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Cancer chemotherapy agents are assessed for their therapeutic
utility primarily by their ability to cause apoptosis of cancer
cells and their potency is given by an IC50 value.
Chemotherapy uses both target-specific and systemic-action
drugs and drug combinations to treat cancer. It is important to
judiciously choose a drug type, its dosage and schedule for
optimized drug selection and administration. Consequently,
the precise mathematical formulation of cancer cells’ response
to chemotherapy may assist in the selection process. In this
paper, we propose a mathematical description of the cancer
cell response to chemotherapeutic agent exposure based on a
time-tested physical model of two-state multiple-component
systems near criticality. We describe the Ising model
methodology and apply it to a diverse panel of cytotoxic drugs
administered against numerous cancer cell lines in a dose–
response manner. The analysed dataset was generated by the
Netherlands Translational Research Center B.V. (Oncolines).
This approach allows for an accurate and consistent analysis of
cytotoxic agents’ effects on cancer cell lines and reveals the
presence or absence of the bystander effect through the
interaction constant. By calculating the susceptibility function,
we see the value of IC50 coinciding with the peak of this
measure of the system’s sensitivity to external perturbations.
1. Introduction
Chemotherapy is a standard cancer therapy modality based on the
concept of cytotoxicity of drugs or drug combinations inflicting
lethal damage to cancer cells but being less damaging to normal
cells. Cytotoxicity refers to killing or damaging a viable cell by
chemical compounds or pathogens. Toxic agents usually damage
molecular targets such as metabolic sites, signalling proteins or
DNA, which are essential to the cell’s reproductive ability and
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survival. The result is dose-dependent cell death or inhibition of its proliferative potential. Unlike

radiotherapy, which specifically targets cancer cells in a tumour, chemotherapy is typically applied
systemically and is not site-specific unless combined with target-specific antibodies or via special drug
delivery strategies. Hence, it may also affect metastasized cells distant from the primary tumour site and
also the entire body of the patient with concomitant detrimental side effects [1–4]. Besides the collateral
damage to healthy cells, another major shortcoming of chemotherapy is the emergence of drug
resistance in the population of tumour cells. This is commonly due to the heterogeneity of tumour cells,
some of which are sensitive to a given drug and others resist it. Due to the survival of the fittest, the
resistant subpopulation proliferates when exposed to a cytotoxic agent, while sensitive subpopulation is
eradicated making the tumour more malignant over time. Consequently, we should judiciously choose a
pharmacological agent, its dose and scheduling, which can be a very complex, multi-factorial problem,
considering both tumour destruction and the collateral damage to the healthy tissues. Furthermore,
chemotherapy-transfected cells are likely to host toxic anabolites resulting from the therapy, which can
directly transfer into neighbouring untransfected cells through diffusion resulting in a secondary wave of
damaged cells. This refers to a so-called bystander effect extensively reported in the literature [5–15].
In general, it describes the population of dead and/or damaged cells that are not directly targeted by
either chemotherapy or irradiation.

