The period is practically constant throughout the year and years (1904 and 1908), being about 4.6 min., deviating from this by only one or two-tenths of a minute, and this deviation may be partly due to difficulty in measuring the period accurately.
- (4) Small oscillations in amplitude show less interference phenomena than do the larger ones.
- (5) There is a fair correspondence between the occurrence of Lows with steep gradients in or about the gulf and large amplitudes for the secondary oscillations; but this coincidence is not nearly so well marked as in the relation between such Lows and microseisms.
- (6) The cause of these secondary oscillations is in the main due to changes of barometric pressure.
- (7) As the period of the oscillations is practically constant, and the disturbing enuse variable, the period must be a function of the topography and hydrography, that is, the depth of water and extent of basin.

Although the 100-fathom line almost surrounds the island, yet one would not be justified in using its dimensions for computing the period for the oscillations there. Such would give about 31 minutes.

The following table gives the period and range (double amplitude) of marcograms at 8t. Paul island. The dates are taken more or less at random, but always of such records where the pencil tracings were still clear, as in some cases they were somewhat oblicerated by inking in a smooth tidal enve:--

SECONDARY OSCILLATIONS on mareograms recorded at St. Paul island, Cabot strait, The tide-sheets cover alternately 3 and 4 days. Time scale, $1^h = \frac{3}{1}$ inch. Verti-

Date.	Period.	Range Units of 1/20 ft.	Date.	Period.	Range Units of 1/20 ft.	Date.	Period.	Range Units of 1/20 ft
190). Jun. 3. *** 9 *******************************	min. 443.44448548666633688663353535	$\frac{15}{207} \frac{1}{5} \frac{1}{4} \frac{1}{6} \frac{9}{9} \frac{3}{7} \frac{1}{7} \frac{9}{9} \frac{3}{2} \frac{2}{2} \frac{2}{2} \frac{2}{9} \frac{3}{9} \frac{3}{9} \frac{4}{9} \frac{3}{6} \frac{3}{6} \frac{3}{6} \frac{4}{8} \frac{2}{6} \frac{3}{6} \frac{3}{6} \frac{4}{6} \frac{2}{6} \frac{3}{6} \frac{3}{6} \frac{1}{6} \frac{3}{6} \frac{1}{6} \frac{3}{6} \frac{1}{6} \frac{3}{6} \frac{1}{6} \frac{1}{6} \frac{3}{6} \frac{1}{6} \frac$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	min. 4:58 5:06 4:66 4:66 4:66 4:66 4:46 5:68 4:46 5:68 4:46 5:68 4:46 5:68 5:788 5:788 5:788 5:788 5:788 5:788 5:788 5:788 5:788 5:7	$\frac{4}{11} \frac{11}{2} \frac{2}{21} \frac{7}{7} \frac{4}{4} \frac{4}{3} \frac{3}{21} \frac{1}{21} \frac{3}{3} \frac{2}{21} \frac{2}{$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	min. 485886685858666856685666856668566685666	125332623334327387255558

eal scale, 1 in. == 1 ft.

Another examination of marcograms was made, and that for Trepassey, near Cape Race, Newfoundland, the extreme point jutting into the broad Atlantic It showed very marked secondary oscillations, exceeding both in period and in amplitude those of St. Paul island greatly. While the mean period of the latter is 4.6 minutes, that of the former is 67.6 minutes, about 15 times as large; and the range reaches over three and a half feet, while for the other it seldom reaches half a foot. The distance apart of these two stations is about 300 miles, but the tidal movement coming from the southeast reaches them about simultaneously. The general movement of the atmosphere or areas of Lows and Highs is easterly, and the barometric conditions prevailing at the two stations are, allowing for time interval in passing from one to the other, fairly similar, yet we find these great differences in the secondary oscillations. We must hence again conclude that their period as well as amplitude must be dependent upon surroundings of the station, i.e., topography-hydrography, or depth of water and extent of basin. Land-locked basins, as shown by the mareograms of Halifax and other places, show little of secondary oscillations, and those shown are generally irregular, which is an experience quite different from that eited for the Japanese coast.

Taking the above two stations which are exposed to the Atlantic, and noting their very different periods, there does not appear to be any very obvious connection between them and the microseisms.

Some investigators believe that the breaking of the waves on the shore sets up tremors in the earth's crust, which may manifest themselves to great distances. To this I am not at present prepared to give assent. My investigations have established more or less synchronous phenomena, but how they are related—as cause and effect is not yet fully determined.

The following table from the marcograms for Trepassey is similar to the preceding one for St. Puu island. It may be noted that at Trepassey there was at times a tertiary oscillation of a period of 2 minutes or less at wardow. The meen for each of the four months available is given, and it will be seen that the periods are about the same:—

SECONDARY OSCILLATION	s on mareograms	recorded at	Trepassey.	Newfoundland.	Time
scale $1^h = \frac{1}{2}$ inch.	Vertical scale 1	in. = 6 ft.			

Date.	Period.	Range.	Date.	Period.	Range,
1902.	min.	ft.	1902.	min.	ft.
.ug. 22	64	3.	Oct. 9	68	3.0
. 25	77 74 63	2.5	и 13	71 65	3·5 3·0
	74	3.		65	3.0
	63	1.2	u 25	66	3.0
	00.5		" 31	64	3.0
Mean	69.5		Mean	66.8	
	05	9.5	Diean	00.8	
pt. 1	65 65 76 68 68	2·5 3·0	Nov. 3	67	1.5
5	76	2.0 2.5 3.5	и Б	64	2.0
6	68	2.5	и 6	71	3.0
24	68	3 5	. 11	63	3.0
. 26	67	2.0	. 17	64	2.0
Mean	68 2		Mean	65.8	
			Grand mean	67.6	

- Microseisms are essentially due to meteorological phenomena, that is, to barometric pressure and the accompanying gradients.
- (2) The amplitude of microseisms is largely a function of the steepness of the barometric gradient.
- (3) Areas of low barometer with steep gradients, but west of Ottawa, have little effect in producing microseisms.
- (4) Strong microseisms are almost invariably accompanied by steep gradients in the gulf, with the St. Lawrence valley, containing the Great Champlain fault, on a line of steep gradients.
- (5) A well-marked Low sweeping up the Atlantic coast from Florida to Newfoundland is almost invariably accompanied by marked microseisms.
- (6) Microseisms are but slightly, if at all, influenced by the movement of Lows across the continent.
- (7) Microseisms are not produced by local winds, frictional excitation of the earth's surface.

- (8) Microseisms represent movements in vast blocks of the earth's crust, covering tens of thousands of square miles; and the period is possibly dependent on or modified by marked geological configuration and depth.
- (9) Microseisus once produced may continue for a day or two when the immediate cause has passed.

ACCELERATION.

The acceleration produced here by earthquakes for the period of the report, April 1, 1908, to March 31. 1909, has in all cases been small. The destructiveness of an carthquake is dependent upon the acceleration and this is measured by the absolute displacement of the earth particles and the period of the oscillation. The absolute displacement is obtained from the esimogram on which the magnified movement is read in terms of millimetres. This latter is converted into absolute measure by application of the magnification factor.

The general expression for the oscillation of a pendulum is $T_{\circ} = 2\pi \sqrt{\frac{L}{2}}$ where

 T_{g} = period, i.e., the oscillation to and fro, L = length of the pendulum (in metres), g = acceleration for the particular latitude, being for latitude 45°, 9,806 metres, and $\pi = 3.416$, or the ratio of the semi-circumference of a circle to the radius.

If in a horizontal pendulum we have observed its period, T_{ov} without damping of the pendulum, the deduced L is called the 'equivalent length,' being that of a simple pendulum having the same period.

As the square root of g (9.81) is approximately the value of π , we obtain the approximate relation

$$T_{\circ} = 2\sqrt{L}$$
, or $L = \left(\frac{T_{\circ}}{2}\right)^2$

The magnification of the actual movement of the pendulum is effected in seismographs either by a system of levers or by means of a mirror attached to the pendulum. The former method is adopted where there is mechanical registration by a stylus on smoled paper, or by a light least tube drawn to a fine point and filled with ink, and the latter method for photographic registration as is the case for our seismograph. The magnification in the latter case is simply double the ratio of the actual length of the pendulum to the distance of the recording cylinder from the axis of oscillation of the pendulum.

We may regard the magnification to be produced by the extension of our simple pendulum of the above length L to the length J, which is called the 'equivalent indi-

cator length, so that the magnification or $\Gamma = \frac{J}{L}$. The determination of V for our

Basch photographic seismograph was made directly from measurements of the parts composing the horizontal pendulum and therefrom computing the length of the simple pendulum that would have the same period as the horizontal pendulum when the latter swung in a vertical plane. This deduced length divided into twice the distance of the recording cylinder gave V=120. Some of the heavy astatic Wiechert pendulums, weight 17,000 kgm. (ours is 200 gms.!) have a lever magnification of upwards of 2,000.

As stated in a previous report, the period of the horizontal pendulum is simply a matter of adjustment of the axis' about which it swings with reference to the vertical. We may here give an investigation that I made during the past year for tilting

and period of the east-west pendulum, i.e., of the one giving the north-south component.

In the accompanying diagram E, N, S represent the three footscrews of the partdulum stand. E, N the axis of rotation with reference to tilting done by footscrew S.

A is the vertical projection of the lower point of pendulum support.

B is the vertical projection of the upper point of pendulum support, when are on footscrew S reads 0°.

B' similarly when arc on footscrew S reads 90°.

(Note.—In linear measure the triangle A, B, B' is much exaggerated in scale; the angles are however to scale.)

The top of the base-plate is 92 mm. above the pier. Lower support above top of base-plate, 27-5 mm. Centre of bob above top of base-plate, 25 mm. Distance between supports of pendulum, 166-7 mm. Thread of foctscrew very nearly 36 mich, say 2 mm.

The tilting was done with the south footscrew by turning it through 90°. A speial brass arm, graduated through 90° into half-degree spaces and attached concentrically with the footscrew, together with a fixed pointer, opposite the graduations, securely placed on the pier, were used in the experiments.

We have then in linear measure for 90° turn of the footscrew $\frac{1}{4} \times \frac{1}{2} = \frac{1}{20}$ mm., and the angular measure will be θ , where sin $\theta = \frac{1}{20} \div 355 = .0004401$, hence $\theta = 90^{\circ\circ}.8$.

Distance of image from mirror, 4,060 mm. Hence angle swept over by image = a, and $\tan \frac{\alpha}{2} = \frac{219}{4060} = .054$, $\alpha = 6^{\circ}$ 12 and the angle swept over by the pendulum $= \frac{\alpha}{2} = 3 \cdot 06'$.

The upper point of support is 166.7 mm. vertically above the lower one. By the quarter turn of the footscrew we have an angular motion of 90".8, hence the *relative*

displacement of the upper point of support to the lower one will be x, where $\frac{x}{166.7}$

tan 90".8, therefore x = .073382mm. = B B'.

This displacement is in a plane, perpendicular to the axis of rotation EN. Reducing to the perpendicular of A C this becomes .06509 mm.

Remembering that A C is the normal position of the pendulum, we have in the triangle formed by the two positions of the upper point of support and the lower one due to readings of 0° and 30° on the footscrew, the angle at the apex 3° 06′ from above, and the reduced opposite side -06509 mm, hence the horizontal distance between the two points is a / where -06509 \pm -d = sin 3° 06′ ft therefore d = 1.2036mm.

It follows that the angle between the points of support and the vertical is γ , where 1 9026

$$\tan \gamma = \frac{142050}{166 \cdot 7} = 24' \cdot 49'' \cdot 25.$$

By previous determination we have the distance from the centre of oscillation to the axis of rotation of the perchalum 66-774 mm., hence the length of the equivalent pendulum is $L_{-\frac{66}{\sin 24}} \frac{66.774}{g^2} = 9248.4$ mm., therefore the period = $2\pi \sqrt{\frac{L}{g}} = 6^{\circ}.10$ (q for $45^\circ = 9.06$ mm.)

By direct observation on the day of the above investigation, the period was found to be 6°-15, being in satisfactory agreement with the above value.

The method of deflection of image is more accurate for the determination of the period than direct observation.

For the above adjustment of pendulum 1" tilting was equivalent to a displacement of the image of 5.42° mm., or 1 mm. deflection of image ".184 tilting north-south. Similar experiments were carried out with the other pendulum, the N-S one, giving the east-west component. The instrument is identical with the other; it is mounted on the same piec, but its adjustment was different at the time.

For it was found a period of 12*.56, and 1 mm. deflection of the image represented a till of ~0.044. As one can read to a tenth of a millimetre, we see that for the adjustment of the latter pendulum one can detect tilting of ~0.0044, which is equivalent to about 1 inch in 710 miles.

Without damping, a horizontal pendulum set in motion would continue to oscillate for an indefinite time and with equal amplitudes, leaving out of consideration for the moment the effect of friction at the points of support. This latter would effect a reduction in amplitude in arithmetical progression.

As the principal function of the scismograph is to record the true movements of the earth, both in time and magnitude, it is essential that its own personality regarding swing should be oblicerated as much as possible, that is, that it should subside unless events on by the earth movements. This is effected to a greater or less degree by air; oil or electro-magnetic damping. In our Bosch instrument an air chamber forms a cushing within which a vane of the pendulum moves.

The effect of damping is to reduce the amplitudes in geometrical progression instead of arithmetical, as in the case with friction. Friction will ultimately stop a pendulum, but with damping the amplitude curve is asymptotic, and hence the time infinite.

The 'damping ratio' is understood to be the ratio of the amplitude of a swing from the zero line to the next amplitude on the opposite side, as shown by the accompanying diagram.

Damping ratio = $\frac{A}{B} \frac{P}{P'} = \frac{B}{C} \frac{P'}{P''} = 1; \ f;$ hence in time $\frac{T}{2}$, where T = period of damped pendulum we have the ratio 1 : f_i

In time 2 $\left(\frac{T}{2}\right)$ the ratio 1: f^2 , and in general for $n\left(\frac{T}{2}\right)$ the ratio is 1: f^a . If we call $x\left(\frac{T}{2}\right)$ the time in which the amplitude is reduced $\left(\frac{1}{\epsilon}\right)^{th}$ of its value.

where e is the base of the natural or Napierian logarithms, then for time $x\left(\frac{T}{2}\right)$ we have 1: f'=1: e^{-1} .

Let
$$\tau = x \left(\frac{T}{2}\right), \quad x = \frac{2\tau}{T}$$
, hence $1: f = 1: e^{-\frac{1}{T}} = 1: e^{\frac{2\tau}{T}} = e^{\frac{2\tau}{2}}$; 1

The quantity $e^{2\tau}$ is generally designated by ϵ .

The effect of damping changes the period of the pendulum when swinging freely, and the relation between the two is expressed by

$$T_{\circ} = \frac{T}{\sqrt{1 + \left(\frac{T}{2 \pi \tau}\right)^2}}$$

in which T is the damped period.

The magnification of the earth movement of earthquakes, as recorded on the seismogram by the damped pendulum, is dependent upon the period of such earth movement, hence the magnification is not a constant quantity for interpreting the amplitudes. Professor Wiechert in his 'Theorie der automatischen Seismographen,' gives the following formula for the derivation of the magnification:--

$$\mathcal{X}^{\ell} = \sqrt{\frac{V}{\left\{1 - \left(\frac{T_{c}}{T_{c}}\right)^{2}\right\}^{2} + 4\left(\frac{T_{o}}{2\pi\tau}\right)^{2}\left(\frac{T_{c}}{T_{c}}\right)^{2}}$$

From relations we have found before, this may be put in the form

$$\partial \epsilon = \frac{V}{\sqrt{\left\{1 - \left(\frac{T_{\epsilon}}{T_{\epsilon}}\right)^{2}\right\}^{2} + 4\frac{(\operatorname{nat.}\log\epsilon)^{2}}{\pi^{2} + (\operatorname{nat.}\log\epsilon)^{2}\left(\frac{T_{\epsilon}}{T_{\epsilon}}\right)^{2}}}$$

or using the common logarithms we have

$$\mathcal{L}^{\epsilon} = \sqrt{\left\{1 - \left(\frac{T_{\epsilon}}{T_{\epsilon}}\right)^2\right\}^2 + \frac{4\left(\frac{733\log\epsilon}{1 + (733\log\epsilon)^2}\left(\frac{T_{\epsilon}}{T_{\epsilon}}\right)^2\right)}$$

in which T_e is the period of the earth particles; T_o is the period of undamped pendulum; and the other symbols as previously designated.

It will be observed that this gives wide variations in the magnification, dependent upon the relative values of $T_{\rm e}$ and $T_{\rm o}$, and also upon the damping co-efficient. The value best suited for e lies between 3 and 8.

We now come to the evaluation of the acceleration from the amplitude and period of the recorded earth movements. We have the general expression for normal accel-

eration $=\frac{r^2}{r}$, in which $r=\frac{2\pi r}{T_c}$, and r is the amplitude, or half range of the oscillation

measured on the scienogram, and expressed in microns or \mathcal{H}_{000} millimetres. The value of *r* is obtained by dividing the linear measure on the scienogram by the appropriate \mathbf{x} for the particular period of T_{μ} . The result is expressed in milligals, where 1 gal is the acceleration of 1 cm. = 10 mm, p rescond, per second, and a milligal is 'loss of a gal. Gravity would therefore be represented by 99-0 gal (for $\mathbf{y} = 45^{\circ}$), so that approximately a milligal is the one millionth of gravity.

The acceleration Δg in milligals is given by the approximate formula $\Delta g = \frac{4}{T^2}$,

where A is the amplitude ($\frac{1}{2}$ range) expressed in microns, and T_e the period in seconds.

As Ottawa is several thousand miles from the nearest seismic area—the West Indies, Mevico or California—the acceleration produced here is always very small, and of course the destructive earthquakes which have occurred there in recent years were not felt here.

During the year, April 1, 1998, to March 31, 1909, the greatest acceleration was produced by the earthquake of November 30, where the period was 10°, and the amplitude 125μ . This gives an acceleration of 4.9 milligals or about the $\frac{1}{200,000}$ that of gravity.

For the disastrous Messina earthquake of last December the following accelerations have been computed. Most of the weekly or monthly earthquake reports received from other stations do not give sufficient data to compute the acceleration:—

	Distance.	Te	A	Δg
Ottawa Granada Jena	km. 7.200 1,700 1,000 1,400	s 16 12 20 19	$^{\mu}_{\substack{18\\750\\1,100\\3,000}}$	3 21 11 33

In closing this part of my report, on seismology, I desire to express the hope that at no distant day, quarters will be erected for the machine shop; for the operation of the machinery in the basement of the Observatory, as at present, is a menace to the satisfactory functioning of the seismograph.

TERRESTRIAL MAGNETISM.

In continuation of the systematic magnetic survey of Canada begun last year, stations were occupied during the past summer, mostly in British Columbia, and the observations were made by Mr. C. A. French. The stations occupied were: Ottawa, Agrincourt. Wunninge, Banif, Golden, Revelstoke, Sicamous, Clinton, Barkerville, Quesnel, Alexandria, Williams Lake, Bridge Creek, Asheroft, Spence's Bridge, Nicola, North Bend, Agassiz, Vancouver, Victoria and Nanaimo. The magnetic observations were all made in a tent, carried along for the purpose. Instruments used were: Tesdorpf magnetometer 1977, Dorer Dip circle 145, Dent Mean Time chronometer 511, and a six-inch Troughton-Simms theodolite for azimuth, latitude and time observations.

In order that the observations of the elements of terrestrial magnetism in different parts of the earth may be strictly inter-comparable, it is essential that the constants of the instruments employed be referred to standard instruments, preferably at basal stations. By such comparisons, repeated from time to time, say at the beginning and end of the season of field work, one is enabled to give a homogeneity and confidence to the results which would otherwise be lacking, and would militate against their value for incorporation in the general discussion of the difficult problems presented by terrestrial magnetism.

There are several departments of physical investigation in which little progress has been mode during the last fifty years in getting at the fundamentals numderlying the elements involved. One of them is terrestrial magnetism. In 1904 the Carnegie Institution of Washington nuclertook to attack the problem in a comprehensive manner, sepcially in supplying magnetic data for the accessible regions of the world not before occupied, and more particularly to make a systematic magnetic survey of the various occans, for which purpose a specially built non-magnetic ressel, the *Carnegie*, has been built and which was recently launched at Brookyn. This work, combined with the Solar Research at M. Wilson, also under the auspices of the Carnegie Institution, should in the near future unravel some of the mysteries that have hitherto enshould the suble force or energy—Terrestrial Magnetism.

Toronto is and has been one of the principal magnetic stations in the world, although the location of the instruments now, is not where the original ones were mounted. This change in 1898 to Agineourt, some 10 miles distant, was necessitated through the introduction of the electric cars in Toronto. Since beginning our systematic magnetic survey of Canada complete sets of magnetic observations—declination, inclination and horizontal intensity—have always been made with our field instruments at Agineourt and compared with the results of the standard instruments there, thereby standardizing the former. A similar comparison was made with our Tesdorpf magnetometer [977 through the kindness of Dr. L. A Bauer, Director of the Deparcment of Terrestrial Magnetism, Carnegie Institution, at Washington, in April, 1908. with results practically identical with those at Agineourt.

For further comparisons, and more particularly for the comparison of different magnetic instruments, there has been erected during the past year on the Observatory grounds here, a magnetic hut, an illustration No. 1, thereof, accompanying this report. Its dimensions are 10 x 15 feet. It is scarcely necessary to say that no iron or stell of any description was used in the construction. The nails are all copper; hinges, &c., of brass, all tested for non-magnetism before use. The two pillars for mounting the instruments are solid ecdar posts surmounded by brass plates 114 inches

in diameter, which are grooved with three diameters, dividing the surface into sectors of 60°, for the footscrews of the instruments. When observations are made at night, petroleum is used for illumination. There is a permanent azimuth mark about a quarter of a mile distant. The Observatory grounds are just outside of the city limits and the vicinity is fairly free from traffic. The nearest approach of an electric ear line to the magnetic hut is 1,492 feet (455 m.). The cars run from 6 a.m. to 12 p.m. on this line. In order to test whether the current of the line exercised a magnetic influence at the hut, observations were made for three days during the 24 hours for declination. There was no effect noticeable during the day-time when the cars were running, and for different positions of the cars on the line with reference to the hut and power station; nor for the time after midnight. The change in declination for each 24 hours followed the general daily curve of castern and western elongation. Further on will be found the record of these observations. In the future, observations will be made here with the field instruments at the beginning and close of the season's work.

The following 'Memorandum for Magnetic Observations, 1908,' was issued to the observer :---

'In the selection of new stations regard should be had for future occupation for the same points.

The vicinity of trolley lines should be avoided; the magnetic station should be at least a mile from the line.

The station selected is to be connected by linear measure with established corners of lots or intersections of streets, so that it may be accurately re-established at any future time. The azimuth of two or more well recognized objects from the station is to be obtained, either by observation on the sun at about 9 a.m. or 3 p.m., or on Polaris, the former by observing the altitude, circle right and circle left, and the latter by noting the sidereal time when sighting on Polaris, circle right and circle left.

The nature of the ground, whether there are any rock exposures, and surrounding topographic features are to be noted.

A sketch is to be made for each station, showing its relative position, and that of the astronomic meridian.

The order of the observations in general are :---

- 1. Azimuth.
- 2. Declination.
- 3. Dip.
- 4. Oscillation.
- 5. Deflection.
- 6. Deflection.
- 7. Oseillation.
- 8. Dip.
- 9. Declination.

Suspension of weight and removal of torsion for fibre declinometer require partienlar attention.

The mean of the times for dip, oscillations and deflections will be approximately the same when observing in the above order.

The observations are to be entered on the forms supplied.

Before leaving a station all the observations are to be reduced, with a sufficient degree of accuracy to ensure their reliability.

On your way west you will go via Toronto, and at Agincourt (the Magnetic Observatory) take a full set of observations with both the Tesdorpf and Dover, for the latter especially to obtain the value of A. not forgetting to note temperatures throughout all the observations. Particular attention will be paid to the determination of the declination and the constant of correction for the declination magnet, 10.

25a - 6

After all the observations have been satisfactorily made, you will proceed to Winnipeg and re-occupy the Carnegie Institution station in the park, the description of the station is hereto attached, also the former magnetic values. The azimuths given will be re-determined, and a full set of satisfactory magnetic observations taken.

Similarly Banff will be occupied, the necessary data are also attached.

The names of the other stations to be occupied are appended:-Golden, Revelstoke, Sicamous, Asheroft, Clinton, Bridge Creek, Williams Lake, Alexandria, Quesnel, Barkerville, Spence's Bridge, Nicola, North Bend, Agassiz, Vancouver, Victoria, Nanaimo (Departure Bay).⁴

Description of Stations occupied.

Ottawa.—The station (not the magnetic but) was situated in the southerstern part of the observatory grounds; it was SI feet from the easterly limit and S3 feet from the southerly limit of the grounds. This station was occupied by the Carnegie Institution in October, 1006, and in 1907-1908 by our observers. It is now abandoned owing to the erection of the Director's house nearby. The reference object was the flag-staff on the central tower of the Parliament Buildings. True bearing, N. 16⁶ 57-0 W.

Agincourt .--- The magnetic observatory.

Winnipeg.—Same station as occupied by the Carnegie Institution in 1906. It is in River Park, about half a mile cast of gark entrance, in the first cleared space berough the grove of small trees that surround the entrance. It is about 15 paces from the top of the north bank of the Red river and in line of the fence bounding the buffalo patture on the side adjacent to the river. It is about 330 feets southwast of the south corner of the pasture. Two grain elevators in the distance, and a small red barn in the pasture are seen nearly in line from the station. A red water tank is seen near the elevators and a little to the west of the barn. The following true bearings were determined:--

Smokestack near International Elevator C	39°	18'.8	E. of N.	
Pole on the red water tank	23°	40'.0	E. of N.	
West gable of a large white house	47°	$28' \cdot 6$	E. of N.	

Banf.—The station is the same as that occupied by the Carnegie Institution in 1907. It is in the grounds of the National Park Museum, 329 feet south-southwest of the southwest corner of the museum building, midray between, and in line with, the two small sprace trees near the north bank of Bow river and nearest to a pen used at present for ducks. The point was marked by a round pine stake (about two inches in diameter and about eight inches long) driven flush with the surface. The stake is 672 feet from the northesst corner of the duck pen and 363 feet from the southesst corner, and is about 10 feet north of bank of river, and furthermore about in line with the west side of a one-story building in the rear of the Canadian Pacific Railway Museum on the north bank of the Bow river. The bearings of the following objects were obtained:—

Golden.—The station (1908) is on the property of Mr. Alexander, in a clearing on the south bank of the Kicking Horse river. It is about 200 feet east of the roadhed of the proposed Kootenay railway, and is midway between the ends of that portion of the bank along which is a loreakwater consisting of a layer of small trees. From the station the top of the Columbia hotel is visible above the wooden bridge over the Kicking Horse river, and the front of the Queens hotel is seen to the east of the firehall.

The point is marked by a round wooden peg 2 inches in diameter, and projects about an inch above the ground. It is distant 109 fet 61 inches from the northeast corner of a vacant log house; 201 fet 9 inches northeast from the southeast corner of a lot, one side of which is on Calgary strets and the other parallel to the Kootang Railway read-bed, and 234 fet southeast from the northeast corner of a lot adjacent to the first mentioned one. True bearings of the following reference objects were botting d_2 -

> Bottom of pole on C. P. R. water tank. N. 86° 51'.1 W. Bottom of flagpole on Columbia hotel. N. 49° 35'.4 W. Bottom of flagpole on Parson's store. N. 80° 03'.9 W.

The magnetic observations were taken 13 feet 3 inches southeast from station and in line with pole on tank. The soil is gravel.

Revelstoke—The station is located on the Athletic grounds in the southwest part of the town. It is about 45 paces east of the bank of the Columbia river. The top of the Catholic church may be seen a little to the left of the line joining the station with the Canadian Practic Railway water tank. The station is marked by a peg $2^{w} X_{1}^{1/2}$ (river flush with the ground, and is T1 feet 8 inches from the northeast corner of the grand stand and 65 feet from the southeast corner. The true bearings of the following reference objects were obtained:—

Bottom of pole on west water tank on mountain side.		
Top of belfry on school	N.	6° 03'.8 W.
Bottom of pole on Court House	Ν.	18° 53'.7 W.

The magnetic observations were taken at a point 8 feet 3 inches southwest from station and in line with water tank.

Sicamous.—The station is located in a clearing on the south side of the Canadian Pacific Railway, and on the east side of the narrow part of Shusway lake. The Ganadian Pacific Railway hotel may be seen between the pump-house and the first telegraph pole to the west of the semphore. It is almost directly in line with the porth and of the Bellevue hotel. The spot is marked by a round post about 2 inches in diameter, driven so as to project 3 inches above ground. It is 15 feet 9 inches from a large poplar tree and southess of it, and is 14 feet from another round post about 14 inches in diameter, which is in line with the station and tree. It is 172 feet from the east and of the Canadian Pacific Railway bridge.

The true bearings of the following points were obtained :---

Top of pyramid over east bay window, C.P.R. hotel. S. 67° 56'-7 W.

North end of peak of Bellevue hotel. S. 39° 39'.0 W.

The magnetic observations were taken 9 feet southeast from station and in line with Canadian Pacific Railway hotel.

Clinton.—The station is in the southeast part of the town in a field owned by Mr, Snith. It is on a slight elevation about 30 paces to the south of the road leading to the cemetery. It is marked by a brass nail in a fr stake $2^{st} x 4^{st}$, driven 18 inches into the ground and projects 7 inches. It is 1433 feet northwest of the post which marks the northwest corner of the cemetery, and 144 feet southwest from the south large gate-post.

The true bearings of the following reference objects were obtained:---

Top of church tower, Indian reservation..... S. 70° 07'-3 W.

Pole on cottage, rear of Provincial Land Office. N. 88° 18'-7 W.

Pole on cottage (Dr. Sanson's).... N. 69° 30'-5 W.

The magnetic observations were taken 25 feet northeast from station and in line with spire on Catholic church.

Barkerville.—The station is in a small clearing on the west side of the road which leads from the south of the town. It is about 336 feet (by way of road) from the 25a-64

69

bridge which crosses the ditch constructed for conveying water used for mining purposes, which is about 45 paces from the south end of the bridge which crosses the which projects 3 inches above the ground. It is 30 feet from the middle of the road and 37 feet from a sprace tree which is to the south of it, and in line with a point slightly to the east of the Presbyterian church.

The following true bearings were determined :-

Pole on Fire Hall.	S. 72°	08'.7 W.
Pole on Masonic Hall.	N. 80°	32′-3 W.
West gable on belfry Presbyterian church	N. 44°	59'.5 W.

The magnetic observations were taken 12 feet east from the station and in line with the pole on the Fire Hall.

Quesnel.—The station is on government property, north of the town. It is about SIS paces from the ferry callel, and is marked by a brass tack in a fir post $2^{**} \times 4^{**}$, driven so as to project 8 inches above ground. It is 15 feet from the bank of the Fraser river, and 76 feet 8 inches northwest from the corner post of the fence around a small field which is adjacent to the post office property. There are three elumps of spruce trees about 75 feet south, and are so situated that the Catholic church and post office may be seen between the easterly pair; the pole of Reid's store between the westerly pair; and the grist mill to the right of the westermost oue.

The following true bearings of reference objects were obtained :---

Bottom of cross on church		
Gable of wing of post office		
Pole on Reid's store		
Gable of ventilator on grist mill	S. 2°	06'.9 E.

The magnetic observations were taken 8 feet northwest from station and in line with pole on Reid's store.

Alexandria.—The station is on a waste piece of land in the northwest corner of a field belonging to Mr. Anders. The field is on the west side of the government road opposite the post office and farm buildings, and borders on the Fraser river. It is marked by a brass tack in a fir post 5 inches in diameter, which projects 8 inches above ground. It is about 95 feet northeast from the end of the trail which leads to the post office landing; 56 feet from the bank, and 57 feet southeast from a forked tree. The soil is a layer of sandy loan over gravel.

The following true bearings of reference objects were obtained :--

West chimney on	Mr. J	Anders'	house	 	S.	73°	$20' \cdot 7$	E.
Spire, Catholic c	hurch.	Indian	reservation.		S.	3°	30'-0	W.

The magnetic observations were taken 12 feet northwest from station and in line with west chimney on Mr. Anders' house.

Williams Lake.—The station is sonthwest of the town on property belonging to the Caribo Trading Company. The point is marked by a brass nail in a fir past $X = 4^{o}$, which projects 7 inches above ground. It is about 132 paces west of the Government Road, and a line joining it with the centre of the school passes over the entire length of a fairly large cirrgation ditch. A telegraph pole obscures the lower part of the pole on the top of the school. The station is 87 feet from the point where the ditch branches into two, one taking a northwest direction and the other a southwest one. The ground is covered with stones and bowlders. The soil is of a soft, black nature.

The following true bearings of reference objects were obtained :--

Top of north chinney on large frame house	S.	22°	12'.0 E.
Top of small pole on school	Ν.	88°	20' · 5 E.
Bottom of pole on ventilator C. T. Co.'s barn	Ν.	70	52'.5 E.
Bottom of pole over bay-window, white house W.			
of hotel	Ν.	6°	38'-1 W.

The magnetic observations were taken 25 feet northwest from station and in line with chimney on large frame house.

Bridge Creek—The station is located on property belonging to Stophenson Bros, and is on the south edge of a fir growe which is in a field to the northwest of the ranch buildings, being 145 fect from the point where the irrigation ditch passes under the fence adjacent to the Cariboo road, and about at right angles to it. It is marked by a brass nail in a fir pest 44° x 44', which projects 7 inches above ground.

The true bearings of the following reference objects were obtained :---

N.W. corner of chimney on N. of dwelling house	S. 28° 30′ 1 E.
Gable of house situated to S.W. of dwelling house	S 14° 38'.9 E.
Chimney on machine shop in open field	S. 14° 16'.4 W.

The magnetic observations were taken 12 feet northwest from station and in line with the central reference object.

Ashcroft—The station is the same as that occupied by the Carnegie Institution in 1007. The station is in a field in the southern part of the town, owned by the British Columbia Express Company. It is 100 feet east of the bank of the Thompson river, about 1,000 feet from the Canadian Pacific Railway track, and about 500 feet from the nearest building. The station is marked by a brass serve in the top of a fir post $\frac{3}{2}\times\frac{3}{2}\sqrt{2}\times\frac{3}{2}\times\frac{3}{2}$, as as to project 11 inches above the ground.

The following true bearings were determined :--

Presbyterian church spire	-0°	17'.8 '	W. of N.
English church spire			
Corner of red house on hill			
Telegraph pole marked 48	-3°	19'.6]	E. of S.
Vertical edge of rock pinnacle on opposite bank			
of river	12°	$50' \cdot 2$	W. of S.

The magnetic observations were taken 14 feet west from the station and in line with the Presbyterian church spire.

Spence's Bridge—The station is a little less than half a mile west of the railway station, in a field belonging to Mr. Clemes. It is marked by a brass nail in a fit post 4" x 4" projecting 12 inches above ground, and is 61 feet 5 inches from the north corner post of the cemetry and almost in line with the diagonally opposite post, and is 110 feet 7 inches from the east corner post and 115 feet from the vest corner post. (The diagonals of the cemetry are almost N.-S. and E.-W.)

The following true bearings of reference objects were obtained :---

Corner of post of water tank on mountain side. N. 42° 21'-8 W. Centre of circle on white cross (being headstone on grave in comparing vide of viger N. 11° 27'.4 W.

Pole on C.	P. R. water tank		N. 64°	31'-6 E.
Bottom of	post marked 'Yard	l Limit' on C.P.R.	S. 27°	47'.6 W.

The magnetic observations were taken at a point 25 feet west from station, and in line with pole on Canadian Pacific Railway water tank. Soil, loose sand and gravel.

Nicola.—The station is opposite the Canadian Pacific Railway station in a field owned by Mr. House. It is marked by a brass nail in a fir post $2^{\circ\prime} \ge 4^{\circ\prime}$, projecting 7inches above ground. The point is about 165 paces southwest of the end of the 'X'. 62 feet east of a small irrigation ditch and 22 feet north of a line joining the bottom of the north row of stakes in the fence along the south boundary of the field.

The following true bearings of reference objects were obtained:-	-	
Gable end C. P. R. station	-7 E.	
Gable end C. P. R. engine shed N. 49° 5-	.4 E.	
Vertical edge of large boulder on mountain side. N. 86° 0	'.0 E.	
Chimney on south wing of house (this wing		
painted red)	'.8 W.	
Gable of large red barn, about a mile distant. S. 34° 30	7.5 W.	

The magnetic observations were taken 12 feet northeast from station, and in line with chimney on house. Soil, fine gravel.

North Bend,—The station is southwest of the town on the property of Mr. Phinister. It is on a waste piece of land beyond the first enclosure at the post office, and is about 650 feet from the Canadian Pacific Railway tracks. It is marked by a brass nail in a fir post 4" x "4", projecting 12 inches above ground. The point where the line through the station and the pole on the Canadian Pacific Railway water tank, intersects the continued line of the straight rail fonce running northwesterly from the end the fence.

The following true bearings of reference objects were obtained :--

Pole on C. P. R. water tank	N.	25° (46'.2 E.
Small pole on south end of Mountain View hote	el. N.	46° 3	39'.9 E.
Small pole on west end of C. P. R. hotel	N.	58° :	36'.9 E.
Bottom of cross on Catholic church	N.	88° :	57'.1 E.

The magnetic observations were taken 8 feet southwest from the station and in line with the pole on the water tank.

Agassiz.—The station is on the grounds of the Agassiz Agricultural Association. It is marked by a fr stake $g^{\nu} \times 4^{\nu}$ driven flush with the ground. It is about 9 feets inside the race-track and is 165 feet 10 inches from the point in the east fence which is 107 feet from the northeast corner of the grounds, and 173 feet 10 inches from the point in the vest fence which is 105 feet from the northwest corner of the grounds; the above distances to the east and west fences are in the same straight line.

The following true bearings of the reference objects were obtained :---

Gable of porch in front of Presbyterian church. S. 27° 42'.0 W. Gable of building in southwest corner of grounds. S. 60° 49'.1 W. Top of ventilator on hop barn. N. 56° 17'.8 W.

The magnetic observations were taken 31 feet northeast from the station and in line with the Presbyterian church. Soil, sandy loam.

Vancouver-Brockton Point.—The station is on the Government Lighthouse Reserve, on which is also the small Dominion Astronomical Observatory, used as a reference station for longitudes in British Columbia. It is 43 feet southerly from the southwest corner of the observatory building (office part), and eight feet due west from the produced line of the west end of building.

The following true bearing of the distant reference object was obtained :---

Steeple Catholic Indian mission church, North Vancouver, N. 50° 22' 6 E.

The magnetic observations were taken at the above point.

Victoria—The Coast and Geodetic Survey station of 1903, as described in the C. & G. S. report of 1903, p. 1003, is as follows:—C on the southeastern edge of the eity, about 500 feet in a southwesterly direction from the flaqpole in Dr. Millin's yard (Dallas road and Dallas ave) and 12 feet from the edge of the bliff overlooking the beach, between Holland point and Finlayson point. The station is marked by a 2° x 4° fir stub set flash with the ground. The flaqpole in Dr. Millin's yard bears 45° out'3: asst of true north; Race Rocks lighthouse bears 43° 18′-8 west of true south.²

The following was received from the Carnegic Institution:—¹ L. A. Bauer, of the Carnegic Institution, re-occupied this station in August 1907, having found a fit stab projecting about 2 inches in the locality described above. However, two sets of samuth observations gave for the azimuth of the first mark 64' 53'. 1E. of N_o, and the second mark 43' 12'.3 W, of S. Apparently there are two stubs in close proximity which it will be well to investigate iteration is re-occupied.

A stub or peg was found projecting slightly above ground, evidently the one found by Dr. Bauer, of the Carnegie Institution. This peg, being badly decayed and broken, was replaced by one 4" \times 4", set flush with the ground.

The following true bearings of reference objects were obtained :-

Flagpole in Dr. Millin's yard	N. 64°	51'.0 E.
Raee Roeks lighthouse	S. 43°	13'.7 W.
Buoy on Brotehy ledge	S. 72°	20'-9 W.

The magnetic observations were taken 12 feet northeast from the station and in line with the lighthouse.

Nanaimo,—The station is on the side of Jesse island, which faces south and west. It is marked by a fir post which projects 18 inches above ground, and has a mound of earth and stones around it one foot in height. It is about 45 paces from the edge of the bank, and 160 paces from the eliff near the northwestern part of the island.

The following true bearings of reference objects were obtained :--

Pole on water tank at Breekin mine..... S. 8° 16'-7 W.

Chimney on west end of large white house at

northwest part of bay..... S. 86° 01'.0 W.

The magnetic observations were taken 12 feet north from the station and in line with the pole on the water tank.

To occupy the stations between Asheroft and Barkerville required a stage-drive of fully 500 miles.

On September 4, 1908, a magnetic storm manifested itself at Williams lake, as shown by the following readings for declination, magnet erect. The observations began at 16^h 30^m Pacific Standard Time; this would be equivalent to 0^h 30^m (a.m.) Greetwich Mean Time of September 5.

Vernier A.	Time.	Vernier A.	Time.	Remarks.
	h. m.		h. m.	· · · · · · · · · · · · · · · · · · ·
$\begin{array}{rrrr} 177 & 04'.8 \\ 6&3&\dots\\ 4&5&\dots\\ 6&2&\dots\\ 6&7&\dots\\ 10&1&\dots\\ 10&1&\dots\\ 4&2&\dots\\ 4&5&\dots\\ 4&5&\dots\\ 8&9&\dots\\ 8&9&\dots\\ 16&2&\dots\\ 16&2&\dots\\ 12&6&\dots\\ 8&8&9&\dots\\ 8&8&0&\dots\\ 8&3&\dots\\ 8&3&\dots\\ 14&0&\dots\\ 14&0&\dots\\$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Reference object A = 907–30 . 1. B = 127–30. Azimuth R. O., S 22 117 2 E.

The needle was very unsteady also on the following day (5th). On September 11 and 12, while at Λ -sheroft, the needle showed unsteadiness. There was a fine auroral display on the evening and night of September 11.

The following readings of the declination magnet show the disturbances at Ashcroft on September 11, 1908.

Time-Pacific Standard-eight hours slow on Greenwich.

Vernier A.	Time.	Remarks.
	h. m.	
243° 24'.8. 28.5 22.0. 28.0 18.0. 14.3	14 01 3 12 16 29 28 43	$\begin{array}{l} {\rm Reference \ object \ A = 215^{\circ} \ 14^{\prime} \ 3.} \\ {\rm B = 35^{\circ} \ 14^{\prime} \ .2.} \\ {\rm Az, \ of \ R. \ O. = N, \ 0^{\circ} \ 17^{\prime} \ 8 \ W.} \end{array}$
242° 54.6 58.5	43	
243° 12.3	46 49 54 15 03 07	

The range of declination at Williams lake on September 4, during the $1^{h} 40^{m}$ of observation, was 50'.6; and at Ashcroft on September 11, during $1^{h} 04^{m}$, was 33'.0 On the afternoon of September 12, at Ashcroft, the magnet was quite steady. The observations at neither place were sufficiently continuous to obtain the extreme range, east and west, that the magnet attained.

The magnetic storms of these days were undoubtedly world-wide. Dr. C. Chree, of Kew, makes note of them in 'Nature,' of September 24, 1908. Referring to the declination, he says: 'The extreme casterly position was reached at about 2.53 a.m.,

and the extreme westerly position at about 5.14 a.m. on September 12, the total range of declination being about 17 27. The novements on September 12 were the most rapid. Between 1.24 a.m. and 1.46 a.m. three was a westerly movement of about 51', followed in the corner of the next eight minutes by an catterly movement of about 35', while between 2.38 a.m. and 3.28 a.m. three was a westerly movement of about 55'. There were no large movements after 6 a.m.

Stations occupied during 1998. The declinations are all reduced to 70.30 a.m. local time for the position of the average meridian for the day and place.

				9	-10 EDWARD V	II., A. 1910
	Hor. in- tensity C.G.S. Units.		13121 15922 15966 15966	- 16165 26161 -	16160 16483 16483	62291.
	Month & Day.	July 16 17 18	July 22	July 27 28 30	Aug. 1	Aug. 6
	Dip.	15.0 11.9	78 13 0 75 0 3 74 55 9	74 58 1 74 43 3 74 42 2	1 1 1	74 16-1 73 51-0 52-0 52-0
	Hour & Minute.	10 30				
	Month & Day.	July 16.	July 22	July 27 1, 28 1, 29	Aug. 1	Aug. 6
	Declination.		13 58-6 26 6.8 5-7 4-2	26 5.6 26 3.8 1.6 1.2	3	25 48 6 55 51 7 55 31 7 55 31
and parm	Hour & Minute.	10 30				
sound have feen are too	Month & Day.	July 16	July 22 23.	July 27 	Aug. 3	Aug.6
	Year.	1908	1908	1808	Tools	8061
	Latitude. Longitude.	60 L6	115 37	116 67	118	118 59
	Latitude.	49 52	51 10	18	. 0	95 95
	Place.	•*Winnipeg, Man	Banfi, Alta	Golden, B.C.	Revolstoke, B.C.	Sieamous, B.C.

REPORT OF THE CHIEF ASTRONOMER

SESSIONAL PAPER No. 25a 04011-15710 -17042 15708 15863 16401 16515 .16518 12:13 Aug. 30. 31. Sept. 1 . e 2222 858 Aug. Aug. Aug. 51-8 0.82 6.88 27.6 6.03 12.5 128 23 72 22 74 1212 Aug. 30. . 31. Sept. 1. 8835 28.28 Sept. 1 Aug. Aug. Aug. 0000 -----10 + 1-00 49-0 45-8 ... 29 88888 26 3883 52-33 8 8 a : : : 8 83 8 Aug.30. 9.01 Aug.13. 14. 15. 16. នូន ខ 8.538 Sept.8. Aug. Aug. 1908 SUR 1908 1908 1908 1908 13 28 23 \$ 8 57 122 87 57 :9 8 33 33 52 Williams Lake, B.C. Quesnel, B.C. Bridge Creek, B.C. Barkerville, B.C. Alexandria, B.C. Clinton, B.C.

Magnetic storm on afternoon of Supt. 4th.
 The standards on Teedorpf Magnetometer 1977 prevented a reading being taken.

28 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
00 m 61
Sept.
72 32-1 71 34-9 71 34-9 71 34-9
- 20 Sept. 28 Oct. 1
25 25 25 25 25 25 25 25 25 25 25 25 25 2
Sept. 28 Oct. 1
1908
54 54
12
67
*Agassiz, B.C .

SESSIONAL PAPER	R No. 25a			
18781 18781 18781	69281. 75781.	· 18827	15150	29191. 6F191
	12	17	0105	8885
0et.	0et	Oet.	Nov	Nov.
71 139 5 141 4 141 4 141 7 142 4 142 4 71 42 4	71 18:3 (19:8 (19:9 (18:3 71 19:3	71 19°3 20.9 71 20°2	75 41 9	
2	12. 13	17.	61	
		- Oct	Nov. 2	
0 0 0 + 0	34.0	15.4	M1-65	50.3 50.2 51.0 50.5W
25 21 23 24 24 25 23 24 24 24 25 25 25 25 25 25 25 25 25 25 25 25 25	27 33 33 77 33	22 10	12 49	21 - 21 22 - 21 23 - 22
10 10 F 00	12	17	0103	8888
0et.	0et.	Oct.	Nov. :	Nov.
1908	1908	1908	8061	1908
t	57	55	\$	÷
123	123	123	22	wa, Ont. 45 24 75 43 (Hat.)
ž	12	13	54	54
65	35	6	45	45 A 1945
B.C.				
oint)				Sart 11th a
cton P		Island		6
Brock	ŝ	C	vi	(t)
Wer, (4 1 1 2 1 2 1 2	00, B.	.0mt (C.1	, Ont (Hu
Vancouver, (Broekton Point) B.C.	Vietoria, R.C. (C.L.S.)	Nanaimo, R.C	Ottawa, Ont	Ottawa, Ont (Hut.)

* Magnetic storm Sept. 11th and 12th. Aurora Sept. 11th. ** Magnetic storm Sept. 29th and 30th. Aurora Sept. 29th.

Ξ
$\mathbf{\Xi}$
5
7
-
4

This table gives a resume of Table I, together with the values of the horizontal intensity observed with Dover 145.

1977—Tesdorpf Magnetometer. 145—Dover Din Carele.

	Instru- ment.	1977 145	145	1977 145	1977 145	1977 145	1977 145	1977 1455	1977 145	1977 145	211 211	1261
Dip Circle.	Hor. force C.d.S. Units.	13121	15955	16160 16142	16501	16775	17042	15708	15863	16468	16501	-17172
145—Dover Dip Circle.	Month & day.	July 16-18.	22-24	27-29.	Aug. 1-3-4		. 14-15	22-23	26-27	. 30-31. Sopt. 1		. 8-9.
	Dip.	78 13-0	74 58.1 59.3	74 42-8	74 16.1 16.6	73 51-8 55-4	73 27.6 25.1	74 58°0 57°6	74 51.1	74 20.9	74 12-3	73 35-1
	Month & day.	July 17-18-20	. 23-24 .	. 27-29.	Aug. 1-3-4.	. 6-7-8	" 14-15		. 26-27	2 30-31 Sept. 1		. 8-9
	Declination.	° . 13 58°6	26 5.6	26 3.5	25 48 6	25 52.8	26 26.4	28 7-3	28 19.0	28 16-2	28 52 8	26 47-4
	Month & day.	July 16-20	23-24	. 27-30	Aug.3-4-5.	. 6.10	. 13-16.	. 22-24	= 26-28	4ug.30- ept.1	Sept. 3-5.	. 8-9
	Year.	1908										
	Longitude.	, 6 . L	50	20	8 12	60 8	8	1 30	32	5	99	27
		, 52 97	115	18 116	0 118	00 118	6 121	4 121	59 122	35 122	6 121	39 121
	Latitude.	- 6 <u>-</u>	51 16	51 15	10	-0 -0 -0	15	22	52	52 3	22	51 3
	Plate.	* Winnipeg, Man., Carnegie Institt în Stn 4	Banff, Alta., Carnegie Institution Stn 5	Golden, B.C.	Revelstoke, B.C.	Sicamous, B. C.	Glinton, B.C.	Barkerville, B.C.	Quesnel, B.C	Alexandria, B.C., 5	*Williams Lake, (150 mile post) B.C	Bridge Creek, (100 mile post) B.C 5

DEPARTMENT OF THE INTERIOR

9-10 EDWARD VII., A. 1910

SESSIONAL PAPER No. 25a

Ashcroft, B.C., Carnegie Institution Stu	90	#	121	11			- 11 15.	177	6.96	. 11	11-12-14	22	26.1	14-15 12.	4-15 . 12.	17222	1977 145
Spence's Bridge, B.C.	90	25	121	12			" 17-18	26	39 4		17-18 18	22	9.22 6.82	16	16-17	-17370	1977
Nicola, B.C.	99	÷	120	÷.			. 19-21	25	3-0		19-20.	2	54.0	. 19	19-20 21	.17546 .17529	241 2261
North Bend, B.C.	67	52	131	ŝī			25-26.	25	48 0	8 : :	23-25	2	32.1	55 - 5 55 - 5	24-25.	17972	241 2261
4Agassiz, B.C.	64	15	131	\$. Oct.	. 1-2.	8	23.6	Sept. 28 Oct. 1, 2	0t. 1, 2 28	12	34.9 0	Oct. Sept.	1 2 28 .	18919 18902	1977 145
Vancouver, B.C., (Bruckton Point)	49	<u>z</u>	123	t-=		-	8	25	23-3	Oct.	6-8	12	42.4	Oct.	00 20	18782	1977 145
Victoria, B.C., Carnegie Institution Stn.	÷	61	51	51			13-14	24	34-0	- 12-14 . - 10	10	12	17.0	- 13	13-14 .	.18763 18779	1977 145
Nanaimo, B.C., (Jesse Island)	6	13	123	52		-	17-18.	25	15.3	17	17-18.	12	20.2	::	17.	18827	2261 2261
Ottawa, Ont., Carnegie Institution Stn.	40	55	22	43	Nov.	No	v. 2-5-26	2	48-5W	Nov.	01	15	6.11	=	2-5	15156	2261
Ottawa, Out., (Hut)	4	5	22	1 3		1	20-23-26	1	90.5W						22	75151	1977
[*] Magnetic storm Sept. 4th., p.m. 2 [*] Magnetic storm Sept. 1th and 20th. Aurora, Sept. 1th, [*] Tho. ^{*1} Dip. ^{*1} at Winnipeg was obtained with Dowe Dip Girele 14.	h., Au h., ned w	rora, S ith Do	ept. 11 20 7 20 20 20 20 20	h. Girele	145.												

In the report of 189 the Department of the Interior published the magnetic data that had been obtained in connection with the survey and exploration of Dominion lands between the years 1881 and 1890. The declination was generally obtained by means of a long compass needle attached to the lower plate of a transit-theodolite within a narrow box, sitting into a groove, while inclination and total force (intensity) were obtained by a Kew Dip Circle, the constants of which had been determined at the Toronto Magnetic Observatory.

The observations estended in latitude from Port Arthur 48° 20' to Lake Lindeman 50° 47' near the head waters of the Yukon, and in longitude from Eastmain, 13° 20', to Lake Lindeman, 135° 05'. The number of stations distributed over this vast area was 204, but by no means uniformly distributed, the most of them lying along exploratory routes.

In 1883 Sir J. H. Lefroy published his observations in Canada made in 1843-44, covering 314 stations.

These two publications are the only ones up to the present of extended magnetic observations in Canada, except the publications of the United States Coast and Geodetic Survey, which are partly based on the above data and partly on the observations by officers of that survey.

It is thought desirable to bring together the whole of the magnetic data available in our office and publish it.

For the present it is considered more desirable to publish the actual observations than to defer until a reduction has been made to a uniform epoch. The data for most of the stations and many areas, are far too limited to justify such a reduction by themselves. The principal difficulty neconcurred in reducing to a common epock, or in reducing from one epoch to another is that of secular variation. Although the existence of secular variation has been known since the days of Gelibrand, 275 years ago, yet its explanation is still unknown. Here is a case where nature absolutely refuses to allow itself to be put in a straight jacket of undhematical formule, but instead, pursues its apparently erratic course to the dismay of investigators. As Huckley has well said, that 'our mathematical skill is no guarantee of the quality of the grist,' adding that, 'as the grandest unil will not extract wheat flour from penscods, so pages of formule will not get a definite result of lose data'.

The element, for which for practical purposes, information is from time to time required is the declination, due to the fact that nearly all the older surveys were made with chain and compass, so that in re-tracing or re-establishing an old survey line it is frequently necessary to know the amount of change of the position of the needle, in short, the secular variation for the interval of time. It is impossible to give a general formula from which to deduce the informatiou desired. However, as the original compass survey was at best but an approximation, the secular variation deduced from some empirical formula covering the area under consideration will furnish data for the re-establishment of old survey lines run by compass with a degree of accuracy quite in keeping with the bearing of the original line. The application of secular variation is most applicable in the re-survey of 'timber limits,' where seldom a definite line of reference is available, of which the magnetic bearing at the time of the timber limit survey is given. Such limits generally border a stream or river, the direction of the other sides was mostly made dependent upon the general course or trend of the river. What was accepted at the time by the surveyor as the general course of the river it is impossible subsequently to determine, so that laying off angles with a transit from the river is out of the question, and we fall back on the compass line as corrected for secular variation for re-determining the boundaries of an old timber limit.

For the re-establishment of lot lines in eastern Canada, which was originally almost completely wooded, and where the original surveys were all made by chain and compass, the ease is somewhat different. Here 'concessions' and 'side-roads' were

the governing factors for the directions of the lot lines, and these former ones were the ones to be opened up first, before the blazes and marks of the original survey were lost and obliterated. Hence in rc-running a lot line at present with a compass, one would need only observe the actual magnetic bearing of the governing concession line and apply the difference between it and its original bearing, to the original bearing of the lot line for obtaining its present magnetic direction. Nowadays, however, no surveyor's outfit in Canada is confined to a compass, in fact this instrument on Jacob's staff is obsolete, and the transit-theodolite is used, with which the proper angle would be turned off from the governing line for the lot line irrespective of the magnetic bearing of either.

There are other cases besides those of timber limits and original lot lines. These refer to subdivision lines abutting on original lot lines or other subdivision lines, all run at different periods, the maps thereof showing the magnetic bearing for each line when surveyed, which for a closed figure is, on the face of it, a mathematical impossibility. Such cases, personally well known to the writer, tax the ingenuity and skill of the surveyor, armed with theodolite, compass, secular variation, 'deeds' and plans, to do justice to all parties aud lines concerned. It may be noted that while the secular variation in general is but a few minutes per year, the daily or diurnal variation is several times that amount. This indicates the importance of noting the time of day when an observation for declination is taken. A disregard of this precaution is equivalent to probably several years displacement theoretically of the year of observation. Conversely, most of our old survey data do not include the time of day when the direction of a line had a certain magnetic bearing, hence with meagre data with reference to different periods or years for a given place, as is the case for many of the stations hereafter given, it is obvious that in the attempt to deduce secular variation therefrom or a general expression for the declination at a given time, we cannot hope to attain more than a rude approximation; much more so when we wish to carry the determination beyond the limits of observation, that is, when we extrapolate instead of interpolate.

The diurnal variation reaches its extreme value eastward at about 8 a.m. and westward at about 1.30 p.m., crossing the average magnetic meridian for the place at about 10.30 a.m. This applies to the southerly part of Canada; in the higher latitudes, the time interval of elongation from the magnetic meridian is increased.

Stations.

In the grouping of our stations, lying between the Atlantic and Pacific oceans and extending to Hudson bay and the Arctic ocean, it was considered more desirable to group them by political divisions as far as possible, i.e., by provinces, than to bound the groups by parallels of latitude and meridians of longitude. In any case we will have contiguous stations falling into different groups. To the general public, to the surveyor, the engineer, the grouping by provinces will be more acceptable than any other scheme.

Canada has hence been divided into the following groups:----

Quebec and Labrador; Nova Scotia, including Cape Breton and Prince Edward Island: Ontario: Hudson bay and surrounding territory; Manitoba; Saskatchewan and Alberta; British Columbia; and Yukon and Northwest Territories, these latter extending from the 60th parallel to the Arctic ocean and west of Hudson bay,

In each of these groups the stations have been arranged in order of longitude, so that, in general, the tabulation will show, considering west declination positive and east declination negative, an algebraic decrease of declination with an increase of longitude.

The agonic line, or line 'without an angle,' i.e., the line joining the points at which the direction of the magnetic meridian is coincident with that of the astronomic 25a-7

meridian, passes at the present time somewhat to the west of Schreiber on the Canadian Pacific Railway, and west of Windsor. Places to the east of it have west deelination, and those to the west have east deelinatio.

In the table of compiled magnetic elements,-declination, inclination, horizontal and total intensities,-the column 'Observer' gives the source of the information, indicated by abbreviation, when the observer himself is not given.

The data opposite to the abbreviations C.I., C.S. and L.S., are taken from

TABLE

MAGNETIC

Nova

Place.	Latitude.	Longitude.	Year.	Month and day.	Hour and minute.	Declination.
Louisburg. Cape Breton. Sydney, Cape Breton. 	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} & & \\$	$\begin{array}{c} 1862\\ 1862\\ 1862\\ 1905 \\ 1881\\ 1896\\ 1907\\ 1881\\ 1881\\ 1882\\ 1907\\ 1834\\ 1881$	Oct. 21, 22, July 11, 13, Oct. 30, 31, Nov. 1, 2. Oct. 26, Nov. 5, 6, , , , 8, 6, , , , , 8, 6, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

C. I.-Carnegie Institution.

⁴United States Magnetic Tables and Magnetic Charts for 1905,⁷ by L. A. Bauer, and published by the United States Coast and Geodetic Survey, 1908.

C.I. refers to observations made by officers of the Carnegie Institution.

C.S. refers to observations made or published by the United States Coast and Geodetic Survey.

L.S. refers to observations by the United States Lake Survey.

III.

RESULTS.

SCOTIA.

Month and day.	Hour and minute.	Dip.	Month and day.	Hour and minute.	Hor. intens.	Total intens.	Tempe- rature.	Observer.
May 13, 15, 10 Sept. 8-10. Nov. 2. Nov. 21, 22.	3	$\begin{smallmatrix} 766 & 00.0 & 0 & 0 & 0 \\ 767 & 03.0 & 0 & 1 \\ 93.0 & 0 & 1777 & 188.0 & 6 \\ 83.0 & 0 & 1777 & 188.0 & 6 \\ 777 & 188.0 & 188.0 & 0 \\ 773 & 153.0 & 9 & 188.0 & 0 \\ 773 & 153.0 & 9 & 188.0 & 0 \\ 773 & 153.0 & 188.0 & 0 \\ 773 & 153.0 & 188.0 & 0 \\ 773 & 153.0 & 188.0 & 0 \\ 773 & 153.0 & 188.0 & 0 \\ 773 & 153.0 & 188.0 & 0 \\ 773 & 153.0 & 188.0 & 0 \\ 773 & 188.0 & 0 & 188.0 \\ 773 & 188.0 & 0 & 0 & 188.0 \\ 773 & 188.0 & 0 & 0 & 188.0 \\ 773 & 188.0 & 0 & 0 & 188.0 \\ 773 & 188.0 & 0 & 0 & 188.0 \\ 773 & 188.0 & 0 & 0 & 188.0 \\ 773 & 188.0 & 0 & 0 & 0 & 188.0 \\ 773 & 188.0 & 0 & 0 & 0 & 0 & 188.0 \\ 773 & 188.0 & 0 & 0 & 0 & 0 & 0 \\ 773 & 188.0 & 0 & 0 & 0 & 0 & 0 \\ 773 & 188.0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 773 & 188.0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 773 & 188.0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 773 & 188.0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 773 & 188.0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 774 & 188.0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 774 & 188.0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 &$	Oct. 21, 22. Oct. 25. May 13, 15, 16 Sept. 8-10. Nov. 21, 22. Nov. 14, 15. Nov. 14, 15. Nov. 14, 15. Nov. 14, 15.		1632 1544 1617	5918 5842 5768 6007 5807 5899 5910 5910 5956 6026 6026 6026 6026 6026 6026 6026 60		Maclean & Bromley J. B. Baylor. S. W. Very. G. R. Putnam. White-Fraser. C. I. G. W. Keily. S. W. Very. G. W. Keily. S. W. Very.

$\mathrm{TA} \mathrel{\mathrm{B}} \mathrm{L} \mathrel{\mathrm{E}}$

MAGNETIC

QUEBEC-

C. I.—Carnegie Institution. C. S.—Coast Survey.

Place.	Latitude.	Longitude.	¥ear.	Month and day.	Hour and minute.	Declination.
Battle Harbour, Caribou is- land, Labrador Grady, Labrador Turnavik, Labrador Nain, Labrador.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1881 1881 1881 1896 1881	Sept. 5,6,7,8. Aug. 3,4 July 28,29 July 20 Aug. 11 to 18		$\begin{array}{c} & & & \\ 37 & 12 \cdot 7W \\ 39 & 03 \cdot 8 & \\ 40 & 22 \cdot 8 & \\ 38 & 26 \cdot 4 \\ 44 & 50 \cdot 2 & \\ \end{array}$
Gaspé Basin. Rivière du Loup. Brandypot island St. Thomas, Montmagny Megantic Alphonse	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1832 1876 1906 7 1830 1876 1907	Aug. 24,25 Sept. 20,21, 23, 24		20 38.7W
Tring Jct Chicoutimi Quebec	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1907 1906 7 1845 1906 2 1842 1859	Sept. 26, 27. Sept. 1 July 19		17 53.0W 14 12.0 16 17.0
Bécancour Sherbrooke	$\begin{array}{c} & \\ 46 & 22 \cdot 0 \\ 45 & 23 \cdot 9 \\ \\ 45 & 41 \cdot 0 \\ 48 & 46 \cdot 0 \\ 45 & 02 \cdot 0 \\ 45 & 46 \cdot 0 \end{array}$	$\begin{array}{c} & & & \\ 71 & 33^{\circ}0 \\ 71 & 56^{\circ}2 \\ \hline 72 & 03^{\circ}0 \\ 72 & 05^{\circ}0 \\ 72 & 07^{\circ}0 \\ 72 & 12^{\circ}0 \end{array}$	1879 1876 1907 1876 1906 7 1842 1842			
Kingsey. Roberval. Mistassini Lake Mempbremagog. Lake Edward. Three Rivers. Farnbam.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1942 1906^{-7} 1906^{-7} 1845 1906^{-7} 1842 1906^{-7} 1842 1906^{-7}			19 44 5W 19 20 5 19 34 4W 15 26 1W
St Johns	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	73 03:0 73 15:0 73 30:0 73 31:7	1842 1842 1833 1842 1843	Sept. 19	8 31a	8 57-6W
Montreal, The Mountain Montreal.	45 31 0 45 31 0 45 30 0 45 30 3	73 33·3 73 32·0 73 33·0 73 34·9 73 35·0		July 20 Sept. 25		12 21 0W 13 40.5 " 14 19.0 "
N			1905 7 1906 7			14 40.1

IV.

RESULTS.

LABRADOR.

								·
Month and day.	Hour and minute.	Dıp.	Month and day.	Hour and minute.	Hor. intens.	Total intens,	Tem- perature	Observer,
Sept. 6,7,8,9 Aug. 3,4,5. July 28,29 Aug. 11, 14,		77 49°0 79 56°0 79 30°8	Sept. 6, 7, 8, Aug. 3, 4 July 28, 29			-5794 -6060 -5916 -5901		S. W. Very.
19 Aug. 28, 39 Aug. 24, 25		78 22.0 78 50.0 77 31 6 76 34.1 77 11.7	Ang. 11, 15, 19			5952		S. W. Very. Capt. Bayfield. F. E. Hilgard. C. I. Capt. Bayfield. F. E. Hilgard.
Sept. 1		$\begin{array}{ccccc} 75 & 40.6 \\ 77 & 56.1 \\ 76 & 06.7 \\ 77 & 36.9 \\ 77 & 08.8 \\ \hline 76 & 01.1 \\ 77 & 15.3 \\ \end{array}$			1498 1279 1462 1334 1477	6094 6286		White-Fraser. C. I. White-Fraser. C. I. C. Younghusband. C. I.
July 18 Sept. 16, 19. Aug. 17, 18.		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Sept. 1. Sept. 16, 19, Aug. 17, 18, Aug. 15, Sept. 12		1512	6271 6243 6005 6018 6009		Schott. Baylor. F. E. Hilgard. White-Fraser. F. E. Hilgard. C. I.
Sept. 12 Sept. 10 Sept. 6		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5 10 Sept. 6		1329 1250 1389 1482	6383		A. W. Whipple. C. I. J. H. Lefroy. C. I.
Sept. 8. 		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Sept. 8 April 25 28			6326		White-Fraser. J. H. Lefroy. "Back. J. H. Lefroy.
¹⁰ 29 ¹⁰ 20 ¹⁰ July 20 Sept. 25	· · · · · · · · · · · · · · · · · · ·	$\begin{array}{cccc} 77 & 08.6 \\ 77 & 06.7 \\ 77 & 10.3 \\ \hline 76 & 19.0 \\ 76 & 51.4 \\ 76 & 25.7 \\ \end{array}$	" 29 June 20 " 23 August July 20 Sept. 25			6317 6248 6234 6280 6308 6271		C. Younghusband, A. D. Bache, Estcourt. Schott. Baylor,
		$\begin{array}{cccc} 75 & 40^{\circ}2 \\ 75 & 38^{\circ}2 \\ 75 & 38^{\circ}1 \end{array}$						C. S. C. I.

TABLE

MAGNETIC

QUEBEC-

	Institu	

C. S.-Coast Survey.

Place.	Place. Latitude.		Year.	Month and day.	Hour and minute,	Declination.
	e '	o /				• ·
*Isle Dorval. St. Jerome Labelle Isam Labelle Isam Pointe du Chène. *Mikhomis. Baskatong Aylmer. Muitraké chais. Fortage du Grand Calumet Fortage du Grand Calumet Fortage des Smus-Jacohims. Trou portage	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	73 44.0 73 59.0 74 69.0 74 33.0 75 58.0 75 58.0 75 58.0 75 58.0 76 32.0 76 40.0 76 45.0 77 26.0 77 40.0 78 16.0 78 59.0	1843 " 1906-7 1843-3 1906-8 1906-8 1843 1906-8 1843 1843 1843 1843 1843 1843 1843 1843 1843 1843 1843 1843 1843 1843 1843 1966-7 1843 1845 184		6 40p	15 49 2W 8 25 0 . 15 24 6 . 7 28 0 . 18 15 3W 12 16 2 . 12 20 0W

* Local disturbance.

IV-Con.

RESULTS-Con.

LABRADOR-Con.

Month and day.	Hour and minute.	Dip.	Month and day.	Hour and minute.	Hor. intens.	Total intens.	Tem- perature	Observer.
May 5 May 6 May 7	Noon. p. m. 3 00p 11 00a 	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	n 30 n 30 n 30 May 3 n 3 May 5 May 6 n 6 n 7 n 8 n 8 n 8 n 9 n 10		1487 1454 1432 1392 1417 1441	6302 6297 6261 6273 6380 6380 6380 6418 6418 6418 6418 6418 6418 6418 6433 6351 6351 6351 6351 6354 6353 6403		C. I. J. H. Lefroy. C. I. J. H. Lefroy. C. I. " J. H. Lefroy. C. I. J. H. Lefroy. U. L. "

TABLE ONTA

MAGNETIC

C. L.-Carnegie Institution. L.S.-Lake Survey. C.S.-Coast Survey.

Hour Month Place. Latitude. Longitude. Year. and Declination. and day. minute 45 3610 74 37:0 1906.7 Hawkesbury Hawkesbury Cornwall. Williamabarg. Fox Point, Ottawa river Presott. Brockville 45 02.0 74 50.0 44 55.0 75 07 0 1843 45 32.0 75 22.0 1843 44 35.0 75 30.0 1843 44 35.9 75 40.7 Sept. 2, 3, 4. 10 34.2 1845 45 21.0 Ottawa. 75 42.0 1856 June 3 Nov. 2, 5, 26 - 20, 23, 26 Aug. 27, 28 - 20, 21. 75 42.9 75 43.0 12 36.5 " (C.I.S.).... 45 23 6 12 48.5 W 12 50 5 " 45 24.0 (Magnetic hnt). $13 \ 50 \ 5$ $14 \ 16 \ 9$ $36 \ 46 \ 4$ Kingston Jct. (R. M. College*). 44 15.2 76 28:0 1907 44 13.8 76 28 2 (Artillery Barracks[°]). 44 13.0 76 28.6 1842 1843 1845 Kingston (Stewart point) 44 12.0 76 29:0 *30 07.4 Kingston (Barracks) Kingston Junction...... Kingston (The Common) 44 13.0 76 29.2 13 26.0 W 14 15:0 76 29.0 44 13.0 20:0 1996-7 1997 1843 11 13 6 W Renfrew. 45 29.0 76 40.0 44 46-4 76 41.2 45 49.3 07.5 Pembroke Belleville Chalk river Barry bay Madawaska Cobourg Feerborough Feerborough Matawa Little river 44 09:0 1945 1906 8 1907 Aug. 9..... 1906 7 10 20.2 W 26:0 46 00.0 15 28.8 40.3 08 46:3 30.0 59.0 05.2 .. 1843 1906 7 1906 7 1907 July 23, 24 1843 56.0 10 0 16.1 8 18:0 78 39 0 8 22·7 8 44·3 48:0 46 19.7 41.0 15 4 -46 44.0 Aug. 6, 7... $\begin{array}{rrrr} 78 & 46.5 \\ 79 & 04.0 \\ 79 & 05.0 \end{array}$ 1907 7 30°F Joe lake 45 35.2 Joe lake Niagara village Niagara Falls 1843 43 15:0 04:0 1841 1845 South side of Trout lake...... 46 18 5 79 13.0 1843 Agincourt (Mag. Obsv.)... 5 40°3 " 5 47°0 " 43 47 0 79 16:0 6 5 59.0 .. Emsdale 45 32.0 52.2 79 18:0

* Local distarbance.

v.

RESULTS.

RIO.

Month and day.	Hour and minute.	Dip.	Month and day.	Hour and minute.	Hor. intens.	Total intens.	Tem- perature	Observer.
			}					
		76 03.1			1500			C. I.
June 16		76 16.5	June 16			-6355		C. Younghusband.
" 16 April 20		76 16·3 76 31·8	April 20			6361 6425		J. H. Lefroy.
" 20 May 4		76 29·8 76 35·3				-6452 -6410		
			. 4			6370		
		75 03.6			1577	6118		White Fraser.
June 13 13		76 19.8 76 18.0	June 13 			-6320 6324		
August		76 42.9 75 41.2			1505	6086		K. Friesack. White-Fraser.
Nov. 2		75 41 9	Nov. 23, 27.					C. A. French.
		74 57 8	Nov. 23, 27.		1613	6219		White-Fraser.
Nov. 11.		73 27·3 77 18·8	Nov. 11.		1708	-5998 -6816		J. H. Lefroy.
. 11		77 19 1	" 11 April 18			-6990 -6921		1
April 18			и 18			6967		() ii
June 10, " 10		77 14:2 77 14:7	June 10 			6965		C. Younghusband.
			» 11 » 11			-6672 -6652		1
		74 37.3						White Fraser.
		74 57 3	June 11		1621	7137		C. I. C. Younghusband.
		75 46 7	. 11		1513	7125		C. I. "
		74 54 6			1608	6173		White Fraser.
April 17		76 11·2 77 01·0			1476	6182		J. H. Lefroy.
		76 23:5 75 53:9			1461 1501	6197		C. I. White-Fraser.
		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			1503			C. 1. Corporal Henry.
		74 42.9			1647			C. I. "
		75 18.2 76 41.2			1558	6205		
May 12		77 28 5	May 12			6448		J. H. Lefroy.
		75 56.0			1525	6281		White-Fraser. J. H. Lefroy,
Mar. 11 Sept		74 45.6 74 54.7						J. M. Nicollet.
Oct. 18		74 46.8	Oct. 18 n 18			6342		J. H. Lefroy.
May 13		77 21.7	May 13			6430 6437		
		74 33 8			1643			Observatory.
July 9		74 35 6 74 32 1	July 10, 11.		1638 1638			C. A. French.
		75 48 7	10, 11.		1637			Observatory.
		10 10 1			1020			0. 1

TABLE

MAGNETIC

ONTA

Pla	ce.	Latitude.	Lougitude.	Year.	Month and day.	Hour and minute.	Declination.
•		• '	o '		-		• '
oronto, Magnet	ic Observatory	43 39.4	79 23.3	1841	12 months.		1 14.31
				1842			1 19.1
	10			1843			
		a	1	1844	12 months.		1 29.1
				1846			1 30.8
				1847			
				1848			1 35.4
				1849			1 36.9
			- n	1850			1 38.6
				1851	0		1 40.9
				1852	L		
				1853	July & Aug.	Cor.)	1 46.1
				1854 1855	Feb. to June Aug. to Dec.	for year.	1 48.0
				1856	12 months.	year.)	1 56 3
				1857	I moneus.		2 00.5
				1858			2 04.5
				1859			2 07.4
				1860			2 10.6
				1861			2 14 4
			-	1862			2 15 7
				1863			2 19.1
				1864			$ 2 21.9 \\ 2 24.8 $
				1865 1866			2 24 8
				1867			2 29.8
				1868			2 33 2
				1869			2 37.1
				1870			2 41.9
				1871			2 47.9
				1872	0		2 53.3
				1873			2 56.9
				1874			3 01.5
				1875 1876			3 12.5
				1877			3 22.6
				1878	1		3 31 3
				1879			3 36.0
				1880			3 40.0 .
				1881			3 46 6 -
				1882			3 50.5
0				1883			3 54.3 .
				1884			3 57.7 -
				1885 1886	0		3 59.8 -
							4 04 8
				1887 1888			4 08.3
				1889			4 12.0
				1890			4 18 2 .
				1891			4 23.3 .
				1892			4 29.2
				1893			4 36.4
				1894	0		4 42.2 .
				1895			4 44 7
				1896	0		4 48.9 -
				1897			4 52.8 +

* Observatory moved to Agincourt in September 1898. The mean is interpolated from 6 months. ** For January-July, October-December; 9 months.

V-Con.

RESULTS- Con.

RIO-Con.

Month and day.	Hour and minute.	Dip.	Month and day.	Hour and minute.	Hor. intens.	Total intens.	Tempe- rature.	Observer.
		o /						
2 months		75 16.6						
		16.4						
		14·7 14·8						
		15.2	12 months.			64284		
		15.1				64153		
		15·3 18·3				64094		
		18.8				64331		
		20.0				64323		
		20.4 20.5				64311 64054		
months		22.2				010.54		
2 11		23:0						
		23.5	Sept. to Dec. 12 months.			64276 64115		
		24.3	12 months			-63830		
		24-4				63871		
		25.0 24.6				63745		
		24.0				63709		
		23.2				63695		
		21.5				63642		
		20·9 21·0				-63680 -63675		
		19.2				63550		
		18.8	10 LL			63610		
		20°1 16°7	H			63706 63625		
		16.3				63451		
		16.8				63520		
		15.5					·····	
		13.9						
		14.0						
		13-3						
		2.4						
		0.5						
· ··		74 57·3 59·2						
		55°2						
		54.1						
		53-2						
		51·6 49·0						
		48.0						
		46.5			1			
		44.7				l		
		37.5				i		
		37.0						
		35.7						
		34-2						
		34-7						
		36.1					1	

observations for the year.

TABLE

MAGNETIC

C. I.—Carnegie Institution. L. S.—Lake Survey. C. S.—Coast Survey.

ONTA

Place.	Latitude.	Lougitude.	Year.	Month and day.	Hour and minute.	Declination.
	• •	• •				• • •
Toronto, Agincourt	0 0 0 0	79 16 	1899 1900 1901 1902 1903 1904 1905 1906 1907 1907	10		$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Barrie New Liskeard Timagami sta Lake Nipissing Hamilton, in yard of Farmers	$\begin{array}{rrrr} 46 & 19 \cdot 0 \\ 44 & 21 \cdot 0 \\ 47 & 31 \cdot 0 \\ 47 & 04 \cdot 0 \\ 46 & 11 \cdot 0 \end{array}$	79 26.0 79 41.0 79 42.0 79 42.0 79 48.0 79 50.0	1906*8 1843 1906*8			8 44.2 8 50.0 11 54.4
inn Englehart Penetanguishene.	47 50.0 44 47.0	79 52 0 79 55 0 79 58 0	1845 1906-8 1906-7 1843 1825 1844 "			9 05 8 " 6 58 9 "
Timagami inn	$\begin{array}{c} & & \\ & & \\ 46 & 58^{+}0 \\ 45 & 19^{+}1 \end{array}$			July 31, Aug.		11 26°8 °
Twin lake. Simcoe. *Ricollet falls.	$\begin{array}{cccc} 48 & 16:0 \\ 42 & 51:0 \\ 45 & 57:0 \end{array}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1906+8 1906+8 1843			7 47 5 4 39 7
Berlin. Owen Sound. Sudbury. Small island, Lake Huron	46 29.0	80 31:0 80 57:0 81 00:0 81 00:0 81 02:0	1906-8 1906-7 1906-7 1907 1843	July 15, 16, 17		5 27.9 5 45.8 6 26.8 6 54.9
Hyde Park Jc . Stokes bay. Southampton. Kincardine. Frazer bay, Lake Huron.	42 59.0 44 59.0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1906·8 1905·8			3 26°8 = 6 14°8 =
Goderich, in garden foot of hill	43 45.0 "	81 ^{°°} 41·0	1845			
4 uile S.of Town Hall Core island Goderich Cape Ipperwash, Lake Huron. Kettle poin. Fort La Cloche, Lake Huron.	45 20.0 43 44.0 43 13.0 43 13.0 46 07.0		1860°7 1905°7 1905°8			4 10°0 m 3 58°6 m

* Local disturbance.

V-Con.

RESULTS-Con.

RIO-Con.

				¥				
Month and day.	Hour and minute	Dip.	Month and day.	Hour and minute.	Hor. intens.	Total intens.	Tem- perature	Observer.
		° '						
12 months.		74 3519						
		32.1						
		32·0 32·6						
		33.2						
		76 35 7			1433	6182		White-Fraser.
an. 24		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			1442			C. I. J. H. Lefrov.
an. 24		77 34.7			1348			C. I.
fay 14		76 05·9 77 09·5	May 14		1521	-6391		C. I. J. H. Lefroy.
								or and about off
ec. 29 " 31		74 567 74 541	Dec. 29			6374		J. H. Lefroy.
		$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$			1320 1550			C. I. C. I.
an. 26 pril 18		76 04 2						J. H. Lefroy.
ov. 11		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Nov. 11.			6491		Franklin. J. H. Lefroy.
" 11		76 21.0	" 15 " 15			*6483 *6483		
			# 15			6506		
		76 47.4		•• •• •	·1428			C. I.
		75 36.1			1525	6588		White Fraser.
		$ \begin{array}{ccccccccccccccccccccccccccccccccccc$			1365			C. f. C. I.
Iay 15,	2 00p	76 45.4				6531		J. H. Lefroy.
		74 23.3			1666			C. I. "
		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			1590 1477	6254		C. I. C. I.
Iay 16		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	May 16		1451	6422		White-Fraser. J. H. Lefroy.
		10 01 0	. 16			16394		9. II. Lerroy.
		73 56 6	. 16		1704	6448		C. I. "
		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			1538			L. S.
		74 36.0			1641			L. S. J. H. Lefroy.
fay 17		77 05.6	May 17	2 00p		·6412 ·6411		J. H. Lefroy.
let. 28		75 04 4	Oct. 28			6380		
Oct. 28		75 05.3	. 28			6374 6376		
		74 26.5			1660	6383		ст ["]
uly 19		75 02.0				6383		W. P. Smith
		76 32.0 75 44.0			1506 1553			L. S. L. S.
		74 29.0			· 1645	6427		L. S. W. P. Smith.
		$\begin{array}{cccc} 74 & 46 & 0 \\ 74 & 03 & 0 \end{array}$	May 28		1680			L. S.
ov. 8		76 50.2						J. H. Lefroy.

TABLE

MAGNETIC

C. I.—Carnegie Institution. L. S.—Lake Survey. C. S.—Coast "

ONTA

Place.	Latitude.	Longitude.	Year.	Month and day.	Hour and minute.	Declination.
		,				• •
Biscotasing Chatham. Providence bay. Sarnia, garden near the ferry.	42 24.0 45 40.0 45 58.0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1906 8 1905 7			$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	45 58 0	82 22.0	1845			
Snake island, Lake Huron	46 10.0	82 40.0	1843			
Algoma. " Great Duck island Amherstburg.	$\begin{array}{cccc} 46 & 11^{\circ}0 \\ 45 & 38^{\circ}0 \\ 42 & 06^{\circ}0 \end{array}$	82 50.0 82 56.0 83 03.0	1906-8 1905-7 1845			4 35.4 W. 2 22.8
Missiagi straits. *Cockburn island Chapleau. Thessalon point, Lake Huron .	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1905 7 1905 7	July 11 12 1		4 06.4 " 2 11.3 E. 4 04.0 W. 3 47.0
Missinaibi	48 ^{°°} 20·0	84 07.0	1906.7	May 19		
Sault Ste. Marie	46 30'9	84 21.5	1844	Nov. 4 4 4	9-56a 10-05a	1 14 1 E. 0 51 1 "
			1845	n 4	11-05a	1 08.2 "
Pointe aux Pins, Lake Superior	46 29.9	84 29.0	1843			
Sinclair harbour Parisian island	$\begin{array}{c} 47 & 22 \\ 46 & 39 \\ 0 \end{array}$		1906-6 1906-6	}		$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Gros Cap. Pointe aux Crèpes, Lake Super'r Mamainse point	46 32.0 46 58.0	84 43°0 84 44°0	1841 1843	May 21	5-08p	3 02.8 E.
Michipicoten, Lake Superior.	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	1906-6 1880 1843	J'ly 21. Sep.9 May 23	9-55a	2 37.6 " 3 02.8 E. 0 34.7 " 1 20.5 W. 0 20.3 E.
0 0 11 0 0 11			1844			
· · · · · ·			N H			
Gargantua I	47 34.0	84 58.0	1845 1906 7			2 26 3 W. 0 38 0 E.
*Cape Gargantua, L. Superior	47 36 9	85_05°0 "	1843			
White river	48 36.0	85 18.0	1906-7			3 00 6 W.
Michipicoten I Caribou I. No 1	47 42.0 47 20.0	85 46°0 85 50°0	1906 7	7		
Otter island "S.E. of Otter I., Lake Superior	48 06.0	86 03.0 86 07.0	1906 1 1843			1 16°6 W. 4 07°3 "
Tip-Top	48 15.0	86 08.0	1871			
Oiseaux bay. Rivière Blanche, Lake Superior	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	1906 1 1844	Oct. 21	3-51p	1 41 4 2 15 2 E.
Pic, Lake Superior	48 35.3		1843			
		86 15·0 "	н	0.4.10	10.90.	5 10.0 T
0 0 · · · · · · · · · · · · · · · · · ·		и 11	1844	" 18	11-06a	5 13 3 E. 5 52 5 "
* Local disturbance.	1 0	1 11	1 11			

Local disturbance

V-Con.

RESULTS-Con.

RIO-Con.

Month and day.	Hour and minute.	Dip.	Month and day.	Hour and minute.	Hor. intens.	Total intens.	Tem- perature	Observer.
Oct. 25 Oct. 27 May 18		77 09.4 73 33.4 76 00.0 74 18.6 74 12.9 77 05.5	May 18		1749 1513	6366 6370 6370 6362 6383		C. I. L. S. J. H. Lefroy.
Oct. 22 n 22 May 19 n 19		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Oct. 22. " 22 May 19 " 19.		1467 1461 1421 1421 1329 1321	6342 6304		L. S. J. H. Lefroy. L. S. C. I. White-Fraser. J. H. Lefroy
Nov. 4 		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Nov. 4. n 4. v 4. May 20. n 20. v 20.		1330 1411 1478	6365 6369 6386 6510 6462 6481		J. H. Lefroy. " Dr. J. Rae. J. H. Lefroy. " L. S." L. S."
Aug. May 21. May 23. Oct. 30. 		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	May 21 may 23 Oct. 30 " 30 " 30		1444	6460 6496 6435 6462 6417		Dr. J. Bae
May 21. May 24. " 24. Aug. 26.		77 56.1 78 15.9 77 36.0 77 02.0 78 42.0 79 43.6 79 32.8	May 21 " 21 " 21 May 24			7019 7050 7042 6226 6330		J. H. Letroy. ". C. I. L. S. L. S. J. H. Lefroy.
Aug. 25. 	2-00p a.m. a.m. a.m.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Aug. 26. Oct. 21			6358 6509 6524 6494 6412 6460 6359 6387 6349		L. S. J. H. Lefroy.

$\mathrm{TA} \to \mathrm{L} \to$

MAGNETIC

ONTA

C. I.-Carnegie Institution. L. S.-Lake Survey. C. S.-Coast

C. SCoast "	
-------------	--

Place.	Latitude.	Longitude.	Year.	Month and day.	Hour and minute.	Declination.
Pic, Lake Superior Perinaula harbor "Black Rock	- 3000000000000000000000000000000000000	50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1906 7 1906 7 1906 7	May 27	6-30a	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Fort William	$\begin{array}{rrrr} 48 & 23.5 \\ 48 & 23.5 \\ 48 & 23.5 \\ 48 & 23.5 \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	1843 1843 1843	May 29 " 30 " 30	5–32p 4–12p 4–17p	6 14.3 E 6 41.9 n 6 56.6 n
Fort William achool Fort William mission Fort William mission Present achors and achors achors Victoria island. Dog portage Pigeon river. Protrage Search. Prairie portage	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1906 · 8 1843 1843 1844 1844 1844			3 49 9E 3 32 9 s

* Local disturbance.

V-Con.

RESULTS-Con.

RIO-Con.

Month and day.	Hour and minute.	Dip.	Month and day.	Hour and minute.	Hor. intens.	Total intens.	Tem- perature	Oberver.
		. ,						
5-m	i	78 34.0			ļ			Dr. I. Pas
Iay		77 47.0			1419			Dr. J. Rae. L. S.
		78 34.0						Bayfield.
		81 50°0 78 08°0			1016 1320			L. S. L. S.
		78 18.0			1298			
		78 21.8			1271			C. I.
lay 26		76 24.0	May 26 26			6294		J. H. Lefroy.
			26			-6291		
		79 04 0			1234			L. S.
Iny 27	8-00a	78 53.6 78 46.2	May 27			6468		J. H. Lefroy.
		78 10 0			1298			
		78 26:0			1021			L. S.
		79 20·0 68 48·0			1983			L. S. L. S.
		78 28.6			1274			C. I.
		78 55:0			1251			L.S.
		$\begin{array}{cccc} 78 & 21.0 \\ 78 & 06.0 \end{array}$			1294 1315			L. S. L. S.
Iay 28		78 23.2	May 28			6587		I H Lefroy
. 28		78 30.0	. 28			-6480		
uly 14	9-40	78 00.0 78 09.0	July 14	3-45	1305	6402		L. S. E. Deville.
			July 14	to 5-30p				L. LOCTING.
Jay 29		78 09.7	May 29			-6528		J. H. Lefroy.
		78 10.2				6509		
			. 31			6452		
Iay 11		78 20 0						Bayfield. Franklin,
		78 07:5	Oct. 11			6428		J. H. Lefroy.
		77 55.5	0 11			6423		
		77 55.5 78 11.0	. 11			6387		Dr. J. Rae.
		77 54.6			1332			
		77 54·9 77 48·0			1331			C. S.
					1341			C. 1. L. S.
		77 51.0			1348			L. S.
une 3 " 3	4-30p	78 26.8	June 3			6518		J. H. Lefroy.
		78 25.0	" 3 Oct. 9			6480		
			9			6533		
						6547		
une 2		78 07.0 77 13.5	June 2			6463		L. S. J. H. Lefroy.
			" 2			6442		
une 5 		78 26:1	. 5			6486		
		78 28.2	u 5 Oct. 7			6515		
			. 7			6560		
f 00			. 7			6543		
fay 20		78 39.1						
)ct. 6	11-00a	78 21.8				6507		J. H. Lerroy.
	}		1			3001		

25a-8

TABLE

MAGNETIC

C. I.—Carnegie Institution. L. S.—Lake Survey. C. S. - Coast Survey.

C		

Place.	Latitude.	Longitude.	Year.	Month and Day.	Hour and Minute.	Declination.
S. W. of Savanne portage Savanne	48 53.0 48 58.0 48 58.0 48 35.0	90 03 3 90 14 0 91 08 4	1844 1857 1906 7 1843	Oct. 6		
End of the portage of the Two Rivers	48 35.0	91 23·0	 1843	June 9	9-56a	10 57.6
	0 10 10	н 0 1	1844 "			
Ignace. E. end of Lac à la Crosse	49 25.0 48 24.0 48 14.2	91 40.0 92 04 0 92 25.0	1906 7 1843	June 10	7-44a	$\begin{array}{c} 6 & 14 \cdot 6 & \cdot \\ 7 & 52 \cdot 5 & \cdot \\ 10 & 40 \cdot 3 & \cdot \\ 10 & 01 & 0 & \cdot \end{array}$
2nd portage, Lac à la Crosse Sturgeon lake	48 27.5	92 38·0	10 10 10			
Farringtop S. side, Lac à la Pluie Eagle river.	48 46.0 48 33.4 49 48.0	92 48.0 92 50.0 93 11 0	1906-8 1843	3 June 13	9-30a	7 39·2 " 10 53·6 "
Fort Frances.	48 36 6	93 26.7	1825 1843			$\begin{array}{cccccccccccccccccccccccccccccccccccc$
0						
н н н			1845 1857	Sept. 30		8 34.1 *
Kencra Near Rat portage, Winnipeg river	49 46.0	94 26 0 94 29 4	1906-1	7		9 54.1 "
On N. bank of Rainy river	48 41.0	94 31.0	1843		7-48a	13 04.5 "
*Rainy river. Rat portage	48 43.0 49 45.9	94 31 0 94 33 3	1906 1843	S June 20	10-11a	9 33 8 " 9 38 0 "
0		t t 2)+i	1844			
Winnipeg river. Island in Lake of the Woods.	P .	94 34-2 94 37-0	1885 1843	June 25 June 18	3-14p	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Sand lake, Winnipeg river		94 40 0 " 94 41 9	1885	June 17		13 42.6 **
Satu lake, winnipeg river		94 54 4	1885	July 1		9 41.0 "

*Local disturbance.

V-Con.

RESULTS-Con.

RIO-Con.

Month and Day.	Hour and Minute.	Dip.	Month and Day.	Hour and Minute	Hor, Intens.	Total. Intens.	.Temper- ature.	Observer.
Oct. 6			Oct. 6			C 100	0	J. H. Lefroy.
001. 0			0000					Palliser.
June 8		$\begin{array}{ccc} 78 & 20.4 \\ 78 & 05.5 \end{array}$	June 8			.6494 6471		J. H. Lefroy.
June 9		77 49·4 77 53·2	June 9 Oct. 4			6508		
						6384 6422		14
		78 27 4			1979	6407		C I
June 10	10-00a	77 51 0	June 10			.6488 6474		J. H. Lefroy.
June 11		77 40.1	June 11			.6473		
June 12		77 44.8	June 12			6503 - 6462		
		$\begin{array}{cccc} 77 & 42 & 4 \\ 77 & 47 \cdot 9 \end{array}$	June 13		.1349	. 6515		C. I.
Iay 28		$\begin{array}{cccccccccccccccccccccccccccccccccccc$.1313	.6461		11 11
une 14		$\begin{array}{cccc} 77 & 18^\circ 1 \\ 77 & 28^\circ 0 \\ 77 & 22^\circ 8 \end{array}$	June 14			$.6467 \\ .6480$		Franklin, J. H. Lefroy.
		11 22 0				.6420		
			Sept. 29			.6475		
			a			.6487 .6488		
		77 32.0			.1318			Dr. J. Rae. Palliser.
	10-25a	77 58.9	June 22	1-23				C. I.
une 22 Oct. 19	8-38	78 31·3 78 36·1	Oct. 19			. 6444	87 34	Th. Fawcett.
	9-03 to 9-35a	78 38.5		10-11 to 10-50a		6403	37	
une 16 .	9-00a	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	June 16			.6593		J. H. Lefroy.
		$\begin{array}{cccc} 77 & 27 & 2\\ 78 & 07 & 5 \end{array}$.1376	.6575		C. I. J. H. Lefroy.
une 20		78 07.1	0			.6480 6463		
		78 00.5	Sept. 25			.6417		
	10-10		- 100 A	2-00		.6452 .6446		
une 25	to 11-30a	$\begin{array}{rrrr} 78 & 28^{+}3 \\ 78 & 16^{+}7 \\ 78 & 15^{+}2 \end{array}$	June 25 June 18	to 9.45n		6504 .6503	79	Th. Fawcett. J. H. Lefroy
une 17	9-20a	78 03.7	June 17			6413		J. H. Lefroy.
une 28	11-20	78 01.7		1-20				"
	6-17	78 31.4	June 28	to 1-43p 7-02		.6538		Th. Fawcett.
uly 1	to 7-00p	78 28.2	July 1	to 8 Cop		.6518	72	

25a-81

1ABLE

MAGNETIC

HUDSON BAY AND

Place.	Latitude.	Longitude.	Year.	Month and day.	Hour and minute.	Declination.
Eastmain	52 14 7 " " 51 29 5 " 51 29 5 " 51 29 5 " 52 20 0 53 24 0 53 24 0 53 24 0 53 24 0 53 24 0 53 24 0 53 24 0 54 25 0 55 25 0 56 29 0 57 15 0 56 29 0 57 15 0 56 29 0 57 15 0 56 29 0 57 15 0 56 29 0 57 15 0 56 29 0 57 15 0 56 39 0 57 15 0 56 39 0 57 15 0 56 39 0 57 15 0 56 39 0 57 15 0 56 39 0 57 15 0 56 39 0 57 15 0 56 30 0 57 15 0 57	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1890 		5-14 to 5-38p	14 15 1 58 15 0 10 41 0 12 48 0 13 30 0 13 53 0 15 57 0 16 15 70 16 15 0 17 16 0
Moose Factory	51 15 4 51 14 5	80 40.5 80 56.0	1880 1890	Aug. 14, 17, 20 July 24	4-15	15 27 5 15 14 7
Fort Albany, Hudson bay Fort Hope	51 22.0 66 32.0 "	82 38:0 86 56:0 "	1775 1846 1847 			

VI.

RESULTS.

SURROUNDING TERRITORY.

Month and day.	Hour and minute.	Di	p.	Month and day.	Hour and minute.	Hor. Intens.	Total Intens.	Tem- perature	Observer.
	3-20								
Sept. 11	to 3-46p 4-16	80	43.4						Wm. Ogilvie.
·· 11	to 4-30p 2-28	80	46.7						
Oct. 2	to 2–57p 3–35	80	47.4						
. 2	to 3-56p 10-58	80	42.6						
Aug. 13	to 11-22a 11-57	80	26.6						
	to 12-18a 3-47	80	34.2						
Oct. 5	to 4 09p	- 80 - 86	33.8						
		- 86 87	35.0				-6248 -6160		T. E. L. Moore.
		87	01.0				-6160	1	
		-81	49.0						н
		80	59.0						
		82	20.0				6404		
		86	07.0				0404		
		86	07:0						
		83	02.0				6358		
		83	47.0				·6381		
		84 84	10.0 42.0				6248		
		85	20.0				6248		
		84	00.0				6266		
		83	-48.0				6114		
		84	30.0				6266		
		84 85	31:0		· · · · · · · · · · · · · · · · · · ·		6123		
		84	36.0				0120		
		86	36.0				6095		
		- 86	30.0				6289		
		86 87	41.0				6261		
		87	-00°0 -48°0				6082		
		84	31.0				6238		
		- 81	02.0				6487		
		81	30.0				6510		
	10-20								S. W. Very.
July 22	to 10-48a 11-30	80	48.5						Wm. Ogilvie.
	to 11-57a	80	52.0						
		79	20 0						
November December		88	03.8						Dr. J. Rae.
		88	$\frac{14.0}{17.5}$					· [· · · · ·	
		88	-17.0 -12.2						

TABLE

MAGNETIC

HUDSON BAY AND

Place.	Latitude.	Longitude.	Year.	Month and day.	Hour and minute.	Declination.
		· · ·				o /
Repulse bay Near Wager river Three miles N. W. of cape	$\begin{array}{ccc} 66 & 32^{+}0 \\ 65 & 10^{+}0 \end{array}$	86 55.0 87 30.0	1846			
Lady Pelly	$\begin{array}{cccc} 64 & 30^{\circ}0 \\ 64 & 06^{\circ}0 \\ 61 & 09^{\circ}7 \end{array}$	88 00.0 88 00.0				
Mouth of Albany R., Lake St. Joseph	51 12.7	93 09 8	1885	Sept. 10	3–50p	6 09.0E
				. 11	8-30a	5 33.4
Lake St. Joseph	$51 \ 11 \ 2$	90 37-0	1885	Sept. 6	9-30a	5 22°0 н
				. 6	4–10p	5 18.8
a	50 5818	91 08.0		Aug. 29	5-50p	24 27.2
· · · · · · · · · · · · · · · · · · ·					10-17a	23 43.9 "
On a portage, Root river	50 49.7	91 22.7	1885	Aug. 23	8-00a	7 20·3 E
					4-10p	7 07.5
Cat river.	51 05.7	91 24 2	1	Sept. 20	10-15a	5 35.3
					3-33p	5 35.0
Root river.	50 41.2	91 35.8		Aug. 16	10-00a	6 55.7
					3-15p	6 50.6
H. B. Co,'s post, Cat lake	51 44 3	91 46-2		Sept. 30	4-00p	4 50.1
				Oct. 1	6-403	4 31.1 1
					9-39a	5 12 3 1
Cat river	51 30.0	91 49.7		Sept. 27		
				27	4-13p	4 43 2
Cat lake	51 46.3	91 51 1				
Lac Seul	50 23.7	92 04 8		Aug. 9		8 22·4 E
					4-40p	8 09.1
H. B. Co.'s post, Lac Seul	50 19.5	92 14.4		6	4-30p	7 03.9
	58 02.0	92 20.0	1846		10-00a	7 09 4
At a creek York Factory	56 59.9	92 26.0	1843	July 24	6-07p	9 37 8E 9 07 8
· · · · · · · · · · · · · · · · · · ·				" 24 " 26	6-40p 7-21a	8 16.2 "
					7-36a	9 00'8
"			1845			

* Local disturbance.

VI-Con.

RESULTS-Con.

SURROUNDING TERRITORY -Con.

			P					
Month and day.	Hour and minute.	Dip.	Month and day.	Hour and minute.	Hor. intens.	Total intens,	Tem- perature	Observer.
-		0 /					0	
July 27		88 16 7 87 10 6						Dr. J. Rae.
Aug. 3		88 27.1						
		86 36 3 86 47 3						
Sept. 10	4-12 to 4-55p	80 18.3	Sept. 10	5-00 to 5-25p		·6481	60	Th. Fawcett.
. 11	9-00 to 9-30a	80 21.4	. 11	9-35 to 10-00a		.6484	56	
6	10-00 to 10-30a	80 25.3		10-35 to 11-00a		6450	52	
. 6	4-35 to 5-00p	80 19 0	. 6	5-55 to 6-20p		·6463	48	
Aug. 29	6-10 to 6-38p 10-20	81 46 6	Aug. 29			·6435	55	
. 30	to 10-40a	81 48.8		11-56 to 12-15a		·6413	61	
·· 23	to 8-27 4-26	79 42 1	Aug. 23.	9-00 to 9-26a 4-56		·6513	51	
. 23	to 4-54p	79 39.4	. 28	to 5-15p		*6500	-48	
Sept. 20	10-15 to 11-08a 4-03	80 05:7	Sept. 20	11-10 to 11-40a 4-35		6491	70	0
	to 4-30p	80 04.5	- 20	to 5-00p		·6493	60	
Aug. 16	0-08 to 0-33p 3-28	79 27.1	Aug. 16	0-35 to 1 00p 3-54		6526	67	
. 16	to 3 52p	79 26.1	. 16	to 4-10p		6516	70	
Sept. 30	to 4-00 to 4-30p 7-40	80 29.0	Sept. 30	4-32 to 5-00p 8-18		6497	46	
Oct. 1	to 8-10a 10-02	80 29.0	Oct. 1			.6475	47	
Sept. 27	to 10-24a 4-35	80 11.6	Sept. 27	to 11-00a 5-09		6533	67	н
. 27	to 5-07p 3-26	80 07.0		to 5-25p 4-20		⁺ 6548	61	
Oct. 1	to 4-15p	80 24.6	Oct. 1	to 5-07p 5-08		6538	55	
1	4-17p 4-40	80 21.8	» 1	to 5-30p 5-38		· 6523	55	
Aug. 9	to 5-35p 6-07	79 03 9	Aug. 9			.6557	72	
9	to 6-30p 4-43	79 04.9	н 9			-6539	70	
6	to 5-12p 10-00	79 35.3		to 5-40p 10-35		-6534	70	
June 20	to 10-33a	79 34·4 84 46·4		to 11-00a		6537	69	Dr. J. Rae.
July 24 " 24	11-00a 3-00p	83 50 5	July 24			6492		J. H. Lefrov.
			. 25			:6500		
			. 25			-6433 -6460		
						6495		
Dec. 3		83 54 2	. 26			6494		Dr. J. Rae.
01111		00 01 4						Dr. o. Kale,

TABLE

MAGNETIC

HUDSON BAY AND

Place.	Latitude.	Longitude.	Year.	Month and day.	Hour and minute.	Declination.
			_			* *
York Factory	56 59'9 " " "	92 26:0 "" " "	1846 1847 1857 1884	Sept. 12		
	0					6 32.0 "
Shanty narrows, Lac Seul	50 29.3	92 51 57	1885	Aug. 1		6 54.7
Jct. of the Shamattawa and		н		2		7 15 7
Hayes rivers.	56 21.0	93 00.0	1843	July 22 28	4-03p	10 00.0 m 12 19.6 m
English river.	50 38:9	93 10 2	1885	July 29		
				1		
Camping lake, English river	50 - 38 - 1	93 24.1		July 26	9-40a	8 20.0
White Mud portage	55 33.0	93 44 6	1843	July 31	7-19a	10 51 0 E
Tide lake, English river	50 2016	93 57.0	1885	July 18		
Devils Landing Place	54 24°0	94 00°0	1844	" 19 Aug. 1	8-24a	11 49.4
Grassy narrows, English river	50 10 7	94 02.2	1885	July 15	5-00p	9 28.0
Fort Churchill.	58 43·8	94 14.0	1846	June 29 July 1	p.m.	12 43.0 E. 11 29.0 "
Long portage	55 ^{""} 14.0	94 22.0	1819 1843	Sept July 20,	5-42a	11 10 4 E. 12 59 4
0		1		Aug. 2	6–29a	12 13.5
0 · · · · · · · · · · · · · · · · · · ·						
English river	50 16.0	94 30 6	1885	July 12	8-10a	9 44.7 E.
				····		
	50 21.8	94 39.3			6-00p	10 21.2 E.
	50 14.5	94 59.3		July 5	9-50a	9 07 0 E.

VI-Con.

RESULTS—Con.

SURROUNDING TERRITORY -- Con.

Month and day.	Hour and minute.	Dip.	Month and day.	Hour and minute.	Hor. intens.	Total intens.	Tem- perature	Observer.
		• •					0	
eb. 9 pril 25		$\begin{array}{cccccccccccccccccccccccccccccccccccc$						Dr. J. Rae.
ept. 18 .ug. 9		83 47 0 83 53 0				6466 6463		Blakiston.
ept. 11	3-05		Sept. 11	3-45 to 4-100		-6419		" Otto Klotz.
. 11	4-18	83 46.7		3-45		•6423		"
ug. 1	5-35 to 6-20p		Aug- 1	6-25 to 6-50p		·6557	59	Th, Fawcett.
2	8-00 to 8-55a	79 14-9	. 2	9-00 to 9-32a		·6520	78	
aly 28	4 00p	83 36·2 83 41·6	July 22			.6503		J. H. Lefroy.
" 22 " 28		83 30 2	" 28 " 22 " 28			6504		
	5-50 to 6-30p	79 10.8	1	6-40		-6486	74	Th. Fawcett.
	7-36 to 8-10p	79 13.0		7-36 to 8-10p		6474	71	
	9-40 to 11-€0a	79 16.1		11-05 to 11-48a		6477	75	
26	4-00 to 4-28p 1-00p	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	" 26 " 21	4-30 to 5-05p		6463 6552	67	J. H. Lefroy.
. 21	1 -00p	83 02 9 83 11.6 83 00.0	··· 31			6511		J. H. Letroy.
•••••	6-15		" 31			6472		
dy 18	to 7-25p 9-30	79 20.0	., 18	to 8-05p 10-40		-6460	60	Th. Fawcett.
ug. 1	to 10–35a	79 22·9 82 55·0	Aug. 1	to 11-25a		6486 .6576	63	J. H. Lefroy.
	5-00 to 5-50p	79 09:3	" 1 July 15	6-00	• • • • • • • • • •	·6512 ·6429		Th, Fawcett.
	7-30 to 8-00p	79 02.5		to 8-30p to 8-50p		-6471	65	In, rawcett.
ne 29		84 57 5 84 44 2						Dr. J. Rae.
ily 1		84 33 9 84 53 8				· · · · • • • •		
4 dy 19		84 44 5	July 20					Franklin.
# 20		$-82 - 21 \cdot 3$	Aug. 2			·6543 ·6566		J. H. Lefroy.
ug. 2			July 20			6540 6568		
aly 12	9-06 to 9-455	79 19:0	Aug. 2 July 12	10.25		*6534 *6405	83	" Th. Fawcett,
" 12	10-50	79 13 6	5 uly 12 " 12	0-00 to 0-35p		6414	75	In. Fawoett.
9	6-00 to 7-00p	79 25 9		7-30 to 7-55p		6435	54	
. 9	8-00- to 8-40p	79 18.7	» 10	7-00 to 7-20a		6457	64	
. 5	9-15 to 11-10a	79 08:0	. 5	0-10 to 0-32p		6464	89	

TABLE

MAGNETIC

HUDSON BAY AND

Place.	Latitude.	Longitude.	Year.	Month and day.	Hour and minute.	Declination.
	o /	• •				o ,
*Oxford House	54 56°0 "	95 30.0	1843			
Hell Gate, Upper portage	54 42.0	96 10.0	-			
East end Split lake, Nelson						
river. South end of White Fall port-	56 13.3	96 18.8	1884			
age. South end of White Fall port-	54 23.3	96 31.0	1843	Aug. 5	3-36p	17 32.0 E.
Nelson river. Hairy lake, mouth of R. Echi-	55 20.8	97 06.3	1884			
mamish Hairy lake, mouth of R. Echi-	54 20.0	97 28.0	1843	July 15		18 43.7 E.
mamish. Nelson river, on an island of granite.	" 54 16.8	97 46-4	1884	July 27		16 11.0 E.
Nelson river,	54 50.1	98 11.8	1884			
Duck Nest, Lake Winnipeg	53 15.5	97 33.5	1886	Aug. 3		16 41.6 E.
Old Norway House	53 41.6	98 01.4	$1819 \\ 1843$			
0 · · · · · · · · ·						
Norway House	53 59.6	98 03.9	1843	July 13	6-45p	16 21 9 E.
				" 13		16 00.0 15 58.6
				. 13		15 12.1 "
			-			
			1844	Sept. 6		14 51 0 E.
			1044	1 7		15 22.0 "
		н				
		н		1		
			1884	July 22		14 55 0 E.
				. 24	4-30p	14 59°0 u
				Oct. 4	3-15p	15 00.0 "

* Local disturbance.

VI-Con.

RESULTS-Con.

SURROUNDING TERRITORY-Con.

Month and day.	Hour and minute.	Dip.		ionth 1 day.	Hour and minute.	Hor. intens,	* Total intens.	Tem- perature	
		。,							
Aug. 3	5- 30 p	82 38'8 82 43'4	Aug.	3		 	6568		J. H. Lefroy.
	1-30p			3			6548		
Aug. 4 " 4		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		4			6540		
				4			6544		
Aug. 17	4-10 to 4-55p	82 49.9			5-05 to 5-39p		-6453	61	Otto Klotz.
м 5	1-00p	81 47.9		5			-6557		J. H. Lefroy.
. 5	4-45	81 51.6	1	5	5-30		6524		
	to 5-25p	$81 \ 58.1$		10	to 5-55p		-6593	68	Otto Klotz.
July 15	4-30p	81 20.9	July	15			·6487		J. H. Lefroy.
				15	4-45		-6483		
July 27	to 4-35p	81 23.8		27	to 5-15p		·6512	69	Otto Klotz.
Aug 3	5-34 to 6-13p	82 24.3	Aug.	3	6-17 to 6-44p		-6428	67	
	9-00 to 10-00a	80 50.8		3			-5996		F. W. Wilkins.
	1-30 to 2-30p	80 46.8		3	2-45 to 3-30p		6026		
Oct. 7		83 40.0							Franklin.
Aug. 12 " 12		80 45.4 80 49.4	Aug.	12 12			*6506 *6552		J. H. Lefroy.
July 12		81 11.0	July	12			6551		
		81 06 2	Aug.	8			-6522		
Aug. 9		81 09.4	0	8			6531		
			July	14			6503		
			"				-6513		
Sept. 7	s.m.	81 11.1	Sept.	6			6475		
		81 11.4		6			-6515		
			11	6			-6540 -6530		
				6			6560		
July 23	2-43 to 3-32p 4-12	81 05 4	July	23	3-40 to 4-06p 5 02		·6525	80	Otto Klotz.
, 23	to 4-59p	81 12.0		23	to 5-19p		·6489	70	
Oct. 4	9-30 to 10-45a	81 18.0	Oct.	4	10-50 to 11-15a		· 6459	52	
. 4	0-00 to 0-50p	81 15.8		4	1-00 to 1-20p		·6463	53	

TABLE

MAGNETIC

MANI

Hour Month and and Longitude. Year. Declination. day. minute Winnipeg river..... 50 10.2 12.0 1843 June 21..... 5-12p 12 28 7 E Slave falls 50 14 7 1843 40.0 Badger. 49 12.0 36.9 1906 05.0 .. Fort Alexander..... 36.9 22.0 1825 June 5. ... 15 15 7 .. 6-37p 1843 June 25. 13 29.0 .. . 26. 4-49a 7-39a 14 25.3 .. Sept. 20. . . . 1844 14 03 4 .. 20.... 8-26a 14 04 2 ... *Big island, Lake Winnipeg . 1844 04.0 96 26.0 Bay of Winnipeg river, Lake Winnipeg..... 50 41.5 96 31.4 1886 June 23. 9-00a 12 40-2 .. 13 41.0 . Lake Winnipeg. 50 35.0 35.6 June 26.... 6-06p 33.4 96 36.0 1843 About six miles N. of Loon creek, Lake Winnipeg... 96 37.3 July 9.... 8 45a 36-9 14 41.6 .. Sept. 17. ... *Lake Winnipeg, on an island. 51 34.0 96 43.0 1844 9.369 15 06.7 ... Selkirk. . . 5009.2 96 51.8 1886 On Red river . 18.2 96 52.0 1843 West Selkirk 50 10.0 96 52.0 1907.8 13 16.8 .. *Opposite Bull's Head, Lake Winnipeg 51 36.7 53.0 1843 July 6, ... 7-59a 16 25 1 ... On Red river... 40.9 .. 51 36:0 96 56.0 1843 July 5. 6-53p 10.5 ... 7-050 July 5. 14 04.2 .. Island east of Bear island Lake Winnipeg. 46:0 97 00:0 1843 *Lake Winnipeg..... 9-05a 51 44.5 97 02:0 1844 Sept. 16. . . 15 24 2 " Winnipeg Lake Winnipeg. 49 52.0 97 09.0 1906-7 52 20.9 10.0 1844 Sept. 14. 3-48p

* Local disturbance.

C.I.-Carnegie Institution.

VII.

RESULTS.

TOBA.

Month and day.	Hour and minute.	Dip.	Month and day.	Hour and minute.	Hor. intens.	Total intens.	Tem- perature	Observer.
							•	
June 21		79 11.3	June 21					J. H. Lefroy.
June 23 " 23		$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	June 23,			6498		
		77 36.4			1369			C. I.
June 5		78 47.1 78 54.0						Franklin.
June 25 25		78 51·8 78 55·8	June 25			6477		Back. J. H. Lefroy.
Sept. 30		79 03 4	Sept. 19,			6561		
a 30		79 02 5	. 19			·6564 ·6527		
Sept. 18	a. m.	79 31.5	Sept. 18			.6685		
			n 18 n 18			.6688		
June 23	9-30 to 10-30a	70 70.4	June 23	10-45 to 11-45a				
	1-30			2-45		. 5999	71	F. W. Wilkins.
June 26	to 2-20p 7-00p	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	# 23	to 3-45p		-5964 -6514	70	J. H. Lefroy,
· 27	7-00p	79 05.1	June 26					J. II. LISTOY.
July 9	0-15 to 1-300	78 49.5	July 9	1-45 to 2-30n		·5981	78	F. W. Wilkins
	9-00	78 48.9		10-30				
Sept. 17			Sept. 17			-6004 -6646	72	J. H. Lefroy.
			. 17			.6623		
	12-00			1-30				
June 7	to 1-15p 9-00	78 22.8	June 7	to 3-00p 11-00		6008	69	F. W. Wilkins.
" 8 July 4		$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	8	to 12-00a		6025	70	
			July 4			-6492 -6515		J. H. Lefroy.
		78 45 6	• • • • • • • • • • • • •		·1256			C. I.
July 6		79 38.0	July 6			6660		J. H. Lefroy.
July 5	8-00p	79 11.8	July 5			6687		
		79 01.2	u 5			6514		
July 7	1-00p	79 28·3 79 28·8	July 7			-6638 -6658		
. 7		79 32.2	. 7			6649		
Sept, 16			Sept. 16,			7074		
		79 10-9	a 16,			7112		
Sept. 14		80 24.4	16 Sept. 14		1304	6633		J. H. Lefroy.
			· 14 · · · · · · · · · · · · · · · ·			6655		

TABLE

MAGNETIC

MANI

C. I.-Carnegie Institution.

Place.	Latitude.	Longitude.	Year.	Month and day.	Hour and minute.	Declination.
	0 r					• •
Wesleyan Mission, Berens riv, .	52 22.6	97 12.0	1843	July 8	6-52p	11 13·3 E
Fort Garry	49 53 2	97 15.6	1843	June 29	5-11p	14 20.7 15 27.6
· · · · · · · · · · · · · · · · · · ·				н 30	7-18p	16 42.1 "
0 · · · · · · · · · · · · · · · · · · ·						
0						
Winnipeg, C.P.R. station	49 53.5	97 08.0	1882			
Winnipeg	49 52 0	97 09-0	1908	July 16, 17, 18, 20.	10- 30 a	13 58.6
Near Leaf river, Lake Winni- peg	52 31.6	97 18.0	1843	July 10		19 12·2 E
	N					
			:			
Four miles south of War Path river, Lake Winnipeg.	52 18.3	98 14.6	1886	Sept. 22		15 48 4
End of Long point, Lake Winnipeg.	53 02 5	98 27.5	1886	Sept. 9	8-45a	15 39.1
North side of Long point, Lake Winnipeg.	53 04.2	98 44.5	1886	Sept. 6	8-45a	17 31.8
North end of Limestone bay, Lake Winnipeg	53 53.8	98 48.7	1886	Aug. 19	8-15a	15 13.8
Lake Winnipeg	53 31.9	99 ["] 12·0	1843	Aug. 14	8-14a	17 07 3 "
Grand Rapids, east end	53 08:4	99 27.0	1843	Ang. 15	4.145	19 12 9
H			1814	Aug. 15		
10 10 14 14 14 14 14 14 14 14 14 14 14 14 14	0 11		1844	Sept. 2	9-43a	17 25.0
· · · · · · · · · · · · · · · · · · ·						
H. B.Co's. post, Grand Rapids	53 13:4	99 29 0	1884	July 17		15 38.0
Cross lake	53 10.1	99 34.0	1843	Aug. 16	9-34a	18 03.7
Brandon	49 50 0	99 57.0	1884	July 18		14 46.5
н т				. 19 . 19	11-32a	15 06:8 n 14 47:0 n
	49 52.0	99 58.0	1906.7			15 00.2

VII-Con.

RESULTS-Con.

TOBA-Con.

	and minute.	Dip.	Month and day,	Hour and minute.	Hor. Intens.	Total Intens.	Tem- perature	Observer.
July 8 1 8 July 3 1 3 June 29	7-00p	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	July 8 June 29 1 29			-6498 -6492		J. H. Lefroy.
June 29		78 10 0	п 29			6466 6465 6486 6457 6459		
May. July 16, 17, 18, 20.		79 50:7 79 49:9 78 13:0	July 16, 17, 18, 20		13121			Wm. Ogilvie. " C. A. French.
July 10. 10 10	2-03p	80 07.2	July 10 n 10 n 10 n 10 n 10			6510 6509 6534 6485 6524		J. H. Lefroy.
Sept. 22 22	9-10 to 10-00a 11-15 to 12-15a 9 00	79 47 4	Sept. 22	0-45 to 1-30p 10-15		15996 15953	30 55	F, W, Wilkins.
Sept. 9 " 9 Sept. 6	to 10-00a 10-15 to 11-15a 9-00 to 10-00a	80 23 4	Sept. 9 9 Sept. 6	11-13 to 12-15p 10-30		-5986 -5992 -5983	61 62 68	
и 6 Aug, 19	8-30 to 9-30a 10-45	80 58-9 81 03 4		0-45		-5988 -5941	70 68	
Aug. 14	to 11-30a 5-00a	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Aug. 14.	to 12-15a		5984 6533 6483 6486 6500	69	J. H. Lefroy.
Aug. 15 Sept. 2	6-30p		Aug. 15 15 Sept. 2 2			6540 6494 6547 6517		
July 19 Aug. 16	10.700	0.00 00-0	July 19.			6496 6494 6503 6546		O. Klotz. J. H. Lefroy.
			· 16 · 16 · 16			6474 6549 6537 6541 6537		
July 18	3-20	77 34 9	July 18	4-45		6573 6459	72	

MAGNETIC

Mani

C. I.-Carnegie Institution.

Place.	Latitude.	Longitude.	Year.	Month and day.	Hour and minute.	Declination.
		• •				0 r
Hare island, Cedar lake	53 12.2	100 00 0	1843			
Chemahawin, Saskatchewan river. Devil'a Drum island, Saskat-	53 20.4	100 32.2	1884	July 5	8-00p	17 36.0
chewan R.	53 19 5	100 36.0	1843	Aug. 9	7-30p	
Lauder	49 24.0	100 43.0				16 09.5
On bank of Saskatchewan river Kirkella Round Turn, Saskatchewan	$\begin{array}{cccc} 53 & 52.6 \\ 50 & 02.0 \end{array}$	${\begin{array}{ccc} 101 & 11{}^\circ 0 \\ 101 & 22{}^\circ 0 \end{array}}$	$ 1884 \\ 1906 \cdot 7 $			16 02.4
river.	53 48.8	101 23.0		Aug. 31		19 56.8
On bank of Saskatchewan river	54 02.2	101 34.9	1844	June 22	7-00p	19 22.0
Sturgeon Weir river	54 20.9	101 42.9	1888	Oct. 7	9-50a	18 27.3
At Swan River Barracks	$51 \ 54 \cdot 4$	101 57.3	1880	June 12	1-00p	19 37.3 .
0 U U		н				

VII-Con.

RESULTS -- Con.

TOBA-Con.

Month and day.	Hour and minute.	D	ip.		onth 1 day.	Hour and minute.	Hor. intens.	Total intens.	Tem- perature	
									0	
Aug. 18		80	07 1	Aug.	18			-6484		J. H. Lefroy.
July 7	to 2-19p					to 2-48p		-6487		O. Klotz.
Aug. 19								6393		J. H. Lefroy.
					19			6358		
	6-08	76	53.7			6-54	1433			C. I.
une 28		80	20.2	June	28	to 7-20p		· 6463		O. Klotz.
		77	17.0				.1400			C. I.
lug. 31								°6600		J. H. Lefroy.
				1				6614		
	5-30				01	6-20		0014		"
une 22	to 6-13p 10-30	80	20'3	June	22	to 6-50p		6466	81	O. Klotz.
)et. 7	to 10-55a	80	16.3	Oct.	7	11-27 to 11-45a		6470	60	Th. Fawcett.
une 12	11-15 to 11 500	70	20 1							W. F. King.
une 12	7-30	10	00 4							w. r. King.
une 7 & 8.	to 8-15p	78	38.4							
unerao	to 2-30p									
. 13	9-45 to 10-30a		20.0							
. 10	to 10-508	10	30.0							

TABLE MAGNETIC

SASKATCHEWAN

C. I-Carnegie Institution.

Place.	Latitude.	Longitude.	Year.	Month and day.	Hour and minute.	Declination.
	0 r					0 /
On Ellice and Touchwood trail	50 42.5	102 00.0	1880	May 22	11-00a	18 51°0 E.
				. 22	2-00p	18 56·0 «
2 H H H				= 27 = 31	4-00p 11-00a	18 48.0 " 18 48.0 "
On Pelly and Qu'Appelle trail.	51 44.8	102 00.8		June 16	7-00p 6-00p	20 10.0 " 20 15.0 "
Limestone point, Beaver lake	54 26.0	102 10.0	1843		0.000	
			0			
Cumberland House.	53 56.7	102 19-2	1819	Nov. 19.		17 17 5 E.
			1825 1843	May 22., .	7-30a	19 14·3 ·· 19 52·4 ··
0 ······	51		1843	Aug. 23 " 23	7-58a	19 43 8
			14			
			1844	Aug. 29	5-390	19 16 7 E.
			1044	Aug. 29		15 10 / E.
			1884	June 17	6-00p	20 09.0 E.
			н н			
			1888	Oct. 14	2-30p	19 19 1 E.
P. Aufan	10 04.2	100 02.0	1000.0	0 14	2-40p	19 37 9
Broadview Carp portage, Great river	50 24 0 54 47 2	102 35·0 102 39·5	1906 7 1843	Aug. 27	2-23p	17 05 7 24 08 6
Pine portage	55 04.0	102 42.0	1843		2 200	
N						
Estevan	49 09.0	102 58.0	1906.7			17 29 4 E.
Northeast of Beaver hills	51 38.7	103 08.0	1880	June 21	5-30p	19 30.0
M N	н Н	н 1		" 22 " 25	4–30p 7-30p	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
Frog portage	55 24.1	$103 \ 15^{\circ}2$	1888	Sept. 21	1-55p	21 10°8 a
				21	210 p	20 30.4
On an island, Saskatchewan riv.	$53 \ 38 \ 2$	103 41.9	1884	June 8	8-00a	20 25.0
Northwest of Beaver hills	51 32.0	103 42.6	1880	. 27	6- 30 p	19 45 0 "

VIII.

RESULTS.

AND ALBERTA.

			1					
Month and day.	Hour and minute.	Dip.	Month and day.	Hour and minute.	Hor. intens.	Total intens.	Tem- perature	Observer.
	11-00						°	
May 23	to 12-00a 7-00	78 00.5						W. F. King.
	to 7-45p 5-00	77 51.6						
o 27	to 6-00p	77 42.5						
	7-15							
June 16	to 7.45p	78 34 8						
Aug. 26	2-00	20 94.9	Aug. 26			6501		J. H. Lefroy.
	to 3-00p		. 26			6421		
			26			6501		
						·6408		Franklin.
June 28		80 21 1						1 11
Aug, 23 23	7-00a	80 28·2 80 31·8	1 23	1		6504		J. H. Lefroy.
						6460		**
			. 24			·6534		
						-6522 -6519		
			. 24			6527		
			" 23			6551		
			" 23			6530		0
Aug. 29	p.m.	80 20 2	. 29			-6530 -6543		
Aug. 29 " 29		00 Tb (. 29	10-40		6470		
June 17	9-43 to 10-29a		June 17.	to 11-05s		-6383	84	Otto Klotz.
17	4-07 to 4-141	80 28 -	. 17	4-48 to 5-11p		-6457	80	
	2-44			3-10	1			Th. Fawcett.
Oct. 14	3-12		Oct. 14	to 4-001 4-00		-6476		In. Fawcett.
	to 3-33p	77 37 1		to 4-15		-6454		C. I. "
Aug. 27 28	1-30 11-00a	80 39.6				6532		J. H. Lefroy.
			. 28			:6473		
			. 28.					
			28		1490	6465		C T
	5-00				1400			
June 23	8-30		* · · ·					W. F. King.
	to 9-101							
	2-37		1					
Sept. 21	3-44			3-25	p		60	Th. Fawcett.
» 21	to 4-101 5-55	p 80 59 1	1 21	to 3-36 6-35	p	6447	60	
June 8	to 6-29 0-00	p 79 49	7 June 8			6474	66	Otto Klotz.
	to 1-00		7					W. F. King.
25a	-91							

9-10 EDWARD VII., A. 1910

TABLE

MAGNETIC

SASKATCHEWAN

C. I.-Carnegie Institution.

Place.	Latitude.	Longitude.	Year.	Month and day.	Hour and minute.	Declination.
						. ·
Northwest of Beaver hills	51 - 32 - 0	103 42.6	1880	June 28	7-00a	20 00.0 E.
n n						
Fort Qu'Appelle	50 46.3	103 48 1		July 5	3-00p	19 30.0 "
		·		n 10	7-30a	19 40.0
On Touchwood and Qu'Appelle trail.	51 12 5	103 53 8		June 30	7-30p 5-00a	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
Touchwood hills, H. B. Co's		" 104 00 0		July 1	6-00p	
post	51 21 d			June 28	0-00p	18 33.6 "
On bank, Saskatchewan river	53 18.7	104 04.7	1884			
H. B. Co's post, Stanley	55 25.4	104 18 9	1888	Sept. 15	8-10a 8-30a	23 38 2 E. 23 53 9
		· · · · · · · · · · · · · · · · · · ·				
Mountain portage	55 33 4	104 19.2			3-40p	20 10.7
* Little Rock Portage	55 3314 55 3010	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1843	" 13 Ang. 31	3-50p 4-18p	21 04·1 " 16 35·0 "
H H H				· 31 · 31	4-51p 5-10p	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
Regina	50 - 27 - 4	104 35.0	1884	July 21	9-07a	18 44.8
			·	• 21 • 21	9-07p 3-52p	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	50 26 0	104 36:0	1906 2	. 21	6-30p	18 41 8 19 12.0
East end of Great Devil's			1843			24 48.5
portage				Sept. 1		24 48 0
West of Fort à la Corne.	53 09.7	104 50.3	1884	May 26	3-45p	21 50°0 E.
2½ miles below forks of Sas- katchewan river	53 13.0	104 51.6	1844	Aug. 27	4-44p	24 45.0
· · ·						22 30.0 E.
94 H			1859			
Trout Falls portage	55 42.9	104 58.8	1888	Sept. 7		
						22 52.0
Black Bear Island lake	55 42.5	105 35 5	P.	. 2	9-15a	
Pine portage	55 43.0	106 00.0	1843		1-20p	21 32 0 "
B						
Carlton House.	52 50.8	106 32.0	1844	Aug. 26		22 55.6 E.
Knee lake	55 50.8	106 33 4	1888	Aug. 26	930a	27 19.6 E.

* Local disturbance.

VIII-Con.

RESULTS_Con.

AND ALBERTA-Con.

		1			1		1	
Month and day.	Hour and minute.	Dip.	Month and day.	Hour an J minute.	Hor. intens.	Total. intens.	Tempe- rature.	Observer.
		r					0	
June 26. , , .	3-20 to 4-15p 4-45	78 11						W. F. King.
» 26		78 05 1						
July 5		77 21.0						0
н 5	to 6-20p 6-15							н
June 30		77 51.6						
June 29	11-15	77 53						
June 2	3-00 to 3-50p	79 09 7	June 2	4-00 to 4-20p		6544	80	Otto Klotz,
Sept. 15		80 45 0	Sept. 15	9-50 to 10-10a		·6408	70	Th. Fawcett.
» 15	. to 1-14p 4-25	80 45.1	. 15	to 10-10 4-40		·6408	70	
13		80 33	. 13			6389	55 to 60	и
" 13 Aug. 31	to 5-30p	80 35-3	" 13 Aug. 31	to 5-13p		6373	55	J. H. Lefroy.
nug, os		00 10 4	Nug. 31			6925		J. H. Lerroy.
	9-30			11-05				
uly 21	to 10-50a 4-15		July 21			·6401	76	E. Deville.
" 21	to 5-05a	77 04.0		to 6-15p		-6403		
	1	i i			1427			C. I.
Sept. 1	. 10-00a	80 30.8	Sept. 1 " 1			6516		J. H. Lefroy.
			. 1			6460		
	4-05		. 1	5-30		6464		м
May 26		78 59.3	May 26	to 6-00p		·6443	64	Otto Klotz.
Aug. 27		79 11.2	Aug. 27			6422		J. H. Lefroy.
			27			6404		
						0404		H. Y. Hind.
Sept. 7	4-02 to 4-22p		Sept. 7	4-24 to 4-40n		6422		Th. Fawcett.
	to 5-30p		7	4-42 to 4.58p		6407	60	н
. 2	10-35 to 11-00a	80 43 3		11-45 to 12-00a		6512	60	
. 2	11-00 to 11-30a		. 2	0 02 to 0-18p		·6480	60	н
., 3	. 4-30p	80 40 3				6491		J. H. Lefroy.
			. 3			6463		
Aug. 26		78 30 2	Aug. 26			6350		
" 26		78 31 2	9 n 26			- 6366 - 6339		
	10-30			11-00				
	to 10-57a	80 48 2	. 26	to 11-17a		-6505		Th. Fawcett.

9-10 EDWARD VII., A. 1910

TABLE

MAGNET1C

SASKATCHEWAN

Place-	Latitude.	Longitude.	Year.	Month and day.	Hour and minute.	Declination.
Knee lake. Snake rapid	55 50°8 55 44 1	$\begin{array}{cccc} 106 & 33^+4 \\ 106 & 35^+0 \end{array}$	1888 1843			27 53 7 E.
0 44 10 10 10 10 10 10 10 10 10 10 10 10 10						
Near Elbow, South Saskatche- wan river.	51 04.8	106 37.0	1880	July 17	8-00p	21 21 0 E.
				. 18	6-00p	21 17.0 "
Near the N. W. end of Old Wives lake	50 28.9	106 46 7			7-00p	21 18.7
Narrow Rapids lake	55 5615	107 22.1	1888	Aug. 19	1-50p	24 03.9 "
* Saskatchewan, near Elbow. Portage Sonnaute	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$107 23.0 \\ 107 36.0$	 1844 1843	Aug. 24 Sept. 7	2-30p 4-13p	25 21 4 E. 26 43 4 "
Ile à la Crosse	55 25.6	107 37.0	1888	Aug. 11	300p	25 02.9 E.
South Saskatchewan river Fort à la Crosse	50 39.6 55 26.8	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1884 1843	Sept. 9	8-26a	24 57 5 E.
		н			8-043	24 35.0 "
					5-30p	20 11 4 "
0						
0						
· · · · · · · · · · · · · · · · · · ·			$ 1819 \\ 1825 $	F+bruary June 27		22 15.8 E. 23 19.3 "
Narrows of Buffalo lake	55 37 9	108 13.5	1888	Aug. 5	0-50p	25 15.9 "
Battleford	$52 \ 42.7$	108 18.8	1880		• • • • • • •	•• ••••••
			1884	July 28	10.000	22 12.7 E.
			1004	. 28	3-00p	21 57.2 "
				28	6-00p	21 59·9 " 22 15·4 "
0					9-10a	22 06.2
					0-35p	21 58.2 "
*Willow hills	53 00.1	108 30.0	1844	Aug. 23		28 24·1 "
d	1 11					
Northern end of Buffalo lake	56 04.0	108 40 0	1843			
Sidewood, on Cypress trail	50 02.6	108 51.4	1880	July 24	7-00p	22 00.0 E.

* Local disturbance.

VIII-Con.

RESULTS-Con

AND ALBERTA-Con.

Month and day.	Hour and minute.	Dip.	Month and day.	Hour and minute.	Hor. intens.	Total intens.	Tem- perature	Observe r .
							0	
Aug. 26	11-20 to 11-43a	80 45.8	Aug. 26	11-48 to 12-06a		6529	65	Th. Fawcett,
Sept. 4	1-30p	80 38.8	Sept. 4			6537		J. H. Lefroy.
			···· 4			6505		
	7-20					0.111		
July 18	to 7-50p 6-50	77 05.5						W. F. King.
	to 7-30p 5-50	77 02.3						
	to 6-35p	76 51.3						
Aug. 19		80 39 8	Aug. 19	3-00 to 3-30p		·6419	76	Th. Fawcett.
. 19	3-35 to 4-00p	80 34.2	" 19	5-15 to 5-40p		·6426	73	
24		78 16.6	n 24			6495		J. H. Lefroy.
Sept. 7	p. m.	80 11.2	Sept. 7 7			6481		
			. 7			6438		
			. 7	4-15		-6499		
Aug. 11	15-45		Aug. 11	to 4-35p		6371	75	Th. Fawcett.
» 11	to { 6-35 }	79 58 1	. 11	to 7-04p 5-35		6371	66	
May 8	to 5-30p	76 32 5	May 8	to 6-30p		6132	58	Otto Klotz.
Sept. 9 9	6-30	80 09·1 80 10·5	Sept. 9 			$6476 \\ 6471$		J. H. Lefroy.
			9			6454		
			и 9 и 9			6449		54
			9			6442		
						16440		
			··· 9			6469		
			. 9			6439		
July 11		79 55.0						J. Franklin.
Aug. 5	1-40 to 2-06p			2-13		6427		" Th. Fawcett.
	2-42		Aug. 5					In. Fawcett.
	9-45	80 13.3		to 3-35p		6429	60	н
Nov. 1	11-15							W. F. King.
. 2	to 11-40a	77 46-4						E. Deville.
								II DOVING
								J. H. Lefroy.
Aug. 23	p.m.	18 28.1	Aug. 23 23			6569 6548		J. H. Lefroy.
Sept. 13						6585		
Sept. 13	7-00a	80 37.0	Sept. 13					
			12			6457		1
			" 13			6420		
July 25	to 1-55p	75 50.1						W. F. King.

9-10 EDWARD VII., A. 1910

TABLE

MAGNETIC

SASKATCHEWAN

Place.	Latitude.	Longitude.	Year.	Month and day.	Hour and minute.	Declination.
	• •	• /				• •
River La Loche	56 11.6	108 57.5	1888	July 29	2-10p	28 10 ⁺ 0 E.
La Loche lake	56 26.6	109 12.8	1888	July 22	2-10p	25 49.0 E.
North end of Long portage	56 "14.7	109 "18.0	1843	Sept. 14 " 14	9-35a 9-43a	28 40 6 E. 28 27 5 "
N						
Portage La Loche	$56 \ 35^{+}2$	109 30.2	1888	July 18		26 37·3 E.
Great Methye pertage	56 ^{°°} 35·0	109 37.0	1843	Sept. 16 " 16	8-38a 9-30a	26 15 0 E. 26 59 7 "
0						
Fort Pitt.	53 34.1	109 47.2	1844	Aug. 22	6–50a 7–57a	23 07 3 E. 23 11 2 "
At the gap of Cypress hills	49 37.7	109 51.4	1880	July 31	7-000	21 43 7 E.
Great Methye p'tge, N.W. end	56 43.7	109 52 3	1820	Sept. 17		25 02 5 ··· 28 30 3 ··
				" 17 " 17	7-22a 7-30a	28 25.0 28 30.6
Clear Water river	56 42.7	110 03.9	1888	July 8	10-00a	26 53 5 "
Land survey station	$51 "05 \cdot 0$	110 "15.0	1882			
Clear Water river	56 39.4	110 46.6	1888	July 1	10-40a	28 54.3 E.
Two miles below mouth of		1.0		n 1	2-00p	28 56·9 »
Pembina river	59 39 0	110 55.0	1843			
0 0 11 0 0 11						
Saskatchewau river near						
Moose Hill creek.	53 50°0 "	110 59.0	1844	Aug. 21		
Fort McMurray	" 56 43:9	" 111 13·6	" 1888	June 23		29 02·4 E.
		н				28 09 1 E.
Fort Chipewyan, L. Athabaska	58 43.0	111 18.7	1843	Sept. 23 23 Oct. 16	3-50p 3-59p	27 08.4 "
9 9 54 9 9 54						28 30.8
0 0 11 0 0 1						
10 10 10 10 10 10			1820 1825	March July 11		22 49.6 E. 25 29.0 "
			1843			

VIII-Con.

RESULTS-Con.

AND ALBERTA-Con.

Month and day.	Hour and minute.	Dip.	Month and day.	Hour and minute.	Hor. intens.	Total intens.	Tem- perature	Observer.
	3-00	• •		3-24			•	
July 29		80 34 0	July 29	to 3-43p 4-25		-6456	61	Th. Fawcett.
n 29	to 4-20p 2-45	80 33.1	н 29	to 4-45p 4-32		6435	59	
	to 3-20p 3-47	80 31.9	" 22	3-22		6409	- 76	
" 22 Sept. 14	to 4-25p 10-15a	80 35 5 80 19 7	" 22 Sept. 14	to 3-45p		6352	86	J. H. Lefroy.
			н 14			6425		
			. 14			6401		
	10-40		" 14	11-14		6432		
July 18		80 29.3	July 18	to 11-35a 0-15		6397	88	Th. Fawcett.
	to 0-13p	80 28.3	. 18	to 0-40p		·6417	81	
Sept. 16	9-00a	80 36.4	Sept. 16 " 16			-6444 -6457		J. H. Lefroy.
			" 16			6426		
						6467		
Aug. 22	a. m.	78 43.0	Aug. 22			6533		
	"	78 39.1	" 22 " 22			6526		
	0-15							
July 28		75 20.4						W. F. King. Franklin.
Sept. 17		80 38.3						Franklin. J. H. Lefroy.
July 8		80 27.4	July 8			·6377	76	Th. Fawcett.
		80 25.5				-6425	65	
. 15	11.10	76 14.1		11-40				Wm. Ogilvie.
9 1		80 09.1	July 1	to 12.00a 4-04		·6419	66	Th. Fawcett.
• 1	to 4-00p	80 12.1	. 1	to 4-50p		·6460	68	
Sept. 19	8-30a	80 36.2	Sept. 19			6456		J. H. Lefroy.
			. 19			·6414		
						·6364		
						·6419		
Aug. 21		78 33.5	Aug. 21			6410		
			" 21 " 21			6350 6391	• • • • • • • •	
	9-30			10-04				
June 23	10-40		June 23	11-04		6334		Th. Fawcett.
" 23	to 11-04a	80 09.8	н 23	to 11–30a		6371	59.	· · · ·
Sept. 30 30	9-00a 11-00a	81 37·7 81 37·5	Sept. 25 " 25			$6374 \\ 6413$		J. H. Lefroy.
		or 3/ 5	Oct. 9			6383		
			Sept. 30			6449		
			Oct. 6 10			6446 6456		
						.0490		J. Franklin.
July 24		81 26 1						
		···· ··· ·!	Oct. 13		· · · · · · · · ·	-6419		J. H. Lefroy.

TABLE

MAGNETIC

SASKATCHEWAN

Place.		Latitude.	Longitude.	Year.	Month. and day.	Hour and minute.	Declination.
			· ·				o '
Fort Chipewyan, I	Athabaska	58 43.0	111 18.7	1843			
1							
			ii ii				
		10		1844			
**				1844			
					July 2		
					July 2	9-34a	29 52 0 E.
				11			
	10			1884			
				1888	Nov. 22		27 15 ⁻ 3 E.
					. 23	3-30p	27 09.5 "
						10-15a	27 17.9 "
In the valley o	· ·						
river		$53 \ 35^{\circ}9$ $58 \ 07^{\circ}0$	111 24°0 111 25°0	1880 1843	Oct. 17	10-30a	25 46.4 E.
Point Brulé, Atha		58 07.0	111 25 0	1815			
					Laurence		
*Pierre au Calume		57 24.0	111 35.0		Sept. 20	5-03p 5-15p	26 35 1 E. 25 24 9 "
					. 20		20 21 0 11
					1		
Land survey stati	on	51 00.5	111 40.5	1882			
Pelican portage		59 58.0	111 51.0	1844	June 27	6-24p	36 15 0 E.
Pelican portage Point Providence.		58 58 0	112 10.0	1044	July 5	3-11p	30 35.0 "
On Saskatchewan	river	54 04.5	112 19.5		Aug. 20	9 20a	23 55 0 m
		**			. 20	9-33a	24 56.0 "
On Peace river		58 58.0	112 56.1		July 7	7-19a	32 24.0 E.
Willow creek		49 45.3	113 24.0	1880	Aug. 17 " 18		22 32·0 n 22 43·0 n
					18		22 39.0 "
Athabaska river.		54 51.0	$113 \ 25.0$	1888	May 27	4-00p	24 33·3 E
Part Edmonton		53 32.0	113 30.1	1844	" 28 Aug. 16	6-50a 7-31a	24 16.4 " 23 47.0 "
Fort Edmonton		53 32.0	113 30 1	1044	Aug. 10		
				1880	Oct. 6	2-00p	26 43.2 "

*Local disturbance.

VIII-Con.

RESULTS-Con.

AND ALBERTA-Con.

Month and day.	Hour and minute.	Dip.	Month and day.	Hour and minute.	Hor. intens.	Total intens.	Tem- perature	Observer.
	Provide an organism							
			Oct. 13			-6399		J. H. Lefroy.
			13			6428		
			» 13 » 13			-6418 -6411		
			. 14			16386		
						6453 6425		
			" 14 Mar. 1			6425		
			. 1			6363		
			. 1			6331		
Feb. 27.	1-04p	01 95.4	July 2			-6368 -6431		0
reo. 51.	1-04b	01 00 1				6433		
			n 2			6426		
Sept. 17	1 50	81 26.6		2-25				H. P. Dawson,
Nov. 22	to 2-21p 3-06	$81 22 \cdot 2$	Nov. 22	to 2-45p 2-48		6335	17.5	Wm. Ogilvie.
22	to 3-24p 1-45	$81 \ 21.4$		to 3-04p 2 05		6306	17.9	
	to 2-07p 3-05	$81 \ 23^{\circ}3$. 23	to 2 20p 2 40		6348	18.	
. 23	to 3-25p 2-45	81 21.7		to 3-01p		6355	16	
Oct. 17 Sept. 21	to 3-05p 4-00p	77 56·8 81 30·6	Sept. 21			6402		W. F. King. J. H. Lefroy.
Sept. 21	4-000	01 30 0	. 21			6475		J. D. Lettoy.
			" 21 " 21 Sept. 20			6438		
Sept. 20	2-30p	81 16.8	··· 21			6493		
Sept. 20,	2–30p	01 10 0	и 20					
			9 20			6597		
Aug. 6		76 16 5				6631		W- 0 1.1
Aug. 6		76 09.7						Wm. Ogilvie.
June 27		82 26.8						J. H. Lefroy.
July 5		81 46-1						e
Aug. 20		78 05.2	Aug. 20 20					
		1	o 20			6316		
July 7	3-50	81 36.9						
Aug. 17	to 4-20p 5-25	74 44 8						W. F. King.
. 17	to 5-40p	74 47.9						
	4-26			5-07				"
May 27	to 5-05p 7-35	78 08.3	May 27	to 5-401 7-40		-6351	70	Th. Fawcett.
	to 8-28a	78 07.2	. 28	to 8-28a		6415	51	
Aug. 17		77 53 4	Aug. 17			6476		J. H. Lefroy.
. 17			17			-6418 -6474		
						6499		
			17			6468		
Oct. 6	4-40 to 5-00p	77 31 6						W. F. King.
	10-20 to 10-40a	77 29.4						

9-10 EDWARD VII., A. 1910

TABLE

MAGNETIC

SASKATCHEWAN

C. I.-Carnegie Institution.

Place.	Latitude.	Longitude.	Year.	Month and day.	Hour and minute.	Declination.
	0 r	o /				o /
Fort Edmonton	53 32.0	113 30.1	1888	May 17	1-30p	25 28·7 E
	"					
At north branch, Pipestone creek	53 04.3	113 35 5	1880	Sept. 25	6-00p	25 14.4
Mosquito creek	50 22.4	113 48.8		Aug. 20	7-00p	22 03·0 n
Forks of the Athabaska Fourth base on 5 th meridian Land survey station Athabaska river Crossing of Pembina river	55 13.050 02.954 21.354 43.054 03.2	$\begin{array}{c} 113 & 53^{\circ}2 \\ 114 & 00^{\circ}0 \\ 114 & 00^{\circ}0 \\ 114 & 00^{\circ}2 \\ 114 & 00^{\circ}2 \end{array}$	1844 1887 1883 1844	Aug 7. July 19 Aug. 9 " 14	1-50p 9-10a	26 28 0 23 53 7 26 29 1 22 23 0
Mouth of Lesser Slave lake	55 29.0	114 03.5	1888	June 4		27 22.5
Land survey station	55 ¹⁰ .0	114 03.5	1883	" 4 May 9	8-15p	27 25 3 27 45 4
Near Fort Calgary Poplar island	$\begin{array}{ccc} 51 & 03^{\circ}0 \\ 58 & 39^{\circ}0 \end{array}$	$\begin{array}{ccc} 114 & 04^+0 \\ 114 & 10^+7 \end{array}$	1880 1844	July 9	9-30a	26 29 8
Morleyville, Rocky Mt	$51 10^{-5}$	114 18.5	1880			• • • • • • • • • • • • • • • • • • • •
Fort Assiniboine."	54 21.7	114 28.4	1844	Aug. 11	7-02a	24 39 0 30 22 0 26 19 0 26 29 0
Falls of the Peace river Swan point, Lesser Slave lake. Sulphur mountain.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccc} 114 & 51 \cdot 1 \\ 115 & 03 \cdot 1 \\ 115 & 34 \cdot 0 \end{array}$	1907.5	July 10 Aug. 6		20 00 01
Banff Tunnel mountain Banff (C.I.S.) Fort Vermilion	51 11.051 10.058 24.5	115 37.0 115 58.6	1908 1844	July 22-24. July 11		25 57 4 26 5 6
0					Acres 1. Acres	32 40 0 #
						26 52.5
Fort of Lesser Slave lake	58 32.6	116 00.0		Aug. 3	5-37p	26 52.5
0 0 0 0						
Land survey station		116 08.6	1883			
On Peace river. Opposite River Cadotte Island opposite Baril river Land survey station	56 47 0 57 57 0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1844	July 17 19 15	9-17a	27 03.0 "
Fort Dunyegan.	55 55.6	118 28 5	1844			27 09 0 " 27 24 0 "
· · · · · · · · · · · · · · · · · · ·					9-49p	27 24 0 1
			1]		

VIII-Con.

RESULTS-Con.

AND ALBERTA-Con.

Month and day.	Hour and minute.	Dip.	Month and day.	Hour and minute.	Hor. intens.	Total intens.	Tem- perature	Observer.
May 17	1-50 to 3-05p 3-21 to 3-53p		May 17	4–11 to 5–00p	[•	Th. Fawcett.
Sept. 26 Aug. 20	6-30 to 6-50a 5-45 to 6-10p	77 03°2 74 40°1						W. F. King.
" 21 Aug. 7 July 19 Jan. 1 Aug. 9 " 14	6-15 to 6-30a	$\begin{array}{cccc} 74 & 48 \cdot 2 \\ 78 & 55 \cdot 2 \\ 74 & 37 \cdot 5 \\ 77 & 58 \cdot 1 \\ 78 & 34 \cdot 1 \\ 77 & 54 \cdot 0 \end{array}$						J. H. Lefroy. J. S. Denuis. Wm. Ogilvie. J. H. Lefroy.
June 4 May 10 " 11	to 1-30p 1-38 to 2-40p	$ \begin{array}{rrrr} 78 & 33 \cdot 3 \\ 78 & 24 \cdot 1 \\ 78 & 28 \cdot 2 \end{array} $	June 4	to 2-05p 2-07 to 2-40p		6323		Th. Fawcett. Wm. Ögilvie.
" 11 Sept. 11 July 9	1-00 to 1-20p 0-25	81 04.8						W. F. King. J. H. Lefroy.
Sept. 16 								W. F. King. J. H. Lefroy.
Aug. 6., July 23, 24.		$\begin{array}{rrrr} 78 & 29 \cdot 9 \\ 74 & 54 \cdot 0 \\ 74 & 50 \cdot 3 \\ 74 & 57 \cdot 6 \\ 74 & 58 \cdot 1 \end{array}$	July 22-24		1590 1593 1593			C.1. C.1. C. A. French
July 11 " 11 Aug. 3		80 48 4 80 47 6	» 11			6472 6515 6463		
Aug. 3 9 3 Oct. 3 July 17		$\begin{array}{ccc} 78 & 36 \cdot 2 \\ 78 & 41 \cdot 8 \\ \hline \left(78 & 18 \cdot 1 \\ 78 & 12 \cdot 4 \right) \\ 79 & 27 \cdot 0 \end{array}$	Aug. 5 5 5			·6369		Wm. Ogilvie.
" 19 " 15		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	July 23					Wm. Ögilvie.
. 22		78 46 8	" 23 " 23 " 23 " 23 " 23			6439 6445 6452 6452		J. H. Letroy.

TABLE

MAGNETIC

BRITISH

C.I. - Carnegie Institution.

Place.	Latitude.	Longitude.	Year.	Month and day.	Hour and minute.	Declination.
		• •				· ·
Akamina station *Wigwam river section	$\begin{array}{ccc} 49 & 01{}^\circ0 \\ 49 & 00{}^\circ0 \end{array}$	$\begin{array}{rrr} 114 & 04{}^{\circ}0 \\ 114 & 45{}^{\circ}0 \end{array}$	1861	Aug. 2 July15, Aug. 14		23 12.0 E 23 52.0
Camp No. 11. Joseph's prairie, Camp No. 14.	49 07.0 49 31.0	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				
Stephen, Rocky mountains	51 27.0	116 17.7	1886	May 14	4-00p	23 55.0
Near Leanchoil, along C.P.R.,	51 13.8	116 37.9		n 28	4-45p	23 33.0
Between Palliser and Golden, C.P.R. Golden.	$51 \ 17.9 \ 51 \ 18.0$	$\begin{array}{cccc} 116 & 51.7 \\ 116 & 57.0 \\ \end{array}$	1908	June 4 July 27-30	11-00a	25 40.0 m 26 03.5
One mile north of Golden	51 18.8	116 58.5	1886	June 9	5-54p	25 37.0 E
Keefe and Clarke siding Glacter	$51 30 9 \\ 51 16 \cdot 0$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1907-8	18 .	9-21a	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Near Rogers pass, along C.P.R.	51 17.6	117 31.0	1886	June 30	2-45p	25 27.5
Near Revelstoke, along C.P.R. Revelstoke	$51 00.1 \\ 51 00.0$	$\begin{array}{cccc} 118 & 11^{+}9 \\ 118 & 12^{+}0 \end{array}$	1908	Aug. 15 Aug. 3, 4, 5.	4-23p	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Inchwointum station	$\begin{array}{c} & 0 \\ 49 & 00:0 \\ 50 & 50:0 \end{array}$	${\begin{array}{*{20}c} 118 & 28 & 0 \\ 118 & 59 \cdot 0 \end{array}}$	$\overset{"}{\overset{"}{_{1860}}}_{1908}$	Nov. 13 Aug. 6-10		$ \begin{array}{cccc} 20 & 17.0 \\ 25 & 52.8 \end{array} $
Sicamous narrows	50 49.7	118 59.6	1885	Oct. 21	11-20a	24 46 2 .,
120 yds. west of station 1569 of traverse.	 50 44:7	" 119 14 5			4-50p	24 37.5 "
Lake Shuswap, Blind bay	50 51.0	119 19.5	1			
Southwest end of Salmon Arm, Lake Shuswap	50 45.9	119 19.9		Sept. 25	5-10p	24 55 9 E
				27	5-15p	24 46 9
0 D						
Little Shuswap	50 48.6	119 41.2		Sept. 13	4-45p	25 07.5 E
Ashtuolaon station. On Ashtuolaon river. 350 vds. south of station 1289	$49 & 00.0 \\ 49 & 10.0$	$120 \stackrel{''}{00:0} 120 00:0$	1860 "	Aug. 17, 18. July		$\begin{array}{cccccccccccccccccccccccccccccccccccc$
traverse	50 38.9	120 06.9	1885	Sept. 6	4-00p	24 59.4 "
	н			1		

* Local disturbance.

ΙΧ.

RESULTS.

COLUMBIA.

Month and day.	Hour and minute.	Dip.		Month and day.	Hour and minute,	Hor. intens.	Total intens.	Tem- perature	Observer.
		0		•				0	
Aug. 2 July 15, Aug.		73 4	2.7	Aug. 2,			·6265		R. W. Haig.
14		73 3	0.8	July 15, Aug. 14			6223		do
		$ \begin{array}{ccc} 73 & 3 \\ 73 & 5 \end{array} $	7·8 0·4				6226		J. L. Harris. do
May 14	4 45 to 5-25p 5-00	75 0	4.6	May 14	5-30 to 5-55p 5-43		·6177	47	O. Klotz.
	to 5-35 11-30		95		to 6-10p 0-07		·6174	59	do
June 4 July 27-29,. " 28		74 4	$\frac{4.2}{2.8}$ 0.1	June 4 July 27-29		$16160 \\ 16142$	·6168	85	C. A. French. do
June 9	4-11 to 4-36p 9-40	74 5	0.4	June 9	4-40 to 5-14p		·6171	72	O. Klotz.
June 18	to 10-03a	$\begin{array}{ccc} 74 & 5 \\ 74 & 2 \end{array}$	$2.5 \\ 9.9$	June 18		1625	. 6166	59	C. I. do
June 30	3-01 to 3-22p 4-52	74 4	1.6	June 30	3-25 to 3-44p 5-50		·6167	61	O. Klotz.
Aug. 15 Aug. 1, 3, 4.	to 5-36p	$\begin{array}{ccc} 74 & 2 \\ 74 & 1 \end{array}$	$6.4 \\ 6.1$	Aug. 15 Aug. 1, 3, 4.	to 6-44p	16501	-6144	70	do C. A. French.
Nov. 13 Aug. 6, 7, 8,	9-45	72. 4	8.8	Nov. 13 Aug. 6, 9	10-08	16458 16775	6119		do R. W. Haig. C. A. French.
Oct. 21	9-45 to 10-02a 10-51	74 0	6.1	Oct. 21	to 10-27a		·6141	-14	W. Ogilvie.
n 21	to 11-10a 3-08	74 0	7.8	. 21	10-33 to 10-46a 3-32		·6123	-45	do
. 4	to 3-27p 4-18		8.8	. 4	to 3-48p 3-54		6139	65	do
» 4	to 4-40p 2-55		8.2	. 4	to 4-11p 3-25		·6146	62	do
Sept. 20	to 3-20p 4-20		8.0	Sept. 20	to 3-45p 3-50		6169	66	do
	to 4-45p 3-25 to 3-41p		9.0	20	to 4-13p 3-45		-6164	65	do
	4-33		9 0 0 7.1		to 4-06p 4-10		·6164 ·6143	62 62	do
25 27	2-48		4 1 8·8	" 25 " 27	3-18		· 6139	59	do do
27	4-10 to 4-30p		0.4	. 27	3-45 to 4-04p		-6144	59	do
Sept. 13	2-30 to 2-50p		$5 \cdot 2$		2-55 to 3-20p 3-30		6143	64	do
" 13 . Aug. 17, 18.	4-05 to 4-25	72 2	$\frac{8.0}{7.0}$	" 13 Aug. 17, 18,	3-30 to 3-56p		$6170 \\ 6142$	63	do R. W. Haig.
July	2-15	72 3	7.0	July	2-40		.6098		do
Sept. 6	to 2-35p 3-30			Sept. 6	to 3-03p 3-08		.6098	84	W. Ogilvie.
a 0	to 3-32p	73 4	1 0	6	to 3-23p		6096	84	do

TABLE

MAGNETIC

C. I.-Carnegie Institution.

BRITISH

Place.	Latitude.	Longitude.	Year.	Month and day.	Hour and minute.	Declination.
						· · ·
Thompson river	50 41.0	120 11.0	1833			
Kamloops	50 39.9	120 20.2	1885	Sept. 2	3-50p	24 20.5 E
				и 3	5-30p	23 35.5 "
			н		•••••	
Nicola	50 09.0	120 40.0	1908 "	Sept. 19-21.		25 03.0
Van Horue	50 44.4	120 50.3	1885			
St. Cloud	50 45.9	121 07.8		Aug. 16	4-55p	23 51.5 E
Asheroft (C. I. S.)	50 44.0	121 17.0	1908	Sept. 14, 15.		27 46.9 E
0			1907	7		27 36.1 E
Near Black canyon	50 39 6	121 17 9	1885	Aug. 9	4-55p	27 22·5 =
			0			
Spence's bridge	50 24.3	121 20.7		2	Noon	23 43.8 E
0	50 ¹¹ / ₂₅ .0	121 21.0	1908	Sept. 17, 18.		26 39 4
Chilukweyuk	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1859 1906	Sept. 8, 9 23.26.		$ 26 47.4 \\ 25 48.0 $
Barkerville	53 04.0	$121 {{30}} 0$	1908	Aug. 22-24		28 07 3 E.
0	49 5813	" 121 30.6	1885	July 12		24 59.0 "
Salmon river	43 38 8	121 30 0	1000			
Cisco station	50 07:4	121 34.4				
Clinton	51 06.0	121 35.0	1908	Aug. 13-16		26 26 4
Agassiz	49 15.0	121 45.0	1 .	Oct. 1, 2		25 23.6
Williams lake (150 mile).	52 ["] 06`0 "	121 56.0	- H H H	Sept. 3-5		28 52 8 E.
Harrison river	49 13.4	121 56.0	1885	June 14	6-20p	22 21 3 v
Schweltza lake station	49 02.0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1859 1858	" 14 July 4, 5 {Oct. 4, 5 {Nov. 10}		$\begin{array}{cccccccccccccccccccccccccccccccccccc$

IX-Con.

