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How can we as Data Scientists do what we do
best, and make these communities

safer from onlir abuse



The English Wikipedia over the last few years...

Languages: 250+

Popularity: Alexa Rank #5

Total Edits: 868k
+, All Pages: 46 mill
. Articles 5 mil
| ?Registered Users: 35 mill
’ h - Administrators: ~1,193
B i I £
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Online Harassment at Wikipedia

Pew Research Centre Survey (America centric)

= i s ® O
41% have experienced w w‘lw WI 66% observed attacks

personal attacks directed towards others

47% reported a decrease in
contribution and engagement levels
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Problem

Human Driven

Process There is a need for a more robust process to combat
harassment, one that can scale well as the Wikipedia

Tt community continues to grow in its size and diversity.
ility

understand context
and scope of problem

Failure to identify bad Bias to overlook such
behavior behavior

Our goal was to use machine learning to develop a model that can detect abusive content as well as predict

problematic users in the community.
To that end, we leveraged a variety of data to analyse the prevalence and nature of online harassment at

scale.

e '.:.'..'. UNIVERSITY OF VIRGINIA
2% 310 DATA SCIENCE
ettste INSTITUTE



Data Pipeline

O
=/
User Activity
SQL Queries

Extracted activity

statistics

User Blocks
SQL Queries

Identified blocked
users
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User Comment Text

Python web scraper

Extracted user
comments

P
<«

Data Repository
on AWS

\4

ORES score data

Python web scraper

Wiki automated edit
quality scores

G

Google Ex: Machina
CSVfiles

Human annotated wiki user
comments



Accout Blocks #

Block User Trends in Wikipedia
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~1.02 million unique users
have been blocked in
Wikipedia till Oct 2018

91.5% registered users
8.5% are anonymous
users

Increase in user bocks in
2017, 2018



For what reasons are users getting blocked over the years?
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Active status of blocked users

Blocked Users active in weeks prior to block
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Week #

90% of all blocked users are most active in the week that they get blocked
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Abuse Detection - Problem at hand

* Goal
» Prediction of a toxicity score for each user comment

* [nputs
» User Blocks, User Comment Text, User Activity, and Google Ex: Machina Corpus

* Challenges
» Data Cleaning and Pre-processing
» Ground truth labeling
» Class imbalance
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Model Building Methodology

» Corpus Aggregation + Annotation

* Feature Extraction
» Natural Language Processing
» Orthographical Features

* Implementing Machine Learning Algorithms
» Classification Techniques
» Train - Test split
» K-fold cross validation

* Model comparison
» Using Google Ex Machina dataset to compare best performing model

* Model Tweaking
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Modeling Deep Dive - Feature Extraction

* Natural Language Processing
Char n-gram

Word n-gram

NLTK Sentiment Analyzer
Latent Dirichlet Allocation
Word Embedding - GloVe
Word Embedding - fastText

VVVYVYYVYY

« Orthographical Features
» Numeric Digits
» Capital Characters
» Special Characters
» Average length of characters in word
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Modeling Deep Dive - ML Algorithms
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Toxicity Score Evolution
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User Risk Model - Early Detection of Problematic Users

 Goal
» Prediction of propensity of user to be blocked in the future

* |nputs
» User Blocks, User Comment Text, User Activity, Toxicity Scores, and ORES Scores

* Methodology

» Take into account n-1 recent scores and activity features of each user to predict the
propensity for their n™» comment to be abusive

» Leveraging Naive Bayes approach with different Machine Learning Algorithms

.
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User Risk Model - Early Detection of Problematic Users

28 scores (2 for each 200 character
of the 14 comments) n grams (size 1,2)

. @ E @ O Classification User Risk
. . © : - Model »- Score
User . .

User Activity
Toxicity Scores Stats
For recent 14 comments 6 features aggregated
within 2 weeks daily for 2 weeks
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User Risk Model - ML Algorithms
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Performance of XGBoost model at different thresholds

* Optimizing for higher Recall values instead of Precision

Threshold Accuracy Precision Recall F1 AUC
0.1 91.17% 0.81 0.94 0.87 91.97%
0.2 92.29% 0.86 0.91 0.88 91.97%
| 0.3 92.60% 0.88 0.89 0.89 91.60%
0.4 92.71% 0.90 0.87 0.89 91.17%
0.5 (default) 92.38% 0.91 0.84 0.88 90.29%
0.6 91.94% 0.93 0.82 0.87 89.26%
0.7 91.59% 0.94 0.79 0.86 88.44%
0.8 91.10% 0.95 0.77 0.85 87.43%
0.9 89.94% 0.96 0.72 0.82 85.30%
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How is this
going chicken
shit
WEEKLY STATS

edit count: 5
avg length: 500
active days : 4

Thanks! This
is helpful

y
i

WEEKLY STATS
edit count: 30
avg length: 510
active days, 14

0.1

Wikipedia is

(12 full of
0.3 morons. I’m
. done with
| don’t think this!
this is
relevant

WEEKLY STATS
edit count: 4

avg length: 740
active days : 7
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edit count: 7
avg length: 1230
active days 2

F%S@ 1 will
delete
everything
you post!!!

WEEKLY STA
edit count: 9

avg length: 30
active days : 10

| agree with

him on the

editing trend

il

WEEKLY STATS
edit count: 3
avg length: 100
active days : 4



Thank you!
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