Cytotoxicity mechanisms are commonly analysed using the Hill model representing an empirical
sigmoidal fit describing the binding equilibria in ligand–receptor interactions [16] based on a simple
reaction scheme: Rþ nL$Kd RLn, where R is the receptor, n (called the Hill coefficient) is the number of
ligands L and Kd is the dissociation constant. Despite its simplicity, the Hill equation is not always
physically plausible and the Hill coefficient n can only be accurately estimated for extremely positive
cooperative interactions among multiple ligand-binding sites. Even for a reaction with a high degree of
positive cooperativity, e.g. binding four oxygen molecules to haemoglobin, the Hill coefficient ranges
from 1.7 to 3.2 rather than 4 [16]. Therefore, other physically plausible reaction schemes such as a ‘two-
state’ (activated and inactivated) receptor model have been proposed to account for complex cases with
various ligand–receptor cooperativities [16]. The main limitation of such models is a large number of
adjustable parameters required to fit experimental data, e.g. seven parameters are needed for the
haemoglobin-oxygen two-state receptor model. In addition, the observed bystander effects cannot be
addressed by the above models. For these reasons, we propose a more accurate and better-motivated
modelling approach to cytotoxicity, following on its successful applications in physics and other fields.
To improve a statistical analysis of the effects of chemotherapeutic agents on tumour cells, we adopt the
concepts introduced for phase transitions and multi-stability. This is appropriate for cells under cytotoxic
attack since cytotoxicity (and irradiation) is a dynamical process, which triggers a stochastic transition
from a proliferating cell (live) to a non-proliferating cell (dead or senescent). As a result, cytotoxicity can
be viewed as a transition between two different biological states present in replicas of manifestly
identical systems (cancer cell cultures). Phase transitions have been successfully analysed in many-body
systems in physics, chemistry and even social sciences and economics. Phase transitions ranging from
the solid↔ liquid↔ gas transitions at the macroscopic level to the superconductor-metal transition at the
microscopic level have been exquisitely understood employing statistical model systems such as the Ising
or the Landau model (see electronic supplementary material, Text for details). Bistability is a common
motif in systems undergoing phase transitions, which can exist in two distinct states and switch between
them at the transition point in response to a change in the so-called control parameters [17]. The system’s
response is reflected in its order parameter, i.e. a macroscopic property that is zero in the disordered
phase and non-zero in the ordered phase. The so-called generalized susceptibility function is the first-
order derivative of the order parameter with respect to the control parameter, and it describes the
system’s sensitivity to perturbations. Generalized susceptibility of an infinitely large system diverges at
the critical point (the tipping point) as the system switches from one stable phase to the other. Biological
systems such as cancer cells positioned at a threshold of viability can indeed be viewed as dynamical
systems at criticality, which exhibit clear bistability characteristics between being alive and dead. This
perspective leads to a meaningful connection between biology and physics providing a physical model
with a better mathematical insight into cancer cells’ behaviour [17–21].

Our aim is to implement the spin-1/2 Ising model of phase transitions as an elegant and powerful
mathematical approach to study cancer cells exposed to cytotoxic chemotherapeutic agents (see
electronic supplementary material, Text for details) [17,22–41]. Recently, a similar approach has been
applied to ionizing radiation response of tumours [5]. In analogy to the Ising model for ferromagnetic
materials with long-range interactions, these authors proposed to study tumour response to a uniform
ionizing radiation field. In particular, using the mean-field approach, individual cells are averaged out
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and characteristic features such as cell survival curves, tumour control probabilities, fractionation and

bystander effects emerge naturally showing that the bystander effects cannot be ignored at low-dose
radiotherapy [5]. Below, we elaborate on the use of the Ising model to a dose–response cancer cell
survival dataset provided by the Netherlands Translational Research Center B.V. (Oncolines). These
experimental data correspond to inhibition profiles obtained in a uniform manner for numerous cell
lines exposed to a number of chemotherapy agents [42,43].
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2. Methods
Similarly to the Ising model with two spin states, up and down, the effect of chemotherapeutic drugs on
cancer cells is associated with two possible outcomes: either survival or death states of cancer cells,
respectively. For simplicity, we assign two states as si ¼ {+1}, where si ¼ 1 refers to the live state of
the ith cell and si ¼ �1 represents the dead state of the ith cell. Following the radiation-induced
bystander effect [5,6], we invoke the bystander effect for chemotherapy-exposed cancer cells in a
culture by introducing a classical Ising Hamiltonian applicable for interacting spin systems as

H ¼ �
XN
ij

Jijsisj þ
XN
i¼1

hi(1� 2si) , ð2:1Þ

where ij indices are summed over all nearest-neighbour cell pairs at site i and j, Jij denotes the strength of
the interaction between neighbouring cells i and j (namely the strength of the bystander effect) and hi
represents the potency of the external agent at location of si. Jij ¼ 0 means there is no interaction
between cells. Similar to spin systems, it is expected that the interaction strength is always positive for
all cells i and j, so Jij � 0, and the summation

PN
ij Jij over all the neighbouring cells is finite. Using

statistical mechanic approaches and mean-field approximation for interacting and non-interacting cells,
the partition function, Z, and the order parameter, M, are found after several steps of calculations as
(see electronic supplementary material, Text for calculation details)

Z ¼ 2e�lM(M�1) cosh
h

kBT
þ lM

� �� �N
ð2:2Þ

and

2M� 1 ¼ tanh
h

kBT
þ lM

� �
ð2:3Þ

where l ¼ J=2kBT [5]. Using the fact that the order parameter,M, and control parameter, h, are equivalent
in the case of cancer cells to the death rate, R, and the logarithm of concentration, log(C), respectively, we
rewrite equation (2.3) as