RESULTS-Con.

COLUMBIA- Con.

				1						
Month and day.	Hour and minute.	Di	p.		onth 1 day.	Hour and minute.	Hor. intens.	Total intens.	Tem- perature	Observer.
		0	,						•	
April	2-00	73	43.0			2-27		· 5939		D. Douglas.
Sept. 2	to 2-23p 3-25	73	35.8	Sept.	2	to 2-42p.		6071	75	Wm. Ogilvie
e 2	to 3-48p 3-48	73	34.2		2	2-53 to 3-18p		.6062	75	do
	to 4-10p 5-00	73	37.5		3	4-15 to 4-30p 4-35		6054	79	do
	to 5-20p	$\frac{73}{72}$	39.0		3 19, 20.	4-35 to 4-54p		6085	79	do
Sept. 19, 20. 	2-50	72 72	53.4	Sept.	21		1753			C. A. French. do
Aug. 23		73	28'0	Aug.	23	3-20 to 3-43p		6037	71	Wm. Ogilvie.
Aug. 16		74	00.8	Aug.	16	3-18 to 3-40p 3-50		·6166	94	do
" 16 Sept. 11, 12,	to 4-47p	74	02.6		16	to 4-10p		·6157	96	do
14 12		$\frac{73}{73}$	$\frac{26.1}{26.8}$	Sept.	14. 15.		$1722 \\ 1721$			C. A. French.
	2-48	73 73	$\frac{20}{22} \cdot \frac{8}{2}$			3-10	1721 1725			
Aug. 9	to 3.06p 4-08	73	37.5	Aug.	9	to 3-32p 3-42		·6123	88	Wm. Ogilvie.
	to 4-38 9-45	73	40.3		9	3-42 to 4-02p 10-25		·6111	88	do
2	to 10-20a 11-47	73	26 8			to 10 55a 11-05		· 6048	85	do
" 2 Sept. 17	to 12-17a	73	27:2	Sint	$ \begin{array}{c} 2\\ 16, 17. \end{array} $	to 11-35a	1737	.6072	85	do C. A. French.
" 18		72 72 72	57:6	Sept.	18		1741	6077		
Sept. 8, 9								6125		R. W. Haig. J. S. Harris. C. A. French.
" 23-25. " 26		72 72	32.1	Sept.	24.25.		1797			do do
Aug. 22, 23.		74	58.0	Aug.	22, 23.		1571			do do do
July 12.	3-20	72				3-50 to 4-15p		6063	85	do W. Ogilvie.
	5-18 to 5-38p	72	40.7			4-22 to 4-41p		6052		do
	1-50	72	44.7			2-20 to 2-44p		6066	84	do
	3-16 to 3-40p	72	41.1			2-50 to 3-10p		6067	80	do
19		73 73	$27^{+}6$ $25^{+}1$	Aug.	14, 15. 13.		$\frac{1704}{1722}$			C. A. French.
{Sept. 28 Oct. 1, 2 }		71	34 9	Oct. 1	1, 2		1892			do
{Sept. 28 Oct. 1, 2 } Sept. 28 Sept. 3, 5		$\frac{71}{74}$	$\frac{36.1}{12.3}$	Sept.	28 3, 5		$-1890 \\ -1652$			do do
" 0	4-00	74	12 4		5	4-35	1651			do
June 14	5-33	72	28.3	June	14	to 5-00m		.5994	75	W. Ogilvie,
July 4, 5						5-05 to 5-25p		-6011 -6125	73	R. W. Haig.
{Oct. 4, 5 Nov. 10 }	• • • • • • • • • • • • • • • • • • •	72	22.0	Oct. Nov	$\left\{ \begin{smallmatrix} 4, \ 5 \\ 10 \end{smallmatrix} \right\}$			6163		do

25a-10

9-10 EDWARD VII., A. 1910 TABLE

BRITISH

MAGNETIC

C. I - Carnegie Institution. C. S. - Coast Survey.

					1	
Place.	Latitude.	Longitude.	Year.	Month and day.	Hour and minute.	Declination.
1	• •	• *				
Alexandria	52 35 0	122 28.0	1908	$\left\{ \begin{matrix} \mathrm{Aug.} & \mathrm{30} \\ \mathrm{Sept.} & 1 \end{matrix} \right\}$		
Fort Alexandria	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1833 1908	Aug. 26-28.		28 19 0
Port Hammond	49 12 1	122 38.9	1885	May 26		22 46°2 E.
Camp Semiamu.	49 01.0	122 46.0	1857			
Station Semiamu	49 00.7	122 46.2	1857			
Port Moody	49 17:0	122 52.6	1885	June 3	4-45p	22 45.8 E.
New Westminster	49 13.0	122 53.0	1862		4-55p	22 46.3
Vancouver (Brockton Pt.).	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccc} 123 & 0_{1}^{-} & 0 \\ 123 & 0_{1}^{-} & 0 \end{array}$	1898.4 1908	Oct. 5-8		24 30.0 E. 25 23.3
Burrard inlet	$\begin{array}{c} 49 & 16 \\ 48 & 25 \\ 0 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$1859 \\ 1908$	Oct. 13, 14		24 34 0
B B	48 25.0 48 26.0	$ \begin{array}{ccccccccccccccccccccccccccccccccc$	1907.7			24 15 2 E.
	48 25 8 48 25 4	123 22 0 123 22 2 123 22 5	1880			
Victoria, Laurel point Esquimalt	48 25.0	123 26.0	1881.8			
	48 26.0	123 27 ° 0	1859 1862			
0		123 28.0	1892.7			
Nanaimo (Jesse island)	49 13.0	123 28 0 123 52 0	1908	Oct. 17, 18.		25 15.3
Departure bay, Vancouver I Nanaumo	$49 12.6 \\ 49 12.6$	$ 123 57.0 \\ 123 58.5 $	1881 1880	Oct. 7		23 55 6 E.
Nanauno		124 00°0 124 20°0	186⊿ 1833			
Fraser lake. Bayne sound (Maple spit)	54 03:0 49 28:0	124 40.0 124 45.0	1833			24 25 7 E.
Union (Maple spit)	49 36.0	124 51.0	1898.€			24 14 1 ··· 25 55 6 ···
for the	49 36.0	124 54 0	1900-8	s		25 55 6 H 26 05 6 H
Union (1) Union (2) Waddington harbour	49 36.0	124 54.0	1906-1	July 30		26 00 9 E. 26 17 4
Waddington harbour Henry bay, Vancouver island	50 54.0 49 36.0	124 49·5 124 51·0	1860			
Hecate bay, " Port Neville	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccc} 125 & 56^{\circ}0 \\ 126 & 04^{\circ}0 \end{array}$	1861 1860			
Anchorage cove, Kingcome inlet Nootka sound, Vanc'ver island	50 52.8 49 36.0	126 11.7 126 37.0	1881 1778	Aug. 3		25 42·7 "
	49 30.0	120 57 0	1791 1792			
Friendly cove,	49 35.5	126 37:5	1793 1881 1860	Sept. 27 .		23 36 2 "
Beaver harbout. North harbour, Quatsino sound Port McLoughlin.	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{cccc} 127 & 25^{+}0 \\ 128 & 03^{+}6 \\ 128 & 10^{+}3 \end{array}$	1860	Sept. 24, 25. Aug. 7		$\begin{array}{cccccccccccccccccccccccccccccccccccc$

I X→Con.

RESULTS-Con.

COLUMBIA-Con.

Month and day.	Hour and minute.	D	ip.	Month and day.	Hour and minute.	Hor. intens.	Total intens.	fempe- rature.	Observer.
		0							
Aug. 30, 31.		74	20.9	Aug. 30, 31.		1639			C. A. French.
Sept. 1 May		74	18.4	Sept. 1		1647	-5985		D. Douglas.
Aug. 26, 27.		74	51 1	Aug. 26, 27		1586 1591			C. A. French.
	3-10	74	49.0	n 28	3-48				
May 26	5-00	71		May 26	4 20		6030	68	W. Ogilvie.
	to 5-35p	71 72		u 26 Sept			6064 6114	66	J. S. Harris
(Sept. 8, 9) (Oct. 18)		71	57.0	{Sept. 8, 9 Oct. 18			6106		J. S. Harris.
June 3	2-15 to 2.52p	72	10.0	June 3	2-55 to 3-30n		-6118	70	W 0-3 1
	4-12				3-36				W. Ogilvie.
	to 4-35p	$\frac{72}{72}$	$10.5 \\ 15.0$		to 3-50p		6102	70	Richards.
Oct. 6-8		71	51.5 42.4			1870			British Navy. C. A. French.
		71 72	43.7	0 0					Richards.
Oct. 12-14		71		Oct. 13, 14.		1876 1878			C. A. French.
. 10		71	18.1			1881			C. I.
May 4		71 71	$\frac{39.0}{22.1}$	May 4			5925		K. Friesach. W. H. Dall & Baker
		71	$\frac{39}{30.3}$			1881			Richards. C. S.
		71	34.1	(Jan. 24)			6042		R. W. Haig.
	•••••	$\frac{71}{71}$	$\frac{52.0}{27.4}$	(3141.22)		-1005			Richards French Navy.
0		71	32.4			1868			British Navy.
Oct. 17, 18		71 71	$\begin{array}{c} 20 \cdot 2 \\ 21 \cdot 5 \end{array}$	Oct 17 18 Oct. 7		1883			C. A. French.
" 6. May 6. June.		71 71	$\frac{42 \cdot 2}{29 \cdot 2}$	June			3973		H. E. Nichols, W. H. Dall & Baker
June.		71 76	54°0 09°0	June.			6090		Richards. D. Douglas,
		75	$\frac{48.0}{53.6}$	June		1844	6059		British Navy
		71	56-5 30-2			1854			C S.
		71 71	26.4			1898			CS.
		71 71	$\frac{24.2}{25.3}$			1901 1910			C. S.
July 30		71 72	$\frac{58.6}{25.0}$	July 30			- 5969		H. E. Nichols. Richards.
		72 72	$\frac{37.0}{19.0}$						
		72	46.1				5928		IT IS NO 1
Aug. 3 April Aug. 16, 17		72	29.0	Aug. 3					H. E. Nichols. J. Cook.
Oct.		$\frac{70}{73}$	$\substack{20.7\\56.0}$						Don. A. Malespina. G. Vancouver.
Sept. 26		$\frac{71}{72}$	$33.0 \\ 37.0$	Sept. 27 Sept. 24, 25.			. 5950		H. E. Nichols. Richards.
Sept. 22 Aug. 5, 6		71 73	41 3	Sept. 24, 25. Aug. 7			5942 6038		H. E. Nichols.
,							2000		

9-10 EDWARD VII., A. 1910

· TABLE

MAGNETIC

BRITISH

Place.	Latitude.	Longitude.	Year.	Month and day.	Hour and minute.	Declination.
Salmon cove, Observatory inlet Port Simpson. Rose harbour, Queen Charlotte island. Lake Lindeman.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1793 1881 1862 1881 1881	Between July 27 and August 12 Aug. 10, 12 Sept. 20 June 25		25 18 0 27 54 1 26 00.6 32 16.8
		**				

I X.-Con.

RESULTS .- Con.

COLUMBIA-Con.

Month and day.	Hour and minute.	Dip	Month and day.	Hour and minute.	Hor. intens.	Total intens.	Tempe- rature,	Observer.
Between July 27 and August 12. Aug. 9		° 75 54:5 74 21:0 74 53:0	Aug. 10, 12			5997		Vancouver. H. E. Nichols. Richards.
Sept. 19	10-55		Sept. 20	11-23				H. E. Nichols.
June 25	to 11-19a 0-19		June 25			.5987	56	Wm. Ogilvie.
. 25		77 06.5	·· 25	to 0-13p		.5973	56	

TABLE MAGNETIC

YUKON AND

(North of

Place.	Lati:ude.	Longitude.	Year.	Month and day.	Hour and minute.	Declination.	
Portage du Grand Détour. Fort Resolution	60 22.0 60 10.7	113 00.0 113 46.0 	1844 1825 1844 " " 1888	June 25 June 22 Sept. 20	10–20a		
Fishing station, Little lake Fort Confidence	61 ¹¹ 11.7 66 ^{154.0}	116 ["] 38·0 118 ["] 49·0	1844 	June 20	6-02a	35 28 0 E.	
0 · · · · · · · · · · · · · · · · · · ·	8 8 9						
· · · · · · · · · · · · · · · · · · ·			1850 " "				
Fort Simpson	61 51.7	121 25.3	1825 1844 "	Mar. 30 " 30 " 30 " 30 May 8	7-58a 9-13a 3-46p 4-56p 9-00a	37 52 0 E. 38 43 0 = 37 28 0 = 38 02 0 = 37 57 0 =	
· · · · · · · · · · · · · · · · · · ·			1888	Aug. 27	8-20a	37 42.4 E.	
Fort Norman.	64 40 6 " " 64 54:3	124 44.8	1844 " " 1888	July 29		33 39 0 E.	
Mackenzie river		125 43 1 " 125 03·8	"	Aug. 5		41 34-6	
Fort Good Hope	66 ^{"1} 6 0 " "	128 31.0	" 1844 " "			· · · · · · · · · · · · · · · · · · ·	

Х.

RESULTS.

NORTHWEST TERRITORIES.

Latitude 60°).

Month and day.	Hour and minute.	Dip.	Month and day.	Hour and minute.	Hor, intens.	Total intens.	Tem- perature	Observer.
		. ,						
June 25		82 33.6						J. H. Lefroy.
June 22	a.m.	82 43.5	June 22			6428		J. Franklin, J. H. Lefroy.
	a.m.	82 45 4	. 22			6439 6437		
	4-00	82 10.1	Sept. 19	4-34		6308		
Sept. 19	5-15			4-51				Wm, Ogilvie.
" 19 Mar, 18	to 5-32p	82 08 0 82 08 7	" 19 June 20			6307 6390	60	J. H. Lefroy.
		84 48 0				6369		
October		84 49.4	October			6289		T. Simpson. J. Rae & J. Rich- ardson.
November		84 51.1	November			·6179 ·6101		aroson.
December .		84 50 0				6454		
			December			- 5994 - 6567		
January February		84 48.8	January February			6467		
March		84 50.4	"			6406		
			March			-6101 -6363		
Aug. 5 Mar. 28	4-050	81 53·1 81 53·8		• • • • • • • • • • • • • • • • • • • •		6314		J. Franklin. J. H. Letrov.
Mar. 28 May 12	12-00a	81 50.7	May 2 11 2			6394		
						6411		
			" 2 June 12			6388		
			June 12 12 12			6334 6373		
						6427		
	6-00		12	6-23		·6350		
Aug. 25	to 6-20p 5-41	81 17.2	Aug. 25	to 6 44p 6-06	• • • • • • • • •	6249	66	Wm. Ogilvie.
. 27	to 6-03a 6-56	81 20.9	27	to 6-26a 6-30		6230	46	
	to 7-16a	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	May 27	to 6-47a		6225	46	T. T
		02 04 0	June 2			6235		J. H. Lefroy
			2	• • • • • • • • • • • • • • • • • • • •		6304		
July 29	to 5-35p	81 59.1		5-40 to 6-00p		6154		Wm. Ogilvie.
	7-38	82 01.9		6-03 to 6-40p		-6156	74	in in Ogalvie.
Aug. 5		81 58.2	Aug. 5	5-12		-6142	68	
n 5	6-35	81 54.0		5-35 to 6-00p				D
May 29 29	10-40p	82 55 8	May 29			-6176 -6268	66	J. H. Lefroy,
	10-40p	82 56.1	н 29			6277		
			n 29			6297 6409		
			1 n 2n			0409		

DEPARTMENT OF THE INTERIOR

9-10 EDWARD VII., A. 1910

TABLE

MAGNETIC VUKON AND

Morth of

Plate.	Lati	, tude.	Lon	gitude.	Year.	Month and day.	Hour and minute.	Declination,
		,		,				o ,
Fort Good Hope.	66	16.0	128	50.0	1888	July 13	6-10p	41 30.9 E.
9 (C)	•				0			
Marsh lake, Yukon river		21.1		17.2	1887	July 17	6-15p	32 46 1 E.
H H		26:0			1888	June 22	4-25p	46 00°8 E.
Fort McPherson				57.0	1000	June 22	. 420p	
Lewes river		, 42.3			1887	June 24	6-40p	30 55 7 E.
	00		100		1001	5 une 21		00 00 1 1.
	20	" 04-4	120	04.0		Aug. 7		33 54.8 E.
· · · · · · · · · · · · · · · · · · ·	0.2		100			aug. t		00 01 0 L.
	62	47.6	137	24.9		Aug. 18		34 18.0 E.
	02	41 0	154	24.0		Aug. 10	o oop	
Richardsons Chain	69	01.0	137	25.0	1826			
La Pierre's House.	67	23.0	136	54.0	1888			
0								
Yukon river	63	20.3	139	28 5	1887	Aug. 27	5-40p	33 52.8 E.
								••••
Mouth of White river	63	11.9	139	37.8		Aug. 26	. 9-45a	34 27 0 E.
				н.				
Porcupine river	65	43.0	139	40.0	1888	May 16	11-45a	37 44 3 E.
		••				n 20	7-02p	37 24.2 -
					1			
Yukon river	64	25.5	140	31.7	1887	Sept. 12	10 ·15a	35 01 ·1 E.
Clarence bay, Arctic ocean	69		140	51 °0	1826			
Boundary, Observatory	64	41.0	140	54.0	1888	Feb. 27	. 4–15p	35 45·3 E.
							11-45a	35 47.5
				0				

X-Con.

RESULTS_Con.

NORTHWEST 1 DRIES-Con.

Latitude 60°).

Month and day.	Hour and minute.	D	ip.	M and	onth I day.		Hour and inute.	Hor. intens.	Total intens.	Tem- perature	Observer.
		0	,	-		-				0	
uly 13	4-05 to 4-26p 5-20	82	17.9	July	13	to	4-33 4-54p 4-58		-6123	72	Wm. Ogilvie.
. 13	to 5-44p 4-39	82	18.9		13 .	to	4-58 5-17p 5-41		· 6117	72	
uly 17	to 5-05p 6-08	77	31.1		17	to	6-01p 5-08		- 6035		
	to 6-31p 2-15	77	33.7	-	17	to			. 6009		
une 22	to 2-35p 3-44	81	51.8	June	22	to	2-55p 2-58		-6089	72	
	to 4-06p 4-22	81	45.9		22	to	3-18p 4-55		.6082	73	
uly 24	to 4-50p . 6-05	77	42.8	July	24	to			·59 4 8	76	Wm. Ogilvie.
	to 6-35p 5-02	77	$45 \ 2$		24	to	5-36p 5-30		5935	76	
ug. 7	to 5-24p 6-40	78	$16 \ 4$	Aug.	7	to	5-52p 5-55		6026	72	
. 7	to 7-00p 4-00	78	16'4	-11	7	to	6-13p 4-28		.6023	70	
. 18	to 4-22p 5-14	79	$08 \ 2$		18	to			.6018	81	
. 18	to 5-40p	79 82	$\frac{08.4}{22.0}$		18	to	5 09p		$^{+6012}$	78	J. Franklin.
une 7	8-12 to 8-32p	81	23.7	June		to	8-36		5989	48	
	9-22 to 9-40p	81	25 7	June	7	to	9-00		-5995	48	Wm. Ogilvie.
	3-25 to 3-45p	78	35.2		7		3~50		5960		
ong. 27	4-48				27	to	4-22			67	
	to 5-12p 8-00	78	38.3		27	to	8-28		5965	64	
26	to 8-25a 9-15	78	20.3	-1	26		8-55		- 5966	54	**
- 26 .	to 9-40a 9-45	78	18.6		26		10 - 15		5971	55	
day 16	to 10-07a 11-00	79		May	16		10-33a 10-39		6023	44	
. 16	to 11–18a 4–24	79	57.1		16		4 - 50		6012	44	
. 20	to 4-45p 5-30	79	51.5		20	to	5-08		-5949	41	
··· 20	to 5-55p 7-12	79	53.2		20	to	5-26p 8-25		6004	-11	
sept. 12	to 8-20a 9-15	78	45.5	Sept.	12		8-47		5942	46	
		78 83	$\frac{46.9}{27.0}$		12	to			- 5930	48	J. Franklin.
an. 3	0-40 to 1-22n	78	49.7	Jan.	3	to	1-40 1-50p		*5994	10	Wm, Ogilvie,
	2-25 to 2-50n	78	50.1		3	to	$\frac{1-55}{2-20p}$		- 5995	9.5	
eb. 27	1-40 to 2-01p	78	50.0	Feb.	27		2-12 2-30p		6004	. 12	
27	3-10 to 3-29p	78	48.9		27		2-45 3-00p		5993	12	
. 28	9-25 to 9-43p	78	48 6		28		9-55		6005	7	
	10-53 to 11-10a	78	50.1		28		10-20				

25a - 11

Comparison at Agincourt.

On July 9, 1908, a series of readings were taken with magnet 10, Tesdorpf magnetometer 1977, magnet erect, and magnet inverted.

The resulting declination July 9, at 14h 33m was	
Observatory standard magnetometer	 5° 57'.6
Similarly on July 11 at 14h 05m, Tesdorpf	6° 03'.1
Observatory	
Mean difference O - T	 - 3'.2

Hence west declinations as observed with the Tesdorpf instrument must be numerically decreased by 3'.2, and east declinations increased numerically by the same amount.

For horizontal intensity the following comparisons were obtained :--

July 10 at	$14^{\rm h}$	05 ^m ,	Tesdorpf			.16400	$_{in}$	C.G.S.	nnits
44	14^{h}	05 ^m ,	Observatory		 	.16387		6.6	
66	16^{h}	33m,	Tesdorpf			.16391		64	
44	16^{h}	33m,	Observatory			.16379		6 m	
July 11 at	$10^{\rm h}$	23 ^m ,	Tesdorpf			+16356		ś.,	
66	$10^{\rm h}$	23 ^m ,	Observatory	·		.16349		**	
44	11^{h}	44m,	Tesdorpf			.16365		••	
66	11^{h}	44 ^m ,	Observatory			+16357		**	
Mean diffe	rence	e, O -	- T			.00010			

This is equivalent to $\cdot 00001~H$, which is the quantity to be deducted from observed values of H. In figures 2, 3, 4, are shown the observations made for ascertaining the effect, if any, of the electric car service already referred to. The smooth curres drawn exhibit the diurnal variation clearly, showing the hours of the day when it changes most ranidy.

It will be seen that for April 24, 1909, the range was nearly 17 minutes of arc.

In figure 5, is shown a curve based upon the one of the preceding date. This curve represents the actual live that would be run by a surveyor with a compass in trying to lay down a true N.-S. live, storting at 7 a.m. of that day, getting half-mile sights, then resetting at hour intervals, always with the same magnetic reading of the compass without getting back-sights on the preceding station. The scale of offsets is much exaggerated in the figure.

The result would be that after running six miles by evening, he would be 104 links or about 69 feet west of the line on which he started in the morning.

This shows the theoretical inaccuracy of a compass line due to diurnal variation alow. Of course with the ordinary surveyor's compass it is not possible to read to single minutes, far less to fractions thereof such as enter into the above curve. But the point is, one cannot get away from the important effect of diurnal variation, though it be masked by larger errors of reading. When compass lines are, or were, run in the open a fairly straight line could be run by using back-sights or simply 'picketing' the line, but this condition was rarely the case; the most of the compass lines were run through the woods, the trees being 'blazed' along the line, those on the line were 'notched' and left standing, and the compass simply put on the other side of the obstruction and the line continued on the same bearing as usar as it was possible to read the needle.

The actual magnetic bearings of the astronomic north and south line at Ottawa on that day were:

Hour.	Bearing.	Offset at end of each course from true NS. line of first course.
7 ^h (a.m.)	$12^\circ~52'{\cdot}4~\mathrm{W}$	0.0 links.
8	51.2	1.4 "
9	 51.0	3.0 "
10	 54.8	0.2 "
11	 59.0	7.7 "
12	 $13^{\circ} \ 03' \cdot 0$	19.8 "
18	 6.0	35.5 "
14	 7.4	52.8 "
15	 6.4	69.5 "
16	 4 .4	83.2 "
17	 2.4	95.0 "
18	 0.5	104.4 "

For the coming senson it is intended to send the observer along the northern shore of the St. Lawrence from Quebec eastward to Blane Sablon, near the western entrance of the strait of Belle Isle. The data from this territory are very meagreso that the magnetic elements to be derived on this stretch of about 750 miles will be of particular value.

The accompanying map shows the position of the various stations given in the table, and the direction of the magnetic meridians at the respective stations or places.

GRAVITY.

During the past season no member of the staff was available for making gravity observations.

> I have the honour to be, sir, Your obedient servant

tour obedient servant

OTTO KLOTZ.

Fig. 1-Magnetic Hut, Ottawa.

F10. 3.

Fre. 4.

-

APPENDIX 2.

REPORT OF THE CHIEF ASTRONOMER, 1909.

ASTROPHYSICAL WORK

BY

J. S. PLASKETT, B.A.

PAGE.

CONTENTS.

Intr	oduction	147
	Papers published during the year	
	Spectrographs	
The	Design of Spectrographs for Radial Velocity Determinations	152
	The Optical Parts	153
	Mechanical Design	161
The	New Single-Prism Spectrograph.	163
	The Optical Parts	163
	The Guiding Telescope	164
	The Comparison Apparatus.	164
	Slit and Slit Diaphragms	164
	The Mechanical Parts.	165
	The Spectrograph Box.	165
	The Supporting Cradle	
	Temperature Control.	167
	Adjustment of the Instrument.	168
	The new Spectrograph in practice	
Cam	era Objectives for Spectrographs.	170
Mea	surement and Reduction of Stellar Spectra	175
	The Spectro-Comparator.	177
	Measures of β Geminorum	
The	Cælostat Telescope.	207
Rad	ial Velocities	209
	Binaries under Observation	210
	New Spectroscopic Binaries.	210
	δ Aquilæ	
	The Orbit of β Orionis	214
	Lines in β Orionis	. 215
	Summary of Measures.	216
	Summary of Mean Velocities per night	
	Appendix AW. E. Harper.	
The	Orbit of θ Aquilæ	. 225
	Measures of θ Aquilæ	
	Summary of Corrections	. 231
	Final Elements	. 232
	Previous Observations	
	Additional Note on Allegheny Determination	
The	System of ϵ Herculis	. 236
	Early Observations of & Herculis	. 238
	Ottawa Measures of e Herculis	. 239
	Normal Places	. 240
	Spectroscopic Binary n Boötis	
	Previous Observations	
	Ottawa Observations	

144

Appendix B .--- J. B. Cannon.

The Spectroscopic Binary a Coronæ Borealis	245
Lines Measured	245
Measures of a Coronae Borealis	246
Elements	249

Appendix C .--- R. E. DeLury.

The twenty-three foot Solar	Spectrograph		251
Optical Parts		 	251
Mountings			
Slit Attachment			
Camera and Plate Holder			
Guide Plate for the Sun'			
Some Results		 	254

Appendix D.-R. M. Motherwell.

Double Star Measures	
Comet 1908 c (Morehouse)	258
Occultations of Stars by the Moon	259
Instruments used on Boundary and Geodetic Surveys	260
Aberration of the Stellar Camera Objective	
Tests for Spherical Aberration	261
Testing for Chromatic Aberration	266
Changing the Distance between the Components of the Outer Combination	
Tables	268

Appendix E.—Measures.

ß	Orionis—	
	Record of Spectrograms	278
	Measures	286
θ	Aquilæ-	
	Record of Spectrograms	378
	Measures	380
¢	Herculis-	
	Record of Spectrograms	406
	Measures	409
η	Boötis-	
	Record of Spectrograms	
	Measures	455
a	Coronæ Borealis-	
	Record of Spectrograms	482
	Measures	484
δ	Aquilæ-	
	Record of Spectrograms	535
	Measures	536

Pice

ILLUSTRATIONS.

	independent to the second seco	D
-	Diagram of Refraction through Prism.	PAGE.
	New Single-Prism Spectrograph.	
	New Single-Prism Spectrograph.	
	Spectrograph Box.	
	New Single-Prism Spectrograph, ready for use.	
	Long-Focus Objectives with three prisms.	
	Short-Focus Objectives with three prisms.	
	Objectives tested with one prism.	
	Spectro-Comparator.	
	Diagram of Spectro-Comparator.	
	Diagram of Spectro-Comparator.	
	Form of Silvering on prism.	
	Cælostat House	
	Caelostat Telescope Mechanism, looking south	
10.	Velocity Curve of β Orionis.	
	Final Velocity Curve of θ Aquilæ	
	M. Deslandre's Observations.	
19.	Deslandres' 1902 Observations.	
	Allegheny Observations. Ottawa Curve	
	Velocity Curve of ¢ Herculis	
	Velocity Curve of y Boötis.	
	α Coronæ Borealis, Curve from Hydrogen lines and Calcium line	
	Velocity Curve of a Coronæ Borealis	
	Solar Spectrograph.	
	Rear end of Solar Spectrograph	
	Slit Mechanism of Solar Spectrograph	
	Front end of Solar Spectrograph	
	Focal Curves of Solar Spectrograph	
	Reproductions of Solar Spectra	
	Morehouse's Comet.	
	Morehouse's Comet.	
	Morehouse's Comet.	
	Morehouse's Comet	
	Morehouse's Comet.	
	Morehouse's Comet	
	Stellar Camera	
	Determination of Focus	
	Zonal Dise	
	Zonal Differences of Focus	
41.	Zonal Differences of Focus	. 264
	Zonal Differences of Focus	
	Curvature of Field at different Zones	
44.	Curvature of Field at different Zones	. 264
	Chromatic Aberration Curve	
46.	Zonal Differences of Focus	
47.	Star Photographs at different Separations	. 268

APPENDIX 2.

ASTROPHYSICAL WORK BY J. S. PLASKETT, B.A.

OTTAWA, March 31, 1909.

W. F. King, C.M.G., LL.D., Chief Astronomer, Department of the Interior, Ottawa.

Sup,--I have the honour to submit the following report upon the work carried on in the Astrophysical Department and in the other departments of the work of the Observatory under my direction during the past year.

It gives me pleasure to report satisfactory progress in all lines and to state that the work accomplished both in quality and quantity shows gratifying improvement over the records of previous years. As in previous years also it has been found necessary to spend considerable time in preparatory work, in testing, adjusting, and perfecting the instruments and appliances used, and in experimenting to determine the best methods of procedure. Although the time spent on such work necessarily diminishes the quantity of routine work accomplished, it is in my opinion time well spent, if through such investigations and experiments we are in a position to do a larger quantity of more accurate work. Consequently, much of my time during the past year has been devoted to investigations bearing on improvements in instruments and methods, of which full details will be given later.

It gives me much pleasure to be able to speak in the highest terms of the very satisfactory work done by my assistants, Messrs. Harper, Motherwell, DeLury, Cannon and Parker.

As heretofore, the principal work has been the determination of the radial velocities of stars by means of the spectroscope, and in this work observations have been chiefly confined to known spectroscopic binaries for the determination of the elements of their orbits. However, observations on some stars with early type spectra have also been secured during times when sufficient binaries have not been available, and in measuring up the plates we have found the velocities of four of these stars to be variable; 3 Hereutis; γ Aquarii, 1 Andromeder, § Cresci. The two latter, it has since been learned, had been previousy found variable at the Yerkes Observatory, but not published, so that our discovery was independent.

The elements of the orbits of five spectroscopic binaries have been obtained, least squares corrections being applied in every case. The stars are θ Aquille, a Cronse Borealis, η Boötis, el Herculis, β Orionis. These stars will be discussed in detail helow, but it may be of interest to mention that only in one case, η Boötis, have the observations been entirely satisfied by velocity curves due to simple elliptic orbits. In θ Aquile and ϵ Herculis a secondary disturbance due possibly to a third body, has been present. In a Coronse Borealis the elements deduced from the hydrogen lines and the calcium, K, line differ from those obtained from the magnesium $\lambda 4481.4$, while in β Orionis the amplitude of the velocity seems to be variable. This latter is of especial interest on account of the measures made at Yerkes and Lick Observatories showing its velocity to be constant within the apparent errors of observation.

Basides the binneries above, whose orbits have been determined, there are tvelve others under observation, on three or four of which the work is well advanced. Ou the remainder, however, a considerable number of observations are still required. About 90 per cent of the binaries observed here are stars of early type, in the majority of which the lines in the spectra are broad and diffuse, in some cases unsymmetrically so, and consequently difficult of measurement. In such cases the agreement among the lines in a plate is poor and the error of measurement is high, the probable errors of single plates being as great as fkm, per second in some cases. It is evident that, unless there is a large range of velocity, the elements of the orbits of such stars are subject to considerable uncertainty, and indeed in several cases the star has had to be abandoned p. this account after considerable work had been done on it.

The instrumental equipment for this work has been increased since my last report by the addition of a new single-prim spectrograph designed by myself, and constructed, except the optical parts, entirely in our own workshop. Owing to press of ropair and other work it was not completed and put into commission until about the first of March, but it has fulfilled all expectations both as regards shortening of exposure time and in respect to its stability and freedom from flexure. The displacement of the spectrum lines produced by a revolution of 180°, this producing the maximum amount of flexure, is quite unmeasurable and is not even certainly visible under high power magnification; there is no question but that it is the most stable singleprims spectograph ever constructed. The difference between it and the previous instrument, which was for its type a rigid example, is very marked, the displacement in the early instrument being equivalent to a velocity of over 100km. per second.

My investigation on the fields given by different types of annera objectives for spectres tested will be given below and will also appear in the Astrophysical Journal in May. Since my previous report a new single material Brashear objective for the new single prims appetrograph has been received and tested. Its angular aperture is about 50 per cent greater than the original one and when received, owing to the greater diffuculty in correction, it had a small amount of positive aberration. By the kindness and through the skill of Mr. McDowell this aberration was finally removed and the objective is now practically perfect for its purpose. A special short focus objective by Ross has also been received and tested, giving beautiful definition and a fairly fat field. Thus, the requirements for all types of camera objectives have been successfully met, and there are now available suitable objectives for all classes of radial velocity and there spectroscopic work.

The investigation on the effect of increasing the slit width on the errors of measurement in radial velocity work has been continued with the two different dispersions now available. The new single-prim spectrograph and a short focus objective with the three prime instrument have been tested, giving results that bear out and extend hose previously obtained. It is shown that, so far as early type spectra are concerned, both accident and systematic errors approach a minimum value for a slit 0.051mm, wide and that the use of a narrower slit, instead of increasing the accuracy as has generally been supposed, has to a certin degree the opposite effect, to say nothing of the proportional increase of exposure required. A detailed report of this work will be postponed to allow it to be inally completed.

In presenting the work on radial velocities and allied investigations in detail, I have adopted the same plan as last year, of having each observer give the details and results of the work he has been engaged on. Consequently, below will be found, besides my own remarks on radial velocities in general, my description of the new spectrograph, the investigations on camera objectives and on the effect of slit width, and the orbit of β Orionis, the orbits of θ Aquille, η Böötis and ϵ Hereulis by Mr. Harper, and the orbit of a Corone Borealis by Mr. Camon. Mr. Parker, the third observer in radial velocity work, besides measuring many miscellaneous plates, spect

a great deal of time on the binary τ Tauri, but owing to difficulties due to causes outlined above was unable to obtain a satisfactory orbit and further observations next season will probably be necessary.

Work with the coelestat telescope in spectroscopic investigations of the sun has much satisfactory progress, although not as much has been accompliabled as we had hoped. This has been due to various unavoidable constructional delays in having the 23-foot spectrograph and its attachments completed, to a long delay while the solar research laboratory was torn up for the installation of underground pipes and an electric pump for draining the transit house piers, and to a very thorough investigation of some peculiar properties in the plane grating used as the dispersion piece in the spectrograph. This investigation, which is fully described by Dr. Delary below, showed that only by masking part of the grating could even fair definition be secured, while the best definition is necessary for accurate results in the determination of the solar rotation. A number of plates for this purpose have been secured and some preliminary measures by Dr. DeLary will be given. An illustrated description of the spectrograph and attachments by Dr. DeLary.

Mr. Motherwell has used the equatorial on three half nights per week in micrometric measures of double stars and has obtained a number of good measures, although his, as well as all other work with the telescope, has been much handicapped by the exceptionally poor observing weither of last fall and early winter. For nearly four months, smoke and cloud prevented almost all observations. This was especially unfortunate on account of the presence of Morehous's comet, an especially unfortunate on account of the presence of Morehous's comet, an especially interesting object, photographically, which this bad weather prevented from being photographed here more than half a dozen times. However, Mr. Mothervell will give an account in Appendix D of the double star measures obtained, of the occultations of stars by the moon observed, and of the photographs of the comet secured.

A full account of an interesting and useful investigation by Mr. Mothervell on the aberration of the S^o Brashear Photographic Doublet, used in making the comet pictures, will be given. When this instrument was first tested by me, soon after the Observatory was completed, it was found to give halos around the stars of medium intensity, while in the brightner stars this halo had become so fully exposed as to make pherical aberration, but this diagnosis was opposed by the makers of the lens.

I suggested to Mr. Motherwell as a suitable and useful subject for investigation to determine by Hartmann's method of extra-focal exposures the amount of spherical aperration present. His thorough tests showed the lens to have negative aberration to the extent of about 3.5mm., which in our opinion was quite sufficient to account for the halo observed. A suggestion of Mr. McDowell that it was due to chromatic aberration was found by Mr. Motherwell not to be the case. The matter remained in abeyance for some time, when on a further suggestion from Prof. Hastings the separation of the elements of the front component was changed to remove the halo, supposedly a 'ghost' due to internal reflections. However, a test showed no improvement on the original positions in the slight change proposed. Further correspondence with Mr. McDowell resulted in a suggestion from him to increase the separation by about 2mm. which would practically remove the aberration. On this being done and the distance adjusted so that the aberration was removed, the halo disappeared which was a striking confirmation of our contention that it was caused by aberration. A recent letter from Mr. McDowell admits that we were right as he had proved by refiguring a lens giving a similar halo.

In consequence, the objective will be sent to Alleghney to have this aberration removed and with its already very flat field we should have an unequalled star camera. In this regard, I would urge upon you the desirability of supplying the camera with a separate mounting. Its attachment to the equatorial telescope results in seriously

limiting its usefulness; for when star photographs are being made, no work, other than the guiding, can be done with the equatorial. A separate mounting, however, would enable the two to be used independently and much more use could be made of the camera than is possible at present.

The quantity of repair and other work has increased so greatly, that the two mechanicians, Mr. Mackey and Mr. Lacas, the latter having been appointed since my last report, have not been able to keep up with all the work required. Repairs and minor alterations in the field instruments used in the Geodetic and Boundary Surveys, occupy about one-half their time, lerving the remainder for new work. The new single-prism spectrograph, the mechanical parts of the solar 23-foot focus spectrograph, and new hardened steel pivots on the meridian circle are the principal pieces of work accompliabed. Besides these are numerous smaller pieces of work. Scarcely a day passes that some work does not come in.

The equipment of the machine aloop has been increased by a 14 inch by 7 foot Hendry Norton lathe, which is installed and in use. Whit two lathes there is now no possibility of delaying work for lack of tools. The lathe is the tool most used in machine work and frequently cases occurred where both mean required the lathe at the same time; in consequence the work could not be done to the best advantage. The workshop is too small for the tools and the amount of work done, and moreover the light in it is not of the best. It is desirable that, as soon as possible, provision be made for a suitable workshop above ground with ample room and light. The necessity and economy of a suitable quipped workshop for the Observatory are so evident, and the probability of an increase in its capacity being required is so grant, as to justify admession of a more suitable location than the present one being carefully considered.

The field instruments and others of a portable nature have been most carefully looked after by Mr. Mothervell, who has kept a careful record of their movements. This work has become, with the increase in the staff and in the number of instruments, one of considerable labour and trouble and takes much of his time in the spring and fall.

The Saturday open nights of the telescope for the public continue to be well patronized, the average attendance on fine nights being upwards of fifty, and nuch intelligent interest is manifested by many of the visitors in astronomy. This interest is further fostered by the papers presented at the evening meetings of the Royal Astronomical Society of Canada, of which the majority are given by officers of the Observatory. If may not be amiss here to refer also to the value of the work done by the members of the Observatory staff in the afternoon or technical learners given alternately with the evening ones. These lectures and papers presenting in most cases original lines which have been frequently of distinct value, not only in keeping us acquainted with each other's work but also in encouraging researches along original lines which have been frequently of distinct value to science.

The following papers by members of the staff of the Astrophysical Division have been published since the date of the last report:---

 The spectroscopic Binary , Orionis, by J. S. Plaskett and W. E. Harper, Astrophysical Journal XXVII., p. 272, May, 1908.

 Effect of increasing the slit-width upon the accuracy of Radial Velocity Determinations, by J. S. Plaskett, Astrophysical Journal XXVIII., p. 259, Nov., 1908.

 The spectroscopic Binary ψ Orionis, by J. S. Plaskett, Astrophysical Journal XXVIII., p. 266, November, 1908.

 The Orbit of , Orionis, by J. S. Plaskett, Astrophysical Journal XXVIII., p. 274, November, 1908.

 The Astronomical and Astrophysical Society of America, by J. S. Plaskett, Journal of the Royal Astronomical Society of Canada II., p. 255, September-October, 1908.

 The Reduction of Cadmium by Mercury and the Electro-Motive Force of Cadmium Amalgam, by R. E. DeLury and G. A. Hulett, Journal of the American Chemical Society, volume 30, No. 12, p. 1805, December, 1908.

 Comet 1908 (Morchouse), by R. M. Motherwell, Journal of the Royal Astronomical Society of Canada III., p. 28, January-February, 1909.

 The Orbit of θ Aquike, by W. E. Harper, Journal of the Royal Astronomical Society of Canada VII., p. 87, March-April, 1909.

Besides the above the following papers are to appear shortly, the work on them having been completed and sent to the publishers:—

 9. Camera Objectives for Spectrographs, by J. S. Plaskett, Astrophysical Journal, May, 1909.

10. The Spectroscopic Binary β Orionis, by J. S. Plaskett, Astrophysical Journal, July, 1909.

11. The design of Spectrographs, by J. S. Plaskett, Journal of the Astronomica' Society of Canada, May-June, 1909.

In addition to the above the Astrophysical Division have sent in the titles of the following seven papers to be read before the Royal Society of Canada at their meeting, May 25, 1909 :--

12. A new Single Prism Spectrograph, by J. S. Plaskett.

 Slit width and Errors of Measurement in Radial Velocity Determinations, by J. S. Plaskett.

14. The spectroscopic Binary β Orionis, by J. S. Plaskett.

15. The System of & Herculis, by W. E. Harper.

16. Aberration of a Stellar Camera Objective, by R. M. Motherwell.

17. Convection and Stellar Variation, R. E. DeLury.

18. The Orbit of a Coronæ Borealis, by J. B. Cannon.

In general the work represented by these papers will appear in detail below, arranged sometimes in a little different form, and including as a rule the whole of the original measurements and data which were abbreviated or left out in the published papers.

THE SPECTROGRAPHS.

During the year just passed the Ottawa spectrograph, illustrated and described in the 1907 report, has been used almost entirely, the new single-prims inspectrograph not having bean ready for service until about March 1, 1909. The former instrument has been used uneally in the single-prims form, the three prisms having been used only for some plates of β Orionis and a few others. The spectrograph has not been changed in any way since the last report, and its performance has continued satisfactory. Nothing further need be added about this instrument, except that towards the close of the year the Zeiss Tessar objective of 300mm. focus, referred to in the last report, was temporarily mounted for the purpose of continuing the tests on the effect of slitwidth on errors of setting so far as applies to a dispersion of three prisms with a short focus camera. This mount will be placed in a permanent form as soon as time can be found in the workshop, and used on solar type binaries to faint to be obtained with the long focus camera.

Before proceeding to describe the new single-prism spectrograph, which was briefly referred to in my last report, it has seemed desirable to enter more fully than was there done into the principles on which its design was based, and for this purpose I can not do better than give here a paper on 'The Design of Spectrographs', which I read at an afternoon-technical meeting on May 25, 1908, and which will appear in the May-June number of the Journal of the Reyal Astronomical Society of Canada.

THE DESIGN OF SPECTROGRAPHS FOR RADIAL VELOCITY DETERMINATIONS.

Read before R.A.S.C., May 28, 1908.

The subject of spectroscopy is so broad that one can not hope in a single paper to do more than touch upon a single aspect of it, and, even then, one must further limit his treatment to a particular application of this phase. Consequently, I propose to present some considerations bearing upon the design of spectrographs suitable for the accurate determination of stellar radial velocities. This branch of spectroscopy is comparatively new and is still probably only in the experimental and formity and the general theoretical principles governing the design of spectroscopys may be applied to the case under consideration, modified, of course, in many ways by the experience of the various observers. The question is one of a judicious combination of theory and experience, and I propose to present my own views, founded, of course, on theoretical principle for and investions of other spectroscopists, partly by my own experience in the work and by the practice of other spectroscopists, partly by my own experience in the work and by the results of special investigations bearing on the most suitable form and dimensions of the instrument.

' The determination of the radial velocities of stars by means of the spectroscope is one of the most exacting of astronomical investigations, and requires the closest attention to all details to ensure accurate values. This will be more readily recognized when the smallness of the displacement of the spectral lines on which the velocity depends is known. Thus, in the Ottawa Spectrograph a velocity of 20km. per second, which is greater than the average velocity of the stars, causes a displacement at H_{γ} , the centre of the measurable range, of about 1/2700 inch for the single-prism, and about 1/000 inch for the three-prism form of the instrument. The accidental errors arising in the measurement of this displacement, in spectra with good lines, are, however, not so much to be feared as systematic displacements of the lines as a whole, of which no evidence is given in the measurements, caused by flexure of the parts of the spectrograph, by temperature changes in the prisms and lenses and also in the metal frame, by faulty adjustment of the focal positions of camera and collimator, as well as by numerous other causes. Some idea of the magnitudes of these displacements may be gained from the following figures. An hour's exposure in one of the modern spectrographs introduces flexure displacement equivalent, in some positions of the telescope, to a velocity of 10km, per second. A change of temperature of 1°C, in the prism displaces the lines by about 20km., which may be increased further by the expansion of the metal parts. An inaccuracy in the focal setting of the camera of only 0.1 mm. 1450 inch, may, when combined with poor guiding, cause a displacement of about 5km. It does not follow that such displacements necessarily cause a corresponding error in the velocity as they may be compensated for, partially at any rate, by a similar displacement of the comparison lines. But the possibility remains, and inaccurate results can only be prevented by constant and careful attention to all details. It becomes, therefore, a question of equally great importance with proportioning the optical parts to give accurately measurable spectra in the shortest possible exposure time, to so design the whole instrument that systematic errors due to the above or other causes may be provided for and eliminated as far as possible.

The design of a spectrograph may be most conveniently attacked under two separate headings:

1. The character and proportions of the optical parts.

 The mechanical connection of these parts into a symmetrical and stable whole, with suitable auxiliary devices for controlling the temperature, applying comparison, &c.

The Optical Parts.

⁴ Up to the present, prisms of dense fint glass have been the sole dispersing medium used for radial velocity work. Gratings, so useful in other hranches of spectroscope, have not yet been applied in this work, chiefly on account of the division of the incident penel into a number of spectra with the consequent loss of light, and also on account of the difficulty of maintaining their position invariable without distorting the surface. Prisms have very decided advantages over gratings in this respect as, when set at minimum deviation, a small angular rotation of the prism will eareely displace the spectrum lines, while with a grating the angular displacement of the lines is double that of the prism. The optical parts of a spectrograph are then: — The slit, whose width is usually between 0.025 and 0.051mm, one and two thousandths of an inch, on which the start image is condensel by the telescope. 2. The collimating lens placed at its focal distance from the slit and consequently rendering the incident penell parellel. 3. The prism or prisms placed at minimum deviation for some particular wave-length usually near Hy. 4. The camera lens which forms an image of the spectrum on the photographic plate.

'As the terms dispersion, resolving power, purity, &c., will be frequently used and as the prism angle, thickness of base, &c., require computing, it seems preferable to give here a short synopsis of the theory involved and the formulæ used, particularly as these are not readily available in a suitable form or collected together in one place.

⁴ When a penell of parallel white light is incident upon a prim, the direction is changed, the light is deviated, and it is also decomposed into its constituent colours forming a spectrum, the wave-lengths of the light giving rise to these colour-sensations, diminishing as you go from red to violet. The fundamental formula determining the direction after refractions, is i being the angle of incidence, r of refraction, sin i = µ ain r.

 μ is the index of refraction which varies for different materials and for different wave lengths in the same material, increasing as the wave length diminishes. In all spectroscopes the prisms are used at the position of minimum deviation, which, it may be easily shown, requires the angles of incidence and emergence to be equal. The discussion will therefore be confine I to this particular case, resulting in a considerable simplification.

If a is aperture of incident pencil just filling prism,

$$l = a \sec i.$$

$$l = 2 l \sin \frac{A}{2} = 2 a \sec i \sin \frac{A}{2}.$$

'If θ the deviation and μ the index are given to find A or the angle of the prism,

$$\begin{split} & \ln \frac{4 + \theta}{2} = \mu \sin \frac{4}{2} \text{ and reducing and simplifyin} \\ & A = 2 \sin^{-1} \sqrt{\frac{\sin^2 \theta}{2} + \left(\mu - \cos \frac{\theta}{2}\right)^2} \, \cdot \end{split}$$

. The dispersion of a prism is usually defined as the ratio of the change in deviation to the change in wave length or $\frac{d}{d\lambda}$. As the deviation varies with the index of refraction and as the latter varies with the wave length we may put

$$\frac{d}{d\lambda} \frac{\theta}{\lambda} = \frac{d}{d\mu} \frac{\theta}{\mu} \cdot \frac{d\mu}{d\lambda}, \text{ but}$$
$$\mu = \frac{\sin\frac{A+\theta}{2}}{\sin\frac{A}{2}}$$

$$\therefore \ \frac{d}{d}\frac{\theta}{\mu} = \frac{2 \sin \frac{d}{2}}{\cos \frac{d+\theta}{2}} = \frac{2 \sin \frac{d}{2}}{\cos i}$$

$$= \frac{2 \sin \frac{d}{2}}{1 + \sin^2 i} = \frac{2 \sin \frac{d}{2}}{\sqrt{1 - \mu^2 \sin^2 \frac{d}{2}}}$$

also $\frac{d}{d} \frac{\theta}{\mu} = \frac{2 \sin i}{\frac{\mu}{\cos i}} = \frac{2}{\mu} \tan i$.

⁴ To obtain $\frac{d}{d\lambda}^{\mu}$ we require a relation between λ and μ . The simplest is obtained from Hartmann's interpolation formula.

$$\mu = \mu_o + \frac{c}{\lambda - \lambda_o}$$

 $\therefore \frac{d}{d} \frac{\mu}{\lambda} = - \frac{c}{(\lambda - \lambda_{0})^{2}} \text{ and consequently}$

$$\frac{d}{d\lambda} = \frac{d}{d\mu} \cdot \frac{d}{d\lambda} = -\frac{c}{(\lambda - \lambda_c)^2} \cdot \frac{2\sin\frac{A}{2}}{\sqrt{1 - \mu^2\sin^2\frac{A}{2}}}$$

'Let us now consider resolving power or the ability of the prism to separate lines close together in the spectrum. Lord Rayleigh has shown, in the case of the image of

an infinitely narrow slit produced at the focus of a telescope lens, that the linear distance ξ of the first diffraction minimum from the principal maximum is given by the equation.

$$\frac{a \xi}{m \lambda f} = 1,$$

where a is the aperture and f the focus of the lens and m is a constant, 1.0 for rectangular and 1.2 for circular apertures.

$$\frac{\xi}{f} = \frac{m \lambda}{a}$$

 $\frac{\xi}{f}$ is then the least angular distance at which two rays can be seen separated. Calling the angle $d\theta$ we have

$$d \theta = \frac{m \lambda}{a}$$
.

For the case of a prism we have

$$a = l \cos i, t = 2 l \sin \frac{A}{2}$$
$$\therefore \frac{t}{a} = \frac{2 \sin \frac{A}{2}}{\cos i} = \frac{d \theta}{d u}$$

Combining we get the minimum condition of resolution

$$t = \frac{m \lambda}{d \mu}$$

Again, omitting the constant m, we have

$$d \theta = \frac{t d \mu}{a} = \frac{\lambda}{a},$$

and multiplying by $\frac{a}{d\lambda}$ we get

$$a \frac{d}{d} \frac{\theta}{\lambda} = \ell \frac{d}{d} \frac{\mu}{\lambda} = \frac{\lambda}{d} \frac{\lambda}{\lambda}$$

where $\frac{\lambda}{d\lambda}$ is the minimum value which permits resolution of close lines. $\frac{\lambda}{d\lambda}$ or the

ratio between the mean wave length of a pair of lines which can just be resolved in a spectroscope and the difference in wave length between the two components is called the resolving power of the spectroscope and is usually designated by the letter R.

'The linear dispersion $\frac{ds}{d\lambda}$ where f = focal length of camera is $\frac{ds}{d\lambda} = f \cdot \frac{d\theta}{d\lambda} = f \cdot \frac{R}{a}$.

⁴ The resolving power R refers to infinitely narrow lines through an infinitely narrow slit. When, as necessarily occurs in practice, neither of these two conditions holds, we speak of the purity of the spectrum or the practical resolving power for wide slits. Schuster has given a simple expression for the purity which is always a fraction of the theoretical resolving power R. This expression has been claborated by Wadsworth.

and later still Schuster has given tables for determining the purity. But as no appreciable error will be introduced in the relative values used in this work, it has seemed preferable to adhere to the simple form. If d = slit width and $\psi = \text{angular aperture of}$

the collimator =
$$\frac{a}{f}$$
, the Purity $P = \frac{\lambda}{d \ \psi + \lambda}$. R.

⁴ We have now obtained all the formulæ necessary to compute the data for any optical system and to compare the efficiency of different forms of spectroscopes. To take a concrete case, which is more applicable for our purpose than a general discussion, I propose to consider the question of the most suitable aperture to be given a single-prism spectrograph which is being constructed for the Dominion Observatory. The present spectrograph, which is arranged to be used with either one or three prisms, has a collimator of 30mm, aperture, 320mm, focus and two cameras, one for each form of 525mm, focus. It performs excellently for both purposes, but when, as often happens, both single and there prisms are required on the same night, the change from one form to the other is somewhat tedious, requiring 15 or 20 minutes, and moreover, what is far more important, such change involves uncertainties as to the tanceursay of the velocities obtained.

'In order to fill the collimator lens completely with star light its aperture ratio $\frac{a}{f}$

must be the same as that of the equatorial. The aperture ratio of the Ottawa telescope is 1 to 15, consequently the focal length of the collimator must be 15 times the aperture. This aperture is limited on the lower side by the condition that sufficient purity must be obtained, purity being proportional to the aperture at a practicable width of slit, to so separate lines and blends of lines that sufficiently accurate identifications of lines and the true wave lengths of blends may be obtained. It is limited on the upper side by the difficulty of obtaining homogeneous prisms of large size, by the increased absorption of such prisms, and by the increased size and weight of the instrument. In all the spectrographs used in radial velocity work the apertures ib between 30 and 51mw, and these seen to be about the practical limits. It remains to determine the most suitable.

' The basis of the discussion" rests upon the results obtained for the effective diameter of the star image given in my paper on 'The Star Image in Spectroscopic Work,' No. II, which was read here last fall and published in the Astrophysical Journal, March, 1908. The results of a number of experiments, photographs of star images, spectra and trails, went to show that only very rarely is the effective diameter of the image less than 2 secs, of arc (about 0.055mm.) at the focus of the refractor, Generally the diameters of images and the widths of spectra and trails are considerably greater, increasing to over 0.1mm, with longer exposures. As the theoretical diameter of the central disc is only 0.57" (about 0.015mm.) and, as the condensing system of visual objective and photographic correcting lens is practically perfect, the enlargement in diameter is undoubtedly due to atmospheric disturbances. These consist probably partly of a blurring or spreading out of the central disc and partly of small displacements in all directions from its mean position. In consequence there results considerable loss of light at the slit jaws with the widths usually employed, and further experiments showed that the proportion transmitted varied almost directly with the width until this reached 3 or 4 sees. I reproduce below part of the table for slit transmission given in the paper referred to :---

" An able discussion of this subject on somewhat similar lines, to which I am much indebted, has been given by Newall (M. N. 65, p. 608).

SLIT TRANSMISSION.

slit W	Zid th .	Comparative	exposure for equal intensity of spectrum.
Linear mm.	Angular secs.	Observed.	Corrected for loss by diffraction.
$0.025 \\ 0.051 \\ 0.076 \\ 0.102$	$ \begin{array}{r} 0 & 91 \\ 1 & 82 \\ 2 & 73 \\ 3 \cdot 64 \\ \end{array} $	100 40 27 25	100 50 35 32

⁴ This table shows that if the slit width can be increased the exposure is proportionally diminished, double the slit width halve the exposure, which means, of course, an increase in the output and in the practical range of the equipment. But on the other hand, a widening of the slit, other conditions remaining unchanged, decreases the accuracy of measurement of the resulting spectra. This loss of accuracy is due to two causes: first, diminished purity rendering uncertain identifications and wave lengths of blenchs; second, increased diffuseness of the spectral lines rendering wave surements more difficult. We will take up these two considerations separately and find under what conditions the slit may be widened without loss of accuracy.

The equation for purity of spectrum, $P = \frac{\lambda}{d\psi + \lambda} \cdot R$, shows that the purity is

almost proportionally diminished as the slit width is increased as dy is, even for slit 0.025mm, nearly ten times λ . To increase the purity of a spectrum only two courses are open-to diminish the slit width or increase the resolving power. As we wish to widen the slit the resolving power of the spectroscope must be increased, which may be done in three ways.

1. By increasing the aperture of the prism or prisms
$$R = \frac{\lambda}{d\lambda} = a \frac{d\theta}{d\lambda}$$
 or R varies

directly with the aperture.

2. By increasing the number of prisms.

3. By shifting the region of spectrum under observation towards the violet. The resolving power varies inversely as the cube or slightly higher power of the wave length. This will be seen directly when we compute resolving powers, but it follows at once by differentiating Cauchy's form of dispersion formula.

$$\begin{split} \mu &= A + \frac{B}{\lambda^2} + \frac{C}{\lambda^4} + \dots \text{ or simply} \\ \mu &= A + \frac{B}{\lambda^2} \\ \frac{d}{d} \frac{\mu}{\lambda} &= -\frac{2}{\lambda^3} \cdot \end{split}$$

⁴ The use of the second method increases the dispersion which is usually not allowable on account of the proportional increase of exposure time entailed. The third method can not be used with a refractor and glass prisms on account of the strong absorption of ultra violet light by the glass of the lenses and prisms. With a reflector and a quartz or ultra-violet glass spectrograph it might be applicable. We are therefore practically limited to the use of a larger prism and consequently larger collimator and camera lenses.

• The size of prisms in use in radial velocity work, as previously stated, lies between about 30 and 31mm. Prisms of 51mm, aperture are successfully used in the Yerkes Spectrograph, but Frost's experience as also that of Hale in large spectro-heliograph prisms shows that the limit is nearly reached.

⁴ In discussing the necessary conditions for using a wider slit, let us take as an example a comparison between the efficiencies of single-prism spectrographs of 35mm, the aperture of the present instrument, and 51mm, aperture, the latter having been decided upon, after careful consideration, as the aperture of the new instrument. A spectrograph of such aperture, outside of considerations of the homegeneity of larger prisms, is the practical limit as regards size and weight that can be attached to a 15-inch equatorial.

⁴ The glass generally used for the prisms is Jena glass 0-102, Dense Silicate Flint, and this was chosen for the spectrographs here. It is very colourless considering its density and dispersion. The indices of refraction of the particular melting from which the present prisms were made, as furnished by the makers, are as follows:-

Wave Length.	Index of Refraction.
0006363 cm	1.6467

• From these values substituted in the Hartmann formula $\mu = \mu_0 + \frac{c}{\lambda - \lambda_0}$ we obtain

the values of the three constants μ_0 , c and λ_0 .

 $\lambda_o = -.00002190,$ $\mu_0 = 1..61146,$ $\log c = 6.115595,$

From these constants were calculated for a number of wave lengths μ and $\frac{d \mu}{d \lambda}$. From $\frac{\mu}{d \lambda}$, R was obtained for prisms of 35 and 51mm, aperture, and of refracting angle

 $\frac{d}{d\lambda}$, it was obtained for prime of so and other and other and of reflecting unger 63° 50°, this being the angle required to deviate the ray at minimum, λ 4415, 60°. The formula usel were previously derived and are:

$$\frac{d\mu}{d\lambda} = -\frac{c}{(\lambda-\lambda_0)^2}.$$

$$R = t \frac{d \mu}{d \lambda}$$
 where $t = 2 a \sec \frac{A + \theta}{2} \sin \frac{A}{2}$.

Wave Length.	μ	$\frac{d\mu}{d\lambda}$	R Prism 37 mm.	Prism 51 mm.
4862. 4350. 4415. 4431. 4434. 4402. 4400. 8370.	$\begin{array}{c}1 & 6603 \\1 & 6667 \\1 & 6701 \\1 & 6721 \\1 & 6796 \\1 & 6833 \\1 & 6848 \end{array}$	1829 2343 2636 2822 3490 3983 4119	$\begin{array}{c} 14420 \\ 18470 \\ 20780 \\ 22250 \\ 27520 \\ 31400 \\ 32380 \end{array}$	$\begin{array}{c} 21010\\ 26910\\ 30280\\ 32420\\ 40100\\ 45750\\ 47180 \end{array}$

⁴The resolving power for the two apertures obtained, the purity of spectrum for different slit widthe is readily calculated from $P = \frac{\lambda}{d} \frac{\lambda}{\lambda + \lambda} \cdot R_j \psi$ in this case, being χ_{25} or .0607. The results are given in the following table for the wave length 4341 or H_2 , this being the usual central ray.

PURITY OF SPECTRUM.

								`																Prism 35 mm. Prism 51 m
025																		_	_	 -	_	_	 _	4796 6697
040 051																								3114 4537
063 076																								2084 3036

⁴ These figures show that with the larger prism the slit may be made 50 per cent wider and still have practically the same purity of spectrum, and consequently the same accuracy of velocity determinations.

⁴ The alit transmission table previously given showed that an increase in slit width of 50 per cent when below 0.076mm. increased the quantity of star light transmitted by nearly 50 per cent; consequently, other conditions being equal, half as many more spectra could be made in a given time. But an increase in the size of the prism meansalso an increase in the quantity of light absorbed by the glass of the prism, although the amount reflected will be the same. We can obtain an accurate knowledge of the quantity of light absorbed in the two prisms of 0.102 glass from Vogel's experiments (Astrophysical Journal, V., p. 75), who showed that HY light transmitted through 100mm, of 0.102 slass suffered absorption of about 47 per cent. The absorption for prisms of 35 and 51mm. aperture, average length of path 39 and 57mm, respectively.

may be readily calculated by the formula $I_1 = I, K^{*}$ u, where x is thickness of glass for which absorption is required, a is thickness for which bereentage transmitted is K_1 I_2 intensity of incident, I_1 of transmitted beam. We obtain for prism of 35mm, aperture 75 per cent, of 51mm, aperture 71 per cent transmission. If 100 be intensity of incident penell for small prism, then 150 will be intensity of penell giving equal purity with large prism. After transmission intensities will be 75 and 150 × 71 co 106.5, respectively, and the required exposures will be inversely proportional or as 3 to 4, a very considerable gain. Even when the slight additional absorption in the thicker camera and collimator lenses is considered a substantial saving of time will result by the use of the larger prism.

⁴ We have tacitly assumed in the foregoing discussion that a decrease of purity entails loss of accuracy in the velocity values. This is undoubtedly true for complex spectra such as those given by solar or allied type stars, spectra in which are hundreds of lines and in which every decrease in purity means increased uncertainty in the wave lengths of the more complex blends of lines thereby produced. In the case of early-type stars, however, such as those of the hydrogen or heldium groups, where there are only few lines, and these single, there can be no trouble with blends, and the question of the parity of the spectrum has not so much weight. On such grounds there would be no material advantage in using the larger aperture. However, a consideration of the second effect produced by widening the slit—the increased diffuseness of the spectral lines—will show a similar advantage for the larger aperture even where purity does not come into question.

25a - 13

'This may be best shown, as before, by considering a special case and we may take the same example with advantage. The present single-prism spectrograph has a collimator objective of 35mm, aperture and 35 x 15 or 525mm, focus. The camera has a focus of 525mm., and therefore the image of the slit on the plate will be of the same size, and the minimum width of line will be the width of the slit. The new spectrograph will have a collimator of 51mm, aperture and 51 x 15 or 765mm, focus. The camera will be of about 455mm, focus. Hence the image of the slit on the plate will be diminished in the proportion of 455 to 765 or about %. If the camera were of the same focus as the one now in use, 525mm., the image of the slit would be diminished to about %. Hence the slit can be made in the one case %, in the other 1%, the width with the present spectrograph, and have the lines of the same width, and consequently equally accurately measurable. The gain in efficiency is thus about equal under the latter consideration and that of the maintenance of equal purity, and we may therefore consider that a decided advantage may be obtained in stars of all types by increasing the aperture of the prism. Such conclusions are, of course, subject always to the test of actual use under similar external conditions before they can be accepted as final.

' However, some experiments that I made here last winter on the effect of widening the slit upon the accuracy of velocity determinations" substantiate the above conclusion, and I will therefore give a short summary of some of the results reached. As previously stated, when the slit is widened, the purity is diminished and the lines become broader and more diffuse. To simplify the investigation, the question of the effect of purity was eliminated by choosing a star, β Orionis, for the test whose lines are single and moderately sharp. There remains, then, only the question of the effect of the increasing breadth and diffuseness of the lines on the accuracy of the measures. Evidently such a question can only be settled by making and measuring a number of spectra at each slit width. Six plates were made for each slit width 0.025, 0.038, 0.051, 0.076mm. for two dispersions, (a) single-prism 525mm, camera, (b) three-prism 525mm, camera and six each at slit widths 0.025, 0.051 and 0.076mm, for a dispersion of three prisms and camera of 275mm. focus. In all 66 plates were made, of which I have to thank Mr. Harper for measuring 18 and thus lightening the considerable labour involved. Owing to the different dispersions, different lines were measured in the three sets, but as the main dependence can be placed on the three lines Mg λ 4481.400, He λ 4471.676, H_{γ} 4340.634, the results from these three lines only are given. Computations using all the star lines measured were also performed without, however, changing the conclusions reached.

ⁱThere are evidently two kinds of error to be considered, accidental and systematic. Under the first will be considered the accidental errors of the setting of the microscope wire on the individual lines in a plate, resulting in a mean velocity for that plate differing from the true velocity in a greater or less degree depending upon the quality of the lines. The systematic error of a plate is the displacement of the star lines as a whole with respect to the comparison lines. This may be due, as previously stated, to one or more of several causes—change of temperature, Resure, faulty adjustment or aberrations in the optical train, &c. As the lines are in general equally affected, such displacement will not be apparent in the measure of a single plate. It is only by comparing the velocities of a number of plates of a star of constant velocity that such an error can be detected.

⁴ To compare the accidental errors for the different slit widths it will be necessary, to prevent systematic displacements from affecting the result, to treat the measures for each of the six plates for one slit width separately, to obtain the residuals from the mean velocity of each plate and finally the probable error of measurement of an average star line from these residuals. Some tidea of the relative magnitude of the systematic displacement and the separately is a second start of the second

^{*} Since published in the Astrophysical Journal, Vol. XXVIII, p. 259.

tematic errors may be obtained by treating the velocities from each of the six platus. However, this result will not be that due to systematic error only, as the velocity from each plate will also be affected by accidental errors. The results of the measures and computations are given below:—

Dispersion.	Slit Width.	Accidental Prob. Error, Average Line.	Systematic Prob. Error, Single Plate
Single Prism	0:025 038	±4.5 km. 2.4	± 1.7 km. 2.7
525 mm. Camera	051 076	2.4 2.3 4.3	3:0 7:7
Chree Prisms	0.025 .038	$\pm 2 \ 3 \ 2 \ 1 \ 2 \cdot 5$	$\pm 1 5$ 1 3
525 mm. Camera	051 -076	2.5 2.1	0.7 0.9
Chree Prisms	0.022	± 2.9 2.9	± 2.1 3.0
75 mm. Camera	.076	3.8	2.9

PROBABLE ERRORS.

[•]These results were to a considerable extent unexpected. The great difference in the apparent quality for measurement of the spectra made with kill 0.025 and 0.076mm, especially with the single-prism, would lead one to expect a marked increase in the errors of setting, but this is not very distinctly shown, not at all in the higher dispersion. The systematic errors, however, are very markedly increased in single-prism plates, so much so as to prohibit the use of slits wider than 0.051mm. In a higher dispersion spectroscope this increase has disappeared, and, so far as the rather small number of plates shows, it is slightly more accurate in the case of dispersion (2) to use slits 0.061 and 0.076mm. than alits 0.025 and 0.038mm. It is evident that these results corroborate the conclusions previously reached, by showing that increase in resolving power removes or diminishes the loss of accuracy when the slit is widdned. Consequently, with the 50 per cent greater resolving power and the 60 per cent greater ratio of collimator to camera focus, it is prohable that the slit-widd may be increased 50 per cent without affecting the accuracy of the results and with a corresponding increase in the output.

Mechanical Design.

⁴ The question of the most favourable dimensions of the optical parts having been discussed, there remains the mechanical structure connecting these parts into one stable whole. Owing to the attachment of the instrument to a moving telescope and the consequent varying direction of gravity on the parts, the prevention of favoure is one of the most difficult of the problems to be overcome, and this is especially the ease where the instrument is to be attached to a telescop of moderate size, where its ease where the instrument is to be attached to a telescop of moderate size, where its equipment, for example, where the spectrograph weighs about 500 blas. Most of the early and some of the recent spectrograph weighs about 500 blas. Most of the bability to prevent line displacement due to favour of the parts. A displacement of the one-thousandth of an inch is equivalent in a single-priora part of only one one-thousandth of an inch is equivally and place most about 500 km. per second. It is evidently a different parts are single.

 $25a - 13\frac{1}{2}$

matter in the extended form of a single-prism instrument to reduce this flexure to an inappreciable amount. No material is perfectly rigid and when we consider that even its own weight deforms the strongest material available, the difficulty of the problem will be realized.

⁴Until very recently all spectrographs were attached to and overhnug the end plate of the telescope and hus, like a heam fixed at one end, were subjected to the maximum amount of flexure. An improvement in the principle of attachment was applied at the Lick Observatory recently, in which the spectrograph proper is made self-contained and is held in an independent cradle at two points of support. It is thus like a beam supported at both ends and the flexure is theredy much reduced.

⁴ The original spectroscope belonging to the Observatory was by Brashear of an adjustable mineresal type and was not, for this very reason, suitable for radial velocity determinations. Braces were added to stiffen the frame as much as possible, but it could not be freed from flexure. Many of the results obtained were uncertain and its use was discontinued as soon as a new combined one and three-prime spectrograph, designed by myself and very satisfactorily constructed by Mr. Mackey in the Observatory workshop, was completed.

⁴ This instrument, whose general form is readily obtained from the figures, page 78 in my report to the Chief Astronomer for 19067, has many original features, has given excellent satisfaction and produced reliable results. It is, as will be noticed, a form of the first class mentioned attached only to the end plate of the telescope. It was designed and partly constructed before anything was learned of the new type. Moreover it was desired for the asks of economy of time and money to combine single and three-prism instruments in one (since found by experience to be a mistake), and this could not be advantageously effected in the new form.

'The form of truss designed has some advantages over previous instruments, and has probably less flexure than any other of the same type and weight. The main difference lies in the close grouping of the triangular truss at the lower end and the addition of the substantial diagonal brace, which serves the two purposes of stiffening the outer end of the prism box and lower end of the camera when used in three-prism work, and of tying the outer end of the camera when used with a single prism. The maximum flexure of the three-prism instrument is equivalent to 1.8km. only, while the maximum flexure of the modern Bonn three-prism instrument, the only one for which data have been published, is about 70km. For an hour's exposure with the Bonn instrument there is a flexure of 7km., while a similar exposure with both single and three-prism forms here shows no appreciable flexure. The maximum flexure with our single prism is much greater, about 100km., equivalent to a linear displacement of about 1/100 inch. This great difference in the two forms is due to two causes. First, to the threefold greater kilometre value for the same linear displacement. Second, to the much more extended form of the single-prism instrument. Calculations have shown that the amount of flexure is nearly that caused by the actual extension and compression of the truss members due to their own weight. and consequently it can not be avoided or much reduced in this form of instrument. However, the flexure occurring during a two hour's exposure is only slight except at such great hour angles as are rarely used.

⁴ Both forms of instrument are frequently required on the same night, for stars of varying brightness and type. The time lost in making the change from single to three prism or vice versa, and the uncertainty in the temperature conditions prevailing after the change, close temperature regulation being equally as important, perhaps more important than avoidance of moderate favoure, were considerations leading to the decision, which had the approval of Dr. King, to design and construct a separate single-prism spectrograph, with spearate temperature control and attaching stand, so that the change could be made in a minute or two, and without disturbance of temperature.

⁴ Besides using a larger prism for the reasons fully entered into above, the opportunity was taken of changing the mode of attachment to the telescope. Curtiss, of Ann Arbor, designed a form of single-prism instrument modelled after the Lick pattern, which has two points of support, one near the silt and the other near the base of about 120°, 30°, 30°. The prism is at the obuve can dhe silt and eamerat the acute angles of the triangle. The emmera end hangs out unsupported and fixure will still court though in a much diminished degree.

⁴ The form I have designed and am now having constructed in the workshop follows that of Curtiss in that it is of the box form, but the design and construction of the box and the method of attachment to the telescope are different. The box is made of hard caststeel plates (saw steel) much stiffer than brass, is rigidly braced and cross braced, and is provided with three points of support in a cradle of T iron attached to the end plate of the telescope. Two of the points are similarly situated to those of Curtiss, while the third acts near the camere and. The two first are attached by a kind of universal joint, so that no strain can be induced in the box by any bending of the cradle. The third support, near the camere, consists of a pair of counterbalancing levers, one on each side of the box, arranged to equalize the pressure on the three supports in any position of the telescope without it being possible to ever induce any strain in the box itself. By this means it is believed that no measurable or even noticeable flexture will occur.

⁴ A simple triangular box of this form without projections of any kind is much more reality adapted for temperature regulation than the complicated shape of the regular truns form. Moreover, any stratification in the temperature case is much less likely to execut, and if it does, can not do nearly so much harn as if it were acting on only one member of the truns. A further improvement will be the introduction of a non-conducting material, such as vulcanized fibre in the supporting array between the eradle and the box, so that heat will not be conducted away at these points and unequal temperature and possible distortions take place.

⁴ In the present spectrograph, conduction through the arms of the truss is so great as to cause a gradual drop of the temperature in the prime box, as the outside temperature falls, of about 0.1°C, every one or two hours. The distance between the spectrograph box, which will be entirely covered with thick fetl, and the inside of the feftlined outer case will be uniform, the heating wires will be uniformly distributed, and consequently little difficulty with inequalities of temperature should result.

⁴ Although until the instrument is completed and tested, no definite statement can be made. I have little doubt that the new spectrograph will be a considerable improvement over the present or any existing single-prism instrument.²

THE NEW SINGLE-PRISM SPECTROGRAPH.

The Optical Parts.—After the dimensions of the optical parts of the new instrument had been determined as above they were ordered from the J. A. Brashear Co., in the early part of 1908.

Some correspondence was carried on in regard to the 'Isokumatic' Collimator objective in reference to the yallowish colour of the middle component. It was, however, decided to use it in preference to the less absorbing ordinary objective, on account of the flatter colour curve given by the former. Consequently an 'Isokumatic' of 51mm, (2 inches) free aperture and 765mm, focus was ordered and received at the same time as the other optical parts, shout the end of last March. Although no direct tests have as yet been made, there is no question of its being a first class objective, as otherwise the good definition now obtained would not be possible. The prism of Jean glass 0, 102 had its angle 63° 30° computed, so that the central ray for this instrument A4925 had a deviation of 00°. The length of the side of the rism was made 110mm.

so as to transmit the fell penell from the collimator, and the height 57mm, in order that any effect produced by pressure or unequal temperature of the supports might be minimized. The prion is a beautiful piece of glass and the tests have shown it to be of first rate optical quality, and fears as to its possible lack of homogeneity groundless.

The camera objective, owing to the excellent performance of the Brashear Single Material in the previous instrument, was chosen of the same type and is of 57mm. aperture, a sufficient margin above 51mm, to transmit the full usable pencil, and 455mm. focus. It was tested soon after being received and, although it gave a flat field, the definition was not as good as that given by the original objective, and a preliminary test showed this to be due to spherical aberration. The objective consists of two widely separated converging elements of very light crown glass, and consequently the resulting positive aberration can only be removed by departure from spherical surfaces. The amount to be removed in the case of the original objective of 45mm. aperture and 525mm, focus was quite within the possibilities of ordinary figuring, but when the aperture ratio is increased to so large an extent as from f12 to f8, it becomes a much more difficult problem to deal with. In this case it was only after the introduction of a special method and with the great personal skill of Mr. McDowell in figuring, that the aberration was finally removed, and the objective gave practically perfect definition and a widely extended flat field. A full description of the tests, with the plotted fields resulting from different objectives, is given in full in another place.

The Guiding Telescops—Instead of reflecting the light used for guiding down a tube parallel with the collimator and there further reflecting it to the guiding telescope so placed as to also receive light reflected from the front surface of the prism, the guiding telescope has in this case been placed about 15cm. above the slit, where star light coming from the inclined speculum-metal jaws is reflected by a right-angled prism to a small objective placed at its focal distance along the optical path from the slit. The resultant parallel pencil is then received by the bent guiding telescope shown, Fig. 2, which can be rotated to any corvenient direction. Two reflections are hereby avoided, resulting in some saving of light and probably better definition. It had been found in the previous instrument that the method of guiding by light reflected from the front prism surface was never used, and consequently in the new spectrograph this needless complication was omitted. It may be said, however, that the position of the guiding telescope is in some positions of the equatorial, not quite so convenient as if it were lower down.

The Comparison Apparatus.—Experience has shown that in actual work more than one metal is never used as electrode, and consequently the rotating wheel with four sets of electrodes used previously has been omitted here, and one pair of adjustable electrodes of the alloy of iron and vanadium, whose spectrum is exclusively used for comparison, has been substituted. These terminals are mounted on a brass plate which swirels on two points attached to the top of the guiding telescope, and when not in use is simply turned back upon the latter, thus leaving the shar light unobstructed. Directly below the terminals in the optical axis is served the short tube shown, in the upper end of which is a piece of ground glass and in the lower a small condensing lens with an angular aperture twice that of the collimator. Both of these are adjustable and ensure in every case a uniform penell of spark light incident upon the collimator objective and prism.

Silt and Silt Diaphragms.—The slit is of the Huggins type of reflecting slit, with polished speculum metal jaws inclined at an angle of 3¹/₂, so that the reflected penell of star light and consequently the prism which intercepts it is entirely out of the way of the direct penell. One jaw is fixed and the other movable micrometrically, a single dirision representing -001 inch (-025mm). The slit has a tangent server slow motion to camble it to be placed exactly parallel to the refracting edge of the prism, and is zery

PLASKETT-ASTROPHYSICS.

FIG. 2-New Single-Prism Spectrograph.

PLASKETT-ASTROPHYSICS.

FIG. 3-New Single-Prism Spectrograph.

rigidly attached to the end of the heavy collimator tube. To the end of this tube is also screwed the attachment holding the sliding diaphragms, which sorve to limit the star and comparison spectra. Rectangular openings of the proper width, in this case a single opening 0-4mm, for star spectrum and two openings 1-5mm, separated by a tongue 0-45mm, for comparison spectrum, are placed directly opposite one another on a plate which is moved by means of a knurbed wheel transversely between stops across the slit. To expose the spark spectrum all that is necessary is to turn down the spark apparatus, turn the knurbed wheel above mentioned about a quarter turn, and close the switch which controls the eurrent through the step-up transformer used for producing the spark, this switch being on the telescope tube hout a foot above the spark apparatus. To change back to star spectrum the operations are reversed, the whole evel coccupying only about the sneeval.

The Machanical parts.—As outlined above the instrument consists essentially of two parts—I. A rigid, hollow, triangular shaped, stelb bac containing at the obtuse angle the prism, and at the two acute angles the slit and plate and comprising the spectrograph proper; 2. The T iron frame or cradle attached to the end plate of the telescope, in which the spectrograph proper is flexibly supported, and which serves to keep it collimated without flexure of this support producing any stresses in the box itself.

The Spectrograph Box .- The box consists of two triangular shaped plates made of hard saw steel about 1.7mm. thick forming the sides, while the edges consist of plates of the same material and thickness, 79.4mm. (31 inches) wide. In addition to the edges there are a number of internal braces and supports of the same material, well shown in Fig. 4, which gives a good idea of the construction of the box. These braces as well as the edges of the box have pieces of small angle iron securely riveted along both edges, to which the side plates are firmly screwed. These angle irons are not shown in the figure, as the frame was first put together, the angles then riveted on and finally the plates screwed to these angles and to the internal castings, the heads of the screws being shown on the side of the box in Fig. 2. It was constructed in this manner to prevent as far as possible any internal stresses in the frame of the box. In addition there are iron castings A, B, C, D, E, F, Fig. 4, planed to exactly the same width as the edges and braces. A, may be called the main casting, having a hole bored through the centre through which the principal supporting shaft passes. The two legs projecting from the triangular part are bored out to fit the collimator and camera tubes. The casting, D, is also bored out for the collimator tube and forms the end plate of the box, while the casting, F, is bored out to carry the upper end of the camera tube. U, and, E, have clearance around them and do not touch the collimator tube, the upper support being attached to the centre of C. The part, B, has the third supporting shaft screwed into the centre of each side, and also forms the connection between the box proper and the camera end. The latter is made separate, so that camera objectives of different focal lengths may be used if desired.

The prism is mounted in a separate cast-iron cell, but is prevented from touching the metal at any point by facings of hard rubber about 33mm. thick, and is kept in its adjusted position by hard rubber stops. It is held firmly in this position in the cell by the gentle pressure produced by three small clamp serves passing through the top of the cell and bearing upon one of the facings of hard rubber 33mm, thick, above mentioned, resting on top of the prism. The base of the cell is surfaced flat, and rests in its compartment on one of the side plates, to which it is rigidly attached by five serves massing through slotted holes to permit of adjustment for minimum deviation.

Collimator and camera tubes are provided with racks and pinions for adjustment, their position being read on millimetre scales, the one attached to the camera being provided with a vernier, reading to tenths of a millimetre. The collimator tube is provided with two clamp serves, one at the top and one at the bottom bearing, while

the camera tube has a single clamp screw at the front end. The pinion and clamp wheels and the scales are well shown in Figs. 2 and 3. The camera attachment, whose form and construction can be fairly well obtained from Figs. 2 and 3, is built in box form of the same material, and is firmly screwed to the casting, B, Fig. 4, it and the spectrograph box thus forming what is to all intents and purposes one continuous piece. Between the sides of the camera box, swivels the plate holder attachment which is quite similar in form to the one used with the other spectrograph. It consists essentially of a semi-evlinder 79.4mm, long, 101.6mm, diameter, pivoted along its axis between the sides of the box to permit a wide range in plate inclination. This cylinder is constructed from a section cut from a piece of 4-inch brass tubing, on the ends of which pieces of heavy brass plate are screwed and soldered, and on the plane of section is fastened the brass camera back provided with screws for clamping the holders firmly in place. The plate holder carrier has solidly constructed ways permitting lateral movement of about 15mm., enabling a number of narrow spectra to be made side by side on the same plate if desired. The axis on which the camera back rotates is provided with knurled clamping wheels, while other screws moving in concentric slots euable adjustment and firm clamping to be effected in any desired position, read off on graduations on the cylinder.

As will readily be seen from its design and construction and from the character of the material from which it is made, this spectrograph is exceedingly rigid and the flexure, however, is reduced to a vanishingly small quantity by the new supporting system used in this instrument. The self-contained spectrograph box is, as has been indicated above, supported facibly on three points in the carrying cardle.

The Supporting Cradle .- This truss made of 12" T steel is attached at the upper end to a heavy ring easting, which is fastened by the same three swivel bolts used for the other spectrograph to the end plate of the telescope, the mode of attachment being shown in Fig. 3, which with Fig. 4, well shows the form of the truss. It is evident that the only flexure of this truss in a direction parallel to the sides of the spectrograph will be that due to the extension of one arm and compression of the other in each pair, and this will hence be very slight. Owing to the fact that these two pairs of trusses had to be separated about 20cm. at the lower end, to admit the spectrograph with outside temperature case between them, it is evident that flexure in a direction at right angles, parallel to the movement in right ascension, will be greater. This is minimized as much as possible by joiuing the two ends by a solid webbed casting and by introducing cross braces at the upper end of the truss as shown. At small hour angles, however, which it is desirable for many reasons to use as far as possible, the component of the weight in this direction will be very small and the flexure negligible. Even at large hour augles which are sometimes required, the flexure cannot be great. In any case from the method of attaching cradle and box, to be presently described, no flexure of the cradle can induce any stresses in the box and the only effect of such flexure will be to slightly alter the axis of collimation of the spectrograph. This can not, however, induce any displacement of the spectral lines, not only on account of its relatively small magnitude but also because it can occur practically only parallel to the spectrum lines and to the refracting edge of the prism, which will have no effect on the position of the line.

The principal and central support and connection between cradle and box consists of a shaft 1 inch (25-4mm), diameter passing through the hole in the main casting. This shaft is left the full size of the hole only for about 2mm, at the centre, so that the box is free to switcel in every direction around the centre to the extent of 2 or 3 degrees. This switelling motion is, however, limited, by projecting points on the shaft at the ends of the hole, to one parallel to the motion in right assession and to the slit, rotation around the axis of collimation being prevented. Consequently any floware of the cradle can not induce any distorting stress in the box.

FIG. 4-Spectrograph Box.

The upper supporting shaft has a transverse hole in the centre through which a pin serveved into casting *C* passes, thus allowing longitudinal motion parallel to the axis of collimation as well as swivelling motion in every direction.

The third point of support consists of shafts rigidly serewed into the centre of cach side of casting, B. A second short shaft at each side carried by plates serewed to the cradle, as shown (Figs. 2 and 3), is placed about 2.5cm. from the first in a direction which, if produced would hearly pass through the centre of mass of the box. A lever attached to these two shafts at each side in such a way as to allow more than sufficient motion without binding, carries a counterbalancing weight, the combined resultant upward thrust of the two on the box being computed to equal the proportional part of the weight that should be carried by this support.

The box is hence carried equally on the three supports without any possibility of distortional stresses occurring in it due to flexure of the cradle, the only effect of such flexure being to slightly change the axis of collimation, which at the utmost can only induce displacements of the second order in the position of the second lines.

Temperature Control.—Every precaution having been taken, successfully as will be seen later on, against flexure, there remains, as the other main cause of systematic displacements possibly more dangerous than flexure, displacement due to changes of temperature in the optical and mechanical parts of the instrument. The changes in temperature between day and night or even between evening and morning at Oftwars are considerable, averaging about 8°C, for the former and 6° for the latter. In many cases the temperature in the dome becomes 10°C, lower than that in the temperature case, rendering satisfactory maintenance of constant temperature in the ease a difficult metric.

As mentioned in the two previous reports, such difficulty was experienced and the temperature in the prism host dropped gradually about 0-1°C, per hour as the temperature in the dome became lower. When practically the whole of the inside of the case was covered with the heating coils this drop was not so great, but was not tentirely overcome. It was believed to be due to the conduction of the heat through the metal parts of the attaching truss, the collimator tube, &c, exposed to the outside air and that, although the temperature inside the case undoubtedly remained nearly constant, the temperature inside the prism box would diminish with the lowering of the outside temperature oving to the greater loss of heat through the exposed supports.

To overcome this as far as possible in the new instrument all of the shafts attaching the box to the cradle were out at points about 3cm. From the box, just inside the outer case, were bored out and threaded, and a piece of vulcanized fibre separating the ends about Tmm. servered in. This fibre, seen dark on the shafts in Fig. 3, is a poor conductor of hest, prevents direct metallic conduction from the box inside the temperature cases to the cradle outside, and the only part of the spectrograph exposed is the shift head. The temperature inside the outer case is automatically controlled by a pair of electric contact thermometers placed not, as in the previous instrument, one on each side of the prism box, but one in the front near the upper end and one at the back near the camera.

Each of these thermometers controls the heating coils in the corresponding half of the outer case. It was hoped by thus arranging the thermometers and coils to keep the temperature over the whole interior of the case more nearly uniform than previously. These thermometers are time exactly the same way as in the former instrument described in the 1307 report. When the temperature in the case rises the mereury in the open capillary makes contact with an adjustable platinum wire and the resulting battery current attracts the armature of a relax, thus breaking the heating circuit; similarly when the temperature falls the mereury recedes from the platinum terminal, the relay armature is released and current is turned on the heating coils. In practice the regulation is very good, current in the coils as indicated by pilot lamps being turned on and off every few seconds. To smooth down any remaining irree-

larities the whole exterior of the spectrograph box is covered with a layer of half-inch thick felt, small hinged doors being made over the indexes and scales of collimator and camera.

The temperature case is in this instrument constructed of wood chiefly on account of its greater case of construction, of its greater heat insulating power, and of the smaller danger of short circuits in the heating coils over one made of aluminum. Moreover, owing to the simple form of the spectrograph, a wooden case can easily be made amply strong. This case is made of 4-inch thick pine, lined inside with felt about \$\$-inch thick and is divided into three sections, the line of junction of the body of the case necessarily following the supporting shafts. The third section, which was necessary for constructional reasons, is a small box-shaped piece at the camera end. All joints between the sections and the joints around the doors in the case, necessary for the adjustment and clamping of collimator and camera and of the contact wires in the thermometers, are carefully paddel with felt to be acclimator tube and the supporting shafts being made large emough for free clearance and at the same time heattight by sushers of felt.

On the felt lining on the inside of this case is stretched about 1,200 feet No. 28 single silk covered German silver wire, arranged in four circuits of 300 fost each, two of these circuits in multiple are controlled by each of the electrical contact thermomters, each governing the coils in its own section of the case. This wire is distributed as uniformly as possible over the inside of the case, the space between the felt coverings of the case and spectrograph being about 9-5cm, and uniform throughout. By the division of the heating coils into two sections, their uniform distribution, and the uniform space between spectrograph and case, the temperature throughout the case should be maintained nearly uniform and not much trouble with unequal temperature should be case. There is no question that some method of mechanical stirring of the air inside the case would give better results, but the difficulty of additional weight and complication with possible vibration prohibit its use.

The temperature control so far as it has been tested works admirably. There is as before a slight drop in the temperature of the prism box when the external temperature drops rapidly, but that does not last long, and by applying the control in the afternoon, thoroughly ventilating the dome so that considerable of the cooling will have taken phace, the temperature remains steady for the night.

Adjustment of the instrument .- After the instrument was completed there were several adjustments to be made before any measurable spectra could be obtained. The first of these was to set the slit at the principal focus of the collimator lens. This was done by Schuster's method of alternate focussing of collimator and observing telescope on the same spectral line, the prism being placed alternately to one side and the other of the position of minimum deviation. This method gives satisfactory results, successive values agreeing within two or three-tenths of a millimetre and the mean of several being taken. The prism was easily set to minimum deviation for the linc Fe, 4325-9. This particular line was chosen on acount of the very irregular results given by the line H_{β} in the numerous measures of β Orionis, and the consequent determination to shift the central line towards the violet in the new instrument. The measures above referred to show that more accordant results are obtained with the lines to the violet end of the spectrum than with Ha, and as resolving power, purity, and linear dispersion are all greater there, this should result in a further increase in accuracy. The camera focus is determined in precisely the same way, as with the previous instrument, by making adjacent spectra through the refracting edge and base half of the prisms, and determining the focus by the continuity of the lines. A slit is cut in the side of the spectrograph box into which a semicircular diaphragm can be

PLASKETT ASTROPHYSICS.

FIG. 5-New Single-Prism Spectrograph, ready for use.

placed and rotated, so as to occult first one and then the other half of the light pencil. The inclination of the plate, determined of course at the same time, is about $16^{\circ}.5$, the same as with the first objective of this type.

A very curious and at the same time very useful property of the new spectrograph is the constancy of focus of the system for different temperatures. With the two previous instruments, the focal setting increased with increase of temperature about .012mm, per degree centigrade. Between the temperatures of 0° and 20°, all so far tested in the new spectrograph, the camera setting remains unchanged at 27-69 as determined by a number of careful tests. This with the absolute constancy and rigidity of the new instrument is a point of very great value in obtaining accurate results, as it obviates the necessity of testing the focus each time the instrument is used with the possibility of mistakes in the determination of the true setting. It is difficult to explain why there should be this difference, although it is probably due to the fact that the parts connecting camera objective and plate are of steel in the new instrument instead of brass, whose coefficient of expansion is greater. At any rate the combination of brass collimator tube, whose setting is unchanged, and steel camera tube gives settings for camera focus constant at all temperatures so far observed. If the collimator tube had been steel or the camera tube brass, there would have undoubtedly been a change in the setting with change of temperature.

The New Spectrograph in practices.—As stated above the instrument was only completed in the beginning of March, and consequently has not been in use long enough to enable its advantages and disadvantages to be fully determined. There is, however, no question that spectra of better quility for measurement will be obtained with it than with the single-prism form of the previous instrument in which the lines were occasionally, especially with the longer exposures somewhat blurred and diffuse, due to flexure or temperature change or both. As will be seen later, flexure in the new instrument is absent, and owing to its compact form any temperature changes should have much less effect on line displacements. As a matter of fact the temperature regulation is much better with the new instrument and no spectra yet obtained, even with very long exposure, show any trace whatever of diffuseness of the lines. Again, the constancy of the camera focus is another factor tending to better results, as one is always sure of the true focus and no fear of systematic displacements due to poor focus can arise.

Tests have been made similar to those of last year, on the relative freedom from accidental and systematic errors of spectra made at different slit-widths. These show, that on the whole in early type stars with this instrument more accurate values are obtained with a slit about 0.051mm. wide than with slits narrower or wider. The comparative exposures required with the new instrument at slit-width 0.051mm, and the previous single-prism instrument at slit-width 0.038mm., which gives about the maximum accuracy obtainable with it in early type stars, shows an advantage, so far as can be at present determined, of about 25 per cent for the new instrument. To offset this, however, it must be stated that, owing probably to the increased absorption of the larger prism, the intensity of the spectrum at the violet end is appreciably less and for equal intensity of the K line, sometimes required, most of the advantage will be lost. In the case of stars in which the extreme violet is not required, however, there is a considerable saving in time and increase in output by the use of the new instrument. This loss in the violet may be due possibly to other causes than absorption of the prism, such as in the guiding or the position of the corrector and form of the colour curve, and if such is the case, and this will be shortly tested, it may to a great extent be overcome.

Careful tests of the flexure of the new instrument have been carried out showing exceedingly satisfactory results. The method of testing was to attach the spectrograph to the telescope, the latter being pointed to the meridian. If the telescope is

turned in declination pointing first to the south and then to the north horizon, it is evident that the spectrograph will have rotated in its own plane through 180°, and there will have been induced in it the maximum possible double flexure. In these two positions spectra were made through a suitable slit diaphragm, the one used for focussing in which the adjacent spectra touch each other being the best, as any displacement of the line between the two exposures will at once be evident. Three sets of exposures of the comparison spark were made on the one plate, by sliding the camera back in its ways between exposures, two for flexure and one with the spectrograph stationary for comparison. Examination of these plates showed no measurable flexure. In some of the lines a very slight displacement could just be detected under high power magnification, but this if due to flexure was quite beyond measurement. As a matter of fact, on the plate being given to Mr. Harper with the request to select from the three the spectrum in which no movement had occurred, he found it impossible to determine which spectra were affected by flexure. As the flexure present during any reasonable exposure can only be a small fraction of that given by the method above described, it is quite evident that the spectra will be absolutely free from any line displacement due to flexure of the spectrograph. It may be of interest to state that flexure tests made of the instrument with the counterbalancing weights removed, and with consequently only two points of support, also showed remarkable freedom from flexure. Although the flexure was slightly more perceptible it was again quite immeasurable, showing the great stability and rigidity of the form of construction adopted.

The previous single-prism spectrograph showed when first constructed a flexure of about -065mm, equivalent to a velocity of 70km, per second. When tested at the same time as the new one it was found the flexure had increased to nearly -060mm, equivalent to over 100km, per second. As a displacement of the sharp comparison lines equivalent to a velocity of two or three kilometres would be measurable, it is at once seen how much more stable the new instrument is. It is, so far as I can learn, more stable than any other single-prism spectrograph in existence.

The new single-prism instrument, owing to its greater aperture and its design, is necessarily beavier than the three-prism spectrograph and some changes were necessary in the arrangement of the counterweights for balancing. As will be seen from Figs 2 and 5, the centre of mass is considerably to the left of the optical rays, and in order to properly balance in declination, weight would have to be added to the opposite side of the tube near the object glass. Consequently rods for earrying weights were attached to both north and south sides of the tube near the objective, and the telescope can now be easily placed in good balance whatever attachment is used.

A counterweighted stand for attaching and detaching the new spectrograph, and for carrying it when not in use is provided. It is of quites similar construction to that used with the previous instrument, and allows the spectrograph to be fastened to the telescope in about a minute. With the separate relay box and set of plug contacts, both spectrographs may be maintained at constant temperature, and the change from one prism to three prisms or vice versa made in two or three minutes without disturbance of the temperature regulation in either case.

There will now be given the results of the tests of the new 'Single Material' and the 'Ross Special Homocentric' lenses, and, for completeness, the whole paper, as it will later be published in the Astrophysical Journal, will be given.

CAMERA OBJECTIVES FOR SPECTROGRAPHS.

It is well known that the camera objectives in general use in stellar spectrographic work have a very limited field of good definition, not exceeding in general 2° , while covers, in the usual dispersion of three prisms, about 200 tenth-metres. While this is a sufficient range for spectra of the second type, which are rich in lines, it is not sufficient for early-type spectra which may contain only one or two lines in this region, and in which, consequently, the errors of measurement will be high. As practically

the whole photographic region of the spectrum, H_β to K, may be obtained in one exposure with either refractor or reflector, it is evident that a considerable gain in the measurable material in such spectra would be obtained, without increase in exposure time, if a camera lens giving a considerably wider field were available.

Various attempts at the solution of this problem have been made, of which the most successful known to me is that described by Hartman.⁸ This objective made by Zeiss, known as the 'Chromat,' is constructed of the same material as the prisms, and is composed of two simple meniscus elements, one positive, one negative, separated by a small air space. As there is no chromatic correction the spectra are brought into focus by inclining the plate towards the violet about 10° from the normal to the axis with a dispersion of three prisms. According to Hartmann this objective gives a flat field of 11°. A Zeiss 'Chromat' has been in use in Ottawa for considerably over a year, entirely fulfilling expectations and giving, after slightly increasing the separation of the elements, the whole field used, from H_2 to $H\delta$ (about 8°), almost absolutely flat with excellent definition. There can be no doubt that the field would extend forther if necessary.

Unfortunately, as was learned upon inquiry from Zeiss, this type of objective cannot be successfully made of a larger angular aperture than about 172. This was confirmed by the performance of a shorter focus lens of the same type (aperture ratio 63) constructed by Brasheav which gave inferior defailtion. More recently, however, Ross Limited, London, have designed and constructed especially to conform to our requirements a lens similar in form to their 'Homocentric' consisting of four separated elements, but following the principle of the 'Chromat' in being entirely made of the prism material and consequently requiring inclination of the plate to bring the spectrum into focus. This lens, which will be more fully discussed later, gives, at an aperture ratio of 5-6, excellent definition and a fat field. The above remarks apply to a dispersion of three prisms for which this type is especially adapted. If it were used with one prism, in addition to the limitations as to aperture, the plate inclination required (about 50°) would be inconvenient and practically inadmissible in radial velocity work.

There are consequently required short-focus objectives giving a flat field with three prisms, and objectives giving a flatter field than the regular triplet with a single prism. This need, together with what had already been accomplished by Hartmann and Zeiss, was laid before the J. A. Brashear Co. who, with their usual willingness, put their best efforts at our disposal and, in collaboration with Prof. Hastings, produced two eminently successful objectives. In both of these the employment of one kind of glass only is followed, although not, as in the 'Cbromat,' of the same material as the prisms, and the consequent chromatic differences in focus are overcome by inclining the plate. The objective first produced, to which they have given the name 'Single Material' is composed of two widely separated positive elements of crown glass of the lowest dispersion and is especially adapted for use with one prism, giving exquisite defiuition and a field flat within 0.1mm. over the whole visible and considerably into the ultra-violet spectrum. The other is similar to the 'Chromat' in form but made of light crown glass, giving also a flat field and good definition with three prisms with a plate inclination of only slightly over half that of the 'Chromat,'

The limiting aperture ratio of the former of these objectives is about f8, of the latter f12, so that evidently they can not supply the need of short-focus lenses of f6 or thereabouts for either single or three-prism work.

The only prospect of success in this respect scemed to lie in some of the modern anastigmat photographic leuses, and a number of different makes were accordingly obtained for trial. The definition of several of these, though good enough for ordinary

^{*} Zeitschrift für Instrumentenkunde, September, 1904.

photographic work, would not stand the critical test of spectrum photography owing probably to some residual spherical aberration. Two, however, the Ross' Homocentric' and the Zeiss' Tessar,' gave good definition and the forms of their fields were accordingly determined.

It may not be out of place to give a brief description of the method employed in determining the folds of the two lenses texted. The dispersion for eight of them was produced by the Ottawa spectrograph, having the following optical constants.—Hastings "Isokumatic" collinator objective of 35mm, negruter and 35mm, focus; one or three prisms of Jena glass O. 102, angles 63° 50° each; ray at minimum deviation J4415. Two of the objectives were stead with a new single-prism spectrograph having 'Isokumatic' collinator of 51mm, aperture and 763mm, focus, O. 102 prism of angle 63° 30°, ray at minimum J4235.

The positions of focus in different parts of the field were determined by a modification of Hartmann's method* of extra-focal exposures. By means of a revolvable semi-circular diaphragm behind the collimator lens and an occulting diaphragm in front of the slit, a narrow strip of spectrum, photographed through the half of the prisms near the refracting edge, was placed between and touching two narrow strips made through the base half of the prisms. Evidently, when the plate is in the focus of the camera lens for any particular line in the spectrum, the adjacent portions of this line will be continuous, while, if not in focus, the central section will be displaced to red or violet of the outside sections, the direction and magnitude of this displacement giving a measure of the position of the focal point for the line in question. Two such plates, one inside and one outside the focus, will suffice to determine the torm of the field. In order to avoid the labour of measurement and computation and on account of the diffuseness of the lines and consequent inaccuracy of measurement. when the plate is more than a millimetre from the focus. I have generally preferred to make a number of spectra, by the method outlined above, at camera settings about 0.25mm, apart within and without the focus. Five of these have in general sufficed to determine the focal curve and, as the camera back can be moved laterally, they can all be made on one plate, thus allowing ready comparisons. Simple inspection of these spectra under a microscope or even by a hand magnifier enables the focus of any line to be determined to about 0.05mm, by observing at which of two successive spectra the central section has opposite displacements with respect to the outside sections. Interpolation to the above accuracy can then generally be made. This takes only one-tenth the time and is probably equally as accurate as the method of measureing the lisplacements and computing the distance from focus. I may say that the camera setting in our regular work is always determined in this way, enabling the plate to be certainly placed considerably within 0.1mm. of the true focus.

This method is probably open to the objection that it will not give the true focal point when the system has aberration, but it must be remembered that, to prevent systematic displacements in radial redocity work due to non-uniform illumination of the collimator objective, this method, which determines the focus by the absence of such displacement, is certainly the one that should be used. Moreover, in this case tests at full aperture, so far as the focus can be determined by definition, confirmed the results of the former method, and there is no reason to doubt the accuracy of the focal curves determined.

^{*} Zeitschrift für Instrumentenkunde, 24, 1, 1904.

The following ten lenses, given in the order of procuring and testing, were tested for their curvature of field.

Number	Objective.	Aperture.	Focal Length.	Tested with dispersion of
1	Brashear Single Material.	45	525	1 Prism, 3 Prisms.
2	Zeiss Chromat.	40 45 40 48 45 45 45 57 57	525	3 Prisms.
3	Ross Homocentric	-40	254	3 Prisms.
4	Zeiss Tessar	48	305	3 Prisms.
	Brashear Light Crown	45		3 Prisms.
6	" Telescope Flint	45		3 Prisms.
6 7	" O, 102 (" Chromat ")	45	375	3 Prisms.
8	" Triplet	57	480	New 1 Prism, 3 Prisms.
9	". Single Material	57	457	New 1 Prism.
10	Ross Special Homocentric	40	254	3 Prisms.

OBJECTIVES TESTED FOR FIELD.

The form of field of each of the lenses is given in the accompanying figures where the horizontal lines represent differences of focus of one millimeter, the wave length and angular distance from the optical axis are shown by the vertical lines, and the diameters of the circles representing the observed points are 0.2mm. Wherever the curves are not horizontal indicates that the inclination of the plate holder required changing slightly, but this of course has no effect on the form of the field. In order given in the above table has been changed and those of longer focus used with a dispersion of there prisms will be first considered (Fig. 6).

Brashear Single Material (No. 1.)

This consists of two simple converging lenses, the front double convex, the rear convex menices, of crown glass of lowest index, separated by nearly one-third the focal length. As will be seen later, this objective gives a beautiful field with one prism, but is strongly concave towards the lens with three prisms, with about the same curvature of field as the regular Hastings Triplet. The inclination of the plate towards the violet is slightly over 5° . Allowing deviation from focus of 0-Imm., slightly over 2° of field is usable.

Zeiss Chromat (No. 2).

This consists of two strongly curved meniscus elements of Jena glass O. 102, the front diverging, the rear converging and of about half the focus of the combination. When received it gave a field convex towards the lens as shown in the upper curve. When the separation between the elements was increased from 2.25 to 4.5mm, the field became almost absolutely flat over the whole 8^o, giving at the same time excellent definition. Inclination of the plate towards the violet about 10^o.

Brashear Light Crown (No. 5).

This is a lens of the same form as the 'Chromat' except that it is made of light grown glass. With the original separation the field was concave but became flat on decreasing the separation from 4-8 to 3.2mm. This change in separation resulted in loss of definition grower. The objective was re-figured at the new separation and gree good definition and field flat over practically the whole range. Inclination of plate to the violet about 9° .

DEPARTMENT OF THE INTERIOR

Brashear Telescope Flint (No. 6).

An objective similar to the previous one only made of telescope flint glass. The field was originally convex but became flat on increasing the separation from 4.8 to 7.9mm. Refiguring did not give so much improvement as in the light crown objective. Field is now practically flat. Inclination of plate to the violet is about 13.5° .

Brashear Triplet (Hastings) (No. 8).

This is a lens of the same type as used in the Milk, Brace and Lovell spectrographs. The field is, as shown, strongly concave towards the objective with a usable portion, allowing deviation of 0-1mm, of about 2.5°. The definition at the centre of the field is about the same as in the 'Chromat,' but towards the margins even when in focus is much inferior.

All the above objectives are of relatively long focus, small angular aperture, about f 12, tested with dispersion of three prisms. Let us now examine the fields given by shorter focus objectives, using the same dispersion (Fig. 7).

Ross Homocentric (No. 3).

This standard photographic objective gives good definition but a strongly concave field. An increase in separation from 59 to 124mm, appears to flatten the field, but at the expense of defining power and the lens is not usable at the increased separation. Useful field is not more than 2°.

Zeiss Tessar (No. 4).

This objective was one of the standard form taken from the stock of Bauseh and Lomb. It gives good definition and a 640 very slightly convex. This convexity is removed by an increase in separation from 41.0 to 41.7mm, but with a slight loss in defining power, so that it is probably preferable to use it at the normal separation. Another lens of the same series, aperture, and focus was tested, giving practically the same field but considerably poorer definition. This is of interest as showing the differences between the performance of two objectives presumably identical and indicates the desirability of specially selecting and testing the lens to be used from a number.

Brashear O. 102 (' Chromat') (No. 7).

This objective of the same type and material as the Zeiss Chromat but of larger angular aperture, gives a field nearly flat with a separation of 6-3mm, but with poor definition even after refiguring. This shows that this type can not be successfully constructed of larger aperture ratio than f11, say. Inclination of the plate to the violet about 16° .

Ross Special Homocentric (No. 10).

This objective was, by the kindness of the makers, Messrs, Ross, Limited, especially computed and constructed for us. It has an aperture ratio of $f_0.5$, is of pratically the same form as their Homocentric, but with all four elements of 0. 102 glass. It gives heautiful definition and a field nearly flat, usable over S^* . Change of separtion is without appreciable effect on the form of field. Inclination of plate to the violet about 10°.

Two types of objectives of medium and long focus have been tested with a dispersion of oue prism (Fig. 8).

25a-p. 174

PLASKETT-ASTROPHYSICS.

25a-p. 174

Brashear Single Material (Nos. 1 and 9).

Both of these objectives, whose form was described above, are of the same type, No. 1 of an aperture ratio ($11.5_1 > N_0$, 9.7_6 . When used with three prisms the give the strongly concave field shown in Fig. 6, but with a single prism the field is almost absolutely flat over the whole range of visible and as far into the ultra-violet spectrum as the prism will transmit. The definition given is excellent and the objectives leave nothing to be desired for single-priva work. The inclination of plate to the violet is about 16°. I am gluid to express here my appreciation of the efforts, as well as any admiration for the skill of Mr. McDowell in figuring these objectives. As both components are converging, the only means of removing the positive splerical aberration is by departure from spherical surfaces. While, as Mr. McDowell says, this was comparatively easy for No. 1, of the smaller angular aperture, it taxel even his skill to remove it entirely in the other, and it was only after a second trial and the use of a special device that the objective was finally made perfect.

Brashear Triplet (No. 8).

This, as with three prisms, gives a field concave towards the objective but with considerably less curvature. The usable field is somewhat over 2°. Definition good.

The final results of the investigation may be summarized as follows :---

For a dispersion of three prisms with a camera of fairly long focus two objectives are much superior to the others, the Zeis* Claromat' and the Brashear Light Crown. The former gives a flatter field and slightly better definition than the latter, but on the other hand the smaller plate inclination of 3° instead of 10° and the smaller absorption of the Brashear are an advantage. The definition of either of these is fully equal to the regular triplet in the centre of the field and much superior at the margins.

For short-focus lenses with three prisms both the Zeiss 'Tessar' and the Ross 'Special Homocentric' give good definition and flat fields. The Ross can be used of shorter focus than the Tessar, and gives exquisite definition, but the field of the Tessar is flatter and the plate is normal to the axis.

In single-prism work the Brashear 'Single Material' is much superior to the type of Triplet usually employed, both in definition and extent of field and can not be surpassed or even equalled for its purpose.

MEASUREMENT AND REDUCTION OF STELLAR SPECTRA.

With the exception of some plates measured on the spectro-comparator, which will be fully described below, all of the measurements have been made with the Toepfer microscope, and reduced by the modified Hartmann method previously described and explained. When the new single-prima spectrograph was brought into use it was found necessary to obtain tables, similar to those previously prepared, for the reduction of the spectrograms.

As before, plates of the comparison spectrum were made at three temperatures, as far separated as the time and season would permit, and these plates were measured.

From these measures the constants of the Hartmann interpolation formula $\lambda - \lambda_{e} = \frac{c}{c}$

were computed, using as the three standards different sets of lines, for the purpose of determining which would give the best agreement over the whole range of spectrum. It was not thought necessary, after the work of Mr. McLean, described in the 1907 report, to use the complete formula,

$$s_{2} - s = \frac{c}{(\lambda - \lambda)a}$$

as he showed that with the previous single-prism instruments, the best agreement was given when a = 1.

25a - 14

It was found that standards chosen at the middle and near the ends of the spectrum gave the best agreement on the whole and these, with the measures corresponding and the constants for the three temperatures, are given.

				· · · · · · · · · · · · · · · · · · ·		
Temp. C.	$\underbrace{\frac{4864\cdot943}{s_1}}$	$\frac{4341\cdot 162}{s_2}$	3930-450 83	×,	log e	h.
2.8. 8.6. 15.6.	75-9840 75-9851 75-9557	50.9383 50.9168 50.8696	20.5074 20.4543 20.3763	$176^{\circ}9410$ $176^{\circ}9954$ $176^{\circ}9751$	5+4249320 5+4250393 5+4248560	2229 · 851 2230 · 595 2231 · 943

TABLE OF CONSTANTS.

Forming the differences between the s'e and the log. of the ratio we have:

Temp. C.	\$1-82	82-83	s1-s2	$\log \frac{s_1 - s_2}{s_1 - s_3}$
$ \begin{array}{c} 2^{\circ}8\\ 8^{\circ}6&\\ 15^{\circ}6 \end{array} $	$25^{\circ}0457$ $25^{\circ}0683$ $25^{\circ}0861$	30 · 4309 30 4625 30 · 4933	55+4766 55+5308 55+5794	9 65462 9 65459 9 65452

The changes in these differences and in the log of the ratio are only about half those given with the other single-prims spectrograph. This is undoubtedly due to the fact that the camera setting remains unchanged with change of temperature in the new instrument, and, consequently, only the change in the angular dispersion appears, instead of that due to angular dispersion plus that due to increase in distance of the focal pluse from the camera objective.

Averaging up the differences as far as possible, an increase of temperature of 1°C, increases $s_1 \cdots s_k$ by -008 revolution, and diminishes $\log \frac{s_1 - s_1}{s_1 - s_2} by$ -0001.

Forming an arbitrary series with these differences from the last two columns of the previous table, keeping them as close as possible to the observed values and computing 2nd and 3rd columns we have for differences of 10°.

Temp. C.	s1-s2	\$2\$3	$s_1 - s_{\tilde{s}}$	$\log \frac{s_1 - s_2}{s_1 - s_3}$
- 10	25.0070 25.0376 25.0681 25.0985	30.3675 30.4169 30.4664 30.5160	$55 \cdot 3745$ $55 \cdot 4545$ $55 \cdot 5345$ $55 \cdot 6145$	9 65475 9 65465 9 65455 9 65455 9 65445

Again, taking the arbitrary equidistant values of s, for these four temperatures, which make the micrometer reading for the iron line at minimum deviation \(\lambda\)4325-9

as near as possible to 50.0000, we obtain the following values for $s_1 s_2 s_3$ and from them the three constants of the formula:—

Temp. C.	\$ ₁	\$2	83	<i>s</i> ₀	log o	λ,
- 10. 0. + 10. + 20.	$75^{\circ}9260$ $75^{\circ}9516$ $75^{\circ}9891$ $76^{\circ}0205$	50 9190 50 9200 50 9210 50 9220	$20^{\circ}5515$ $20^{\circ}5031$ $20^{\circ}4546$ $20^{\circ}4060$	176 9129 176 9736 177 0327	5 4250327 5 4248342 5 4246277	2229 197 2231 163 2233 137

From these constants were computed the micrometer readings for all the star and comparison lines employed, and in addition the velocities corresponding to one revolution of the micrometer screw for each star line. This latter is obtained by differentiating the dispersion formula and applying Doppler's principle resulting in

$$v = \frac{299860}{\lambda} \cdot \frac{(\lambda - \lambda_o)^2}{c}$$

The velocities per revolution, as compared with those for the original single prism, are given for a few lines below to give some indication of the difference in dispersion.

Velocities per Revolution.

Temperature + 10°C.

Wave Length.	Old One Prism.	New One Prism.
4861.527	1454.4	1604.5
4713.308	1336-6	1473.7
4549.766	1209.0	1332.1
4481.400	1156.5	1273.9
4395.286	1091.1	1201.3
4340.634	1050.1	1155.8
4260.640	990-6	1089.9
4202.161	947.7	1042.3
4143.928	905.4	995.4
4101.890	875.2	961.9
4026.352	821.5	902.4
3970.177	728.1	858.3
3933-825	756.0	830-9

These velocities show that the new instrument has very approximately ten per cent less linear dispersion than the old. This, of course, is due almost entirely to the shorter focus camera lens used, as the prisms are nearly alike and the angular dispersion similar.

The Spectro-comparator.

The Spectro-comparator, which was briefly referred to in my last report, has not been used except on a few plates of *B* Genemorum more to test the capabilities of the instrument than for the purpose of obtaining definite measures of the velocity of this star. Before giving these measures, however, it may be well to shortly describe the instrument, its principle and the methods of measurement. These have been very fully described by its inventor, Dr. Hartmann, in the publications of the Astrophysical Observatory of Potsdam, Volume XVIIL, Part 1, and consequently need not be gone into in great detail here.

The principle of measurement depends upon the direct comparison in a special form of double image microscope of the star spectrum, whose velocity is required with a standard spectrum of the sun, whose velocity at the instant the spectrum was made.

25a-141

can be readily computed. The difference in the displacements of the star and the sun lines with respect to the same metallic comparison lines on each plate is measured by metres by multiplication by a known or easily computed constant. By adding to this radial velocity that of the sun with respect to the earth, with the proper sign, we obtain the velocity of the star with respect to the earth, and this can be readily reduced to the sun in the well known way.

The instrument of which a photograph is shown in Fig. 9 and diagrams in Figs. 10 and 11 was constructed by Zeiss in a very workmanlike manner. It consists essentially of a table T, Fig. 10, which carries at E_i and E_i the standard solar and the star spectrum respectively, and of a single coultard could could be observed carried above the table on the bracket E_i Fig. 11, which combines and compares the images of the two spectra.

The table T, which as Fig. 11 shows, is inclined at 45° to the horizontal for convenience in measuring, slides at its lower portion on the steel cylinder Z 35mm. diameter and at its upper part on the steel bar J. It is moved on these bearings over a range of 12cm, by rack and pinion of which the knurled wheel is shown at K and is clamped in any position, read off on the scale and vernier N, by the clamp screw near K. At the upper part of the table a carriage B_{s} slides transversely in ways, adjustment being made by the screw G, while a secondary carriage $A_{,,}$ having a slit 1cm. wide and 12cm, long, through which the star spectrum is illuminated by the plane mirror shown in Fig. 11 is oriented by the tangent serew D, and the opposing spring F_{z} , so that the spectrum, clamped on it may be placed parallel to the motion of the table T. The carriage B., which carries the standard or fundamental solar spectrum, has an orienting table A_{i} , adjusted by the screw D_{i} and spring F_{i} , and slides in ways parallel to the motion of the table T. It is moved by means of the micrometer screw S of 0.5mm. pitch, having a range of movement slightly over 2cm. The head is divided into 100 parts so that the movement of the sun spectrum can be read direct to 0.005mm, and estimated to 0.0005mm.

The double microscope, Fig. 11, by which these two spectra are observed is supported by the bracket R on which the arm R, slides, moved by the server M, the position being read on the scale W. The tubes carrying the objectives Q, Q, are statched at a fixed distance from one another to a plate L, movable in ways on the arm R, by the serve Q. At the upper ends of the objective tubes, which are porvided with rack and pinion movement for focussing, are the prisms P, P_z , which reflect the light from the spectra on E_z and E_z to the compound prism P_z , P_z . On the hypothenuse of the prism P_z is a surface silvered in the form shown in Fig. 12, and the two prisms are them

Fig. 12.

cemented together with Canada Balsam. The proper proportioning of the widths of the silver strips enables one to see, on looking through the eyepiece, a narrow strip of

Fig. 10.

F16. 11.

star spectrum between and touching two strips of sun spectrum, and also on either side a narrow strip of the star comparison between and touching strips of sun comparison spectrum. The compound prism P_*P_* , with the eyepiece, is carried on a slide U moved by rack and pinion V_* so that the distance between the eyepiece and the objectives and consequently the magnification of the two spectra may be changed at will. This is to enable them, even though of different dispersions, to be made apparently identical in the field and hence readily and accurately comparable.

The adjustment of the spectra on the machine is a comparatively simple matter, only taking a few moments. The standard or fundamental solar spectrum usually made on a lantern or process plate in order to obtain sufficient contrast, is placed on its carriage, and elamped by a pair of spring microscope clamps. The carriage is then movel by the pinon K until the centre of rotation of the orienting arrangement is directly under the microscope 1, which is in this case at the reading 132-3 on the scale N.

The whole microscope system is now moved by the serve Q until the solar spectrum is centrally situated with respect to the central silver strip in the field. By moving the carriage back and forwards the spectrum can be rapidly oriented. The star spectrum may be similarly oriented while it is made central by the server G. There then remains only to adjust the magnification of the separate spectra, the comparison lines of the two appear coincident in the whole extent of the field of view. By moving the ocalar by the rack and pinion V, the magnification of one spectrum is increased and of the other decreased. This will evidently disturb the focus, but this can be easily corrected by adjusting the objectives O_{i} and O_{i} by their focussing servers seen in Fig. 9. This will again slightly change the magnification and the process may need to be repeated, but a little practice scon enables one to equalize the apparent dispersion very quickly.

Before making any measurements it is necessary to divide the fundamental solar spectrum into regions, indicated by small ink dots, and numbered for identification. These regions are so chosen that there is a slight overlapping of the field in adjacent regions with the magnification to be employed. The dots, which are brought nucler the wire in the measurement, are placed, as nearly as possible, in the centre of a group of good solar lines and at the same times on that the field includes a number of good comparison lines. The regions selected in a series of good fundamental solar spectra made on May 14, 1906, on Seed process plates are given in the following table. In addition in the third column of the table are given the velocities corresponding to one revolution of the micrometer servew. These velocities were computed from the measurement of lines on the fundamental spectrum by the micrometer serve of the comparator. These linear measurements were used to obtain the constants of the Hartmann formula, and from these constants the velocities corresponding to the wave length of each region were computed.

CONSTANTS OF FUNDAMENTAL SPECTRA, 1519-1526.

Exposed May 14, 1908.								
No. of Region.	Wave Length.	Vel. per Rev. S.	No. of Region.	Wave Length.	Vel. per Rev. S.			
1	$\begin{array}{c} 4867\cdot 0\\ 4867\cdot 0\\ 4754\cdot 0\\ 4759\cdot 6\\ 4669\cdot 0\\ 4669\cdot 0\\ 4628\cdot 7\\ 4559\cdot 2\\ 4554\cdot 6\\ 4523\cdot 9\\ 4492\cdot 0\\ 4492\cdot 0\\ 4492\cdot 6\end{array}$	$\begin{array}{c} 582 \cdot 1 \\ 555 \cdot 4 \\ 531 \cdot 9 \\ 512 \cdot 0 \\ 494 \cdot 0 \\ 459 \cdot 1 \\ 443 \cdot 2 \\ 429 \cdot 7 \\ 445 \cdot 7 \\ 415 \cdot 7 \\ 401 \cdot 7 \\ 388 \cdot 3 \end{array}$	14 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 5. 	$\begin{array}{r} 4374 \cdot 5 \\ 4346 \cdot 5 \\ 4322 \cdot 8 \\ 4218 \cdot 2 \\ 4273 \cdot 3 \\ 4249 \cdot 9 \\ 4226 \cdot 8 \\ 4206 \cdot 0 \\ 4184 \cdot 3 \\ 4157 \cdot 2 \\ 4139 \cdot 5 \\ 4117 \cdot 8 \end{array}$	364 · 2 352 · 1 341 · 8 331 · 1 320 · 4 300 · 6 291 · 7 282 · 1 271 · 2 263 · 4 255 · 7			
13	4402.1	376-2	26	4099.0	246 7			

$$\text{Log } f = \log_{10} \frac{1}{9.8 \times 1}$$

Region.	3	4	5	6	7
13. 14 15. 16. 17. 18. 20. 21. 22. 23. 24. 25. 25. 25. 26. 27. 27. 28. 29. 29. 20. 20. 20. 20. 20. 20. 20. 20	$\begin{array}{c}1&17577\\1&13813\\1&10239\\1&06833\\1&03576\\1&00457\\0&97452\\0&94533\\0&91718\\0&88998\\0&86348\end{array}$	$\begin{array}{c} 1 & 24332 \\ 1 & 20095 \\ 1 & 16116 \\ 1 & 12355 \\ 1 & 06786 \\ 1 & 05385 \\ 1 & 02139 \\ 0 & 99028 \\ 0 & 95996 \\ 0 & 93098 \\ 0 & 90283 \\ 0 & 87555 \end{array}$	$\begin{array}{c} 1:37646\\ 1:32312\\ 1:27409\\ 1:22877\\ 1:18647\\ 1:16647\\ 1:10914\\ 1:07349\\ 1:03958\\ 1:00710 \end{array}$	$\begin{array}{c} 1.42045\\ 1.36175\\ 1.30846\\ 1.20661\\ 1.21436\\ 1.121436\\ 1.11207\\ 1.13236\\ 1.00483\\ 1.05928\\ 1.02535\\ \end{array}$	$\begin{array}{c} 1 \cdot 47137 \\ 1 \cdot 40594 \\ 1 \cdot 34727 \\ 1 \cdot 29412 \\ 1 \cdot 24333 \\ 1 \cdot 20008 \\ 1 \cdot 15784 \\ 1 \cdot 11815 \\ 1 \cdot 08072 \\ 1 \cdot 04514 \end{array}$

The magnification of the two spectra may be varied between about 10 and 40 fold by means of two pairs of objectives and three oculars. Moreover, by suitably varying these the silver strips on the prism may be varied in apparent width to suit star spectra of different widths. It has been found that a magnification of about 20 seems to give better and easier measurements than either higher or lower powers, and it has generally been used, although tests have been made with different powers.

When the plates have been adjusted as described above, the line in the centre of the field is set on the dot towards the red end at which it is deemed advisable the measurement should begin. This is determined by the appearance of the star spectrum and of its comparison lines. It has not been generally taken lower down than No. 5 at wave length \$4669, as below that the comparison spectrum is not so good and no gain in accuracy would result. Towards the violet end the measurement is carried until the star spectrum becomes too weak for accurate comparisons, frequently about dot 20, wave length λ 4227. However, in a well exposed star spectrum the measurement could be extended over the whole range on the plate from H_{β} to H_{δ} , although in my opinion nothing would be gained in accuracy by such procedure over that obtained by the use of a less number, say 12 or 15 regions. The measurement proceeds according to a regular scheme of alternation of star and comparison settings.

so that at each region there are two settings on the star and two on the comparison lines, one by forward and one by backward rotation of the serew in each case. As soon as the measurement is completed, both star and fundamental spectra are reversed on the machine to overcome personality in the settings and the same regions are again measured.

It has been my experience that the most difficult part of the measurement is the determination of the point of coincidence of star and fundamental spectrum. Although with solar type stars of a considerable range in type, there is so little difference in the lines as to cause no trouble, nevertheless there are frequently apparently accidental irregularities in some of the lines in a region which render it difficult to determine the exact point of coincidence. The field extends over a considerable angle, and the eve can only observe at the most two or three lines at a time. These may be brought into the best coincidence, while lines in another part of the field may be better suited by a slightly different setting, and the best average is sometimes troublesome to obtain, These irregularities are chiefly due. I think, to irregular deposition of the silver grains in the comparatively coarse structure of the fast plates, to local distortions of the photographic film, to possibly non-uniform intensity of the star spectrum throughout its width and to other causes of a similar nature rather than to constant differences in the spectrum of star and sun. Such differences can be noted in the case of some lines, but these seem to be few compared with the accidental deviations observed. This difficulty does not exist to so great an extent with regard to the emission lines. Provided the comparison spectra are of nearly the same intensity, coincidences can be easily, quickly, and accurately obtained. The accidental deviations observed in the apparent positions of star lines serve to explain the comparatively high residual sometimes obtained in the direct measurement of good lines in solar type spectra.

After the measurement is completed the reduction of the separate measures to velocities is a simple matter. The difference in the settings for coincidence between emission and absorption spectra, multiplied by the velocity per revolution at the region under consideration gives the velocity at once. These differences are, however, tabulated for both positions of the plate, and the mean of the two for each region multiplied by the velocity factor gives the velocity for the region, while the velocity for the plate is obtained from the mean of the regions.

This considers all the regions as of equal weight, whereas such is not the case. In some parts of the spectrum the lines are more numerous or of better quality, and moreover as the dispersion increases, as we go town'ds the violet, greater weight should be given. There are then two courses open, to give weights according to the quality of the regions, increasing these as we go towards the violet, or to give weights proportional to the dispersion. The latter method is much simpler, and should give practically the same values as the more complex method and better values than the simple mean. Moreover, Hartmann has developed a very simple method of obtaining the velocity from the differences. If we call the differences with red to right d_i and with red to left d_i , then the mean $d = \frac{1}{2} (d_i + d_i)$, which multiplied by the velocity from t_i and t_i and t_i is the vielt is projectional to $\frac{1}{2}$, and hence the

weighted mean velocity can be very simply represented by $\frac{2d}{s}$. As $d = \frac{1}{2} (d_i + d_i)$ we

can avoid taking the means of the differences by changing it to $\frac{\mathbf{X}d_1 + \mathbf{X}d_2}{2|\mathbf{X}|_1^2}$. If we take

the velocity values per revolution of the fundamental spectrum and form the expressions log $\begin{pmatrix} 1\\ 2 & 5 \end{pmatrix}$ between all the regions which are likely to be used, the only pro-

cedure necessary to obtain the weighted mean velocity is to add all the differences together and add to the logarithm of the sum the tabulated value of the above expression. To the velocity of which this sum is the logarithm, must be added the computed radial velocity of the sum whon the spectrum was made, and we have the radial velocity of the star with respect to the earth, which reduced for diurnal and annual motion will give us the velocity with respect to the sum.

As mentioned previously, onty a few plates of β Geminorum made with the threeprism spectrograph have been measured, principally as a test of the capabilities of the instrument. It can practically be used only with spectra of the second and third classes, those with numerous well defined lines, allied to the spectrum of the sum. Our single-prism spectrograph has been almost entirely employed on stars of carly type spectra, which can not be economically or accurately measured with the spectrocomparator. However, work on some solar type spectroscopic binaries with a short focus camena on the three-prism spectrograph is about to start, and for the measurement of such spectra the comparator is especially suited.

One spectrum of β Geminorum No. 1373, of only moderately good quality, was selected as a test plate and has been measured fifteen times with different fundamental spectra, different arrangements of objectives and oculars and with two different ocular prisms.

The measures and their summary given below enable an estimate of the accuracy obtainable in measurement to be formed. Further ten additional plates of β Geminorum have been measured with constant conditions in the comparator, which enables an estimate to be formed of the instrumental errors to be expected in the making of the spectra. These also with a summary are given below:—

β GEMINORUM 1373.

Solar Standard 1360.

					leasurer)
Region.	d_1	d_{2}	đ	Ē.	
7	053	049	.052	24.84	-0.06
8	47 53 55	48	48	22.18	-2.60
9	53	54	53	24:01	-0.77
10	55	51	53	23.53	-1.25
11	60	51	55	23.87	-0.91
12	50	48 57	49	20.58	- 4 20
11 12 13	64	57	61	23 · 53 23 · 87 20 · 58 25 · 07	- 0.29
14	65	65	65	26 · 32 24 · 68	- 1.54
15	64	60	62	24.68	~ 0.10
16	64	62	63	24:57	- 0 . 21
17	67	66	66	25.34	0.56
18	72	73 69	73	27.45	- 2.67 - 2.23
19	18	69 1	73	27.01	- 2.23
20	19	14	20	27.51	-2 73
21	70	13	72	25.56	- 0.78
22	14	73	13	25.33	- 0·55 - 0 84
23	11	05	10	23.94	-0.84
29	21	45	10	24 38	-0.98
20	64 67 72 78 79 70 71 71 71 71	$ \begin{array}{r} 74 \\ 73 \\ 73 \\ 68 \\ 71 \\ 75 \\ 78 \\ 76 \\ 90 \\ 90 \\ \end{array} $	66 73 76 72 73 73 73 73 73 80	27,45 27,01 27,51 25,56 23,94 24,38 23,80 23,91 24,48 26,40	-1.13
07	84		20	01:10	+0.30
26	85	60	99	26:40	-1.62
29	91	91	88 91	26.57	1 79
30	87	71	79	22:51	-2.26
15 16 17 19 20 21 22 23 24 25 26 27 26 26 27 26 26 27 30 31	87 89	71 90	89	24 03	- 0.75
	1758	1683	Mean	24 78	

$$\Sigma d = 3441$$

 $\begin{array}{rll} \log &=& 53668\\ \log f &=& 85865\\ \log (\mathrm{V}s\text{-}\mathrm{V}o) &=& 1^\circ39533 \end{array}$

V = + 2.93

$$V_8-V_0 = -24^{\circ}85$$

 $V_0 = -0.21$
 $V_a = -21.97$
 $V_a = -0.16$

r= ± 1.10

Observer | J. S. P.

DEPARTMENT OF THE INTERIOR

9-10 EDWARD VII., A. 1910

3 GEMINORUM 1373.

Solar Standard 1461.

Observer | J. S. P. Measurer | J. S. P.

Region	d_1	d ₂	đ	V	Ū.	
1	·049	051	.020	24.90	-0.35	
2 3	49	51	20	24·21 22·61	± 0.37	
3	48	47	48	22.61	-1.97	
-1	48	31	49	22.56	-2.02	
5	50	55	53	23.84	~0.74	
	54	51	52	22.85	+1.23	
6 7 8	52 57 59	53	53	22.76 23.88	-1.85	
8	57	57	57	23 88	+0.20	
9	59	63	61	24.99	-0.41	
10	64	62	63	25.21	- 0.65	
11	66	65	65	25.43	-0.82	
11 12	68	65	66	25.25	- 0.67	
13	70	67	69	25.87	-1.29	
10	68 70 73	70		26:04	- 1 46	
14 15	64	70	67	24.02	-0.53	
1.0	69	7.2	71	24.94	- 0 36	
10	70	#0 #0	70	24.80	-0.22	
14	10	40°	-0	24.60	- 0.02	
16 17 18 19	17		7.1	24.43	+0.12	
20	10	70 70 72 72 74 80	71 67 71 73 74 79 81 79	25.55	-0.97	
20	10	02	10	25.62	-1.04	
21	83	80	21	24:47	- 0.11	
22 23	68 72 74 76 82 78 83 85 85	80	84	25 45	- 0.30	
23	80	84 87	84 83	20 48 24 68	-0.10	
24 25	78 93	81 82	83	25.55	-0.52	
25	93	82	88	20'00	-0.97	
	1652	1638	Mean	24-58		
	1002	1008	Mean			

$$\Sigma d = 3310$$

v

$$V_{o} = V_{o} = + 24.63$$

 $V_{o} = - 0.52$
 $V_{a} = - 21.97$
 $V_{d} = - 0.16$

 $\begin{array}{rl} \log &=& 51983\\ \log f = & 87155\\ \log \left(\mathbf{V}_{s}\text{-}\mathbf{V}_{o} \right) = 1^{+}39138 \end{array}$

 $r = \pm 0.71$

V = +3.02

.

β GEMINORUM 1373.

Solar Standard 1461.

Observer $\frac{1}{j}$ J. S. P. Measurer $\frac{1}{j}$ J. S. P.

Region.	<i>d</i> 1	d_y	d	r	e .
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 17 19 9 20 21 22 23 24 25	84444444499489448944944445 8444444444994894848644445	251 282 4년 28 31 28 2	033 44 99 30 60 63 60 63 60 63 60 63 64 76 82 76 75 78 80 86	34:96 22:10 22:10 22:19 23:95 24:58 24:21 23:47 24:10 24:10 24:10 24:10 24:10 24:10 24:10 24:16 24:16 24:16 24:16 24:16 24:17 24	$\begin{array}{c} -1.166\\ +1.180\\ +2.37\\ +2.37\\ +2.37\\ +1.164\\ +2.37\\ +1.164\\ +0.033\\ -0.201\\ -0.1031\\ +0.131\\ +0.131\\ +0.131\\ +0.033\\ +0$
25	91 1526	82 1503		24 97 +23 90	-0.01

185

β GEMINORUM 1373

Solar Standard 1462.

Observer Measurer } J. S. P.

(egion);	- 4	d_{x}	d	r	P
4 5 6 7 7 8 9 10 11 12 13 14 15 15 16 17 12 22 22 22 24 24 24 24 24	៥. ନ ୮୦. ୪. ୫. ୪. ୫. ୫. ୫. ୫. ୫. ୫. ୫. ୫. ୫. ଜନ୍ମ ଜନ୍ମ ଜନ୍ମ ଜନ୍ମ ଜନ୍ମ ଜନ୍ମ ଜନ୍ମ ଜନ୍ମ		8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	5 4 7 5 1 1 5 4 2 4 5 7 4 5 7 5 7 5 5 8 5 5 8 2 1 1 2 4 5 4 2 4 5 7 4 5 7 5 7 5 5 5 5 5 5 5 5 5 5 5 5	$\begin{array}{c} 2 & 12 \\ -1 & 144 \\ -0 & 055 \\ -0 & 253 \\ 0 & 0 & 154 \\ -0 & 043 \\ -0 & 043 \\ -0 & 043 \\ -0 & 043 \\ -1 & 114 \\ -0 & 049 \\ -0 $
	1497	1485	Mean.	24.38	

$$log = -47451$$

$$log f = -91356$$

$$Log (Vs-Vo) = -1^+38807$$

 $V_{z}-V_{z} = -24.44$ $V_{0} = -0.54$ $V_{a} = -21.97$ $V_{d} = -0.16$

 $\Sigma d = 2992$

V = -2.85

 $r = \pm 0.81$

V 8-7

8 GEMINORUM 1373.

Solar Standard 1462.

				ALEASURET /	
Region.	â,	<i>d</i>	d	V	P
	070			25:40	-0.73
1	.025	051 -19	- 051 - 49	23 72	-0.73 +0.96
21.03	48			23.72 24.50	+0.18
3	55 47	50 47	52 47 52 52 57 57 62 63		+0.15
5	41	54	44	21.64 23.39	+ 3.04
0	50 52	51	32	22.85	+1.80
0	52 60	51	32	22 8.1	
	58	54 57	51	24:48 23:88	+0°20 +0°80
2	0.5	94	04	25:40	F0.80
9	61 65	62	62	25.40	-0.72
10	61	62 61	63	25.21	- 0·53 + 6·03
11 12	64	61 70	63 71	24 65	+0.03
13	73 74	66	41 · · ·	27 · 16 26 · 25	- 3 40
13	24		70 68	26.25	-1.57 -0.26
14	01	69	66	24 · 94 23 · 69	+0.35
15	60	64	70	23.69	
16 17	12	04	69	23.77	+0.10 +0.93
14 3	10	69		25 11	
18	13	13	12	24 · 26 24 · 46	+ 0.43
19	67 65 70 72 74 74 84	12	72 74 77 81	24.90	+ 0 · 25 - 0 · 22
20	18	76	11	24.90	-0.22
39 33 33 33 33 33 33 35	84	67 67 69 74 74 79 82 89	81 82	25.40	-0.94 -0.72
20	82	82	82		-0.72
20	85	79	81	24.57	+0 11
24	82	81	82	24.88	± 0.30
20	94	87	90	26.13	-1:45
	1682	1636	Mean.	+ 24.68	

$$\begin{array}{ccccc} \Sigma d = 3318 & \log g = -520888 \\ \log f = -87155 \\ \log \left(V_{\delta} \cdot V_{\delta} \right) = 1.37243 \\ \phi = + 0.488 & \phi \\ a = -21.97 & V = -3.03 \\ d = -0.16 & V = -3.03 \end{array}$$

187

Observer 1 J. S. P. Measurer I.J. S. P.

± 0.77

β GEMINORUM 1373.

Solar Standard 1462.

Observer J. S. P. Measurer J. S. P.

Region.	d_1	d_{2}	đ	V	e
3	053	.049	051	24:03	- 0'73
0		049	49	22.56	+0.73 +2.20
3	46 55	51 52 54 55	33	22 50	+220 +0.92
e l	5.0	54	55	24.17	+ 0.25
7	56 47 54	55	55 51 57	91.00	+2.86
6	74	60	57	21 · 90 23 · 88	+ 0.88
9	69	61	61	24.99	-0.53
10	62 58	67	63	25.21	- 0.42
11	59	68	63	24 65	+0.11
11 12	69	68	69	26 40	-1 64
13	72	67	69	26 40 25 87	-1.11
13 14	68	65	67	24.28	+0.18
15	70		67	24.05	+0.21
16	72	71	72	25.29	- 0.53
17	72	74	67 67 72 73 72 72 72 72 81	25:15	- 0.39
18	72	71	72	24 26	+0.20
19	78	77	77	25.42	-0.66
20	72 68 70 72 72 72 78 80 85 83 88	64 71 74 77 82 80	81	26 19	- 1 13
21	85	80	82	25.94	~1.18
22	83	81	82	25.40	-0.64
17 18 19 20 21 22 23 24 25	88	85	86	26 08	-1'32
24	89	91	90	26.76	-2.00
25	89	84	85	25.26	- 0.20
	1577	1577	Mean.	24:76	

$$\log = 49886$$

 $\log f = -89871$
 $\log (V_s \cdot V_a) = 1/39757$

 $r = \pm 0.79$

 $\Sigma t = 3154$

V = -3.18

β GEMINORUM 1373.

Solar Standard 1462.

Observer Measurer J. S. P.

Region.	d]	d ₂	d	V	v
1	049	-047	048	23.91	+ 0.27
2	44	51	48	23.24	+0.94
3	50	51	50	23.20	+0.63
4	50	45	48	22.10	+2.08
5	.53	51	52	23.39	+
6	54	56	55	24.12	+ .01
7	60	59	60	25.76	-1.28
8	56 57	58 59	57 58	23.88	+ 30
10	07 59	09 60		23.76	+ 42
11	.59	64	60 61	24:01	+ 17
11	61	04 66	63	23.86 24.10	+ 32 + 08
12	65	60 £5	65	24 10 24 37	- 19
14	66	68	67	24 58	- 19
15	68	68	68	24:41	- 23
16	60	64	69	21.77	- 2 41
17	70		72	24.80	- 62
18	70	77	74	24.94	76
19 .	74	72	73	24.10	+ 08
20	76	75	76	24:58	- 40
21 22 23 24	74 76 82 85	75 77 75 74 78 78 82	62 72 74 73 76 78 81	24.67	- '49
22	85	78	81	25.09	- '91
23	85 .	78	82	24.87	- '69
24	88	82	85	25 27	-1:09
25	89	90	89 87	25 84	-1.66
26	78	95	87	24.84	- '66
	1707	1728	Mean.	+24.18	

 $\Sigma d = 3435$

$\log f = \log (Vs - Vo) =$	84949					
	1 0	r	-	±	0.63	

Vs-Vo	-	$^{+}$	24 30
Vo	=	÷	0.33
Vα	=	-	21.97
Vd	=		0.16

$\log (Vs - Vo) =$	1.38567
V =	+ 2.50

DEPARTMENT OF THE INTERIOR

9-10 EDWARD VII., A. 1910

3 GEMINORUM 1373.

Solar Standard 1462.

High Power Objective. Low Power Ocular. $\left. \begin{array}{c} Observer\\ Measurer \end{array} \right\} J,~S,~P.$

Region.	d_{1}	d_2	d	F	P
3	053	1050	0.51	24 03	-0.28
4	50	47 50	49	22.26	+1.77
õ	53	50	51	22.94	+1.37
6	60	51	56	24 61	- 0.30
6 7 8	57	53	55	23.65	+0.65
	58	53	55	23.04	-1.27
9	59	57	58	23.76	- 0 55
10	50	53 53 57 62 65	61	23.04 23.76 24.41 25.01	0.10
11	63	65	64	25:01	-0.73
10 11 12 13	66	73 69	69	26.40	-2.05
13	73	69	71	26.62	- 2 31
14 15	73	64	69	25 31	-1:00
15	69	65	67	24 05	+0.526
16	73 69 71	66	68	24 05 23 88	± 0.43
17	66	69	68	23 43	+0.88
17 18 19	72 73 75 81 87 80	70	71	23-93 23-11	± 0.38
19	73	66	70	23.11	+1.50
20	75	77 73 74 73	71 70 76 77 80	24:58	-0.27
21	81	73	77	24:35	÷0°04
00	87	74	80	24:78	0.42
90 91 92 93 93 94 95	80	73	77 84	23:35	+0.66
24	86	83	84	24.97	~ 0 * 66
25	97	85	91	26.42	- 2 11
	1575	1495	Mean.	+ 24 31	

 $\Sigma d = 3070$

 $\log = 48714$ $\log f = 89871$ $\log (V_s - V_o) = 1$ 38585

 $r = \pm 0.74$

V = -2.52

3 GEMINORUM 1373.

Solar Standard 1465.

Observer. J. S. P. Measurer, J. S. P.

Region.	d_{1}	d_{2}	d	V	U
3	:051	055	053	24:96	- 0190
4	48	50	49	22.56	± 1.20
5	47	45	46	20.69	- 3.37
6	47 48	51	49	21.53	+2.23
7	51	57	54	23.19	± 0.87
8	51	48	50	20.92	+3.11
7 8 9	61	64	62	25.40	-1.34
	63	57	60	24:01	~ 0.05
11	66	65	66	25.82	- 1.76
10 11 12 13 14 15	68	· 67	67 65	25 63	1.57
13	67	63	65	24:37	-0.31
14	71	63	67	24:58	0.25
15	72	65	69	24.77	0.71
16 17	67 71 72 65 72	66	67 69 65	22.83	+1.53
17	72	68	70	24.15	- 0.06
18 19	69	70	70	23.29	+0.42
19	72	70	71	23:43	± 0.63
20 21 22 23	69 72 75 82 83	70 70 75 76 82 77	70 70 71 75 79 82 81 87 89	24 25 24 99 25 39	0.15
21	82	76	79	24.99	- 0.93
22	83	82	82	25:39	-1.33
23	85	77	81	24:57	- 0.21
24	89	84	87	25 87	-1.81
25	88	90	89	25.84	-1.78
	1544	1508	Mean	+ 24.06	

$$\Sigma d = 3052$$
 log = -48458
log f = -89671
log (Vs-Vo) = 1.38329

 $r = \pm 1.02$

$$Vo = + 0.27$$

 $Va = -21.97$
 $Vd = -0.16$

 $Vs \cdot Vo$

V = + 2.31

9-10 EDWARD VII., A. 1910

β GEMINORUM 1373.

SOLAR STANDARD 1468.

Observer J. S. P. Measurer J. S. P.

Region.	d_1	d_2	d	v	v
3 4 5 6 7 8 9 10 11 12 13 14 15 15 15 17 19 20 21 22 23 24 25	054 500 409 555 575 575 575 575 575 775 775 775 77	056 550 500 564 665 564 665 564 665 564 665 564 667 668 667 678 868 677 778 88 798	055 50 50 53 53 55 55 55 55 55 55 55 55 55 55 55	$\begin{array}{c} 25\cdot 91\\ 23\cdot 94\\ 22\cdot 94\\ 22\cdot 85\\ 23\cdot 62\\ 23\cdot 62\\ 23\cdot 62\\ 24\cdot 17\\ 24\cdot 17\\ 25\cdot 30\\ 24\cdot 58\\ 51\cdot 31\\ 24\cdot 58\\ 24\cdot 58\\ 23\cdot 31\\ 24\cdot 33\\ 33\cdot 35\\ 24\cdot 33\\ 35\cdot 35\\ 24\cdot 35\\ 24\cdot 35\\ 24\cdot 35\\ 24\cdot 35\\ 24\cdot 35\\ 25\cdot 35\\ 24\cdot 35\\ 25\cdot 35\\$	$\begin{array}{c} -1.74\\ +0.238\\ +1.68\\ +0.305\\ +0.000\\ -1.184\\ +0.96\\ -1.784\\ -1.79\\ -1.70\\ -1.70\\ -1.70\\ +0.60\\ +0.73\\ -0.73\\ -0.008\\ +0.008\\ +0.008\\ +0.008\\ -$
24 25	86	89	87	23 26	-1.68
	1538	1518	Mean	+24.17	

$$\log = -48515$$

 $\log f = -89871$
 $\log (V_8-V_0) = 1.38386$

 $\Sigma d = 3056$ V_8 - $V_0 = + 24'20$ $V_0 = + 0'23$ $V_a = - 21'97$ Vd = - 0'16

 $r = \pm 0.80$

V = + 2.30

β GEM1NORUM 1373.

Solar Standard 1517.

High Power.

Observer Measurer J. S. P.

Region.	d_1	d_2	d	V	υ
4	.042	-046	046	21 18	+2.79
4 5 6 7 8	45	50	48	21.59	+2.58
6	52	53 , 56	52 55 52	22 85 23 62	+1.12 + 0.35
<u> </u>	55 52 59 61	51	50	23 62 21.79	+0.33
8	50	60	59	24.17	- 0.50
10	61	66	64	25.61	-1.64
10	69	69	62	24.25	· 0·28
19	61	63	62	23.72	+0.25
10 11 12 13 14 15	62 61 63	62 63 66	64	24.00	~ 0.03
14	70	66	68 68	24.94	-0.92
15	66	66 70 68 73 71 75 85 82	68	24 41	-0'44
16	68	68	68 70 72 72 77 81	23.88	+0.08
16 17 18 19 20	72	68	70	24.15	- 0 15
18	71	73	72	24.26	-0.55
19	73	71	72	23.77	+0.50
20	79	75	77	24 90 25 62	-0.93 -1.65
21	77	80	81	25.62	-1.60
22	80	82 84	81	24.57	-1.12
20	18	89	81	24.08	-0.00
22 23 24 25	68 72 71 73 79 77 80 78 80 78 81 87	86	86	24 97	-1.00
	1459	1481	Mean	· · · · + 23 · 97	

$$\Sigma d = 294$$

 $\log = 46835$ $\log f = 91360$ $\log (V_{s}-V_{o}) = 1.38195$

 $r = \pm 0.79$

$$V = + 2.51$$

3 GEMINORUM 1373.

Solar Standard 1519.

Observer J. S. P. Measurer J. S. P.

Region.	<i>A</i> ₁	d_{ii}	đ	t.	ş.
5	.047	048	-048	23.71	+0.94
6	49	52	50	23 80	-0.82
7	50	54	52	23.87	~0.78
8	51	53	52	23.02	1 - 60
9	58	54	52 52 54 55	23.20	- 1 45
10	55	56	55	22.86	+1.79
11	61	39	60	24.10	-0.22
12 13	63	65	64	24 85	~ 0.20
13	68	70	69	25.96	- 1:31
14	63 72 69	69	71	25.86	1.21
15	69	72 72 75 79 81	70	24.65	0.00
16	76	72	14	25.29	- 0 64
17 18	81	75	78	25 87	-1 16
18	77	79	78	24 99 25 45	-0.34 -0.80
19 20	83 86	81 84	71 70 74 78 78 82 85	25.45	-0.80
20 21	86 92	85 85	89	25.96	- 0 90
21	92	eo.	60	20 90	-1 01

	=		

V s	- Vo	_	+	24.77
	Vo		+	0.41
	Va			21.97
	37.2	_		0.16

log log (Vs - Vo)	= 35430 = 1 03958 = 1 39388	$r = \pm 0.5$
	V = +3.05	

3 GEMINORUM 1373.

Solar Standard 1520

Observer J. S. P. Measurer J. S. P.

Region.	d_{1}	d_2	đ	V	
3	046	-048	-047	23-22	+1.70
ő	53	51	047 52 51 58 58	24:75	+ 0.12
7	53 50 59 57 59	51 57 60 55	51	23.41	+1.61
8	59	57	58	25.71	0.79
9 10	57 59	00	57	24:92	0.00
10	6.1	64	64	23.69 25.71	0.79
10	68	68	64 68	26:4)	1.48
11 12 13	72	64 68 70 72 72 69 73 81	71 70 71 73 80	26:71	- 1.79
14 15	67	72	70	25:49	0.22
	68	72	70	24.65	0.27
16	73	69	71	24 27 24 17	+0.65
17	10	10	13	25.63	- 0.75
19	83	81	82	25:45	- 0.23
16 17 18 19 20 21	64 68 72 67 68 73 73 73 83 79 88	81 83	82 81	24.35	+0.22
21	88	84	86	25.09	-0.12
	1147	1139	Mean.	- 24.92	

Σd	2286	$\log = 35908$	
		$\log f = 1.03958$	
		$\log f = 1.03958$ $\log (V_{s}-V_{0}) = 1.39866$	
Vs-Va =	 95:04		$r \equiv \pm 0.65$
Vo =			
Va =			
Vd =	0.16	V = + 3.29	

β GEMINORUM 1373

Solar Standard 1524.

Observer. J. S. P. Measurer. J. S. P.

Region.	d_{k}	d _s	đ	V	v
5	.020	·049	·049	24.21	+0.05
6	49 47 52 58	48 49 53 63 63 70 73 66 72 76 83 82	49 47 51 55 58 63 63	23.32	+0.91
7	47	47	47	21.57 22.60	+2.66 +1.63
ŝ	58	42	55	23.63	+0.60
8 9 10 11 12 13 14 15 16 17 18 19	62	53	58	24.11	+0.15
11	64	63	63	25.31.	-1.08
12	63 69	63	63	24 · 46 26 · 33	-0.23 -2.10
13	68	70	70	20 33	-2 10
15		66	64	22.53	+1.70
16	67	72	70	23.93	+0.30
17	72	79	75	24 83	+0.00
18	72	76	74	23·71 25·76	+0 52 -1:53
19	83	83	83	25 76 24 65	-1.53
20 21	62 67 72 83 82 89	84	70 64 75 75 83 82 87	25.38	-1.12
	1109	1110	Mean	+24.23	

$\Sigma d = 2219$	log = -34616 log f = 1.03958 $log (V_{s}-V_{0}) = 1.38574$	
$V_{s-V_{o}} = + 24^{\circ}31$ $V_{o} = + 0.23$	mg (10-10) = 1 00011	$r = \pm 0.84$
Va = -21.97 Vd = -0.16	V = + 2.41	

196

β GEMINORUM 1306.

Observer. J. S. P. Measurer. J. S. P.

Region.	d ₁	d ₂	d	V	υ	
3	· 023	020	021 22 19 23 26	9.89	+0-47	
-1	23	22 18 21 25 23 28 24 24 24 24 24 30 38 38 26	22	10.13	+0.53	
5	19	18	19	8.52	+1.83	
6 7 8 9	19 24 26 25 26 26 28 28 26 26 26 26 26 26 26 26 27 36 38	21	23	10.11	+0.25	
7	28	25	26	11.16	-0.80	
8	25	23	24	10.06	+0.30	
9	26	28	27	11.06 9.20	-0.20	
10	22	24	23	9 20	+1.16	
11	32	26	29	9.95	-0.98	
12 13	28	24	20	9.75	+0.41 + 0.61	
10	30	20	20	10.27	+0.00	
14 15	20	28	20	12 21	-1 85	
10	90	96	96	9.13	+1.53	
16 17 18	20	20	20	11.02	-0.66	
18	27		26	8.76	+1.60	
19	36	24	30	9.90	+0.46	
	38	31	35	11.32	- 0.96	
21	37	28	32	10.15	+0.54	
20 21 22 23 24 25	36	36 25 24 31 28 32 35 35 37	24 \$7 \$3 \$7 \$6 \$5 \$5 \$5 \$5 \$2 \$4 \$8 \$9	10.23	- 0.17	
23	41	35	38	11.23	-1 17	
24	40	37	39	11.29	- 1 23	
25	38	36	37	10.74	- 0.38	
	683	630	Mean	···· + 10 · 36		

 $\Sigma d = 1313$

 $\begin{array}{rl} \log &=& \cdot 11826\\ \log f &=& 89871\\ \log (V_{\delta}\text{-}Vo) &=& 1\cdot 01697\\ & r &=& \pm & 0\cdot 63 \end{array}$

V = + 1.84

```
3 GEMINORUM 1417.
```

Observer Measurer J. S. P.

