
rsos.royalsocietypublishing.org

Research
Cite this article: Peleg O, Mahadevan L. 2016
Optimal switching between geocentric and
egocentric strategies in navigation. R. Soc.
open sci. 3: 160128.
http://dx.doi.org/10.1098/rsos.160128

Received: 24 February 2016
Accepted: 27 June 2016

Subject Category:
Engineering

Subject Areas:
behaviour/biophysics

Keywords:
navigation, randomwalks, cognition,
optimal switching

Author for correspondence:
L. Mahadevan
e-mail: lm@seas.harvard.edu

Electronic supplementary material is available
at http://dx.doi.org/10.1098/rsos.160128 or via
http://rsos.royalsocietypublishing.org.

Optimal switching between
geocentric and egocentric
strategies in navigation
O. Peleg1 and L. Mahadevan1,2,3

1Paulson School of Engineering and Applied Sciences, 2Department of Physics, and
3Department of Organismic and Evolutionary Biology, Kavli Institute for NanoBio
Science and Technology, Wyss Institute for Biologically Inspired Engineering, Harvard
University, Cambridge, MA 02138, USA

OP, 0000-0001-9481-7967

Animals use a combination of egocentric navigation driven by
the internal integration of environmental cues, interspersed
with geocentric course correction and reorientation. These
processes are accompanied by uncertainty in sensory
acquisition of information, planning and execution. Inspired
by observations of dung beetle navigational strategies that
show switching between geocentric and egocentric strategies,
we consider the question of optimal reorientation rates for the
navigation of an agent moving along a preferred direction in
the presence of multiple sources of noise. We address this using
a model that takes the form of a correlated random walk at short
time scales that is punctuated by reorientation events leading
to a biased random walks at long time scales. This allows us
to identify optimal alternation schemes and characterize their
robustness in the context of noisy sensory acquisition as well
as performance errors linked with variations in environmental
conditions and agent–environment interactions.

1. Introduction
Navigation in complex uncertain environments requires
information about environmental cues (landmarks) along with the
ability to memorize and execute intended plans based on these
cues. It is thus often accompanied by several cognitive demanding
activities, such as multi-sensory acquisition and integration,
locomotion planning and motor control. As organisms have
finite cognitive and computational resources, they must therefore
multitask and develop optimal schemes to dynamically allocate
resources to different tasks [1–6]. Similar demands are also placed
on their artificial analogues, autonomous vehicles such as robots,
self-driving cars and even deep-space craft [7,8]. Typical strategies
for navigation involve a combination of egocentric and geocentric
schemes. In the first, the organism uses information that it has
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acquired somehow to move along a path without any realtime feedback. In the second, the organism
constantly probes its location relative to environmental cues and adjusts its strategy in real time. The first
requires perfect memory and can be efficient, but can succeed only in a constant environment; the second
requires continuous course corrections and is often slow, but can cope with fluctuating environments.
Organisms switch between these strategies to navigate accurately in a variable environment, and
understanding the switching strategies of organisms in their natural environments is a basic problem
in neuroethology.

Dung beetles provide a well-studied example of this switching behaviour during navigation [9].
Foraging beetles look for nutrient-rich dung, and then attempt to roll a dung ball along a straight
path radially away from the pile [1] with the aim of providing food for their brood. Beetles acquire
navigation information using a variety of long-range cues before initiating a roll, and then push the
dung ball while walking backwards with their hind legs in contact with the dung. However, they
stop intermittently and get atop the ball and walk on it to reorient themselves before continuing
to roll the dung ball. The reorientation behaviour of the beetle is visually mediated and triggered
both by active and passive deviations off-course and by visual cues [10] that include the position of
the Sun, the Moon and associated light polarization patterns. While the beetle continues to obtain
navigational information during a roll, the lack of a constant deviation angle triggering a reorientation
behaviour suggests that this event has uncertainty [10]. Not having to rely on terrestrial landmarks
allows the beetle to travel arbitrarily far away from its starting point without large directional errors
[11], thus making the nature of the navigational task fundamentally different from that of homing insects.
Furthermore, the switching behaviour between runs and reorientations is a function of the environment;
the more uncertain the environment as characterized by its physical roughness, the more frequent
the reorientations [10]. Stopping to reorient after each step makes for slow progress, but guarantees a
straighter route. Alternatively, not stopping at all avoids the loss of time associated with reorientation,
but leads to trajectories that deviate significantly from the intended bearing. This leads to a natural
question of the optimal rate of switching between the egocentric strategy and the geocentric one. In this
paper, we introduce a model for the movement of the beetle, or a navigational agent, that is associated
with paths that are a characteristic of correlated diffusion on short time scales, and biased diffusion on
long time scales [12]. This allows us to pose and solve an optimization problem for the most efficient
switching strategy and characterize its robustness in the presence of noisy sensory acquisition and in
rough environments, with relevance to questions that go beyond the original motivation for the problem.