2R� 1 ¼ tanh
h

kBT
þ lR

� �
: ð2:4Þ

Inserting electronic supplementary material equation (S9) in equation (2.4), we find that

R ¼ 1
2

1þ tanh 1:15a log
C
CM

� �
þ lR

� �� �
, ð2:5Þ

where 1.15 = ln(10)/2, C is the drug concentration and CM is a Michaelis constant representing the drug
concentration associated with reaching the half-maximal inhibition effect [44]. The parameter α shows the
slope of the dose–response curve and depends on the system’s heterogeneity, drug-binding efficacy and
diffusion of drug molecules. It can be estimated by fitting the solution to experimental data points. In
cytotoxicity assays, CM is usually denoted as IC50. As shown in the next section, equation (2.5)
provides excellent agreement with the cytotoxicity experiment data. Equation (2.5) has a critical value
for λ, at which a discontinuity in the death rate emerges and can be solved numerically for given
values of α and λ. Figure 1a–c illustrates the death rate, R, as a function of logðC=CMÞ for four values
of α and λ, respectively. Figure 1a shows the result for uncorrelated cells, which presents similar
behaviour to that found in the Landau theory of phase transition (see electronic supplementary
material, Text, appendix and figure S1 for details) [33–35,38]. As shown in figure 1a–c, increasing the
interaction strengths between cells for l ¼ 0, 0:5, and 1 triggers their transit from live to dead states as
a result of only a subtle change in the drug concentration. As stated above, the generalized
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susceptibility function, x ¼ @M=@h, describes the sensitivity of the order parameter to a change in the
control parameter [45,46], which here corresponds to the survival rate’s change due to the change in
the drug concentration. Using the Ising model results, equation (2.5), the cancer cell susceptibility
function is calculated as the first derivative of the death rate, R, with respect to the logðC=CMÞ

x ¼ 1
2

1:15a(1� tanh2d)

1� l

2
(1� tanh2d)

2
64

3
75, ð2:6Þ

where d ¼ 1:15a log (C=CM)þ lR. In the case of no interaction, λ = 0, using equation (2.6), we show that
the susceptibility function maximum occurs at ‘zero-field’ or C ¼ CM with xmax = 0.575α. The
susceptibility of the Ising model was extensively studied by Fisher [45,46]. Lower panels in figure 1
depict susceptibility calculated using equation (2.6) as a function of logðC=CMÞ for various values of α
and λ, respectively. In the case λ = 0, figure 1d, the susceptibility maximum occurs at zero-field, while
by increasing λ it peaks at concentrations below CM. Interestingly, by increasing α in the non-zero λ
case, the maximum shifts towards zero-field. This demonstrates that there is a competition between α
and λ, where larger values of α provide solutions similar to λ = 0. This is observed in the parameter
values found using the experimental data.
3. Results and discussion
In this study, we applied the Ising model methodology to better understand and more accurately describe
cancer cell response to chemotherapy agents. Inhibition profiles of 13 diverse anti-cancer compounds were
analysed from proliferation assays performed on 66 cancer cell lines provided by Oncolines, Inc., The
Netherlands [42,43]. The anti-cancer compounds tested were Afatinib, Bortezomib, Busulfan, Cisplatin,
Doxorubicine, Idelalisib, Irinotecan, Methotrexate, Paclitaxel, Palboliclib, Tazemetostat, Trametinib and
Vincristine [47–51] (see electronic supplementary material, Text, appendix and table S1 for details).
For all the 13 compounds and 66 cell lines, the death rate, R, is plotted in terms of the logarithm of
anti-cancer drug concentration, log(C), and fitted to the following function:

R ¼ a[bþ tanh (c(log (C)þ d))] , ð3:1Þ
where a, b, c and d are the best-fit parameters. As an example, figure 2a shows the results for Bortezomib
acting on a melanoma cell line (A375). Based on the cell response-Ising model, the IC50 value marks the
drug concentration at which the phase transition from a live system to a dead one occurs. In figure 2a,
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dashed lines represent the best-fitting function and a red star and a purple circle represent the experimental
and predicted IC50 values, respectively. Taylor expansion of the fitted function around IC50 is shown using
a green solid line in figure 2a. Note that the solid line in cyan shows the susceptibility in equation (2.6) and its
highest value coincideswith the IC50 concentration, which provides a rationale for the thus far arbitrary use
of IC50 as a significant parameter for cytotoxicity estimates. These findings also demonstrate good
agreement between our model and the Landau mean-field theory of phase transition (see electronic
supplementary material, Text). Figure 2b illustrates a similar behaviour for Paclitaxel applied to other cell
lines, namely: 769-P (kidney), A-172 (blood), A-375 (skin), A-427 (lung), BxPC-3 (pancreas), BT-549
(breast) and Colo-205 (colon). All findings in this section demonstrate good agreement between the
proposed model and the experimental data.