Region.	d_{x}	d_{A}	d	V	
3	061	.028	.059	27.79	± 0.80
i i	65	65	65	29.93	- 1.34
5	59	58	59	26.54	± 2.02
6	66	64	65	28 56	- 0.03
7	67	65	66	28.34	+0.25
7 8	65	64	65	27.24	-1.35
9	74	69	71	29.08	0.48
10	73	77	75	30.01	-1'42
11	75	76	76	29.73	1.14
12	77	76	76	29:08	- 0.45
11 12 13	78	75	77	28.87	0.58
14	82	74	78	28.61	- 0.05
15	78	79	78	28.00	-0.28
16	80	76	78	27 · 39 26 · 87	~ 1.20
17 18	65 17 7 5 1 7 8 2 8 80 79 8 8 8 8	69 77 76 75 75 79 76 77 78 84	71 756 766 778 788 788 788 84 85	26.87	-1.72
18	83	84	84	28.31	+0.58
19	80	85 87		28:06	+0.23
20	91	87	89	28.78	-0.18
21	96 96	96	96	30.36 29.73	-1.77
22 23	96	96	96	29.13 28.21	+0.38
23	92	94	93 97	28.21 28.84	+ 0.38 0.25
24 25	94	100	97 101	28.84 29.32	- 0.23
25	105	98	101	29'32	-0.19
	1821	1793	Mean.	28.59	

$$\log = -55811$$

 $\log f = -89871$
 $\log (Vs - Vo) = -1.45682$

 $r = \pm 0.68$

 $V_{\lambda}-V_{ii} = + 28.63$ $V_{ii} = - 0.33$ $V_{ii} = - 27.36$ $V_{ii} = - 0.19$

 $\Sigma d = 3615$

V = -1.41

β GEMINORUM 1424.

Observer Measurer } J. S. P.

Region.	d_1	d_2	d	V	
3	.063	060	062	29.21	0.02
ŧ	61	61	61	28.08	- 1.06
5	62	63	62	27.89	1.25
6	66	63	65	28 56	-0.28
7	65	66	65	27 91	1.23
*	652 62 77 77 78 78 78 78 78 78	60	61	25.56	3.58
.9	68	71	69 73 72 76 78	28 26	+1 88
10	72	74	73	29.21	- 0 . 02
11	74	70	72	28 17	± 0.92
12	10	82	10	29.08	0.06
13	10	82	10 80	29.25	0.11
11	10	71 74 70 82 83 83 85	80 80	29 34 28 72	0.20
10	11	85	50 84	28.72 29.50	0.42
10	20	91	90	31.00	1.86
11 12 13 14 15 16 17 18	0.1	93	93	31 34	2.20
19	87	93	90	29 70	0 56
26	92	96	94	30 40	-1.26
21	89 94 87 92 30	94	92	29.10	- 0 04
22	97	98	98	30.35	- 1 . 21
23	90	96	93	28.21	+0.93
20 21 22 23 24 25	101	107	104	30.95	-1.78
25	106	103	105	30.48	-1.34
	1820	1874	Mean .	. + 29.14	

3694	log	$\log_{(Vs-Vo)} \log f$	-56750 -89871 1:46621
	64		

Vs-Vo		29.26
Vo	255	0.33
Va		27.89
V d	25	0.15

 $\Sigma d =$

 $V=~\pm~1.58$

199

DEPARTMENT OF THE INTERIOR

9-10 EDWARD VII., A. 1910

β GEMINORUM 1443.

Observer Measurer } J. S. P.

Region.	<i>d</i> 1	đ "	d	L.	P	
3	·061	.060	.061	28.76	+2.80	
	66	67	66	30:39	+1.12	
5	66		66	29:69	-1.87	
B	66	67		29 00	+2.26	
÷ i	68	75	72	30.92	-0.61	
s	74	78	76	31.84	-0.28	
4 5 7 8 9	80	65 67 75 78 77 80	78	31.95	- 0.39	
10	78	80	79	31.62	-0.06	
îì	79	83	66 72 76 78 79 81 87	31.69	-0.13	
12	74 80 79 86 87 86 89 98 98 98	83 87 82 86	87	33.29	-1.23	
12 13	87	82	84	31 50	+0.06	
14	86	86	84 86	32.64	- 1.08	
15	85	88	87	31.23	+0.33	
16 17 18	92	83	88	30 91	-0.62	
17	93	94	93	32.02	-0:49	
18	95	95	95	32 01	- 0.42	
19	92	94	93	30.70	-0.86	
20	100	39	100	32.34	-0.28	
21	104	96	100	31.63	-0.02	
20 21 22 23 24 25	107	103	105	32.52	- 0 * 96	
23	108	106	107	32.42	-0.85	
24	114	108	111	33 00	- 1 44	
25	118	114	116	33.67	-2-11	
	2005	1987	Mean.	-31.56		

$\Sigma d = \xi$	log f	g = -60119 = -89871
	log (Vs-Vo)) = '49990
Vs-Vo = + 3	31.62	$r = \pm 0.84$
Vo = +		
Va = -2	28.83	
Vd = -	0.05 V	r = + 3°03

β GEMINORUM 1452.

Observer J. S. P.

					Measurer J 01 01 1		
Region.	d_1	d_{2}	đ	r	P		
3	.065	.062	063	29 21	+1.43		
4	65 66	62 62 72 68 78 78 79 79 87 95 92 87 95 95 95 94 94 94 94	64 65	29.47	+1.12		
6	65	60 79	60	29·24 30·32	$^{+1.40}_{+0.32}$		
7	74	68	71	30.49	+ 0.12		
7 8 9	73	69	71	29.75	+0.89		
9	70	78	74	30.31	+0.33		
10	80	76	78	31·22 29·73	-0.28 +0.91		
19	84	79	81	30.99	-0.32		
10 11 12 13 14	65 74 73 70 80 79 84 88 85 88	87	69 71 74 78 76 81 88 82 91	33.37	- 2.23		
14	85	79	82	30 08	± 0.26		
15	88	95	91	32.67	- 2.03		
16	88 93 89 93	92	90 90	31.61 31.00	-0'97 -0'36		
18	89	94	92	31.00	-0.36		
19	93	89	92 91 88	30.04	+0.60		
20	87	89	88	28.78	+1.88		
21	98 99	98 97	98 98	31:00	-0'36		
22	99	97 105	98 102	30:35 30:94	$+0.29 \\ -0.30$		
16 17 18 19 20 21 22 23 24 25	105	106	105	31.22	- 0.22		
25	108	111	110	31.93	-1.53		
	1941	1932	Mean.	+ 30 64			

$$log = 58805log f = 89871log (Vs-Vo) = 1 48676$$

$$r = \pm 0.74$$

 $V_{s}-V_{o} = + 30.67$ $V_{o} = + 0.33$ $V_{a} = - 29.19$ $V_{d} = - 0.11$

 $\Sigma d = 3873$

V = + 1.70

9-10 EDWARD VII., A. 1910

3 GEMINORUM 1460.

Observer Measurer J. S. P.

				Measurer)		
Region.	jil _e	d_{2}	d	V	P	
3	065	064	-064	30.12	-1.91	
0	68	63	66	30 39	+1.67	
2	66	70	68	30:59	+1.47	
3	66	66	66	29.00	+3.06	
2	68		69	29 63	2.43	
5	70	41	53	29.75	+2.31	
6 7 8 9	76	80	78	31 95	-0.11	
10	70 76 83 85 86	70 71 80 83 83 83 83	71 78 82	32.82	- 0.76	
11	85	83	84	32 86	- 0.80	
19	86	82	84	32.14	- 0.08	
12 13	90	89	87	32.62	- 0.56	
14	93	89	91	33.38	-1:32	
15	94	88	92	33.03	0.97	
	93	89	91	31.96	+0.10	
16 17 18 19	101	97	99	34 11	-2.02	
18	92	92	92	31.00	± 1.02	
19	95	100		32.35	- 0.29	
20	102	105	103	33.31	-1'25	
21	102	105	104	32.90	-0.84	
20 21 22 23 24	102	108	105	32.52	- 0 * 46	
23	107	104	105	31.85	+0.51	
24	117	119	118	35.08	- 3.05	
25	113	121	117	33-96	- 1*90	
	2034	2031	Mean	= 32.06		

$\Sigma d = 4065$	$\log = .60906$ $\log f = .89871$ $\log (Vs-Vo) = .50777$	
$V_{s-Vo} = \pm 32^{\circ}19$ $Vo = \pm 0.033$		$v = \pm 1.14$
Va = -29.24 Vd = -0.09	$V = 000.3^{\circ}19$	

202

3 GEMINORUM 1472.

Solar Standard 1520.

Observer 1 J. S. P. Measurer J.J. S. P. d_1 Region. +394+160 -103 142 +060 076 -018 056 055 $\begin{array}{c} 61 \\ 71 \\ 67 \\ 70 \\ 73 \\ 76 \\ 77 \\ 83 \\ 89 \\ 88 \end{array}$ 63 $\begin{array}{c} 62 \\ 70 \\ 67 \\ 71 \\ 73 \\ 77 \\ 78 \\ 85 \\ 88 \\ 90 \\ 94 \end{array}$ 69 $\begin{array}{r}
 0.18 \\
 0.82 \\
 0.87 \\
 1.30 \\
 0.58 \\
 1.02 \\
 0.58 \\
 1.02 \\
 0.58 \\
 1.02 \\
 0.58 \\
 1.02 \\
 0.58 \\
 1.02 \\
 0.58 \\
 1.02 \\
 0.58 \\
 1.02 \\
 0.58 \\
 1.02 \\
 0.58 \\
 1.02 \\
 0.58 \\
 1.02 \\
 0.58 \\
 1.02 \\
 0.58 \\
 1.02 \\
 0.58 \\
 1.02 \\
 0.58 \\
 1.02 \\
 0.58 \\
 1.02 \\
 0.58 \\
 1.02 \\
 0.58 \\
 1.02 \\
 0.58 \\
 1.02 \\
 0.58 \\
 1.02 \\
 0.58 \\
 1.02 \\
 0.58 \\
 1.02 \\
 0.58 \\
 1.02 \\
 0.58 \\
 1.02 \\
 0.58 \\
 1.02 \\
 0.58 \\
 1.02 \\
 0.58 \\
 1.02 \\
 0.58 \\
 1.02 \\
 0.58 \\
 1.02 \\
 0.58 \\
 1.02 \\
 0.58 \\
 1.02 \\
 0.58 \\
 1.02 \\
 0.58 \\
 1.02 \\
 0.58 \\
 1.02 \\
 0.58 \\
 1.02 \\
 0.58 \\
 1.02 \\
 0.58 \\
 1.02 \\
 0.58 \\
 1.02 \\
 0.58 \\
 1.02 \\
 0.58 \\
 1.02 \\
 0.58 \\
 1.02 \\
 0.58 \\
 1.02 \\
 0.58 \\
 1.02 \\
 0.58 \\
 1.02 \\
 0.58 \\
 1.02 \\
 0.58 \\
 0.58 \\
 0.58 \\
 1.02 \\
 0.58 \\
 1.02 \\
 0.58 \\
 1.02 \\
 0.58 \\
 1.02 \\
 0.58 \\
 1.02 \\
 0.58 \\
 1.02 \\
 0.58 \\
 1.02 \\
 0.58 \\
 1.02 \\
 0.58 \\
 1.02 \\
 0.58 \\
 1.02 \\
 0.58 \\
 1.02 \\
 0.58 \\
 1.02 \\
 0.58 \\
 1.02 \\
 0.58 \\
 1.02 \\
 1.02 \\
 0.58 \\
 1.02 \\
 0.58 \\
 1.02 \\
 0.58 \\
 1.02 \\
 1.02 \\
 1.02 \\
 1.02 \\
 1.02 \\
 1.02 \\
 1.02 \\
 1.02 \\
 1.02 \\
 1.02 \\
 1.02 \\
 1.02 \\
 1.02 \\
 1.02 \\
 1.02 \\
 1.02 \\
 1.02 \\
 1.02 \\
 1.02 \\
 1.02 \\
 1.02 \\
 1.02 \\
 1.02 \\
 1.02 \\
 1.02 \\
 1.02 \\
 1.02 \\
 1.02 \\
 1$ 95 96 97 103 96 100 102 104 103 104 Mean. ...+31.11

$\Sigma d = 28$	$\log = 45500$ $\log f = 1.03958$	
	$\log (V_{s} - V_{0}) = 1.49458$	
$V_{s-V_{0}} = -31^{\circ}2$	3	$r = \pm 0.94$
Vo = 0.3 Va = -29.4		
Vd = -0.2		

β GEMINORUM 1500.

Solar Standard 1519.

 $\left. \begin{array}{c} \mathrm{Observer} \\ \mathrm{Measurer} \end{array} \right\} \mathrm{J.~S.~P.}$

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	ϑ , d_2	d	V	v
6 66 66 66 31 42 7 64 64 64 29 38	·061 064	.062	30.63	+ 0.20
	66 66		31 42	-0.29
8 61 66 64 38,93 9 73 0 70 79 99 10 10 77 76 77 30,93 12 12 12 77 78 30,93 13 30,85 13 30,85 14 16 16 16 16 16 16 16 16 16 17 100 12 88 90 50,76 17 16 17 100 12 88 90 50,76 17 14 16 17,94 106 32,95 16 17,94 106 32,95 16 16 17,94 106 32,95 16 16 16 16 17,94 106 32,95 16 <	64 64	64	29.38	+1.42
5 6.6 7.0 7.7 3.9 1.0 11 177 7.8 7.7 30.949 1.1 12 7.7 7.7 30.949 1.1 1.1 7.7 30.949 12 7.7 7.7 7.7 30.949 1.1 <td>61 66</td> <td>64</td> <td>28:36</td> <td>+2.47</td>	61 66	64	28:36	+2.47
	73 69	11	30.31	$^{+0.32}_{+1.73}$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	09 10	10	23 10	-0.10
15 26 75 32 30.85 14 91 80 99 32.75 15 57 80 99 32.75 16 57 80 99 32.75 17 100 92 96 31.79 18 58 102 109 32.94 19 13.179 100 32.94 109 18 58 102 109 32.94 19 106 106 31.65 106	70 77	<u></u>	30.29	+0.24
	86 78	82	30:85	- 0.05
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	91 89	90	32.77	-1.94
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	87 80	84	29.58	+1.22
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	92 88	90	30.76	+0.02
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	100 92	96	31.79	-0.96
19 104 106 105 32 59 20 106 103 105 31 56	98 102	100	32.04	-1.21
20 106 103 100 31'06	104 106	105	32 59	- 1.76
	106 103	105		-0.23
21 112 104 108 31.50	112 104	108	31.00	-0.62

Σd	=2822	log = log f = log (Vs - Vo) =	1.03958	
 +	30.91			

 $r = \pm 0.81$

 V_{δ} --- V_{0} = + 30°91 V_{0} = + 0°41 V_{d} = - 29°14 V_{d} = - 0°15

V = + 2.03

204

β GEMINORUM 1502

Observer Measurer J. S. P.

Region.	d_{1}	d_z	d	V	v
3	059	.062	'062	29.21	+1.98
i i	69	62	65	29.93	+1.26
5)	65	65	65	29:24	+1.95
ě.	64	70	67	29.44	+1.75
7	67	68	68	29.20	+1.99
8	67 73	71	72	30.12	+1.05
5 6 7 8 9	82	68 71 76	79	32.36	-1.17
	82 83	81	82	32.82	- 1.63
îĭ	79	80	80	31.30	- 0.13
10 11 12 13	79 85	90 87 86	67 68 72 79 82 80 87 88 83	33 29	2.10
13	89	87	88	33.00	-1.81
14	80	86	83	30.44	+0.75
15	88	88	88	31.59	-0.40
16	90	88 85	88	30.91	+0.58
15 16 17	89	91	90	31.05	+0.12
18	89	91	90	30.33	+0.86
19	99	100	99	32.68	-1:49
20	100	100	100	32.34	-1.12
21	98	100	99	31.31	-0.15
22	108	102	105	32.32	~ 1.13
19 20 21 22 23 24 25	101	93	97	29.42	+1.77
24	108	114	111	33 00	-1.81
25	110	113	111	32.22	- 1.03
	1975	1978	Mean.	+31.19	

 $\Sigma d = 3953$

$\log = .59693$	
$\log f = -89871$	
$\log (Vs - Vo) = 1.49564$	
	$r = \pm 0.93$

 $\begin{array}{rll} \mathbf{V}_{\mathcal{S}} & -\mathbf{V}o \ = \ + \ 31\ 31 \\ \mathbf{V}o \ = \ + \ 0\ 33 \\ \mathbf{V}a \ = \ - \ 29\ 09 \\ \mathbf{V}d \ = \ - \ 0\ 12 \end{array}$

V = + 2.43

3 GEMINORUM 1527.

Solar Standard 1520.

Observer Measurer J. S. P.

Regime	4	d_{z}	d	r	¥.
5 6 7 8 9 10 11 12 13 14 15 16 17 18 9 20	$\begin{array}{c} 047\\ 51\\ 55\\ 62\\ 58\\ 60\\ 66\\ 74\\ 75\\ 83\\ 85\\ 85\\ 85\\ 86\\ 87\\ 90\\ 90\\ \end{array}$	053 52 53 61 64 64 65 72 73 74 74 74 82 79 90 90	050 522 562 612 622 639 73 747 79 84 84 86 90	24 70 24 75 25748 2579 2679 2679 2679 2679 2679 2679 2679 26	$\begin{array}{c} -216\\ +211\\ +115\\ 062\\ 065\\ -109\\ -005\\ 0067\\ 118\\ -096\\ -151\\ -096\\ -151\\ -093\\ -027\\ 139\\ 019\\ \end{array}$
	1141	1138	Mean	+ 26.86	
	$\Sigma d =$	2279	$\log = 357$ $\log f = 1.075$	74	

18-10		26 99			
Vo		0.38			
Va		24.85			
Nd.	=	0.54	V		2

SUMMARY OF COMPARATOR MEASURES OF 3 GEMINORUM 1373.

Solar Standard.	No. of Regions.	Velocity.	Residual O – C.	Probable error of Single Region
360 461	22 25 23 26 23 23 23 23 23 22 17	$\begin{array}{c} +2 & 93 \\ +3 & 02 \\ +2 & 23 \\ +2 & 23 \\ +3 & 03 \\ +2 & 50 \\ +2 & 50 \\ +2 & 51 \\ +2 & 31 \\ +2 & 30 \\ +2 & 51 \\ +3 & 05 \\ +3 & 29 \\ +2 & 41 \end{array}$	$\begin{array}{c} -0.21\\ -0.31\\ +0.49\\ -0.13\\ -0.31\\ -0.46\\ +0.22\\ +0.20\\ +0.20\\ +0.41\\ -0.41\\ -0.42\\ -0.23\\ -0.53\\ -0.57\\ +0.31\\ \end{array}$	$\begin{array}{c} \pm 1 \cdot 10 \\ 0.71 \\ 0.81 \\ 0.79 \\ 0.79 \\ 0.63 \\ 0.74 \\ 1.02 \\ 0.80 \\ 0.79 \\ 0.63 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.79 \\ 0.65 \\ 0.79 \\ 0.65 \\ 0.84 \end{array}$

Mean velocity + 2 72. Mean P. E. ± 0.80.

37

Probable error of single measure = ± 0.24 km. Probable error of mean velocity = ± 0.065km.

SUMMARY OF MEASURES OF 11 PLATES OF & GEMINORUM.

Plate No.	No. of Regions.	Velocity.	Residual.	Probable error of Single Region
306	23	+1.84	+0.32	±0.63
73		2.72	-0.21	0.80
17	23	1.41	+0.80	0.68
24	23 23 23 23 23	1.28	+0.63	0.88
43	23	3 03	~ 0.85	0.84
52	23	1.20	+0.21	0.24
50	. 23	3.19	~ 0.88	1.14
72	17	1.99	+0.55	0.94
0	17	2.03	± 0.18	0.81
02	23	2:43	-0.25	0.83
27	16	2.37	- 0.16	0.77

Mean velocity + 2 21. Mean P. E. ± 0.83.

Probable error of plate = ± 0.40 . Probable error of mean = ± 0.12 .

As the summaries and probable errors above show, the error of setting on a single region is on the average in the several measures of the plate No. 1373 \pm 0.-80km, and only slightly greater \pm 0.83 for the other plates. Hartmann obtained a probable error of \pm 0.67km, somewhat smaller than above. The difference may be due partly to his greater skill and experience in measurement and partly possibly to better quality of spectra. If a better spectrum than 1373 had been selected and it were measured with the best of the fundamental spectra, I have no doubt the probable error would be considerably diminished.

The measures of the 11 plates of β Geminorum give an indication of the systematic discrepancies to be expected in the production of the spectra, although some allowance should be made for accidental errors of measurement. A total range of uearly 1.8km, is shown and the probable error of a plate is ± 0.40 km. These plates were made under average conditions, no special care being taken, and the plates are of average quality only. A systematic difference between these measures and other determinations by the old method of measurement at this, and other observatories of slightly over a kilometre + 3.5km, with micrometer microscope, + 2.2km, with comparator is present. These plates have only been measured by the comparator, and hence it cannot be determined yet whether this difference is in the plates or in the method of measurement, but the latter seems the more probable. It is interesting to note in this connection that there is a gradual and systematic increase in the velocity of the different regions from the red to the violet in all the star plates measured, but no explanation of the cause of this discrepancy can be offered. It is unquestionable that if this were removed the probable error of a single region would be materially reduced. Finally, it is probable that, as more experience is gained with the instrument, the accuracy of the measures will be considerably increased.

THE COELOSTAT TELESCOPE.

Although the optical and mechanical parts of this instrument have been ready for nearly two years, the shelter and connecting passage and turnal were not finally completed until about July, 1908, and it was not possible to unke any use of the installation until some time after that date. The spectrograph, which is described by Dr. DeLury in Appendix C, was creected and adjusted as soon after as possible, but owing to the inferior quality of the grating, the work has been much handicapped.

25a-16

The telescope itself performs admirably and as it has not yet been described, it seems desirable to mention here its principal features.

Essentially the optical parts of the installation consist of the coelostat mirror, which reflects the sur's light in a southerly direction to a secondary plane mirror, which in turn reflects the beam north to a concave mirror forming a solar image 80 feet south in the basement of the observatory building.

A general view of the coelestat and secondary mirror, and of the shelters and connecting passages for the beam is given in Fig. 13. The coelestat and secondary mirror are covered by a house on wheels, which can be easily rolled back (and is thus shown in the figure) by a convenient mechanism over the bourred passageway which contains the concave mirror. Between the latter and the beament of the Observatory is another ventilated passage and a tunnel. The house and passages are constructed of wood, covered with galvanized iron painted white, and all very theroughly ventilated by galvanized iron lowers to prevent as for as possible temperature stratification or disturbance in the course of the beam. It would have been preferable to continue the ventilated passage along the whole course of the beam from the coelestat to the Observatory wall, but this was not possible latter is usually five feet or so outside the wall, this leaves an unventilated distance of about 15 feet, which apparently has no very serious effect on the definition.

A general view of the telescope looking north is given in Fig. 14, and another view looking south towards the Observatory in Fig. 15. The coclostic has a plane mirror 20 inches in diameter which rotates on an axis, in or parallel to its plane, which is parallel to the axis of the earth and driven by clockwork at haf the diurnal rate. The whole instrument is moved bodily east and west by the sheave and cable, shown in the figures, on cast-iron ways resting on a cement pier. The purpose of this movement is to enable the colostat mirror to receive the sun light more nearly normally by placing it towards the west in the morning and the east in the aftermoon. The ways are long enough to permit of sufficient movement to prevent any interception of the return heam from the concave, which passes under the schedary mirror.

The beam of sunlight from the coolestat mirror is reflected in a constant direction so long as the declination remains the same, but evidently any change in the declination of the incident light entails a similar change in the direction of the reflected light, and it is necessary to have a movable secondary mirror to receive this beam and direct it towards the image forming concave. This change of direction of the reflected beam, due to the change of declination of the sun, is provided for by attaching the mirror to a carriage rolling on ways in a north and south direction, the mechanism for changing the position of the secondary being identical with that used for moving the coclestat and the concave mirror, and being well shown in the figures. During the winter when the sun is low in the sky, the secondary has to be brought close to the coclestat, and in the summer away from it. The secondary mirror, also of 20 inches diameter, can be quickly adjusted in inclination by quick and slow motions so as to send the beam directly to the concave mirror.

The latter of 15 inches diameter and 30 feet focus is movable in the north and south direction over ways about 20 feet long, in order to be able to vary the position of the image for different purposes. It is also adjustable vertically and has slow motions provided for moving around a vertical and horizontal axis in order to place any desired part of the image, say, on the slit of the spectroscope or in any other required position. The beam of light from this mirror passes directly under the secondary mirror through the opening in its support, and is inclined downward 34°, the same inclination being given to the ways on which the concave mirror carriage moves. This inclining the support of a bable the collocated to be raised a little above

F16. 13-Collostat House.

PLASKETT-ASTROPHYSICS.

FIG. 14-Colostat Telescope Mechanism, looking north.

PLASKETT - ASTROPHYSICS.

25a-p, 208

F16. 15—Coelostat Telescope Mechanism, looking south.

the surface of the ground, and to keep the beam some distance away from the roof of the tunnel.

The coelostat was made by the J. A. Brashear O_0 , in 1905, for eclipse purposes, and the secondary and concave mirrors in 1907. The designs and drawings for the remainder of the mechanical parts were made by myself, while the mechanism was constructed by the Victoria Foundry. It was found necessary, owing to the vibration of the secondary mirror support and carriage by the wind, to design one of a heavier pattern, which has been constructed by the same firm since the photographs were made, and entirely overcomes the difficulty.

The definition given by this equipment is much better than was expected from the somewhat unfavourable conditions, such as the low position of the coelesta, and the presence of the unventilated tunnel through which the beam passes. Its location north of the Observatory is also objectionable on account of radiation or convection from of the installation was the only one available, we were forced to make the best of these adverse conditions and as the result shows accessfully. In the early morning and the late afternoon when the mirrors are in their normal condition the definition is very good, but this is soon deteriorated by the irregular figure produced by the heating action of the sun on the mirrors. However, by keeping them shielded from the sun's rays except during actual use, this causes no especial difficulty in solar rotation work.

RADIAL VELOCITIES.

The work of determining the radial velocities of stars has been actively carried on during the last year, the addition to the staff enabling a considerable increase in the number of measurements made, and in the amount of computational work accompliabed. So far as obscring is concarred, however, the weather has not been as good as in the previous year. In April and May there were considerably fewer observing nights, many of them also being rendered practically useless by haze. June, July and August were good, but they were followed by three months in which very few useful spectra were obtained owing to continuous dense smoke at first and afterwards to cloudy weather. The remainder of the year has been of about average quality. There have been photographed in the year, 1010 spectra, 18 sun for use with the spectrocomparator and 995 attra spectra on 100 nights. Of these 218 have been made with the

Of these spectra, 775 have been measured and reduced. Probably a number of spectra made previous to April 1, 1909, have also been measured during the past year, but we have no record of the exact number.

Detailed measures, which in this report have all been collected together at the end (Appendix E), have been made of 635 plates, of which 581 are used in obtaining the orbits of the five binary stars discussed below. The other 54 are measures of two stars whose orbits are not yet completed. The remaining 138 plates measured are chiefly of spectroscopic binaries under investigation, but they also include a number of plates of some early type stars not known to be binaries.

The five binaries discussed below with the number of plates used for each are :--

Star.	Right Ascension	Declination.	No. of Plates.
¢ Orionis ¢ Aquila α Corona Borealis ¢ Herculis γ Boötes	20 06 2 15 30 4	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	273 54, + 43 in 1908 103 106 45

 $25a - 16\frac{1}{2}$

9-10 EDWARD VII., A. 1910

The 34 measures of δ Aquike which follow are given for the reason that there seems little prospect of obtaining an orbit and little use, owing to the uncertainty of the results and the small range in velocity, in carrying the work on this star any further.

The binaries under observation here at present are given in the following table. In two of these stars τ Tauri, B.D. - 1° 1004, and ν Orionis, the work is well advanced, but on many of the others not much has yet been done :--

_	R. A.	Declination.	Mag.	Type.
φ Perssi - Tauria - Tauria - Porosis - V Granis - Y Granis -	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$^+$ 20 46 $^-$ 16 59 $^+$ 24 57	$4 \cdot 3 \cdot 2 \cdot 7 \cdot 1 \cdot 6 \cdot 9 \cdot 1 \cdot 4 \cdot 5 \cdot 1 \cdot 6 \cdot 9 \cdot 1 \cdot 4 \cdot 3 \cdot 3 \cdot 5 \cdot 8 \cdot 9 \cdot 1 \cdot 1 \cdot 1 \cdot 6 \cdot 9 \cdot 1 \cdot 1$	I a 2 1 b VII a IV a.b IV a.b VIII s I a 2 XII VII a VII b XIII b VII a

BINARIES UNDER OBSERVATION.

The majority of these stars have, as will be noticed, early type spectra and in many of them the lines are very diffuse; consequently many plates are required before a satisfactory orbit can be obtained, an example of this being given in the preceding table of the binaries completed, where the average number of plates used is well over 100.

In the measures of stars not known to be binaries, those that were observed having in every case spectra of the hydrogen or helium type generally with diffuse lines, the following four stars were discovered to be variable in their velocity.-

Star.	R. A.	Declination.	Mag.	Type.
δ Herculis γ Aquarii < Andromedae \$ Persei.		$\begin{array}{ccccc} +&24&57\\ -&1&53\\ +&42&43\\ +&35&30 \end{array}$	3:7 4 1 4:4 4:4	VII b VII a A I b

NEW SPECTROSCOPIC BINARIES.

In addition to the above, β Orionis is definitely announced as of binary character, but as it is more fully discussed later, nothing more need be said about it here.

δ Herculis.

Practically the only lines measurable in this spectrum are the hydrogen series, and these are very diffuse and difficult to measure. Consequently, the measures are

subject to much uncertainty, and it was only after several plates had been obtained that its binary character was established. The velocities are as follows:—

Plate Number.	Date.	Velocity.	Plate Number.	Date.	Velocity.
839 894 929	1907. June 12:79 , 27:74 July 9:66 1908. March 8:89	27 9 35	1404 1480 1495 1512 1532 1541	1908. March 16:93 April 13:83 - 15:89 - 22:89 May 15:85 - 18:81	44 73 47 57 47 18

The variability in its velocity was discovered by Mr. Harper.

y Aquarii.

This star is of the hydrogen type, having Mg. 4481, Fe 4549, Ca 3934, in addition to the hydrogen lines, and the measures are consequently much more reliable than the previous star. They are:

Plate Number.	Date.	Velocity.	Plate Number.	Date.	Velocity.
1745 1770 1779	1908, July 29-86 August 5-81 " 7-81	-18 - 8 + 3	1790 1847 1858	1908. August 17:81 28:70 31:77	-40 -7 +23

Its variability was discovered by Mr. Cannon.

Andromedæ.

The spectrum of this star is similar to that of γ Aquarii, having the hydrogen Mg. 4481, and K lines, although possibly not so well defined. Its variability was discovered by Mr. Gannon, and it was announced in the Journal of the Royal Astronomical Society of Canada, Yol. II., No. 5. I learned atterwards that it had been informally announced by Prof. Frost at the Put-in-Bay meeting of the Astronomical and Astrophysical Society of America. Although present at the meeting, I had taken no notes and had forgotten its announcement. The discovery here was consequently entirely independent. The velocities of all the plates measured here are given:

Plate Number.	Date.	Velocity.	Plate Number.	Date.	Velocity.
1772 1781 1832 1922 1928 1939	1908. August 5 87 9 7 87 9 26 87 October 9 76 9 12 71 9 63		1954 1963 1969 1971 1977 1995	1908. November 9.58 " 13.60 " 16.69 " 20.59 " 21.53 December 2.55	$\begin{array}{c} 0\\ + 14\\ + 29\\ - 13\\ + 7\\ + 1\end{array}$

¿ Persei.

The spectrum of this star is of the helium type, and is principally characterized by the extreme breadth and diffuseness of the lines. Frost and Adams, in 1903, published the measures of some plates which agreed well within errors of observation in giving it a positive velocity of S5Mn, per second. They aurmised that later plates might show the velocity to be variable. Consequently, I thought it desirable to obtain a few plates here, and their measures by Mr. Canons soon showed that the star was a binary. I have since learned personally from Prof. Frost that this had been a long time established by them. The following are all the velocities measured here:—

Plate Number.	Date. G. M. T.	Velocity.	Plate Number.	Date, G. M. T.	Velocity.
1946 1953 1958 1964	1968. October 30°37 November 6°66 9°77 - 13°65	+ 120 ~ 143 - 54 - 2	1974 1998 1999	1908. November 20:83 December 2:69 " 4 72	- 45 - 32 - 51

8 Aquila.

Mr. Parker has spent considerable time at work on δ Aquile without being able to obtain a period, and it looks as if the small range, combined with the poor quality of the spectrum, will prevent any orbit being determined. Mr. Parker has also been unfortunate in the other binary on which he has been engaged, τ Tauri, which has very bad lines in its spectrum and over which he has spent a great deal of time. If he has, however, determined the proid as nearly 1.5 days, but it has not been thought desirable to complete the work until further plates are secured next season. Consequently no measures of it will be given in this report, but a summary of the measures and some data concerning δ Aquile are given below, while the detailed measures are given in Appendix E.

This star (a = 10⁶ 20^o.5, b = 2⁵ 557) was discovered to be of variable velocity by Campbell and Curlis from observations made at the Lick Observatory in 1000.02; N Observations were begun upon it here in August, 1906, and since then some thirtyfour plates have been measured and computed. b Aquiles is taken as the typical star in Group XL, according to Miss Maury's classification.⁴ The principal lines in the spectrum are those of hydrogen, iron, magnesium and titanium. All, and especially those of hydrogen, are broad and not defined, the region measured being from H_B to A 4006. These will be found in Table I. The range of resulting radial velocities, as seen in Table II. is not large (-15 to $-47 {\rm kms}$), and, as yet the period cannot be determined from the curve of the present observations.

^{*} L.O.B., 1903, A. J. XVIII., 306.

⁺ Annals Harvard College Observatory, Vol. 28.

TABLE I.

PRINCIPAL LINES MEASURED IN & AQUIL#.

Wave-Length.	Element.	Wave-Length.	Element.
4861 527 4549 766 4549 766 4507 448 4507 448 4507 448 4508 5266 4579 566 4579 566 4579 562 4529 562 4529 562	H Fe & Ti Ti Ti Mg Ti Fe Ti, V, Zy. H Fe Sc Fe	4274 922. 4271 756. 4290 646. 4290 646. 4296 956. 4295 551. 4188 444. 4438 925. 4169 0460. 4163 925. 4169 0460. 4169 975. 4009 575. 4009 575. 4009 457. 4009 457. 4000 457.	Ti & Cr Fe Fe Fe Fo Fo Fo H Fe Fe Fe Fe Fe

TABLE II.

TABLE OF OBSERVATIONS OF & AQUILE.

Plate.	Dat	æ, G. M	. т.	Velocity.
368		Sept.	$\begin{array}{r} 6.73\\ 15.65\\ 24.65\\ 10.64\\ 27.61\\ 23.57\end{array}$	- 41 · 8 kms. 45 · 2 45 · 1 25 · 0 29 · 0 37 · 7
803		June ₂ July, Aug. Sept.	$ \begin{array}{r} 31 \cdot 79 \\ 10 \cdot 80 \\ 2 \cdot 76 \\ 9 \cdot 68 \\ 10 \cdot 68 \\ 25 \cdot 68 \\ 3 \cdot 61 \\ 5 \cdot 68 \\ 6 \cdot 65 \\ 18 \cdot 58 \\ 1$	$29 \cdot 9$ $42 \cdot 8$ $19 \cdot 5$ $28 \cdot 0$ $18 \cdot 6$ $16 \cdot 5$ $25 \cdot 7$ $29 \cdot 4$ $25 \cdot 9$ $28 \cdot 0$
1145 1159 1159 1159 1157 1158		June, July, Kugust,		$\begin{array}{c} 21\cdot 9\\ +0\cdot 1\\ 28\cdot 2\\ 35\cdot 6\\ 55\cdot 5\\ 29\cdot 5\\ 39\cdot 8\\ 40\cdot 9\\ 21\cdot 9\\ 26\cdot 1\\ 9\\ 26\cdot 4\\ 26\cdot 1\\ 34\cdot 6\\ 47\cdot 0\\ 30\cdot 7\\ 39\cdot 1\\ 39\cdot 7\\ 31\cdot 9\\ -39\cdot 5\end{array}$

THE ORBIT OF β ORIONIS.

As was mentioned in my report of last year, under a description and discussion of the offect of sliv-width on the errors of sturing, this star showd such a difference in the mean velocities obtained on two nights (mean of 10 plates on March 29, 24-8km.; mean of 12 plates on March 24, 20-8km.) as to lead to a strong suspicion of the variability of its velocity. This suspicion was strengthened by plates obtained on other nights up to April 13, 1908; and it was decided on account of its brightness and its could be observed.

The radial velocity of β Orionis was first determined at Potsdam by Vogel and Scheiner" in the years 1888-1891, in the beginning of photographic determinations of radial velocity. From their measures of the 14 plates, velocities varying between about + 3 and + 34kms, per second were obtained. They suspected a variation in the star's velocity due to orbital motion, but were unable to obtain evidence of its periodicity, and the accuracy of these early measures was scarcely sufficiently high to decide the question. The next published measures of the star's velocity were by Frost and Adams+ from plates obtained in 1901-1902. They found values ranging between + 14-9 and + 23-4km,, but they attributed this range to the character of the lines in the star's spectrum and concluded that their results showed no indication of variability in velocity. The measures of 5 plates of 8 Orionis obtained at the Lick Observatoryt indicate a range of 10km, from + 15 to + 25km, in its velocity, but Campbell and Curtis in discussing these measures attribute this range to the small number of lines available, to their poor quality, and to over-exposure of some of the negatives. They consider that proper exposure would considerably reduce the observed range, and conclude that their results do not give any evidence of variability of velocity. However, a recent personal communication from Prof. Campbell informs me that they have suspected variation, but owing to press of their regular programme have not followed up the matter.

There seemed to be no question of the smallness of the range in velocity, if any, and it was evident that the only hope of obtaining anything definite, considering this and the fairly large accidental errors of a velocity determination owing to the character of the lines of the spectrum, was to obtain several plates on each night the star was observed and use their mean velocity as the velocity of the star at their mean cpoch. As the star is bright, a spectrum can be obtained in ten minutes or less with the three-prism spectrograph, and in about two minutes with the one-prism. Consequently not much time is required to obtain half a dozen plates and unless the period is very short no error due to change of phase can enter. The probable error of a night's observation will by this means be considerably reduced and a much better chance obtained of determining its period of variation.

Plates were accordingly obtained whenever possible until the star became inaccessible in April, 1908, and observations were continued during the present season plates were obtained until December. In all 273 plates, obtained on 54 nights, have been used in this discussion. Of these 150 were made with a dispersion of three prisms, 123 with one prism. The investigation on sit-width in the last report showed that lower probable errors were obtained with the higher dispersion and it was used wherever possible. However, the star was also observed with the one-prism spectrograph when our programme would not permit the use of three prisms. Threefourths of the observations and all the measurements were made by myself in order to avoid as far age possible any chance of systematic discrepancies.

^{*}Potsdam Publications, Band VII., p. 146.

⁺ Publications of the Yerkes Observatory, 2, 61.

t Lick Observatory Bulletin No. 70.

The star β Orionis is of the helium type, Miss Maury's V.Le, and has fairly well defined lines of hydrogen and helium, the magnesium λ 4481 and the calcium H and K. It also contains lines due to silicon, oxygen and enrohon and a few faint metallic lines. In my early measures for silicwidth effect eight lines were measured in the three-prism plates and seven in the single-prism plates.

Three-Prism Plates.	One-Prism Plates.	
4862 //	4862 H	
4481 Mg	4481 Mg	
4472 He	4472 He	
4388 He	4341 H	
4341 H	· 4102 H	
4131 Si	4026 He	
4128 Si	3934 Ca	
4102 H		

Lines measured in B Orionis.

It was found, however, that lower probable errors were obtained where the three best lines λ 448, 1472, 2471 and were used than when more or all of the measured lines were discussed. Consequently in the later plates only the three lines mentioned above have been measured and in general four comparison lines, thus considerably lightening the labour. Considerable difference in the quality of the negatives for measurement, even when taken under, so far as could be judged, identical conditions, has been noticed; this difference seems to lie principally in the character of the lines themselves. They are sometimes sharp defined and symmetrical, at others not so sharp and apparently stronger at one side. Sometimes also the contrast between them and the continuous spectrum appears considerably diminished. These changes seem almost too marked to be due entirely to instrumental or photographic effects, and one would be include to attribute part at any rate to changes in the spectrum. No evidence can be found, however, of any dependence of this quality of the lines upon the phase of the orbit.

In the measurements the lines were weighted according to their apparent quality and the weighted mean velocity used. In combining the separate plates on each night they were also weighted, partly according to their quality and partly according to the internal agreement of the measures, and finally the resultant mean velocity for the night was similarly weighted for use in the grouping and discussion.

The record of the observations and the individual plate measures are given in Appendix E, where all the measures are collected together, while a summary of the velocities, &c., is given in the following table—

9-10 EDWARD VII., A. 1910

β ORIONIS.

SUMMART OF MEASURES.

Plate Number.	Date.	G. M. T .	Julian Date. 🟒	Velocity.	Residual.
	1908.				
1241 s	January	15.02	2,417,961.63	+23.3	- 24
1241 b	20	15.06	961 63 961 63	+20.9 -25.4	0.0
1241 c		15·10 15·12	961.63	+23.4 +23.7	+ 4.5
1242 a 1242 b	20	15 15	961.64	+25.9	+ 5.0
1242 c	. 20	15.18	961 · 64 961 · 64	$^{+19.7}_{-21.3}$	~ 1.2 + 0.4
1243 a		15·24 15·27	961.65	$+21^{\circ}3$ $+23^{\circ}5$	+ 0.4 + 2.6
1243 c	20	15.30	961.62	+24.8	+ 3.9
1244 a	·· 20	15·43 15·47	961-66 961-66	+24.5 +16.5	+ 3.6
1244 b 1244 c		15.50 .	961-66	+26.4	+ 5.5
1245 a		15.52	961.66	+25.0	+ 4.1 + 0.9
1245 b 1245 c	20 20	15·54 15·56	961 66 961 66	+21.8 +20.5	+ 0.9
1247 a	20	16.12	961.68	+23.8	- 2.9
1247 b	20	16·17 16·19	961 68 961 68	$+31.3 \\ +19.0$	+10.4 -1.9
1247 c 1248 a		16.19	961.68	+15 0 +11.6	- 9.3
1248 b	20	16.27	961.68	- 58	-15.1
1248 c 1249 a	20 20	16·29 16·35	961.68 961.69	+36.1 +14.0	- 15.2
1249 b	- 20	16.37	961.69	÷16.0	- 4.9
1249 b 1249 c	·· 20 ·· 27	16·39 15·45	961.69 968.68	+24.2 + 15.3	+ 3.3 - 5.8
1285 a 1285 b	27	15.45	968 66	+10.5	- 1'9
		15.57	968.67	+17.9	- 3.2
1286 a	27	16:03 16:09	968 · 67 968 · 67	$^{+21.3}_{+18.7}$	$^+ 0.2 \\ - 2.4$
		10.11	968.67	+24.3	+ 3.5
1289.8		$16\ 15\ 17\ 13\ 17\ 17\ 17\ 17\ 17\ 21\ 17\ 24\ 17\ 28\ 17\ 32$	968.72	+18.1 -19.9	- 3.0
1289 b 1289 c	27	17:21	968 72 968 72	- 19.9 - 27.8	- 2.5
1290 a	27	17-24	968.73	+156	- 5.6
1290 b		17:28	- 968 73 968 73	$^{+21}_{+16.1}$	+ 0'4 - 5'1
1405.	March 20	11.21	2.418.021.50	+23.1	- 1 4
1405. 1406.		12 07 12 21	021 · 50 021 · 51	+24.3 +21.4	- 0°2 - 3°1
1407. 1408.	·· 20 ·· 20	12 21	021.52	+24.9	~ 0.1
		12.46	021 53	+28.0 +23.3	- 3.5
1410	20	13:00 13:12	021:54 021:55	+23.3 +23.5	- 1.2
1411 1412	20	13.27	021:56	+24.9	+ 0.4
1413	20	13-47 13-57	021:57 021:58	$^{+27.5}_{+26.9}$	+ 3.0 + 2.4
1414 1426,	20	12 03	025.50	+19.5	- 2.9
1427 1428	24	12.12	025.51	+21.1	-1.0 -2.9
1428	24	12·23 12·36	025.52 025.52	$^{+19}_{+21}$	- 2.9
1429. 1430.	24	12.42	025.53	+18.8	- 3.3
1431 1433	·· 24	12 52 13·16	025 · 53 025 55	+18.6 +17.5	- 3.5
1433	n 24 n 24	13.32	025 55	+17.5 +19.3	- 2.8
1434		13.39	025.57	+16.1	- 6.0
	. 24	13·46 13·56	025·57 025 58	$^{+17.2}_{+18.7}$	- 4.9
1437		14.07	025.58	+18.0	- 4.1
	n 30	12.19	031 51 031 52	+14.4 +14.4	- 41 - 41
1440		12·29 12·38	031:53	+14.2	- 4 0
1442		12.49	031 53	+17.0	- 1.5
1442	April 3	12.16 12.28	035.51 035.52	$^{+249}_{+279}$	+ 1.5 + 4.5
1449	. 3	12.40	035.53	+32.5	+ 8.7
1451	. 3	12.23	035.53	+27 1	+ 3.6

βORIONIS.

SUMMARY OF MEASURES-Continued.

	Date.		Julian Date.	Velocity.	Resi lal.
1477	1998 4 4 1 4 1 4 4 4 4 4 4 4 4 4 4 4 4 4	10 25 7 10 25 18 30 10 14 46 05 06 37 46 38 15 36 12 38 36 37 36 16 10 14 06 26 06 06 15 17 15 18 26 17 17 18 36 17 18 36 17 17 18 36 17 18 36 17 17 18 36 17 18 36 17 17 18 36 17 18 36 17 17 18 36 17 18 36 18 3	2.415.000 51 000 500 100 51 000 500 500 500 500 500 500 500 500 500	$\begin{array}{c} + 2574 + 4 \\ + 2585 + 4 \\ + 2585 + 4 \\ + 2585 + 4 \\ + 2585 + 4 \\ + 2585 + 4 \\ + 2585 + 4 \\ + 2585 + 4 \\ + 1174 + 0 \\ - 1174 + 0 \\ + 2585 + 1 \\ - 1174 + 0 \\ + 2585 + 1 \\ - 1174 + 0 $	10-0-09-10-00-00-00-00-00-00-00-00-00-00-00-00-
2002	anuary 6	$\begin{array}{c} 16\ .49\\ 16\ .53\\ 17\ .13\\ 17\ .16\\ 12\ .49\\ 13\ .01\\ 13\ .04\\ 13\ .07\\ 16\ .27\\ 16\ .27\\ 16\ .56\\ 15\ .52\\ 11\ .55\\ 11\ .59\end{array}$	$\begin{array}{c} 2,418,81370\\ 81370\\ 81372\\ 81372\\ 81475\\ 81475\\ 81475\\ 81475\\ 81475\\ 81475\\ 81475\\ 81576\\ 81576\\ 81576\\ 81576\\ 81576\\ 819750$ 810750\\ 81075	$\begin{array}{r} + 19 \ 1 \\ + 19 \ 6 \\ + 18^{\circ} 5 \\ + 21^{\circ} 2 \\ + 16^{\circ} 8 \\ + 21^{\circ} 9 \\ + 12^{\circ} 8 \\ - 20^{\circ} 7 \\ + 19^{\circ} 2 \\ + 16^{\circ} 6 \\ + 17^{\circ} 8 \\ + 20^{\circ} 3 \\ + 26^{\circ} 5 \\ + 26^{\circ} 5 \end{array}$	$\begin{array}{c} - & 0.7 \\ - & 0.2 \\ - & 1.3 \\ + & 1.4 \\ - & 2.47 \\ + & -7.1 \\ + & 1.50 \\ - & 2.6 \\ - & 1.4 \\ + & 1.6 \\ + & 4.50 \end{array}$

9-10 EDWARD VII., A. 1910

βORIONIS.

SUMMARY OF MEASURES-Continued.

-					
Plate Number.	Date.	G.M.T.	Julian Date.	Velocity.	Residual.
	1909.				
2124	January 12	12.09	2,418,319.51	+ 20.2	~ 1.5
2125	. 12	12.13	319 51	- 21 . 3	- 0.7
2126	12	12·15 12·18	319·51 319·51	$+21^{\circ}3$ $+27^{\circ}2$ $+25^{\circ}5$	+ 5.0 + 3.5
2126	. 13	15.36	320.62	+ 30.2	+ 6.1
2129	13	15:41	320.65	$\begin{array}{c} +30 \cdot \frac{2}{8} \\ +15 \cdot 7 \\ +18 \cdot 6 \\ -27 \cdot 2 \\ +27 \cdot 2 \\ +27 \cdot 2 \\ +31 \cdot 4 \\ +33 \cdot 0 \\ +33 \cdot 0 \\ +33 \cdot 0 \\ +33 \cdot 0 \\ +33 \cdot 2 \\ +33 \cdot 3 \\ +29 \cdot 9 \\ +23 \cdot 2 \\ +33 \cdot 3 \\ +29 \cdot 9 \\ +33 \cdot 2 \\ +33 \cdot 3 \\ +23 \cdot 2 \\ +33 \cdot 2 \\ +33$	- 8.4
2130	. 13	15·46 14 54	320 · 66 322 · 62	+28.8 +18.6	$^{+}$ $^{+}$ $^{+}$ $^{+}$ $^{-1}$ $^{-1}$
2142	15	15.11	322.63	-24.5	- 1.4
2143	. 15	15.12	322.63	-27.2	+ 1.3
2144	. 10	15·19 12·25	322 64 323 52	+ 21 .8	- 4·1 + 5·3
2152		12.36	323 52	+27.6	+ 1.5
2153	- 16	12.44	323 53	- 34 4	+ 8.3
2154	. 16	12.52 12.59	323 53 323 54	-40'9	+14.8 + 6.9
2155	16	13.12	323.55	+ 35 8	+ 9.7
2157	. 17	13.48	324 57	+29.9	+39
2153	. 17	13.56 12.41	324 · 58 325 · 53	+26.2	+ 0.2 + 11.5
2161	18	12.46	325.53	+ 31 3	$+11^{-5}$ + 5.7
2163	18	12.51	325.53	+28.3	+ 2.7
2164	18	13.06 13.10	325 54 325 55	+ 35.8	+10.2 ± 5.6
2100	18	13.14	325.55	+31.2 +30.5	+ 5.6 + 4.9
2177	. 26	10.36	333 44	+24.6	+ 3.4
2178	. 26	10.51 10.56	333 · 45 333 · 46	-17.8	- 3·4 + 3·7
2179	. 26	10.56	333 46	+24.9 -23.5	+ 3.7 + 2.3
2181	26	11.11	333.47	$\begin{array}{r} +24\cdot 9\\ +23\cdot 5\\ +22\cdot 4\\ +16\cdot 2\\ +20\cdot 5\\ +16\cdot 3\\ +22\cdot 2\\ +14\cdot 2\end{array}$	- 1.2
2183	26	11.16	333 · 47 333 · 47	+16.2	- 5.0
2183		11 21 11 21	335-47	+ 16:3	- 0.7
2185		11.25	335.48	+22.5	- 3.3
2186	. 28	11:29	335·48 335·48	+14.2	= 5'7 = 5'6
2187	. 28	11.41	335-48 335-49	+ 14 * 3 + 10 * 6	- 5.6
2189	. 28	11.47	335-49	+14.5 +10.6 +18.4 +14.9 +17.9 +26.4 +22.1 +14.0	- 0.9
2195	29	12.53	336°54 336°54	+14.9	- 4.3
2196 2197 2198	. 29	12.57 13.01	336.54	+17.9	-1.3 + 7.2
2197	. 29	13.02	336-54	+22.1	+ 2.9
2201	30	12.29	337 52	+14.0	- 4.7
2202	30	12:41 12:45	337:53	$^{+17}_{+25.0}$	- 1.4 + 6.3
2198 2201	30	12.48	337·53 337·53	+142	- 4.5
2205	., 30	15.47	337.66	+210 +22.6	
2206	. 30	16.04 16.24	337 · 67 337 · 68	+22.6 +22.3	+ 4.1 + 3.8
2211	31	17:16	338.72	+19.8	- 1.2
2212		17.20	338.72	± 23.5	- 1.6
2213 2214 2215	31	17 · 20 17 · 24 17 · 24 17 · 29	338 73 338 73	+16.6 +16.6	- 2 6
2214	February 2	11.14	340.42	+24.8	+ 4.6
2216.	. 2	11.23	340 48	+23.1	+ 2.9
2217	. 2	11·26 11·29	340 · 48 340 · 48	$^{+23}_{+22}$ $^{6}_{5}$	+ 3*4 + 2*3
2218	. 2	11.41	340-49	+16.2	- 3.7
2219 2220	2	11 · 45 12 · 29	340.49	+21.2	+ 1.3
		12·29 12·50	344.52	+18.2 +20.0	- 7.7 - 5:9
2239. 2240	- 6 - 6 - 6	12.50	344·53 344·53	+20.0 +21.0	- 4.9
2241	. 6	16 12	344.68	+21.9	- 4.0
2242		16.43	344 70 345 63	+19.1 +21.0	- 6'8 - 5'1
2243 2244		15.11 15.25	345 64	+21.0 +21.9	- 5'1
		10 20	010 01		

βORIONIS.

SUMMARY OF MEASURES, - Continued.

Plate Number.	Date.	G M.T.	Julian Date.	Velocity.	Residual.
a rave 14 uniber.	Dates	G	o unun Date.	· clocity.	
				-	
	1909.				
2245 2249	February 7	15·37 13·32	2,418,345.65 846.56	+18.0 +31.6	- 8.1 + 5.2
2250	. 8	13.36	346.56	+ 25 9	0.0
2251	8	13.41	346.57	+21.8	- 41
2252		14.01	346 58	+17.6	- 8.3
2253		14 05 14 09	346·58 346.59	+24.1 +23.3	- 1.8
2254	- 8 - 10 - 10	12.07	348.50	+29.6	+ 4.4
2266	10	12 12	348.51	+23.3	- 1.9
2267	10	12.16	318 51	+16.9	- 8.3
2268	" 10 " 10	12.21 12.33	348·51 348·52	+12.8 +20.3	- 12.4 - 4.9
2269 2270	" 10 " 10	12 33	848°02 348°53	+20.9 +23.0	- 4 9
2272	. 11	11 26	349 48	+18.9	- 5.8
2273	. 11	11.32	349.48	+33.4	+ 8.7
2274	11	11:35 11:38	349·48 349·49	+ 30.8 + 19.7	+ 6.1 - 5.0
2275 2276	·· 11	11:38	349.49 349.49	+19.7 +17.3	
2277	* 11	11.49	349.49	+23.5	- 1.2
2277. 2278	13	12.27	351 52	+22.2	- 1'4
2278 2279 2280 2284	. 13	12.49	351 · 53 351 · 54	+22.0 +21.1	- 1.6
2280 2284	- 13 - 20	12.53 12.29	358.52	$+21^{-1}$ $+17^{-7}$	- 1.4
9985	20	13.05	358.54	+ 22.6	+ 3.5
2286.	. 20	15.12	358.63	+ 19 . 8	+ 0.7
2288	. 21	12.51	359.53	+21.0	+ 2.3
2289 2290.	21	13.07 13.17	359 54 359 55	+18.2 +18.4	- 0.5
2290 2291 2292	21	13 27	359.56	+18.7	0.0
2292		12.02	360.20	+19.7	+ 1 1
2293 2294	- 22	12.12	360 51	+25.1	+ 6.2
2294	22	12:30 12:45	360 · 52 360 · 53	$^{+20.2}_{+20.2}$	+ 1.6
2295. 2309. 2311	- 22	12 45	365.48	+202 +22.0	- 3.4
		11.56	366.50	+22.5	- 3.8
2312	28	12.07	366.20	+22.0	- 4.0
2312 2313 2314 2315	- 28 - 28	12:18	366 · 51 366 · 52	$^{+23.7}_{+25.3}$	- 2:3
2314	28	12·27 12·39	366.23	+23 - 3 $+22 \cdot 4$	- 3.6
		12.50	366.23	+22.8	- 3.2
2317.	March. 2	11.02	368-46	+25.9	0.0
2318 2319	. 2	11·19 11·29	368 · 47 368 · 48	+24.4 +24.2	- 1.5
2320		11.29	368.48	+24 2	- 4.3
2364	. 13	12.12	379.51	+18.6	~ 11
	12	12.24	379.52	+18.4	- 1'3
2366 2367 2368 2372	13	12·36 12·46	379 52 379 53	+20.3 +17.6	+ 0.6 - 2.1
2367	·· 13 ·· 13	12:46	379.53	+17.6 +19.3	- 2.1
2372	15	11:45	381 49	+16.9	- 1.8
2873	. 15	11.56	381.50	+20.5	+ 1.8
2374	15	12.02	381.20	+ 17 . 6	- 1.1
2368 2372 2373 2374 2375 2375 2376 2386 2386 2387	" 15 " 15	12·13 12·21	381.51 381.52	+18.9 +16.2	+ 0.2 - 2.5
2310	15 18	12.21	381.02 384.49	$+10^{-2}$ $+19^{-5}$	- 1-1
2387	18	11.52	384:50	+20.0	- 0.6
7388	18	12.02	384:50	+21.7	+ 1.1
2389 2390	18	12.15	384.51	+21.0	+ 0.4
2390,	· 20 · 20	12.16 12.26	386 51 386 52	+22.2 +18.3	- 2.1
2391 2392 2393		12.26	386.52	+18.3 +23.4	- 0.8
2393	. 20	12:48	386.23	+21.9	2.4
2394 2397	. 20	12.28	386.54	+23.1	- 1.2
2397		13.38	387.56	+23.9	- 1.6
2398	21	13.48	387 · 57 387 · 58	+25.2	- 0.3
2399	. 21	14.00	387.58	+24 8	- 0.1

β ORIONIS.

Plate Number.	Date.	G.M.T.	Julian Date.	Velocity.	Residual.
2400 2402 2402 2403 2404 2405 2420 2420 2421 2422 2423 2422 2423 2424 2425	1909. March 21 = 22 = 22 = 22 = 22 = 33 = 33 = 33 = 33	$\begin{array}{c} 14^{\circ}14\\ 11^{\circ}51\\ 12^{\circ}02\\ 12^{\circ}13\\ 12^{\circ}35\\ 11^{\circ}46\\ 11^{\circ}57\\ 12^{\circ}05\\ 12^{\circ}13\\ 12^{\circ}13\\ 12^{\circ}27\\ 12^{\circ}38\end{array}$	2,418,387 59 388 50 388 51 388 51 388 52 389 59 389 50 389 50 389 50 389 50 389 50 389 50 389 50	$\begin{array}{c} +25\cdot5\\ +26\cdot0\\ +25\cdot0\\ +21\cdot1\\ +21\cdot2\\ +23\cdot1\\ -24\cdot4\\ +25\cdot9\\ +26\cdot2\\ -25\cdot5\\ +25\cdot7\end{array}$	$\begin{array}{c} 0.0\\ 0.0\\ -1.0\\ -4.9\\ -4.8\\ -3.0\\ -1.7\\ -0.2\\ +0.1\\ -0.6\\ -0.4\end{array}$

SUMMARY OF MEASURES-Continued.

In the preceding table are given the plate number, the Greenwich mean and Julian dates, the weighted mean velocity for the plate, and finally the residual obtained by scaling from the final velocity curve. The velocities on each night were obtained by taking the weighted means of the plate velocities, the weights being assigned, as before stated, partly on the basis of apparent quality, partly according to the internal agreement of the measures. In the following table of mean velocities are given various data concerning the observations of each night, as the data, Julian date, velocity, phase, the number of plates, the dispersion used, the weight assigned and finally the residual obtained by scaling from the curve-

β ORIONIS.

SUMMARY OF MEAN VELOCITIES PER NIGHT.

Date.	Julian Date.	Mean Velocity.	Mean Phase.	No. of Plates.	Spectro- graph.	Weight.	Residual
1908.							
Jan. 20	968 11 2,418.021 54 035 54 035 52 036 52 228 92 228 92 277 77 281 60 297 68 297 68 297 68 297 68 298 75 208 75 308 65	$\begin{array}{c} 22\cdot 3\\ 19\cdot 7\\ 24\cdot 9\\ 20\cdot 6\\ 15\cdot 1\\ 27\cdot 3\\ 24\cdot 2\\ 24\cdot 2\\ 27\cdot 7\\ 11\\ 16\cdot 8\\ 22\cdot 3\\ 21\cdot 4\\ 20\cdot 1\\ 25\cdot 9\\ 23\cdot 6\\ 34\cdot 6\\ 34\cdot 6\\ 34\cdot 6\\ 34\cdot 4\\ 24\cdot 2\end{array}$	$\begin{array}{c} 0.65\\ 7.71\\ 1.6.74\\ 20.74\\ 8.82\\ 9.82\\ 9.82\\ 5.12.92\\ 5.12\\ 0.19\\ 7.09\\ 8.18\\ 9.25\\ 10.13\\ 13.17\\ 14.15\\ 18.15\end{array}$			$\begin{array}{c} 16 \\ 6 \\ 10 \\ 6 \\ 5 \\ 4 \\ 3 \\ 3 \\ 2 \\ 5 \\ 3 \\ 2 \\ 1 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2$	$\begin{array}{c} +1\cdot 40\\ -1\cdot 50\\ +0\cdot 45\\ -1\cdot 47\\ -3\cdot 46\\ +3\cdot 87\\ +3\cdot 28\\ +0\cdot 93\\ +1\cdot 108\\ +1\cdot 32\\ -5\cdot 19\\ -1\cdot 76\\ +1\cdot 32\\ -5\cdot 19\\ -1\cdot 26\\ +0\cdot 85\\ -0\cdot 10\\ -1\cdot 43\\ -1\cdot 36\\ +5\cdot 77\\ +0\cdot 56\end{array}$
1909.	501 05	-1 -2	10 15		1.12	2	+0.00
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	314 + 62 315 + 66 319 + 50 320 + 66 322 + 62 323 + 57 324 + 57 325 + 54 333 + 47 335 + 49 336 + 54 337 + 61 338 + 72	$\begin{array}{c} 19^{6}6\\ 1796\\ 1796\\ 2490\\ 2490\\ 2490\\ 2414\\ 19167\\ 19200\\ 32101\\ 197\\ 11107\\ 11107\\ 11107\\ 11107\\ 11107\\ 11107\\ 11102\\ 11101101\\ 11101101\\ 11101101\\ 11101101\\ 11101101\\ 11101101101\\ 111011011011011011$	$\begin{array}{c} 3 & 23 \\ 3 & 4 \\ 5 & 5 \\ 1 & 2 \\ 3 & 4 \\ 5 & 5 \\ 1 & 1 $	472634626764746536663344164554545446		2413113164215243221132331425324	$\begin{array}{c} -0.20\\ -1.341\\ +0.87\\ +2.70\\ +2.70\\ +2.730\\ +7.30\\ +7.30\\ +2.15\\ $

It was not difficult to trace periodic changes in the velocities thus determined, and comparatively early in the present season the period was found to be very nearly 91.00 days. The Potsdam observations, however, did not group themselves satisfactorily with this period, and owing to their probably inferior accuracy were not considered. The Yrrkes observations showed a fairly satisfactory arrangement, although there were some discrepant single plates, due possibly to accidental errors of setting on the rather

broad lines of the spectrum, or to another cause to be referred to later on. The Lick observations, extending over seven years, followed the velocity ourre determined as closely as could be expected, although as there are only five plates this agreement may be accidental. It was found, however, that a period of 21.87 instead of 21.90 days was required to bring the Lick observations forward to onrs.

Although some discrepancies are to be expected on account of the small range in velocity and the relatively high errors of measurement, still it was felt that all the irregularities noted could not be explained on the above grounds. Consequently, although sufficient data to obtain the elements of the orbit by the end of January, it was deemed elesiable to continue the observations in the hope of finding a clue to some of the anomalies. The latr observations revealed some peeulin and intersting features in the star's motion which served, if not to explain the cause of the irregularities, at least to indicate a reason for their existence.

The phase of minimum velocity due January 30-31 followed prediction, but the succeeding maximum, due February 6-7, although present, was of much lower amplitude than those previously obtained. The curve already drawn showed a range of velocity between about + 17 and + 29km. The maximum of February 6 reached only about 23km., and the succeeding minima and maxima until the end of the observations were as follows: + 19.5, + 23.0; + 18.5, + 24.5; 19.0, + 24.5. All of these values, as well as the previous ones, depend upon several plates, and there is no doubt in my mind that they indicate, if not a change in the amplitude of the velocity curve, certainly some progressive shift in the position of the absorption maximum of the lines measured due to some physical cause in the star's atmosphere. If ft is a change in the amplitude of the motion, it may be due to the presence of a third body and will probably be periodic. If an epoch of low amplitude occurred in 1901-1902 this, together with the fact of their only making one plate per night and the consequently higher accidental errors, would form a sufficient explanation why Frost and Adams with the high accuracy of their work were unable to find any periodicity in the motion. Furthermore, a change in the amplitude is probably accompanied by changes in the other elements of the orbit, which may account for the slight change in the period requisite when the Lick observations are brought up to the same epoch as those at Ottawa.

If all the Ottawa observations are plotted continuously on cross-section paper, they form a curve somewhat similar to the trace given by two beating tuning forks. It shows curves similar to the velocity curve of Fig. (16) periodically repeated with gradual increasing amplitude, then with a sudden diminution followed by another gradual increases. The observations have not been sufficiently continuous or extended to decide whether this variation in amplitude is periodic, and in any case the very small range combined with the comparatively poor quality of the spectrum for measurement would render such a determination difficult and uncertain even if a very large number of plates were obtained.

I have, therefore, thought it preferable now, as all these successive curves have, so far as can be determined, the same form, to consider the variations in amplitude as accidental or, if you like, as due to errors in measurement; and to obtain a mean curve and from it the elements of the orbit by grouping together into normal places the mean velocities obtained on the 54 nights nuder discussion. The period chosen was that mentioned above, 21:400 days, which best suited our own and the Lick observations and which nucle the conditions cannot probably be improved upon. The initial phase T_{α} was taken as Julian day 2,417,961-0. The basis of grouping into the normal places was the phase, the total difference in phase in the nights in a group being kept generally less than half a day, except in three groups where the velocity changes but slowly.

25a p. 222

These normal places with other data are given in the table below, and the places themselves are indicated by circles on the velocity curve Fig. (16) corresponding to the final elements.

No.	Mean velocit y .	Mean phase.	No. of nights.	No. of plates.	Total diff. of phase.	Weight.	Weight used in solution.	Residual O-C
1	$\begin{array}{c} 22 \cdot 06 \\ 18 \cdot 51 \\ 18 \cdot 59 \\ 18 \cdot 92 \\ 18 \cdot 92 \\ 18 \cdot 92 \\ 12 \cdot 76 \\ 24 \cdot 63 \\ 24 \cdot 63 \\ 24 \cdot 91 \\ 26 \cdot 28 \\ 24 \cdot 91 \\ 26 \cdot 28 \\ 24 \cdot 49 \\ 23 \cdot 34 \\ 20 \cdot 60 \end{array}$	$\begin{array}{c} 0^+444\\ 2^+350\\ 3^+266\\ 4^+481\\ 5^+240\\ 7^+427\\ 8^+200\\ 9^+160\\ 10^-024\\ 11^+265\\ 13^+253\\ 13^+253\\ 16^+567\\ 18^+431\\ 20^-740\\ \end{array}$		35 15 14 22 25 10 16 10 31 39 22 10 12	$\begin{array}{c} 0.48\\ 0.24\\ 0.15\\ 0.59\\ 0.30\\ 0.62\\ 0.27\\ 0.63\\ 0.46\\ 1.81\\ 1.52\\ 0.60\\ 0.00\\ \end{array}$	$ \begin{array}{r} 17 \\ 9 \\ 7 \\ 10 \\ 15 \\ 5 \\ 11 \\ 7 \\ 16 \\ 23 \\ 12 \\ 8 \\ 6 \end{array} $	والكالية والترسية والمركبة والمركبة والمركبة والمركبة والمركبة والمركبة	$\begin{array}{c} +1 \ 02\\ -1 \ 24\\ -0 \ 60\\ +0 \ 27\\ -0 \ 47\\ -0 \ 40\\ +0 \ 61\\ +0 \ 65\\ -0 \ 26\\ -1 \ 10\\ -0 \ 34\\ -0 \ 05\\ -0 \ 17\\ -1 \ 48\end{array}$

NORMAL PLACES 3 ORIONIS.

With these normal places and by the graphical method developed by you, described in last year's report, the elements given below were readily determined, with which the observations seemed to agree closely. However, owing to the considerable differences in the weight of the normal places, which could not very well be allowed for in a graphical solution, and to the advantages demonstrated by previous experience, it was fet desirable to apply a least squares correction to these elements.

For coefficients of the corrections the equations developed by Lehmann-Flihés^{*} were used, and from these and from the epimemics obtained from the normal places and preliminary elements, the following observation equations were derived. All of the elements except the period, which was considered as closely determined as possible from the range of velocity present and the short interval used, were included in this solution and an unknown of coefficient unity for the velocity of the system was added.

x			u	r			
δη .	δ K	Κδω	Κδε	$\frac{K \ \mu \ \delta \ T}{\left(1 - e^2\right)^{\frac{3}{2}}}$	F	Weight.	8
1:000	- 0·505 - 0·851	- 0.698 - 0.408	+ 0 892 - 0 859	+0.892 -0.601	-1.51 -0.74	2	-0.071 -1.937
1 II.	-0.975 -1.052	-0.190 +0.128	+0.523 -0.223	-+ 0.384 + 0.012	-0.20 -0.42	\$	+0.942 -0.507
	-1.020	-0.443	- 0 528	-0.548	+0.26	7	-0.504
	-0.464	+1.104	-0 598	- 0.911	+0.19	ê	-0.322
	-0.138	+1.189	+0.140	- 0 . 996	-0.83	1	+0.362
	+0.267 +0.569	+1.141 + 0.977	+0.924 +0.845	-0.948	- 1·18 - 0·33	\$	+1.204
	+0 876	- 0.565	+0.249 +0.219	-0.872	+0.80	4	+2.277 +3.388
	+0.941	+0.021	- 0.486	+0.122	- 0.31	2	+1:338
	+0.288	- 0.575	~ 0.869	-0.774	~ 0.16	â	-1.078
	+0.267	- 0.755	- 1.366	+0.948	-0 10	5	-0.194
	-0.183	- 0.798	-0.460	+0.991	- 1.16	1	+2.630

OBSERVATION EQUATIONS 3 ORIONIS.

* A. N., No. 3242, 25a—17

From these observation equations the following normal equations were obtained :--

	6 833x		0.328h	÷	1.1105		0.041n		-0	213v		1.132 = 0
												0.185 = 0
4	1.110x	÷	0.085h	÷	3.284:	+	0.192n	-	3	0720	-	0.211 = 0
	0.041x	-	0 466y	÷	0.1922	*	3'363u	-	0	2020		1.192 = 0
	0.213x	-	0.1924		3.072:		0.202u	-	3	1180		0.009 = 0

From the elimination there resulted the following values of the unknowns with their probable errors:--

When these are applied to the preliminary values we obtaiu:

ELEMENTS OF β ORIONIS.

Name.	Symbol.	Preliminary.	Corrected.
Eccentricity Half Amplitude. Longitude of Apse. Periastron Passage. Period. Velocity of System Projection of Semi axis Maximum Velocity. Minimum Velocity.	T U γ $a \sin i$	$\begin{array}{c c} 0.20\\ 3.75\\ 255\\ 7.80\\ 21.90\\ -22.444\\ 1,100,500\\ +26.0\\ -18.5\end{array}$	$\begin{array}{c} 0 \ 296 \ \pm \ 099 \\ 3 \ 771 \ \pm \ 210 \ \mathrm{km}, \\ 254 \ 75 \ \pm \ 3^{\circ} \ 48 \\ J \ D, \ 2 \ 417, 968 \ 30 \\ 21 \ 90 \ \mathrm{dys}, \\ \pm \ 22 \ 616 \ \pm \ 158 \ \mathrm{km}, \\ 1,08, 900 \ \mathrm{km}, \\ - \ 95 \ 09 \ \mathrm{km}, \\ -18 \ 55 \ \mathrm{km}, \end{array}$

It will be noticed that except for the eccentricity the changes in the elements are very small and a comparison between the residuals from the corrected ephemeris and from substitution in the observation equations above that the solution is satisfactory enough, as there are none greater than 25km. It was not deemed necessary to make a second solution considering the assumptions made in combining the observations. That the solution has improved the elements was shown at once on comparing the curves and is also evident by the reduction of \underline{Z}_{PCF} from 3.85 to 3.16.

The probable error of a normal place of unit weight is ± 0.40 km. The probable error of a night obtained by scaling from the enror is ± 1.80 . The probable error of a plate obtained with a dispersion of three prisms is ± 1.98 km, with dispersion of one prism ± 3.22 km, and including all the plates ± 2.92 km. If, as was done, the observations are divided into two sets—those before and those after January 29, 1900, when the sudden change in amplitude was noticed—and separate curves and elements are obtained roughly for these sets, the probable error of a night reduces to ± 1.37 km. with a proportional reduction in the probable errors of single plates, and this would probably be not much greater than 1km. if the amplitude remained constant. For the two sets mentioned above, it may be of interest to compare the maximum and minimum velocities. Those of the first set are + 17 and + 29 and of the second + 19 and + 23.5.

This solution must, however, owing to the peculiar behaviour of the star, be regarded as preliminary only. It is only when many more observations have been secured and the star has been closely followed for some time that any more definite idea of the nature of the changes taking place may possibly be obtained, and it is proposed in the future to follow it as closely as the other work on hand will permit.

I have the honour to be, sir.

Your obedient servant,

J. S. PLASKETT.

APPENDIX A.

ORBITS OF θ AQUILÆ, ϵ HERCULIS, AND η BOOTIS.

W. E HARPER.

The orbit of θ aquil.e.

The stor θ Aquille $(a = 2^{90} \cdot 0^{90-2}, \delta = -1^{*0} \cdot 0^{*7}$, photographic magnitude 3:6) was discovered to be a spectroscopic binary by M. Deslandersz in 1902. From the twentysix plates secured he obtained a period of 18:7 days and eccentricity about 0:6. As the results obtained by him were regarded as only provisional, the star was placed on our observing list here in May, 1907, when the single-prism spectrograph was ready for use. In all forty-five measurable plates were secured that year and from these, preliminary values of the elements were obtained.[‡] For convenience of reference these are given here:

 $\begin{array}{l} P = 17 \cdot 17^{4} \\ \gamma = -26 \cdot 7^{\rm km} \\ e = 0 \cdot 725 \\ \omega = 20^{\circ} \\ T = 1907, \ {\rm Oct} \ 2 \cdot 15 \ {\rm G}, {\rm M.T}, \\ - {\rm J}, {\rm D}, 2 \cdot 417, 851 \cdot 15 \\ a \ {\rm sin} \ i = 8 \cdot 455 \cdot 500^{\rm km} \end{array}$

As unfavourable weather prevented the securing of spectrograms in all its phases, particularly near the time of periastron passage, work was resumed on it this year with the object of filling up any gaps in the curve. Fifty-two spectrograms were secured this year and these have been combined with those of last year to determine the orbit. Some half-dozen plates of last year in which the agreement among the various lines was not all that could be desired were remeasured, but only two, Nos. 924 and 950, were changed in velocity appreciably. Plates 1035 and 1050 which had not been measured last year are also added.

Four of the plates Nos. 1001, 1100, 1101 and 1794 were made with the three-prism spectrograph, whose linear dispersion at *H* y is 10-1 tenth-nortex per nillimetre. The balance were all made with the single-prism spectrograph which at *H* y has a linear dispersion of 50-2 tenth-netres per millimetre and gives the whole visible spectrum in sharp focus. The region used for velocity determinations is that lying between and including *Hg* and *K*. The plates used were Seed 27.

The spectrum is of the type VIL0, and in the portion used the Mg line (Λ 4481) and K (Λ 3093) are best defined. The hydrogen lines are fairly well measurable, especially H_{γ} , the line λ 4549 is fairly sharp as are also the silicon lines. In addition to those given in Table I. some faint metallic lines also appear in some of the plates. The velocities corresponding to one revolution of the micrometer screw (0.5mm, pitch) are also gittached.

^{*} Bulletin Astronomique XX., 129, 1903.

[†] Journal of the Royal Astronomical Society of Canada I., 337, 1907. 25a-174

Element.	Wave-Length.	Velocity per Revolution
	4481 400 4340 634 4233 328 4143 928 4131 047 4128 211	$1451 \\ 1204 \\ 1151 \\ 1044 \\ 964 \\ 898 \\ 889 \\ 887 \\ 868 \\ 867 \\ 868 \\ 774 \\ 749 \\ 749 \\ $

LINES IN θ AOULA.

Practically all the plates made have been used in the discussion, even although one or two have not been of the best quality. No 885 being a case in point. In the preliminary curve for this year (P = 17.120) No. 873 gave an abnormally high residual (– 28km.) and following out a suggestion of Mr. J. S. Plaskett, to whom I am much indebted for help during this work, the result was omitted from consideration in the least-square solution, as an excessive residual tends to distort the elements out of all agreement with the mean values, as obtained from the remaining observations.

The following table gives all the data of the plates, the phase being reckoned from perjastron, Julian Day 2.417.731.504, using the period finally determined, 17-112 days.

$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		DIEASURES	OF 0 AQUI	arte:			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Plate No.	Julian Date.	Phase.		Wt.	Velocity.	Residual.
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		1907.					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	803	2.417.727.814		4	5		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		737.787		4			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	841.	739-836		4	5		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				4	5		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	865		16 275	1	2		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	905				4		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	924	765 777		5	4		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	931			7			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		770 703		4			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		773-713	7.986	3	3		
				5	3		
	969.		1.921	4	4		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1001	798.660					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1012						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1013			6			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1027	815.630		3	3		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1028			2	5		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1033.	825.612		4			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				-4	2		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1043.			7			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1050	837.614		4			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1072			ð	4		
1030	1073			4		+ k	
	1074.			6		- 7	
	1080				2	± 28	
	1081	850.521	16'345	5	3	+ 33	0.8
1082	1082						
1085				8			- 10.2
1086 $859'642$ 16 466 5 3 \pm 36 -1.0							~ 1.0
1089. 851-528 0.240 5 4 + 18 - 12.0	1089						
1091, 851 570 0.282 3 2 + 28 - 0.2	1091,				2		
1092,	1092,	851-589	0.301	5	2	+ 23	- 2.6

TABLE II. Measures of θ Adulte

	Т.	Al	BLE	H.	
MEASURES	0F	θ	Age	IL E	Continued

	MEASURES OF	- AQUILE	onemateu.			
Plate No.	Julian Date.	Phase.	No. of lines.	Wt.	Velocity.	Residual.
1063. 1094. 1100. 1100. 1100. 1100. 1128. 1128. 1128. 1128. 1128. 1128. 1150. 1154. 1155. 1157. 11	1907. 2,417,851 605 867 510 867 510 867 5574 884 452 886 500 888 4452 886 500 888 448 898 526 899 445 899 455	$\begin{array}{c} 0 & 317 \\ 0 & 337 \\ 16 & 223 \\ 16 & 283 \\ 16 & 052 \\ 16 & 052 \\ 10 & 988 \\ 12 & 936 \\ 13 & 014 \\ 13 & 933 \\ 13 & 946 \\ 0 & 905 \\ \end{array}$	5213+55+35433	3113255213323	$\begin{array}{r} + & 26 \\ * & 12 \\ + & 28 \\ + & 33 \\ - & 44 \\ + & 16 \\ + & 32 \\ - & 35 \\ - & 31 \\ - & 20 \\ - & 31 \\ - & 20 \\ - & 31 \\ - & 30 \\ - & 33 \end{array}$	$\begin{array}{r} + 2.6 \\ - 9.0 \\ + 1.7 \\ + 4.0 \\ + 1.4 \\ - 4.0 \\ + 11.6 \\ - 2.8 \\ - 3.4 \\ + 7.2 \\ + 1.8 \\ - 10.0 \\ + 3.9 \end{array}$
1233. 1254. 1267. 1267. 1267. 1267. 1267. 1267. 1267. 1267. 1267. 1267. 1277. 1278. 1288.	1988 2.418,677 571 000 512 000 512	$\begin{array}{c} 1252\\ 7&6&0000\\ 7&9541\\ 115&0000\\ 15&7&800\\ 115&7&800\\ 112&812\\ 8&12&12\\ 112&812\\ 112&$	0990 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	3233334555233349495543334949532334732333343332433223232323244554444	537 538 548 1 - 1115 1 539 2 - 239 2 -	

The observations of 1907 and 1908 were grouped separately and the period which suited best was 17.120 days. The phases for this period were computed, being reckoned from an initial epoch To, Julian Day 2,417,727, the date of the first observation. The observations of the two years were now combined and grouped into 18 normal places. Weights were assigned to these groups depending not only upon the sum of the weights of the individual plates, but upon the number of nights involved. The maximum weight was taken as 5. In the weighting of the individual plates, not only the quality of the plate per se, but the agreement among the various lines was taken into account. The groups are given in Table III.

	NORMAL PLACES.										
Mean Phase.	Mean Velocity.	Wt.	Mean Phase,	Mean Velocity.	Wt.						
$\begin{array}{c} 1 \cdot 00 \\ 2 \cdot 13 \\ 2 \cdot 66 \\ 3 \cdot 09 \\ 3 \cdot 42 \\ 3 \cdot 72 \\ 4 \cdot 31 \\ 4 \cdot 54 \\ 4 \cdot 72 \end{array}$	$\begin{array}{r} -22^{\circ}3\\ -11^{\circ}7\\ -0^{\circ}7\\ -13^{\circ}3\\ -24^{\circ}9\\ -34^{\circ}3\\ +51^{\circ}0\\ -33^{\circ}6\\ +22^{\circ}5\end{array}$	3 1 3 1 2 3 1 1 3	$5^{\circ} 49 \\ 6^{\circ} 47 \\ 7^{\circ} 96 \\ 9^{\circ} 46 \\ 10^{\circ} 73 \\ 12^{\circ} 05 \\ 13^{\circ} 93 \\ 16^{\circ} 28 \\ 17^{\circ} 05 \\ \end{array}$	$\begin{array}{r} -31 \cdot 3 \\ -38 \cdot 2 \\ -48 \cdot 9 \\ -44 \cdot 5 \\ -40 \cdot 5 \\ -36 \cdot 4 \\ -37 \cdot 4 \\ -33 \cdot 0 \\ -26 \cdot 7 \end{array}$	232122523						

TABL	E III.
NORMAL	PLACES.

Using the graphical method* of Dr. King, various values of e and m were tried. those finally decided upon as suiting the grouped observations best being e = .680, $\omega = 20^\circ$, K = 49km, and time of periastron passage, T, 4.30 days from initial epoch. Thus for preliminary clements we have:

P = 17.120 dayse = 0.680 $\omega = 20^{\circ}$ T = Julian Day 2,417,731.30 $K = 49 \, {\rm km}$. v = -25.3km.

With these elements it was decided to make a least-square solution for the normal places. Using the differential equation of Lehmann-Filhes+

$$\begin{split} \delta\left(\frac{d}{d\,t}\right) &= \delta \gamma + \left(\cos u + e \cos u\right) \delta K + \left[\cos u - \frac{\sin u \sin v}{1 - e^2} \cdot \left(2 + e \cos v\right)\right] K \delta e \\ &- \left[\sin u + e \sin u\right], \quad K \delta u - \sin u \left(1 + e \cos v\right)^2 \left(t - T\right), \quad \frac{K}{\left(1 - e^2\right)^2} \cdot \delta \mu \\ &+ \sin u \left(1 + e \cos v\right)^2 \frac{K}{\left(1 - e^2\right)^2}, \quad \mu = \delta T' \end{split}$$

eighteen observation equations were formed, connecting the six unknowns with the residuals between the observed and computed values of the velocity. To make the observation equations homogeneous the following substitutions were made :--

 $x = \delta v$ $y = \delta K$ $z = 10,000 \delta \mu$ u = 1008e $v = 10\delta T$ $w = 10 \delta \omega$

Astrophysical Journal, XXVII., 125, 1908

† Astronomische Nachrichten 3242.

There result the following normal equations :---

 $\begin{array}{l} 40.0000\, + \, 9.571\, \mu - \, 15.914\, z - \, 11.075\, u + \, 5.0406\, e + \, 4.981\, u + \, 18.200 = 0 \\ + \, 16.015\, y - \, 18.41\, u + \, 13.421\, u + \, 6.144\, u + \, 2.043\, u - \, 6.041\, g - \, 0.044\, u - \, 2.044\, u - \, 2.04\, u - \, 2.044\, u - \, 2.04\, u - \,$

Whence the corrections to the first approximations:

$\delta \gamma = -0.6 \text{ km}$.	$\delta e = + .011$
$\delta K = +2.1 \text{ km}.$	$\delta T = +$ 134 days
$\delta P =004$ days.	$\delta \omega = 5^{\circ} \cdot 27$

The resulting elements with their probable errors, as determined at a later stage, are:

 $\begin{array}{l} P = 17.116 \, \mathrm{deys} & \pm .008 \, \mathrm{deys}, \\ e = 0.691 & \pm .017, \\ w = 26^{5}.27 & \pm 2^{5}.1 \\ T = J, D, 2.417.731.434 \pm .100 \, \mathrm{deys}, \\ K = 51.1 \, \mathrm{km}, & \pm 3.20 \, \mathrm{km}, \\ \mu = 25.9 \, \mathrm{km}, & \pm 0.64 \\ A = 85.0 \, \mathrm{km}, \end{array} \right\}$ Final elements (simple solution).

The residuals from the curve using these corrected values of the elements asomed themselves to lie on a curve, which we peated itself approximately twice during the period of the principal star and having an amplitude of about 8 km. The way the residuals from the observed velocities grouped themselves was not more chance, there was no doubt that there was some secondary disturbance. The assumption was therefore made that there was a third body whose period was commensurable with the period of the principal star, it going through all its planes in half the time required for that of the principal star. The orbit of the third body was considered circular and the secondary curve taken to cross the primary from above at a time T', Julian Day 2,9417.523-634. Taking K' as 4km, and considering θ as the angle at any time from T' the extra terms in the differential equation are:

$$-\sin \theta \delta K' + \frac{2 \pi}{P'} \cdot K'$$
. $\cos \theta \cdot \delta T'$.

Correcting now our values of the computed velocity for each of the eighteen normal places by an amount representing that due to the third body we have a new set of eighteen observation equations connecting the eight unknowns. In these equations, for sake of homogeneity, we put

$$\begin{array}{rcl} x &= \delta \Upsilon, \\ y &= \delta K, \\ z &= \displaystyle\frac{100\ K}{(1-e^2)^z}, \quad \partial_{!} t &= \displaystyle13525\cdot67 \quad \partial\rho \\ u &= \displaystyle K, \quad \partial\sigma \\ v &= \displaystyle\frac{K}{(1-e^2)^z}, \quad \mathscr{G}, \quad \partial T &= \displaystyle49^\circ 355\ \partial T, \\ w &= \displaystyle K, \quad \partial\sigma \\ y^{*} &= \displaystyle\delta K, \quad \partial\sigma \\ y^{*} &= \displaystyle\delta K, \quad \partial T' &= \displaystyle-2^\circ 937\ \partial T', \end{array}$$

There result the following normal equations :---

$\begin{array}{rrrr} 40^{\circ}000x & \pm 9\cdot394y & -16\cdot283z \\ \pm 15\cdot353y & -19\cdot924z \\ \pm 176\cdot184z \end{array}$	-28.003u -20.361u	+ 3 [•] 284v - 62 [•] 767v - 2 [•] 485v	+ 0.016w + 43.949w + 0.072w - 17.105w	+11 548y' - 7 554y' - 22 165y' - 0 687y'	$\begin{array}{r} + 2^\circ 222v' \\ - 27^\circ 991v' \\ 4 273v' \\ + 9^\circ 534v' \\ - 10^\circ 776v' \\ + 1^\circ 950v' \end{array}$	$\begin{array}{rrrr} -& 50^{\circ}73^{\circ}1 = 0 \\ -& 30^{\circ}492 = 0 \\ -& 102^{\circ}683 = 0 \\ \sim& 3337 = 0 \\ +& 9^{\circ}934 = 0 \\ +& 54^{\circ}446 = 0 \end{array}$
				+ 20 40 <i>0</i> //		-1.088 = 0

Whence the following corrections are obtained :-

$\delta \gamma = -0.01 \text{ km}$.	$\delta T = +.0^{\circ}0$ days.
$\delta K = -1.4 \text{ km},$	$\delta \omega = \pm 0^{\circ} \cdot 12$
$\delta P =0017 \text{ days.}$	$\delta K' = -1.3 \text{ km}.$
$\delta e = +.007$	$\delta T' = +.159 \text{ days.}$

The resulting values of the elements with their probable errors, as determined at a later stage, are:

P =	17.114 days	土	·008 days)
e =	0.698	÷	.017	
ω =	25°.39		2°.45	
T =	J. D. 2,417,731.464	\pm	·092 days.	
			3.31 km.	First approximation (solution
$\gamma =$	- 25.91 km. J. D. 2,417,732.793		0.66 km.	((with secondary oscillation.)
$\dot{T}' =$	J. D. 2,417,732.793	+-	.349 days.	
K' =	2.7 km.	=	1.02 km.	
A =	81.04 km.			
B =	18.36 km.			J

The size of the corrections in some of the elements, and the fact that the residuals (computed—observed) as obtained direct were not in all cases in close agreement with those obtained from the differential equation, *i.e.*, by substituting the values of the corrections in the observation equations, made another solution necessary. The values of ω and γ were, however, considered established as the corrections were very small and the remaining six unknowns were, with the last elements as the basis, formed anew into eighteen observation equations. In these equations

 $\begin{array}{rcl} y &=& \partial K, \\ z &=& \frac{100 \ K}{(1 - e^2)!} \ \partial \mu &=& 13534 \cdot 86 \ \partial \mu, \\ u &=& K \cdot \partial e \\ v &=& \frac{K \cdot \partial e}{(1 - e^2)!} + \mu \cdot \partial T &=& 49 \ 6906 \ \partial T, \\ y' &=& \partial K', \\ v' &=& \frac{2 \ \pi}{\mu} \cdot K' \cdot \partial T' &=& 1 \cdot 9825 \ \partial T, \end{array}$

 $\begin{array}{l} \label{eq:theorematical} {\rm There}\;{\rm result\;the\; following\;normal\; equations:}-\\ 14.733y-19.88y-28.221u+3.499y+11.503y'+9.938y'+1.153=0\\ +174.454+32.938u+61.517e-10.663y'-29.344y'+17.185=0\\ +87.120u-4.069e-23.403y'-2.458y'+7.668=0\\ +23.708y+7.708y'+0.339y'-9.616=0\\ +21.411y'+1.280y'+1.868=0\\ +13.544y'-4.909z=0\\ \end{array}$

230

Whence the corrections:

$\delta K = -0.02 \text{ km}.$	$\delta T = +0.039$ days.
$\delta P = -0.0022 \text{ days.}$	$\delta K' = -0.05 \text{ km}.$
$\delta e = +0.0037$	$\delta T' = +0.080 \text{ days}_*$

The corrected values of the elements with their probable errors, as determined at this stage, are:

P =	17.1121 days	\pm	-005 days)		
€ =	0.6943		-013	1		
ω =	25°.39					
T =	J. D. 2,417,731.503		$\cdot 070 \text{ days}$			
K =	49.68 km.	\pm	2.28 km.	Se	cond	approximation (solution
γ =	 25.91 km, 			1	vith	secondary oscillation).
T' =	J.D. 2,417,732-873	<u></u>	·416 days			
K' =	2.65 km.	\pm	0.86 km.			
A =	80.84 km.					
B =	18.52 km.			J		

This solution should have been sufficient, but when substituting directly in the observation equations and comparing the residuals with those obtained in the ordinary way, there was one fairly large difference 0-40km, two were 0-30km, and the rest varied between 0-0 and 0-2 km. Furthermore, the probable errors of some of the quantities, particularly K, seemed too large. It was decided than to compute the probable errors corresponding to the previous corrections made. They are collected in the accompanying Table IV.:-

TABLE IV.

SUMMARY OF CORRECTIONS.

Elenients.	Preliminary Values.	First Corrected Values.	Second Corrected Values.	Third Corrected Values.
P σ	17 · 120 d 0 · 680 20° J. D. 2417731 · 30 49 · 0 km. 25 · 3 km.	$\begin{array}{c} 17^{+}116d\pm^{+}008\\ 0^{+}691\pm^{-}017\\ 25^{\circ}27\pm2^{\circ}1\\ \dots,731^{+}434\pm100\\ 51^{+}1\mathrm{km},\pm3^{+}20\mathrm{km},\\ -25^{+}9\mathrm{km},\pm0^{+}64\mathrm{km}. \end{array}$	$\begin{array}{c} 17 \cdot 114 \ d \ \pm \ 008 \\ 0 \cdot 698 \ \pm \ 017 \\ 25^{\circ} \cdot 39 \ \pm \ 2^{\circ} \cdot 45 \\ \dots .781 \cdot 664 \ \pm \ 092 \\ 49^{\circ} 7 \ \mathrm{km}. \ \pm \ 3 \ 1 \ \mathrm{km}. \\ - \ 25 \cdot 91 \ \mathrm{km}. \ \pm \ 0 \cdot 66 \ \mathrm{km}. \end{array}$	$\begin{array}{r} 17^{+}112\mathrm{d}\ \pm\ \ ^{+}005\\ 0^{+}6943\ \pm\ \ ^{+}013\\ \dots 731^{+}503\ \pm\ \ ^{+}070\\ 49^{+}68\ \mathrm{km}.\ \pm\ 2^{+}28\ \mathrm{km}. \end{array}$
$\begin{array}{cccc} T', \dots, \\ K' & \dots & \dots \\ \Sigma p v v \end{array}$	485 km.	$\left\{\begin{array}{c} Assumed,\\ \frac{2417732\cdot 634}{4\cdot 0\ km,}\\ 292\ km, \end{array}\right\}$	$732^{\circ}.793 \pm343$ 2. 7 km. ± 1 02 km. 254 km.	$732 \cdot 873 \pm416$ 2.65 km, ± 0.86 km, 235 km.

The values for $P_{\gamma} \gamma_{\tau} T'$ and K' were now considered determined. The probable errors, especially those in K, did not seem to be as low as they should be. As the probable error in ω in the later determination was larger than in the preceding one, it was thought advisable to take e_{γ} , T and K and see if by another solution lower probable errors would be had, and a better agreement between the ephemeris and equation. As before, for the sake of homogeneity, let

And the resulting normal equations are:

from which corrections result as follows :----

 $\delta K = + 0.29 \text{km}.$ $\delta e = + 0.0009$ $\delta \omega = + 0^{\circ}.1743$ $\delta T = + 0.0013 \text{ days}$

The final elements, taking into account the secondary oscillation, are then as follows. The Allegheny results as discussed later are, for purposes of comparison, given here:---

	OTTAWA.	ALLEGHENY,	
$\omega = T = K = Y = -A = B = a \sin i = P' = T' = T' = K = K = K$	$\begin{array}{rrrr} 17.112 \pm & .005. \\ 0.695 \pm & .010 \\ 52^{\circ}.87 \pm 1^{\circ}.54 \\ J. D. 2.417,731.504 \pm .024 \\ 49.97 \rm km \pm 1.35 \rm km. \\ 25.01 \rm km \pm 0.66 \\ 81.31 \rm km. \\ 8.452 100 \rm km. \\ 8.452 100 \rm km. \\ 8.556 \rm days \\ J. D. 2.417,732.873 \pm .416 \\ \rm time \ when secondary \ crosse \\ 3.65 \rm km. \pm 0.86 \\ 311,80 \rm km. \end{array}$	8+558 days. 1907, Sept. 9, +176 ± +368 days	final elements (solution with second- ary oscillation.)

What scena peculiar is that the least-square solution diminished the period in each case, although from a comparison of the 1907 and 1908 observations, when plotted the period would scena to be fixed about 17.120 days. The successive approximations in each case decreased the sum of the squares of the residuals, as seen from Table IV. The final approximation gave 2per = 235.3km, practically the same as the previous one. The agreement, however, between the equation and ephemeris is much improved, the greatest difference being 0.27km; the average 0.13km and the probable errors are much lower. Table V. contains the phases for the normal places, reckoued from periastron with the period finally adopted, 17.112 days; the corresponding velocity with its weight, and the residuals as computed directly.

25a-p. 232

No.	$ \begin{array}{c} {\rm Mean \ Phase \ from} \\ T \end{array} $	Mean Velocity.	Wt.	Residuals C – O
	13:810	- 22.33	3	+1.8
	14.871	- 11.75	1	+ 4 21
	15.378	+ 0.66	3	+0.8
	15.740	+13.33	1	- 3.21
	16.143	± 24.87	1 2 3	- 1.55
	16.382	+34.34	3	-0.44
	0.018	+51.00	1	+0.38
	0.166	+33.60	1	+ 4 . 70
	0.346	+22.48	3	- 3.05
	1.105	- 31 31	2	+5'95
	2-107	- 38.20	3	-3.16
	3.533	- 48 93 - 44 50	2	+1.90
	5.070 6.357	- 44.50	1	-1.14
	7.694	- 36 42	ő	- 1 0.
	9.527	- 36 43 - 37 38	2 2 5	- 2 5: + 0:36
	11.932	- 33:00	0	+0.02
	12:713	- 26.74	23	-2.3

TABLE V.

NORMAL PLACES.

The curve representing the final elements is shown in Fig. 17, the dotted lines being the velocity curves of the primary and secondary components and the heavy continuous line the resultant of these two. The final solution reduces the quantity Σprr of the residuals for the normal places from 485 to 283-5. The least-square solutions, with the assumption of a secondary disturbance, seem, therefore, to have materially improved the values of the elements. The probable error of a normal place of weight

unity as determined by $r = \pm .6745 \sqrt{\frac{2 pvv}{n - \mu}}$ where n is the number of normal places

and μ the number of unknowns is \pm 2.75km. The probable error of a plate as derived from the residuals in last column, Table IL, which are scaled directly from the curve is for the 1907 observations \pm 4.5km, and for those of 1908 \pm 3.5km. Grouping the two years together the probable error of a plate is \pm 4.6km.

Previous Observations.

There remains a discussion of M. Deshandres' observations of 1901 and 1902. These were tried in connection with our 1907 observations to determine the period more accurately than could be done by using our own alone. The cally period which suits Deslandres' observations alone is the one which he suggests, izi, 16.7 days. If the two observations of 1901 were omitted the other observations will give a better curve when a period of 17.112 days is used. Fig. 15 shows Deslandres' observations using his period of 16.7 days. Fig. 10 shows his 1902 observations using our period of 17.112 days. He suggested an eccentricity of about 0-6; such a value for ϵ with $K = 45 \, \rm km$ and $\omega = 27^{\circ}$; gives a curve represented by the broken line in Fig. 18, while a similar value for K and ω , with an eccentricity 0-4 is represented in the continuous curve and appears to suit the observations as well as, if not better, than the other. The velocities he gives as retreared below 11. have added 14 km. to each to bring them into agreement with the general run of mine.

As his measures depended upon one line only, λ 44×1, and among themselves gave a more or less uncertain determinication of the elements, I decided in any preliminary determination to confine myself to our own observations. Now that a definite solution has been secured, it is well to look at them anew. For convenience the data is repre-

theed here, the tenth of a day being assumed. As stated before, 14km, is added to each relocity determination. The phase with the period 16-7 days is reckoned from the date of first observation of 1902, being Julian Day 2,417,961-4, the phase with the period 17-112 days is reckoned from my own periastron time.

Julian Date.	P = 16.7.	P = 17.112	Velocity.
2.16.58 5	57183669981144477 14916044477	$\begin{array}{c} 10 & 221 \\ 8 & 100 \\ 12 & 545 \\ 0 & 545 \\ 13 & 333 \\ 2 & 433 \\ 3 & 313 \\ 3 & 333 \\ 3 & 313 \\ 3 & 333 \\ 3 & 313 \\ 3 & 320 \\ 9 & 920 \\ 9 & 920 \\ 9 & 920 \\ 12 & 209 \\ 9 & 920 \\ 12 & 209 \\ 9 & 920 \\ 12 & 209 \\ 9 & 920 \\ 12 & 209 \\ 12 & 209 \\ 12 & 209 \\ 12 & 209 \\ 13 & 333 \\ 14 & 333 \\ 10 & 885$	$\begin{array}{c} + 11 \\ + 34 \\ - 36 \\ - 40 \\ - 40 \\ - 39 \\ - 36 \\ - 40 \\ - 39 \\ - 33 \\ - 35 \\ - 25 \\ - 310 \\ - 24 \\ - 39 \\ - 24 \\ - 24 \\ - 27 \\ - 24 \\ - 27 \\ - 24 \\ - 27 \\ - 24 \\ - 27 \\ - 24 \\ - 27 \\ - 27 \\ - 24 \\ - 27 \\ - 27 \\ - 24 \\ - 27 \\ -$

M. DESLANDRES' OBSERVATIONS.

It is rather hard to say how best to make use of these early observations. Though the measures are liable to accidental errors of considerable magnitude they may, owing to the interval of some six years which has elapsed between the two series of observations. have an important bearing on whether or not any changes in the elements have taken placed during that time. Our 1900 observations seemed to be slightly greater positive than the velocities for 1907 for the corresponding planse. This may have been accidental, the difference being at most less than 2 km. If the absolute velocities of Deslandres' observations were known, it would decide whether the velocity of the system has been changing or not during these six years.

If his two observations of the year 1901 are as they appear in his paper, we must conclude that the period has been changing during the interval. If we omit these two and use the remaining twenty-four of 1902 with our elements we get what appears on the face of it to be a much better agreement of the observations with the eurre. There is one discrepancy. The observations fall short of the curve by a common amount. 1.5 days. The number of periods elapsed between the two epochs is in round numbers 125. By increasing the period $\frac{1.5}{125}$ or -012 days, this would be remedied, but while this value of 17.124 days would not make much difference in Deslandres' observations, the least-square solution in our own shows it to be improbable. Here is a suggestion: 15 it not probable that the presence of the third body will cause a rotation of the line of apsides similar to that caused by the sun and moon on the earth Λ motion of the apse line in the direction of $_{0}$ decreasing and at the uniform rate of $\frac{-012}{17.112} \times 300^{\circ}$ or 0⁻².824 per period would account for this discrepancy. This motion, If it exists.

PLASKETT-ASTROPHYSICS.

25a-p. 234

.

would, in addition to decreasing ω and consequently the slope of the curve near periastron, also cause the maximum positive velocity to increase and the maximum negative velocity to decrease numerically.

These questions seem to call for further work on the star at some future time. I do not think the data is sufficient at present to make any definite assertion regarding any change in the elements themselves.

Additional Note on the Allegheny Determination of the Orbit.

Since the foregoing was completed, No. 7 of Vol. 1. of the Publications of the Allegheny Observatory has come to hand, containing the orbit of this same star as determined by Mr. Robert H. Baker. It is possibly the first case where two observers, working with different instruments and entirely independent of each other, have completed a discussion of an orbit at about the same time.

A comparison of the results is interesting. In some cases the agreement is remarkable, for instance the secondary oscillation; in other cases the agreement is not what might be expected. Speaking generally, I may say the reason for the differences exists in the observations themselves, the values Mr. Baker has determined suiting his observations best, while the same may be said of our own. There is a gap in the Allegheny observations near periastron passage. The first normal place, phase 0.16 days, depends upon two plates made the same night, the weights of the plates being about one-half the average weight assigned to a plate. The next normal place falls at phase 0.88 days and depends on two plates made on separate nights. These have relatively low weights also. In this interval of 0.7 days additional observations might, and I feel safe in saying, would tend to change the form of the curve. Our observations for phase 0.16 days depend upon one plate made in 1907 and three made in 1908, the plates being a little below the average weight. We have observations, however, for phase 0.34 days depending upon five plates made in 1907 and four made in 1908, the plates being all of average quality, and it is at this point that additional observations would be an advantage to the Allegheny data.

Looking at the results more in detail we see that Mr. Baker's value for γ is about 4km, more negative than ours. The greater positive velocities secured here, account in a measure for this. There may be an explanation also if the velocity of the system be changing, as suggested previously. The bulk of Allegheny observations were made in 1907, while ours are about equally distributed over 1907 and 1908. There is a minor cause in the assumed wave-lengths of the lines used, causing a systematic difference in the two series of velocities. The wave-lengths given in the first part of my report are those at present universally accepted: those given in Mr. Baker's work are sometimes greater, sometimes less, but on the whole would yield a velocity more negative than would those in use here.

Line.	Difference in Velocity.	Line.	Difference in Velocity.
λ 4549 4481 4340 4233	0.7 km. - 0.9 v - 1.7 v - 6.3 v	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	- 1°2 km. - 2°4 « + 2°8 «

The differences are indicated in the accompanying table :---

On the average a difference of from 1 to 2 km, would be thus accounted for. In certain stars, by examining the trend of the residuals of the various lines and changing their assumed wave-lengths accordingly, a better agreement among the lines themselves can be secured, but unless there are valid reasons therefor it would seem better to retain a constant set of values. Mr. Baker no doubt has good reasons for the change, and the question of absolute velocity is not the most important one.

The probable error of an average plate here is ± 4.0 , at Alleyheny ± 3.3 . The Seed 23 plates used at Alleyheny have an advantage over those used here as, being of a finer grain, the spectrum lines would be easier to measure. Our greater number of observations around periastron ought to have much weight, however, in the consideration of the differences between the two results.

The Allegheny observations, with a correction for T to bring the times of periastron passage into coincidence, and the addition of 3 km. to each velocity, being a systematic difference, are plotted in Fig. 20, the curve shown representing the elements as determined here. A glame suffaces to show that such a curve does not suit the observations as well as their own curve, and it would seem, therefore, that some further work on the subject would be necessary to explain the discrepancies.

THE SYSTEM OF : HERCULIS.

 $a = 16^{h} 56^{m} \cdot 5, \ \delta = 31^{\circ} 4'.$

This star was announced as a spectroscopic binary by both the Lick and Yerkes astronomers in 1903. The two plates secured at Lick showed both the Mg, and H_Y lines as broad and diffuse. On the three plates secured at Yerkes, Adams noticed evidences of the composite nature of the spectrum.

Work was commenced on the star here May 24, 1007, and np to the present some one hundred spectrograms have been secured. After quite a number of these had been measured, the period was found to be in the neighbourhood of four days. The observations secmed to group themselves into four sets, showing that the period was very close to the integral number. Thus quite an interval clapsed before observations were scented in the intermediate phases.

When in 1905 the curve was fairly complete an attempt was made to bring up the five early observations so as to determine the period with greater accuracy. The period which suited our 1907 and 1908 observations best was 4.012 days. The early observations, made about the same date in 1903, required an increase in the period of .0034 days. As the Lick observations were based on the Mg line alone and the Yerkee were for the brighter component and were regarded as provisional only, it was decided to comfine our attention to our 1907 and 1908 plates alone.

Keeping the two years separate these were grouped into eighteen normal places. When an att mpt was made by the graphical method of Dr. King to obtain preliminary values of the elements it was found that no simple elliptic curve would suit. Having previously found in 9 Aquille that the assumption of a secondary disturbance due to the presence of a third body would account very well for deviations in the oscillation curve, a similar assumption was made in regard to this star. Here, however, the residuals from the most suitable elliptic curve seemed to repeat themselves thrie in the period of the main star. It was therefore assumed that there was this third body, if so we may speck of it, revolving about the origit star in a period one-third that of its primary, the two in turn revolving about the other component of the system. This was the theory first acted upon.

After a great many trials the set of elements which gave a resultant curve in best agreement with the observations were the following:--

With these elements a set of eighteen observation equations were formed connecting the eight unknown elements with the residuals. These were transformed into normal equations and the solution gave the following corrections to the elements accepted as preliminary. The new values are also given:—

Elements.	Corrections.	Corrected Values.
P		4 °01265 days °070 56°237 km. 191°-65 J. D. 2417721 °334 - 29°19 km. 12 262 km. J. D. 2417722 °177

The new set of elements decidedly improved the agreement as is indicated by a decrease in the sum of the squares of the residuals from 1044 to 715, over thirty per cent. When, however, the residuals were computed directly and compared with theseobtained by substitution in the observation equations the differences in most cases were larger than they should be, showing that another solution was necessary. Such a solution has a yet not been made.

Before the work had been carried thus far, observations had been made on the star in 1900. To bring these into agreement with the curve the period would need to bincreased to 4-023 days; this period if used would utterly destroy the agreement of the first two years. It seemed then that the period was a varying quantity.

At this stage it was decided to review the plates for evidences of the spectrum of the other component. From time to time in measuring, notes had been made regarding any evidences of duplicity, with corresponding velocities, but now the plates were examined critically with this object in view. Out of the hundred odd plates only six showed the doubling of the lines. Two of them showed H_2 doubled, two H_3 doubled and two both H_3 and K. The instrument used in almost every case was the singlepriors spectrograph which has a dispersion at H_2 of 30.2 tenth-metres per millimetre. At H_3 the instrument should theoretically resolve lines differing in wave-length by 1.2 tenth-metres. This corresponds to a velocity of 90 km, per second. In paratice, however, owing to various causes, a separation corresponding to a much greater difference in velocity would be necessary before the lines could be seen as doubled. The maximum separation found to exist is approximately 160 km. Hence, we can understand how such a small percentage of the plates showed the duplicity of the lines. In the case of these is plates the videoities corresponding to the two components are tabulated in the column of remarks, Table H.

In Vol. 1., No. 13 of the Allenheny Publications, which came to band while the plates were being reviewed, Mr. Robert H. Baker discussed the spectroscopic components of 2 Incertv. His blended curve being very similar to that of ϵ Herculis, it seemed possible that the systems might be similar and that his explanation might answer in the case before us. The velocities, while very rough approximitions at best, were plotted for each component and elements were obtained for the components as follows:—

	Elements.	Brighter component.	Fainter component.
Maximum neg		$^+$ 64 km. - 138 " 101 " 15 210°	+ 40 km. - 96 * 68 * 15 30

Physical conditions in the system itself might serve to explain the curious form of the curve, but the two previous theories have much more evidence to support them. The change in the period, if real, would lend strength to the theory of a disturbing satellite. The presence of this third body would tend to cause the line of apsides to rotate, varging the form of the curve and consequently the elements.

Tables I, and II. give all the data of the plates. The residuals for each plate are scaled directly from the curve; the other columns are self-explanatory. Table III. gives the eighteen normal places, the phases being reckoned from the final periastron. The curve, Fig. 21, represents the corrected values of the elements on the assumption of a disturbing body; the dotted lines representing the primary and the secondary, and the heavy continuous one the resultant of the two.

Further work on the star is necessary. Spectrograms of the star at times of maximum velocities are now being secured on plates of fine grain, and it is hoped that some further evidences of the doubling of the lines will thus be secured.

TABLE I.

EARLY OBSERVATIONS OF & HERCULIS.

Julian Date.	Phase.	Velocity.	Residual.	Observatory.	Remarks.
$\begin{array}{c} 2,416,235\cdot687\\ 242\cdot718\\ 255\cdot910\\ 252\cdot827\\ 272\cdot664\\ 616\cdot680\\ 658\cdot849\end{array}$	3:046 2:052 3:113 2:088 3:910 2:887 -867	58 - 46 - 70 - 34 - 22 - 24* - 31*		Yerkes. Lick. Yerkes. Lick.	Mg. line. " Mg. line, not very good. Mg. line.

' Kindly communicated by Professor Campbell.

TABLE 11.

OTTAWA MEASURES OF & HERCULIS. "

No. of						
Plate.	Julian Date.	Phase.	Velocity	Wt.	Residual.	Remarks.
	1907.					
786	2,417,721 767	0.433	- 55.6	5	1.6	
801	728 735	3 388	- 81.4	4	- 18 0	
810	736.812	3.440	-83.7 + 12.7	4	5.0	
816	738 741 739 652	$\frac{1.356}{2.267}$	+12.7 +17.8	5	+11.0 8.5	
827 838	740.774	3.389	- 61 7	5	+ 1.0	Hy 128 and - 19
847	741·767 742 738	0.320	- 83 2		- 24 0	
851 862	742 738 748 692	$\frac{1\cdot 341}{3\cdot 282}$	+7.0 -34.5	6 5	+6.0 +15.0	Hγ 111, and - 15,
871	749 757	0.270	-65.7	5	+ 5.0	117 1175 and - 151
881	753 669 755 688	0.234 2.253	- 80 · 4 + 4 · 0	3	- 6:0 - 7:0	
893 913	762.679	2 203	- 21 2	2	- 11.0	
920		1.192	~ 17 '5	7	- 6:0	
928	767 635 768 622	2 162 3 149	$+ 9.0 \\ - 39.0$	5	-100 -20	Metallic lines seen.
937	776 673	3.175	- 57 . 6	4	-18.0	
952	778-693	1.182	- 7:0	7	- 6.0	
	790.722	$\frac{1.173}{3.013}$	- 26 8 + 15 · 4	5 6	-12 8	35 105 1 55
979 987	792·562 795·782	2.120	E 6.2	3	- 12.0	Mg - 125_1 and + 55_3
018	811.660	2.048	~ 30 ' 6	3	- 2.6	
.062	2,417,840.609	2.908	· 2·9	2	+22.0	
	1908.					
391	2,418,010.868	0.623	- 28.6	6	+ 8.0	T10
403 483	017 904 045 900	3 · 647 3 · 555	- 100.9 - 90.7	6	- 9'0 - 8'2	$H\delta = 110_1 \text{ and } + 28_1$ $\lambda = 4713 \text{ gives } + 158$
	047.861	1 502	+38.2	7	+22.0	in the grites i too
511	054 856 077 813	· 0·472 3·367	- 37.0 - 74.0	7	+12.4 -14.0	
531 540 515	080.767	2:307	+ 6.1	6	$\div 1.0$	
545	080 767 082 708 084 770	0.236	$^+$ 6.1 -74.0	5	+ 1'5	
547 567 573	084 · 770 094 · 813	2 · 298 0 · 303	-28.5 -83.1	23	- 34 · 5 - 14 · 0	
573	006 747	2.237	- 11 .0	6	- 23.5	K intense to red.
	098-778 105-774	0.255	- 65.6 - 46.2	5	+ 6.6	
603 625	105 774 115 733	$3^{\cdot}239$ 1 159	-46.2	45	+ 0.0 + 0.2	
630	117 -691	3 117	- 31.0	8	+ 3.5	
640	119 710	1.124	+ 6.1	2		Depends on Mg alone.
648 653	120.715 124.676	2.129 2.077	+24.8 +20.0		+ 3.4 - 5.5	
658	126.680	0.065	-99.5	3	- 7.0	
661	126 820 129 730	0.508	- 86 1 - 27 0	5	- 8.7	
666 675	131.658	3·119 1 034	- 27.0	1 6	+ 8 0 + 6.8	
676	131 688	1.064		6	- 9.9	(λ 4267 gives +128.
682 685	132.716 133.609	2.092 2.966	$+31.2 \\ -27.9$	6		$\begin{cases} H\delta - 80 \text{ and } + 70 \\ K - 14 \text{ and } + 62. \end{cases}$
	133.649	3.026	- 36.0	5	- 6 6	Metallic lines.
693	134.707	0.021		5	- 16.0	All lines def. on violet.
693 699 707	136-679	2.042 3.100	+26.0 -43.6	4	- 2'6	
	137 737 138 708	0.020			+ 8.1	
713	138 739	0.083			+24.5	
	138 709 138 725 145 708 147 553 148 722 149 707 151 716 152 598	1.075 3.047	$-65^{\circ}8$ $-13^{\circ}8$ $-23^{\circ}7$ $-23^{\circ}8$ $+23^{\circ}9$ $-17^{\circ}6$ $-27^{\circ}8$ $+34^{\circ}3$ $+34^{\circ}7$ $+40^{\circ}29^{\circ}2$	6	- 6:0	
723	147.583	0.806.0	-23.8	9	- 2.2	
723 728 729	148 722	2.047	+23.9	6	+ 519	
729	149 707	3.033 1.028	-17.6	8 5	+12.2 - 6.3	
737	152 598	1.911	+34.3	8	~ 0.2	H5 84 and - 28
738		1.944	+34.7	5	+ 3.2	K - 1152 and 825
743	152.753 153.712	2.066 3.026	+40.2 -22.3	4	$^{+13.2}_{-7.0}$	
701	154.653	3 967	- 22 3	5	-11.5	
25a-18	201 000					

25a-18

DEPARTMENT OF THE INTERIOR

9-10 EDWARD VII., A. 1910

TABLE II.

OTTAWA MEASURES OF & HERCULIS .- Continued.

No. of Plate.	Julian Date.	Phase.	Velocity.	Wt.	Residual.	Remarks.
	1908.					Contraction of the local division of the loc
1757 1760 1761 17761 17761 17761 17761 17761 17761 17761 17761 17761 17761 1782 1793 1818 1838 1838 1844 1853 1866 1903 1906 19961 1993	$\begin{array}{c} 2,418,164795\\ 169586\\ 161649\\ 169586\\ 169701\\ 173612\\ 178585\\ 181660\\ 182588\\ 185694\\ 216557\\ 217565\\ 217565\\ 227503\\ 227503\\ 227503\\ 227503\\ 227422\\ 278461\\ \end{array}$	$\begin{array}{c} 0.096\\ 1.001\\ 0.873\\ 2.937\\ 2.964\\ 3.843\\ 3.904\\ 3.811\\ 2.790\\ 2.804\\ 1.600\\ 2.627\\ 1.628\\ 0.665\\ 0.411\\ 1.356\\ 0.3382 \end{array}$	$\begin{array}{c} -94^{\circ}3\\ -22^{\circ}1\\ -28^{\circ}6\\ -24^{\circ}0\\ -35^{\circ}0\\ -47^{\circ}8\\ -92^{\circ}4\\ -24^{\circ}0\\ -98^{\circ}9\\ -6^{\circ}1\\ +11^{\circ}2\\ +21^{\circ}0\\ +18^{\circ}1\\ -10^{\circ}0\\ +18^{\circ}1\\ -20^{\circ}8\\ -70^{\circ}3\\ -30^{\circ}9\\ -30^{\circ}0\end{array}$	53877557785445524455	$\begin{array}{c} -4\cdot 8\\ +0\cdot 4\\ -2\cdot 2\\ +2\cdot 5\\ -8\cdot 7\\ -14\cdot 1\\ 0\cdot 0\\ -2\cdot 8\\ +16\cdot 0\\ -19\cdot 0\\ -19\cdot 0\\ -37\cdot 8\\ +37\cdot 8\\ +3\cdot 0\\ -9\cdot 1\\ +8\cdot 3\\ -9\cdot 1\\ +8\cdot 3\\ -33\cdot 0\\ +14\cdot 2\\ -33\cdot 0\\ +2t\cdot 0\end{array}$	
2263	$\begin{array}{c} 1909.\\ 2,418,346 & 923\\ 346 & 958\\ 360 & 883\\ 360 & 883\\ 360 & 883\\ 379 & 788\\ 379 & 788\\ 379 & 788\\ 331 & 814\\ 381 & 833\\ 337 & 836\\ 337 & 861\\ \end{array}$		$\begin{array}{r} -43 \ 5 \\ -30 \ 3 \\ -18 \ 3 \\ -18 \ 3 \\ -16 \ 4 \\ +49 \ 5 \\ -78 \ 0 \\ -54 \ 3 \\ +38 \ 4 \\ +38 \ 4 \\ +39 \ 0 \\ +29 \ 8 \end{array}$		· · · · · · · · · · · · · · · · · · ·	

TABLE III.

NORMAL PLACES.

No.	Phase from T.	Mean Velocity.	Weight.	Residual O – C.
2	$\begin{array}{c} 0.337\\ 1.187\\ 1.348\\ 2.183\\ 3.108\\ 3.404\\ 0.571\\ 0.551\\ 1.152\\ 1.572\\ 2.064\\ 2.469\\ 2.469\\ 2.962\\ 3.340\\ 3.747\\ 0.048\\ 3.747\\ 0.048\\ 0.235\\ \end{array}$	$\begin{array}{c} -70\cdot 22\\ -16\cdot 57\\ -18\cdot 50\\ +9\cdot 50\\ -31\cdot 50\\ -31\cdot 65\\ -31\cdot 63\\ -31\cdot 63\\ -23\cdot 76\\ -23\cdot 76\\ -23\cdot 16\\ -23\cdot 16\\ -23\cdot 16\\ -23\cdot 16\\ -23\cdot 90\\ -23\cdot 90\\ -23\cdot 90\\ -23\cdot 90\\ -23\cdot 90\\ -35\cdot 50\\ -92\cdot 52\\ -73\cdot 52\\ -75$ -75 -75	221221155 55 15245100 2345100 23	$\begin{array}{c} - \ 6 \ 72 \\ - \ 4 \ 705 \\ - \ 4 \ 705 \\ - \ 4 \ 734 \\ - \ 11 \ 49 \\ - \ 11 \ 49 \\ + \ 0 \ 76 \\ - \ 2 \ 75 \\ - \ 4 \ 533 \\ - \ 6 \ 75 \\ - \ 4 \ 533 \\ - \ 6 \ 75 \\ - \ 1 \ 75 \ 75 \\ - \ 1 \ 75 \ 75 \ 75 \ 75 \ 75 \ 75 \ 75 $

THE SPECTROSCOPIC BINARY N BOÖTIS.

This star ($a = 13^{\circ} 49^{\circ\circ}$ -9, $\delta = + 18^{\circ} 54^{\circ}$, photographic magnitude 3.8) was announced as a spectroscopic binary by Moore in L. O. B. 70, 1905. The thirteen measures given extended over the years 1897, 1899, 1901, 1903, 1904 and 1905. Of these, four were approximate, the remaining nine definite. Besides these measures there were available the recently published measures⁴, six in all, by Kustner of the Bonn Observatory.

Work was commenced on the star here June 25, 1906, and from that time until the date of the last plate mentioned, March 20, 1909, forty-five plates were secured. The determination of the orbit depends then on these sixty-four plates, thirteen of the Lick Observatory, six of the Bonn and the remaining forty-five of our own.

Some objection might be taken to the grouping of observations from different observatories in view of the possibility of a systematic difference in the results used, but it has been deemed expedient by the writer to use these early observations in conjunction with our own to make a preliminary determination of the orbit. Meanwhile plates of the star in the required phases will continue to be made with the new threeprism spectrograph, and when all phases are complete, which cannot be before January, 1910, a new determination of the elements will be made using our three-prism plates alone. The comparison of results ought to be worth the extra labour involved.

The star is of solar type, XIVa according to Miss Maury's grouping, and thus permits of accurate velocity determination. As a rule about fifteen lines were measured on each plate. The plates up to No, 752 were made with the Universal spectroscope, and were reduced by means of the Hartmann interpolation formula. From that time the plates were made with either the new single or the three-prism spectrograph, and were reduced from tables used here in which the micrometer settings for zero displacement of the lines are tabulated. Eleven were made with the former, trenty-one with the latter. The plates used were Seed 27. Our own plates made at the commencement of our work are weighted one-half; later plates with the Universal spectroscope, the single-prime plates, most of those made at Bonn, as well as those of 1897 and 1899 made at Lick, are weighted unity, while the later plates of Lick Observatory and our own new three-prime plates are weighted three.

The following tables contain all the data of the plates. The phases are reckoned from the period and periastron finally adopted and the residuals are scaled directly from the curve representing the final elements—

Julian Date.	Phase.	Velocity.	Weight.	Residual.
413,959 8	192.9	- 0.6	1	-04
4,035 7	268 8 269 8	- 2	1	+2.3
4,036 7.4,057 6	269.8	- 4'	1	+0.3 +3.4
	431.6		1	+3.4
4,693 8	431.6	- 2.2	1	
	16.1	- 6.9	3	-0.4
6,259.6	299.1		3	-0.1
6,542 6		- 8.2	3	-2.4
6,571.6	328.1	- 4.8	3	+1.9
6,603 6	360.1	- 7.6	3	-0.1
6,646.6	403 1	- 10 -	3	- 2.8
6,658 6	415.1	- 7.3	3	~ 0.6
6.850 9	112.1	+ 5.2	3	+0.1

OBSERVATIONS AT LICK OBSERVATORY.

* Astrophysical Journal, 27-5-1908. 25a-181

OBSERVATIONS AT BONN OBSERVATORY.

Julian Date.	Phase.	Velocity.	Weight.	Residu:d.
2, 416, 258-4. 6, 599-5. 6, 698-5. 6, 594-4. 7, 234-7. 7, 360-4.	$\begin{array}{c} 14 & 9 \\ 352^{\circ} 0 \\ 365^{\circ} 0 \\ 255^{\circ} 6 \\ 0^{\circ} 6 \\ 138^{\circ} 3 \end{array}$	+7.6 -222 -3.4 +6.2 +3.9	3 1 1 1 1	$\begin{array}{c} \div 0.7 \\ \pm 5.2 \\ -3.3 \\ \pm 0.4 \\ \pm 1.5 \\ -0.4 \end{array}$

OTTAWA OBSERVATIONS.

Plate Number.	Julian Date.	Phase.	Velocity.	Wt.	Residua
308	2.417.387.7	153.6	- 0 2	0.5	2.0
313	389.6	155.5	0.0	0.2	- 2 2
318	391 6	157.5	1.8	0.5	- 0.5
326	396-6	162 5	- 1.7	0.2	- 3.
333	398-6	164.5	- 1.6	0.2	- 3
366	429.6 431.6	195.5	- 0.4	0.5	- 4
372	931·0 643·8	409.7	- 5.6	1.0	- 1
657	655-8	421 7	- 6 9	1.0	- 0.
691	669.7	435.6	- 10.2	1.0	- 5
731	685-8	451.7	- 3'8	1.0	- 0
739	692.7	458.6	- 4.5	1.0	- 2
739	703-6	469.5	+ 0.7	1.0	~ 0
760	710.7	476.6	- 0.1	3.0	- 1
764	716.7	482.6	+ 2.9	3.0	- 0
-771	718.7	484.6	+ 2.2	2.0	- 0
774	719.6	485.5	+ 3.5	1.0	+ 0
779	- 720.6	486.2	+ 0.6 + 5.7	1:0	
793	725.7	491.6	+ 51	1.0	- 0
797	$727 \cdot 6$	493.5	+ 5.1 + 7.2	1 0	- 0
812	737·6 748·6	19 1	+ 7.2	1.0	+ 1
868	754.6	25.1	+ 5.7	1.0	
918.	765:6	36.1	+ 6.8	1 0	- 1
918	775.6	46.1	+ 5.3	1.0	3
972	789.6	60.1	+11.4	1.0	- 21
950	795.6	66.1	+ 9.0	3.0	0.
1231	955.9	226.4	- 3'3	1.0	- 1
1294	968-8	239.3	- 38	3.0	- 0
1307	970-9	241.4	- 3.2	8.0	- 0
1332	989-9	260 4	- 5.2	3.0	- 1
1357	996-8 2.418,031-9	267 · 3 302 · 4	- 7.1	3.0	- 1
1446 1513	066.8	337.3	- 6.7	3.0	= 0
1513	085.7	356.2	- 8.7	3.0	- 1
1553	087.7	358.2	- 6 6	3.0	- ô
1621	115-6	386.1	- 6.0	3.0	l - 1
1663	129 6	400 1	- 7.4	3.0	~ 0
1710	138.6	409.1	- 6'8	8.0	- 0
1792	173.5	444.0	8.6	3.0	4
1867	192.5	463 0	- 0.3	3.0	- 1
2115	315.0	90.2	+ 8.6	3.0	· 1
2209.,	337-8	113.0	- 5.2	3.0	- 0
2283	355.8	131.0	+ 6.0	3.0	- 2

The observations when plotted gave a period about 492 days. Using this period they are combined into twenty-one groups, no group including observations of different periods. Perliminary elements were determined by the graphical method* of Dr.

^{*} A. J., 27-2-1908.

King and, using these, trenty-one observation equations of the form of Lehmann-Filhés were formed. They were then transformed into the following normal equations, where for sake of homogeneity these substitutions were made:

The normal equations are:-

The solution of these equations gave as corrections:

The sum of the squares of the residuals for the normal places was reduced from 186.1 to 122.7, and the agreement between equation and ephemeris residuals was considered satisfactory. These are given in the accompanying table of normal places:

No.	Mean Phase.	Mean Vel.	Wt.	Residual.	Equation- Ephemeris.
4. 5. 7. 8. 8. 10. 11. 12. 13. 14. 14. 14. 14. 14. 14. 14. 14. 14. 14	$\begin{array}{c} 255\cdot 5\\ 431\cdot 6\\ 371\cdot 7\\ 373\cdot 7\\ 15\cdot 5\\ 133\cdot 0\\ 1255\cdot 6\\ 138\cdot 3\\ 435\cdot 5\\ 417\cdot 7\\ 480\cdot 8\\ 463\cdot 0\\ 0\cdot 9\\ 48\cdot 1\\ 111\cdot 4\\ 161\cdot 9\\ 169\cdot 5\\ 238\cdot 4\\ 276\cdot 7\\ 359\cdot 4\end{array}$	$\begin{array}{c} -\frac{9}{2}\cdot 15\\ -\frac{9}{2}\cdot 20\\ -\frac{4}{2}\cdot 5\cdot 50\\ +5\cdot 50\\ +5\cdot 50\\ +3\cdot 90\\ -5\cdot 40\\ +3\cdot 90\\ -7\cdot 60\\ +1\cdot 63\\ -6\cdot 20\\ +1\cdot 63\\ -6\cdot 60\\ +5\cdot 60\\ +5\cdot 80\\ -0\cdot 97\\ -3\cdot 60\\ -6\cdot 60\\ 7\cdot 00\\ \end{array}$	$\begin{array}{c} 4\\ 1\\ 1\\ 6\\ 16\\ 3\\ 1\\ 1\\ 1\\ 1\\ 3\\ 3\\ 8\\ 9\\ 3\\ 3\\ 7\\ 9\\ 12 \end{array}$	$\begin{array}{c} +1\cdot 64\\ +3\cdot 41\\ -3\cdot 41\\ -0\cdot 33\\ -0\cdot 28\\ +0\cdot 28\\ +0\cdot 28\\ +0\cdot 28\\ -0\cdot 96\\ -0\cdot 98\\ -0\cdot 96\\ -0\cdot 98\\ -0\cdot 98\\ -0\cdot 98\\ -0\cdot 98\\ -1\cdot 19\\ +1\cdot 16\\ +1\cdot 16\\ -2\cdot 23\\ -0\cdot 70\\ -1\cdot 81\\ -0\cdot 49\end{array}$	$\begin{array}{c} -0 & 13 \\ -0 & 08 \\ -0 & 26 \\ -0 & 26 \\ -0 & 766 \\ +0 & 14 \\ -0 & 038 \\ -0 & -138 \\ -0 & -038 \\$

NORMAL PLACES.

The probable error of a plate as determined from the last two columns of the table, giving the data of the plates and using the formula $r = \pm .6745 \sqrt{\frac{\Sigma}{2p} r - 1}$ is ± 1.04 km, per second. The eurre, Fig. 22, is plotted from the corrected elements given in the following table. These are considered close approximations to the true values until observations in all phases of the star have been secured with the three-prism spectrograph when a final determination will be made:—

ELEMENTS OF ORBIT.

Elements.	Graphical.	Corrected. '
Period P. Econtricity of the second Half amplitude K. Velocity of system y. Projection Semi-major axis a sin / Projection Semi-major axis a sin / pro.	$\begin{array}{c} 492 \ \ days. \\ 0.25 \ \ 300^{\circ} \\ 7.8 \ \ km. \\ -0.57 \ \ km. \\ J. \ D. 2417730^{\circ} 0 \\ \\ 186^{\circ} 1 \end{array}$	495'3 days. 0'300 288''98 8'23 km. -0 60 km. J. D. 2417729'48 53,474,000 km. 122'7

APPENDIX B.

THE SPECTROSCOPIC BINARY, a CORON.E BOREALIS.

J. B. CANNON.

The star a Corone Borealis ($a = 15^{h}$ 30 oe ; $b = + 27^{\circ}$ 37), was discovered to be a binary by Hartmann from measures of six plates taken at Potsdam in 1902 and 1903.² It was under observation at this Observatory during the years 1907 and 1908. In all 103 plates were secured, 46 in 1907 and the remaining 57 in 1908; the instrument used being the single-prima spectroscope.

This star belongs to the class Ia 2 in the Vogel classification. The spectrum shows the dark lines, $M_{23}, M_{27}, M_{23}, M_{47}$, the magnetismu line λ 448, the time has λ 454, the calcium line λ 3934 and a few other very faint lines. The hydrogen lines are all very broad and diffuse and very difficult of accurate measurement. H_c is so diffuse that it has not been measured at all. The line λ 4481 varies in character, in some plates well defined, in others diffuse. The line λ 3494 is in general a fairly good line, being weighted about the same as H_{γ} and H_{05} . In the measurement of nearly every plate it was found that the lines λ 4481 and λ 4549 gave entirely different velocities from the Hlines and K. It was decided therefore to consider only $H_{23}, H_{\gamma}, H_{\gamma}$ and K in the first measurements and the elements determined in this treatment are from the consideration of these alea.

The lines measured, together with the velocities per revolution of the micrometer screw (0.5 pitch), are given in Table I.

Element.	Wave-Length.	Velocity per revolution.
Hydrogen.	4861 527 4340 634 4101 890 3933 825	$1451 \\ 1044 \\ 868 \\ 749$

TABLE I.

LINES (MEASURED) IN & CORON.E. BOREALIS.

These lines vary in quality and were weighted accordingly. The whole plate was then weighted, regard being had, first, to the appearance of the spectrum, and second and more particularly, to the number of lines measured and the agreement in the measurements. The velocities found were plotted successively and gave a period of between seventeen and eighteen days. Trials of several periods ranging between these, gave 17.35 as the most satisfactory. There were available measurements of three plates of 1902 and ten of 1906 theor at Potsdam⁶, and it was found that on plotting these with the observations obtained here that if the period were increased to 17.355 days, they would, with one exception. Ii every close to the curve. Table II. contains

* A. N., 163, 31, 1903.

the number of the plate, the Julian date, the phase—computed from the time of periastron finally accepted, and period 17-355 days,—the weight of the plate, the velocity and the residual between the observed velocity and that computed from the corrected elements.

In order to obtain observations in which the errors might be reduced and a curve drawn abouing smaller residuals, the one hundred and three observations were combined into fourteen groups. Plates of both years were combined indiscriminately, those at nearly the same phase being grouped together. The weight of each plate (Table IL) was taken into account and the weighted mean of each group computed, with the mean phase.

(Table III. contains the mean phase from T mean velocity, weight and residual of these normal places.)

Plate No.	Year.	Julian Day.	Phase.	Wt,	Velocity.	Residual.
784	1907.	2,417,720.74	13.041	4	- 40	-12.5
790		725.63	0.576	4	+32	0.
94		725.75	0.686	3	+44	- 10 *
94		727.72	2.666	3	- 17	$\pm 17^{+}$
08		735.69	10.636	3	- 37	+15
L3		737 64	12:581	4	- 30	+ 31
		738.74	13.681	1 4	- 26	- 3:5
37	. н	739 73 740.69	14.671 15.641	3	- 1	- 3'0
45 50		740 69	15 641	4	+11	- 1.5
31		747.67	5.266	2	+17	- 4.5
59		748.64	6 236		+ 9	- 4.5
50		752.65	10 246	1	- 41	$+20^{\circ}$
38		753 62	11.216	2	- 27	- 3.
92		754-64	12.236	-4	- 28	- 1'
		761.64	1.876	2	+25	- 13 5
17		762.64	2.876	3	+30	- 2'5
19		765.65	5.886	3	+ 8 - 5	0· - 4·5
27		766.61 767.58	6 846 7 816	4	- 5	- 15'
36. 39 41		767.58	9.916	3	- 29	- 10
11		770.64	10 876	1	- 30	- 7
44		773 62	13 851	2	- 26	- 0.5
51		775.62	15.851	3	- 19	- 15
56		777.67	0 546	3	- 32	0.
73		789.58	11.466	2	- 16	- 91
78		791.54	$14 \cdot 421$	3	- 24	+ 1.2
86		794.69	0.216	2	- 12	+16
60 and 1061		839-77	10.386	2	- 25	+ 4
06 14		800°69 803°63	6 · 216 9 · 156	2	- 14 - 7	-18- - 8-5
14		810 63	16.161	1	- 14	- 13
22		811.66	17.151	î	+ 5	-15
26		815:50	3.676	3	+ 30	- 41
32		825.57	13.741	2	- 22	- 3.5
37		831.67	2.486	2	+ 36	- 0.2
47 and 1048		837.53	8.356	3	- 15	+ 5.
83 and 1084		850.56	4.016	4	+ 26	- 2'5
93		2,418,010.92	8 186	3	- 5	- 0.2
02		017.87	15.136	3	-17	- 1
93 71 and 1572		047.80 096.69	10.356 7.181	3	- 6	-15° +12.5
71 and 1572 81		098.73	9.221	1	- 15	-10
81 01		105.71	16.201	3	+ 7	+ 5.2
08		110.58	3.716	3	+ 9	+17
23 and 1624	3	115.69	8:831	4	-14	+ 1
28 and 1629		117.64	10.776	3	- 11	- 11.5
28 and 1629 38 and 1639		119.66	12 796	4	- 21	- 6 5
46 and 1647		120.68	13.816	3	- 21	- 4.5
52		124.64	0.451	3	+42	- 11 '
i56 and 1657		126 64	2.421	3	+27	- 10.
655		129.70	5.481	3	+12	- 11

TABLE II. Measures of a Coron.e Borealis.

MEASURES OF a CORONE BOREALIS-Continued.									
Plate No.	Year.	Julian Day.	Phase.	Wt.	Velocity.	Residual.			
673 and 1674	1908.	2,418,131 62	7 . 401	4	- 3	- 1.5			
683 and 1684	- 11	133.57	9.351	3	18	+ 2'			
592	14	134.68	10 461	2	29	7.5			
597 and 1698		136 65	12:431	1	- 24				
11		138.68	14 · 461 5 · 966	1 0	-17	5.			
21 and 1722		147 54 152 65	5 900	0	- 44	- 20			
39 48 and 1749		152 65	12.996	e e	-36	- 8.5			
64		159.64	0.711	1 1	+37				
73 and 1775		161.60	2.671	7	- 43	- 8.5			
98		174.54	15:611	2	- 16	- 6'			
09		175.62	16.681	ã	- 3	+13			
16 and 1817		178.55	2.266		+ 41	- 4			
27		179:54	3.256	2	-27	- 2.5			
36		181.61	5 326	4	+ 10	- 2.			
41 and 1842		182.54	6.256	7	. + 8	- 3.5			
352		185.56	9.276	2	- 15	- 0.2			
61		188.23	$12 \cdot 246$	4	- 30	+ 3'5			
\$65		189.56	13.276	1	- 15	- 12			
82 and 1883		199-54	5.901	8	+11	- 3.2			
94, '95, '96 and '97		204 50	10.861	10	- 21	- 2'			
949, 1950 and 1951		247 45	1.746	6	+46	- 7.5			
991		278.42	15.561	1	+ 8	- 20 '			

TABLE 1L

TABLE III.

NORMAL PLACES OF a CORON.E BOREALIS.

No.	 Mean Phase.	Mean Velocity.	Wt.	Residual.
$\begin{array}{c} 1 \\ 2, \\ 4 \\ 5 \\ 6 \\ 7. \\ 8 \\ \\ 9 \\ \\ 10 \\ 11 \\ 12 \\ 13 \\ \\ 14 \\ \\ \end{array}$	$\begin{array}{c} 12 \ 656 \\ 13 \ 777 \\ 14 \ 664 \\ 15 \ 831 \\ 16 \ 723 \\ 0 \ 556 \\ 2 \ 302 \\ 3 \ 559 \\ 5 \ 657 \\ 6 \ 250 \\ 7 \ 968 \\ 9 \ 444 \\ 10 \ 517 \\ 11 \ 000 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6 2 3 2 5 5 4 6 3 4 4 4 2 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	$\begin{array}{c} 2:37\\ -2:34\\ -2:29\\ -0.366\\ -6:22\\ -2:47\\ -2:47\\ -1.46\\ -1.46\\ -0.31\\ -0.31\\ -0.75\end{array}$

From the radial velocity curve the elements of the orbit were determined by the graphic method of Dr. King.* These were :--

P = 17.355 daysT = J. D. 2,417,725.55

- $K = 33 \, \text{km}$.
- e = .28
- $\omega = 309^{\circ}$
- $\gamma = 0 \text{ km}$
- * Astro. Journal, Vol. XXVII.

To obtain elements which would give a curve more nearly suiting the normal places, a least-square solution was made. On the advice of Mr. Plaskett, the period 17.355 days was taken as fixed, and the fourteen observation equations (formed by the method of Lehmann-Filhés*) were determined without considering 8µ. From these the following normal equations result :---

$$-48x = 0.4500y - 3.7267 \pm 1.1799u + 2.8166v - 14.1350 - n = 0$$

 $+24.0451y - 7.2422z + .4429u - .1050v - 4.1083 - n = 0$
 $-23.0108z - .2779u - .3737v + 3.9440 - n = 0$
 $+19.5267v + 43.78260 - n = 0$
 $+17.829v - n = 67.999v - n = 0$

in which

 $x = \delta \gamma$ $y = \delta K$ $z = -K\delta e$ $u = -K\delta_{00}$ $v = \frac{K\mu \partial T}{(1 - e^2)^{\frac{3}{2}}}$

The solution of the above equations gave the corrections to the element :---

 $\delta\gamma = + .635 \text{ km}$ $\delta K = -.031 \, \text{km}.$ $\delta e = -.015$ $\delta \omega = -3^{\circ} \cdot 76$ $\delta T = -.449$ days,

and hence the following new elements :-

 $\gamma = K =$ = + .635 km.32.969 km. -265 $\omega = -305^{\circ} \cdot 24$ T = 2,417,725.101 J. D. P = 17.355 days.

An ephemeris computed with these elements reduces the value of Σpvv from 498-94 to 217.35, but the differences found between these residuals and the observation equation residuals were in some cases rather large, and at a suggestion by Mr. Harperwhom I owe much for other valuable suggestions as well-a second solution was made, This time δK was omitted owing to the small correction obtained in the first solution, and the new observation equations contain only four unknowns, and hence only four normal equations follow :---

```
+19.2174u - 4.4691 - n = 0
            δγ
      x =
      y = K \delta e
      z = -K\delta\omega
     u = \frac{K\mu \delta T}{(1 - e^2)^{\frac{5}{2}}}
The solution gives the corrections :---
      \delta \gamma = - \cdot 137

\delta e = + \cdot 012
      \delta_{\omega} = -1^{\circ} \cdot 558
      \delta T = - .0475
* A. N., 136, 17, 1894.
```

The probable error of a normal place of unit weight was computed and found to be \pm 3-07, that of a plate as determined from the residual for each plate scaled from the eurre to be \pm 5-386. The probable error of each clement was also computed and is attached to the final values below, the values obtained after applying the corrections found² in the second least-squares solution:—

 $\begin{array}{rcl} \gamma = & + .498 \; {\rm km.} \pm .330 \; {\rm km.} \\ K = & 22.660 \; {\rm km.} \\ e = & .277 \pm .0012 \\ \omega = & .237^\circ \pm .0012 \\ T = & 2.417,725 \; 0.634 \; {\rm J.} \; {\rm D.} \pm .187 \\ P = & 17.355 \; {\rm days} \\ a \; {\rm sin} \; i & = .7.560,000 \end{array}$

These values give a second reduction of Σpvv from 217.35 to 207.7 and satisfactory differences between equation and ephemeris residuals, the average being -08. The curve shown is drawn from the above elements and the circles show the position of the observed normal places.

Since the completion of the foregoing treatment of the binary, from the point of view of the hydrogen lines and the calcium line, λ 3644. all the plates have been reviewed, and the magnesium line λ 4481 carefully measured where measurement was possible, with the intent of determining in what respects the orbit detended from this line might differ from that already determined from the other lines. The method of treatment was exactly similar to that formerly followed. The period was taken as before–17.455 days. The observations were grouped into normals, the same plates being taken together as in the former treatment and the relative weights assigned as before. The normals were plotted, and the best curve possible drawn through then, or rather the graphic method of Dr. King was employed to obtain the elements of the orbit, the velocity curve corresponding to which best suited these normal places.

The elements thus found were as follows :----

 $\gamma = + 6.69 \text{ km.}$ K = -33 km. e = -35 P = -17.355 days. $\omega = -316^{\circ}$

Comparing these with the corresponding elements from the other lines, the main differences are seen to be in the values of γ and e.

In the work which has been done on the radial velocities of stars other than binary, some stars have been found, certain of whose lines gave consistently different velocities from other lines. Among them is o Ceti, the emission and absorption lines giving a considerable difference in the value of the radial velocity; so with nearly all Novæ. Nova Aurigae has been discussed at some length by several astronomers and a similar phenomenon has been noted. Explanations have been suggested as to the cause of the different displacement of different lines. These consist chiefly of two,-first, a lagging envelope producing the lines of less displacement towards the red end of the spectrum, and second, an ever-expanding envelope coming from a continuously productive source. How far such conditions would go to explain a state of affairs such as we find in a Coronae, it is difficult to say. We may also look upon the system as receding with a velocity of 6-69 km, per second-the velocity given by the magnesium line-and constantly expelling hydrogen and calcium vapors, the velocity of expulsion affected by the periodic recurrence of physical conditions, brought about by the changing relative positions of the stars in the orbit, which conditions fail to influence magnesium in any way so far as changes in the lines are concerned. This is quite plausible, for in

the spectroscopic study of the Sun's surface, regions have been found, such as sunspots, the spectra of which show certain lines considerably affected in character and position, while other lines denoting other elements remain unchanged.

After the first part of this work had been completed, Mr. Jordan issued from the Allegheny Observatory his publication on the Orbit of a Corone Borealis. Comparing his results with those obtained here from the lines H_{i} , H_{γ} , H_{3} and K, it was seen that, although on the whole they agreed fairly well, there was considerable difference: in the values of e. This is largely due no doubt to the fact that H_{γ} . After that H_{γ} and K is the second s

The accompanying curves represent—Fig. 23, the hydrogen and calcium curve, and Fig. 24 the curve from the hydrogen and calcium lines, and that from the magnesium lines.

APPENDIX C.

THE TWENTY-THREE FOOT SOLAR SPECTROGRAPH.

RALPH E. DELURY.

This instrument is adapted for analyzing with great dispersion the light of the oun and of laboratory sources, such as the electric spark, arc, flame, &c., and is primelly intended for investigating the conditions in the sun. It is situated in the basement of the Observatory in the Solar Research Boom, which is connected on the north side by a coment tunnel to the louvred passage of the Coclostat House from which the image of the sun is directed to the spectrograph, and on the east side to the Chemical Laboratory, which is used also as a photographic dark-room in which are developed the photographs of the spectra taken in the spectrograph. The spectrograph may be described under the following heads:—(a) Optical Parts; (b) Mountings; (c) Slit-Attachment; (d) Camera and Plate-Holders; (e) Guide-Jalet for the Sun's Image.

(a) Optical Parts.

The optical parts are :-- a slit with metal jaws 1.3 in. (3.4cm.) long, mounted so as to leave 1 in. (2.5 cm.) clear, and provided with a micrometer, for adjusting the width of the slit, reading to thousandths of an inch; a six-inch (15 cm.) collimating lens of 22 ft. 10 in. (695.5 cm.) focal length for yellow light; and one of the earlier Michelson plane gratings of speculum metal having a 4.25 in. by 4.75 in. (10.8 cm. by 12 cm.) surface ruled 12,700 lines to 1 in. (500 lines to 1 mm.). These parts arc arranged after the plan described by O. Von Littrow in 1863 (see Kayser Handbuch der Spectroscopie 1, 513). In this arrangement the slit is placed at (or near) the focus of the lens and the dispersing system (in this case the grating) is placed on the other side of the lens in such a manner that the dispersed light returns through the lens which focuses it near the slit, as illustrated in Fig. 25, which represents a vertical section through the middle of the spectrograph and mountings. S is the slit, L the lens, placed at its focal distance from the slit and G is the reflecting grating placed just behind the lens L, and tilted so that its ruled lines are parallel to the shit. The beam of light to be examined passes through S spreading out to fill L, which renders it parallel before it reaches G, which disperses it and reflects or diffracts it back through L. By tilting the top of the grating slightly towards the slit the diffracted light is made to pass back through the lens which focuses it below the slit where it may be examined with an eve-piece or photographed in the plate-holder (C). By rotating Gabout a vertical axis on either side of the normal, the different parts of the different orders of spectra are diffracted back through the lens L, and by sliding the lens forward or backward the light of the different wave-lengths may be focussed sharply at C.

(b) Mountings,

The two tilting movements of the grating mentioned in (a) were provided in the cell of the grating by the John A. Brashear Co., from whom it was purchased. The forward tilt is given by screw J and suitable springs pressing against the back of the grating; and a, screw placed on the side gives the means for adjusting the lines of the grating parallel to the slit. The grating in the cell rests on the stand ϕ , the axis of which fits into a crilindrical socket in the bottom of

the end, B, of the spectrograph, and by turning a handle K'' (Fig. 26), attached to a worm which works in the toothed sector, K, which is attached rigidly to the axis of G', the grating may be rotated about this axis which passes through the centre of the plane of the grating, thus reflecting any desired part of the spectrum of any order through the lens to C. By means of the vernier-pointer, V, readings to tenths of a degree may be made on the graduated arc E and a record of these readings with the corresponding wave-lengths of the spectra reflected to C is kept, so that by turning K''until V points to the proper angle, any desired wave-length may be reflected to the centre of C and the grating may be clamped in this position by tightening the screwclamp K'. The lens may be shifted and clamped at any focus by means of the handle II, and the position of the pointer F is read on a millimetre scale attached to the bottom of B, as shown in Fig. 26. Ordinarily the side represented in Fig. 26 is facing downwards and a mirror is placed below the scale and the arc so that the reading may be made conveniently. In addition to these movements of the grating and lens, the mountings permit of rotation of the spectrograph as a whole about its axis, i.e., about the line joining the centre of the slit and the centre of the lens. This idea was suggested by Mr. Plaskett (Report Chief Astronomer for the year ending March 31, 1907. p. 58) and employed by Newall (Monthly Notices 68, 7, Nov., 1907), and used also in the spectrograph mounted vertically and used with the vertical telescope of the Mount Wilson Solar Observatory. It facilitates the study of the rotation of the sun, by enabling the observer to reflect the limbs of the sun at opposite ends of any diameter always tangentially to the slit, as described in detail under (c), in Fig. 25, A and B are the two ends resting on the supports A' and B' which rest on the cement piers P and P' built on the cement floor. The end A is of half-inch cast brass. It has a Vgroove running around its circular rim into which the semi-circular cast-iron support A' is bevelled to fit. The back of A is a rectangular box 3 in. by 11 in. by 14 in., over which the wooden box O is tightly screwed and clamped. The axis of B, which is of cast-iron, rests in a cylindrical bearing in the brass support B'. The box on B projects 3 in. on top and 16 in. on the sides and bottom to give good support for the lens and grating and to provide a surface to which the box O is screwed tightly. The bottom of B is milled smooth to give easy bearings for the grating and lens mountings. The box O is painted black on the inside and is provided with diaphragms, M, to prevent as much as possible the diffused light reflected from the lens and grating from striking the photographic plate in the holder, C. There is a hinged door, D, just above the grating and lens so that these may be conveniently reached.

The spectrograph thus rests at its two ends on the supports A' and B' on which it may be rotated about its axis. The rim of A is toothed (T, Fig. 25) and into these teeth fits a gear attached to T' (Fig. 27), which is supported in A' and which may be turned by means of the handle T' (Fig. 27 and 28). The circular face of A is graduated in degrees and by means of the vernier attached to A' the angle may be read to tenths of degrees. This is necessary in determining the 'Last and West' line by allowing the image of the sum to drift across the face of A tangentially to some arbitrary line on A. From this angle read on the vernier, the position of the diameter of the sun's disc which lies in the plane of the sun's duext, is easily found since the arbitrary line on A may be made parallel to any required dimeter of the sun's image.

The mountings were constructed by the Victoria Foundry Co. from designs madin accordance with the suggestions of Mr. Plaskett who supervised the construction of the spectrograph. The mechanisms for rotating the grating and the spectrograph were skillfully constructed by Messrs. Mackay and Lucas.

(c) Stit-Attachment.

The slit-attachment is shown in Fig. 27. It was designed by Mr. Plaskett and made by the John A. Brashear Co., a, b, c, d are 45° reflecting prisms mounted on

F10. 25-Solar Spectrograph.

PLASKETT ASTROPHYSICS.

Fig. 26-Rear end of Solar Spectrograph.

FIG. 27-Slit Mechanism of Solar Spectrograph.

Fig. 28--Front End of Solar Spectrograph.

brass plates which are supplied with racks and pinions e, e, e. When the sun's image is placed concentric with the circular front of the spectrograph, the prism d is moved to take the light from any desired point near the sun's east limb and reflects it to the prism c, which directs it down through the slit to the lens and grating. In a similar way the larger prism, a, reflects to the west limb through the prism b, whose tapering ends form a V-shaped space into which the tapering end of c fits closely, so that the spectrum from the east limb is placed closely between two strips of the spectrum from the west limb. The widths of these strips may be varied by moving the plate holding the prisms b and c back and forth, and by means of two little slides placed directly over the ends of the slit. When desired the shutter, f, may be used to keep the light passing through the slit from reaching the lens. In place of the plate bearing the prisms b and c, the attachment, h, may be used and by meaus of two adjustable screws which serve as stops between which it may be shifted so that two spectra of any desired widths may be taken in succession, the one being placed between two strips of the other, the V-shaped openings and the V-shaped slides providing the means for adjusting the widths of the strips. The prism arrangement is intended for obtaining plates for measuring the rotation of the sun or for any investigations where it is desirable to take the spectra simultaneously, while the attachment, h, is designed for taking spectra in succession, and of course the time of an exposure will be less in using it than in using the prisms which diminish the intensity of the light considerably.

(d) Camera and Plate-holders.

The plateholders are made to take a 2.5 in. x 12 in. plate, a hinged back with three springs pressing the back of the plate at its edges holding the plate firmly in place without danger of bending it. The plateholder, C, Fig. 28, is slid into the frame C', Fig. 27, and clamped, as shown in Fig. 28. The frame C' can be raised or lowered by rack and plation as shown, so that several strips of spectra may be put slide by slide on the same plate, and spaced as desired by reference to the millimetre scale on the right hand slide. The plateholder fits over a 1.5 in. opening in A, Fig. 27. The frame C' may be tilted slightly so that the plane of the photographic plate may be made to follow more closely the focal surface of the lens.

(e) Guide-plate for the Sun's Image.

In Fig. 28 is shown the guide-plate R, serewed tightly over the slit-attachment. R has a number of concentric circles and a diameter scratched on its surface and blackened so as to be easily visible. These circles are concentric with the circular front of the end-piece A. The figure shows the sun's image placed concentric with these circles. At each end of the diameter of these circles is a small rectangular opening, back of which is a little slotted silver-plated shutter which runs in bevelled slides. These shutters may be adjusted by means of the millimetre scales ou the edges of the two rectangular openings, so that the slots are taugential to the same circle whose diameter is read off directly, the distance between the uearest ends of the rectangular openings being 200 mm. In the same manner the diameter of the solar image is measured. Back of these slots the prisms are adjusted to give the maximum brightness in the light reflected from the grating, and thus the spectrum from a point in the image near one limit may be placed between two strips of the spectrum from a part of the image at the other end of the diameter. To get any desired latitude on the sun's disc, the image is allowed to drift across the guide-plate tangentially to the diameter-the arbitrary line mentioned above-scratched on the plate and the vermer reading taken of the angle corresponding to this 'east and west line' which makes a known angle at any time with the sun's equator. The handle T" is then turued to place the diameter in the desired position. One slit will thus be placed at a certain latitude north of the

sum's equator and the other at the same latitude south of the equator, and the displacement of the spectral lines resulting therefrom will give a measure of the treation of the sum in this latitude by turning \mathcal{P}^{w} so that the slits are placed at the same latitude, but on the opposite sides of the equator to those of the former position the same displacement should result if: (1) the sum's equator has been accurately determined, (3) the rotation of the sum is the same for the same latitude in both hemispheres. Taking the means of the two measures from plates taken in succession would eliminate most of the errors introduced.

SOME RESULTS.