2. Mathematical model
Inspired by the beetle, we consider an agent that performs a random walk interspersed by reorientation
events, in which its heading direction is reset. We expect that owing to finite cognitive and attention
capacity, information gathered while rolling the ball leads to a bigger acquisition error relative to that
when it is reorienting, i.e. the detected orientation is θi + ε; we assume that this dynamic acquisition
error, ε, is drawn from a uniform distribution of headings [0, εd], where εd ∈ [0, π ]. Between reorientation
events, we assume that the random walk is correlated orientationally, with a mean corresponding to the
current orientation and a uniform distribution of angular errors in the range [0, θ∗], where θ∗ ∈ [0, π ].
The agent can acquire (visual) sensory information in two modes: when it is rolling the ball, or when
it reorients. Memory degradation, execution errors and environmental uncertainties translate to larger
accumulated errors, i.e. large θ∗, so that the agent must stop to reorient more often, consistent with
observations of beetles [10]. This suggests that reorientation is triggered by a threshold deviation from
the preferred heading, which we denote by θa, where θa ∈ [0, π ]. However, reorientation events do not
occur at the same angular deviation from the original bearing [10], and therefore requires the addition
of further triggering mechanisms. Indeed, beetles detect gradual deviation better than abrupt ones [10].
This suggests that beetles do not pay attention to navigational signals at all times owing to finite cognitive
resources; when paying attention to navigational cues, motor control suffers and vice versa. To quantify
this, we define the attention span, τ , where τ ∈ [0, 1] is the fraction of time during movement when
the agent pays more attention to navigational cues, with a distribution of turning angles drawn from
a uniform distribution [0, Aθ∗] (with A > 1), while over the fraction of time 1 − τ , the distribution of
angles is in the range [0, θ∗]. If the agent is inattentive to navigation cues during a step, the standard
deviation of the distribution of angles is θ∗, else it increases by a factor A > 1 and becomes Aθ∗ over the
attentive steps (1 − τ )N. In other words, when paying attention to the navigational cues, the agent pays
less attention to its motor control and the resulting trajectory is characterized by a random walk with a
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Figure 1. (a) Schematic of the navigation model for the dung beetle. The beetle (agent) walks along a correlated random walk, with
errors introduced at every step. When the accumulated error exceeds a threshold θa, the (agent) resets its orientation and continues.
(b) Strategies andassociated errors. If the agent is inattentive tonavigation cues during a step, the standarddeviationof thedistributionof
angles isθ∗, else it increases by a factorA> 1 and becomesAθ∗ over the attentive steps (1 − τ )N. Similarly, there is an error associated
with sensory acquisition that is assumed to be uniformly distributed with a standard deviation εd. Dung beetles pictures acquired by the
Vision Group in Lund University [13].

wider turning angle distribution. These sources of stochasticity in sensing, attention and movement as
the agent interacts with the environment are depicted in figure 1.

The agent is assumed to start at the origin and walk in a straight line along a given radial direction θ0.
At each time step i the agent moves in a random direction θi (figure 1a), relative to its current heading,
i.e. θi = θi−1 + δθ , where for simplicity δθ is drawn from a uniform distribution [0, θ∗] [12] (choosing
from a Gaussian distribution does not change any of results qualitatively). The agent stops at certain
intervals to reorient, i.e. it resets θi = θ0, which we assume takes time, given that the agent has to take a
bearing (corresponding to the beetle reorienting on the dung ball). Then, after N steps that include Nr

reorientations, the end–to–end vector of the agent is R =∑N
i=1 dri, where dri = (sin θi, cos θi).

To characterize the competition between accuracy and speed associated with the task of moving as
far from the origin as quickly as possible, we define a simple cost function that penalizes the deviation
from a straight line and also penalizes the time spent for reorientation:

f = N − |R|
N

+ Nr

N
. (2.1)

Frequent reorientations result in |R| → N and leads to the first term being small, but the second being
large. By contrast, few reorientations will make the second term small, while the first will be large.
Continuity suggests that the cost will be minimum when the number of steps before a reorientation
event n = N/Nr, or equivalently, the frequency of reorientation, is an optimum. Before proceeding to find
this, we point out that this problem has some similarities to a recent class of problems named ‘search
with reset’ [14–17], but differs qualitatively in that here we consider diffusion in orientational rather
than rectilinear space, while coupling reorientation to translational motion, making an analytic approach
difficult except in the simplest of situations.