One of this model’s advantages is its ability to predict a precise value of IC50 by finding the
parameter d of the fitting function. For those cytotoxic drugs, which follow the model, the difference
between the predicted and experimental values of IC50 is very minor, of the order of 10−3. Comparing
the fitted curve with equation (2.5) derived from the cell response-Ising model in table 1, one finds
excellent agreement between the predicted and observed results for non-interacting cell lines (λ = 0 in
equation (2.5)). Table 1 shows the average value of the fitting parameter for all the 66 cell lines tested
followed by the correlation coefficient for each cytotoxic drug between the experiment and the cell
response-Ising model. The best-fit parameter values among the cell lines are fairly consistent for a, b,
R2 and x among the cytotoxic drugs, although some small fluctuations can be seen for parameter c
and d values. To study the possibility of the bystander effect, we use equation (2.5), derived using the
Ising model, with an assumption that α = 1. The obtained values are fairly consistent among all the
drugs (see electronic supplementary material, appendix and figure S3). It emerges that drugs with
higher correlations to our model have high susceptibility values as well. The correlation coefficient
includes the cell lines with R2 > 0.5 and the susceptibility x , 10. These two conditions drop
approximately 16% of the cases studied, which do not follow the model. One possible reason for this
is that the experimental IC50 reported is not appropriate, possibly meaning that the drug was not
cytotoxic for that particular cell line, or the drug dosage was not sufficiently high.

In addition, table 2 lists the fitting results of our model to all the cytotoxic drugs for interacting cells,
l = 0, and we fitted the data with the equation R ¼ 0:5ð1þ tanh(1:15(log(C)� log(IC50))þ lR).
Although for some drugs such as Trametinib, Idelalislib, Tazemetostat and Busulfan, only a few of the
cell lines have been fitted very well to the model; the results show the existence of the bystander effect in
most cell lines. It is important to note that no obvious trend has been found between the interacting and
non-interacting cell lines for each drug. In other words, the cell lines that were not following the model
in the non-interacting case are not well fitted to the model in the interacting case either.

In the original dataset, there are some cell lines for which the corresponding IC50 value was not
reported. This is due to it exceeding the maximum tested concentration (less than 31 600 nM). At this
concentration, the compounds still show less than 50% inhibition of cell proliferation. Figure 3 shows the
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Table 2. Ising model for interacting cells (± stands for standard deviation).

cytotoxic drugs λ R2 total correlation (%)