The spectrograph was mounted in August, 1908. The cement piers, P, P' (Figs. 26, 27, 28), are made so as to make the axis of the spectrograph coincident with the axis of the concave mirror in the coclostat house, when the image from it is placed in the middle of the face, A, of the spectrograph, P being a few inches higher than P', giving the proper inclination (about $3\frac{1}{2}^{\circ}$). The spectrograph was adjusted and numerous test photographs were taken in the To keep the light reflected back from various parts from \$\$2800 to \$\$6000. the surfaces of the lenses from striking the photographic plate the ordinary method of putting a strip across the lens, parallel to the plate, was tried; also, in some tests, the lens was tilted forward so as to throw the reflected light below the photographic plate. This latter method does not alter the character of the lines very much and possesses the advantage of doing away with the strip which masks the central part of the grating and lens. It was soon found that the character of the spectral lines in the different orders from either the left or right inclinations of the grating was not as good as desired. By directly reflected light the grating appears to have three areas of different reflecting powers and it was found that the spectra from these areas did not harmonize. The best spectra were obtained by masking the two smaller areas and using the remaining strip which constituted the right three-fifths of the grating. Even from this part of the grating the spectral lines are poor. In the first and second orders the spectra from the grating tilted to the right are much more intense than those obtained when the grating is tilted to the left, while the reverse is the case in the third order, and furthermore the lines are sharper when the grating is tilted to the left. Consequently the rotation plates obtained were made with the grating tilted to the left and the left two-fifths of the grating masked together with the central strip placed over the face of the lens to cut off the reflected light. The focal curves, for left and right inclinations of the grating were obtained in the first three and part of the fourth orders, for the whole grating with the central strip masked. These are plotted in Fig. 29, the dotted lines being the photographically determined curves and the continuous lines, those visually determined. It will be seen that the locus of the foci for any wave-length in the different orders, instead of being a straight line of constant focus, is a curve (nearly a straight line) of varying focus. This is very likely due to the character of the reflecting surfaces between the scratches on the grating, for it may be assumed that the diamond scratching-point distorted the strips between the scratches in such a way as to make one side of the surface slightly convex and the other slightly concave, as might easily happen since on oue side of the diamond-point the speculum is scratched or furrowed, while on the other side it is not. At any rate the grating is not what it should be for the work planned for this spectrograph. This work must necessarily deal with the exact positions and character of the spectral lines and any large or small changes in these. It is chiefly the minute changes that are of interest at present in solar investigations, and the very best possible definition of the spectrum lines is required for a satisfactory measurement of these changes. It is hoped that a new grating of first quality may soon be secured, as such is necessary to yield satisfactory results. Everything else is now in readiness for the careful study of solar problems.

25a—p. 254

In addition to rotation-plates, plates of the sun spot spectra were obtained whenever the conditions were suitable. Samples of both are shown in Fig. 30. In the following table the measurements of a sample rotation-plate (L 413) are given. In taking these plates long exposures (10 or 12 minutes in the third order near 4300) were necessary owing to the fact that a very small area of the grating was used. During this interval the sun's image would become blurred and distorted, thus allowing light from different points on the sun's surface to pass through the slits. The poor values in the following table are probably partially due to this cause and partially also to aberrations produced by some of the curious properties of the grating and to the very poorly defined lines produced. Many of the lines were so poor that measurements of them were not made and many of the finer lines were spread out and weekened so as to be almost invisible. It is hoped that the new grating will remedy these defects.

Measurements of plate L 413, 0°-0, slits 226mm. apart, diameter of the sun 232 mm.:--

		1				
λ	Mean of 5 mm. readings middle_strip	Mean of 5 mm. readings lower strip.	Mean of 5 mm. readings upper strip,	Mean difference.	2δλ	Velocity km. per sec.
•						
4136 678	2.9828	3.0314	3.0430	0.0244	0.0488	1.77
$4137 \cdot 156$	3 5233	3.2620	3.5931	557	-499	1.81
4140.089	6.7876	6.8342	6.8411	500	448	1.62
$-4147 \cdot 836$	15.4109	15.4623	15.4711	558	500	1.81
4149.533	17:2990	17:3517	17 3520	529	474	1.71
4150 411	18.2771	18:3256 22:6215	18:3411	513	460	1.66
4154:071	22:5768		22.6324 23.0828	502	450	1.62
4154 667	23.0202	23:0724		571	512	1 85
4154 976 4157 948	23 · 3789 26 · 6898	23 4309 26 7408	23 4333 26 7492	532 452	477 -405	1.72
4157 948	26.6868	26 7431	26 7492	402 627	405 562	1:46
4158 959	20 0008	27 8550	27.8718	490	439	2.03
4163 818	33-2268	33.2824	33 2919	604	5-12	1.95
4169 110	39.1097	39.1550	39.1763	560	502	1.81
4171 068	41.2803	41.3317	41 3462	587	526	1.89
4174.095	44.6767	44 7188	44.7331	489	438	1.57
4175 806	46.6002	46.6480	46.6549	510	457	1:64
4176-739	47.6361	47 6780	47 6990	524	470	1.69
4179 025	50.1899	50 2346	50.2450	499	447	1.00
4179.025	50 1928	50.2358	50.2405	454	407	1.47
4181.919	53.4369	53-4799	53.4878	571	512	1 84
4182.548	54.1376	54.1827	54.1958	517	463	1 66
4187.504	59.3360	59.3872	59.3987	570	511	1.83
4187.943	60 1723	60.2212	60.2388	577	517	1.85
4187.943	60.1224	60.2208	60.2423	562	504	1.81
4196.372	69.5688	69.6076	69.6247	474	425	1.52
$4199 \cdot 267$	72.7938	72 8540	72 8663	664	596	2.13
4199.267	72.8065	72:8626	72.8720	608	545	1.95
4201.089	74 8526	74 9020 76 9398	74 9137	553	496	1.77
4202.919 4203.730	76 8960 77 8073	76.9398	76 9492 77 8677	485 599	434	1.55
4203 130	78.7510	78.8003	78.8116	550	537 493	1.92
4207 291	81.7826	81.8279	81-8413	520	405	1.76
4208 766	83.4393	83 4904	83:4972	545	488	1.00
4213 812	89:0824	89.1385	89 1469	601	539	1.92
4216-351	91.9078	91 9656	91.9685	593	532	1.89
4220 509	96.5671	96.6120	96 6305	557	499	1.77
4233 328	110.4129	110 4651	110.4242	539	483	1.71
4236 112	113.1064	113.1574	113.1659	553	496	1.76
$4236 \cdot 279$	113 2910	113 3460	113.3567	604	542	1.92
4236 279	$113 \cdot 2911$	113.3482	113 3563	612	549	1.94
$4238 \cdot 970$	116.3636	116.4095	116 4177	499	447	1:58
4246.966	126.2158	126-2723	126.2819	613	550	1.94
4258.774	139.0965	139.1464	139.1214	524	470	1.66
4265.418	147 6064	147.6630	147.6666	584	524	1.84
4268.915	150.7909	150.8440	150.8464	543	487	1.71
$4271 \cdot 325$	153 4834	153 5426	153.2424	606	544	1 91
4271 934	154.6638	154 7190	154 7275	595	533	1.87

25a-19

	Mean of 5 mm. readings middle strip	Mean of 5 mm. readings lower strip	Mean of 5 mm. readings upper strip.	Mean difference.	2δλ	Velocity km. per sec.
4271-938 4271-938 4282-955 4282-955 4282-955 4289-955 4289-955 4289-955 4289-955 4289-955 4289-955 4289-955 4289-955 4289-957 4289-957 4299-957 420	127 5662 128 3816 166 1169 177 2836 177 2836 177 2836 177 3835 174 3855 174 385 174 385	127 - 61.9 122 - 8866 126 - 13.75 126 - 14.6 127 - 71.7 127 -	177 (229) 162 (2923) 163 (1650) 164 (1650) 164 (164) 164 (164) 177 (164	0 10533 0 1054 123 125 125 125 125 125 125 125 125 125 125	$\begin{array}{c} 0.0478\\ 0.15\\ 105\\ 100\\ 100\\ 100\\ 100\\ 100\\ 100\\ 1$	1 (68 1 81 1 81 1 84 1 84 1 98 1 98
					Mean	1.77

Measurements of Plate L 413 (Continued).

The scale, which is practically constant over the whole plate, is 1 A. U. = 1-115 mm., hence $2\delta_{\lambda} = \frac{1040}{1.115}$. The velocity is $\frac{\delta_{\lambda}}{\lambda}$ (Velocity of light) = 209800 $\frac{\delta_{\lambda}}{\lambda}$ km. per second. Heliographic latitude of the centre of the sun's disc was 6° 20° when plate L 413 was taken, consequently the velocity at the equator, as determined by this plate is $\frac{232}{226}$ 1.77 $\frac{1}{206}$ at $\frac{1}{206}$ = 1.83 km, per second. This value is the linear velocity of the sun's limit at the equator, as determined by this plate is $\frac{232}{226}$ 1.77 $\frac{1}{206}$ at $\frac{1}{206}$ = 1.83 km, per second. This value is the linear velocity of the sun's limit at the equator, as determined by this plate is disclosed or equator, and the velocity of the sun's due use the super veloce to the barent quark second velocity at the second action was basefully accepted value is approximately 2.05km, per second, and the deficiency in the oresent case may be safely ascribed to cross introduced by the gravity accepted value is approximately 2.05km.

APPENDIX D.

DOUBLE STAR MEASURES. PHOTOGRAPHS OF COMET MOREHOUSE. OCCULTATIONS OF STARS BY THE MOON. FIELD INSTRUMENTS. ABERRATIONS OF THE STELLAR CAMERA OBJECTIVE.

R. M. Motherwell.

DOUBLE STAR MEASURES.

Three half nights each week have been devoted to micrometer and photographic work, including the series of tests made on the camera objective. Micrometer work has consisted principally of the determination of the position angles and distances of visual double stars, the working list being prepared from Burnham's Catalogue of Double Stars. An endeavour is being made to measure only those which have not been measured for some time or whose motion is such as to require frequent measurements.

The flar micrometer usel, is the Warner and Swaasy type, and it has been found rather unsatisfactory in the determination of position angles owing to there being no quick-motion server for moving the position circle. A self-registering attachment would be a great improvement as the present arrangement requires the frequent use of a hand-lamp which dazles the eve. Considerable difficulty has also been exgerienced in keeping the eye-piece clear of frest in the winter, each setting of the micrometerhead or position-circler requiring several clearings of the glass.

Star No.	Date.	Position Angle.	Distance.	Star No.	Date.	Position Angle.	Distance.
		0				•	
151	1908.786	279.0	1.34	7117	1908.464	298.2	Cloudy.
269	1908 765	113.9	5.78	7318	1908.317	184.3	3.81
1427	1908 921	313-9	3.28	101011111111111	1908-575	186.8	4:01
1750	1908 921	249.1	17:24	7429 5	1909 429	252.9	9.30
2040	1908 921	218.8	4.21	7450.	1908:575	15.2	8.70
2043.	1908 921	328.5	4 04	1 100	1908 617	14.3	9.21
2536	1908 996	305.3	2.73		1908 631	14.0	9.53
3398	1908 996	6.4			1909.412	14.9	8:91
4452	1909:341	43.3	2.60		1909.429	13 9	9.32
4530	1909.086	139.6	6.12	7451	1908:317	255.4	16:64
4890	1908:247	196.9	5.14		1908 464	254.1	17 11
	1909.086	196.7	4.88		1908:575	254.8	16:57
	1909:303	197.0	5.11		1908.617	256.0	16 17
5011	1908 247	45.5	1.88		1908-631	254.6	16.62
5014	1909.202	235.9	3:50	7458	1908-575	288.9	3 21
	1909-303	234.0	3.39	7604	1908 464	211.9	17:12
	1909 341	235.5	3.40		$1908 \cdot 497$	211 9	16 89
5125	1908-304	146.5	3.43		1908.575	214.0	16 59
5319	1908:304	176.9	2:50	7642	$1908 \cdot 575$	89.8	1.77
	1908.426	177.3	2.78	7915.	$1908 \cdot 439$	18.2	5.03
5337	1908.977	295.2	30.28		$1905 \cdot 492$	20.0	5.38
	1909.183	294 4	31 50		1908.617	18.4	5:48
	1909.202	204.8	31.89	5388	1908 247	117.4	3 88
	1909.399	294.3	31.05		1908 426	115 5	3 43
6780	1909.183	353.4	Too frosty		1909.183	114'1	3 89
7065	1909.183	111-1			1909.399	116.4	3 82

Following are the measures made during the past year, each measure being the mean of eight settings for position angle and four double-distance measures :---

 $25a - 19\frac{1}{2}$

Star No.	Date.	Position Angle,	Distance.	Star No.	Date.	Position Angle.	Distance
	10001015	68.6	3.02		1000-011	338.7	27.47
5426	1908 247 1909 303	68.1	3.20		1908.641 1908.765	339.3	26 90
	1909 308	66.2	3.27	9034	1908:541	51.9	7-84
5705	1909 399	32.2	3.37	20.34	1908 541	50.2	8.50
	1908 977	27.6	24.86	9037.	1908.541	7:41	5:90
5809	1909.078	28.0	25.17	3001	1908.581	7.33	5.88
	1909 018	30.7	24.90		1908 641	7.24	5.68
	1909 086	27.6	24:89		1908 765	7.12	5.91
	1909 202	28.3	25.33	9167	1908 541	154.8	0.84
4080	1908 426	308.5	2.80		1908.613	154.5	0.89
6030	1908 426	108.8	6.28	9604	1908 541	9.7	2.81
	1908 420	105 8	5.72	2004	1908.613	10.5	2.75
	1909 202	106.8	6.06	9693.	1908 492	138.6	4.07
	1909 202	106.7	6.57	3033	1908 522	138.0	3.74
0005	1909.078	178.9	16:32		1908 575	138.3	0 11
6035	1909.086	181.7	16.32		1908 581	138.6	4.01
	1909.183	179.3	16.20		1908 613	137.8	3.93
	1909 183	179.4	16.41	9905.	1908 600	271.1	0 00
6211.	1908 426	359.2	2.60	9969	1908-600	155.7	Cloudy
6386	1909.360	119.0	2.99	9977	1908-641	170 1	4:31
7927.	1908.617	127.0	33.08		1908.765	171.0	4 31
	1908-631	125.3	33.24		1908 786	171.8	3.20
	1909 429	126.5	33.21	10061	1908 765	185.3	7.18
7930	1908-617	180.8	24.94	10072	1908 613	212.2	Hazy.
(350	1908-631	180.5	24.93	10305	1908 522	74.2	man strange
8003	1908:309	312.4	4.15	10385.	1908 581	111.0	3.51
000a	1908 445	313.3	4.17	10685	1908 522	164.6	1.89
8082	1908 309	22.8	8.11	10709	1908.613	158.3	3.39
0002	1908 426	22.6	7.98	10742	1908 613	349.2	22.90
	1908 439	25.4	7.91	10142	1908 765	351.5	23.89
	1908 445	24.4	7.95	10773	1908-522	309.3	3.37
8303.	1908-309	258.5	2.67		1908-511	307.9	0 0.
0000	1908 445	258.7	a 01		1908 581	307.5	3.71
	1908-617	259.7	2.53		1908 786	307.8	3.44
8364	1908-617	81.6	2.71		1908 805	308.8	3.18
0304	1908 746	78.2	2.87	10901	1908 613	112.6	5.68
	1908 765	79.4	2.70	10001	1908-641	112.0	5.60
	1909.429	78.2	3.00	12043.	1908 765	34.3	5.91
8384	1908 624	79.0	1:49	12753	1908 765	160.1	3:09
8404	1908 631	338.4	27.15		ALOO 100	200 X	0 00

COMET 1908C (MOREHOUSE).

This comet was visible for over three months, but dense smoke and unusually cloudy weather prevented any attempt at obtaining an extensive series of photographs. Single exposures were made on seven different nights, with the Brashear Doublet attached to the equatorial telescope. A flar micrometer was used in guiding and was very satisfactory in preventing drifting but, owing to the smallness of its field, did not permit of the head of the counts being shifted appreciably from the centre of the camera field. Had it been possible to so shift the head, more of the tail would have been included in the photograph.

The following table gives the date and duration of each exposure :---

Plate.	Plate. Eastern Standard Time.		Duration.	Remarks.
31. 32. 33. 34. 35. 36.	1908. October 16 19 10	$\begin{array}{ccccccc} h & m \\ 6 & 45 \\ 6 & 10 \\ 7 & 25 \\ 7 & 15 \\ 6 & 15 \\ 5 & 30 \end{array}$	h m 1 0 1 5 0 55 0 55 1 0 1 25	Very smoky. Clear. Clear but unsteady. Very clear. Clear, high wind.

FIG. 31 & 32-Morehouse's Comet.

25a-p. 258

PLASKETT-ASTROPHYSICS.

F16. 33 & 34-Morehouse's Comet.

FIG. 35 & 36-Morehouse's Comet.

An exposure of one hour was made on October 20, but the smoke was too dense. In the course of the exposure the head of the comet passed over an eighth magnitude star without perceptibly dimming it.

Fig. 31. The dense smoke accounts for the faintness of this photograph, but still it is the most interesting one of the set, on account of the knots in the tail about one and a half degrees from the head. This portion seems to have separated from the head and drifted off while new matter has been given out. There has also probably been a motion southward on the part of this detached mass, greater than that of the cometas the new matter in the tail connects with the north side of the knots, while the southern part is allogether clear of the tail. The curved form of the central and southern portions of the detached mass is also worthy of notice. The new matter is connected to the head by a narrow neek and on either side rays extend back about 0.5 degrees.

Fig. 32. This photograph is even more faint than Fig. 31, but the head shows considerable detail. The new portion of the tail spoken of in Fig. 31 has apparently been forced back by the rays on either side, they being joined together now just back of the head. Although only three days have elapsed between these exposures we can readily see that, during this interval, the coment has been very active internally.

Figs. 33 and 34 indicate a continuation of this activity. Fig. 33 shows several distinct knots in the tail about one to one and a half degrees from the head. Beyond these the tail gradually widens out, being uniform on the north side but broken on the south side. Fig. 34, one day later, shows the same knots farther away from the head and more diffused. They seem to have been separated from the nucleus, the bright portion next to the head in Fig. 33 broadening out here into a fan-shaped tail. Beyond the knots the tail has widened slightly.

Fig. 35 shows a very bright tail extending out about two degrees with short rays on both sides of the head. As in Fig. 33 the north side of the tail is uniform, while the south side shows several offshoots. The comet was apparently in a very active state at this time, but thirteen days elapsed before I had an opportunity for another exposure, and Fig. 36 shows a much fainter and divided tail. Evidently the activity has become much less, the faintness of the tail being partly due to its division into two parts, but more particularly to a change in the couldinos governing the state of the comet's head. Are these changes in appearance due to some internal state or are they due to changes in the surrounding medium?

While this set of photographs can hay no chaim to completeness, it demonstrates clearly the necessity for frequent exposures at as close intervals as possible if we wish to know with any degree of accuracy the changes actually taking place. It also shows that these exposures should not be too long, otherwise one plate might be a combination of several phases.

No other comets were visible here in 1908, but several exposures were made toward the close of the year in search of Halley's comet. The end of July or the early part of August, 1909, should see the discovery of this fumous celestial visitor. Photography will doubles first reveal its presence and on account of this it is desirable that the stellar ennera should be available for work every night. With the quatorial at such times when the comet may be observed. This is much to be regreted as both the equatorial telescope and the camera are excellent instruments, and it is hoped that a separate mounting may be provided for the camera at an early date. Halley's comet will not return for at least seventy-five years, but every year brings with it new comets; so if our Dominion Observatory is to take a foremost place in the discovery and study of these strange visitors, the equipment necessary for camera work should be provided at once.

OCCULTATIONS OF STARS BY THE MOON.

The observations of occultations have been made mostly with the 15-inch equatorial telescope as its superior mounting and clock-work render it much more satisfac-

tory than the 44-inch Cooke telescope. Predictions have been made by the graphical method of Wm. F. Rigge, but less than 10 per cent of the predicted occultations were observed owing to cloudy weather. Following are the observations:--

Date.	Phenomenon.	Star.	Limb.	G.M. Time of observation.			
1908.				h.	m.	8.	
April 9 4 pril 9 5 une 11 9 12 2 petober 13 November 1 1909.	Reappearance Disappearance	v Virginis	Bright Dark		$53 \\ 2 \\ 8 \\ 44 \\ 28 \\ 0 \\ 52 \\ 30 \\ 30 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10$	$53^{\circ}2$ $55^{\circ}6$ $23^{\circ}3$ $11^{\circ}1$ $16^{\circ}8$ $41^{\circ}0$ $1^{\circ}8$	
January 7.	Reappearance Disappearance Reappearance Disappearance	γ Cancri	Dark Bright Dark Bright	$12 \\ 16 \\ 17 \\ 16 \\ 17 \\ 16 \\ 17 \\ 16 \\ 17 \\ 17$	$19 \\ 35 \\ 25 \\ 35 \\ 24 \\ 12 \\ 30$	$15.8 \\ 6.1 \\ 37.8 \\ 59.7 \\ 50.0 \\ 3.1 \\ 57.4$	

OCCULTATIONS OF STARS BY THE MOON.

INSTRUMENTS USED ON THE BOUNDARY AND GEODETIC SURVEYS.

The instruments used on these surveys have all been carefully catalogued and stamped, an index system being used which shows the office number, description of instrument, price, date of receival, name of maker, location and disposal of each instrument. A separate account is also kept of the instruments as taken out by each party in the spring, so that each man can readily see what instruments he is hold responsible for.

Following is a list of the principal instruments used during the season of 1908 :---

Name of Instrument.	Number Used.	Name of Instrument.	Number Used.
Barometers Balances	20 5	Heliotropes	8
Binoculars	18 18	Plane Tables.	5
Dironometers	14	Tapes. Telescopes	25
Compasses	25	Transits	47

ABERRATION OF THE STELLAR CAMERA OBJECTIVE.

The stellar camera used in the Dominion Observatory, Ottawa, for photographing star clusters, nebular, comets, or any other celestial objects covering a wide field, is fitted with a Brashear photographic doublet of 203mm, aperture and 1060-3mm. focus. The camera tube (Fig. 37) is bolted to the telescope tube opposite to its place of attachment to the declination axis. This method of mounting is rather mastificatory, however, as the telescope tube intercepts a large portion of the light on the west side of the plate.

The effective field has a diameter of about 11° 20′, so the camera is well adapted in this respect to its work. The tube containing the objective is nickelled and moves freely in the main metal tube, the position of focus being adjusted by a rack and pinion with a clamp screw to hold it in the required position. This position is read on

PLASEETT- ASTROPHYSICS.

FIG. 37-Stellar Camera.

a millimetre scale. A metal shutter covers the objective and the plates are held in a metal frame fitted with springs. When accurate guiding is required the micrometer wires in the telescope are used, the great focal length of the refractor, as compared with the camera, rendering the guiding a simple matter.

The following description of the lens is given by Dr. Brashear :---

'The general construction is that which was first found by Petzral years ago, and has proven itself quite the best, where great angular aperture with sharp definition is required. The curves have been somewhat modified from our experience in the construction of other lenses—particularly those made for Dr, Max Wolf, of Heidelberg, Germany. It departs, however, from the ordinary practice of opticinus in being corrected for short wave-lengths of HgAt. This would be quite objecteds in a emera-which is to be used for portraits, but is not without moment in astronomical photography. The materials employed were specially chosen for their transparency, the first being very light and the crown very white. The focal lengths of the system is very nearly five times the aperture. The focal length we may find very slightly modified; indeed it is our custom to balance the invertible sould differences of magnification, which difficulty is found the most formidable to all constructors of astronomical photogramic objectives.'

The camera gives a more uniformly defined field than most cameras of this type, but the definition is not sufficiently sharp to produce clear cut images. When a long exposure is made to reach faint stars there are three resulting forms of image. The fainter stars give a clear cut image, the next in brightness give an image with a dark centre surrounded by a halo, while the brighter stars give an image of uniform density but much enlarged. This variation in the images must be due to aberration, either spherical or chromatic, producing, instead of point images, disco of sensible size, possibly with a centre somewhat more intense than the surrounding portion. The difference in the appearance of the images of stars of different brightness on the negative is thus readily explained by the light of the fainter stars not being sufficient to form a halo, as in the next brighter stars, while in the very bright stars the light is strong enough to make the halo as dense as the central portion. The only question is whether this aberration is spherical or chromatic.

The most simple test for the presence of zonal errors in a lens is that of Hartmann, the theory involved being very simple, and the equipment for the experiment

F1G. 38.

being within reach of any one. This method involves the determination of the point of intersection of rays of light passing through the lens at opposite ends of a diameter and equidistant from the centre.

Let L (Fig. 38) be the lens under test and consider two rays passing through a, b, so that 0a = 0b. These rays converge to a point A which is called the focus of these rays. If these rays are intercepted at A we find them in a single point, but if intercepted at E_i or E_i we find them separated by a distance d_i or d_i . These distances may be measured with a micrometer, or photographic plates may be placed at E_i , D_{e_i} and the distances between the resulting images measured. This latter method has been employed in the present test.

Measuring the distances $0A_i$, $0A_i$ and d_i , d_j , we can easily obtain the correct position of focus.

Let
$$0A_1 = A_1$$
 $E_1 F_1 = d_1$
 $0A_2 = A_2$ $E_2 F_2 = d_2$
 $0A = A$

Then $A = A_1 + \frac{a_1}{d_1 + d_2} (A_2 - A_1)$. This is a simple geometrical property requiring no proof.

Again, consider two rays passing through at $a'_i V$. If the lens is correctly ground these two rays will converge to the point A as did a and b_i and b_i and so with rays from all parts of the lens. But unfortunately this is a difficult condition to obtain, the best of lenses being but a close approximation to it. In place of converging to A_i a' and b'converge to some other point, say A'_i griting what is called zonal abscrition, so that if we focus our camera for a and b_i it is out of focus for $a'_ib'_i$, and we get a disc about our image.

Take two rays at a distance ∂a from the centre but on a diameter perpendicular to a, b, and consider their focus. If the leas is symmetrical for this zone, then the four rays will meet at the point A, their common focus, but if not symmetrical there will be two different foci for the two pairs of rays. This difference is called axial astigmatism and can be revealed in the Hartmann test for abarration.

FIG. 39-Zonal Disc.

REPORT OF THE CHIEF ASTRONOMER

SESSIONAL PAPER No. 25a

The lens is covered with a zone plate of the form shown in Fig. 39. The apertures are placed in tex zones of 15, 25, 35, 45, 55, 65, 75, 59, 44 and 98 mm. radius respectively. Each pair of openings is duplicated by a second pair at right angles in order to determine the axial astignatism. In the case of the zones of 15, 25, 35, 45, 55, 65, 53 and 94 mm. radius, symmetrical pairs of apertures are placed 90° apart, but in the zones of 75 and 98 mm. radius the apertures are only 45° apart, so the outer part of the lens is more thoroughly tested than the centre. This is necessary owing to the greater amount of light admitted by the outer zones.

By making an exposure at E_i and enother at E_{i2} we can determine two positions of focus for each of the ten zones, these two positions being perpendicular to each other. An extra aperture in the zone plate enables one to identify the angle for the several zones and so avoid confusion in the determination of astigmatism.

^c The first zouc plate used had apertures of 10 mm, but the diffraction at the edges was so great that in place of solid dark spots there were circular dark rings which did not permit of accurate measurement. The second zone plate used had a diameter of 208 mm, with apertures of 5.5 mm. These plates were made of medium weight bristol board. Exposures of 6 minutes were made on Capella. In order to avoid as much as possible chromatic aberration, Seed Process plates were used, their band of sensitive-ness being marrow and confined chiefly to the blue and violet light beyond λ 4000. A plate with a wider range of sensitiveness would give images so clongated radially by chromatic aberrations at or reader accurate measurements very difficult or impossible.

All measures were made on the Zeiss comparator, the graduations reading to thousandths of a millimetre and readity estimated to ten thousandths. Test plates were first made with 4 x 5 Seed plates, to determine the correct time of exposure, a plate-adapter being used in the regular plate-holder. The positions corresponding to E_i and E_i were at 22 mm, and 67 mm, respectively, on the focussing scale on the eamera tube. This gave the distance $A_i - A_i$ equal to 48 mm. In the appended results the focus given is that which would be used in setting according to the above memtioned scale. The actual focus of the camera was determined as follows:—The tele scope was set midway between Castor and Pollux and a photograph taken, with the distance between the images on the photographic plate was measured and found to be d = 79.5200 mm.

From the Ephemeris we have-

R. A. Dec. Grator, 7: 25** 43*.0 + 25** 57*.13 Pollux, 7: 35** 41*.25* 57*.57*.13 Pollux, 7: 35** 41*.25** 14**57* Fue difference in **R. A.** is 6** 10**57*.34 + 2** 44* 20**.76 Zenith distance of Castor is 57** 54** 31**.87 Zenith distance of Pollux is 61** 45**3**.6 From $\cos a = \cos b \cos o + \sin b \sin a \cos a A$, we have a = 4* 30* 48** = the distance between Castor and Pollux.

= the distance between Castor and rollux.

Hence, from the cotangent of a and the value of d we have the focus required

f = 1060.3 millimetres.

When the correct time of exposure had been obtained, the regular $8 \ge 10$ plates were used and a series of exposures made at $E_{\rm rand} E_{\star}$. Although the original object in view was to test for spherical aberration at the centre, this was extended to ever the whole field of the lens and images were made extending across the plate from south to north, in order to determine the curvature of field. Nine images were obtained within the focus and nine without, their respective positions being:—

Position	А,	5°.3 from	n centr	e toward	ls south	n end.
66	В,	4°	"	"	66	**
66	Ċ,	2°.5	66	66	44	"
44	D,	1°	66	44	££ .	66
"	E,	at centre.				
66	F,	1° from	centre	towards	s north	end.
"	G,	2°.5	44	"	"	**
"	Η,	4°	66	66	66	66
44	Ι,	$5^{\circ} \cdot 5$	44	"	"	44

Owing to the uncertainty of the weather, exposures at positions A, B, C, D and E were made on one plate without the focus, and then exposures were made on another plate at the same positions within the focus. Exposures at F, G, H and I were then made on two other plates. This unfortunately eaused a slight change in the adjustment of the camera and the result was an unaccountable dip in the curvature of the field. Further test plates were made at positions E, F and H, which showed clearly that the dip was not due to any fault of the lens, the resulting curve being quite uniform, as shown in Figs. 43 and 44.

The several plates were first measured for aberration and astignatism. A summary of the results is given in the appended tables and curves. As stated before, the positions E_i and E_i correspond to 22 mm and 67 mm. on the scale attached to the camera. The camera was set at 47.5 mm. to determine the focus f = 1006.3 mm. So we have A = 1034.5 mm. and $A_i - A_i = 45$ mm. To obtain the actual focus for each zone in the following results we must add 1034.5 mm, to each given focus.

Position A shows a negative aberration of 3.61 mm.

"	в	**	**	44	3.82 mm.
66	- C -	66	66	66	3.75 mm.
66	Ð	66	44	44	3.63 mm.
"	E	66	**	"	3.60 mm.
66	F	"	"	"	3.63 mm.
66	G	44	44	44	3.64 mm.
66	H	66	66	66	3.82 mm.
44	I	"	44	44	3.63 mm.

Such a marked abserration, extending so uniformly across the field, shows beyond any doubt the cause of the diffuse appearance of the images already referred to. The curves in Figs. 40 and 41, each division representing 1 millimetre, show very clearly the magnitude of the abserration and its uniformity across the field from south to north. Another plate R, made on the east side of the field, shows a similar abserration, curve P, Fig. 42, representing it graphically.

Taking the mean focus for each zone we find the astigmatism so small as to be neglected at the centre of the field but increasing as we move outward. A closer examination reveals the fact that where $\varphi = 0^{\circ}$, 90° , 6° -5 and 157° -5, the astigmatism is the greatest. This is due to the varying angle of incidence of the rays on the plate in the several positions A, B, C, etc. This variation in angle affects the distance between the images in the respective zones inversely as the angles they make with the north and south line. Thus (see Fig. 39) when $\varphi = 0^{\circ}$, the change in distance is greatest; when $\varphi = 10^{\circ}$, the change is almost the same as when $\varphi = 135^{\circ}$. So we see that the apparent variation in astigmatism is due to the position of the plate and consequent distortion of some of the images rather than to any defect in the lens.

As already stated, the Seed Process plate used has its maximum sensitiveness about A 4300 in the blue light. Thinking perhaps the lens had originally been tested with yellow light, owing to the difficulty of obtaining monochromatic light in the blue, it was consequently devided to test the lens by visual or yellow light. Cramer Iso-

PLASKETT-ASTROPHYSICS,

Fto- 40-Zonal Differences of Focus.

.

FIG. 41-Zonal Differences of Focus.

FIG. 42-Zonal Differences of Focus.

PLASKETT-ASTROPHYSICS.

FIG. 43-Curvature of Field at different Zones.

PLASKETT-ASTROPHYSICS.

25a-p. 264

FIG. 44-Curvature of Field at different Zones.

chromatic plates were substituted for the Seed Process plates and a yellow sereen was placed just above the plate-holder to cut out he blue and violet light. The Cramer plate was used as it has a hand of sensitiveness in the yellow-green light about $\lambda \delta \delta \delta \Delta \lambda$ as well as the band of sensitiveness to blue and violet light possessed by all plates. Three exposures were made within the focus and three without, their positions being:

> Position L, 50' from centre to south. " M, at centre. " N, 50' from centre to north.

The exposure in each case was 5 minutes.

Comparing these with positions Λ to I, we find the aberration less by about 0.6 mm.

osition	: L	showing	negative	aberration	of 2.77 mm.
"	М	"	"	"	3.03 mm.
44	N	44	44	44	2.78 mm.

But it is not small enough to indicate any special adjustment of the lens surface to yellow light. The uniformity of the aberration is shown in L, M, N, Fig. 42. The astigmatism is similar to that shown by the Seed Process plate.

A uniform increase of about 3.5 mm, in the focus, as compared with the blue light, is due partly to refraction of the light in passing through the yellow sereen. The serven being about 6 mm. thick, the refraction would lengthen the focus by about 2 mm, the refractive index of glass being about 1.57. The remaining 1.5 mm, is due to the difference in focus of blue and yellow light.

Combining the results of positions A to I (see table XIV.), we have the focus of each zone of the lens at nine different points extending from 5 $^{\circ}$.3 on one side of the centre to 5 $^{\circ}$.5 on the other side. Figs. 43 and 44 alow the curvature as given from these foci, the coordinates being the diameter of the field in degrees and the zonal foci in millimetres. As in the case of the aberration these curves are very uniform, indicating a difference of about 2.5 mm. between the focus at the edge of the field and that at the centre.

Since the zonal foci of the lens vary so much from the centre to the edge no one position of focus is suitable to all the lenses. To obtain a uniform field and at the same time get as sharp a definition as possible, we must study the effect produced by the various zones when out of focus.

If we set, for example, the camera at the focus of the zone with radius of 65 mm, then other zones will be out of focus and there will be discs or circles of confusion about each image. The density and size of these circles depend on the extent to which the several zones are out of focus and also on the area of these zones. The diameter of these circles of confusion may be determined as follows:--

$$\tilde{d} = 2 r \frac{(F - F_0)}{F_0}$$

where d = diameter of circle of confusion,

r =radius of zone,

F = focus of zone,

 F_{o} = focus at which the camera is set.

This determines for us the circles of confusion but it does not give us any idea of the effect on the image. A circle of confusion of $20^{\circ\prime}$ dimeter and produced by a zone of 15 mm. radius would not be nearly so injurious to the image as one of the same diameter produced by a zone of 75 mm. radius. We see that simply determining the circles of confusion for the several zones will not give us the effect of the circles on the images, and so will not aid us in adjusting the camera to obtain the best images

possible under existing conditions. We must determine at what position of focus the lens is most efficient. The following formula by Hartmann gives a test for the efficiency of a lens at various foci-

$$T = \frac{200000}{F_0^{-1}} - \frac{\Sigma r^2 (F - F_0)}{\Sigma r}$$

where $T = efficiency of lens,$
 $F = focus of zone,$
 $F_0^{-1} = focus at which the camera is set $r = radius of zone.$$

(100000 is introduced simply to transfer the decimal point and so avoid exceedingly small numbers.) According to this test an objective is moderately good when Tis greater than 1-5, good when T is between 0-5 and 1-5, and exceedingly good when Tis less than 0-5. But as this criterion of efficiency refers to telescope objectives where the field of view and angular aperture are small, it is not an accurate test for photographic objectives of wide aperture.

Using the above formula, the best positions of focus at the several positions, A, B, C, etc., were obtained. Table XV, gives these foci, the diameters of the eircles of confusion, and the efficiency of the lens. Curre S, Fig. 44, shows the combined results for the several positions A to I. From this curve it may be concluded that the best uniform field would be obtained by setting the camera at 25-75 mm, or 26-0 mm.

Testing for Chromatic Aberration.

Although the foregoing tests revealed a much greater spherical aberration than is consistent with the production of good negatives, objection was taken to the statement that this aberration was the cause of the observed defects in the images. Accordingly it was decided to test for chromatic aberration also.

The camera was detached from the telescope and mounted on a table, the source of light being an arc-lamp about 400 yards distant. The spectrograph was placed with the slit at the focus of the camera which was in line with the collimation tube. A cardboard disc was placed over the camera objective, the light entering through two oblog openings, 3 mm. by 8-5 mm, symmetrically placed on a common diameter.

Exposures were made with the slit first inside the camera focus and then outside, isochromatic plates being used to obtain the D lines. Inages of the slits in the disc were thus obtained as produced by light of various wave-lengths. By measuring the distances between these images at twelve points and applying the Hartmann formula the focus of the camera was obtained for twelve different wave-lengths, as shown in the following table:—

Wave-length.	Focus.
λ 5893, D	41.93 mm.
5500	41.24 "
5180	40.33 "
4880H _β	39.30 "
4737	39.07 "
4520	38-62 "
4370	38.73 "
4230	38.79 "
4115	89.00 "
4020	39.71 "
3933, K	39.98 "
3780	40.88 "

Fig. 45 represents graphically the various foci and the chromatic aberration. The minimum focus is about H_{γ} and, while there is a range of 3-12 mm. in focus in the region between λ 5893 and λ 3780, there is less than 1 mm. range in the photographic region.

Fig. 45-Chromatic Aberration Curve.

Comparing this with the test for spherical aberration we have-

(a) Minimum spherical aberration of - 3.6 mm,

(b) Maximum chromatic aberration in photographic region of 1 mm.

Even if we allow for the chromatic aberration of 3 mm, at λ 5893, the light here is not rich enough in actinic properties to produce the observed halo. It seemed, therefore, unnecessary to continue the investigation re chromatic aberration.

Changing the Distance between the Components of the Outer Combination.

Prof. Hastings, of Yale University, who had been kept informed of the results of these tests, suggested that there might be sufficient internal reflection between the components of the objective to produce the observed halo and that this might be eliminated by increasing or decreasing the separation. Although we still felt that the defect was due to spherical aberration, this suggestion coming from the designer of the lens clinical our most careful attention and a series of tests were necordingly made. The original separation (one thickness of a postage stamp) was removed and new separations of various thicknesses used. Little blocks built up from bristol board were used until the best adjustment was obtained, after which hard rubber blocks were used.

The following table shows the tests and results :---

Date.	Separation of Components.	Focus.*	Spherical Aberration.	Description of Images.
1908.				
Jan 1909.	0 004 inches.	47 · 5 mm.	- 3'6 mm.	Described in first part of appendix.
Jan. 12 " 26 Feb. 2	0.012 " Tissue paper.	47.0 " 47.5 " 47.5 "		No change. ¹ / ₂ " and ¹ / ₄ " discs were placed on lensition to the state of th
" 25 Apr. 20	0 132 inches. 0 070 "	26.5 " 36.5 "	+ 2.4 mm. - 0.5 "	Images about the same as originally, Images much improved. Halo greatly reduced
May 25	0.011	36.0 "	- 0.3 "	Images much the same as with .070 separation.

* Focus here refers to the scale on the camera tube.

Curve a, Fig. 46, shows the aberration with a separation of 0.004 inches, curve β shows the aberration with a separation of 0.132 inches, and curve γ shows the aberration with a separation of 0.070 inches. Figure 47 shows cuts of the Pleuades taken with the different separations.

Examining the above table it is seen that increasing the separation, shortened the focus and changed the aberration. Coincident with the change in aberration there was a decided change in the star images. Aberrations of -3.0 mm, and +2.4 mm, were accompanied by a very marked halo, while with an aberration of -0.5 mm, the halo was negligible. Changing the separation to 0.070 inches has undoubtedly improved the objective as the field remained practically unchanged, and the halo was so small as to be neglected. But that this improvement has been effected by the removal of internal reflection does not seem at all probable. On the contrary, the above results seem to me to be but additional proof that the observed halo has been caused by spherical aberration, as was stated at the beginning of this appondix. It is not at all likely that the aberration and the halo would disappear simultaneously if the halo were caused by internal reflection.

Note.—Since the conclusion of the above work a communication has been received from the makers of the objective, stating that they also believe the defect to be due to spherical aberration and expressing their willingness to remove it without additional charge.

Radius of Zone	φ	d_1	d_{z}	Focus.	Mean.	Astigmatism,
		mm.	mm.			
5 mm	45	0.6450	0 6826	21.86		+0.50
	135	0.6333	0.6338	21.47	21.66	-0.18
5	0	1.0435	1.1627	21.28		-0.32
	90	1.0746	1.1201	22 03	21.62	+0.38
5	45	1.2131	1.5651	22.15		+0.53
	135	1.4948	1.6112	21.66	21.89	-0.23
5	0	1.9259	2.0621	21.73		-0.44
	90	1.9921	1.9715	22.62	22.17	+0.42
5	45	2.4355	2.3590	22.86		+0.526
	135	2.4166	2'4523	22.34	22.60	- 0.26
5	0	2.8795	2.8646	22.56		-0.02
	90	2.9851	2.7288	22.66	22.61	+0.02
5	22.5	3.4195	3.1358	23 17		-0.12
	67.5	3.5344	3:0497	24.16		+0.24
	112 5	3.4794	3.1066	23.77		+0.12
	157.5	3.3935	3.2266	23.07	23.62	- 0.55
5	45	4:0807	3.3663	24.66	20 02	+0.55
	135	4.0195	3.4899	24.09	24.37	- 0.28
4	0	4:5566	3.7376	24 72	21.01	0.20
*	90	4 0000	0 1510	~ 1 1 4	24.72	
8	22.5	4.8567	3.7280	25.46	27 10	± 0.20
	67.5	1 0001	0 1200	20 10		10 20
	112.5					
	157.5	4.8157	3 8320	25.06	25 26	- 0.20
	101.0	4 8157	5 8320	25.00	25.26	- 0.20

TABLE I.

Zonal Foci : Position A.

F1a, 46-Zonal Differences of Focus.

PLASKETT-ASTROPHYSICS.

Focus 47.0 Separation—Tissue Paper. No Disc.

Focus 47 0 Separation—Tissue Paper. ‡-in, Disc.

Focus 26:5 Separation-0 132 inches.

Focus 36.5 Separation-0.070 inches.

F16. 47-Star Photographs at Different Separations.

TABLE II.

Zonal Foci: Position B.

Radius of Zone.	ø	<i>d</i> ₁	d_2	Focus.	Mean.	Astigmatism
	0	mm.	mu			
5 mm	45	0.6694	0.6536	22.77		+0.08
	135	0.6622	0.6222	22.62	22.69	- 0.02
5	0	1.1061	1.1050	22.24		- 0.55
1	90	1.1538	1.0793	22.99	22.76	+0.53
5	45	1 5766	1.5057	23.05		+0.10
	135	1.5740	1.5298	22.82	22.92	-0.10
5	0	2.0323	1.9518	22.97		-0.52
1	90	2.0208	1.8979	23.48	23.22	± 0.26
õ	45	2.5308	2.2741	23.70		+0.14
	135	$2^{+}5368$	2.3375	23.42	23.56	- 0.14
5	0	3.0385	2.7147	23.77		-0.25
	90	3.0820	2.6503	24.21	23.99	+0.55
5	22.5	3.5797	2.9946	24.50		-0.02
	67.5	3.6489	2.9584	24.85		+0.58
	112 5	3.6175	2.9892	24.64		+0.02
	157.5	3.5760	3.0465	24:30	24.57	- 0.27
5	45	4 2251	3 2505	25.43		+0.15
	135	4.2075	3:3061	25.20	25.31	-0.11
4	0	4.7707	3:5186	25.90		- 0.28
	90	4.8840	3.4186	26.47	26.18	+0.55
8	22.5	5.022	3:5470	26:44		- 0.02
	67 5	5.0494	3.4591	26.71		+0.50
	112.5	5:0914	3 5125	26.63		+0.12
	157.5	5:0384	3.5950	26:26	26.51	-0.22

TABLE III.

ZONAL FOCI: POSITION C.

Radius of Zone.	¢	d_1	<i>d</i> ₂	Focus.	Mean.	Astigmatism
	0	mm.	mm.			
5 mm	45	0.7003	0.6362	23.57		-0.04
	135	0.7053	0.6334	23.66	23.61	+0.02
25	0	1.1221	1.0246	23 54		-0.10
	90	1.1201	1.0420	23.75	23.64	+0.11
35	45	1.6446	1.4245	23.88		+0.02
	135	1.6394	1.4625	23.78	23.83	- 0.02
15	0	2.1303	1.8612	24.02		-0.10
	90	2.1444	1.8404	24.22	24.15	± 0.10
64	45	2.6238	2.2009	24.47		+0.02
	135	2 6415	2.2368	24.37	24.42	- 0.02
i5	0	3.1625	2.5791	24.80		-0.02
	90	3.1822	2.5686	24.91	24.85	+0.06
3	22.5	3.7187	2.8718	25'39		-0.01
	-67 5	3.7533	2.8700	25.50		± 0.10
	112.5	3:7401	2.8848	25 40		0.00
	157 5	3.7206	2.8957	25 30	25.40	-0.10
5	45	4 3530	3 1223	26.20		+0.02
	135	4.3522	3 1638	26:06	26 13	-0.02
M	0	4.9560	3.3371	26.89		0.00
	90	5 0073	3.3159	27 07	26.98	+0.03
8	22.5	$5^{-2}15$	3 3850	27.32		- 0:04
	67.5	5 2741	3.3632	27.48		+0.15
	112.5	5'2528	3.3800	27.38		· +0.05
	157.5	5.2402	3'4089	27.26	27 36	~ 0.10

TABLE IV.

ZONAL FOCI: POSITION D.

Radius of Zone.	φ	d 1	d ₂	Focus.	Mean.	Astigmatism
15mma	$\begin{smallmatrix}&&&&&\\&&&&&&&\\&&&&&&&&\\&&&&&&&&&\\&&&&&&$	$\begin{array}{c} \text{mm.}\\ 0.72294\\ 0.7128\\ 1.1883\\ 1.1963\\ 2.1746\\ 2.1746\\ 2.1746\\ 2.1746\\ 2.21843\\ 2.6756\\ 3.22888\\ 3.22688\\ 3.22888\\ 3.22688\\ 3.22888\\ 3.22688\\ 3.2288\\ 3.2288\\ 3.22888$	$\begin{array}{c} \text{mm.} \\ 0.6208 \\ 0.6106 \\ 1.0225 \\ 1.0225 \\ 1.4273 \\ 1.8102 \\ 1.8102 \\ 2.1618 \\ 2.5146 \\ 1.8102 \\ 2.1605 \\ 2.5146 \\ 1.8102 \\ 2.1605 \\ 2.5146 \\ 1.8102 \\ 2.8105 \\ 2.8103 \\ 3.6092 \\ 2.8113 \\ 3.6092 \\ 2.8113 \\ 3.6092 \\ 2.8113 \\ 3.6092 \\ 3.6092 \\ 3.6092 \\ 3.6092 \\ 3.6092 \\ 3.6092 \\ 3.6092 \\ 3.6092 \\ 3.6092 \\ 3.6092 \\ 3.6092 \\ 3.6092 \\ 3.6005 \\ 3.600$	$\begin{array}{c} 24 & 17 \\ 24 & 24 & 15 \\ 24 & 24 & 15 \\ 24 & 24 & 25 \\ 24 & 25 & 24 & 57 \\ 24 & 88 \\ 25 & 33 & 25 & 99 \\ 25 & 99 & 25 & 99 \\ 25 & 99 & 25 & 99 \\ 25 & 99 & 25 & 99 \\ 25 & 56 & 56 \\$	24 20 24 17 24 28 24 59 24 89 25 35 25 35 25 35 25 37 26 57 27 42 27 80	$\begin{array}{c} -0.033\\ +0.044\\ -0.022\\ +0.022\\ +0.024\\ +0.024\\ +0.024\\ +0.024\\ +0.022\\ +0.022\\ +0.022\\ +0.022\\ +0.022\\ +0.033\\$

TABLE V.

ZONAL FOCI: POSITION E.

Radius of Zone.	φ	d_1	d ₂	Focus.	Mean.	Astigmatism.
	0	mm.	mm.			
5mm	45 Í	0.7243	0 6159 1	24:32	Í	+0.03
	135	0.7189	0.6142	24 26	24 29	-0:03
5	0	1.1937	1:0189	24.28		~ 0.05
	90	1:2020	1:0215	24 33	24:30	+0.03
5	45	1:6384	1:4238	24.41		+0.01
	135	1.6907	1:4277	24.40	24.40	0.00
5	0	2.1965	1.8049	24.70		0.00
	90	2 1948	1.8038	24:70	24.70	0.00
5	45	2.6918	2 1478	25.03		+0.05
	135	2.7202	2.1765	25:00	25.01	-0.01
5	0	3.2594	2:5023	25.46	20 01	0.00
	90	3.2631	2.5050	25.46	25:46	0.00
5	22.5	3 8166	2.7969	25.97	20 10	-0.01
	67.5	3:8365	2.8062	25.99		+0.01
	112.5	3.8381	2.8112	25.97		-0.01
	157.5	3.8347	2.8057	25 99	25.98	+0:01
5	45	4:4596	3:0610	26:68	20 10	0.00
	135	4:4751	3.0733	26.68	26.68	0.00
4	0	5.0876	3 2357	27.51	20 00	0.00
*	90	5.1113	3.2509	27:51	27.51	0.00
0	22.5	5:3623	3.2966	27.87	21 31	- 0.05
8	67.5	5:3789	3 2991	27.89		0.00
	112.5	5.3738	3:3000	27.88		- 0:01
	157.5	5.3729	3.2913	27.91	27.89	+0.05

•

TABLE VI.

ZONAL FOCI: POSITION F.

Radius of Zone.	φ	d_1	d_2	Focus.	Mean.	Astigmatism.
	0					
5 mm	45	0.7396	0.6028	24.70		+0.11
	135	0.7315	0.6130	24.48	24.29	-0.11
5	0	1.2242	1.0149	24.60		-0.04
	90	1.2304	1.0122	24.68	24.64	+0.04
5	45	1.7274	1.4155	24.73		+0.01
	135	1 7267	1.4160	24.72	24.72	0.00
5	0	2 2431	1.7927	25 01		-0.03
	90	2.2483	1.7875	25.07	25.04	+0.03
5	45	2.7507	2.1330	25.35		+0.01
	135	2.7761	2.1567	25.33	25.34	-0.01
5	0	3.3281	2.4797	25.79		-0.01
	90	3.3424	2.4826	25.82	25.80	+0.05
5	22.5	319033	2.7731	26.31		-0.05
	67.5	3.9215	. 2.7751	26.32		+0.05
	112.5	3 9230	2.7794	26.34		+0.01
	157.5	3.9134	2.7826	26.30	26.33	-0.03
5	-45	4.5513	3.0286	27.02		0.00
	135	4.5709	3.0376	27.03	27.02	+0.01
4	0	5.1894	3.2095	27.80		-0.04
	90	5.2240	3.2063	27.88	27.84	+0.04
8	22.5	5 4615	3'2621	28.17		~ 0.02
	67.5	5.4831	3.2539	28.24		+0.05
	112.5	5:4846	3'2448	28.27		+0.02
	157.5	$5 \cdot 4797$	3.2630	28.21	28.22	- 0:01

TABLE VII.

ZONAL FOCI: POSITION G.

Radius of Zone.	φ	<i>d</i> ₁	d_2	Focus.	Mean.	Astigmatism.
	0	mm.	mm.			
15 mm	45	0.7307	0.6503	24.29		+0.04
	135	0.7256	0.6258	24.22	24.25	- 0.03
25	0	1.1958	1.0336	24.14		-0.10
	90	1.2129	1.0297	24:34	24.24	+0.10
35	45	1.7039	1.4425	24:37		+0.01
	135	1.6995	1.4409	24:35	24:36	- 0.01
15	0	2.2025	1.8339	24.55		-0.10
	90	2.2164	1.8137	24 75	24.65	+0.10
55	45	2.7191	2.1758	25:00		+0.03
	135	2.7339	2.1962	24.95	24.97	-0.05
35	0	3 2652	2:5402	25:31		- 0:12
	90	3.2975	2.2100	25.55	25.43	+0.15
5	22.5	3.8418	2.8348	25.89	1	-0.02
	67.5	3.8710	2.8123	26.06		+0.10
	112.5	3.8743	2:8281	26:01		+0.02
	157.5	3.8565	2.8481	25.88	25.96	-0.08
\$5	45	4:5039	3.0808	26.72		+0.04
	135	4.5072	3.1054	26.65	26.68	-0.03
14	0	5.1090	3.2893	27:38		-0.13
	90	5.1685	3.2472	27.64	27.51	+0.13
18	22.5	5:3913	3.3340	27.80		-0.08
	67.5	5.4340	3.3009	28.00		+0.15
	112.5	5.4298	3:3093	27.96		+0.08
	157.5	5:3990	3:3450	27.78	27.88	-0.10

TABLE VIII.

ZONAL FOCI: POSITION H.

Radius of Zone.	φ	d_1	d_{\pm}	Focus.	Mean.	Astigmatism
	0	mm.	mm.			
15 mm	45 135	0.7033 0.7010	0.6505 0.6528	23 · 38 23 · 30	23.34	+0.04
25	130	1.1515	1.0961	23.05	20 04	- 0.04
	90	1.1775	1.0610	23.67	23.36	+0.31
35	45	1.6507	1.4920	23.64		+0.02
	135	1 6408	1.5002	23.50	23.57	-0.02
45	0 90	2.1198	1.9152	23.64	23.91	-0.27
5	90 45	2.1580 2.6321	2.2501	24 · 19 24 · 26	23.91	+0.58 + 0.06
	135	2.6458	2 2870	24 20	24.20	-0.00
65	0	3.1227	2.6581	24:41	21 20	-0.56
	90	3.2126	2.2830	24.94	24.67	+0.52
15	22.5	3.7121	2.9610	25.03		-0.16
	67.5	3 · 7705 3 · 7646	2 9036 2 9178	25 · 42 25 · 35		+0.53
	112·5 157·5	3.7646	2.9178 2.9823	20.30 24.95	25.19	+0.16 -0.24
5	45	4.3805	3 1994	26:01	20 15	+0.06
	135	4.3703	3 2255	25.89	25.95	-0.00
)4	0	4.9372	3.4590	26.46		- 0.33
	90	5.0597	3.3340	27.13	26.79	+0.31
8	22:5	5.2258	3.4928	26.97		-0.18
	67.5	5:3153	3.4031 3.4164	27:43		+0.27
	112 · 5 157 · 5	$5^{\circ}3021$ $5^{\circ}2219$	3.5158	$27 \cdot 37$ 26 89	27.16	$+0.21 \\ -0.27$

TABLE IX.

ZONAL FOCI: POSITION I.

Radius of Zone.	φ	<i>d</i> ₁	d_2	Focus.	Mean.	Astigmatism.
17	° 45	mm. 0.6675	mm. 0.6798	22.29		
15 mm	45 135	0.6280	0.0188	22.02	22.15	+0.14 - 0.13
25	0	1.0286	1.1208	21.77	22:30	-0.23
35	90 45	1 1344 1 5761	1.1005	22.84 22.65	22.30	+0.21
	135	1.5518	1.5765	22.32	22.48	-0.16
45	0 90	1 9937 2 0805	2.0341 1.9245	22 · 27 23 · 38	22.82	- 0.55 + 0.56
55	45	2.5249	2.3421	23.34		+0.16
65	135	2.5131 2.9778	2 · 3998 2 · 8323	23.02 23.06	23.18	- 0°16 - 0°59
	90	3.1123	2.6623	24.25	23.62	+0.60
75	22.5 67.5	3.5401 3.6580	3.1225 2.9877	23 91 24 77		-0.30 + 0.56
	112.5	3.6314	3.0360	24.51		+0.30
85	157 · 5 45	3.5107 4.2245	3.1646 3.3275	23.67 25.17	24.21	-0.24 + 0.20
	135	4.1720	3.4060	24.77	24.97	-0.50
94	0 90	4 7029	3.6928	$25^{\circ}20$	25.20	
98	22.5	5.0145	3 6885	25.93	25 20	+0.12
	67.5 112.5					
	112.5	4.9712	3.7578	25.63	25.78	-0.12

TABLE X.

ZONAL FOCI: POSITION L.

Radius of Zone.	φ	d_1	d_2	Focus.	Mean.	Astigmatism
	0	mm.	mm.			
lő mm	45	0.8280	0.2011	28 41		+0.03
	135	0.8428	0 ' 4980	$28^{\circ}35$	28.38	-0.03
25	0	1.4122	0.8302	28.34		- 0.05
	90	1 4257	0.8342	28.38	28.36	+0.05
35	45	2.0004	1.1616	28.47		-0.04
	135	2.0018	1.1233	28.55	28.51	+0.04
15	0	2.5920	1.4647	28.75		+0.03
	90	2.2883	1.4715	28.69	28.72	-0.03
55	45	3.1267	1.7504	28.92		-0.02
	135	3.1968	1.7537	29.06	29.00	+0.06
35	0	3.8030	2:0479	29.25		-0.01
	90	3:8094	2:0455	29.28	29.26	+0.05
15	22.5	4.4142	2.2996	29:59		- 0.08
	67.5	4 4469	$2^{-}2925$	29.69		+0.05
	112.5	4.4305	2.2881	25.68		+0.01
	157.5	4.4525	2.2920	29.71	29.67	+0.04
35	45	5.1293	2.5171	30.19		- 0.02
	135	5.1351	2.4940	30.29	30.24	+0.02
14	0	5.7941	2.6695	30.81		- 0.04
	90	5 8120	2.6555	30.89	30.82	+0.04
8	22.5	6.0783	2.7200	31.09	00 00	- 0.06
	67.5	6.0767	2 6950	31.17		+0.05
	112.5	6.0729	2.6946	31.17		+0.05
	112 0	6:0908	2 7050	31.16	31.12	+0.01

TABLE XI,

Zonal Foci : Position M.

Radius of Zone.	ø	d_1	d_{g}	Focus.	Mean.	Astigmatism
	•	mm.	mm.			
5 mm	45	0.8612	0.2142	$28 \cdot 18$		+0.05
	135	0.8210	0.2111	28.13	28.16	- 6.03
5	0	1.4124	0.8538	28.44		-0.05
1	90	1.4309	0.8292	28'49	28.46	+0.03
5	45	2.0023	1.1642	28.47		-0.02
	135	2.0039	1.1490	28.60	28.23	+0.02
5	0	2.5951	1.4682	28.74		-0.01
	90	2.5865	1.4601	28.76	28.75	+0.01
5	45 .	3.1240	1.7598	28'95		-0.08
1	135	3.2043	1.7498	29.11	29.03	+0.08
5	0	3 8230	2.0360	29.36		0.00
1	90	3.8263	2.0381	29.36	29.36	0.00
75	22.5	4 4467	2.2842	29.73		+0.03
	67.5	4:4591	2.2817	29.59		-0.11
	112.5	4:4541	2 2803	29.76		+0.06
	157.5	4 4353	2.2760	29.74	29.70	+0.04
5	45	5.1375	2'4931	30.30		+0.02
	135	5.1476	2.5197	30.21	30.25	-0.04
4	0	5.8073	2 6596	30.86		-0.01
	90	5.8189	2.6630	30.87	30.87 1	0:00
8	22.5	6:0981	2 6932	31.21		+0.05
	67.5	6.1118	2.7059	31.19		0.00
	112.5	6:0862	2.7090	31.14		-0.02
	157.5	6:0983	2.6950	31-21	31.19	+0.02

 $25a - 20\frac{1}{2}$

TABLE XII.

ZONAL FOCI: POSITION N.

Radius of Zone.	φ	d 1	d ₂	Focus.	Mean.	Astigmatism
		mm.	mm.			
5mm	45	0.8573	0.4968	28.49		+0.02
	135	0.8578	0.2045	28.34	28.42	-0.08
5	0	1.4272	0.8335	28.41		-0.02
	90	1.4232	0.8235	28.51	28.46	+0.02
5	45	2.0043	1.1218	28.58		-0.05
	135	2.0138	1 1536	28.61	28.60	+0.01
lð	0	2.6012	1 4565	28.85		+0.04
	90	2.5934	1.4642	28.76	28.81	-0.02
ö	45	3.1837	1.7478	29.05		0 00
	135	$3 \cdot 2112$	1.7647	29.04	29.02	-0.01
5	0 1	3 8245	2.0250	29.42		+0.01
	90	3 8307	2.0334	29.40	29.41	~ 0.01
5	22.5	4 4507	2.2902	29.71		-0.04
	67.5	4.4655	2.2819	29.78		+0.03
	112.5	4:4729	2 2797	29.81		+0.06
i.	157.5	4 4521	2'2895	29.72	29.75	- 0.03
\$5	45	5.1240	2.5082	30.21		- 0.05
	135	5.1260	2.4981	30.31	30.53	+0.05
Maaaaaa ahaa ahaa ahaa ahaa ahaa ahaa a	0	5.8248	2 6439	30.92		+0.03
	90	5.8086	2.6549	30.88	30.95	-0.04
18	22.5	6:0993	2.6965	31.20		0.00
	67.5	6.1101	2.7062	31 · 19		-0.01
	112.5	6.1006	2.6947	31.51		+0.01
	157.5	6:0933	2:6951	31:20	31.20	0.00

TABLE XIII.

ZONAL FORT: POSITION R.

Radius of Zone.	¢	dı	d ₉	Focus.	Mean.	Astigmatism
	0	mm.	mm.			
15mm	45	0 6950	0 6533	$23 \cdot 20$		+0.18
	135	0.6202	0.6206	22.84	23.05	-0.18
25	0	1.1187	1.1000	22.69		-0.53
	90	1.1413	1.0280	23.14	22.92	+0.23
35	45	1.6021	1.5079	$23 \cdot 20$		+0.08
	135	1.2004	1.5168	23.03	23.12	- 0.05
45	0	2.0648	1 9508	23.14		-0.30
	90	2.0968	1.8769	23.74	23.44	+0.30
55	45	2 5811	2.2793	23.90		+0.15
	135	2.5683	2:3143	23.67	23.78	-0.11
65	0	3:0716	2.7009	23.94		-0.28
	90	3.1285	2.6173	24:50	24.22	+0.58
75	22.5	3 6463	2:9964	24.70		-0.05
	67.5	3.6927	2.9238	25.11		+0.35
	112.5	3.6642	2 9616	24 89		+0.10
	157.5	3:6180	3:0345	24:47	24.79	- 0.32
35	45	4.2992	3.2352	25.68		+0.12
	135	4.2542	3.2864	25:39	25.53	- 0.14
94	0	4 8501	3:5156	26:09		- 0.30
	90	4.9240	3:3500	26:68	26:39	+0.29
8	22.5	5.1406	3:5317	26.67	20 00	- 0.15
	67.5	5.2145	3.4394	27.12		+0.33
	112.5	5:1649	3 4780	26.89		+0.10
	157.5	5.1125	3 5791	26:47	26:79	-0.35

TABLE XIV.

Zonal Foci.

Radius of Zone.			Posi	tion.		
Radius of Zone.	A	в	с	D	Е	F
15 mm	$\begin{array}{c} 21\cdot 66\\ 21\cdot 65\\ 21\cdot 89\\ 22\cdot 17\\ 22\cdot 60\\ 22\cdot 61\\ 23\cdot 62\\ 24\cdot 47\\ 24\cdot 72\\ 25\cdot 26\end{array}$	$\begin{array}{c} 22 \cdot 69 \\ 22 \cdot 76 \\ 22 \cdot 92 \\ 23 \cdot 22 \\ 23 \cdot 56 \\ 23 \cdot 19 \\ 24 \cdot 57 \\ 25 \cdot 31 \\ 26 \cdot 18 \\ 26 \cdot 51 \end{array}$	$\begin{array}{c} 23^{+}61\\ 23^{+}64\\ 23^{+}83\\ 24^{+}12\\ 24^{+}42\\ 24^{+}85\\ 25^{+}40\\ 26^{+}13\\ 26^{+}98\\ 27^{+}36\end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		24 59 24 64 25 04 25 34 25 80 26 33 27 02 27 84 28 22
	G	н	I	L	м	Ν
15 mm	$\begin{array}{c} 24 & 25 \\ 24 & 24 \\ 24 & 36 \\ 24 & 65 \\ 24 & 97 \\ 25 & 43 \\ 25 & 96 \\ 26 & 68 \\ 27 & 51 \\ 27 & 88 \end{array}$	23 · 34 23 · 36 23 · 57 23 · 91 24 · 20 24 · 67 25 · 19 25 · 95 26 · 79 27 · 16	22 · 15 22 · 30 22 · 48 22 · 82 23 · 18 23 · 65 24 · 21 24 · 97 25 · 20 25 · 78	28 38 28 36 28 51 28 72 29 00 29 26 29 67 30 24 30 85 31 15	28 16 28 46 28 53 28 53 29 03 29 36 29 70 30 25 30 87 31 19	28 42 28 46 28 60 28 81 29 05 29 05 29 75 30 29 30 92 31 20

TABLE XV.

Plate.	Best Focus.	Confusion Circle.	Efficiency.
	24.5	44-2	11:46
	25.5	38:5	13.43
	26.25	39.2	 13.11
		37.9	13.01
	26.75	31 '9	
	26.8	38.5	12.77
	27.00	43.1	12.56
	26 7	41.7	12.71
	26:00	41.00	13.08
	25.00	36.00	10.55
	30:20	33.3	9.64
	30.25	33.0	9.47
	30:30	31.7	9.38

TABLE XVI.

ZONAL TEST.

Settings 6.5 & 51.5; Separation 0.132 inches.

Radius of Zone.	φ	d_1	d_v	Focus.	Mean.
	•	TODI.	mm.		
5 mm	45	0:6422	0.7178	21.25	
	135	0.6389	0.7130	21.27	21.26
5	0	1:0595	1.1848	21.24	
	90	1.0602	1.1895	21.21	21.22
5	45	1.4779	1.6885	21.00	
	135	1.4683	1.6827	20.97	20.98
5	0	1 8743	2.1880	20.76	
	90	1.8729	2.1754	20.82	20 79
5,	45	2'248	2.6728	20.56	
	135	2.2606	2.6841	20.57	20.56
5	0	2 6086	3.2090	20.18	
	90	2.6180	3.2997	19 91	20.04
5	22.5	2.9475	3.7395	19.83	
	67.5	2.9587	3.7468	19 86	
	112 5	2.9633	3.7468	19.87	
	157.5	2.9502	· 3 7495	19.82	19.84
5	45	3.2795	1 3160	19.43	
	135	3 2858	4 3213	19 44	19.45
4	0	3.5285	4.8575	18.93	
	90	3.2398	4.8555	18.97	18.95
8	22.5	3.6202	5.0963	18.78	
	67.5	3.6643	5.0932	18.83	
	112.5	3.6723	5.0755	18.89	
	157.5	3.6566	5 0691	18.86	18.84

TABLE XVII.

ZONAL TEST.

Settings 16.5 & 61.5; Separation 0.070 inches.

Radius of Zone.	φ	d_1	d 2	Focus.	Mean.
	· ·	mm.	mm.		
5 mm	45	0.6014	0.7352	20.23	
	135	0.2823	0.7372	20.10	20.16
	0	0.9944	1.2348	20.07	
	90	0.9931	1.2375	20.03	20.02
5	45	1.3921	1.7460	19.96	
	135	1.3902	1.7501	19.93	19:95
5	0	1.7970	2.2300	20.08	
1	90	1.7882	2.2236	20.06	20.02
5	45	2.1284	2.7251	19.99	
	135	2.1250	2.7159	19.99	19.99
5	0	2.5940	3.2068	20.15	
	90	2.5899	3.2110	20.08	20.11
	22.5	2.9884	3.6893	20.14	
	67.5	2.9855	3.6896	20.13	
	112.5	2.9914	3 6926	20.14	
	157.5	2.9802	3.6919	20.10	20.13
S	45	3 4127	4 1765	20.24	
	135	3.4084	4.1754	20.25	20.23
+ •••••• • • • • • • • • • • • • • • •	6	3.7945	4.2840	20:36	
	90	3.7910	4.6020	20.33	20.35
	22.5	3.9770	4.7611	20.48	
	67.5	3 9740	4.7611	20.47	
	112.5	3.9755	4.7650	20.47	
	157.5	3.9755	4 7735	20.42	20.47

TABLE XVIII.

SETTINGS 16.5 AND 61.5; 0.077 SEPARATION

Radius of Zone.	φ	d_1	d_2	Focus.	Mean.
	0	mm.	mm.		
5	45	0.5717	0.7561	19.38	
	135	0.2830	0.7540	10.00	19.38
5	0	0 9550	1.2645	19.36	19 38
	90	0.9249	1.2662	19.35	19.36
5	45	1.3335	1.7745	19.31	10 00
5	135	1.3365	1.7831	19.28	19:30
	0	1.7208	2.2832	19.34	10 00
5	90	1.7228	2.2750	19.39	19.37
**************	45	2.0918	2.7819	19.31	
5	135	2.0909	2.7681	19.36	19.34
***********************************	90	2.4909	3 2762	19.44	
5	22.5	2 4915	3.2844	19.41	19.43
	67.5	2.8593	3.7774	19.39	
	112.5	2.8637	3 7804	19:39	
	157.5	2.8707 2.8585	3.7829	19.42	
5	45	3.5267	3.7694	19.41	19.40
	135	3 2742	4.2874	19.43	
L	0	3.6387	4.2702	19.53	19.48
	90	3.6456	4.7187 4.7240	19.59	
8,	22.5	3.7929	4.9030	19.60 19.63	19.60
	67.5	3.7942	4:9054		
	112.5	3.8191	4.8918	19.63	
	157.5	3.7988	4.8958	19 66	
		0 1000	4 0000	19 00	19.64

Ю
M
Ā
N
E.
В

OBSERVING RECORDS AND DETAILED MEASURES OF § ORIONIS, # AQUILAE, «HERCULAE, # BOÜTIS, a CORON ZE BOREALIS AND § AQUILAE.

			Menues.																					
			Observer.		2	<u>-</u> -	- ~ -	<u></u> :		- ^-	2		. 	<u>a</u> . a	- 0-	<u>.</u>	<u> </u>	<u>-</u> c	4.0	<u> </u>	. <u>~</u>		<u>.</u> c	- 2-
		Continue	-9 1000		Poor	-			-			:					:						and the second second	
		Slit	Width.		100			÷	.0010	-	5	: :		200		.003	Ŧ	Ξ	= :		200.	r	- 100-	3 :
		Box.	.ba3		6.9	• •		r		• •	-	: :	• •	:	• •	-	-	=	£ :			:	10.01	0 I I
AS.	ATURE RADE.	Prism Box.	.arigəA Baia		6.9 -		-	=			-		: :	•		-	z	:		: :		-		2 :
110 AV	TEMPERATURE CENTIGRADE.	m.	.ba3																				6.9	
β ORIONIS OF SPECTH	FO	Room.	Begin.		0.2 -																		10.01	n el
DURBALLIS AND * AULUAD \$ ORIONIS. RECORD OF SPECTROGRAMS.		Hour Angle	at end.	h. m.	52 W.	100			1 075	1 18	1 20			1 43		2 05		5;		12	: : : : : : :	2 32	: 513	88
R R			Duration.	đ	167	: :		Ŧ	1	°° =	- 1	÷* :	: :	ŝ		ģ	:	-	2			-	2.6	5 =
		Middle	Exposure. G. M. T.	h. m.		15 05																		12 21
		Date		1908.	Jan. 20	8.8	20.	20						- 20.		20		88	38			20.	- 02	161
		Diate	- march		IL Seed 27		-	:	:	: :	-	:			:		:	:	:			-		: :
			Сапнета.		IL S	: :			-		2	: :		•			:	=	:			-	TIL	-
cett. per. on. er.	-57	.i1v8.	Xo. of Xe		1241a	12416	1242a	1242/	1242c	124.30	1243c	19440	12440	1245a	12456	1247a	12476	1247/	19491	19480	1249	12496	12496	12856
PPlaskett. IIHarper. C. Cannon. Pl. Parker.		Church	10000		3 Orionis			-	-		-			-			-	-	-				-	

9-10 EDWARD VII., A. 1910

	Off part of time.	Silit intended for 700%
***************		TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT
an a	Fair	Fair
10		0022 0018 0018 0018 0018 0018 0018 0018
1	00 m	11.9 1.6 1.6 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7
	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	22.0 22.0 22.0 22.0 11.7 11.7 11.6
		ວະລຸດາວຄະຫ⇒
1	6666 A	
10 10 00 T	991	
22288888897774683228928	289328898228875	
N N N N N N N N N N N N N N N N N N N	- 00 00 00 00 00 10 10 10 10 00 00 00 00	* * * * * * * * * * * * * * * * * * * *
·····211111110	g*59******	2××+++++++++++++++++++++++++++++++++++
83832588888888888888	84682888888888888	24584284284885285284
		122222222222222222222222222222222222222
555555555555555555555555555555555555555		5222220000+++2000
Maria	T-T	April
E		
12865 12865	1412 1413 1414 1428 1428 1428 1428 1428 1428 1428	1441 1442 1445 1445 1445 1445 1445 1445
11111111111111111111		

kett.	per.	unit.
Plas	Hart	Caninan
P	H	2

RECORD OF SPECTROGRAMS-Continued.

		Damater	- 22 Yu 1991 1991						Fog.																Jritung.			
			Observer.		â		<u>^</u>		≤ 2,0	. 2	2.0	2,2		. 2.,	2.1	1.0	<u>~</u>	ī.	5,5	ž	4	4	<u>م</u> :		H D H	-	-	-
																	-								-			-,
		Cooince			0016 Fair.	-						Good	: : :		Fair	Poor.	-	0015 Good	-					-	Dam	1.001		Steady.
		Slit	Width.		9100.	g100.	-	Ξ	. nina	-	-	-		: :	=	9100	: :	012	-		0010	-	-	-	=		=	=
		Prism Box.	.bn3		9.11	6.1	-	÷.8	2-9	; =	= ,	1.8			6-2		6.2 -	- 16		-			1000000000	13.0	1		-	
	RADE.	Prism	Begin.		11-6	6- 7	2	2	÷ 9	; -	-				6.2			- 16			- 13.0				1	5.	=	1.+
	TEMPERATURE CENTIGRADE.	ü	.baX		9-2	2.0	1.5	- 0.3	100	2.2	2	0.0	1 6 7	- 4.5	-16-5	:	- 17-8	- 11-2	19-4	1 1				0.61	0.41-	- 10	2	
		Room.	Begin-		9.2	= 67	3.6		0 6 6 0 6 1	0.0	9.9	2.2		- 4.2	- 16.0			- 11.2	- 19 4		- 18.5				0.61-	-	=	- 5 5 1
		Hour Angle	at end.	h. m.	1 50 W.	0 25			- 1 1 30 F						8	 		220		15		1 32	ş;	21	83			00 0
			Duration	ġ	30	82	17	31 8	88	55	28	18	9	15	91	22	13	~ ~	10	101	10	đ	000	0;	17	: 00	30	
		Middle	G. M. T.	h. m.		18 24										16 38												
		^	<u> ೪೮ – </u>			21	-							-		_	_				-	-					-	-
		Date		1908.		Nov. 21.	. 21.				- 28	1			<i>т</i> 2	0 40 2 2	- 2	= 5	56	- 21	n 22.	- 23	23 S	- 22	38 	8	. 23.	. 26.
							:	:	: :		:	-		:	÷	: :	:	;	;		-	;	;	:	;		÷	7
		Plate			Seed 27.		2	-		:	-			=	-	= =	:				=	-	=	-	: :	: :	=	-
			Camera.		(III		2	=		-	2		-	-	2		-	1		-	IIII	2	=	=	: :		=	=
Cannon. Parker.	.97	ite.8a	N to .of N			1928	1979	1580	1984	-	1986			-	2003	2005			2002		2065		2002	_			2073	
C. Cannon P ¹ -Parker.		Star.			3 Orionis	: :		-	: :	-	:		-															

REPORT OF THE CHIEF ASTRONOMER

SESSIONAL PAPER No. 25a

Only fan. seeing.		Focus as Jun. 12.	Focus unchanged.
PPPPPHHHH	жжжжалалалай	THTTTOMECOOON	чтттт
Hazy Poor	-0013 Good.	0013 600d 600d	
	0 0	-12°0 -12°0 -12°0 -12°0 -12°0 -12°0	
	6.10 9.11 9.11 9.11 9.11 19.11	-1150 -1500 -1 -1500 -1500 -1 -1488	5
	×+85528888888888888888888888888888888888	····	<u> </u>
		***************************************	44004404000
*************	61 61 61 61 61 61 61 61 10 10 10 10 10 10 10 10 10 10 10 10 10	2000200000000000000000	6-410-00-00-00-00-00-00-00-00-00-00-00-00-0
8885528885	622226226226222	882228484832288	8488884884988
111111111111111111111111111111111111111	1122123213313313313313313313313313313313	122222222222222	2222222222222
1300.		122222222222222	16 16 16 17 17 17 18 18 18 18 18 18 18 18 18 18 18 18 18
· · · · · · · · · · · · · · · · · · ·	Jan.		*********

	111 111		*******
2016 2017 2017 2008 2008 2008 2008 2008 2008 2008 200	2002 2005 2005 2005 2005 2005 2005 2005	2222 2222 2222 2222 2222 2222 2222 2222 2222	2152 2153 2154 2155 2155 2155 2155 2155 2155 2155

Vandinanas
۲
OT STRUCTURE TO
9
2
NUCCERT

P.--Plaskett. H.--Harper. C.--Cannon

		Remarks.																				
			Observer		2,2,0	-	- 24	2, 2, 1	2,62	2.0			0	20	<u>ہ</u> د	2.0	2, 2		2,2	H	ΞI	H
		Seeing.			0015	-		::							Farr	-		0016 Unsteady.		0013 Fair		
		Slit	Midth.		0015	-		T I	• •	-		• •	•		: :	:	Ξ	" (i		.00	:	
			End.		- 13.8				+ 1.8			6.9 -			0.0		0.0		0.0	o . 		0.9 -
	TEMPERATURE CENTIGRADE.	Prism Box.	Begin.		0				6.9 -				0.0					- 2.7		0.9 -	0.9 ~	
	CRNTERATUR CRNTIGRADE.	m.	.bn3		- 19-5				- 1.6			0.0			- 6.4			c .				-19-0
RECORD OF SERVINGATION MS. COMMAND	-	Room.	Begin- Baing.						8.8				- 6.4					0.9 -		- 19_0	0.61 -	
		Hour Angle	at End.	h. m.	11 19	 		:: 88 00		91		5 ž			0 30	48	\$		503		38	
			Duration	'n,	C1 C1 C	0 02 0	23 02	e3 00	e1 e1	010	1 63	e1 C	1 61	05 C3	00 0	1 61	c1 (77 ±	16	<u>n</u>	co *	0.0
		Middle	Exposure. G. M. T.	. ii ,4	13 10 13 14																	
		Duto		1909.	Jan. 18 " 18	8	58	88	88		58		8	88	8	8		8.8		31		31
		Dista			Seed 27J.	::	::	::	:		::	:	: :	: :		: :	:	: :	:	::	:	
			Camera.		IL St				z 1		: :	:						IIIL	:	ΞĒ.	:	
di si	- 102	ite8	No. of Xe		2165 2166	2178	2179	2181	2183	2185	525 2815	2188	2195	2196	2198	2202				2211	2212	2213
P1-Parker.					d Orionis																	

9-10 EDWARD VII., A. 1910

P P P P Cloudy i time.		H Very windy. H H H H H F P P P P P P P P	P P Very cloudly. P P P P P P P P
61 (9)	Pair Pair 1012 Good	Poor Poor	1003 Pote Far Cood Anay
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		R 40 13 13 175 40 175 40 175 40 175 40 175 40 175 40 175 40	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
01010101010101	*21200000000	+ <u>ตั้งให้ผู้</u> หมุ่มหมุ่มหมุ่มหมุ่ม	58555666666668%51-
	ဆံ မေ မေ က ဆိ ဆိ ဆိ ဆိ ဆိ ဆိ စ က စ စ စ စ စ စ စ စ စ စ စ စ		ឌនភំនំតតតត់សំអំខាស់តន៍ន័ ន
I			
2215 2215 2216 2219 2219 2219 2219 2219 2219 2219	2249 2249 2249 2249 2249 2249 2250 2250 2250 2250 2255	2246 2246 2246 2246 2246 2246 2246 2276 227	2280 2284 2285 2286 2286 2286 2286 2286 2286 2286

	Ż		
		,	
l	ŝ		

P.-Plaskett. H _ Harner

		Romarba			
			Observer.		*****************************
		Sucine			M015) Gread-
		411S	Width.		6100 [.]
		Box.	.bn3		6.1
ontinued.	ATURE RADE.	Prism Box.	Begin. Baing.		α φ φ φ φ φ φ φ φ φ φ φ φ φ φ φ φ φ φ φ
MSG	TEMPERATURE CENTIGRADE.	ė	.bn3		а а а а а а а а а а а а а а а а а а а
RECORD OF SPECTROGRAMSContinued	F	Room.	Begin		0.10 0.10
OF SPEC		Hour Angle	at End.	h. h	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
CORI			Duration	ġ	121-9×1-10-1-1-1×-1-9×9×9×9×9×9×10-1
RI		Middle	Exposure. G. M. T.	ų.	199211111222292511122229252555555555555
		Thete		1909.	76, 5% Mar. 5% 16, 16, 16, 16, 16, 16, 16, 16, 16, 16,
		Diata			
		_	Camera.		11111 Steed 23
stt. rin	.9V	ite3	N 10 .0 N		1 122314 22315 23315 231
P. – Plaskett. H. – Harper. C. – Cannon. P1 – Parker.		Charle C	-1960		9 Orientia.

β ORIONIS 1241 a.

1908, Jan. 20. G. M. T. 15^h 00^m Observed by J. S. PLASKETT.

Observed by J. S. PLASKETT. Measured by J. S. PLASKETT.

Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ⁿⁱ	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^{ns}	Velocity.
2 3 2	54.0256 53.0008 53.4440	0048 4490	0350 0467	+ 40 · 28 53 · 40	$1\frac{1}{2}$ 3 2	$53 \cdot 1058$ $45 \cdot 2624$ $45 \cdot 2628$	2724	0337	+35-17

Weighted mean. +41 '64 Va - -17' 93 Vd - - 09 Corvature. - 28 Radial velocity. + 23 '3

3 ORIONIS 1241 b.

1908. Jan. 20. G. M. T. 15^h 00^m

Mean Corrected Mean Corrected Dispt in revue Dispt Wt. Velocity. Star Velocity of Star Wt. of in revna Settings. Settings. Settings. $54^{+}7354$ $54^{+}0270$ $54^{+}0008$ $53 \cdot 1094$ +38.413 45 2712 45 2684 2755 0368 0048 0350 +40.2853 4328 4360 0337 +38.54

Weighted	mean		+39.23
	Va	17.93	
	Vd	'09	
	Curvature	'28	

Radial velocity + 20

β ORIONIS 1241 c.

1908. Jan. 20. G. M. T. 15^h 00^m

Measured by J. S. PLASKETT.

Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^{ns}	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^{ns}	Velocity.
21	54 ·7640 54 ·0552 54 ·0360 53 ·4715	0130 4485	0448 0462	+51.56 +52.83	3	53 · 1358 45 · 2960 45 · 2952	2727	0340	+ 35 · 49

Radial velocity + 25.4

3 ORIONIS 1247 0.

1908. Jan. 20. G. M. T. 15^h 15^m

Observed by J. S. PLASKETT.

3 54:0012 0052 0354 -40:74 9 45:9652	Wt.	Mean Cf Settings.	Corrected Star Settings.	Disp ^t in rev ^{ns}	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^{ns}	Velocity.
3 53 4384 4434 0411 + 47 00	2 2 3 3 3	54:0270 54:0012	0052	0354	+40.24	2		2737		+ 36 58

β ORIONIS 1242 6.

1908. Jan. 20. G. M. T. 15^h 15^m

Observed by J. S. PLASKETT.

Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ²⁸	Velocity.	Wt.	Meau of Settings.	Corrected Star Settings.	Disp ^t in rev ^{as}	Velocity,
$2 \\ 1 \\ 2^{1} \\ 1^{1} \\ 1^{1} \\ 2^{2}$	54 7 430 54 0320 54 0078 53 4467	0078 4467	0380 0144	$^{+43.76}_{-50.75}$	2 3 2	53:1110 45:2740 45:2692	2783	0396	+41-34

ighted	Vd	- 17.93	+ 44.22
Rad	lial velocity.		+ 95.0

β ORIONIS 1242 c.

Wei

1908. Jan. 20. G. M. T. 15^h 15^m

Observed by J. S. PLASKETT.

+19.7

Mean Mean Corrected Corrected Dispt Velocity. Dispt Wt. Star Wt. of Star Velocity. of in revns in revns Settings. Settings. Settings. Settings. 2 $\begin{array}{c} 54 \ 7111 \\ 54 \ 0022 \\ 53 \ 9678 \end{array}$ $53^{\circ}0790$ $45^{\circ}2307$ $45^{\circ}2378$ 2655 9990 0268 +27.97 $0292 \\ 0477$ $^{+\,33\,^{\circ}61}_{+\,54\,^{\circ}55}$ 53 4174 ·4500 +37.98- 17 93

Radial velocity

25a - 21

β ORIONIS 1243 a.

1908, Jan. 20, G. M. T. 15^h 27^m

Observed by J. S. PLASKETT.

Wt.	Mean of Settings.	Corrected Star Settings.	Dispt in rev ^{as} 1Veloci	ty. Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^{us}	Velocity.			
10 00 10 10	54 7409 54 0332 54 0104 53 4376	0064	0366 -49 0323 36	12	53 1154 45 2837 45 2814	2760	0373	- 38 93			
	- 39 63 Veiphted meant										

1908. Jan. 20. G. M. T. 15^h 27^m

Observed by J. S. PLASKETT.

21.3

Wt.	Mean of Settings.	Corrected Star Settings.	Disp: in rev ¹⁰	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Dispt in rev∞	Velocity.
2 2 2 2 2	54 7300 54 0188 53 9988 53 4319	0098 -4429	0400 0406	- 46 04 46 43	23	53 1011 45 2702 45 2712	2730	·0343	+ 35 80

Radial velocity...

Radial velocity. ... +23.5

β ORIONIS 1243 c.

1908. Jan. 20. G. M. T. 15^b 27^m

Observed by J. S. PLASKETT,

Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^{ns}	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^{ns}	Velocity.	
2 2 2 2 2	54 7244 54 0125 53 9841 53 4295	0000 4445	0302 0422	- 34 76 48 26	2 3	33.0980 45.2705 43.2622	2820	0433	+45-19	
Weight-d mean 43 09 Va 17 93 Vd 09 Curtature 28										

288

B ORIONIS 1244 m.

1908. Jan. 20. G. M. T. 15⁵ 47^m

Observed by J. S. PLASKETT.

W1.	Mean of Settings.	Corrected Star Settings.	Dispt [*] in rev ^{ns}	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Dispt in rev ^{ns}	Velocity.
2 2 3 2	54°7275 54°0201 53°9956 53°4365	0056 1410	-0358 -0387	41.20 43.14	2 3 2	53 0998 45 2686 45 2611	2811	0424	44 25

Radial velocity ± 24.5

Observed by J. S. PLASKETT.

8 ORIONIS 1244 6.

1908. Jan. 20. 84. M. T. 15^b 47^m

¶V ε.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^m	Velocity.	Wt.	Mean of Setting [*] .	Corrected Star Settings.	Dispt in revos	Velocity,
2 et e 2	54:7310 54:0209 53:9910 53:1264	9990 4340	0292 0317	+33-61 36-25	$\frac{2}{3}$ 2	53, 1050 45, 2620 45, 2632	2723	····0336	+ 35 07

Weighted mean	+ 34 82
Va Va Curvature	- 17 93
Padial valuaita	10.5

β ORIONIS 1244 c.

1968. Jan. 20. G. M. T. 15^h 47^m

Observed by J. S. PLASKETT.

Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^{ns}	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Dispt in rev ^{ra}	Velocity.
2 2 3 2	54 7336 54 0231 54 0019 53 4595	0090 1460	0392 0437	+ 45 11 49 97	2 3 2	53 1058 45 2684 45 2638	2780	0393	+41.02

Weighted mean	+ 44 · 75
Radial velocity	+26.4

289

- 42 82 - 17 93 - 09 -28

25a-214

```
3 ORIONIS 1245 a.
```

Observed by J. S. PLASKETT.

Wt.	of	Corrected Star Settings.	Disp [†] in rev ⁿ	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^{as}	Velocity.
1 2	4 7272 4 0156 3 9966 3 4315	·0090 ·4430	0392	- 45°12 46°54	2 3 2	$53 \cdot 1018$ $45 \cdot 2650$ $45 \cdot 2622$	2763	0376	+39-24

Radial velocity. ... + 25.0

 β ORIONIS 1245 b.

1908. Jan. 20. G. M. T. 15^h 53^m

1908. Jan. 20. G. M. T. 15^h 53^{nb}

Observed by J. S. PLASEBIT.

Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ⁿ	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^{ns}	Velocity.
2 2 3 2	54.7467 54.0342 54.0134 53.4430	0074 -4340	0376 0337	+ 43.27 38 53	2 3 2	$53 \cdot 1202$ $45 \cdot 2774$ $45 \cdot 2760$	2750	0363	+37-89

Radial velocity ... + 21.8

β ORIONIS 1245 c.

1908. Jan. 20. G. M. T. 15^b 53^m Observed by J. S PLASKETT.

 ± 40.07

Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ⁿⁱ	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^m	Velocity.
21 21 22 23	54.7458 54.0321 54.0084 53.4436	0034 - <u>4</u> 390	0336	$^{+38.67}_{-41.97}$	2 3 2	53 · 1193 45 · 2750 45 · 2742	2740	0353	+ 36 ' 84
Weighted mean+38:81									

Weighted mean.... Va.... Va....

 $17 \ 93 \\ 09$ Curvature....

Radial velocity

- '28

1908. Jan. 20. G. M. T. 16^b 37^m

3 ORIONIS 1249a.

Observed by J. S. PLASKETT. Measured by

Wt.	Mean of Settings.	Corrected Star Settings.	Disp ⁴ in rev ^{ns}	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings	Disp ^t in rev ^{ns}	Velocity.
2 2 3 2 2	54.7444 54.0334 54.0037 53.4376	9987 4320	0289 0297		2 3 2	53 · 1200 45 · 2714 45 · 2782	2668	0291	+ 30 · 37

Radial velocity -14.0

β ORION1S 1247 α.

1908. Jan. 20. G. M. T. 16^h 17^m

Observed by J. S. PLASKETT

Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ⁿ	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^{ns}	Velocity.
2 1 3 2	54 7364 54 0227 54 0078 53 4296	0138 -4350	0440 0327	$^{+50.64}_{-37.40}$	2 2 2	53 · 1070 45 · 2606 45 · 2624	2715	0327	+ 34 13

Radial velocity..... + 23 8

β ORIONIS 1247 b.

1908. Jan. 20. G. M. T. 16^h 17^m

Observed by J. S. PLASKETT.

Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^{ns}	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Dispt in rev ^{ns}	Velocity
2 1 3 2	54 7274 54 0096 53 9963 53 4377	0135 4557	0437 0534	$+50^{\circ}29 \\ 61^{\circ}06$	$2 \\ 3 \\ 2$	53:0931 45:2634 45:2577	2794	0397	+41 43

Weighted mean. ... V_a ... V_d

Curvature .

- 17 93 ·09 ·28

+49.66

Radial velocity + 31.3

DEPARTMENT OF THE INTERIOR

9-10 EDWARD VII., A. 1910 Observed by J. S. PLASKETT.

β ORIONIS 1247c.

1908. Jan. 20. G. M. T. 16^h 17^m

Mean Corrected Dispt Wt. Disp⁴ 11'1. of Star of Star in revas Settings. Settings. Settings. Settings. $54 \ 7281 \\ 54 \ 0124 \\ 53 \ 9902$ $53^{+}0985_{45}^{+}2528_{45}^{-}2570_{-}$ 2692 0305 -31830048 + 40.28 53 4238 4386 0363 41 51

β ORIONIS 1248 α.

1908. Jan. 20 G. M. T. 16^h 27^m Observed by J. S. PLASKETT.

Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^{ss}	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^{as}	Velocity
	$54 \cdot 7473$ $54 \cdot 0314$ $53 \cdot 9942$ $53 \cdot 4267$	9900 4220	0211 0197	$^{+24}_{-22}$	2 2 3	55 · 1167 45 · 2794 45 · 2792	····2735	0318	+ 36 32

β ORIONIS 1248 b.

1908. Jan. 20. G. M. T. 16^h 27th

Observed by J. S. PLASKETT.

.00

.28

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ⁿ	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^{ns}	Velocity.
		54.0234 53.9742	9760		+ 8 17	2 3 2	45 2624			+ 28 49

Radial velocity

3 ORIONIS 1248 c.

Observed by J. S. PLASKETT.

1908, Jan. 20. G. M. T. 16^h 27^m

Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^{ne}	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Dispt in rev ¹⁰	Velocity.
$2 \\ 1 \\ 2 \\ 2 \\ 2$	54 : 7472 54 : 0420 54 : 0294 53 : 4593	0174 4493	0505 0470	- 58 12 53 75	2 3 2	53 · 1250 45 · 2991 45 · 2836	2891	0504	+ 52 60
				Weight	ed mca	n		+ 54	51

Va	17.93
Vd	09
Curvature	- 128
Radial velocity	+ 36:1

3 OR	10N	IS-	1249	b,
------	-----	-----	------	----

1908. Jan. 20. G. M. T. 16^h 37^m Observed by J. S. PLASKETT.

Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^{ns}	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^{ns}	Velocity.
21 22 23 23 23	54:7478 54:0356 54:0084 53:4450	0004 4365	0306 0342	$^{+35}_{-39}$ 22	23	53 · 1232 45 · 2788 45 · 2844	2680	0293	+ 30 58

Radial velocity.....

β ORIONIS 1249 c.

1908. Jan. 20. G. M. T. 16^h 37^m Observed by J. S. PLASKETT. Measured by J. S. PLASKETT.

+24.2

Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^{ns}	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^{ns}	Velocity.
2 2 2 2 2 2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
				1	ed mea	n		- 93 99 98	36

3 ORIONIS 1285 a.

Observed by J. S. PLASKETT, Measured by W. E. HARPER,

Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^{ne}	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Dispt in rev ^{as} .	Velocity.
2 2 11 2	56+2642 56+2207 53+3517	2768	0470 0539	+ 35 17 39 88	$2 \\ 1 \\ 2 \\ 2$	54-8480 42 3191 42 3130	-3130	0520	+ 32 61
					V V	a	20	- + 35 - 08 - 16 - 30	81

Radial velocity. +15 3

Observed by J. S. PLASKETT. Measured by W. E. HARPER.

β ORIONIS 1285 b.

1908. Jan. 27. G. M. T. 15^h 30^m

1908, Jan. 27, G. M. T. 15 30⁽⁶⁾

Wt.	of	Corrected Star Settings.	Dispt in rev ^{ns}	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^m	Velocity.
2 2 2 1	$57 \cdot 3871$ $56 \cdot 2462$ $56 \cdot 1983$ $55 \cdot 3500$	2724	0426 0697		$22 \\ 11 \\ 12$	54 8307 42 3000 42 3092	3283	0673	+ 42 20

+39'72Curvature 50

Radial velocity +19.2

β ORIONIS 1285 r.

1908. Jan. 27. G. M. T. 15^b 30^{ro}.

Observed by J. S. PLASEETT. Measured by W. E. HARPER.

Mean Mean Corrected Corrected Dispt Dispt Velocity. Wt. Velocity. in rev" in rev" Settings. Settings. Settings. Settings. 57:3127 54.8130 56 2255 $\frac{42}{42}$ 2834 $\frac{42}{2936}$ $\substack{+31\ 43\\44\ 62}$ 0420 3293 0683 +42.830603

Weighted mean..... Va Vd.... Curvature.... +39.38-20'08.16 130

Radial velocity +179

Wt.

3 ORIONIS 1286 a.

Observed by J. S. PLASKETT. Measured by W. E. HARPER.

1908. Jan. 27. G. M. T. 16⁵ 09ⁿ.

Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^{ns}	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^{ns}	Velocity.
21 01 01 01	57 2727 56 1937 56 1589 55 2850	2869 4130	0571	42.73 43.36	2 2 1	54.7770 42.2466 42.2512		0617	+38 6
						ighted mean Va		+ 42 0 08 19 30	20

Radial velocity - 21.3

3 ORIONIS 1286 b

1908. Jan. 27. G. M. T. 16⁵ 09

Observed by J. S. PLASKETT. Measured by W. E. HARPER.

Wt.	Mean of Setting«.	Corrected Star Settings.	Disp ^t in rev ⁿ	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Dispt in rev ^{ns}	Velocity.
2 2 2 1 1 2 1	57 · 3533 56 · 2652 56 · 2297 55 · 3552	2848 4074	0550 0530	$^{+41.16}_{-39.21}$	$2 \\ 2 \\ 1 \\ 1 \\ 2 \\ 2 \\ 1 \\ 2 \\ 2 \\ 1 \\ 2 \\ 2$	54.8539 42.3240 42.3241	- 3192	0582	+ 36 50
					Wale	ebted mean		+ 90	-17

Weighted mean	
Va	- 20.08
Vd	- 20
Curvature	- '28
Padial valuator	+ 18-7

3 ORIONIS 1286 c.

1908. Jan. 27. G. M. T. 16^h 09^m

Observed by J. S. PLASKETT. Measured by W. E. HARPER.

Wt.	Mean of Settings.	Corrected Star Settings.	Dispt in rev ^{ns}	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings. Disp ⁴ in rev ²⁸	Velocity.
2 2 2 2 2	$57 \cdot 3761$ $56 \cdot 2915$ $56 \cdot 2610$ $55 \cdot 3896$	2898 4175	0600 0631	+ 44 . 90 46 . 68	2 2 2	54.8777 42.3443 42.3548	3296 0686	+ 43 02

+44.87

Radial velocity +24.3

```
3 ORIONIS 1289 α.
```

1908. Jan. 27. G. M. T. 17^b 17^o

Observed by J. S. PLASKETT. Measured by W. E. HARPER.

Wt.	Mean of Settings.	Corrected Di Star Di Settings.	isp ^t rev ^{ns}	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^{ns}	Velocity.
222 211 112	57 · 3477 56 · 2633 56 · 2241 55 · 3630		0627 0474	+ 46 92 35 07	2 3 2	54-8500 42-3258 42-3286	3168	0558	+ 34 . 99
					Weight	ed mean V''_{d} \underline{V}_{d}		- 20 08 19	+38 62

Curvature 30 Radial velocity. . +18.1

3 ORIONIS 1289 b.

Observed by J. S. PLASKETT.

1908. Jan. 27. G. M. T. 17^h 17ⁿ

Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^{no}	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^m	Velocity.
	57 · 3801 56 · 2921 56 · 2507 55 · 3890	2780 4155	0482 0611	+ 36 07 45 21	2 3 2	54 8794 42 3664 42 3584	3275	0665	+ 41 . 70

Weighted mean. Va ... Va ...

20:08 .19 Curvature :30

+ 40.46

Radial velocity. +19.9

3 ORIONIS 1289 c.

Observed by J. S. PLASKETT. Measured by J. S. PLASKETT.

1908. Jan. 27. G. M. T. 17^h 17^m

Wt.

2223

Mean Corrected Mean Corrected Dispt Dispt Star Velocity. Wt. Velocity. of of Star in revas in revas Settings Settings Settings. Settings. 57 · 3608 56 · 2675 56 · 2378 $54^{\circ}8612$ $42^{\circ}3602$ $42^{\circ}3378$ 0815 +51.11 2900 -0602 $^{+45.05}_{-48.54}$ 4200 0656

Weighted mean.

48.19 20.08 V_a V_d 19 :30

Curvature.....

Radial velocity..... + 27.8

β ORIONIS 1290 a.

Observed by Measured by J. S. PLASKETT Jan. 27.
 M. T. 17^b 28⁻⁻ Mean Mean Corrected Disp^t Wt. Wt. of Star of Star in revn. Settings Settings. Settings. Settings. 57 3519 54.8582 3156 10546 + 34 24 2800 0502 +37.5642 3308 Weighted mean. 36.23 $20^{+}08$ ·19 ·30 Curvature Radial velocity... 15:6

3 ORIONIS 1290 b.

1908. Jan. 27. G. M. T. 17^b 28^o

Mean Corrected Star Mean Corrected Disp[‡] Disp⁴ Wt. Velocity. Wt. Star Velocity of of Settings. Settings. Settings $54 8536 \\ 42.3223 \\ 42.3224$ 57.3527 56 2622 3190 +36.3756 2360 55 3534 2940 0642 18.04 4074 39.21

20:08

42.18

+ 36.7020:08

.19

:30

Observed by J. S. PLASKETT. Measured by J. S. PLASKETT.

.19 Curvature. 30

Radial velocity. . . → 21 6

β ORIONIS 1290 c

Observed by J. S. PLASKETT. Measured by J. S. PLASKETT.

1908. Jan. 27. G. M. T. 17^b 28^m

Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^{ns}	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^{as}	Velocity.
2 2 3 1 ¹ / ₂	57 3590 56 2706 56 2320 55 3704	-2810 4134	0512 0590	+ 38 ° 31 43 ° 65	2 3 2	54 8680 42 3490 42 3368	3313	0503	+31-54

Weighted mean

Va Vd

Curvature.

Radial velocity.... - 16.1

Weighted mean Va Va

S ORIONIS 1405.

Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^{**}	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^{ns}	Velocity
2 2 2 1 1	63-3300 61-3502 61-3121 59-7292	3064 7236	1259 1271	- 52'05 52'00	2 2 2	58.7869 36.2090 36.1858	2170	1265	+ 44* 48

Va					24.86	
- V.d					14	
Curv	ature.				.58	
Radial v	locita					+ 23 1

3 ORIONIS 1406.

1908. Mar. 20. G. M. T. 12^h 07^m

Observed by J. S. PLASKETT.

Wt. Mean of Settings.	Corrected Disp ^t Star Disp ^t Settings.	Velocity. Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^{ns}	Velocity.
$\begin{array}{cccc} 2 & 63^+3238\\ 2 & 61^+3466\\ 2 & 61^+316\\ 1\frac{1}{2} & 59\ 7150 \end{array}$	3095 1290 7122 1157	$\begin{array}{c} & & 2 \\ & & 1\frac{1}{2} \\ & 53 & 33 \\ & 47 & 33 \end{array}$	58.7846 36.2180 36.1886	-2235	1330	+46.76

3 ORIONIS 1407.

1908. Mar. 20. G. M. T. 12^h 21^m

Observed by J. S. PLASKETT.

Wt.	Mean of Settings.	Corrected Star Settings.	Dispt in revas	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^{ns}	Velocity.
$2 \\ 2 \\ 3 \\ 1\frac{1}{2}$	$63^{\circ}3248$ $61^{\circ}3441$ $61^{\circ}2936$ $59^{\circ}7240$	2941 7260	1136 1295	+ 46*96 52*98	2 2 2	$58^{\circ}7785$ $36^{\circ}1872$ $36^{\circ}1721$	···· :2090	1185	+ 41 * 66
*2		1.000	1000		eighted				+ 46 72

Vd - 14 Curvature.... - 28

Radial velocity - 21.4

β ORIONIS 1408.

Observed by J. S. PLASKETT. Measured by J. S. PLASKETT.

1908. Mar. 20. G. M. T. 12^h 32^m

						Settings.		
$\begin{array}{cccccc} 2 & 63 & 3338 \\ 2 & 61 & 3533 \\ 2 & 61 & 3036 \\ 1\frac{1}{2} & 59 & 7392 \end{array}$	2946 7302	1141 1337	- 47 17 54 70	2 2 14	58-7904 36 2218 36 1832	2315	1410	+ 49 58

\$ ORIONIS 1409.

1908. Mar. 20. G. M. T. 12^h 46^m

Observed by J. S. PLASKETT. Measured by J. S. PLASKETT.

Wt	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^{ns}	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	D'spt in rev ^{as}	Velocity.
$2 \\ 2 \\ 2 \\ 1 \\ 1 \\ 2 \\ 1 \\ 1$	$63^{-}3224$ $61^{-}3452$ $61^{-}3028$ $59^{-}7364$	3048 7390	1243 1425	+51°39 58°30	$\frac{1}{2}$	$ 58 7782 \\ 36 2226 \\ 36 1801 $	2365	1460	+ 51 33

β ORIONIS 1410.

1908. Mar. 20. G. M. T. 13^h 00^m

Observed by J. S. PLASKETT.

Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^{ns}	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Dispt in rev ⁿ	Velocity.		
2 2 2 1	63:3280 61:3492 61:3050 59:7178	·3010 ·7136	1205 1171	$^{+49.81}_{-47.91}$	2 2 2	58-7856 36-2229 36-1906	2265	1360	+ 47 82		
	Weighted mean										

Radial velocity..... +23.3

299

```
3 ORIONIS 1011.
```

Observed by J. S. PLASKETT, Measured by W. E. HARPEE

1908. March 20. G. M. T. 13^h 12^m

Wt.	Mean of Settings.	Corrected Star Settings.	Disp [‡] in rev ^{ns}	Velocity	Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^{ns}	Velocity.
2 3 1 1	63 1088 61 0842 39 5095	61 · 2989 59 · 7259	- 1184 1294	$^{+48}_{-52.94}$	2 2 2 2	$ \begin{array}{r} 58 & 5647 \\ 35 & 9590 \\ 0 \cdot 9^{\circ} 51 \end{array} $	36-2203	1298	- 45 64

3 ORIONIS 1412.

1908. March 20. G. M. T. 13^b 27^m

Observed by J. S. PLASKETT Measured by W. E. HARPEE.

Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^{ns}	Velocity.	Wt.	Mean of Settings.	Corrected Star Setting>.	Disp ^t in 1ev ^{ns}	Velocity.
2 3 2	63 1178 61 0974 59 5242	61 3005 59 7314	1200 1349	- 49°60 55°18	02 01 02	58:5736 35:9727 36:0000	36-2215	1310	~46 06

Radial velocity

17

+24.9

24.86

β ORIONIS 1413.

1908. March 20. G. M. T. 13^b 47^m

Observed by J. S. PLASKETT. Measured by W. E. HABPE2.

Va.... Vd Curvature.

- 24 86 -17 -28

Radial velocity ...

+27.5

S ORIONIS 1414.

Observed by J. S. PLASKETT. Measured by W. E. HARPER.

1908. March 20. G. M. T. 13^h 57^m

Radial velocity...

 β ORIONIS 1426.

1908, March 24. G. M. T. 12^h 03^m

Observed by J. S. PLASKETT. Measured by W. E. HARPER.

+26.9

Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^m	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^{to}	Velocity.
2 2 11	$63^{\circ}3455$ $61^{\circ}2946$ $59^{\circ}7192$	61 2780 59 7040	0975 1075	+ 40°35 43°98	$2 \\ 1 \\ 2 \\ 2$	58 · 7935 36 · 1955 36 · 1592	36.2300	1395	+ 49 05

β ORIONIS 1427.

1908. March 24. G. M. T. 12^h 15^m

Observed by J. S. PLASKETT, Measured by W. E. HABPER.

Wt. Se	ot tings.	Corrected Star Settings.	Disp ^t in rev ^{ns}	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings	Disp ^t in rev ⁿ	Velocity.
2 2 1	63 · 3382 61 · 2918 59 · 7208	61 2798			2 2 2	58 7912 36 2085 36 1682	36.2340	1435	+ 50 · 45

3 ORIONIS 1428.

Observed by J. S. PLASKETT, Measured by J. S. PLASKETT,

Wt.	Mean of Settings	Corrected Star Settings.	Dispt in rev ^{ris}	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^{re}	Velocity.
2 2 11	$63^{\circ}3148 \\ 61^{\circ}2682 \\ 59^{\circ}6971$	61 2772 59 7060	0967	- 40.01 44.80	2 2 2 2	$58^{\circ}7726$ 36^{\circ}1838 36^{\circ}1522	36.2255	1350	+ 47 * 47
					Weight	ted mean Va Vd Curvatu		- 24 36 - 16 - 28	+ 44 ' 03

β ORIONIS 1429.

1908. March 24. G. M. T. 12^h 36^m

1908. Marci. 24. G. M. T. 12^h 23^{cr}

Observed by J. S. PLASKETT.

+19.2

Radial velocity.....

Wt.	Mean of Settings.	Corrected Star Settings.	Dispt in rev ^{ns}	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ⁿ	Velocity.
$2 \\ 2 \\ 1\frac{1}{2}$	63·3133 61·2675 59·6988	61 · 2825 59 · 7160	1020 1195	-42.21 48.89	2 2 2	58 7619 36 1559 36 1282	36-2215	1310	+ 46 06
		4			Weight	ed mean Va Vd Curvatu		- 24 . 86	+ 45 · 43

β ORIONIS 1430.

1908. March 24. G. M. T. 12^h 42^m

Observed by J. S. PLASKETT, Measured by J. S. PLASKETT,

Radial velocity $+21^{\circ}6$

Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^{ts}	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^{ns}	Velocity.
2 2 11/2	63:3288 61:2808 59:7068	61 2795 59 7075	0995	$^{+41}_{-45-41}$	$2 \\ 1 \\ 2 \\ 2$	58.7792 36.1830 36.1581	36 2190	1285	+45.18

Va Vd - 24 36

Radial velocity..... ± 18.8

Mear of Setting 3 ORIONIS 1431.

1908. March 24, G. M. T. 12^b 52^m

Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^{to}	Velocity.	Wt.		Corrected Star Settings.	Disp ^t in rev ^{na}	Velocity.			
63·3248 61·2775 59·6884	61 · 2775 59 · 6890	-0970 -0925	- 40°14 + 37°84	2 2 2 2	58-7802 36-1932 36-1520	36.2350	1445	+ 50.81			

β ORIONIS 1433.

1908. March 24. G. M. T. 13^h 16^m

Observed by J. S. PLASKETT.

Observed by J. S. PLASKETT

1445 + 50.81

Wt.	Mean of Settings.	Corrected Star Settings.	Dispt in rev ⁿⁱ	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Dispt in rev ^{ns}	Velocity.
$22 \\ 11 \\ 12$	63 · 3394 61 · 2791 59 · 6956	61 2816 59 7020	1011 1055	$+41^{+84}_{-43^{+}16}$	2 2 2	58 · 7740 36 · 1666 36 · 1490	36-2106	1201	+42.53

3 ORIONIS 1434.

1908. March 24. G. M. T. 13^h 32^m

Observed by J. S. Plaskett.

Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^{rs}	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Dispt in rev ^{ns}	Velocity.
$\frac{2}{2}$	$\begin{array}{c} 63{}^{\circ}3430\\ 61{}^{\circ}2968\\ 59{}^{\circ}7385 \end{array}$	61 · 2790 59 7215	0985 1254	$^{+40.76}_{-51.30}$	2 1 2	58-7969 36-2018 36-1745	36-2210	1305	+ 45.88
				W	eighted	V_d V_d V_d Curvature		- 24°36 - 16 - 28	44.08

Radial velocity..... + 19.3

3 ORIONIS 1435.

1908.	M	arch 24.
G. M.	T.	13 ^h 39 ⁿ

$\left. \begin{array}{l} Observed \ by \\ Measured \ by \end{array} \right\} J. \ S. \ Plaskett.$

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^{ns}	Velocity.	Wt.	Mean of Settings.	Corrected Star Setting«	Disp ^t in rev ^{as}	Velocity.
	2 2 1		61 2727	0922	- 38.12	$2 \\ 1\frac{1}{2} \\ 2$	36.1366		1221	-42.93

β ORIONIS 1436.

1908. March 24. G. M. T. 13^h 48^m Observed by J. S. PLASKETT.

Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^{ns}	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings	Disp ^t in rev ^{ns}	Velocity.
$2 \\ 2 \\ 1\frac{1}{2}$	63:3496 61:2902 59:7106	61 2762 59 6876	0957 0921	39 60 37 68	$2 \\ 1 \\ 2 \\ 2$	58 · 8030 36 · 2066 36 · 1692	36.5310	1405	+49'40

Veighted mean,	41.30
Va	 ·36
Vd	·16
Curvature	28
Radial velocity	17.2

β ORIONIS 1437.

1908. March 24 G. M. T. 13^h 5[.]6^m Observed by J. S. PLASKETT.

Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ⁿ	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Dispt in rev ^{ns}	Velocity.
	$\begin{array}{c} 63^{\circ}3020\\ 61^{\circ}2558\\ 59^{\circ}6798 \end{array}$	61 · 2800 59 · 7050	0995 1085	- 41 · 17 44 · 39	2 2 2	$58^{\circ}7548$ $36^{\circ}1466$ $36^{\circ}1222$	36 2180	1275	+ 44 83
				Va. Vd.			24	:36	

β ORIONIS 1438.

1908, March 24, G. M. T. 14^h 07^m

Observed by J. S. PLASKETT.

·Wt.	Mean of Settings.	Corrected Star Settings. Disp ¹ in rev ²⁸	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Dispt in rev ^{rs}	Velocity.
2 11 1	63 : 8504 61 : 3018 59 : 7345	61 2780 0975 59 7125 1160	+40.54 47.46	$2 \\ 1 \\ 2 \\ 2$	58:8022 36:2016 36:1784	36 2170	1265	+ 44 48
			Weighted :			24	+ 43 · 70	

Vd		16
Curvature		
Radial velocity		\pm 18 0

3 ORIONIS 1439

1908. March 30. G. M. T. 12^h 19^m

Observed by J. S. PLASKETT.

Nt.	Mean of Settings.	Corrected Star Settings.	Dispt in revrs	Velccity,	Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^{ns}	Velocity
2 3 11/2	$63 \cdot 3002 \\ 61 \cdot 2444 \\ 59 \cdot 6804$	2993 7304	-0870 -1066	+ 35 86 43 48	2 2 2	58 7534 36 1192 36 1146	1568	1087	+ 38 1

V..... 21 Curvature..... 28

Radial velocity +14.4

β ORIONIS 1440.

1908. March 30. G. M. T. 12^h 29^m

Observed by J. S. PLASKETT.

 ± 14.4

Mean Corrected Mean Corrected Dispt in revn Disp^t in rey^m Wt. Star Velocity. Wt. Velocity. of Settings. of Settings. Star Settings. Settings $\begin{array}{c} 63 \cdot 3356 \\ 61 \cdot 2894 \\ 59 \cdot 6994 \end{array}$ $\frac{58}{36}$ $\frac{7895}{1602}$ 1480 +35.020964 3087 $^{+\,39}_{-\,40}\,{}^{74}_{54}$ 0999 7132 10894 36.1612 Weighted mean. - 23.39 +38.2421

V _d Curvature									
Radial velocity.									

25a - 221

3 ORIONIS 1441.

Observed by J. S. PLASKETT.

1908. Mar. 30. G. M. T. 12^h 38^m

Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ²²	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^{ns}	Velocity.
2 2 1	63 4150 61 3622 59 7768	-3042 -7148	0919 0910	$^{+37}_{-37}$ $^{88}_{-37}$ $^{12}_{-12}$	2 11 2	58 · 8640 36 · 2522 36 · 2426	1620	1139	- 39 93

β ORIONIS 1442.

1908. Mar. 30. G. M. T. 12^h 49^m

Mean Corrected Star Mean Corrected Dispt Disp^t Velocity. Wt. Velocity. Wt. of Star in revus Settings. Settings. Settings. Settings. $58^{\circ}8129$ $36^{\circ}1715$ $36^{\circ}1666$ 222 $\begin{array}{c} 63\,{}^\circ3596\\ 61\,{}^\circ3220\\ 59\,{}^\circ7322 \end{array}$ 3175 - 43 36 1091 +38.251052 7220 0982 40.06

β ORIONIS 1448.

1908. A pril 3. G. M. T. 12^b 16^m

Observed by J. S. PLASKETT.

Observed by J. S. PLASKETT.

Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^{ns}	Velocity.	Wt.	Mcan of Settings.	Corrected Star Settings.	Disp ^t in rev ^{Ds}	Velocity.
2 25 12 12	63 · 3573 61 · 3387 59 · 7#41	61 3037 59 7160	1232 1195	+ 50 ° 93 48 ° 89	$2 \\ 1\frac{1}{2} \\ 2$	$58^{+}8206$ $36^{+}2340$ $36^{+}2156$	36-2126	1184	+ 41 63
						d mean		- 22 69	18.05

Va. Vd. Curvature.

 $\frac{16}{28}$

Radial velocity. + 24.9

β ORIONIS 1449.

Observed by J. S. PLASKETT.

1908. April 3. G. M. T. 12^h 28^m

Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ²⁸	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Dispt in rev ^{ns}	Velocity.
$2 \\ 2 \\ 1\frac{1}{2}$	63:3266 61:3045 59:7338	61 3024 59 7320	1219 1355	+ 50 * 39 55 * 43	2 2 2	58 7829 36 2068 36 1722	36 2285	1380	+ 48 52

V.a	22.69
Va	- 16
Curvature	- '28
Radial velocity.	+ 27 9

β ORIONIS 1450.

908. April 3. G. M. T. 12^h 40^m

Observed by J. S. PLASKETT.

Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^{to}	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^m	Velocity.
2 2 13	63+3216 61-3092 59+7388	61 3124 59 7423	1319 1463	+54 53 59.85	2 1 2	58.7768 36.2098 36.1714	36.2325	1420	+49.93

β ORIONIS 1451.

+55.28-22.69Curvature. Radial velocity +32.2

1908. April 3. G. M. T. 12⁶ 53¹⁰

Wt.

Observed by J. S. PLASKETT.

Mean Mean Dispt Wt. 30 Star of Star Settings. Settings. $\begin{array}{c} 63\,{}^\circ\,3301\\ 61\,{}^\circ\,3062\\ 59\,{}^\circ\,7310 \end{array}$ $\frac{2}{14}$ 58·7860 36·2164 61 · 3007 59 · 7260 +49.6936 2275 1370 + 48 - 47

Weighted mean

36-1830

+50.22Va..... Vd..... -22.69

Radial velocity.....

```
β ORIONIS 1457.
```

1908. April 4.
 G. M. T. 12^b 19^{sc}

```
Observed by J. S. PLASKETT.
```

								-	
Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^{as}	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^{io}	Velocity.
2 3 2	63:3698 61:3515 59:7708	61 · 3069 59 · 7224	1264 1259	$^{+52.25}_{51.51}$	$2 \\ 2 \\ 2 \\ 2$	58 8305 36 2996 36 2358	36 2580	1638	- 57 59
				We	ighted	meau Va Vd Curvatu		-22:41	-58-56

Radial velocity..... +29.9

β ORIONIS 1458.

1908. April 4. G. M. T. 12^h 28^m Observed by J. S. PLASKETT.

Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^{ns}	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ⁿ	Velocity.
$2 \\ 2 \\ 1_{\frac{1}{2}}$	$63^{\circ}3566$ $61^{\circ}3314$ $59^{\circ}7500$	61 3004 59 7196	1199 1231	$^{+49}_{-50}$	$2 \\ 1\frac{1}{2} \\ 2$	$58^{+}8112$ 36 $^{+}2475$ 36 $^{+}1956$	36 2460	1551	+ 54 67

β ORIONIS 1459.

1908. April 4. G. M. T. 12^h 38^m

Observed by J. S. PLASKETT.

Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^{ns}	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^{ns}	Velocity.
2 3 11	$63^{+}3648 \\ 61^{+}3354 \\ 59^{+}7562$	61 2944 59 7150	1139 1185	+47.09 48.47	$2 \\ 1\frac{1}{2} \\ 2$	$58^{\circ}8227$ 36 2782 36 2194	36-2500	1625	+57-13
					Weight	ed mean V_{a} V_{d} Curvatu		- 22 40 - 23 - 28	+ 49 . 93

3 ORIONIS 1469.

Observed by J. S. PLASKETT.

1908. April 13. G. M. T. 12^h 10^m

Wt.	Mean of Settings.	Corrected Star Settings.	Dispt in rev ^{as}	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^{ns}	Velocity.
$\frac{2\frac{1}{2}}{1\frac{1}{2}}$	63:3830 61:4037 61:3453 59:7340	3210 7090	1087 1852	+44-81 34-75	 1	58 8337 36 1867 36 2037	1690	1209	+ 42.38

Weighted mean . +42.03- 20 23 Radial velocity +21.3

β ORIONIS 1470.

1908. April 13. G. M. T. 12^h 22^m

Observed by J. S. PLASKETT.

Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^m	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^{ns}	Velocity.
	63 * 3425 61 * 3570 61 * 3030 59 * 7213	3230	1107 1202	+ 45*63 49*03		$58^{\circ}7861$ $36^{\circ}1305$ $36^{\circ}1485$	1700	1219	- 42.73

 ± 45.75 20.23 ·25 ·28 Curvature

Radial velocity +25.0

3 ORIONIS 1471.

1908. April 13. G. M. T. 12^h 34^m

Observed by J. S. PLASKETT.

Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^m	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Disp ⁱ in rev ^{to}	Velocity
21 12	63 · 3504 61 · 3650 61 · 3036 59 · 7275	3156 7400	1033 1162	$^{+42:58}_{-47:40}$	11	58.7960 36.1787 36.1611	1876	1395	+48.89
Weighted mean									

309

Radial velocity +24 8

+28.2

β ORIONIS 1873.

1908. Sept. J. G. M. T. 21^h 52^m

Observed by J. B. CANNON, Measured by J. S. PLASKETT.

Observed by J. B. CANNON, Measured by J. S. PLASKETT.

Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^{ns}	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^{ns}	Velocity.
2 2 2 2	$63^{\circ}3948$ $61^{\circ}4080$ $61^{\circ}2458$ $59^{\circ}6682$	2498 6722	0068 0208	+2.18 +8.46	2 2 1	58.8286 36 1061 35.9859			- 5*87
					Weigh	ted mean Va Vd Curvate			+25.29

Radial velocity

β ORIONIS 1874.

1908. Sept. 7. G. M. T. 22^h 10^m

Wt.	Mean of Settings.	Corrected Star Settings.	$\begin{array}{c} Disp^{i} \\ in \ rev^{ns} \end{array}$	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^{as}	Velocity.
01 21 01 01	$\begin{array}{c} 63^{+}3952\\ 61^{+}4064\\ 61^{+}2468\\ 59^{+}6584 \end{array}$	2495 -6600		+2.06 +3.50	2 2 1	$58^{\circ}8342$ $36^{\circ}1037$ $35^{\circ}9972$	0025	0033	- 1-15
					Weight	ed mean			- 1:99 95-99

Va .	
Vd Curvature	- 28 '09

Radial velocity +27.1

3 ORIONIS 1935.

1908. Oct. 13. G. M. T. 21^h 19^m

Observed by J. S. PLASKETT.

Wt.	Mean of Settings,	Corrected Star Settings.	Disp ^t in rev ^{ns}	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings,	Disp ⁱ in rev ^{ns}	Velocity.
	63:3985 61:4043 61:2224 59:6723	2270 6760	0175 0210	$^{-7.19}_{+8.54}$	2 2 1	$58^{\circ}8313$ 36 1175 36 $^{\circ}0062$	9982	·0076	- 2 66
					Weight	ed mean .		- 2.00	

Radial velocity +18.3

1908, Oct. 13, G. M. T. 21^h 48^m

\$ ORION1S 1936.

Observed by J. S. PLASKETT.

Wt.	Mean of Settings.	Corrected Star Settings.	Disp ⁴ in rec ⁿ	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^{ts}	Velocity.
$22 \\ 3 \\ 1\frac{1}{2}$	$\begin{array}{c} 63 & 3626 \\ 61 & 3762 \\ 61 & 1940 \\ 59 & 6216 \end{array}$	2285 6576	0150 0062	$^{-6}_{+2}$ 52	2 2 1	58:7965 36:0878 35:9778		0058	2.03
					Weight	ted mean		3 · 27	- 20 66

3 ORIONIS 1937.

1908. Oct. 13. G. M. T. 22^h 19^m

Wt.	Mean of Settings.	Corrected Star Settings.	Disp ⁱ in rev ⁿ⁻	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^{is.} Velocity.
2 2 2 1	63:3670 61:3727 61:2064 59:6033	2414	0031 0091	1·27 3·70	2 2 2	58 8030 3610830 3619604	9875	• 0183 6 50

W

eighted mean.	- 2 71
Va Vd	- 20 65
Curvature	. – 128

Radial velocity ...

β ORIONIS 1938.

1908. Oct. 13. G. M. T. 22^h 47^m

Observel by Measured by J. S. PLASKETT.

Observed by J. S. PLASKETT.

Wt.	Mean of Settings.	Corrected Star Settings.	Disp ⁶ in rev ^{as}	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ⁿ	Velocity.
2232	63 3806 61 3922 61 2124 59 6301	2304 6386	0141	- 5 80 5 20	$\frac{2}{2}{1}$	58-8156 36-1048 35-9790		0218	
					Weight	Vd		- 5'90 - 18 - 28	26*65

Vd				
Corv				

β ORIONIS 1978.

Observed by J. S. PLASKETT.

Observed by J. S. PLASKETT.

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^{irs}	Velocity.	Wt.	Mean of Settings,	Corrected Star Settings.	Disp ^t in rev ^{ns}	Velocity.
	2 2 1 1	61 · 3628 61 · 2132	2282	·0159	+ 6.55	21 22 -121	36.1436			+ 9.99

Va			+ 6.85
Vd Curvature.		$^{+02}_{-28}$	•
De Roberts des las			. 15.0

Radial velocity.

β ORIONIS 1979.

1908. Nov. 21. G. M. T. 18^h 43^m

Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^{as}	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^{ns}	Velocity.
2 2 1 1 1 1 1	63 : 3061 61 : 3300 61 : 1662 59 : 6141		0353	+ 14 .39	2 2 19	58.7652 36.1120 36.0187		0106	+ 3 72

We

ighted	mean		
	Va Vd		+ 6 82
	Curvature	38	

β ORION1S 1980.

Observed by J. S. PLASKETT.

1908. Nov. 21. G. M. T. 19^h 05^m

Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ¹¹⁹	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings,	Disp ^t in rev ^{ns}	Velocity.
2 2 3 2	$63^{\circ}3533$ $61^{\circ}3671$ $61^{\circ}2382$ $59^{\circ}6646$	· 2480 · 6745	-0857 -0507	$^{+14.72}_{-20.58}$	$2 \\ 2 \\ 1\frac{1}{2}$	58 7995 36 1350 36 0917	1090	0609	+21.34

Radial velocity.... +24.5

3 ORIONIS 1981.

Observed by J. S. PLASKETT.

1908. Nov. 21. G. M. T. 19^h 33^m

Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^{as}	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^{ns}	Velocity.
2 2 3 11	$63^{\circ}3651$ $61^{\circ}3788$ $61^{\circ}2564$ $59^{\circ}6711$	2540 6700	0417 0462	+ 17 19 18 · 75	2 2 1	58 8190 36.1536 36.1135	1120		+ 22 40

Radial velocity ... + 25.0

β ORIONIS 1984

1908. Nov. 28. G. M. T. 16^h 05^m

 $\begin{array}{l} {\rm Observed \ by} \\ {\rm Measured \ by} \end{array} \big\} J. \ S. \ PLASKETT. \end{array}$

Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^m	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^{ns}	Velocity.
2 2 3 1 ¹ / ₂	$\begin{array}{c} 63:3672\\ 61:3818\\ 61:2562\\ 59:6454 \end{array}$	$2518 \\ 6418$	0395 0180	+ 16 · 28 7 · 34	2 2 2	58 8125 36 1472 36 1186	1236	-0755	+ 26 - 47

Radial velocity - 21.0

β ORIONIS 1985.

1908. Nov. 28. G. M. T. 16^h 34^m Observed by J. S. PLASKETT.

Mean Corrected Mean Disp⁴ Dispt Wt. Velocity Wt. Velocity. of Star of Star in revm in revus Settings. Settings. Settings. Settings. 63:4001 58-8418 $\begin{array}{r}
61 & 4112 \\
61 & 2867 \\
59 & 7043
\end{array}$ 36·1728 36·1352 2527 +16.651155 0405 0674 +23.636713 0475 19-37 Weighted mean + 19.10Va.... Vd.... .10 Vd. Curvature - 28

β ORIONIS 1986.

1908. Nov. 28. G. M. T. 17^h 08^m

Observed Measured	by '	Ìτ.	ø	Description
Measured	by.	10.	0.	I LASKEIL

Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ⁿ	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^{ns}	Velocity.
$2 \\ 2 \\ 3 \\ 1\frac{1}{2}$	63:3743 61:3865 61:2439 59:6728	2340 6645	0217 0407	+ 8.94 16 60	2 2 2 2	58:8170 36:1450 36:1220	1290	0809	+ 28 · 36
					Weid	zhted mean			+16.91

		. 00.7
Curvature	-28	
<u>V</u> <i>a</i>		+ '05
Va		+ 379

Radial velocity ... + 20

Observed by J. S. PLASKETT.

β ORIONIS 1987.

1908. Dec. 1. G. M. T. 17^h 53^m

Wt.	Mean of Settings.	Corrected Star Settings.	Dispt in rev ^m	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^{as}	Velocity.
2 2 2 1	63:3748 61:3934 61:2490 59:6524	2005 6385	0200 0420	+ 8°33 17°13	2 2 1	58 8267 36 2127 36 1757	1573	0668	+ 23 · 44

Veighted	mean		+14 31
	V.a	- 04	+ 2 42
	Curvature	- '28	

Radial velocity.

+20.9

Radial velocity... + 16.4

β ORIONIS 1988.

1908. Dec. 1. G. M. T. 18^h 18^m

Observed by J. S. PLASKETT.

Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^m	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^m	Velocity.
2 2 2 1	$\begin{array}{c} 63 \cdot 33533\\ 61 \cdot 3527\\ 61 \cdot 2276\\ 59 \cdot 6515 \end{array}$	2515 6735	0392 0497	+ 16:16 20:27	2 2 1	$58^{\circ}7876$ $36^{\circ}1671$ $36^{\circ}1272$		0043	+22.24
					W	V d	ature		+18.78 + 2.42

190 G.	98. Dec. 1. M. T. 18 ^h ;	96 ^m		3 ORIO	NIS 198	9, 0 M	Observed by J. S. PLASKETT.			
Wt.	Mcan of Settings.	Corrected Star Settings.	Disp ^t in rev ^m	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^{ns}	Velocity.	
2 2 2 2 1	63:3437 61:3587 61:2166 59:6620	2335 6760	0212	+ 8.74 21.29	2 2 113	58 · 7973 36 · 1794 36 · 1287	1015	0535	+18.75	
					We	ighted mean Va. Vd Curv	ature	- 12 - 28	$^{+14}_{+2.42}$	
						Radial velo			+16.1	

β ORIONIS 1990.

1908. Dec. 1. G. M. T. 18^h 52^m

Observed by J. S. PLASKETT.

Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^{ns}	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Dispt in rev ^{ns}	Velocity.
3 2	63 3478 61:3679 61:2397 59:6724	-2520 -6830	0397 0592	$^{+16}_{-24}$	····· 1	58 8000 36 1850 36 1648	1320	0839	+ 29 41

Radial velocity..... + 23 1

β ORIONIS 2003.

1908. Dec. 5. G. M. T. 16^h 10^m

Observed by J. B. CANNON. Measured by J. S. PLASKETT.

Mean Mean Corrected Star Disp Disp^t Velocity. Wt. Velocity. Wt. of Star in revni iu revns Settings. Settings. Settings. Settings. 58.8090 63:3465 $61 \cdot 3690 \\ 61 \cdot 2456 \\ 59 \cdot 6764$ 36 2298 2215 6518 1713 0810 +28'4810410 +169522.62 36:2074 .0553

Weighted mean +22.16.63 .10

Radial velocity, ... +22.6

3 ORION18 2004.

1968. Dec. 5. G. M. T. 16⁶ 22ⁿ

Observed by J. S. PLASKETT.

Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^{an}	Velocity.	Wt.	Mean of Settings.	Corrected Star Setting:	Disp ^t in rev ^{nt}	Velocity.
• 2 2 2 2 2	63 3170 61 3390 61 2216 39 6557	-2275 -6610	0470 0635	19:43 25:98	2 9 1	58 7790 36 1924 36 1868	1886	0981	- 34 - 49
					Weig	hted mean Va. Vd		· · · · · ·	

Radial velocity. - 25 1

\$ ORIONIS 2005.

1908. Dec. 5. G. M. T. 16^h 38^m Observed by J. S. PLASKETT. Measured by J. S. PLASKETT.

Wt.	Mean of Settings.	Corrected Star Settings	Dispt in rev ^{ns}	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings	Disp ^t in rev ^{us}	Velocity.
2 2 2 1 1 1 1 1 1	$\begin{array}{c} 63 & 3054 \\ 61 & 3304 \\ 61 & 2269 \\ 59 & 6314 \end{array}$	2415 6450	0610 0485	25-22 19-84	$2 \\ 2 \\ 1^{\frac{1}{2}}$	58 7707 36 1884 36 1715	1775	0870	+ 30-59

Weighted	mean							+25	
	V_a .								63
	Vd. Cur						99	+	05
	Cui	va	un	с.			20		

Radial velocity..... +25°6

β ORIONIS 2006.

1908, Dec. 5. G. M. T. 16^h 53^m

Observed by J. S. PLASKETT.

Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^{ns}	Velocity.	Wt.	Mean of Settings.	Corrected Disp ^t Star in rev ^{ns}	Velocity.
$22 \\ 3 \\ 1^{\frac{1}{2}}$	$63 \cdot 3019 \\ 61 \cdot 3242 \\ 61 \cdot 2261 \\ 59 \cdot 6262$	2480 6480	0675 0515	$^{+27}_{21}$ 90 21 07	2 2 1	$58\ 7614$ 36 1852 36 1782	1872 0967	+ 34 00
					Weig	hted mean. Va Vd		27 · 14 · 63 · 03

Radial velocity

1908. Dec. 21. G. M. T. 15^h 24^m

3 ORIONIS 2054.

Observed by J. S. PLASKETT. Measured by J. S. PLASKETT.

Wt.	Mean of Settings.	Corrected Star Setting.	Dispt in rev ^{as}	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Dispt in rev ^m .	Velocity.
	54 7148 54 0045 53 9654 53 4020	-9630 -4000	0198 0218	22:90 25:05		53.0909 45.2924 45.2894	2907	0318	33 39
					Weigł	ted meau Va Vd Curva		6.51	- 28 - 28 - 04

Radial velocity..... + 21 5

β ORIONIS 2055.

1908, Dec. 21. G. M. T. 15^b 29^m

Observed by T. H. PARKER. Measured by J. S. PLASKETT.

Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^{us}	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ¹⁴	Velocity.
2 2 1	54 7334 53 9890 53 4172	9690 3990	0258 0208	$^{+29}_{-23}^{-84}_{-90}$	$2 \\ 1 \\ 2$	53 1065 45 2957 45 2891	2907	0318	+ 33 - 39

 $\pm 28^{+}65$ -28 + '03 Curvature ...

Radial velocity . +21.9

β ORIONIS 2057.

1908. Dec. 21. G. M. T. 16^b 54^m

Observed by T. H. PARKER, Measured by J. S. PLASKETT,

Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^{ns}	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	L isp ⁴ in rev ^{no}	Velocity.
2 2 2 1	56 6288 54 7099 53 9683 53 4072	9695 4080	0263 0298	+ 30 42 34 24	$2 \\ \frac{11}{2}$	53 0900 45 2802 45 2730	2926	0327	+ 34 . 34
					Weigh	ted mean Va Va		- 6°53 - 07	+32.57

Curvature - 28

+22.0

Observed by T. H. PARKER. Measured by J. S. PLASKETT.

Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^{ns}	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^{ns}	Velocity.
$\frac{2}{2}$ $\frac{1}{12}$ $\frac{1}{12}$	56.6155 54.6935 53.9424 53.3996	9585 - 4140	0143 C358	+ 16 54 41 14	$2 \\ 1 \\ 2 \\ 2$	$53 \cdot 0753$ 45 · 2686 45 · 2681	2853	0267	- 28:04
					Weight		re	- 6.53 - 07 - 28	- 28 · 91

1908. Dec. 22. G. M. T. 17^h 38^m

Mean Dispt Disp^t in revⁿ Velocity. W't. Velocity. of Star of in revue Settings. Settings. Settings. Settings. $58^{\circ}7699$ $36^{\circ}2329$ $36^{\circ}2528$ 63.3046 61 · 3280 61 · 2436 +43.38 $2278 \\ 6520$ 0792 +32.840828 Wei

ghted	mean		-35
	Va	6.98	
	Vd	11	
	Curvature	-28	
12 - 3	list ustanian		99

Radial velocity.....

3 ORIONIS 2066.

1908. Dec. 22. G. M. T. 17^b 52^m

Observed by J. S. PLASKETT.

Observed by J. S. PLASKETT.

Wt.	Mean of Setting>.	Corrected Star Settings.	Disp ^t in rev ⁿ	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Disp [†] in rev ^{n•}	Velocity.
$2 \\ 2 \\ 3 \\ 1^{\frac{1}{2}}$	$63^{\circ}2896$ $61^{\circ}3178$ $61^{\circ}2262$ $59^{\circ}6270$	2220 6245	0734 0553	- 30°43 22°68	2 2 1	58.7610 36.2286 36.2245	2320	0990	+ 34 92
					Weight	ed mean			- 29 13

Va..... Vd..... Curvature.... 12 $^{-28}$

Radial velocity +21.7

1908. Dec. 21. C. M. T. 175 tol

8 ORIONIS 2067.

 $\begin{array}{l} {\rm Observed \ by} \\ {\rm Measured \ by} \end{array} \} J. \ S. \ P_{LASKETT.} \end{array}$

1903. Dec. 22. G. M. T. 18^h 02^m

Se	of ttings.	Star Settings.	Disp ^t in rev ^{ne}	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^{ns}	Velocity.
2 4	63 · 2842 61 · 3040 61 · 2047 59 · 6403	2110 6480	0624 0788	+25.87 32.32	$\frac{2}{2}$	$58^{+}7512$ $36^{+}2038$ $36^{+}2081$	2405	1075	+ 37 '92

\$ ORIONIS 2068.

1908. Dec. 22. G. M. T. 18^h 14^m

Observed by J. S. PLASKETT.

Wt.	Mean of Settings.	Corrected Star Settings.	Dispt in rev ^m	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^{as}	Velocity.
$2 \\ 2 \\ 2 \\ 1 \\ 1$	$63^{\circ}2842$ $61^{\circ}3115$ $61^{\circ}2151$ $59^{\circ}6468$	2160 6483	0674 0791	$^{+2794}_{-32+45}$	2 2 1	$58^{+}7570$ $36^{+}2160$ $36^{+}2098$	2300	0970	+ 34 21
				W	ighted	mean			30.63

Radial velocity. + 23.2

B ORIONIS 2070.

1908. Dec. 23. G. M. T. 14^h 00^m

Observed by W. E. HARPER. Measured by J. S. PLASKETT.

Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^{n*}	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^{ns}	Velocity.
$ \begin{array}{c} 3 \\ 2 \\ 3 \\ 1^{\frac{1}{2}} \end{array} $	$\begin{array}{c} 63 \cdot 2758 \\ 61 \cdot 2947 \\ 61 \cdot 1996 \\ 59 \cdot 6100 \end{array}$	2490 6580	-0685 -0615	$+28^{\circ}32^{\circ}25^{\circ}16^{\circ}$	2 2 1 2	58 7363 36 1449 36 1500	•1990	1085	+ 38, 15

18

Weighted mean. Va. - 7 36 Vd. - 28

3 ORIONIS 2071.

1908. Dec. 23. G. M. T. 14^h 40^m

Observed by W. E. HABPER. Measured by J. S. PLASKETT.

Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^a	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^{ns}	Velocity.
2 2 3 1	63 3263 61 3499 61 2612 59 6928	2580 6920	0775	+32°04 38°25	2 2 1	58.7844 36.2102 36.2124	1964		+ 37 23
					Weig	hted mean Va Vd Curva		- 7.36	+34·32 - 12

3 ORIONIS 2072

I908. Dec. 23.
 G. M. T. 15^h 08^m

1908. Dec. 23. G. M. T. 15^h 20^m Observed by J. B. CANNON. Measured by J. S. PLASRETT.

-26.8

Wt.	Mean of Settings.	Corrected Star Settings.	Disp ⁱ in rev ⁿ	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Dispt in revos	Velocity.
02 22 23 40402	$\begin{array}{c} 63 & 3214 \\ 61 & 3398 \\ 61 & 2460 \\ 59 & 6670 \end{array}$		0695 0738	+ 28 73 30 19	2 2 1	58 7812 36 2100 36 2152	1995	· 1090	+ 38 ' 32

Radial velocity

3 ORIONIS 2073.

Observed by Measured by J. S. PLASKETT.

Mean Corrected Mean Corrected Dispt in revns Dispt in revus Velocity. Wt. Wt. Star of Star of Settings. Settings. Settings. Settings. 63 2965 58 7615 61 3207 36 1916 36 1928 1954 1049 2470 $+27 \cdot 49 \\ 25 \cdot 77$ $61 \cdot 2222$ 59 $\cdot 6362$ 0665 36.88 6595 0630

+28.73+ '07

Radial velocity +21'2

β ORIONIS 2075.

Observed by J. S. PLASKETT.

1908. Dec. 26. G. M. T. 15^h 50^m

3 ORIONIS 2076.	0.	RIO.	VIS.	
-----------------	----	------	------	--

1908. Dec. 26, G. M. T. 16^h 00^{so}

Observed by Measured by J. S. PLASKETT.

Wt.	Mean of Settings.	Corrected Star Settings. Disp ⁴ in rev	, Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ⁿ	Velocity.
$22 \\ 23 \\ 11 \\ 12$	63 3051 61 3204 61 2357 59 6614			2 2 1 ¹ / ₂	58 7573 36 1624 36 1630	1950	1045	+ 36 74

Wei

ighted	V_d				8 68 01	+34.81	
		rvau			28		

8 ORIONIS 2077.

1908. Dec. 26. G. M. T. 16⁶ 09⁶

Observed by J. S. PLASKETT.

Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^m	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings	Disp ^t in rev ^{es}	Velocity.
2 2 3 1 2 3	63 · 3424 61 · 3608 61 · 2612 59 · 6842	2450 6730	-0645 0765	26 66 31 30	2 2 112	58-7943 36-1993 36-2132	2082		+ 41 38
					Wuig	hted mean.			91-16

8 68 .02

Curvature

Radial velocity + 22.5

β ORIONIS 2078.

19 G.	08, Dec. 26, M. T. 16 ^h	18 ^m		β ORIOI	NIS 204	'8. М	Deserved by J. S. PLASKETT.			
Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rov ^{ns}	Velocity.	W't.	Mean of Settings.	Corrected Star Settings.	Disp ⁴ in rev ^{ns}	Velocity.	
21 21 21 21 ⁻¹²¹	63 3147 61 3334 61 2290 59 6970	2410 7120	0605 1135	+25.01 46.45	2 2 1	58 7684 36 1610 36 1567	1900	0995	+ 34 - 98	
				W	eighted	niean		8-68	30.92	

V_d^a			8.68	
Curvature.			-28	

3 ORIONIS 2079.

Observed by J. S. PLASKETT.

*	MI. X. 19								
Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ⁿ	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^{ns}	Velocity.
01 01 02 01	63 3248 61 3453 61 2754 59 7087	2750 7115	0945 1150	+ 39 07 47 05	2 2 1	58 7809 36 1593 36 1787	2140	.1235	+ 43 42
				W	ighted	meau			+ 42:45

ighted	1	Va Vd	ture					08	+ 42	45 15	
								20			

Radial velocity . ..

3 ORIONIS 2080.

Dec. 27.
 G. M. T. 15^b 10^m

1908. Dec. 27.

$\begin{array}{l} {\rm Observed \ by} \\ {\rm Measured \ by} \end{array} J. S. PLASKETT. \end{array}$

Wt.	Mean of Settings.	Corrected Star Settings.	Dispt in revus	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^m	Velocity.
2 2 3 1	63 · 3504 61 · 3730 61 · 3054 59 · 7017	2780 6790	0975 0825		2 2 1	58 8064 36+1823 36+1975	2093	1190	- 41 ' 84

Weighted mean. 4 39:02 9.08 - 105 Curvature. ...

Radial velocity..... + 29 7

β ORIONIS 2082.

1908. Dec. 31. G. M. T. 15^h 19^m

Wt

Mean Corrected Corrected Mean Dispt Dispt of Velocity. Wt. of Star Velocity. in revne Settings, Settings. Settings. Settings. 54:7142 53.0938 54 0115 45 2860 2855 0368 +385353 9684 9790 0224 $^{+\,25}_{-\,37}^{-\,84}_{-\,03}$ 45 2716 53-4146 4225 0323 Weighted mean..... Va..... Vd..... + 33.80 10 77 .00 Curvature .. 28 Radial velocity.+ 22.7 β ORIONIS 2083. Observed by W. E. HARPER. Measured by J. S. PLASKETT. Weighted mean. 35.72 .00 Curvature -28Radial velocity 24.7 3 ORIONIS 2084. Observed by W. E. HARPER. Measured by J. S. PLASKETT. Mean Mean Corrected Disp Dispt Star Velocity. Wt. Velocity. of of Star Settings. Settings. Settings. Settings. 54 6938 53:0745

Weighted mean..... Curvature

Radial velocity

10.77 -00

0325 +34.02

2812

Observed by W. E. HARPER. Measured by J. S. PLASKETT.

1908. Dec. 31, G. M. T. 15^h 23^m

Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ⁿ	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^{ns}	Velocity.
2 2 2 1	54:7063 54:0015 53:9690 53:4065	9860 4215	0294 0313	- 33 · 92 35 · 88	$2 \\ 1\frac{1}{2} \\ 2$	53.0866 45.2868 45.2719	2850	0363	- 38 .00

1908. Dec. 31. G. M. T. 15^h 29^m

53 9878 53 9587

9880 0314 ·4160

Wt.

+ 36 23

.28

23.0

34:01

1908. Dec. 31. G. M. T. 15^h 57ⁿ

Observed by W. E. HARPER. Measured by J. S. PLASKETT.

Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^{n.}	Velocity.	Wt,	Mean of Settings.	Corrected Star Settings.	Dispt in rev ^{ns}	Velocity.
2 2 3 11	$54^{\circ}6997$ $53^{\circ}9927$ $53^{\circ}9592$ $53^{\circ}4022$	9835 4255	0269 0353	- 31 °03 40 °46	10 10 10	53 0777 45 2854 45 2717	2895	0408	- 42.71

10 77 28

Radial velocity. + 26:5

3 ORIONIS 2092.

1909. Jan. 6. G. M. T. 16^h 49^m

Observed by W. E. HARPER. Measured by J. S. PLASKETT.

Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^{ns}	Velocity.	Wt.	M⊦an oî Settings.	Corrected Star Settings.	Disp ^t in rev ^{ns}	Velocity.
$22 \\ 23 \\ 112 \\ 12$	54 7150 54 0102 53 9756 53 1128	9860 4230	0294 0328	+ 33 92 37 60	2 13 2	53.0905 45.2718 45.2734	2730	0243	+25*44

+32.72- 13 21 Curvature. .28

> Radial velocity..... +19.1

β ORIONIS 2093.

1909. Jan. 6. G. M. T. 16^b 53^m

Observed by W. E. HABPER. Measured by J. S. PLASKETT.

Mean Corrected Mean Corrected Dispt Dispt Wt. Star Velocity. Wt. Velocity. of of Star in revns Settings. Settings. Settings. Settings-54 7120 53:0884 0263 2750 +27.4354.0046 -33.92 9860 .0294 +4250 0348 39.89 +33.30

Va Vd Curvature -13.21 28

Radial velocity...... + $19^{\circ}6$

CORIONIS 20.4.

1909. Jan. 6. G. M. T. 17^h 13^m

Observed by W. E. HARPER, Measured by J. S. PLASKETT,

Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^{iis}	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^{as}	Velocity.
2 2 3 2	54 7235 54 0160 53 9867 53 4193	-9850 4143	0284 0241	- 32 77 27 63	21 22 23	53 1074 45 2957 45 2876	2430	0343	+ 35 81
					Weight	ed mean Va		i3-21	32.17

Radial velocity ... 18 5

Observed by W. E. HARPER. Measured by J. S. PLASKETI.

3 ORIONIS 2095.

1969. Jan. 6. G. M. T. 17^h 16^m

Mean Dispt Disp^t in rev^m Wt Velocity. of Star Wt. of Star Settings. Settings. Settings. 56.6440 53:0990 2815 0328 +34 34 9830 0264 +30.46 53 4356 4380 0478 Weighted mean..... 34:89 Va..... Vd..... 13 21 16

3 ORIONIS 2105.

Curvature Radia: velocity

Radial velocity..

1909. Jan. 7. G. M. T. 12^h 49^m

Wt.

01 01 03

Observed by J. S. PLASKETT

Mean Corrected Mean Corrected Dispt Dispt Star Velocity. of Star Settings. Settings Settings. Settings 54 7033 53 9964 53.0832 9600 0168 +19.432902 +32.8753.4150 4215 0433 49.76 Weighted mean ... +30.5713:59

	-1619

β ORIONIS 2106.

$ \begin{array}{cccc} \beta \text{ ORIONIS 2106.} \\ \text{Observed by} \\ \text{G. M. T. } 13^{8} 01^{m} \end{array} \right. \begin{array}{c} \beta \text{ ORIONIS 2106.} \\ \text{ Observed by} \\ \text{Messared by} \\ \end{array} \right\} \text{J. S. PLASE} $										
Vt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^{ns}	Velocity,	Wt.	Mean of Settings.	Corrected Star Settings.	Disp [†] in rev ^{ns}	Velocity.	
22232	54.7102 54.0042 53.9710 53.4114		·0293 ·0343	+ 33 89 39 41	2 2 1 ¹ / ₂	53.0883 45.2895 45.2880	2920	0331	+34.76	
					w	eighted me	an		+ 35 - 79	

Va		- 13	- 59		
Vd			11		
Curvature.			28		
D - di - 1 1 i i -				91.0	

β ORIONIS 2107.

1909. Jan. 7. A. M. T. 13^h 04^m

190 .d.	 Jan. 7, M. T. 13^h 	04 ^m		Observed by J. S. PLASKETT.						
Wt.	Mean of Settings	Corrected Star Settings.	Disp ^t in rev ^{ns}	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Dispt in rev ^{ns}	Velocity.	
2 2 3 11	54 7028 54 0000 53 9603 53 4016	9653 4060	0221 0278	+ 25.56 31.94	$2 \\ 2 \\ 1\frac{1}{2}$	53 0852 36 2832 36 2708	2810	0221	+ 23 · 21	

+26.57

Radial velocity + 12.8

β ORIONIS 2108.

1909. Jan. 7. G. M. T. 13^h 07^m

Observed by J. S. Plaskett.

Wt.	Mean of Settings.	Corrected Star Settings,	Disp ^t in rev ^m	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Dispt in rev ^{ns}	Velocity.
$2 \\ 1 \\ 2\frac{1}{2} \\ 1\frac{5}{2}$	54 7190 54 0072 53 9772 53 4133	9715 4097	0283 0315	+32.73 36.20	2 2 2 2	53 · 0925 45 · 2938 45 · 2933	2931	0342	+ 35.91
					v	Veighted mea $V_a \dots V_d$	n	-13.29	+ 34 66

Veighted	mean		+3466
Va		-13.29	
Va		- '11	
Cur	wature	- '28	

Radial velocity - 20.7

8 ORIONIS 2111.

1909. Jan. 7. G. M. T. 16^h 27^m

Observe

Observed by J. S. PLASKETT. Measured by J. S. PLASKETT.

Wt.	Mean of Settings.	Corrected Star Settings	Disp ^t in rev ^m	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^{ns}	Velocity.
$22 \\ 22 \\ 21 \\ 1$	63 3019 61 3278 61 2471 59 6883	2315 6760	0829 1068	34 · 37 43 · 81	2 11 2	58 7700 36 2038 36 2253	2023	0693	+24.46

Radial velocity. +19.2

β ORIONIS 2112.

1909. Jan. 7. G. M. T. 16^h 37^m

Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ²⁹⁵	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^{us}	Velocity.
2 2 3 2	63 · 2779 61 · 3033 61 · 2146 59 · 6353	2236 6455	0750 0763	$^{+31}_{31}$ $^{\cdot51}_{31}_{30}$	$2 \\ 1 \\ 2 \\ 2$	58.7484 36.2003 36.2131	2120	0790	+ 27 86

β ORIONIS 2114.

1909. Jan. 7. G. M. T. 16^h 56^m

11

Observed by J. S. PLASKETT.

Vt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^{ns}	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^{ns}	Velocity.
$22 \\ 23 \\ 1\frac{1}{2}$	63 2829 61 3072 61 2181 59 6679	2220 6695	0734		$1\\1\frac{1}{2}\\2$	58 7582 36 1955 36 2146	2045	.0715	+ 25 22
					v	Va .	ture	- 13 59 - 11 - 28	31:80

Observed by J. S. PLASKETT.

3 ORIONIS 2117.

1909, Jan. 8. G. M. T. 15^h 48^d

Observed by T. H. PARKER. Measured by J. S. PLASKETT.

Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^{as}	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ⁿ	Velocity.
2 1 2 1	54 6880 53 9760 53 9517 53 3882	9750 4113	-0318 -0331	+ 36.78 38.04	2 2 2	53.0662 45.2638 45.2622	2850	0261	+ 27 41
					Wei	Va		13 96 09 28	33-28

1909. Jan. 8. G. M. T. 15^h 52^m

Observed by T. H. PARKER. Measured by J. S. PLASKETT.

Radial velocity. -18'9

Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ⁿ	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^{ns}	Velocity.
$2 \\ 2 \\ 2 \\ 1 \\ 1$	54 · 7077 53 · 9948 53 · 9690 53 · 4030	9730 4060	0298 0278	-34 47 31·84	2 2 2	53.0872 45.2898 45.2837	2935	0346	+ 36 - 33

We

eighte	ed n	iear	1			+	34.65
	V_a					13.96	
	Vd					.08	
	Cur	vat	ure			-28	
_							

Radial velocity + 20*3

3 ORIONIS 2122.

1909. Jan. 12. G. M. T. 11^h 55^m

Observed by J. S. PLASKETT.

Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^{as}	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ¹⁰⁸	Velocity.
2 2 1 2 2	54 7074 53 9968 53 9694 53 4238	9735 4275	0303 0493	+ 33 80 54 97	$\frac{2}{2}$	53.0858 45.2886 45.2856	2905	0316	+ 34 92

+ 41.91·23

Radial velocity + 26.5

3 ORIONIS 2123. Observed by J. S. PLASKETT. Measured by J. 1909, Jan. 12, G. M. T 11⁵ 59¹⁰ Mean Wt of Star of Star Settings. Settings. Settings. Settings 54:7088 53 0880 $45 \cdot 2791$ $45 \cdot 2727$ 53 9990 9836 0428 47 75 36:01 2890- 33 26 4105 0323 53 4085 Weighted mean..... 41:32 15.39 Radial velocity - 26:0 3 ORIONIS 2124.

1909. Jan. 12. G. M. T. 12^b 09^m

Mean Disp^t Velocity. Mean Dispt Velocity Wt. of Star Wt. of Star Settings Settings. Setting-54:7008 53:9928 53.0750 45 2813 9700 0268 +29.9045.2783 2905 +34 92 49:39 53:4100 0443

35.97 15 39 Va Vd ·23 28

Star

3 ORIONIS 2125.

Velocity.

1909. Jan. 12.
 M. T. 12^h 12^m Mean

of Stor

Settings. Settings

54.7110

54 0045 53 9770

Wt.

4 53 4077 Observed by J. S. PLASKETT.

in revne

+34-92

+36.77·23

Radial velocity..... +91.3

2905

Corrected

9775

-4105 0323 36:01

Disp^t

in revus

0343 +38.27 Observed by J. S. PLASKETT.

Weighted mean.... Curvature

> Mean Corrected Dispt

of

Settings Settings

53.0858

45 2870

9-10 EDWARD VII., A. 1910 Observed by Measured by J. S. Plaskett.

β ORIONIS 2126.

1909. Jan. 12. G. M. T. 12⁶ 15^m

Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^{ns}	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^m	• Velocity.
2 2 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2	54 7047 54 0000 53 9770 53 4113	9830 4180	0398 0398	+ 44 40 44 37	$\frac{2}{2}$	53.0813 45.2910 45.2885	2910	0321	+ 35 ' 47

Radial velocity. +27.2

Observed by Measured by J. S. PLASKETT.

β ORIONIS 2127.

1909. Jan. 12 G. M. T. 12^h 18^m

Mean Corrected Star Mean Corrected Dispt Wt. of Velocity Wt. Star Velocity of in revn. in rev" Settings. Settings. Settings. Settings. $54^{+}7144_{-}54^{+}0082_{-}53^{+}9767_{-}$ $\frac{2}{2}$ $\frac{53.0960}{45.2991}$ 9765 0333 - 37-15 45.3000 2945 0356 +39.3453:4291 4224 .0442 49.28

Radial velocity. +25°5

β ORIONIS 2128.

1909. Jan. 13. G. M. T. 15⁶ 36^m Observed by J. B. CANNON. Measured by J. S. PLASKETT.

Arcustica by 010. I mokart

Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^m	Velocity.	Wt.	Mean of Settings.	Corrected Star · Settings.	Disp ^t in rev ^{es}	Velocity.
21 22 21 23	54 7086 54 0031 53,9775 53 4281	9790 4275	0358 0493	$^{+}41^{-}41_{-}56^{-}65$	21 21 22	53:0920 45:2968 45:3012	2980	0391	+ 41.06
					Weig	$V_a \dots V_d \dots$		- 15°81 - 09	+ 46 · 37

Curvature . . - '28

Radial velocity + 30.2

3 ORION1S 2129. 1909. Jan. 13. G. M. T. 15^h 41^m Observed by W. E. HABPER. Measured by J. S. PLASKETT. Mean Corrected Mean Corrected Dispt Dispt W't. of Star of Star in revn in reves Settings Settings. Settings Settings. 53.0893 54 7082 54:0002 53:9730 45 2978 9748 + 36 - 54 0316 2810 0221 +23.2053-4061 1068 32.86 Weighted mean.... $V_a \cdots \cdots$ $V_d \cdots \cdots$ +31.90 -15.81 .09 Curvature -28 Radial velocity +15.7

β ORIONIS 2130.