3. Analysis of model and results
3.1. Regular reorientation
We start with the simplest variant of the question of optimal switching, assuming that the heading
direction is reset to zero every n steps, with N = nNr, complete inattention to navigational cues between
reorientation events, i.e. τ = 0, so that there is no error amplification, i.e. A = 1, and finally there
is no acquisition error, i.e. εd = 0. Later, we will include the additional stochasticity associated with
randomness in the choice of reorientation intervals, and errors in acquisition, variable attention span
and accompanying error amplification.
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Figure 2. (a) Examples of trajectories obtained via random walk simulations with fixed reorientation interval. Different realizations are
shown in different colours and reorientation points are shown as empty circles. The origin is marked with a black square. θ∗ = π/12,
N = 100 andn= 20. (b) CRWsofn= 20 steps andθ∗ = π/12. Each realization is shown in adifferent shadeof blue. The area accessible
to the agent between reorientation events is shownas a circular sector. (c) The entirewalk is described as a BRWwith step size and turning
angles defined by the CRW statistics.

With these assumptions, the agent’s path is a correlated random walk (CRW) in between reorientation
events, and a biased random walk at the long time scale (BRW) [12], as illustrated in figure 2a,b. The path
always starts with a step along θ0, followed by an n − 1 steps CRW, resulting in a mean square end-to-
end distance 〈R2

CRW〉 and mean deviation angle θCRW. These two quantities define a sector accessible to

the agent between reorientation events with central angle 2θCRW and radius
√

〈R2
CRW〉 (figure 2c). Then,

following [11]:

〈R2
CRW〉 = n − 1 + 2β

1 − β

(
n − 1 − 1 − βn−1

1 − β

)
(3.1)

〈R‖CRW〉 = β − βn

1 − β
(3.2)

and θCRW = cos−1

⎛
⎝ 〈R‖CRW〉√

〈R2
CRW〉

⎞
⎠ , (3.3)

where n is the number of steps before a reorientation, and β = 〈cos θi〉, 〈R‖CRW〉 is the mean
distance travelled along the directional bias and θCRW is the mean deviation from the intended
direction.

On longer time scale, the entire random walk may be treated as a BRW with individual steps given
by the CRWs (figure 2c). The end-to-end distance of a BRW is defined as 〈R2

BRW〉 = 〈R2
BRW‖〉 + 〈R2

BRW⊥〉,
where 〈R2

BRW‖〉 and 〈R2
BRW⊥〉 are the mean square displacements parallel and perpendicular to the

directional bias, respectively. Following [11]:

〈R2
BRW⊥〉 = Nr (1 − γBRW)〈dr2

BRW〉 (3.4)

and

〈R2
BRW‖〉 = N2

r γBRW〈dr2
BRW〉 + N2

r , (3.5)

where γBRW = 〈cos2 θCRW〉 and the mean square step size 〈dr2
BRW〉 = 〈R2

CRW〉. Here, we have added the Nr

term to 〈R2
BRW‖〉 to account for the fact that the first step after reorientation is parallel to the directional

bias. Therefore, the mean square displacement of the entire walk is:

〈R2
BRW〉 = Nr(1 − γBRW)〈R2

CRW〉 + N2
r γBRW〈R2

CRW〉 + N2
r . (3.6)
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Figure 3. (a) Cost function versus n, for simulationswith 5000 different realizations,N = 1000. The curves are coloured according to their
θ∗ value (see legend). Theoretical prediction shown as solid lines and numerical values obtained via simulations shown as open circles.
(b) Log–log plot of nopt(θ∗) versus θ∗ derived from both the theoretical prediction (red solid line), and simulations (open circles).

Using (3.1) and (3.3) in the above relationship allows us to calculate |R| = 〈R2
BRW〉1/2, so that the cost

given in (2.1) becomes:

f (N, n, β(θ∗)) =
N −

√
〈R2

BRW〉
N

+ 1
n

= 1 + 1
n

−
√

N
N(β − 1)n

√
N(βn − 2β + 1)2 − (β2 − 1)n2 − n(βn − 1)(βn − 2β − 1) (3.7)

In figure 3, we show the dependence of the cost given by (3.7) on the frequency of reorientation n.
When the width of the turning angle distribution θ∗ = 0, the agent travels along a perfectly straight line
and the cost function f decreases monotonically with n (black solid curve). For a uniform turning angle
distribution, β = sin θ∗/θ∗, so that when θ∗ 
= 0, f is optimal for a particular n(θ∗ (coloured solid curves).
We confirm these analytical results using simulations, as shown in figure 3a.

