1.4 Esercizi

1.4.1 Esercizi dei singoli paragrafi

1.1 - Dai numeri naturali ai numeri irrazionali

1.1. Dimostra, con un ragionamento analogo a quello fatto per $\sqrt{2}$, che $\sqrt{3}$ non è razionale.

1.2 - I numeri reali

1.2. Per ciascuno dei seguenti numeri reali scrivi una sequenza di sei numeri razionali che lo approssimano per difetto e sei numeri razionali che lo approssimano per eccesso. Esempio: $\sqrt{3}$: A = {1, 1,7, 1,73, 1,732, 1,732 0, 1,732 05}, B = {2, 1,8, 1,74, 1,733, 1,732 1, 1,732 06}.

```
a) \sqrt{5}: A = {.....}, B = {.....};
b) \frac{6}{7}: A = {.....}, B = {.....};
c) \frac{1}{7}: A = {.....}, B = {.....};
d) \sqrt{2} + \sqrt{3}: A = {.....}, B = {.....};
e) \sqrt{2} \cdot \sqrt{3}: A = {.....}, B = {.....};
```

1.3 (*). Determina per ciascuno dei seguenti numeri irrazionali i numeri interi tra i quali è compreso. Esempio: $5 < \sqrt{30} < 6$.

```
a) \sqrt{50}; e) \sqrt{107}; i) 2+\sqrt{7}; b) \sqrt{47}; f) \sqrt{119}; j) \sqrt{20}-\sqrt{10}; c) \sqrt{91}; g) \sqrt{5}+\sqrt{3}; h) 2\sqrt{7}; h) 2\sqrt{7}; l) 7+\sqrt{\frac{1}{2}}.
```

1.4. Disponi in ordine crescente i seguenti numeri reali:

a)
$$\sqrt{2}$$
, 1, $\frac{2}{3}$, 2,0 $\overline{13}$, $\sqrt{5}$, $\frac{3}{2}$, 0,75.
b) π , $\sqrt{3}$, $\frac{11}{5}$, 0, $\overline{9}$, $\sqrt{10}$, 3,1 $\overline{4}$, $\sqrt[3]{25}$.

- **1.5.** Rappresenta con un diagramma di Eulero-Venn l'insieme dei numeri reali \mathbb{R} , suddividilo nei seguenti sottoinsiemi: l'insieme dei numeri naturali \mathbb{N} , l'insieme dei numeri interi relativi \mathbb{Z} , l'insieme dei numeri razionali \mathbb{Q} , l'insieme \mathbb{J} dei numeri irrazionali. Disponi in maniera opportuna i seguenti numeri: $\sqrt{3}$, $\sqrt[3]{5}$, π , $0,\overline{3}$, 3,14, $\frac{3}{2}$, -2.
- **1.6** (*). Indica il valore di verità delle seguenti affermazioni:
 - a) un numero decimale finito è sempre un numero razionale;
 - b) un numero decimale illimitato è sempre un numero irrazionale;
 - c) un numero decimale periodico è un numero irrazionale;
 - d) la somma algebrica di due numeri razionali è sempre un numero razionale;
 - e) la somma algebrica di due numeri irrazionali è sempre un numero irrazionale;
 - f) il prodotto di due numeri razionali è sempre un numero razionale;
 - g) il prodotto di due numeri irrazionali è sempre un numero irrazionale.

1.3 - Valore assoluto

1.7 (*). Calcola il valore assoluto dei seguenti numeri:

a) |-5|

d) |0|

b) |+2|

e) |-10|

c) |-1|

- f) $|3-5\cdot(2)|$
- g) |-3+5|h) $|(-1)^3|$ i) |-1-2-3|

1.8. Dati due numeri reali x ed y entrambi non nulli e di segno opposto, verifica le seguenti relazioni con gli esempi numerici riportati sotto. Quali delle relazioni sono vere in alcuni casi e false in altri, quali sono sempre vere, quali sono sempre false?

Relazione	x = -3, y = 5		x = -2, y = 2		x = -10, y = 1		x = 1, y = -5	
${ x < y }$	V	F	V	F	V	F	V	F
x = y	\overline{V}	F	\overline{V}	F	$\overline{\mathbf{V}}$	F	\overline{V}	F
x < y	$\overline{\mathrm{V}}$	F	$\overline{\mathrm{V}}$	F	$\overline{\mathrm{V}}$	$\overline{\mathbf{F}}$	$\overline{\mathrm{V}}$	F
x+y < x + y	$\overline{\mathbf{V}}$	$oxed{\mathbf{F}}$	$\overline{\mathbf{V}}$	\mathbf{F}	$oxed{V}$	\mathbf{F}	$\overline{\mathbf{V}}$	\mathbf{F}
x - y = x - y	$oxed{V}$	\mathbf{F}	$oxed{V}$	\mathbf{F}	V	\mathbf{F}	$oxed{V}$	\mathbf{F}
$ \mathbf{x} - \mathbf{y} = \mathbf{x} - \mathbf{y} $	$oxed{V}$	F	$oxed{V}$	\mathbf{F}	$oxed{V}$	\mathbf{F}	$oxed{V}$	\mathbf{F}

1.9 (*). Elimina il valore assoluto sostituendo le espressioni con una funzione definita per casi:

- a) f(x) = |x+1|;
- b) f(x) = |x 1|;
- c) $f(x) = |x^2 + 1|;$ d) $f(x) = |(x+1)^2|;$

- e) $f(x) = \begin{vmatrix} x^2 1 \end{vmatrix}$; f) $f(x) = \begin{vmatrix} x^3 1 \end{vmatrix}$; g) $f(x) = \begin{vmatrix} x^2 6x + 8 \end{vmatrix}$; h) $f(x) = \begin{vmatrix} x^2 + 5x + 4 \end{vmatrix}$.

1.10 (*). Elimina il segno di valore assoluto dalle seguenti espressioni sostituendole con una funzione definita per casi:

- a) $f(x) = \frac{|x+1|}{|x+2|}$;
- b) $f(x) = \left| \frac{x+1}{x-1} \right|$;
- c) f(x) = |x+1| + |x-2|;
- d) f(x) = |x+2| + |x-2|;

- e) f(x) = |x-2| + |x-3|;
- f) $f(x) = |x+1| \cdot |x+2|$;
- g) $f(x) = \left| \frac{x+1}{4} \right| + \left| \frac{x+2}{x+1} \right|;$ h) $f(x) = \left| \frac{x+1}{x+2} \right| + \left| \frac{x+2}{x+1} \right|.$

1.4.2 Risposte

1.3. a) $7 < \sqrt{50} < 8$, g) $3 < \sqrt{5} + \sqrt{3} < 4$, h) $5 < 2\sqrt{7} < 6$, i) $4 < 2 + \sqrt{7} < 5$.

- **1.6.** a) V, b) F, c) F, d) V, e) V, f) F, g) F.
- **1.7.** a) 5, b) 0, c) 2, d) 2, e) 10, f) 1, g) 1, h) 7, i) 6.
- **1.9.** a) x + 1 se $x \ge -1$; -x 1 se x < -1, b) x 1 se $x \ge 1$; 1 x se x < 1.
- **1.10.** a) $\frac{x+1}{x+2}$ se $x < -2 \lor x > -1$; $-\frac{x+1}{x+2}$ se -2 < x < -1; 0 se x = -1; senza significato se x = -1