1909. Jan. 13. G. M. T. 15^h 46^m

Observed by W. E. HARPER. Measured by J. S. PLASKETT.

Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^{ns}	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^{as}	Velocity.
2222	54 (6985 53 (9934 53 (9782 53 4029			$^{+51.82}_{-38.26}$	0) 0) 0) 0)	53.0813 45.2892 45.2940		0395	+41 48

Veighted mean	+44.97
Va	1
Vd	9
Curvature = '2	8

3 ORIONIS 2142

1909. Jan. 15. G. M. T. 15^b 11^m

Observed by J. B. CANNON. Measured by J. S. PLASKETT.

Mean Mean Corrected Dispt Velocity. Star Velocity. Settings. Settings. Settings Settings. 54°7058 53°9996 $53 \cdot 0911$ 45 2970 . + 41 40 9790 0358 0432 · 45.36 . 4105 Weighted mean. -41.28-16.50 - 04 Curvature.... 28

Radial velocity... -24 5

1909. June 15 G. M. T. 148 54 **

Observed by J. B. CANNON. Measured by J. S. PLASKETT.

3 ORIONIS 2143.

1909. Jan. 15. G. M. T. 15^h 15^m

Observed by J. B. CANNON. Measured by J. S. PLASKETT

Wt. Me Setti	f Star	Disp ^t in rev ^m	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings,	Disp ^t in rev ^{ns}	Velocity.
2 5			+47.65	21 21 22	53 0946 45 2937 45 3062		0472	

3 ORIONIS 2144

1909, Jan. 15. G. M. T. 15^h 19^m

Observed by J. B. CANNON. Measured by J. S. PLASKETT.

Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^{ast}	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^m	Velocity.
2 2 1 1	54 7053 53 9945 53 9672 53 4103	9750 4200	0318 -0418	- 36 78 48 03	2 2 2	53.0782 45.2864 45.2847	2920	0331	+34-76

+ 38.58

Curvature28

Radial velocity + 21.8

1909, Jan. 16, G. M. T. 12^h 25^m

3 ORIONIS 2151.

Observed by J. S. Provinert.

Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ⁿ	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^r in rev ^{**}	Velocity.
21 22 1 21 21 21	54 (6926 53 (9756 53 (9598 53 (3854	 9850 -4104		+ 48 25 36 00	21 21 23	$\begin{array}{c} 53 & 0657 \\ 45 & 2780 \\ 45 & 2970 \end{array}$		0541	- 58-61
					Wei	ghted mean. Va . Vd		- 16 82	

3 ORIONIS 2152.

Radial velocity.

1909. Jan. 16. G. M. T. 12^h 36^m $\left. \begin{array}{l} Observed \ by \\ Measured \ by \end{array} \right\} J, \ S, \ PLASKETT.$

Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^{are}	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Disp [†] in rev ⁿ	Velocity.
2 2 1	54 6990 53 9982 53 9738 53 4168	9820 4210	0388 0428	+ 44.78 48.18	2 2 2	53.0859 45.2919 45.2978	2995	- 0406	+42.63

β ORIONIS 2153.

1909. Jan. 16. G. M. T. 12^h 44^m Observed by $\stackrel{1}{\downarrow}$ J. S. Plaskett.

Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ⁿ	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ⁿ	Velocity.
2 2 2 1	54 7003 54 0022 53 9786 53 4072		0454 0378	- 52°51 43°44	2 2 3	53.0787 45.2970 45.3131	3100	0511	- 53 66
					Wa	ighted mean.			81.90

Radial velocity...... + 34-4

β ORIONIS 2154.

Observed by J. S. PLASKETT.

1909, Jan. 16. G. M. T. 12^h 52^m

2 56 6114	Wt.	Mean of Settings.	Corrected Star Settings,	Disp ^t in rev ^{ns}	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^{ns}	Velocity.
	$ \frac{2}{2} \frac{1}{2} 1^{\frac{1}{2}} $	54.6911	0025 4220	0593 0438	$^{+68}_{-49}$	$\frac{2}{2}{2}$	45-2845	3100	0511	- 53 66

Observed by J. S. PLASKETT.

β ORIONIS 2155.

1909. Jan. 16. G. M. T. 12^h 59^m

Mean Mean Corrected Dispt Wt. Dispt Velocity. Wt. Star Velocity. of of Star in revni in revn Settings. Settings. Settings. Settings 56:6278 53:4202 4220 9438 49-23 53.0880 54 0014 45 2940 45 3136 +51.03 9875 3130 + 53 66

Veighted mean		+ 51.0	1
Vd		-16·82 	3
Radial velocit	y		0

β ORIONIS 2156.

1909. Jan. 16. G. M. T. 13^h 12^m

Observed by J. S. PLASKETT.

Mean Mean Corrected Dispt Dispt Wt Velocity Wt. Star Star of Settings. Settings 54:7101 53:0934 45:3008 9845 +47.7753.78 45:3214 3140 0551 +58.914250 6468 Weighted mean 52.82-16.82

Radial velocity + 35'8

8 ORION1S 2157.

1909. Jan. 17. G. M. T. 13^h 48^m

Observed by J. S. PLASKETT. Measured by J.

Wt.	Mean of Settings.	Corrected Star Settings.	Dispt in reves	Velocity,	Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^{ns}	Velocity.
2 2 3 1	$54^{\circ}6992$ $53^{\circ}9936$ $53^{\circ}9741$ $53^{\circ}3965$		0418	+ 48 - 34 31 - 37	2 2 2	53 0802 45°2896 45°3062	3102	0513	+ 53 87

Weighted	mean			6 30
	Va			
	Vd			05
	Curvature		-28	
Ded	inl velocity			0.0

Observed by J. S. PLASKETT.

β ORIONIS 2158.

1909. Jan. 17. G. M. T. 13^h 56^m

Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^{tn}	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ¹⁹⁹	Velocity.
$2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2$	54 * 6898 53 * 9898 53 * 9655 53 * 3969		0403 0348	$^{+46.61}_{-39.99}$	2 2 2	53.0742 45.2874 45.2947	3010	0421	+ 44 21

·····

Radial velocity..... +26.2

3 ORIONIS 2161.

1909. Jan. 18. G. M. T. 12^h 41^m

Observed by J. S. PLASKETT.

Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^m	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^{os}	Velocity.
$2 \\ 2 \\ 2 \\ 1 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 2$	54 · 7073 53 9976 53 · 9851 53 · 4217	9880 4220	-0448 -0438	+51.81 50.37	$2 \\ 2 \\ 2^{\frac{1}{2}}$	53 · 0908 45 · 2916 45 · 3141	3160		+59.96
						V_d^a	ure	- 17 17	+ 54.84 + .05

25a - 24

+54.19+49.06

β ORIONIS 2162.

1909. Jan. 18. G. M. T. 12^h 46^m Mea

 $54.0111 \\ 53.9987$

Jan. 18. T. 12 ^h 46	jm		p ontro	J. S. Plas	SKETT.			
Mean of iettings.	Corrected Star Settings.	Disp ^t in rev ^{ns}	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^{ns}	Velocity
54:7174				2	53.0979			

9900 4098	-0468 -0316	$^{+54^{\circ}12}_{-36^{\circ}34}$	$\frac{2}{2}$	45 · 3097 45 · 3267	3105	051
		,	Weight	ed mean		-17:1

Va ... Vd ... 05 28

Radial velocity. + 31 · 3

Observed by J. S. PLASKETT.

β ORIONIS 2163.

1909. Jan. 18. G. M. T. 12^h 51^m

Wt.	Mean of Settings.	Corrected Star Settings.	Dispt in rev ¹¹⁵	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^{ra}	Velocit y.
2 2 3 1	54 7067 53 9965 53 9771 53 4107	9820 4147	0388 0365	- 44 87 41 '94	$\frac{2}{2}{2}$	53+0858 45+2994 45+3122	3051	0475	+49.88

Weighted mean +46.05-17:51 :08 Curvature ·28

Radial velocity

β ORIONIS 2164.

1909. Jan. 18. G. M. T. 13^h 06^m

Observed by J. S. PLASKETT.

+28.3

Mean Dispt Dispt Wt Star Wt. of Star of in revas in revns Settings. Settings. Settings. Settings. 54.707753.999053.992653:0867 +59.160471 + 49 46 9954 0521 3060 53 4235 -4261+53.54Weighted mean

⁺⁰⁸ Curvature. 28

Radial velocity +35.8

Wt.

SESSIONAL PAPER No. 25a 1909. Jan. 18, G. M. T. 13^h 10^m

β ORIONIS 2165.

Observed by J. S. PLASKETT-

Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^{ys}	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings,	Disp ^t in rev ^{ns}	Velocity.
$22 \\ 23 \\ 1$	54.7128 54.0073 53.9885 53.4284	9830 4215	-0398 -0433	$^{+} m 45.93\ 48.66$	21 22 22	$53 \ 0967 \\ 45 \ 3114 \\ 45 \ 3277$	3100	0571	+53.66
					Weigh	ted mean . Va		17.57	+48.96

Radial velocity		+ 31 -	2
Ud Curvature.	- 28		08
Va			08

β ORIONIS 2166.

1909, Jan. 18. G. M. T. 13^h 14^m

Mean Mean Corrected Disp^t Dispt Velocity. Wt. of Star in revus Wt. of Star Velocity. in revn Settings. Settings. Settings. Settings. 54:7106 53:0896 53 9998 53 9796 45:3060 45:3184 0373 +43.1450.95 9805 3065 0471 +49.464225 0443

> +48.25- 17 57 + '08

-30.5

3 ORIONIS 2177.

1909. Jan. 26. G. M. T. 10⁵ 36^m

Observed by J. S. PLASKETT,

+24.6

Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ⁿ	Velocity.	Wt.	Mean of Settings,	Corrected Star Settings.	Dis ₁ : in rev ^{ns}	Velocity.
2 2 2 1	54:7218 54:0095 53:9936 53:4276		0424 0418	49.04 48.03	2 2 2 2	53:0968 45:2904 45:2922	2954	0365	+ 38.33
					Weigh	Va		19.90	+ 44 · 55 + · 22

Radial velocity.

25a-24h

$\begin{array}{l} {\rm Observed \ by} \\ {\rm Measured \ by} \end{array} J. \, S. \, {\rm Plaskett}. \end{array}$

3 ORIONIS 2178.

1909. Jan. 26, G. M. T. 10⁶ 51

Observed by J. S. PLASKETT.

Wt.	Mean of Settings	Corrected Star Settings.	Disp ^t in rev ^{to}	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^{ns}	Velocity.
2 2 3 112	54:7527 54:0433 54:0181 52:4554	9766 4150	0334 0368	+ 38*63 42*29	$\frac{2}{2}$	53 · 1294 45 · 3207 45 · 3132	2861	0272	+ 28 56
				W	eighted	mean			+ 37.80

Observed by J. S. PLASKETT.

βORIONIS 2179.

1909. Jan. 26. G. M. T. 10^h 56^m

Wt.	Mean of Settings.	Con ected Star Settings.	Dispt in rev ^{as}	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^{ns}	Velocity.
2222 2112 112	54 7468 54 0423 54 0140 53 4594	53 9780 4260	0348 0478	+ 40 25 54 93	2 2 2	53 1221 45 3160 45 3215	2590	0401	+ 42 11

Radial velocity..... + 24 9

βORIONIS 2180.

Observed by J. S. PLASKETT. Measured by J. S. PLASKETT.

1909. Jan. 26. G. M. T. 11^b 01^m

Mean Corrected Mean Corrected Disp^t Dispt Velocity. Wt. Velocity. Wt. of Star of Star in revas Settings. Settings. Settings. Settings. 22_{22} 54:7250 $\frac{2}{2}$ 53.1036 54.0212 $45 \cdot 2950$ - 2994 53 9934 9770 0338 +39.0945:3008 0405 + 42.53 53 4420 0488 56.08 4270 Weighted mean +43.52

- 19 95 ... - 128 Curvature....

Radial velocity....

- 128 + 122
- + 23.5

338

3 ORIONIS 2181.

1969. Jan. 26. G. M. T. 11^h 11^m

Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^{ast}	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Dispt in rev ^{ns}	Velocity.
2 2 3 1	54-7250 54-0155 53-9908 53-4287	9780 4180	0358 0398	+41 40 45 73		53.0986 45.2998 45.3051	2990	0401	+ 42 11
				W	/eighted	Va Vd		. 19.95	- 42 38 22

3 ORIONIS 2182.

1909. Jan. 26. G. M. T. 11^h 16^m

Observed by J. S. PLASKETT.

Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^m	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^m	Velocity.
01 01 01 -40	54 7440 54 0407 54 0083 53 4372	9770 4080	0338 0298	+ 39 09 34 24	2 2 2	53.1178 45.3090 45.3066	2912	0323	+ 33 . 92

+36'25+ 22Radial velocity. +16.2

3 ORIONIS 2183.

1909. Jan. 26. G. M. T. 11^h 21^m

Observed by J. S. PLASKETT.

Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ⁿ	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^m	Velocity.
21 21 23 -4%	54 7394 54 0262 54 0003 53 4399	9760 4175	0328 0393	+ 37 93 45 14	2 2 2 2	53.1107 45.2972 45.3035	3000	0411	+ 43 16

Radial velocity... $\sim 20^{+}5$

β ORIONIS 2184.

1909. Jan. 28. G. M. T. 11^h 21^m

Observed by J. S. PLASKETT.

Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^{us}	Velocity.	Wt.	Mean of Settings.	Corrected Star Sectings,	Disp ^t in rev ^{as}	Velocity.
2 2 3 1	$\begin{array}{c} 54 \cdot 7322 \\ 54 \cdot 0224 \\ 54 \cdot 0007 \\ 53 \cdot 4160 \end{array}$		0368 0158	$^{+42\cdot56}_{-18\cdot16}$	2 2 2	$53^{\circ}1120$ $45^{\circ}3111$ $45^{\circ}3122$	2947	0358	+ 37 · 59

Weighted mean. +36.84V_d....- 20.51 V_d. Vd. Curvature..... - '28 + 21

-16'3

Observed by J. S. PLASKETT.

3 ORIONIS 2185.

1909. Jan. 28. G. M. T. 11^h 25^m

Disp Dispt Wt. Velocity. Wt. of Star Velocity. of Star Settings. Settings. Settings 54.7073 5310869 45-2864 9830 - 46:03 -2054 0365 +38.3350.33

Radial velocity.... .

β ORIONIS 2186.

1909. Jan. 28. G. M. T. 11^h 29^m

Observed by J. S. PLASKETT.

Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^{ns}	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rov ^{ns}	Velocity.
$22 \\ 22 \\ 21 \\ 1$	54:7073 54:9002 53:9697 53:4020	9735 4060	·0303 ·0278	$^{+35.04}_{-31.94}$	2 2 2	53+0851 45+2893 45+2888	2930	0341	+ 35 - 81

+34.73

+ '21

> Radial velocity +14.2

β ORIONIS 2187.

Observed by J. S. PLASKETT. 1909. Jan. 28. G. M. T. 11⁵ 41¹⁰ Mean Mean Corrected Dispt Velocity. Wt. Star Wt of of Star Settings. Settings. Settings. Settings. $54.7131 \\ 54.0015$ 53:0944 +31.572908 0318 + 33 - 39 53.9731 .9705 -4140 Weighted mean...... Va..... Vd..... - 20.51

β ORIONIS 2188.

1909. Jan. 28. G. M. T. 11^h 44^m

Observed by J. S. PLASKETT.

-14.3

Wt.	Mean of Settings.	Corrected Star Settings.	Disp [†] in rev ⁿⁱ	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^m	Velocity.
2 2 2 1 1	54 7128 54 0033 53 9628 53 4200	.9614	0182	+ 21.05	2 2 1 ¹ 2	53 0905 45+2924 45+2857		0280	+ 29.40

Radial velocity.

Radial velocity.

S ORIONIS 2189.

1969. Jan. 28. G. M. T. 11^h 47^m

Observed by J. S. PLASKETT.

Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^{us}	Velocity.	Wt.	Mean of Settings.	Corrected- Star Settings.	Disp ^t in rev ^{ns}	Velocity.
2 2 2 1	54 7175 54 0085 53 9802 53 4243			+ 34 - 46 - 42 - 29	$\frac{2}{2}{1\frac{1}{2}}$	53.1003 45.2987 45.2937		0397	

+ '21

Curvature....

Radial velocity..... +18.4

3 ORIONIS 2195.

1909, Jan. 29, G. M. T. 12^h 53ⁿ

Observed by J. B. CANNON. Measured by J. S. PLASKETT.

	Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^{us}	Velocity	Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^{ns}	Velocity.
1 53.4261 4135 0353 40.56	2	54:0176		0278 0353	+ 32.15 40.36	2 2 1	45:2906		0369	+ 38 75

Va..... Vd..... Curvature... - 20.79 - '05 28

Radial velocity.... +14.9

3 ORION1S 2196.

1909. Jan. 29. G. M. T. 12^h 57^m

Observed by J. B. CANNON. Measured by J. S. PLASKETT.

Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^{ns}	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^{ns}	Velocity.
2 2 3 3	54 · 7168 54 0073 53 · 9817 53 · 4324	9762 4270	0330 0488	+ 38 16 56 08	2 2 11 2	53 · 0946 45 · 2894 45 · 2877		0330	+34.62

Radial velocity

β ORIONIS 2197.

1909. Jan. 29. G. M. T. 13^h 01^m

Observed by J. B. CANNON. Measured by J. S. PLASKETT.

Wt.	Mean of Settings.	Corrected Star Settings.	Dispt in rev ^{as}	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ⁿ⁷	Velocity.
2 9 2 1	54.7222 54.0097 53.9881 53.4480	9790 4390	0358 0608	$^{+41}_{-69}$	2 2 1	53 0981 45 2919 45 3034	3050	.0461	- 48 41

Weighted mean V_d - - 20.79 V_d Curvature...... - 28 + :05

+47.47

Radial velocity..... +26.4

β ORIONIS 2198.

1909. Jan. 29. G. M. T. 13^b 05^m

Observed by J. B. CANNON. Measured by J. S. PLASKETT.

Wt.	Mean of Settings.	Corrected Star Settings.	Dispt in rev ^{uss} Veloc	city. Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^{ns}	clocity.
2222112	$54^{\circ}7170$ $54^{\circ}0100$ $53^{\circ}9896$ $53^{\circ}4164$	9840 -4120		2 2 3 18 8 84	53 0924 45 2871 45 2927	2992	0403	

β ORIONIS 2201.

1909. Jan. 30. G. M. T. 12^h 29^m

 $\left. \begin{array}{l} {\rm Observed \ by} \\ {\rm Measured \ by} \end{array} \right\} J. \ S. \ {\rm PLASKETT}. \end{array} \\$

Wt.	Mean of Settings.	Corrected Star Settings	Disp ^t in rev ^{re}	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^{ite}	Velocity.
2 2 3 1	54-7150 54-0093 53-9791 53-4193	9730 4130	0298 0348	$^{+34}_{-39}$	2 2 2	53 -0057 45 -2906 45 -2884	2914	0325	÷34°13

Weighted mean + 35.27Va - 21 05 Vd - 28 Curvature - 28 .06

Radial velocity. +14.0

β ORIONIS 2202.

1909. Jan. 30. G. M. T. 12^h 41^m

Observed by J. S. PLASKETT.

Wt.	Mean of Settings.	Corrected Star Settings.	Dispt in rev ^{ity}	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Disp ⁱ in rev ⁿ	Velocity.
$22 \\ 112 \\ 1^{12} \\ 1$	54:7150 54:0022 53:9764 53:4141	9710 4100	0268 0318	+ 30 99 36 54	2 2 2	53 · 5937 45 · 2878 45 · 2963	3020	-0431	+ 45 . 26
				V	Veighte	d mean Va Vd Curvatu		÷	38-57 -06

Radial	velocity		± 17.3

β ORIONIS 2203.

 $\begin{array}{l} {\rm Observed \ by} \\ {\rm Measured \ by} \end{array} \} {\rm J. \ S. \ Plaskett.} \end{array}$

Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^{ns}	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Dispt in rev ¹⁰	Velocity.
2 2 1 1 2	54*7115 53*9970 53*9941 53*4224	9950 4240	0518 0458	$^{+59}_{-52}$ $^{-91}_{-52}$ $^{-63}_{-63}$	2 2 2	53:0902 45:2808 45:2822	2950	0361	+37.91
				11	eighted	mean			+ 46.29

Radial velocity	+25.0	
Vd. Curvature '28	- '05	
Va 21.05		

Observed by J. S. PLASKETT.

1909, Jan. 30, G. M. T. 12⁶ 48^m

Wt.	Mean of Settings.	Corrected Star Settings.	Disp ⁱ in rev ¹¹⁶	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^{us}	Velocity.
2 2 1 1	54:7152 54:0046 53:9739 53:4059	9712 4034		-32:38 28:96		53:0017 45:2033 45:2969	2972	0383	+ 40.22

We

eighted	mea	u				~ 35 ·	45
	V	d					06
					- '28		

β ORIONIS 2205.

1909, Jau. 30. G. M. T. 15^h 47^m

Observed by J. S. PLASKETT.

Wt.	Mean of Settings.	Corrected Star Settings.	Dispt n rev ^m	Velocity.	Wt.	Meau of Settings.	Corrected Star Settings.	Disp ^t in rev ^{as}	Velocity.
$2 \\ 2 \\ 3 \\ 1\frac{1}{2}$	63:3385 61:3585 61:2878 59:7215	2744 7140	-0939 -1175	$^{+38}_{-48}$ $^{82}_{-07}$	2 2 11	58 7894 36 1737 36 1979	2180	1275	+ 44*83
				"	eighted	mean		- 21:05	+ 42.63

Radial velocity +21'0

1909, Jan. 30, G. M. T. 12^h 45^m

³ ORIONIS 2204.

1909. Jan. 30. G. M. T. 16^h 04^m

β ORIONIS 2206.

Observed by J. S. PLASKETT.

Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^{us}	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^{n*}	Velocity.
2 2 2 11	$\begin{array}{c} 63 & 3436 \\ 61 \cdot 3644 \\ 61 & 3040 \\ 59 \cdot 7313 \end{array}$	2850 7150	1045 1185	$^{+43}_{-48}$	$2 \\ 2 \\ 1\frac{1}{2}$	58 7994 36 1900 36 2046	2088	1173	+ 41 24
Weighted mean									

Vd..... Curvature..... 24 -28

β ORIONIS 2207.

1909, Jan. 30. G. M. T. 16^h 24^m

Observed by J. S. PLASKETT.

Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^{ns} .	Velocity.	Wt.	Meau of Settings.	Corrected Star Settings.	Disp ^t in rev ^{ass}	Velocity.
2 2 3 1 ¹ / ₂	63:3410 61:3604 61:3037 59:7308	2880 7160	1075 1195	+ 44 44 48 89	2 2 2	58 · 7983 36 · 1943 36 · 2027	2026	1121	+ 39 · 41

β ORIONIS 2211.

1909, Jan. 31, G. M. T. 17^h 16^m

Observed by W. E. HARPER. Measured by J. S. PLASKETT.

Wt.	Mean of Settings	Corrected Star Settings.	Dispt in revue	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^{us}	Velocity.
2 2 2 1	54:7191 54:0068 53:9870 53:4342	-9800 -4275	0368 0493	+42.56 56.65	2 2 2	53.0951 45.2834 45.2806	··· 2908	-0319	+ 33 · 50
				W	eighted	mean Va Va Curvature		- 21 · 33 - 31	- 41 75

Radial velocity. ...

-19.8

1909, Jan. 31. G. M. T. 17^b 20^w Mean Mean Dispt Wt. of Star Settings. Settings. 54-7084 53.0894 45.2894 46 61 9835 45 2886 0339 -35 60 0491 56:42 Weighted mean 21 33 Curvature Radial velocity. -2323 ORIONIS 2213. 1909, Jan. 31. G. M. T. 17^h 24^m Observed by W. E. HARPER. Measured by J. S. PLASKETT. 37:91 Radial velocity.... -16.03 ORIONIS 2214. 1909. Jan. 31. G. M. T. 17^h 29^m Observed by W. E. HARPER. Measured by J. S. PLASKETT. Mean Dispt Dispt Velocity. Wt of in revas Settings. Settings. Settings. Settings. 54:7065 53.0873 53 9988 $45 2835 \\ 45 2763$ 10408

+47.18

2864

0275

+28.88

+38.57

Radial velocity. +16 6

53 9808

9840

4174 .0392 45.04

Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^m	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Dispt in revue	Velocity.
2 2 2 1	54 °7118 54 0115 53 °9797 53 °4258	9737 4190	0305 040S	+35.27 46.88	2 2 2 2	53 0904 45 2938 45 2925	2923	0334	- 35 07

346

3 ORIONIS 2212.

Observed by W. E. HARPER. Measured by J. S. PLASKETT.

19 G	1000. Feb. 2. β ORIONIS 2215. Observed by J. S. PLANKETT. Measured by J.													
Wt.	Mean of Settings.	Corrected Star Settings.	Dispt in rev ^{as}	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^{as}	Velocity.					
2 2 2 2 2 2	24 7098 54 0038 53 9791 53 4182	9803 4192	0371 0410	+ 42 90 47 11	2 2 2 2	53.0885 45.2951 45.3072		0478	+ 50*19					
					Weight	ted mean Va Vd Curvati	ire	- 21 79 - 28	+ 46 • 73 + • 14					
	Radial vebority + 24 8 β ORIONIS 2216, Observed by J. S. PLARETT,													
19 G	1969, Feb. 2. G. M. T. Th ⁵ 23 ^m ¹ G ¹ G													
Wt.	Mean of Settings.	Corrected Star Settings.	Dispt in rev ^{ie}	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^{ns}	Velocity.					
NC CO 10 VO	2 54 7001 2 55 6040 2 55 6040 2 55 6040 2 55 7040 2 55 7040 2 55 7040 2 55 7040 2 55 7040 2 55 7047 2 56 7													
				. W	eighted	Va Va Vd Curvature		-21 79 - 28	45.02					
						dial velocity.			+23.1					
19 G.	9. Feb. 2. M. T. 11 ^h :	26 ^m		βORIO	N1S 22	17. M	easured by	J. S. Pla	KETT.					
Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^{ns}	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^{ns}	Velocity.					
2 1 3 1	54:7143 54:0053 53:9820 53:4303	9790 4277	0358 0495	+41:40 56:88	$22 \\ 22 \\ 2$	53 0916 45 2940 45 3032	3028	0439	+46.10					
	Weighted men													
					Rad	Curvature dial velocity.			23.6					

9-10 EDWARD VII., A. 1910

19 G.	 69. Feb. 2. M. T. 11^h 	29		β ORIONIS 2218. Observed by J. S. PLASKETT.								
Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^{ns}	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Dispt in rev ^{as}	Velocity.			
2 2 2 1	54.7101 54.0023 53.9848 53.4172	9845 1460	0413 0378	+47.76 43.44	2 2 2	53.0910 45.2961 45.3020	2995	.0406	+ 42.63			
Weighted mean												
19 G.	 Feb. 2. M. T. 11^h 	\$1 ^m		βORIO		19.	easured by					
Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^{ns}	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ⁿ	Velocity.			
2 2 3 1 ¹ / ₂	54 · 7180 54 0106 53 · 9813 53 · 4213	9740 4150	0308	+35.62 42.29	2 2 2	53 0037 45°3002 45°3032	2966	0377	+39.29			
				W	eighted	Va		- 21.79	+ 38 39 + 14			
19 G.	09, Feb. 2. M. T. 11 ^h 4	15m		βORIO		lial velocity. 20. Ot Mo	served by)					
$Wt. \begin{array}{ c c c c c } \hline Mean & Corrected \\ \hline Star \\ Settings. \end{array} \begin{array}{ c c c c } \hline Star \\ Settings. \end{array} \begin{array}{ c c } \hline Disp^3 \\ \hline Star \\ Settings. \end{array} \begin{array}{ c c } \hline Mean \\ \hline Settings. \end{array} \begin{array}{ c } \hline Disp^3 \\ \hline Settings. \end{array} \begin{array}{ c } \hline Velocity \\ \hline Velocity \\ \hline Settings. \end{array} \begin{array}{ c } \hline Velocity \\ \hline Settings. \end{array} \begin{array}{ c } \hline Star \\ \hline Settings. \end{array} \begin{array}{ c } \hline Star \\ \hline Settings. \end{array} \begin{array}{ c } \hline Velocity \\ \hline Velocity \\ \hline Settings. \end{array} \begin{array}{ c } \hline Star \\ \hline Settings. \end{array} \begin{array}{ c } \hline Star \\ \hline Settings. \end{array} \begin{array}{ c } \hline Star \\ \hline Settings. \end{array} \begin{array}{ c } \hline Star \\ \hline Settings. \end{array} \end{array}$												

+44.63- - 14

Radial velocity....

53+0952 45+2903 45+2967 $2 \\ 2 \\ 2 \\ 2$

 $^{+42}_{-53}$

0368

·0468

348

 $\begin{array}{c} 54.7143\\ 54.0073\\ 53.9847\\ 53.4305 \end{array}$

·9800 4250

3000

+22.7

0411 +43.16

β ORIONIS 2220°

1909, Feb. 2. G. M. T. 11^h 45^m Observed by J. S. PLASKETT. Measured by W. E. HARPER.

Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^m	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^{ns}	Velocity.
$2 \\ 2 \\ 1\frac{1}{2}$	54.7580 54.0249 53.4623	9779 4151	-0347 -0369	$^{+40^{\circ}03}_{-42^{\circ}40}$	3 2 3	53 · 1366 45 · 3355 45 · 3285	3006	0417	+ 43 78

* Check.

1909, Feb. 6. G. M. T. 12^h 29^m

Observed by Measured by J. S. PLASKETT.

Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^{as}	Velocity.	Wt.	of Settings.	Corrected Star Settings.	Disp ^t in rev ^{us}	Velocity.
2 2 2 1	54-7129 54-0040 53-9767 53-4149	9750 4143	0318 0361	+ 36.78 41.48	2 2 3	53 0895 45 2921 45 2985	3000	0411	+ 43 16

β ORION1S 2236.

Weighted mean...... Va...... Va...... ± 40.75 22.0724 Curvature ..

Radial velocity. -18.2

β ORION1S 2239.

Observed by J. S. PLASKETT.

Wt.	Mean of Settings.	Corrected Star Settings.	• Disp ^t in rev ⁿⁱ	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^{ns}	Velocity.
222112	54-7144 54-0085 53-9843 53-4083	9810 4052	0378 0270	- 43°72 31°03	2 2 2	53 · 0925 45 · 2967 45 · 3043		0423	- 44 - 42

 Weighted mean,
 $-42^{\circ}62$

 Va
 $-22^{\circ}07$

 Vd
 -21

 Curvature
 -28

 Radial velocity
 $+20^{\circ}0$

1909, Feb. 6. G. M. T. 12^h 50^m

9-10 EDWARD VII., A. 1910 Observed by J. S. PLASKETT.

3 ORIONIS 2240.

1909, Feb. 6. G. M. T. 12^h 52^c

Wt.	Mean of Settings.	Corrected Star Settings.	Dispt in rev ¹¹⁸	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Disp! in rev ^{ts}	Velocity.
01010100	54 7160 54 0066 53 9845 53 4254		0368 0428	- 42°56 49°18	2 2 1	53:0936 45:2951 45:2950	2935	-0346	÷ 36°33

Weighted	mean								+43	96
	Va						-25	2:07		
	Vd							-24		
	Curvatur	e						128		
						-	 -	_		
Radia	d velocity								+21	0

β ORIONIS 2241.

1909. Feb. 6. G. M. T. 16^h 12^m

Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^{ns}	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Dispt in rev ^{as}	Velocity.
2 2 2 1 2 1	$63^{\circ}3172$ $61^{\circ}3357$ $61^{\circ}2768$ $59^{\circ}7176$	2858 7280	1053 1315	$^{+43.53}_{-54.10}$	2 2 1½	58.7726 36.1652 36.1710	2000	1095	+38.00

Veighted	mean						
	Va					22.73	
	Vd					·30	
	Curvature					.28	
	1 voloaitv						

β ORIONIS 2242.

1909. Feb. 6. G. M. T. 16^h 43^m

Observed by J. S. PLASKETT. Measured by

+ 21 9

Observed by J. S. PLASKETT.

t	can. of tings.	Corrected Star Settings.	Disp ^t in rev ¹⁰	Velocity,	Wt.	Mean of Settings,	Corrected Star Settings.	Disp ^t in rev ^{us}	Velocity
	3·3249 1·3494 1·2686 9·7224	2670 7220	0865	+35 76 51 34	2 2 15	58-7845 36-1810 36-1972	2104	1199	+42.10
2 6 11 5				51.34		36.1972 mean			

V_d.... - '30 Curvature...... - '28

350

β ORIONIS 2243.

1909. Feb. 7. G. M. T. 15^h 11^m

Mean Corrected Mean Disp^t Dispt Wt. Velocity. Wt. Star of Star Settings Settings. Settings. $\begin{array}{c} 63\,{}^\circ3350\\ 61\,{}^\circ3619\\ 61\,{}^\circ2972\\ 59\,{}^\circ7234 \end{array}$ $58^{\circ}7918$ 36 1731 36 1874 2872 1065 + 44 03 2085 1180 1185 48.48

mean Va Vd Curvature	23	+44.42

Radial velocity +21.0

β OR10N1S 2244.

1909. Feb. 7. G. M. T. 15^h 25^m Observed by J. S. PLASKETT.

Observed by J. S. PLASKETT.

Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^{ns}	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^{ns}	Velocity.
2222	63 3380 61 3554 61 2952 59 7458	2855 7388	1050 1423	$^{+43}_{-58}$ $^{41}_{21}$	$\frac{2}{2}{1\frac{1}{2}}$	$58^{+}7900$ 36 1752 36 1830	2020	1115	+ 39 20
				W	eighted	$V_a \dots V_d \dots V_d \dots V_d$		- 22 93 - 23 - 28	45.30

Radial velocity.... + 21 9

β ORIONIS 2245.

1909. Feb. 7. G. M. T. 15^h 37^m $\begin{array}{l} \text{Observed by} \\ \text{Measured by} \end{array} J. S. PLASKETT. \end{array}$

Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^{ns}	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^m	Velocity.
$22 \\ 112 \\ 1^{12} \\ 1$	$\begin{array}{c} 63 \cdot 3424 \\ 61 \cdot 3620 \\ 61 \cdot 2862 \\ 59 \cdot 7488 \end{array}$	2692 •7338	0887 1373	+ 35 97 56 05	$\frac{2}{2}$	58 7988 36 1867 36 1858	1963	1058	+ 37 * 20
				W	eighte J	Vd		- 22.93	41 45

Radial velocity... +18.0

+41.77

9-10 EDWARD VII., A. 1910 Observed by T. H. PARKER. Measured by J. S. PLASKETT.

3 ORIONIS 2249.

1909. Feb. 8. G. M. T. 13^h 32^m

Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^{n•}	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings	Disp ^t in rev ^{as}	Velocity.
10 00 10 10	54:7050 53:9998 53:9795 53:4276	9845 -4375	0413 0593	47 76 68 14	2 2 2 2	53.0824 45.2868 45.3024	3092	0503	+52.82
				W	eighteo	Vd	e	- 23 11 - 08 - 28	55.03

Observed by T. H. PARKER, Measured by J. S. PLASKETT.

β ORIONIS 2250.

1909. Feb. 8. G. M. T. 13⁶ 36^m

Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^m	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^m	Velocity.
2 2 2 1	$54^{\circ}6972$ $53^{\circ}9910$ $53^{\circ}9713$ $53^{\circ}4184$	-9835 -1304	-0403 -0522	- 46-61 59-98	2 2 11	53.0777 45.2869 45.2950	3027	·0438	+ 45.99

Veighted	mean.												
	Va.												
	V_d												
	Cur	V.	a	1	D								
											-	-	

Radial velocity. + 25 9

β ORIONIS 2251.

1909, Feb. 8, G. M. T. 13^h 41^m

Observed by T. H. PARKER. Measured by J. S. PLASKETT.

+ 49 37 23 11 -08 -28

Wt.	Mean of Settings,	Corrected Star Settings.	Disp ^t in rev ^a	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^{as}	Velocity.
2 2 2 3	54.7049 53.9982 53.9098 53.4168	9755 4225	0323 0443	+37,35 50,91	$2 \\ 2 \\ 1\frac{1}{2}$	53.6838 45.2878 45.2914	2972	0383	+ 40 22
				We	righted	$\operatorname{mean}_{V_d}$, V_d		23°11 - 08 - 28	+ 44 27

Radial velocity. +21.8

8 ORIONIS 2252.

1909, Feb. 8, G. M. T. 14^h 01^m

Wt.	Mean of Settings.	Corrected Star Settings,	Disp ^t in rev ^{as}	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^m	Velocity.
2 2 13 13	54 7056 53 9980 53 9779 53 4076	9815 -4095	0383 0313		$2 \\ 2 \\ 1 \\ 1 \\ 2 \\ 1 \\ 1$	53+0882 45+2960 45+2982	2958	0369	+38 75

Weighted mean.... Va. +41.0523 11 Vd. Curvature. -08 -28 Radial velocity.

+17.6

β ORIONIS 2253.

Observed by T. H. PARKER, Measured by J. S. PLASKETT,

Observed by T. H. PARKER. Measured by J. S. PLASKETT,

Wt.	Mean of Settings.	Corrected Star Settings.	Disp [†] in rev ^{as}	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^{ast}	Velocity.
21 21 22 23	54 7217 54 0110 53 9862 53 4354	9762 4230	-0330 -0448	- 38°16 51°48	2 2 2	53 · 1030 45 · 3090 45 · 3240	3086	0497	+52.19

Weighted mean V..... V.... V.... Curvature ± 47.88 - 23.11 08 -28

Radial velocity

β ORIONIS 2254.

1909. Feb. 8. G. M. T. 14^b 09^m

Observed by T. H. PARKER, Measured by J. S. PLASKETT.

+24.1

Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^{ns -}	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^{ns}	Velocity.
2 2 2 2 1	54:7152 54:0084 53:9930 53:4357	9860 4265	0428 0483	- 49 50 55 50	2 2 2 2	53.0993 45.3112 45.3142	-2966	0377	+ 39:59
				W	eighted	mean Va Vd.		- 23 11	+ 46 74

25a - 25b

9-10 EDWARD VII., A, 19!)

β ORIONIS 2265.

1909. Feb. 10. G. M. T. 12^h 07^m

Observed by W. E. HARPER, Measured by J. S. PLASEETT.

Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^{as}	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^m	Velocity.
222 22 112	$54^{\circ}6987$ $53^{\circ}9911$ $53^{\circ}9691$ $53^{\circ}4197$	-9800 -4310	0368 0528	+ 42.56 69.67	2 2 2	53.0767 45.2770 45.2980	3146	0357	+ 58 · 49
				Wei	ghted r	nean Va		- 23 48	+ 53-29

V _d Cu	rvature	- 28	+ '05
Radial ve	locity		+ 29.6

8 ORIONIS 2266.

1909. Feb. 10, G. M. T. 12^h 12^m

Observed by W. E. HARPER. Measured by J. S. PLASKETT.

Wt.	Mean of Settings.	Corrected Star Settings.	Dispt in rev ^{ns}	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ¹¹⁸	Velocity.
21 22 22 21	54.7090 54.0052 53.9815 53.4312	9780 4275	*0318 *0493	+ 40 25 56 65	2222	53.0932 45.2916 45.2989		0420	+44.10
				W	eighted	mean			- 47.00

-23.48 Va Vd Curvature ·05 - 28

Radial velocity..... - 23-3

β ORIONIS 2267.

1909. Feb. 10. G. M. T. 12^h 16^m

Observed by W. E. HARPER. Measured by J. S. PLASKETT.

Corrected Mean Dispt Dispt Velocity. Wt. of Star Velocity. Wt. of Star in rev^{ito} Settings. Settings. Settings. Settings. 53.0868 45.2923 45.2994 54 7055 53 9982 +40.25-36.5453 9744 9780 0348 3007 0418 + 13 89 .4100 Weighted mean. 40.56 - 23 48

Curvature....

'05 28

..... +16.9

Radial velocity

354

β ORIONIS 2268.

Observed by W. E. HARPER. Measured by J. S. PLASKETT.

1909. Feb. 10. G. M. T. 12^h 21^m

Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^{t#}	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^{us}	Velocity.
2 2 2 1 ¹ 2	54.7108 54.0029 53.9702 53.4186	9690 -4160	0258 0378	+ 29°84 43 44	2 2 2	53 · 0920 45 · 2948 45 · 2962	2950	0361	+ 37 91
				W	eighted	Vd		23 48	

β ORIONIS 2269.

1909. Feb. 10, G. M. T. 12^h 33^m

Observed by W. E. HARPER. Measured by J. S. PLASKETT.

Radial velocity... + 12 8

Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^{ns}	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^{ns}	Velocity.
2 2 3 2	54 7094 53 9059 53 9814 53 4142	.9830		$^{+46}_{-03}$	2 2 2	53+0894 45+2919 45+2979		0407	- 42 74

Radial velocity.... + 20.3

β ORIONIS 2270.

1909. Feb. 10. G. M. T. 12^h 37^m

Observed by W. E. HARPER, Measured by J. S. PLASKETT.

Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^{as}	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^{ns}	Velocity.
2 2 2 1	54.7124 54.0066 53.9901 53.4211	9870	0438	+ 49:50 44:24	2222	53 0940 45 2995 45 3078	3019		
				11	oighter	mean		-	46:71

:05

Radial velocity..... + 23.0

9-10 EDWARD VII., A. 1910

190 G.	 Feb. 11. M. T. 11^h 	36…		β OR10?	NIS 227	2. 0 M	bserved by Icasured by	}J. S. Pi.	ASKETT.
Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^{to}	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Disp [†] in rev ^{av}	Velocity.
2 2 2 1	54 7167 54 0032 53 9806 53 4114		0353	+ 40.82 35.62	2 2 2	53-0917 45-2881 45-2997	3052		- 48 6
				,		sd mean Va Vd Curvatu lial velocity	ure	- 28	.10
190 G.	99. Feb. 11. M. T. 11 ^h ;	32m		β ORIO:	NIS 223	"3. M)bserved by Icasured by	JJ, S, PL	ASKEIT.
Wt.	Mean of Settings	Corrected Star Settings	Disp! in rev ^m	Velocity.	Wt.	Mean of Settings	Corrected Star Settings	Disp ^t in rev ^{rs}	Velocity.

Wt.	of Settings.	Star Settings.	in reve	Velocity.	Wt.	of Settings.	Star Settings.	in revue	Velocity.
2 2 2 1	54 7138 54 0025 53 9970 53 4268	9960 4280		- 61 06 57 23	2 2 2 2	53-0875 45-2844 45-3006		-0509	+ 53:45

Veighted	mean	09.05	$57^{+}25^{-}$
	Vd		.10
Radia	L valooity		 1-22

β ORIONIS 2274.

1909. Feb. 11. G. M. T. 11^h 35^m

Observed by J. S. PLASKETT. Measured by J. S. PLASKETT.

Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^m	Velocity.	Wi.	Mean of Settings.	Corrected Star Settings.	Disp ^t in 1ev ^{n•}	Velocity.
2 2 11 1	54 7114 54 0044 53 9812 58 4353	9810 4360	0378 0578	$^{+} m 43\ 72\ 66\ 42$	0000	53+0881 45+2877 45+3071	3130	0540	+56.81
					Weight	Vd		- 23 : 65	+ 43 72 + 10

10

Radial velocity +30'8

1909. Feb. 11. G. M. T. 11^h 38^m

Mean Mean Dispt Dispt W't. Wt. Velocity. Star of Star in revis of Settings. Settings. Settings. 54.7133 53.0921 54.0063 45.68 9760 0328 - 36 78 3024 53 4256 4230 0448 51.48 Weighted mean.... + 43:52 $V_d \dots V_d$ 23 65 ·10

3 ORIONIS 2276.

1909. Feb. 11. G. M. T. 11^h 46^m

Mean Mean Corrected Dispt Dispt Wt. Velocity. W't. Star Velocity of Star in revia of Settings. Settings. Settings. Settings. 54:7082 53:0893 45:2824 45:2835 53 9963 9840 - 47 19 - 37 59 53 9792 0408 2947 0358 53:4083 1095 35-97 ~ 41 11

- 23 65 .10 -28

Radial velocity,.... -17^{+3}

\$ ORIONIS 2277.

1909. Feb. 11. G. M. T. 11^h 49^m

Observed by J. S. PLASKETT.

Observed by J, S. PLASKETT, Measured by J.

Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^{aa}	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^m	Velocity.
2 2 2 1	54 · 7099 54 · 0019 53 · 9798 53 · 4279	9810 4294		- 43·72 58·83	$222_{1\frac{1}{2}}$	53.0878 45.2944 45.3021	3013	0424	- 44 52

Weighted mean + 47:34 Va Va Curvature...... 23.65 - 28 $^{+}10$

Radial velocity. -23:5

~ 19.7

Observed by J. S. PLASKELL. Measured by J. S. PLASKELL

9-10 EDWARD VII., A. 1910

β ORIONIS 2278.

Observed by J. S. Plaskett.

Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^{to}	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^{ns}	Velocity.
21 22 23 22	$\begin{array}{c} 63^{\circ}3466\\ 61^{\circ}3632\\ 61^{\circ}3632\\ 59^{\circ}7290 \end{array}$	2975 7110	1175 1145	- 48°37 46°84	2 2 1	58 8021 36 1817 36 1930	2055	1150	-40.31
				We	Va.	mean		- 24:00	-46.52

Weighted mean.		-46.52
Va	24 00	
Curvature		
Radial velocity		+22.5

5 ORIONIS 2279.

1909. Feb, 13, G. M. T. 12^h 40^m

1909. Feb. 13.
 G. M. T. 12⁶ 27⁶

Observed by J. S. PLASKETT.

Wt.	Mean of Settings.	Corrected Star Settings,	Disp ^t in rev ^{ns}	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^{us}	Velocity.
9 2 3 2 2	$\begin{array}{c} 63^{\circ}3312\\ 61^{\circ}3531\\ 61^{\circ}3032\\ 59^{\circ}7212 \end{array}$	2970 7180	1165 1215	$^{+4816}_{-4971}$	$2 \\ 2 \\ 1 \\ 1 \\ 2 \\ 1 \\ 1$	58.7858 36.1657 36.1698	1983	1078	+37.78

Weighted m	ean	
Va		- 24 00
Vd		. 00
Curvat	sure	- '28

Radial velocity + 22.0

β ORIONIS 2280.

1909. Feb. 13. G. M. T. 12^h 53^m

ORION 13 2280.

w Veloci	Disp ^t in rev ^m	Corrected Star Settings.	Mean of Settings.	Wt.	Velocity.	Disp ^t in rev ¹⁰¹	Corrected Star Settings.	Mean of Settings.	Wt.
			$58^{\circ}8035$ $36^{\circ}1748$ $36^{\circ}1848$	$\frac{2}{2}$ 1	$^{+46.92}_{-46.64}$		2940 7105	$\begin{array}{c} 63 & 3520 \\ 61 \cdot 3710 \\ 61 & 3192 \\ 59 \cdot 7314 \end{array}$	$2 \\ 2 \\ 3 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ $
37	1137	2042	36.1248		$^{+46.92}_{-46.64}$	1135	2940	$61^{+}3710$ $61^{-}3192$	$22 \\ 32 \\ 2$

1909. Feb. 20. G. M. T. 12^h 29^m

3 ORIONIS 2284.

Observed by J. S. PLASKETT.

Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^{as}	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^{rs}	Velocity.
$22 \\ 23 \\ 1$	$\begin{array}{c} 63^+3507\\ 61^+3686\\ 61^+2988\\ 59^+7346\end{array}$	3100 7440	0977	+ 40°-2, 49°33	01 01 01	58.8010 36.1520 36.1728	1730	1249	+ 43 78

-24.82 Va Vd Curvature 108

Radial velocity. +17.7

β ORIONIS 2285.

1909. Feb. 20. G. M. T. 13^h 05^m

Observed by J. S. Plaskett.

Wt.	Mean of Settings.	Corrected Star Settings.	Disp [‡] in rev ^{as}	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ¹⁰⁰	Velocity.
	63 · 3177 61 · 3352 61 · 2860 59 · 7262	3278 7665	1155 1427	$^{+47.61}_{-58.21}$	$2 \\ 2 \\ 1\frac{1}{2}$	58 7696 36 1246 36 1377	1653	1172	+41-08

Wei

ighted	$\begin{array}{ccc} \mathrm{mean.}, & \ldots & \\ \mathrm{V}_{a} & \ldots & \\ \mathrm{V}_{d} & \ldots & \\ \mathrm{Curvature} \end{array}$		24:82 .08	+ 47.7
	Ourrature		 	

Radial velocity... + 22.6

Star

Settings.

β ORIONIS 2286.

Velocity. Wt.

+49 34

Dispt

in revut

1197 3320

Star

Settings.

.7245 1007 41:08 Observed by J. S. PLASKETT. Measured by J. S. PLASKETT.

Dispt

1203 +42.16

Velocity.

+ 45.14

1909. Feb. 20. G. M. T. 15^h 12^m Mean

of

Settings.

63:3440

Wt.

 $\frac{2}{2}$ $61^{\circ}3648$ $61^{\circ}3160$ $59^{\circ}7233$ $\frac{58}{36}, \frac{7989}{1571}$ 36, 157136, 17331684

Mean Corrected

of

Settings.

13

Weighted mean..... Va..... Vd.... - 24 82 .08

.28 Curvature -

Radial velocity. + 19.8

9-10 EDWARD VII., A. 1910

β ORIONIS 2288.

1909. Feb. 21. G. M. T. 12ⁿ 57^m

Observed	by]	T 61	The
Mononnad	Los i	J. O.	FLASKETI

Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t iu rev ^{as}	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^m	Velocity.
21 21 21 ^{and}	$\begin{array}{c} 63:3644\\ 61:3779\\ 61:3268\\ 59:7422 \end{array}$	3250 7400	$\frac{1127}{1162}$	$^{+46}_{-47}$	$\frac{2}{2}{1}$	58+8118 36+1550 36+1798	1770	1770	+45.18

Weighted mean. . . $V_a \cdots V_d$. . . - 46.45 25 04 -09 Curvature. . . . --28

> Radial velocity..... + 21.0

> > Observed by $J_{\rm s}$ J. S. PLASKETT.

β ORIONIS 2289.

1909, Feb. 21. G. M. T. 13^h 07^m

Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^{as}	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings	Disp ^t in rev ¹⁰	Velocity.
$2 \\ 2 \\ 2 \\ 1 \\ 1$	63 - 3543 61 - 3695 61 - 3040 59 - 7518	-3105 -7543	0982 1307	+40 48 53 39	2 2 2 2	58 8071 36 1572 36 1726	1676	1195	+ 41 88

+ 45.62 25.04 .00 28

Radial velocity..... + 18:2

3 ORIONIS 2290.

1909. Feb. 21 G. M. T. 13^b 17^m

Observed by J. S. PLASKETT.

Wt.	Mean of Settings.	Corrected Star Settings.	Dispt in rev ^{us}	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^s in rev ^{us}	Velocity.
21 22 22 21 1	63 3632 61 3830 61 3238 59 7450	3200 7415	1077 1177	$^{+44}_{-48.01}$	2 2 2	58 8130 36 1631 36 1767	1658	1177	+ 41.22
	1				Weighte	d mean			+ 43 . 86

Radial velocity..... +18.4

3 ORIONIS 2291.

1909, Feb. 21. G. M. T. 13^a 27^a

Observed by [J. S. Plaskett. Measured by]

Wt.	Mean of Settings.	Corrected Star Settings.	Dispt in rev ^{no}	Velocity.	Wt.	Mean of Settings,	Corrected Star Settings.	Disp ^t in rev ⁱⁱⁱ	Velocity.
2 2 3 11	$\begin{array}{c} 63 & 3650 \\ 61 & 3777 \\ 61 & 3190 \\ 59 & 7433 \end{array}$	-3170 -7416	1047 1168	$43^{\circ}16 \\ 47^{\circ}64$	2222	58 8109 36 1475 36 1659	· · · 1706	1225	- 42.94

Weighted mean \dots V_{a} \dots V_{d} \dots 44:13 - 25 04 109 Curvature... -

Radial velocity... -18.7

3 ORIONIS 2292.

1909, Feb. 22.
 G. M. T. 12^h 02^m

Observed by T. H. PARKER. Measured by J. S. PLASKETT.

Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ⁱⁿ	Velocity,	Wt.	Mean of Settings,	Corrected Star Settings.	Disp ^t in rev ^{ns}	Velocity.
$2 \\ 2 \\ 2 \\ 1 \\ 1$	$\begin{array}{c} 63 \cdot 3642 \\ 61 \cdot 3755 \\ 61 \cdot 3167 \\ 59 \cdot 7493 \end{array}$	3157 7483	1034 1245	+ 42.62 50.78	$\frac{2}{2}{1}$	$ 58 8102 36 1595 36 1831 36 1831 } } } } } $	1758	1277	- 44 76

Weighted mean - 45:19 25.14 Curvature.

-02 -28

Radial velocity..... -19.7

3 ORIONIS 2293.

1909, Feb.22 G. M. T, 12^h 15^m

Observed by T. H. PARKER. Measured by J. S. PLASKETT.

Mean Corrected Mean Disp^t in rev^{as} Dispt Wt. of Star Velocity. Wt. of Star Settings. Settings. Settings. Settings. 63.3503 58:8000 $63 \ 3503 \\61 \ 3637 \\61 \ 3018 \\59 \ 7474$ 36.1558 -1771 $^{+}41^{+}30_{-}54^{+}33_{-}$ +45-21 3125 7570 1002 36:1807 1290 1332 $-45^{+}58$ -25.14

Radial velocity +25.1

Curvature.

.02

-28

9-10 EDWARD VII., A, 1910

1909. Feb. 22. G. M. T. 12^h 30^m

Observed	by	Τ.	H.	PARKER.
Measured	by	J.	S.	PLASKETT

Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ⁿ	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t iu rev ^{n:}	Velocity.
2 2 1 1 2	63 · 3495 63 · 3678 61 · 3121 59 · 7381	3210 7458	1087 1220	-44-81 49-76	2 2 2 2	$58 \cdot 8022$ 36 \cdot 1610 36 \cdot 1809	1720	1239	- 43: 43

- 25 14 V_d V_d ... Curvature.... 28

Radial velocity +20.2

β OR10NIS 2295.

1909- Feb. 22.
 G. M. T. 12^h 42^m

Observed by T. H. PARKER. Measured by J. S. PLASKETT.

Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^{ns}	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^{as}	Velocity.
2 2 2 2	63 · 3622 61 3780 61 · 3248 59 · 7345	3280 7344	1157 1106	- 47 · 69 45 · 11	222112	58:8095 36:1677 36:1881	·1726	1245	+ 43 64

Weis

ghted	mea	n				+45.65
	- V.	z			-25.14	
	$-\frac{V_i}{C}$	1	ture		- :02	
	CI	irva	ure		- 20	

Radial velocity..... + 20.2

β OR10NIS 2309.

1909, Feb. 27. G. M. T. 11ⁿ 35^m

Observed by J. S. PLASKETT. Measured by

Mean Mean Corrected Corrected Dispt in rev^{ns} Dispt Wt. Velocity. Wt. Velocity. of Star of Star Settings. Settings. Settings. $\begin{array}{c} 63 & 3682 \\ 61 \cdot 3790 \\ 61 \cdot 3288 \\ 59 \cdot 7498 \end{array}$ 3240 1117 -46.041845 1364 + 47 81 36.1814 .7460 1222 49:85 Weighted mean - 47.71 25:48 100

Curvature

-28

+22.0

β ORIONIS 2311.

1909. Feb. 28, G. M. T. 11^h 56^m

Observed by J. S. PLASKETT.

Wt.	Mean of Settings.	Corrected Star Settings.	Dispt in rev ¹⁰⁰	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^{as}	Velocity.
2 2 2 1 1	$\begin{array}{c} 63 \cdot 3272 \\ 63 \cdot 3402 \\ 61 \cdot 2899 \\ 59 \cdot 7215 \end{array}$	2940 7250	1135 1285	$+46^{-92}$ 52.63	2 2 15	88 7792 36 1567 36 1805	2180	1275	+ 41 83

Va	25.53	
Vd	- 02	
Curvature	- '28	

Observed by J. S. PLASKETT.

3 ORIONIS 2312.

1909. Feb. 28, G. M. T. 12^h 07^m

Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^{ns}	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Dispt in revus	Velocity.
2 2 3 2	63 2345 61 3567 61 2980 59 7342	2890 7260	1085 1295	+ 44 * 85 53 * 04	2 2 2	58.7913 36.1739 36.2048	2251	1346	+ 47 33

Va Vd -25.53.05 Curvature -28

Radial velocity..... +22.0

β ORIONIS 2313.

1909. Feb. 28.
 G. M. T. 12^h 18^m

 $\left. \begin{array}{l} Observed \ by \\ Measured \ by \end{array} \right\} J. \ S. \ Plaskett.$

Mean Corrected Mean Corrected Disp^t Dispt Wt. Star Velocity. Wt. of of Star Velocity. Settings. Settings. Settings. 63:3394 58.791136:1740 3000 1195 +49.402026 +39.4159 7515 7435 1470 60.21 Weighted mean..... +49.61- 25 53 :02 Vd.... Curvature -28

Radial velocity. +23.7

9-10 EDWARD VII., A. 1910 Observed by J. S. Plaskett.

β ORIONIS 2314.

1909. Feb. 28. G. M. T. 12^h 27^m

Wt.	Mean of Settings.	Corrected Star Settings.	Dispt in rev ^{ns}	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ¹⁰⁵	Velocity.
$2 \\ 2 \\ 2 \\ 1^{\frac{1}{2}}$	63 · 3298 61 · 3467 61 · 3037 59 · 7434	-3005 -7408	1200 1443	- 49°61 59°11	2 2 11 12	58.7866 36 1742 36.1998	2198	1293	~ 45.46

Observed by J. S. PLASKETT.

β ORIONIS 2315.

1909. Feb. 28. G. M. T. 12^h 39^m

Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^{ns}	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^m	Velocity.
2 2 3 1 ¹ 2	$\begin{array}{c} 63 \cdot 3247 \\ 61 \cdot 3422 \\ 61 \cdot 2979 \\ 59 \cdot 7148 \end{array}$	3005 7215	1200 1250	$^{+49.61}_{-51.14}$	$2 \\ 2 \\ 2 \\ 2$	58 7759 36-1541 36-1757	2158	1253	+ 44 06

+ 48 26

Radial velocity..... - 22.4

β ORIONIS 2316.

1909. Feb. 28. G. M. T. 12^h 50^m Observed by J. S. PLASKETT.

Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^{ns}	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^m	Velocity.
2 2 2 1 ¹ / ₂	63:3355 61:3528 61:2908 59:7455	2920 7400	·1115 ·1435	-46°09 58 71	2 2 1 ¹ 2	58.7887 36.1782 36.1944	-2105	1200	+ 42.19
				W	eighted	mean Va Vd Curvature		- 25 53 - 02 - 28	+ 48 . 71

Radial velocity..... + 22.8

β ORIONIS 2317.

1909, Mar. 2, G. M. T. 11^h 20^m

Wt.	Mean of Settings.	Corrected Star Settings.	Dispt in revue	Velocity.	Wt	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^{ns}	Velocity.					
21 21 21 21	$\begin{array}{c} 63 \cdot 3647 \\ 61 \cdot 3807 \\ 61 \cdot 3360 \\ 59 \cdot 7707 \end{array}$	-3320 -7655	1197 1417	$^{+49'34}_{-57'80}$	$22 \\ 11 \\ 11 \\ 2$	$\begin{array}{cccc} 58 & 8147 \\ 36 \cdot 1744 \\ 36 \cdot 1960 \end{array}$	1738	1257	- 44:06					
				W		mean Va Vd Curvature		-25 61 -02 -28	50.97					
19 G.	Radial velocity + 25.9 1906. Mar. 2. \$ ORIONIS 2218, G. M. T. 11° 19" Observed by } J. S. PLAMETT,													
Wt.	Mean of Settings.	Corrected Star Settings.	Disp ⁴ in rev ⁿ⁺	Velocity,	Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^{ns}	Velocity.					
9 2 2 2 2 2 2 2	$\begin{array}{c} 63^+3626\\ 61^+3804\\ 61^+3217\\ 59^+7622 \end{array}$	·3210 7640	1087 1402	- 44 81 57 19	$22 \\ 11 \\ 12$	59.8075 36 1516 36.1860	1866	1385	+48-54					
				W	0	Va	· · · · · · · · · ·	- 25 61 - 02 - 28	+ 50.33					
19 G.	09. Mar. 2. . M. T. 11 ^h	29m		3 OR10			oserved by easured by							
Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^{ns}	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^{ns}	Velocity.					
2 2 2 1	63:3438 61:3600 61:3090 59:7476	3250 -7650	· 1137 · 1412	+ 46-87 57-59	21 22 22	58 7920 36 1442 36 1763	1843	1363	- 47 .77					

Radial velocity..... +24 2

Observed by J. S. Plaskett.

9-10 EDWARD VII., A. 1910 $\begin{array}{l} {\rm Observed \ by} \\ {\rm Measured \ by} \end{array} \} J. \ S. \ {\rm Plaskett}. \end{array}$

β ORIONIS 2320.

1909, Mar. 2. G. M. T. 11^h 36^m

Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^{ns}	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^{ns}	Velocity.
2 2 2 13	63 3522 61 3707 61 3197 59 7315		1167 1074	+ 48°10 43°81	2 2 2	58 7996 36 1541 36 1921	1902	1421	+ 49 81

+47.55

Radial velocity +21.6

Observed by J. S. PLASKETT.

β ORIONIS 2364.

1909. Mar. 13 G. M. T. 12^h 12^m

Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^{ns}	Velocity.	Wt.	Mean cf Settings.	Corrected Star Settings.	Disp ^t in rev ^{ns}	Velocity.
2222112	$\begin{array}{c} 63 \cdot 3696 \\ 61 \cdot 3870 \\ 61 \cdot 3327 \\ 59 \cdot 7380 \end{array}$		1127 1082	+46 5 44.1	$2 \\ 2 \\ 1\frac{1}{2}$	58 81 15 36 1448 36 1611	1685	1204	+ 42 2

+44.50- 25 45

- 16

Radial velocity +18.6

β ORION1S 2365.

1909. Mar. 13 G. M. T. 12^h 24^m

Observed by J. S. PLASKETT.

Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^m	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Disp [‡] in rev ^m	Velocity.
2 2 3 2	63 · 3760 61 · 3876 61 · 3228 59 · 7507	3120 7425	0997 1187	+ 11 1 48 1	$2 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 2 \\ 1 \\ 2 \\ 2 \\ $	58.8161 36.1348 36.1591	1765	1284	+ 45 0

Weighted mean +44.25Curvature.... -28

Radial velocity..... +18.4

Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^{ns}	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Dispt in revis	Veloci
$2 \\ 2 \\ 2 \\ 1_{12}^{11}$	63:3662 61:3821 61:3198 59:7506		1037	+ 42°7 50°4	2 2 1 ¹ / ₂	58.8112 36.1400 36.1692	·····	1333	+ 44
					Weigh	ited mean Va Vd Curvz		- 25 45 16 28	+ 46°21

1909. Mar. 13. G. M. T. 12^h 46^m

Observed by J. S. PLASKETT.

Radial velocity....

Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ¹³	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^m	Velocity.
2 2 2 2 1210 1210 1210 1210 1210 1210 1	63 3600 61 3738 61 3086 59 7297	3125 7400	1002 1162	+ 41 30 47 40	$22 \\ 11 \\ 11 \\ 2$	58~7981 36~1272 36~1460	1710	1229	+43.10

β ORIONIS 2368.

1909. Mar. 13. G. M. T. 12^h 57^m

Observed by J. S. PLASKETT,

Wt.	Mean of Settings.	Corrected Star Settings	Disp ^t in rev ^{ns}	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Dispt in rev ^{ns}	Velocity.
2 2 2 2	63:3640 61:3800 61:3300 59:7306	3280 7300	1157 1062	+47.7 +47.3	$2 \\ 2 \\ 1^{\frac{1}{2}}$	$58^{+}8093$ $36^{+}1354$ $36^{+}1578$	1746	1265	
					Weight	ed mean			+ 45-17

Va..... - 25 45 Vd...... - 16 Curvature...... - 28

367

6.7

+20.3

25a - 26

9-10 EDWARD VII., A. 1910 3 ORIONIS 2372. 1909. Mar. 15. G. M. T. 11⁶ 45¹⁰ Observed by J. S. PLASKETT. Disp^t Velocity. Mean Corrected Star Disp Wt. Star of in revne Settings. Settings Settings. Settings 63:3472 58-8015 $\begin{array}{c} 61 & 3664 \\ 61 & 3098 \end{array}$ $\frac{36}{36} \frac{1624}{1712}$ 2890 2030 1085 - 44 85 1125 + 39 55 7015 59:7205 1050 42.96 +42.66- 25 34 - 14 Curvature.... .28 Radial velocity ... +16.93 ORIONIS 2373. Observed by J. S. PLASKETT. 1909, Mar. 15, G. M. T. 11^h 56^m Mean Mean Corrected Dispt Dispt Velocity Wr. Velocity. of Star of in rev" in revm Settings. Settings Settings Settings. 63 3475 58 7985 $61 \cdot 3660 \\ 61 \cdot 3094$ 36 1478 $\frac{2890}{7260}$ 2161 + 44 16 1085 - 44-85 36:1697 1256 1295 52.98 Weighted mean ... + 46.27 - 25 34 14 Vd.... Curvature..... -28Radial velocity..... +20.5 3 ORIONIS 2374. 1909. Mar. 15. G. M. T. 12⁶ 05^m Observed by J. S. PLASKETT. Mean Mean Corrected $Disp^t$ Wt. Velocity. Wt. Star Velocity. Star in rever in revn Settings Settings. Settings. Settings. 63.3415 $58^{\circ}7942$ $36^{\circ}1598$ $36^{\circ}1784$ 61 3612 $61 \cdot 2924$ 59 $\cdot 7336$ 2764 + 39.65 1223 - 43 00 2128 7220 1255 51:34 Weighted mean .. . + 43.36 Va Va Curvature.... -25'34.28

Radial velocity.... + 17.6

368

3 ORIONIS 2375.

1909. Mar. 15. G. M. T. 12⁶ 13^m

Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^{as}	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t . in rev ^{ns}	Velocity.
$2 \\ 2 \\ 2 \\ 1 \\ 1 \\ 2 \\ 2$	$\begin{array}{c} 63^+3430\\ 61^-3618\\ 61^+3146\\ 59^+7102 \end{array}$	2976 6972	1171 1007	+ 48 * 41 41 - 20	2 2 1	58-7960 36-1654 36-1837	-2125	1223	+43:00

β ORIONIS 2376.

1909. Mar. 15. G. M. T. 12⁶ 21¹⁰

Observed by J. S. PLASKETT.

Observed by i.J. S. PLASKETI. Measured by J.

Wt.	Mean of Settings.	Corrected Star Settings.	Disp ⁴ in rev ¹¹⁵	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Disp ⁵ in rev ²⁸	Velocity.
2 2 2 1	63 3492 61 3678 61 3032 59 7281	2800 7088	0995 1123	$^{+}$ 41 $^{\circ}$ 13 45 $^{\circ}$ 94	2 2 1	58 8022 36 1743 36 1771	1970	1065	+ 37 - 45

Radial velocity.....

+19.5

 β ORIONIS 2386.

1909. Mar. 18. G. M. T. 11^h 42^m

Observed by J. S. PLASKEIT.

Mean Mean Dispt Dispt Velocity. Wt. Wt. Star Star of in revus Settings. Settings. Settings Settings $\frac{58}{36}, \frac{7936}{1518}$ 63:3427 222 - 43 78 +47.07 3185 36:1820 1343 1062 7346 Weighted mean +44.98Va..... Vd..... Curvature. 25 09 15

 $25a - 26\frac{1}{2}$

369

9-10 EDWARD VII., A. 1910

-20.0

B ORIONIS 2387.

Observed by J. S. PLASKETT.

			Mar.		
¢	÷. 1	M	I. T.	11^{h}	52^{m}

Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^{as}	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Dispt in rev ^{ns}	Velocity.
2 2 2 1	63:3645 61:3782 61:3205 59:7465	3200 7480	1077 1242	+ 44 39 50.66	$\frac{2}{2}$ 1	$58 8071 \\ 36.1581 \\ 36.1684$	1625	1144	+ 40 · 10
					Weig	V.d	ature	- 25 09 - 15 - 28	- 45 · 53

1909. Mar. 18. G. M. T. 12^h 02^m

Mean Mean Corrected Dispt Dispt Wt of Star Velocity. Wt of Star Settings. Settings. Settings, Settings. 58:8001 $61^{+}3718$ $61^{+}3210$ $59^{-}7396$ 3280 7480 1157 + 47 69 36.1828 1235 +43.2950.66

Radial velocity

3 ORIONIS 2359.

1909, Mar. 18, G. M. T. 12^b 12^m

Observed by Measured by J. S. Plaskett.

 $\pm 46:51$

Observed by J. S. PLASKETT, Measured by J.

Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^m	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ¹¹⁴	Velocity.
$22 \\ 11 \\ 2^{2} \\ 1^{1} \\ 2^{2}$	$\begin{array}{c} 63 \cdot 3492 \\ 61 \cdot 3646 \\ 61 \cdot 2927 \\ 59 \cdot 7380 \end{array}$		0927 1247	+ 38: 91	$\frac{2}{2}$ $1\frac{1}{2}$	58 7998 36 1597 36 1954	1879		- 49.00

-25.0928

Curvature ...

Radial velocity +21.0

β ORIONIS 2390.

1969, Mar. 20, G. M. T. 12^h 16^m

and a second sec					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$2 \\ 2 \\ 1\frac{1}{2}$	58:8128 36:1496 36:1655	1681	1200	+ 42.06

	Va	- 24:88
	Vd	- 12
	Curvature	- '28
		statistical and statistical an
Padial m	looitu	1.00-0

β ORIONIS 2391.

1909. Mar. 20. G. M. T. 12^h 26^m

Observed by J. S. PLASKETT. Measured by

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Wt.	Mean of Settings.	Corrected Star Settings.	Disp [‡] iu rev ^{±s}	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Disp ⁴ in rev ^{ns}	Velocity.
	$2 \\ 2 \\ 2 \\ 1 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 2$	61 3859 61 3292			+44.06	2	36.1414	1745		+ 44 · 30

Radial velocity + 18.3

β ORIONIS 2392.

Observed by J. S. PLASKETT.

1909. Mar. 20. G. M. T. 12^h 38^m

Mean Mean Dispt Wt. of Wt. of Settings. Star Settings. Settings. Settings. $\begin{array}{c} 63\,\cdot\,3775\ 61\,\cdot\,3892\ 61\,\cdot\,3352 \end{array}$ 58:8197 $36^{\circ}1569$ $36^{\circ}1862$ 3320 +49.311334 +46.7649 85 59.7575 7460 +48.66 Weighted mean -24.88

V_d..... - 12 Curvature..... - 28

9-10 EDWARD VII., A. 1910 Observed by J. S. PLASKETT.

β ORIONIS 2393.

1909. Mar. 20. G. M. T. 12^h 48^m

Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^{us}	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Dispt in rev ⁿ	Velocity.
$\frac{2}{2}{\frac{2}{1^{\frac{1}{2}}}}$	$\begin{array}{c} 63^{+}3659\\ 61^{+}3800\\ 61^{+}3215\\ 59^{+}7468 \end{array}$	3184 7448	1061 1210	+ 43.73 49.36	$2 \\ 2 \\ 1^{\frac{1}{2}}$	$58^{\circ}8108$ $36^{\circ}1480$ $36^{\circ}1857$	1900	····· ·1419	+ 49.74

Weighted mean	
Va	-24:88
Vd. Curvature	- 128
Padial velocity	+ 91.9

3 ORIONIS 2394.

1909. Mar. 20. G. M. T. 12^h 58^m Observed by J. S. PLASKETT.

Wt.	Mean of Settings.	Corrected Star Settings.	Dispt in rev ^{ns}	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^{ns}	Velocity.
22212112	$\begin{array}{c} 63^{+}3661\\ 61^{+}3815\\ 61^{-}3819\\ 59^{+}7587\end{array}$	3275 7547	1152 1309	+47.49 53.39	$2 \\ 2 \\ 1 \\ 1 \\ 2 \\ 1 \\ 1$	58:8130 36:1565 36:1806	1763	1282	+44-93

Radial velocity + 23-1

β ORIONIS 2397.

1909, Mar. 21. G. M. T. 13^h 38^m Observed by J. S. PLASKETT.

+23.9

Mean Mean Dispt Dispt Wt. Velocity. Wt. Velocity. Star of of Settings. Settings. Settings. Settings $\begin{array}{c} 63 & 3695 \\ 61 & 3856 \\ 61 & 3328 \end{array}$ 58.8189 $36^{\circ}1752_{36^{\circ}2220}$ 3240 1117 +52.89+ 46.07 1999 1509 49.85 59.7550 7460 4-49:30 Weighted mean -24 76

β ORIONIS 2398.

1909, Mar. 21. G. M. T. 13^b 48^m Observed by J. S. PLASKETT. Measured by J. S. PLASKETT.

Wt,	Mean of Settings.	Corrected Star Settings.	Dispt in rev=	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Dispt in revus	Velocity.
$\frac{2}{2}$	63 · 3667 61 · 3818 61 · 3396 59 · 7441		1227 1172	+ 50 . 60 17 . 81	21 02 21	58-8120 36-1571 36-2053	2004	1523	+ 53 38
				W	V_d	mean		-24 76	+ 50:60

 $-\beta$ ORIONIS 2399.

1909, Mar. 21, G. M. T. 14^h Observed by J. S. PLASKETT.

Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^m	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^{as}	Velocity.
2) 22 22 22 22	63 · 3483 61 · 3664 61 · 3124 59 · 7452	3245 7572	1122 1334	$^{+46}_{-54}$	2 2 1	58.7972 36.1511 36.1884	1894	1414	+ 49.56

Weighted mean. Va. – Curvature, –

- 24 76 - 32 - 28 - - - - - - 24 8

- 30.18

Radial velocity

β ORIONIS 2400.

1909, Mar. 21, G. M. T. 14^h 14^m

Mean Corrected Mean Dispt Disp^t Wt. Star Wt Star of of in rev. Settings. Settings. Settings. Settings. 63:3505 0101 $\begin{array}{c}
 2 \\
 2 \\
 2 \\
 1 \\
 1 \\
 2
 \end{array}$ 58:8071 36.1216 $^{+}_{-}\frac{48}{54}\frac{54}{74}$ 3300 1177 36.1855 1561 1380 +48.377580 1342 Weighted mean Va -24 76 Vd. -32 Curvature. -28 -50.84Radial velocity..... +25.5

9-10 EDWARD VII., A. 1910 Observed by J. S. Plaskett.

3 ORIONIS 2402.

1909, Mar. 22. G. M. T. 11^h 51^m

Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^{as}	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^{ue}	Velocity.
2 2 2 1 1	63 · 3584 61 · 3737 61 · 3370 59 · 7510	3410 7560	1287 1322	+ 53 05 53 92	$2 \\ 2 \\ 1_{\frac{1}{2}}$	$58^{\circ}8043$ $36^{\circ}1447$ $36^{\circ}1712$	1787	1307	+ 45.81
					*** * *				-1.14

Weighted	mean		- 51.14
	Va	$-24^{\circ}66$	
	Vd	- 16	
	Curvature	- '28	

Radial velocity ... +26.0

Observed by J. S. PLASKETT.

β ORIONIS 2403.

1909. Mar. 22. G. M. T. 12^h 02^m

Mean Mean Corrected Dispt Wt of Wt Star in rev^{ns} in revu Settings. Settings. Settings. Settings. 63.3517 58:8009 $63 \ 3517$ $61 \ 3688$ $61 \ 3260$ $59 \ 7423$ 36 1536 $^{+50.78}_{-52}$ 01 + 47 . 35 -3355 1832 36-1846 1832 Weighted mean. +50.12

Radial velocity + 25

β ORIONIS 2404.

1909. Mar. 22. G. M. T. 12^h 13^m

Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^{es}	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Disp ¹ in rev ¹⁸	Velocity.
2 2 2 1 ¹ / ₂	63:3608 61:3126 61:3242 59:7329	3260 7335	1137 1107	+ 46.87 45.15	$2 \\ 2 \\ 1 \\ 1 \\ 2 \\ 1 \\ 2 \\ 2 \\ 1 \\ 2 \\ 2$	58:8094 36:1640 36:1917	1800	1319	+ 46 * 23
					Weigt	V_d mean V_d V_d Curvate	1re	- 16	+ 46 16
					Radia	I velocity .			+21.1

374

β ORIONIS 2405.

Observed by J. S. PLASKETT.

1909, Mar. 22.G. M. T. 12^h 35^m

Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^m	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^{tst}	Velocity.
222 2112 12	$\begin{array}{c} 63 & 3570 \\ 61 & 3713 \\ 61 & 3138 \\ 59 & 7375 \end{array}$	3228 7450	1105 1212	+ 45 55 49 44	$2 \\ 2 \\ 1^{\frac{1}{2}}$	$58^{+}8019$ $36^{+}1480$ $36^{+}1698$	1740	1259	- 44 13

Weighted mean	+46.29
Va 24 66	
Vd	
Curvature	
Padial velocity	. 91.9

β ORIONIS 2420.

1909. Mar. 23.
 G. M. T. 11^h 46^m

Observed by Measured by J. S. PLASKETT.

Wt.	Mean of Settings.	Corrected Star Settings.	ispt in rev ¹⁰	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^{ns}	Velocity.
$221\frac{1}{1}\frac{1}{1}\frac{1}{2}$	63 - 3586 61 - 3757 61 - 3160 59 - 7445	3190 7480	1067 1242	+ 13 99 50 66	2 2 2	58 8059 36.1332 36.1699	1889	·1408	+ 49 35

 Weighted mean
 +48 14

 Va
 - 24 54

 Vd
 - 19

 Curvature
 - 28

β ORIONIS 2421.

1909. Mar. 23. G. M. T. 11^h 57^m

Wt.	Mean of Settings.	Corrected Star Settings.	Dispt in revis	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^{ns}	Velocity.
$2 \\ 2 \\ 2^{10} \\ 1^{10} \\ 2^{10} \\ 2^{10} \\ 1^{10} \\ 2^$	63 3700 61 3800 61 3418 59 7447	3358 7390	1235 1152	+ 50 . 92 49 . 99	2 2 2	58.8151 36.1310 36.1608	1820	1339	+ 46 . 93
					V_d	ted mean		24.54 19 28	+ 49.36

375

9-10 EDWARD VII., A. 1910 Observed by J. S. PLASKETT.

β ORIONIS 2422.

1909, Mar. 23. G. M. T. 12⁶ 05^m

Wt.	Mean of Settings.	Corrected Star Settings. Disp ^t in rev ^{es}	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ⁿ	Velocity.
2 2 2 2 1	63 3372 61 3728 61 3253 59 7348	- 3290 - 1177 - 7370 - 1132	48:53 46:17	2 2 2 2	58 8081 36 1372 36 1920	2070	1589	+ 55-69

Weight	ed mean	i				± 50.95
	Va				- 24:54	
	Nd				- 19 - 98	
	Curvat	ure.			- '28	

β ORIONIS 2423.

1909. Mar. 23. G. M. T. 12^h 13^m

Observed by J. S. PLASKETT.

Wt.	Mean of Settings.	Corrected Star Settings,	Disp ^t in rév ^{as}	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings,	Disp ^t in rev ^m	Velocity.
22 22 21 21	63: 3787 61: 3936 61: 3330 59: 7696	3170 7551	1047 1313	+ 43.17 53.56	2 2 2	58 8225 36 1500 36 2082	2104	1623	+ 56 89

weighten mean									
Va						2	4		
Vd								1	
Curvature								2	8
									-
Radial velocity									

3 ORIONIS 2424.

1909. Mar. 23. G. M. T. 12^h 27^m

Observed by J. B. CANNON. Measured by J. S. PLASKETT.

+26.2

Wt.	Mean of Setting>.	Corrected Star Settings.	Disp ^t in rev ¹⁰	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ^{as}	Velocity
$2 \\ 2 \\ 1 \\ 1 \\ 1 \\ 2 \\ 1 \\ 2 \\ 2 \\ 2 \\ $	63:3774 61:3930 61:3425 59:7590	3275 7465			91 91 92 92	$58^{\circ}8212$ $36^{\circ}1341$ $36^{\circ}1822$		1516	
				Wei	ghted r	mean		- 24 : 54	- 50 : 52

Radial velocity..... +25.5

β ORIONIS 2425.

1909. Mar. 23. G. M. T. 12^h 38^m

Wt.	Mean of Settings,	Corrected Star Settings.	Dispt in rev ^{ns}	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Disp ^t in rev ⁿⁱ	Velocity.
$\frac{2}{2}$ $\frac{2}{2}$ $\frac{1}{2}$ $\frac{1}{2}$	63 · 3650 61 · 3793 61 · 3350 59 · 7498	3327 7490	1204 1252	+ 49:65 51:07	$\frac{2}{2}{1\frac{1}{2}}$	58.8098 36.1269 36.1707	1960	1479	-51'84
				W		mean		- 25:54	- 50 - 72

Observed by J. B. CANNON. Measured by J. S. PLASKETT.

arper. 1. a. a. a.

OBSERVING RECORD AND DETAILED MEASURES OF # AQUIL/E.

		Descrite	INCIDATES,																					Clouds 100m			
			Observer.		E+ E=		н			ä	đ	ā.	۲ã	-	H-P	=	Ļp	i.	Ξ	H	2	I	I:	2,2	. X	=	Ŧ
		Cooline			Good	2	Good	Hazy	Falt		Good	Hazy			Hazy	Good		Good			Fair	Good		No good	Good.		
		Slit	Width.		2100.		2100.	0016	9100-	2100.	r	0015	.0016	014	9100.	0100.	9100	-	9100.	£100.	2100.		-		9100.	-	GI00.
		Box.	.bn3		20.9		6.21	23.4	0 1 10	9.42	24.5	88	30.0	23.3	1.67	21.6	0.06	0 22	20.6	22.0	24.6	9.82		0 40 81 6	20.2	2.67	0.18
MS.	TEMPERATURE CENTIGRADE.	Prism Box.	-nigəI .gain		2019		18 0	23.4	9.76	24.8	24.6	23.8	30.08	23 4	25.4	9.12	2.06	23.0	20.6	22.0	24-7	9.82	- 00	1.00	8-15	2.63	31-1
SPECTROGRAMS	CENTI	Room.	.ba3		11-7		10.5	15.0	1.71	14.7	14.4	9.21	17-3	18.1	20.2	0.71	94-46	17.6	19-5	14.5	20.6	2.12	0.12	0.82	54.0	25.0	0.97
SPECT			-nigəd anin		16.8		0-11	15.0	1110	15-5	14-7	17-5	12-2	1-61	21.5	00-1	1.56	18-0	20.0	14-5	21 - 4	0.77	9.12	0 7 8 8	25.0	0 15	0.92
RECORD OF		Hour Angle	at end.	h. т.	1 55 W. 1 40 "							1 10 E.			22 22			1	52		2 E	88	22		11	1 34	1 20
REC			noiteruu	ġ	48		2 <u>6</u> 2	816	34	32	4	ç 8	88	30	23	89	29	122	33	83	4	1	89	59	67	11	202
		Middle	Exposure. G.M.T.	h. m.	15 15 14 45							18 39															
		Date		1907.	27 Sept. 12	1908	May 15	n 18		. 12.	- 12			. 27	July 3				14	. 15 .	- -	20			- 28.	- 28	1. UG H
		Plate			Seed 27			-		-		:				: :					-			: :	-	:	[*** a
			Сатега.		H =		:			:	-			-	:	: :			z	:	r	=	-		;	;	-
	'9A	geza	No. of N		1038		1533	1010	1583	1604	16051	1620	1643	1651	1655			1704	1708			1021		1733	1735	1736	14.51
TTribble.		Star			θ Aquilæ		-	-		-	-	:	-	-	-	:		-	-		:	-		: :		-	:

Windy.	Cloudy 26 ^m	E Sim	
3	5	Ğ	
P.H P.H P.H P.H P.H	HHHH P.C.	HOCOH	THEFT
Fair	Unsteady. Good. Fair Good.	Fair	Fair Good Smoky Fair Hazy
	9100 2100.		
		00077	
25.55 25.55	នេននទំន	នានននទ	883888888
998888999 998888999 998888999	22 23 22 23 24 6 2 2 25 5 2 2 25 5 5 5	22 25 25 25 25 25 25 25 25 25 25 25 25 2	8 .0 .0 .0 .0 1 8 .888.88 .8
187 187 2216 2018 2018 2018 2018 2018	2015 14-0 17-0 17-0	16.5 18.8 18.4 15.4	16.0 17.5 117.6 117.6 114.4 114.4 114.4 114.6 114.6 114.6 114.6 114.6 114.6 114.6 114.6 114.6
1910 2216 2113 2015 2015	21.5 21.5 14.5 18.0	17-0 29-2 18-4 18-4 18-4	15 5 15 5 15 5 15 5 15 5 15 5 15 5 15 5
		- S - B -	· · · · · · · · · · · · · · · · · · ·
35 35 35 25 35 35 54	82284	32.08	42232223623
- 22 - 22 -	0100.01		
8288484	42888	\$ 2 8 8 8 8	8858888888888
3,512,52,514,5	41242	2122355	8545881998
11 11 11 11 11 11 11 11 11 11 11 11 11	12 12 12 12 12 12 12 12 12 12 12 12 12 1	13 15 15	121211111111111111111111111111111111111
		85558	8888855°××=
ģ			
	· · · · · · · · · · · · · · · · · · ·		
1755 1776 1776 1776 1776 1776	120081	1805 1806 1816 1816	1812 1813 1814 1814 1814 1814 1814 1815 1855 1855

9-10 EDWARD VII., A. 1910

∅ AQUILÆ 1038.

Observed by J. N. TRIBBLE. Measured by J. B. CANNON.

Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.
$2 \\ 1 \\ 2 \\ 2 \\ 1_{1_2}^2$	$54^{\circ}7334$ $53^{\circ}9733$ $53^{\circ}1041$ $45^{\circ}2469$ $45^{\circ}2273$	9818 2540	0120	+ 13 81	$2^{\frac{1}{2^2}}$ $1^{\frac{1}{2^2}}$ $2^{\frac{1}{2^2}}$	$\begin{array}{c} 27 ^{\circ}3601\\ 27 ^{\circ}1906\\ 11 ^{\circ}7684\\ 11 ^{\circ}4086\end{array}$	4161	0035	3.04 + 11.68

- vi eigu	eq mean		
	Va		-20 23
	Vd		- 14
	Curvature.		- 128
D-di-1	and and they		0.9

θ AQUIL.E 1050.

1907. Sept. 18.
G. M. T. 14^h 45^m

Observed by J. N. TRIBBLE.

Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings	Displace- ment in Revolutions.	Velocity.
2 1 2 2	73.0318 72.8699 72.4635 54.0294	-8031	0156	- 22 66	2 $1\frac{1}{1}$ 2 2 2	$\begin{array}{r} 45 \cdot 2738 \\ 45 \cdot 2139 \\ 27 \cdot 3813 \\ 27 \cdot 2441 \end{array}$	2237 4591	0250 0374	26°17 - 32°59

Veight	ed niean.									20.00
	Va									22.14
	Vd.,									-14
	Curvatu	е								28
India1	vologity									38-8

θ AQUILÆ 1050.*

1907. Sept. 18. G. M. T. 14^h 45^m Observed by J. N. TRIBBLE. Measured by J. B. CANNON.

Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.	Wt.	Mean of Settings.		Displace- ment iu Revolutions,	Velocity.
$\begin{smallmatrix}1\\&1\\2\\&1\\2\\&\frac{1}{2}\end{smallmatrix}$	$\begin{array}{c} 73\cdot 0040\\ 72\cdot 8394\\ 72\cdot 4318\\ 54\cdot 7082\\ 53\cdot 9314\end{array}$	9651	0198	- 28.73	2 2 1 1 1 1 1 1 1 2	$53 \cdot 1850 \\ 45 \cdot 2417 \\ 45 \cdot 1800 \\ 27 \cdot 8593 \\ 27 \cdot 2063 $	2119 - 3996	0268 0130	-27^{+98} -11^{+28}
				We	V.	a			22:43 22:14 14 28

* Check measurement.

1907. Sept. 12.
 G. M. T. 15^h 15^m

∅ AQUILÆ 1533.

1908. May 15. G. M. T. 20^h 54^m

Observed by W. E. HARPER.

Wt.	Mean of Settings,	Corrected Star Settings,	Displace- ment in Revolutions.	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.
2 2 2 2 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3	$54 \cdot 7742$ $53 \cdot 9693$ $53 \cdot 1421$ $45 \cdot 2974$ $45 \cdot 1779$ $27 \cdot 3612$	-8781 -1541 -3498	0917 0846 0628	- 105 54 - 88 32 - 54 51	$2 \\ 1^{\frac{1}{2}} \\ 2^{2} \\ 2^{\frac{1}{2}} \\ 2$	$\begin{array}{c} 27 & 2579 \\ 15 \cdot 3876 \\ 15 \cdot 4086 \\ 11 \cdot 7542 \\ 11 \cdot 5091 \end{array}$	3776 7520	0956	~ 73.99

θ AQUILÆ 1544.

1908. May 18. G. M. T. 20⁶ 49^m

Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutious.	Velocity.
$212^{1/2}$	54 · 7267 53 · 8990 53 · 0982	:9160	-0538	- 61 92	21	45 2655 45 1692	1778	0614	- 64 10

Weighted mean	- 6	52.30
Va + '04		
Curvature		-28
Radial volocity		87.0

θ AOUILÆ 1576.

1908. June 3. G. M. T. 20^h 35^m

Observed by W. E. HABPER.

Observed by W. E. HARPER.

Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.	Wt.	Meau of Settings.	Star	Displace- ment in Revolutions	Velocity.
2 2 2 2 2 2	$54^{\circ}7369$ $53^{\circ}8906$ $53^{\circ}1029$ $45^{\circ}2806$	8976			1 2	45:1970 11:8670 11:5975	1900	-0487 -0744	- 50 · 84 - 55 · 72
				v		Va		+21.62	69.34 -02 -28

9-10 EDWARD VII., A. 1910

θ AQUILÆ 1583.

1908. June 5. G. M. T. 9^h 42^m

Observed	by	Τ.	H.	PARKER.
Measured	by	C.	R.	WESTLAND

Observed by T. H. PARKER. Measured by W. E. HARPER.

Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	ment in	Velocity.
$2 \\ 1 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ $	$\begin{array}{c} 72 \cdot 9953 \\ 72 \cdot 8212 \\ 72 \cdot 4342 \\ 54 \cdot 7250 \\ 53 \cdot 9156 \\ 53 \cdot 1028 \end{array}$	9287	0301	- 43 68	$2 \\ 1 \\ 1 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ $	$\begin{array}{r} 45^\circ2607\\ 45^\circ1648\\ 27^\circ3467\\ 27^\circ2518\\ 11^\circ8084\\ 11^\circ5245\end{array}$	1776 3418 7915	0611 0708 0599	- 63 · 79 - 61 · 45 - 44 · 87

Va		
Vd + '04		
Curvature		28
And a second sec		
Radial velocity	-30	.7

 $\theta\,$ AQUIL. Æ 1604.

1908. June 12. G. M. T. 19^h 32^m

Wt,	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.
21-22221222	$\begin{array}{c} 73 & 0.475 \\ 72 \cdot 8819 \\ 72 \cdot 4848 \\ 57 \cdot 8373 \\ 57 \cdot 7974 \\ 54 & 7562 \\ 53 \cdot 9652 \\ 53 & 1298 \end{array}$	8436 7895 9492	0212 0373 0206	- 30 76 - 44 91 - 23 71	$ \begin{array}{c} 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \end{array} $	$\begin{array}{r} 45 & 2995 \\ 45 & 2281 \\ 37 & 7627 \\ 37 & 9955 \\ 27 & 4133 \\ 27 & 2746 \\ 11 & 8637 \\ 11 & 5542 \end{array}$	2022 7265 3852 8173	0365 0283 0274 0341	- 38°11 - 27°21 - 23°78 - 25°54

Weight	V_a		-18	29.64
	Vd Curvatu			'04
Radial	velocity.			11'4

θ AQUILÆ 1605.

Observed by | T. H. PARKER. Measured by | T. H. PARKER.

Wt. Mean Settings.	Corrected Star Settings,	Displace- ment in Revns.	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revns.	Velocity.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8345 7934 9500	0303	- 43 '96 - 40 '21 - 22 '78	2212121221221221221222122212222222222	$\begin{array}{c} 53 \cdot 0714 \\ 45 \cdot 2430 \\ 45 \cdot 1817 \\ 43 \cdot 5027 \\ 27 \cdot 3562 \\ 27 \cdot 2410 \\ 11 \cdot 7999 \\ 11 \cdot 5103 \end{array}$	2124 3619 7969	0263 0507 0543	27 45 44 00 41 56
				We	ighted mer			- 32 . 99

0	Va		+18.58	
	Vd			~ '04
	Curvatur	е		58
n				

Observed by T. H. PARKER. Measured by W. E. HARPER.

AQUIL. £ 1626.

1908. June 22.
 G. M. T. 18^h 35^m

Mean Corrected Displace Mean Corrected Star Displace-Wt. Velocity. Wt. of Star ment in Revns. of ment in Velocity. Settings. Settings. Settings. Revns. Settings. $57.8274 \\ 57.7977 \\ 54.7455$ -CHEN 21 1 21 $\frac{37.7445}{29.7998}$ $\frac{7260}{7680}$ 0287 -27.67-55.927957 2222212 - 37 44 0629 29.6306 -9377 .0321 - 55 98 53 9400 36 95 27 3906 3481 0645 $27 \cdot 2891$ 11 \cdot 8445 11 \cdot 5615 53.1130 45 · 2851 45 · 2209 37 · 9777 7902 0612 - 58 39 0293 2094- 30.60

Weighted mean		-44 13
Va	+15.01	
Vd	··· '04	
Curvature		28
D (1) 1 1		
Radial velocity		-29.0

9-10 EDWARD VII., A. 1910 Observed by T. H. PARKER, Measured by J. B. CANNON,

θ AQUILÆ 1626.*

1908. Anne 22. G. M. T. 18^h 35ⁱ

Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revns.	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revns.	Velocity.
1 2 2 2 2 2 1 1 2 2 2 2 2 2 2 1 1 2 2	$\begin{array}{c} 57:8369\\ 57:8165\\ 54:7682\\ 53:9534\\ 53:1347\\ 45:3077\\ 45:2463\\ 38:9962\end{array}$	8025 9294 2123	0243 0404 0264	- 29 26 - 46 50 - 27 56	2	$\begin{array}{r} 37.7667\\ 29.8124\\ 29.6441\\ 27.4266\\ 27.3062\\ 11.8604\\ 11.5823\end{array}$	7262 7624 3746 7864	0383 0685 0380 0650	- 36 92 - 60 90 - 32 98 - 48 68

Observed by W. E. HARPER.

Radial velocity..... - 26.3

*Check measurement.

∉ AQUILÆ 1634.

1908. June 24-G. M. T. 19^b 46^m

Mean Corrected Mean Corrected Displace-Wt. Star ment in Velocity. Wt. of Star ment in of Settings Settings. Settings. Revns. Settings. $\begin{array}{c} 57\,^{+}9245\\ 57\,^{-}8639\\ 54\,^{+}8405 \end{array}$ - 33.45 37 8235 7200 0347 0580 - 69 83 7688 30.0385 10 to to to to to to 29 8974 27 4733 27 3638 7819 0490 - 43:56 0351 - 40 40 0565 - 49.04 9347 21222 8011 0503 - 37 67 1941 - 46.56 35 0650

Weighted mean.	- 42 95
Va +14.12	
Vd	- 06
Curvature	- '28
ACT	

384

θ AQUILÆ 1643.

Observed by T. H. PARKER. Measured by W. E. HARPER.

1908. June 26, G. M. T. 19^h 42^m

Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revns.	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revns.	Velocity.
0101010101010	$\begin{array}{c} 57 & 8751 \\ 57 & 8285 \\ 54 & 7850 \\ 53 & 9798 \\ 53 & 1545 \\ 45 & 3226 \\ 45 & 2498 \end{array}$	7742 9370 2008	0526	- 63 * 33 - 37 * 75 - 39 * 57	2 2 1 2 3 2	38.0110 37.7647 27.4172 27.3150 11.8629 11.5661	7131 3588 8040	0416 0538 0474	- 40 10 - 46 70 - 35 50

Weighted mean	-42.90
Vd Curvature	- '09 - '28
Radial velocity	- 30.0

Observed by J. S. PLASKETT. Measured by W. E. HARPER.

θ AQUILÆ 1651.

Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revns.	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revns.	Velocity.
2122 ¹⁰ 22222 ⁴⁰ 12122	$\begin{array}{c} 57\cdot 8640\\ 57\cdot 8292\\ 54\cdot 7825\\ 53\cdot 9715\\ 53\cdot 1535\\ *45\cdot 3175\\ 45\cdot 2365\\ 38\cdot 0075\\ 37\cdot 7459\\ 30\cdot 9295 \end{array}$	7946 9320 1926 6973	0322 0378 0461 0554	- 38 77 - 43 51 - 48 13 - 53 40	$ \begin{array}{c} 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 3 \\ 2 \end{array} $	$\begin{array}{c} 30^{\circ}8717\\ 29^{\circ}6583\\ 29^{\circ}6105\\ 27^{\circ}4256\\ 27^{\circ}4256\\ 27^{\circ}3135\\ 15^{\circ}4903\\ 15^{\circ}4707\\ 11^{\circ}8646\\ 11^{\circ}5760 \end{array}$	*8126 *5510 *3390 *4182 *7958	0630 0479 0536 0551 0556	- 56 57] - 42 53 - 46 52 - 42 65 - 41 64

Weighted mean	- 45 · 06
V _d Curvature	- '28
Radial velocity	- 32.5

908.			
й. М.	T.	18^{h}	45 ^m

•

DEPARTMENT OF THE INTERIOR

9-10 EDWARD VII., A. 1910

```
θ AQUIL.E 1659.
```

1905, July 3. G. M. T. 17^h 30ⁿ Observed by W. E. HARPER. Measured by J. B. CANNON.

Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revns.	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revns.	Velocity.
2: 21 21	54-6001 53-7884 52-9687	53 9309	0389	++*77	21 23	11:6263 11:3448	11.7883	·0631	- 47.26
					We	ighted mer			- 46.01

Va 00 Curvature.... - 18

Radial velocity. - 35'9

Observed by W. E. HARPER. Measured by J. B. CANNON.

θ AQUIL. Ε 1679

1908, July 8, G. M. T. 18^h 49^m

1908. July 10. G. M. T. 19^h 30^m

Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revns.	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revns.	Velocity.
1 1 1 21 21 21	$\begin{array}{c} 73 \cdot 1291 \\ 72 \cdot 9478 \\ 72 \cdot 5626 \\ 54 \cdot 8610 \\ 54 \cdot 0581 \\ 53 \cdot 2311 \end{array}$		0350		2112 1212 1212 2122	$\begin{array}{r} 45^\circ 3990\\ 45^\circ 3177\\ 27^\circ 4959\\ 27^\circ 3903\\ 11^\circ 9233\\ 11^\circ 6602 \end{array}$	1923 3539 7803	0464 0587 0711	- 48° 44 - 30° 95 - 53° 25

Weighted mean	-46.30
$\dot{\mathbf{V}}_d$	09
Curvature	28

θ AQUIL.E 1691.

Observed by | T. H. PARKER. Measured by |

Wt.	of	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.	Wt.	of	Star	Displace- ment in Revolutions.	Velocity.
2 ⁻⁶¹ 2121 - 2121	$\begin{array}{c} 72.9970\\ 72.8227\\ 72.4327\\ 57.7960\\ 57.7501\\ 56.6372\\ 54.7314 \end{array}$	7831	0296	- 55 * 74	1 ¹⁰ 2 2 2 2 2 2 2 2 2 2 2	53 9308 53 1036 45 2729 45 1767 27 3741 27 2739	-1777	-0610 0655	

Weighted mean...... Va..... Vd..... Curvature... $-7^{1}14$.12 -25

θ AQUILÆ 1691[∗].

Observed by T. H. PARKER. Measured by J. B. CANNON.

1908, July 10, G. M. T. 19⁵ 30^m

Wt.	Mean of Settings.	Corrected Star Setting4.	Displace- ment in Revolutions.	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings	Displace- ment in Revolutions	Velocity.
$\begin{smallmatrix}1&&&\\&1\\2&&\\1&&\\2&&\\1&&2\end{smallmatrix}$	$\begin{array}{c} 73{}^{\circ}0001\\ 728210\\ 724443\\ 578282\\ 577688\\ 547417\end{array}$	8277	0371	53°83 68°39	$ \begin{array}{c} 1_{2}^{1} \\ 2_{2} \\ 1_{2}^{1} \\ 2_{2}^{1} \\ 2_{2}^{1} \\ 2_{2}^{1} \end{array} $	$\begin{array}{c} 53 & 9446 \\ 53 & 1121 \\ 45 & 2831 \\ 45 & 1971 \\ 27 & 4088 \\ 27 & 2902 \end{array}$	9446 1874 3658	0252 0513 0468	- 29 00 - 53°36 - 39°62

Weighted mean	- 47 179
Vd Curvature	- 12 - 28
Radial velocity.	- 41 .0

" Check measurement.

θ AQUILÆ 1696.

1908. July 11. G. M. T. 19^h 10^m Observed by J. S. PLASKETT. Measured by W. E. HARPER.

Wt.	Mean of Settings.	Corrected Star Settings	Displace ment in Revolutions.	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings	Displace- ment in Revolutions.	Velocity.
2 1 2 2 2 2	$57 \cdot 8543$ $57 \cdot 8215$ $54 \cdot 7744$ $53 \cdot 9587$ $53 \cdot 1422$ $45 \cdot 3096$	7968 9274	0300	- 36 12	$ \begin{array}{c} 1_{2}^{1} \\ 2 \\ 1 \\ $	45 2351 29 6333 29 6020 11 8235 11 5325	1991 5676 7982	-0396 -0313 -0532	- 41 °34 - 27 54 - 39 °85

Weighted mean	-40.40
Weighted mean 1.6660 V_a 1.6660	
Vd	- ·12 - ·28
Curvature	- '28
Radial velocity	-34.2

θ AQUILÆ 1704.

1908. July 18. G. M. T. 19^h 37ⁿ

Observed by T. H. PARKER. Measured by J. B. CANNON.

Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.	Wt.	Mean cf Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.
1 1 2 2 2 2	$\begin{array}{c} 73.0441 \\ 72.8608 \\ 72.4491 \\ 57.8483 \\ 57.8073 \\ 54.7666 \\ 53.9556 \end{array}$	7883	0083	- 46.35	22 1 21 1 1 2 1 1 2 2	53 1318 45 3027 45 2546 27 4155 27 3060 11 8718 11 5838	2156 3555 7958	0231 0561 0556	- 24 12 - 48 69 - 41 64

Veighted mean,				-38.78
Va.				
Vd				- 16
Curvature				- '28
Radial velocity				- 33:5

θ AQUILÆ 1708.

1908, July 14. G. M. T. 18^b 19^m Observed by W. E. HARPER. Measured by J. B. CANNON.

Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.
$\begin{array}{c}1\\1\\1\\2\\2\\2\end{array}$	$\begin{array}{r} 73\cdot 0051\\72\cdot 8307\\72\cdot 4410\\54\cdot 7316\\53\cdot 9435\\53\cdot 1072\end{array}$	8351	0297	- 43:09	$22112^{2}22^{2}2^{2}22^{2}2^{2}2^{2}2^{2$	$\begin{array}{r} 45^\circ 2705\\ 45^\circ 2015\\ 27^\circ 3918\\ 27^\circ 2622\\ 11^\circ 8489\\ 11^\circ 5364\end{array}$	2045 3786 8199	0342 0430 0315	-35'70 -37'32 -23'58

Weighted mean		-30.83
Va Va	+5.34	.00
Curvature		- '28

Radial velocity..... - 25'8

θ AQUILÆ 1716

Observed by W. E. HARPER. Measured by J. B. CANNON.

1908, July 15, G. M. T. 19^b 24^m

Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.
22	$\begin{array}{c} 73.0426\\ 72.8798\\ 72.4764\\ 57.8582\\ 57.8243\\ 54.7774\\ 53.9873\\ 53.1427\end{array}$.8475	0173 0313 0135	- 25 10 	${\begin{array}{c}2\\1\\1\\1\\1\\2\\1\\2\\2\\1\\2\end{array}}$	$\begin{array}{r} 45^\circ 3046\\ 45^\circ 2469\\ 29^\circ 6384\\ 29^\circ 6106\\ 27^\circ 4356\\ 27^\circ 2951\\ 11^\circ 8697\\ 11^\circ 5523\end{array}$	2159 5716 3871 8197	0228 0273 0255 0317	23 80 24 22 22 15 - 23 74

Radial velocity..... - 19.5

θ AQUILÆ 1727.

1908, July 25. G. M. T. 16^h 29^m Observed by J. S. PLASKETT. Measured by W. E. HARPER.

Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.
$ \begin{array}{c} 2 \\ 1 \\ 2 \\ 2 \\ 2 \end{array} $	$\begin{array}{c} 73\cdot 0229\\72\cdot 8498\\72\cdot 4507\\54\cdot 7506\\53\cdot 9420\\53\cdot 1227\end{array}$	9323	0263	-38°16 43°16	$2 \\ 2 \\ 1 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ $	$\begin{array}{c} 45^{+}2811\\ 45^{+}2157\\ 27^{+}3982\\ 27^{+}2733\\ 11^{+}8282\\ 11^{+}5343\end{array}$	2082 3715 8011	0305 0411 0503	$31 \cdot 84 \\ 35 \cdot 67 \\ -37 \cdot 67$

Weighted mean	-37.52
$V_a = + 25$ $V_d = + 04$	
Curvature	- '28
Radial velocity	-37.5

θ AQU1L. £ 1730.

 $\left. \begin{array}{c} \mathrm{Observed \ by} \\ \mathrm{Measured \ by} \end{array} \right\} \mathrm{W. \ E. \ Harper.}$

1908, July 26. G. M. T. 17^h 38^m

Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.
21-151-11-22-22-22-22	$\begin{array}{r} 73 \cdot 0205 \\ 72 \cdot 8350 \\ 72 \cdot 4551 \\ 57 \cdot 8380 \\ 54 \cdot 7570 \\ 53 \cdot 9564 \\ 53 \cdot 1243 \end{array}$	8244 9427	0404	- 58 62	$ \begin{array}{c} 2 \\ 1 \\ 2 \\ 2 \\ 2 \\ 2 \end{array} $	$\begin{array}{r} 45 & 2945 \\ 45 & 2203 \\ 27 & 4096 \\ 27 & 2920 \\ 11 & 8572 \\ 11 & 5612 \end{array}$	1994 3642 8032	0393 0484 0482	41.02 42.01 - 36.10

W

eighted mean.	- 38:20
Va	24
Vd Curvature	- 11 - 26
Padial valuaity	28.8

Observed by J W. E. HARPER.

θ AQUIL. £ 1731.

1908. July 26. G. M. T. 18^h 07^m

Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings,	Displace- ment in Revolutions.	Velocity.
21-1021 21 21 21	$\begin{array}{c} 57 & 8287 \\ 57 & 7975 \\ 54 \cdot 7409 \\ 53 \cdot 9365 \\ 53 \cdot 1122 \\ 45 \cdot 2753 \end{array}$	7982 9368	0286	- 41 50 38 00	1-2	45.1997 27.3970 27.2644 11.8173 11.5376	1980 3792 7869	0407 0334 0645	42.49 29.00 - 48.31

Weighted mean	- 39:83
ν Va	- '24
Vd	- 11
Curvature	- '28
Rudial talogity	- 40:5

AQUILÆ 1732.

Observed by J. S. PLASKETT. Measured by W. E. HARPER.

1908,	July	27.	
G. M.	T. *	18^{h}	1.510

Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.
2 $\frac{1}{2}$ 2 2 2 2	$\begin{array}{c} 57{}^{+}6860\\ 57{}^{+}6422\\ 54{}^{+}5924\\ 53{}^{+}7915\\ 52{}^{+}9636\\ 451239\end{array}$	7856 9405	0412 0293	33 72	1 2 1 ¹⁰ 1 2 2	45 0540 29:4545 29:4224 11:6850 11:3507	·2035 5608 8415	0352 0321 0099	36-75 28-47 - 7-41
					Wei	Va Vd	n		32 23 73 12 28

Wt.	ean Corrected of Star tings. Settings.	d Displace- ment in Revolutions.	Velocity.	Wt,	of	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.
	8173 7872 7993 7239	0273	- 32 87	$\frac{1}{2}$	53-9094 53-1007	-9241	-0457	- 52:60

Weight	ted mean	- 39.42
	Va	13
	Vd	- 24
	Curvature	- '28
Radial	velocity	-40.7

Radial velocity....

θ AQUIL.E 1735.

1908. July 28. G. M. T. 17^k 49^m Observed by W. E. HARPER.

Wt.	Mean of Settings.	Corrected Star Settings.	Displace ment in Revolutions.	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions,	Velocit y
2 1 2 2 2 2 2 1	$\begin{array}{c} 57 & 7810 \\ 57 & 7302 \\ 54 & 6993 \\ 53 & 8959 \\ 53 & 0681 \\ 45 & 2233 \\ 45 & 1554 \end{array}$	7786 9391 2057	0482 0307 0330	- 57 91 35 33 34 45	21521	$\begin{array}{c} 37 & 9067 \\ 37 \cdot 6760 \\ 29 \cdot 5479 \\ 29 \cdot 4960 \\ 27 \cdot 3178 \\ 27 \cdot 1956 \end{array}$	7285 5470 3688	0262 0519 0438	25°26 46°14 - 38°02

Weighte 1 mean	-40.13
$V_a \dots V_d$	- 1:20
Curvature	
Radial velocity	- 42.7

θ AQUIL. Ξ 1736.

Observed by W. E. HARPER.

Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.
2 1 ¹ / ₃ 2	54:7038 53:9012 53:0684	9418	0280	- 32.23	2 1	37 · 9039 37 ·6815	7368	······	- 17 25
					Weigh				28.48 1.20 12 -28

θ AQUILÆ 1747.

1908. July 30. G. M. T. 17^h 47^m

Observed by W. E. HARPER.

Radial velocity. - 30.1

Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.
2 2 2 2 2 2 2 2 2	$\begin{array}{r} 73 \cdot 0586 \\ 72 \cdot 8916 \\ 72 \cdot 4899 \\ 54 \cdot 7537 \\ 53 \cdot 9640 \\ 53 \cdot 1210 \end{array}$	8438 9538	·0210 	- 30 47	$2 \\ 1\frac{1}{2} \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\$	$\begin{array}{r} 45 \cdot 2720 \\ 45 \cdot 1954 \\ 27 \cdot 3662 \\ 27 \cdot 2345 \\ 11 \cdot 7805 \\ 11 \cdot 4640 \end{array}$	1970 3783 8237	0417 0343 0287	43 53 29 77 - 21 50

Weight	ed	l r	ne	32	ù	1.														28.60	
0	1	Ta																		2.13	
	1	í a																		10	E.
	C	Ju	r١	1	L¢	ť	ır	e												128	
																	-	-	-		

Radial velocity

θ AQUILÆ 1755.

1908. July 31. G. M. T. 17^h 52^m

Observed by W. E. HARPER.

Wt.	Mean of Settings.	Corrected Star Sattings.	Displace- ment in Revolutions.	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.
$2 \\ 1 \\ 2 \\ 1 \\ 1 \\ 1 \\ 1 \\ 2 \\ 1 \\ 1 \\ $	$\begin{array}{r} 57 & 9005\\ 57 & 8680\\ 45 & 3421\\ 45 & 2829\\ 29 & 6625\end{array}$	7968 2144 5744	0300 0243 0245	- 36°12 25°37 21°78	2 1 2 1 2	29.6870 27.4678 27.3373 11.8987 11.5900	3771 8159	0355	30·81 - 26·59
					Weigh	ted mean.			27:56

Va Va Vd Curvature....

·11 ·28

Radial velocity..... - 30.5

θ AQUILÆ 1756.

Observed by W. E. HARPER. Measured by

1908. July 31. G. M. T. 18⁵ 19^m

Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.
$2^{\frac{1}{2}}_{2^{\frac{1}{2}}}_{2^{\frac{1}{2}}}$	$\begin{array}{c} 73\cdot1090\\72&9433\\72\cdot5395\\54\cdot8279\\54&0425\\53\cdot2057\end{array}$	8464 9526	0184	- 26 70	$2 \\ 2 \\ 1 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ $	$\begin{array}{r} 45:3718\\ 45:3132\\ 27:5107\\ 27:3692\\ 11:9418\\ 11:6251\end{array}$		0237 0245 0275	24 74 21 27 - 20 60

Weighted	me	an									23:42	2
V	a i										2.59	
1	d -										18	<i>i</i> –
C	urv	atı	tre.								28	1
Radia	l ve	elo	its								26.4	

θ AQUIL. E 1762,

1908. Aug. 5. G. M. T. 14^h 50^m Observed by J. S. PLASKETT. Measured by T. H. PARKER.

	Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.	Wt.	Mean of Settings.		Displace- ment in Revolutions.	Velocity.
-	$2^{\frac{1}{2}}_{22}^{\frac{1}{2}}_{22}_{21}_{22}_{22}_{21}_{1}_{1}^{\frac{1}{2}}_{22}_{22}_{21}_{1}^{\frac{1}{2}}_{1}$	$\begin{array}{r} 73 \cdot 0445 \\ 72 \cdot 9019 \\ 72 \cdot 4763 \\ 54 \cdot 7639 \\ 54 \cdot 0333 \\ 54 \cdot 0467 \\ 53 \cdot 1283 \\ 45 \cdot 2915 \\ 45 \cdot 2840 \end{array}$	0153	0041	+ 5'94	2 2 1 2 1 2 1 2	$\begin{array}{r} 37 \cdot 9735 \\ 37 \cdot 8169 \\ 30 \cdot 9439 \\ 30 \cdot 8932 \\ 27 \cdot 4672 \\ 27 \cdot 2659 \\ 11 \cdot 9221 \\ 11 \cdot 5123 \end{array}$	8026 9214 4477 9161	0479 0458 0351 0647	

Weighted mean	+39.69
V _d Curvature '28	+ .05
Radial velocity	+34.6

9-10 EDWARD VII., A. 1910 Observed by J. S. PLASKETT. Measured by W. F. HARPER

θ AQUIL.E 1766.

1908. Aug. 5.

							Acastro		
Wt.	M+an of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.	Wt.	Mean of Settings,	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity
2 102 1 21 21 21 1 21 21	54 7555 54 0175 53 1220 45 2833 45 2691	0058 2594	0360	- 41 44	$\frac{2}{1}$	37 8146	8042 9096	0495 0582	47 72 43 59
				w	inhtod	meen			38.95

	Va										4 91	
	\mathbf{V}_d										- 02	
	Ċu		1.1	÷.,							100	
	Cui	c.v.8	LU I	ine							20	

Radial velocity ...

O AL			

1908. Aug. 5. G. M. T. 17^h 18^m

Observed by J. S. PLASKETT. Measured by W. E. HARPER.

Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.	Wt.	Mean of Settings.	Corrected Star Setrings.	Displace- ment in Revolutions.	Velocity.
2 1 2 2 2 2 2	$\begin{array}{c} 54 \cdot 7650 \\ 54 \cdot 0152 \\ 53 \cdot 1277 \\ 45 \cdot 2725 \\ 45 \cdot 2916 \\ 37 \cdot 9791 \end{array}$	9958 2545	0260	+ 29 ' 93 16 ' 50	$\begin{array}{c}1\\2\\2\\2\\2\end{array}$	$\begin{array}{c} 37 & 7837 \\ 277 & 4480 \\ 27 & 2720 \\ 11 & 9180 \\ 11 & 5284 \end{array}$	7738 4226 8963	0191 0190 0454	$ \begin{array}{r} 16'98 \\ 8 & 68 \\ +34'00 \\ $
				W	ighted	mean			21 19

V.a					4.91		
V.d					·09		
Curvature					-28		
				 _			
D . M. L						1.1.1.	

θ AQUIL. Ξ 1769.

1908, Aug. 5, G. M. T. 18^h 48^m

Observed by J. S. PLASKETT, Measured by W. E. HARPER.

Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.	Wt.	Mean of Settings.	Star	Displace- ment in Revolutions.	Velocity.
21-122	$\begin{array}{c} 73.0800\\ 72.9310\\ 72.5112\\ 54.7953\end{array}$		0030			$\begin{array}{c} 54 & 0263 \\ 53 \cdot 1625 \\ 45 \cdot 3224 \\ 45 \cdot 2968 \end{array}$		0045	
				W	eighted Va	mean		+ 5.00	4 91

19 28

Radial velocity..... - 0.4

θ AQUIL Ε 1776.

- G.	M.	Τ.	17	ь

Wt.	Mean of Settings.	Corrected Star Settings, 1		Velocity.	Wt.	Mean of Settings.	Star	Displace- ment in Revolutions.	Velocity.
2 2 2 1 1 2 1	$\begin{array}{c} 73 \cdot 0105 \\ 72 \cdot 8287 \\ 72 \cdot 4303 \\ 54 \cdot 7527 \\ 53 \cdot 9542 \end{array}$	-8311	0337	- 48.90	$2 \\ 2 \\ 1 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ $	$53^{\circ}1270$ $45^{\circ}2947$ $45^{\circ}2207$ $11^{\circ}8727$ $11^{\circ}5703$	1994 -8100	-0393 -0414	41.03 - 30.64

Weighted	m	ear									35.19
~ V	a										5.87
N.	d										·08
C	ur	rat	ur	е.							-28

Observed by T. H. PARKER. Measured by W. E. HARPER

Radial velocity... -41 4

Observed by T. H. PARKER. Measured by W. E. HARPER.

	1777.

1908. Aug. 7. G. M. T. 17^h 45^m

Corrected Displace-Mean Corrected Displace-Mean Wt. of ment in Velocity. Wt. Star Star ment in Settings. Revolutions. Settings. Settings. Settings. Revolutions. 73 0173 72 8345 72 4482 57 8521 57 8257 45:3157 0367 ~ 53 25 45 2536 027028 19 $\frac{43}{2030}$ $\frac{27}{4414}$ $\frac{414}{27}$ $\frac{3125}{11}$ $\frac{9090}{90}$ 0370 0240 28 90 0306 22.64 11.5960 29 845029 655853 9666 9371 7881 0428 - 38:05

weighted mea	un		32 57
Va			5 87
Va.			14
Curva	ture		-28

θ AQUIL. Ξ 1789.

1908. Aug. 17. G. M. T. 18⁵ 18⁵⁶ Observed by Measured by W. E. HARPER.

Measured by J 11- 12- Hanchin

Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.		Velocity.
1 ¹ 2 2 2 2 2 2 3	57 8885 57 9031 54 8125 54 0320 53 1826		0120	9 67	2 1 2 1	45:3395 45:2972 38:0187 37:8079	2313	0074	7.72
					Weigh	ited mean.			9.78 10.39

ℓ AQUILÆ 1789.

1908. Aug. 17. G. M. T. 18 18ⁿ Observed by W. E. HARPER.

Wt.	Mean of Settings.	Corrected Star Settings.		Veloc'ty.	Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.
21 1 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2	57 8769 57 8580 54 7899 54 0078 53 1557 45 3130	8105 9618	0163	- 20.15	$1 \\ 1 \\ 1 \\ 2^2$	45 · 2667 37 · 9966 37 · 7900 29 · 8666 29 · 6395	2271 7526 8260	0116 0021 0049	12·11 2·02 - 4·36
	_					Va Va Curvatui	re		9 91 10 39 21 28

Inadvertently remeasured.

θ AQUILÆ 1794*.

1908. Aug. 19. G. M. T. 16^h 45^m Observed by W. E. HARPER.

Radial velocity. -24 0

Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.
2 2 2 2 1 $\frac{1}{2}$	$\begin{array}{c} 111 \cdot 6998 \\ 111 \cdot 3210 \\ 110 \cdot 2983 \\ 71 \cdot 8920 \\ 71 \cdot 8568 \\ 69 \cdot 5153 \end{array}$	1330 8664 5373	0193 0392 0155	-11 19 	222422	$\begin{array}{c} 68\cdot7143\\ 63\cdot3902\\ 61\cdot2072\\ 60\cdot3880\\ 36\cdot0921\\ 35\cdot9450 \end{array}$	·2159 ·9631	0286	11·75 - 14·90
					Weigh	Vd			12 41 11 21 12 28

* Plate made with three-prism spectrograph.

Observed by W. E. HARPER.

1908. Aug. 20. G. M. T. 15^h 15^m

Wt.	Mean of Settings.		Velocity.	Wt.	Mean of Settings	Star	Displace- ment in Revolutions.	Velocity
21 ⁻¹⁰¹ 21 21 21 21 22 21 23	$\begin{array}{r} 72\cdot9899\\72\cdot8610\\72\cdot4241\\57\cdot8022\\57\cdot8095\\54\cdot7204\\53\cdot9533\\53\cdot0898\\45\cdot2572\end{array}$	8811 8387 9751	+ 23°65 + 14°33 + 6°11	2 2 1 1 2 ⁴²² 2 ⁴⁸² 2 ⁴⁸¹	$\begin{array}{r} 45^\circ 2480\\ 37^\circ 9470\\ 37^\circ 7533\\ 29^\circ 6165\\ 29^\circ 5990\\ 27^\circ 4143\\ 27^\circ 2560\\ 11^\circ 8457\\ 11^\circ 5300 \end{array}$	-8229	0108	6 51 - 13 90

Radial velocity..... + 0.4

 $\left. \begin{array}{c} \mathrm{Observed} \ \mathrm{by} \\ \mathrm{Measured} \ \mathrm{by} \end{array} \right\} \mathrm{W. \ E. \ HARPER.}$

θ AQUILÆ 1800.

Wt.	Mean of Settings.	Corrected Star Settings.	Displace meut in Revolutious.	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.
2 1 2 2 1 2 2	$\begin{array}{c} 73 \cdot 0033 \\ 72 \cdot 8582 \\ 72 \cdot 4383 \\ 54 \cdot 7375 \\ 53 \cdot 9710 \\ 53 \cdot 1090 \\ 45 \cdot 2729 \end{array}$	·9747	-0000 	+ 5 64	$ \begin{array}{c} 1 \\ 1 \\ 2 \\ 2 \\ 1 \\ 1 \end{array} $	$\begin{array}{r} 45 & 2531 \\ 27 & 4586 \\ 27 & 2762 \\ 11 & 9005 \\ 59 & 8045 \\ 59 & 6690 \end{array}$	2537 4290 8700 6736	0150 0164 0186 0009	+15.66 +14.23 +13.93 - 1.23

Weighted mean	à.,						+	1	0	0	0		
- Va	• •											-	11.63 .05
V _d Curvature	 A											_	-00
						-	_	-					
Radial veloc	ity											-	2.0

1908.	Au	z. 20	λ
(f. M	Т.	15^{h}	470

Observed by Measured by W. E. HARPER,

∅ AOUILÆ 1801.

1908, Aug. 20.
 G. M. T. 16^h 42^m

Mean Mean Displace-Corrected Displace-Star Velocity. Wt. of Star Velocity. ment in Settings. Revolutions Settings. Revolutions. Settings 29 6294 29 6095 0205 9881 0183 +21.06 33.0997 1261 023520.39 45 2665 45-2453 8614 0160 7 49 2 11 5362 8575 0266 23.67 29 8670

θ AOUIL. E 1807.

1908. Aug. 21.
 G. M. T. 13^h 57^m

Mean Corrected Displace-Mean Displace Corrected Wt Star ment in Wt of Star Velocity ment in Revolutions, Settings. Settings. Revolutions Settings. Settings. 73:0196 45:3011 ·2689 0302 31.52 72 9000 72 4635 8880 0232 - 33 66 29 6480 $\begin{array}{c} 29 & 9315 \\ 27 & 4940 \\ 27 & 3002 \end{array}$ 8830 46 32 54 7685 54 0400 4406 0280 0124 0426 49 03 53.1406 11 9607 8961 0410 +30.7145:3058

> Weighted mean +41 42Va Va Curvature - 12:04 11 28 Radial velocity +28.7

Observed by J. B. CANNON. Measured by W. E. HARPER.

θ AQUILÆ 1808.

Observed by J. B. CANNON. Measured by W. E. FARPER.

1908. Aug. 21. G. M. T. 14^b 32^m

Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.
21 - 22 - 22 21 21 - 481 21 2 - 21 21 21 - 481 21 - 21	$\begin{array}{c} 72 & 9966 \\ 72 & 8700 \\ 72 & 4343 \\ 57 & 8783 \\ 57 & 8294 \\ 54 & 7475 \\ 54 & 0150 \\ 53 & 1145 \end{array}$		0170 0515 0412	62 00 47 42	21221 1221 2122 122	$\begin{array}{c} 45 & 2823 \\ 45 & 2779 \\ 37 & 9791 \\ 37 & 8077 \\ 27 & 4542 \\ 27 & 2782 \\ 11 & 9453 \\ 11 & 5512 \end{array}$	2692 7978 4226 9014	0305 0431 0100 0500	31 84 41 55 8 68 + 37 45

Observed by J. B. CANNON. Measured by W. E. HARPER.

Radial velocity.....

∂ AOUIL € 1810.

1908. Aug. 21. G. M. T. 15^b 28^o

Wt.	of	Corrected Star Settings.	Displace- meut in Revolutions.	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displace ment in Revolutions.	Velocity.
21 00 21 21 22 ⁻¹²⁹	$\begin{array}{c} 54.7201\\ 53.9840\\ 53.0910\\ 45.2620\\ 45.2523\\ 29.8745\end{array}$	0054 2650 8753	0356 0272 0414	40 97 	21-10 21-10 21-10 21-10 2	29:5981 27:4505 27:2512 11:8967 11:5218	4459 8831	0333 0317	28 90 +23.74

Weighted mean	-34'73
Va 12.04	
Vd	
Curvature	
Radial velocity	a. 99 · 1

DEPARTMENT OF THE INTERIOR

9-10 EDWARD VII., A. 1910

θ AQUILÆ 1811.

1908. Aug. 22. G. M. T. 15^h 29^m

Observed by W. E. HARPER.

Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.
2 2 2 2 2 2 2 2 2 2	72.9587 72.8387 72.3930 54.7138 53.9876 53.0885	8901	0253	+36.71		$45^{\circ}2600$ $45^{\circ}2775$ $27^{\circ}4871$ $27^{\circ}2762$ $11^{\circ}9679$ $11^{\circ}5587$	2911 4580 9170	0524 0454 0656	54.70 39.43 +49.13

Veighter	d n	ae	a	n																			+	47	86	ŝ
	Va.																	1	2	3	0					
	Vd.				• •				•	•	•						-			0						
(Cu	ev.	a		ır	e	• •	•		•										21	5					
																						-				

Radial velocity +35 0

Observed by W. E. HARPER.

θ AQUILÆ 1812.

1908, Aug. 22, G. M. T. 15^h 56^m

Displace-Mean Corrected Displace-Mean Corrected Star Wt. Velocity. Wt. Velocity. of Star ment in Settings. Revolutions of Star ment in Settings. Revolutions. Settings. Settings. 72.989272.8897 $\begin{array}{r} 45 & 2531 \\ 45 & 2633 \end{array}$ 47.08 9116 +67.910468 2838 0451 $\begin{array}{r}
 43 & 2033 \\
 27 \cdot 5378 \\
 27 \cdot 3121 \\
 12 \cdot 0073
 \end{array}$ $72^{\circ}4190$ $54^{\circ}7430$ $54^{\circ}0200$ $53^{\circ}1145$ 4728 52 25 0182 0484 9163 0649 +48.6111 5988

400

θ AQUILÆ 1813.

25a-283

```
1908. Aug. 22.
G. M. T. 16<sup>h</sup> 21<sup>m</sup>
```

Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.
21-0121-0121-0121-01	$\begin{array}{c} 72.9817\\ 72.8487\\ 72.4145\\ 57.8665\\ 57.8120\\ 54.7342\\ 54.0030\\ 53.1022 \end{array}$	8779	0131 0571 0420	+19.01 68.75 48.34	2 1 1 2 2 1 2 2 2 2 2 2 2 2 2 2	$\begin{array}{r} 45 \cdot 2804 \\ 45 \cdot 2807 \\ 29 \cdot 7215 \\ 29 \cdot 6318 \\ 27 \cdot 4825 \\ 27 \cdot 2904 \\ 11 \cdot 9879 \\ 11 \cdot 5733 \end{array}$	2739 6886 4387 9218	0352 0897 0221 0704	36.75 79.74 19.18 +52.73

Observed by W. E. HARPER.

.08 -28

Radial velocity.....+34'8

θ AQUILÆ 1814.

1908. Aug. 23. G. M. T. 15^h 48^m

Wt.	Mean of Settings.	Star m	isplace- ent in Velocity olutions.	. Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.
2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 +	$\begin{array}{c} 73 \cdot 0102 \\ 72 \cdot 8535 \\ 72 \cdot 4415 \\ 57 \cdot 8425 \\ 57 \cdot 8224 \\ 54 \cdot 7607 \\ 53 \cdot 9771 \end{array}$	8541 8093 9581	0103 -14 9 0175 23 0 0117 13 4	1 1 7 2 2	$\begin{array}{c} 53 \ 1312 \\ 45 \cdot 3009 \\ 45 \cdot 2574 \\ 27 \cdot 4527 \\ 27 \ 3137 \\ 11 \cdot 9226 \\ 11 \cdot 6012 \end{array}$	2301 3856 8286	0086 0270 0228	8 · 98 23 · 44 - 17 · 08

-16.27-12.95

Radial velocity -29.6

Observed by W. E. HARPER.

θ AOUILÆ 1815.

1908. Aug. 23. G. M. T. 16^h 18^m

Observed by W. E. HARPER.

Wt. Mear of Setting	Star	Displace- ment in Revolutions.	Velocity.	Wt.	Mean of Settings,	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5 8438 5 5 7 7936 6 7 9686 6	-0210 -0332 -0012	39-97 1-38	1-21	$\begin{array}{r} 45 & 2666 \\ 38 & 0157 \\ 37 & 7910 \\ 29 & 6320 \\ 29 & 6646 \\ 27 & 4726 \\ 27 & 3157 \\ 11 & 9125 \\ 11 & 5870 \end{array}$	2192 7348 5663 4035 8329	0195 0199 0336 0091 0185	20 36 19 18 29 87 7 90 - 13 86

Veighted	ean Va. Vd Cur										
	Cui	 	e							 	

Radial velocity - 32 6

Observed by W. E. HARPER.

θ AQUILÆ 1822.

1908. Aug. 24. G. M. T. 16^b 51^m

Mean Corrected Displace-Mean Corrected Displace-Velocity.' Wt. Wt. of Star ment in of Star Settings. Settings. Revolutions. Settings. Settings. Revolutions. 73.0206 72.8615 72.4567 57.8371 57.8167 $\frac{45 \cdot 2872}{45 \cdot 2305}$ 8505 0143 20.75 $\frac{1}{2}$ 2169 0218 37 9830 2121-2122 37 7598 27 4280 7360 0187 8090 0178 21 43 3884 0232 20 14 54 7477 53 9567 $27 \cdot 2862$ 26 13 9471 0227 21 11.8689 8272 0242 11 5489 53.1254

	-21.20
- <u>V</u> _a	- 13 · 40
Va	- 16
Curvature	- 24
Radial velocity.	-35.0

θ AQUILÆ 1835.

1908. Aug. 27. G. M. T. 14^h 02^m

```
Observed by J. B. CANNON.
Measured by J. B. CANNON.
```

Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.	Wt.	Mean of Settings.	Star	Displace- ment in Revolutions.	Velocity.
1 1 2 1 2 1 2	72 8466 72 4418	9413	0197	- 28.58	211/2 1/2 1/2 1/2 1/2	$\begin{array}{r} 45 & 2808 \\ 45 & 2153 \\ 27 & 3961 \\ 27 & 2768 \\ 11 & 8524 \\ 11 & 5472 \end{array}$	2081 3662 8125	0306 10536 10589	31 '95 45 '42 - 29 14

θ AQUIL.E 1864.

(908) Sept. 3.
 (4) M. T. 16⁶ 17^m

Observed by J. S. PLASKEIT, Measured by W. E. HARPER,

Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.	Wt.	Mean of Setting«.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity,
2 1 2 2 ⁴²¹ 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	$\begin{array}{cccc} 73 & 0322\\ 72 \cdot 8740\\ 72 & 4635\\ 57 & 8036\\ 57 & 803\\ 54 & 7801\\ 54 \cdot 0005\\ 53 & 1516\\ 45 \cdot 3191 \end{array}$	8526 7959 9616	0309	17 73 37·26 9·46	$\frac{1}{1}$ $\frac{1}{2}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{2}$ $\frac{1}{1}$ $\frac{1}{2}$ $\frac{1}{1}$ $\frac{1}{2}$ $\frac{1}{1}$ $\frac{1}{2}$	$\begin{array}{c} 45 & 2772 \\ 29 \cdot 9972 \\ 29 \cdot 8930 \\ 29 \cdot 6557 \\ 29 \cdot 6787 \\ 27 \cdot 4700 \\ 27 \cdot 3355 \\ 11 \cdot 9352 \\ 11 \cdot 6205 \end{array}$	2317 8174 5860 3816 8254	0070 0135 0129 0310 0260	7 · 33 12 · 08 11 · 49 27 · 03 - 19 · 58

Weighted	mean.										- 14	1.96
	V a										- 17	
	Val											16

Radial velocity..... - 32.8

θ AQUILÆ 1864.*

1908. Sept. 3. G. M. T. 16^b 17^m

Observed by J. S. PLASKETT, Measured by T. H. PARKER.

Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.
2 * ⁶¹ 2 2 * ⁶¹ 2 1 2 * ⁶¹ 2 1 2	$\begin{array}{r} 72^\circ 9854 \\ 72^\circ 8295 \\ 72^\circ 4198 \\ 57^\circ 8199 \\ 57^\circ 8027 \\ 54^\circ 7376 \\ 53^\circ 9573 \\ 53^\circ 1065 \end{array}$	8541 8122 9618	0107 0173 0080	- 15°52 20°70 9°20	$21 \\ 2^{2} \\ 1 \\ 1 \\ 2$	$\begin{array}{r} 45 & 2737 \\ 45 \cdot 2348 \\ 29 \cdot 8500 \\ 30 \cdot 9097 \\ 29 \cdot 6055 \\ 11 \cdot 8883 \\ 11 \cdot 5697 \end{array}$	2347 8107 5660 8258	0040 0202 0181 0256	4.16 17.80 16.05 -19.17

Weighted mean				- 15	
				~ 17	
					·16
Curvature					·28
			-		
Radial velocity				- 33	1

* Independent measurement.

θ AQUILÆ 1875.

1908. Sept. 8. G. M. T. 12^h 42^m Observed by J. S. PLASKEIT. Measured by T. H. PARKER.

Wt.	Mean of ettings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.
1 2 1 1 2 1	54 7440 54 0895	- 8850 	0202	+29.31	2 1 2 1 2 1 2 1 2	$\begin{array}{r} 45 & 2770 \\ 45 \cdot 3101 \\ 27 \cdot 5014 \\ 27 \cdot 2778 \\ 12 \cdot 0038 \\ 11 \cdot 5614 \end{array}$	3067 4694 9496	0680 0268 0982	70°99 49°34 - 73°55

Veighted mean	+67.85
Va	- 0ə
Padial valaaitu	. Four

θ AQUILÆ 1875*

1908. Sept. 8. G. M. T. 12^h 42^m

Observed by J. S. PLASKETT. Measured by W. E. HARPER.

Corrected Displace-Mean Corrected Displace-Star ment in Velocity. W+ W+ of Star ment in Settings Settings. Revolutions. Settings. Revolutions. Settings. 54.767654.0485 $29^{+}6453$ $29^{+}7430$ $12^{+}0185$ 2222 6966 0218 0520 + 59.85 0977 86 66 53.1396 .9417 + 67 . 63 45 3024 45 3295 3007 0620 64.73 +69.07

- 09 Curvature. ... -28

Radial velocity

* Check measurement.

θ AQUILÆ 1876.

1908. Sept. 8.
 G. M. T. 13^h 40^m

Observed by J. S. PLASKETT. Measured by T. H. PARKER.

+51.8

Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.
$2^{\frac{1}{12}}_{22}_{22}_{12}_{12}_{22}_{12}_{2}$	$\begin{array}{c} 73\cdot0136\\72\cdot9175\\72\cdot4645\\54\cdot7428\\54\cdot0359\\45\cdot2767\end{array}$	9105	0457	+ 66 31	$\frac{1}{1}$ $\frac{1}{2}$ 1 2 1 2 1 2 2	$\begin{array}{c} 45^\circ 3045\\ 27^\circ 5001\\ 27^\circ 2761\\ 11^\circ 9869\\ 11^\circ 5444\end{array}$	3014 4706 9574	0627 0580 1060	65 · 45 50 · 34 +79 · 39

Weighted mean. +68.88-17:08 V., ... V., ... 100 Curvature..... -28

Radial velocity..... +51.5

1908. Sept. 11. G. M. T. 15^h

θ AQUILÆ 1878.

Observed by J. B. CANNON. Measured by T. H. PARKER

-22.29~ 20 21

Wt.	Mean of Settings.	Corrected Star Settings.	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.
21 ⁻⁴²¹ 21 21 21 21 21	$\begin{array}{c} 73\cdot0192\\72\cdot8480\\72\cdot4503\\54\cdot7399\\53\cdot9497\\53\cdot1104\end{array}$	·8396	 - 36 56	$2 \\ 1 \\ 1 \\ 2 \\ 1^{\frac{1}{2}} \\ 2$	$\begin{array}{r} 45 & 2692 \\ 45 \cdot 2233 \\ 27 & 3789 \\ 27 & 2541 \\ 11 \cdot 8406 \\ 11 \cdot 5249 \end{array}$	2277 3712 8283	0110 0414 0231	11 48 35 93 17 30

Veighted			
	$-V_{a}$		
	¥.,		

Radial velocity -47.7

		Romache																							
			Observer.		<u>^</u>			Ξ		=-	= P		=	= -	-	-:	= 2	F	â	į.	**	=		==;	H
		Sucina			Pair.	Good	Good		Fair	Good.		Good	Fair.	Poor.	Good.	Poor.	Hazy	Very have		Poor	Fair.			Good.	1'oor
SILUS		Slit	Width.		100	100.	100	100.	2100.	-0012	- (0012	0012	5100.	2100	0012	2100.	F100.	0019	2100.	0013	Floo.			0013	8100.
- 4 HBR		Prism Box.	.bn3				x 6.51			18	19	⊃ eo R 57	24.2	58	24.8	24.6	20 C 81 E	- × 76	0.16	23-3	61 % 61 %	0		- 01 0 - 01 0	
ILES OF	TEMPBRATURE CENTIGRADE.	Prisn	-nigsd .gnin		16-4	20 20 20 20 20 20	29.2	1-01	0.41	- 181	7 (87 (0 :: 2 5	2.12	9 7 5 8	24 8	2-1-2	99 81 8	8 76	1.16	23.3	61 5 76 76	5 00 0		- 67	
MEASU	TENTE	Room.	.bnðl		9-9	999	2 21	9.91	10.2	19-8	21.0	e x N Si	0.06	29	21	52	0 9 812	000	20.3	18.0	÷ ≈	-		13.5	0 1 -
ALED			-nigə8 .zaia		e.s	12.7	2.5	15.6	10.4	0.06	512	- œ	6.06	0 9 7 7	22	9.42	5	0.06	8.47	19 4	18.5	-		-12.5	
DISERVING RECORD AND DETAILED MEASURES OF CIERCULS. RECORD OF SPECTROCLAMS.		Hour Angle	at end.	h. n.		3		12	22			38				9 8		- 6			4 15 W.			1 31 6. 16 fc	
2010)			noiser d	m.	6	81	819	8	23	3	55	3 35	19 I	₹ 13	38	22	3.8	9	31	÷	84	2		388	100
VING REC		Middle	G. M. T.	h. h																	4 k 2 1			24 24 25 25 26 26 26 26 26 26 26 26 26 26 26 26 26	
OBSER		Pate.		1907.	May 24.				200	iz	- (K)			- + Ante	. 6	- 10.	- 18			. 9	Ant 20		1908.	Mar. 9.	Apr. 151
		Plate.			Seed 27	z		-	-		-		-			-			-		•				
			Camera.		II.	:	: :	-		: :	:		:		:	-	• •		-	-				• •	
Plaskett. Harpet. Cannon. Parker. Tribble.	.97	itego	X 30 .0X		181	- 	220	192	202	8	225	2 P	808	066	N(4)	121		1245	626	1745	101s 1067	-		1391	1400.
P. – Pla H. – Ha C. – Can P. – Par T. – Tri		Star.			ellerculis.	-		•			:				-										

#1-F1F1f1++fretf20=0=++===f=+==+f2=1=++freteooto
titeed Fight Fight Construction
second states and second secon
55555500000000000000000000000000000000
000+0000058900+87-7900785-9890098800-0008800-000088087
(二)二)的局部局在公司的局部局部局部局部局部局部局部局部局部局部局部局部局部局部局部局部局部局部局部

10000000000000000000000000000000000000

98880844498889888988898894889488988988898
####Rb#86889898888884484999999999988884484999999888888
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
0.0022322222222222222222222222222222222
22242522
National Action of the second se
R 6 6

······································

4	12			
et	5	01	Ser	,
laskett.	5	Ξ	ž	1
19	Harper.	annon.	Parl	
8		Q.	-	1
	. Ę.		1	

		h. Seein			Bad. Clear Glear Gaod Clear Fair Fair Fair Cood	=
		Slit	Width.		0015 0015 0015 0015 0016 0016 0016 0016	-005
		Box.	End.		82821	4-6
ncluded.	RADE.	Prism Box	Begin-		21212 0 2222 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	8.6
MS-Co	TEMPERATURE CENTIGRADE.		.pug		82 22 22 22 22 22 22 22 22 22 22 22 22 2	0.0
ROGRA		Room	-nigəA Anin		20000000000000000000000000000000000000	9.0
RECORD OF SPECTROGRAMS—Concluded.		Hour Angle	at end.	h. m.	2000 000 000 000 000 000 000 000 000 00	8
CORD 0			Duration.	.u	87788895 98888888888888888	
RF		Middle	Exposure G. M. T.	h. m.	222227551 33223225583369 22275526 882252528366 882252556 882552558366	
		The		1908.	Oct. 1. No. 132 Dec. 25 Reh. 8 Reh. 8 1390 31 33 31 33 31 33 31 33	
		Dias			Skeed 22	
			Camera.		djunin munami	. :
Geologija	-92	ri3 18	No. of No.		1903 1903 1903 1904 1904 1905 1905 1905 1905 1905 1905 1905 1905	2465
IL - Harper, CCamon, P ¹ Parker, T Tribble,			Stat:		differentis	

==0000044==00

#1111###0

Observer.

9-10 EDWARD VII., A. 1910

« HERCULIS 786.

Observed by J. S. PLASKETT. Measured by W E. HARPER.

1907, May 24. G. M. T. 18^h 25^m

Wt.	Mean of Settings.	Computed Wave Length.	Corrected wave length.	Normal wave length.	Displacement in revolutions.	Velocity.	Wt.	Mean of Settings.	Computed Wave Length.	Corrected wave length.	Normal wave length.	Displacement in revolutions.	Velocity.
2 1 2 2 2 2	$\begin{array}{c} 73.9685 \\ 73.1420 \\ 72.6821 \\ 56.5256 \\ 53.8061 \end{array}$	4891 134 4871 413 4860 564 4528 760 4480 945	607 985	527 400	·920 ·415	- 56 76 - 27 76	3323	52 5955 47 6274 45 0505 44 1325	4460 · 292 4379 · 348 4339 626 4325 · 827	714	634	920	- 63 * 48
							W	reighted m Va Va Cur	ean		+ 1.4	- 56	53 104 128

Veighted mean,					
- Va					
Va					
Curvature					
		-	_	-	
Radial voloaity					

« HERCULIS 801.

1907. May 31. G. M. T. 17^h 38^m

Observed by J. S. PLASKETT. Measured by C. R. WESTLAND.

.. - 55.4

Wt.	Mean of Settings,	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.
2 2 2 2 2	73 0174 72.8193 72.4559 54.7825	·8105	.0543	- 78 . 79	1 2 2 2	53 9504 53 1565 45 2192 45 3368	·9078 ·1557	·0620 ·0830	71:36

Veighted mean	-80.42
Va	- 68
Vd	- '02
Curvature	28
	The second se
Radial velocity	-81^{-4}

e HERCULIS 810.

1907. June 8. G. M. T. 19^h 28^m Mean of

Settings. Settin

 $\begin{array}{c} 72.9982 \\ 72.8130 \\ 72.4367 \\ 54.7931 \end{array}$

Wt.

Correct

8281

0367 -53.25

Velocity.

- 87:02

Weighted n	iean.										8
Va											
Va											

						by J. S. Plas by C. R. WE	
ted r ags.	Displace- ment in Revolutions.	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	
			3	53.9506	-8942	·0756	

0831 1556 - 86.76

Weighted mean	-80.21
Va	-3.00
Vd	- '19
Curvature	- '28

Radial velocity..... -83.7

```
+ HERCULIS 816.
```

1907. June 10. G. M. T. 175 47^m

Observed by J. S. PLASKETT. Measured by W. E. HARPER.

We.	Mean of Settings.	Computed Wave Length.	Corrected wave length.	Normal wave length.	Displacement.	Velocity.	Wt.	Mean of Settings.	Computed Wave Length.	Corrected wave length.	Normal wave length.	Displacement.	Velocity.
212121	$\begin{array}{cccc} 73 & 3707 \\ 72 & 9235 \\ 72 & 7904 \\ 54 & 3881 \\ 53 & 9850 \end{array}$	$\substack{4875+671\\4865+085\\4861+951\\4489+915\\4482+931}$	807	527 400	-320 -759	+ 19 74 + 50 17	1-22 92 -49800 W	53 · 2681 45 · 2728 45 · 2356 27 · 4999 27 · 3170 eignted n Ve	4470 617 4341 820 4341 256 4102 238 4100 053 tean,		634 890	- 11	- 2.76 +15.60

Va	- 3.37	
Vd	- :07	
Curvature	- 28	
-		

ϵ HERCULIS 827.

1907. June 11. G. M. T. 15^h 39^m Observed by Measured by
 W. E. HARPER.

Wt.	of	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.
	$\begin{array}{c} 72^{\circ}9503\\ 72^{\circ}8122\\ 72^{\circ}3825\\ 54^{\circ}0317\end{array}$	8724			1 3 1	54.0175 45.3037 45.2540	·0146 ·2237	0448 	- 51 56 - 15 66
					Weigh	ted mean.		5	1.90

← HERCULIS 838.

1907. June 12.
 G. M. T. 18⁵ 35^m

Observed by J. S. Plaskett. Measured by W. E. Harper,

Mean Corrected Displace Mean Corrected Displace-Wt. Btar Wt. Velocity. ment in Velocity. of Star ment in of Settings. Settings. Revolutions. Settings. Settings, Revolutions 72 998672 816072 438054 0675 $45 \cdot 2585$ 1957 0430 44.89 222102 \$258 56 59 0390 45:3356 3116 27 4375 27 3726 1010 - 87 67 53 9500 9113 0585 67.33

Weighted mean..... Va...... Va......

 $V_a = -4.15$ $V_a = -14$

- 54 93

Curvature - '28

Radial velocity - 59°5

ϵ HERCULIS 838.

Observed by J. S. PLASKETL Measured by T. H. PARKER.

1907. June 12. G. M. T. 18^h 35^m

Wt.	Mean of Settings.	Corrected Star Settings.		Velocity.	Wt.	Mean of Settings.	Corrected Star Settings,	Displace- ment in Velocity. Revolutions.
$\frac{1}{1}$ $\frac{1}{2}$	72.9608 72.7742 72.3915 45.2982		0392		1 22 -411 21	$45 \cdot 2100 \\ 43 \cdot 5655 \\ 27 \cdot 4011 \\ 27 \cdot 33 \cdot 3$	1853 3175	-0534 55-74 -0951 82-54
						Vd	re	- 61 55 - 4 15 - 14 - 28

Radial velocity .

The mean of the two measurements, - 61 7 used.

1907, June 13, G. M. T. 18⁶ 25^m

« HERCULIS 847.

Observed by W. E. HARPER. Measured by C. R. WESTLAND.

Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.	Wt.	Mean of Settings.	Star	Displace- ment in Revolutions.	Velocity.
10101	$54^{\circ}7738$ $53^{\circ}9268$ $53^{\circ}1442$	8948	0750	- 86 32	21 PJ	45-3226 45+1962	1472	0915	- 95.52
					Weig	Va Vd			4 43

Radial velocity 95.7

1907. June 13.
 G. M. T. 18^h 25^m

← HERCULIS 847.

Observed by W. E. HARPER. Measured by T. H. PARKER.

Wt. Me Setti	Star		Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions,	Velocity.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	752 8186 080 0198	0462	- 67 03	$1\\2\\1^3$	52 · 2373 48 · 7615 45 · 2105 45 · 2774	2068	0319	- 33 30
					V _d Curvatui	re		65 82 4 43 16 28 70 7

Mean of two measurements, -83°2 used.

« HERCULIS 851.

1907. June 14. G. M. T. 17^b 43^m

Observed by J. S. PLASKETT. Measured by W. E. HARPER.

Wt.	Mean of Settings.	Measured Wave Length.	Normal wave length.	Displacement.	Velocity.	Wt.	Mean of Settings,	Measured Wave Length.	Normal wave length.	Displacement.	Velocity.
$ \begin{array}{c} 2 \\ 1 \\ 1 \\ 1 \\ 1 \end{array} $	$\begin{array}{c} 73^\circ 3997 \\ 72^\circ 9468 \\ 72^\circ 8165 \\ 72^\circ 3854 \\ 53^\circ 9856 \end{array}$	$\begin{array}{r} 4875 \cdot 675 \\ 4864 \cdot 956 \\ 4861 \cdot 887 \\ 4851 \cdot 790 \\ 4482 \cdot 656 \end{array}$.527	· 360	+22.21	$ \begin{array}{c} 1\frac{1}{2} \\ 2 \\ 1\frac{1}{2} \\ 1 \\ 2 \end{array} $	$53 \cdot 9475$ $45 \cdot 2453$ $45 \cdot 2036$ $27 \cdot 4152$ $27 \cdot 2529$	$\begin{array}{r} 4482 \cdot 7 \cdot 14 \\ 43 \cdot 41 \cdot 337 \\ 43 \cdot 40 \cdot 534 \\ 4101 \cdot 900 \\ 4099 \cdot 650 \end{array}$	400 634 890	344 100 010	+23°74 - 6°90 + 0°73
						We	opted mes	n			9.64

4 72 28

Radial velocity + 4.5

« HERCULIS 851.

1907. June 14 G. M. T. 17^b 43^m

Observed by J. S. PLASKETT. Measured by T. H. PARKER.

Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.
1 1 1 1	$\begin{array}{c} 73^{+}0227\\72^{+}8756\\72^{+}4630\\54^{+}7568\\54^{-}0085\end{array}$	8898	0250	+ 36 27	1 2 2 2 1	$\begin{array}{c} 53^\circ1210\\ 45^\circ2536\\ 45^\circ3006\\ 27^\circ2977\\ 27^\circ4617\end{array}$	2267	0120	- 12:52
					Weigh	Va Vd		- 4 72 - 09 - 28	17.76

The mean of two measurements, $\pm 7^{\circ}0$ used,

(HERCULIS 862.

Observed by W. E. HARPER. Measured by J. N. TRIBBLE,

Radial velocity ... +12.7

1907. June 20, G. M. T. 16^h 37^m

Wt.	Mean of Settings.	Corrected Displace Star ment in Settings. Revolution	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.
112 2 1 2 1 2	$\begin{array}{c} 72 \cdot 9908 \\ 72 \cdot 4301 \\ 72 \cdot 8461 \\ 54 \cdot 7464 \\ 53 \cdot 9312 \end{array}$	· · · · · · · · · · · · · · · · · · ·	04 - 0.29	2 2 1 2 4	$\begin{array}{c} 53 \cdot 1120 \\ 45 \cdot 2676 \\ 45 \cdot 1917 \\ 27 \cdot 2746 \\ 27 \cdot 3742 \end{array}$	1977 3462	0410 0764	- 42°79 - 57°70

Weighted mean	· 31 · 26
<u>Va</u>	- 6 33
Vd	- '07
Curvature	- '28
-	

Radial velocity - 37-9

← HERCULIS 862.

Observed by W. E. HARPER, Measured by T. H. PARKER.

1907. June 20. G. M. T. 16⁵ 37^m

Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions	Velocity.
$1 \\ 1 \\ 2 \\ 2$	73.0166 72.8604 72.4557 45.2969		0121	-17 55		$45 \cdot 2182$ $43 \cdot 5599$ $27 \cdot 4358$ $27 \cdot 2991$	·1950 ·3833	0437	45.62 - 25.43
					Weigh	Va			27 · 53 6 · 33 · 07

Vd										1
Curvature									-	1

Radial velocity..... - 34'2

Observed by J. S. PLASEETT. Measured by J. N. TRIBBLE.

Mean of measurements, ---34'5 used.

« HERCULIS 871.

1907. June 21. G. M. T. 18^h 10^m

Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.	Wt.	Mean of Settings.		Displace- ment in Revolutions.	Velocity.
$ \begin{array}{c} 1_{2}^{1} \\ 2_{1}^{1} \\ 1_{2}^{1} \\ 2_{2}^{1} \end{array} $	72 9582 72 3957 72 7847 45 2501	.8357	0291	-42.22		$45^{\circ}1420$ 27^{\circ}2546 27^{\circ}3658	·1655 ·3578	0732	76-39 - 55-63
					Weigh	ited mean.			58 78 6:49

Weighted	mean						-58 78
. 1	7a						- 6.49
1	(a						~ '19
(Jurvatu	re.					- '28
Radi	al veloc	ity					-65.7

€ HERCULIS 881.

1907 June 25. G. M. T. 16^h 04^m

Observed by W. E. HARPER.

Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.
2 1 2	49.4200 45.2146 44.2931	1775	* 0612	- 63 89	1221	27 · 3185 27 · 2462	·3189	·1030	- 89 · 40

Veighted	mean.									
----------	-------	--	--	--	--	--	--	--	--	--

-72.40 -7.64 - 04 -28

Radial velocity..... -80.4

9-10 EDWARD VII., A. 1910 Observed by W. E. HARPER. Measured by J. N. TRIBBLE.

```
ǫ HERCULIS 893.
```

1907.		e 27.	
G. 3	I. T.	16^{h}	82^{m}

Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.	Wt.	of	Corrected Star Settings.		Velocity.
1-21-45-21 1-71	$73 \cdot 2721$ $72 \cdot 9900$ $72 \cdot 8555$ $54 \cdot 0335$	8745	0097	- 14 07	1 2 1	53-9786 45-2810 45-2918	9741 2843	0043	4 95 - 47 59

Radial velocity 40

Observed by W. E. HARFER. Measured by J. N. TRIBBLE.

« HERCULIS 913.

1907. July 4.
 G. M. T. 16⁵ 18¹⁰

Wt.	Mean of Settings,	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.	Wt.	Mean of Settings	Star	Displace- ment in Revolutions.	Velocity.
21 21	54 0216 5319485	9537	0141	- 16 22	2	45 2683			
					Weigh	nted mean.			16.22

Va			9.98
<u>V</u> d			-14
Curvature			-28

ℓ HERCULIS 920.

1907. July 8. G. M. T. 16^b Observed by J. S. PLASKETT. Measured by J. N. TRIBBLE.

Wt.	Mean of Settings.	Star	Displace- ment in Revolutions.	Velocity.	Wt.		Corrected Star Settings.	Displace- ment in Revolutions.	Velocity		
21 21 121-121-121	72 9265 72 3632 72 7804 53 9754 53 9156	8172	0015	- 2 17	21 1 22 102	45:2319 45:1886 27:2471 27:4015	2403 4763	0084	8 79		
					Weigl	nted mean.			6·12 10·92		

٠

Vd						14	Ł
Curs	at	11156				- '25	41

Radial velocity. - 17-5

ϵ HERCULIS 928.

1907. July 9. G. M. T. 14^h 32^m

Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment iu V Revolutions.	elocity.	Wt.	Mean of Settings.			Velocity.
$\frac{1\frac{1}{4}}{2}$	54 0232 54 0319 45 2815	0875	0677	-77 91	$1\\1\frac{1}{2}\\1$	$\begin{array}{r} 45 & 2855 \\ 30 \cdot 9135 \\ 29 \cdot 6773 \end{array}$	·2775 6342	· 0388 · 0501	49-90 + 44-42

Weighted mean		$+53^{\circ}31$
Va	11 26	
Vd	11	
Curvature	'28	

 ϵ HERCULIS 928.*

1907. July 9. G. M. T. 14^h 32^m Observed by J. N. TRIBBLE. Measured by W. E. HARPER.

Wt.	Mean of Settings,	Corrected Displace- Star Mevolutions. V	elocity. W	t.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity
$21\frac{1}{1}$ 1 1 1 1 1 1 1 1 1 1	$\begin{array}{c} 72\cdot 9585\\ 72\cdot 8250\\ 72\cdot 3931\\ 57\cdot 8595\\ 57\cdot 7826\\ 57\cdot 6674\end{array}$	8969 0700 [-	16-83 84-28]	2 2 1 2 1 2 2 2 2 2 2 2	$\begin{array}{c} 53 \cdot 9874 \\ 53 \cdot 9415 \\ 45 \cdot 2136 \\ 29 \cdot 6396 \\ 29 \cdot 5979 \end{array}$	9829 2431 6406	0131 0044 0417	+ 15 08 + 3 82 +37 00

Weighted mean	+20.60
Vd 11	
Curvature 28	
Radial velocity	+ 9.0

* This result used.