Bortezomib 0.41 ± 0.21 0.96 ± 0.03 98.5

Methotraxate 1.01 ± 1.53 0.95 ± 0.04 75.8

Afatinib 0.98 ± 0.79 0.93 ± 0.09 66.7

Vincristine 1.18 ± 0.93 0.95 ± 0.08 63.6

Doxorubicine 1.00 ± 0.95 0.97 ± 0.03 57.6

Paclitaxle 1.22 ± 1.06 0.93 ± 0.10 56.1

Cisplatin 0.89 ± 0.72 0.96 ± 0.03 53.0

Palboliclib 0.71 ± 0.71 0.87 ± 0.20 51.5

Irinotecan 0.72 ± 0.34 0.80 ± 0.16 40.9

Trametinib 0.31 ± 0.24 0.90 ± 0.08 10.6

Idelalilsib 0.17 ± 0.04 0.81 ± 0.04 9.1

Tazemetostat 0.86 ± 0.59 0.83 ± 0.12 4.5

Busulfan 0.21 ± 0.12 0.89 ± 0.01 4.5
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correlation of each cytotoxic drug’s profilewith the cell response-Isingmodel prediction and the percentage
of cells with missing IC50 values. We found that Busulfan, Palbociclib, Tazemetostat, Idelalisib and
Trametinib exhibit a relatively low correlation with the model, while these cytotoxic drugs, except
Palbociclib, have a high number of missing IC50 values. On the other hand, cytotoxic drugs with perfect
correlations have only one cell line without an IC50 value measured. Therefore, there appears to be an
inverse relationship between the correlation coefficient and the missing IC50 values. Those cell lines,
which are missing the IC50 values appear not to follow the Ising model. One conclusion that can be
reached is that the Ising model as applied to cytotoxicity is sensitive to the IC50 values. For those cell
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Figure 4. Weak correlation cell lines in different categories of (a) having R2 < 0.5, (b) exhibiting insufficient cytotoxic dose,
(c) showing reversal effect and (d ) efficacy of less than 40% death rate.
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lines for which the measurement has been made either below or above the IC50 values only, no phase
transition has occurred so the model will not work (recall that the maximum value of the experimentally
measured IC50 was 31.6 µM). Figure 3 shows correlation of the drugs with the cell response-Ising model
in blue and the drugs with missing IC50 in red. Interestingly, eight of the drugs tested, namely
Bortezomib, Methotrexate, Paclitaxel, Vincristine, Doxorubicin, Irinotecan, Cisplatin and Afatinib, exhibit
excellent consistency with the cell response-Ising model (exceeding an 87% correlation coefficient), while
for the rest of the drugs the correlation coefficient is between 52% and 73%. Since a diverse set of cancer
cell lines was used among the 66 cell lines tested, this could have contributed to a low correlation
coefficient for the drugs, which target a specific cancer type. For example, Busulfan is mostly used for
treating bone marrow transplantation, especially in chronic myelogenous leukaemia (CML), such as
represented by the following cell lines: SR, MOLT-4, K-562, SK-N-AS, SK-N-FI. The Ising model was
fitted very well for bone marrow and CML cell lines in this case. This trend can also be seen for
Trametinib, Idelalisib, Tazemetostat and Palbociclib. Correlated and uncorrelated cell lines have also
been represented using green and red colours, respectively (see electronic supplementary material, Text,
appendix and table S2).

Figure 4 shows the effect of cytotoxic drugs on the cell lines in different categories such as cell lines
with R2 < 0.5, exhibiting insufficient cytotoxic dose, showing a bizarre reversal effect (i.e. increasing the
dose decreases the cells’ death rate), showing efficacy of less than 40%. Figure 4a shows the number of the
cells exposed to different drugs, which kill less than 40% of the cells. It demonstrates the cells that either
were not responding well to the cytotoxic drugs or the drug was not cytotoxic enough. Comparing
figure 4a and figure 3, one can see that the drugs with a missing IC50 value have a lower death rate,
such as Busulfan, Tazemetostat, Trametinib and Idelalisib. Figure 4b illustrates the cell lines for which
the dosage used was insufficient to cause the death of these cell lines. Also, figure 4c shows the
efficacy of the drug on these cancer cell lines. Busulfan has lower efficacy in more than 90% of the cell
lines. The efficacy value is 35% and 33% for Tazemetostat and Idelalisib, respectively, and 1.6% for
Irinotecan and Methotrexate. Finally, figure 4d shows that some of the cell lines show a toxicity
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Figure 5. Death rate profile for the colorectal cancer cell line, HCT116, exposed to Nitazoxanide and Mitomycin cytotoxic drugs (solid
red line) [52]. Blue and black dashed lines represent the best-fit curves to the cell response-Ising model for interacting and
non-interacting cases, respectively.
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reversal effect when exposed to Tazemetostat, Busulfan and Trametinib such that increasing the cytotoxic
dosage decreases the death rate, although the number of such cases is negligible.

As part of our study, the interacting caseswith a non-zero λ have also been considered. The same datasets
have been fitted to equation (2.5) and the implicit equation for log (C) was solved. The interaction coefficients
were assumed to be positive, l ¼ J=2kBT � 0 in order to conform to the known biological effect. Refer to
figure 1, in order to see the effect of the presence of the cell–cell interactions, the parameter c of the fit
should be less than 1 and λ should be less than the critical value l , lc ¼ 2, at which fatal damage is
created in the corresponding cells. The fitting procedure in the interacting case shows that the interaction
parameter, λ, changes between 2.1 and 6.1 on average. In fact, since λ is greater than λc, the cell–cell
interactions are not significant here (table 2; electronic supplementarymaterial, Text, appendix and figure S3).