To study how the optimal reorientation frequency, nopt depends on θ∗, we consider the cost function
in the asymptotic limit f (N → ∞, n, β(θ∗)):

lim
N→∞

f = (β − 1)(1 + n) + 1 − βn

(β − 1)n
. (3.8)

Minimizing this with respect to n, yields

nopt = 1 + W(−β/e)
− log β

, (3.9)

where W is the Lambert W function (the solution of z = W exp W). For the case when the turning angle
distribution is uniform:

nopt(θ∗) = 1 + W(−sin θ∗/θ∗e)
− log(sin θ∗/θ∗)

∼ π

θ∗ , (3.10)

(see electronic supplementary material for a derivation). In figure 3b, we plot nopt(θ∗) versus θ∗ derived
from our simulations, and see that they agree well with our simple theoretical prediction. Furthermore,
figure 3a shows that as θ∗ increases it becomes more crucial to be close to the optimal reorientation
interval, as small deviations in n result in a sharp increase of the cost.

3.2. Dynamic reorientation
Having understood this simple scenario, we now go back to address the complexities associated with
noise in acquisition, planning and execution, in addition to the noise in the turning angle distribution θ∗.
To address this, we use numerical simulations with the acquisition error εd 
= 0, the error amplification
associated with attention A > 1, and ask how the agent must optimize the attention span τ 
= 1 and the
threshold activation angle for reorientation θa to minimize the cost function defined in equation (2.1). We
use the covariance matrix adaptation algorithm (CMA–ES) [18] to determine the optimal strategy, where
given a set (θ∗, A, εd), we determine the optimal set (θa, τ ). The CMA-ES is a stochastic derivative-free
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Figure 4. Optimal strategies in stochastic navigation. (a) Optimal activation angle θa and attention span τ . (b) The optimal mean
reorientation interval, 〈n〉, versus τ . Panels (a,b) summarize the effect of θ∗ and εd, respectively on θa, τ . Each point in the scatter
plots corresponds to a set of parameters controlled by the agent or the environment, as summarized in figure 1. Colour scale corresponds
to the attention error amplification, A. Solid lines created using a Gaussian filter over the scatter points as shown in legend. N = 100;
λCMA = 10 (population size per generation).

optimization method for nonlinear or non-convex continuous optimization problems. By incrementally
increasing the probability of previously successful candidate solutions, we iteratively perform the
following three steps: (i) sample p new sets of (θa, τ ) following the distribution with the updated mean
and covariance of the cost function f (with step size built in), (ii) evaluate f and re-order the sampled
solutions based on their fitness, and (iii) update the internal state variables (θa, τ ), including the mean,
the isotropic and anisotropic evolution path, the covariance matrix, and the step size, based on the q
best out of p solutions, until we have converged to the minimal cost that will yield τ = τ (θ∗, A, εd),
θa = θa(θ∗, A, εd).

The results of our optimization are summarized in figure 4. We see that both the optimal attention
span τ and optimal activation angle θa decrease monotonically with increase in the attention error
amplification, A, consistent with our intuition. However, the mean reorientation interval, 〈n〉, (extracted
retrospectively from the simulations), is relatively independent of A (figure 4b). When the variance of the
turning angles θ∗ increases, we see two regimes; for large A, τ is large and θa increases with θ∗. For small
values of A , there is no clear trend. Finally, θa and τ increase monotonically with εd.

4. Discussion
Inspired by the behavioural strategy of navigational movement of the dung beetle, we have posed and
solved an optimization problem of geocentric navigation interspersed by egocentric cue integration.
In the simplest setting, we find that the optimal reorientation interval is inversely proportional to the
environmental noise and is invariant to sensory acquisition noise. In more complex settings, our study
highlights the variations in the optimal navigation strategy that balances accuracy, speed and effort.
Our study might well be generalizable more broadly to animal navigation, and perhaps even artificial
vehicular navigational situations, all of which use egocentric and geocentric cues with varying attention
to create optimal strategies that balance accuracy and efficiency in the presence of noise, and additional
constraints such as finite cognitive bandwidth. A natural next step would be to test the theory with
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animals, e.g. dung beetles (using established experimental methods [19]), as well as autonomous robotic
agents.
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