« HERCULIS 937.

1907. July 10. G. M. T. 14^h 55^m Observed by J. S. PLASKETT. Measured by J. N. TRIBBLE.

Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.	Wt.	of	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.
1 1 2	72 9735 72 8361 45 2832	8261	0054	+ 7.84	1 2 1 2	45 · 2284 27 · 2965 27 · 4291	2288	0199	- 20 · 83 - 36 · 60
					Weigł	ted mean.		=	20°86 11°49

......

Radial velocity -32.7

25a-29

/ HERCULIS 937.

Observed by J. S. PLASKETT. Measured by W. E. HARPER.

1907. July 10. G. M. T. 14^b Mar

Wt.	Mean of Settings	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.	Wt.	of	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.
1 1 1	54 6678 53:8654 53:0405	9382		- 36 37	2 1	45 2121 45 1485	2100	0287	- 29 ' 96
						ited mean. Va Vd Curvatu	pe		33 16 11 49 09 28

Mean of measurements, -- 3940 used.

« HERCULIS 952.

1907. July 18. G. M. T. 16⁶ 10⁶ Observed by W. E. HARPER. Measured by J. N. TRIBBLE.

Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.		Velocity.
2 2 1 2	$\begin{array}{c} 72 & 9883 \\ 72^\circ 4271 \\ 72^\circ 8008 \\ 54^\circ 0238 \end{array}$	8208	0440	- 63-85	- 2 1	$53 \cdot 9283 \\ 45 \cdot 2698 \\ 45 \cdot 2109$	9833	0365	42.01
					Weigh	nted mean.			43 96

~ 1	a .												13.18
1	4												.19
C	urv	at	u	ré									-28

Radial velocity.....

← HERCULIS 957.

1907. July 20. G. M. T. 16⁵ 39^m

Observed by J. S. PLASKETT. Measured by J. N. TRIBBLE.

2 72.9599 2 72.3852 1 72.8265 2 54.0154 1 53.9642	0128 + 18-34 0076 + 8-77	2 1 2 1	$45^{\circ}2827$ $45^{\circ}2473$ $27^{\circ}3141$ $27^{\circ}5080$	2482	0000	0 00 + 16 82

Weighted mean		-	10.12	
Va				-13.52
Va				- '19
Curvature.				28

 $+ \stackrel{1907.}{\rm G.~M.} \stackrel{\rm Aug.~1.}{\rm T.~17^{h}~20^{m}}$

← HERCULIS 976.

Wt.	Mean of Settings.	Corrected Star Settings.	Displace - ment in Revolutions.	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.		Velocity.
2	$73^{+}0008$ $72^{+}8353$ $54^{+}0320$ $53^{-}9627$	8443 9595	0205	-29.74 11.85	$2 \\ 1 \\ 2 \\ \frac{1}{2}$	$\begin{array}{c} 45^{\circ}2806\\ 45^{\circ}2454\\ 27^{\circ}2821\\ 27^{\circ}4465\end{array}$	2384 4110	0003	0 00

Weighte	dτ	n (۶a	n											10	79
	Va														15	51
	V_d															27
	Cin	v	a	tu	11											28

Radial velocity .

Observed by J. S. PLASKETT. Measured by TRIBBLE & HABPER.

€ HERCULIS 979.*

1907. Aug. 3. G. M. T. 13^h 28^m

Wt.

Mean Mean Corrected Displace-Displace-Wt of Star ment in Velocity. of Star ment in Settings. Settings. Revolutions. Settings. Settings. Revolutions. $72^{+}9868$ $72^{+}8703$ $54^{+}0237$ $27^{+}4924$ $54^{+}7430$ 4509 0290 ± 25.17 \$953 0305 +44'2654 0280 02780620 +71 36 0360 0662 +76.19red. + 18.76 54 7369 53:9537 9535 0163 45.2775 45.2820 53.8760 8758 0940 - 108 19 0393 +41.08violet. o3 1113

"Plate not used in the results,

/ HERCULIS 987

1907. Aug. 6, G. M. T. 17^h 35^m

Observed by J. N. TRIBBLE.

Mean Corrected Displace Mean Corn cted Displace-Wt. Star ment in Wt. Star ment in Settings. Revolutions of Settings. Settings. Revolutions. Settings. 72.6897 44.9542 0122 44 9849 2833 0244 + 25 63

Weighted mean +22.96Va ... Va ... - 16 16 28 -28 Curvature... . Radial velocity

25a-293

Observed by W. E. HARPER, . Measured by J. N. TRIBBLE.

Radial velocity +30.6

«HERCULIS 1062.

1907. Sept. 20, G. M. T. 14^h 37^m

Observed by W. E. HARPER. Measured by J. N. TRIBBLE.

Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.	Wt.	of	Star	Displace- ment in Revolutions.	Velocity.
2 1	$54.0379 \\ 53.9738$	·9647		- 5.86	2 1	45 2630 45 2412	2512	-0125	- 13.04

Veighted mean	÷	3.28	
<u>V</u> a			- 5 90
Yd			- '28
Curvature			- '28
adial velocity			- 2.9

HERCULIS 1391.

1908. March 9. G. M. T. 20^h 50^m

Observed by W. E. HARPER.

Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	ment in	Velocity.
2 2 2 2 2 1	54 7533 53 9358 53 1215 45 2735 45 2060	9253	0445	- 51 22	$2^{\frac{1}{2}}_{2^{\frac{1}{2}}}$	27:3570 27:2385 11:7667 11:4840	·3650 ·7897	0566	49°13 - 46°21

Weighted mean ... $V_a \dots \dots + 17^{-56}$ $V_d \dots \dots - 14$ Curvature. -46.03.28 Radial velocity -28.6

← HERCULIS 1408.

Observed by W. E. HARPER.

Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.	Wt.	Mean of Settings.		Displace- ment in Revolutions.	Velocity
2 1 2 3 2 1	$\begin{array}{c} 54 & 7088 \\ 53 & 8238 \\ 53 & 0835 \\ 45 & 2754 \\ 45 & 1363 \\ 27 & 4961 \end{array}$	8561 1345 4251	1137 1042 0125	- 129.87 - 108.78 [+10.85]*	1 1 2 2 2	$\begin{array}{c} 27 & 4090 \\ 27 & 3376 \\ 27 & 3180 \\ 11 & 8287 \\ 11 & 6327 \end{array}$	3380 2666 7037	0746 1460 1477	[- 64 75] - 126 73 - 110 63
					Weigł	V.d	1 lines		17.66 28

Red. + Centre. ‡ Violet.

∈ HERCULIS 1483.

1908. April 13. G. M. T. 21^h 35^m $\left. \begin{array}{c} {\rm Observed \ by} \\ {\rm Measured \ by} \end{array} \right\} W. \ E. \ H_{\rm ARPER}.$

Radial velocity. 100 9

Wt.	Mean of Settings.	Corrected Displace- Star ment in Settings. Revolution	Velocity.	Wt.	Mean of Settings,	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.
1 2 3 2 2	$\begin{array}{c} 55\cdot0591\\ 547597\\ 53\cdot 8897\\ 53\cdot 1281\\ 45\cdot 2936\end{array}$	0413 0833 8728 0974	.[].	$2^{\frac{1}{2}}$ $2^{\frac{1}{2}}$ 1 2	$\begin{array}{c} 45\ 2031\\ 73\ 0290\\ 66\ 3185\\ 41\ 4857\\ 41\ 3097\end{array}$	1830 2998 4625	0557 1119 1653	-58.15 +145.09 +165.30

Weighted mean neg. lines	-102.63
V _a +12·31 V _d	- '09
Curvature	- '28
Radial velocity	- 90.7

```
« HERCULIS 1494.
```

April 15.
 M. T. 20ⁿ 40^m

```
Observed by J. S. PLASEETT.
Measured by W. E. HARPER.
```

Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.	Wt.	Meau of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.
01 - 10 10 - 10 	$\begin{array}{c} 54 & 7571 \\ 54 & 0087 \\ 53 & 1325 \\ 45 & 3117 \\ 45 & 2995 \end{array}$	· 9910 · 2614	0212	- 24 * 40		27.5470 27.3528 12.0567 11.6701	-4416 	0250	25·17 - 32 43
					Weig	hted mean.			26.75

V.a			- 11 S7
Vd		.04	
Curvature.		28	
De Malana la sites			00.0

Radial velocity ... - 38

Observed by J. S. PLASKETT. Measured by W. E. HARPER.

← HERCULIS 1511.

1908. April 22.
 G. M. T. 20^h 33^m

Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.	Wt.	Mean of Settings.	Star	Displace- ment in Revolutions.	Velocity.
$2 \\ 1 \\ 2 \\ 2 \\ 1 \\ 1 \\ 2 \\ 1 \\ 1 \\ 2 \\ 2$	54.7537 53.9496 53.1311 45.2841 45.2051	9343	0355	- 40°86 45°93		$\begin{array}{c} 27'4398\\ 27'3292\\ 11'9322\\ 11'6453\end{array}$	·3576 ·7951	0550	-41.72

Weighted mean		- 10.1	Ĝ	44 61
Vd Curvature				· 05 · 28
Radial velocity				34.8

- F	1141	RO	D1	JIS.	151	1.1

1908. April 22.
 G. M. T. 20^h 53^m

Observed by J. S. PLASKEIT. Measured by T. H. PARKER.

Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity
2 2 2 2 1	54 7475 53 9314 53 1213 45 3027 45 2245		0498	= 57 31		$\begin{array}{c} 27 & 4466 \\ 27 & 3416 \\ 11 & 9315 \\ 11 & 6479 \end{array}$	7915	0605	52 51 - 44.94

Radial velocity..... 38.4

Check measurement.

« HERCULIS 1531.

1908. May 15. G. M. T. 19^h 29^m

Observed by W. E. HARPER. Measured by T. H. PARKER.

Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.
1 1 1	73 0237 72 8254 72 4550 45 2488	8127	0521	- 75.59	$2^{\frac{1}{2}}_{2^{\frac{1}{2}}}$	45 1314 43 5083 27 3377 27 2542	1565 3301	0822	85 · 81 - 71 · 04

Weighted mean Va		· · · •:•=	- 77.48
Vd Curvature			- 11 - 28
Radial velocity			- 74.0

« HERCULIS 1531.*

w 1908. May 15. G. M. T. 19^h 29^m

Observed by Measured by W. E. HARPER.

Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.
	45:2620 45:1435 27:2702 27:1935	1651 3206	0736	-76 84 79 86	2 1 1 2 2	$\begin{array}{c} 15 \cdot 3652 \\ 15 \cdot 3325 \\ 11 \cdot 7025 \\ 11 \cdot 4650 \end{array}$		1003 0984	77-63 - 73-70
					Weigh	hted mean.			77.40

	Vergented mean -77 40 V ₄
	V
* Check measurement.	Radial velocity

421

« HERCULIS 1540.

1908. May 18. G. M. T. 18⁶ 25^m

```
Observed by T. H. PARKER. Measured by
```

G. M. T. 18^v 25^m

Wt.	of		Displace- ment in Revolutions.	Velocity.	Wt.	of	Corrected Star Settings.		Velocity.
1 1 2	$\begin{array}{c} 72 & 9755 \\ 72 & 8376 \\ 72 & 4074 \\ 45 & 2650 \end{array}$	-8724	0076	- 11 . 02	-021 02 -02	45+2462 43+5333 27+2667 27+4414	· 2547 · 4203	·0160	16.70
					Weigh	Va		++++	11 · 47 3 · 01

« HERCULIS 1540.°

1908. May 18. G. M. T. 18^h 25^m Observed by T. H. PARKER. Measured by W. E. HARPER.

+14.2

Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.
$\frac{1}{1}$	57 8390 57 8150 54 7533 53 9750 53 1249	8054 9629	0214	- 25.76	1 2 1 2	$27^{+}4464$ $27^{+}2984$ $11^{+}9200$ $11^{-}5812$	- 3946 - 8464	0180	15.62 - 3.75
					Weigh	ted mean.			4.73

Weighted mean. $V_a \dots + 3.01$	4.23
V [*] d. Curvature.	$^{+04}_{-28}$
Radial velocity	 2.0

* Check measurement.

e HERCULIS 1545.

Observed by J. S. PLASKETT. Measured by T. H. PARKER.

1908.	May	20.
G M	T	1.4h

Wt.	Mean of Settings.	Corrected Star Settings.		Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.
21-19921-22	54 7596 53 9253 53 0461 43 5702		0618	- 71 13		$\begin{array}{c} 27:4008\\ 27:3245\\ 15:4875\\ 15:5081 \end{array}$	3230 3780	0896	77 · 77 - 73 · 76

$\in \mathbf{H}$	$\mathbf{E}\mathbf{R}$	CIL	LE	S_{-1}	54'	Ζ.

Observed by W. F. HARPER. Measured by

Radial velocity - 28.5

Observed by T. H. PARKER Measured by W. E. HARPER.

1908. May 22. G. M. T. 18⁵ 28⁵⁰

Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displace- nient in Revolutions.	Velocity.
2 2 ¹	54 7307 53 9873 53 1021	9479	0219	- 25 21	2	45 2669 45+1984	2051	0336	- 35-08
						Va Vd		- 1.98 -	30 15 04 28

← HERCULIS 1567.

1908. June 1. G. M. T. 17° 30°°

Corrected Displace-Mean Corrected Displace-Star ment in Mean Wt. Velocity. Wt. of Star ment in Settings. Revolutions. Velocity. Settings. Settings. Revolutions. Settings. 54.728245:2682 1652 0735 8976 27 0722 - 83 10 45.1598 - 76 73 53-8856 53.1018 Weighted mean.... Va Vd Curvature..... - 81.51 16

Radial velocity - 83.1

€ HERCULIS 1573.

1908. June 3. G. M. T. 17^b 56^{ro}

Observed by W. E. HARPER. Measured by

Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.
2 1 2 2 1 2	$\begin{array}{c} 72 \cdot 9922 \\ 72 \cdot 8323 \\ 72 \cdot 4216 \\ 54 \cdot 7443 \\ 53 \cdot 9692 \end{array}$	8513 9645	0135	- 19:59	2211/2 11/2 1 2	53 1190 45 2871 45 2517 27 4595 27 2999	2382 4062	0005 0064	0.22 - 5.55
					Weigl	Va			7 23 1 74 -06

Radial velocity..... - 9'3

ℓ HERCULIS 1573.¹¹

Observed by W. E. HARPER.

$172 8697 8570 0078 - 11 32 \frac{1}{2} 27 4850 4000 0126 - 10 9$ 27 4536 2 27 3321	Wt.	Mean of Settings	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity
		72.8697			- 11.32	2 ¹ 2 2 ¹ 2	45 2750 27 4850 27 3321			9.71 - 10.94

 Va
 1.74

 Va
 06

 Curvature
 28

 Radial velocity
 12.7

Observed by T. H. PARKER. Measured by J. H. PARKER.

^e Check measurement.

← HERCULIS 1582.

1908.June 5. G. M. T 18^h 40^m

1908, June 3 G. M. T. 47 56^o

424

Wt.	Mean of Settings.	Corrected Star Settings,	Displace- ment in Revolutions.	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.
1 1 1 2 1 1 2 1	$\begin{array}{c} 73 \cdot 0057 \\ 72 \cdot 8289 \\ 72 \cdot 4415 \\ 54 \cdot 7435 \\ 53 \cdot 9113 \\ 53 \cdot 1160 \end{array}$	8328 9085	.0320	46.43	$2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 2$	45 2847 45 1877 43 5492 27 3405 27 2362	1766	0621	64 83 - 53 55

eighted mean.		-62.82	
Va		- 2 34	
Vd		- 13	
Curvature		- '28	

← HERCULIS 1603.

1908. June 12.
 G. M. T. 18^h 35^m

Observed by T. H. PARKER.

Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions,	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.
2 ⁻¹ 2121 - 3	$\begin{array}{c} 73\cdot0039\\72\ 8098\\72\cdot4334\\45\cdot2849\\45\cdot1905\\43\cdot5509\end{array}$	8174	0474	- 68 77 62 11	2 2 2 1 1 1	$\begin{array}{c} 27 \cdot 3556 \\ 27 \cdot 2362 \\ 54 \cdot 7252 \\ 53 \cdot 9368 \\ 53 \cdot 0175 \end{array}$	9481	0466	40.44

Weighted mean	- 47 23
	~ 4.39
Vd	- 14
Curvature.	- '28
D 22 A A C	

HERCULIS 1693.* 1908. June 12.
 G. M. T. 18^b 35^m Observed by T. H. PARKER, Measured by W. E. HARPER. Mean Corrected Displace-Mean Corrected Displaceof Star ment in Wt of Star ment in Setting. Revolutions. Settings. Revolutions. Settings. Settings 54:7390 1834 -0552 ~ 57 73 53 9468 0183 - 21 06 15.2802 53 1052 Weighted mean -35.73 28 Radial velocity 40:5 e HERCULIS 1623. 1908, June 22. G. M. T. 17^b 27^m Observed by J. S. PLASKETT. Measured by W. E. HARPER. Mean Corrected Displace Mean Corrected Displace-W Wt. of Star ment in Settings. Settings. Revolutions. of Star ment in Settings. Settings. Revolutions. 2 54.7181 27:4445 4251 0125 +10.8253 9437 9684 1.91 $27 \cdot 2660$ 11 · 8797 53:0867 8502 0012 45 9605 11 5367 2137 0250 26:10 $45 \cdot 2005$ 6'24Curvature .. . 28 Radial velocity -13.8 ← HERCULIS 1630 1908, June 24. G. M. T. 16^h 27^m Observed by J. S. PLASKETT. Measured by W. E. HABPER. Mean Mean Corrected Displace-WE. of Star ment in Velocity Wt of Star ment in Settings. Settings Revolutions Settings. Settings, Revolutions, 73.0647 45-3237 $72 9033 \\ 72 5011$ 8481 24.23 2074 0313 32 68 27 4458 3860 0266 23:09 54 7925 27 3065 53 9978 9484 24.63 11 8987 8362 53.1602 11.5698Weighted mean 23.00 Curvature.

Radial velocity - 31.0

← HERCULIS 1649.

Observed by W. E. HARPER.

0. 51. 1. 10	10						·9)	
Wt. Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	9826	0128	~14 73	2	53.1042			
							- 8 21 - 09 - 28	14 73
				Radia	d velocity.			6.1

← HERCULIS 1648.

1908. June 27. G. M. T. 17^h 07^m

1908. June 26.

Observed by J. S. PLASKETT. Measured by J. B. CANNON.

Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.		Velocity.
2112 2212 112 112	$\begin{array}{c} 54^{\circ}6613\\ 53^{\circ}9578\\ 53^{\circ}0325\\ 45^{\circ}2056\\ 45^{\circ}1725\end{array}$	0373	0675	-77-80	2 3 1 3	$27^{+}3914$ $27^{+}2075$ $11^{+}8777$ $11^{+}4693$	·4389 ·9092	0266	22.06 + 43.29
					Weig	hted mean. V_d V_d Curvature		- 8 47 - 11 - 28	34-49

e HERCULIS 1648.*

1908. June 27. G. M. T. 17^h 07^m

Observed by J. S. PLASKETT. Measured by J. B. CANNON.

Radial velocity + 25.6

Radial velocity..... + 29.4

Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.
$2 \\ 1 \\ 2 \\ 1 \\ \frac{1}{2} \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\$	$\begin{array}{c} 73\cdot 0323\\72\cdot 9046\\72\cdot 4869\\54\cdot 7837\\54\cdot 0660\\53\cdot 1513\end{array}$	8746	0098	+ 14 22 64 69	$2 \\ 1\frac{1}{12} \\ 3 \\ 1\frac{1}{2} \\ 3 \\ 1\frac{1}{2} \\ 3 \\ 3 \\ 1 \\ 3 \\ 3 \\ 3 \\ 1 \\ 3 \\ 3 \\ 3$	$\substack{45\cdot3181\\45\cdot2971\\27\cdot5276\\27\cdot3309\\12\cdot0159\\11\cdot5935}$	2531 4536 9229	0144 0410 0715	$15 05 \\ 35 59 \\ +53.63$
					-	hted mean Va Vd Curvature		+ - 8 47 - 11 - 29	42.12

* Check measurement.

← HERCULIS 1648.*

1908. June 27. G. M. T. 17^h 07^m

Observed by J. S. PLASKETT, Measured by W. E. HARPER,

Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.	Wt.	of	Corrected Star Settings.	Displace- ment in Revolutions.	
$ \begin{array}{c} 2 \\ 1 \\ 2 \\ 2 \\ 1 \\ \frac{1}{2} \end{array} $	$\begin{array}{c} 54 \cdot 7470 \\ 54 \cdot 0110 \\ 53 \cdot 1164 \\ 45 \cdot 2902 \\ 45 \cdot 2737 \end{array}$	0063 2571	0365	+ 42.01	$\frac{1}{2}$ 1 2	$\begin{array}{c} 27^\circ 4466\\ 27^\circ 2610\\ 11^\circ 9287\\ 11^\circ 5322 \end{array}$	4822 9037	0196	17 01 + 39 17

Weighted mean +29.62 V_a V_d 8 47 11 28

* Check measurement.

« HERCULIS 1653.

1908. July 1. G. M. T. 16^h 15^m

1908. July 1.

Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.
$2 \\ 2 \\ 2 \\ 2 \\ 1 \\ 1$	$\begin{array}{c} 54 \\ 54 \\ 0547 \\ 53 \\ 1395 \\ 45 \\ 3043 \\ 45 \\ 2795 \end{array}$	0247	0549	+63 19	$1\\3\\1^{1}_{2}$ 3	$27^{\circ}5156$ $27^{\circ}2893$ $11^{\circ}9291$ $11^{\circ}5478$	4756 	· 0630 · 0357	54 68 + 26 76

Weighted mean \dots V_d^a \dots V_d +42.179 48

Curvature

-28

Radial velocity +33.3

€ HERCULIS 1653."

Observed by J. S. PLASKETT.

G.	M. T. 1	6 ^b 15 ^m					Measured	by W. E. H.	ARPER.
Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocit
2 1 2 1 2	$\begin{array}{c} 54 \ 7392 \\ 53 \ 9887 \\ 53 \ 1035 \\ 45 \ 2625 \\ 45 \ 2276 \end{array}$	9943	0245	+ 28 20	1 2 1 2	27 · 4403 27 · 2470 11 · 8804 11 · 5020	- 1400 - 8856		23 7 + 25 6

Weighted mean ± 21.90 - 9:48

.06 V_d. Curvature..... 28

* Check measurement.

Radial velocity..... +12.1 427

Radial velocity

+ 20.8

Observed by J. S. PLASKETT. Measured by J. B. CANNON.

+ HERCULIS 1653.*

1908. July 1 G. M. T. 16⁶ 15⁶⁶

Observed by J. S. PLASKETT, Measured by W. E. HARPER

Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.
21 1 21 21	54.8447 53.0962 53.2062 45.3688	9977	0279	32 11		45 3489 11 9904 11 6096	2537 8880	-0150 -0366	15168 - 27141

 Weighted mean
 9:48

 V_q 9:48

 V_d 11
 -26.9428

Radial velocity ...

Observed by T. H. PARKER, Measured by J. B. CANNON.

" Check measurement.

e HERCULIS 1661.

1908. July 3. G. M. T. 19h 40m

Wt.	Mean of Settings.	Corrected Star Settings, Revolutions,	Velocity.	Wt.	of	Star	Displace- ment in Revolutions.	Velocity.
2 21 2	54 7681 53 9294 53 1436			2 1	$45 2098 \\ 45 2548$	2268	0119	- 13.61
				Weig	hted mean . Va Vd Curvatu			49.53 9.97 26 28

« HERCULIS 1661.°

1908. July 3. G. M. T. 19^h 40^m

Observed by T. H. PARKEE, Measured by W. E HARPER.

Wt.	Mean of Settings.	Corrected Displace- Star ment in Velocity. Settings. Revolutions.	Wt.	of	Star	Displace- ment in Revolutions	Vel city.
101010	$54^{+}7214$ $53^{-}8761$ $53^{+}0911$	8968 0730 - 84-02	2 ,	45-2530 45-1670	1877	0510	- 53 24
				hted mean Va Va Curvatu			75-62 9-97 26 28

« HERCULIS 1666.

1908. July 6. G. M. T. 17^h 35^m Observed by J. S. PLASKETT. Measured by J. B. CANNON.

Wt. Mean of Settings.		Displace- ment in Revolutions.	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9180 2375		- 59 . 62		$27^{+}3494$ $27^{+}1962$ $11^{+}7754$ $11^{+}4534$	-3934 	0192	16 66 - 17 23
	·			Weig	ghted mean			20.74

	= 20.74 = 10.70
Vd Curvature	
Radial velocity	- 31 . 2

← HERCULIS 1666.*

1908. July 6. G. M. T. 17^b 35^m Observed by J. S. PLASEETT. Measured by W. E. HARPER.

Wt.	Mean of Settings,		Displace- ment in Revolutions.	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.
2 2 2 2 2 1 2	$\begin{array}{c} 57.8433\\ 57.8432\\ 54.7567\\ 53.9847\\ 53.1164\\ 45.2745\end{array}$	-8293 9752	0025 0054	+ 3.01 + 6.21	$\overset{1\frac{1}{3}}{\overset{1}{2}}_{2}^{\overset{1}{3}}$	45 2230 27 3862 27 2454 11 8301 11 5190	2223 3874 8383	0164 0252 0131	- 17 20 - 21 87 - 9 81
					Mr. J.	hted mean			0.54

Weighted mean			- 5154
			10.70
Vd			- 106
Curvature			- '28
D. Malandarian		-	10.0
Radial velocity.			

* Check measurement.

« HERCULIS 1675.

1908, July 8, G. M. T. 15⁵ 47

Observed by J. B. CANNON. Measured by W. E. HARPER.

Wt.	Mean of Settings.	Star	Displace- ment in Revolutions.	Velocity.	Wt.	Mean of Setting>.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.
2 1 2 2 1 2 2 1 1 1 2 2 1 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2	$\begin{array}{c} 73\cdot 0235\\ 72\cdot 8670\\ 72\cdot 4584\\ 54\cdot 7415\\ 53\cdot 9786\\ 53\cdot 1090\end{array}$	9803	0114	- 16 54	$ \begin{array}{c} 3 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \end{array} $	$\begin{array}{r} 45 & 2741 \\ 45 & 2271 \\ 27 & 4307 \\ 27 & 2697 \\ 11 & 8571 \\ 11 & 5355 \end{array}$	2267 4076 8288	0120 0050 0226	- 12 53 - 4 34 - 16 93
					Weig	hted mean.			6.41

Va	- 11.12
Vd	- '07
Curvature	÷ 28
Radial velocity	- 17:9

Observed by J. B. CANNON. Measured by W. E. HARPER.

 ϵ HERCULIS 1675.*

Mean Corrected Displace-Mean Wt. Wt. of Star ment in Settings. Revolutions Velocity. Star ment in Settings. Revolutions. Settings. Settings. $\begin{array}{c} 57 \cdot 7785 \\ 57 \cdot 7762 \\ 54 \cdot 6950 \end{array}$ 45.1881 10049 + 6.05·2350 0037 - 3:86 30.8478 27 · 3860 27 · 2254 11 · 8146 0054 - 4.69 0100 - 11 - 51 9798 -15.80 11.4915

Weighted mean			0.04
- <u>V</u> a			11.12
Vd			.02
Curvature			·28
Radial velocity			11:5

* Check measurement.

← HERCULIS 1676

1908. July 8, G. M. T. 16^h 32^m

entroot

Observed by J. B. CANNON. Measured by J. B. CANNON.

Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.
2 1± 2 2 1	$54^{\circ}8885$ $54^{\circ}0948$ $53^{\circ}2536$ $45^{\circ}4243$ $45^{\circ}3866$	9498 2356	0200	- 23 .02	$1 \\ 2 \\ 1 \\ 2^1_2$	27:5711 27:4152 12:0378 11:6959	·4031 ·8489	0095	8.25
					Weig	hted mean			10.64

89	eignied	ment											10.04
	· Va												11.12
	18												-14
	Cu	vatur	е					•					.58

 ϵ HERCULIS 1682.

1908, July 9, G. M. T. 17^h 12^m

Observed by W. E. HARPER.

Wt.	Mean of Settings.	Corrected Star Settings.		Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.
$\begin{smallmatrix}&&&&\\&2&&&\\&&&&2\\&&&&2\\&&&&&2\\&&&&&2\\&&&&&2\\&&&&&2\\&&&&&&$	$\begin{array}{c} 73 \cdot 0156 \\ 72 \cdot 8768 \\ 72 \cdot 44 00 \\ 54 \cdot 7490 \\ 54 \cdot 0263 \\ 53 \cdot 1160 \\ 45 \cdot 2846 \end{array}$	8714	0006	+70.09	$ \begin{array}{c} 1 \\ 2 \\ $	$\begin{array}{r} 45 \cdot 2675 \\ 41 \cdot 2977 \\ 27 \cdot 4402 \\ 27 \cdot 2766 \\ 11 \cdot 9452 \\ 11 \cdot 5482 \end{array}$	2565 4102 9044	0178 0024 0530	+ 18 58 - 2 08 + 39 70

Weighted mean	+ 42.97
Va	
Va	
Curvature '28	

€ HERCULIS 1685.

19 G.	08, July 1 M. T. 1	0. ph 37m		4 HERCU	L1S 16	.85,	Observed Measured	by J. B. CA	NNON.
Wt.	of	Star	Displace- ment in Revolutions.	Velocity.	Wt.	of	Star	Displace- ment in Revolutions.	Velocity
$2 \\ 2 \\ 2 \\ 2 \\ 1 \\ 1$	$\begin{array}{c} 54^{\circ}7810\\ 53^{\circ}9982\\ 53^{\circ}1500\\ 15^{\circ}3197\\ 45^{\circ}2720\end{array}$		0096		$ \begin{array}{c} 1 \\ 2 \\ $	27 4458 27 3042 11 8880 11 5696	- 3880 	0246 0254	21 35 - 19:02
					Weigh	nted mean			16.13

Va				11.58
Vd				- 00
Curvature				28

Radial velocity - 27.9

Observed by J. B. CANNON. Measured by J. B. CANNON.

e HERCULIS 1686.

1908. July 10. G. M. T. 15^h 34^m

Wt.	Mean of Settings.	Star	Displace- ment in Revolutions.	Velocity.	Wt.	of	Star	Displace- ment in Revolutions.	Velocity.
	$\begin{array}{c} 54 \cdot 7365 \\ 53 \cdot 9495 \\ 53 \cdot 1102 \\ 45 \cdot 2762 \\ 45 \cdot 2158 \end{array}$	9535 2146	0163		$2^{\frac{1}{2}}$ $1^{\frac{1}{2}}$ $2^{\frac{1}{2}}$	27 4528 27 2597 11 8304 11 5280	8099		- 31.07

V _d	56 58 06
	28

Radial velocity .

HERCULIS 1693.

1908. July 11. G. M. T. 16^h 58^m

Observed by J. S. PLASKETT. Measured by J. B. CANNON.

Wt.	Mean of Settings.	Displace- ment in Revolutions.	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.
	$\begin{array}{c} 73\cdot\!0160\\ 72\cdot\!7961\\ 54\cdot\!7200\\ 53\cdot\!8695\\ 53\cdot\!0811\\ 45\cdot\!2396\end{array}$	0650 1283	147.67		$\begin{array}{c} 45^\circ 1437\\ 27^\circ 2885\\ 27^\circ 2267\\ 11^\circ 7051\\ 11^\circ 4860\end{array}$	1197 2685 6841	1198 1440 1673	125.07 124.99 - 115.31
				Weig	hted mean			25.81

	d				14 28
C	urvati	165 '			28

-138.1 Radial velocity.

432

!1

← HERCULIS 1693. 1908. July 11. G. M. T. 16^h 58^m Observed by J. S. PLASKETT. Measured by W. E. HARPER. Mean Corrected Displace-Wt. Velocity. ment in of Star ment in Star Settings. Revolutions Settings. Settings. Settings. Revolutions. 54 6857 27 2729 3166 10960 83.33 53 8389 90.93 27 2031 53:0466 7328 88.83 0460 48.02 Weighted mean 80.67 Va..... Vd..... 14 Radial velocity..... ← HERCULIS 1699. Observed by J. S. Plaskett. Measured by J. B. Cannon. July 13,
 M. T. 16^b 19^m Corrected Displace Mean Corrected Displace-Mean Star ment in Velocity. Wt of Star ment in Revolutions. Velocity. Settings. Settings. Revolutions. Settings. Settings.

$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$2^{\frac{1}{2}}$ $1^{\frac{1}{2}}$ $2^{\frac{1}{2}}$	27 3386 27 2138 11 8957 11 4945	706 0513 +44.53 9057 0543 +40.67
--	--	---	--	-------------------------------------

Weighted mean .				
Va Vd				
Curvature.				
De Robert en la chara				

Radial velocity

« HERCULIS 1699.*

1908. July 13
 G. M. T. 16^h 19^m

Observed by J. S. PLASKETT. Measured by W. E. HARPER,

+22.00-12:28 .28

Wt. Mean of Settings.	Star ment in	Velocity.	Wt.	of		Displace- ment in Revolutions.	Velocity.
$\begin{smallmatrix} 1 & 72.8786 \\ \frac{1}{5} & 72.7355 \\ \frac{1}{2} & 72.3211 \\ 2 & 54.6267 \\ 1 & 53.8710 \end{smallmatrix}$		0.00	1 2 1 1 ¹ 2	$52^{\circ}9980$ $45^{\circ}1721$ $45^{\circ}1655$ $11^{\circ}8675$ $11^{\circ}4430$	2670 9317	0803	

Va
V.d.

-21.8

25a-30h

```
← HERCULIS 1707.
```

1908. July 14. G. M. T. 17^h 42^m Observed by W. E. HARPER, Measured by J. B. CANNON,

Wt.	of	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.		Velocity.
$\begin{array}{c}1\\1\\1\\2\\2\end{array}$	$\begin{array}{c} 72 & 9823 \\ 72 & 8174 \\ 72 & 4157 \\ 54 & 7221 \\ 53 & 9413 \\ 53 & 0976 \end{array}$	8454 9573	0194	- 28 13 14 39	2 2 2 2 2 2 2 2 2 2 2	$\begin{array}{r} 45 & 2751 \\ 45 & 2115 \\ 27 & 4009 \\ 27 & 2759 \\ 11 & 8686 \\ 11 & 5667 \end{array}$	2100 3709 8106	0287 0417 0408	29.96 36.20 30.56
					Weig	Va	ire		30 50 12 58 19 28

Radial velocity - 43.6

Observed by J. B. CANNON. Measured by J. B. CANNON.

« HERCULIS 1712.

1908. July 15. G. M. T. 17^b

Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.
$2^{\frac{1}{2}}_{\frac{2}{2}}_{\frac{2}{1\frac{1}{2}}}$	$54^{\circ}7925$ $53^{\circ}9323$ $53^{\circ}1660$ $45^{\circ}3233$ $45^{\circ}2363$	8803	0795	- 91 50 54 71	1 2 1 2	27 · 4303 27 · 3102 11 · 7814 11 · 5675	3593 7214	· 0533 1300	46 · 26 - 97 · 37

Weighted mean	67.88
Va	12.81
Vd	14
Curvature	128
Radial releasity	- 81-1

€ HERCULIS 1713.

Observed by W. E. HARFER. Measured by J. B. CANNON.

1908. July 15.
 G. M. T. 17^h 45^m

Wt.	Mean of Settings.	Corrected Star Settings.		Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.
$\begin{array}{c}1\\1\\2\\1\\2\\1\\2\end{array}$	$\begin{array}{c} 72^\circ 9943\\ 72^\circ 8335\\ 72^\circ 4275\\ 54^\circ 7248\\ 53^\circ 8913\\ 53^\circ 1022 \end{array}$	8495 9083	0153	- 22 20	$2 \\ 1^{\frac{1}{12}} \\ 1^{\frac{1}{2}} \\ 2 \\ 1^{\frac{1}{2}} \\ 2 \\ 2 \\ 1^{\frac{1}{2}} \\ 2 \\ 1^{$	$\begin{array}{r} 45 \cdot 2700 \\ 45 \cdot 1889 \\ 27 \cdot 3745 \\ 27 \cdot 2630 \\ 11 \cdot 8010 \\ 11 \cdot 5368 \end{array}$	1924 3583 7715	0463 0543 0799	48 34 47 13 - 59 92

Va		- 12 80
Vd		- 19
0		100
Curvature		- 20

e HERCULIS 1719.

1908. July 16. G. M. T. 17^b 25^m

Mean Corrected Displace-Mean Corrected Displace-Wt. of Star ment in Settings. Revolutions. Velocity. Wt. Star Velocity. of Star ment in Settings. Revolutions. Settings. Settings. $27^{+}4669$ $27^{+}2995$ $11^{+}9217$ $11^{+}5731$ 54 · 7686 53 · 9945 4142 .0077 - 6.68 - 2.65 9675 0023 53.1399 8562 0048 + 3.29 45 3019 2 - 1.98 45.2698 23680019

Weighted mean	 $ \begin{array}{r} 0 \cdot 27 \\ - 13 \cdot 03 \\ - 19 \\ - 28 \end{array} $
Radial velocity	13.8

Observed by W. E. HABPER. Measured by J. B. CANNON.

```
« HERCULIS 1720.
```

1908. July 22. G. M. T. 17^h Observed by J. S. PLASKETT, Measured by W. E. HARPER,

Wt. Mean of Settings.	Co. rected Displace- Star ment in Settings. Revolutions.	Velocity.	W t.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8333 0065 9510 0188	+ 7 83 - 21 64	$1 \\ 1 \\ 2 \\ 1 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ $	45 · 2245 24 · 1614 24 · 1536 11 · 8589 11 · 5373	2114	0173 0076 0224	- 18*06 - 6*46 - 22*57

Veighted mean			9.26
Va			14.00
Vd			· 19
Curvature			-28
		-	
Radial velocity			23.7

Observed by W. E. HARPER.

ϵ HERCULIS 1723.

1908. July 24. G. M. T. 14^b

Mean Corrected Displace-Mean Corrected Displace-Wt. Star ment in Wt. of Star ment in Settings. Revolutions. of Settings. Revolutions. Settings Settings. $\begin{array}{c} 72 & 9270 \\ 72 \cdot 7558 \\ 72 \cdot 3561 \\ 59 \cdot 7270 \\ 58 \cdot 9550 \end{array}$ 53 0155 45 1800 0232 33 66 8416 - 14:51 45.1312 2248 0139 211 37 8697 37 6784 0030 3.66 7674 0127 +12.240377 $57 \cdot 7351$ $57 \cdot 5079$ $54 \cdot 6556$ 27 3058 27 1684 -8188 0080 3850 23 96 8374 0140 10 49 9665 0033 3 80

Weighted mean V_a V_d Curvature			8.20 - 14.35 - 00 - 28	
Radial velocity			23.8	

« HERCULIS 1728.

Observed by J. S. PLASKETT. Measured by W. E. HARPER. 1908. July 25. G. M. T. 17⁶ 20^m Mean Mean Corrected Displace-of Star ment m Settings. Settings. Revolutions. Mean Corrected Displace-Star ment in Wt. of Settings. Revolutions. Settings. 2740+36.8254.8772 $45 \cdot 3992$ 0353 54 1331 -37.180021 0323 24 5975 4648 0522 + 45.3124 3793 15-3988 Weighted mean..... Va Va + 38.8914.53

ϵ HERCULIS 1729

1908. July 26 G. M. T. 16^b 58^m Observed by } W. E. HARPER.

Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.
$\frac{2}{1}$ $\frac{1}{2}$ $\frac{2}{2}$ $\frac{2}{1}$	73-0485 72-8867 72-4827 57-8605 57-8620 54-7767 53-9981	-8482 -8279 -9635	0166 0011 0063	-24.08 + 1.32 - 7.25	$221\frac{1}{2}$ $121\frac{1}{2}$ $11\frac{1}{2}$ $11\frac{1}{2}$	$53^{\circ}1465$ $45^{\circ}3092$ $45^{\circ}2855$ $27^{\circ}4567$ $27^{\circ}2950$ $11^{\circ}8964$ $11^{\circ}5540$	2500 4100 8496	0113 0026 0018	+11-80 2·26 - 1·35

Weighted mean \dots V_{a} \dots V_{d} \dots V_{d} \dots \dots \dots Curvature	$^{-2}_{-14}$ $^{37}_{-14}$ $^{-20}_{-28}$
Radial velocity	17.6

€ HERCULIS 1734.

1908, July 28. G. M. T. 17^h 12^m $\left. \begin{array}{c} {\rm Observed \ by} \\ {\rm Measured \ by} \end{array} \right\} {\rm W}, \ E. \ {\rm Harper},$

Wt.	Mean of Settings	Corrected Displace- Star ment in Settings. Revolutions.	Velocity.	Wt.	of	Star	Displace- ment in Revolutions.	Velocity,
2222122	59.7721 54.7033 53.9145		- 17:38		$\begin{array}{c} 45 \cdot 1967 \\ 27 \cdot 3527 \\ 27 \cdot 2043 \\ 11 \cdot 7436 \\ 11 \cdot 4292 \end{array}$.8210	0175	+ 4 91 - 15 19 - 22 77
				Polota.	d mean			10.01

weighted	ı me	an											12	24
	Va												15	07
1	Va													22
(Curva	atu	r	e										28
Th. 11.1												1	 	

Radial velocity..... - 27.8

€ HERCULIS 1737.

1908, July 29, G. M. T. 14^h 22^m Observed by J. S. PLASKETT. Measured by W. E. HARPÉR.

Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity,
$ \begin{array}{c} 2 \\ 1 \\ 2 \\ 2 \\ 1 \end{array} $	$\begin{array}{c} 72 & 9830 \\ 72 & 8682 \\ 72 & 4145 \\ 54 & 6912 \\ 53 & 9795 \\ 54 & 0574 \\ 45 & 2190 \\ 45 & 2345 \end{array}$	8968 0321 	0320 0623 0504	+ 46 45	$ \begin{array}{c} 1 \\ 2 \\ 2^{\frac{1}{2}} \\ 1^{\frac{1}{2}} \\ 1 \\ 2 \end{array} $	29 8960 29 8627 27 3845 27 1833 11 8437 11 6321 11 4277	9563 4478 9232	-0333 -0352 -0718	+32.10 +30.55 +53.78

Weighted mean	+49.80
Va 15 17	
Vd 06 Curvature 28	
	. 04.0
Radial velocity	1 34 3

€ HERCULIS 1738.

Observed by J. S. Plaskett. Measured by W. E. HARPER

1908. July 29. G. M. T. 15^h 08^m

Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.
2 1 2 2	$54^{\circ}7011$ $53^{\circ}9824$ $53^{\circ}0696$ $45^{\circ}2273$	0240	0542	+ 62.38	$\begin{array}{c}1\\2\\1\\2\end{array}$	$45^{\circ}2290$ 29 8783 11 8603 11 4489	2753 9186	0672	+38-21 +50-35
				,	V	d		- '11	50-31

Radial velocity ... + 34.7

« HERCULIS 1743.

1908. July 29. G. M. T. 18^h 05^m

Observed by J. B. CANNON. Measured by W. E. HARPER.

Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions,	Velocity
2 ⁴⁰ 2 2 3	73 0345 72 8884 72 4567 54 7492 54 0298	8670	0022	+ 3 19	2 2 2 1	54 0317 53 1037 45 2694 45 2692	0317	0619	- 71 · 25 + 36 · 23

€ HERCULIS 1746.

1908. July 30. G. M. T. 17⁵ 06^m

Observed by Measured by W. E. HARPER.

Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.
2 2 2	54.7460 53.9640 53.1102	9628	0070	- 8.06	2	45 2629 45 2283	-2390	0003	+ 0.31
				1	Veighte	ed mean			6 47

Weig	ted	mean			

- 15.27 24
- 28

Radial velocity - 22 3

```
«HERCULIS 1751.
```

1908. July 31. G. M. T. 15^h 40^c

Observed by T. H. PARKER. Measured by W. E. HARPER.

Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.	Wt.	Mean of Settings	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.
1 $2^{\frac{1}{2}}$ $1^{\frac{1}{2}}$	57 8225 57 7790 54 7461 53 9111	·7859 9078	0410	- 49°36 - 71°36	222	53.1145 45.2711 45.1693	1717	0670	69.95

66:38 15 65 15 28 82.5

Radial velocity ... - - -

€ HERCULIS 1757.

Observed by W. E. HARPER.

G. M. T. 19 ^h 05 ^h	

Wt.	of		Displace- ment in Revolutions,	Velocity.	Wt.	Mean of Settings.	Star	Displace- ment in Revolutions.	Velocity.
$2 \\ 1 \\ 2 \\ 1_{\frac{1}{2}}$	$\begin{array}{c} 73 0630 \\ 72 8552 \\ 72 4921 \\ 54 7682 \\ 53 9147 \end{array}$	8035	0613	- 88 95		$\begin{array}{c} 53\cdot 1403\\ 45\cdot 2950\\ 45\cdot 1940\\ 27\cdot 3792\\ 27\cdot 2627\end{array}$	1726	0661 0495	- 69:00

Weighted	mean				78 14
	Va				15.62
	Vd				- 28
	Curvatur	е			⁺ 28
Rad	fial velocity				94.3

← HERCULIS 1760.

1908. Aug. 1. G. M. T. 16⁵ 49^m

Observed by J. S. PLASKETT. Measured by W. E. HARPER.

·22 ·28

Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions,	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.
$2 \\ 1\frac{1}{2} \\ 2$	54 7274 53 9500 53 0979	9643	.0055	- 6 35	2 1	45 · 2642 45 · 2251		0043	- 4-49
				v	Veighte	d mean			5.61 16.03

 V_a . V_d . Cnrvature. Radial velocity.... -22.1

440

 \leftarrow HERCULIS 1761.

1908. Aug. 5. G. M. T. 14⁶ 05^m

/t.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Veloci
2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 +	73.0351 72.8896 72.4630 57.8205 57.8205 57.8034 54.7326 53.9471	8680 8123 9554	0032 -0145 -0144	+ 4 64	221^{12}_{12} 121^{12}_{2} 1^{12}_{2}	53:1047 45:2597 45:2062 27:3982 27:2420 11:8337 11:4915	2201 4028 8494	0186 0098 0020	- 19 - 8 - 1

Weighted	n	eat	ι.	
. 1	a			
- C	d ur	vat	ur	е.

Radial velocity

-12:04 -16:25 :08 28 - 28.6

« HERCULIS 1774.

1908. Aug. 7. G. M. T. 15^h 35^m Observed by T. H. PARKER. Measured by W. E. HARPER.

Observed by J. S. PLASKETT, Measured by W. E. HARPER.

Wt. Mean Settings.	Corrected Star Settings.	Displace ment in Revolutions.	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8088		-21.67 + 1.50	2 1 2 1 2	45 2291 27 4238 27 2676 11 8833 11 5393	2317 4026 8514	-0070 0100 -0000	- 7:31 - 8:68 0:00

Weighted mean	- 7.23
V.a	- 16 35
Vd Curvature	- 28
Radial velocity.	-24.0

«HERCULIS 1782.

Observed by J. S. PLASKETT. Measured by W. E. HARPER.

1908. Aug. 15. G. M. T. 16^h 50^m

Wt.	Mean of Settings.	Corrected Star Settings.		Velocity.	Wt.	Mean of Settings.	Star	Displace- ment in Revolutions.	Velocity.
$2 \\ 1 \\ 2 \\ 2 \\ 1^{\frac{1}{2}} \\ 2$	$\begin{array}{c} 72^\circ9712\\ 72^\circ8162\\ 72^\circ4052\\ 57^\circ7983\\ 57^\circ7814\\ 54^\circ7181\end{array}$	·8545 ·8125	0103	- 14*94 - 17*21	2 2 2 2 2 1 2	$\begin{array}{c} 53 & 9308 \\ 53 & 0801 \\ 45 & 2550 \\ 45 & 2055 \\ 27 & 3902 \\ 27 & 2578 \end{array}$	9566 2241 3902		- 15°19 - 15°24 - 29°16
					Weigł	nted mean.			17:44

Veighted													
	Va.											- 17:05	١.
	Vd .											- '24	k.
	Cur	va	t	ır	φ.							- 28	8

Radial velocity..... - 35.0

Observed by W. E. HARPER.

€ HERCULIS 1793.

1908. Aug. 19. G. M. T. 14^h 41^m

Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.
$\frac{2}{1}$	$71^{+}8997$ $71^{+}8180$ $68^{+}7255$	8198	0673	- 29.58	1 2 1	$\begin{array}{c} 66 & 5842 \\ 61 & 4037 \\ 61 & 1977 \end{array}$	· 5905 · 2033	·0873 0412	- 37 19 - 1 6 93

W

Radial	and and have										47	- 9	
С	urvature											.28	
1	[d											-15	
	a									-		29	
leighted n	uean											.08	

¢ HERCULIS 1818.

1908 Aug. 24. G. M. T. 14^h 03^m

Observed by W. E. HARPER.

Wt.	Mean of Settings.	Correcte l Star Settings.	Displace- ment in Revolutions.	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.
2 1 2 2 2 1	$\begin{array}{r} 72.9400\\ 72.7367\\ 72.3715\\ 54.6722\\ 53.9557\\ 53.8285\end{array}$	8053	0595	- 86 33	$1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 2 \\ 1 \\ 2$	53:0350 45:2000 45:1002 27:2776 27:1906	1737	0650 0790	- 67 86 - 68 57

Radial velocity..... -92.4

/ HERCULIS 1838.

1908. Aug. 27. G. M. T. 15^h 50^m

```
Observed by J. B. CANNON.
```

Measured 1	oy '	W.	Е.	Hл

Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.
$2 \\ 1 \\ 2 \\ 2 \\ 1 \\ 2 \\ 1_{\frac{1}{2}}$	$\begin{array}{c} 72\cdot 9994\\ 72\cdot 8367\\ 72\cdot 4383\\ 57\cdot 8226\\ 57\cdot 8302\\ 54\cdot 0265\\ 54\cdot 0265\\ 54\cdot 0265\\ 54\cdot 0265\end{array}$	8463	076	+ 9.15	$2 \\ 1 \\ 1 \\ 2 \\ 1 \\ 2$	$\begin{array}{c} 45 & 2716 \\ 45 & 2345 \\ 27 & 4216 \\ 27 & 2694 \\ 11 & 8840 \\ 11 & 5462 \end{array}$		0022 0135 0061	- 2 30 - 11 72 - 4.55
					Weight	ed mean			5.82

 Va											7.66
Vd										-	-24
Cu	rva	ture									28

Radial velocity - 24.0

Observed by J. B. CANNON. Measured by W. E. HARPER.

« HERCULIS 1844.

1908. Aug. 28. G. M. T. 14^h 07^m

Wt.	Mean of Settings.	Corrected Star Settings	Displace- ment in Revolutions.	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.
$2^{\frac{1}{2}}_{\frac{2}{2}}_{\frac{2}{1}}_{\frac{2}{2}}$	$\begin{array}{c} 73{}^{\circ}0320\\ 72{}^{\circ}8382\\ 72{}^{\circ}4677\\ 54{}^{\circ}0522\\ 53{}^{\circ}9207\\ 45{}^{\circ}2925\end{array}$	8158	0490	- 71 10	2 2 1 2 1 2	$\begin{array}{r} 45^{+}1750\\ 27^{+}3755\\ 27^{+}2780\\ 11^{+}7805\\ 11^{+}5485\end{array}$	1561 3441 7394	0826 0685 1120	- 86 23 - 59 46

Veighted	mean.							- 80.80	
	Va							-17.63	
	Va							- 16	
	Curvat	ur						- '28	
Radio	l reloc							9.80	

/ HERCULIS 1853.

1908. Aug. 31. G. M. T. 13^b 52^m

Observed by W. E. HARPER.

Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions,	Velocity.
2 2 2	54.0330 53.9830 45.2716	9788	.0100	+ 11 51	1 2 ¹ 3	$45^{\circ}2510$ $27^{\circ}4040$ $27^{\circ}2340$	·2530 ·4166	0143 0040	$^{+14.93}_{+3.47}$

Weighted mean + 11 94 Va Vd Curvature - 17.63 - 16 - 28

6.1

Radial velocity

Observed by J. B. CANNON. Measured by W. E. HARPER. 1908. Sept. 4. G. M. T. 14⁰ 32^m Mean Corrected Displace-Mean Corrected Displace-Wt. of Star ment in of ment in Settings. Revolutions. Settings, Settings, Revolutions. Settings. 54:0286 $\begin{array}{r} 45 & 2756 \\ 45 \cdot 2387 \end{array}$ 9684 0020 - 2.09 53 9682 0014 2 03 2367 $\frac{2.05}{17.56}$ Weighted mean. ... Va Va 20.1Radial velocity ...

+ HERCULIS 1903.

1908. Oct. 1. G. M. T. 13^h 12^m Observed by W. E. HARPER. Measured by T. H. PARKER.

Wt.	Mean of Settings.	Corrected Star Settings.	Displace- nent in Revolutions.	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.
2 ²⁰ 22 ²⁰ ²⁰	72-9627 72-8369 72-3935 54-7217 53-9629	8850 9891	0202	- 29 31 13 93	2 2 2 1	$53 \cdot 0938 \\ 45 \cdot 2707 \\ 45 \cdot 2698 \\ 43 \cdot 5385 \\ 43 \cdot 0812$	2727 0811	0340	35-96 + 31-38

Veighted	mean		+
	Va	13.28	
	Vd	23	
	Curvature	. 28	

« HERCULIS 1903.*

1908. Oct. 1 G. M. T. 13^h 12^m

Observed 1

Observed by W. E. HARPET.

Wt.	Mean of Settings.	Corrected Star Settings.	Displace ment in Revolutions.	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.
21 -18700	57 8380 57 8367 53 0120	8255 9881	0113 0183	- 13 60 21 06	$2^{\frac{2}{2}}$	54 0527 45 3017 45 3080	2673	0286	- 81 95
					Weight	ed mean Va . Vd Curva		13 58 - 23 - 28	22 17

Check measurement.

+ HERCULIS 1905.

Observed by | T. H. PARKER. Measured by | 1908. Oct. 2. G. M. T. 12^b 23^m Displace Mean Corrected Displace-of Star Dent in Mean Corrected Wt. Velocity. Wt. Velocity Star ment in of Star ment in Settings. Settings. Revolutions. Settings. Revolutions. Settings. $\begin{array}{cccc} 72 & 9333 \\ 72 & 8133 \\ 72 & 3735 \\ 54 & 7063 \end{array}$ 2 53 9743 0083 0385 0240 34.82 $53 \cdot 0845$ 45 2615 8888 + 25 47 45.2510 0244 Weighted mean + 34 - 86 16^{-17} 28

1998. Oct. 2. G. M. T. 12^h 23^m

Radial velocity

Observed by T. H. PARKER. Measured by W. E. HARPER.

 $\pm 18^{\circ}2$

Wt.	Mean of Settings.		Displace- ment un Revolutions.	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.
2 2 2 2	73.0219 72.9047 72.4605 54.0925	8923	0275	+ 39 - 90	$1 \\ 2 \\ 1\frac{1}{2}$	$54^{\circ}0557_{45^{\circ}3540}_{45^{\circ}3672}$	9920 2868	0222	+25.55 +50.22
Weighted mean									

ϵ HERCULIS 1905."

Va	16.17
Curvature	28
Radial velocity	+ 23 6

* Check measurement.

HERCULIS 1906.

1908. Oct. 2. G. M. T. 13^h 18^m

Observed by T. H. PARKER.

Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings,	Displace- ment in Revolutions.	Velocity.
2 2 2 2 2 2 2	72 9878 72 8491 72 4218 54 7350 53 9915 53 1029	9995		+ 9 86	21 2 2 2 2 2 2 2	$\begin{array}{r} 45 \cdot 2706 \\ 45 \cdot 2536 \\ 27 \cdot 4469 \\ 27 \cdot 2936 \\ 15 \cdot 5485 \\ 15 \cdot 4700 \end{array}$	-3999 4771	0179 0127 0040	- 11 02

- 16 17

Ra lial velocity

ϵ HERCULIS 1906.*

Observed by T. H. PARKER. Measured by W. E. HABPER.

Wt.	Mean of Settings.	Corrected Star Settings.		Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.
01 ⁻¹⁰¹ 01 01 ^{00,9}	$\begin{array}{c} 73 & 0126 \\ 72 & 8790 \\ 72 & 4515 \\ 54 & 0508 \\ 53 & 9882 \end{array}$	8759 9662	-0036	- 16 11	$2^{\frac{1}{2}}_{2^{\frac{1}{2}}}$	$\begin{array}{c} 45 & 2729 \\ 45 \cdot 3031 \\ 27 & 4884 \\ 27 \cdot 3237 \end{array}$	·2434 4016	-0047 -0110	- 4.81 - 9.55
					1			1 15	16 17 23

Curvature		28
		- Colorado
Radial solooity	- 1	5:5

* Check measurement.

«HERCULIS 1917.

1908. Oct. 5 G. M. T. 12^b 45^m Observed by T. H. PARKER. Measured by W. E. HARPER.

Wt.	of	Star >	Displace- ment in Revolutious.	Velocity.	Wt.	of	Star	Displace- ment in Revolutions.	Velocity.
2	53-9338				1	53.9042	. 9992	.0294	+33.84
					Weight	tod more			20 91

Veighted mean.	33 84
Va Va	15 21
Curvature	-23
Radial velocity	- 18 1

 ϵ HERCULIS 1926.

1908. Oct. 12. G. M. T. 14^b 15^m Observed by T. H. PARKER.

Wt.	Mean of Settings.	Star	Displace- ment in Revolutions.	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.		Velocity.	
2 2 ¹ 2	54-7809 53-0112 53-1586	9684	0014	- 1.61	2	45 · 3392 45 · 2745	2089	0298	- 31 . 11	
Weighted mean										

Radial velocity - 29.9

SESSIONAL PAPER No. 25a 1908, Oct. 12.

← HERCULIS 1926.*

Observed by T. H. PARKER. Measured by W. E. HAEPER

Observed by W. E. HARPER.

	. M. T. D	In 112			Measured by W. E. HARERS.					
Wt.	Mean of Settings.	Corrected Star Settings.		Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity	
2 2 2 2	72 9282 72 7570 72 3640 53 9777	8383	0265	38 45	1 2 3	$53 \cdot 9142 \\ 45 \cdot 2412 \\ 45 \cdot 1955$	9648 2281		5.55	
					Weigh	$V_d \dots V_d$	re		$ \begin{array}{r} 11 & 73 \\ 12 & 99 \\ 28 \\ 28 \\ 28 \end{array} $	

← HERCULIS 1961.

Radial velocity - 25'3

* Check measurement. 1908. Nov. 13, G. M. T. 10^h 33th

Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.
2 12 2 2 1 2 1 2	$\begin{array}{c} 72 \cdot 9540 \\ 72 \cdot 7900 \\ 72 \cdot 3992 \\ 54 \cdot 0249 \\ 54 \cdot 9106 \\ 45 \cdot 2941 \end{array}$.7980		- 30.08		$\begin{array}{c} 45 & 1868 \\ 27 & 4609 \\ 27 & 3340 \\ 11 & 8665 \\ 11 & 6620 \end{array}$	1763 4488 8626	0725 0394 1378	75.91 34.36 - 103.76

eighted mean.										-62.02
Va Va										4 70
Curvature										-28

∈ HERCULIS 1961.*

1908. Nov. 13. G. M. T. 10^b 33^m

11

Observed by W. E. HARPER. Measured by T. H. PARKER.

Wt.	Meau of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.
$2^{-1/2}_{-2/2}_{-2/2}_{-1/2}_{-1/2}$	$\begin{array}{c} 72 \cdot 9915 \\ 72 \cdot 8067 \\ 72 \cdot 4317 \\ 54 \cdot 7682 \\ 53 \cdot 9192 \\ 53 \cdot 1417 \end{array}$	8233 8912	0415	-60.22	$2^{\frac{1}{2}}$ $2^{\frac{1}{2}}$ $1^{\frac{1}{2}}$	$\begin{array}{c} 48{}^{\circ}8173\\ 48{}^{\circ}1143\\ 45{}^{\circ}3301\\ 45{}^{\circ}2254\\ 27{}^{\circ}4192\\ 27{}^{\circ}3324 \end{array}$	0670 1689 3334	0698 0792	$72.87 \\ -67.74$
					,	V d			66 75 4 69 25 28

* Check measurement. 25a - 31

Radial velocity -71.8

← HERCULIS 1961.*

Observed by W. E. HARPER. Measured by J. B. CANNON,

` Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.
2 2 2 2 1 4	72:9300 72:7524 72:3700 54:7057 53:8622	7849	0338	- 48 11	2 2 1 1 2 2	$53 \ 0847 \\ 45^{\circ}2672 \\ 45^{\circ}1730 \\ 11^{\circ}8537 \\ 11 \ 6345$	1894 8791	0593 1213	62.09
					Weight	Va			4.70

Radial velocity												1-27
Curvature												-28
Vd												23
Va											-	4.20

* Check measurement.

← HERCULIS 1983.

1908. Nov. 26. G. M. T. 10^b 07^m

1908. Not. 13.

Observed by W. E. HARPER. Measured by J. B. CANNON.

Wt.	of	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.	Wt.	Mean of Settings.	Star	Displace- ment in Revolutions.	Velocity.
2 2 2 1 2 1	$\begin{array}{c} 72 & 9887 \\ 72 & 4267 \\ 57 & 8410 \\ 57 & 8284 \\ 54 & 7670 \\ 53 & 9637 \end{array}$		0210	- 25 32	2 2 1 2 2 2 2	$53 1422 \\ 45 3295 \\ 45 2686 \\ 27 3610 \\ 11 6692$	2237	0250	- 26 17

Weig	hted	mea	n										 29.54
	Va.												. 79
	Vd.												-25
	Cur	vatu	re,										28

Radial velocity - 30.9

+ HERCULIS 1993.

1908. Dec. 2. G. M. T. 11^h 05^m

Observed by J. B. CANNON. Measured by W. E. HARPER.

Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.
2 2 2 2	$\begin{array}{c} 730015\\ 728197\\ 724371\\ 541072 \end{array}$		0368			54+0327 45+3945 45+3182	9273 2173	·0159 ·0416	18°28 - 43°68
					Weight	ed mean			30.57

Va....+ 1`12 Vd Curvature 28 Radial velocity. - 30.0

1909. Feb. 8.

+ HERCULIS 2263.

Observed by W. E. HARPER.

(;	. M. T. 23	for 08m				Measured	by J	
Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	ty. Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity
2 1 ² 2 2 2 1 2	$\begin{array}{c} 72 & 8987 \\ 72 & 7145 \\ 72 & 3414 \\ 54 & 0360 \\ 53 & 9233 \\ 45 & 3421 \end{array}$	7305	0416 60	2	45 2382 27 5582 27 4495 12 1170 11 8145	1897 5058 1096	0692 0560 0391	79.51 49.56 - 29.56
				Weight	ted mean Va Vd.	ture.	10	60:54 28

Radial velocity ... 43.5

Observed by W. E. HARPER.

.

« HERCULIS 2264.

1909. Feb. 8. G. M. T. 23^h

Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.
$2^{\frac{1}{2}}_{\frac{1}{2}}^{\frac{1}{2}}_{\frac{1}{2}}^{\frac{1}{2}}$	$\begin{array}{c} 72 & 8680 \\ 72 \cdot 6942 \\ 72 \cdot 3157 \\ 54 \cdot 0053 \\ 53 \cdot 8918 \\ 45 \cdot 3020 \end{array}$	7400	0321	- 46 '67	$1 \\ 1 \\ 2 \\ 1 \\ 2$	45 2202 27 5152 27 4062 12 0368 11 7743	2118 5061 0711	0471 0551 0776	- 54 12 - 49 29 - 58 66

€ HERCULIS 2305.

Observed by J. B. CANNON. Measured by W. E. HARPER

1909. Feb. 22. G. M. T. - 21^h 34^m

Wt.	of	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.	Wt.		Star	Displace- ment in Revolutions.	Velocity.
$2\frac{1}{2}$ $2\frac{1}{2}$ $2\frac{1}{2}$ $1\frac{1}{2}$	$\begin{array}{c} 72 \cdot 9872 \\ 72 \cdot 8275 \\ 72 \cdot 4233 \\ 57 \cdot 8428 \\ 57 \cdot 8125 \\ 54 \cdot 0565 \end{array}$	7571	0150	- 21 * 81	2^{1} 1^{1} 2^{2} 1^{1} 2^{2} 2^{2}	53 9658 45 3275 45 2636 27 4794 27 3812	9111 2295 -4953	0321	

> Observed by J. B. CANNON. Measured by W. E. HARPER.

ϵ HERCULIS 2306.

1909. Feb. 22. G. M. T. 22^b 36^m

Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.
$2^{\frac{1}{10}}$ 1 2 2 1	$\begin{array}{c} 72 & 9687 \\ 72 & 8071 \\ 72 & 4092 \\ 57 & 7942 \\ 57 & 8290 \\ 54 & 0450 \\ 53 & 9530 \end{array}$	7477		- 42.05	2 1 2 1 2 1 2 1 2	$\begin{array}{r} 45^+3155\\ 45^+2637\\ 27^+5020\\ 27^+3725\\ 11^+9835\\ 11^+7002 \end{array}$	2415 5276 0905	0174 0342 0582	- 18 27 - 29 93 - 44 00

Weighted mean. Va	34 12
Curvature	.58
Radial velocity	16.4

← HERCULIS 2327.

Observed by J. B. CANNON. Measured by W. E. HARPER.

1909, March 2, G. M. T. 21⁶ 12^m

Wt.	Mean of Settings.	Corrected Displace- Star ment in Settings. Revolutions.	Velocity.	Wt.		Corrected Star Settings.	Displace- ment in Revolutions,	Velocity.
2 2 2 2 7		7800 0079 9681 0249		$2^{1\frac{1}{4}}_{1\frac{1}{2}}^{2}$	$45^{\circ}2988$ $45^{\circ}3043$ $12^{\circ}6685$ $11^{\circ}6875$	2991 1891	0402 0404	+ 42°21 + 30°54

Weighted			+31.76
			+17:90
	Curvature	28	
Rat	lial velocity		49.5

· HERCULIS 2328.

March 2.
 M. T. 22^h 26^m

Corrected Displace-Star ment in Settings, Revolutions. Mean Corrected Displace-Star ment in Settings. Revolutions. Mean Wt. of of Settings. Settings. 53.9933 $\frac{45 \cdot 2644}{45 \cdot 2350}$ 0091 -10.52 .0053 + 5.56 53.9260 9343 2642

Veighted	Va. Vd.			5 16 - 28	$^{+17}_{-90}$
Ra		relocit			- 12:5

← HERCULIS 2370*.

Observed by J. S. PLASKETT. Measured by J. B. CANNON.

Observed by J. B. CANNON. Measured by W. E. HARPER.

G.	M.	Т.	18^{5}	35^{m}	

Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.
$^{2}_{1}$	50.9370 50.8242	-8081		- 93:05	23	34 7430 34 6975	34 7193	1038	100.00
					Weight	ed mean			95.36

	V.a			+1	7144		
	Vd				-19		
	Curvatu	ne				- '30	
Rai	dial velo	city.				- 78.0	

* This plate and all following were taken by the new single-prism Spectroscope.

← HERCULIS 2371.

1909. March 13. G. M. T. 19^h 23ⁿⁱ

Observed by J. S. PLASKETT. Measured by J. B. CANNON.

Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.
2 2 [‡]	$58^{\circ}8462$ $58^{\circ}7184$ $50^{\circ}9411$	6911	0741	- 94 - 51	$1 \\ 2^{\frac{1}{2}}$	50 · 8549 34 · 7589 34 · 6926	8347 7401	-0538 .0820	- 62°27 - 79°00

Observed by W. E. HARPER. Measured by J. B. CANNON.

e HERCULIS 2384.

1909. March 15. G. M. T. 19^h 32^m

Mean Corrected Displace-of Star ment in Mean Corrected Displace-of Star ment in Wt. Velocity. W't. Velocity. ment in Settings. Settings. Revolutions. Settings. Settings. Revolutions. $58^{\circ}8228$ $58^{\circ}7768$ 2 50.9196 0209 - 24.19 7729 0077 + 9*82 9094 50.9081

Weighted mean Va Vd Curvature								-19 40 - 17 16 + 18
Radial velocity			-	-		-		- 36 4

€ HERCULIS 2385.

1909. March 15. G. M. T. 20^h 30^m

Observed by W. E. HARPES. Measured by J. B. CANNON.

Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.
2 2 ³	58 8349 58 7924 50 9379	7764	0112	+14.29	1 2 ⁴	50 9261 34 8678 34 7003	·9091 ·8413	·0206 0192	+23.84 +18.50

 $^{+21}_{+17}$ $^{36}_{16}$

Radial velocity +38'4

e HERCULIS 2454.

Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity
$2^{\frac{1}{2}}{2}$	58 · 8306 58 · 7836 50 · 9202	7720	0068	+ 8.67	$\frac{1}{2^{\frac{1}{2}}}$	50 9084 34 7992 34 6456	9091 8274	0206 0053	- 23 · 84 - 5 · 11

e HERCULIS 2455.

1909. March 31. G. M. T. 20^h 39^m Observed by J. B. CANNON.

Radial velocity -30.0

Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.
2 2 ¹ 2 ²	58 8294 58 8022 50 9229	7917	0265	+33.80	$1 \\ 2^{\frac{1}{3}}$	$50^{\circ}9111$ 34 7789 34 6522	· 9091 · 8005	· 0206 · 0216	+23.84 -20.90

٠

Weighted mean.									+15.12
Va									+14.93
Vd									+ '06
Curvature.					-		3	0	

OBSERVING RECORD AND DETAILED MEASURES OF 1 BOÖTIS.

P. – PLASKETT. P¹. – PARKER. H. – HARPER. C. – CANNON. T. – TRIBBLE.

RECORD OF SPECTROGRAMS.

Star.	No. of Negative.	+	Plate. Camera		Date.		Middle of Exposure. G. M. T.	on.		Hour Angle at end.	TEMPERATURE Room. Prisn			Box.	idth.	Seeing.	er.
	No. of	Camer					Middle	Duration.			Beg.	End.	Beg. End.		Slit Width		Observer.
					1906.		h. n	n. m. m.		h. m.	Fahre	nheit.	Centi grade.				
12	308 313 318c 326	**	(Seed " "			25 27 29 4	$ 14 3 \\ 14 2 $		2 2	15W. 10W.	$\begin{array}{c} 65 & 0 \\ 75 & 6 \\ 77 & 4 \\ 62 & 5 \end{array}$	74.0	22 7 27.1 27.0 21.3	$22 8 \\ 27.0 \\ 27.0 \\ 27.0 \\ 21.4$	001	Fair to	P P
	$333 \\ 366 \\ 372$				Aug.	6 6 8	14 - 0	$\begin{array}{ccc} 0 & 70 \\ 5 & 70 \\ 5 & 75 \end{array}$	1.4	45W.	$71.5 \\ 78.0 \\ 80.8 $	74.0	25 3 28 8 29 5	25 · 4 28 · 8 29 · 3	·001	good Fair Good Fair	P
	657 670 691 731 739 752				Apr.	8 20 3 19 26 7	18 3 18 0 18 3 17 3	5 30 2 45 2 35 5 10 0 30 0 20		07 W.	$26^{+}5$ $28^{+}6$ $44^{+}0$ $34^{+}8$ $42^{+}0$ $50^{+}5$	28.3 40.2 34.5 40.4 50.0	$ \begin{array}{r} 1 & 3 \\ 2 & 8 \\ 9 & 8 \\ 10 & 4 \\ 9 & 0 \\ 16 & 1 \\ \end{array} $	$ \frac{2.9}{10.1} 10.4 $	-0013 -001 -0013	Fair. Good Poor Clouds. Fair	
	760	ш				14	17 5	5 34	2	05W.	Centi 11 7	grade. 11.7	15.0	15.0		Very poor	н
	$\begin{array}{c} 764 \\ 769 \\ 774 \\ 779 \\ 793 \\ 797 \\ 812 \\ 868 \\ 891 \\ 918 \\ 950 \end{array}$	" "L " "			June July	$20 \\ 22 \\ 23 \\ 24 \\ 29 \\ 31 \\ 10 \\ 21 \\ 27 \\ 8 \\ 18 $	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		CALCINE OF 12 12	20W. 37 E. 20W. 30W. 45W. 48W. 40W. 35W. 30W.		$ \begin{array}{r} 10.5 \\ 15.0 \\ 12.0 \\ 8.0 \\ 15.2 \\ 15.6 \\ 24.6 \\ 22.0 \\ 21.1 \\ \end{array} $	$\begin{array}{r} 9 \cdot 2 \\ 13 \cdot 2 \\ 17 \cdot 3 \\ 16 \cdot 5 \\ 19 \cdot 0 \\ 28 \cdot 9 \\ 24 \cdot 5 \\ 28 \cdot 5 \end{array}$	$13 \ 2 \\ 17 \ 3 \\ 16 \ 4 \\ 14 \ 5 \\ 19 \ 0 \\ 18 \ 0 \\ 28 \ 9$	0012 0015 001 001 001 0009 001 0012 0012 0012	Unst'dy Cloudy Fair. Good. Cloudy Good. Hazy Fair Very hazy.	HPHPPPPPHP T
	972 990	пін	12		Aug.	$\frac{1}{7}$	13 3 13 5		10.41		$22 \cdot 2 \\ 23 \cdot 1$	$21.0 \\ 22.0$	25 · 2 24 · 1	$25^{+}2_{-}24^{+}1_{-}24^{+}1_{-}$	001	Hazy Poor	H P
	1231 1294 1307 1332 1357 1446 1513 1553 1557 1621 1663 1710 1792 1867				Feb, Mar. May June 2 July Aug. Sept.	14 27 29 17 24 30 4 25 23 22 6 15 19 7		0 26 2 50 4 62 0 40 6 47 2 40 3 55 8 64 0 50 0 80 1 102 8 60 7 65	1 1 1 1 2 1 1 2 2 1 1 1 2 2 3 4 4 4	52E. 07E. 45W. 20E. 50W. 40W. 50W. 45W. 25W. 25W. 11W. 47W.	$-20 \ 0$ $-25 \cdot 3$ $-17 \cdot 5$	7.0 20.5 20.7 19.6 24.8 18.0	-15.3 -13.7 -10.5	$-15 \cdot 3$ $-13 \cdot 7$ $-10 \cdot 5$ $-18 \cdot 6$ $6 \cdot 0$ $13 \cdot 3$ $25 \cdot 4$ $25 \cdot 6$ $23 \cdot 8$ $26 \cdot 3$ $21 \cdot 6$	0013 0013 0015 0012 0017 0016 0015 0015 0015 0015 0018	Hazy. Good. Unst'dy Good. Tair. Good. Cloudy Good. Fair.	HHPPHHPPPPCHP PPPCHP
	2115 2209 2283 2396	1	8 2 2 8 2 8		1909. Jan. Feb. Mar.	7 : 30 : 17 :	$ \frac{18}{20} \frac{3}{3} $	3 60 7 45 0 62 0 60	3	20E. 00	$-\frac{8.3}{-12.0}$	20.5 8.5 12.0 3.3	- 2 8 - 1.3	-2.9	-0016 -0015	Fair Unst'dy Good Fair	P P C P

η BOÖT1S 308.

Observed by J. S. PLASKETT, Measured by J. N. TRIBBLE.

1906. June 25. G. M. T. 15^h 55^m

Mea of Settin	Wave	Corrected Wave Length.	Normal Wave Length.	Displacement in Revolutions.	Velocity.	Wt.	Mean of Settings.	Computed Wave Length.	Corrected Wave Length.	Normal Wave Length.	Displacement in Revolutions.	Velocity.
$\begin{array}{c} 3 & 65 \cdot 14 \\ 2 & 62 \cdot 35 \\ 1 & 60 \cdot 75 \\ 1 & 60 \cdot 05 \\ 2 & 57 \cdot 51 \\ 1 & 54 \cdot 96 \\ 1 & 54 \cdot 29 \\ 1 & 55 \cdot 8 \cdot 88 \\ 1 & 55 \cdot 83 - 88 \\ 1 & 55 \cdot 83 \\ 1 & 55 \cdot 8$	$\begin{array}{rrrr} 46 & 4550 \cdot 101 \\ 90 & 4531 \cdot 441 \\ 05 & 4529 \cdot 142 \\ 75 & 4523 \cdot 302 \\ 79 & 4494 \cdot 721 \\ 06 & 4466 \cdot 816 \\ 71 & 4459 \cdot 723 \\ 35 & 4459 \cdot 723 \\ 35 & 4455 \cdot 320 \\ 24 & 4455 \cdot 320 \\ 24 & 4427 \cdot 927 \end{array}$	$\begin{array}{c} 165 \\ 473 \\ 171 \\ 318 \\ 651 \\ 240 \\ 855 \\ 199 \end{array}$	766 201 807 055 304 962 420 951	309 272 364 263 347 347 278 435 320	$\begin{array}{c} +26 & 28 \\ 17 & 99 \\ 24 & 10 \\ 17 & 43 \\ \hline \\ 23 & 32 \\ \hline \\ 18 & 71 \\ 29 & 45 \\ 21 & 78 \\ \end{array}$	10-0-0 11111 10-00 10-0 112 2 00 112	$\begin{array}{r} 46 & 0370 \\ 45 \cdot 4280 \\ 41 \cdot 8841 \\ 39 \cdot 8944 \\ 39 \cdot 7049 \\ 39 \cdot 4547 \\ 39 \cdot 4409 \\ 37 \cdot 6639 \\ 33 \cdot 1023 \\ 29 \cdot 7582 \\ 31 \cdot 9013 \\ 22 \cdot 9884 \end{array}$	$\begin{array}{r} 4376\cdot165\\ 4370\cdot332\\ 4387\cdot216\\ 4319\cdot219\\ 4317\cdot527\\ 4315\cdot298\\ 4315\cdot620\\ 4294\cdot322\\ 4260\cdot796\\ 4233629\\ 4250\cdot924\\ 4450\cdot924\\ 4181\cdot569\end{array}$	276 191 503 600 820 685 972	856 817 068 178 503 462 643	420 374 455 422 317 223 329	$30 \ 61$ $38 \ 64$ $30 \ 21$ $29 \ 33$ $22 \ 30$ $15 \ 79$ $+ 23 \ 21$

Weighted mea													
V.a													
Va													
Curro	÷	÷.											

Radial velocity

Observed by J. S. PLASKETT. Measured by W. E. HAEPER.

» BOÖTIS 313.

1906. June 27. G. M. T. 14^h 35^m

Ň

Displacement in Revolutions Displacement in Revolution ormal Way Length. Normal Wa Length. Computed Wave Computed Wave Jorrected V Length. Mean Mean orrected ength. Velocity. of Velocity Length. Length. Settings $\begin{array}{c} 58 & 7715 \\ 57 \cdot 7.472 \\ 56 \cdot 7.110 \end{array}$ 70.0228 70.0646 4549.704 $4425 \cdot 974 \\ 4415 \cdot 579$ 374 982 608 25'314550.199 7662 1 2 3 8 1 68:8922 4536 420 408 965 443 4405.198 68-4773 4531 556 $56^{\circ}6837$ $55^{\circ}7498$ $54^{\circ}5449$ 38 68-3445 4530 057 4395 689 $27 96 \\ 17 07$ 68.2790 4529 300 4383 928 4383 650 4523 337 345 32.38 356 500 .7616 490 4370.320 31.30 4494 746 4368 285 840 434 490 4352 272 4325 902 366 21:08 :006 4476 631 63 5802 420 48:3264 63 - 5399 4476.193 1321 348 992 26.05 63-2805 4473 381 $28 \cdot 10$ 25.46 62.6605 4466 698 46:3197 46:3442 31 77 4435 639 4308 296 023 4427 719 46.1418

Weighted	l r	n	в	1	n	
	a					
	ďd					

+25.87

24:87

```
η BOÖTIS 318c.
```

Observed by J. S. PLASKETT. Measured by J. N. TRIBBLE.

1906. June 29. G. M. T. 14^b 21^m

	Mean of ettings.	Computed Wave Length.	Corrected Wave Length.	Normal Wave Length.	Displacement in Revolutions.	Velocity.	Wt.	Mean of Settings.	Computed Wave Length.	Corrected Wave Length.	Normal Wave Length.	Displacement in Revolutions.	Velocity.
2^{-} 62 2^{-} 62 1^{-} 60 1^{-} 60 1^{-} 57 1^{-} 54 1^{-} 57 1^{-} 54 1^{-} 57 1^{-} 59 1^{-} 59 1^{-	5 1913 2 3803 2 3823 2 3321 0 7998 0 5480 0 0766 7 5359 4 2713 8 9012 1 5610 0 0623 0 0689 9 0242 6 8536	$\begin{array}{c} 4584 & 018\\ 4550 \cdot 121\\ 4549 \cdot 552\\ 4531 \cdot 584\\ 4528 \cdot 712\\ 4528 \cdot 712\\ 4523 \cdot 289\\ 4459 \cdot 185\\ 4459 \cdot 185\\ 4455 \cdot 264\\ 4430 \cdot 869\\ 4415 \cdot 604\\ 4415 \cdot 604\\ 4415 \cdot 084\\ 4405 \cdot 227\\ 4383 \cdot 917\\ \end{array}$	205 664 377 384 985 709 331 001	766 202 855 962 678 293 951 720	439 462 522 307 416 380 281	$+28^{\circ}93$ 30^{\circ}59 34^{\circ}61 28^{\circ}40 20^{\circ}78 28^{\circ}25 25^{\circ}87 20^{\circ}02	$\frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{3}{1} \frac{1}{1} \frac{3}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{2} \frac{1}{1} \frac{1}{1} \frac{1}{2} \frac{1}{1} \frac{1}$		$\begin{array}{c} 4383\cdot 596\\ 4371\cdot 738\\ 4370\cdot 111\\ 4368\cdot 238\\ 4340\cdot 901\\ 4315\cdot 255\\ 4308\cdot 334\\ 4224\cdot 299\\ 4283\cdot 122\\ 4280\cdot 643\\ 4227\cdot 475\\ 4198\cdot 823\\ 4181\cdot 919\\ \end{array}$	806 177 302 941 390 106 463 819	312 856 840 634 023 721 010 403	494 321 462 307 367 385 453	$29 \cdot 78$ $22 \ 03$ $31 \cdot 84$ $21 \cdot 20$ $25 \cdot 53$ $26 \cdot 93$ $32 \cdot 12$ $+ 28 \cdot 78$

eighted											
Va									-		25.31
V d Cur											- 14
Our	140	are.								_	- 43
Th		1.0									

Radial velocity

.... +

+ 27.55

1.8

η BOÖTIS 326.

W

1906. July 4. G. M. T. 14^h 50^m Observed by J. S. PLASKETT. Measured by W. E. HARPER.

Mean of Settings.	Computed Wave Length.	Corrected Wave Length.	Normal Wave Length.	Displacement in Revolutions.	Velocity.	1 Wt.	Mean of Settings.	Computed Wave Length.	Corrected Wave Length.	Normal Wave Length.	Displacement in Revolutions.	Velocity.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{r} 4321 \cdot 280 \\ 4584 \cdot 067 \\ 4572 \cdot 552 \\ 4550 \cdot 127 \\ 1536 \cdot 325 \\ 4529 \cdot 186 \\ 4528 \cdot 807 \\ 4523 \cdot 173 \\ 4501 \cdot 798 \\ 4494 \cdot 706 \\ 1476 \cdot 593 \\ 4476 \cdot 195 \\ 4477 \cdot 387 \\ 4476 \cdot 658 \\ 4476 \cdot 698 \\ 4466 \cdot 982 \\ 4465 \cdot 118 \\ \end{array}$	292 528 126 325 187 165 786 584 407 061 158	992 156 766 965 807 855 448 214 957 771 771	300 372 360 380 380 310 338 370 450 290 446	$\begin{array}{c} +20^{-}97\\ 24^{-}32\\ 23^{-}68\\ 23^{-}79\\ 25^{-}15\\ 20^{-}55\\ 22^{-}47\\ 24^{-}75\\ 30^{+}15\\ 19^{-}45\\ 29^{-}92\end{array}$	$\begin{smallmatrix} 1 & 2 & 1 & 2 & 2 & 2 & 3 \\ 2 & 2 & 2 & 2 & 3 & 2 & 2 & 1 & 2 & 3 & 3 & 3 & 3 \\ 3 & 2 & 3 & 2 & 2 & 1 & 2 & 3 & 3 & 3 & 3 & 3 & 3 \\ \end{bmatrix}$	$\begin{array}{c} 62 & 1243\\ 61 & 7085\\ 61 & 3025\\ 59 & 0672\\ 57 & 8787\\ 56 & 8425\\ 56 & 8102\\ 55 & 8700\\ 55 & 8700\\ 55 & 8700\\ 55 & 8700\\ 51 & 8465\\ 53 & 0457\\ 51 & 3477\\ 50 & 1222\\ 48 & 4705\\ 47 & 3080\\ 46 & 4662 \end{array}$	$\begin{array}{c} 4459\ 636\\ 4455\ 296\\ 4450\ 975\\ 4427\ 735\\ 4415\ 645\\ 249\\ 4395\ 702\\ 4384\ 041\\ 4383\ 688\\ 273\\ 4384\ 041\\ 4383\ 688\\ 273\\ 4371\ 721\\ 4388\ 273\\ 4325\ 2284\\ 4340\ 944\\ 4325\ 922\\ 84315\ 523\\ \end{array}$	$\begin{array}{c} 724\\ 300\\ 097\\ 743\\ 638\\ 251\\ 710\\ 060\\ 752\\ 300\\ 308\\ 960\\ 523\\ \end{array}$	304 962 654 420 293 951 286 720 312 840 006 634 1.78	420 338 443 323 345 300 424 340 460 302 326 345	$\begin{array}{c} 28\cdot22\\ 22\cdot74\\ 29\cdot81\\ 23\cdot82\\ 23\cdot42\\ 20\cdot43\\ 28\cdot91\\ 23\cdot25\\ 80\cdot18\\ 31\cdot55\\ 20\cdot80\\ 22\cdot49\\ +23\cdot94\\ \end{array}$

Va																25.68
Vd															-	: 21

Curvature		 164
 All all standard lands 		1.7

η BOÖTIS 333.

1906. July 6. G. M. T. 15^h 0^m

Observed by J. S. PLASKETT, Measured by J. N. TRIBBLE.

Mean of Settings.	Computed Wave Length.	Corrected Wave Length.	Normal Wave Length.	Displacement in Revolutions.	Velocity.	Wt.	Mean of Settings.	Computed Wave Length.	Corrected Wave Length.	Normal Wave Length.	Displacement in Revolutions	Velocity.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{r} 4584 & 687 \\ 4572 & 978 \\ 4550 & 733 \\ 4550 & 733 \\ 4550 & 733 \\ 4529 & 354 \\ 4432 & 258 \\ 4432 & 9354 \\ 4495 & 363 \\ 4455 & 966 \\ 4451 & 659 \\ 4455 & 966 \\ 4451 & 659$	370 149 690 366 390 079 889 893 135 702	156 766 202 972 977 962 597 678 420 805 293	214 383 488 228 389 428 482 210 473 330 409	$\begin{array}{c} + 14 \\ 25 \\ 25 \\ 23 \\ 32 \\ 27 \\ 15 \\ 31 \\ 26 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 14 \\ 21 \\ 32 \\ 02 \\ 22 \\ 37 \\ 27 \\ 76 \end{array}$	2211222342212212212212221222	$\begin{array}{c} 49 \cdot 0105 \\ 49 \cdot 9783 \\ 46 \cdot 8362 \\ 46 \cdot 0199 \\ 45 \cdot 2945 \\ 39 \cdot 42 \cdot 2765 \\ 39 \cdot 4279 \\ 38 \cdot 6559 \\ 37 \cdot 6252 \\ 37 \cdot 0706 \\ 23 \cdot 0706 \\ 23 \cdot 0706 \\ 28 \cdot 9090 \\ 24 \cdot 3115 \\ 22 \cdot 9368 \end{array}$	$\begin{array}{c} 4405\ 903\\ 4415\ 602\\ 4384\ 534\\ 4376\ 656\\ 4384\ 566\\ 4384\ 566\\ 4384\ 569\\ 4315\ 792\\ 4308\ 909\\ 4219\ 954\\ 4219\ 954\\ 4219\ 954\\ 4219\ 954\\ 4219\ 155\\ 4261\ 145\\ 4261\ 145\\ 4261\ 419\\ 4227\ 803\\ 4182\ 232\\ \end{array}$	327 958 949 425 620 923 371 103	951 720 840 634 023 273 523 910 678	376 238 458 315 402 347 400 361 425	25.60 16.28 31.43 21.66 29.97 24.22 28.14 25.59 +30.37

eighted	mear	ι							Э		Ł	ŧ	Ю.				
~	Va .														25 7	6	
	V_d													-	- 15	21	
	Curv	ati	are												- 12	28	
Radia	l velo	cit	v.,					1		1					1	7	

Observed by W. E. HARPER. Measured by J. N. TRIBBLE.

η BOÖTIS 366.

1906. Aug. 6. G. M. T. 14^h 5^m

Wt. ()	Mean of Settings.	Computed Wave Length.	Corrected Wave Length.	Normal Wave Length.	Displacement in Revolutions.	Velocity.	Wt.	Mean of Settings.	Computed Wave Length.	Corrected Wave Length.	Normal Wave Longth.	Displacement in Revolutions.	Velocity.
212122111122111121212	$\begin{array}{c} 65 \cdot 2314\\ 64 \cdot 2565\\ 62 \cdot 4060\\ 62 \cdot 3706\\ 60 \cdot 8339\\ 60 \cdot 5846\\ 60 \cdot 1077\\ 57 \cdot 5747\\ 53 \cdot 9251\\ 53 \cdot 5350\\ 54 \cdot 3107\\ 51 \cdot 5845\\ 50 \cdot 0855\\ 50 \cdot 0855\\ 50 \cdot 0371\\ 49 \cdot 0520 \end{array}$	$\begin{array}{c} 4584\cdot018\\ 4572\cdot121\\ 4549\cdot971\\ 4549\cdot552\\ 4531\cdot583\\ 4523\cdot201\\ 4494\cdot670\\ 4455\cdot161\\ 4451\cdot047\\ 4459\cdot249\\ 4459\cdot249\\ 4450\cdot779\\ 4415\cdot538\\ 4415\cdot051\\ 4405\cdot195\end{array}$.039 .495 .307 .247 .131 .859 .602 .251	766 202 855 962 507 678 293 951	273 293 452 285 534 181 309 300	$+18^{\circ}00$ $19^{\circ}38$ $29^{\circ}97$ $20^{\circ}18$ $35^{\circ}98$ $12^{\circ}25$ $21^{\circ}09$ $20^{\circ}42$	$\frac{1010}{11111111112221000}$	$\begin{array}{c} 46^{\circ}8746\\ 46^{\circ}8483\\ 45^{\circ}6093\\ 45^{\circ}2419\\ 16^{\circ}0709\\ 42^{\circ}3186\\ 39^{\circ}4696\\ 38^{\circ}6818\\ 37^{\circ}0702\\ 33^{\circ}0764\\ 28^{\circ}9385\\ 25^{\circ}2344\\ 24^{\circ}3315\\ 22^{\circ}9657\\ \end{array}$	$\begin{array}{r} 4383\cdot 831\\ 4383\cdot 577\\ 4363\cdot 182\\ 4371\cdot 677\\ 4368\cdot 182\\ 4376\cdot 090\\ 4340\cdot 924\\ 4315\cdot 255\\ 4308\cdot 308\\ 4204\cdot 292\\ 4260\cdot 658\\ 4224\cdot 292\\ 4260\cdot 658\\ 4227\cdot 371\\ 4198\cdot 838\\ 4192\cdot 055\\ 4181\cdot 919\end{array}$	871 707 210 936 296 349 830 047	720 312 840 634 023 010 403 678	151 395 370 302 273 339 427 369	$10^{\circ} 42$ $27^{\circ} 11$ $25^{\circ} 38$ $20^{\circ} 85$ $18^{\circ} 99$ $24^{\circ} 03$ $28^{\circ} 48$ $+ 26^{\circ} 37$

Veighted	mean		 	+23.28	
	Va				-23.23
	Vd				- '21
	Curvature	£			- '28

Radial velocity - 0'4

» BOOTIS 372

1906, Aug. 8,

Observed by W. E. HARPEN.

	G. M. 1	C. 146 15-							Measure	∃ by∫	n i dan i	LLADIT	
W1	Mean of Settings.	Computed Wave Length.	Corrected Wave Longth.	Normal Wave Length.	Displacement in Revolutions.	Velocity.	Wt.	Mean of Settings.	Computed Wave Length.	Corrected Wave Length.	Normal Wave Length.	Displacement in Revolutions.	Velocity.
10.10 H 10.10 H 10 H 10.10 St 10.10 10.10 10.10 20 St 10.10 10	$\begin{array}{c} 72 & 9730\\ 71 & 4967\\ 71 & 45687\\ 70 & 6887\\ 70 & 1445\\ 68 & 3016\\ 68 & 3016\\ 68 & 3046\\ 68 & 3462\\ 65 & 3470\\ 64 & 1450\\ 65 & 3170\\ 64 & 1450\\ 63 & 6316\\ 63 & 6375\\ 62 & 7845\\ 63 & 6375\\ 62 & 7557\\ 62 & 0645\\ 61 & 2637\\ 61 $	$\begin{array}{c} (584\ 279\ 4566\ 264\ 4504\ 535\ 4556\ 559\ 4556\ 559\ 4556\ 559\ 4550\ 673\ 4558\ 573\ 4529\ 077\ 4528\ 881\ 4529\ 077\ 4528\ 881\ 4529\ 077\ 4528\ 881\ 4529\ 077\ 459\ 4487\ 886\ 4476\ 166\ 693\ 4486\ 659\ 4456\ 659\ 4456\ 659\ 4456\ 659\ 4456\ 659\ 4456\ 659\ 4456\ 659\ 4456\ 659\ 4456\ 659\ 4456\ 659\ 4456\ 659\ 4456\ 659\ 659\ 659\ 659\ 659\ 659\ 659\ 6$	114 539 083 233 017 505 177 743 806 558 983 588 983 588 9913 406	726 202 766 963 807 295 855 431 591 300 771 304 596 184	388 337 317 268 210 210 312 312 215 258 215 258 212 258 212 284 317 222	$\begin{array}{c} + 25 & 33 \\ 22 & 14 \\ 90 & 85 \\ 17 & 71 \\ 13 & 90 \\ 13 & 95 \\ 21 & 20 & 74 \\ 14 & 20 & 74 \\ 14 & 38 \\ 17 & 28 \\ 14 & 22 \\ 19 & 06 \\ 21 & 33 \\ 15 & 00 \\ \end{array}$	23333221111122223222322221	$\begin{array}{c} 59 \cdot 0301\\ 57 \cdot 8275\\ 56 \cdot 7962\\ 50 \cdot 7738\\ 55 \cdot 8252\\ 54 \cdot 6369\\ 33 \cdot 3464\\ 33 \cdot 1912\\ 52 \cdot 9897\\ 34 \cdot 145\\ 45 \cdot 145\\ 47 \cdot 1450\\ 48 \cdot 4145\\ 48 \cdot 4145\\ 46 \cdot 3963\\ 44 \cdot 8470\\ 44 \cdot 8216\\ 44 \cdot 8216\\ 44 \cdot 8470\\ 44 \cdot 8$	$\begin{array}{c} 4427\ 683\\ 4415\ 472\\ 4405\ 149\\ 4385\ 963\\ 4385\ 963\\ 4385\ 963\\ 4371\ 570\\ 985\\ 9963\\ 4359\ 963\\ 4359\ 963\\ 4359\ 963\\ 4359\ 963\\ 4359\ 963\\ 4359\ 963\\ 4359\ 963\\ 4359\ 963\\ 4359\ 1332\\ 1314\ 668\\ 4322\ 302\\ 4294\ 409\\ 4284\ 580\\ 4275\ 380\\ 4275\ 380\\ \end{array}$	683 456 149 567 995 210 979 050 125 210 979 180 180 270 552 500 280	$\begin{array}{r} 420\\ 244\\ 951\\ 286\\ 720\\ 312\\ 856\\ 840\\ 784\\ 732\\ 006\\ 353\\ 939\\ 273\\ 134\\ 922\\ \end{array}$	$\begin{array}{c} 263\\ 212\\ 198\\ 291\\ 275\\ 280\\ 260\\ 370\\ 195\\ 318\\ 174\\ 307\\ 331\\ 279\\ 306\\ 358\\ \end{array}$	$\begin{array}{c} 17 & 80 \\ 14 & 43 \\ 13 & 48 \\ 19 & 84 \\ 18 & 81 \\ 19 & 89 \\ 18 & 45 \\ 25 & 38 \\ 13 & 41 \\ 21 & 87 \\ 11 & 98 \\ 22 & 93 \\ 22 & 93 \\ 19 & 50 \\ 25 & 58 \\ -25 & 69 \end{array}$

Weighted mean	+18.89	
Va		- 22 83
Vd		- 128
Curvature		
70 11 1 1 1		

Radial velocity.... - 4 7

η BOÖTIS 657.

Observed by J. S. PLASKETT. Measured by W. E. HARPER.

1907. March 8.
 G. M. T. 18⁶ 45^m

Mean of Settings, Leng	uted par		Velocity.	Wt.	Mean of Settings.	Computed Wave Length.	Corrected Wave Length.	Normal Wave Length.	Displacement in Revolutions.	Velocity.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 19 \cdot 86 \\ 14 \cdot 58 \\ 23 \cdot 86 \\ \hline 16 \cdot 57 \\ 15 \cdot 25 \\ \hline 18 \cdot 67 \\ \hline 14 \cdot 07 \\ 21 \cdot 54 \\ 22 \cdot 88 \\ \end{array}$	1 3 3 3 2 2 2 2 2 2 2 2 3 2 3 2 3 3	$\begin{array}{c} 58^{\circ}.8587\\ 57^{\circ}.8397\\ 56^{\circ}.8292\\ 55^{\circ}.7987\\ 55^{\circ}.8360\\ 54^{\circ}.6789\\ 54^{\circ}.6412\\ 53^{\circ}.3717\\ 53^{\circ}.2120\\ 53^{\circ}.2120\\ 53^{\circ}.2120\\ 53^{\circ}.2120\\ 53^{\circ}.2120\\ 53^{\circ}.2120\\ 44^{\circ}.9497\\ 46^{\circ}.4945\\ 46^{\circ}.4645\end{array}$	$\begin{array}{c} 4425{}^{\circ}560\\ 4415{}^{\circ}172\\ 4405{}^{\circ}001\\ 4404{}^{\circ}697\\ 4385{}^{\circ}127\\ 4383{}^{\circ}766\\ 4333{}^{\circ}409\\ 4371{}^{\circ}145\\ 4369{}^{\circ}615\\ 4351{}^{\circ}603\\ 4340{}^{\circ}245\\ 4320{}^{\circ}558\\ 4307{}^{\circ}596\\ 4307{}^{\circ}596\end{array}$	385 033 601 056 752 636 786 786 364 152 793	805 293 951 286 720 312 856 006 634 992 023	420 260 350 23J 350 160 220 220 270 240 230	$\begin{array}{c} 28&43\\ 17&65\\ 23&83\\ 16&00\\ \hline \\ 23&94\\ 10&96\\ 15&07\\ 15&14\\ 18&63\\ \hline \\ 16&63\\ -15&98\\ \end{array}$

Weighted mean. 1375Va +1375Vd +09Curvature. 09-18.92 - '50 - 5.6

n BOÖTIS 670.

1907. March 20 G. M. T. 18^h 32^m

Observed by J. S. PLASKETT. Measured by W. E. HARPER.

Wt.	Mean of Settings.	Computed Wave Length.	Corrected Wave Length.	Normal Wave Length.	Displacement in Revolutions.	Velocity.	Wt.	Mean of Settings.	Computed Wave Length.	Corrected Wave Length.	Normal Wave Length.	Displacement in Revolutions	Velocity.
2213212111111112	$\begin{array}{c} 72.9506\\ 71.9460\\ 70.9986\\ 68.9205\\ 68.9205\\ 68.3066\\ 67.7847\\ 65.3175\\ 65.2786\\ 62.7508\\ 62.7508\\ 62.7508\\ 62.538\\ 61.6272\\ 53.9902\\ 57.7921 \end{array}$	$\begin{array}{c} 4583\cdot964\\ 4571\cdot680\\ 4571\cdot680\\ 4549\cdot525\\ 4535\cdot721\\ 4538\cdot772\\ 4528\cdot772\\ 4528\cdot772\\ 4528\cdot600\\ 4522\cdot500\\ 4494\cdot740\\ 4491\cdot308\\ 4491\cdot308\\ 4461\cdot583\\ 4461\cdot583\\ 4461\cdot583\\ 4451\cdot717\\ 4477\cdot252\\ 4415\cdot071\\ \end{array}$	762 436 775 062 647 635 320 551 592 725 260 083	112 766 965 202 807 855 550 771 772 962 420 293	$\begin{array}{r} 350\\ 330\\ 190\\ 140\\ 220\\ 230\\ 220\\ 180\\ 237\\ 160\\ 210\\ \end{array}$	$\begin{array}{r} -22\ 02\\ 21\ 74\\ 12\ 58\\ 9\ 28\\ 10\ 61\\ 14\ 60\\ 15\ 34\\ 14\ 74\\ 12\ 08\\ 15\ 93\\ 10\ 83\\ 14\ 26\\ \end{array}$	3 3 7 7 7 7 1 4 7 4 3 7 7 8 3 3 ⁴⁰¹ 7 2	$\begin{array}{c} 56 \cdot 7806\\ 56 \cdot 7601\\ 55 \cdot 7993\\ 54 \cdot 6290\\ 54 \cdot 5986\\ 53 \cdot 1621\\ 51 \cdot 2715\\ 50 \cdot 0474\\ 48 \cdot 4195\\ 47 \cdot 8720\\ 46 \cdot 4822\\ 46 \cdot 4205\\ 48 \cdot 2006\\ 48 \cdot 2006\\ 40 \cdot 8847\\ 40 \cdot 8547\\ \end{array}$	$\begin{array}{r} +404 \cdot 929 \\ +404 \cdot 724 \\ +385 \cdot 209 \\ +383 \cdot 548 \\ +383 \cdot 548 \\ +389 \cdot 660 \\ +331 \cdot 839 \\ +340 \cdot 514 \\ +325 \cdot 970 \\ +320 \cdot 790 \\ +320 \cdot 790 \\ +308 \cdot 150 \\ +307 \cdot 966 \\ +4271 \cdot 650 \\ +4260 \cdot 455 \\ \end{array}$	721 520 626 796 474 629 732 843 570 370	951 720 856 006 634 939 9992 023 865 640	230 200 230 216 150 280 260 180 295 270	$\begin{array}{c} 15 \ 68 \\ 13 \ 68 \\ 15 \ 78 \\ 14 \ 86 \\ 11 \ 04 \\ 11 \ 04 \\ 19 \ 38 \\ 18 \ 00 \\ 20 \ 56 \\ 18 \ 87 \\ \end{array}$

- 15.25

- - '50

```
7 BOÖT1S 691.
```

Observed by J. S. PLASKETT. Measured by W. E. HARPER.

Mean of Settings.	Computed Wave Length.	Corrected Wave Length.	Normal Wave Length.	Displacement in Revolutions.	Velocity.	Wt.	'Mean of Settings.	Computed Wave Length.	Corrected Wave Length.	Normal Wave Longth.	Displacement in Revolutions.	Velocity.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 1584 & 046 \\ 4571 & 717 \\ 4536 & 013 \\ 4549 & 614 \\ 4549 & 612 \\ 4539 & 612 \\ 4538 & 088 \\ 4528 & 809 \\ 4528 & 809 \\ 4528 & 809 \\ 4522 & 765 \\ 4494 & 834 \\ 4472 & 793 \\ 4494 & 834 \\ 4472 & 793 \\ 4449 & 737 \\ 4459 & 507 \\ 4459 & 507 \\ 4427 & 357 \\ 4425 & 639 \\ 4425 & 639 \\ 4415 & 163 \end{array}$	730 022 556 695 072 735 270 737 612 004 712 467 467 520 605 113	900 202 766 965 202 855 550 957 772 304 965 597 420 805 293	$\begin{array}{c} 170\\ 180\\ 210\\ 270\\ 130\\ 120\\ 280\\ 220\\ 160\\ 300\\ 250\\ 130\\ 100\\ 200\\ 180\\ \end{array}$	$\begin{array}{c} -11&13\\11&80\\13&84\\17&87\\8&62\\7&96\\18&67\\14&76\\10&74\\20&16\\16&80\\8&76\\6&77\\13&54\\12&22\end{array}$	3333331112123123332231111	$\begin{array}{c} 566 & 7743\\ 567 & 7572\\ 557 & 7889\\ 547 & 6189\\ 548 & 533359\\ 533 & 1540\\ 533 & 1540\\ 511 & 2648\\ 500 & 52100\\ 511 & 2648\\ 477 & 8566\\ 477 & 8566\\ 477 & 8566\\ 477 & 8260\\ 461 & 4001\\ 401 & 8426\\ 408 & 220\\ 377 & 8036\\ 377 & 0112\\ 366 & 7472 \end{array}$	$\begin{array}{c} 4404\cdot 984\\ 4404\cdot 812\\ 4404\cdot 812\\ 4436\cdot 232\\ 44383\cdot 808\\ 44383\cdot 504\\ 4383\cdot 504\\ 4384\cdot 732\\ 4384\cdot 732\\ 4384\cdot 732\\ 4384\cdot 732\\ 4392\cdot 816\\ 4315\cdot 986\\ 4305\cdot 108\\ 43$	761 176 440 202 666 876 489 792 038 883 883 420 962 676	951 286 720 312 856 006 634 992 178 023 640 112 826	1200 110 2800 1100 1300 1450 140 140 140 2200 1500 150	13 62 7 50 19 83 7 55 13 03 8 96 10 00 13 88 9 73 9 74 15 48 10 62 -10 65

. 50

Radial velocity -10.2

n BOÖTIS 731.

1907. April 19.
 G. M T. 18^h 35^m

Observed by J. S. PLASKETT, Measured by W. E. HARPER.

Mean of Settings.	Computed Wave Length.	Corrected Wave Longth.	Normal Wave Length.	Displacement in Revolutions.	Velocity.	Wt.	Mean of Settings.	Computed Wave Length.	Corrected Wave Length.	Normal Wave Length.	Displacement in Revolutions.	Velocity.
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 4584 & 004 \\ 4571 & 996 \\ 4549 & 777 \\ 4549 & 777 \\ 4535 & 965 \\ 4528 & 888 \\ 4528 & 798 \\ 4473 & 043 \\ 4476 & 825 \\ 4464 & 952 \\ 4464 & 956 \\ 4454 & 916 \\ 4425 & 761 \\ 4415 & 399 \end{array}$	106 776 965 887 007 902 892 755 393	116 776 965 807 957 957 772 963 805 293	010 010 080 050 130 070 050 100	$ \begin{array}{r} - 0.65 \\ + 0.66 \\ 000 \\ + 5.28 \\ + 3.35 \\ + 8.74 \\ - 4.72 \\ - 3.38 \\ + 6.80 \\ \end{array} $	23121122131213	$\begin{array}{c} 56\cdot7843\\ 56\cdot7769\\ 55\cdot8147\\ 54\cdot6220\\ 53\cdot1719\\ 48\cdot4312\\ 48\cdot4336\\ 46\cdot4205\\ 46\cdot4160\\ 40\cdot8494\\ 40\cdot8433\\ \end{array}$	$\begin{array}{c} 4405\ 001\\ 4404\ 927\\ 4385\ 409\\ 4383\ 766\\ 4383\ 757\\ 4389\ 837\\ 4385\ 956\\ 4325\ 956\\ 4308\ 036\\ 4308\ 036\\ 4260\ 595\\ \end{array}$.001 386 720 806 959 033 590	951 286 720 856 939 023 640	050 100 050 020 010 050	+ 3 40 + 6 83 - 3 43 + 1 38 + 0 69 - 3 50

 Weighted mean
 - 1°34

 Va
 - 4°57

 Va
 - 11

 Curvature
 - 50

Radial velocity - 3'8

1907. April 5.
 G. M. T. 18⁶ 02⁶

2 BOÖTIS 739.

Observed by J. S. PLASKETT, Measured by W. E. HARPER.

1907. April 26, G. M. T. 17^h 30^m

Mean of Settings.	Computed Wave Length.	Corrected Wave Length.	Normal Wave Length.	Displacement in Revolutions.	Velocity.	Wc.	Mean of Settings.	Computed Wave Length.	Corrected Wave Length.	Normal Wave Length.	Displacement in Revolutions.	Velocity.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{r} 4549 \cdot 755 \\ 4549 \cdot 604 \\ 4536 \cdot 057 \\ 4031 \cdot 213 \\ 4528 \cdot 736 \\ 4522 \cdot 804 \\ 4501 \cdot 514 \\ 4501 \cdot 514 \\ 4450 \cdot 313 \\ 4494 \cdot 730 \\ 4494 \cdot 730 \\ 4476 \cdot 313 \\ 4476 \cdot 149 \\ 4476 \cdot 149 \\ 4476 \cdot 4476 \\ 729 \\ 4454 \cdot 963 \\ 4450 \cdot 702 \\ 4457 \cdot 425 \end{array}$	796 105 252 845 548 620 334 037 972 707 430	766 965 202 855 508 550 214 957 957 962 597 420	030 040 050 010 040 120 120 080 010 110 010	$\begin{array}{r} + & 1 \cdot 98 \\ + & 2 \cdot 65 \\ + & 3 \cdot 31 \\ - & 0 \cdot 66 \\ - & 2 \cdot 66 \\ + & 4 \cdot 66 \\ + & 8 \cdot 04 \\ + & 5 \cdot 37 \\ + & 0 \cdot 67 \\ + & 7 \cdot 41 \\ + & 0 \cdot 67 \end{array}$	22332122212222213222	$\begin{array}{c} 57\ 7755\\ 56\ 7328\\ 56\ 7360\\ 55\ 7610\\ 54\ 5687\\ 53\ 1335\\ 51\ 2440\\ 50\ 0165\\ 48\ 3885\\ 12440\\ 3885\\ 48\ 3885\\ 46\ 3798\\ 46\ 3798\\ 46\ 3798\\ 40\ 8133\\ 40\ 8102 \end{array}$	$\begin{array}{c} 4415 \ 358 \\ 4404 \ 911 \\ 4404 \ 913 \\ 4395 \ 296 \\ 4383 \ 616 \\ 4383 \ 670 \\ 4393 \ 862 \\ 4340 \ 719 \\ 4325 \ 922 \\ 4321 \ 920 \\ 4325 \ 922 \\ 4321 \ 920 \\ 4398 \ 951 \\ 4388 \ 951 \\ 4388 \ 951 \\ 4388 \ 951 \\ 4388 \ 951 \\ 4388 \ 951 \\ 4388 \ 951 \\ 4388 \ 951 \\ 4388 \ 951 \\ 4388 \ 951 \\ 4388 \ 951 \\ 4388 \ 951 \\ 4388 \ 951 \\ 4388 \ 951 \\ 4388 \ 951 \ 951 \\ 4388 \ 951 \ 951 \\ 4388 \ 951 $	373 961 326 750 926 126 774 969 042 133 610	293 951 286 730 856 006 634 939 992 023 640	080 010 040 070 120 140 030 050 110 031	+ 5.43 + 0.68 + 2.73 + 2.05 + 4.80 + 8.26 + 9.66 + 2.07 + 3.46 + 7.63 - 2.11

Radial velocity.... - 4'5

Observed by W. E. HARPER.

7 BOOTIS 752.

1907. May 7. G. M. T. 14^b 20^m

Mean of Settings.	Computed Wave Length.	Corrected Wave Length.	Normal Wave Length.	Displacement in Revolutions.	Velocity.	Wt.	Mean of Settings.	Computed Wave Length.	Corrected Wave Length.	Normal Wave Length.	Displacement in Revolutions.	Velocity.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 4584 \cdot 071 \\ 4572 \cdot 350 \\ 4579 \cdot 830 \\ 4579 \cdot 830 \\ 4586 \cdot 228 \\ 4533 \cdot 433 \\ 4528 \cdot 720 \\ 45728 \cdot 917 \\ 4523 \cdot 121 \\ 4499 \cdot 672 \\ 4494 \cdot 672 \\ 4494 \cdot 672 \\ 4472 \cdot 994 \\ 4466 \cdot 663 \\ 4455 \cdot 067 \\ \end{array}$	392 866 286 492 987 195 399 750 057 102 132	112 776 965 202 807 855 129 550 957 772 962	280 100 320 290 180 340 270 200 100 330 170	$\begin{array}{c} +18 & 31 \\ 6 & 60 \\ 21 & 18 \\ 19 & 20 \\ 11 & 92 \\ 22 & 54 \\ 17 & 98 \\ 13 & 34 \\ 6 & 70 \\ 22 & 11 \\ 11 & 44 \\ \end{array}$	$1 \\ 1 \\ 3 \\ 3 \\ 3 \\ 2 \\ 2 \\ 2 \\ 2 \\ 1 \\ 1 \\ 3 \\ 1 \\ 3 \\ 2 \\ 2 \\ 2 \\ 1 \\ 1 \\ 3 \\ 2 \\ 2 \\ 2 \\ 2 \\ 1 \\ 1 \\ 3 \\ 1 \\ 3 \\ 2 \\ 2 \\ 2 \\ 2 \\ 1 \\ 1 \\ 3 \\ 1 \\ 3 \\ 2 \\ 2 \\ 2 \\ 2 \\ 1 \\ 1 \\ 3 \\ 1 \\ 3 \\ 2 \\ 2 \\ 2 \\ 2 \\ 1 \\ 1 \\ 3 \\ 1 \\ 3 \\ 2 \\ 2 \\ 2 \\ 2 \\ 1 \\ 1 \\ 3 \\ 1 \\ 3 \\ 2 \\ 2 \\ 2 \\ 2 \\ 1 \\ 1 \\ 3 \\ 1 \\ 3 \\ 2 \\ 2 \\ 2 \\ 2 \\ 1 \\ 1 \\ 3 \\ 1 \\ 3 \\ 2 \\ 2 \\ 2 \\ 1 \\ 1 \\ 3 \\ 1 \\ 3 \\ 2 \\ 2 \\ 2 \\ 2 \\ 1 \\ 1 \\ 3 \\ 1 \\ 3 \\ 2 \\ 2 \\ 2 \\ 2 \\ 1 \\ 1 \\ 3 \\ 1 \\ 3 \\ 2 \\ 2 \\ 2 \\ 2 \\ 1 \\ 1 \\ 3 \\ 1 \\ 3 \\ 2 \\ 2 \\ 2 \\ 2 \\ 1 \\ 1 \\ 3 \\ 1 \\ 3 \\ 2 \\ 2 \\ 2 \\ 2 \\ 1 \\ 1 \\ 3 \\ 2 \\ 2 \\ 2 \\ 2 \\ 1 \\ 1 \\ 3 \\ 2 \\ 2 \\ 2 \\ 2 \\ 1 \\ 1 \\ 3 \\ 2 \\ 2 \\ 2 \\ 2 \\ 1 \\ 1 \\ 3 \\ 2 \\ 2 \\ 2 \\ 2 \\ 1 \\ 1 \\ 3 \\ 2 \\ 2 \\ 2 \\ 2 \\ 1 \\ 1 \\ 3 \\ 2 \\ 2 \\ 2 \\ 2 \\ 1 \\ 1 \\ 3 \\ 2 \\ 2 \\ 2 \\ 2 \\ 1 \\ 1 \\ 3 \\ 2 \\ 2 \\ 2 \\ 2 \\ 1 \\ 3 \\ 2 \\ 2 \\ 2 \\ 1 \\ 3 \\ 2 \\ 2 \\ 2 \\ 2 \\ 1 \\ 3 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 1 \\ 3 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 1 \\ 3 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 1 \\ 3 \\ 2 \\ 2 \\ 2 \\ 2 \\ 1 \\ 3 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 1 \\ 3 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2$	$\begin{array}{c} 61 & 2811 \\ 59 & 0410 \\ 57 & 8548 \\ 56 & 8036 \\ 56 & 8036 \\ 55 & 8036 \\ 54 & 6312 \\ 54 & 6312 \\ 54 & 6312 \\ 51 & 3040 \\ 50 & 0865 \\ 51 & 3040 \\ 50 & 0865 \\ 48 & 4356 \\ 47 & 8955 \\ 46 & 4370 \\ 46 & 4370 \\ 40 & 8503 \end{array}$	$\begin{array}{c} 4450^\circ, 747\\ 4427^\circ, 514\\ 4415^\circ, 473\\ 4404^\circ, 951\\ 4404^\circ, 853\\ 4395^\circ, 3866\\ 4383^\circ, 636\\ 4383^\circ, 636\\ 4370^\circ, 014\\ 4352^\circ, 657\\ 4340^\circ, 815\\ 4352^\circ, 827\\ 4306^\circ, 815\\ 4307^\circ, 917\\ 4308^\circ, 068\\ 4306^\circ, 06$	807 570 533 021 456 720 116 166 934 .122 223	597 420 293 951 286 720 856 634 992 023	210 150 240 070 170 000 260 160 300 130 200	$\begin{array}{c} 14.13\\ _{\ \ 0}015\\ 16.30\\ 4.77\\ 11.62\\ _{\ \ 0}00\\ 17.84\\ 11.00\\ 20.70\\ 9.00\\ +13.88\end{array}$

eie	hte	d r	nea

reighteu	meau	•						12:01	+ 1	13 07
1 a							-			
Vd.			• •						+	.11
Cur	vatur	е.						.20		
							-			
Radial v	eloci	ty.							+	0.7

+13.07- 12.01 + 11

1907. May 14.

n BOÖTIS 760.

Observed by W. E. HARPER.

G. M. 1	C. 176 5500							Measur	ed by)	111. E.	TIM	.F.U.
Mean of Settings.	Computed Wave Length.	Corrected Wave Longth.	Normal Wave Longth.	Displacement in Revolutions.	Velocity.	Wt.	Mean of Sottings.	Computed Wave Length.	Corrected Wave Length.	Normal Wave Length.	Displacement in Revolutions.	Volocity.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 4586 & 7.49 \\ 4572 & 563 \\ 4566 & 168 \\ 4556 & 546 \\ 4550 & 028 \\ 4549 & 767 \\ 4528 & 772 \\ 4525 & 481 \\ 4523 & 072 \end{array}$	402 006 426 906 441 035	112 726 202 766 295 855	290 280 224 140 146 180		112 1 10 113 1 13 1 15 1 13 1 15 1	$\begin{array}{c} 60^{+}3522\\ 60^{+}3978\\ 59^{+}8743\\ 51^{+}9075\\ 48^{+}7471\\ 48^{+}1928\\ 42^{+}9610\\ 38^{-}5042 \end{array}$	$\begin{array}{c} 4476 \cdot 077 \\ 4476 \cdot 358 \\ 4473 \cdot 133 \\ 4425 \cdot 754 \\ 4407 \cdot 805 \\ 4404 \cdot 704 \\ 4371 \cdot 304 \\ 4352 \cdot 659 \end{array}$	438 223 924 995 632	214 957 608 851 312	224 266 316 144 320	$\begin{array}{c} 14 & 03 \\ 17 & 84 \\ 21 & 39 \\ 9 & 80 \\ + & 21 & 95 \end{array}$
						We	ighted me	an		$+15^{-1}$	5	

eighted me	an			$\pm 15^{\circ}25^{\circ}$	
Va					-14.70
Vd					- '14
Curvat	are				- '50

Observed by W. E. HARPER.

Radial velocity..... 0.1

1907. May 20.

Wt.	Mean of Settings.	Computed Wave Length.	Corrected Wave Length.	Normal Wave Length.	Displacement in Revolutions.	Velocity.	Wt	Mean of Settings.	Computed Wave Length.	Corrected Wave Length.	Normal Wave Length.	Displacement in Revolutions.	Velocity.		
$\begin{array}{c} 2 \\ 1 \\ 1 \\ 1 \\ 1 \\ 2 \\ 1 \\ 1 \\ 1 \\ 2 \\ 2$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 4586:\ 673\\ 4586:\ 638\\ 4584:\ 638\\ 4584:\ 638\\ 4584:\ 239\\ 4582:\ 137\\ 4586:\ 532\\ 4554:\ 428\\ 4556:\ 532\\ 4556:\ 532\\ 4556:\ 532\\ 4556:\ 532\\ 4552:\ 637\\ 4522:\ 677\\ 4522:\ 677\\ 4522:\ 677\\ 4522:\ 677\\ 4522:\ 677\\ 4522:\ 677\\ 4522:\ 677\\ 4522:\ 677\\ 452:\ 677\\ 452:\ 677\\ 452:\ 677\\ 452:\ 677\\ 452:\ 677\\ 452:\ 677\\ 452:\ 677\\ 452:\ 677\\ 452:\ 677\\ 452:\ 677\\ 452:\ 677\\ 452:\ 677\\ 452:\ 677\\ 452:\ 677\\ 452:\ 677\\ 452:\ 677\\ 452:\ 677\\ 452:\ 677\\ 453:\$	$\begin{array}{c} 521\\ 208\\ 018\\ 149\\ 472\\ 537\\ 864\\ 046\\ 295\\ 075\\ 155\\ 685\\ 818\\ 994\\ 710\\ 524\\ 297\\ 876\\ 162\\ \end{array}$	$\begin{array}{c} 191\\018\\618\\939\\202\\257\\594\\766\\855\\455\\455\\455\\455\\455\\455\\455\\455\\455$	$\begin{array}{c} 330\\ 190\\ 400\\ 270\\ 280\\ 270\\ 280\\ 270\\ 280\\ 270\\ 300\\ 270\\ 300\\ 230\\ 310\\ 310\\ 310\\ 340\\ 356\\ 390\\ \end{array}$	$\begin{array}{r} + 21\cdot52\\ 12\cdot39\\ 26\cdot08\\ 13\cdot75\\ 17\cdot76\\ 18\cdot42\\ 21\cdot81\\ 17\cdot86\\ 18\cdot42\\ 21\cdot81\\ 17\cdot87\\ 19\cdot89\\ 15\cdot30\\ 22\cdot01\\ 22\cdot78\\ 22\cdot01\\ 20\cdot74\\ 22\cdot78\\ 23\cdot85\\ 22\cdot78\\ 23\cdot85\\ 26\cdot13\\ \end{array}$	$\frac{1}{12} 2 2 \frac{1}{12} 2 2 2 2 2 \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}{12} 2 2 2 \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}{12} 2 2 2 \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}{12} 2 2 2 \frac{1}{12} \frac{1}{$	$\begin{array}{c} 57\ 5027\\ 56\ 0008\\ 33\ 4276\\ 52\ 0857\\ 49\ 9630\\ 49\ 9173\\ 48\ 12227\\ 44\ 2112\\ 43\ 4159\\ 41\ 9670\\ 39\ 7580\\ 41\ 9670\\ 39\ 7580\\ 39\ 5791\\ 38\ 5791\\ 38\ 5791\\ 38\ 5791\\ 38\ 5791\\ 33\ 95791\\ 33\ 1252\\ 32\ 1120\\ 33\ 0640\\ 33\ 0640\\ 33\ 0640\\ 33\ 029\ 4068\\ 49\ 30\ 5745\\ 30\ 530\ 530\\ 40\ 40\ 50\\ 30\ 530\ 50\ 50\\ 40\ 50\ 50\ 50\\ 50\ 50\ 50\ 50\ 50\ 50\ 50\ 50\ 50\ 50\$	$\begin{array}{r} 4459\ 583\\ 4450\ 947\\ 4433\ 427\ 650\\ 4425\ 616\\ 4425\ 616\\ 4415\ 519\\ 4415\ 519\\ 4415\ 520\\ 4415\ 519\\ 4415\ 519\\ 4330\ 664\\ 4330\ 664\\ 4353\ 015\\ 015\\ 015\\ 015\\ 015\\ 015\\ 015\\ 015\\$	$\begin{array}{c} 604\\ 967\\ 444\\ 666\\ 038\\ 523\\ 171\\ 539\\ 005\\ 652\\ 074\\ 086\\ 104\\ 239\\ 226\\ 458\\ 293\\ 424\\ \end{array}$	304 597 184 420 608 293 951 286 720 312 784 732 006 634 939 962 178 023	300 370 260 246 430 230 253 285 285 340 296 354 330 370 234 280 234 280 270 290	$\begin{array}{c} 20 & 22 \\ 24 & 93 \\ 17 & 57 \\ 16 & 65 \\ 29 & 11 \\ 15 & 62 \\ 17 & 25 \\ 20 & 14 \\ 23 & 30 \\ 19 & 90 \\ 24 & 23 \\ 22 & 70 \\ 25 & 53 \\ 22 & 70 \\ 25 & 53 \\ 22 & 70 \\ 25 & 53 \\ 20 & 76 \\ 16 & 20 \\ 19 & 40 \\ 18 & 72 \\ + 20 & 27 \end{array}$		

Weighted mean	
Va	
Vd Curvature.	

 $16 \frac{77}{10} \\ 10 \\ 50$

Radial velocity....

+ 2.91

+20.26

» BOOTIS 769.

Observed by J. S. PLASNETT, Measured by W. E. HAEFER,

1907. May 22.

vi. M. 1. 10 01				Incontra			
Mean Computed of Wave Settings. Leugth.	Corrected Wave Length. Normal Wave Length.	Displacement in Revolutions. Velocity.	Mean of Settings.	Computed Wave Length.	Corrected Wave Length.	Normal Wave Length.	in Recolutions. Velocity.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 4459\cdot 501\\ 4455\cdot 219\\ 4427 666\\ 4415\cdot 548\\ 4415\cdot 548\\ 4415\cdot 548\\ 4401\cdot 877\\ 4379\cdot 372\\ 4379\cdot 372\\ 4371\cdot 654\\ 4370\cdot 674\\ 4376\cdot 674\\ 4376\cdot 674\\ 4372\cdot 949\\ 4352\cdot 182\\ 4352\cdot 182\\ 4352\cdot 182\\ 4355\cdot 192\\ 4315\cdot 312\\ 4315\cdot 192\\ \end{array}$	$ \begin{array}{r} 644\\ 272\\ 720\\ 598\\ 211\\ 702\\ 116\\ 160\\ 246\\ 292\\ 408\\ \end{array} $	962 420 293 951 312 856 840 206 2992	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Weighted mean	± 19.46
Va 17-43 Vd 14	
Curvature	
Radial velocity	+ 1.4

Observed by W. E. HARPER. Measured by J. N. TRIBBLE.

ŋ BOÖTIS 774.

1907. May 23. G. M. T. 14^b 08^m

Me o Setti	Wave	Corrected Wave Length.	Normal Wave Length.	Displacement in Revolutions.	Velocity.	Wt.	Mean of Settings.	Computed Wave Length.	Corrected Wave Longth.	Normal Wave Longth.	Displacement in Revolutions.	Velocity.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	\$03 119 565 982 162 948 950	527 766 962 908 138 634 932	276 353 603 074 424 314 018	$+17^{\circ}03$ 23 26 40 65 5 04 28 87 21 82 1 25	11000 2 10100 100 1000 1000 1000 1000 1	$\begin{array}{c} 42^\circ5701\\ 40^\circ6425\\ 40^\circ4252\\ 39^\circ8399\\ 36^\circ5802\\ 36^\circ5802\\ 36^\circ5802\\ 36^\circ5802\\ 36^\circ5802\\ 36^\circ5802\\ 36^\circ5802\\ 35^\circ2917\\ 35^\circ2917\\$	$\begin{array}{c} 4299&750\\ 4272&077\\ 4269&004\\ 4260&773\\ 4260&733\\ 4198&999\\ 4202&733\\ 4198&999\\ 4202&202\\ 4132&667\\ 4123&660\\ 4119&134\\ 4102&114\\ 4002&974 \end{array}$	726 053 747 102 733 990 767 234 218 078	277 760 897 161 494 212 844 000 626	247 293 107 105 272 505 555 255 255 218 452	$\begin{array}{c} 17 & 23 \\ 20 & 56 \\ \hline 7 & 53 \\ 7 & 47 \\ 17 & 51 \\ 36 & 07 \\ \hline 40 & 29 \\ 28 & 38 \\ 15 & 94 \\ 33 & 13 \\ \end{array}$

 $+21^{\circ}29$

DEPARTMENT OF THE INTERIOR

9-10 EDWARD VII., A. 1910

```
9 BOÖTIS 779.
```

Observed by J. S. PLASKETT. Measured by J. N. TRIBBLE.

190	7.	Ma	y 24	
G.	M.	T. 1	15h	01=

1 Wt	Mean of Settings.	Computed Wave Length.	Corrected Wave Length.	Normal Wave Length.	Displacement in Revolutions.	Velocity.	Wt.	Mean of Settings.	Computed Wave Length.	Corrected Wave Length.	Normal Wave Length.	Displacement in Revolutions.	Velocity.
$ \begin{array}{c} 2 \\ 2 \\ 1 \\ 2 \\ 1 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 1 \\ 2 \\ 2 \\ 1 \\ 2 \\ 2 \\ 1 \\ 2 \\ 2 \\ 2 \\ 1 \\ 2 \\ 2 \\ 2 \\ 1 \\ 2 \\ 2 \\ 2 \\ 1 \\ 2 \\ $	$\begin{array}{c} 58 & 0640 \\ 58 & 0817 \\ 50 & 2577 \\ 50 & 2836 \\ 49 & 6247 \\ 49 & 6384 \\ 46 & 3206 \\ 46 & 2767 \\ 45 & 5212 \\ 40 & 8015 \end{array}$	$\begin{array}{r} 4543 \cdot 549 \\ 4549 \cdot 873 \\ 4415 \cdot 039 \\ 4415 \cdot 459 \\ 4404 \cdot 812 \\ 4405 \cdot 032 \\ 4352 \cdot 270 \\ 4332 \cdot 270 \\ 4340 \cdot 763 \\ 4271 \cdot 605 \end{array}$	001 595 216 454 939	766 293 951 006 634	235 302 265 448 305	+15 46 20°54 18°05 30°86 20°95	12 11 1 1 2 1 1 2	37 6159	$\begin{array}{r} 4271 & 728 \\ 4227 & 429 \\ 4227 & 211 \\ 4215 & 917 \\ 4198 & 795 \\ 4168 & 765 \\ 4143 & 682 \\ 4143 & 682 \\ 4143 & 979 \\ 4127 & 997 \\ 4104 & 992 \end{array}$	872 331 021 907 706 051 053	760 904 897 403 438 914 862	112 427 124 505 268 137 191	7.85 30.27 8.82 35.99 19.27 9.91 +13.88
							we	ighted me	an		- 18	15	

Weigh	tea	mear	h					
-------	-----	------	---	--	--	--	--	--

hte	3	n	16	a	r	12									- 1	8	1				
V																				18:0	1
V	d																		-	2	1

21 28 Curvature.....

Radial velocity..... - 0.3

ŋ BOÖTIS 793.

1907. May 29. G. M. T. 16⁵ 46⁵

Observed by J. S. PLASKETT. Measured by W. E. HARPER.

Wt.	Mean of Settings.	Computed Wave Length.	Corrected Wave Length.	Normal Wave Length.	Displacement in Revolutions.	Velocity.	I Wt.	Mean of Settings.	Computed • Wave Length.	Corrected Wave Longth.	Normal Wave Length.	Displacement in Revolutions.	Volocity.
10000000000000000000000000000000000000	$\begin{array}{c} 61&2267\\ 61&2151\\ 60&7801\\ 60&5522\\ 59&6576\\ 57&8364\\ 56&6522\\ 52&7172\\ 50&0340\\ 49&3967\\ 48&7702\\ 48&8021 \end{array}$	$\begin{array}{c} 4613 \ 852 \\ 4613 \ 829 \\ 4605 \ 206 \\ 4500 \ 908 \\ 4583 \ 954 \\ 45583 \ 954 \\ 45587 \ 200 \\ 44558 \ 720 \\ 4460 \ 183 \\ 4415 \ 682 \\ 4405 \ 432 \\ 4395 \ 400 \\ 4395 \ 909 \end{array}$	755 437 076 150 308 783 471 896	465 997 524 796 766 293 951 286	290 440 552 354 542 -490 520 610	$\begin{array}{r} + 18 & 76 \\ 28 & 51 \\ 35 & 76 \\ \hline \\ 23 & 08 \\ 35 & 72 \\ \hline \\ 33 & 37 \\ 35 & 46 \\ \hline \\ 41 & 66 \\ \end{array}$	212 12 12 12 12 212 221 221 221	$\begin{array}{c} 47 \cdot 7600 \\ 47 \cdot 0501 \\ 45 \cdot 2664 \\ 44 \cdot 2835 \\ 43 \cdot 0857 \\ 43 \cdot 0609 \\ 40 \cdot 5687 \\ 39 \cdot 77598 \\ 39 \cdot 7727 \\ 37 \cdot 8163 \\ 36 \cdot 5183 \\ 35 \cdot 4705 \end{array}$	$\begin{array}{c} 4379 \cdot 416 \\ 4368 \cdot 323 \\ 4340 \cdot 948 \\ 4326 \cdot 157 \\ 4308 \cdot 044 \\ 4272 \cdot 055 \\ 4200 \cdot 611 \\ 4260 \cdot 835 \\ 4233 \cdot 751 \\ 4216 \cdot 158 \\ 4202 \cdot 202 \end{array}$	307 954 174 443 090 861 768 167	840 634 694 023 760 546 328 897	467 320 480 420 330 335 440 270	32 04 22 08 33 22 29 15 23 20 22 14 31 15 + 19 17

Weighted mean	-29.03
Va	
Vd 15	
Curvature '50	

```
    ŋ BOÖTIS 797.
```

1907. May 31. G. M. T. 14^h 54^m

Wt.	Meau of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.	Wt.	Mean of Settings,	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.
222222211 112 1212	$\begin{array}{c} 72.9660\\ 72.8399\\ 72.4047\\ 57.8365\\ 57.8055\\ 50.0029\\ 49.3909\\ 48.7877\\ 48.7722\\ 47.0514\\ 45.2658\\ 43.5481\end{array}$	8829 8410 3937 7855 0483 2617	0181 0142 0263 0215 0352 0230	+ 26 · 26 17 · 10 28 · 72 23 · 53 37 · 45 23 · 56	$\begin{array}{c} 2\\ 2\\ 2\\ 2\\ 2\\ 1 \\ 2\\ 1 \\ 2\\ 1 \\ 2\\ 1 \\ 2\\ 2\\ 1 \\ 2\\ 2\\ 1 \\ 2\\ 2\\ 1 \\ 2\\ 2\\ 1 \\ 2\\ 2\\ 1 \\ 2\\ 2\\ 1 \\ 2\\ 2\\ 1 \\ 2\\ 2\\ 1 \\ 2\\ 2\\ 2\\ 1 \\ 2\\ 2\\ 2\\ 1 \\ 2\\ 2\\ 2\\ 1 \\ 2\\ 2\\ 2\\ 2\\ 1 \\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2$	$\begin{array}{c} 430819\\ 405728\\ 397707\\ 397551\\ 365196\\ 354949\\ 354641\\ 316032\\ 301736\\ 273086\\ 273086\\ 267220\\ 267220\\ 267084 \end{array}$	0711 55500 7517 3227 4893 4631 5560 6579	0208 0301 0249 0339 0271 0355 0151 0296	21 20 29 86 24 50 32 51 25 77 33 40 13 65 +25 48

25.50

- 05 - 28

Radial velocity..... - 5 1

>> BOÖTIS 812.

1907. June 10. G. M. T. 14^h 10^m Observed by J. S. PLASKETT. Measured by W. E. HARPER.

Mean of Setting	Wave	Corrected Wave Length.	Normal Wave Length.	Displacement.	Velocity.	Wt.	Mean of Settings.	Computed Wave Length.	Corrected Wave Length.	Normal Wave Longth.	Displacement.	Velocity.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	047 386 412 562 391 826 412 099 299	527 766 962 908 426 957 634 939	520 620 640 600 483 400 455 465 360	+32.08 40.85 42.94 40.32 32.84 27.28 31.44 32.08 24.91	$ \frac{2}{2} \frac{1}{12} \frac{1}{12} \frac{1}{2} \frac{1}{2} \frac{1}{12} \frac{1}{12} \frac{1}{2} \frac{1}{2}$	$\begin{array}{r} 43^{\circ}0742\\ 42^{\circ}0980\\ 41^{\circ}3355\\ 40^{\circ}5595\\ 39^{\circ}7652\\ 39^{\circ}7401\\ 39^{\circ}0561\\ 39^{\circ}0561\\ 37^{\circ}8028\\ 37^{\circ}8028\\ 37^{\circ}8028\\ 37^{\circ}8028\\ 33^{\circ}252093\\ 34^{\circ}6878\\ 31^{\circ}9631\\ 30^{\circ}9498\\ 27^{\circ}3112 \end{array}$	$\begin{array}{c} 4308 \cdot 544 \\ 4294 \cdot 278 \\ 4283 \cdot 269 \\ 4272 \cdot 188 \\ 4260 \cdot 968 \\ 4260 \cdot 615 \\ 4231 \cdot 055 \\ 4233 \cdot 770 \\ 4227 \cdot 356 \\ 4198 \cdot 927 \\ 4192 \cdot 936 \\ 4196 \cdot 989 \\ 4156 \cdot 989 \\ 4156 \cdot 989 \\ 4144 \cdot 262 \\ 4099 \cdot 919 \end{array}$	560 285 204 987 067 778 364 924 068 989 262	023 722 760 527 643 462 010 494 678 623 928	537 563 444 460 424 316 354 430 390 366 334	$\begin{array}{r} 37 \cdot 37 \\ 39 \cdot 00 \\ 31 \cdot 12 \\ 32 \cdot 34 \\ 29 \cdot 89 \\ 22 \cdot 37 \\ 25 \cdot 06 \\ 30 \cdot 70 \\ 26 \cdot 35 \\ + 24 \cdot 11 \end{array}$

V.a				-22.52	
Vd.				- '04	
Curva	ture			- '28	

Radial velocity..... + 7.2

Observed by J. S. PLASKETT. Measured by C. R. WESTLAND.

```
1907. June 21
G. M. T. 14<sup>h</sup> 25<sup>m</sup>
```

† BOOTIS 868.

Observed by J. S. PLASKETT. Measured by W. E. HARPER.

Mean Computed of Wave Settings. Length.	Corrected Wave Length. Normal Wave Length.	Usplacement. Velocity. Wt.	Mean of Settings.	Computed Wave Length.	Corrected Wave Length.	Normal Wave Length.	Displacement.	Velocity.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	156 766 3 345 985 3 138 678 4 824 354 4 498 908 5 893 343 5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 45 & 2755 \\ 44 & 2785 \\ 43 & 5520 \\ 42 & 1004 \\ 40 & 5520 \\ 39 & 7555 \\ 39 & 7351 \\ 36 & 4997 \\ 35 & 4821 \\ 35 & 4386 \\ 34 & 6655 \\ 32 & 7961 \\ 30 & 1393 \\ 29 & 9750 \end{array}$	$\begin{array}{c} 4341 & 084 \\ 4326 & 119 \\ 4315 & 347 \\ 4224 & 152 \\ 4272 & 120 \\ 4260 & 816 \\ 4260 & 530 \\ 4216 & 283 \\ 4202 & 764 \\ 4202 & 764 \\ 4202 & 764 \\ 4202 & 764 \\ 4202 & 140 \\ 4192 & 048 \\ 4167 & 952 \\ 4134 & 712 \\ 4132 & 684 \\ \end{array}$	199 448 270 947 323 768 038 902 592	939 178 760 527 198 678 617 212	260 270 510 420 426 570 360 285 380	$\begin{array}{r} 18 & 00 \\ 18 & 71 \\ 35 & 70 \\ 29 & 53 \\ 30 & 12 \\ 40 & 58 \\ 25 & 74 \\ 20 & 49 \\ + 27 & 40 \end{array}$

Weighter	l n	iean.				+29.89
- V.a					- 24 46	
V d					- 11	
Cu	rva	ture			- 28	
Radiat	vel	locit	v			~ 5:0

 $\left. \begin{array}{ccc} \mathrm{Observed} & \mathrm{by} \\ \mathrm{Measured} & \mathrm{by} \end{array} \right\} \mathrm{W}, \ \mathrm{E}, \ \mathrm{Harres}$

³ BOÖTIS 891.

1907. June 27. G. M. T. 14⁵ 55^m

Displace-ment in Mean Corrected Displace-of Star ment in Mean Corrected Wt. Wt. of Star Settings. Revolutions. Settings. Revolutions. Settings. Settings. $57 \ 7980 \\ 57 \ 7762 \\ 49 \ 9624$ $\begin{array}{c} 40\,{}^\circ\,5817\\ 39\,{}^\circ\,7320\\ 39\,{}^\circ\,7102 \end{array}$ -5833 0324 $\frac{32.24}{29.61}$ ·0173 +20.8737:3052 3613 .0363 0.027949:3500 .0262 39:54 0391 41.25 0602 31 5636 6300 28 17 28090322 33 71 30.1128 43:5028 7335 0272- 24 13 43:0515 1009 0377 38 52 26 6595 26:6400

Radial velocity + 5'7

η BOÖTIS 918.

Observed by J. S. PLASKETT, Measured by T. H. PARKER.

1907. July 8. G. M. T. 15^h 09^m

Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity
211111111111111111111111111111111111111	$\begin{array}{c} 59\cdot8099\\ 57\cdot8572\\ 566611\\ 55\cdot1526\\ 54\cdot7393\\ 50\cdot0034\\ 50\cdot0306\\ 49\cdot4064\\ 49\cdot4064\\ 49\cdot1127\\ 48\cdot8040\\ 48\cdot7675\\ 46\cdot0327\\ 45\cdot2824\\ 45\cdot2825\end{array}$	8620 1576 4034 8020 0257 2744	0352 0324 0205 0360 0292 0385 0437	37 · 77 22 55 39 · 31 31 · 68		$\begin{array}{c} 44 & 2898 \\ 43 & 5460 \\ 43 & 0888 \\ 41 & 0808 \\ 40 & 5805 \\ 39 & 7823 \\ 37 & 9860 \\ 37 & 3568 \\ 36 & 5317 \\ 35 & 4581 \\ 35 & 2228 \\ 31 & 8048 \\ 30 & 9164 \\ \end{array}$	2798 0758 5615 7613 3308 5047 1928 7713	-0425 -0438	$\begin{array}{c} 21.27\\ 25.98\\ 35.31\\ 25.97\\ 46.04\\ 40.41\\ 41.06\\ +21.01\end{array}$
					Weig	Va Vd		- 25.79	31-45

η BOÖTIS 918.*

1907. July 8. G. M. T. 15^h 09^m

Observed by J. S. PLASKETT. Measured by W. E. HARPER.

Radial velocity....

Wt.	Mean of Settings.	Corrected Star Settings.		Velocity,	Wt.	Mean of Settings.	Star	Displace- ment in Revolutions.	Velocity
$1 \overset{_{22}}{_{1}} \\ 2 \overset{_{22}}{_{2}} \\ 1 \overset{_{22}}{_{2}} \\ 2 \overset{_{12}}{_{2}} \\ 2 \overset{_{12}}{_{2}} \\ 2 \overset{_{22}}{_{2}} \\ 2 \overset{_{22}}{$	$\begin{array}{c} 590510\\ 590784\\ 578689\\ 568542\\ 568542\\ 551704\\ 540562\\ 524827\\ 522770\\ 500586\\ 494332\\ 488006\\ 453140\\ 453180\\ \end{array}$	0634 8520 8352 1464 8510 4547 0280 4012 2800	0227 0252 0244 0212 0206 0399 0179 0350 0413	29.04 24.72 23.40 45.13	91 91 91 91 91 91 91 91 ⁻¹⁸⁹ ⁻¹⁸⁹ 91 91 91 91 91 91 91 91 91 91 11 ⁻¹¹⁰	$\begin{array}{c} 44\cdot 3211\\ 43\cdot 67\cdot 49\\ 43\cdot 1211\\ 41\cdot 8827\\ 41\cdot 3385\\ 40\cdot 6063\\ 39\cdot 8204\\ 39\cdot 7879\\ 39\cdot 1058\\ 38\cdot 0112\\ 37\cdot 3845\\ 36\cdot 5511\\ 35\cdot 4884\\ 33\cdot 52300\\ 35\cdot 2561\end{array}$	2820 0790 8380 5590 1694 0583 3295 4940 4706 1973	0327	

Weighted mean		+33.11
Va	25 80	
Vd Curvature,	- 24	
Radial velocity		6.8

*Check measurement.

9-10 EDWARD VII., A. 1910 Observed by J. N. TRIBBLE. Measured by W. E. HARPER.

η BOÖT1S 950.

1907. July 18. G. M. T. 13^h 57^m

Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	ment in	Velocity.
2	59:7949 59:0552	0672	0265	+32.36	$ \begin{array}{c} 1 \\ \frac{1}{2} \\ 1 \\ \frac{1}{2} \\ 2 \end{array} $	43.5484 43.0820 42.1019	-5524 -0852	-0192 -0451	19.68 45.95
$\frac{1}{2}$	57 8347 57 8138 53 0966 52 8357	8424	0160	2) 13	12 2 2 1	42.1019 40.5663 39.7395 39.7719	- 5655 - 7700	0396	39 28 34.54
$\frac{1}{2}$ $\frac{1}{2}$	52 6354 52 4416 50 0253 49 3917	4546 0343 3997	-0398 -0241 -0331	45 01 26 51 36 14	1 2	39.0430 37.9630 37.3251	-0385	0222	21 67
$\frac{1}{12}$	48 7944 48 7650	-8010	0282	30.14	1 3	36.5090 35.4418	5020	0398	25 11 37 85 30 02
2	$45^{\circ}2671$ $45^{\circ}2590$	2654	0267	27.87	1	35 4710 35 1990	4595 1875	0319 0385	35 92

Va. -25°61 Vd. - 20 Curvature - 28

61 20

η BOÖTIS 950.*

1907. July 18, G. M. T. 13^h 57^m Observed by J. N. TRIBBLE. Measured by T. H. PARKER.

Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.
1111112	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0730 8563 0607 8512 4470 5619	0323 0295 0139 0*208 0*322 0287	+ 39 · 43 35 · 51 16 · 58 23 · 62 36 · 41 29 · 43	1 1 1 1 1 1 1 1 1 1 1 1 1	$\begin{array}{c} 43.0955\\ 42.1179\\ 40.5776\\ 39.7823\\ 38.0089\\ 37.9769\\ 37.8012\\ 36.5180\\ 35.4775\\ 35.4548\end{array}$	0835 5621 7653 9889 7822 4960 4535	0332 0362 0304 0278 0177 0338 0259	$\begin{array}{r} 33.82\\ 35.91\\ 29.91\\ 26.93\\ 17.06\\ 32.04\\ +24.37\end{array}$

Weighted mean	+29.23
Vd	
Radial velocity	+ 3.1

*Check measurement.

» BOÖTIS 972

Observed by | W. E. HARPER. Measured by |

1907. Aug. 1 G. M. T. 13^h 39^m

Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.	Wt.	Mean of Settings	Corrected Star Settings.	ment in	Velocity
$2 \\ 1 \\ 2 \\ 2 \\ 2 \\ 2$	59:8125 59:0699 57:8529 57:8249	0660 8497	0253 0229	$^{+30}_{-27}{}^{89}_{-57}$	1 1 1 2	$47^{+}2717$ $47^{+}1677$ $47^{+}0555$ $45^{+}2721$	-2733 -1693 -0571	0315 0225 0409	33 · 55 23 · 96 43 · 56
1	56 6666 56 3701 55 1626 54 0291	$3709 \\ 1642$	0347 0390	$ 41 05 \\ 45'47 $	1½ 2 1	45°2731 43°5334 43°0770 40°5588	2751 0795 5580	0364 0332 0321	38.00 33.90 31.84
	$52^{\circ}8504$ $52^{\circ}4609$ $52^{\circ}2516$	8494 4600	$0190 \\ 0452$	$21.58 \\ 51.12$	212 22 22 22 22 22 22 22	39 7640 39 7388 37 9622	7620	0352	34.64
$\frac{1}{1^{\frac{1}{2}}}$	50.0488 49.4090 48.7684	0488 4048	0387 0386	42.57 42.57	$\frac{2}{2}$	37 3382 36 5021 35 4334	3284 - 4960	0396 0338	37.97 + 32.14

-36.05

Radial velocity..... + 11.4

η BOOTIS 990.

1907. Aug. 7. G. M. T. 13^h 58^m Observed by J. S. PLASKETT. Measured by W. E. HARPER.

Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions	Velocity.
$\frac{1}{2} \frac{1}{1} \frac{1}{2} \frac{1}{1} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{2}{2} \frac{3}{2} \frac{2}{2} \frac{2}{2} \frac{2}{2} \frac{1}{2} \frac{1}$	$\begin{array}{c} 77 5311\\ 77 5065\\ 77 2249\\ 75 4840\\ 75 3861\\ 74 5488\\ 73 1143\\ 72 8337\\ 72 1565\\ 72 0721\\ 70 0758\\ 69 3246\\ 68 9702 \end{array}$	- 3820 - 0775 - 3450 - 4108 - 9873 - 7101 - 0350 - 9700 - 2233 - 8732	0765 0838 0687 0755 0597 0719 0677 0677 0687 0691 0867	+ 34 73 37 88 30 91 33 75 26 45 31 71 29 79 38 15 21 78 37 37	$2 \frac{1}{12} 2 2 2 \frac{1}{2} \frac{1}{2} 2 1 + 2 \frac{1}{2} \frac{1}{2} 2 \frac{1}{2} \frac{1}{2} 2 \frac{1}{2} \frac{1}{2}$	$\begin{array}{c} 68\cdot8751\\ 68\cdot0457\\ 67\ 6516\\ 64\cdot6597\\ 61\cdot4950\\ 60\cdot5500\\ 58\cdot9771\\ 58\cdot6538\\ 56\cdot4377\\ 50\cdot0635\\ 48\cdot1930\\ 46\cdot3541 \end{array}$	9557 5636 5717 5045 9411 6200 -0820 -2266	0875 0768 0641 0777 0833 0878 0726 0853	$37 \cdot 45$ $32 \cdot 87$ $26 \cdot 92$ $31 \cdot 62$ $33 \cdot 57$ $35 \cdot 38$ $27 \cdot 66$ $+ 32 \cdot 07$

Weighted mean		+32.66
Va	-23.0b	
Vd	- '28	
Curvature	- 128	
Radial velocity		- 9.0

7 BOÖTIS 1231.

Observed by W. E. HARPER.

1908, Jan. 14. G. M. T. 22^h (0^m)

Wt.	Mean of Settings.	Corrected Star Settings.		Velocity.	Wε.	Meau of Settings.	Corrected Star Settings.		Velocity
	$\begin{array}{c} 57 & 8434 \\ 57 & 8277 \\ 54 & 7647 \\ 53 & 1290 \\ 52 & 8248 \\ 52 & 3086 \\ 52 & 2705 \\ 49 & 9963 \\ 49 & 3502 \\ 48 & 7851 \\ 48 & 7630 \\ 45 & 2867 \\ 45 & 2195 \end{array}$	8047 8048 3790 9788 3340 7470 2060	0221 0256 0358	29 08 40 49 34 43 36 47 28 00	1 ² 2 2 2 2 1 ² 2 2 2 1 ² 2 2 1 ² 2 2 1 ² 2 2 1 ² 1 2 2 1 ² 1 1 ²	$\begin{array}{c} 44 \cdot 2401 \\ 41 \cdot 3012 \\ 40 \cdot 5147 \\ 39 \cdot 7496 \\ 39 \cdot 7099 \\ 39 \cdot 0059 \\ 37 \cdot 9716 \\ 37 \cdot 2765 \\ 36 \cdot 4496 \\ 35 \cdot 4474 \\ 35 \cdot 4212 \\ 35 \cdot 1325 \end{array}$	22966 5000 6959 9925 2630 4350 4043 1150	0309 0238	33 67 25 69 30 40 23 23 24 74 25 87 21 92 - 31 72

					12	
Curvature						- 28

Radial velocity..... - 3"

n BOÖTIS 1231.*

1908. Jau, 14. G. M. T. 22^h 00^m Observed by W. E. HARFER, Measured by T. H. PARKER,

Wt.	of	Corrected Star Settings.	Displace- meut in Revolutions.	Velocity.	Wt.	of	Star	Displace- ment in Revolutions.	
2111111221211	$\begin{array}{c} 59\cdot8174\\ 57\cdot8144\\ 57\cdot8144\\ 56\cdot6735\\ 53\cdot1182\\ 52\cdot8153\\ 52\cdot2605\\ 50\cdot0076\\ 49\cdot9827\\ 49\cdot3633\\ 49\cdot3360\\ 49\cdot3360\\ 49\cdot1028\\ 48\cdot7675\\ 48\cdot7675\\ 48\cdot7445\end{array}$	8084 8133 3872 9847 3390	0171 0276 0254	- 21 '91 19' 42 31 '21 27' 94 29' 70	$ \begin{array}{c} 1 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 1 \\ 2 \\ 1 \\ $	39.6870 37.9558 37.2517	6915 2567 4358 4041 8543	0227 0333 0321 0264 0264 0264	22 51 34 73 33 66 25 00 24 84

V_d^a	mean 25 ·	··· + 26 58 ··· - 12
Radial	velocity	+ 0.6

*Check measurement.

⁹ BOÖTIS 1294.

1908. Jan. 27. G. M. T. 20^h 12^m Observed by W. E. HARPER.

Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity
2	76.7049	1			2	60 2453	2668	.0714	29.34
2	76.3139	3760	0487	- 22 25	2	59.7232	7437	0627	25:11
2	74.9780				2	58.3645	3830	0767	31-14
2	74.9412	19966	10686	31 07	2	57.4642	4818	0701	28.32
2	74.0085	. 0615	:0691	31.16	21 21 22 23 23 23 23	56.3435			
2	73 3760				2	56 7436	17596	0669	26.90
2	72.6176	6656	0/590	30.77	2	56.0212	.0370	.0559	22.36
15	71.7327				1	50.9975			
3	71 6719	7194	0628	27 88	. 2	49.9284	9324	0677	26.00
2	69.6070 68.8730	6495 9130	0647	28+27 34+46	22	48.0797 46.4398	0787	.0808	30.63
20	68:5172	-5572	0705	30.60		46 3377	3310	0839	31.46
2	68:5312	0012	0.00	30 00		38 2531	2267	0539	28.34
2	67 6069	6434	0735	31.75	ő	36.2270	5204	0134	
23 63 63 63 63 63 64 63 63 63 63 63 63 63 63 63 63 63 63 63	64 2811	3091	0754	31.82	2 2 2 2 2 2 2	36.0357	0027	.0878	30.90
2	61 3235			01 02	2	33.1311	0940	0779	- 26.87

7 BOÖTIS 1307.

1908. Jan. 29. G. M. T. 21^h 14^m Observed by J. S. PLASKETT. Measured by C. R. WESTLAND.

Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.
2 11	76 7556 76 3539	-3649		- 27 37	22	59:7720 58:4880	7402 4030	-0662 0567	$\frac{27.12}{23.02}$
2	75.0276 74.9901 74.0388	9980 0640	-0660 -0666	$ \begin{array}{c} 29 & 92 \\ 30 & 02 \end{array} $	2 2 2 2 2 2 2 2 1	57 5179 56 8023 56 3977	$\frac{4802}{7628}$	0715 0637	$\frac{28}{25}$, $\frac{86}{59}$
22122	73 4219 72 6605	6620	0726	32 41		56.0711 50.0571	0300	0629	25.15
3 2 2	71·7218 69·6614 68·9241	7208 6552 9159	-0614 -0590 -0765	27^{-24} 25^{-81} 33^{-31}	222	49 9803 48 1479 46 4998	9258 0864	-0851 -0685	$\frac{32.70}{26.01}$
21 - 21 21 21 21 21 21 23 21 23 23 23 23 23 24 - 24	68:5710 68:6280 67:6542	6427	-0657 	28.53	21 21 22 22 22 22 22 22 22 22 22 22 22 2	46 4076 38 3121 36 2864	3415 2251	$0734 \\ -0810$	$27.56 \\ 28.88$
22	64 · 3451 61 · 3704 60 · 2939	3251	0594	25 08	22	36 1037 33 1978 33 2792	0107 0938	0798 0781	$28.06 \\ -26.96$

Weighted mean	28 32
Va +24.95	
Vd + 'I3 Curvature	'28
Radial velocity	 2.5

η BOÖTIS 1332.

Feb. 17. 1908.
G. M. T. 22^h 30^m

Observed by J. S. PLASKETT. Measured by C. R. WESTLAND.

Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.	Wt.	Mean of Settings.	Star	Displace- ment in Revolutions.	Velocity.
ରା ମା ରା ରା ରା ରା ମ ଜୀ ଜୀ ଜୀ ଲା ଲା ରା ରା ରା ରା ରା	$\begin{array}{c} 76 & 7212 \\ 76 & 3188 \\ 74 & 9946 \\ 74 & 9956 \\ 74 & 9265 \\ 72 & 6378 \\ 73 & 3885 \\ 71 & 6574 \\ 69 & 6296 \\ 68 & 8336 \\ 68 & 5431 \\ 68 & 5631 \\ 68 & 5431 \\ 68 & 56210 \\ 64 & 2952 \\ 61 & 3281 \\ 60 & 2510 \\ 59 & 7464 \end{array}$	3623 9982 0649 67566 6528 9251 5741 6505 3192 2682 7629	-0637	$\begin{array}{c} 29\ 83\\ 29\ 61 \end{array}$	91 91 91 91 91 91 91 91 91 91 91 91 91 9	$\begin{array}{c} 58 & 3842 \\ 57 & 4834 \\ 56 & 7485 \\ 56 & 3452 \\ 55 & 4001 \\ 49 & 9003 \\ 49 & 9357 \\ 48 & 9837 \\ 46 & 4381 \\ 46 & 3480 \\ 38 & 2430 \\ 38 & 2430 \\ 38 & 2164 \\ 36 & 2164 \\ 33 & 60427 \\ 33 & 1294 \\ 33 & 2010 \end{array}$	3422 2240 0202	0565 0665 0624 0750 0696	$\begin{array}{c} 24 & 97 \\ 223 & 80 \\ 26 & 71 \\ 21 & 43 \\ 24 & 52 \\ 28 & 82 \\ 26 & 43 \\ 27 & 30 \\ 29 & 28 \\ 24 & 72 \\ 29 & 28 \\ 24 & 72 \\ -24 & 16 \\ \end{array}$

Weighted mean Va +20.45	- 25 21	
Vd	- 28	
Radial velocity	- 5.2	

Observed by W. E. HARPER.