Until now, all the cases analysed in this paper involved typical well-plate cytotoxicity assays, in which
cell culture grows within a plane and is then exposed to toxic chemotherapy agents. Spatial dimensionality
of physical systems undergoing phase transitions plays a crucial role in the response of the system to control
parameter changes. In order to explore whether this can also be seen in biological systems such as cancer
cells, we have found some experimental data in the literature that provide examples of dimensionality
dependence. Figure 5 shows a comparison between the cell response-Ising model and the experimental
data from reference [52] in which the drug Nitazoxanide was studied as a colorectal cancer therapy
candidate. In fig. 2 of [52], HCT116 and HCT116 GPF cells were exposed to two cytotoxic drugs,
Nitazoxanide and Mitomycin in monolayer two-dimensional and multi-cellular tumour spheroid (three-
dimensional) cell cultures for 72 h. Here, dose–response curves for the two drugs have been compared to
the cell response-Ising model in figure 5. The black dashed lines and blue dashed lines represent the
best-fit values of the cell response-Ising model in the cases with a non-zero and zero λ, and the red line
shows the HCT116 cell line exposed to Mitomycin (a) two-dimensional and (b) three-dimensional and
Nitazoxanide (c) two-dimensional and (d) three-dimensional. It can be seen that in the case with no cell–
cell interactions, λ = 0, the two cytotoxic drugs have a better correlation than in the interaction case. In
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the presence of the interaction term, l = 0, the values of λ in the curves a to d, are 1.32, −3.01, 0.74 and 0.05,

respectively. These values show that the model does not work well for the Mitomycine three-dimensional
experiment, while for Nitazoxanide three-dimensional, the λ value shows that the cell–cell interactions are
very weak (almost zero). However, in the case of the two-dimensional experiments for both drugs, we see a
better correlation in the cell–cell interaction cases (figure 5a,c). We can, therefore, tentatively conclude that
spatial dimensionality does indeed affect the response of cell cultures to cytotoxic agents but a more in-
depth analysis of larger datasets is required to develop an appropriate mathematical model that captures
these complex systems’ behaviour better than the present Ising model.

4. Conclusion
In this study, the physical concepts developed for the theory of phase transitions occurring in bistable
systems were for the first time applied to describe the effects of various chemotherapeutic agents on
cancer cell lines. Specifically, we adopted the Ising model of a spin system and applied it to the
survival plots of cancer cells at different concentrations of the various chemotherapeutic agents these
cells were exposed to. This model was originally proposed for a spin system in a uniform external
field with a constant interaction parameter and a variable temperature. In the case of cancer cells, the
external field is analogous to the logarithm of the drug concentration, while the interaction parameter
describes the cell–cell interactions and hence accounts for the bystander effect. Unlike in physical
systems, temperature is kept constant for cancer cells in the reported assays. It should be noted that
this model has been successfully applied to both interacting and non-interacting cells depending on
the underlying biological situation. We have tested the model on a consistently produced dataset of
66 cancer cell lines exposed to 13 different cancer chemotherapy drugs. The results show good
agreement between the cell response-Ising model and the biological data. Using the bistabiliy
concept in the Ising model, IC50 values can be very accurately determined with an error on the order
of 1 nM by one of the parameters of the fitting function in the non-interacting case. The cell–cell
interaction was also applied to the experimental data, although in our case, most of the cell lines tend
to be non-interacting. Nonetheless, the presence of interactions can be determined using our fitting
procedures, and it offers a clear biological insight that bare experimental data do not reveal. We have
additionally introduced the thermodynamic concept of the susceptibility function and found its peak
to closely coincide with the value of IC50. Further studies should be performed considering a non-
constant interaction term as well as non-uniform fields in the Ising model applied to cytotoxicity
assays with both two-dimensional and three-dimensional geometries and various cell concentrations.
In addition, spatial dimensionality of the cancer cell culture was shown to affect the response to
cytotoxic agents, which requires a future study to gain insight into how two-dimensional culture may
not be an appropriate proxy for tissue-based studies. This approach is expected to introduce a high
level of consistency in cytotoxic data analysis and hence better confidence in the preclinical data
assessment for cancer chemotherapy and related applications.
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