η BOÖTIS 1357.

1908. Feb. 24. G. M. T. 19^h 06^m

Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity
21 ⁻¹² 2 ⁻⁶¹ 1222 ⁻¹²⁻⁶¹	$\begin{array}{c} 76 \cdot 7176 \\ 76 \cdot 3250 \\ 74 \cdot 9671 \\ 73 \cdot 3845 \\ 72 \cdot 1053 \\ 71 \cdot 6970 \\ 71 \cdot 1225 \\ 68 \cdot 5883 \\ 68 \cdot 5422 \\ 67 \cdot 9892 \end{array}$	3710 0101 1450 7365 5762 0212	0537 0539 0562 0457 0515 0683	- 24 59 24 42 25 06 20 34 22 35 29 44	18040 21 1 rd/s 21 rd/	$\begin{array}{c} 67 & 6130\\ 63 & 2135\\ 61 & 3207\\ 60 & 2534\\ 58 & 3903\\ 56 & 3395\\ 56 & 0048\\ 52 & 0625\\ 49 & 9913 \end{array}$	6450 2395 2750 4073 0208 0730	0719 0700 0632 0524 0721 0528	30 99 29 33 25 97 21 27 28 84 - 20 59

Weighted mean	+18.26	-25.27
V _d Curvature	- '16	- '28
Radial velocity		- 71

1908. March 30, G. M. T. 21^h 52^m

Region.	Sett	ings 1.	Difference -	Sett	ngs II.	Difference		
	Star.	Comparison.	in Revolutions.	Star.	Comparison.	in Revolutions.	Mean Difference	Velocity
4 5 6 7 8 9 10	395 410 411 417 441 450 435	424 435 437 446 465 471 475	029 025 026 029 024 024 021 040	350 336 346 330 317 320 304	324 314 306 321 296 280 276	026 022 040 009 021 030 028	275 235 280 190 225 255 340	-12.8 10.5 12.2 8.1 9.4 10.4 -13.6
					Standard Weighted m			- 10 72

Weighted mean V_a	- 2:98	-10.72
V _d		- 25
Radial velocity		2:0

η BOÖTIS 1446.*

1908. Mar. 30. G. M. T. 21^h 52^m Observed by W. E. HARPER. Measured by C. R. WESTLAND.

Observed by W. E. HARPER Measured by W. E. HARPER

<i>w</i> .	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity,
202222020202020222	$\begin{array}{c} 750031\\ 750052\\ 740795\\ 733860\\ 726643\\ 717097\\ 689128\\ 685557\\ 6855769\\ 676457\\ 612856\\ 602494\\ 597264 \end{array}$	0377 1152 7044 7522 9623 6061 6970 3100 7878	0263 0154 0302 0300 0301 0216 0199 0282 0196	$\begin{array}{r} -11 & 92 \\ 6 & 94 \\ 13 & 48 \\ 13 & 31 \\ 13 & 10 \\ 9 & 38 \\ 9 & 32 \\ \hline 11 & 59 \\ 7 & 62 \end{array}$	22222122122232	$\begin{array}{c} 58 \\ 57 \\ 4580 \\ 56 \\ 7254 \\ 56 \\ 2921 \\ 56 \\ 0050 \\ 49 \\ 9236 \\ 49 \\ 8982 \\ 48 \\ 0465 \\ 46 \\ 3300 \\ 46 \\ 3083 \\ 38 \\ 1702 \\ 36 \\ 0923 \end{array}$	4406 5231 7917 0732 9763 1272 3908 2679	0191 0288 0348 0346 0346 0321 0241 0382	$\begin{array}{c} 7 & 75 \\ 11 & 62 \\ 13 & 98 \\ \hline 7 & 88 \\ 13 & 20 \\ 12 & 19 \\ 9 & 05 \\ -13 & 62 \\ \hline \end{array}$

Weighted mean	- 3.98	-10.94
V _d Curvature		- 25 - 28
Radial velocity		- 75

*Check measurement.

η BOÖTIS 1446.*

Observed by W. E. HARPER. Measured by T. H. PARKER.

1908. March 30. G. M. T. 21^h 52^m

Wt. Of Settings.	Corrected Star Settings. Revolution	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	ment in	Velocity.	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	41.42 0105 0465 0177 7074 0272 7505 0337 5942 0338 6047 0230 6045 0224 3211 0171	$\begin{array}{r} -4 \ 80 \\ 7 \ 92 \\ 12 \ 13 \\ 14 \ 07 \\ 16 \ 62 \\ 9 \ 98 \\ .9 \ 67 \end{array}$	1 1 1 1 2 1 1 1 1 1 1 1 2 1 1 1 1 1 1 2 1 1 1 1 2 1 1 1 1 2 1 1 1 1 1 2 1	$\begin{array}{c} 59.7825\\ 58.4374\\ 57.5302\\ 56.7981\\ 56.3536\\ 49.9915\\ 49.9915\\ 49.9915\\ 48.1122\\ 46.4180\\ 46.3655\\ 38.2275\\ 36.1572\end{array}$	7820 4384 5322 8011 9712 1272 3845 2505	0289 0321 0304	$10.60 \\ 8.64 \\ 7.95 \\ 6.19 \\ 11.09 \\ 12.19 \\ 11.43 \\ -16.63 \\ 11.63 \\ -16.63 \\ 12.10 \\ -16.63 \\ -16.$	

Weighted	mean		-10.39
Va		+ 3 . 98	- 25
Cur	vature		- 28
			- 6:9
Kadial v	elocity		- 0.8

*Check measurement.

η BOÖTIS 1513.

1908. May 4. G. M. T. 18^h 13^m Observed by W. E. HARPER.

Wt.	of	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.	Wt.	of	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.
2222122111111111111111111111111111111	$\begin{array}{c} 75 \cdot 1160 \\ 74 \cdot 2116 \\ 73 \cdot 4946 \\ 72 \cdot 8120 \\ 72 \cdot 5446 \\ 72 \cdot 2822 \\ 69 \cdot 7922 \\ 69 \cdot 7922 \\ 69 \cdot 7922 \\ 68 \cdot 7040 \\ 68 \cdot 6835 \\ 67 \cdot 7903 \\ 65 \cdot 5445 \end{array}$	2076 8070 5394 2770 8567 7857 0492 6967 7823 5350	0087 0080 0131 0158 0155 0159 0159 0056	$\begin{array}{r} + & 3 & 91 \\ & 3 & 55 \\ & 5 & 82 \\ & 5 & 63 \\ & 6 & 76 \\ & 6 & 92 \\ & 6 & 46 \\ & 2 & 37 \end{array}$		$\begin{array}{c} 63 & 3747 \\ 63 & 3747 \\ 60 & 3917 \\ 59 & 8668 \\ 58 & 8243 \\ 58 & 5330 \\ 56 & 8700 \\ 56 & 3934 \\ 53 & 9788 \\ 52 & 1672 \\ 48 & 1835 \\ 46 & 4436 \end{array}$	$^{+1482}_{-1620}$	0061 0109 0189 0112 0081 0164 0087	2:55 4:47 7:71 4:54 3:24 6:36 + 3:30

Weighter	i mean.		. + 4.91	
	Va			-11.19
	Va			- 17 - 28
	Curvat	ure	·····	- 20
Radial	velocity			- 6.7

» BOÖTIS 1557

Observed by J. S. PLASKETT, Measured by T. H. PARKER,

1908. May 23. G. M. T. 16^b 00^m

Wt.	Mcan of Settings.		Displace- ment in Revolutions.	Velocity.	Wt.	Mean of Settings	Corrected Star Settings.		Velocity.
1 1 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 2 1 2 2 1 2 2 1 1 2 1 2 1 2 1 1 1 2 1 2 1 1 2 1 1 2 1 1 2 1 2 1 1 2 1 1 2 1 1 1 1 1 1 1 1 2 1	$\begin{array}{c} 76 & 9548 \\ 76 & 9700 \\ 75 \cdot 2687 \\ 75 \cdot 2128 \\ 73 \cdot 5876 \\ 73 \cdot 5876 \\ 72 \cdot 9026 \\ 71 \cdot 9679 \\ 71 \cdot 9354 \\ 69 \cdot 1577 \\ 68 \cdot 7609 \end{array}$	9334 5937 2326 8696 9359 1285		6.93 9.10 12.31 2.84 13.36 12.25	1 2 1 1 1 2 1 1 1 2 2	$\begin{array}{c} 68 \cdot 2353\\ 67 \cdot 4948\\ 63 \cdot 4283\\ 59 \cdot 9277\\ 59 \cdot 3672\\ 56 \cdot 4245\\ 55 \cdot 27616\\ 50 \cdot 0213\\ 48 \cdot 1823\\ 46 \cdot 4392\\ 46 \cdot 4258\end{array}$	2063 4461 	0138 0085 0339 0368 0368 0368 0368	$5.93 \\ 3.63 \\ 13.79 \\ 14.69 \\ 11.98 \\ 6.35 \\ +11.74 \\ $

v BOÖTIS 1553,

1908. May 25. G. M. T. 15^h 58st Observed by] T. H. PARKER.

Wt.	Mean of Settings.	Star	Displays ment in Revolutions.	Velocity.	Wt.	of	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.
21	$\begin{array}{c} 76\cdot9679\\ 77\cdot3242\\ 76\cdot6597\\ 76\cdot4693\\ 75\cdot2271\\ 74\cdot3368\\ 73\cdot6031\\ 72\cdot3932\\ 71\cdot9847\\ 71\cdot3184\\ 69\ 8068\\ 69\cdot1583\\ \end{array}$	3499 6853 4923 3563 4112 0027 9123 1728	0444 9371 9189 0215 0210 9354 0302 0302 0302	- 20 24 16 84 8 58 9 61 9 26 15 57 13 10 8 03	101010101010101010101010	$\begin{array}{c} 68 & 7945 \\ 68 & 7714 \\ 67 & 8874 \\ 64' & 5208 \\ 63' & 4552 \\ 63' & 4552 \\ 61' & 4657 \\ 60' & 4492 \\ 59' & 9312 \\ 59' & 93758 \\ 58' & 8903 \\ 36' & 4272 \end{array}$	8090 9004 5278 4606 4637 4482 9297 3723 8853	0225 0322 0371 0300 0214 0394 0464 0275	9 60 13 78 8 46 15 43 12 30 8 73 15 98 13 88 11 08

Weighted mean	12.38		
Va		-18.29	
Vd		- :10	
Curvature		- '28	
Radial velocity		- 6.6	

n BOÖTIS 1553.*

Observed by T. H. PARKER. Measured by W. E. HARPER.

Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.
2123222222	$\begin{array}{c} 76^\circ \cdot 8899\\ 77^\circ \cdot 2379\\ 76^\circ \cdot 5803\\ 76^\circ \cdot 3967\\ 75^\circ \cdot 1498\\ 74^\circ \cdot 2572\\ 73^\circ \cdot 2572\\ 73^\circ \cdot 2575\\ 72^\circ \cdot 3153\\ 71^\circ \cdot 9030\\ 71^\circ \cdot 9030\\ 71^\circ \cdot 9037\\ 71^\circ \cdot 2438\\ 69^\circ \cdot 8215\\ 69^\circ \cdot 0868\\ 69^\circ \cdot 8265\\ 69^\circ \cdot 0868\\ \end{array}$	8419 6853 4997 3557 4103 9973 9973 9175 1768	0364 0351 0263 0202 0201 0300 0354 0226	+16.60 15.93 11.91 9.03 8.84 13.20 15.36 9.76	2 2 2 2 2 2 2 1 2 2 1 2 2	$\begin{array}{c} 68.7225\\ 68.6957\\ 67.8170\\ 64.4485\\ 63.3766\\ 63.3594\\ 61.3866\\ 60.3764\\ 59.8471\\ 59.2900\\ 58.8184\\ 56.3496 \end{array}$	8120 9050 5294 4560 4489 9186 3600 8874	0255 0368 0219 0325 0253 0221 0283 0341 0296	10.99 15.73 9.24 13.52 10.37 9.02 11.96 -11.96

X	a												l
V	a.												

-12.168.59

Observed by J. S. PLASKETT. Measured by W. E. HARPER,

- 6 8

'Different standard.

1908. May 23. G. M. T. 15^h 58^m

Mean Corrected Displace-Mean Corrected Displaceof Star ment in Settings. Revolutions Wt. of Star ment in Settings. Settings. Revolutions Settings. 76:8898 18.53 $67 \cdot 8377 \\ 65 \cdot 5907$ 18610 0432 76:8898 76:5947 74:2843 74:0201 73:5333 72:8094 72:5840 72:3438 71:9275 71:2520 59:5599 + 20 · 47 19 71 21 · 32 $\frac{6227}{3110}$ 0450 ·6127 .0440 64 4965 0514 63 3773 $\begin{array}{c}
 17 & 91 \\
 21 & 24
 \end{array}$ 60.4210 4413 0439 8954 0322 14:30 6100 15.64 58 8142 25.04 :0418 8948 047220.81 58 5401 5601 052120.37 0483 21.01 1880 0505 -19.54 68 7500 68 7025 .0400

Weighted	mean.		+19'40	
	Va Vd			- 24 75
	Curvatur	e		- 28
Radial	velocity			- 58

1908. June 22. G. M. T. 14^h 10^m

>> BOÖTIS 1621.*

1908. June 22. G. M. T. 14^h 10^m

Observed by J. S. PLASEETT. Measured by J. B. CANNON.

Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displace- nient in Revolutions.	Velocity.
2 2 2 2 2 3 3 4 4 4 4 5 5 3 9 9 9 9 9 9 9	$\begin{array}{c} 76\ 9515\\ 76\ 6545\\ 74\ 3483\\ 74\ 0780\\ 73\ 5981\\ 72\ 9294\\ 72\ 6463\\ 72\ 4084\\ 71\ 9888\\ 71\ 3110\\ 65\ 9688\\ 68\ 8137\\ 68\ 7675 \end{array}$	6195 3118 0418 6103 3722 9527 8748 7802	0458 0448 0369 0356 0356 0347 0471 0471 0471 0487	$\begin{array}{r} +20 & 84 \\ 20 & 07 \\ 16 & 50 \\ \hline 13 & 40 \\ 15 & 77 \\ 15 & 34 \\ 20 & 77 \\ \hline 21 & 18 \\ 20 & 17 \\ \end{array}$	101010101010101010101000	$\begin{array}{c} 67 & 8975 \\ 65 & 6520 \\ 64 & 5563 \\ 63 & 4410 \\ 60 & 4858 \\ 59 & 9466 \\ 58 & 8764 \\ 58 & 9274 \\ 58 & 5948 \\ 54 & 0116 \\ 52 & 2260 \\ 50 & 0224 \end{array}$	8633 6150 5168 4438 9046 8859 5533 1960	0455 0415 0502 0464 0423 0531 0453 0585	$\begin{array}{r} 20^{\circ} 88\\ 17^{\circ} 55\\ 21^{\circ} 08\\ 18^{\circ} 93\\ 17^{\circ} 22\\ 21^{\circ} 45\\ 17^{\circ} 71\\ + 22^{\circ} 64\\ \end{array}$

Weighted	mean
	Va
	Vd
	Curvature
T2 1 1	A

*Check measurement.

1908. July 6. G. M. T. 14^h 40^m

>> BOÖTIS 1663.*

-18.91-24 75 - 17 - 28

	Set	tings I.	Difference	Sett	ings II.	Difference	Mean	
Region.	Star.	Comparison.	in Revolutions.	Star.	Comparison.	in Revolutions.	Difference	Velocity,
6 7 8 9 10 11 12 13 14 15 16 17	325 334 341 347 350 372 368 378 378 378 378 378 397 407 430	339 363 378 378 387 493 403 411 414 425 445 458 407	034 029 037 044 040 053 039 046 046 047 048 051 051	688 686 668 672 660 650 650 650 650 634 628 628 604	643 641 632 632 603 603 603 605 500 579 504	045 045 035 044 035 057 047 045 050 055 060 055	040 037 036 044 046 055 043 043 046 048 052 048 052 057	$+19^{\circ}04$ $16^{\circ}98$ $15^{\circ}95$ $18^{\circ}92$ $19^{\circ}14$ $22^{\circ}11$ $16^{\circ}65$ $17^{\circ}30$ $17^{\circ}47$ $18^{\circ}30$ $19^{\circ}49$ $+14^{\circ}56$

Weighte 151	ed 19	ES.	ne ta	an nd	ar	d.				+	1:	7	99 41		
V_a														 25.77	
V _d														17	
Radia	1	٧.9	ło	cit	y.									7.6	

Observed by J. S. PLASKETT, Measured by W. E. HARPER.

η BOOTIS 1663.^{*}

Observed by J. S. PLASKETT. Measured by W. E. HABPER.

1968. Jaly 5.

Settings 1			Difference	Sett	ings II.	Difference	Mean		
ie _e um.	Star.	Comparison.	in Revolutions.	Star.	Comparison.		Difference	Velocity.	
5	.021	.970	.051	205	. 246	.041	· 046	+ 22.73	
6	.005	1975	.034	-201	250	049	.045	20.0	
7	:021	·966 ·965	:056 :056	·206 ·212	254	-048 -039	1052 1047	23.8 20.8	
8	-021 -009	- 967	042	-213	253	-040	041	17.6	
10 .	- 995	- 958	037	- 220	200	-046	-041	17.0	
11	008	- 955	.023	229	270	-041	·047	18.8	
12	-984	- 949	.032	-219	1 284	.065	.020	19.4	
13	973	.944	.029	-241	283	.045	.036	13.5	
14	- 989	-927	062	240	284	:044	.023	19.2	
15	-970	-914	.056	250	301	-051	.053	18.6	
16	-967	-917	· 050	-255	311	056	.023	18.1	
17	950	· 905	· 045	· 265	319	1054	1048	15.8	
18	-931	:890	·041	285	1324	.035	·040	12.8	
19	-942	877	.002	291	- \$35	-044	- 054	+167	

Weighted *1520	Standard	$^{+18}_{-38}$	
V		-18:74 -25:77	
Vd			
Radial ve	locity	7 2	

³ BOÖTIS 1710.

1908. July 15, G. M. T. 14⁶ 11^m

Observed by J. B. CANNON, Measured by W. E. HARPER.

Region. St						Difference		
	ar.	Comparison.	in Revolutions.	Star.	Comparsion.	in Revolutions.	Mean Difference	Velocity
6	- 435	- 396	.039	-456	. 402	.051	.045	- 21:42
7 8	+426 426	- 386 - 386	040 · 040	1445 1442	-407 391	038	· 039 · 045	17:90
9	448	- 395	-040	- ++2 -+39	- 391	047		21:50
10	1448	1400	.048	134	'395	· 039	1043	17.8
11 12	1454 136	· 391 · 399	· 063 · 037	:426	-383 -400	·043 ·044	·053 ·040	21 31 15:55
12	148	- 400	-037	· 444 · 444	- 100	-069	040	21.81
14	-455	' 405	1050	-439	· 400	.039	:045	16:38
15	451	- 396	.022	.420	.390	.060	057	20.06
16 17	-461 -425	- 391 390	:070 :035	· 451 · 452	· 395 · 398	- 056 - 054	·063 ·044	21.57

Weight 1520 S	ed mea tandar	in d	····· + 18	9 15 - 38
<u>v</u>			+ 1	9.53
V a				25 '7

SESSIONAL PAPER No. 25a . 1908, Aug. 19. G. M. T. 13⁶ 18^m

η BOÖTIS 1792

Observed by W. E. HARPER. Measured by T. H. PARKER.

	Sett	tings I.	Difference	Setti	ngs II.	Difference	Man		
Region.	Star	Comparison.	in Revolutions	Star	Comparison	in Revolutions.	iMean Difference	Velocity.	
5678910 10 11 12 13 14 15 16	802 812 815 829 828 831 837 842 853 865 864 876	817 824 834 846 841 860 865 865 865 865 885 895 902 909	015 012 019 017 013 029 028 026 042 030 039 033	$\begin{array}{c} 718 \\ 697 \\ 710 \\ 693 \\ 681 \\ 685 \\ 682 \\ 687 \\ 668 \\ 660 \\ 636 \\ 636 \\ 637 \end{array}$	65 0 673 671 670 660 664 664 664 664 664 6640 619 600 591	028 024 039 023 021 031 038 033 038 033 028 041 036 041	022 018 029 025 030 033 035 035 036 037 (39	$\begin{array}{c} +1086\\ 856\\ 1331\\ 1151\\ 1072\\ 1245\\ 1323\\ 1125\\ 1316\\ 1310\\ 1300\\ 1302\\ +1329\end{array}$	

 Weighted mean
 $+ 12^{\circ} 04$

 1519
 Standard
 + 41

 V σ - 20 04

η BOÖTIS 1867.

Observed by J. S. Plaskett. Measured by J. B. Cannon.

1908. Sept. 7.
 G. M. T. 12^h 57^m

Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.
$2 \\ 1^{\frac{1}{2} - \frac{1}{2}} \\ 1^{\frac{1}{2} - \frac{1}{2}} \\ 1^{\frac{1}{2} - \frac{1}{2}} \\ 2$	$\begin{array}{c} 76 \cdot 9031\\ 77 \cdot 2356\\ 76 \cdot 6039\\ 75 \cdot 8642\\ 72 \cdot 8696\\ 72 \cdot 5992\\ 71 \cdot 9211\end{array}$	2508 6189 8777 8798 6116 .9371	0215 0452 0405 0166 0369 0315	$^{+9.80}_{20\ 61}$ $^{18:35}_{7\ 37}$ $^{16:35}_{13\ 89}$	2 1 2 1 2 1 2 1 2	$\begin{array}{c} 71 \cdot 8856 \\ 68 \cdot 7611 \\ 68 \cdot 7171 \\ 67 \cdot 8216 \\ 63 \cdot 3916 \\ 60 \cdot 4216 \\ 59 \cdot 3391 \end{array}$	7763 8366 4276 3441	0428 0188 0302 0545	18:49 8:06 12:35 22:13

Weighted	mea	n.								-1	-1	6	1	8				
	Va.																- 1	13 -
	Vd.																	
	Cur	ra	ţ	11	ė												-	
														-	-	-	 -	
Radial vel																		

» BOÖTIS 2115.

1909. Jan. 7. G. M. T. 23^h 23^d

Observed by J. S. PLASKETT. Measured by W. E. HABPER.

Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.	Wt.	Mean of Settings	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.
2 2 2 2 2 2 1 1 2 2 2 2 2 2 2 2 2	$\begin{array}{rrrr} 76 & 6775 \\ 76 & 6430 \\ 76 & 2060 \\ 74 & 9547 \\ 74 & 9365 \\ 74 & 0052 \\ 73 & 7510 \\ 73 & 3481 \\ 72 & 6167 \\ 72 & 3162 \\ 71 & 6667 \\ 71 & 0812 \\ 69 & 6012 \\ \end{array}$	6575 3200 9467 0152 7610 6277 3279 6810 6173	0344 0301 0464 0471 0413 0425 0560 0354 0409	- 15 82 13 79 21 11 21 29 18 63 19 08 25 09 17 53 17 91	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	$\begin{array}{c} 69 & 3445\\ 68 & 8810\\ 68 & 5337\\ 68 & 5247\\ 67 & 6056\\ 67 & 2315\\ 65 & 3890\\ 64 & 2927\\ 63 & 2724\\ 63 & 20927\\ 58 & 7025\\ 58 & 7427\\ \end{array}$	3612 9002 5245 6244 2501 4052 3075 2230 7188	0260 0381 0502 0421 0393 0359 0360 0486 0486	$\begin{array}{c} 11 & 39 \\ 16 & 65 \\ 21 & 80 \\ 18 & 24 \\ 17 & 02 \\ 15 & 30 \\ 15 & 30 \\ 15 & 30 \\ 20 & 41 \\ -15 & 79 \\ \end{array}$

Weighted i

mean			17.88	
Va				
Vd			28	

28

+26.69

+ 8.6

Radial velocity....

η BOÖTIS 2209.

1909. Jan. 30. G. M. T. 18^b 37^m

Observed by J. S. PLASKETT. Measured by J. B. CANNON.

Wt.	Mean of Settings.	Corrected Star Settings,	Displace- ment in Revolutions.	Velocity.	Wt.	Mean of Settings.	Star	Displace- ment in Revolutions.	Velocity.
21211^{+2}	$\begin{array}{c} 81 \cdot 7544 \\ 80 \cdot 5548 \\ 76 \cdot 7524 \\ 76 \cdot 7084 \\ 76 \cdot 3728 \\ 75 \cdot 0031 \\ 74 \cdot 0754 \\ 73 \cdot 4156 \\ 72 \cdot 6808 \\ 71 \cdot 7318 \\ 68 \cdot 6164 \end{array}$	5772 7234 3878 0159 0862 6896 7410	0398 0440 0369 0481 0414 0450 0412	$\begin{array}{r} -18.75\\ 20.20\\ 16.90\\ 21.79\\ 20.02\\ 20.07\\ 18.29\end{array}$	1 2 2 1 2 1 2 1	$\begin{array}{c} 67 & 6626 \\ 66 & 5389 \\ 64 & 3381 \\ 61 & 3366 \\ 61 & 1268 \\ 59 & 7626 \\ 58 & 4051 \\ 52 & 0778 \\ 49 & 9854 \\ 48 & 0966 \end{array}$	6721 5481 3469 1347 7719 4151 0920 1130	0448 0351 0376 0458 0355 0446 0338 0446	$\begin{array}{c} 19 \ 35 \\ 15 \ 02 \\ 15 \ 87 \\ 18 \ 92 \\ 14 \ 55 \\ 18 \ 11 \\ 13 \ 18 \\ \hline - 17 \ 59 \end{array}$

Weighted mean 19 76	
Va	+25.02
Vd. Curvature	+ '20
Radial velocity	+ 5.2

n BOÖTIS 2283.

1909. Feb 17. G. M. T. 20^h 30^m

Observed by B. B. Cannon.

Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.		Velocity.
2 ⁻¹²¹ 1 ⁻¹²¹ 1 2 ¹	$\begin{array}{c} 76\ 7061\\ 76\ 6704\\ 74\ 9769\\ 74\ 0486\\ 73\ 0121\\ 73\ 3628\\ 72\ 1104\\ 71\ 6891\\ 68\ 5548\\ 68\ 5548\\ 68\ 5298\\ 68\ 5298\\ 63\ 22498\\ 63\ 2498\\ 63\ 1931 \end{array}$	7317 0382 1100 0736 1739 7546 6925 6012 6945 2674	0357 0258 0206 0474 0272 0276 0217 0265 0224 0421	$\begin{array}{c} 16 & 38 \\ 11 & 70 \\ 9 & 28 \\ 21 & 21 \\ 12 & 10 \\ 12 & 24 \\ 9 & 49 \\ 11 & 51 \\ 9 & 67 \\ \\ 17 & 65 \end{array}$	1 1 1 2 ^{addition} 1 2 ^{add} 1	$\begin{array}{c} 61 \cdot 0771 \\ 59 \cdot 6981 \\ 56 \cdot 7141 \\ 56 \cdot 2824 \\ 55 \cdot 9886 \\ 51 \cdot 6967 \\ 49 \cdot 8821 \\ 46 \cdot 0301 \\ 46 \cdot 3428 \\ 46 \cdot 2721 \\ 33 \cdot 0633 \\ 31 \cdot 5776 \\ 30 \cdot 8284 \\ 26 \cdot 4908 \end{array}$	1522 7740 7913 0808 7801 9680 1171 3617 6899 9422 6107	0283 0324 0342 0450 0309 0321 0378 0532 0532 0444 0517 0496	$\begin{array}{c} 11 & 70 \\ 13 & 27 \\ 13 & 74 \\ 17 & 53 \\ 11 & 78 \\ 12 & 34 \\ 14 & 35 \\ 19 & 97 \\ 15 & 19 \\ 17 & 61 \\ -16 & 44 \\ \end{array}$

Radial velocity..... + 6.0

BOÖTIS 2396.

1909. March 20. G. M. T. 17^h 00^m

Observed by J. S. PLASKETT. Measured by J. B. CANNON.

Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.
$ \begin{array}{c} 2 \\ 1 \\ 1 \\ 1 \\ 2 \\ 2 \\ 1 \\ 2 \\ 2 \\ 1 \end{array} $	$\begin{array}{c} 77^{+}1341\\ 76^{+}7516\\ 76^{+}4234\\ 75^{+}0522\\ 74^{+}1209\\ 73^{+}4249\\ 72^{+}7076\\ 72^{+}4306\\ 71^{+}7664\\ 71^{+}1534\\ 69^{+}7034 \end{array}$	7463 4178 0491 1191 7079 4318 7688 7074	0209 0060 0149 0115 0157 0157 0134 0068		$ \begin{array}{c} 1 \\ 2 \\ 1 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 1 \end{array} $	$\begin{array}{c} 68:6049\\ 67:6992\\ 61:3222\\ 60:3016\\ 59:7754\\ 49:9442\\ 49:9446\\ 30:9059\\ 30:8756\\ 1\end{array}$	0041	0168 0097 0113 0037 0135 0068 0144	7 29 4 19 4 64 1 51 5 48 2 61 - 4 91

Weighted mean V a V d Curvatu						8.52 14
Radial velocity	y				+	2.8

OBSERVING RECORD AND DETAILED MEASURES OF a CORON.E BOREALIS.

RECORD OF SPECTROGRAMS.

P.-PLASKETT, P¹. -PARKER, H.-HARPER, C.-CANNON, T.-TRIBBLE,

	ve.					osure						EMPER. Centig					
STAR.	No. of Negative.	. a.	Plate	e. De	te.	Middle of Exposure	F. M. 1	ion.	2	Hour ingle end.	Roo	m.	Prisn	1 Box.	'idth.	Seeing.	/er
	No. of	Camera				Middl	_	Duration			Beg.	End.	Beg.	End.	Shit Width.		Observer
a Coron:				19	<i>n</i> .	h.	m.]	m.	h	. m.							
Boreali	784	IL		27. Maj	24	17	43	10	1	20W.	9.0	9.4	16.4			Fair	Р
	790 800					15	14 18	12 8	1	50W. 20W.	8·9 13·0	-9.0 12.8	14 5 18 8			Good	PP
	808			Jur	e 8	16	28	10	î	05W.	15.4	15.2	17-2	17.2	.001		P
	813					15	23	10	0	00	14.8	14.6		18.1	001		P
	830 837a				15	17	40 36	$\frac{10}{12}$	22	15W. 30W.	14 0 17 0	14:0	18.9		001 001	Fair	HP
	8376				12	17	52	12	2	42W.	16.0	15 6	19.0	19.0	001		P
	845	- 0				16	32	15	1	30W.	19.8	19:4	25.8	25.8	:0012		H
	850a 850b	- 11				$16 \\ 16$	39 52	12 5	1	40W. 50W.	21.6 21.4	21.4 21.1	23·3 23·3	23·3 23·3	0012	Good	P
	869a				21	15	10	15	1	50W.	24.8	24 8	28 9	28.9	001	Hazy	P
	8690				21	15	42 25	15	1	20 W.	24.8 21.2	24 6 20 9			:001	Fair	P
	892a 892b				21	15 15	20	10 5	1	17 W. 25 W.	$\frac{21.2}{20.9}$	20.9			-0012	Cloudy.	H
	903a				- 28	8 14	-36	13		33W.	23.8	23.6	26.4	26.3	10012	Fair	P
	9035 912a	- 11		. Jul	28	5 14 15	57 38	25 10	$\frac{1}{2}$	00W.	23·5 21·0	22 8 2015	26·3			Good	PH
	912a 912b					10	38	10	2	17W.	21.0	20.0					H
10	917				1	5.15	20	10	1	45W.	21.0	20.8	26.4	26.4	0011		P
	919	- 18			8	315 14	36 32	$\frac{22}{15}$	$\frac{2}{1}$	05W. 14W.	21 · 2 23 · 1	21.2 23.1	22:4		0012	Fair Good	PH
	927 939a					216	25	10	4	15W.	22.6	22:4	26.0	26.0			P
	9396				15	2 16	33	2	4	20W.	22 6	22.4	26.0		·0015		P
	941a 941b					15	25 32	10	33	15W. 20W.	18 2 18:0	18°0 17°8		25 0	10012		T
	944a					5 14	37	13	i	42W.	25.5	25.5	26.8	26.8	10015	Unst'dy	T.
	9446		0			5 14	49	6	1	53W.	25.5	25.5	26.8	26 8	0012		T
	951a		- 11		18	8 14	50	60	2	32W.	26.0	25.0	28.5	28.0	0012	Very bazy	Т
	9516				18	3 15	32	5	2	45W.	22.5	22 5			·0012		H
	956a 956b) 16	$\frac{07}{17}$	14 2	33	30W. 32W.	19·2 19·2	18 6 18 6		21 6		Good	P
	9560 963a					3 14	32	6	2	05W.	23.2	23.2					Ť
	9635				2	314	-41	3	2	15W.	22.6	22.6	26.4	26.4	0015		T
	973a 9735	1		Au	3.	$14 \\ 14$	06	12 8	2	15W. 26W.	21:3 21:0	21.0					H
	978				-	3 13	02	8	ĩ	15W.	21.6	20.8	24.1	24.1	0015		P
	986	10				5 16	- 38	23	5	15W.	19.5	19.4				Poor	H
	1006 1014	14				$\frac{2}{5}\frac{16}{15}$	36 - 09	12 7	54	31W. 20W.	23÷0 22÷3	22.5				Unst'dy Verv	н
						1										poor	H
	1017				2:	2 15	11	$\frac{11}{62}$	4	47W. 46W.	18·7 22·5	18.5				Fair	н
	1022	- 11			24	11.	46	02	1.4	40 11 .	22 0	21.4	21 0	210	001-	clouds.	Т
	1026				2	12	06	13	2	57W.	18.5	18.5	20 6	20.6	001	I Fair	H
	1032 1037			. Set	t. (5 13 2 14	43 39	17 18	45	15W. 37W.	19°0 17°0	18.2		9 21.0	001	Good	T
	1037			1	13	312	- 50	30	4	17W.	15.0	15.6	17.1	17.1	001	Cloudy.	Ť
	1048				13	8,13	16	16	4	36W.	15.0	14.5	17.1	17.1	001	2 Fair	T
	1069 1061					$\frac{13}{13}$	35 58	20 24	55	05W. 30W.	22.0	22.0	22.9		001	2 Poor	H
	1001		11			113	44	16	5	55 W.	10.3	10.4	14 5	2 14:2	001	4	H
	1084				1	14	06	27	6	23W.	10.4	10.5	2 14 5	2 14 1	. 001	4 Hazy	н

RECORD OF SPECTROGRAMS,-(Concluded).

-														
	tive.				Middle of Exposure. G. M. T.		Hour		емрек Centig					
STAR.	No. of Negative.	era.	Plate.	Date,	ile of E G. M.	Duration.	Angle at end.	Root	m.	Prism	Box	Slit Width.	Seeing.	Observer.
	No.	Camera.			Mid	Dura		Beg.	End.	Beg.	End'	Slit		Obse
a Coronæ				1908.	h. m.	m.	h. m.							
Borealis :	$1393 \\ 1402$	IL	Seed 27.		$ \begin{array}{ccc} 22 & 08 \\ 21 & 02 \end{array} $	24 10	55W. 9W.	-15.0	- 15.0	1.0	1.0		Hazy	H
10 A 11	1493			Apr. 15	19 18	8	28W.	- 3.0	- 2.3	7.8	2377		Good	H P
	1565		Seed Process		18 00		2 50W.	15.7	14 6	21.4	21.3			P- P1
2.1	1566 1571		Seed 27.	" 1	$ \begin{array}{rrrr} 18 & 42 \\ 16 & 32 \end{array} $	15 15	3 13W. 57W.	14.5 14.9	14.0		21.2 18.4		Fair	P1 P
	1572			. 3	16 52	15	1 20W.	15:0	14 8	18.4	18 4			P
1 I.	1581 1601	- 11		. 12	$17 31 \\ 16 56$		2 04W. 1 54W.	17.5 19.5	17.0 19.6	25.0	25.0		Good	H
	1608 1623				$\begin{array}{ccc} 13 & 53 \\ 16 & 27 \end{array}$	14 14	50E. 2 10W.	19.0 18.3	18.5		23·3 23·8	0016	Fair	HP
	1624			22	16 43	13	2 25W.	18.0	18.0	23.8	23.8	10015	Good	P
	$1628 \\ 1629$	- 11		24	$ \begin{array}{rrrr} 15 & 26 \\ 15 & 49 \end{array} $	15	1 15W. 1 35W.	21.5 21.5	21.5	27.5 27.5	$27.5 \\ 27.5$	0015		P P
	1638 1639			··· 26	$ \begin{array}{rrrr} 15 & 51 \\ 16 & 04 \end{array} $	15 8	1 48W. 1 57W.	$\frac{21.0}{20.5}$	$20.5 \\ 21.0$	30.0	30°0 30°0	:0016 :0016	a	H
	1646			. 27	16 20	10	2 20W.	20.8	20.5		23.8	-0014		P
	$ \begin{array}{r} 1647 \\ 1652 \end{array} $			July 1	16 30 15 15	30	2 30W. 1 30W.	20.5 23.6	23.6	25.8	25.8	0015	Fair Cloudy	PP
	1656 1665			. 3	$ \begin{array}{ccccccccccccccccccccccccccccccccccc$	13 10	1 38W. 3 20W.	23.0 24.0	21 9 23·8	$\frac{25.5}{26.4}$	$25^{\circ}5$ $26^{\circ}4$	$001 \\ 0015$	Good	HP
	1674	11			15 11	10	1 50W.	19.0	19.3	21.8	21.8	:0015	Fair	Ĉ
	$1683 \\ 1684$	12	8	" 10 " 10	13 34 13 51	20 13	26W. 40W.	25 0 24 5	24.5 24.5	27 5 27 5	27:5	$^{+0012}_{-0012}$	Good	H
	$ 1692 \\ 1697 $	в	0.1		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	10	3 12W. 2 25W.	$27.7 \\ 20.0$	27.5	$\frac{30.1}{23.1}$	$ \frac{30.1}{23.1} $	0015	Fair	P
	1698			13	15 42	16	2 50W.	19.9	19 6	23.1	23 1	0015		P
	1711 1721			·· 15 ·· 24	16 24 13 05	12 15	3 30W. 48W.	17.5	17.0 24.0	21.6	$21.6 \\ 26.4$	·0015 ·0012	Good	Ċ H
	1722			24	13 21	14	1 03W.	24.0	24.0	26.4	26.4	:0012		H
	$1739 \\ 1748$		9	. 29	15 34 13 38	12 17	3 37W. 2 00W.	26.6 23.3	26 3 23 1	$\frac{30.2}{26.0}$	$\frac{30.2}{26.0}$	'0015 0015	Fair	P P1
	$1749 \\ 1764$		0	" 31 Aug. 5	14 00 15 37	20 15	2 20W. 4 10W.	23·0 22 0	22.6 21.6	$\frac{26.0}{26.9}$	$\frac{26.0}{26.9}$	0015 0015		P1 P
	1773		1 a 11		14 25	20	3 05W.	21.5	20.6	23.6	23.6	0015	Hazy	$\overline{\mathbf{P}}_{1}$
1.11	$1775 \\ 1797$		0	. 20	$ \begin{array}{rrrr} 16 & 25 \\ 12 & 51 \end{array} $	10 16	5 05W. 2 21W.	19 1 19 2	19.0	$\frac{23.6}{23.1}$	23.6 23.1	0015	Good Fair	P1 H
	1798 1805		0	n 20	13 05	10	2 32W. 2 22W.	19.0 21.1	18·8 20 6	$\frac{23.1}{25.8}$	23.0 25.8	0015	Good	HC
	1809		0 11	. 21	15 01	12	4 30W.	18.8	18.4	25.0	25.4	:0015	0	Ċ
	1816 1817			. 24	13 32	15 14	3 03W. 3 17W.	18·5 18·2	18·2 17·5	23·4 23·4	$\frac{23 \cdot 4}{23 \cdot 3}$	-0015 -0015		H
	1827			. 25	13 00	14	2 49W.	20.6	19.3	26.0	26.0	0015		ĉ
	1836 1842			28	13 14	12 12	4 30W. 3 16W.	18·3 18·5	18.0	23.3	23·2 23·3	·0015	Good	Ĉ
	1852 1861			31 Sept. 3	$ \begin{array}{rrrr} 13 & 17 \\ 12 & 50 \end{array} $	15 13	3 30W. 3 15W.	24·0 18 6	24.0 18.8	$\frac{28.0}{21.2}$	28.0 21.1	10015 10015		HP
	1865			. 4	13 27	26	4 05W.	20.5	20.3	23.4	23.4	.0012	Poor	$\hat{\mathbf{P}}_1$
	$\frac{1882}{1894}$		1 1	14 19	12 02	13	4 00W, 3 30W.	18.6 17.5	18.4	$\frac{21}{21}$ $\frac{7}{2}$	$\frac{21}{21}$.0012	Fair	PP
	$1895 \\ 1896$. 19	12 17	15 15	3 45W. 4 00W.	17.3	17.2	21.2	21.2	·0015 ·0015	· · · ·	P
	1897			19	12 50	16	4 20W.	16.8	16.2	21.1	21.0	.0012		P
	1949 1991			Dec. 2	10 41 10 10	17	5 00W. 6 19W.	- 2.0	- 8.2	3.8	3.8	0015	Good Windy	C
	1992			2	10 21	13	6 30W.	- 8.2	- 8.2	-2.0	-2.0	0015		č
						1 C								

α CORON.E BOREALIS, 784.

1907. May 24. G. M. T. 17^b 43^a

Observed by J. S. PLASKETT. Measured by W. E. HARPER.

Wt.	Mean of Settings.	Computed Wave Length.	Corrected wave length.	Normal wave longth.	Displacement in revolutions.	Velocity.	Wt.	Mean of Settings.	Computed Wave Length.	Corrected wave length.	Normal wave leugth.	Displacement in revolutions.	Velocity.
21 21 21 21 21 21 21 21	$\begin{array}{c} 72:9951\\ 72:7321\\ 72:3165\\ 47:6461\\ 45:0940\\ 44:1555\end{array}$	$\begin{array}{r} 4891 \cdot 192 \\ 4861 \cdot 180 \\ 4851 \cdot 453 \\ 4379 \cdot 418 \\ 4340 \cdot 085 \\ 4325 \cdot 981 \end{array}$	187 054	527 634	-340 -580	- 21 00 - 40 02	1111112 23	$\begin{array}{r} 27^+6301\\ 27^+3080\\ 27^+1825\\ 15^+4180\\ 15^+3605\\ 28^+1875\end{array}$	$\begin{array}{c} 4105\cdot162\\ 4101\cdot318\\ 4099\cdot824\\ 3969\cdot627\\ 3969\cdot034\\ 4111\cdot853\end{array}$	440 807	890	-450 -670	- 32°90 - 50°77

Va		7.63
Vd		07
Curvature		- '28

Radial velocity..... -39 8

Observed by J. S. PLASKETT. Measured by W. E. HABPER.

α CORONÆ BOREALIS, 790.

1907. May 29. G. M. T. 15^h 14^m

Wt.	Mean of Settings.	Computed Wave Length.	Corrected wave length.	Normal wave length.	Displacement in revolutions.	Velocity.	Wt.	Mean of Settings.	Computed Wave Length.	Corrected wave length.	Normal wave length.	Displacement in revolutions.	Velocity.
21 21 21 23 - 21	$\begin{array}{c} 73 \cdot 2093 \\ 72 \cdot 8135 \\ 63 \cdot 6051 \\ 48 \cdot 7335 \\ 45 \cdot 2535 \\ 45 \cdot 2502 \end{array}$	$\begin{array}{r} 4870 \cdot 229 \\ 4800 \cdot 908 \\ 4661 \cdot 138 \\ 4395 \cdot 316 \\ 4341 \cdot 252 \\ 4341 \cdot 201 \end{array}$		- 527 	-580 -480	+ 35 78	2 1 ¹ / ₂ 3 1 ² / ₂ 3	$\begin{array}{c} 27 \cdot 7347 \\ 27 \cdot 5259 \\ 27 \cdot 2873 \\ 15 \cdot 64 \\ 15 \cdot 4860 \end{array}$	$\begin{array}{c} 4105 \ 312 \\ 4102 \ 815 \\ 4099 \ 970 \\ 3970 \ 820 \\ 3969 \ 232 \end{array}$	700	1 890		- 59 21 + 47 00

Weighted mean	- 9.29	+41.68
Vd. Curvature		- 10
Radial velocity.		+32.3

α CORON. E BOREALIS, 794.

Radial velocity +43.8

α CORON.E BOREALIS, 800.

1907. May 31. G. M. T. 17^h 18^m

Observed by J. S. PLASKETT, Measured by W. E. HARPER,

~18:00

Mean of Settings.	Computed Wave Length	Corrected Wave Length	Normal Wave Length.	Displacement in revolutions.	Velocity.	Wt.	Mean of Settings.	Computed Wave Length.	Corrected Wave Length.	Normal Wave Length.	Displacement in revolutions	Velocity.
$\begin{smallmatrix} 73&2965\\72&8966\\1\frac{1}{2}&63&6950\end{smallmatrix}$	$4871 \cdot 490 \\ 4862 \cdot 058 \\ 4662 \cdot 143$	2 021	1 527	494	+30 48	11 2	45-3314 45-3203	4341 634 4341 463	1.000	0.634	366	+25.25
						We	Vd	rvature.		- 9 8	87 19	28 · 24

Radial velocity .

*Check measurement.

a CORON.E BOREALIS, 808.

1907. June 8. G. M. T. 16^h 28^m Observed by J. S. PLASEETT, Measured by W. E. HARPER.

Mean of Settings.	Computed Wave Length.	Corrected wave length.	Normal wave length.	Displacement in revolutions.	Velocity.	Wt.	Mean of Settings.	Computed Wave Length.	Corrected wave length.	Normal wave length.	Displacement in revolutions.	Velocity.
$\begin{array}{c}2 & 73 \cdot 6301 \\ 1\frac{1}{2} & 73 \cdot 2099 \\ 2 & 72 \cdot 7779 \\ 1\frac{1}{2} & 54 \cdot 7247 \\ 1 & 53 \cdot 9597 \end{array}$	4880.622 4870.635 4860.446 4494.835 4481.558	117 100	527 400	-410 -000	- 25:30	131515151 111115151 2	53 2825 45 2977 45 2356 27 4985 27 3464	$\begin{array}{r} 4459\cdot 560\\ 4341\cdot 340\\ 4340\cdot 399\\ 4101\cdot 465\\ 4099\cdot 648\end{array}$	224 740	634 890	-410 -150	- 28 29 - 10 97

Weighted	mean	a							24.63
	Va.								$12 \ 26$
	Vd.								.02
	Curv	atu	re				• •		·28
Radia	l velo	cit	v				Ĵ	- :	37 2

α CORONÆ BOREALIS, 813.

1907. June 10. G. M. T. 15^h 23^m

Observed by J. S. PLASKETT. Measured by W. E. HARPER.

Mean of Settings.	Computed Wave Length.	Corrected wave length.	Normal wave length.	Displacement in revolutions.	Velocity.	Wt.	Mean of Settings.	Computed Wave Length.	Corrected wave length.	Normal wave length.	Displacement in revolutions.	Velocity.
$\begin{smallmatrix}1&72.9500\\2&72.7916\\.1&54.0328\\\frac{1}{2}&53.9933\end{smallmatrix}$	4864 · 729 4860 · 995 4482 · 605 4481 · 933	-047 	527	480	- 29~62 +[21.40]	11 1 1 3	$45^{\circ}2570$ 27^{\circ}4836 11^{\circ}9745 11^{\circ}6547	4340 581 4101 565 3933 225 3930 072	584 565 505	634 -890 -825	*050 *325 *320	- 3'45 -23'76 -23'52
						١	Veighted n	nean 7 a			. 1	9-99 2-82 -00

Va . Curva	ture.			$^{+00}_{-28}$

Radial velocity - 33.1

Observed by J. S. PLASKETT. Measured by W. E. HARPER.

 α CORON. Æ BOREALIS, 813 *

1907 June 10. G. M. T. 15^h 23^m

Corrected Displace-Star ment in Revolutions. Mean Corrected Displace-Star ment in Mean Corrected of Star ment in Settings, Revolutions. Velocity. of Velocity. Settings. Settings Wt. Wt. 73.0019 - 33:00 $27^{+}4611$ $27^{+}3334$ $11^{+}9831$ 374610380 - 15-23 12 12 $72^{\circ}8452$ $72^{\circ}4360$ $45^{\circ}2832$ $45^{\circ}2550$ 8543 8494 0020 - 1.50 $\frac{1}{1}$ 11.6415 + 1.77 2404 0017

Weighted	me	aı	ι.												33	
	Va													12	82	
	Vd														100	
	Cu	rv	at	a	re	•									28	
Radia) v	-le	ei	÷	σ.							Ī	-	 2	3.4	

Check measurement.

« CORONÆ BOREALIS, 830.

1907. June 11. G. M. T. 17^b 40^{no}

Observed by Measured by } W. E. HARPER.

Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutious-	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.		Velocity.
21 ⁻¹³ 21 21 1 ⁻¹²	$\begin{array}{c} 73 \cdot 0400 \\ 72 \cdot 9005 \\ 72 \cdot 4707 \\ 45 \cdot 3505 \\ 45 \cdot 2971 \end{array}$	-8714 	······································	- 19 31		$\begin{array}{c} 27 \cdot 5388\\ 97 \cdot 3838\\ 15 \cdot 6378\\ 15 \cdot 5903\end{array}$	4018 4462	·0108 ·0271	- 9.37 -20.97
				1	Veighte				12 59 13 12 14 28

Radial velocity - 26.1

a CORONÆ BOREALIS, S37 (a). Observed by J. S. PLASKETT. Measured by W. E. HARPER.

1907. June 12. G. M. T. 17^h 36^m

Displacement in revolutions. splacement in revolutions. Normal Wave Length. Wave Jorrected V Mean Computed Wave Mean Computed Wave Length Length brund ' Velocity. Velocity of Length Settings. Settings. Wt. ŝ $\begin{array}{c} 73 \cdot 2575 \\ 72 \cdot 9550 \\ 72 \cdot 7939 \\ 54 \cdot 7243 \end{array}$ 4871 377 53 · 2836 45 · 2743 4469.109 260 1.400 140 - 9:37 4864 316 4341.034 500 - 30.85 $45 \cdot 2468$ 27 · 4500 4340 .618 634 110 + 7.59 4494 565 4101 723 4099 937 700 890 - 13 40 4482 729 4484 109 51-0416 880 1.400 1480 [99.01] 2 27 2997

Weighted	mean		- 7.84
	Va		- 13 ' 39
	Va		- 15
	Curvature		- 28
Radis	d velocity.		21.7

a CORON. & BOREALIS, 837 (b).

Observed by J. S. PLASKETT. Measured by W. E. HARPER. 1907. June 12. G. M. T. 17^h 48^m Wave Displacement in revolutions. Wave Displacement in revolutions. Normal Wave Length. Wave Corrected V Mean Mean Computed Wave Corrected Length. Computed Wave Drmal V Length. Velocity. elocity. of of Settings. Length. Settings. Length $\begin{array}{r} 73^+3641 \\ 73^+0748 \\ 72^+9262 \\ 45^+3955 \end{array}$ 4871 496 $\frac{45 \cdot 3637}{27 \cdot 5769}$ $\begin{array}{c|c} 200 \\ +13 \cdot 80 \\ -8 \cdot 74 \end{array}$ 4340.923 834 634 $\begin{array}{r} 4864 \\ 4864 \\ 652 \\ 4861 \\ 152 \\ 4341 \\ 251 \end{array}$ 4102 126 780 890 417 527 080 4.90 27 4205 4100 265 w

eighted	mean				+	2.2	2		
	Va							- 1	3.38
	Vd Curvature								15
									11.6
	l velocity.								

α CORON. E BOREALIS, 845.

1907. June 13. G. M. T. 16^h 32^m Observed by W. E. HARPER.

Wt.	Mean of Settings.	Computed Wave Length.	Corrected wave length.	Normal wave length.	Displacement in revolutions.	Velocity.	Wt.	Mean of Settings.	Computed Wave Length.	Corrected wave length.	Normal wave length.	Displacement in revolutions.	Velocity.
$ \begin{array}{c} 2 \\ 2 \\ 1 \\ 2 \\ 1^{\frac{1}{2}} \end{array} $	$\begin{array}{c} 73 \cdot 5911 \\ 73 \cdot 1412 \\ 73 \cdot 0219 \\ 45 \cdot 4418 \\ 45 \cdot 4224 \end{array}$	$\begin{array}{r} 4875 & 434 \\ 4864 \cdot 776 \\ 4861 \cdot 964 \\ 4341 \cdot 360 \\ 4341 \cdot 068 \end{array}$	817 0 868	527 634		+17 89	$\frac{12}{3}$ $\frac{1}{2}$	$\begin{array}{c} 30\cdot 3756\ 30\cdot 3142\ 27\cdot 6096\ 27\cdot 4418 \end{array}$	$\begin{array}{r} 4135 \ 609 \\ 4134 \ 852 \\ 4102 \ 126 \\ 4100 \ 132 \end{array}$	374 1 921	890	031	+ 2.27

Weighted	mean		+12.68	
				- 13.65
	Vd . Curvatur	e		- 10
Radia	1 velocity			1.4

a CORON.Æ BOREALIS, 850 (a).

1907. June 14. G. M. T. 16^h 39^m

Observed by J. S. PLASKETT. Measured by W. E. HARPER.

											a og mi in inninni			
Wt.	Mean of Settinge.	Computed Wave Length.	Corrected wave length.	Normal wave length.	Displacement in revolutions.	Velocity.	Wt.	Mean of Settings.	Computed Wave Length.	Corrected wave length.	Normal wave length.	Displacement in revolutions.	Velocity.	
2 2 1 11	73 4113 72 9635 72 8279 54 3973	$\begin{array}{r} 4875 \cdot 633 \\ 4865 \cdot 037 \\ 4861 \cdot 845 \\ 4489 \cdot 656 \end{array}$	747	527	220	+ 13 57	11012 2 2	$53^{+}9875$ $53^{+}2781$ $45^{+}2668$ $45^{+}2482$	4470 · 405 4341 · 590	1 046 0 879	·400 ·634		+[43.22] +16.90	
							1	Veighted :	mean			+ 1	15-79	

Va Va Curvature	
Radial velocity	

α CORONÆ BOREALIS, 850 (b).

1907. June 14. G. M. T. 16^h 52^m Observed by J. S. PLASKETT. Measured by W. E. HARPER.

Wt.	Mean of Settings.	Computed Wave Length.	Corrected wave length.	Normal wave length.	Displacement in revolutions.	Velocity.	Wt.	Mean of Settings.	Computed Wave Length.	Corrected wave length.	Normal wave length.	Displacement in revolutions.	Velocity.
	$\begin{array}{ccc} 73 & 4199 \\ 72 & 9631 \\ 72 & 8446 \\ 45 & 2666 \end{array}$	$\begin{array}{r} 4875 \cdot 835 \\ 4865 \cdot 169 \\ 4862 \cdot 238 \\ 4341 \cdot 587 \end{array}$	1 997	527	470	+ 29.00	2 1 2	45°2684 27°4757 27°2770	4341 613 4102 322 4099 954	188 2 290	634 1 890		$^{+38}_{+29}$ $^{23}_{24}$

Weighted	mean	· . + 33*68
-	Va 13 *	92
		12 28
	al velocity	

a CORON-Æ BOREALIS, 861 (a).

1907. June 20. G. M. T. 16^h 05^m

Observed by W. E. HARPER.

Mean of Settings.	Computed Wave Length.	Corrected Wave Length.	Normal Wave Length.	Displacement in revolutions.	Velocity.	Wt.	Mean of Settings.	Computed Wave Length.	Corrected Wave Length.	Normal Wave Length.	Displacement in revolutions.	Velocity.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{r} 4871 \cdot 450 \\ 4864 \cdot 720 \\ 4862 \cdot 267 \\ 4482 \cdot 788 \\ 4470 \cdot 164 \end{array}$	2 467 2 495	1 527 1 400_	940 1.095	+58.00 +[73.25]		45.2526 45.2364 27.4436 27.2416	$4341 \cdot 493 \\ 4341 \cdot 249 \\ 4102 \cdot 363 \\ 4099 \cdot 960$	0 ⁻⁹¹⁸ 2-320	0.634 1.890		+ 19 60 + 31 42
-						W	V	ean a		-15	12	33.95

V _d		15 42	
Curvature		-28	

Radial velocity + 17.1

a CORONÆ BOREALIS, 869 (a).

1907. June 21. G. M. T. 15^b 10^m

Observed by J. S. PLASKETT. Measured by W. E. HARPER.

Wt.		Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.
$2 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 2 \\ 1 \\ 2 \\ 2$	73 4558 72 9987 72 8723 72 4343 54 7447 54 0017	8833	0185	+26.84	1 2 2 1 2	$53^{\circ}1220$ $45^{\circ}2828$ $45^{\circ}2626$ $27^{\circ}4687$ $27^{\circ}2824$	-2574 -4329	0187 0203	+ 19 52 + 17 62

Weighted	mean	_	15.65 .05	-88
Radi	d velocity		+	4.9

1907. June II. G. M. T. 15^h 42^m

Observed by J. S. PLASKETT.

Wb.	Mean of Settings	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.	Wt.	Mean of Settings.	Star	Displace- nient in Revolutions.	Velocity.
2 1 1 2 1 2 1	$\begin{array}{cccc} 73 & 4265 \\ 72 & 9753 \\ 72 & 8572 \\ 72 & 4075 \\ 54 & 7245 \\ 54 & 0007 \end{array}$	-8940		+42 37	$ \begin{array}{c} 1 \\ 2 \\ $	53: 0887 45: 2563 45: 2497 27: 4248 27: 2569		0283 0019	$^{+29}_{+1}$ $^{53}_{65}$
					Weight	ted mean.			29.22

Radial velocity.... +13 2

α CORON.E BOREALIS, 880.

1907. June 25. G. M. T. 15^b 43^m Observed by W. E. HARPER.

Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions,	Velocity.	Wt.	Mean of Settings	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.
2 2 2	49 · 3450 45 · 1892 44 · 2398	2092	0295	- 30 80	12	$rac{27}{27} rac{4294}{27} 2616$	4144	0018	+ 1.20
					Weight	ted mean		_	24-34

Weighted	mean			- 24 '34
	Va			- 16 56
	Vd			10
	Curvature.			- '28
Radia	l velocity			- 41.3

a CORON.E BOREALIS, 888.

	07. June M. T. 18						Observed b Measured	by J. S. Plas by W. E. Ha	CETT. RPER.
Wt.	of	Corrected Star Setting×.	Displace- ment in Revolution×.		Wt.	of	Star	Displace- ment in Revolutions.	Velocity.
1 2 2	$48^{\circ}7894$ $45^{\circ}2958$ $45^{\circ}2880$	2794	0307	- 32 14	12	27:5130 27:3316	5033	0168	+13.57
					Weig	V.d	ature.	18 76 05 28	-28 42

α CORON.E BOREALIS, 892 (α).

1907. June 27. G. M. T. 15^b 25^m Observed by W. E. HARPER.

Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings,		Velocity.
21 2 4544	$\begin{array}{c} 73^+9825\\ 72^-8545\\ 72^+4160\\ 54^-0205\\ 53^+9655\end{array}$	8822	0174	+ 25 20	$2 \\ 2^{\frac{1}{2}} \\ 1 \frac{1}{2}$	45 2750 45 2277 57 8430 57 8172	2363 8237	0124 0190	$-12.98 + (22.91)^*$

Weighted	mean	+12.4	
	Va		-16.98
	Vd		
	Curvature		- 28
Radia	1 velocity		 0.1

"Not used.

DEPARTMENT OF THE INTERIOR

9-10 EDWARD VII., A. 1910

α CORON. E BOREALIS, 892 (b).

Observed by W. E. HARPER. Measured by J. B. CANNON.

Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.		Wt.		Corrected Star Settings.		Velocity.
2 2 2 2 12	73 · 0205 72 · 8582 72 · 4540 57 · 8550 57 · 8570	8479		- 24 52 + (2 4!)*	2 1 2 2 1	$\begin{array}{r} 54^{+}7740\\ 54^{+}0162\\ 53^{+}1495\\ 45^{+}3208\\ 45^{+}2668\end{array}$		0116	
					Weig	hted mean.			-21:47

 Va				~16	-98
V.d					.09
Curvature					28
					_

Radial velocity.... -38 8

*Not used.

1907. June 27. G. M. T. 15^h 25ⁱ

a CORON.E BOREALIS, 912 (a).

1907. July 4. G. M. T. 15^h 38^m Observed by W. E. HARPER.

Wt. of Settings. Set	tar ment in tings. Revolutions.	Velocity.	Wt.	of	Corrected Star Settings.	ment in Revolutions.	Velocity.
$\frac{1}{\frac{1}{2}}$ 73 0125	8823 0175	- 25 39		54.0285 53.1130 45.2818 45.2930	0243 2848		+[62.73] +48.13

Weighted mean	+ 43.58
V.a	18 30
V _d Curvature	- 14
Curvature	- 28
Radial velocity	

a CORON/E BOREALIS, 917 (a).

1907. July 5. G. M. T. 15^h 20^m

Observed	by	J. S.	. P	LAS	KETT.
Measured	by	W.	E.	HA	RPER.

Wt.	Mean of Settings.		Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.
2 1 1 ¹ 2 2 4	$\begin{array}{c} 72 \ 9847 \\ 72 \ 8795 \\ 72 \ 4219 \\ 54 \ 7410 \\ 54 \ 022 \end{array}$		+ 56 - 38	2 2 2 2 ⁴⁰² 2	$\begin{array}{c} 53:1159\\ 45:2826\\ 45:2955\\ 27:4935\\ 27:2942 \end{array}$	2865 4460		+ 49 90
				Woiai	hted mean			48.77

Radial velocity..... +29.9

Observed by J. S. PLASKETT. Measured by W. E. HARPER.

a CORON.E BOREALIS, 919.

1907. July 8. G. M. T. 15^h 36^m

Mean Corrected of Star Displace. Mean Corrected Displace-Star ment in Settings. Revolutions. Wt. Velocity. ment in Wt. of Velocity. Settings, Settings. Revolutions Settings. 72.9772 $1\frac{1}{2}$ $45 \cdot 2712$ 2697·0210 +21.98 $72^{\circ}8492$ $72^{\circ}4058$ $45^{\circ}2852$ 8372 0185 +2688 $27 \cdot 5298 \\ 30 \cdot 9330$ 5265 .0300 +34.1627:3258

a CORON.E BOREALIS, 927.

Observed by J. S. PLASKETT. Measured by W. E. HARPER.

-1900		Jui	y 9.	
G.	М.	Τ.	14	32 ^{ma}

Wt.	Mean of Settings.		Displace- ment in Revolutions.	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displace- meut in Revolutions.	Velocity.
2 1 2 2 1 2	$\begin{array}{c} 72.9662\\ 72.8618\\ 72.4106\\ 54.7306\\ 53.9888\\ 53.1078\end{array}$	·8562	0375	+[30.81]	2 1 ¹⁰⁻⁴² 2 2	$\begin{array}{r} 45 \cdot 2862 \\ 45 \cdot 2380 \\ 27 \cdot 4734 \\ 27 \cdot 3064 \\ 57 \cdot 8628 \\ 57 \cdot 8178 \end{array}$	2354 4889 8428	10076	+(51.62)

Veighted n	iean,	- 11	. 43	
V 1	a			-19.03
	d			- '08
U	urvature.			- '28
Radial	velocity			- 8.0

*Not used.

α CORONÆ BOREALIS, 927.**

Observed by J. S. PLASKETT. Measured by W. E. HARPER.

Wt.	Mean of Settings.	Corrected Displace Star ment in Settings. Revolution	Velocity.	Wt.	Mean of Settings.	Corrected Displace- Star ment in Settings. Revolution	Velocity.
2 1 1 ¹ 1 ² 1 ² 1 ² 2	72-9680 72-8569 72:4102 57-8736 57-8040 54-7205	8503 031 8675 067	6 + 45.91 $5 + (81.27)^{*}$	1 1 2 1 2 1 2 3	$\begin{array}{c} 53 \cdot 9622 \\ 53 \cdot 0917 \\ 45 \cdot 2603 \\ 45 \cdot 2267 \\ 27 \cdot 4465 \\ 27 \cdot 2774 \end{array}$	9697 0131 2500 0013 4910 0053	

Weighted	mean	+16.25	
	Va		~ 19.09
	Vd		- '08
	Curvature.		- '28
Radia	l velocity		- 2.9

**Check measurement. *Not used.

α CORON.E BOREALIS, 936.

1907.	July	10,
G. M.	T. 1	4h (16m

Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity
2 2 1 2	$\begin{array}{c} 73^{+}4385\\ 72^{+}9873\\ 72^{+}8610\\ 45^{-}2865\end{array}$	8370	0183	- 26 58	2 2 1 2	45:3045 45:2722 27:4904 27:2917	2916 2693 5206	mean .0317 0241	+28.99
				W	ighted	mean			30.48

Observed by J. S. PLASKETT. Measured by J. B. CANNON.

+ 6.3

a CORON.E BOREALIS, 936*

190	7.	а	uly	7.10	
G	M		T.	14	h 06*

Ve.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings		Velocity.
2 -2 2 2 1	$\begin{array}{r} 73{}^{\circ}0197\\ 72{}^{\circ}8963\\ 72{}^{\circ}4588\\ 45{}^{\circ}3296\\ 45{}^{\circ}3064\end{array}$	8854	0206	+ 29 89	2 2 2 2 2	27.5361 27.3413 12.0294 11.6198	4419 9169		+25-43 +49-06
				W	eighted	$\begin{array}{c} mean \dots \\ V_a \dots \\ V_d \dots \\ Curvature \end{array}$		105	25 76

a CORON-E BOREALIS, 939 (a).

1907. July 12. G. M. T. 16^h 25^m

Observed by J. S. PLASKETT, Measured by W. E. HARPER,

Radial velocity....

Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.		Velocity,
2 1 2 2	$72 \cdot 9412$ $72 \cdot 7980$ $72 \cdot 3774$ $45 \cdot 2876$		0013	+ 1 89	$1\frac{1}{2}$ 1 2	$45 \cdot 2344$ 27 \cdot 4394 27 \cdot 2776	2304 4837	-0183 -0035	- 19·16 - 3·16

	mean		
	V.a		
	Vd		. 23
	Curvature		'28
			second statements and statements
Radial vol	onity		99.6

25a - 344

a CORON.E BOREALIS, 941 (a).

G. M. T. 1	5h 25m

Observed by J. N. TRIBBLE. Measured by W. E. HARPER.

Wt.	Mean of Settings.	Corrected Star Settings:	Displace- ment in Revolutions.	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.
	$\begin{array}{c} 72.9571 \\ 72.7891 \\ 72.3883 \\ 54.0101 \end{array}$	7967	0220	- 31 94	$\frac{1}{2}$	$53 \cdot 9164 \\ 45 \cdot 2737 \\ 45 \cdot 2395$	9216 2494	·0350 ····· 0010	-[36.57] + 1.05
				W	eighted	mean			9.95

0	Va		-19.64
	Vd		- 20
	Curvature		- '28
D . 3. 1	1		00.1

a CORON. E BOREALIS, 944 (a).

1907. July 16. G. M. T. 14^h 37^m

Observed by J. N. TRIBBLE, Measured by W. E. HARPER.

Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.		Velocity.
$2 \\ 1 \\ 1^{\frac{1}{2}} 2$	$72^{+}9844$ $72^{+}8686$ $72^{+}4200$ $45^{+}2950$	8938	0290	+42.08	2 2 [‡]	45 · 2506 27 · 4712 27 · 3130	·2292 ·4048	0095 -0078	- 9 [.] 94 - 6 57

Va	-19.98
<u>Y</u> d	- 11
Curvature	- '28

Radial velocity..... - 20.6

α CORON. E BOREALIS, 944 (a)*.

1907. July 16. G. M. T. 14^h 37^m

Observed by J. N. TRIBBLE. Measured by J. B. CANNON.

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$2^{2}_{1}_{1}_{2^{2}}$	$53^{\circ}1311$ $45^{\circ}3033$ $45^{\circ}2588$ $27^{\circ}5206$ $27^{\circ}3153$	22!+0 -4520	0097 0394	-10.12 +54.20
		Vd Curvat	ture		19 98 11 28

*Check measurement.

a CORONÆ BOREALIS, 951 (a).

1907. July 18.
 G. M. T. 14^h 50^m

Observed by J. N. TRIBBLE, Measured by J. B. CANNON,

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.	Wt.	of	Star	Displace- ment in Revolutions.	Velocity.
	2 2 2	$\begin{array}{c} 73^+0275\\72^-8907\\72^+4593\\54^+6480\end{array}$	8738	0090	- 13 06	2 2 ⁴⁶	$53 \cdot 9282$ $53 \cdot 0075$ $45 \cdot 1272$ $45 \cdot 0922$	0274	·0576	

×α	-20.10
Vd	14
Curvature	- '28

a CORON, E BOREALIS, 951 (b).

1907 July 18.
 G. M. T. 15^h

Observed by J. N. TRIBR[†]E. Measured by J. B. CANNON,

Wt. Mean of Settings.	Corrected Star Settings. Revolutions.	Velocity. V	Vt. Mean of Settings.	Corrected Displa Star ment Settings. Revoluti	in Velocity.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8616 -0032		$\begin{array}{cccccccccccccccccccccccccccccccccccc$		264 [30 38] 008 + 8 35

Weighted	mean	- 0.31
	Va	= 20.16
	Vd	- 14
	Curvature	~ '28

a CORONÆ BOREALIS, 956 (a).

1907. July 20. G. M. T. 16^b 07⁼ Observed by J. S. PLASKETT. Measured by W. E. HARFER.

1 7	2.9731							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		0448		2 1 3	45 3021 27:5473 27:3199	2932 -5493 	-0445 0621	$^{+46}_{+54-03}$
			W	eighteo	V_a V_d V_d Curvature		'22	- 53 · 08

α CORONÆ BOREALIS, 973 (b).

1907. Aug. 1. G. M. T. 14⁶ 20^{co} Observed by W. E. HARPER. Measured by J. B. CANNON.

Wt.	Mean of Settings.	Corrected Displace- Star ment in Settings. Revolutions	Velocity.	Wt.	Mean of Settings,	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.
2) 2)	73 0342 45 3153	·····		1/2	45 · 2752	-2335	0052	- 5148
				- V	d			- 14

α CORON.E	BOREAL	L1S, 978.
-----------	--------	-----------

1907. Aug. 3. G. M. T. 13^h 02^m Observed by J. S. PLASKETT. Measured by W. E. HARPER.

Wt. Mean Setting	Star	Displace- ment in Revolutions.	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings,	Displace- ment in Revolutions.	Velocity .
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6 8224 4		+ 5.37	$\frac{2}{1}{2}$	$\begin{array}{c} 45 \cdot 2426 \\ 27 \cdot 4524 \\ 27 \cdot 2940 \end{array}$	·2434 ·1800	-0054 -0165	- 5.65 - 6.40

weigni	tea r	nes	m.										- 3	08	
	1	a.											~.20		
	1	(a												08	
	- 0	Jur	va	tu	n	2								$^{-28}$	
														-	

Radial velocity... - 24.4

α CORONÆ BOREALIS, 986.

1907. Aug. 6. G. M. T. 16^h S8^m Observed by Measured by W. E. HARPER.

Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.
$2 \\ 1 \\ 1^{\frac{1}{2}} \\ 1$	72.929772.802572.365753.9672	8363	0176 0434	+25.57 +[50.08]		54.6972 53.0647 45.2377 45.2437	2877	0390	+ 34 00
						Va Vd Curva	iture	- 20 96 - 27 - 28	-29-78

DEPARTMENT OF THE INTERIOR

9-10 EDWARD VII., A. 1910

a CORONÆ BOREALIS, 986.*

1907. Aug. 6.

Observed by W. E. HARPER.

Wt.	Mean of Settings,	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.
2 1 2 1	$\begin{array}{c} 72.9624 \\ 72.8494 \\ 72.3988 \\ 54.0288 \\ 54.0288 \end{array}$	72.8504	0317	+46.06	$1 \\ 1 \\ 1 \\ 1 \\ 3 \end{bmatrix}$	54 0154 45°2934 45°2948	54:0019 45:2850	·0553 ·0363	+[63:93] +38:00

Radial velocity +19.7

Observed by W. E. HARPER.

*Check measurement.

a CORON.E BOREALIS, 1006.

1907. Aug. 12. G. M. T. 16^h 36^m

Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.	
2 -494 21 21	72-8216 72-6801 72-2641 53-9477	72.8664	0016		1 2 1	53 9092 45 2372 45 2140	53 9903 45°2504	·0205 ·0117	+[23.66] +12.25	
Weighted mean. + 7 28 Va 20 76 Curvature										

a CORON. E BOREALIS, 1014.

1907. Aug. 15. G. M. T. 15^h 09^m Observed by W. E. HARPER

Radial velocity ... - 14.0

Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	ment in	Velocity.
21 -12 21 22	72.8396 72.4290		0075		2 2 2 1 2	53 9737 53 1065 45 2707 45 2197	53 · 9813 45 · 2226	0115	+[13.24] +16.81
				W	eighted	1 mean		+13.84	00.20

Radial velocity - 7.3

α CORONÆ BOREALIS, 1017.

1907. Aug. 22.

1907, Aug. 22. G. M. T. 15 ^h Measured by W. E. HARPER.										
Wt.	Mean of Settings	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.	
11	45.7844				4	45.7576	45 2448	.0061	+ 6.37	
						V.s		. + 6.37	19:90	

Radial	velocity				-14.0
	Curva	ature			- '28
	V d				- 20
	Va				-19'90

a CORON. E BOREALIS, 1022.

1907. Aug. 23. G. M. T. 14^b 46^m

Observed by J. N. TRIBBLE, Measured by W. E. HARPER,

Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity,
2 1 2	$56^{\circ}6754$ $54^{\circ}0042$ $53^{\circ}1214$		0262			45 · 2730 45 · 2628	45*2634	0247	+25.78
						Vs Va		-19 80	25 78

Vd.... Curvature..... 24

Radial velocity..... + 5.5

Radial velocity.

a CORON.Æ BOREALIS, 1026.

1907. Aug. 27. G. M. T. 12^h 06^m

 $\left. \begin{array}{l} {\rm Observed \ by} \\ {\rm Measured \ by} \end{array} \right\} W. \ E. \ H_{\rm ARPEB}. \end{array}$

+30.0

Wt.	Mean of Settings.	Corrected Star Settings.		Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.
2 2 2 2 18	$\begin{array}{c} 73 & 0.220 \\ 72 \cdot 93.44 \\ 72 \cdot 4630 \\ 54 \cdot 0.444 \\ 54 \cdot 0000 \end{array}$	72 · 9232 53 · 9844	0584	+84.74 +[16.80]	2 2 1 ⁸ 2 1 ⁸ 2	45 · 2880 27 · 4870 27 · 2840 45 · 2840	27 4500 45 2696	0281	+32.50 +32.36
					Ň	a d		. – 19°35 . – 19	49.87

a CORON.Æ BOREALIS, 1032.

1907. Sept. 6. G. M. T. 13^h 43^m Observed by J. N. TRIBBLE. Measured by J. B. CANNON.

Wt.	Mean of Settings.		place- ent in lutions.	y. Wt.	Mean of Settings.	Corrected Star Settings.		Velocity.
2 2 2 2 1 2 2 1 2 2	$\begin{array}{r} 73\cdot0155\\72\cdot8710\\72\cdot4595\\54\cdot7134\\53\cdot9360\\53\cdot0852\end{array}$	72-8631 53-9634	0017 - 2	6] 1	$\begin{array}{r} 45^\circ 2322\\ 45^\circ 1848\\ 27^\circ 3558\\ 27^\circ 1818\\ 11^\circ 7425\\ 11^\circ 4098\end{array}$	45 2273 27 4204 11 8493	0114 0078 0021	- 13.05 - 6.77 - 1.57
				Weig	hted mean.			4.50

Va				-17:34
Vd .				- '25
Curva	ture			- '28

Radial velocity - 22.4

a CORON.E BOREALIS, 1037.

1907. Sept. 12. G. M. T. 14^h 40^m

Observed by J. N. TBIBBLE. Measured by W. E. HARPER.

Wt.	Mean of Settings.	Corrected Star Settings.		Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.
2 11 2 2	72 9383 72 8230 72 3715 45 1433	72 8950	0302	+ 43 .82	$\frac{1}{2^2}$	45 · 1575 27 · 3467 27 · 0843	45 2878 27 5090	-0491 -0%i4	+ 51 · 20 + 83 · 52
				1	Veighte	d mean		+	52.93

 V_a - 16:20 V_d - 28 Curvature - 28

Radial velocity

a CORON.Æ BOREALIS, 1047.

1907. Sept. 18. G. M. T. 12^h 50^m Observed by J. N. TRIBBLE. Measured by W. E. HARPER.

+36.2

Wt.	Mean of Settings	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.
$2 \\ 1 \\ 1\frac{1}{2}$	$73^{\circ}1431$ $72^{\circ}9930$ $72^{\circ}5787$	72.8596	.0052	- 7.55	$\frac{2}{1}$	45:3762 45:3585	45 2560	0173	+18 06
			· · · · ·		1	a			14 94 25 28

Radial velocity..... - 10°2

α CORON.E BOREALIS, 1048.

1907.	Set	ot. 1	8.
G. M.	T.	13 ^h	16^{m}

Observed by J. N. TRIBBLE. Measured by W. E. HARPER and J. B. CANNON.

Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.
2 2 2 2 1 2	73:0030 72:8640 72:4433 57:8023 57:7850 54:7113	72 8695	0047		2 2 1 1 2	$\begin{array}{c} 53 & 9418 \\ 53 & 0866 \\ 45 & 1702 \\ 45 & 1457 \\ 27 & 3310 \\ 27 & 1905 \end{array}$	53 9718 45 2339 27 3870	0048	+ [2.30] - 5.00 - 22.22
					v	a d			14 94 28

Radial velocity

α CORON. Æ BOREALIS, 1060.

1907. Sept. 20. G. M. T. 13^h 35^m Observed by W. E. HARPER. Measured by J. B. CANNON.

- 19.6

Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.
2 2 2 2 3	73 0090 72 8367 72 4435 54 6952 53 8872	72.8376	0272	- 39°46 -[39°82]	2 2 1 2 2	53.0627 45.2140 45.1690 27.3412 27.1682	45 2286 27 4192	0101	-10.54 + 5.73
					Weigh	ted mean.			10.05

Weighted mean,	-10.05
Va	-14.55
Vd + '02	
Curvature	- 28
Radial velocity	- 91.8

DEPARTMENT OF THE INTERIOR

9-10 EDWARD VII., A. 1910

a CORON.Æ BOREALIS, 1083.

1907. October 1. G. M. T. 13^h 44^m

Observed by W. E HARPER. Measured by J. B. CANNON.

Wt.	Mean of Settings.			Velocity.	Wt.	Mean of Settings.	Star	Displace- ment in Revolutions.	Velocity.
2 2 2 2 2 1 2 2 2	$\begin{array}{r} 73\cdot 0679\\72\cdot 9652\\72\cdot 5002\\54\cdot 8129\\54\cdot 0989\\53\cdot 1867\end{array}$	72.9078	0430	+ 62.39	2 10-44 2 1 2	$\begin{array}{r} 45\cdot 3609\\ 45\cdot 3694\\ 27\cdot 5686\\ 27\cdot 3664\\ 12\cdot 0432\\ 11\cdot 6482\end{array}$	45 2857 27 4492 11 9027		+ 49 07 + 31 · 77 + 38 · 42
					·	a		- 12.21 - 28	43 25

a CORON. E BOREALIS, 1084.

1907. Oct. 1. G. M. T. 13^h 56ⁱⁿ Observed by W. E. HARPER. Measured by J. B. CANNON.

Radial velocity + 30.5

Wt.	Mean of Settings.		Displace- ment in Revolutions.	Velocity.	Wt.			Displace- ment in Revolutions.	Velocity.
2 2 ⁴	72-9948 72-8698 72-4285	72.8852		+29 60	2	$\begin{array}{c} 45 \cdot 2968 \\ 45 \cdot 2912 \end{array}$	45 2680	0298	+ 30 59
					v	hted mean . a urvature		- 12 21 - 28 - 28	30.27

a CORONÆ BOREALIS, 1393.

1908. March 9. G. M. T. 22^h 08^m Observed by W. E. HARPER.

Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.
2 1 ¹ 3 2 3 2	54.0542	53 9269 45 2141	0429	-[49.38] - 25.68	$2\frac{1}{2}$ 3 $1\frac{1}{2}$ 3	$27^{+}5088$ $27^{+}3499$ $11^{+}9342$ $11^{+}5892$	27 4056 11 8522	·0070 ·0008	- 6.08 + 0.60
					Vd Curva	ature		. – 105	- 16 98

α CORONÆ BOREALIS, 1393*.

1908, March 9, G. M. T. 22^b 08^m

Observed by W. E. HARPER. Measured by C. R. WESTLAND.

Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.	Wt.	Mean of Settings.	Star	Displace- ment in Revolutions.	Velocity
0101010101	$\begin{array}{c} 54 \cdot 7344 \\ 53 \cdot 9241 \\ 53 \cdot 1045 \\ 45 \cdot 2517 \\ 45 \cdot 1867 \end{array}$	53 9316	0382	- [43.97]		$27 \cdot 3712$ $27 \cdot 2184$ $11 \cdot 7835$ $11 \cdot 4603$	27 3992 11 8301		- 11.63 - 15.95
	-			W	Vg			+ 16 98	

Vg +16.98	
V _d	
Curvature	- '28
Radial velocity	- 5.9

Note.-(Mg. line omitted). * Check measurement.

a CORON.E BOREALIS, 1393.* Observed by W. E. HABPER.

1908. March 9. G. M. T. 22^h 08^m

Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.
	54 7502 53 9539 53 1290 45 2797		0285	-[32.80]	$1^{\frac{1}{3}}_{\frac{1}{2}}$	$45^{+}2112$ 27 $^{+}3758$ 27 $^{+}2307$	45:2051 27:3827	-0336 -0299	- 35 · 08 - 25 · 95

Weighted mean+16.98	$-31^{\cdot}43$
V _d	02
Curvature	- 28
Radial velocity	- 14.8

* Check measurement.

a CORON E BOREALIS, 1402.

1908. March 16. G. M. T. 21^h 02ⁱⁿ

Wt.	Mean of Settings.	Corrected Star Settings.		Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Re olutions.	Velocity.
1111	$54^{\circ}7845$ $53^{\circ}9802$ $53^{\circ}1475$ $45^{\circ}2690$	53 9412 45 1960	0286		$\begin{array}{c}1\\2\\1\\2\\2\end{array}$	27 5345 27 3906 11 9963 11 7098	27 3875 11 7940	0251	-21.79

Va	+20.74	-31 39
Vd		00
Curvature		- 28

Radial velocity - 16 9

α CORON.E BOREALIS, 1493,

1908, April 15.
 G. M. T. 19^h 18^m

Observed by J. S. PLASKETT. Measured by W. E. HARPER.

Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.
$2 \\ 1 \\ 1 \\ 2$	$\begin{array}{c} 45^{+}2842\\ 45^{+}2361\\ 27^{+}4702\\ 27^{+}3135\end{array}$	45 2254 27 4039	0133 0087	- 13 88 - 7 55	2 1 1 2 2	15.5026 15.5417 11.9500 11.6149	15 4377 11 8426	0356 0088	27.55 - 6.59

Weighted mean	5.85	- 13.89
Vd		- :04
		- '28
Radial velocity		- 8.1

a CORON.Æ BOREALIS, 1493.*

1908. April 15. G. M. T. 19^h 18^m Observed by J. S. PLASKETT. Measured by W. E. HARPER,

-28

Wt. Mean Settings	Corrected Star Settings. Revolutions.	Velocity.	Wt.	Mean of Settings.	Star	Displace- ment in Revolutions.	Velocity.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	72:8678 0030	+ 4.35	2 112 2	45 · 2267 27 · 4633 27 · 3090	45.2191 27.4012	0196 0114	- 20 · 46 - 9 · 89
			1	a		- 5.85	9.85

÷	Che	ek 1	nea	51170	men	ŧ.

Radial velocity..... - 4 3

Curvature....

α CORON.E BOREALIS, 1565.

1908, June 1, G. M. T. 18^b

Observed by T. H. PARKER. Measured by W. E. HARPER.

Wt.	Mean of Settings.	Corrected Star Settings.		Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.
2 2 2 2 1 2 2 1 2 2 1 2 2 2	$\begin{array}{c} 72.9938\\ 72.8490\\ 72.4310\\ 54.7550\\ 54.0110\\ 53.1370\\ 45.2605\end{array}$	72 8648 53 9920 45 2355	0000 0222 0032	± 0.00 +[25.56]	212 22 22 22 2	$\begin{array}{r} 45:3014\\ 27:4890\\ 27:3107\\ 15:5442\\ 15:4900\\ 11:9275\\ 11:6009\end{array}$	11.8338	0125 0105 0176	+10°85 - 8°13 - 9°13
					V	a			$ \begin{array}{r} 2 \cdot 59 \\ 10 \cdot 43 \\ \cdot 20 \\ \cdot 28 \end{array} $

Radial velocity.

a CORON. E BOREALIS, 1566. Observed by Measured by T. H. PARKER.

1908, June 1, G. M. T. 18^h 42^m

Wt.	of	orrected Star ettings.	Displace- ment in Revolutions.	Velocity.	Wt.	Mean of Settings.	Star	Displace- ment in Revolutions.	Velocity.
2 2 2 2	45.2461 4	45 2267	0129	- 12.52	2 ¹²	27.4641 27.3000	27 4107	.0019	- 1'64

Weighted	me	an									10.31
V_a .										1	10.43
Va .											· 20
Curva	ເຊັ່ານ	e.									-28

1908. June 3. G. M. T. 16^h 32^m

a CORON.Æ BOREALIS, 1571. Observed by J. S. Plaskett. Measured by W. E. HARPER.

9.0

Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.
2 1 2 2 2 2	$\begin{array}{c} 73 \cdot 0427 \\ 72 \cdot 9099 \\ 72 \cdot 4822 \\ 45 \cdot 2815 \\ 45 \cdot 2437 \end{array}$	72 9760 45 2358	0112	+ 16 25		27:4899 27:3115 15:5378 15:4900	27 4253 15 4464	0127	+11.02

Weighted mean	 . + 2.40	
Va		-11.05
V d		- :07
Curvature.		- '28

Radial velocity . . .

509

a CORONÆ BOREALIS, 1572.

1908. June 3. G. M. T. 16^h 52^m Observed by J. S. PLASKETT. Measured by C. R. WESTLAND.

Wt. s	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.
10 21 21 21 21 21	$54^{\circ}7690$ $53^{\circ}9965$ $53^{\circ}1417$ $45^{\circ}3179$ $45^{\circ}2866$ $27^{\circ}4982$		0008	+ [1.16]	2 1 2 2 2 2 2 2 2	27 · 3380 15 · 5674 15 · 5266 11 · 9767 11 · 6410	15 4394 11 8434	0339	- 26 24

Weighted mean												3.98
Va											-	11.02
Vd												.08
Curvature,.												-28
Padial voloaity												15.4

a CORON. E BOREALIS, 1572 *.

1908. June 3. G. M. T. 16^h 52^m Observed by J. S. PLASEETT. Measured by T. H. PARKER.

Wt.	Mean of Settings.	Corrected Star Settings.		Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.		Velocity.
$ \begin{array}{c} \frac{1}{2} \\ 2 \\ 2 \\ 1 \\ 2 \\ 2 \end{array} $	$\begin{array}{c} 53^\circ 9962\\ 54^\circ 7700\\ 45^\circ 3195\\ 45^\circ 2856\\ 43^\circ 5855\\ 27^\circ 5096\end{array}$	45.2396	·0021 ·0009 ·0027	-[2:41] + 0:93 + 2:34	$\begin{array}{c} 2\\ 1\\ 2\\ 2\\ 2\\ 2\end{array}$	27^{+3409} 15^{+5560} 15^{+5286} 11^{+9830} 11^{+6401}	15 4260 11 8501	0473	- 36°61 - 9°74

Veig																				11
)	(a																		11	02
1	(d -																	-		105
- 0	urv	a	tu	r	è.															28

* Check measurement.

α CORONÆ BOREALIS, 1581.

1908, June 5, G. M. T. 17⁶ 31^m

Observed by W. E. HARPER Measured by

Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.
$2 \\ 1 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ $	$\begin{array}{c} 72 & 9780 \\ 72 \cdot 8406 \\ 72 \cdot 4202 \\ 45 \cdot 2545 \\ 45 \cdot 2387 \end{array}$	72 8688	0040	+ 5.80	$\begin{array}{c}1\\2\\1\\2\end{array}$	27 - 3975 27 - 2433 11 - 8584 11 - 5145	27 4026 11 8491	0100	8 63 - 1 72

Weighted mean + 7.06	
Va	-11.65
V g	- '14
Curvature	- '28
	the state is a summary
Radial velocity	- 5:0

α CORON. E BOREALIS, 1601.

1908. June 12. G. M. T. 16^h 56^m Observed by W. E. HARPER.

Wt.	Mean of Settings.	Corrected Displace- Star ment in Settings. Revolutions	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.
2 1 1 2 1	$72^{+}9665$ $72^{+}8330$ $72^{+}4060$ $54^{-}7068$ $53^{-}9350$	· · · · · · · · · · · · · · · · · · ·	+ 4.35	$ \frac{2}{2} \frac{2}{1^{\frac{1}{2}}} 2 $	$53 \cdot 0720$ $45 \cdot 2242$ $45 \cdot 2410$ $27 \cdot 4228$ $27 \cdot 2322$	45 2568 27 4370	0181 0244	+28.18 +21.27

Weighted									+20	58
Va								13.29		
								-12		
Curvs	ture							28		

a CORON.E BOREALIS, 1608.

1908. June 17. G. M. T. 13⁵ 53⁽⁶⁾

$\left. \begin{array}{l} {\rm Observed \ by} \\ {\rm Measured \ by} \end{array} \right\} W, \ E. \ HARPER. \end{array}$

Wt.	Mean of Settings.	Corrected Star Settings,	Displace- ment iu Revolutious.	Velocity.	Wt.	Mean of Settings.	Star	Displace- ment in Revolutions.	Velocity.
2 1 2 2 1 2	$\begin{array}{c} 72^{+}9809\\ 72^{+}8361\\ 72^{+}4112\\ 54^{+}7169\\ 53^{+}9506\\ 53^{+}0941\end{array}$	72 8662		+ 2.03	2 2 1 2 1 2 1 2	$\begin{array}{r} 45 \cdot 2620 \\ 45 \cdot 2390 \\ 27 \cdot 4892 \\ 27 \cdot 2621 \\ 11 \cdot 9270 \\ 11 \cdot 5379 \end{array}$	45 2506 27 4739 11 8964	0119 0613 0450	+ 12 · 42 + 53 · 21 + 33 · 70
				1	č	hted mean.		.02	-23:76

a CORON.Æ BOREALIS, 1623.

1908. June 22.
 G. M. T. 16^h 27^m

Observed by J. S. PLASKETT. Measured by J. B. CANNON.

Wt.	of	Corrected Displace- Star ment in Settings. Revolutions.	Velocity.	Wt.	Mean of Settings.	Corrected Displace- Star ment in Settings. Revolutions.	Velocity.
2 2 2 2 2 1	$54 \cdot 7556$ $53 \cdot 9719$ $53 \cdot 1320$ $45 \cdot 2819$ $45 \cdot 2571$		-[16 00] -12 93	1 3 1 2	27 4580 27 2899 11 9219 11 5853	27 4130 0004 11 8454 0060	

W	eighte	d ı	ne	ū	ι.								2	ŝ	7				
	Va																l6':	16	
	Vd.																	16	
	Curv	au	ure													_		20	

Radial velocity - 12

a CORON.E BOREALIS, 1623.

1908, June 22, G. M. T. 16⁵ 27^m

Observed by J. S. PLASKETT. Measured by J. B. CANNON.

Wt.	Mean of Settings.		Displace- ment in Revolutions.		Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.
	$\begin{array}{c} 73.0044\\ 72.8548\\ 72.4483\\ 54.7536\\ 53.9681\\ 53.1381\end{array}$	72 8598 53 9531	0050	- 7.25 [19.22]	2 1 3 1 2	$\begin{array}{r} 45^{+}3000\\ 45^{+}2624\\ 27^{+}4675\\ 27^{+}2952\\ 11^{-}9274\\ 11^{-}5790\end{array}$	45 2364 27 4195 11 8594	0023 0024 0080	
					Weig	hted mean.			1.44

A7			-16.16
Va			- 16
V _d Curvature.			- 10
Curvature.			- 20
Radial velocity			-18 0

*Check measurement.

a CORON. & BOREALIS, 1624.

1908. June 22. G. M. T. 16^h 40^m

Observed by J. S. PLASKETT. Measured by W. E. HARPER.

Wt.	Mean of Settings.	Corrected Star Settings. Revolutions.	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocit y
$2 \\ 1 \\ 2 \\ 2 \\ 1 \\ 1 \\ 2 \\ 2$	54 7898 54 0178 $53^{\circ}1597$ $45^{\circ}3251$ $45^{\circ}2880$	53-9700 0002 45-2365 0023	±[0.00]	$2^{\frac{1}{2}}$ $1^{\frac{1}{2}}$ $2^{\frac{1}{2}}$	$\begin{array}{c} 27 & 4840 \\ 27 & 3131 \\ 11 & 9423 \\ 11 & 5583 \end{array}$	27 · 4175 11 · 8612	0049	+ 4.34 + 7.34

Weighted	m	38	n								э	0		
V_a														16.16
V.a														16
Curva	itu	re												28

Radial velocity - 12.6

a CORON.E BOREALIS, 1628.

1908. June 24. G. M. T. 15^h 26^m

Observed by J. S. PLASKETT, Measured by J. B. CANNON,

Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.
	$53^{\circ}9417$ $53^{\circ}1536$		0698		$1 \\ 1 \\ 1 \\ 1 \\ 2 \\ 2$	27^{+4598} 27^{-2908} 11^{+9065} 11^{+5432}	11 8705	0032	+ 14 30

Weighted	m	ea	r							- 8	3-	ŝ	38		
Va															16.62
Vd															·07
Curve	ttu	re													28
												-		-	

25a - 351

a CORON-E BOREALIS, 1629.

1908. June 24. G. M. T. 15^h 49^m

Observed by J. S. PLASKETT. Measured by J. B. CANNON.

Wt. Mean of Settings.	Corrected Displace- Star ment in Settings. Revolutions.	Velocity.	Wt.	of	Corrected Star Settings.		Velocity.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	72:8698 6050 53:9939 0241	+ [27 74]	$2 \\ 1 \\ 1$	$\begin{array}{r} 45\cdot 3268\\ 45\cdot 2795\\ 27\cdot 4625\\ 27\cdot 3063\\ 11\cdot 9286\\ 11\cdot 5643\end{array}$	45-2263 27-4000 11-8711	0124 0126 0197	-12.95 -10.93 +14.77

Radial velocity	- 17.0
Curvature	- '28
Vd	- 11
Va	- 16.66
weighted mean	0.00

a CORONÆ BOREALIS, 1638,

1908. June 26. G. M. T. 15^h 51^m

Observed by W. E. HARPER. Measured by J. B. CANNON.

Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.		Velocity.
$21 \\ 12 \\ 12 \\ 12 \\ 2$	$\begin{array}{c} 73\cdot0800\\ 72\cdot9496\\ 72\cdot5498\\ 54\cdot8334\\ 54\cdot0511\\ 53\cdot2007\end{array}$	72 8476 53 9601	0172		11/2 2 3 2 3	$\begin{array}{r} 45 & 3098 \\ 45 & 3565 \\ 27 & 4673 \\ 27 & 3236 \\ 11 & 9232 \\ 11 & 5652 \end{array}$	45 2238 27 3933 11 8627	0149 0193 0113	- 15.56 - 16.80 + 8.46

Weighted	me	ar			-10.00
Van					-14.50
Vd					11
Curva	atur	e.			- 28

1908. June 26th. G. M. T. 15^h 51^m

a OORON.Æ BOREALIS, 1639. Observed by W. E. HARPER. Measured by J. E. CANNON.

Wt.	Mean of Settings.	Corrected Star Settings.		Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.
$1 \\ 1 \\ 1 \\ 1^{\frac{1}{2}} \\ 1$	$\begin{array}{c} 73 \cdot 0632 \\ 72 \cdot 9112 \\ 72 \cdot 5014 \\ 54 \cdot 7831 \\ 54 \cdot 0126 \end{array}$	72.8562	0086	- 12°48 +[8°98]	22112112122	$\begin{array}{c} 53^\circ 1470\\ 45^\circ 3037\\ 45^\circ 2656\\ 27^\circ 4499\\ 27^\circ 2799\end{array}$	$45 \ 2376 \ 27 \ 4169$		- 1.15 + 3.73
			_		Va Vd Curvi	ature			14 81 11 28

α CORON. Æ BOREALIS, 1646,

Observed by J. S. PLASKETT. Measured by J. B CANNON

1908, June 27. G. M. T. 16^h 20^m

Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.	Wt.	Mean of Settings	Corrected Star Settings	Displace- ment in Revolutions.	Velocity.
1010000 101000 102 102	$\begin{array}{c} 73^{\circ}0138\\72^{\circ}8550\\72^{\circ}4403\\54^{\circ}7419\\53^{\circ}9706\\53^{\circ}0627^{\circ}(?)\end{array}$	53.9751	0096	- 13·92 +{ 6 17]	$\begin{smallmatrix}1\\2\\1^{\frac{1}{2}}\\3\\2\\3\end{smallmatrix}$	$\begin{array}{r} 45^\circ2252\\ 45^\circ2694\\ 27^\circ4472\\ 27^\circ2648\\ 118531\\ 11^\circ5348\end{array}$	43 2282 27 4290 11 8231	0105 0164 0283	- 10 95 + 14 23 21 19
				W	Va				7:79 14:98 11

Va									- 1	14.98
Vd										11
Curvature										28
										_
Radial velocity										23.2

α CORON.Æ BOREALIS, 1646*.

1908. June 27. G. M. T. 16^h 20^m Observed by J. S. PLASKETT. Measured by J. B. CANNON.

Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.
$\begin{smallmatrix}1&&&\\&1\frac{1}{12}\\2&&\\&2\\2\\2\end{smallmatrix}$	$\begin{array}{c} 73^{\circ}0388\\ 72^{\circ}8666\\ 72^{\circ}4615\\ 54^{\circ}7608\\ 54^{\circ}0203\\ 53^{\circ}1283\end{array}$	72.8466 54.0038	0182	- 26 · 41	21123 1123 13 13	$\begin{array}{r} 45^\circ 2924\\ 45^\circ 2510\\ 27^\circ 4381\\ 27^\circ 2754\\ 11^\circ 9032\\ 11^\circ 5531\end{array}$	45 2325 27 4092 11 8575	0062 0034 0061	- 6 41 - 3 05 + 5 29

Weighted mean	- 4.91
V.a	-14.98
<u>V</u> <i>d</i>	- 11
Curvature	- '28
Radial velocity	- 20.3

* Check measurement.

α CORON.Æ BOREALIS, 1646.*

1908.	Ju	1 e 2	7.
G. M.	Τ.	16^{h}	20/

Observed	pr.	J.	S. 1	PLASSETT.	
Measured	hi	11.	F	HADDED	

Wt.	Mean of Settings	Corrected Star Settings.		Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment iu Revolutions.	Velocity.
1	$\begin{array}{c} 72 \cdot 9272 \\ 92 \cdot 7747 \\ 73 \cdot 3578 \\ 54 \cdot 6545 \\ 53 \cdot 8697 \\ 53 \cdot 0153 \end{array}$	72 8581	0067		2 2 1 2 1 2	$\begin{array}{r} 451872\\ 451430\\ 273550\\ 271731\\ 117667\\ 114398\end{array}$	45 2294 27 4286 11 8341	0093 0160 0173	- 9 71 -13 89 -12 96
				We	Va				5 44 14 98 11

⁻ Check measurement.

Radial velocity

a CORONÆ BOREALIS, 1647.

1908. June 27. G. M T. 16^h 40^m Observed by J. S. PLASKETT. Measured by J. B. CANNON.

20.8

Wt.	Mean of Settings.	Corrected Star Settings. R	Displace- ment in tevolutions.	Velocity.	Wt.	Mean of Settings.	Star	Displace- ment in Revolutions.	Velocity.
1 1 2 1 2 1 2	$\begin{array}{c} 73.0577\\ 72.9089\\ 72.5000\\ 54.7978\\ 54.0373\\ 53.1731\end{array}$	72 8589	*0059 	- 8.56	$2 \\ 1 \\ 1 \\ 2 \\ 1 \\ 2 \\ 2 \\ 1 \\ 2 \\ 2 \\ $	$\begin{array}{r} 45 & 3388 \\ 45 & 3041 \\ 27 & 4771 \\ 27 & 3349 \\ 11 & 9502 \\ 11 & 6053 \end{array}$	45:2387	0000 0235	

Weighted mean	- 6 59
	-14.03
Vd	- '16
Curvature.	- 128

Kadiai velocity

a CORON.E BOREALIS, 1652.

1908. July 1. G. M. T. 15^h 15^m

Observed by J. S. PLASKETT. Measured by J. B. CANNON.

-17 78 -07 28

Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.
1 1 2 2 2	$\begin{array}{c} 72\ 6304\\ 72\ 1836\\ 54\ 4896\\ 53\ 7812\\ 52\ 8512 \end{array}$	72:8917	0269	+ 38 03 + [79:30]	1 2 1 2 1 2 1 2	$\begin{array}{r} 45^{\circ}0548\\ 45^{\circ}0254\\ 27^{\circ}2465\\ 27^{\circ}0134\\ 11^{\circ}7141\\ 11^{\circ}2829\end{array}$	45 · 3038 27 · 4801 11 · 9391	0651 0675 0877	+ 67 . 96 + 58 . 59 + 64 . 69
					Weig	hted mean.			60.02

Radial velocity - 41.9

α CORON.E BOREALIS, 1656.

1908. July 3. G. M. T. 15⁶ 17^m

Wt.

Observed by W. E. HARPER. Measured by J. B. CANNON.

Mean of Settings.	Star	Displace- ment in Revolutions.	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity
54:7645 54:0431 53:1362 45:2983 45:3190	54 0196 45 29 43	10498 	+[57.32] +58.05	2 ^{1/3} 2 ^{1/2} 2 ¹	$27 \cdot 4941$ $27 \cdot 2599$ $11 \cdot 8955$ $11 \cdot 5115$	27 4806 11 8895	0680	+ 59 02

Weighted mean	
V.a	 8.18
Vd	11
Curvature	-28
Radial velocity	- 30:0

Radial velocity

a CORON.E BOREALIS, 1657.

1908. July 3. G. M. T. 15^h 30^m

Observed by W. E. HARPER. Measured by J. B. CANNON.

Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.
12401-122	$\begin{array}{c} 54 \\ 53 \\ 9471 \\ 53 \\ 0497 \\ 45 \\ 2008 \end{array}$	54 0011	0313		1 2 1 2	$\begin{array}{c} 45 \cdot 2097 \\ 44 \cdot 1900 \\ 27 \cdot 3961 \\ 27 \cdot 1843 \end{array}$	45 2817 27 4586	0430	+44 89 +39*93

Weighted mean Curvaturé...

Radial velocity.....

α CORONÆ BOREALIS, 1665.

1908. July 6. G. M. T. 16^h 50^m

Observed by T. H. PARKER. Measured by J. B. CANNON.

+23.8

 ± 12.0

Wt.	Mean of Settings.	Corrected Star Settings.	Displace ment in Revolutions.	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions,	Velocity.
1 1 2 2 2	$\begin{array}{c} 72.9602 \\ 72.8398 \\ 72.3996 \\ 54.6898 \\ 53.9145 \\ 53.0501 \end{array}$	72-8876	0228	+33.08		$45 \cdot 2173$ $45 \cdot 2240$ $27 \cdot 4083$ $27 \cdot 2265$ $11 \cdot 8914$ $11 \cdot 4830$	45 2668 27 4290 11.9154	0281 0164 0640	+29 34 +14 24 +47 93

Weighted mean . +31.18 18:72 Curvature 28

Radial velocity

19 G.	08. July 4 M. T. 14	3. h 59m	α COJ	RONÆ BO	REAL			WARD VII., J. B. Canno	
Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity
1 1 1 2 1 2 2 2	$\begin{array}{c} 72:9993\\72:8626\\72:4371\\54:7314\\53:9855\\53:1071\end{array}$	72 8721 53 9920	0222	+ 10 60	$21^{1}_{1^{1}_{0}^{2}}$	$\begin{array}{r} 45^\circ2746\\ 45^\circ2392\\ 27^\circ4564\\ 27^\circ2810\\ 11^\circ9283\\ 11^\circ5472\end{array}$	45 2382 27 4227 11 8883	0005 0065 0369	- 0.52 + 5.64 +27.63

V.a				-19.05
Vd				- 11
Curvatu	ıгe			- '28

Radial velocity - 5'4

				Ra	dial ve	locity			5.4
19 G	08. July 8 . M. T. 15	i. h 11 ^m	a COl	RON.Æ BO	REAL	18, 1674. 0 M	bserved by leasured by	J. B. Can	SON .
Wt.	Mean of Settings.	Corrected Star Settings.		Velocity.	Wt.	of		Displace- ment in Revolutions.	Velocity.
2 1 2 2 1	54 · 7242 53 · 9536 53 · 0947 45 · 2616 45 · 2583		0013		1 2 1 1 2 2	$27^{+}4496$ $27^{-}2631$ $11^{+}8926$ $11^{+}5351$	27 4334 11 8651	0208	+18.05 +10.26

W	ie	ht	eć		n	ie	2	æ										4		1	8	9	8						
	1	ľα.																									1	9.02	
	- 1	°d -							÷																			11	
	C	hur	x	8	h	11	e																					$^{-28}$	
																			-	-			-	-	-	-	-		

Radial velocity - 0.2

a CORON.E BOREALIS, 1683.

1908. July 10. G. M. T. 13^h 34^m

Observed by W. E. HARPER. Measured by J. B. CANNON.

Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.
1 1 2 1 1 2 1	$\begin{array}{c} 73 \cdot 0309\\ 72 \cdot 8884\\ 72 \cdot 4603\\ 54 \cdot 7682\\ 54 \cdot 0451\end{array}$	72 8694	0046	+ 6.67	$22^{\frac{1}{2}}$ 1 2	53 1334 45 3129 45 2667 27 4832 27 3188	45 2274 27 4112	0113 0014	-11.79 - 1.22

Weightee	l m	eø	n												- 1	
<u>V</u> a															19	
Va .																.0
Curv	atu	re														2
Radial v	olo	it.	v												2	1.13

α CORON.E BOREALIS, 1684.

1908, July 10, G. M. T. 13^h 57^m

Observed by W. E. HARPER. Measured by J. B. CANNON.

Wt. Mean of Settings.	Star	Displace- ment in Revolutions.	Velocity,	Wt.	Mean of Settings.	Star	Displace- ment in Revolutions.	Velocity.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	53 9399	0089	-[34:41]	2111222	$\begin{array}{r} 45\cdot 3009\\ 45\cdot 2694\\ 27\cdot 4744\\ 27\cdot 4744\\ 27\cdot 2995\\ 11\cdot 9048\\ 11\cdot 5759\end{array}$	45-2421 27-4221 11-8363	0034 0095 0151	+ 3.54 + 7.81 ~ 11.30

Weighted	mean		- 4.08	
Va				-19.38
V d				- '04
Curva	ature			- 28
		-		

Radial velocity ~15.1

a CORON. Æ BOREALIS, 1697.

1908. July 13.
 G. M. T. 15^h 36^m

Observed by J. S. PLASKETT. Measured by J. B. CANNON. Mean Corrected Displace-Mean Corrected Displace-Wt. Wt. Velocity. of Star ment in Settings. Settings. Revolutions. Velocity. of Settings. Star ment in Settings. Revolutions. 2 11 11 11 45 2596 $72 \cdot 9735$ $72 \cdot 8268$ $72 \cdot 4159$ 0040 $^+$ $3^{+}86$ -13^{+}11 72 8608 - 5.80 45.2284 45 2424 0037 $27 \cdot 4218$ $27 \cdot 2712$ $11 \cdot 8656$ 27 3975 0130 +[14 96] 53 9828 11 8236 0278 -20.8253.0846 11.5495

Weighted	mea	n.										8.32
Va												19.79
Vd												.19
Curva	ture										-	-28
D - 3 - 1 1										-		00.0

a CORON.E BOREALIS, 1698.

1908. July 13 G. M. T. 15, 42%

Observed by J. S. PLASKETT. Measured by J. B. CANNON.

Wt.	Mean of Settings.	Corrected Star Settings.	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.
1 1 2 1 2 1 2	$\begin{array}{c} 73 & 0061 \\ 72 \cdot 8661 \\ 72 \cdot 4437 \\ 54 \cdot 7384 \\ 53 \cdot 9504 \\ 53 \cdot 1069 \end{array}$	72 8691 53 9544	+ 6 24	$2 \\ 1^{\frac{1}{12}}_{\frac{1}{2}}$ $2^{\frac{1}{2}}_{\frac{1}{2}}$ $1 \\ 2$	$\begin{array}{r} 45 \cdot 2766 \\ 45 \cdot 2388 \\ 27 \cdot 4391 \\ 27 \cdot 2716 \\ 11 \cdot 8994 \\ 11 \cdot 5450 \end{array}$	45 2358 27 4144 11 8619	0029 0018 0105	
								19 79

Va														19	79	
V _d Cu	rv:	stu	re												28	
Radial	X.e	due	ite											18	4	

α CORON.Æ BOREALIS, 1711.

1908. July 15. * G. M. T. 16^h 24^m Observed by J. B. CANNON. Measured by J. B. CANNON.

Wt. Mean of Settings.	Corrected Displace- Star Settings. Velocity.	Wt. Mean of Settings.	Corrected Displace- Star ment in V Settings. Revolutions.	elocity.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	72:8647 0001 - 15 53:9900 0292 +[33:61]	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		+ 3.44 95 .34

Weighted	n	ie:	u	i.							3		9			
¥a															20.05	
V.d															22	2
Curve	134	ar													- 28	•

Radial velocity - 16-7

α CORON.E BOREALIS, 1721.

1908. July 24.

м. –	T.	13^{n}	13.5	

Observed by W. E. HARPER. Measured by J. B. CANNON.

Wt.	Mean of Settings.	Corrected Displace Star ment in Settings. Revolutions.	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.
1 1 2 1 2 2	$\begin{array}{c} 73\cdot 0620\\ 72\cdot 9251\\ 72\cdot 5018\\ 54\cdot 7950\\ 54\cdot 0282\\ 53\cdot 1587\end{array}$	72 9711 0063 53.9742 0044	+ [5 06]	$2 \\ 1 \\ 1 \\ 2 \\ 1 \\ 1$	$\begin{array}{r} 45^+3273\\ 45^+3040\\ 27^+5037\\ 27^+3187\\ 11^+9502\\ 11^+5759\end{array}$	45-2503 27-4317 11-8812		+12.10 +15.57 +20.97
				V	a			20.68

Va Vd				$20^{+}68$ -04
Curvature				 · · 28

Radial velocity....

a CORON. # BOREALIS, 1722.

1908. July 24. G. M. T. 13^h 21^m

Observed by W. E. HARPER. Measured by J. B. CANNON.

Wt.	Mean of Settings.		Displace- ment in Revolutions.	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.
1 1 2 1 2 2 4	$\begin{array}{c} 73^{\circ}0441\\ 72^{\circ}9200\\ 72^{\circ}4735\\ 54^{\circ}7704\\ 54^{\circ}0159\\ 53^{\circ}1390\end{array}$	53-9881	0224	+32 50	$21\frac{1}{1}\frac{1}{2}$ 1 2 1 2	$\begin{array}{r} 45 \cdot 3021 \\ 45 \cdot 3022 \\ 27 \cdot 4681 \\ 27 \cdot 2830 \\ 11 \cdot 9141 \\ 11 \cdot 5446 \end{array}$	45 2738 27 4298 11 8766	0851 0172 0252	$+36^{\circ}64$ +14^{\circ}93 +18^{\circ}87
					Weig	hted mean		- 20 68	26.25

Va	
V_d '04	
Curvature '28	

a CORON.E BOREALIS, 1739.

1908. July 29. G. M. T. 15^b 34^m

Observed by J. S. PLASKETT. Measured by J. B. CANNON.

Wt.	Mean of Settings.			Velocity.	Wt.	Mean of Settings.	Star	Displace- ment in Revolutious.	Velocity.
2 2 2 2 1 2	$\begin{array}{c} 73 & 0080 \\ 72 \cdot 8406 \\ 72 \cdot 4370 \\ 54 \cdot 7106 \\ 53 \cdot 9688 \\ 53 \cdot 0733 \end{array}$	72.8439 54.0038	0209	- 30'33	2 1 2 2 1 2 2 1 2	$\begin{array}{r} 45^\circ2276\\ 45^\circ1618\\ 27^\circ3167\\ 27^\circ1926\\ 111^\circ7853\\ 11^\circ4290\end{array}$	45-2078 27-3607 11-8623	0309 0519 0109	- 32 · 26 - 45 · 14 - 8 · 16
					Weig	hted mean			29.78 20.68

Va		- 20.68
Va		- 24
Curvature.		- '28

a CORON.E BOREALIS, 1739.*

1908. July 29. G. M. T. 15^b 34^m

Observed by J. S. Plaskett. Measured by T. H. PARKER. Mean Corrected Displace-Star Settings. Revolutions. Mean Corrected Displace-Velocity. Wt. Star ment in Settings. Revolutions. Velocity. Wt. of of Settings. Settings. $\begin{array}{c} 73 \cdot 0854 \\ 72 \cdot 9133 \\ 73 \cdot 5142 \\ 54 \cdot 7789 \\ 54 \cdot 0256 \end{array}$ 0250 $\begin{array}{r} 45 \\ 45 \\ 2452 \\ 27 \\ 3747 \\ 27 \\ 2632 \\ 11 \\ 8647 \end{array}$ $\frac{45}{27}, \frac{2173}{3581}$ 72 8398 -36.27 0214 - 22.34 $2 \\ 2 \\ 2$ 1 2 1 0545 -36'290205 2 53 9903 ÷[25.59] 11.8697 0183 53 1456 11.5022

Weighted mean.		18'01
Va		20.91
Va		'22
Curvature		*28
Th. 11. 1. 1. 1.		

*Check measurement.

a CORON-Æ BOREALIS, 1748.

1908. July 31. G. M. T. 13^h 38^m Observed by T. H. PARKER. Measured by J. B. CANNON.

Wt. Mean	Corrected Displace-	peity, Wt. of	Corrected
of	Star ment in		Star
Settings.	Settings. Revolutions.		Settings. Revolutions. Velocity
$\begin{array}{cccc} 1 & 73^{+0081} \\ \frac{1}{2} & 72^{+8616} \\ 1 & 72^{+4501} \\ 2 & 54^{+}7326 \\ 1 & 53^{+}9342 \end{array}$			45.2039 0348 - 36.33

Weighted mean	19.53
V.a	20.98
Vd Curvature	14
Radial velocity	40.9

α CORONÆ BOREALIS, 1749.

1908. July 31. G. M. T. 13^h 38^m Observed by T. H. PARKER. Measured by J. B. CANNON.

Wt.	Mean of Settings	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.	Wt.	of	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.
$\begin{smallmatrix}1&&&\\&1\\&2\\&1\\&2\\&1\\&2\end{smallmatrix}$	$\begin{array}{c} 73\cdot0321\\72\cdot8767\\72\cdot4611\\54\cdot7470\\53\cdot9854\\53\cdot1145\end{array}$	72.8559 53.9816		- 11 ·91 +[13 · 58]		$\begin{array}{c} 45 & 2724 \\ 45 & 2269 \\ 27 & 4144 \\ 27 & 2523 \\ 11 & 8314 \\ 11 & 4999 \end{array}$	45 2281 27 4088 11 8384	0106 0038 0160	- 11 07 - 3 30 11 98
				w	eighted	mean			9:46

weighted mean				
Va				-20.98
Va				- 14
Curvature .				- '28
Radial velocity.				- 30.9

1908, Aug. 5, G. M. T. 19845

Observed by J. S. PLASKETT, Measured by J. B. CANNON.

		Revolutions.	Star Settings.	of Settings.	Wt.	Velocity.	Displace- ment in Revolutions.	Corrected Star Settings.	Mean of Settings.	Wt.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	+ 52 25 + 63 74	0602	45 2913 27 4728 11 9365	45 2899 27 4955 27 2595 11 9402	2 1 2 2 1 2	+91.85 +[115.33]	10633	72.9281	72 9250 72 4451 54 7359 54 0637	1 1 2 1 2

Va Va Vi Curvature 20 96 23 28

Radial velocity..... 37.0

a CORONÆ BOREALIS, 1773.

1908. Aug. 7. G. M. T. 14⁶ 25^m

Observed by T. H. PARKER Measured by J. B. CANNON

Wt. Of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.	Wt.	Mean of Settings	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	54.0281		$\pm [67 \ 10]$	$2^{\frac{10}{12}}_{2}$	27 5854 27 3236 12 0157 11 5833	27 5087 11 9397	0961	+ 83 41 + 66 14

Weighted mean	69.12
• Va	- 20:91
Vd	- 19
Curvature	- 28
Radial veloaity	17.7

a CORON.Æ BOREALIS, 1775.

Wt.	Mean of Settings .	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.	Wt.		Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.
1 1 2 1 2	$\begin{array}{c} 73 \cdot 0279 \\ 72 \cdot 9227 \\ 72 \cdot 4568 \\ 54 \cdot 7633 \\ 54 \cdot 0103 \\ 53 \cdot 1363 \end{array}$	72.9056	0190	+ 58 20	211/12 1 2 1 2 1 2	$\begin{array}{r} 45 \\ 45 \\ 3045 \\ 45 \\ 3313 \\ 27 \\ 5296 \\ 27 \\ 3107 \\ 12 \\ 0051 \\ 11 \\ 5821 \end{array}$	45 3004 27 4692 11 9305	0566	+ 64 41

Weighted mean	+ 58 54
V.a	20.91
<u>V</u> <i>d</i>	19
Curvature	- 28

a CORON.E BOREALIS, 1798.

1908, Aug. 20, G. M. T. 13^h 05^m Observed by T. H. PARKER. Measured by J. B. CANNON.

Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.	Wt.	Mean of Settings	Star	Displace- ment in Revolutions.	Velocity.
$1\\1\\2\\1\\1$	$73 \cdot 0365$ $72 \cdot 8789$ $72 \cdot 4693$ $54 \cdot 7634$ $54 \cdot 0034$		0120	- 17 '41 +[14 '16]	2 2 1 2 2	$\begin{array}{c} 53 & 1332 \\ 45 & 2876 \\ 45 & 2516 \\ 27 & 4337 \\ 27 & 2794 \end{array}$	$\begin{array}{c} 45 & 2376 \\ 27 & 4011 \end{array}$		- 1.15 - 9.98

Weighted mean			- 7.42
Va			20 11
Va			16
Curvature			. 28
Radial velocity			01:50

a CORON.Æ BOREALIS, 1798*

1908. Aug. 20. G. M. T. 13, 05; Observed by T. H. PARKER, Measured by J. B. CANNON,

Wt.	Mean of Settings.	Corrected Displace- Star ment in Settings. Revolutions.	Velocity.	Wt.	of		Displace- ment in Revolutions.	Velocity.
$2^{\frac{1}{2}}_{2}^{\frac{1}{2}}_{2}^{\frac{1}{2}}_{2}$	$\begin{array}{r} 73\cdot 0.592\\ 72\ 9039\\ 72\ 4926\\ 54\cdot 7899\\ 54\cdot 0289\\ 53\cdot 1569\end{array}$	72 8549 0099 53 9824 0126	+[14:50]		$\begin{array}{r} 45\cdot3184\\ 45\cdot2919\\ 27\cdot4682\\ 27\cdot3016\\ 11\cdot9196\\ 11\cdot5585\end{array}$	45 2471 27 4132 11 8679	.0008	+8.76 +0.52 +12.36

Weighted mean		- 4.13	
Va			-20.11
Vd			- 16
Curvature			- '28
Radial velocity			- 16:4

* Check measurement.

a CORON.E BOREALIS, 1809.

1908. Aug. 21. G. M. T. 15^h 01^m Observed by J. B. CANNON. Measured by J.

Wt.	Mean of Settings.	Displace- ment in Revolutions.	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.		Velocity.
1 1 2 2 2	$\begin{array}{c} 73 \cdot 0208 \\ 72 \cdot 8951 \\ 72 \cdot 4582 \\ 54 \cdot 7565 \\ 54 \cdot 0087 \\ 53 \cdot 1219 \end{array}$		+ 27 13 +[30 62]	$21 \\ 1 \\ 2 \\ 1 \\ 1$	$\begin{array}{r} 45 \cdot 2855 \\ 45 \cdot 2607 \\ 27 \cdot 4744 \\ 27 \cdot 2787 \\ 11 \cdot 9107 \\ 11 \cdot 5418 \end{array}$	15 2488 27 4424 11 8762	0101 0298 0248	+ 10°54 + 25°87 + 18°58

Weighted	mean				18.54	
	Va					-20'00
	Va					- '25
	Curv	atu	re.			- '28
Radial ve	locity				 	- 2:00

a CORON-E BOREALIS, 1816.

1908,	Aug.	24.	
G. M.	T. 13	3h 12m	

Observed by W. E. HARPER Measured by J. B. CANNON

Wt.	of	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.	Wt.	of	Star	Displace- ment in Revolutions.	Veloci ty .
2 2 2	$\begin{array}{c} 54.7497\\ 51.0267\\ 53.1212\\ 45.2902 \end{array}$	54.0182	·····	- [55 71]	$1 \\ 2^{\frac{1}{2}}$	45:3087 27:5152 27:2950	45 2922 27 4672	· 0535 · 0546	+55 85 +47 38
				We	eighted	mean		- 19:63 +	53.03

 	1.1				 00.0
	Curvature			·28	
	Vd			· 20	

Observed by W. E. HARPER. Measured by J. B. CANNON.

α CORON. E BOREALIS, 1817.

1908. Aug. 24. G. M. T. 13^h 27^m

Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.
1 1 2 1 2 1 2	$\begin{array}{r} 73.0283\\72.9461\\72.4579\\54.7488\\54.0279\\53.1145\end{array}$	72.9283 54 0227		+92.13	$\begin{array}{c}2\\1\\2\\2\\2\end{array}$	$\begin{array}{r} 45 \cdot 2794 \\ 45 \cdot 2977 \\ 27 \cdot 5221 \\ 27 \cdot 2603 \\ 11 \cdot 9477 \\ 11 \cdot 5295 \end{array}$	45 2920 27 5085 11 9257	0533 0959 0743	+55.64 +83.24 +55.65

Weighted	mean	+68.45
	Va 19.63	
	V _d	
	Curvature 25	
Radial vel	locity	+ 48.3

tradial velocity

α CORON. E BOREALIS, 1827.

1908. Aug. 25. G. M. T. 13^h

Observed by Measured by J. B. CANNON.

Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.
2 1 2 2	$54 6765 \\ 53 9543 \\ 53 0434 \\ 45 2046$	54.0213	0315	+[59.28]	1 2 ¹ 2	45 2167 27 4307 27 2226	45 · 2857 27 · 4547	·0470 ·)421	+ 49 ° 06 + 36 ° 54
				We		Va Vd		- 19 51 - 17 - 28	46-56

Radial velocity + 26 f

a CORON.E BOREALIS, 1836.

1908. Aug. 27. G. M. T. 14⁶ 34⁶ Observed by J. B. CANNON Measured by J.

Wt.	Mean of Settings.		Velocity.	Wt.	Mean of Settings	Corrected Star Settings.		Velocity.
1 1 2 1 2	$\begin{array}{c} 73\cdot0226\\ 72\cdot8899\\ 72\cdot4579\\ 54\cdot7549\\ 53\cdot9889\\ 53\cdot1241\end{array}$	72 8770 53 9763	17:70	$21^{-12}_{-12}^{-12}_{-12}_{-2}^{-12}_{-2}$	$\begin{array}{r} 45 \cdot 2911 \\ 45 \cdot 2916 \\ 27 \cdot 4900 \\ 27 \cdot 2740 \\ 11 \cdot 9036 \\ 11 \cdot 5409 \end{array}$		-0497	- 14 00
2				2	11 5409			

Radial velocity 10 0

a CORON.E BOREALIS, 1841.

1968. Aug. 28. G. M. T. 13^h Observed by J B. CANNON Measured by J B. CANNON

Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.
1 1 2 1 1	73 0259 72 8870 72 4641 45 2921 45 2848	72 8701 45 2663	0053	+ 7 69 + 28 81	2 1 2 1 2	$\begin{array}{c} 27^{+}5064\\ 27^{+}2849\\ 11^{+}9382\\ 11^{+}5626\end{array}$	27 4684 11 8832	0558	- 48 43

Weighted mean \dots V_d \dots V_d \dots $Curvature$	19-03 19 28	
Radial velocity		+ 5.4

« CORON.E BOREALIS, 1842.

1908. Aug. 28, G. M. T. 13⁶ 14¹⁰

Observed	by	1 1	

Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings	Displace- ment in Revolutions.	Velocity.	
1 1 2 2 2	$\begin{array}{c} 73 & 0.092 \\ 72 \cdot 8733 \\ 72 \cdot 4448 \\ 54 \cdot 7462 \\ 54 \cdot 0117 \\ 53 \cdot 1214 \end{array}$	72 8738 54 0051	0353	+13 06 +[39 63]	2 1 2 2	$45 \cdot 2578 \\ 45 \cdot 2838 \\ 27 \cdot 4705 \\ 27 \cdot 2762 \\ 11 \cdot 9601 \\ 11 \cdot 5452 \\ \end{array}$	45 2696 27 4412 11 9223	0309 0286 0709	+ 33 26 + 24 82 + 53 10	
	Weighted mean 30 60 Va									

α CORON. E BOREALIS, 1852.

1908. Aug. 31. G. M. T. 13^h 17^m Observed by W. F. HARPER. Measured by J. B. CANNON.

Wt.		Corrected Star Settings. Displace- ment in Revolutions	Velocity.	Wt.	of	Star	Displace- ment in Revolutions.	Velocity.
$1 \\ 1^{\frac{1}{2}} \\ 1^{\frac{1}{2}} \\ 1^{\frac{1}{2}} \\ 1^{\frac{1}{2}} $	$73^{\circ}0311$ $72^{\circ}8743$ $72^{\circ}4637$ $45^{\circ}2785$ $45^{\circ}2366$	72 8536 0112 45 2317 0070	- 12.89	$1 \\ 2 \\ 2^{\frac{1}{2}}$	$27 4462 \\ 27 2515 \\ 11 8686 \\ 11 5056$	27 4423 11 8702	0297 0188	

Weighted mean	. + 3.66
Va	- 18:53
Vd	
Curvature	
Radial velocity	

a CORON.E BOREALIS, 1852*.

1908. Aug. 31. G. M. T. 13^h 17^m Observed by W. E. HARPER. Measured by J. B. CANNON.

Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.	Wt.	of		Displace- ment in Revolutions.	Velocity.
1 1 2 1	$\begin{array}{c} 78\cdot0047\\72\cdot8550\\72\cdot4409\\45\cdot2570\\45\cdot2188\end{array}$		0050	- 7.25	21-1-1-2 21-1-1-2 2	27 4278 27 2347 11 8520 11 4840	27 4397 11 8750	·0271 ·0236	+23.52 +17.68

Weighted	mean .			4 05	
					$-18^{+}53$
	Vd				- 22
	Curvati	ıre.			~ 28
Radial vel	ocity				- 15.0

* Check Measurement

α CORON.E BOREALIS, 1861.

1908. Sept 3. G. M. T. 12^h 50^m Observed by J. S. PLASKETT. Measured by J. B. CANNON.

Wt.	Mean of Settings.	Corrected Displ Star ment Settings. Revolu	in Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.
1 1 2 1	$\begin{array}{r} 73 \cdot 0328 \\ 72 \cdot 8769 \\ 72 \cdot 4697 \\ 45 \cdot 2913 \\ 45 \cdot 2442 \end{array}$		0113 - 16·40 0122 - 12·74	2 1 2 1 2	$\begin{array}{c} 27 & 4429 \\ 27 \cdot 2866 \\ 11 \cdot 8911 \\ 11 \cdot 5592 \end{array}$	27 4029 11 8395	·0097 0119	- 8.42 - 8.91

Weighted	mean			- 11.35
	Va			- 18:03
	Vd			- '21
	Curvat	ure.		- '28
Radial ve	locity			- 29.9

a CORONÆ BOREALIS, 1865.

1908. Sept. 4. G. M. T. 13^h 27^m

Observed by T. H. PARKER. Measured by J. B. CANNON.

Wt.	of	Star	Displace- ment in Revolutions.	Velocity.	Wt.	of	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.
1 21 1 21	72'4571		0045	+ 6.53	2 1 2 2 4 2	$\begin{array}{r} 45 & 2962 \\ 45 & 2687 \\ 27 & 2456 \\ 27 & 2949 \\ 11 & 9038 \\ 11 & 5651 \end{array}$	45 2461 27 3976 11 8461	0074 -0150 -0053	+ 7 73 - 10 02 - 3 97

	Va.										- 1	7.87
	Vd											-27
	Curva	285	re									28
Radial ve	locity											14:7

α CORONÆ BOREALIS, 1882.

1908. Sept. 14. G. M. T. 12^h 51^m Observed by J. S. Plaskett. Measured by J. B. Cannon.

Wt.	Mean of Settings	Corrected Star Settings	Displace- ment in Revolutions.	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displace- nient in Revolutions.	Velocity	
$1\\1\\2\\2\\4\\2$	$\begin{array}{c} 75 \cdot 0319 \\ 72 \cdot 9093 \\ 72 \cdot 4692 \\ 54 \cdot 7787 \\ 54 \cdot 0006 \\ 58 1472 \end{array}$	53 9646		+ 31 '78	$2 \\ 1 \\ 2^2 \\ 1^{\frac{1}{2}} \\ 2^2 \\ 1^{\frac{1}{2}} \\ 2$	$\begin{array}{r} 45 & 3247 \\ 45 & 3219 \\ 27 & 5253 \\ 27 & 3257 \\ 12 & 0035 \\ 11 & 6135 \end{array}$	45 2708 27 4463 11 8975	0321 0337 0451	+33 51 +29 25 +33 78	
Weighted mean										

	Va	- '23	
	Curvature.	- '28	
Radial ve	locity	+ 16.3	

DEPARTMENT OF THE INTERIOR

9-10 EDWARD VII., A. 1910

α CORON. E BOREALIS, 1883.

1908. Sept. 14. G. M. T. 13^h 07^m

Observed by J. S. PLASKETT. Measured by J. B. CANNON.

Wt,	Mean of Settings	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.	Wt.	of	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.
51 - 10 10	$\begin{array}{c} 54 & 7551 \\ 54 & 0166 \\ 53 & 1201 \\ 45 & 2864 \\ 45 & 2824 \\ 27 & 4653 \end{array}$	54 0060 45 2696 27 4323		+[40, 57] +32, 26 -17, 10	2	27 2799 15:5465 15:4467 11:9188 11 5523	15 4985 11 8737		+ 19 50 - 16 70
				W	eighted	Vd		- 15 95 - 23 - 28	22.85

Radial velocity.... - 6.4

α CORON. E BOREALIS, 1894.

1908. Sept. 19. G. M. T. 12^h 02^m Observed by J. S. Plaskett. Measured by J. B. Cannon.

Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.	Wt.	Mean of Settings	Corrected Displace- Star ment in Settings. Revolutions.	Velocity.
2) ⁻¹² 2) 2) ⁻¹⁴ 2)	$\begin{array}{c} 73 \cdot 0180 \\ 72 \cdot 8619 \\ 72 \cdot 4620 \\ 54 \cdot 7725 \\ 53 \cdot 9865 \\ 53 \cdot 1454 \end{array}$	72 8515	0133	- 19 30	$2 \\ 2 \\ 2 \\ 2^{1-2} \\ 2^{2}$	$\begin{array}{r} 45\cdot 3163\\ 45\cdot 2773\\ 27\cdot 4673\\ 27\cdot 3142\\ 11\cdot 9190\\ 11\cdot 5926\end{array}$	45.2346 0044 27.4000 0126 11.8336 0178	- 4.28 - 10.94 - 13.33

Weighted						
	Va .					
	Vd					'22
	Curvs	tur	е.,			- '28
Radial vel	locity.					27.0

a CORON.E BOREALIS, 1895.

1908. Sept. 19, G. M. T. 12⁶ 17¹⁰

Observed by J. S. Plaskett. Measured by J. B. Cannon.

Wt.	Mean of Settings.		Displace- ment in Revolutions.	Velocity.	Wt.	of	Corrected Star Settings.		Velocity.
$2^{\frac{1}{2}}_{2}^{\frac{1}{2}}_{2}^{\frac{1}{2}}_{2}$	$\begin{array}{r} 73\cdot\!0038\\72\cdot\!8573\\72\cdot\!4388\\54\cdot\!7388\\53\cdot\!9565\\53\cdot\!1120\end{array}$	72:8633 54:9580	0015	-2 18	$2 \\ 1 \\ 2 \\ 1^{\frac{1}{3}} \\ 2 \\ 1^{\frac{1}{2}} \\ 2$	$\begin{array}{c} 45 & 2814 \\ 45 & 2429 \\ 27 & 4293 \\ 27 & 2643 \\ 11 & 8895 \\ 11 & 5373 \end{array}$	45 2351 27 4118 11 8595	0036 0008 0081	
				W	ighted	mean Va		+ 1.26	- 14 : 58

Radial velo	cit	ts,	ċ,													13	5	;
	Cu	r	72	st	u	re									•		2	8
	Vd																	2

a CORON. E BOREALIS, 1896.

1908. Sept. 19. G. M. T. 12^h 30^m

Observed by J. S. PLASKETT. Measured by J. B. CANNON.

Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.		Velocity.
	$54^{\circ}7526$ $53^{\circ}9992$ $53^{\circ}1219$ $45^{\circ}2984$	53 9889	0191	+[21.98]	$1\frac{1}{2}$ 1 2	45 2619 27 4389 27 2889	45.2371 27.3969	0016 0157	- 1.67 - 13.63

Radial vel	ocity		 	- 21.3
	Curvatu	e	•••••••••	'28
	Va			'22
-	Va			- 14'58
weighted	mean		 	= 6.39

a CORON. & BOREALIS, 1897.

1908. Sept. 19. G. M. T. 12⁶ 42^m

Observed by J. S. PLASKETT. Measured by J. B. CANNON.

Wt.	Mean of Settings.	Corrected Star Settings.		Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.
2 ⁻¹² 2 2 ⁻¹² 2 2	73 °0197 72 °8669 72 °4537 54 °7572 53 °9924 53 °1352	11.8573	0075	-10'88	$2 \\ 1^{\frac{1}{2}} \\ 1 \\ 2 \\ 1 \\ 1$	$\begin{array}{r} 45 \\ 45 \\ 27 \\ 27 \\ 4750 \\ 27 \\ 3122 \\ 11 \\ 9309 \\ 11 \\ 5892 \end{array}$	45°2439 27°4097 11°8492	0052 0C29 0022	+ 5 43 ~ 2 52 ~ 1 65
				W	eighted	V _a V _d			$ \begin{array}{r} 0 & 37 \\ 14 & 58 \\ $

Radial velocity..... - 15:5

DEPARTMENT OF THE INTERIOR

9-10 EDWARD VII., A. 1910

a CORON.Æ BOREALIS, 1949.

1908. Nov. 1.

Observed by J. B. CANNON.

							icaouri a o		
Wt.	of	Star	Displace- ment in Revolutions.	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions	Velocity.
1 1 1	72-9672 72 8800 54-7508	72 9220	0572	- 82.99	1	45+3092 45+2928	45 2928	0185	+19 31
				W	eighted	mean			+ 39 * 88

Va	- 138	
Vd	- 27	
Curvature.	- '28	
Radial velocity		+ 38 0

a CORONÆ BOREALIS, 1950.

1908. Nov. 1. G. M. T. 10^h 58^m $\begin{array}{c} {\rm Observed \ by} \\ {\rm Measured \ by} \end{array} \} J. {\rm ~B.~Cannon.} \end{array}$

Wt.	Mean of Settings.		Velocity.	Wt.	of	Corrected Dia Star me Settings. Revo	ent in Velocity.
2 1 4	48 7674 45 3178 27 5393	45.3118 0631 27.4850 0724		2 1 1	$27 \ 3286 \\ 12 \ 0368 \\ 11 \ 6326$	11.9236	0722 +54 07

Weighted mean.		+63.40
Va	-38	
Vd	·27	
Curvature	28	
Radial velocity	 	~ 62.5

α CORON.Æ BOREALIS, 1951.

1908. Nov. 1. G. M. T. 11^b 14^m

Observed by J. B. CANNON. Measured by J. B. CANNON.

Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.	Wt.	of	Star	Displace- ment in Revolutions.	Velocity,
2	45-3028				1	45 3170	45.2878	·0491	+51.26
					С	a d. urvature			51 26

OBSERVING RECORD AND DETAILED MEASURES OF \$ AQUILÆ.

P. PLASNETT. H. – HARPER. C. CANNON, P¹. – PARKER. T. – TRIBBLE.

RECORD OF SPECTROGRAMS.

Stat.	No. of Negative.	Camera.	Plate.	Date.	Middle of Exposure. G. M. T.	Duration.	1	Hour Angle t end.	Room.	Prism Box. Beg. End.	Slit Width.	Seeing.	Obseiver.
				1906,	h. 10	. m.	h	. m.	Fahrenheit	Centigrade			
δ Aquilæ . 	368 377 382 390 399 413			Aug. 6 15 24 Sept. 10 27	$ \begin{array}{ccccccccccccccccccccccccccccccccc$	5 85 0 70 5 90	212234	55W. 07W. 15W. 50W. 15W. 15W.		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	001 001 001 001 001 001	Good Fair Good Dancing	HHHHH
0 1. 9 1. 0 1.	803 818	IL 		1907. May 31 June 10 July 2	19 0 19 1 18 1			35 E. 15 W. 40 W. 55 W.	Centi grade 12.6 12	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	001 0012 0014	Good Poor to fair.	Р
	930 938		0			3 30 0 30		80E. 28E.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$			Fair to	Ĥ
0 - 14 0 - 1 - 1	966 980 982			Aug. S		0 60 0 30 5 28	1	48W. 45E. 10W.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5 24.0 24.1	0014 0012 0012	Poor Poor Fair to poor	P H P
	1034 1049a		1 1 1			14 11	2	35W.	18.3 18			Fair	т
	10495		- i - j	·· 18 1908.	13 5	6 17	1	42W.	14.0 12	5 17.1 17.1	0014	· · · · ·	т
	1575 1584 1633 1642 1650 1660 1678 1690 1695 1703 1753 1754			June 3 - 24 - 24	20 20 20 20 20 20 20 20 20 20 20 20 20 2	6 30 42 0 40 5 10 5 10 5 10 5 10 5 10 5 10 5 10	$ \begin{array}{c} 0 \\ 1 \\ 1 \\ 1 \\ 1 \\ 2 \\ 1 \\ 2 \\ 3 \\ 1 \end{array} $	00 39W. 45W. 30W. 20W. 30W. 25W. 55W. 25W. 25W. 10W. 48W. 55W. 05W. 05W. 20W.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0017 0015 0016 0015 0015 0015 0014 0016 0015 0015 0015 0015 0015 0015	Hazy Fair Notgood Good Fair Good Fair Good Fair Good	HHHP1HP1PHHCP1PHPPHPPHPPPC

§ AQUIL.E 368.

 $\left. \begin{array}{c} \mathrm{Observed} \;\; by \\ \mathrm{Measured} \;\; by \end{array} \right\} \mathrm{W}, \;\; E, \;\; \mathrm{Harper}, \\ \end{array}$

Wt.	Mean of Settings.	Computed Wave Lengths.	Corrected Wave Lengths,	Normal Wave Lengths.	Displace- ment.	Velocity.
	S 68:3790	4528 798				
	65.3512	4494 626		.738		
	64:1176	4480 972	000	400	400	- 26 7
	63 6677	4476 194		185		
	62.7948	4466 791		727		
	61.5939	4454 023	973	552	579	39.6
	S 56 8011	4404 927				
	54.6445	4383 756		-720		
	50.0282	4340.237	184	-634	-450	31.0
	48 4614	4325 992		- 939		
	S 46 4500	4308.081				
	45:4172	4299 044 4294 217		- 074 - 301		
	44 8605 44 3248	4294 217 4289 601		- 301 - 032	- 390	- 27
	44.9548	4289.001	043	0.52	320	- 21 3

Radial velocit	5											41.8
Curvature												50
Vd												16
												10.00

Radial velocity...

δ AQUIL ± 377.

Observed by W. E. HARPER.

Wt.	Mean of Settings.	Computed Wave Lengths.	Corrected Wave Lengths.	Normal Wave Lengths.	Displace- ment.	Velocity.
		$\begin{array}{c} 4549\ 642\\ 4549\ 039\\ 4533\ 723\\ 4538\ 757\\ 4494\ 722\\ 4481\ 013\\ 4476\ 277\\ 4466\ 835\\ 4417\ 700\\ 4404\ 927\\ 4333\ 606\\ 4404\ 927\\ 4336\ 006\\ 4306\ 001\\ 4294\ 348\\ 4294\ 348\\ 4294\ 632\\ \end{array}$	039 753 953 062 670 184 590	642 168 798 738 400 185 545 727 038 720 634 939 301 301 032	603 415 447 485 368 450 450	- 39 73 27 43 29 90 32 36 24 95 31 03 - 30 85

Weighted	mean			- 30 89
Va.				- 13.62
Vd.				- '19
Curva	ature			- *50
Radial vo	locity			- 15.9

536

1906. Aug. 5., G. M. T. 175 3256

5 AOUIL E 382.

1906. Aug. 24. G. M. T. 15⁶ 45⁶⁶

Observed by Measured by | W. E. HARPER.

Wt.	Mean of Settings.	Computed Wave Lengths.	Corrected Wave Lengths.	Normat Wave Lengths	Displace- ment.	Velocity.
	70 1122	4549.520		642		
	70.1029	4549.410	*530	905	375	- 24 7
	S 68 3400	4528.798				
	67.7987	4522 566	- 558	-855	297	19.6
	65 9371 65 3329	4501 472 4494 735		505 738		
	64:0791	4480 926	-930	-400	. 470	31.4
	63-6431	4476 176	530	185	410	01.4
	62.7647	4466 688		.727		
	59.7630	4435.058	078	450	372	25.1
	S 56 7937	4404 927				
	56.3165	4400.188	188	-738	1550	37 -
	55 7715	4394 808	· 804	286	1482	32.5
	54 6357	4383 715		720		
	$53 \cdot 7124$	$4374^{\circ}809$	821	103	282	19 3
	50.0145	4340.120	134	634	:500	34-7
	48 4534 47 9225	4325 930 4321 164		.939		
	S 46 4482	4308 081	164			
	44 8650	4294 280	104	301		
	44.8327	4294 002	018	301	283	19 7
	44:3189	4289.578	. 596	032	436	- 3012

Weighted mean		- 2710	
Va		16.9	8
Vd		1	2
Curvature.		15	.0
D - 12 - 1 1 7		48.4	

Radial velocity 451

1906, Sept. 10. G. M. T. 15^h 30²ⁿ

δ AQUIL. € 390.

Observed by W, E. HARPER.

Wt.	Mean of Settings.	Computed Wave Lengths.	Corrected Wave Lengths.	Normal Wave Lengths.	Displace- ment,	Velocity.
1	$\begin{array}{c} 65 \cdot 2901 \\ 64 \cdot 0719 \\ 63 \cdot 6037 \\ 54 \cdot 5817 \\ 49 \cdot 9026 \\ 48 \cdot 3953 \end{array}$	$\begin{array}{r} 4494 & 811 \\ 4481 & 396 \\ 4476 & 296 \\ 4383 & 730 \\ 4339 & 632 \\ 4325 & 945 \end{array}$	360	738 400 185 720 640 939	040	- 2 67
		,	ted mean			- 2.00 - 22.26

8 AQUIL.E 399.

I906, Sept. 27.
 G. M. T. 14⁶ 45⁻¹

Observed by W. F. HARPER.

Wt.	Mean of Settings.	Computed Wave Lengths.	Corrected Wave Lengths.	Normal Wave Lengths.	Displace- ment.	Velocity.
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{r} 4549\ 618\\ 4533\ 425\\ 4528\ 738\\ 4494\ 755\\ 4484\ 755\\ 4484\ 755\\ 4485\ 840\\ 4487\ 178\\ 4486\ 710\\ 4482\ 993\\ 4490\ 602\\ 4417\ 705\\ 4490\ 602\\ 4417\ 705\\ 4490\ 602\\ 4300\ 905\\ 4520\ 905\\ 4520\ 905\\ 4520\ 905\\ 4520\ 905\\ 4520\ 905\\ 4520\ 905\\ 4520\ 905\\ 4520\ 905\\ 4520\ 905\\ 4520\ 905\\ 4520\ 905\\ 4520\ 905\\ 4520\ 905\\ 4521\ 320\ 320\\ 4521\ 320\ 320\\ 4521\ 320\ 320\\ 4521\ 320\ 320\\ 4521\ 320\ 320\ 320\ 320\ 320\ 320\ 320\ 320$	432 573 405 109 676 635 210 564 964 305	642 419 738 495 400 185 727 765 301 785 884 201 720 124 4034 4034 939 939 939 301	013 078 005 005 109 189 009 070 070 068 020	- 0.85 + 5.21 - 0.33 - 3.75 - 7.33 - 12.81 + 0.61 - 4.83 - 4.75 - 1.40

Weighted	mean		- 2.68
~	Va		- 25 74
	Vd		- '22
	Curvature		- '50

Radial velocity..... - 291

δ AQUIL. Ξ 413.

1906. Oct. 23.
 G. M. T. 13^b 45^m

Observed by W. E. HARPER.

Wt.	Mean of Settings.	Wave	Corrected Wave Lengths.	Wave	Displace- ment.	Velocity.
	$\begin{array}{c} 70 \ 1315 \\ 8 \ 70 \ 1315 \\ 63 \ 3506 \\ 64 \ 3506 \\ 64 \ 1318 \\ 63 \ 6731 \\ 8 \ 56 \ 68482 \\ 54 \ 6854 \\ 53 \ 7352 \\ 50 \ 1309 \\ 48 \ 5290 \\ 8 \ 46 \ 5280 \\ 8 \ 546 \ 5280 \\ 8 \ 46 \ 5280 \\ 64 \ 4975 \end{array}$	$\begin{array}{r} 4549\ 642\\ 4549\ 642\\ 4528\ 840\\ 4494\ 715\\ 4494\ 715\\ 4470\ 145\\ 4470\ 1927\\ 4383\ 707\\ 4383\ 707\\ 4383\ 707\\ 4384\ 0528\\ 4340\ 528\\ 4325\ 938\\ 4308\ 081\\ 4307\ 813\\ \end{array}$	642 190 439 540 813		210	- 12.94

Weighted	mean		~ 10.04
	Va		- 26.88
	Vd		- '25
	Curvatu	re	- '50

Radial velocity.. - 37-7

SESSIONAL PAPER No. 25a 1907. May 31. G. M. T. 19^h 04^m

δ AQUIL.E 803.

Observed by J. S. PLASKETI, Measured by T. H. PARKER

Wt.	Mean of Settings.	Corrected Star Settings	Displace- ment in Revolutions.	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.
2 1 2 1 2 2 1 1	$\begin{array}{c} 57\ 8154\\ 57\ 7707\\ 54\ 7232\\ 53\ 9416\\ 53\ 1061\\ 48\ 7682\\ 48\ 6938\\ 47\ 4378\end{array}$	7847 9516 6958 4383	0421 0182 0682 0321	- 50 68 20 94 75 38 34 34	21221122	$\begin{array}{r} 45^{+}9607\\ 45^{-}2762\\ 45^{-}1958\\ 43^{+}5392\\ 37^{-}9741\\ 37^{-}2332\\ 27^{-}3962\\ 27^{-}2954\end{array}$	9592 1938 2192 3422	0280 0149 0696 0704	29:45 46:87 66:73 - 61:10

Observed by J. S. Plaskett, Measured by T. H. Parkér.

δ AQUILÆ 818.

1907. June 10. G. M. T. 19^h 13^m

Mean Corrected Displace-Star ment in Settings. Revolutions. Mean Corrected Displace-of Star Settings. Settings. Revolutions. Wt. Velocity. Wt. Velocity. of Settings. 57 · 8253 57 · 7820 54 · 7558 45:9704 $\frac{2}{1}$ 9304 0568 59.75 7780 -58.75 45:3146 1923 0464 48.44 45:2333 48.8030 43.5841 0606 $\frac{48}{47}$ $\frac{3030}{47}$ $\frac{48}{4522}$ 65 75 57 99 7034 3520 0606 52 60 4162 0542

Weighted	mean		- 57 '21
		+14.68	
			- '28
Radial ve	locity		- 42.8

5 AOUIL.E 904.

1907. July 2. G. M. T. 18⁵ 12^m

Observed by | W. E. HARPER.

Wt.	Mean of Settings.	Computed Wave Lengths.	Corrected Wave Lengths.	Wave	Displace- ment.	Velocity.
2	$\begin{array}{c} 72^{\circ}1426\\ 72^{\circ}2583\\ 72^{\circ}3857\\ 57^{\circ}7888\\ 54^{\circ}0165\\ 53^{\circ}9383\\ 92^{\circ}2394\\ 48^{\circ}7760\\ 48^{\circ}7398\\ 47^{\circ}4590\\ 45^{\circ}2378\\ 45^{\circ}2205\\ 45^{\circ}2205\\ 42^{\circ}1262 \end{array}$	$\begin{array}{c} 4864\ 756\\ 4860\ 608\\ 4851\ 637\\ 4550\ 333\\ 4550\ 031\\ 4483\ 099\\ 4481\ 751\\ 4452\ 887\\ 4396\ 316\\ 4395\ 740\\ 4375\ 754\\ 4342\ 183\\ 4311\ 168\\ 4295\ 425\\ \end{array}$	837 332 050 774 108	$\begin{array}{c} 943\\527\\686\\642\\413\\400\\180\\382\\286\\107\\162\\634\\290\end{array}$	690 310 350 466 333 526	42 57 20 43 23 41 31 78 22 88 36 29

Radial velocity . . .

..... 19:5

∂ AQUIL.E 923.

1907. July 8, G. M. T. 18^h 02^m

Observed by J. S. PLASKETT. Measured by T. H. PARKER.

Wt.	Mean of Settings.	Corrected Star Set ⁺ ings.		Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.
2 1 2 2 2 2 1	$\begin{array}{c} 54 & 7604 \\ 53 \cdot 9708 \\ 53 \cdot 1390 \\ 52 \cdot 4227 \\ 52 & 2767 \\ 48 & 8029 \\ 45 \cdot 9830 \end{array}$	9458 3947 9440	0240	-27 62 22 73 42 08	$2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2$	$\begin{array}{r} 45 & 3152 \\ 45 \cdot 2452 \\ 38 \cdot 0093 \\ 37 \cdot 3176 \\ 35 \cdot 4883 \\ 27 \cdot 4678 \\ 27 \cdot 3349 \end{array}$	2042 2651 3798	0345 0237 0328	36 01 22 72 28 47

Weighted mean .		30.63
V _d Curvature		$ \frac{107}{28}$
Radial velocity		- 28 0

5 AQUIL.E 930.

1907. July 9.
 G. M. T. 16⁵ 33^m

111.15 2005

Observed by W. E. HARPER. Measured by T. H. PARKER.

- '28

Observed by J. S. PLASKETT. Measured by T. H. PARKES.

Wt,	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.
	$\begin{array}{c} 57 & 8333 \\ 57 & 8169 \\ 54 & 7487 \\ 53 & 9750 \\ 53 & 1198 \\ 48 & 7812 \end{array}$	8129 9680	0139 0018	- 16·73 02·07		$\begin{array}{r} 48\cdot7412\\ 474795\\ 45\cdot2875\\ 45\cdot2244\\ 37\cdot9870\\ 37\cdot2898\end{array}$	7360 4670 2104 2620	0280 0034 0283 0268	30 40 03 63 29 54 25 70

8 AQUILÆ 938.

1907. July 10. G. M. T. 11^b 30^m

Wt.	Mean of Settings.	Corrected Star Settings.	Displace- nient in Revolutions.	Velocity.	Wt.	Mean of Settings.	Corrected Displace- Star - ment in Settings. Revolutions.	Velocity.
$\begin{smallmatrix}2&\frac{1}{2}\\&2\\1&2&2\\&2\\1&1&2\\2&1&1&2\end{smallmatrix}$	$\begin{array}{c} 59 & 8376 \\ 58 & 6448 \\ 57 & 8525 \\ 57 & 8582 \\ 54 & 7745 \\ 48 & 8114 \\ 47 & 4796 \\ 45 & 3240 \\ 45 & 2632 \\ 44 & 2754 \\ 43 & 5880 \end{array}$	6188 8107 4351 2128 2239	0209 0161 0353 0255 0148	+25 41 - 19 38 - 38 47 - 26 62 - 15 28	212 22 22 12 122 122 122 122 122 122	$\begin{array}{c} 42 & 1585 \\ 41 & 8098 \\ 38 & 0165 \\ 36 & 5035 \\ 35 & 4998 \\ 30 & 9556 \\ 30 & 8842 \\ 27 & 4150 \\ 27 & 3430 \\ 22 & 6567 \\ 22 & 6152 \end{array}$	7538 0778 4365 0587 8082 0674 3270 9656 5153 0791	- 78 26 - 56 77 - 60 52 - 74 30 - 65 49

Weighted mean $\dots \dots + 2.18$	-20.40
Vd	28
Dediet unterieu	10.5

DEPARTMENT OF THE INTERIOR

9-10 EDWARD VII., A. 1910

```
8 AQUIL. # 966.
```

1907. July 25. G. M. T. 16, 20 Observed by W. E. HARPEE. Measured by T. H. PACKER.

Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.
2 1 2 1 2	57 7903 57 7957 54 7201 53 9306 53 0970	.9601	0041	11.16	2 2 2	45 · 2612 45 · 2242 43 5371 27 · 4259	2252 3856	0135 0267	14.09

Weighted							1.57
	V.a						4.63
	Vd						102
	Curvature						28
							-
Radial val	ocity						16-5

5 AQUILÆ 980.

1907. Aug. 3. G. M. T. 14^h 40^m Observed by J. S. PLASKETT, Measured by T. H. PARKER.

Wt.	Mean of Settings.	Corrected Star Settings.	Displace - ment in Revolutions.	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.
2 $\frac{1}{2}$	$\begin{array}{c} 59 & 8416 \\ 59 & 0.484 \\ 57 & 8562 \\ 57 & 8448 \\ 54 & 7701 \\ 53 & 9962 \\ 48 & 8045 \\ 47 & 5163 \end{array}$	0185 - 8178 - 9672 - 4803	-0228 -0090 -0026 -0099	$-27 \cdot 10$ 10.83 -02.99 -10.59	$\overset{\overset{\overset{1-2}{2}}{2}}{\overset{1-2}{2}}{\overset{1-3}{2}}{\overset{1-3}{2}}{\overset{1-3}{2}}{\overset{1-3}{2}}$	$\begin{array}{r} 46 \cdot 0142 \\ 45 \cdot 3113 \\ 15 \cdot 2599 \\ 44 \cdot 2852 \\ 43 \cdot 5768 \\ 41 \cdot 8349 \\ 27 \cdot 4712 \end{array}$	3765 2222 2468 7965 3986	0100 0168 0130 0387 0124	-10.52 17.53 13.42 38.93 -10.76

Weighted	mean		- 16 .87
	Va		- 8.23
	V d		'04
	Curvature		- '28
Radial ve	locity		- 25.7

8 AQUILÆ 982.

1907. Aug. 5. G. M. T. 16^h 36^m

Observed by J. S. PLASKETT, Measured by T. H. PARKER.

Wt.	Mean of Settings,	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.
$2^{\frac{1}{1}}$	$\begin{array}{c} 57 & 8462 \\ 57 & 8389 \\ 56 & 9690 \\ 56 & 6945 \\ 48 & 8009 \\ 47 & 5019 \\ 46 & 0152 \\ 45 & 3083 \end{array}$	8221 9515 4608 9812	0047 0140 0006 0060	-05.65 16.68 -00.64 +06.31	1 2 2 1 2 1 2 1	$\begin{array}{r} 45 & 2591 \\ 44 & 2644 \\ 43 & 5747 \\ 42 & 1445 \\ 41 & 8297 \\ 30 & 9363 \\ 30 & 8976 \end{array}$	2231 2274 7872 8317	.0156 '0318 '0441 '0439	- 16 28 32 84 44 36 - 39 42

Weighted	mean			-19.60
	Va			- 9.42
	Vd			- '09
	Curvatu	re		- '28
Radial ve	locity			- 29.4

Observed by J. N. TRIBBLE. Measured by T. H. PARKER.

δ AQUILÆ 1034.

1907. Sept. 6. G. M. T. 15^h 44^m

Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.
$2\frac{1}{12}$ 12121212121	$\begin{array}{c} 59 & 8664 \\ 57 \cdot 8788 \\ 57 \cdot 8768 \\ 54 \cdot 7733 \\ 54 \cdot 0167 \\ 48 \cdot 7842 \\ 48 \cdot 7878 \\ 45 \cdot 2868 \\ 45 \cdot 2454 \end{array}$	8313 9887 7736 2322	0045 0189 0096 0065	+05.42 +21.75 +10.42 -06.78	$ \begin{array}{c} 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ $	$\begin{array}{r} 43 \cdot 5443 \\ 43 \cdot 4850 \\ 37 \cdot 9634 \\ 37 \cdot 2692 \\ 35 \cdot 4242 \\ 35 \cdot 1650 \\ 30 \cdot 8659 \\ 30 \cdot 8385 \\ 27 \cdot 3874 \end{array}$	2682 1650 8425 3944	0196 0160 0331 0182	-18.79 +15.00 -29.72 -15.79

Weighted	mean						3.84
	Va						21.09
	Va .						.16
	Curva	ture					28
						_	
Radial vel	locity -					-	25.1

78

08

```
δ AQUIL. E 1049 (a).
```

1907. Sept. 18. G. M. T. 8^h 56^m Mean

Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displace- meut in Revolutions.	Velocity.
59:8694 57:8779 57:8775 57:6237 55:1806 54:0309 53:1554	- 8279 - 5757 - 1351 - 9859	0011 0189 0099 0161	$+01^{-}32$ $+22^{-}68$ $+11^{-}54$ $-18^{-}53$	2 2 1 1 1 1 2 2	41 3069 37 9839 37 2896 30 8967 30 8663 27 4422 27 2681	2646 8403 4182	0242	- 23 20 - 30 69 + 04 86

508 078	0121	 1 2 1 2	24:8329 22:5796 22:5650	- 8136 	0316	- 26
		Weigł	ted mean $V_a \dots$ $V_d \dots$		 - 24	66 00 09

Va 24.00	
Vd '09	
Curvature '28	

Radial velocity - 28 0

δ AOUILÆ 1049 (b).

1907. Sept. 18.
 G. M. T. 8^h 56^m

45'3054 45 2848 43 5724 41 8318 2

- 31

Observed by J. N. TRIBBLE. Measured by T. H. PARKER.

Wt.	Mean of Settings.	Corrected Stør Settings.	Displace- ment in Revolutions.	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displace ment in Revolutions.	Velocity.
2 1 2 1 1 1 1 2 1 2 1 2 1 2	$\begin{array}{c} 59.8589\\ 57.8824\\ 57.8709\\ 57.6069\\ 55.1507\\ 54.0154\\ 45.3012\\ 45.2860\\ 43.5663\end{array}$	8409 5659 1142 9804 2575	0141 0091 0110 0106 0188	+16.97 +10.92 -12.82 +12.20 +19.62	1 2	42 5064 42 1333 41 8333 41 3082 37 9828 37 3204 24 8630 24 8351	4794 8073 2984 8173	0314 0243 0096 0279	· 31 · 80 - 24 · 44 + 09 · 20 - 23 · 63

Weighted	mean			1.28
	Va			24.00
	Vd			09
	Curvature			28
Padial vo	le el tra			95.0

544

Wt. of Setting

 $\begin{array}{c}
 2 \\
 1 \\
 2 \\
 1 \\
 2 \\
 1 \\
 2 \\
 1 \\
 2 \\
 1 \\
 2 \\
 1 \\
 2 \\
 1 \\
 2 \\
 1 \\
 2 \\
 1 \\
 2 \\
 1 \\
 2 \\
 1 \\
 2 \\
 1 \\
 2 \\
 1 \\
 2 \\
 1 \\
 2 \\
 1 \\
 2 \\
 1 \\
 2 \\
 1 \\
 2 \\
 1 \\
 2 \\
 1 \\
 2 \\
 1 \\
 2 \\
 1 \\
 2 \\
 1 \\
 2 \\
 1 \\
 2 \\
 1 \\
 2 \\
 1 \\
 2 \\
 1 \\
 2 \\
 1 \\
 2 \\
 1 \\
 2 \\
 1 \\
 2 \\
 1 \\
 2 \\
 1 \\
 2 \\
 1 \\
 2 \\
 1 \\
 2 \\
 1 \\
 2 \\
 1 \\
 2 \\
 1 \\
 2 \\
 1 \\
 2 \\
 1 \\
 2 \\
 1 \\
 2 \\
 1 \\
 2 \\
 1 \\
 2 \\
 1 \\
 2 \\
 1 \\
 2 \\
 1 \\
 2 \\
 1 \\
 2 \\
 1 \\
 2 \\
 1 \\
 2 \\
 1 \\
 2 \\
 1 \\
 2 \\
 1 \\
 2 \\
 1 \\
 2 \\
 1 \\
 2 \\
 1 \\
 2 \\
 1 \\
 2 \\
 1 \\
 2 \\
 1 \\
 2 \\
 1 \\
 2 \\
 1 \\
 2 \\
 1 \\
 2 \\
 1 \\
 2 \\
 1 \\
 2 \\
 1 \\
 2 \\
 1 \\
 2 \\
 1 \\
 2 \\
 1 \\
 2 \\
 1 \\
 2 \\
 1 \\
 2 \\
 1 \\
 2 \\
 1 \\
 2 \\
 1 \\
 2 \\
 1 \\
 2 \\
 1 \\
 2 \\
 1 \\
 2 \\
 1 \\
 2 \\
 1 \\
 2 \\
 1 \\
 2 \\
 1 \\
 2 \\
 1 \\
 2 \\
 1 \\
 2 \\
 1 \\
 2 \\
 1 \\
 2 \\
 1 \\
 2 \\
 1 \\
 2 \\
 1 \\
 2 \\
 1 \\
 2 \\
 1 \\
 2 \\
 1 \\
 2 \\
 1 \\
 2 \\
 1 \\
 2 \\
 1 \\
 2 \\
 1 \\
 2 \\
 1 \\
 2 \\
 1 \\
 2 \\
 1 \\
 2 \\
 1 \\
 2 \\
 1 \\
 2 \\
 1 \\
 2 \\
 1 \\
 2 \\
 1 \\
 2 \\
 1 \\
 2 \\
 1 \\
 2 \\$

Observed by J. N. TRIBBLE. Measured by T. H. PARKER.

δ AQUILÆ 1543.

Observed by W. E. HARPER. Measured by T. H. PARKER.

1908. May 18, G. M. T. 20^h 06^m

Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity
21 1 129423 21 1 129423 21 21 121 121 121 121 121 121 121 121 1	$\begin{array}{c} 59.8118\\ 59.6115\\ 57.7867\\ 56.9378\\ 56.6665\\ 55.0793\\ 53.9367\\ 53.9367\\ 53.1154\\ 52.3898\\ 51.6895\\ 48.7751\end{array}$	6090 7867 9388 0793 9352 3868 6860	0655 0401 0267 0459 0846 0280 0715	- 80°56 48°28 31°82 53°51 39°82 31°66 80°22	211221	$\begin{array}{r} 45\cdot 2857\\ 45\cdot 1924\\ 44\cdot 2082\\ 43\cdot 5501\\ 39\cdot 9986\\ 37\cdot 2334\\ 37\cdot 9775\\ 30\cdot 8437\\ 27\cdot 3944\\ 27\cdot 2870\end{array}$	1819 1967 9811 2134 8107 3544	0358 0625 0352 0754 0649 0582	59-29 64-56 34-35 72-30 58-27 - 50-50

Weighted mean	43.49
Va 21.88	
V _d ·01 Curvature	92
Onrvature	- 20
Radial velocity	- 21.9

§ AQUILÆ 1559.

1908. May 22. G. M. T. 20^h 34st Observed by W. E. HARPER. Measured by T. H. PARKER.

2 53:1527 1 42:4743 +4268 +0840 857 50:24092 3962 0466 52:70 2 37:5317 -<	Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.
1 40 21 3 1.24 0003 10 34 2 21 3031	1 2	53.9680 53.1527 52.4092 51.7194 50.0548	3682	0466	52 70	$211^{-\frac{1}{2}}211^{-\frac{1}{2}}12^{-\frac{1}{2}}12^{-\frac{1}{2}}$	43.5040 42.4743 37.3817 37.3052 30.8480	4268 2552 7940	0840 0336 0816	$75 \ 90 \\ 85 \ 09 \\ 32 \ 22 \\ 73 \ 26 \\ -15 \ 97 \\ 15 \ 97 \\ $

Weighted	Va				+	20		60.57
	Vd Curvatu							$^{\cdot}28$
Radial ve	locity						 -	40.1

8 AQUIL.E 1575.

1908. June 3. G. M. T. 20^h 01^m

Observed by W. E HARPER. Measured by T. H. PARKER.

Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.	Wt.	Mean of Settings	Corrected Star Settings.	Displace ment in Revolutions.	Velocity.
2 1 2 2 1 2 1 2 1 2	$\begin{array}{c} 59\cdot8247\\ 58\cdot9976\\ 57\cdot7944\\ 57\cdot8347\\ 56\cdot9377\\ 56\cdot6840\\ 55\cdot1020\\ 53\cdot9550\end{array}$	9581 7574 9027 0700 9250	0581 0473 0426 0391 0316	$-71^{\circ}11$ 57 $^{\circ}04$ 50 $^{\circ}86$ 45 $^{\circ}70$ 36 $^{\circ}22$	$ \begin{array}{c} 2 \\ 1 \\ 2 \\ 2 \\ 1 \\ 2 \\ 2 \\ 1 \\ 2 \\ 2 \\ 1 \\ 2 \\ 2 \\ 1 \\ 2 \\ 2 \\ 1 \\ 2 \\ 2 \\ 1 \\ 2 \\ 2 \\ 1 \\ 2 \\ 2 \\ 1 \\ 2 \\ 2 \\ 1 \\ 2 \\ 2 \\ 1 \\ 2 \\ 2 \\ 2 \\ 1 \\ 2 \\ 2 \\ 2 \\ 1 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ $	$\begin{array}{c} 50 \cdot 0325 \\ 48 \cdot 7496 \\ 45 \cdot 3116 \\ 45 \cdot 2466 \\ 44 \cdot 2465 \\ 43 \cdot 9300 \\ 41 \cdot 3243 \\ 37 \cdot 3066 \end{array}$	7236 2206 2215 9060 2946	0404 0281 0508 0345 0301	43.95 29.42 52.62 35.60 - 29.24

Observed by W. E. HARPER.

8 AQUIL.E 1575.

1908. June 3. G. M. T. 20^h 01^m

Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Vel city.
22121212122122121212112112112111111111	$\begin{array}{c} 57 & 7480 \\ 57 & 7020 \\ 56 & 8536 \\ 56 & 5944 \\ 55 & 0194 \\ 54 & 6613 \\ 53 & 8672 \\ 53 & 0411 \\ 52 & 2948 \\ 52 & 1800 \\ 48 & 7090 \\ 48 & 6414 \\ 45 & 8895 \\ \end{array}$	7562 9100 0796 9287 3573 7039 9522	0475 0353 0295 0279 0479 0479 0601 0430	$\begin{array}{r} -57 & 28 \\ 42 & 15 \\ \hline 34 & 48 \\ 32 & 20 \\ \hline 54 & 27 \\ \hline 65 & 39 \\ 45 & 36 \\ \end{array}$	$ \begin{array}{c} 2 \\ 2 \\ 1 \\ 1 \\ 2 \\ 1 \\ $	$\begin{array}{c} 45 \cdot 2208 \\ 45 \cdot 1452 \\ 44 \cdot 1533 \\ 42 \cdot 0584 \\ 41 \cdot 2210 \\ 39 \cdot 6969 \\ 38 \cdot 6841 \\ 37 \cdot 2157 \\ 30 \cdot 8595 \\ 30 \cdot 7894 \\ 22 \cdot 5580 \\ 22 \cdot 4961 \end{array}$	2080 2163 4300 2860 7516 2842 8774 5909	0307 0560 0406 0337 0318 0408 0585 0619	$\begin{array}{r} 32^{\circ}14\\ 58^{\circ}02\\ 41^{\circ}29\\ 33^{\circ}83\\ \overline{31}^{\circ}07\\ 39^{\circ}25\\ \overline{32}^{\circ}77\\ -51^{\circ}56\end{array}$

Weighted	mean_{a}	16 94	- 44.84
	Vd		04
	Curvature		- 28
n			00.0

Radial velocity.... - 28 2

δ AQUIL. € 1584.

Observed by T. H. PARKER. Measured by

1908. June 5. G. M. T. 20^h 35^m

Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	ment in	Velocity
1	59:8185				1	45.1990	1958	.0429	44 78
1	59.6231	6140	0605	- 74 . 41		37 9604	1000	0.4-0	
1	57.7645	7645	0623	75.00	- ² 1	37 2349	2404	0484	46 41
- 1	56.6595	1040	0020		2 2 1 2 1 2 1	36 1205	4255	0707	67 23
ĩ	53 9346	9376	0322	37.06	ĩ	35.1146	1186	0304	28.51
2	53.1106	010	0022	54 00	0	35-4265	1100	0001	20.01
2	52:3912	3908	0240	27.14	11	30 8236	-8176	0580	52.08
1,	51.7052	7022	-0553	62.04	12	27:3774	3664	0462	40.10
12	50-9223	-9183	0348	38 69	1	27-2576	5004	OTON	40 10
12		9199	0040	00 00	1,	18-8335		0441	- 35 22
1	50.0435		0618	67.10	12	18.8776		0441	- 00 24
12	48.7062	7012	0618	67.10	1	19.8//0			
2	45 2770								

v	reight	ed mean	
			16
		<u>V</u> a	
		Curvature	
Б	India1	velocity	

δ AQUILÆ 1633.

1908. June 24. G. M. T. 18^h 31^m Observed by W. E HARPER. Measured by T. H. PARKER.

Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.
212 ⁻²² 2122	$\begin{array}{c} 59{}^{\circ}8112\\ 57{}^{\circ}7871\\ 57{}^{\circ}8218\\ 55{}^{\circ}4842\\ 54{}^{\circ}7384\\ 53{}^{\circ}9350\\ 53{}^{\circ}1133\\ 45{}^{\circ}2822 \end{array}$	7941 4887 9365	0327 0353 0333	- 39 37 41 33 38 32	$1 \\ 2 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 2 \\ 2 \\ 2 \\ $	$\begin{array}{r} 45.2090\\ 44.2642\\ 41.2960\\ 40.4965\\ 35.4349\\ 35.3907\\ 27.3962\\ 27.2636\end{array}$	2005 4875 3857 3792	0382 0385 0419 0334	39-88 38-09 39-42 - 28-99

Weighted	mean		-37.91
	V.a		
	Vd	.00	28
Padial no			

547

δ AOUIL.E 1642.

[1908] June 26, G. M. T. 18^h 52^m

i. ra	RKER
i	L ES

Wt. Mean Settings.		Velocity.	Wt.	Mean of Settings.		Displace- nient in Revolutions.	Velocity.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9748 0659 5522 0057 7637 0631 9215 4433 0683 0892 7272 0088 1967 9420 2018 057		$2^{-42} 2^{-62} + 2 2^{-21-42} 2 2 + 1 + 2$	$\begin{array}{c} 43\cdot 5225\\ 42\cdot 6036\\ 42\cdot 1050\\ 41\cdot 7834\\ 40\cdot 4726\\ 39\cdot 7305\\ 37\cdot 9465\\ 37\cdot 2113\\ 35\cdot 4224\\ 30\cdot 8637\\ 30\cdot 7867\\ 27\cdot 3707\\ 27\cdot 2482 \end{array}$	6166 7807 4735 7096 2218 7997 3691	0230 0352 0413 0451 0670 0849 0434	23°34 35°41 40°96 43°47 64°25 80°64 - 37°67

Weighted	mean Va			·	7-87	- 47	30
	Vd						
Radial ve	locity.					- 39	8

Radial velocity.

δ AQUILÆ 1650.

1908. June 27. G. M. T. 18^h 09^m

Observed by J. S. Plaskett. Measured by T. H. PARKER.

Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.
919101-01-01-01-01-01-01-01-01-01-01-01-01-	$\begin{array}{c} 59\cdot 8350\\ 57\cdot 8130\\ 57\cdot 8312\\ 56\cdot 8977\\ 55\cdot 1051\\ 53\cdot 99517\\ 55\cdot 1051\\ 53\cdot 99517\\ 55\cdot 1253\\ 87:9017\\ 55\cdot 1253\\ 87:9017\\ 48\cdot 7140\\ 48\cdot 7140\\ 45\cdot 2905\\ 44\cdot 2902\\ 44\cdot 2902\\ 44\cdot 2912\\ 45\cdot 2912\\$	7880 9559 0841 9337 6860 3583 7270 1835 2077 2558 6882	0388 0096 0411 0361 0715 0091 0370 0552 0515 0414 0610	- 46'71 11'40 47'92 41'55 80'22 10'21 40'14 57'62 53'19 41'40 60'79	$\frac{1211}{13112211} + \frac{1211}{12211} + \frac{1211}{12211} + \frac{1211}{12221} + \frac{1211}{1221} + \frac{1211}{1221} + 1$	$\begin{array}{c} 40 \ 507(\\ 39 \ 7571\\ 39 \ 6336\\ 38 \ 7283\\ 7923\\ 37 \ 2202\\ 35 \ 4036\\ 30 \ 8548\\ 27 \ 2785\\ 24 \ 8214\\ 22 \ 5118\\ 8214\\ 22 \ 5118\\ 18 \ 8332\\ 18 \ 8943\\ 18 \ 8332\\ 18 \ 8943\\ \end{array}$	4860 6736 7123 2362 4257 8248 3300 73912 0789 4782 7823	0400 0532 0400 0526 0715 0526 0526 0554 0554 0554 0554	289 68 52 34 48 70 50 44 67 23 45 70 45 65 46 86 45 96 45 96 45 96 45 98 45 98 46 98

Weighted mean Va Vd	••	7.54	48:20
Curvature			28
Radial velocity			41.0

δ AQUIL.E 1660.

1908, June 27. G. M. T. 18^h 09^m

Observed by J. S. PLASKETT. Measured by T. H PARKER

Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.
212 22 22 22 11 12 22 11 12 22 11 12 22 12 1	$\begin{array}{c} 59.8256\\ 57.7919\\ 57.8327\\ 56.9519\\ 56.6750\\ 54.7459\\ 53.9418\\ 53.7200\\ 48.7544\\ 48.7663\end{array}$	7829 9499 9398 7213 7579	0070 0206 0300 0360 0079	- 8.42 24.55 34.53 40.39 8.57	$2 \frac{1}{12}$ 1 1 2 2 1 2 1 2 1 2 1 2	$\begin{array}{c} 45 & 2745 \\ 45 & 2107 \\ 44 & 2220 \\ 41 & 7726 \\ 41 & 2848 \\ 41 & 2964 \\ 39 & 0028 \\ 37 & 9669 \\ 37 & 2796 \\ 35 & 4331 \end{array}$	2097 2215 7741 9838 2726	0290 0377 0375 0325 0325	30 27 38 94 57 84 31 75 - 15 50

§ AQUILÆ 1678

1908. July 8. G. M. T. 18^h 10^m

Observed by J. S. PLASKETT. Measured by T. H. PARKER.

Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	ment in	Velocity.
$2^{\frac{1}{2}}$	59 8005 58 9967 58 5482 57 7767 57 8125 56 9345 56 9345 53 9232 53 1017 53 1317 51 7239 48 75%0 48 75%0 48 75%1 47 4680 45 5027	0037 5552 7837 9415 9322 7039 7370 4434 2138	0370 0427 0431 0240 0376 0336 0270 0270 0249	-45-21 51-88 51-89 28-60 43-27 60-13 29-29 28-89 28-89 25-99	$\begin{array}{c} 2&2&2&2\\ 2&2&2&2\\ 1&1&2&2\\ 1&1&2&2\\ 2&1&1&2\\ 1&2&2&1&2\\ 1&2&2&2\\ 1&2&1&2\\ 1&2&2&2&2\\ 1&2&2&2&2\\ 1&2&2&2&2\\ 1&2&2&2&2\\ 1&2&2&2&2\\ 1&2&2&2&2\\ 1&2&2&2&2\\ 1&2&2&2&2\\ 1&2&2&2&2\\ 1&2$	43 5657 41 8142 41 3185 37 7662 37 7662 37 2799 35 4685 30 9250 30 8610 27 3166 24 9101 24 8730 22 6292 22 5788 18 9394	7845 7297 2429 8064 3611 8080 5063	0471 0250 0459 0515 0892 0515 0372 0505	47 38 24 10 44 01 62 14 44 70 31 50 41 81
12	44 2427	2156	0435	44.93	- 1 1	18 9059	8099	0335	- 26 76

Weighted mean	- 38 - 83
Vd. Curvature.	- '09 - '28
Radial velocity	- 36.4

ô AQUIL.E 1690.

 $\left. \begin{array}{l} {\rm Observed \ by} \\ {\rm Measured \ by} \end{array} \right\} {\rm T. \ H. \ Parker.}$

Observed by J. S. PLASKETT. Measured by T. H. PARKER.

1908. July 10. G. M. T. 18⁶ 37⁶

Mean Wt. of Settings.	Corrected Star Settings.	Displace- ment in Veloc Revolutions.		Mean of Settings.	Corrected Star Settings,		Velocity,
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7873 1183 9519 6260 4377	0395 - 47 00059 8 0179 20 0415 47 0327 34	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 45 & 2276 \\ 44 & 2779 \\ 44 & 2522 \\ 43 & 5578 \\ 43 & 5248 \\ 39 & 7623 \\ 38 & 7677 \\ 37 & 7768 \\ 37 & 9904 \end{array}$	2006 2336 5053 7407 7483	0321 0256 0279 0116 0161	33:51 26:44 2*:59 11:29 -15:52

Weighted	mean		- 27 41
	Va	1.71	
	Vd Curvature		
 Radial ve 	locity		- 26:1

δ AQUILÆ 1695.

1908. July 11. G. M. T. 15^h 27^m

Wt.	Mean of Settings.	Corrected Star Settings.		Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	ment in	Velocity.
$21^{\frac{2}{12}}$ $12^{\frac{2}{12}}$ 212121 $121^{\frac{1}{12}}$	$\begin{array}{c} 59.8527\\ 59.6789\\ 59.0715\\ 57.8545\\ 57.8547\\ 56.9778\\ 56.9778\\ 56.9778\\ 55.1281\\ 54.7768\\ 53.9813\\ 53.1442\\ 52.4120\\ 51.7425\\ 4120\\ 51.7425\\ 48.8042\\ 47.4810 \end{array}$	6354 0335 8185 9423 0941 9473 3790 7085 4485	0391 0396 0083 0233 0311 0225 0358 0490 0219	$\begin{array}{r} -48^{\circ} 13 \\ 48^{\circ} 39 \\ 11^{\circ} 19 \\ 27^{\circ} 77 \\ 36^{\circ} 26 \\ 25^{\circ} 89 \\ 40^{\circ} 48 \\ 54^{\circ} 97 \\ 23^{\circ} 43 \end{array}$	$2^{\frac{10}{2}}$ $2^{\frac{10}{2}}$ $2^{\frac{10}{2}}$ $1^{\frac{10}{2}}$ 1^{\frac	45 3050 45 2435 44 2905 44 2539 42 1319 41 8032 39 7632 38 7665 30 9112 30 8476 27 4370 27 4370 27 4370 27 4370 27 8855 18 8833 18 8525	2218 2224 7749 7405 8146 3990 8124	-0610 0136	17 95 37 97 57 04 11 49 54 74 11 80 - 24 8

Weighted mean	- 35.50
Vd	- 12
Radial velocity	- 34-6

1908. July 13. G. M. T. 18^h 52^m

8 AQUIL Æ 1703.

Observed by T. H. PARKER.

Mean Corrected Displace-of Star ment in Velocity, Settings, Settings, Revolutions, Mean Corrected Displace-of Star ment in Wt. Wt. ment in Velocity Settings. Revolutions. Settings. 59:8090 37 9609 59,8090 57,7842 56,9494 54,7423 45,27667832 0436 52.49 37 2499 2469 0419 40 18 9484 0171 30 8904 -8331 38 15 0425 27:4061 .3769 0357 30 98 -01 45 1916 1896 0491 51 26 27 2758 22 5816 43 5362 0745 76:36 5083 0485 39 77 22 5331 -43.95

Radial velocity.....

Observed by T. H. PARKER.

16

-28

-43.3

§ AOUIL-E 1753.

1908, July 31, G. M. T. 16^h 41^m

Mean Corrected Displace-of Star ment in Velocity. Mean Corrected Displace-Wt. Wt. Star ment in Settings. Revolutions Velocity. of Settings. Revolutions. Settings. Settings. $\frac{2}{1}$ 22.5725 30 8945 $^{2}_{1}$ -5231 8588 0168 - 15.08 22:5388 5231 18:8774 18:8637 0387 32.04 30.8828 27 4102 27 2757 3822 0304 26 38 0137 -10.94

n.																22.81
																$7^{+}60$
										•						
vature																28
																80.7
	vature	vature .	vature													

DEPARTMENT OF THE INTERIOR

9-10 EDWARD VII., A. 1910

δ AQUILÆ 1754.

July 31.
 M. T. 17⁶ 17⁶

Observed by W. F. HABPER. Measured by T. H. PARKER.

Wi,	Mean of Settings.	Corrected Displace- Star ment in Settings, Revolutions,	Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.
20 21 21 21 21 -1 -21 -1	$\begin{array}{c} 54 \cdot 7652 \\ 53 \cdot 9794 \\ 53 \cdot 1334 \\ 48 \cdot 7862 \\ 47 \cdot 4588 \\ 45 \cdot 9683 \\ 45 \cdot 2930 \\ 45 \cdot 2278 \end{array}$	9574 0124	$\begin{array}{c} 14 \ 27 \\ 30 \ 60 \\ 32 \ 29 \\ 27 \ 03 \end{array}$	2 2 1 2 1 1 2	$\begin{array}{c} 43^\circ 5520\\ 37^\circ 9742\\ 37^\circ 2646\\ 30^\circ 8961\\ 30^\circ 8566\\ 27^\circ 4200\\ 27^\circ 2709 \end{array}$	2496 8346 3950	0402 0420 0176	38 55 37 71 - 15 27

Weighted meau			= 26 25
Va Vd			7.61
Curvature			- 28
Radial velocity .			- 34 2

δ AQUILÆ 1754.*

1908. July 31. G. M. T. 17^b 17^m Observed by W. E. HARPER. Measured by T. H. PARKER.

Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.	Wt.	Mean of Settings,	Corrected Star Settings.	Displace- ment in Revolutions,	Velocity.
2 1 2 2 2 2 2 2 2 2 2 2 2	$\begin{array}{c} 54 \cdot 7189\\ 53 \cdot 9370\\ 53 \cdot 0936\\ 52 \cdot 3557\\ 48 \cdot 7477\\ 48 6932\\ 47 \cdot 4122\\ 45 \cdot 2530\end{array}$	9575 3772 7212 4352	0123 0376 0428 0352	$-14^{\circ}15^{\circ}$ $42^{\circ}52^{\circ}$ $46^{\circ}48^{\circ}$ $37^{\circ}66^{\circ}$	1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 2 1 2 2 2 1 2 2 2 2 1 2	$\begin{array}{r} 45 \ 1899 \\ 44 \ 2025 \\ 43 \ 5112 \\ 37 \ 9405 \\ 37 \ 2294 \\ 27 \ 3766 \\ 27 \ 2349 \end{array}$	2129 2255 2504 3883	0258 0337 0384 0240	26 93 34 81 36 82 20 84

Weighted	mean			- 36 05
	Va			- 7.61
	Vd			- 12
	Curvat	nre		-28
Radial ve	locity			- 44:0

"Check measurement.

§ AOU1L, € 1768.

1908, Aug. 5, G. M. T. 18^h 05^m

Observed	by .	I. S.	P1.	ASK.
Manured	Line	TI	4 1	ADD

ETT. KER.

Wt.	Mean of Settings.	Corrected Star Settings.		Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displace- n.ent in Revolutions.	Velocity.
21-1-101-101-101-101-101-101-101-101-101	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8077 9784 4303 7364	0191 0086 0155 0279	- 22 99 9 89 17 53 - 30 29		$\begin{array}{c} 45\ 9871\\ 45\ 27\ 49\\ 45\ 2148\\ 44\ 2346\\ 43\ 5528\\ 41\ 7874\\ 41\ 2791\\ 30\ 8758\\ 27\ 3846\\ 27\ 2532\end{array}$	9876 2168 2376 7924 3779	0036 0219 0216 0392 0361	+ 3.78 -22.86 22.31 39.43 - 31.53
					Weight	ed mean V _u Vd		19 9	51 17 19

Weighted mean. . V_d V_d Carvature Radial elocity

δ AOUILÆ 1783.

1908. Aug. 15, G. M. T. 17^h 38^m

Observed by J. S. PLASKETT. Measured by T. H. PARKER.

- 29.7

Wt.	Mean of Settings.	Corrected Star Settings,		Velocity.	Wt.	Mean of Settings.		Displace- ment in Revolutions.
$21\sim 21-21\overset{-12}{-21}\overset{-12}{-11}\overset{-12}{-1}\overset{-12}{-12}$	$\begin{array}{c} 57\cdot8126\\ 57\cdot8193\\ 54\cdot7335\\ 53\cdot9473\\ 53\cdot9473\\ 53\cdot9465\\ 52\cdot4002\\ 52\cdot2469\\ 51\cdot7060\\ 49\cdot3467\\ 48\cdot7643\\ 48\cdot7345\\ 47\cdot4838\\ 45\cdot9813\\ \end{array}$	8023 9573 4072 7120 3487 7360 4828 9773	0245 0125 0076 0455 0213 0280 0124 0073	$\begin{array}{r} -29 \ 49 \\ 14 \ 38 \\ 8 \ 58 \\ 51 \ 05 \\ 23 \ 25 \\ -30 \ 38 \\ +13 \ 26 \\ -7 \ 67 \end{array}$	2 1 ⁴²² 2 1 ⁴²² 2 1 2 1 2 1 ⁴²⁴ 2 1	$\begin{array}{c} 45^\circ 2802\\ 45^\circ 2457\\ 44^\circ 2265\\ 43^\circ 5434\\ 41^\circ 3061\\ 40^\circ 5358\\ 37^\circ 9743\\ 37^\circ 2659\\ 30^\circ 9025\\ 29^\circ 8953\\ 29^\circ 8953\\ 29^\circ 8953\\ 27^\circ 4506\\ 27^\circ 2858\end{array}$	2404 2205 2951 5258 2499 8643 4116	$\begin{array}{c} 00290 \\ 0387 \\ 0021 \\ 0021 \\ 2 \\ 10021 \\ 2 \\ 108 \\ 00389 \\ 37 \\ 30 \\ 0010 \\ 0010 \\ 0 \\ 86 \\ 86 \\ 0010 \\ 0 \\ 86 \\ 86 \\ 0010 \\ 0 \\ 86 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $

Weighted mean	$-14^{\circ}85$
Va	- 13.84
Vd Curvature	- 28
Radial velocity	-29 2

DEPARTMENT OF THE INTERIOR

9-10 EDWARD VII., A. 1910

å AQUILÆ 1837.

1968. Aug. 27. G. M. T. 15^h 03^m Observed by J. B. CANNON. Measured by T. H. PARKER.

Wt.	Mean of Settings.	Corrected Star Settings,		Velocity.	Wt.	Mean of Settings.	Corrected Star Settings.	Displace- ment in Revolutions.	Velocity.
21 ⁻⁶⁹ -2121 - 21 - 21 - 21 - ⁻²¹ 21 - ⁻²¹	$\begin{array}{c} 73 \cdot 0183 \\ 72 \cdot 8513 \\ 72 \cdot 4532 \\ 59 \cdot 8129 \\ 57 \cdot 8288 \\ 54 \cdot 7500 \\ 53 \cdot 9747 \\ 53 \cdot 1197 \\ 51 \cdot 7273 \\ 48 \cdot 7819 \\ 47 \cdot 4976 \\ 46 \cdot 0043 \end{array}$	8430 8253 9667 7173 4846 9915	0218 0015 0031 0402	$\begin{array}{r} -31 & 63 \\ + & 1 & 80 \\ - & 3 & 56 \\ - & 45 & 10 \\ - & 15 & 19 \\ + & 4 & 31 \end{array}$	211221122-21	$\begin{array}{c} 45^\circ 2880\\ 45^\circ 2372\\ 44^\circ 2365\\ 43^\circ 5517\\ 41^\circ 8079\\ 37^\circ 3070\\ 30^\circ 9079\\ 30^\circ 8756\\ 30^\circ 4141\\ 30^\circ 2857\\ \end{array}$	2232 2264 7949 2925 8386 3751	0155 0328 0367 0037 0037 0370 0370	- 16; 18 33; 91 36; 92 + 3; 54 33; 22 - 32; 55

ghted mean		- 20 95
V.a		- 18 18
V.d		- 109
Curvat		- '28
ial valuate		- 20

A. 1910

APPENDIX 3.

REPORT OF THE CHIEF ASTRONOMER, 1909.

MERIDIAN WORK AND TIME SERVICE

вү R. M. STEWART, M.A.

CONTENTS.

	PAGE.
The Transit Annex	. 559
The Meridian Circle	. 563
Transit Observations.	. 567
Personal Equation	. 574
Time Service	. 580
Appendix A Rate of the Standard Clock of the Dominion Observatory.	. 582

ILLUSTRATIONS.

1.	\mathbf{F} loor	of	Transit Annex.			 						586
2.	Piers	in	Meridian Circle	Room .	 	 		 		 	 	586
3.	Piers	$_{\rm in}$	Transit Room									586

.

APPENDIX 3.

REPORT OF R. M. STEWART, M.A., ON MERIDIAN WORK AND TIME SERVICE.

OTTAWA, March 31, 1909.

W. F. KING, Esq., LL.D., C.M.G., Chief Astronomer, Department of the Interior, Ottawa.

Suc.-1 have the honour to report as follows on the work carried out under my charge during the past fiscal year.

A great part of the year has been taken up with work in connection with the fitting up of the Transit Annex, including the reconstruction of the piers, and with tests and alterations of the Meridian Circle. As will be seen below, the latter has proved to be defective in many respects, necessitating a great deal of work in the alterations required before it can be made to perform creditably; among the most important and laborious of the operations were the renewing of the pivots and the truing up of the planes of the circles; further alterations still remain to be made. The usual amount of observation and computation has been done for determination of clock error, more particularly in connection with the operations carried on in the field for determination of longitudes. The question of personal equation was considered, and a special series of observations made in an attempt to discover the laws which it followed. The differences of personal equation found were in some cases comparatively large; the personal equations of at least two of the observers appeared to be due to a tendency always to set the movable wire asymmetrically with respect to a star image when estimating a bisection; in the case of one observer this error of bisection amounted to over a second of arc. The time service has been maintained as in the past, and has been extended to include the Mint and the Archives Building. An analysis was made of the rate of the Standard Sidereal Clock; an account of this is given in Appendix A helow.

THE TRANSIT ANNEX.

The Transit Annex, which is located at the western end of the main building, consists of two rooms, the Transit Room and the Merialan Circle Room. The former is connected to the main building by two doors, one opening into the Chronograph Room, and through it into the Time Room, the other communicating with the main hallway. In it are situated two piers for the portable astronomical transits belonging to the Observatory, the western one of which is also provided with two collimator piers. The inside dimensions of this room are 21 ft. 4 in. in the meridian by 21 ft. 9 in. in the prime vertical. The Meridian Circle Room, situated to the west of the former, communicates with the ty two doors. It is 34 ft. 51 in. by 15 ft. 6 in, and contains the piers for the Meridian Circle and its two collimators; the instrument is situated somewhat to the south of the centre of the room.

The walls of the building are of stone, containing a number of louvred windows to allow circulation of air between the outside walls and the inner lining. The latter is of galvanized iron, and covers the whole of the outer walls except the observing slits. The roof is a flat concrete one; between it and the galvanized iron ceiling is

an air-space of about two feet, through which the outer air circulates freely by means of a number of small lowred openings. Ventilation of the room itself, when the observing slits are closed, can be controlled by a number of shafts which pierce the walk, terminanting just above the floor in registers which may be opened or closed as desired. The observing slits, which extend downward to within three feet of the floor, are three feet in width; they are closed by vertical doors in the walks and by shutters on the roof. The opening mechanism for these, which was installed during the past winter, is described below.

As mentioned in my last report, the Meridian Circle piers had suffered upheaval during the winter of 1907-8, shortly after the instrument had been mounted. During the period between the early part of January and the end of March the level error changed from about ton seconds to nearly six minutes of arc. During the next two weeks it rapidly decreased to about two and a half minutes, and thereafter continued decreasing with a gradually diminishing rate; by the middle of May it had reached a value of about one minute. As the graduated circles had been returned to the makers for repairs there was no convenient means of measuring the change of nudir point, i.e., the angular displacement of the piers in the meridian; it also, howere, was no doubt considerable. The collimator piers were also displaced by a number of minutes. The two field-transit piers and the two collimetor piers in the Transit Room fared even worse, having all been broken across in the basement a few feet above the floor.

The trouble was evidently due to the action of frost; if further confirmation were needed, it was supplied by an examination of the earth beneath the basement of the Trausit Room, which was found to, have been saturated with water and frozen. A drain had been provided to earry away surplus water, but the system of drainage was not sufficiently through. It was also evident that the foundations of the piers were not sufficiently protected. It was decided that the only satisfactory remedy by in the reconstruction of all the piers, sinking their bases several feet deeper into the earth, and providing a system of drainage as through as ecould be installed. The matter was taken up by the Department of Public Works, and the demolition of the old piers—mu undertaking of considerable magnitude in itself—was become in Max.

It had been previously decided that the azimuth marks for the Meridian Circle should depend on the same principle as those designed by Sir David Gill for the Cape Observatory, the primary marks consisting of lenses fixed some distance underground to ensure stability, while above would be movable marks capable of being adjusted accurately over the optical centres of the underground lenses. A similar arrangement would be required in the case of the collimator piers, to ensure the stability of the long-focus collimating lenses which form a part of the azimuth-mark system. As the original collimator piers had not been designed with this end in view, the necessity of reconstruction afforded an opportunity of so altering the design as to facilitate the introduction of this principle. It was necessary also in this connection to consider the disposition of the collimators. If these were placed in a horizontal line it was found that it would be impossible to obtain a line of sight under them upon azimuth marks at a sufficient distance; nor was it considered advisable to raise the azimuth marks to the horizontal line and, by rendering them intervisible, use them as collimators, on account of the height to which it would then be necessary to build the azimuth piers. It was decided finally to do away with the south collimator, using the azimuth mark in its place, and placing a mounting for the other collimator on the north pier, above the collimating leus of the north azimuth mark. This was also advantageous in another respect, since the southern pier, being required only for the long-focus collimating lens, need not extend so far towards the Meridian Circle, thus increasing the range of reflection observations towards the south; the north collimator would not interfere with those towards the north, on account of its greater distance from the telescope. It is possible, however, that the north collimator may also finally be dispensed with;

if, as seens likely, the azimuth marks should prove sensibly stable for considerable periods, it will be possible to centrel the collimation by readings on them, in conjunction with occasional reversals of the Meridian Circle. Determinations of flexure might also be made by means of the azimuth marks, by an interchange of eye and object ends of the telescope. Should this arrangement prove possible it will be of advantage; the lenses of the collimators being of only 44 incless aperture, the full aperture of the Meridian Circle is not made use of in readings upon them, and it is perhaps doubtful whether the line of collimation so obtained will coincide exactly with that depending on full aperture.

The footings of the reconstructed piers extend 16% feet below the level of the floor. Beneath the transit room is a basement with a concrete floor, which lies 10 feet below the upper floor, so that the transit piers extend 61 feet underground; the Meridian Circle and collimator piers, on the other hand, are surrounded with earth to a height of about 10 feet. All the piers are surrounded at the base by drains of broken stone. It was my wish to have these drains continued to within a few inches of the surface, so that there could be no doubt as to the thorough drainage of the piers throughout their whole height; the Public Works Department, however, decided that drainage around the bases would be sufficient, and it was so done.* On account of the depth to which the piers were sunk, it was impossible to lead these drains to the sewage system; accordingly a special concrete eistern of about 1,000 gallons capacity was built below the level of the piers and the drains were led into this; a pipe leading from the cistern to a motor pump serves to empty it as often as necessary. A float connected to a light rod has been so arranged that the top of the rod may be flush with the basement floor when the cistern is empty; the length of rod projecting through the floor gives a measure of the depth of water in the cistern. The amount of water which collects in the cistern at certain seasons is remarkable; on several occasions this spring, immediately after or during a prolonged heavy rain, it has been filled overnight; this circumstance, coupled with the fact that during periods of dry weather comparatively little water is collected, points to surface water as the source of the accumulation. It would appear that the surface drainage flows down beside the outside walls of the building and so under the foundations, often in considerable quantities; this being the case, there would appear to be serious danger not only of finally blocking up the broken stone drains by accumulated silt, but also of undermining the foundations of the Transit House. This danger could probably be avoided by building a suitable drain to surround the three exposed walls of the building.

The parts of the two collimator piers below the floor are similar. The footings are nine fort by six, the longer side being in the cast-vest direction. The western part of each pier is penetrated by a vertical pit three fect square, to allow access to the underground hems which will serve as the fixed mark; this part of the pier terminates some six feet below the level of the floor of the Meridian Circle Room, and the opening is covered by two hatchways, between which is packed mineral wool. The main part of the pier tapers upwarks to the floor, where it measures three and a half feet in the meridian by two and half in the prime vertical. Through the centre of this is a vertical shaft about six inches in dianater, extending down to the level of the pier tape viously mentioned, into which it opens by a small arch. At the bottom of the arch the underground lens will be fastened firmly to the concrete, with space underneath for a basin of mercury. Access is had to these when necessary by the pit at the side, while the necessary readings are taken from above through the small shaft.

Above the floor the piers are dissimilar. The northern one, which is intended to support both collimator and long-focus azimuth lens, is built with an overhang to the north, so as to allow as much space as possible to the south for observation of stars by reflection; the dimensions of the top are 5 ft. 44 in. by 2 ft. 4 in. The southern pier,

^{*} This has since proved to be inadequate.

which will ultimately be required only for the long-focus lens, tapers from the floor to a size of 20 inches by 28 inches at the top. It will also be necessary, however, to fasten a temporary frame-work to the southern pier to support a collimator until the azimuth mark piers shall have been built.

The foundations of the main telescope piers are intended also to carry a pier which rises to the level of the flox, to support the carriage upon which crests the mercury horizon for observation of stars by reflection. In the original pier this had not been included, but it was found that the cement floor was not sufficiently free from vibration to serve the purpose. This part of the pier is, at the floor level, 10 ft. 6 in. In length by 1 ft. 10 is in in width, extending 2 feet south of the axis of the Meridian Circle, and 7 ft. 6 in to the north. The foundation is in the form of a cross, with an extreme length of 13 feet, and width of 10 ft. 6 in., tapering upwards to within a foot of the floor, where the size is 10 ft. 6 in, by 8 ft. The two columns supporting the bed-plates of the instrument are 2 ft. 3 in, square at the floor, tapering to 1 ft. 4 in, at the top, which rises to a height of 6 ft. 2 in. from the floor. The inner faces of the piers, which are vertical, are at a distance of 3 ft. 6 in.

In the Transit Room, the two transit piers and the two collimator piers, the latter forming part of the system of the western transit equipment, extend to the same depth as the Meridian Circle piers; as stated above, however, owing to the basement which underlies this part of the building, they are surrounded with earth to a height of only Θ_2^+ feet; the concrete cistern above referred to lies immediately to the south of the eat-tern transit pier. A floor plan of the Meridian Circle Room and Transit Room, -howing the positions of the various piers is given in Fig. 1; sections of the piers are shown in Fig. 2 and Fig. 3.

All the piers are protected above the level of the floor by a layer of thick felt; surrounding this, with the interposition of an air-space, is a casing of wood. These casings, as well as the piers themselves, are of course free from the floor; the space between piers and floor, instead of being vacant, is filled with felt. To promote cleanliness, as well as for increased comfort during the winter months, the original concrete floor has been covered by a wooden one.

To exclude snow from the spaces between the inner and outer walls and above the peciling it was necessary to have winter coverings for the lowered openings. These were made in the fall of 1095 and have worked satisfactorily during the past winter. They consist of frames to fit on the outside of the openings, covered with copper wire gauze of a fairly fine mesh; for protection agafust accidents this is covered by a somewhat heavy galvanized iron mesh. It has been found that these, while affording a reasonable circulation of air, exclude the greater part of the snow; if a little snow drifts through, it is caught by the lowers and prevented from penetrating to the space inside the walls. To ensure a freer circulation of air during the summer, the frames are removed in the sorbin.

The roof shutters for covering the observing slit are divided into three sections in the case of the Moridian Griele, and into two in the case of each of the transit slits. An opening mechanism had previously been applied to the central section in the Moridian Circle Room; that for the other six sections was installed during the past winter. The mechanism works on the same principle as that at Greenwich; each section of the shutter is supported by the outer ends of two curred arms which are frastened by keyways on a shaft hung in bearings parallel to the slit; the other ends of these arms carry counterpoises approximately equal in weight to the shutter. Keyel on the shaft is another arm extending horizontally nearly to the wall, and connected by another nearly vertical jointed arm to a winch on the wall, which serves to gen or close the shutters by turning a handle. The joint between every two sections is covered by an independent flam, which is rised by either shutter indifferently; the flap is presented from falling back when open by a flat curved spring which presses against it near the binge, and stars it down with the shutter when the latter is being closed.

The vertical wooden wall-shutters, six in number, have been made in two sections, closing respectively the lower and upper halves of the observing slits in the walls. Both sections open outwarks; either the upper section alone, or both, may be opened; the lower section, however, can not be opened alone; in general only the upper section need be open, except for reading on azimuth marks. The upper section is controlled by a rod bent aright angles mear its upper extremity, and fastend by a fieldbill nearly in the centre of the shutter; when closed the horizontal part of the rod passes over a hook on the shutter and the vertical part springs into place between two hooks on the easement, holding the shutter firmly closed; when open it is held in a similar manner.

The difference of longitude between the middle of the observing slit in the Meridian Circle Room and the pier in the old transit hut was measured January 20, 1900; A theodolite was set up to the south of the old hut and set on the transit wires; the azimuth of a point on the wall of the transit annex was measured from this point and the distance chained. The resulting longitudes of the Meridian Circle and of the centres of the two transit piers, referred to the old pier, are as follows:-

Meridian	ı Circle,	214.9	ft				-201 sce
Western	transit pier	, 199.9	ft				-187 "
Eastern	transit pier.	188.65	ft	 	 	 	 .176 "

The approximate latitude of the Meridian Circle, as obtained from a few pairs of stars observed in August, 1908, is 45° 23' 37".6; this may be in error by several tenths of a second.

The positions of the azimuth marks for the Meridian Circle were laid down in the carly part of last summer. The line of sight to the north mark passes through the pinery immediately to the north of the Observatory; the pier will be situated just beyond the top of a ridge running in the east-west direction, and within about 30 feet of the road which forms the southern boundary of the city; its distance from the collimating lens will be about 250 feet. It was originally intended to have the south azimuth mark, if possible, at a distance of about 300 feet, situated on the other side of the driveway which runs in a northwest-southeast direction past the western end of the Observatory. As this ground belonged to the Department of Agriculture it was necessary to have its consent to the erection of the mark, and this unfortunately proved impossible. It was therefore necessary to locate the mark on the grounds of the Observatory; as the line of sight of the Meridian Circle crosses the above-mentioned driveway at an angle, the greatest distance obtainable was about 160 feet.

. The piers and the buildings to protect them have been planned, but no provision has as yet been made for their erection.

THE MERIDIAN CIRCLE,

No observations were made with the Meridian Circle during the period covered by this report. The year has been occupied with the many alterations which were found necessary before the instrument could be got into condition to do creditable work. There is searcely an essential part of the instrument which has not required alteration in at least some detail. Much of this work has been done; much still remains to do. It is hoped, however, if the repairs which still remain can be completed in the workshop in time, to be able to begin regular work in both right secension and declination about the beginning of 1910.

The graduated circles, which had been returned to the makers for repair of damages sustained in shipping, were received in June. They were immediately mounted and their planeness tested by the same method as used previously, as described in my last report. It was found that the extreme deviation of the fixed circle from a true plane at right angles to the axis was now about -001 inch; that of the movable

circle was, however, .006 inch, a quantity large enough to throw the microscopes very slightly out of focus at the extreme points. It was also discovered that on reversing the instrument the microscopes were no longer in focus; in fact, the circles were unsymmetrically fixed on the axis by about one twenty-fifth of an inch; it developed later that this was at least partly due to the fact that in truing up the fixed circle, not only had the band carrying the graduations been turned down but also a cut had been taken off the bearing on the other side of the circle, without any compensating alteration on the movable circle.

To rectify the latter point, it would appear to be immaterial whether the circle were set farther out on the axis, or the end of the pivot shortened, or, what amounts to the same thing, the other pivot lengthenel; the desideratum being that the distance from plane of granduations to end of pivot should be the same for both ends. Accordingly, as being the easiest undertaking, a bushing of hardened steel was made to fit into the hollow of the pivot corresponding to the movable circle, carrying a dise of the required thickness which fitted against the end of the pivot. This worked fairly satisfactorily, but as will be seen below, another alternative was adopted later.

With regard to the other error of the circles, which we may for brevity designate the deviation from man phase, it may be composed of two parts—(1) a divergence of the average plane of the graduations from true perpendicularity to the axis; (2) a deviation of the graduated hand itself from the true plane form: the former may be remedied by alteration of the bearing surfaces between circles and axis, the latter only by re-graduation. If p be the perpendicular distance of the object glass of any microscope from the graduated band, and d the distance of the graduation set upon from the centre of the field, then the measured angle will be

$$\theta = \frac{d}{p}$$
.

Differentiating with respect to θ and p

$$\delta \theta = -\frac{d}{p^2} \delta p = -\theta \frac{\delta p}{p}$$

Hence the error in the angle measured by one microscope is proportional to that angle and to 8 p, which is the deviation from mean plane of the circle at that point. The maximum effective value of θ , provided settings of the telescope are made without regard to the position of the division marks in the field of the microscopes, and provided also that only one division mark is set on for each setting of the telescope, will be the same as the interval between successive graduations, in this case 5'; also the value of p is 2.7 inches. Thus if p bc .001 inch, the maximum error arising from this source of an angle measured by one microscope will be .11". Further, this will be practically a constant error for any particular star, except as influenced by reversal of the instrument and more particularly by alterations of the position of the circle on the axis. If, however, as is practically always the case, angles be measured by a pair of opposite microscopes, the part of this error due to lack of perpendicularity of graduated band and axis will be eliminated, p being of opposite sign for the two microscopes. That part, however, which depends on deviations of the graduations from a true plane, will still remain; if the deviations are due to a simple bend of the circle along a diameter the effect will be reduced, though not eliminated, by reading four microscopes. It may be noted here that the error $\delta\theta$ varies inversely as p; hence the advantage of long focus microscopes; those on this instrument are probably too short.

All errors arising from deviation from mean plane may be eliminated by setting exactly on division marks, throwing the brunt of the measurement on the declination micrometer. In this case it is sufficient if the circles are nearly enough true that the graduations may be always in focus. This must, however, be qualified by the recollection that focul lengths, ée., vary with temperature; hence it is desirable even in this

case that the circles should be as true as possible, in order that the necessity of refocussing may be reduced to a minimum.

Having regrad to these facts, it was decided in the first place to attack the adjustment of the movable circle, as being the one most requiring it; it was also decided that the only feasible method lay in scraping the bearings between circle and axis, in conjunction with tests by a surface-plate. In order to save time, since the reconstruction of the piers in the meridian circle room was being proceeded with, it was decided to erect temporary piers outside for the necessary tests, and to shelter them by a wooden hut. In the meantime a special surface plate in the form of a ring was constructed, in order to make the necessary tests for flatness of the bearing on the axis against which the circle was clamped.

As before, the lower southern microscope on the vestern pier was replaced by a steal rod sliding in bearings, one end of which could be brought into contact with the graduations when desired. A mark on this was set on with the microscope, which had been mounted with its axis perpendicular to the rod. Readings were taken at every 30° around the circle; the latter was then shifted 90° on the axis and the process repeated; the same was done for positions of the circle 180° and 270° from its initial position.

Assume in the first instance that the graduations all lie in one plane; also that the bearing surface on the circle and that against which it engages on the axis are true planes. Let the angle between the axis of the telescope and the normal to the surface of the bearing on the axis be a^o, and let the plane containing these two lines intersect the position of the lower southern microscope when the pointer reading on the fixed circle is a^o. Also let the normals to the plane of the graduations and the plane of the circle bearing (on the movable circle) include an angle b^o, and, for the initial position of the movable circle, let X be the pointer reading on the fixed circle, the displacement from its mean position of the graduation of the the microable circle, be microscope, will be

$$a \cos (\theta - \varphi) + b \cos (\theta - \chi)$$
.

Taking a series of readings at intervals of 30° around the circle, and diminishing each by the mean of all, we shall have twelve equations of the form,

$$a \cos (\theta - \varphi) + b \cos (\theta - \chi) = m_{e}$$

 θ having the values 0°, 30°, 60°, &c. For the second position of the circle we have twelve equations of the form

$$a \cos (\theta - \varphi) + b \cos (\theta + \frac{\pi}{2} - \chi) = m',$$

and similarly for the two remaining positions. From these 45 equations we may determine a, b, σ and χ with considerable accuracy, thus obtaining a complete knowledge of the magnitude and location of the errors considered. Further, by substituting the values so found in the observation equations, we may from an examination of the residuals determine by how much the circle denerst from the blane form.

The first test with the new surface plate showed a high spot at one point on the axis bearing; when this had been scaraped off the deviation of the circle was considerably leasened. The first set of measurements after this had been done gave a value of Ψ^* for a and about 4^* for b_1^* in one position of the circle on the axis this corresponds to a variation of over .002 inch, esclusive of irregularities. It was found also that the circle was distorted by the pressure of the screw collar which holds it against the axis, so that when the collar was forced home the irregularities reached a value of 7" on each side of the mean, as against about 4^* when it was only moderatley tight; this was found to be due to the fact that the circle bearing was not a plane; the same was true of the face of the screw collar and the face on the circle against which it bore;

For these latter, since the only requirement was that they should be plane, one scraping, in conjunction with tests by a surface plate, was sufficient; in the case of the bearings between circle and axis, however, on account of the difficulty of knowing just how much was taken off at a time, it was necessary to proceed by trial, taking care that both surfaces should always be plane when measurements were taken. In this way, after some half dozen trials, the values of a and b were each reduced to about 1^o.

Some preliminary measurements had previous to this been made for determination of pivot error; it had been assumed without testing that the pivots were hardened; it was accidentally discovered, however, about the end of August, while the adjustment of the circles was still going on, that this was not the case. Such a serious defect as this had not been anticipated, though considering the many other imperfections of the instrument it should perhaps not have proved surprising.

After consideration, it was decided to turn the pivots down to a smaller size, and to force over them hardened steel bushings of the original diameter (4 inebes). We were much handicapped by lack of previous experience in such operations, and by the lack of machines large enough to accommodate the axis, but after several failures have finally succeeded in obtaining pivots which give every roomise of being satisfactory.

As the lathe at the Observatory was not large enough for the purpose, the axis was taken to a machine shop in the city, and the original pivots turned down to a diameter of about 3³ inches; they were then earefully ground with a very slight taper, to facilitate the foreing on of the bushings. Here again diffeoult was encountered, as nowhere in the city was there a grinder capable of accommodating the instrument; inquiries in Montreal and Toronto were equally unavailing. The grinding was finally done in a lathe, by fastening a small portable motor-driven cutter-grinder in the toolpost of the lathe. The first bushings were made from forgings obtained from a local firm; after turning, boring and hardening these, they were ground inside to the required taper, and outside to very nearly the finished size, and then forced over the ground surfaces on the axis. They were then reground, and finished by using flour enery in a circular tap of gun-metal. Not until this final process was reached was it discovered that the metal was permeated by minute flaws which made the attainment of a perfect surface impossible.

At this stage Messes, Warner and Swasey, the well known instrument makers of Cleveland, were communicated with; in their reply they very kindly gave a complete description of the processes they employed in finishing pivots. The details of the process were practically the sume as had been followed here, with the exception that they advised making the bushings not from forgings, but from blocks cut out of bar steel, to insure as far as possible homogeneity and freedom from strains and flavs. Accordingly a bar of steel was obtained and new bushings made from it; on this occasion the use of the workshop at the Royal Mint, where large lathes were available, was very kindly offered by Mr. Clever, and was thankfully accepted. Trouble was again experienced with the lapping, it being found impossible to get a satisfactory surface. The Observatory mechanician, Mr. Mackey, who has had long practical experience in all birds of machine work, finally gave it as his opinion that the difficulty arose from the small inequalities left in the surface by the portable grinder employed, the machine not having sufficient rigidity to ensure an even surface; as a matter of fact this proved in the end to be the case.

One of the machines at the Mint is a large grinder, sufficiently long to earry the moridim circle axis, but capable of swinging oulf fourteen inches, while the largest illumeter of the axis is ciphteen inches. This machine Mr. Cleave very readily permitted to be altered by raising the centres to a sufficient height; in fast the work in -connection with the alteration was all performed at the Mint, and nearly all by his own workness. When this had been done, the pivots were re-ground in it, and no further trouble was experienced in the lapping. At the same time, the tapered bearings on which the circles fix, were trued up, as a slight cecutivity in the respect to the

new pivots had been introduced; this made it necessary also to turn a corresponding amount of the faces against which the circles are changed. During an order process a small cut was also taken off the end of one pivot, to eliminate the asymmetry mentioned above in the positions of the circle.

In this connection I wish to express my appreciation of the very great kindness of Mr. Cleave in practically placing his whole workshop at our disposal. If ad it not been for his generous offer the work could hardly have been done in Camada.

As stated above, a great deal of work still remains to be done on the instrument. The two bearings on the axis, against which the circles are clamped, will doubtless require to be scraped, as will also the bearing on the fixed eiréle; this alone will require considerable time. The counterpoises are very unsatisfactory; a weight of about 350 pounds is at present counterpoised through a lever system by 10 pounds; with such a multiplication factor, especially with the arrangement used, the friction is so great as to prohibit effective control of the weight resting on the pivots; new counterpoises will require to be made. The right ascension micrometer, or rather the eye-piece slide driven by it, does not work freely, and will require overhauling. Several of the micrometer slides in the circle microscopes do not work freely; the springs in these are also unsatisfactory. The double spider lines in right ascension and declination micrometers and circle microscopes are at unsuitable and varying distances, and will require to be renewed. Besides these, there are many other details which require attention. The necessary alterations can best be made at the Observatory, where personal supervision will be possible; as, however, the machine shop is always overcrowded with work, it may take considerable time.

The observing couch, which was ordered some time ago, has been received. It is of somewhat different design from the ordinary form, and is intended to afford facility for quick setting in any desired position, together with the possibility of easy adjustment after the observer has taken his place upon it. Four wheels, running upon the same tracks as the reversing carriage, carry a wooden frame-work which in its turn supports a central transverse axis. On the latter is pivoted a light steel frame, which is also supported near one end by two screws connected with the wooden frame-work; by rotating these the frame may be tilted through a small angle in either direction, On the same axis are mounted two movable leaves; each of these is supported near its outer end by two rack sectors which engage pawls fastened to the steel frame; the pawls engage in the racks by their own weight, but may be released by a conveniently placed handle. The slow-motion screws are connected by means of a sprocket chain and bevel gears with two hand-wheels mounted one at each end of the transverse axis. The leaves of the couch can thus be quickly set in the approximate position required by means of the sectors, and after the observer has taken his place upon the couch he can tilt the whole upper frame into the proper position by means of the hand-wheels, which are always within easy reach. This slow motion has been found in practice to be a great convenience.

TRANSIT OBSERVATIONS.

Observations with the portable Cooke transit were conducted during the greater part of the year, as heretofore, in the temporary transit shed at the castern end of the Observatory. About the end of January, however, the instrument was moved to the new Transit Room and set up on the western pier, where it has since remained. The difference in longitude between the new pier and the old is 1949. feet, or -187 sec.

Observations were made on 142 nights, involving 281 determinations of clock error, as well as some observations for other purposes; on a number of nights two, and sometimes three, observers worked simultaneously, for determination of personal equation. The observations throughout the summer were principally for the purpose of longitude determinations at different points. As clock exchanges were frequently required with two different stations on the same night, sometimes at intervals of an

hour or two, it would have been troublesome to arrange the observing so that it would not conflict with the exchanges. For this reason the two features were kept independent throughout the season, a separate chronograph being used for the exchanges; the latter were held at the hours most convenient to the field observers, irrespective of observations or weather conditions at Ottawa; whenever possible two determinations of clock error were made on every night, preferably, but not necessarily, about the time at which the exchanges were held; for nights on which no observations were obtained the clock error was interpolated from the two adjacent nights. This arrangement, which is of course permissible only with a clock of demonstrated reliability, has proved quite sufficiently accurate for all ordinary purposes; in the case of very important stations the interpolation from night to night might perhaps not be advisable: the independence of observations and exchanges is of advantage, especially on nights broken by clouds, in that it frees the observer from the interruptions and delay inseparable from an exchange. The number of exchanges was 156, occupying 116 nights; the observing was divided among Mr. Nugent, Mr. Smith and myself, the greater part being done by the two former. A first computation of the observations was made by Mr. Tobey; they were then recomputed by the observers, and a final check including occasional recomputations was made.

The accuracy of determinations of level error during the summer was not up to standard. Early in the season the tip was broken off the level via belonging to the transit; as no other good vial was available, and as several months were required before delivery of a new one, it was necessary to seal up the old one and continue using it. Though the mean value of a division was practically unaltered, it was found that the bubble had become rather sluggish and uncertain in its action, and considerable trouble was experienced with measurements of level error during the whole summer. The apparent probable error of a complete determination of level (comprising usually six independent measurements) was -011 sec; that for 1907 was -006 sec, and for the spring of 1909, after renewal of the vial, -005 sec. This difference has probably quite an appreciable effect on the accuracy of the work.

The fluctuations in azimuth throughout the summer were reasonably small; adjustments in level were, however, frequently necessary; another peculiarity of the level error was its tendency to progressive change during the evening's work, the western end of the instrument usually rising as the evening progressed; usually a compensating change took place in the opposite direction during the day, though the general tendency of movement throughout the summer was in the former direction. The average rate of devation of the western pirot was -017 sec. (of time) per hour; the rate varied between -016 sec. and 073 sec. per hour, being negative on 16 inghts out of 89. There was no apparent connection between enlange of level and change of temperature during the hours of observation.

The method of observation was that described in my last report; a set consisted of seven or eight southern stars well up towards the zenith, combined with three or four north stars between 10° and 80° declination; the telescope was reversed during the observation of each star; as a rule only one group of observations on each star was taken in each position of the instrument. The star-list used contained all the stars in Newcomb's Fundamental Catalogue between 10° and 40° and between 70° and 80° declination; the places of the Berliner Jahrbuch were used for all stars contained therein; for the other stars the places were taken from the Nautical Almanae, the Commissance des Temps and the American Ephemeris without the application of any systematic correction; as the number of such stars was not very large, and as substantially the same list was used for the field observations, any resulting errors in the longitudes deduced word be small.

In the same way as described in my last report, the average discordance between two sets observed on the same night (after allowing for clock-rate) was used as a measure of accuracy; from this quantity the probable error of a single set may be

deduced as follows:—The chance of an error x occurring in the first set on any particular night is

$$\frac{h}{1-\pi} \cdot e^{-h^3 x^3} \cdot \delta_x,$$

where h is the measure of accuracy, and δx is the smallest quantity measured. Similarly the chance of an error x + z occurring in the second set is

$$\frac{h}{\sqrt{\pi}} \cdot e^{-h^* (x+z)^2} \cdot \delta x.$$

The chance of both errors occurring on the same night is the product of these quantities; if we take into account the case where an error x + z occurs in the first set and an error x in the second the chance is doubled. Hence the number of pairs of errors xand x + z occurring in N nights is

$$2N \frac{h^2}{\pi} \cdot e^{-h^2(2x^2+2xz+z^2)} \cdot \delta x \cdot \delta x$$

Hence the number of discordances z (irrespective of sign) occurring in N nights is

$$\begin{split} & 2N \stackrel{h^2}{\pi} e = \frac{h^2 z^2}{z} \cdot \delta z \int_{-\infty}^{+D} \frac{e^{-h^2(\sqrt{2} \cdot z + \frac{1}{\sqrt{z}} + z)^2}}{-\infty} \cdot \delta x \\ & \text{or } Nh \sqrt{\frac{2}{\pi}} \cdot e^{-\frac{h^2 z^2}{z}} \cdot \delta z, \end{split}$$

Hence the sum of all discordances is

$$Nh \sqrt{\frac{2}{\pi}} \int_{0}^{\infty} e^{-\frac{h^{2}z^{2}}{2}} \cdot z \, d \, z = \frac{N}{h} \sqrt{\frac{2}{\pi}},$$

and if the average discordance be denoted by Δ we have

$$\Delta = \frac{1}{h} \sqrt{\frac{2}{\pi}} \, .$$

But the probable error $r = \frac{\cdot 4769}{h}$; hence $r = \cdot 5978 \Delta$.

In the third column of Table L are given the clock corrections obtained from each set throughout the summer; the fifth column gives the discordance (after allowing for clock rate) in every case where two sets were taken by the same observer on a single night; the average of all the discordance is .033 sec, being practically the same for all three observers; the probable error deduced from this is .0197 sec. The value of Δ deduced in my last report for the old method of observation was .033 sec, corresponding to a probable error of .0233 sec; as the weight, or efficiency, is inversely proportional to the square of the probable error, the increase of efficiency indicated is .40 per cent; and presumably this has arisen from the alterations in methods of observation and grouping of stars.

As stated above, however, the probable error of the measurement of level was -011 sec. in 1908 as against -006 sec. in 1907 and periotos years. If we assume that this effect enters for its full value in the observations of 1908, we should, for a proper comparison, reduce the probable error of a set for the latter year accordingly; that is, we would have a probable error of \cdot 0174 sec. for 1908, as against \cdot 0233 sec. for previous vears, an increase in efficiency of about 50 per cent.

TABLE I. -- TRANSIT OBSERVATIONS IN 1908.

Date.	Time.	$\mathbb{E} T$	Observer*	Discordance.	To To
	h m				8
May 14	$\begin{array}{ccc} 14 & 50 \\ 17 & 10 \end{array}$	$ \begin{array}{r} 2 & 434 \\ 2 & 478 \end{array} $	N N	.033	$\frac{2}{2}.355$ $\frac{2}{399}$
- 15 ··· = ··· ·· ··	$\begin{array}{ccc} 12 & 50 \\ 14 & 40 \end{array}$	$ \begin{array}{r} 2.466 \\ 2.488 \end{array} $	${}^{\mathrm{C}}_{\mathrm{C}}{}^{\mathrm{S}}_{\mathrm{S}}$	013	$\frac{2.466}{2.488}$
··· 18	$\begin{array}{ccc} 13 & 10 \\ 14 & 55 \end{array}$	$2761 \\ 2.793$	${}^{\mathrm{C}}_{\mathrm{C}}{}^{\mathrm{S}}_{\mathrm{S}}$	024	$2.761 \\ 2.793$
ē 20	$ \begin{array}{ccc} 14 & 45 \\ 16 & 30 \end{array} $	$\frac{2.960}{3.026}$	$\begin{smallmatrix} \mathrm{C} & \mathrm{S} & \mathrm{C} \\ \mathrm{C} & \mathrm{S} \end{smallmatrix}$	058	$2.960 \\ 3.026$
- 22	$ \begin{array}{ccc} 13 & 25 \\ 16 & 25 \end{array} $	$3^{+}270$ $3^{+}287$	$^{8}_{\mathrm{C}}\mathrm{s}$		$3^{+}304 \\ 3^{+}287$
	$\begin{array}{ccc} 12 & 50 \\ 14 & 40 \end{array}$	$3^{+}843 \\ 3^{+}878$	${}^{\mathrm{C}}_{\mathrm{C}}{}^{\mathrm{S}}_{\mathrm{S}}$. 026	$3^{+}843$ $3^{+}878$
June 1	13 20	4.960	сs		4 960
• 2 ··· (2 ··· •	$\begin{array}{ccc} 13 & 30 \\ 16 & 05 \end{array}$	$5^{+}110$ $5^{+}102$	N N	.014	$5^{+}031$ $5^{+}023$
······································	${f 14}{16}{\begin{array}{c} 30\\ 16\\ 40 \end{array}}$	$5.017 \\ 5.055$	${}^{\mathrm{C}}_{\mathrm{C}}{}^{\mathrm{S}}_{\mathrm{S}}$	- 033	$5.017 \\ 5.055$
· 4	$ \begin{array}{ccc} 14 & 15 \\ 15 & 45 \end{array} $	$5^{+}250 \\ 5^{+}270$	N N	017	$5^{+}171$ $5^{+}191$
. 5	$\begin{array}{ccc} 13 & 40 \\ 15 & 55 \end{array}$	$5^{+}231$ $5^{+}278$	$\begin{array}{c} \mathrm{C} \ \mathrm{S} \\ \mathrm{C} \ \mathrm{S} \end{array}$	-042	$5^{+}231$ $5^{+}278$
• 6	14 25	5.336	N		5.257
. 8	13 45	5.353	C S		5.323
	$\begin{array}{ccc} 17 & 05 \\ 19 & 00 \end{array}$	$5^{+}553$ $5^{+}519$	N N	087	$5.474 \\ 5.440$
. 10	$\begin{array}{ccc} 13 & 55 \\ 15 & 30 \end{array}$	$5^{\circ}478$ $5^{\circ}480$	8 8	001	$5.512 \\ 5.514$
• 11	$\begin{array}{ccc} 13 & 50 \\ 15 & 45 \end{array}$	5.639 5.639	N N	.003	$\frac{5.560}{5.560}$
. 12	$ \begin{array}{ccc} 13 & 55 \\ 15 & 20 \end{array} $	5·559 5·549	s s	-012	5.593 5.583
• 17	$ \begin{array}{ccc} 14 & 25 \\ 15 & 40 \end{array} $	$5.722 \\ 5.773$	s s	049	$5.756 \\ 5.807$
» 18	15 05	5.856	Ν		5.777
. 20	$\begin{array}{ccc} 16 & 00 \\ 17 & 55 \end{array}$	$5.913 \\ 5.995$	N N	079	$5^{+}834$ 5_916
. 21	$\begin{smallmatrix}14&40\\16&30\end{smallmatrix}$	${}^{6^+149}_{6^+128}$	N N	.026	$\begin{array}{c} 6.070 \\ 6.049 \end{array}$
. 22	$\begin{smallmatrix}14&45\\16&05\end{smallmatrix}$	${}^{6^+120}_{6^+151}$	$\begin{smallmatrix} C & S \\ C & S \end{smallmatrix}$	028	${}^{6.120}_{6.151}$
· 24	${f 14}{16}{f 25}{00}$	$\begin{array}{c} 6.302 \\ 6.228 \end{array}$	C S C S	.077	$\frac{6.302}{6.228}$
·· 25	$\begin{array}{ccc} 14 & 35 \\ 16 & 20 \end{array}$		N	-006	6 · 339 6 · 337

TABLE L-TRANSIT OBSERVATIONS IN 1908-Continents

Date.	Time.	T	Observer.*	Discordance.	Т
	h. m.				
June 26	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6+408 6+430	C S C S	.015	$\begin{array}{c} 6 & 408 \\ 6 & 430 \end{array}$
- 27	17 20	6 €32	N		6-553
	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$6^{-}649$ $6^{+}607$	s s	·045	$6^{+}683$ $6^{+}641$
. 29	14 55	6.740	сs		6 740
30	$\begin{array}{ccc} 15 & 05 \\ 17 & 00 \end{array}$	6.910 6.906	N N	009	
July L.,	$ \begin{array}{ccc} 16 & 00 \\ 17 & 50 \end{array} $		C 8 C 8	.019	6 869 6 855
- 3	$ \begin{array}{cccc} 15 & 15 \\ 16 & 35 \\ 18 & 50 \\ 20 & 00 \end{array} $		CS CS S	·024 ·014	6 963 6 990 6 978 6 995
· 5	15 05	7.066	s		7.100
. 6	17 50	7 110	c s		7.110
., 8.	$ \begin{array}{ccc} 15 & 30 \\ 17 & 10 \end{array} $	$7^{+}261 \\ 7^{+}229$	$\begin{array}{c} C & S \\ C & S \end{array}$.039	$7^{+261}_{-7^{+229}}$
	$\begin{array}{ccc} 15 & 0.5 \\ 17 & 00 \end{array}$	$7^+371 \\ 7^+401$	N N	025	$7^{+}292$ $7^{+}322$
10	$ \begin{array}{ccc} 15 & 10 \\ 16 & 40 \end{array} $	$\frac{7.388}{7.330}$	$\begin{array}{c} \mathrm{C} \ \mathrm{S} \\ \mathrm{C} \ \mathrm{S} \end{array}$	062	7^{+388}_{-330}
• II	$ \begin{array}{ccc} 17 & 25 \\ 18 & 35 \end{array} $	7^{-489}_{-7-441}	N N	- 051	$\frac{7}{7}$ $\frac{410}{362}$
· 12	$ \begin{array}{ccc} 15 & 40 \\ 18 & 05 \end{array} $	$\frac{7}{7}$ $\frac{423}{380}$	s s	-049	7^{+457}_{-414}
• 13	$ \begin{array}{ccc} 18 & 10 \\ 19 & 25 \end{array} $	$\frac{7}{7}, \frac{533}{514}$	N N	.025	7^{+454}_{-435}
· 14 · · · · · · · · · · · · · · · · · ·	15 15 16 30	7.553 7.498	$\begin{smallmatrix} C & S \\ C & S \\ \end{smallmatrix}$.028	7^{+553}_{-498}
. 15	$ \begin{array}{ccc} 15 & 35 \\ 18 & 00 \end{array} $	$\begin{array}{c} 7.604 \\ 7.610 \end{array}$	$\begin{array}{c} C & S \\ C & S \end{array}$.000	$7^{+}_{-}6^{-}_{-}10^{-}_{-}610^{-}_{-}$
16	$ \begin{array}{ccc} 15 & 55 \\ 17 & 35 \end{array} $	$\frac{7.670}{7.598}$	N N	·077	$\frac{7^{\circ}656}{7^{\circ}579}$
· 20 · · · · · · · · · · ·	17 55	7.644	C S		7.644
. 24	$ \begin{array}{ccc} 16 & 35 \\ 17 & 55 \end{array} $	$7^{+}593$ $7^{+}631$	C S C S	.038	$\begin{array}{ccc} 7 & 593 \\ 7 & 631 \end{array}$
·· 25	$ \begin{array}{ccc} 16 & 45 \\ 18 & 10 \end{array} $	$\begin{array}{c} 7 & 547 \\ 7 \cdot 534 \end{array}$	s s	-011	$7^{+}581\\7^{+}568$
- 26	$ \begin{array}{ccc} 16 & 05 \\ 17 & 30 \end{array} $	7 · 508 7 · 498	$\begin{smallmatrix} C & S \\ C & S \\ C & S \end{smallmatrix}$.008	7^{+508}_{-498}
. 28	$ \begin{array}{ccc} 17 & 05 \\ 19 & 05 \end{array} $	$\frac{7}{7}$ $\frac{341}{286}$	N N	.021	$\frac{7}{7} \cdot \frac{327}{272}$
29 25a-40	$ \begin{array}{ccc} 17 & 15 \\ 18 & 40 \end{array} $	$\frac{7}{7} \cdot \frac{271}{263}$	$\begin{smallmatrix} C & S \\ C & S \\ \end{smallmatrix}$	008	$\frac{7}{7}$ $\frac{271}{263}$

TABLE I.-TRANSIT OBSERVATIONS IN 1908-Continued.

Date.	Tii	me.	$rac{1}{2}$	Observer.*	Discordance.	$rac{}{}$
	h.	m.	8			8
July 30 Value and Call	$^{16}_{18}$	$\frac{35}{20}$	$7^{+}289$ $7^{+}271$	N N	.018	$7 \cdot 275 \\ 7 \cdot 257$
	$^{16}_{18}$	$\frac{50}{20}$	$7^{+}258 \\ 7^{+}323$	$\begin{array}{c} c \ s \\ c \ s \end{array}$	065	$\begin{array}{c} 7 \cdot 258 \\ 7 323 \end{array}$
Aug. 2	17	25	7.370	s		7.404
	$^{17}_{19}$	53 15	$\frac{7.665}{7.756}$	$\begin{array}{c} C & S \\ C & S \end{array}$	-088	7 665 7 736
$(6, \dots, 6)$ (i.e. $(6, 0)$	$\frac{20}{22}$	$\frac{50}{15}$	$\frac{7}{7}, \frac{701}{733}$	N N	-030	$7.687 \\ 7.719$
	$^{18}_{19}$	$\frac{25}{25}$	$7.767 \\ 7.813$	$\begin{array}{c} c \ s \\ c \ s \end{array}$	-044	$7.767 \\ 7.813$
9 9 ··· · · (0 · · · · ·	$^{17}_{19}$	40 15	$\frac{7.986}{7.940}$	s s	.020	$\frac{8.020}{7.974}$
ē 11	17 19	40 00		N N	-040	$\frac{8.142}{8.105}$
• 13	18 19	$^{20}_{55}$	8 280 8 286	N N	002	$\frac{8.266}{8.272}$
» 15	18	55	8.336	N		8.322
· 17	$^{18}_{20}$	$\frac{50}{05}$	$\frac{8.404}{8.411}$	$\begin{array}{c} c \ s \\ c \ s \end{array}$.002	
- 18	19	40	8.427	N		8.418
19 (c	$^{18}_{19}$	$^{05}_{20}$	8 576 8 509	N N	-069	8 562 8 495
	20 21	$^{05}_{10}$	8 546 8 591	$\begin{array}{c} c \ s \\ c \ s \end{array}$	-043	8.546 8.591
= 21	18 19	$^{00}_{20}$	8.616 8.625	C S C S	007	8.616 8.625
22	$^{18}_{19}$	30 45	8.620 8.664	N N	042	8 606 8 650
- 23 .	21	20	8.608	s		8.642
. 24	$^{17}_{19}$	45 05	8 683 8 752	$\begin{array}{c} c \ s \\ c \ s \end{array}$	067	8.683 8.752
0.25	18 19	$\frac{15}{25}$	8 793 8 790	N N	005	
. 26	20	10	8.789	CS		8 789
- 27	$\frac{18}{19}$	$\frac{00}{20}$	8 826 8 810	N N	018	8.812 8.796
	$^{19}_{20}$		8 803 8 811	$\begin{array}{c} c \ s \\ c \ s \end{array}$	-006	8.803 8.811
	$^{18}_{19}$	$\frac{30}{40}$	8-833 8-773	s s	062	8.867 8.807
· 31 · · · · · · · ·	$ 18 \\ 19 $	$^{10}_{20}$	8 859 8 893	$\begin{array}{c} \mathrm{C} \ \mathrm{S} \\ \mathrm{C} \ \mathrm{S} \end{array}$	032	8.859 8.893

TABLE 1.-TRANSIT OBSERVATIONS IN 1908.-Continued.

-							
	Date.	Ti	me.	<i>∆ T</i>	Observer.*	Discordance.	∴ T•
		h.	m.	8			8
Sept	. 3	$^{18}_{19}$	$\frac{15}{40}$	8 · 986 9 · 019	N N	-031	$8.972 \\ 9.005$
	· ·····	$^{18}_{19}$	$^{05}_{15}$	$9.070 \\ 9.035$	C S C S	.632	$9.070 \\ 9.035$
**	ð	$^{19}_{21}$	$\substack{40\\00}$	9.076 9.107	N N	·029	9.062 9.093
н	6	$^{18}_{19}$	30 40	9.030 9.064	s s	.035	9.064 9.098
"	T	$^{19}_{21}$	$^{40}_{05}$	9°110 9°171	N N	059	$9.096 \\ 9.157$
11	8	$^{19}_{21}$		9 199 9 186	$\begin{array}{c} \mathrm{C} \ \mathrm{S} \\ \mathrm{C} \ \mathrm{S} \end{array}$.012	$9^{+}199$ $9^{+}186$
	$\mathbf{D}(\mathbf{r}, \mathbf{r}) = \mathbf{r} \left(\mathbf{r} \in [0, \infty) \right) + \mathbf{r} \left(\mathbf{r} \left(\mathbf{r} \in [0, \infty) \right) + \mathbf{r} \left(\mathbf{r} \left(\mathbf{r} \in [0, \infty) \right) + \mathbf{r} \left(\mathbf{r} \left(\mathbf{r} \in [0, \infty) \right) + \mathbf{r} \left(\mathbf{r} \left(\mathbf{r} \left(\mathbf{r} \left(\mathbf{r} \right) \right) + \mathbf{r} \left(\mathbf{r} \left(\mathbf{r} \left(\mathbf{r} \left(\mathbf{r} \left(\mathbf{r} \right) \right) \right) + \mathbf{r} \left(\mathbf{r} $	$^{20}_{21}$	$^{15}_{35}$	9 388 9 379	$\begin{array}{c} c \ s \\ c \ s \end{array}$.011	91358 91379
	12	$^{19}_{20}$		$9^{+}419$ $9^{+}386$	N N	.036	$9^{+}405$ $9^{+}372$
"	14	$^{19}_{20}$	$\frac{05}{25}$	9.453 9.519	$\begin{smallmatrix} C & S \\ C & S \end{smallmatrix}$	064	9145 3 91519
	16	$^{19}_{20}$	$^{10}_{15}$	9.561 9.499	$\begin{array}{c} \mathrm{C} \mathrm{S} \\ \mathrm{C} \mathrm{S} \end{array}$	·064	$9.561 \\ 9.499$
**	19	$^{19}_{20}$	$\begin{smallmatrix} 10\\ 30 \end{smallmatrix}$	$9.676 \\ 9.713$	N N	035	$9.662 \\ 9.699$
	20	$^{19}_{20}$	$\frac{25}{50}$	$9.616 \\ 9.570$	s s	-048	9:650 9:604
	21	19	50	9.616	s		9:650
10	25	20	45	9.706	сs		9.706
н	29	$^{20}_{21}$	25 25	$9.813 \\ 9.782$	s s	-033	$9.847 \\ 9.816$
Oct.	1	20	50	9.906	сs		91906
	2	$ \begin{array}{c} 19 \\ 22 \\ 22 \end{array} $	55 10 10	9 994 9 958 9 910	$\begin{array}{c} {}_{\mathrm{C}}{}_{\mathrm{S}}^{\mathrm{S}} \\ {}_{\mathrm{S}}^{\mathrm{C}}{}_{\mathrm{S}}^{\mathrm{S}} \end{array}$.010	9 994 9 958 9 944
"	3	$^{20}_{21}$	25 35	9 · 939 9 · 933	s s	008	9 973 9 967
	5	$21 \\ 22 \\ 22 \\ 22$	10 40 40	10.060 10.040 10.017	CS CS S	023	$ \begin{array}{r} 10.060 \\ 10.040 \\ 10.051 \end{array} $
	6	$^{20}_{22}$	$35 \\ 05$	$10.073 \\ 10.099$	N N	023	$\frac{10.059}{10.085}$
	7	$^{21}_{22}$	$^{00}_{20}$	$10.076 \\ 10.081$	$\begin{array}{c} \mathrm{C} \ \mathrm{S} \\ \mathrm{C} \ \mathrm{S} \end{array}$	002	$10.076 \\ 10.081$
	9	$^{19}_{20}$	40 45	† 366 ·417	$\begin{smallmatrix} C & S \\ C & S \\ \end{smallmatrix}$	049	† 366 · 417
	11	21	00	276	8		·310

25a-403

Date.	Ti	me.	LT	Observer.*	Discordance.	$_{\sim}T_{_{\circ}}$
	h.	m.	8.			s.
Oct. 12	20 22 20 22	$ \begin{array}{r} 40 \\ 25 \\ 40 \\ 25 \end{array} $	400 401 336 363	CS CS S	·002 ·024	400 401 370 397
	$\frac{20}{22}$ $\frac{22}{22}$	45 25 25	454 - 371 - 390	N N S	-086	440 - 357 - 424
- 14 .	$\frac{21}{21}$	$\frac{50}{50}$	$^{+444}_{-456}$	N S		-430 -490
15 .	$^{21}_{21}$	30 30	-591 -520	N S		577 554
Nov. 21	$ \begin{array}{c} 0 \\ 2 \\ 0 \\ 2 \end{array} $	55 35 55 35	$2^{\circ}291$ $2^{\circ}382$ $2^{\circ}260$ $2^{\circ}247$	s s N	088 -016	2.325 2.416
	$^{23}_{23}$	50 50	$2.952 \\ 2.988$	N C S		2.988
- 29.	$ \begin{array}{c} 0 \\ 2 \\ 0 \\ 2 \end{array} $	$ \begin{array}{r} 30 \\ 20 \\ 30 \\ 20 \end{array} $	3 · 253 3 · 259 3 · 307 3 · 309	${}^{\mathrm{S}}_{\mathrm{CS}}$	002 002	3 · 287 3 · 293 3 · 307 3 · 309
Dec. 2	0 1 1	$20 \\ 50 \\ 50$	$\frac{3.664}{3.611}$. $\frac{3.516}{516}$.	${}^{\mathrm{C}\mathrm{S}}_{\mathrm{C}\mathrm{S}}_{\mathrm{N}}$	056	3.664 3.611
ō	$23 \\ 0 \\ 23 \\ 0 \\ 0$	05 55 05 55	3 · 981 3 · 994 3 · 864 3 · 827	S SNN	009 -041	$4.015 \\ 4.028$
Mean Discordance					± 033	

TABLE 1.-TRANSIT OBSERVATIONS IN 1908.-Continue 1.

9-10 EDWARD VII., A. 1910

^{*} The letters used to denote the observers are as follows :--R. M. Stewart, S ; D. B. Nugent, N ; C. Smith, CS.

 \dagger On Oct. 9, owing to a blown-out fuse, the winding circuit of the clock failed for a few minutes; though the pendulum continued to swing uninterrupted, the reading of the clock-face was changed.

[‡] The personal equation of N had changed between Oct. 15 and Nov. 21; hence the observations of N are not entered in the last column after Nov. 21.

PERSONAL EQUATION.

An examination of the values of clock error for successive days, as given in the third column of Table L, shows that the differences of personal equation are not negligible. This was very clearly seen on plotting the results in a curve, using different coloured inks for each observer; it was also quite noticeable that the personal equation of N had suffered a sudden change between July 13 and July 16. To determine the values of the personal equations the summer was broken up into periods during which the curve appeared most regular; then for any one period the mean of the observations on each night was represented by the observation equation

$$a + bt + ct^{a} + e = \Delta T$$
,

t being the interval from a fixed epoch, a, b and c arbitrary constants, ΔT the observed clock error, and e the personal equation of the observer referred to the standard obser-

ver. It will be seen that this amounts to assuming that the clock-rate, during the period considered, varied uniformly with the time; the periods were so chosen, by inspection of the curve, that this condition should be approximately fulfilled; even if this were not the case the deduced values of e would still be trustworthy, provided the work of each observer were distributed fairly uniformly over the whole period. After combining the observation equations and deducing the values of e for N and CS, referred to S as standard, and also of a, b and c, these values were substituted in the observation equations and the residuals formed. As the average of the residuals for those parts of the summer included in the periods considered was 022 sec., the largest being .06 see, it follows that the observations are fairly well represented by the formula. The relative personal equations derived for each period, with their probable errors, are given in Table II. From these figures it would appear that during June and July the personal equation of CS underwent a gradual progressive change; from a consideration of the observations as a whole, however, and considering the fact that, especially in the first period, the observations of CS were not distributed over the whole period, it was decided to treat the personal equations of CS and of S as constant throughout the season, and to assume (as was evidenced by the clock-curve) a sudden change in that of N about July 15. Combining the results for the whole season on this assumption, the values of personal equation derived are as follows:-

CS-S .034 sec.

N-S .113 sec. up to July 15; afterwards .048 sec.

As will appear below, it seemed likely from some later developments that the absolute personal equation of CS was nearly zero; for this reason the above results were altered so as to make his observations the standard; the corrections to be applied to the clock errors of each observer were then as follows :---

S .034 sec.

- N .079 see, up to July 15; afterwards .014 sec.
- CS .000 see,

These corrections have been applied to form the last column in Table I.

To obtain the personal equations of the two field observers M^* and J^{\dagger} , some additional observations were made, the field observers occupying a hut immediately to the south of the one in which the home observations were taken. The observations with M extended from September 14 to October 14; those with J, who did not return from the field until later, from November 21 to December 5. During a part of this time two of the home observers frequently observed together, in order to strengthen the determination both of their own personal equations and of those of the field observers. This was rendered possible by the fact that the transit used (Cooke I) was fitted with an attachment which caused it to record over every alternate four revolutions (of the micrometer screw) throughout the field; one observer would follow the star over a group of contacts at a considerable distance from the centre of the field, the other over a group somewhat closer; after reversal the same series of observations was repeated in the reverse order; thus the observations of each observer were complete in themselves; the groups of contacts made by each observer were interchanged for alternate stars. Each observer also took an independent series of level readings; as it was found, however, that there was no systematic difference in this regard, the mean of all the level readings was taken in making the reductions.

The observations for M's personal equation are collected in Table III.; those for that of J in Table IV. It is evident from Table IV, that for the November and December observations the personal equation of N had again suffered a decided change; those of S and CS, however, appear to have remained relatively unchanged; consequently in obtaining the personal equation of J only the observations of S and CShave been used.

^{*} F. A. McDiarmid. † W. C. Jaques.

The values of personal equation obtained above for the five observers engaged were applied throughout in the computations for longitude. Though perhaps not as accurate as might be desired, the agreement of the longitudes derived on different night-has been in general improved by their application, and there is at least no doubt of the real existence of personal differences of about the magnitudes indicated. It follows that it is never safe to assume the absence of personal equation with the transit micrometer, as was the tendency for some time after its introduction; though some of the differences involved above are small enough to be neglected except in the most refined work, several of them are of quite appreciable magnitude. They are, however, much smaller than the personal equations ordinarily occurring in key observations.

In considering à priori the question of personality with the transit micrometer, it would appear that there are two factors capable of affecting the result. On account of the motion of the star, there may be a tendency always to keep the moveable wire either ahead of or behind the star, irrespective of its apparent direction of motion; the distance between star and wire, expressed in angular measure, might be expected to be somewhat less for the more slowly moving stars, but this tendency would be, to some extent at least, counterbalanced by the greater value (expressed in time) of any particular angular interval for the latter class of stars; thus the tendency would be for the record to be made either too soon or too late by a quantity which might be sensibly the same for stars of all declinations; this is a personal equation of the same kind as the so-called 'reaction-time' in observations by eye and ear or with the telegraphic key, but it might be expected to be smaller. The second factor is the personal error of bisection, by virtue of which an observer may tend always to set the wire either to the right or left of the centre of the star-image which he attempts to bisect: this effect would change sign with the direction of apparent motion, and its absolute value would be proportional to the secant of the declination, changing sign at the zenith and at the pole; it might also be expected to vary with the magnitude. This error is also present in the case of estimation of transits across fixed wires; there is, however, so far as the variation with magnitude is concerned, the difference that in the latter case the tendency is usually to estimate the bisection of a bright star sooner than that of a faint one, irrespective of the direction of motion, while in the case of the transit micrometer, differences of magnitude will presumably simply have the tendency to increase or diminish the error of bisection.

^{*}Errors of the first class arise from the motion of the star, but are independent of its direction; those of the second class do not arise from the motion, but (when expressed as corrections to the time of transit) change sign with its apparent direction; the former will affect the time, but not the azimuth; the latter both, but more markedly the azimuth.

It had long ago been noticed by the writer that, for his own observations, it was impossible satisfactority to comhine observations of south stars with those of north stars at both upper and lower culmination; this for the reason that the stars at upper culmination, when combined with the south stars, gave values of clock error and azimuth consistently differing from those derived from the stars at lower culmination. This circumstance was explicable by supposing that the observations were affected by a systematic error of bisection, and by no other hypothesis except that of systematic catalogue error; it was found that the observations could be reconciled by supposing that the wire was set always to the left of the star by somewhat over a second of arc.

During the summer of 1908 it was decided to make some special observations to test, qualitatively at least, the validity of this hypothesis. In order to obtain as many independent tests as possible, several methods of observation were devised. The most obvious of all, the observation of transits of zenith stars facing alternately north and south, was impracticable with the telescope used, since the standards interfered with the proper manipulation of the micrometer wheels. The first method used was the

measurement of zenith distances; as the telescope was fitted with an erecting diagonal eve-piece, this was comparatively simple. After setting on a star at some distance from the zenith, preferably a slow-moving north star (the micrometer head having been previously turned so that the moveable wire was horizontal), the diagonal eyepiece was turned in either direction about 45° from the vertical plane; on looking into it with the line joining the eyes horizontal, the micrometer wire appeared vertical. the direction of increasing zenith distance being towards the right or left according to the direction in which the eye-piece had been turned. By making a number of settings with eve-piece alternately right and left the error of bisection was readily found. In this method the question is not complicated by the motion of the star, which appears to move along the wire, the motion in any case being very slow if high polars be chosen; thus the result is practically the simple error of bisection for a stationary object. By combining the results from different stars the variation depending on magnitude may also be found. The stars principally used were Polaris and λ Ursæ Minoris; with the latter as many as a hundred settings could easily be made at one culmination. Several other stars of high declination were also used, the total number of bisections made being about 400. Observations of a similar kind on Polaria and a Urse Minoris were also made by C. C. Smith.

The other methods used, which were three in number, all depended on the observation of transits. They were as follows :---

I. Observations of the same star (over different parts of the field) were made with the ordinary diagonal eye-piece (erecting), and also with a simple eye-piece of about the same magnifying power; as the apparent direction of motion is altered by interehanging the eye-pieces, the difference in times of transit (reduced to the meridian) was taken to be double the error of bisection. In this case the observations are not made under exactly similar conditions; with the direct eye-piece a movement of the hand-wheels appears, to an observer accustomed to the erecting eve-piece, to move the wire in the wrong direction, and there is no assurance à priori that this will not alter the 'lag' effect, if this exists. The definition is also somewhat better with the direct eve-piece, which might tend to diminish the error of bisection in that case; the result might also be affected by the difference in the observer's position. On account of the use of the direct eye-piece, observations were not possible within 35° of the zenith; stars were observed near the equator and near the pole, both above and below. When reduced to equatorial interval it was found that the error of bisection was practically the same for polar and equatorial stars, the difference in times of transit being, as was expected, of opposite sign for north stars at upper culmination. Care was taken to have the magnitudes varied enough to determine the magnitude equation. The whole number of stars observed was 45.

II. Observations of a few equatorial stars were made in the ordinary way, and also with the diagonal exp-piece turned through 150°, so that the observer faced upwards at an angle in looking into it. As before, the error of bisection was taken to be one-half the difference in the reduced times of transit. Theoretically this method is free from objection, as the conditions of observation are the same in both cases; practically, however, the difficulty of observing with the experised cohen, without a suitable reclining chair, was found to be a very serious objection; only twelve stars were observed.

III. As in the case of the zenith distance observations above, the star was observed with eye-piece both left and right, and also (over another part of the field) in the ordinary way. With eye-piece left the apparent motion of the star was upward, the wire appearing horizontal; with eye-piece right the motion was downward; the mean of these two observations was taken to be free from error of bisection; hence the error for the ordinary observation was derived. The number of stars observed was 43.

In the several methods described above the results are independent of eatalogue piaces, an include both the absolute value of the error of bisection and its variation with magnitude. Computations were also made from the residuals of the southern Berliner dalutue hatro securiting in the ordinary observations to determine the magnutude equation in the case of both S and CS; this involves the assumption that the B. J. places are free from magnitude equation, which is probably very nearly the case. The residual of each B. J. star in a set was diminished by the mean of all; the same was done with the magnitudes; there results for each star an observation equation of the form b m = c, m being the magnitude of the star diminished by the mean magnitude quation; the residual diminished in the same way, and b the unknown magnitude quation of S. 148 for that of CS.

From the observer worked simultaneously with the same instrument, a computation was made of their difference of personal equation and its variation with magnitude, on the supposition that it was wholly due to bisection error. This supposition and it is variation with magnitude, on the supposition that it was wholly due to bisection error. This supposition and a south stars, every one of the north stars gave a negative difference in the sense S - CS, and every one of the south stars a positive difference. The signs of the difference for the north stars having been changed, each star furnished an observation error. This differences for the north stars having been changed, each star furnished an observation equation of the form $a + bm = v \cos \delta$ for the determination of difference. The 02 equations were combined by least squares, and a and b

The results of all the observations and computations described above are collected in Table V. In the case of the zenith distances the bisection errors, for the sake of uniformity, have been reduced to their equivalents in time; all the results are expressed in equatorial interval; the bisection error has throughout been considered positive when the wire is set to the apparent left of the star. The inter-agreement of the means is no doubt much closer than might have been expected from the varied nature of the observations and their comparatively limited number. The results, however, point very strongly to the reality of a large bisection error for the observer S, and to its variation with magnitude; the agreement for the two observers points to the probability that their personal equations arise almost wholly from this cause. For a set observed at the latitude of Ottawa (45° 24'), composed of north stars of magnitude 5.5 at declination 77° and south stars of magnitude 4 at declination 25°, which is about the average composition, the personal equation between S and CS due to error of bisection, assuming the latter to be .074 sec, -.0129 (m-4), would be .036 sec; the actual value as obtained directly above was -034 sec. The closeness of this agreement is, however, no doubt partly attributable to chance.

The observations of N in October, on the three nights when he worked simultaneously with S, appear to follow a similar law, the differences being all negative for the north stars, and nearly all positive for the south stars; for his observations in November and December, however, after the second change in his personal equation, this is not the case. The observations were considered to of two make a definite analysis; his magnitude equation during the early part of the summer, as deduced from the residuals, was -0019 sec. per magnitude, a practically evanescent quantity.

It may be remarked that transits of stars near the zenith, observed with a broken type telescope, will be free from error of bisection when the telescope is reversed during the observation of each star. For an ordinary telescope the condition of adimination, so far as effect on the deduced clock-error is concerned, is that the sines of the mean zenith distances of south and of north stars should be proportional to the errors of bisection corresponding to their respective mean magnitudes, provided that the

zenith distances and magnitudes of individual stars do not differ widely lean these means. As, however, the fulfillment of this condition, even approximately, would be extremely difficult in actual practice, and as the resulting error varies fairly rapidly with changes in the conditions, the only practical remedy would appear to be the measurement by each observer of his bisection error and the correction of each separate observation for it if large. Observations of both Polaris and A Urase Minoris at a single cultimation, by the method outlined above, would be sufficient to determine whether the error and its variation with magnitude were sufficiently large to be taken into account; if so, further observations of the same kind could be made if desired.

In the measurement of azimuth by the transits of close circumpolars, the clock crror being supposed known, the error of bisection enters for more than its full value into the deduced azimuth. In this case the error might either be measured directly as above, and a correction applied, or it might be eliminated by observing with eyepiece alternatively left and circlut as described under ILI, hove.

TABLE II. – PERSONAL EQUATIONS OF HOME OF	OBSERVERS.	
---	------------	--

Period, 1908.	CS-S	N-S	
June 1-20 June 21-July 15 Aug. 2-31 Sept. 3-29. Oct. 1-7.	$ \begin{array}{c} s \\ - 011 & \pm 021 \\ 025 & \pm 014 \\ 046 & \pm 014 \\ 056 & \pm 018 \\ 059 & \pm 016 \end{array} $	$ \begin{array}{c} 8 \\ 0.098 \pm 0.016 \\ 0.099 \pm 0.015 \\ 0.057 \pm 0.015 \\ 0.077 \pm 0.019 \\ 0.061 \pm 0.022 \end{array} $	Preliminary.
May 14–July 15	034 ± 007	·113 ±·009 ·048 ±·009	Adopted.

TABLE III	-PERSONAL E	DUATION OF F	A. McDIARMID.

Date.	Time.		CLOCK CO	RRECTIONS.	PERSONAL EQUATION OF M.				
Date.	Time.	м	S*	N†	сs	S-M	N-M	C S-M	
1908.	h. m.	8	8	8	8	8	~	8	
Sept. 14	19 00	9:444			9.453			009	
	20 25 19 10	9 · 424 9 · 505			9·519 9·561			-095 -046	
. 19	20 20 19 10	9·493 9·619		9.662	9-499		- 043	.006	
	20 10	9.562		9.699			137		
	19 20 20 35	9.565	9.650 9.604			085 064			
	20 05	9.656	9.650			~ 006			
25	20 45 19 50	9.684 9.812	9.847		9.706			022	
. 29	21 15	9.812	9.816			- '028			
Oct. 1	20 05 22 00	9.918 0.522	0.100		9 906			~ '012	
. 14	22 00	0.522	0.490	0.430		- '032	~ 092		
Means						.020	. 029	028	
Weighted mean							0.022		

*With personal equation + 034 sec. applied.

+With personal equation - 014 ...

DEPARTMENT OF THE INTERIOR

9-10 EDWARD VII., A. 1910

TABLE IV PERSONAL EQ	QUATION OF W. C. JAQ	UES.
----------------------	----------------------	------

Date	Time.		CLOCK CO	RECTIONS.	PERSONAL EQUATION of J.			
1330-	i nue.	Л,	S*	N†	сs	s_J	N-J	csJ
1908.	h m	s	8	8			β	8
ov. 21 26 29 ec. 2 5	$\begin{array}{ccccc} 0 & 55 \\ 23 & 50 \\ 0 & 30 \\ 2 & 20 \\ 0 & 20 \\ 1 & 50 \\ 23 & 05 \\ 0 & 55 \end{array}$	2^{-319} 2^{-988} 3^{-259} 3^{-210} 3^{-516} 3^{-586} 3^{-920}	2 · 323 3 · 287 3 · 293 4 · 015 4 · 028	2:246 2:938 	2 988 3 307 3 309 3 664 3 611	006 028 083 068 108	- '073 - '050 - '084 - '097 - '107	000 048 099 148 025

* With personal equation + '034 sec. applied.

+ With personal equation - '014 sec. applied.

TABLE VERROR	S OF BISECTION.
--------------	-----------------

Method.	Observer.	Bisection Error.	
Zenith Distance	s s s c s c s s c s s s c s s s c s s c s	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
Means.	$_{\rm s-cs}^{\rm s}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	

TIME SERVICE.

The ordinary work in connection with the Time Service has consisted, as in the past, of the necessary attention to the up-town service, the sending out of time-signals to the telegraph company, dropping of the time-ball on Parliament Hill, supplying of mean and sidereal time by telephone to those requiring it, occasional rating of chronometers, testing of aneroid barometers, &c., together with the maintenance of the clocks and apparents at the Observatory.

In addition to the daily time-signals to the telegraph company, the beats of the mean-time dock were on one occasion sent to a member of the Geological Survey staff at Blackwater, B.C., several hundred miles north of the main line of the Canadian Pacific Railway. On this occasion the transcontinental copper wire of the Canadian Pacific Telegraph was used as far as Vancouver; the signals were received at Blackwater satisfactorily.

During the winter season, unless required for special purposes, observations for time were taken usually not oftener than once a week, and occasionally at slightly

longer intervals. When required only for ordinary time-keeping purposes (the clock error not being required more accurately than to within one or two-tenths of a second) this is found amply sufficient with our Riefler Standard Clock.

Some trouble has been experienced with the maintenance of a perfectly uniform pressure within the case of the Sidereal Standard. During May, 1908, a leak at the trate of several millimetres per month developed; by careful rescaling this was reduced, though not entirely eliminate; throughout the whole summer and the casuing winter a practically uniform leak of one millimetre per month persisted; as, however, the leak was uniform, it did not interfere seriously with the performance of the clock; no attempt was made to keep the pressure at its original value by periodical exhaustion, as it was considered that this would interfere with the continuity of rate. In March, 1909, the electric seconds-contact failed; the necessity of dismounting the clock was taken advantage of to have it cleaned and olde, after which it was again mounted and exhausted to a pressure of 685 millimetres. An analysis of its rate from June to October, 1909, is given in Appendix A below.

Reference was made in 'my last report to the proposed extension of the Time Service to the Printing Bureau, the Mint and the Archives Building. It was, however, later decided by the Public Works Department not to equip the Printing Bureau at present. A witch-room to contain the apparatus for serving the two remaining buildings was obtained in the Mint, and was fitted up under my supervision by the electricians of the Public Works Department; this work was completed on September 13. The matercelock for operating the dials was the one which had been formerly used in the basement of the Supreme Court Building as primary for the experimental system installed in 1962. For use as a secondary matter-clock it required to be fitted with a minute-contact and a synchronization magnet, as well as with the eut-out described in my last report. This was done in the Observatory workshop, and the clock was set up in the with-room at the Mint and Archives Building were started; the master-clock such the dials in the Mint and Archives Building were started; the master-clock was not put under direct control from the Observatory workshop.

In the other departmental buildings there have, as usual, been changes and some additions to the dials in operation. The necessary attention to the system has in the main, as heretofore, devolved upon Mr. Robertson; Mr. Nugent has also frequently assisted in this work. Below is a list of the number of clocks in operation in the city and at the Observatory:-

3	far. 31, '09.	Mar. 31, '08.
Minute dials-Parliament Building	49	46
East Block	36	35
West Block	63	61
Langevin Block	48	48
Post Office	20	20
Thistle Block	2	2
Ottawa Electric Co	1	1
Mint	16	
Archives	7	
Observatory	28	28
Tower clocks	2	2
Program clock	1	1
Seconds dials	8	2
Total electrically driven clocks	276	246

	9-10 EDWARD VII., A. 1910		
	Mar. 31, '09. Mar. 31, 08.		
Secondary Master-clocks			
Primary clocks	4 4		
Total	288 257		

I have the honour to be, sir, Your obedient servant.

R. M. STEWART.

APPENDIX A.

RATE OF THE STANDARD CLOCK OF THE DOMINION OBSERVATORY.

R. M. Stewart.

The construction of astronomical clocks has arrived at such a degree of perfection that, for the present at least, it is probably useless to look for much improvement in this direction. Attention requires to be directed more especially to the conditions under which the clock operates, with a view to keeping these as constant as possible. There are three main factors which influence the performance of a clock: (1) rigidity of mounting and freedom from vibration; (2) compensation for or elimination of variations in a tunospheric pressure; (3) compensation for temperature.

The Sidereal Standard of the Dominion Observatory (Riefler No. 75) is of Riefler's well known primary type. The whole clock is enclosed in an aritight glass cylinder to eliminate all changes of air pressure; it may be remarked here that the rate-variation due to barometers, if not eliminated, is very considerable, amounting in the present case to nearly half a second per day per incl change of barometer. The pendulum rod is of the particular composition of nickel-steel known as invar, whose temperature coefficient of expansion is very small. The temperature compensation is effected by a short compound cylinder of brass and steel, upon which the pendulumbob is supported. The escapement is of Riefler's own type, one of the principal characteristics being that the impulse to the pendulum is given through the suspension spring; it combines many of the advantaces of the two best fundamental types, the 'free' and 'gravity' escapements.

Though the temperature-compensation of a good pendulum is sufficiently accurate for all ordinary purposes, the refinements of astronomical observations make it necessary in addition to keep the temperature to which it is subjected as constant as practicable. It is considered by many autorities that a variation of a degree or two is not attended by any appreciable effects, but in our case the principle has been followed of aming at a fairly high degree of refinement in temperature control. The temperature of the clock-room as a whole is kept nearly constant by means of a thermostat courtolling an electric heater, while a fan keeps the air in constant circulation throughout the room. This, however, was not found to give the refinement desired, and a separate case was built around the clock. The temperature within the case is main-

tained slightly above that of the room by a Callender Electric Recorder, which controls a small electric heater, the air being kept in circulation as above by a small fau; the maximum variation is of the order of a tenth of a degree centigrade.

A good test of the rate of the clock is given by the longitude operations of the summer of 1908. Observations for clock error were made on every clear night for four and a half months, from the beginning of June⁸ up to the middle of October; in general at less two independent deterministicas were made on each night; the total number of nights was 91; three observers took part in the work, two of them observing usually on alternate nights, and the third less frequently.

Oving to the continuity of the work and the accurate running of the clock, it was found possible to compute the relative personal equations of the observers from the regular observations. To do this, the season was broken up into convenient periods, averaging about a month in length, and a rigorous least square computation of the relative personal equations obtained for each; these separate values were combined with the results of some special observations for personal equation, and final values adopted. The application of these quantities to the observations gave clock errors presumably free from relative personal equation. The general rate showed great uniformity throughout the season, with the exception of the latter part of July; as the rate in this period was so evidently anomalous, it has been left out of consideration in what follows.

In computing elockrates the effect of errors of observations must not be neglected; where the observations from which the rate is computed are separated by ouly a short interval, the apparent effect of such errors may be considerable; this, however, decreases as the interval is increased. For this reason the rates in Table I. have been computed, as shown, for intervals of five days, so far as the observations would permit. The second column shows the observed duity rate in seconds for each period, the third the difference between each of these observed rates and their mean, the average difference being ± -0.15 sec, per day. Assuming a constant change of rate with the time and solving by least squares the rate-formula obtained is $^{+}0.500 - 0.0023$ ($T - \Lambda_{\rm US}$ S); the rates computed from this formula are given in the fourth column, while the fifth gives the differences between these and the observed rates, the average deviation being ± -0.13 sec.

For the sake of comparison with another clock of the same kind, and to show the effect of temperature-control, Table II. gives a similar analysis of the rate of the United States Naval Observatory clock (Riefler No. 70) for a period of three months in 1904, as published by Prof. Eichelberger+; in this case one period of ten days is omitted; the average interval between observations is 4.2 days. As the variation of temperature during this test was considerable, a temperature-term is introduced in the computed rate. It will be observed that the mean deviation from computed rate is almost the same for both clocks; this may be taken to mean that the ideal performance (that is, the best performance of which the clock is capable) is practically the same in both eases; this is of course to be expected from two clocks of the same type and manufacture. So far as actual performance goes, however, they are to be judged by the residuals from mean, and not computed, rate, and here the Ottawa clock has a very decided advantage, its actual performance being reasonably close to the ideal one. The reason is not far to seek; it lies in the absence of temperature-variations and their disturbing effects. It would not be fair to close this comparison without stating that the United States Naval Observatory has now a new clock room, where, I believe, greater attention is paid to temperature control.

As mentioned above, the interval between observations for clock error will influ-

The observations made in May were not considered in this paper because the rate was
affected by several changes of pressure and a certain amount of direct disturbance due to
adjustments and re-scaling.

⁺ Science, 1907, p. 451.

ence the accuracy of the deduced rate, owing to the effect of errors of observation. In general, the residual rate V (observed minus computed) will consist of three parts:— 1) the actual variation of clock rate v_s , (2) an apparent part v_s depending on errors of observation and interval, (3) another apparent part v_s due to error in the personal equation employed (if the observations have been made by different observers). Hence in the present of the observations have been made by different observers).

$$V = v_1 + v_2 + v_3$$

and, as may easily be shown, if the number of intervals considered be large,

$$[V^{3}] = [v_{1}^{2}] + [v_{2}^{2}] + [v_{3}^{2}];$$

or denoting the corresponding probable errors by R, r_1 , r_2 and r_3 .

$$R^{2} = r_{1}^{2} + r_{2}^{2} + r_{z}^{2},$$

Now if r denote the probable error of a single determination of clock-error, and if, on two nights separated by an interval of N days, there be made respectively \mathbf{n}_{i} and n_{i} determinations of clock error, we shall have for that particular interval

$$r_{a}^{2} = \frac{\frac{1}{n_{1}} + \frac{1}{n_{2}}}{N^{2}} \cdot r^{3}$$

The value of r for the observations considered, obtained by an independent method, is .020 sec. Substituting this value and deducing that of r_i^3 for each of the intervals in Table I., and taking the mean, the result is

$$r_{a}^{2} = (.0046)^{2}$$

Again, if r^i denote the probable error of the value of personal equation employed, we have

$$r_z = \frac{1}{N} \cdot r^i$$
;

the value of r^{1} is .008 sec.

Also, the value of R obtained from the residuals in Table I. is -012; hence $r_i = \sqrt{R^2 - r_i^2 - r_i^2} = \pm -011 \text{ sec.}$; this is the probable value of the actual accidental change in (daily) rate from one period of five days to the next.

Proceeding in exactly the same way, but using, instead of five-day intervals, all the observations available, the average interval being 1.47 days, the values of the quantities are as follows:—

$$R = .025$$
 sec.
 $r_{g} = .0183$ sec.
 $r_{s} = .0054$ sec.
hence $r_{s} = .016$ sec.

Hence it appears that a clock is liable to small irregular fluctuations of rate from day to day, it being in the present case an even chance that such fluctuations shall lie within the limits \pm -016 sec.; when, however, the interval is increased, the fluctuations tend to counterbalance one another.

It would appear also that the clock is liable in addition to anomalous changes of rate for longer or shorter periods; from July 16 to July 31 the average rate was -032 sec, as against -050 sec. for the remainder of the summer. It has been suggested that this is a peculiarity of invar pendulums, due to some not well understood irregularities in the interval constitution of the material; similar effects have been noticed in other Rieffer clocks, but the question can hardly be considered definitely settled as yet. Such changes in trate are, however, for astronomical purposes, less objectionable than the irregular ones (here eliminated) due to irregular variations in temperature and pressure.

REPORT OF THE CHIEF ASTRONOMER

SESSIONAL PAPER No. 25a

TABLE I. - DOMINION OBSERVATORY CLOCK.

Date.	Daily Rate.	O = M	Computed Rate.	0 - C
1908.	. 8.	8,	8.	8.
me 1.6	-059	.608	065	- 1006
6-11	1061	011	064	- '003
11-17	037	- '013	063	026
17-21	069	.019	'062	007
21-26	.025	.025	- 060	012
	·088	038	059	029
aly 1-6	1049	. 001	- 0.58	- '009
	055	:005	.057	~ '002
и 11-16	.046	~ :004	-056	010
ug. 0-5	.083	033	-051	032
u 5.9	072	022	.020	022
и 9-15	0.54	004	049	005
" 15-20	1049	- 1001	-048	· 0 01
	042	- 008	047	002
	012	- 038	046	- '034
	043	- 007	044	- '001
ep. 4-8	.034	- '016	043	- '009
	049	- 001	042	007
" 14-19	039	- '011 - '046	041	- 1002 - 1036
. 19-25	004	- '046	040	
	033	- 017	-038	- 1005 - 1004
ct. 1.6		- 1017		
" 6-11 " 11-15	048	- 002	036	012
··· 11-10	001	011	035	020
Mean.	·050	± · 015		± · 013
Range.		084		·068

Computed rate = '0500 ~ '00023 (T - Aug. 8).

Date.	Daily Rate.	Mcan Temp.	0 - M	Computed Rate.	0 - C
1904.	8.	C.	8.	5,	~
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	019 - 014 - 025 - 026 - 020 - 0245 - 0299 - 007 - 019 - 029 - 007 - 019 - 019 - 019 - 019 - 019 - 019 - 029 - 019 - 029 -	$\begin{array}{c} 28.37\\ 28.5\\ 28.5\\ 28.2\\ 28.2\\ 28.1\\ 28.1\\ 28.0\\ 28.0\\ 28.7\\ 27.7\\ 27.7\\ 25.7\\ 25.7\\ 25.6\\ 24.5\\ 25.0\\ 24.3\\ 24.3\\ 24.1\\ 24.0$	$\begin{array}{c} 003\\ -\ 030\\ -\ 011\\ -\ 042\\ -\ 026\\ -\ 038\\ -\ 059\\ -\ 038\\ -\ 045\\ -\ 014\\ -\ 023\\ -\ 001\\ -\ 014\\ -\ 013\\ -\ 066\\ -\ 145\\ \end{array}$	$\begin{array}{c} 0.09\\ - 0.06\\ - 0.012\\ - 0.012\\ - 0.018\\ - 0.018\\ - 0.022\\ - 0.021\\ - 0.021\\ - 0.021\\ - 0.021\\ - 0.021\\ - 0.014\\ - 0.014\\ - 0.014\\ - 0.014\\ - 0.014\\ - 0.014\\ - 0.021\\ - 0.027\\ $	$\begin{array}{c} 010\\ -008\\ 007\\ -014\\ 006\\ -004\\ -001\\ -001\\ -001\\ -001\\ -002\\ 005\\ 007\\ -018\\ -012\\ 005\\ 007\\ -018\\ -048\\ 010\\ -027\\ -052\\ 0052\\ \end{array}$
Mean.	-016		± 035		± 015
Range.			204		.100

TABLE II.-U. S. NAVAL OBSERVATORY CLOCK.

Computed rate = '0161 - '00103 (T - Mar. 29) - '0456 (t - 27" 0).

MERIDIAN CIRCLE PIERS

Fig. 2 Piers in Meridian Circle Room.

STEWART- MERIDIAN WORK AND TIME SERVICE.

APPENDIX 4.

REPORT OF THE CHIEF ASTRONOMER, 1909.

TABULAR STATEMENT OF LONGITUDE AND LATITUDE OBSERVATIONS.

BY

J. MACARA.

PAGE.

CONTENTS.

DIFFERENCE OF LONGITUDE :	
Gateway—Seattle	 592
Boundary (Waneta)-Seattle	 593
St. John-Dominion Observatory, Ottawa	 594
Sprague-Dominion Observatory, Ottawa	 595
Rainy River-Dominion Observatory, Ottawa	 596
Moncton-Dominion Observatory, Ottawa	 597
Fort Frances-Dominion Observatory, Ottawa	 598
Truro-Dominion Observatory, Ottawa	 599
North Lake-Dominion Observatory, Ottawa	 600
Nipigon-Dominion Observatory, Ottawa	 601
Jackfish-Dominion Observatory, Ottawa	 602
Halifax-Dominion Observatory, Ottawa	 693
Matheson-Dominion Observatory, Ottawa	 604
Newcastle-Dominion Observatory, Ottawa	 605
Megantic-Dominion Observatory, Ottawa	 606
Black Lake-Dominion Observatory, Ottawa	 607
Foster-Dominion Observatory, Ottawa	 608
Boiestown-Dominion Observatory, Ottawa	 609
Woodstock-Dominion Observatory, Ottawa	 610
St. Hyacinthe-Dominion Observatory, Ottawa	 611
Fredericton-Dominion Observatory, Ottawa	 612
Sorel-Dominion Observatory, Ottawa	 613
St. Jerôme-Dominion Observatory, Ottawa	 614
Rivière du Loup Station-Dominion Observatory, Ottawa	 615
Edmundston-Dominion Observatory, Ottawa	 616
Percé-Dominion Observatory, Ottawa	 617
Campbellton-Dominion Observatory, Ottawa	 618
Longitude of Stations, Table of	 619
Latitude of Stations, Table of	 619
Description of Stations	 620

MAP.

Map showing position of Astronomical Stations established.

а.

APPENDIX 4.

TABULAR STATEMENT OF LONGITUDE AND LATITUDE OBSERVATIONS.

DOMINION ASTRONOMICAL OBSERVATORY, DEPARTMENT OF THE INTERIOR, OTTAWA, CANADA, March 31, 1909.

W. F. KING, Esq., LL.D., C.M.G., Chief Astronomer, Ottawa.

SR,--I have the honour to transmit herewith a tabular statement of the differences of longitude and the latitude results of stations observed in 1908. Annexed thereto is also a description of the stations occupied. A synopsis of the statement giving the longitude and latitude of the various stations will be found on page 619.

The accompanying map shows the position of the various astronomical stations established up to the date of this report.

I have the honour to be, sir,

Your obedient servant,

J. MACARA.

DIFFERENCE OF LONGITUDE BETWEEN GATEWAY, B. C. AND SEATTLE.

Time	Trans- mission.	ż	994 - 160 - 1980	66
	e	×	020 020 020 020 020	h. m. ⁸ . 28 39 199 8 69 20 274 7 40 41 075
r Loverrupg.	Mean.	m. *	28 29°222 28 29°103 28 29°103 29 299	d A N Strattle A Glateway
DIFFRENCE OF LONGITUDE.	Eastern Signals.	m. ĸ.	28 39 136 28 39 136 28 39 126 28 39 125 28 39 085	d A Seattle A Stateway
	Western Signuls.	ЧП 1	28 29 236 28 29 236 28 29 313 28 29 313 28 39 313 28 39 314	
CLOCK CORRECTION.	Eastern Station.	ź	201-21 13-042 11-142	
CLOCK CO	Western Station.	ź	1.729 1.932 2.899 2.899	
DIFFERENCE OF CHRONO- GRAPH.	Eastern Signals.	m. 8.	28 51-122 28 50-210 28 48-924 28 45-149	
DIFFERENCE	Western Signals.	nı. s.	28 51 293 28 50 297 28 49 112 28 45 358	West-W. C. Jaques. [East-F. A. McDiarum
	Date.	1908.	April 27 28 1 28 May 3	Observers: { West-

592

9-10 EDWARD VII., A. 1910

DIFFERENCE OF LONGITUDE BETWEEN BOUNDARY (WANETA) B.C. AND SEATTLE.

Time	Trans- mission.	*	675 962 972 977 977	0.00
	đ	s.	520 970 810 810 810	h. m. s. 18 49:269 8 09 20:274 20 30 985
LONGITUDE.	Mean.	× H	18 49 246 18 49 246 18 49 317 18 49 315 18 49 315 18 49 315 18 49 315	
DIFFERENCE OF LONOITUDE.	Eastern Signals.	nı. s.	161-61-81 861-89 861-89 861-89 81 861-81 81 81 81 81 81 81 81 81 81 81 81 81 8	d A. A Seattle A Boundary
	Western Signals,	n. *	18 49-321 18 49-344 18 49-344 18 49-344 18 49-349 18 49-349	
CLOCK CORRECTION.	Eastern Station.	ii k		
CLOCK CO	Western Station.	ź	- 12.552 - 12.815 - 13.851 - 13.851 - 15.138	
DIFFERENCE OF CHRONO. ORAPH.	Fastern Signals.	m. s.	20 111-400 20 14-126 20 19 671 20 23-747 20 23-747	đ
DIFFERENCE	Western Signals.	m, s,	105 11 05 112 11 05 113 11 05 106 15 106 100 15 100 100 100 100 100 100 100 100 100 100	West-W. C. Jaquzs. East-F. A. McDrardi
lata		1946.	May 13. 16 25. 26.	Observers (West-

SESSIONAL PAPER No. 25a

REPORT OF THE CHIEF ASTRONOMER

DIFFERENCE OF LONGITUDE BETWEEN ST. JOHN, N.B., AND DOMINION OBSERVATORY, OTTAWA.

SESSIONAL PAPER No. 25a

	DUPPERENCE OF GRAPH.	DIFFERENCE OF CHRONO- GRAPH.	CLOCK CORRECTION.	RECTION.			DUFFE	DIFFERENCE OF LONGITUDE.	T19N0	.90		Time
Date.	Western Signals.	Eastern Signals.	Western Station.	Eastern Station.	N.S.	Western Signals.	H.2	Fastern Signals.	~	Mean.	11	Trans
908.	h. m. s.	, m. , h	n. s	ź	њ. ш.	ul i	e ,e	ж	ų.	m. 8.	ź	z
	1 12 30 467 1 12 25 618 1 12 24 908	1 12 30 201 1 12 25 337 1 12 24 712	7 10.961	+ 5°255 + 5°290 + 5°467	1993	11-683 41-751 41-755		19 11 117 19 11 170 19 11 383 19 11 383		9 41 550 9 41 630 9 41 630 9 41 630	610 140 140	1133
	35	35	292-11 2-	889.9			• •••				920.	÷.

DIFFERENCE OF LONGITUDE BETWEEN RAINY RIVER, ONT., AND DOMINION OBSERVATORY, OTTAWA.

Difference Coore Connection. Coore Connection. Difference or Lowerman. Annuality or Difference Exaction Batema Weisen Batema Mean Mean abs batema Statema Mean Statema Mean Mean Mean abs h. m. Statema Mean Mean
Neston Signals, b. m. s. 1 H 42 762 1 H 42 762 1 H 43 667 1 H 43 667

596

SESSIONAL PAPER No. 25a

Withorts Fasters Waters Pasters Pasters <t< th=""><th>lhite</th><th>DIFFERENCE OF CHEONOGRAPH.</th><th>DIPPERENCE CHRONOGMAPH.</th><th>CLOCK CORRECTION</th><th>REACTION</th><th></th><th>DIFFRENCE OF LONGITUDE.</th><th>ONGITUDE.</th><th></th><th>Time of Trans.</th></t<>	lhite	DIFFERENCE OF CHEONOGRAPH.	DIPPERENCE CHRONOGMAPH.	CLOCK CORRECTION	REACTION		DIFFRENCE OF LONGITUDE.	ONGITUDE.		Time of Trans.
III N		Western Signals.	Fastern Signals,	Western Station.	Eastern Station.	Western Signals.	Eastern Signals.	Mean.		mission
	1906.			×	n				-	90
	10			0.145	+ 32.371				010	0
다 10년 11 11 11 11 11 11 11 11 11 11 11 11 11				3.996	31 090				100	Ş
IN 101 IN 102 IN 102 <thin 102<="" th=""> <thin 102<="" th=""> <thin 102<="" td="" th<=""><td></td><td>1</td><td></td><td>0.900</td><td>1 07 - 334</td><td></td><td></td><td></td><td>Thu:</td><td>Ģ</td></thin></thin></thin>		1		0.900	1 07 - 334				Thu:	Ģ
100 11 21 23 10,12		22		6.308	99-762				P - 056	ð
10 01 13 10 11 13 10 18 16 203 + 38 316 13 43 60.4 1 80 1 13 45 014 1 03	define a support			6.419	961-041 +				190.	ð
		1¢		6-5/3	æ				680	ē

DIFFERENCE OF LONGITUDE BETWEEN FORT FLANCES, ONT., AND DOMINION OBSERVATORY, OTTAWA.

Western Signals. Eastern Signals. Western Signals. Montern Signals. Eastern Signals. Montern Signals. Montern Signals. Montern Signals. Pastern Signals. Pastern Signals. Pastern Signals.<		OF CHRO	OF CHRONOGRAPH.	CLOCK CORRECTION.	RECTION.		DIFFRRENCE OF LONGITURE.	Longitupk.		Time
(60)+(0) (1) (21)+(1) (1) (21)+(1) (21)+(1) (21)+(1) (22)+(1) (21)+(1) (22)+(1) (21)+(1) (22)+(1) (21)+(1) (22)+(1) (21)+(1) (22)+(1) (21)+(1) (22)+	4	Western Signals.	Eastern Signals.	Western Station.	Eastern Station.	Western Signals.	Kastern Signals.	Mean.	a	Tra
Algebra Algebra <t< th=""><th>,806</th><th></th><th></th><th>. 10</th><th>æ</th><th>F</th><th></th><th>E</th><th>×</th><th></th></t<>	,806			. 10	æ	F		E	×	
		33		+15.209	+ 6-265				070.	
47°387 1 10 47°387 1 10 47°387 1 10 47°387 1 10 41°587 1 10 41°587 1 10 41°577 41°5777 41°5		13		26.11+	6.419				020.	
45 286 1 10 41 967 7 29 4 6 662 1 10 44 751 1 10 11 509 1 10 44 630		÷		122.6	16.553				920	
		2		7.130	1 6.662				290.	

Deservers [West - F. A. McDIARMID. Bestward, East-R. M. STRWART, D. B. NUGRNT, C. C. SMITH.

DIFFERENCE OF LONGITUDE BETWEEN TRURO, N.S., AND DOMINION OBSERVATORY, OTTAWA.

DATE Western Signals Eastern Signals Western Meetern Eastern Meetern Reatern Meetern Eastern Meetern Meetern Meetern Eastern Meetern Meatern Meetern Eastern Meetern Meatern Meetern Eastern Meetern Meatern Meetern Meatern Meetern		DIFFER	DIFFERENCE OF CHRONOGRAPH.	CLOCK CO	CLOCK CORRECTION.		DIFFERENCE OF LONGTUDE.	r Loverrung.		Time
These, III IIII IIIIII IIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	DATE.	Western Signals.	Eastern Signals.	Western Station.	Eastern Station	Western Signals.	Kastern Signals,	Megu.	z	Trans- mission.
	1948.	m s	» m	x	z			, m	k	ż
		-66 -68 -68		6-740 6-829 6-862 4-7-044	- 14 - 346 15 - 427 - 16 - 976 - 14 - 132	222			210. 2901- 1901	580 580 190

SESSIONAL PAPER No. 25a

REPORT OF THE CHIEF ASTRONOMER

13 05:043

DEFFERENCE OF LONGIFUDE BETWEEN NORTH LAKE, ONT., AND DOMINHON OBSERVATORY, OFFAWA.

сьож Солисток. Потранское ог Гаматтов.	Pastern Wortern Lastern Western Kastern Kastern Kastern r. Trans. Signals, Station. Station. Signals. Signals. Mon. r. mission.		0111 010 <th>h n s un s to so so</th>	h n s un s to so
DIPPERROCK OF CHRONO- GRAPH,	Western E Signals, Si	m. 8. m.	58 10.942 58 58 10.603 54 58 09.864 58 58 09.547 58 58 09.547 58	West-F. A. McDuarmun.
bow		1968.	uly 1 3 3	West-F

SESSIONAL PAPER No. 25a

	Time	Trans- mission.	si.	111	
		2			× 11-299 51-797 03-096
VALUEY, U	· Lovarupz.	Mean.	н.	50 11 312 50 11 291 50 11 295	h. m. 50 1 53 02 53 02
NIUN UBSEN	DRFERENCE OF LONGTUDE.	Eastern Signals.	m. *	50 11-198 50 11-180 50 11-180	l À A Ottawa. À Nijigon
INCH OVY		Western Signals.	× ii	50 11 126 50 11 101 50 11 418	d A A Ottawa. A Nipigon
TRUN, UNT.	united and a second sec	Eastern Station.	ź	011-2-2-110 2-11-2-2-12-2-12-2-12-2-2-2-2-2-2-2-2-2	
DIFFERENCE OF LONGITUDE BETWEEN NIFICON, ONL, AND POMINION OBSERVATORY, OLIAN A	CLOCK CORRECTION.	Western Station.	m. s.	-4 07 292 -4 08:217 -4 09:833	
NGITUDE B	SCE OF CHRONO- GRAPH.	Eastern Signals.	т. 8	45 55 755 45 55 755 45 54 093	9
ENCE OF DO	DHFFERENCE OF CHRONO- GRAPH.	Western Signals.	m. s.	15 57 114 15 56 976 15 54 340	F. A. McDiars
DIFFER		Date.	3946	July 6 8	Observers (West-F. A. McDiABMD.

601

DUPPERENCE OF LONGTUDE BETWEEN JACKFISH, ONT., AND DOMINION OBSERVATORY, OTTAWA

Time	Trans- mission.	×	280 280	
	e		900 900	th. s.
Lowmence	Mean.	1	45 01 744 15 01 723 45 01 723	h. Th
DRFREEROR OF LONGTUDE.	Eastern Signals,		209-10-51 209-01-51 209-01-51	
	Western Signals,	, x , x	45 01 826 45 01 833 46 01 835	1
INNO TION.	Fastern Station.	ź	7 1386	
CLOCK CORRECTION.	Western Station.	×.	138-013	
P. CHRONO H.	Eastern Signals,	n. ».	45 32 289 45 31 294 45 30 600	
DIFFERENCE OF CHRONO GRAPH.	Western Signals.	ž	4.5 %2*453 4.5 %1*514 4.5 %1*889	
lhee		19466.	duly II	

Observers: (West-F. A. McDiammin. (East -D. B. Nucenr, R. M. Surwarn.

SESSIONAL PAPER No. 25a

	DIFFERENCE	DIFFERENCE OF CHRONO- GRAPH.	CLOCK Co	CLOCK CORRECTION.		DIFFERNCE 0	DIFFERNCE OF LONGTUPE.		Time
	Western Signals.	Eastern Signals.	Western Station.	Eastern Station.	Western Signals.	Fastern Signals,	Mean.	÷	
1908.	d H	In, s.	ź	т. 8	n, s	, r	i ii	ź	
	650.68 09 528.88 09	50 38-124 50 39-434	+7.622 +7.612	-2 03.504	48 27-246 48 27 232	280-22 8t	48 27-122	600	
	58		17-503	02-220		85		920	
	÷.		196-2+	06-211	85	51		016	

603

DIFFERENCE OF LONGITUDE BETWEEN MATHESON, ONT., AND DOMINION ORSERVATORY, OTTAWA.

Date.	OF CHRONOGRAF	OF CHRONOGRAPH.				DIFFERENCE	DIFFERENCE OF LONGTUDE.		nuision.
	Weatern Signals.	Kastern Signala.	Western Station.	Rastern Station.	Western Signals.	Eastern Signals.	Mean.	3	×
1908.	× E	× E	H	x	×	×	z	ĸ	
July 22 33	20 16-678 20 14-991		7 77			88	69 59	950. 859	052 091
		040 01 02 198.90 02	11 18 586 11 18 586 11 18 586	17 1012	18 60 000 18 60 000 18 81	121.02 81 158.02 81	18 59-927 18 59-927 18 59-927	190 190	033

DIFFERENCE OF LONGITUDE BETWEEN NEWCASTLE, N.B., AND DOMINION OBSERVATORY, OTTAWA.

Date	DRFER	DIFFERENCE OF CHRONOGRAPH.	CLUCK C	CLOCK CORRECTION.		DIPERROR OF LONGWORDS.	Loserros.		Time of Trans-
	Western Signals.	Eastern Signals.	Western Station.	Eastern Station.	Western Signals.	Eastern Signals-	Mean.	-	
1908.	8 11	m s	uc	- 00	e H	8 H	8 E	x	90
	899	844	7905.1 + 7997.4 +	+ 6.129 - 3.209 - 1.361	****	****	888	620. 1990.	200
191	40 47-287 40 52-983 40 53-190	40 47-113 40 52-794 40 52-995	+ 8.124 + 8.322 + 8.345	5.335	40 33-825 40 33-867 40 33-867	40 33 654 40 33 678 40 33 678	40 33 741 40 33 741 40 33 741	000 220 210	280 280

SESSIONAL PAPER No. 25a

servers: West-R. M. STEWART, C. C. SMITH, D. B. NUGH East-W. C. JAQDES.

REPORT OF THE CHIEF ASTRONOMER

160-81

88

A Ottawa. 5 A Newcastle. 4 DIFFERENCE OF LONGITUDE BETWFEN MEGANTIC, QUE, AND DOMINION OBSERVATORY, OTTAWA.

	LUFFRI CHRON	DIFFERENCE OF CHRONOGRAPH.	CLOCK CORRECTION.	10 10 10 10 10 10 10 10 10 10 10 10 10 1		DIFFERENCE OF LONGITUDE.	A MONGITUDE.		o
DATE	Western Signals.	Eastern Signals.	Western Station.	Kastern Station.	Western Signals.	Eastern Signals.	Mean.	ä	mission.
1908.	* E	m s	x	m 8	× E	R S	×	x	×
Aug. 4	18 26 404 18 34 469 18 36 718 18 38 347 18 39 347 18 41 573	118 26 271 18 26 271 18 28 2448 18 26 460 18 29 260 18 29 260 18 14 28	000 2 + 266.2 + 809 2 +	000-19 231-186 783-186 783-186	19 19 733 19 19 815 19 19 825 19 19 782 19 19 782	19 19 600 19 19 600 19 19 650 19 19 623	169-61 61 162-61 61 192-61 61 192-61 61	848 029 016 016 016 016 016 016	120 120 120

SESSIONAL PAPER No. 25a

PATE AND A							of
Weetern Kastern Signals. Signals.	Western Station.	Eastern Station.	Western Signals.	Eastern Signals.	Mean.	4	trans- mission.
1908, m 8 m	20		8	10 E	w E		90
11 18 30 886 15 30 701 13 36 96 18 30 781 86 86 10 18 36 97 18 36 86 10 18 36 18 36 96 96 10 18 36 18 36 96 96 96 10 36 36 18 36 19 96 96 10 36 36 18 36 96 96 96 10 36 36 18 36 97 19 96 97 10	+ 8 124 + 8 295 + 8 322 + 8 322 + 8 365	- 55 • 479 - 61 • 370 - 63 • 905 - 63 • 905	17 27 283 17 27 382 17 27 306 17 27 306	17 27 158 17 27 158 17 27 164 17 27 164	17 27 231 17 27 252 17 27 255 17 27 235	- 009 - 002 - 018	090. 120. 620. 290.

AND TARABARY OF LONGITHIDS BEAMER BLACK LARD OFF AND LONINION OF STREAM OFF WEATER

K	Time	Trans mission.	d	980- 110- 980-	
		z	×.	010 010	
	r Longtrupe.	Mean.	m. ^{8.}	12 52.742 12 52.731 12 52.731 12 52.721	h. m. 12 12 12 12 12 12
	DIFFERENCE OF LONGITUDE.	Eastern Signals.	i.	12 52 706 12 52 690 12 52 685	d A Ottawa A Foster
		Western Signals.	MI. 8.	12 52 777 12 52 772 12 52 772	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
	RRECTION.	Eastern Station.	ź	- 38 184 181 28 - 382 98	
	CLOCK CORRECTION.	Western Station.	1	+8 -408 +8 -413 + 8 -529	
	OF CHRONO- PH.	Eastern Signals.	s u	13 34 558 13 36 250 13 37 546	D. B. NUGFNI RMID.
	DIFFERENCE OF CHRONO GRAPH.	Western Signals.	m. s.	13 34 669 13 36 332 13 37 618	West-C. C. SMITH, D. B. NUGFNT. East -F. A. McDrawnn.
and the second second	Data		1908.	17 18 19	Observers : East -
1				Aug. 1	

608

SESSIONAL PAPER No. 25a

A WATCH AND A WORLD

	DIFFERENCE	DUPERENCE OF CHRONO- GRAPH.	CLOCK CORRECTION.	RECTION.		DIFFRENCE OF LONGITURE.	F LONGITUDE.		Time of Trans.
Date.	Western Signals.	Eastern Signals.	Western Station.	Eastern Station.	Western Signals.	Eastern Signals.	Mean.	ŭ	mission.
1 08.	n. *	ж ж	ź	ž	D). 8.	s. M	m. s.	°î	ź
8585	37 27 414 37 27 398 37 29 741 37 29 741	37 21 220 37 21 220 37 29 560 38 29 560	+ 8°569 + 8°610 + 8°642 + 8°718	+9+.01 +916.20 	37 10-842 37 10-842 37 10-945 37 10-846	37 10 700 37 10 700 37 10 700	37 10.745 37 10.783 37 10.783 37 10.773	910 290 140	820 (69) 680. 260.

609

~
3
3
2
- 2
1
- 52
9
~
ORY
0
14
- 24
2
- 22
- 24
- 22
s,
0
Z
0
1
2
-
2
0
2
2
2
- 22
-
ż
6.
-
¥
0
0
5
5
2
2
0
3
-
-2
13
5
1
2
1
55
-
2
Ξ.
-
~
-
G
2
2
¢.
2
=
0
10
÷.
~
1.
22
~
22
1
5
Ξ.

		GRAPH.		Work where a moone.		DIFFERENCE	DIFFERENCE OF LONGITUDE.		
	Western Signals.	Eastern Signals.	Western Station.	Eastern Station.	Western Signals.	Eastern Signals.	Mean.	ů	Tran- fram- mission.
1908. In.	œ	III. 8.	ž	III. 8.	н ж	III. 8.	Ш. %	8.	0
555 535	32 513 33 234 33 843	28 32 280 28 33 028 38 53 630	5115 8 117 8 117 8 117 8 117 8	+ 1 09:028 + 1 08:377 - 1 07 806	32 32 899 32 32 894 32 32 894	32 32 666 32 32 688 32 32 688	32 32 783 32 32 791 32 32 760	910 910 999	7117 103 2111

610

SESSIONAL PAPER No. 25a .

Weater Waster Material Material <th< th=""><th></th><th>DIFFERENCE OF GRAPH.</th><th>DIFFERENCE OF CHRONO- GRAPH.</th><th>CLOCK CORPECTION.</th><th>RPECTION.</th><th></th><th>DIFFERENCE O</th><th>DIFFERENCE OF LONGITUDE.</th><th></th><th>Time</th></th<>		DIFFERENCE OF GRAPH.	DIFFERENCE OF CHRONO- GRAPH.	CLOCK CORPECTION.	RPECTION.		DIFFERENCE O	DIFFERENCE OF LONGITUDE.		Time
DB6 III. E. III. E. III. E. III. E.	Dave.	Western Signals.	Eastern Signals.	Western Station.	Eastern Station.	Western Signals.	Eastern Signals,	Mean.	ů	Trans- mission.
				ź		ĺ	1	i	*	đ
	888		683	708-84 18-81 18-81	$\begin{array}{cccc} -1 & 21 \cdot 387 \\ 1 & 22 \cdot 530 \\ 1 & 25 \cdot 733 \end{array}$	11 07 462 11 07 479 11 07 533			- 100 - 100 - 110	280. 780.

WARDEN WORLD A DESCRIPTION OF ALL ALLEVED ALL DESCRIPTION OF A DESCRIPTION

÷.
5
2
- 5
- 22
6
Ŭ.,
1
Ξ¥.
0
- 6-
×.
~~
14
22
~
~
Z
0
77
1
X
0
ă.
1
8
\mathbf{z}
Y
-
-
Z
NO
9
5
H I
2
£
8
1
¥.
2
2
82
2
5
2
Ξ.
<u>a</u>
E
B
-
£
8
ž.
8
A .
×
ä
-
12
2
Z
2
<u></u>
8
3.1
=

Time	Trans- mission.	.8	2200 F20 620 620	
	4	7	200 120 120 120 120 120 120 120	
DIFFERENCE OF LONGITUDE.	Mean.		36 18 283 36 18 181 36 18 181 36 18 207 36 18 207 36 18 289 36 18 289 36 18 289 36 18 281	
DIFFERENCE OF	Eastern Signals.	*	36 18 175 36 18 102 36 18 102 36 18 148 38 18 089 36 18 144 36 18 144	
	Western Signals.	In. 8.	041 18 260 041 18 260 041 18 260 041 18 267 041 18 267 041 18 267 04 18 267	
CLOCK CORRECTION.	Kastern Station.	ž	25:54 9:52 9:53 9:53 1:46 1:46 1:46 1:46 1:46 1:46 1:46 1:46	
CLOCK Co	Western Station.	ź	= 8 - 807 + 8 - 825 + 8 - 837 + 8 - 837 + 8 - 816 + 8 - 914 + 8 - 918	
DIPPERENCE OF CHRONOGRAPH.	Eastern Signals.	s ii	36 24 138 36 25 327 36 25 327 38 26 370 38 27 390 38 28 598 38 31 304	
DIFFER	Western Signals.	e H	36 24 603 36 25 485 36 25 489 36 27 449 36 31 437 38 31 437	
There		150.8.	Aug. 55.	

Observers: West-C. C. SMITH, D. B. NUGENT, R. M. STEWART. Rast-W. C. Jaques.

×	18.218	262-19	33 579
i	36	02	92
÷		c	÷
			2
		2	Le .
		1	2
	1	0	Ξ.
	-	Ξ.	-
	~~	~	~

612

SESSIONAL PAPER No. 25a

Date. Western Eastern		CLOUR CORRECTION.		DIFFERENCE OF LONGITUDE.	Loverture.	Time of
	Western Station.	Eastern Station.	Western Signals.	Fastern Signals.	Mean. r.	nission.
, 100 v 100	ď	zi	m. s.	ii III	II. «	7
10 35.736 10 35.767 10 37.736 10 37.67 10 37.962 10 37.67 10 37.692 10 37.67 10 40.756 10 40.75 10 40.756 10 40.75	+ 8 876 + 8 961 + 8 961 + 8 969	2.701 4.473 6.494 7.661	10 24 159 10 24 129 10 24 122 10 24 117 10 24 105	10 24 100 10 24 080 10 24 080 10 24 083	10 24 130 10 24 101 10 24 093 10 24 094	030 031 032 031 035 031

613

1	
OBV	
0B)	
LY.	
SER.	
- 0	
- 2	
172	
6	
1	
5	
1	
-	
4	
2	
N	
QUE	
MF	
8	
õ	
R02	
SROME, C	
ER07	
JER07	
JER01	
H.	
H.	
H.	
ST. JEROI	
H.	
UDE BETWEEN ST. JI	
UDE BETWEEN ST. JI	
H.	
UDE BETWEEN ST. JI	
UDE BETWEEN ST. JI	
WITUDE BETWEEN ST. JE	
WITUDE BETWEEN ST. JE	
UDE BETWEEN ST. JI	
WITUDE BETWEEN ST. JE	
LONGITUDE BETWEEN ST. JE	
OF LONGITUDE BETWEEN ST. JE	
OF LONGITUDE BETWEEN ST. JE	
OF LONGITUDE BETWEEN ST. JE	
OF LONGITUDE BETWEEN ST. JE	
OF LONGITUDE BETWEEN ST. JE	
LONGITUDE BETWEEN ST. JE	
OF LONGITUDE BETWEEN ST. JE	
LENCE OF LONGITUDE BETWEEN ST. JI	
LENCE OF LONGITUDE BETWEEN ST. JI	
LENCE OF LONGITUDE BETWEEN ST. JI	
LENCE OF LONGITUDE BETWEEN ST. JI	
LENCE OF LONGITUDE BETWEEN ST. JI	
OF LONGITUDE BETWEEN ST. JE	

Time of	mission.	8	000- 820- 190-	
	2	30	. 105 1050	8. 51 - 797 59 - 814
LONGITUDE.	Mean.	m. s.	6 31-899 6 51-963 6 52-088	h. 5 06 4 55
DIFFERENCE OF LONGITUDE.	Fastern Signals.	К.	6 31.845 6 51.905 6 52.028	A. Ottawa. A St. Jerome
	Western Signals.	5 1	6 51.953 6 52.022 6 52 148	d A. Otta A St. J
RECTION.	Eastern Station.	đ	-12.194 -13.087 -14.781	
CLOCK CORRECTION.	Western Station.	ź	+ 9.052 + 9.078 + 9.081	STEWART.
SRAPH.	Eastern Nignals.	m. 8.	7 13:091 7 15:890	NUOENT, R. M.
DIFFERENCE OF CHRONOGRAPH.	Western Signals.	m. 3.	7 13-199 7 14-187 7 16-010	SMITH, D. B. 1 MCDIARMD.
DATS.		1908.	Selfe. 4 	Olsservers : West-C. C. Sagray, D. B. NUOEST, R. M. STEWART, East-F. A. MCDIABUID,

V.A.

SESSIONAL PAPER No. 25a

-	DIPFERENCE OF CHRONOGRAPH.	DIFFERENCE OF JHRONOGRAPH.	CLOCK CORRECTION	RENCTION.		DIFFERENCE	DUPERENCE OF LONGITUDE.		Time
DATE	Western Signals.	Eastern Signals.	Western Station.	Eastern Station.	Western Signals.	Kastern Signals.	Mean.	£	Trans-
1908.	Ш. К	lu. ×	x	×	П., к	si H	н *	×	ź
2 S		22	+ 9-192	03 - 237	24 45 673 24 45 725		24 45 611 24 45 611	6830 · 1720 ·	063
		83	9-320	962-59				720 129	55
22 22	195-29 195-29 195-29	21 29 59 19 59 19 59	227-6	07-208	24 45 645	24 45-529	24 45-580	- 948	10.0

2
1
- 52
- 5
TORY,
- 2
- 2
SERV
2
1
- 28
- 8
14
6
Ĕ
Z
9
- 6
á
-
2
÷
12
~
N,
0
1
á
Z
5
Ξ
<u>a</u>
2
Z
22
¥.
1
5
÷.
-
9E
Ξ.
Ξ.
-
19
8
Ľ.
4
ē
5
Z
2
C.K.
1
1
-
-

Thet.	eks	наув.				CONTRA DATATA	DIFFERENCE OF LONGITUDE.		J. J.
	Western Signals.	Eastern Signals,	Western Station.	Eastern Station.	Western Signals.	Eastern Signals.	Mcan.	2	Trans- mission.
1908.	lin s	Mt. 8.	×	ż	Ш. 8	101, s.	× H	2	eć
September 19 22 33	20 16 1621 20 14 1621 20 12 1262 20 12 1262	20 66 016 29 43 950 29 43 606 29 43 606	9.650 109.64 109.64	902-00+ 162-00+ 262-00- 267-00+	20 83:647 29 83:716 29 83:726 29 83:722	88888 88888 89888	539 29 33 545 615 29 33 645 613 29 33 645 613 29 33 647 29 33 687	200 200	150 150 150 150 150 150

DIFFERENCE OF LONGITUDE BETWEEN PERCE, QUE,, AND DOMINION OBSERVATORY, OTTAWA.

ij	DIFFERENCE	DIFFERENCE OF CHRONO- GRAPH.	CLOCK CO	CLOCK CORRECTION.		DIFFERENCE 6	DIFFERENCE OF LONGITUDE.		Time of
Date.	Western Signals.	Eastern Signals.	Western Station.	Eastern Station.	Western Signals.	Eastern Signals.	Mean.	e,	Trans- mission.
1908.	II. ×	m. s.	ď	×	m. 8	m. 8,	Ш, 8,	10	si
October 5.	46 00-841 46 00-161 45 59-646	16 00 632 45 59 955 45 59 456	+ 10 000 + + 10 079 + 10 078	+8°512 +9°215 +9 664	45 59-303 45 59-304 45 59-252	45 59 094 45 59 094 45 59 042	45 59-199 45 59-201 45 59-147	920. 610. 210.	.105 .103 .103
Observors : West-C. C. SMITH, D. B. NUGERT. East-W. C. JAQUES.	-C. C. SMITH, I -W. C. JAQUES.	O. B. NUGENT.				d A A Ottawa. A Perce.	h. m. 45 59 4 16 52	s. 182 797 615	

SESSIONAL PAPER No. 25a

REPORT OF THE CHIEF ASTRONOMER

DIFFERENCE OF LONGITUDE BETWEEN CAMPBELITON, N.B., AND DOMINION OBSERVATORY, OTTAWA.

Dimensions of Clinosounandi, Cuark Connormos, Wietern Weitern Kustern Radern Radern Wietern Bignals, Kustern Radern Radern III III Station III III III III III III III III III III III III III III III IIII IIII IIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
DirPERENCE. Clifforentrary Feetern Fig grads. Si eretern 66 8 8 10 42 650 36 55 851 35 35 955 35 955 35

DEPARTMENT OF THE INTERIOR

Tate Longitude Definition Longitude Longitude Longitude Longitude Light weight Light weight Light weight Light weight Longitude Longitude Longitude Longitude Longitude Results Light weight Light weight Light weight Longitude Longitude <td< th=""><th>22</th><th></th><th></th><th></th><th></th><th></th></td<>	22					
h. m. b. m. <th< th=""><th>Place.</th><th>Difference of Longuade.</th><th>To</th><th>Longitude.</th><th>Longitude</th><th>Latitude.</th></th<>	Place.	Difference of Longuade.	To	Longitude.	Longitude	Latitude.
Materia SS 99:10 Notify 1 10 11 10 11						
Wantch	Gateway	-68		-17	10 16	69
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Boundary (Waneta)	\$		83		16 35
et e 1 1 5 2 <th2< th=""> <th2< th=""> <th2< th=""> <th2< th=""></th2<></th2<></th2<></th2<>	Sprizue.	Ŧ		8	38 20	02 05
1 0	Rainy River	5		15.	23.2 23.5	13 23
No. 1 0 0 1000 0 1000 0 000	Moneton	4		8	88 17 -	00 02
abs bit is a straight of a strai	Fort Frances.	#3		ŝġ	16 15	51 to
Dial Dial <thdia< th=""> <thdial< th=""> Dial Di</thdial<></thdia<>				52	28 01	08 28
6 0 11 25 <td></td> <td>Ξ</td> <td></td> <td>63</td> <td>15 46</td> <td>00 43.</td>		Ξ		63	15 46	00 43.
1 2	Jackfish	10		53.	83 83	-FF - FF
10 10<	Halifax	100		21	36 10	10 0 9
Bit Market Bit Mar	Matheson	- 6 G		5 2	21 20	- 11 00
Let T <tht< th=""> T <tht< th=""> <tht< th=""></tht<></tht<></tht<>		2 Ż		28	6 60 53	34 35
No. Ti Willing Ti Willing <td>Rach Laba</td> <td>-</td> <td></td> <td>6</td> <td>21 08</td> <td>-14 20</td>	Rach Laba	-		6	21 08	-14 20
Abon Test 1 State State <th< td=""><td>Fuster</td><td>52</td><td></td><td>бĶ:</td><td>29 45</td><td>11 14</td></th<>	Fuster	52		бĶ:	29 45	11 14
Model 13 74 13 14 <th1< td=""><td>Boiestown</td><td>2</td><td></td><td>Ŧ</td><td>9 8</td><td>12</td></th1<>	Boiestown	2		Ŧ	9 8	12
Description D1 GeV D2 GeV <thd2< th=""> <thd2< th=""></thd2<></thd2<>	Woodstock	27		£	- 	08 33
oritoto. 16 F.215 1 25 25 25 26	St. Hvacinthe	6		Ŧ	26 62	37 13
Team Team <th< td=""><td>Fredericton.</td><td>15</td><td></td><td>- 52 - 52 - 7</td><td>38 23</td><td>.17 10</td></th<>	Fredericton.	15		- 52 - 52 - 7	38 23	.17 10
Shifting 1 2 3<	Sore	5		4 55 57	06 55	61 20
Nation	St. Jerome.	10		62 12 F	26 60	281 921
	Riviere du Loup Station	127		50	31 32	19 23
	Ednandston.	33		Z	18 61	88
26 [11 [65] 5 5 5 5 5 5 1 20 41 604 10 40 40 40 40 40 40 40 40 40 40 40 40 40	Perce	2		0	12 GG	20 02
	Campbellton	ŝ		Ŧ	40 24	.12 00

SESSIONAL PAPER No. 25a

LOCAL POSITIONS OF ASTRONOMICAL STATIONS.

Gateway.—The pier is on the international boundary line 189.4 feet due cast of boundary monument No. 244, and is 541.3 feet west of United States survey post No. 25104 on boundary line.

Boundary (Waneta).—The pier is 24-5 feet due cast of monument No 181 on the international boundary line.

SI. John.—The pier is 82 feet north and 174 feet west of the mortheast corner of Lombard and Southwork streets. Reference point is southeast corner of LC.R. grain clevator. Reference angle 188°-44 right from meridian at centre of pier to reference point. Distance, 196-8 feet.

Sprague.—The pier is 670.7 feet west and 1.4 feet north of the southwest corner of the Canadian Northern Railway station house.

Rainy River.—The pier is 111.2 feet north, and 51.3 feet west of the southwest corner of 3rd street and Atwood ave.

Monclon.--Reference point is the northwest corner of the Intercolonial Railway blacksmith shop. N. 52° 16′ E. from meridian through centre of pier. Distance, 1-378 chains.

Fort Frances.—The pier is 9.7 feet north and 189.2 feet east of the northeast corner of 4th street and Cornwall ave.

Truro.—The pier is 49-49 feet east and 64-13 feet south of gas-pipe marking the boundary of the I.C.R. yard at head of Miller street and Mr. Fraser's gate.

North Lake.—The pier is 272.5 feet east and 15.5 south of 'frog' lying between the Port Arthur and Duluth Railway main line and the southwest leg of the 'Y.'

Nipigon.-The pier is 47.8 feet west and 82.4 feet north of the northwest corner of the Canadian Pacific Railway station house.

Jackfish.—The pier is 228.5 feet north and 82.9 feet west of the southwest corner of the Canadian Pacific Railway station house.

Halifax.—The pier is 127-26 feet cast and 90-38 feet north of the southeast corner of Creighton & Co.'s grocery store. It is also 63-23 feet east and 54-04 feet south of the gas pipe marking the boundary of the I.C.R. yard. Direction of said pipe from pipe being 54' 15' from the meridian measured from the north through the west.

Matheson.—The pier is on the right of way of the Timiskaming and Northern Outario Railway, and is 153-5 feet south and 178-0 feet east of the northeast corner of 5th are. and Railway street.

Newcastle.—The pier is 14.16 feet east and 90.66 feet south of the intersection of Station and Gene streets.

Meganlic.--The pier is 172.5 feet east and 72.6 feet north of the southwest corner of Maple ave. and McCauley street.

Black Lake.- The pier is 111-1 feet east and 190-8 feet north of the northwest corner of Whitney ave. and the private way of the American Asbestos Company.

Foster.—The pier is 181-5 feet north and 480-3 feet west of the middle point of the crossing of the Boltón Road and the Canadian Pacific Railway main line (Foster crossing). The pier is about 80 feet north of the Canadian Pacific Railway station house.

SESSIONAL PAPER No. 25a

Boiestown.-The pier is 41-63 feet east and 90-87 feet north from the northeast corner of T. Lynch & Co.'s supply store.

Woodstock. The pier is 432-5 feet east and 100 feet south of the northcast corner of George and Main streets.

S1. Hyacinthe.—The pier is 85 feet east and 516 feet north of the middle point of the crossing of Broadway Road and the Canadian Pacific Railway main line, and is about 400 feet from the station house.

Fredericton.—The pier is on the river front 52-15 feet north and 67-0 feet west of the northwest corner of Lamont's furniture warehouse at the corner of Regent and Campbell streets.

Sorel.—The pier is 194.9 feet west and 34.2 feet north of the southeast corner of Ray and Vietoria streets.

Sl. Jerome.—The pier is 412-0 feet east and 102.4 feet south of the southeast corner of St. Antoine and St. Anne streets. It is on the Canadian Pacific Railway right of way about 400 feet south of the station house.

Rivière du Loup Station.—The pier is 511.5 feet from the southeast corner of the l.C.R. machine shop. Angle from the north through the west 41° 54'.

Edmundston.—The pier is 148-30 feet east and 12-04 feet north of the northeast corner of Temiseouata Railway station.

Percé.—The pier is 84-63 feet west and 72-28 feet south of the southwest corner of Abraham Lenfesty's house,

Campbellion.-The pier is 18.27 fect east and 12.41 fect south of the southeast corner of the post office building.

Dominion Observatory.—The reference point of the longitudes observed in 1908 is a temporary transit house, the meridian of which is 0° -12 cast of the centre of the dome of the Observatory.

